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Abstract

Robust. Estimation for Range Image Segmentation and Fitting

Nunning Yu. Ph D).

Concordia University, 1993

In the disseitation a new robust e shimealion technique lor range image segmentation
and ftting has been developed. The performance of the algorithm has been consid-

ctably improved by incorporating the genetic algorithm.

The new robust estimation method randomly samples range image points and
solves equations determined by these points for parameters of selected primitive type.
From KN seamples we measure RESidual Consensus (RESC) to choose one set of
sample points which determines an equation best fitting the largest homogeneous
surface pateh in the current processing region. The residual consensus is measured
by a compressad istogram method which can be used at various noise levels. After
obtaining surface parameters of the best fitting and the residuals of cach point in
the current processing region, a boundary list scarching method is used to extract
this surface pateh ont of the processing region and to avoid further computation.
Since the RESC method can tolerate more than 80% of outliers, it is a substantial
improvement over the least median squares method. The method segments range
image into planar and quadratic surfaces, and works very well even in smoothly

connected enrve regions.,

A genetie algorithm is used to aecdleralc the random search. A large number

ol offline arerage performance experiments on GA are carried out to investigate

i



ditferent types of G \s and the intlience of control paromctos N stondy ~tate G\

works better than a gencrational veplacemert GG\

The algorithms have been validated on the Tatge et of synthetn and teal fanee

inages.
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Chapter 1

Introduction

Computer vision is the science that develops the theoetical and aleo
rithmic basis by which wseful information abont the world can be anto
matically extracted and analvzed from an observed nooee itnaee set o
image sequence from computations made by special prnpose o eeneral
prrpose computers. Such information can be related to the vecomntion ol
a generic objects the three-dimensional descnption of an anknown olyjedt
the position and orientation ol the observed object.or the mea nement
ol any spatial property of an objects such as the distance hetween two ol
its distinguished points or the diameter ob aonanlar secnion \Yppheation .
of the technology range from vision guided 1ohot assembly 1o 0 pection
tasks involving mensuration. veribeation that ol part o oae pre enton
determination that sifaces have no defects

Robert ML Hoavahek aoaed Tinda G0 S 3




In the past 35 vears, significant advances have been made in the field of com-
puter vision, bat machimes stl [all far short of humans and animals in their visial
performance {[1]. Many scientists and engineers devote their great effort to solve this

difhenlt problem.

In this dissertation. cfforts have been made in robust estimation. genetic algo-
tithms, range image segmentation and fitting. quadratic surface invariants and pose

determination. We have heen making some progress in these areas.,

An objeet can normally be deseribed by a set of geometrie primitives, which
can be in the form of the first-order (planar surface). the second-order (quadratic
surfaces) or higher order surfaces. Robust estimation is a proper wav to extract
priunitives from nosy data. A\ genetic algorithm can be used to accelerate such
robust estimation technigue. Range image then can be segmented into geometrie

primitives. The poses of guadratic surfaces then can be determined for recognition.

We will survey various methods in these areas and propose new ones to sohve
the problems in different ways. Fach method has its advantages and disadvantages.

Weanalyze the proposed methods and specify their appropriate application domains.

Section L summaries major contributions of the dissertation and section 1.2

desenibes organization of the dissertation.

1.1 Major Contributions of the Dissertation

Fhis dissertation consists ol two parts: (1) a new mobust estimation techmque for
range inage segmentation and lting: (2 gencte algordhm (GAY incotporated imo
the new method 1o aceelerate the search. Major contribittions of cach part are as

l'nllu\\ N,



1.1.1 Robust estimation technique (RESC)

Robust estimation technique (RESCY is presented e Chapters 30 606 and 7 RIS
stands for RESidual Consensus o techoique Tor optinnzation: based on residnal
analyses, The major contents of this part have been published i the Procecdings of
IEEE 1992 Computer Vision and Pattern Recognition [S6]0 Proceedings of the SPLF
Advances i Intelligent Robotie Systems, Sensor Fusion 1V Contiol Puradigns and
Data Structures [83) and Procccdings of the Canadian Confercuce on Flectrical and
Compuler Engineering [R1]. It has also been sabmuoted to Fhe TFEE Pransactions
on Pattcrn Analysis and Machine Intelligened ST The magor contodtions nr this

part are:

L.\ new robust estimation technique (RESC) with the followime, featires

o Iligh robustness to outliers: the breakdown pomt ol the estimator can e
as high as SOY for nonmal nose levels and 9150 m norse lree ens onment

It is much better than EMS method whiel Tias o breakdown poit of 50",

o Better performance in second order prinntive estination the RESC ha.
been shown to be the best compared with TLMS (Beast NMedian Sepian e,
method) and LS (Least Squares method ) for solving nmphat eqgnation nn
der Ganssian noise. LS does not minimize the proper geometyie veadnal:
ol the implicit equations of the second order primntives TS vises aoweal,

criterion for the optimization where the ontlicrs are les thaa W

e Ability to handle varions noise levels the compressed historian method
in RESC can handle estimation ander different nore levelo Thor e
important becanse ditferent sensors fiave different coor level Foen on
the sane sensor, the image may fave different yore des b dar dillere

reglons,

o Lasy separation ob inliers aud ontlicrs o cnttime pomt can b detormed

from the compressed histoeram by anabvsie coadual e the B tosam




The cutting point separates inliers from ontliers.

o Efliciency: histogram technique has time complexity of Otn) which s
hetter than LMS s sorting O(nlog, n). where nois the number of points in

the processing region.

Successtulgpplication of RESC algorithm in the area of two-dimensional range
image profile and threesdimensional range image analvsis. RESC is used to
extract geometric primitives (planar and quadratic surface patches) from rance
images. It is also used to extract line and conic segments {rom range image

profifes in two dimensional cases,

A twosstage segmentation strategy, .\ preliminary segmentation is applied to
the raw mmage to deteet jump-edges. Smaller regions segmented by jump-
edges are more casv to process by the RESC method. Primitive extractions by
RESC method is petformed in each region, Mter a primitive is determined. a

segrientation algorithim is nsed to segment the primitive from the region.

A sepmentation algorithn which can tolerate outliers and works efficiently. | he
algorithm nses two lists which store boundaries of the processing region. Four-
neighbor connectivity s nsed. The segmentation algorithm will select a largest

region in which all residoals ave within the estimated noise level.

\neroston algorithm to eliminate small region which may be a hole ina con-
tinwous tegion. Phe small vegion oceur either at the bonndary or inside a
tegron where the residual is greater than the titting theeshold. They <hould be

chimmated

Demonstiation of several complete results of segmentation and fitting of 1eal
tange images. Phe resalts are very good. We can hardly see the difference be-
tween the ornginal and the reconstraction, exeept that the reconstrudcted ranee

nnage does not have the noise effect.,



Development of a complete system for the tange image sesmentation and fittine,

-

as well as the realistic rendering graphics soltware for ranee maee visia b ation

with different light sources and <shading,

1.1.2 Genetic algorithm (GA)

Genetice algorithm (G.\) is presented in Chaprer 5 Major contents of ths part widl he
published in the Proccodimygs of the Sth Scandinavian Conforence on fuage Voalys

[88]. The major contributions in this part are.

1. Incorporation of genctic algorithm (G into the RESC method taae elerate
scarch, In comparative experitnents, we bave ford that G Tad el hetter
performance than a pure random scareh wirth the same mnber of banction

evaluations.

2. Analvzing the hinary gene tepresentation for pomt mdices The cros over op
crator will break the strmg ol binary genes which tepresent anmtescy e
avery Jarge equivalent mutation vate  Therelare, the pont mdices e ned

directly as genes instead of binary encodime the mtesers

3. Testing extensively the genetie algotithim paramercr settme s to obbam optiomal
performance of GAL Two different GAS have been tested and commpared The
optimal parameter settings were found 1o he diflerent frame what T Deen

suggested in literature, 'The results are analy zed

1.2 Organization of the Dissertation

A brielintroduction to the chiapter s at the heeimmne of cach chiapter o e o reade

an idea of what the chapteras abont  \ sunmars o conclnon of cach cliprer




the end.
\ brel mtroduction to each chapter is as follows.

In Chapter 2. we extensively review the most commonly nsed methods for
sequienlation and surfacc fitling for range images.  The segmentation and htiing
methods are divided into two categories: (1) first segmentation then fitting, (2)
fiest fitting then segmentation. Fach category has its advantages and disadsantages,
Segmentation and fitting are fundamental processes in the computer vision becanse
they are nonmally the fitst ste, o of the whole system. The segmentation and fitting

methad proposed in this dissertation falls into the second category.

In Chapter 3. the basic estimation model and analysis ave defined and explained.
fotimat on analssis is the method for finding the best estimation ol parameters of a
given model from the data set. Various eriteria can be wsed in different applications.
Lie recent vears, tobust estimation has been greaily emphasised, .\ tobust estimation
ts an estination which can still correctly estimate parameters of a given model when
there esats ontlicrs, .\ formal definition ol outlier and breakdown point is given
in this chapter. The breakdown point s a quantitative measure of the robustness
ol an estimator - We also analysed the problem with the least squares method for
estitnation of the second order primitives. For the second order primitive model, it
1~ tnpossible to express the model ynan explicit linear equation in order to use the
hineat least squares method to mimmiize the geometrie vesiduals, The normally used
cquation form s an espheit equation 1 he least sguarves method minumizes ondy the
duicrence between two sides of the equation, called algebraie distanee. Furthermore,

the feast cquares method cannot tolerate ontliers,

I Chapter 1owe propose a new hieh breakdown point robust estimator (RESCH.
Fhie prinaple of the random sample methods is imtroduced. Tt has the advantage of
onther insensitivaty . Fhe proposed method is based on the tandom <ample principle

and emphasves BESidual Consensus (RESCY The method can be ased 1o seament



range image into surface patches and to obtain their cquations at the <same tiune.
We use fustogram to analvze distributions of resaduals the  divection distances
between raw data points and the hypothesized surface patches. We mntroduced
compressed histogram method which works on dilferent noise levels, fhsfogram powe
is caleulated and used as our object function of the optimization process We can
always segiment the largest best matehed surface patehes fromothers, even i the Case
of smoothly connected quadratic sutface patches with normally distithuted sen~or
crrors. The most imiportant improvement of RESC algotithin over LS tethond
is that RESC can tolerate more than 30% onthiers. Phis s demonstiated m the
experiments in Chapter 7. For the time complexity of the algonithm. RESC s alwo
an ymprovement over LMS. because RESC uses histogram analvsis which has the

time complexity of O(n). whereas the sorting part of the LMS tahes O dos )

In Chapter 5. we incorporate genetic algorithm (G mto RESC method G
netic algorithms are a class of optimization techmqgnes that eain then name Lo
a similarity to certain processes that oceur at the interactions of hiological genes
Various G operators and algotithms are introduced. G acceletates the <earchime
process of RESC method. Integer genes are used insteadd of hinary ones We il zed
the sitnation where binary genes are used. Crossover opetator hreahs with vers bneh
probability. the binary string which represents aninteser Such Lreak s eqmvalent to
a mutation operation. An equivalent mutation rate for a n po'nt crossover opetaton
is calculated. Since onr gene is an mteger and its vabine s vaed o baree tanee
the GA parameter settings is Hifferent from those suggestea i the Tderatiare o here
all analyses and experiments are based on binary genes, atenave espenents
petformed inorder to determine the parmneter settine 7 GN wheh 1 evcutial o

G\ working properly.

In Chapter 6. details of the seementation algonthm wre o planed Ve
stage segmentation strategs as used T the list steee o aniple pannge e doe dore o

is nsed to segment prelminaily the whole maee into weeral veeon o parated 1y,




these jump edges. This can effectively reduce the amount of computations of the
REESC algonthm. A final segmentation is applied after the primitive extraction by
the RESC method, rom RESC method. the parameters for a given model to the
datic are obtained. Therelore, the segmentation process sets a threshold based on
the fitting process and extracts the largest continuons region where the residual of
cach pixelis within the thieshold limit. A boundary list method is used to perform
the segmentation efficiently. It can tolerate one point outliers. Some small regions
mav ocenr at the houndary or inside ~some region. An erosion algorithm is used to

climinate these small 1egions.

In Chapter 7. various experiments of svuthetic and real data in two and three
dimensions are presented. Three different methods. RESC method. least median
squares method (LMS) and least squares (LS) method. are tested and compared.
Among these methods, the RESC method has the best performance in the case of
outhiers. The breakdown point can be as high as ™M% in noise free sitnations. On
average, RESC has muach higher hreakdown point than LMS method. I the real
range image experiments, we tested several range images from National Re<carch
Counetl of Canada (NRC) and from the Pattern Recognition and hmage Processing

Lab ol Michigan State University in public domain. The results are very good.

In Chapter X. we conclude the dissertation and propose divections for futuie

research,

Bibhography section lists varions published articles in journals, conference pro-
ceedings, PhoD. thesis, technical reports, collected books and books on computer
viston. Only cited publications in the text are listed. Fhe bibliography list is sorted

alphabetically by the fiest anthor's last nane.

Appendices Ao B D and E contain details of some mathematical derivations.
\ppendin O shows the derivations of the invarants and pose of quadratic surfaces

Otrernalls we proposed the idea tor objeet recoenition but found the invariants are



very sensitive to noise. Pherefore, it cannot be used for object tecosmtion. However,
we can use it to determine if a surface is a planar ot a quadric as explained i Chapter

L. More details can be obtained from our previous pubheations |85, 82)



Chapter 2

Survey of Range Image

Segmentation

In this chapter. we survey varions methods for range image sesmentation and
fitting. Section 2.0 introduces basic concepts and two categories of segmentation.
("ategory one. 1 section 2220 contains methods using the properties ol surfaces, in-
cludimg the methods based on edges. or regions. or the hy brid of the two. In methods
based on edges, we survey the method by Fano Medioni and Nevatia {21] and the
method by Roth and Levine [66. 68]. o region method. we survey region growing,
method {7050 510 50]0 region merging method [23. 700 78] and dustering method
(10027, 700 18] Incha brid method, we survey the methods of [S1.17]. A nother cate-
vory, i section 230 includes methods based on primitive extraction. These methods
melude: random sample consensus (RANSAC) [21. N]. least median squares (LAS)
(69, 66, 63, 53]. random Hough transformation (RHTY [80]. median of the intereepts
(MDY [19] genetic algotithm (GAYV [T 31 67] and also the vesidual consensus (RESCH

(N1 83.87] proposed in this dissertation.



2.1 Introduction

A range image is a set of three-dimensional coordinates of diserete pomts on the
visible surface of an object. Fxtracting uselul information from these dense points
is a crucial task for computer vision systems. Sinee wdividual points inoa tanee
image provide little information. pixels which share certain intrinsic properties with
their neighbors are explored and extracted for higher level processing. ¢ o for object
recognition.  Segmentation is the process of finding pixels with sinulat properties
Formally. let [ denote range image. R, denote the oth vegion such that pivels i the

region have similar properties. the segmentation ot [ is a partition:

1

uM R,

=1

RNk, = o lor 1 #).

Ilach region is normally processed further by elassilication amd sutface itme | he

robust and acenrate surface fitting is essential to get really useful intormation from

stch a partition. Fitting surfaces to pixels in a region is straghttorward of o cotree

and accurate partition is obtained, but how to determine such o partition” On the

contrary. if the surface parameters are determined st is not dithoult to eet an maee
?

segmentation. but how to obtain surface patameters? s is often tefened 1 0w

“chicken-and-egg™ problem [7].

Figure 2.1 illustrates range image and segremtation and hte process Vo e
range sensor scan the objeet and generate a prolile. By moving the tanee «on or alone

a line, a whole range image can be generated as show in e 202

The methods of segmentation and fitting can be vouehls divided o o oat

egories.,

L. methods nsing properties of the silace (segmentation then it
2. methods hased on estraction ol provmtives (htime then <eenentat o




Figure 2.1: Range image segmentation and fitting
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The most often used category is the first one. Techimques of the st cate
gory explore the properties of cach pinel and its neighbors. Normallv they perfon
segmentation by extracting curvatures and then finding edges [21 66] or rewions
[7.5.51, 50, 23. 78], Segmentation may also be performed using a elustermy, method
[10.27. 70. 18]. or a hybrid of curvature and clustering (81U 17]. Many papers demon
strate very good segmentation and reconstruction of 31 objects, Fach sepment shoubd
be a homogeneous surlace region. Most papers consider o homogencons patch to he
region having the same surface by surface carvature signs, o1 belonging 1o the same
sign of the surface curvature. or belonging to the same order of sithaces o a tegion
without discontinuity. The more meanmqgful the segment, the hetter it s far higher
level processing. In [85. 82]. we see that object tecognition can be perlotmed wath
high efficiency if each segment is a quadratie surface patch. Teas dithonlt 1o vse the
first category to extract specific primitives Therefore, ibwe want 1o extract specilu
primitives, such as quadratic surface pateh, from range image, this catesory s oby
ously not a good one since the segment is not based on speaitie prnmitives Vhoneh
the splitting-and-merging is not exactly in the category ol seementation then it
it is essentially a region merging method (230700750 The whole ymaee v pht into
the smallest pieces. Fitting and segmentation is pertormed dume thie resion srowms
and merging process until the gross ertor exceeds a thresholds Sphttine and merome
is not widely used for range image segmentation probably becanse ol the extermie

computation for the repeated fitting test,

Methods i the second category extract required prmmtives directly hom the
unprocessed range image. The Hough transform (1F1) {130 18] s wadely need o
extraction of primitives and motion determination [ 190 5] The JHE vequine o
very large space to store parameter voting in order to find primitives accordie 1o
the maximum vote.  Fo avoid the space requirement. N Opaaned Naltanen S0
propose a new curve detedtion method. the randomized Honelr transtorn R
Liang [31] proposes a curve fitting Hongh transtorm (CFHT ) Bar adbthie e thiod

need 1o diseretize either the inpnt data or the patameter space They oo probilom




with finely discretized = values of range mage and with the nine parameters required

to deseribe quadratic surfaces,

Recently. robust cstinalion techniques have gained importance in compnter
viston applications [H6]. Robust estimation means that surface fitting is not influeneed
by outlers {gross errors) in the processing region. Fischler and Bolles [21] propose
a random sample consensus (RANSAC) paradigm for model fitting to images. The
RANSAC method depends exelusively on a predefined threshold, The results are
sensitive to this threshold and therefore some knowledge of the scene must he obtained
in advance, Besides, ina given scene, different segments may have different standard
deviations and requive different thresholds, RANSAC cannot handle this problem.
Rousseenw and Leroyv [69] propose the least-median-squares method (LMS) which
can tolerate S04 ontliers, Roth and Levine [66] use LNS for surface fitting. The
application of LMS to noisy piecewise constant data with a large proportion of outliers
can fail [38]. In [66]. segmentation is based on jump edge and rool edge extractions.
Fhis method cannot handle smoothly connected segiments because it only detects
jnmp and ool edges. 1t s casier to select a threshold for Jjump and rool edges
using an itetative robust fitting method. amgar-Parsi and Netanvahu [19] fit a
straight Tine to o noisy image asing a median of the intercepts (M) method. Al
these tobust estimation methods provide a way to extract primitives from raw data
divectly, but most of these papersonly attempt to extract primitivesin 2D images and
do not demonstrate complete 31 range image segmentations. Yu, Bui and krey zak
[S1083.86] improve LMS method and demonstrate a complete segmentation of range

Mages,

Segmientation and fitting are difficult tasks. A very good 1eview of this area
hefore 1986 can be found in [6. 1], The following is a briel review of range image

scgmentation in recent veats.,



2.2 Methods Using Properties of Surfaces

Methods belonging to this category use some hind of properties of cach pinel and
its surrounding neighbors to segment the whole image to non overfappine regions
in which the pixels have the same properties. The eriteria for segmentation can he
roughly divided into three classes: (1) extract odyes among regions by explotme, the
discontinwhies [21. 66, 17, 10]. (2) classify and grow, or merge cach region annl the
whole image is segmented [5.0 7. 510 500 10, 270 18, 23, 7810680 o hvbiid of the two

[31. 17].

2.2.1 Segmentation Based on Edges

Fdge is the discontinuidies between two surface patches and obvionsiv s o vood
criterion for segmentation. Jump edges are the discontimution of depth valnes andd
can be easily detected. Grease cdges are the discontinmtios of snface normal s and
the detection depends on a correct selection of thiesholds. ot siaootle connedtod
surface patches. there are no obvious edges hetween them. 1t seens nnpeosaibile 1o

this class of method to segment such smoothly connected resions,

Fan. Medioni and Nevatia [21] segment range mmage by odges bt ding
guished points comprising the edges of segmented surbace patcies are esteacied
using the zero-crossings and crtvcma ol carvatire along o etven divectune Tawo dil
ferent methods arve used: if the sensor provides relatively norse free vanee pnase s 1the
principal curvatures are computed at only one vesolition. othersose o walle woale
approach is nsed and curvatnre is compnted i fonr duections 15 apart 1o Laoabitate

interscale tracking. hese points are then gronped imnto cnrses ob the tollowme v

o 1ype b:oisolated posttive extremum (4.
e tvpe 2 isolated negative extremum
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o tvpe 3 associated positive extremum and zero-crossing (40).
e type I associated negative extremum and zero-crossing (—0).

o tvpe i associated positive extretnumand zero-crossing and negative extremum

{+0-).

These curves are elassified into different classes corresponding to signilicant physical
properties such as jump boundaries (+0-). folds (+0. =0. +. or =). and ridge
lines (or sinooth extrema). Then jump houndaries and folds are used to seement
the surfaces into surface patehes. This 1) derivative approach can provide good
localization. but is more sensitive to noise than the 2D window derivative [3]. The
method explores intensively the discontinuities between surface patehes, bt does not
consider the homogeneous property of the surface patches. Henee it is very difficult

to segment smooth connected regions.,

Ouce the closed bhoundaries have heen obtained. sutface patches arve approsi-

mated by a beeareate polynomeal (biguadratic):
2 2
glacy) = doo + dpot + agy + aogr Foagay gy

The cocllicients are obtained by minimizing the least-squares error between obseryed

and interpolated data.

Roth and Levine [66. 68] propose a method for segmentation based on robust
suttace litting with the least median squares [69] technigue (LMS. reviewed in the
later section). Jump edges and roof edges are extracted to form initial segmentation
of tmages. Connected regions are fitted with LMS method. The htting is successiul
il the LMS error is fess than or equal to a noise Hireshold I 1 this is true the
mlier pivels. belonging to the geometrie primitive, are assigned to the primitive and
removed from further consideration. Tf the fitting is not suceesstul, then anofhor <ol
of Jump and vool edee thresholds is then chosen and the process is repeated. Finall.

i or tus particnlar geometvie priimitive (say a plane) there is no sinecess at any set

L6



of edge thresholds. then the nert more complen geometne pnnntive (o gquadeee
this case) is considered in the same fashion. The entite process is iterated antil no
more points are left in the image. Chis miethod cannot handie smoothily connected

segiments because only thresholds are used to detect jump and oot edges

2.2.2 Segmentation Based on Region

[nstead of looking for discontinutties among surface patehes: the methods i this
category explore the properties of cach region and classify theme Fhese methods can
be divided mainly into three groups. resion growing [7. 50 510 S0} emion merery
[23. 78] and clustering {100 27, 700 18], Region growing methods and clostenny,
methods try to lind a seed of a region by cunvature tvpes o dlastenne. aud then
grow the region from the seed. Region merging method is sometimes called sphttime
and-merging. It is also based on region properties. g Table 21 Dillerent Trom
region growing method. the segmentation s performed during the staze ol reeion
merging process. Iidges are then found at the places where tawo reons eet he o,

possible to segment stooth connected regions by these miethods

Region Growing Method

Besl and Jain [7] and Besl [3] published papers and o book on seginentation imethodd
Their publication may be the most imtensivels study inthe area Phey dlasatied pane
images into cight diflerent types based on the siens ol mear and Geanssian cnvanin

The initial segmentation is refined byoan terative reaion erowine method baoed on

the variable-order suface fitting,

Mean (1D curvature faverage of the s aned ninn curcatone of o
point) and Ganssian (i) (product o the acanmnn and e oo ataee

point} curvatnre images are compited ona 7o T wmdow s cqnall vonedined



N K<
“ I =0 Peak | Ridge Saddle Ridge
I'=1|1T=2 T'=13
I =01 (none) | Flar | Minimal Surface
T=117T=) T'=6
K -0 Pi Valley | Saddle Valley
I'=7 ] T=238 I'=9

I mean curvature, A Gaussian curvature and 7 sutface type label.

Table 2.1: Surface type labels from surface curvature sign

feast sqitares derivative estimation window operators. The surface curvature sign
mmages are then used to determine the surface tvpe image (Table 2.1) and form an
initial sesmentation based on these surface tvpes. Region seeds are obtained {rom
the initial stnface type segmentation by a 3 < 3 erosion operation (i.e.. zero out
pinels that have zero valued neighbors and leave other pixels alone). The erosion is
tepeated inside the inttial segment until the remaining mumber of pisels is less than

a thieshold,

[terative variable order surtace fitting is then petformed starting from the seed
regtons. he set of approvimating functions £ (/] = 1) is written in the form of a

single equation:

[tmouse.y) = Z TR

pkpm

When e - L the equation iss

. 3y ] Al »
[l o, y) tdon by Faagy Fagey +oasgT doapgonT b asgaTy S agseyT

} 4 3 2 2 2 }
bt bagar A aq g b wasl Tyt FaparyT b ad T S aygy ',

\ter a suelace ob order i s Iitted 1o the tegion 2% in the Ath iteration, the suttace

descoption isnsed 1o 2row the region mto a Jarger region where all pinels o the lareer

I



region are connected to the original region and compatible with the approvnnating,
surface function for the original region. If the masmtude of the tesidual of o pisel s

less than the allowed tolerance value (gt where o4

[ restdual i and g 2 S0
then the pixel is added to the vegion B4, Compatibility s checked amam lor cach
pixel in the region. I the difference between the novmal deternnued Ty the siven
data and the normal determined by the approsimating suiface s less than a threshobd
(0, = 12 + 160, degrees). the pixel s compatible The largest connected yemon 1"

that overlaps the seed region is then extracted 1o create the nest resion 500 The

process is repeated until [ = |8 forany - hov & o and et 1l

Kasvand [31. 50} proposes a method 10 sement and chissitv suibace patche.
by their curvatures,  The basie parameters lor a sutface element e it posation
(.. ) its unit surlace normal veetor ne.y. <) and the masimum antace carvatime
AL(e.y. ) and the minimum sturface caevature #2000 0 NV sibace element o eyeh
degrees of freedom. three for the position. three for onentation e cpace and twotrom
the &1 and &2 values. The otthogonal ditections of A1 and A2 s weil wo then vl
span to a meaningful A1-A2 space. From the A1 22 <pace the sibace elemont con e
classified as: flat iF AL = &2 = 0. eylendrical and concal antace b 1o Seva oplicas
AL = k2 £ 0. ctes Nlsooa natural edge detector s obtaed aulonal ally Tronn i

A1-E2 space sinee at anv edge the theoretical A1 value emhne

Ihe tmage can be segmented aito regions whiel hare becone aontomane b
recoqmized according 1o the type o the surtace i the veoon The comentation

processing sequence is as follows:

I, Construet two dimensional Tastovram LY 20 Boonbasc b 10 cane
ont dvnamie thnesholdine and use constramt tor o bindieal and o vrone 1
sions, Give dentiby 1o the solatod vewron by rewon Labu bie ad s prcad 1l

regron tabels onty simce dvnane thresholdinge ond e vee v pead Ld

videces i RV 2
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2 bottact the planan or flat areas in the vicimy of A= A2 =0 in L1542 space.

3 batract the positive and negative cvlindrical and conieal regions where the

proels fall onto the M axis.

boolstract the extreme enrvature edges,

e bonndanes between differently Tabeled tegions are ereated by zeroing masks
which has different fabels within i1« 3 by 3 pixel neighborhood. This creates eracks
hetween the labeled vegions, convert 1t 1o a binary, la ol the connected components
(facets), and approximate the facets with suitable analy ie functions (planar or bi-
quadiatic) Cempare the analvtical value with the actnal values to eliminate wrony
praels. Fatend the coverage towards the newshboring vegions and create a confest
bhetween the cotnpeting lacets i he process is controlled by updating the Tabels and

terated wntil the process stabedies,

Region NMerging Method

Ree cmereing method is ditlerent from the resion growing method. Region erowing
method s to segment the range inace into regions hased on curvatines and growing
cach regton from the seed in the mmitial seementation. The region mergine methaod
i~ fist to seement the image into many tegions (over seemented ) without exploting
properties meach region and then to merge these tegions according to some eritetion,

Rewion meteing method is also called splittig-and-mergineg methodd,

e sphitine and mergime paradigm tor anves was st mtrodonced by Powchidis
and Hotowat, !(»(]. hl]. Lhe wdea s ‘~illlp|v. st s[)lil the are mto scements for
which the enor i each seement s safficiently siadls Then Gy 1o meree siccessive
seements, providine amy resalting mereed seement has suthiaently ~small etror {hen
tiy o adjust the breakpomts to obtain o better scementation. Do this vepeatediy

Wl thiee steps produce no tither chanee
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Faugeras and Hebert [23] use a splitting-and merame strateay for the seemen
tation and fitting of range images.  The image is first split imto small toangles and
then the region is grown during the titting process. FPhev clanm that the hest so
lution is to use as global a strategy as possible which means that evolution of the
segmentation is determined by the quality of the overall descoption o the surlace
The global control prevents the segmentation from bewny pertarhed by tocal noss

measurements. heir global control has two consequences:

. In cach iteration. the regions 12, and I, which produce the munmmm ervor

(R U R among the whole set of pairs are mereed.

2. The program stops when the global etror NN 0 F (8 s ereater than £

K

Surfaces consist of planes and quadries  The entor Fas defimed as the distanee
Letween the points of the region and the hest fittme plane i the least squates ense

For quadrics. the error measire is not the distance ot a pomnt to o guadiie s silace

but:
\
l','—_-NlinL(xiz\x, b X, v o)y
=1
where
o, ul/\//';’ u,/\/‘,_’

A=y |/\/l§ o a.,/ v
TR AV T RVAUNT

'

v = s ug gy
l/ —

The constraint Tr(AAY) = Y af = Tor linctions Foas nsed 1o asord the e vl
solution [0, ... 0] and the constraint is mvanant to tranebation becar e A o
and to rotation. becanse the trace operator s also nvaiant e o of f
is Tonnd by usine the Lagrange mualtiphers method  The watel het oo plane

and quadiies is done antomatically by sinphe comparme the ve peare e cnrar e

guadratic sulace hitting method nsed here does nor mmnze seote ton it

2l




hetween fitted siface and actnal data. This kind of fitting is very sensitive 1o noise

1

5], Hheretore, fitting and segmentation cannot be acenrate,

Sabata. Arman and Aggarwal {TO] (reviewed in section 2.2.2) use similar strat-
cpy to merpe oversegmented image. Bivariate polvnomials of up to fifth degree are
tsed 1o represent siglaces. Two adjacent surface patches are merged if parameters
of one of the patches. when nsed to extrapolate over the neighboring pateh. result

only i a small erior,

Fanthin {T8] adddresses the problem of parametric representation and estimation
ol complex planar curves in 2 DL surfaces in 3-1D and nonplanar space cnrves in 3-
D). and proposes a segmentation method nsing the methods mentioned above. The
representation of curves and surfaces is inimplicit form Z(f) = {o @ f(r) = O},
where [ R - RY is a smooth map. a map with continuous first- and second-order

derivatives af every point. and

M) =00 o file) =0,

ZUI) s a planar canve it e = 2 and A = 1 it is a surface ifn = 3 and & = [ and 1t

is o space cnrve il =3 and A =20 The approximate distance from o to Z( ) i

VDD e)) =1 )

where D) s Jacobian of fie). In the case of planar curves and sorfaces. b = |

and the approvimate distance from e to Z(f) is \/./'(.r)-’/HV./'(.:')H-'. which has been
widel nsed tor cnrve itung. The minimization of the approximate niean square
distance s known as the nonlinear least squares problem. and can be solved using
terative methods, such as the well-known Levenberg- Marquardt algorithm,  \ vood
mitial estimation s necessary for the Levenbere-Narguardt algorithm. T the linear
case and the cases of eirdcles, \pll(‘lt‘\ and oy llllll(‘l'\. the minumization |)lu|h|t‘ln reduces
to the gencralived creenvector it which minimizes the sum of squates of the values of
the hunctions that detine the amrves ol surfaces nnder a quadratic constraint funetion

ol the data, e L:vnl‘l.ll'l/m[ clecmector i s ill(l(‘p(‘ll(lvnl ol the choce ol coordinate



svstent, which is a very desirable property for object tecozmtion, posttion estimation,
and the stereo matching problem. .\ reweight proceduwe s mtraduced to smprove the
solution produced by the generalized cigenvector e at o fower cost than the general
iterative minimization techniques. Finallvo the result of the reweight procedure s fed
into the Levenberg-Marquardt algorithim to minimize the approsimate mean square

distance.

The segmentation algorithm is partially based on Besland Jain™s vartable ovder
surface fitting algorithm [7. 5] and Silverman and Cooper™s sitface estination s
tering algorithm [T1]. and related to Chen's planar cinve reconstiuction aleonthin
[10]. The square of the noise varianee at one data point o) e estimated by hittne
a straight line or plane to the data in a small newwhborhood o the pomts wineh s
a circle or ball of radius equal to a few pixels. using the ereenvecton bt method and
then computing the approximate mean square distance to the htted Tne or plane
The square of the noise varianee at every data pomnt s estinated and o histoeranm
of them is butlt. The data points with squate noise vanrance e the top 1000 ol 1he
histogram are marked as ontliers,  The goodness of it test s a two tep test 1)

approximate mean square distance Ap(a) test (related to 7 statistie

T _A;',(u)' BN

N

where 0 << ¢ < 1< ¢, and

b,
rrf; = »—Lﬂ"(/;,,
l/’_l

is the mean noise sariance estimate on the <et SO 02 the wecond tea

h‘:';{u) < e .,.A;.,(u)

wlhiete ¢ > 1 is another test constant.

I he variable order region glu\\illu u]}_;ullllml can be de cnbed a taiboe A1
inereasing sequence Fyoooc F o0 ol lanhie o Binenion e N regron
is a data stoncime R~ (S foordery, where S s a connectod uly ot o dara ponne

illl‘l / I et 1) ('I(‘lll(‘lll ol ,F,, f Illtll vll)|)li)‘~.llll.||("~ eANery, |m|;|l ol C\‘ ERL Ve oo
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Frgure 2.3: The flowchart of Taubin’s algorithm

G]wun R=(§, 1, ()rdcr))

new tin l})r(lcr

Calculate §° S:=8, =t

new t°m Forder+1 ]

order = MAX ?
\

yes \L
Calculate §°

no -
cood it

order .= order + 1

@clmn R=(S, T, mdch

srowing starts by linding a seed regron R = (S, f. 1), where fis an element of Fy.
whose set ol zetos Z(f) approximates every point of S well. In this case Fy is the
family of first degiee polynomials, and a seed region is the subset of data points in
the newghborhood of o point not marhed as an outher. which was used to estimate

the noise varianee at the point. together with the fitted straight line or plane.

Fhen, given a cnrrent tegion R = (S, fLordar), the following loop is tepeated
until no further growth in 8 is observed. The maximal connected region 8 of poiuts
well approstmated by fand intersecting the initial seed set is computed. [T 8" does

not have more pomts than 8. oocithee 8 vor /i chaneed. and the loop is exited,



Otherwise. a new member f7 of Foi, is litted 1o 8. and i1 sanshies the soodiess
of fit test. the region R is replaced by R = (8" "L order) and the loop tepeated I
J" does not satisly the test. the loop is exited. When the loop s extted. b order s
equal to the maximum order ordery vy the regron growing is fimshed I ceturnne
the current region R = (8. f.order). Otherwise. a member ot Fo 0y s hited to
S.and il it satislies the goodness of fit test. [ s ceplaced by /o ordor s replaced Tn
order + 1. thai is. R is replaced by R = (S /" order + D and the loop s traversed
once more. I f" does not satisty the test, the region etowing is linshed by retannme
the current vegion R = (S. foorder). The tlowchart of this alsonthm 1« enven

Figure 2.3.

Taubin's fitting, algorithm of minimization of the approvimate distances 14 an
improvement of the method nsed by Fangeras and Hebert 23] The solution
volves nonlinear iterative optimization methiod. e compritation s eutensine ot
such iterative algoritlun. Fherefore, in most cases. o simplilicd Bittme s oaeed e the

seginentation algorithm.

Clustering Method

Hoffman and Jain [10] and Flenn [27] propose a segmentation method baod on
clustering technigne. .\ patternis defined as ¢y = (g, 0on, 1, ) wher oy
are courdinates of point ¢ and n, oy 0 are the anit notinal vector of pont + 1
surface notmal of cach pomnt is extracted trom the parameters of o itted plane 1
the image data in a neighborhood of the considered prvels A claster conter o the
centroid of the patterns assigned to that chaster The Tabeline obtamed brom o
cluster solution is denoted {4,000 and the b dlaster centers e my, m, ith
my = (e m). Vhe squared error s eiven by,

L
[ - Z:Z‘(',/ o, gt

r=bog |
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where 1,15 the class label obtained for the sth input pattern c,. The first ¢lustering
places all patterns in one eluster, k., is an a prooronpper bound on the nnmber of

clusters, ‘The initial sesmentation based on CLUSTER program is as follows:

o A clustering with y + 1 clusters is obtained from a clustering with ; clusters
by choosing the pattern farthest from the current clustering as the new cluster

center.,

o [lanv two clusters in that solution can be merged to produce a (k,,.,, = 1)-cluster
solution with lower squared ervor than the previous (A, — )-cluster solution,
the tesultant clustering replaces the previons (£, — D)-clnster solution. Then
the (K., = D)-chister clastering s examined in the same way 1o prodace a

yossibiv new) (b, = 2)-cluster clustering, and <o lorth,
| 1 2

Steps [ and 2 are repeated sequentially until none ol the A,.,, clusterings cliange

during a pass. b, = 16 [27) and &, =20 [10] in the program.

Hotfnran and Jain [10] use different merit funetion. Fhe average within-clisten

interpoint distance of cluster 7 defined as:

CLWWGDO) = ,7[—’ Z diar.e(r))

1€C,
where o indicates Fuaclidean distance, ¢(¢) is the center of eluster oo and 4, i< the <el
of points helonging to custer 0\ statisties M(2) is delined to refleet the isolation

and compactness of clister o

min, g Fle(). ()

M) =
t CL AV GD

Anoverall merit function M, s delined as a weighted average of YV ()'s, where the
werghts are the numbers of pivels in elusters, Those clusters with lareer valies of

M. e preferied over those with smaller values,

he vatial sesmentation is often contaminated by the followine undesirable

attitactse
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e Non-connected patches with the same label.

e Patches with an extremely small number of pivels relative to the other wnaee

segments,

o Diftferentlyv-labeled patelies belonging to the same object s face,

The refinements of the initial seementation are performed in three steps to remedy
the above problems. .\ recursive conneeted component Tabeling alwonthm i nsed 1o
make the label unique and preseryved S-connected regions with pivel number exceedine
a threshold. If the changes of surface orientation are bhelow a threshold valines the

patches are merged.

Surface classitication is based on fitting errors and entvatiiees. A plane 1t
to the 31 points in the segment. and accepted af the tean squared coor of the I
is below an empirically-determined threshold. Hthe threshold s exceeded s baed on
curvature atalysis. the segment will he litted to o cxhndrical parch or spherieal pateh
Il & squared-error statistic exceeds a thieshold. the pateh v Tabeled npknow e and no
more attempt will be performed on that seement. A\ nontiear optinnzation tecdhingne

15 then used to refine the parameters (e.g.. radins. onentation) of the esaftine wface

[26].

Sabata. Arman and Aggarwal {[T0] propose o sewrnentation tethod Taeod on
clustering using pyramedal data structures The intial chnstering s performed e
four properties calculated by the preprocessing stage tor cacli pomt e the anee
image. The four properties are the smface notmal vector and it three projection
omto the ry-plane. the yz-plane and the oo plane B pyramadad dostorime o
pivels with similar properties are clustered mto eronps o hierorclicalbimanmer i
pyramidal algorithims are divided into thiree stages: Phe fist proces o amtadization
where the nodes of the pyramidal data stiacture are tahized Hhe baoo el
initialized by assiening the pisel valnes of the nnaee to the corre pondime node Fhe

other levels of the o level pyramd are mitiahzed by valane the aopaee ot 22




arca in level 1o to generate o node in level 10 Each node is the clustering of the
lowet fevel nodes, “The sscond stage is the node linkurg, cach node chooses its hest
tather bhased on a closeness measurement. The last step is the tree generation., using
the tesults of the linking, and it assigns a tegion label to cach node, Starting [rom
fevel 11 - b - 1o a distinet label is assigned to all nodes and their childien with
distinct property values.  An over-segmented performance is assmmerd amd a high
level merging is necessary, Bivariate polynomials of up to fifth degree are used to
represent sutfaces. Two adjacent surface patches are merged if parameters ol one of
the patches. when nsed 1o extrapolate over the neighboring pateh. vesnlt only in a

small error.

Johon. Meer and Bataonche [I8] propose a robust clustering technique based
on the robnst minimum volume ellipsord estimator (MVE) of Rousseenw and Leroy
[69]. The algorithm has an iterative nature. Let X he a <et of 1 distinet data points

tleatire vectors) ina p dimensional feature space:

X ={x,. 1= l.....n} X, = () ... )

i

Fvery point fias assoctated with 1t a sealar positive weight ¢, Denote by Xy the et
ol data points contained i the featnre space at the I-th iteration. From this set, the
best custer (to be characterized below) s delineated and removed vielding the new
et Xy The process stops whenever the number of temainine points beconies Jess
than the assumed minimitn eluster size or the mumber of detected elusters exceeds an
uppet bonnd, To extract a cluster. the space X is analy zed at different =resolutions”
characterized by astep sice o b <2 050 Fora given value of AL they seek the minimum
volume ellipsoid contaming fraction h ol the mass of X, Q) = X, Y\ tandom
sampling method is nsed. The featie spaces contain aronnd 100 data points. \fter
the fitst pomnt is chosen at tandom. the temaining p points are chosen from a boy
centered around it Phe number of samples periteration is 25, .\ cluster is delimeated
based on this ellipsord and its shape is compared with the shape of anideal eluster
cencrated by a (i.m\\i.\.n densitve The eluster vielding the smallest sienificance Tevel

over atl b ovalues s the best cluster in Xoo They call the algonithm the seneralized

N
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minimuum volinme ellipsord (GMVE) clustering sinee it emplovs several values ot b,
whereas the oviginal MVE estimator has A = 0.5 and all ¢, 1 deast median squares

method).

A p-tuple of facet parameters s mapped mto the featare space for chistenne
processing,  he parameters are estimated at locations sitnated [opasels apart adone
either coordinate axes. he input range image s tessellated witho (20 ¢ by (0 0
windows with almost 304 overlap. The facet parameters 4 are obtamed by arobi
M-estimators [11] as iteratively reweighted least squares wath the detition o the
weights depending on p(r,, ) = I,: The weteht function (also known as bihey 7
biweight) is:

Wy

0 otherwise

where 4, is the locatly estimated standard deviation of the noand o v
constant taken equal to LGRS 1o assinte superior performance for the G aan nor o
[12]. At the end of the elustering algovithin not all the Teature pomt s were allocatod
to clusters. and the number of nulabeled feature pomts can ewceed the mmnmnm
accepted cluster size, In post process of the seementation foest seed peoon e ds
lineated containing the pisels that can auequisvocadl bemapped o thar oo nhe abe ol
valned residual must be less than 2.5 times the global standand deviation e tinate of
the noise. The remaimng pisels are ineorporated throneh reeon erowth A evern
expansion step. a one-pinel-wide ring along the perimeter of caclitemon v o amned
I the ditference between the estimated tand the presel value  Tes than S 1
pizelis incorporated into the expanding regton. The exparnesion proce tapat the
collision of two regions or when no more praels can be conguered To the o pen
ments, the window size is 7 - 700 = 3 or planar facetmodeland 1545 4o
biguadratic facet model. When the homovencous teewne bave mall e vhe ol ey

detection becomes unreliable ;Iﬁj.
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2.2.3 Hybrid of edge-based and region-based method

Yohova and Levine [S1] propose a hybrid approach 1o the itage segmentation prob-
e, ‘The range image of 3-D objeets is divided into surface prandores which are
homogencons i their intrinsie differential geometrie properties and do not contain
discontinnities in eitner depth or sirface orientation. The method e based on the
compntation of partial derivatives whiclh are obtained by a seleetive local biquadratic
sutface it Then by computing the Gaussian and mean curvatures, an initial region-
hased segmientation is obtained in the form of a curvature sign map. Two additional
intial edge based seamentations are also computed from the partial derivatives and
depth valnes: Jump and roof cdge maps. The three image maps are then combined

to produce the final segmentation.

Jain and Nadabar [17] propose a hybrid segmentation method which combines
the initial vegion-based segmentation of Hoffinan and Jain {10] and Markov Random
Field (MR model based bounedary detection method. Fhe jump and edee likehi-
hoods at cach (‘(lg(‘ site are (()III[HH(‘(‘ lI.\ilI\‘_’, h[)(‘('i(ll local operators., [ hese hikelihoods
are then combined in a Bavestan lamework with a MR prior distibution on the
edee labels to detive the posterion distribution of fabels. \n approsinmation to the
maximum a posteriort estimate is used to obtain the edee labeling, The edue de-
tection method, like all other edee hased segmentation methods, does not alway <
result i closed boundaries. Fo overcome this problem. they use the region hased
seamentation aleorithm to obtam an inttial overseemented <olution.  Lhe boundary
seements in the oversegmented <olntion are valicated nsine evidence from the edees

lonnd in the MRE based edge detection alegorithim.,
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2.3 Methods Based on Extraction of Primitives

Methods in this category depend on robust cstimration method  \ethod o rabast i
primitive parameter estimation can toleration oullicrs, Outhiers are notmaltiy dehned
as a very small region inside a surface patch where reseduals are much lieher than the
normal noise level of the pateh. Here we extend the concept ot onthers Onthers are
the pixels which have residuals mneh farger than that of most prsels e the coent
region. Outliers mav not be just a small region. they may be another suitace patch
and in some circumstances the number ol onthers exceeds the nnmber ol pisels
one surface pateh of the current resion. Phevefores fittime vaw vanee e 0 the
processes to find the largest homogeneous region which is the expected promtive and
to consider all others as outlicirs. N brcakdown point s the percentaee o onther s o
can be tolerated before breakdown ocenrs. The traditional Teast sqpuanes adeanthm

has a breakdown point of 0% hecanse one onther may cause the resalt Lohoe

2.3.1 Random Sample Consensus (RANSAC)

Fischler and Bolles 21, 8] propose o random sample consensins tRANS NC) paradien
for model [itiillg to illl&lL’,(‘.\ RANSANC G the st method to ase a random wlu:/://m/
approach for surface fitting., Phe most important advantaee v that e nethod
not sensitive to oullers (or gross ervors) - Least squares approach canmot fdter om

outliers. The RANSAC paradigm [21] s as follows:

I Given a model that requires a nnunminn of o data pomt < 1o tandate a0 e
parameters. and a set of dara ports 2 withe more than o ponn e
seleet oo data points from P2 and mstantiote the model Deterone 1l nly o
S {consensus set) of points in P othat are wathon sone coror taleranes ol the

imodel.




2. H cardinality of subset S s greater than some threshold 70 which is a funetion
ol the estimate of the number of gross errors in P.ouse S to compute (possible

nsing least squares) a new maodel.

3. 00 candinality of subset S s less than T randomly select o new sabset S and
repeat the above process. 1. after some predetermined number of trials. no
consensus set with 7 or more members has been found. either solve the model

with the largest consensus set found. or terminate in failure.

To evaluate the quality of the fit, Bolles and Fischler [8] use:

oo Tolerance-Test: The pereentage of residuals that lies within a con-

text dependent tolerance band.
Sign-Test: The ratio of positive to negative residuals.

Run Length Test: The length of the longest sequence ol monotonically

increasing or decreasing residuals,

The error toleranee test provides the primary hasis for accepting or rejecting a model,
Vhe sign and tin-length tests ave perfeetly general in that they require no problem
dependent information. but are obviously weaker and thus can provide only secondary
evaluation eriteria. Inorder to use RANSAC, one has to predefine the ervor tolerance
and threshold . These are the key parameters to make it work properly hecanse at
different noise levels or in different models. the parameters should be ditferent. B

tt s not casy to seleet the correct ones,

2.3.2 Least Median Squares (LMS) Method

Ronssceuw and Leroy [69) invent the least median squares method (LMS) which can
tolerate 307 oathiers. LMS algorithin can be used to obtain a robust fitting, [ he
algorithm can be deseribed by the case of line litting to a set ol '\ points. 1 wo points

are requuved to detime a line uniquels Phe atgorithin randomly <sclects K <ets of 1wo
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points. For the line defined by each set of two points. the rosidgals peviors) ol all the
N points related to this line are computed and squared. Then the madian of these
squares is found (the median is the muddle clement of the sorted sguared vesidials)
and associated with this particular set. The set which has the feast median sgquaned
(LMS) error is the representative set for the line and the standard deviation ot the
line fitting to the inlier part can be calenlated fwour the median sqrared residual L he
outliers can bhe discarded from N points by a threshold. Vavons prinntives can he
fitted with LMS method. such as planes. quadries, ofe Roth and Tevine (66, 081 e
LMS to Ht primitives to the initial segmentation and then adjust the edee extiaction
threshold according to the fitting results (reviewed i secnion 2.2 1) Meer and Nt
(53] also use LMS for robust estonation in compnter vision. They denonstrate the
segmentation of grav level image based on this TS method  The apphication ol
LMS to noisy piecewise constant data with a ferge fraction of outhers coanrealt
SJahure [38]. Also since the sorting of the residual 15 necessary to hind the wode ol
the probability distribution of residnals [33]0 the complesiy of the aleonthm o
least O(nlog, n) for just the sorting part. In {690 Rousscenv and Leroy prove o
theorem that the 0% breakdown point is the hest Tor a robnst estimation methad 1o
achieve, But Y. Bui and Krzyzak 810830 86] introduee RESC method soloch b
breakdown point more than 50% . Tn [65] Roth and Levine alo demonstrare tha the
30% breakdown points can be surpassed with o modified LIS method Tnotead ol
taking the middle of the residuals: they take the /th position of the sorted e adnal
as the criterion for the random sampling method, The selection o T more an o

arbitrary.

2.3.3 Random Hough Transformation (RHT)

Ihe Hough fransform [13. 18] ts o miethod for detectme <tparehn e and cm e an
q
gray level images. Given the tamilv ol curves beme sonolit, the method prodiuee the

set of enrves from that Lantly that appears on the imnaee Stochaian and Vool
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76O were the st 1o realize that the Hongh transform is template matching, Rosen-
feldd 6] desanbes an nmplementation that is almost alwavs more efficient than the
onginal Houeh lonmmlation,  he Hough transform method is extensively surveved

by Hlingworth and Kittler 115] We do not survev it here.

N Oyaand Kaltanen (S0] propose a new curve deteetion methods randonrezed
Howgh transform (RYLT). For o auve with o parameters. instead of transforming
every piselimtoa hypersaface ol the o= parameter space as the [T and s variants
do. thev tandomly pick npicels and solve the required equation to get pataineters for
the selected primitives, Map the parameters onto one point in the parameter space
anel marease the connter at that point by one. .\ primitive is elaimed to be found if the
contnter value of some point o the parameter space exceeds a predefined threshold,
Fhe authors clanm that the mrethod has the advantages of small stotage. high speed.
imhinite parameter space and arbittanly high resolution  The examples in the paper
are 2D binary images on discrete erid. The valiues for v and ¢ coordinates are diserete
values Therefore, the resolution of the patameterspace is actually constrained by the
resolvtion of the comvdimates 1t as very difhicnlt 1o get converoence in accumulatons
ol the patameter space i neither the cootdinate values nor the parameter spaces
ate constramned to discrete levels Therelore, RIPL method las problems with iimely
discrenzed - values of range 1mmaze and with the nine parameters required 1o deseribe

quadiatic sinfaces,

2.3.4 Median of the Intercepts (MI)

Namear Parstand Netanvaline 49 propose medan of the interecpts (M1 method 1o

ht o ~trareht Tine to g noisy imaee Phe equation of the Tine 1<

Fhe porameters o and bac che e avas and the yoaxis mtercepts. respectivels, Fron a

Pt ol pomts o line cquation can be solved and the cottespondime mtercepts can be



obtained. For N points. there are T = NNV 12 Tines altogether, which provide
(at most) L pairs of estimates for the intersections. The median estimate of the

intercept o (or h) is the median of the entite set o bror {0 o that s
« = median{u,, } b= medianbh, |

where {a,,} and {h,}) arve the intercepts of the hine passine throneh the pomt. s anl
7. Similarly to LMS method. MI can tolerate 5000 cutlicrs. Complete combimatonal

search makes the method ditheult to handle laree nmmber of data pomts.

2.3.5 Genetic Algorithm (GA)

Roth and Levine [67) incorporate G in the primitive extraction aleonthin Genet
algotithms are a class of global optimization techimgnes that v then name rom
a similarity to certain processes that occr at the imteractions ol hioloeical vene

Basicallv. a genetic algorithm selects high strength parent models foromme offpring
by recombining components from the parent models. T he oftsprine s veplace weal,
imodels in the system and enter into fuither competitions Genetie alvorit b T

been studied intensively by Holland [T, Goldbere 34 and other s

A concept of minimal subscl is emphasized e the paper  The mmnmal aly o
is the minimal number of points necessary to defme ditferent veametie prntie
A minimal subset of the |)()'IIH.H described |>‘\ d geotnetrre protive s often o oo
tepresentation of the primitive, Instead of nsine paramerer vecton Poior G0N opera
tion. the minimal subset Xowith p pomts is used as eene tractme The G0V tal
two randomly chosen individuals (parents)y and applies o crossover operation to o
arrange the points of their parents. followed Lo a nmtation operation to tad e ney
points from input data. to ceate two new popdation merbersrchddieny Toovon
cach individual in the population. o hsed band method s wed The core v gl
the total mumber of mput pomts contarmed we the fe cd Loand aronnd cacli ecomee

primitive. since the more pornts helongine to o the oo Dol har vln b ot ol
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points is tandorn. and the bhetter ehance that these points truls bhelong 1o the geomet-
nic printive, N steady state GA is wsed. along with a nniform erossover operation.
Lhe initial population size is 00 the erossover probability is 0.8 and the mutation

probability is 0.05.

2.3.6 Residual Consensus (RESC)

Yo, Bur and Krzyzak [S4. 83, 87] propose RESC method. Genetic algorithan [67] is
incorporated into the method to accelerate the random sampling speed. RESC can
tolerate miore than 80Y ontliers, The residnal consensas is measured by a compressed
Iustogram method which has time complexity of O(n). better than LNSS Q(n log n).
and can handle widely vanied noise levels. The RESC method is presented in Chapters
3.0 6 and 7ol this dissertation. RESC m genetie algorithin (G.\) to aceelerate the
search speed. Chapter 5 explains how a genetie algorithims works and what is the

hest G parameter settings,

2.4 Summary

Segmentation is a fundamental and active research area in computer vision. Various
methods and approaches are coming out continuously, It is difficult to sav which
method s the hest sinee every method has its advantages and disadvantages. appli-
cabilitvrestrictions, ofe. Becanse segmentation is normally the first step in computer
Vision processing, the eriterion for segmentation algorithm depends on requirements
ol the higher level processing. Generallv we can <ay that the better the low level
segmentation, the casier the high level processing. 11 the fow level provides accurate
and casy 1o use segmentation and sutlace parameters, the high level processing is
telatively caster and faster, But such low level processing tiay be dillicnlt and takes

alone time. On the other hand. i the Tow level processimg is Tast. but provides

36



inaccurate results, the high level processing may be ditlicnlt and time consunumne, \
well developed vision system should consider various factors and petform well on th
whole. Therefore. the tinal criterion for evaluation of the segmentation shonld be
combined with the evaluation of the whole viston system, But whatever the cotenon
is. faster. more accurate and ecasyv-to-use segmentation methods are alwavs needed

The RESC algorithm is a leg in that divection.



Chapter 3

Estimation Analysis

I'stimation analysis is an important statistical tool with applications in most
scences, In section 3.1, we explain the basic definitions and concepts of estimation
analysis In section 3.2, we give the formal definition of outlier and breakdown point
which are the important measures for a robust estimation method. In section 3.3.
we analyze the problem ol second order primitive fitting with least squares method.
and compare the different results of surface or curve fitting by the minimization of

algebraie distance and geometric distance.

3.1 Estimation Model

[he purpose of estimation analysis is to fit equations to observed data seis. The

classical linear estimation model is:



where X is a model frame. alzo called the crplanatory variables ov carre < o0

x=[r . Ly

6 is vector of the estimation coellicients

and yis called response varable . \u istanee of x
X, =[rg o o, (3

will have a response value of y,:
i, = xly {0

A estimation analysis is to find an estimation of @, v.e. the best ht by omie anternon

such as the least squares ol errors. 1o nosets of nstances:

5 =X,0 4 ¢, for v ... n.

)
y )

where n > pis the sample size and o, bs the crror form assanmed 16 he nomally
distributed with mean zero and unknown standard deviation a n the assical theon
It v = p. Equation (3.6) has a unique solution 1 po Fgnanion (36 1 an
overdetermined system. Eqguation (3.1) with estunated 6 can be wad 1o ol an
estimate ol y:

y,o - x.6. i

where g, s called the predicted v ostomated xalue ot g, Vhe sosedual o GE 0l Lo

is defined as the ditference between what s actually obeerved and what © ¢ it

ooy, i, th o~

[he most poprdar estimation estimator 1= the feast square~ cLSy e chod o

nunimizes the sum of squared residnals:




lable 3.10 Model format for geometric models

{ Model type X Y
lne I £
. )
cirele o I
. ) b4
cone I5as ey oy |
plane | oy oy .y
» )
sphere R S SN C R NI I
T . } ) .)
anadratic N O A N R N R N SR ST PR
1
. - ) .
min re. (3.9)
0 =1

[ he dinear estimmation model does not restrict the estimation equation to a linear
one. The fitting, model is problem dependent. Fhe model can he Tines. civeles: conic
curves olein 2D geometiie analysis, org planes. spheres. ellipsoid . quadiatic snrefaces
e in 3D peometric analysis. or some other model in other cases. The formats for
diferent geometric models are Listed in Table 3010 where ay. ey and oy represent .
uoand <respectivelyoma real coordinate system In some of the models, the st
clement of X is set 1o 1 to obtain a constant term in the estimation equation. In
seneral, taking a carrier identical to 1 is o standard trick used to obtain estimation
with a constant term. In the second order models, the g termin equation (3.1) is set
to L. FThis s another standard trick to estimate non-tinear equation coeflicients by a
hineat estimation model [37). 10 the i ternn is set to a constant. the residual defined
in equation (33.8) in this case has o different geometrie meaning, We will explain
it the section 3230 To the aleorithm deseribed in chapter Lowe will use another
definition of residual wineh lias a geometrie meaning. o this dissertation. we mainly
deal with the estimation of two dimenstonal or three dimensional ecometric printive

modets
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3.2 Outlier and Breakdown Point

An outlier is the point which is far away o most other pomts The breakdown

powt is the pereentage of outliers that may force the estimation arbitranly out ol

meaningful range.  These concepts were first introduced by Hodoees flor i 190,
L]

Later. Donoho and Huber [17} introduced a finite sample vetsion ol the breakdown

point definition.  Here. we adopt! their definitions of an outher and @ breakdown

point. The formal definition is expressed as below
Take any sample of 1 data points.
Z={lrne corem)ens rae e .4 10y

and let 7" he a estimation estimator. his means that apphving 17 1to Z vields aovecton
of estimation coetlicients:

T(Z) =8, (31

Now consider all possible corrupted samples 7' that aie obtaned Tnvephecme any
m of the original data points by arbdrary valucs (this allows very bad onrlier
Let us denote by bias(en: 7)) the masimim bias that can be produced by ey
contamination:

bias(n: I Z) = sup || (2" - TU4))] IR
e
where the supremum is over all possible Z70 T biastmc Do Z) et nean
that m ontlicrs can have arbitrarily faree effect on 10 which e he expresod e
saving that the estimator “breaks down™. Therelore the tfimte sampler brcaldown
point of the estimator T at sample 7 is defined as

< g v Lot o
ol Z) = min{ = biastne o Zns mbitray | RRRT
n

In other words. it is the smallest raction of contammation that con can o the « N

mator I to take on vahies athitrariy fin away hrow 107

Romsseenw and Lerov 160) abso nse the sanne e binitions




Onthers nonmally constitute o very small portion of the total sample space,

namely:

e <. (3.11)

However. for some applications the estimator must he highly robust even when ont-
licrs tahe a large proportion of the sample space. For example. in range image
segmentation, o region may consist of several segments. each segiment being one
primitive model to be extracted. "Therefore, if we concentrate on one segment. the
others shonld be considered as outlicrs to the primitive we are considering. The
number ol onthiers in this case is the s of points in all other segments, and this

munher mav be lavger than 50% of the wotal number in the sample space,

A 1obust estimator is one which has ability to resist the efleet of outliers. 1he
Dreahdown point s a measure of the robustness of the estimator  The higher the
breahdown point. the more robust the estimator. Traditional estimators, such as the
least square estimator. Ly estimator. efe., are not robust hecause one outlier mav
cause the estimate arbitrarily lar from the correct estimation. Robust estimation is
sull an active rescarch area. Huber [H] proposed M-estimator as carly as 1961 for
estunation of the location and scale patameters from a sequence of independent and
identically distributed (iid) observations. Other estimators. such as L-estimator and
R estinator [ L. are similar to M-estimator. Recently. Zlmang. Wang and Zhang
[89] proposed M1 estimator. But all these estimators have breakdown points mneh

statler than 304

3.3 Linear Least Squares Approach

Fhe fimear least squares approach (LS) s the most popudar estimation analysis

method due to the following properties,

o 1t i~ an optimal estimator for data contaminated by Gaussian noise,
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o it is highly etlicient for its linear solution.
1.S method can be expressed as follows:

1. Form matriy M:

AV B : . BN
x/”

where x,'s are instantiated models with p tevms, Noas an e pomaton

2. The estimation equation is of the Lo,

Mo -~ B 13 16

where Bois a < | column vector consisting of the instanees ol g i equation

(3.1). and @ is the parameter vector po L.

3. Form > poequation (3161 1s called an overdeternnmed sosternn Tt can hesalvedld

by pscudo-enre rse method:
9 = (MM') 'M'B AN

Some other methods, sueh as QR decomposition aned creensy aem method 259

32}, could give hetter but more complicated sohitions

LS minimizes the sum of the squared residuals:
"

n;}n(R - Ry - mln}_:r," RN
t l

where R = MO ~ B and r, i~ the element in R

Lhe traditional least squares alegorithan las o breahdovn ponn of 070 ey
one ot hier may canse the method to bl Corsieder aosmple atnation e Lere the ot

are eenerated from a straieht line i a two dinen-ional coordinat forn Mo o on

14



point from the ongmal position to a biased location in :-direetion. This point is an
onther. Phis case s illustiated i Figuare 3000 as well as the fitting, results by LS and
RESC methods (explained in the nest chapter). From the example we can sce clearly

that LS farls to find a best it to this set of data. he example shows onls the autlier

Fignre 3,10 One ontlier canses the farlure of least squares fitting.

t

0,

$:

7

H

02 0 06

0%

Notes (1) svmbol “o” represents a data point: (2) the dotted Tine is

fitting by least squares method: (3) the solid line is fitting by RESC

method.,

biased in oy -direction.

drastic? than in y-direction hecanse the minimization objective is to minimize the

restduals in g divcetion as defined in equation (3.8). Since residuals in range images

I an outher is biased 1n r-divection. the etfeet is even more

are gy divections we do not give examples ol ontliers in e-ditection.

For the hivartate polynomial fitting

See evamples m {659]

ooyl = —2 TR TN

BRI

(3.0



Figute 3.2: The geometry of fitting crror atound a cone ~ection
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where nsnally 0 < < L the least squares method performs very well if a correet
segmentation and ontlier-free case is assumed. LS minimizes the geometric distance
between the fitting surface and the actnal = velues. Consider a general quadratie
form [22]:

Qx) =x'"Ax +x-v+d (33.20)
where

a, (Ll/\/i)- llr,/\/;z
A= La V2w a3 |- (3.21)
”',/\/E ”h/\/§ oy

v o= (us as ay), (:3.22)
l/ = (';.2-”
X = (r y z). (3.20)

The LS fitting minimizes:
N
I = }: Q(x,)". (:33.25)

Various constraint methods are used. such as d = 1 in BT T (AAY) =0 u? = |
i [22] to enstte invariance to geometrice transformations. Al these methods cannot
express oot yoin 21 cases explicitly, But the noise contamination in the range
image is mostly in c-divection, or y-direction in 21 range image profiles, The value
ol Qr.y) in equation (3.20) is proportional to (d + ) /d? — 1. as shown in Fieure
3.2 (9] and it is simply called algebraie distance (the difference between the two sides
ol the equation) (62, 28, 29]. LS method minimizes algebraic distance Q(r. ) instead
of required geometrie distance between the fitting surface and the actual data in :-
divection. Tn this case. LS cannot even tolerate normally distributed Ganssian noise,
Figure 3.3 shows the least squares {itting of a conic eurve to the senthetic data with
very low level Ganssian noise (7 = 0.05). It has to be noted that the least squares
itting, fatlure 1n this case does not imply that LS cannot tolerate even normally
distributed noise in the outlier free cases. The problem is that we cannot express the

implicit equation ina way that the LS can effectively minimize the required geometrie

lo



distances. Therefore. the problem is not with LS itsell i the outher free case, bt

with the way it is being used.

Taubin [78] derives approximate distanee for implicit form ol cirves o suaces
The approximate distance is in the direction perpendicular to the smiface notmal
whereas the error of real range mage in mainly in the © direetion. Phe i a
tion of the approximate mean square distance is a nonlinear least squares problem

Although in certain cases. this problem reduces 1o the generalized croenvecton i

in general cases. the iterative Levenbers-Marquardt aleortthm hias 1o he used e

computation is extensive for such iterative algorithin [78]0 therefores m most cases, o

simplified fitting is used in the segmentation algorithm,

3.4 Summary

In this chapter. we explained estimation models and the commonh naed least e

method.  The ontlier concept has also been introduced. Simece the least quane

method cannot toletate anv onthers and cannot he effectively weed o bt the

second-order snrface primitives, other estimation methods shonld bhe esplored Ll
ing into account the requirement ol the second order prmmive Intime we propeo o

in the next chapter. a new robust estimation method with o ol brealidoson pon




Chapter 4

Robust Estimation by Residual
Consensus (RESC)

O fittme and seementation process is illnstrated in Fieme 110 N pre oan

nary seementabion (jump edge detecton) is applied 1o taw mage. Fach preliminar

wsoginented region tay contam several smooth connedted regions, e se o 1obist es

trunabion method to extract primitives tiom the regions 1 he process is tepeated nntil
the whole region scemented mto prinptinves, The key issue is the tohust estimaiion

Process

I ths chapters we propose a robnst estimation method which estimates prom
ttive paraineters of the laeest homoveneons smlace patch in the cnrrent processine
teston trom nosy anaee data and then removes thius patch trom the processing re
crot \ vood strface fitting usually aaphies o eood seamentation, oo methaod
the hittme and ~cementation are petformed simudtanconshy  The method randomily

satples pomave pomnts (p depends on the chosen fittie type of promtnve, whethe



Figure L1 Fitting and Seementation
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it is planar or quadratic) and solves the cquation lor the pomutove patamicrer From
N samples we select the one having the best sesidual consensus 1o dor which the
most residial values ate concentrated i a small tanee Fo measure the conen i w
build a histogram of 1esiduals and seleet o <omple whieh ias residial concontrated
within a small range in the lower part of the distoeram We mtioduce o convept
ol hestogram powe r 1o represent this cnitenon quantitatively \ncordiar b toeran,
works well only with a fixed noise level We mnodace w compressed b tograns 1
meastre and compate residitals at varions nose levels Outhier by detintion e
the right part of the histoeram and are neelected, Fhos the solectod dana e horne
sencons and their standard deviation a can be calonlated ca iy from the T tonean,
We dind the maximum continmons teeton i wloch the ve ydnad e i g toloane
range determined by oo Lhis region o~ the scoment and ot paracter e alicad

darermined,

[he prehimmary version ol thrs adeonithon swa poble ned o tue Peacecding of




Lt 1992 Computer Viscon and Pattern Recognidion (6] Proccedmgs of the SPIE
Advanees o futchyent Robolie Systems. Scensor Fusion [V Conlrol Paradigms and
Data Structures (831 and Procecdmgs of the Canaduwan Conforenee on Flectreal and
Compuler Evgeneereng [SE] 10 was also snbmitted to JTEEE Transactions on Patlcrn

Analysis and Maclone Infclligenec [S7)

In Seetion L1 we explain the concepts of random sampling technigne. The
cquations for the expected number of samples are derived. Random sampling has
the advantage of outher insensitivity, In Seetion 1.2, we propose onur RESC algorithm
whichis based onrandom sampling principle and the compressed histogram techmqgue
to measure tesidnal consensus at different noise levels. Inorder to further speed up
the algonthim. we solve the large region problem by initial seamentation and lower
resolution inethod, and we nse a region mappine method 1o ensure an etherent and
untform saimpling mechanism. In Chapter 6. we deseribe the seementation algorithm
i detail. In Section B30 we deseribe a method to switch different primitive types
m a revion. Jestead of nsing variable-order surface fittine aleotithm by Besl and
Jam [T5) and Tanbin [78]0 we use invariants extracted from suface paraimeters to
determime the sutlace tyvpe. therelore avoiding repeated processing ol two different
promitives for every reeion. We compare our method with others in Section L and

detonsttate expernmental tesalts in Chapter 7. Section 1 sanunaties the chapter,

4.1 Random Sampling

Patameters of a proanitive surlace can be detenmined by p porrt a plane is detor-
wined by 3 pomts and a guadiatic suttace by 9 point<. The kev problem i< how to
choose these ppomtsousing the data from a tegion, to detetmine a pomitive suthace
whieh best hts the region. This s didferent trom optimization appreach which detes
nunes the patameters duectly fromeadl pomts i the processing tegion usime cortain

optine ation crterton such as the Teast squares ethod

Kl



4.1.1 Number of Combinations

The number of wavs p points can he chosen from a sample space with w0 pomts s a
huge number. Suppose that there are 256 < 256 63330 pomts mompat data and we
want to lit a quadratic surface to the data. A\ quadiatic ~urtace can be determumned
by 9 points. Therefore. the number of choices equals the mumber of vombinations of

63336 points taken 9 at a time:
n 659360 -
= ~bh -0 (b
Fven for a surface pateh with 200 pixels. this number can he as faree s 100 There

fore. tn practice a complete combinatotral searchs unpossible

4.1.2 Principle of Random Sampling

[o overcome this difficultvcrandom sampling method can hen ed Randoan aniplioe
methods have recently heen widels nsed in comnpmter viscion tescarch o ¢ anple an
RANSAC[2H LNS[69. 6610 CBDBS) RITEHSOL ere Randon womphine © o proce 1
select one element s from sample space S and every element i S hao equat probabnhie
to be chosen. We denote such process by 7057 For an mstance ol aaoadel with p

poitits. repeat the random sample process ptimes
ro= wlN) 0 tor g [ . I S

\ssiume the prinmtive in the sample space bas o pono s thon the probadato o o
sampling the primitive trom a sample space Wit o ponn -

L

H

Ibwe asstme that there s only one saanple et whobe os the b alution o the
model. the tandom samplime does ot help becaore the probadalie b hoebone ek

satniple s very fow,



For the example above this probability can bhe as low as:

65335

e ~5 107, (1.5)

sosearch complexityis even worse than deterministic combinatorial scarch (see Fqgua-
tion L), Batin practice, we do not haveto obtain the best solution. An approximate
best solntion is aormally good enongh {or practical applications. .\ good sample <ei
means that all points in the set are on the primitive to be extracted and all these
points have only small bias by the noise. The good samples may have more than one
~et. The combmatorial scarvel mnst search every possibility before a solution can bhe
found  Whereas random sampling method does not have to seleet all possible sam-
ples. the mnmber of samplings depends on the fitting reguitement. It the soodness
meastite ob o sample s good enongh. or the number of samples exceeds predefined

Lt (to heep down the cost of computation ). we can stop the sampling |, ocess,

4.1.3 Expected Number of Sample Set

L he Jollowing dernations gives an estimate of the munber of teials needed to obtain
a good sample (2] Let r be the probability that a sample is « zood one. Delime
a " the probabality that all p samples are cood and 3 =1 = is the probabiliny

that all p sample pomnts are bad T he expected numbet ol samples A s

Iy - Z h - probi k)
Lo
a 200 - ala 43 ,”)-'“ e+ __”)l\-l” -~
YR L A L NF AR (Lo

Foespress the above cquation exphatlv consider an identitny tor the s of geometiie
seties:

- I Y S O ST S R Ty
{ !

|
! -

L B B . B



Table LI: Expected number of <amples

rlp=1 2 3 ! ) 6 B S 0
09 L1 12 11 13 L7 L ' ! by !
08 12 16 20 21 a1 3 N 6.0 Do %
071 L1 20 20 12 59 N5 R ¥ oy
06| 17 28 16 1T W 20 4 60 a0
05| 20 L0 S0 16 % 61 125 2 gk
0.4 25 63 16 39 9N 200 610 152 N1

(1.3 3.3 I 37123 2 1332 172 1921 S0

|
|
|

(.2 20025 0 125 625 3125 1625 TNELS O 390625 [5312

Upon replacing @ by 3. the Fguation (LO) can be rewnitten as
PANY = 7F (1

A number of valnes for Eqguation (19) ate hsted in Fable 1E - From the tabde we
can see that the expected number s much sinadler than the mnber vequned T

('umplt‘t(‘ combinatorial searel,
f'he standard deviation of A can he calenlated as {ollow-
SDONy = \JECRS) Bl i,
Since

(k) - Zfl"uf' h
0

}:{M/ Ljo 4700 };lu.f b SEEE
o) "y

and since the second arder denvative of Faguation 01 7

2 -
,'Llu/ by by b
‘l ’.";

[ Y]



we have

(R = (1.13)

T he standard deviation of ks
SDIKN) = V1 —ajo =r2/1 =, (111

Notmally. ## < 1. therelore,

SDIKN)=r™" = I{(N). (1.15)

Random sampling method greatly aceelerates the search speed but still main-
tains the high probability ol finding a good solution provided we have enongh samples.
M random sampling methods (RANSAC21]. LMS[69. 66. 63]. CBD[IS]. RITT[S0].

tle.) are based on this poineiple.

4.1.4 Outlier Insensitivity

fn addition to the tednetion of combinatorial scarch. random sampling scheme also
has the advantage of insensitivity to outliers. where an onther is defined as point
with a laree residual (see seetion 3.2 lor details). Outliers may not be just individual
exceptions: another siface patch mav be a set of outliers. The inliers are the points
i the regron excluding outliers.  Fherefore, our segmentation and ltting process
finas the Targest homogencons region which is the expected primntive, and considers
all others as onthiers. Random sampling method wall not Tail when outhers exist.
Outhers only reduce probability r. Suppose that the sample space has more than
one primtive model oth model has m pomts. s = 1o Vo Theretore, the probabilin

that the sample point is on the rth model is:

m,
r,o= —. (L16)
n
1 . . .
where o ST i T i obvious that the mote pornts i a model. the higher the

probability ot choosing one pot e that model. Therelore, the randon sampling

a1



Lable 1.2: Minimum number of sample sets ot 997 assnrance

rlp=1 2 3 ! N (;*’ v N 9
0.9 2 3 ! | B (? o T N 9
0.8 } 3) 6 9 12 ~“—l;) A 20 M A2
0.7 ! T 1l 17 25 _Z;Tm '_l l~ Ih b2
0.6 5 10 19 33 a7 - ‘Th_ N ‘l.(i‘_' 2 50
0.5 [ T A il L1 _'_’.!)‘_’— o :'):\‘T N 2300
0.1 9 26 Y0 1T f IT——M l—l’v_’ _ 2808 LA L0
0.3 i3 19 168 566 {8493 (:i_l; .‘_._’H).'v-') PR B N L T
0.2 20 L1 573 2876 TENY 71953 n,i_.';';TT‘T LTINS S99 14

process will extract the largest model in the sample space and consuder all other

points as outliers.

Suppose that ris the percentage of inhers ina reeton. For a pommtive model
with p parameters. the probability of all p good sample pomtsasr o Phe probataling
for all A set samples being outliors s (1 - #")h 0 Pheretore the probalabity of at lea

one of the set being a sood one is:
S ‘/ml\
(= 1 - (1 Tt o

The minimam number of sample set A wlich contam at deast one vood pomt wirh
probability pis given by:

A ol pj

. I A
los(] 10y

For example, if - = 50% and p = 3. then I Powath 99 conbidence Table 1
shows the minimum number of sample sets contamine at Jea tone vood eloction a

99% confidence lovel,

[he pure tandom sampling s stdl dow becanse the pababalits b bndoe o

good sample s Tow when the mmmber of powts for o moded o Tavee o the b




of good pornts in the sample space is small. as in case of very nosy data, \ genetie
algorithin can be used to accelerate search speed and maintain the advantage of

tandom sampling. The genetie agorithm is explained in chapter 5.

4.2 Primitive Fitting by Residual Consensus
(RESC) Method

4.2.1 The Algorithm

T he method nses the random sampling technique and performs residual analyvsis for
cach sample set using an iterative algorithm. seeking a REStdual Conse nsus (REISC).

The RESC estimator s highlyv robust with respeet to ontliers,

The aleorithm finds in cach steration a parameter set @ which is the solution
ob the cquation F(X.8) ~ 0. where Xois a vector of points, From A sample <ots
we hind the Targest continnons region where the residuals tend to be minimum. [ he

testdual at point ¢ s detined as.
roo= o, - ¢

where v Cvalue of the tange image at position = and =7 is < value calenfated from
the fitted eqnation. Fanetion /7 is the equation of the primitive. Note that for the
linear primitive tus detinition is the same with that in Feanation (3.8). but tor the
second otder primitive its not the same. Fhe definition here has clear seomet rie
meaning and s consistent with real tnations where noise inthiences the ranee 1mage

mamly i - diection

Lie bhasie RESC aleorithm concept is illnstrated in Fieme £20 The detarls is
descubed i Frente 30 Mthouelh REESC can be ased m varions ateas where tobist

estimation s needed. we locns o attention on the applications of RESC i tange

0



Figure L2: RESidual Consensus (RESCY Algorithm
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Randomly sample K sets of p points (p = 3 or 9) hrom the current sample

space S,

For cach set of points caleulate the restidnals of raw data nsing the prim-

itive determined by these points. and make a histogram of the residnals,

From the A sets select the one whose histogram shows greatest power

(explained helow),

Determine [rom the histoesram the standard deviation @ of the rosidnals,
-

which s the noise level in the livted suface region.

Label the points of this primitive and 1emove them from S, <o that this

set of data will not he meluded in further processing,
Remove ontliers within the labeled region,

. Repeat steps |6 antil S = o,

Figure L3 The RESC algorithm



image segmentation and fitting,

[t should be noticed that in the purely random search described here the nnmbes
of sample sets A is typically large. Because exeept the ontliers the tanee rage s also
contaminated by Gaussian noise. ratio r in Equation (L5 s very smadl Thas means
that the expected number of samples is large. We adopt genetie algorithng (G \)
instead of pure random scarch as proposed by Roth and Levine [671 to accelerate the

search speed. The application of G\ is explained in chapter 5.

4.2.2 Validation of a Sample Sct

In step | ol the RESC algorithm. cach set of p pomts s valid d belore they are

used to determine equation paraineters,

A set of popoints determines a matiis X
Xy
X = : . Y
X,
where x is the model hrame as defined i Fgnation G310 Tes exphion form cang be
determined from Fable 3.1 depending applications N\ sev ol pomts v calid a1

matrix X determined by these points is not sinenlar or nearly el
det(X) -« tr
[t is obvious that if there exits:
X, X,. towrsy o

such that the rank of matvee Xois fower than pothen X et The nean 1
i a [)uilll s I(‘])('.l'('(l in the set. the set s invaled Inothe vandonn .|t|1|;|: [t

this repeated set ocons with the probabanhiey ¢l dora sarnple puee ol o o



—
N = nil
for : := 1 to p step |
repeat
r = random(!| : n):
until r ¢ S
put rinto S

endfor

Figire L Random sample set generation and validation

In addition to condition in Fquation (1.22). the matrin X in Eqguation (1 20)
may still be sinpular il a second order primitive model 1s applied to a lirst order data

set. The details of the derivation ave provided in Appendix \.

[ herefore. the condition tor a valid sample is:

L. no repeated data points i a sample,

2. no data set corresponding to the low order primitive is used in the higher order

primitive model,

Fhe dist condition s casy to check during the random number eeneration pro-
cossas shownin Figure L Whenever we generate a tandom point. cheekaf the point
extsts already i the sample set IF it exits, another point is genetated. Note that
the himetion random m the algonthim generates a random integer in the <ot [, 0.

where s number of points in the sample space and S is the genetated <ample <ot

Phie validation cheelk of the second condition can onlv: he perforined on the
mattiy. N by checking Equation ¢L210 We chedk the determinant ol the matnin

durine the solution process Sander and Zocker [71] validate the i by chiedhing the

o)



condition number ol the matrix. In our marhematical packase, s more com enent
to check the determinant than the condition nmaber. Suppose X s the it
determined by the sample points. W det (X)) s less than some thieshokd o then the
matrix is considered singular. his ertterion is also used to <switch from the <econd
order to the first-order primitive. When most of the samples are vnvadid nsine o
second-order primitive equation in a processing region, the tevion s considered ta he

the first-order (see section 1.3).

If we find X issingular or nearly singudar, we sunph abendon thes et of woanple

points and generate another set.

4.2.3 Cecmpressed Histogram Technique

The compressed histogram techinique s« heyv contponent tr the RESC aloorn o b
serves four major functions:

1. Separates the inlier part from onther part e o recion

2. Measures the goodness ot a hit;

3. Measnres the notse level (standard deviationy of the imber pan

1. Works at different noise levels,

A regular histogram can carty out the Lirst three tashs he conpre od T tosian

method solves inaddition the vanable nose fevel prablem



Conventional Histogram

[he Fastogtarn nsed i the afgorithin consists ol ordered =hins™ of a fixed width o0 in

which we acommilate the discretized residuals, Tt is constinaed as tollows.
hoe v b b=y el o =10 o, (1.2.3)

where ws the number of pomts m the carrent processing region he value ol column
b, vepresents the mnnber o points whose absolute residuals b satishc {7 - s 2
(rl a0 e aesidiuals greater than o given uppet limit ave discarded To make the
lstopram work wello it is nnpottant to select the bin width o propetlv. It & s 1o

lavec, all the residials may acenmulate in the first columun. and 1l ¢ 1 too small. the

distribution mnay he sparse o1 ragged  as shown i Figme L6 and Feme LN

Compressed Histogram Algorithm

itterent tpes of tanee sensors have dilferent nose levels, Farther tor o real ranege
tiaee, cntors of a sensor vary accordine to the dhstance of the objec fron the <enson

Suttaces with didlerent distances from the <ensor may have different erron levels Ton
the onemal histogram selection of the interval & depends on the nose level To make
the aleonithi worl tor different noise levelsowe vse a compressed=histogram method,
as histedom Frenre £5 T the aleonithm. the supersanpt ¢ means compressed ad /i

t~ the compressed histogram - Foste o s set 1o the smallest possible value, enving o
faree nnmber of istooram columns 10 say 20000 This ensures that i the small norse
case the nstosram can work propetlc 1 the nose level i< hinher than the <mallest
oney the otrgamel histogram ot the vesiduals may be sparsely distiibnted, e oneinal
histoeram o arreanlar aad distnbuted over o swaide 1anee ol the nore fevel s ek,
We then cotnptess 1t to a new histogram which bettey eNploesses the distoibution of
testdbialss o the mtialivation staee of the alaorithim. <ot o nmber to teprosent he

o punn number ol ressduals m the st colmn,
: o 2 h

(T



1. { initialization }
&= Oy he — puoa e

b — O fot e = Lo omar

-

2. Deternaine the mimber of columns m the onnnal Instoeram vy he
commbined into one column in the compressed histoostanm |
for + — | to rmar step |
a —  + /l,.
ifa > I, then exat: { for loop |
endfor
R Ol U SN SRS O
Lo{Compress the remanmine part of the bastoetam |
for s .- v + 1 tomar step |
Iy Dy, +h:
if o mod o =0 then b /1)

endfor

Fietre 1O Histostari con mres qon alearithinn




Frewre 1.6 Direct Listogram
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where nos the nunber of points i the enprent sample space and p s o coethaent.

)

he step 2 ob the algonthm, we determine the mimber of consecintive columns in the

ottginal istogram to be compressed into one colummn in the compressed histoeran,

festep owe compress eveny e colimns mto one e the compressed histograna.

Histogram Cutting Point

Hothe pomts are well chosen, e

o a prntive the resednals on ths proannne

Shoudd be smiall and the histogram shoudd e concenttated witlnm o <mall tanee

the Jewer part ol the Instooram

We call this ])Iu‘llulll('lmn the vesadnal conscnsus

th i



Points outside the tange of concentration are considered to be outhers We need to
find 'e range of concentration, which represents the “sood™ data (mmhers™y We

assume that the "eood” residuals are described by Classian distnibuton

. ! s
ey = - - SRR chem

\ rer
whete o 1s the standard deviation and yois the mean. Onthers are consadered asall
points with residuals fatger than o where = is o coctlicent \ssunne 0 0 we
compute the ratio:

fCoa)) f(y (100

I'his is the ratio of the maxtmum to the i prohabihty ob resaduaals We il

set 2 to 2.0 (see [(i‘)]). oiving [~ ¥/ ()= 1 {'c.

Fhe maximum value /1, ol the nstoeran s st 1o be the mmber ol ve adaal

ns
i the first columun of the compressed histogram NN ind the Jeast 7 ach than /o
ts dess than LEC of b o and stop Timther compression there N preael i 1he
curtent region with resudial larger than this valne s conadered 1o e an onthor andd
is discarded. This s the pomt dividing inlier part trom oathier pact P herelore the
llihlugl'dnl (l)lll[)l'('\hi()ll solves not onlv ditferent norse leved ]ll'!lll"lll bt ab oo the
onther detection problem. Residuals i the compressed itoeram are consadered
as inlicts. LThe requited primitive can be extracied bom the pomt voted o e
compressed histogram Figme L6 shows o sparse distibuted b vaean v hoaedo

obtained ditectly from the residuals ol a set ol saimple pont e 1 probile D e
1.7 shows the compressed histostam hrom Faenre 16 swheve 4 boawd o1 T
last colitmun in Figure 17 18 discarded becanse by 0 ph Dorr o ug
When processing a region with laree nomber of pornt - the dhivecrl Tl bt

normally not \|ml'~('|\ disterbuted s b behiby veooedb o Tiovon v Freiee s T g
casy 1o fimd o vade which can ditinem-h the mhor andoarb o part N congore
histogram mahes this casy 1o deverpnme  Foe by how s oremiar Ty toeran

Consecntive idled colmmns or conecntive vnldled ol eap toare coluan o e

comptressed histograne m beme 19




Histogram Power

[he compressed histogram has o variable bin width, This makes it hard to compare
listograms dectlv. For the purpose of optimization. we must determine an objective
fnise tion based on the histogram analvsis. There are two possible eritetia. both of

ther <hould rdealls be satisfied-

I Phe muber of pomts onand near the primitive surface shonld be as large as

possihile,

2 The residuals of the total nlier points should be as small as possible,

Several aleorethms (cogn RANSNCD R ase the irst aitenion as the olijective
Lhev connt the munber of points within an ctror band centered at the primitine,
s mmber as the score ol the optimization process. Methods using the second
cutetion are more commonly used for non robust estitnation. The most popular ol
these s the Jeast squares method (F 2)0 which mimmizes the <um of the squates ol

the rostdials

* merf. (127

=

s anoptimal solntion tov residuals with a Ganssian distetbntion. [he other popntar

crttetion o~ [ method, whiel minimizes the suimmation of the absohitte valne of

restdinals
t
minltr; (12N
=1

Stnce o faveer tesiduals BE contiibntes less than 270 £ s sliehth better than 1

when there esist o tew onthers

fnoour objedtive lunction, we combime the two cntetia For cadi coliimn + oi

the hstorran. we consider 1wo tactor .

LA the number of pomts i cobmmn s (Croteron b, and

6



2. 1, the restdinal of the column  (Criterion 23

Our objective funetion is.

'y
RN N

_—T I/l:i a
where ms the total nnmber of columns i the compressed hustosram and a and e
coeflicients which determine the relative importance of the two factors Consadenme
ouly one of the factors is not enough for tobnst estumation We cannot nae the deas
squates eriterion for the histogram analvsis. A planar siface wihnch rsnearly notimal
to the actual suiface will get the highest score becanse ouly o few porntes will e mbier
and T e will be very smalls RANSNC (2010 RET [s08 o ather vandon samplie
method [683] count onlv mumber of points m the crror band T work wetb on nw
dimensional images where the values are restnated on 2900 D o 02 510 el
depending on a correct selection of the width of the enor hand T the tanee e
data from NRC. the < valies are Hloating pomt tepresentation It macomate to

count only the number of pomnts in the histogiam. hecane many ditferent caoe oy

have the same number of points
Fhe residual for colmmmn 7« can be expressed s

lr e ]

Since & s a constant, 1t can be removed from the objective funetion Thevetore o

final objective function s

PO
A D A NEIE
o=
The compressed istoeram can he well descnbed by plec et anadoe 10l

ho. the number of pornts accmmulated s cach colonme vhe wodk ek contbnt
to the primitive, and call the colvn indes o the dome v et the oo o the

woth done. then the objective tunction o s called the poae Moyt e

determmed values o - 100 4 10
I he hi=tostam poser s monotonteally decroa e s e pecr non e e
deviation o recardless o the probalnbiee de toihnor o he e b 1 e e 800




Frome 110: Thetogram power of Gansssan and uniform distribution

-
I
Solid line:
.
P . . . . )
- (raussian disteibution,
5,
= Dotted line.
untfornn disteibation,
l"; [ | [ N A

St

~hows this properts. Hus propects of the histogram power ensares that the RESC
will choose those samples whose residuals are more concentrated  In Fienre 110, the
power s giver by

ot

(‘::Z/.'([(\i/l . {1.32

(=1

where [ s the Ganssian density function (1237 or the untform distribation biocoon.

and o the histogram mterval. s set 1o 0 05, T he vmform distobation 1

fley = " ' (133
1 . otherwse

He standand deviation ise

SD - \,'--—»——. (1310

ln Fogre HHOD we plot the lnstocram power o against the standard deviatnion o

Noise Level Estimation

\Mter Wlterme, ot the oathers: the cemarmine tesuditals normally <atistv Cratissian

Jdistorbonion The <tandard devianion o ol the best httme can be caloubated directy

6N



from the histogram:

T = SO - Nk v vhan
=izl 1 I

where b is the mecan of all vesiduals # ineluded in the compressed lnstosiam Lhe
coctlicient £ corrects tor the fact that i cach colimmmn of the histooram all vesidial
are rounded to oL which s greater than the actoal values of the tesaduads nn the

column. Empirically we set & = (L8N,

4.2.4 Region Implementation

Regions are esprossed i two dinsensional areay W Labels Bachiteoion laamegue
label. \fter the initial segmentation. cachi veaion s assened o temporay labwel
order to obtain casily a unilovmly sampled pomt tronme o reeon we nse another ane
dimensional arvav Fto map a tegion into Vo The content s ol D ae yndvee of Y/
| herelore, for each region. one continmons tanee in Fnaps o temion to i ol
Vo Random sample pornt s diawn lom /20N pornter to 18 e wod tamdicate the
begsining, of the resion and another varabhle to mdicate the pnnber of poel v
region. A\l regions are then tepresented by o hinked bt Moy coch coppentations N

has to be reorganized to mamtatie cottect vecton mappney

4.2.5 Large Regton Problem

Fhe RESC aleotithan necds 1o calenlate pe wdnal of carli pomt o the pnoce e
region. L he more pomtsan the recion, the ore tinee v needed for cacbo oo
practice the nnmber of points i a tesion con he oo Loor o 5500000700 a1

(itial stage, Dinedt .llnplll alton of the BT SC alecr -t o lere

Lo speed ap the aleombim we mabee o prelimna coment a0 0 e

\Hnillt' i‘““i’ cdecdetectar tocla aly the whole v pnaee ovg o e o

(]




detal< of the method are piver in section 6.2, Fach imitial region would normallyv be

much sinaller than the whole onwinal image,

Suppose that original tegion is 12 and it consists of m subregions ry.ry. e,
winch can be separated by jump-edges. Withont loss generality, we assume the size
ol cach subregion 15 equal to s and the size of original region is S = s, Withont
prelitnmary segmentation, RESC as to process initially S pizels. separating s pisels
frotn 10 Tt then processes S - s pivels to get the second segmentation.  he total

mmnber of pisels processed by the {0 SC aethod is:
No= ST (= s
= A —— -, {1.30)

Wath prehimmany segmentation. the total pinels processed by the RESC method s

N\ o= s (1.37)

p
It s obvious that without pretininary segmentation. RESC has to process g + 1122
Bines mote pinels than wirth the scementation Sinee the preliminary seamentation
s tnch taster than RESC pracessing. we can save the total processing time by this

Strateey

Heteo the sesmentation s only preliminaey hased solely on jump edees, Smtace
fittine s oot pecformed ar this staze. The more subtle edges or simoothly connecred

teetons are then segmented and itted by the RESC method.

Fyven these mtial tegions are sometunes too faree to be processed fast enoueh,
\ simple solution to this problenis 1o dower the resolution of the range image of a
Laree region tempotarty dunme the littine process, The nimber of pivels ina given
tegton iy be restocted to Vo= 000 dininge the htting process Ibn samphne
pinels onby oncacwred with spacine of A pisels. where Ao detetmimed ty the <ize of

the processing tegion:



Figure L Solve laree 1egion problem
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where 1, is the number of points in the conent procesane remon and N 0 1l

masitn nnmber testricted for o rewion. This o shown i Frowe 11 fov oo pre
inents A varies from 1 to 60 The samphue pomts are chiosen on the vnd T e
condition:

rmod b= 0 and ymad b0 clovon

Sinee a large region contams laree homovencons surface patchier fov e ofurion de
not mfluence the acenracy of detection of Taree surtace patchic Taothe comentation

])Im.s(' we llave to use all the pl\('ls i the tesion i order taoat aroiiate corge platon




4.3 Switching between Primitive Surface Types

We wish 1o seginent range nnage into the first and second-order primitives. The
method desceibed above handles cacle primitive ty pe separatelv. We have 1o hnd a

method 1o switch from one to the other,
[ ]

There are two possible strategies, One s to use a vartable-order smface fitting
algorithin {7050 780 1F o cureved region is approsimated by the first order primitives.
the repron will be seomented into many small planar patehes inorder to set an
accurate fittime, o second order primitive is used 1o 11 the auved 1eeron, the
patches will novimally be larger than the patches with the first order primitive fitting,.
By mcreasing the order of the promtive and compaiing the nmunber of pisels for
dillerent order promitive fitine. a suitable order can then be deterimmed when there
s no duference between the two orders T this wav, howeser, cach tegion has to be

ftted oy times fat least twice) antil o stable scementation is obtatned.

Usine the other strateey we bt the second order primitive st and then deter
e bt sty second order from the praperties of the itted prmative, Duaning the

second order fittime, we cheek i the region s the fiest-order hased on thee factors:

Povahidation detecnon,

2 anvanant theory. and

A averase cuanvature,

Hothe simtace s determuned to be planar, we rehit the teeion using the fivst order

9

pomtnve N Howchart as shown oo Fremve FE2 We will explam cac factor i the

follow e

-1
W



Figure 1120 Diflerent pronntive tupe switchine
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4.3.1 Switching by Validation Detection

For the fitst factor. we have mentioned bhefore in subsection £.2.2 that if a region is
best descrthed by a liust order primitive with a very low noise level (e.g.. synthetice
data), the matiix for the second-order primitive will he singnlar or nearly singulas
(see Appendin ) which will also be indicated by its determinant. It may occasionally
feppen that sample points on the second order surface degenerate into first primitive,
s the cose when all the sample points are on the intersection line (crele) of a sphere
with o plane But it s impossible for a random sample procedure to generate these

special confignration very frequently.,

[ he second order primitive s hitted 1o a region iirst. We monitor the nmber
ol tvalid samples. T the rate ol valid sample to the 1oral mimnber of samples s
greater than 1050, we assiwme that a divst-order prinntive is the bhest. We rehit the

curtent region with the tiest order primitive,

For tmost practical tanee hmages. there is enoueh nose i them <o that it is
nnlikely that a second order equation determined by pomts m the reeion will have
a stnenlar matoss even b the recion as planar. Tn this case we cheds the guadiatic

mvattants to determme f the veeron s the iest order region.

4.3.2  Switching by Quadratic Invariant

Fhe tvartant theory ol second order promitives is explained in detail m Appendis €
Lhe sutlace type can be determmed from these invaniauts asin Appendin DL \saimne

that mvariants are (from Fqnation (C.80):

I AURVAR Y SRUE

Hthe condition

AN b and oV NI



holds, where [, is a thieshold. then the suttace can be dlassitied as aplana sutace

Otherwise it is a second order primitive. In practices we et |/ e

4.3.3 Switching by Aveirage Curvature

Another method to determine the surface type s the canvatise method  Fhe Gl
stan and mean curvatures can be nsed to determime the suttace tvpe o hown
Fable 2.1 in chiapter 2. Gaussian and mean cavatiees at one potnt ol quadoatic
face can be calculated by the formula i Nppendin B Averave Gans an and mean

curvatues are:

| e

N YN A R
1 )
b

- N e
/JIL"I { |

where the sumniation is for 1 piselsin the aurent procesane revton 1 the condhinen
IN /‘/\ .lll(l I / / b h
!

is trie, the surface can be classihed as o plan o surlace, T practee oo o L)

and [y =10,

We nse all these three methods to switeh pomative onder The coond oracy
primitive is used fiste and it any ol the methods descnbed abo e e a oo

order 1s desired. then the switedy to the -t order v carted o

4.4 Comparisons with Other Methods

e most commonts nesed fittme method e the dea v quane e thad e e e i
«lil('ll(;ll' lnlll?\t' ll'f ‘.\ln'l(' ro1- 1|u- Il'\ltlll.ll ! [mmi TR I L R K
cases s widely used becan eoab pe cleoant eanr obition ot e othe o b




the method hos Chreakdown pomt ol 0 therelore it cannot be used when oniher s
exist. Furthermore, lor the second order prmitive fittime, the feast septtare methond
15 very sensitive to nosse becanse of the tmplicit nature of the ponmtine eqration
[83. 821 Residual roin this case is no longer the seomettie veswdual Teas st the it
ference between the two sides of the fittine equation, colled alechrare distanee Tead
squares method minimizes only chis alvebraic distance nstead of the reguuied eoo
mettic residual. Taubin [TX] derves approsimate distance for nphiot fonm ot onre
or surfaces. The approxunate distance s the ditection perpendiodan oo the

face normal, whereas the erior of real tanee mave momamds mothe diec on
nitninnzation of the approsimate mean square distance o ponhnear lea v g

problem Athough in certain cases. this problem reditces 1o the veneralt il creon
vector fitoin general cases. the tterative Levenbere Margunardt aleontbon has v b
nsed. The comprtation is extensive for such iterative alvortthon therctore o ot
cases. a simplitied fitting is used o the seementation aleonthoe The methad

fail in cases of outliers,

Fhe RESC method vses a new aritenon residual consen s e fondie the
fittine which has tesiduals concentrated in the fower part of the hidooram Ve von
bine the two factors of the optamization as cur obyective function One oo thie aonles
of points in the primitive. another s the total deviation of the pond Fherelon
the residnal consenstis deseribos the case when hoth conditions are et o Led
case ol Geussian noise. the histoeram swill <how Gavssian ditobimmon Tl mean
the solution is approximately optimal. Fhe histoeram method aleo fasan advantae
over the LNS criterion of seleeting only the median of veadval s bhecan e vhie medun
of squated errors can hardly tepresent the total inher pare IHhe mbar e ool
SO0 of the total points, the TS method uees the Lot e plual of the auhey
inlicrs are less than S0 LS Lails Hrhere are o onthercm the resion the cntenan
of the median residhial s o weak condition. Thrs s prorod the o penment 0
Chapter 7y N more {lesible wav s to ase the histoeram to determe the coneen

tration ol the crror distiibution Whatever pevcentaoe o the indier v the onent

T




reoton the b tovrarm olvay hov < the consensus of vesidials and the mlier part s

al o the Tapoe U -coment i current sample region,

Cotprecsed histoerarn method can work at ditferent noise levelss It does not
depend on pre obtamed knowledee abont the scene. Therefore 1t s hetter than

RANSAC nethod .

From nstoeram method. mbicr and ovtlier parts are casilv determined from the
histovrarn dineat s The standard deviation of the it can be estimated trom the inlier

e time cotmpleats of produacme histoetam 1= Orud, whete n s the munher of
) !

pornts to he constdered T is better than the LSS <orting O log, n).

Rowsseenw and Lerov 1090 prove o theotem that the 30 hreakdown poim
i~ the best a obnst estimation method can achieve, Bt our experments have
demonstiated that RESC method has a breahdown point more than S0 of ene
COoL ) o om casess we da not consider the nndgpieness of the it NMore analvsas

ol the expernnental results can be tonnd in Chapter 7

4.5 Summary

HH\ th.l|)l('| tl"\( xl‘u'll l'lt‘ I\'l,.\(‘ nn‘lII()(l m (Il‘t.\”. “‘\(' Hl(‘llln(l I~ l)d\l‘l! uh
vhe random sample ponaples  The essential part of the RESC aleorithm i~ the
fistoqram method tor tesidnal analvses. V' compressed histoeram method works on
ditlerent nose levels From the nstogram. swe can detevmine the catteng poml . wlich
)epatate whers tronr onthiers, the dstogramm powcr o which is the object function 1o
be masimeedand the standard decaation of the norse for the inher pare The RESE
ethod as fghly robust wath tespect to ontlicrs, eiving the bireahdown pomt more

than s0t 0 The RESC miethod s applied to tanee ymage scomentation and fittme,



By extracting one prmitne at vach tanes the whole tanee maee can beseemented
mto these prunitives, The complete experments tor both onthetie and veal data can
be found i Chapter 70 Phe genetee algoredhor o be vnorpor ared into the BRS¢

[his & explained in the nest chapter




Chapter 5

Genetic Algorithm

[he BESC aleore i s based on tandom sampling ol tange imaee pomis 1o
obtuim the best it of a4 prmitive to o homogencous smface pateh Pure randon
search notmally talies a lone time, however, N eenetie aleonthm (G can be nsed
m step Lol the RESC ateonthim (Fienre 123) 1o accelerate the scareh and to achieve

the ‘_"lnlm' nplllll‘ll resnlt,

Fhe man results of this cliapter will be published s the Procecdings of the St

Seandimarvian Conforence on Inage Vnalysis XS]

[ section O we ene a simple teview ol genetic algorithim. Secnion 5.2 intro-

duces the hasic concepts of G The termindlogy nsed in G comes from hiological
adaptation svstem T section .30 vanions G\ operators are introdneed. Tnsection
Showe explatn om G\ used e the expetiment Tostead of traditional eenerational
teplacement, we retam only one population (steady state sustem ) o section 500,
we expluned what one vene s moorder 1o meorporate G\ 1o RESC aleorithm

section b experimental resnlts for vanons G AS with variable contiol parameters



are presented T s proved that the steady state G s better than the aenerational
teplacement G parameters are properly ~et - The hest contiol patameter st -
are quite different from that sugeested by other tesearchers T he tesudt- are analy wed
T

Section 5.7 summaties the chapter

5.1 Review of Genetic Algorithm

Genetice aleorithims have heen developed by Joloy Holland s hes colleamine and
his students at the University of Michigan, Genetw aloonithms e o cla ol aply

mization techniques that gam therr name bom o siothantv to certanm proce et
occnr at the mteractions of bhwologteal cenes Basicallv a cenctie aloonithnge e

high streneth parcnt models, forming offsprong by recombinne component tronm the
parent models. The oftsprimg teplace weaker models i the sy aer and cnter e
fither competitions, Genetie aleotithms have heen studiednten ovely by Holland
[0 Goldberg [31] and others [20 360 30 72077078 % Glenetie aloonthing Lo
been widely nsed mvanions areass snch ass nnaee processine and pattem recomintion
[25. 200 31, T3]0 computer seience (30035, 6 1631 enemeenne and operation e eanch

'

(3332, 120131 The preliminary convereence propetties are dison wed e O

Roth and Levine {67] nsed G i extractine primatives frome D e Thil
and Tavior [39] also nsed G\ in madel hased vnaee mterpretanion We ned an hier
in 3D ranee image processig. Inom G AL a non hinany repore entation s aood Lach
gene s aninde s of the point e the canrent processine reeren and the abae ol the
mdex is in the range of 1o 1020 In this ehapters we tads G porforanes et
spectal sitnation and exammne the iftnence of different parameter crne ol G o

the RESC performande,

Since genety dl'_ﬂ)ll”lllh ate ~tochastic the amne paterne o ottne e o

the same problem by the <ame eenetic aleomthon eenerall ddbitborenr oo a1y

~{)




moca ool nor s data Severabiesearchers did extensive experiment< 1o deternnme the
potaticter ettipes 16 36073 TE M therr GAS solve optimization problem wirh
the nnary codinre. This means that then cenes consist of only two alleles, § and
Our oene ogquae different It consists of hundreds of different alleles 1t s not dean

that the patameter settine: and GA petformance are stll the same. We tested two

different GAS waith vario s parameter settines, G performance is tlnstrated in this

ehapier

5.2 Basic Coucepts

I he idea and concepts of senetic adeortthm comes trom biolooieal adaptation sy sten.
| = -

Most techmeal terms are inhented directIv from biological system Holland dehines

1
h

such tecminologres g fus hook [T
Faery oreasmoas an amaleam ol chatactensties determimed by the
geres s cliromosomes N\ sene has several forms o1 alternatives
allcles producing ditferences i the set of characteristics assocrated with
that vene (Ihe Ccertam strams of earden pea have a <snele gene winely
determnes blossom color. one atlele cansing the blossom 1o be winte, the
other pink: bread mold has a gene wlneh in normal form canses synthesis
of vitamin By bat several raatant alleles of the gene are deticient i this
abifiv: hinman sickle cell anemia results rom an abnormal allele of one
ol the cenes determumme, the strinctue of hemoglobin interestinely
cuoneh. e envitonments where malaria is endemic. the abnormal allele

can conter an advantaze v There are tens of thousands of ecnes in the

Qitomosomes ol a I\I)i(.ll vertebrate, cach of which hias several alleles

Hwe translate these mto om computer termmology, we can bhring G\ dlose to those

who ate not Lol wath biolowical serences. N domosom i~ a ~himg with p

N
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XA RTAN] cene; | : vene

[ L - Y

\ domosome

Fronte 5 1 Chiomosonme and senes

elements in it. .\ gene is an element N allele s anmostance tor a vene and it vabi
is in the definition domain of the gene. see Frewie 50 I we represent aonther
binary form. then an allele can take valne 0o 1o chiiomosome with 5 venc
take the form

01101

Lhe performance ob a chromosome i the envitonment can be tnea ared quan
titativels. .\ neasnre ol the pertormance s denoted by g and called the e oo
attainable chromosomes form a st AN <ubset of o chiomocomes o oo nonte
a population U The initial population s normalle creared ot vamdoms \ ecnetn
aleorithm is the process in which o set of cenctic operator 1 apphied topopabannn

i and a elobal optimal solution can be acheced

5.3 Genetic Operators

I he major three genetic operators are

. reproduction.
)

Dooeross over. and

3. mntation

\ simple eenetic aleort b oy notmalls weld eond e ale oo applearor ok

the three opetators. Reproduction s o proce 1o eloct appropiiate ol o




from the popilation according 1o some tales. The seiected chiromosomes, called
patent. 2 are then sabject to the cross over and mnttation operators to generate
new dirotnosotnes, called cnldren €0 The measure pof the hiness ol € ds computed
and b O is strone enonghl it will teplace the weakest cliromosome i the popualation.

I he process contumes antil the stopping critetion is satisfied.

Reproduction operator selects one chromosome from population £ probabilis-
tcally alter asaenmne cach chromosome a probability propottional to its observed
petlotance, fntitivel s we can think that performance gris the objeetive funcrion
we want to mastnize. Selecting chiromosomes according to their petformance means
that chiromosomes with higher performance have hieher probabidity of contributine

one or mote offsprine i the nest genetation,

e reproduction operator can be nnplemented by a biased qonlette wheel
miethod [31 where cach chiomosome in the poprdation has o joulette wheel <ot
of the size propattional to s hitness, A tandom draw from the popnlation s equn
alent 1o the vollive ol the voulette wheel  The hnal stop posttion is the selection.
Sice the stot size is propottional to the fitnesse the selection s also proportional to
the hitness

seorc{o])

wohalbelity(ey = e — a0
probabniity(. S eore o] {9

where ¢ s the sth duomosome in the population and score(c ) is its fitness ticasure

\unother mplementation ot the teproduction is v rankime the popalation In

petlotmance The random draw s probabilistically proportional 1o the rankine,

ranhe )
probability(e)) = —m—- = (5.2
S rankic)

Fhe advantage of the ranking is o preventing some extremely strone members ot the

population to dominate the selection and cansine prematiie comvereence,

Cross ovet opetator s descnbed m Figne 5.2 Cross-over operaton tandomiy

selects posttion oo b 0 powhere pos the nnommnm wamiber ol points for o enen

N4



I Given two patentss 202 prer phand 250 parl ke

20N number s selected Trom {102 o b ar vandom

3. Two new chiromosomes ate formed lrony £ and 277 1w evchanems the .

~et of eenes to the rieht of position . vielding

N P T

where CVand ¢ are duldien of then parents P28 and 1

Fioure 5.2 N simple crossover operaton

[)Iilll“'l\(‘ l\[)(‘. l‘l()lll two I).Ilt‘lll\. lli(‘ ClOss ove (I[H‘I,llul 4".«i|.|||w |” |ny|||| ol

and therealter. For examples assnme that parent stroctes lor oo gadiatie urlae
primitive are .

(hy. ) oty o Uy dr s o,

bio ba. be by b b be by b
Suppose 2 = 7 by a tandom selection Mter aoss over operation the teo ofl pone

are

Besides a siiple crossover operator developed by Holbad cibier coo oo apo
ators were introdunced, Uniform crossover operator 70 sovdels o e Toe de b d

in Fignre 5.3,

Miutation operatol s ntonnally .1|x|)|u-1| alter cro oo aperotonr MW hen o
[SAR N c;p(’l.ltul venetates pew ¢ Lromaosennes a mmntat o Lt retor g ,nm;lxn doro ool
cene L he mtation operator replaces withia erven probalode oo o paress o

1 IR

an allete randomty <elected Teaom the dotam of vepe N ittt o et o

~
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}

Chiven iwo patents PV = phpl /’If and %= PHPELL /)I‘.':

It~ a set with numbers hom 1 to pand ¢ = p/2:

{ Randomly copy half genes from patents

for/ - | to ¢ step |
r- o random <election from B
copy Pro ol
COpy I),", to (','l:
R - R -1

endfor
{ copy another hall enes flom parents |

while 17 + nil
tahe an element r# from K-
copy Pl to
capy /’,"’ to( ',l.
n--n o~

endfor

Frenre 5 3 Undorm crossover operator

)

-



FAE probabdidygmutation rale? true

then
new gene. = tandonm selected pormt trome f
else ‘
new _gene, - old sene
endif

l"it‘,lll(‘ S50 Mntaton opetatol

in Flgure 5.3.

5.4 Genetic Algorithm

Most genetic aleortthin stinctinres are of the vencrational veplacement tope 1E 16
1. We call this algorithm GAT as shown i Frenie 5% N eprodin tion operaton
selects parents Ppoand Py from (0. Crossover s apphied o 17wk oo
probability . to eenerate children ¢ and 70 Nuatation o appled oo el o
given probability M. and a new generation E 004 1y dormed Nove tha b 12

not performed erossover operation. it s copred to Fir o by direct]

In this thesis another approach called G2 0 wed  Onlane popilation
maintained. Parents are selected from £ by reproducnion opeorator The e nly

jected 1o crossover operator followed by tnntation operator Cliaddbicn €7 v e

by ecenetic operators are evaliated and nserted i boaccordie o then b [
worst chromosomes are then discarded Trom the popnlation toatbeanh Fhe 1 o

steady state systens DL 790000 G and G2 are ve ted e anon pananiec teg o

tines as explained o the seanon on G coperment Tea pro e thar GO

~f



Generation | Generation |+

] [
o S
2 Reproduction R
! - i — :
\ i C'rossover, andd !
i | i
| i ) |
: & \utation ‘ ]
|
i | i . }
R o
Voo 1 \ -} 1
I —
\ | | A ! ;

Firwe 5.5, Schematic of non-ovetlapping popnlation eenerations

faster seareh speed than G

fmtial population i~ created by vandom sampline method until the <size of the
popalation £ rcaches o eiven level The point set X stored in £ is sorted accordine
to ats performance, 1e the histoeram power. The eenctie aleorithim used 1 the

expetiment s deserthed in Fioue 5.6,

fn o G\ aleortthim. we do not allow repeated chiromosomes in the population

due to the |n”n\\'illu 1CAasOns:

Lo the redundant chiromosomen the popnlation will have much higher probalaliny
than other diromosomes. For the same population size. the mumber ol differ -
ent chromosonmes is reduced by such redundaney. Tt limits the elobal search
abiltty of GV and mav canse comvergence (all chromosones are the <atne e the

poptdationt to a local optinnm,

2 redundant chromosome resabts i redundant evaluation of the chitomosome. i

wastes time to caloulate the resulis which are already know

I checkine chromosome redundanacy i the popnlation costs less than evaliation

ol the chitomosome,



-

Select and copy two chromaosomes rom caveent popntation T probalah
tically proportionalls to thew ronkime {all chiromosomes are tanked Iy

its performance, e . lnstogram power

Apply cross-over opetator to the selected chitomosome s and senerate faa

new chromosomes,

Applv mntation operator to cach vene of the new clhiromeo e wih

given probability
Cheelh if the new chromosome exist~in b ahead

ta)y Wt s the casec abandon thie hramosome

1. “ (IH heww (‘lll()llmsnm«‘\ AH'«lu-. |\w| vl l(‘ll |

i, Otherwise volto step | 1o chech another chivatno o

th) Otherwise eoto step )
Fvaluate the petfortmance of the new chronosonet o

Insert the new chiromosome(s) mto population £ accordine vothon oo
formance. This mav canse ~ome dhiramosomes st lowesr portoronane

1o be ehimipated rom cnnent popnlation

Repeat the above steps unnd the dillerence o the faelie b pe o
and the second hehiest performance v dess than o pre delined o tan

ot the samber of oflsprime veachies aevven e

Provve 56 T he eenetie aloontbing



Sinee there are no redundant chromosomes in the population. 1ns towards o elobal

‘)lllllll:ll

5.5 Genes and GA for RESC Algorithm

5.5.1 Point Indices Set

In apphvine GN 1o RESC aleonthm. we nse as a cliromosome”™ the point et X

P. 1.

with p pomts. rather than parameter vector Fhis s allustrated o Fienre
[n the henre we extract o cnncle trom the pomts, Phiee potnts determine o cirdle.
One chromosome contams three pomts Frenre Setl and Set2 <how two sample <ets
of chromosomes (20150 and 1P B0 The arele determmed by them is not well
ftted to the data Nssime a crossover opetator takes the above two chiomosomes as

parents and generates a new duormosome Py L This new chiomosome i~ hette

futed 1o the data than its tao patents,

€

5.5.2  Gene expression

ln ot caselcach gene s an tndey to the pamnts of the cantent processima tenon L he
pornt mdesos snuphy anomteecer and the whole optimization process s to scleet the
nutnher and the number combmations. We call sudh vene expression integer oene,
ot 1 eene tor short How should v espress such nteger? The notmal approach is to
arey code the number and treat cach hinary dieit as a gene (b eener A\ esample ol
the By vene tor a three cene chiromosome is e Table 500 (the example is sunple

hinary code not orey cade)

I we expross onr genes as binary diiertss o chiromoseme will be o concatenated

Brnary stomes Now we analve e the sitnation 1o express cach 1 aene as biany dien,

NG



Figwte 37 How G\ warks
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Fable 5000 Ao example of gene expressions

' inlm_y'l gene hinary gene ,

i TGN 258 0 TO001TEHTO1TT-00001 1 1000-0100100000

The position where two i genes are concatenated is called the boundary of i-gene.
Crossover opetation exchanges parts of the parents. If the crossover tahes place at
the boundary of 1 eenes, 1t does not break i-genes. it siiply changes combinations
of the y wenes in the parents, Otherwise. exeept for the combitation chanee. it also
hreaks an v eene, giving a new number for the i-gene. This is equivaient to a mtation

opetation for the 1 eene.

We will caleulate the probability of such hreak of an i-gene when a crossover
opetator is apphied  Since breaking an i gene s equivalent to having a nuttation on
they cenes we will slso caleulate the equivalent mutation rate. Assiune the lenoth of
o bmary steine, tor anc i eene is g and let a chiomosome contain ¢ i-genes, \ssume
that 1 pomt crossovet operator (0 < 1< eg) is used and. to simplify the calcnlation.

assttine that the crassover mav tahe place at the same position more than once lor

nopomnt crossover opetator (oo 1),
heteate ¢ -1 posttions where the crossover does not break aty ireene. The
probability that - cossovers take place at such positions s (¢ = 1)/ (cg — 1),

Fhetefores the probabnlity that a r-point crossover breaks an i-eene is:

p=l-(-

). (3.9)
cy - |

Iy 10 (the mteecr number has domarn [0 1023]) and ¢ =4 (planar surface). for

a one point crossover such probability s 93,140,

We ate more mterested in caloadating the equivalent matation tate, For each
vecne il there s no crossover mside the 1 eene’s binaty strine (¢ - 1 positionsi. then

there s nomutation There are totally eg = 1= (g - 1) = gte- D such positions. | he

9]



Fable 5.2: Fgene breaking probability and equnalent mutanon rate

¢ :,:_;«___J_ ) ‘ 9 2

n » m p mot
I S S Y R A T R R T
200004 | a2 [ aa
EHI00YC | 6350 Touv |27y
15 {1005 {1000 | ooty | S0

b N/A _ l(l(}'i a9y |

probability that all n crossovers take place at such positions v rgte 1oy i

Therefore, the mmtation rate (lh(' ctossovers does not tahe |»i.|< eoal these Prestfron
1s:
ate 1),

T B A T 1 h)
ey

Some examples of the mutation rate tor g = 10 are Listed e Table 52 o e
searchers use I-point. 2-point o1 uniform ossover opetators A dorn oo over
equivalent to a n-point aossover where o equal to halb of the divomo ome tenet
In such binary expression. a unidorm crossaver s equinvaent to Py porm cros oner hon

¢ =3 and D-point crossover for ¢ =9,

The equivalent mutation rate is very hieh for such hrvars evpres ed veene o
listed in Table 5.2, 1t seems that we have lost control ab mtation s con toan
crossover to take place only at the houndary of 1 ecnes, sl crosover 1 cqueabon
to represent the number divecthv by inteeer s not necessary toepre ent wone

hinary digits, therefore, we do not use hinay tepresentation for our oone




5.5.3  Genetic Algorithm in RESC

Initial population is created by random sampling method until the size of the popu-
Jation 1 reaches a given level, The point set X (chromosome) stored in i< <orted
accordimg 1o its pmfurm.m( e te. the hi\!()gr;m) power i, [ he u-pr(nhu'tiun selects X
with the probability proportional to 15 rank in {7, The mutation operator replaces
cach point in X owith probabnhtv Wowith a randomly chosen point in the enrrent
processing region. T he process continnes until either performance of the population
is stable (el the maximum and minimum performance is neatly the same). or the

niinber of offspring generated reaches a limit.

M chromosomes mpopulation U are valid as described previousy, After ae-
netic operator is applied to these chromosomes, we have 1o check the validation again.

lnvahd offsprines should he discarded,

5.5.4 Differences from the Traveling Salesman Prob-

lem (TSP)

[he problem solved here is different from the traveling salesman problem ¢ 1SP)
I PSP o salesman must make s complete tour of o eiven et ol aties in order that
minnzes las total travel distanee FSP is a permuatation problenon all eities. Tnom
primtive extiaction: problem. swe estract o few points from all possible candidates,
fhe order ol the extracted pornts is itrelesant sinee the primitive does ot depend
on the order - Prmitne extraction is to tind appropriate points which determine a
best titting prantive to all impat points, Therefored it is not a permutation problem.

but a combiation problem.,




Fable 5230 Syvnthetie data used m the expenments

("ase Fype Fquation - ‘ R .:'()lllllt‘l
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5.6 Experimental Determination of Param-

eter Settings for Genetic Algorithin

We performed extensive experiments on GACRESC and veal tanee nivaee seomenta
tion and titting., Our program implementing the RESC and G\ aleonthony o wiinten
in Cand is tested on the Silicon Graphics G TN 220 comprter swith CPPU pecd of 0

MIPS.

5.6.1 GA Experimental Design

The parameter setting is very important to mahe G\ work well S oo
experiments by other researchers {160 360 73011 on G\ control parametor ettine
were only done for hinary coded genes. consistine of Band T wa nece e 1
carry ont extensive experiments to explore the pertormances of G for BESC methiod

under different conditions,

Several svithetie data cases are nsed i the o pernnent o hovon e Fable 503

and Fienre 380 Figure 5.9 and Fionre 5000 T he conthene deva e oonerared e

domain of (=10 7 roy 1Oy for case Fand 3 and 0 ) ¢y MWy dor a0

is very hard 1o see the otigimal plane from the protme v henot s contammated b

9l




60 outhers [t nnpossible for a non-robust estimation method to obtain correct
sitface primitives due 1o a luge number of outlicrs. There are two surface patches
i the second case. This means that there are two local optimals and since all data
are mput 1o the RESC. 1 must be highly tobust to extract only one patch and
consider the other patehies as outliers. The experiments demonstrate not only the
global optinnzation of GAL but also the robustness of RESC zlgorithims, The RESC
has cortectly estimated all surface parameters in the experiments. NMove experiments

on tobustness of RESC iethod are given in Chapter 7.

\s we mentioned hefore, G is the stochastic optimizationaleorithm. lo obtain
a telative stable solution in order to compare different G\ parameter settings. two
meastres were tsed in the itevatuwee [Lo. T35 Xn online average is stmply the averaee
ol petformance of all chiromosotmes tested durmy the searel. \n offline arerage s
the averase ol the best performance for several tuns. In cach ran of the GAL the hest
petformance is the highest histogram power o+ (Fgnation L31) of the current search,
Stee for o purpose only the hest petfotmance is used for primitive estraction.
an ollhime averase s ot measize for G\ Fach <ot of data is tested 20 times with
ditferent seed values for the random function, and tinal performance s a tesalt of an

ametaee over the 20 tests, The control patameter space is as following,

e Population size (S): The population size atlects both GA'S performance and the
overall etlicieney. N small population size may not contam enoneh information
for CGeA to playv with, .\ Luge size may contam too many weak chiromosomes
and slow down the convergence,  Inoom t‘\p('lilm‘ll!.\. the varations of the

population size are 3050 100200 30050, 700 900 11O 1300 150 and 170,

o Crossover tate (V). This is only used in G AL The higher the tate the more
new Chromosones ate senerated i cach genetation, X is set 1to: 05 0.7 and

09 m G AL expertments,

o \utation rate ¢V Nhutation increases the vatiability ol the population. Hieh-

et mntation tate means tor cach new dold o hicher chance to manporate new

l)',






points i the population. In experiments. M is set to: 0.0061, 0.0005. 0.001.
0.0025. 0.005. 0.0075. 0,01, 0.05.0.1. 0.2 and 0.5, Since it is difficult 1o cisplay
too many hnes i one picture, we simply plot part of the results with different

mttation rates

o Number of offspring (V): ‘This is a condition to stop GAL It is obvious that
the larger the valne of Vo the better the approximate optimal solution. .\ laree
N could also make GA too slow to be practical. We tested only two cases:

V2000 and N o= 19000,

Wedenote a specific GAL by a triple GATS. VO W) and a speeifie GA2 by two
tuples GAZCS W0 N standard GA Dy De Jong [16] can be expressed as GA TS0, 0.6,

0.001). Susgested parameter ranges in [T3] are GAT(20 300 0.75 0,95, 0.005 0.01).

5.6.2 Experiments and Analysis of GA Parameter Settings

Figvure 200D throveh Frgine 521 aie resalts of experimenting with vations parameter
settings i dilferent cases  The perlormance in these fignies s defimed as the his
togtam power. \s esplamed hefore, we simply plot part of the results with different
mutation rates, smee i s diticudt to display too many lines in one picture, Nl hest

setties are fisted o Table 5L,

We ate not jast interested in inding optitnal parameter settings from the ex-
pentments, we ate also interested i inding the tiles of the G performance with

vattons settines. We can draw the follow ing conchisions from the experiments:

o [helarger the valueof N the hetter the pertorinance and the more <table the
restdts Farae v onakes the resalts Tess sensitive 1o patameter settines, viving

a nearth saturated popuation, bhut it conld also slow down G\ processimag,

a7



Figure 5.11: GAL petformance. crossover vate S0 (case 12000 ollsprims )
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Figure 5.12: G AL perlormance. crossover tate 707 (case 12000 ol prime )
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Figure 5130 GAT petformane s crossover tate 9050 (ease 1L 2000 offspring)
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Fignre 5 1 GAL performance. crossover tate 5000 (case 1o 10000 offspring)
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Figure 5.15: G performance. crossover rate 700 foase 1 10000 ollsprine)
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Fignre 5.06: G performance. crossover tate 907 (ease T 10000 off e )
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Frgne 5,07 GA2 performance (ease 12000 offspring)
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Pertormance
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Figure 5.19: G2 performance (case 202000 offsprme)
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Fable 5 F The best G settings in different cases

{‘ase v 0"
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o By comparing the best settings with the standarvd one. the population sice s

larger than that with standard setting and suegested vanee wall GAT tests

o Comparing GAT and GA20we find that the steady state GA2 approachs hetter
than the generational replacement GA L Phe Tikely teasons may beoas Tollows

In (3.\2:

L. the population is updated immediately after o new chiomosome i vener

ated and evaluated.

2. the reproduction selects the newly updated populations wivime Jaster feed

back than the generation method,

3. best performing chromosomes are alway cetained oo 8 and the war <t one,

are discarded immediately,

e In G2 the best settigs are with the nmtation tate muneh laeer than that i
literature. and the population size s tueh sialler than CGONE Tn G e ol
best chiromosomes are alwavs kept in the population the fieher ntation yate
will bring in more new alleles into the population Simall popnlation ase nale

the average performance of the total population el Theretore the efected

chromosomes from 7 have relativels high fitness,

o Different parameter settings mav result i gqmte different G\ perlomance\
better setting mayv vield ninceh better petformance for 2000 oflsprone thar poo

settings for 10000 offsprine.

L he best settings of onur experiments are quite diffevent fronn those i the Iite vatine
In our experiments, the optimal mutation rate toened ont to bhe ek hobier o
the valne snggested in the literatuee, The veason s the vepre citation of the wene
O gene consists of 1021 alleles at most Since one chiomo ome b pocne

total mnber of allels T in the popualation s
T - Np o
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where S is the popubation size This total number T contains vepeated alleles. The
total munber of diferent alleles is less than 7. Suppose S ranges from 5 to 100,
T rauges ftom 13 to 900 for p — 9 and ranges om 15 10 300 for p = 3. In any
cime. the total nmumber of alleles in the population is less than the total number of
alleles in the quput data. [t neans that the total population can not contain all
ditferent alleles, it by no means has all possible combinations from these alleles, Tt is
obvious that i optimizalion process. we nst explore other alleles which are not in
the initial population s is why we need higher mutation rate than for a normal

binary representation.

Frgme 522 shows the aceeleration of G over pure randorm search. Asinother
experiments, the tesudt is an average of 20 expermments, G\ parameters are set 1o
population size 20 and mutation tate O L Fhe ments of G\ are obvions. After
penetating and evaluating 2000 offspring. G\ scineh grows slowhv, a stmilar growth
tate as that of random search. Therefores we stop onr G\ to atter 2000 olfspring
hase been generated, We also compared the resnlts using G\ for teal tenge mage
segmentation and fitting,  Fhe ranse tmage nsed for the expetunens o The Grap
(Figure 7.27) We limir the maninmm number of evalunations for cach prmitine to
2000, There are some other aritetions for stopping the itetation of G and pure
tandom search, such as the standard deviation of the carrent patcis the maximnm
and minimum differences ot the performance in the population. ot Faew i the
prte tandom search algorithm. we remain the population and the assocrated opera
tons, such as insert, delete. efe 1o keep the amount of computation as <imilar as
possibles The processig time is gnite different. The pure tandom <ampline method
tahes 313 <econds of CPU time whereas the G takes only T seconds. Foacept the
time difference, the segmentation and fitting results are also different. Pure vandom
satnphug method obtams less accurate fitting, for cach prioutive althoueh it takes

about 3 times lonzer than the G\ does giving bad segmcentation.

[0S



Figure 5.22: G\ acceleration vs, random search
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5.7 Summary

In this chapter, we have brietly inttoduced generic aleornhnm - 16N ond evplarned

how to incorporate i\ into onr RESC aleorit huan

Binary and integer expression for a gene is anabvzed. Crosover aperation
breaks. at a high probability, o binary gene espression for onnteser - equivalent
to having a mutation on the inteeer. Lhis tesults a very sl mntanion vate aned
can not control it. T herefore. we do not vse a bty espression for a eene i tead

integer sene, the indices of input pornt. s nsed mom G,

Althougl theve is <till no tundarmental theory abowt the pedonmanee nd con
vergence of GAL the empincal studies ive o enideline for elecnem G patame 1oy
fwo different GAS are tested, N steady state G\ has mach hetrer perlonmanes tha
a eenerational replacement GAL The expetimentalvesudt s how that a oot ot
is much higher than the range sugeested by orher researchers U oo miteesy oo

ont G s one teason for such el mmtation vate Fpons o sond clecion ab imtation
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tate. population size s not a vers sensitive fector. G can work well over o laree
tanee of popilation size, The RESC algorithm works verv well under the support of
G for the stochastie searely of the hesy sample points over the unsegmented range

PIELaes

N



Chapter 6

Segmentation

Seamentation is a very impottant fundamental processine Chapter 2 e en
stvely reviewed varions methods for tange naze seementation. We e plamn one aleo

rithm in detail in this chapter.

The main idea of this chapter were published o the Piocecdings of 10T 1997
Compuler Viston and Dattern Bocognidion |86 Procccdigs of the SPH VWeane
in Intethigent Robotic Systems and Sensor LFusion IV Conliol Paradignis and ula
Structures {1\'3]. It was also subimmitted ta 1FFE Liavsaciions o Pallers Yoaly o
and Machne Intelligenes [ST]0 We explam the alvonthon ok more detail than the

previous publications.

Section 6.1 onthines the segmentation process Sectiion O de cnhe a0 ol
step-edece detector. A prelimimary seementation s petdormed Dot Section 3 ey
the segmentation aleorithin in detail, Section 6.0 olve the madl veewwn prolilen

which 15 due to ontliers or edec reeions.,




6.1 The Outline of Segmentation

We ise a 1wo stage segimentation strategy. .\ preliminary segmentation is applied to
the raw fruage first. Simple step-edges are detected and used 1o segment the whole
image into several regions. N prelimmary segmentation can reduce the aimount of

computation hy RESC method as explained in Subsection 1.2.5.

Primitive extractions by RESC method is applied 1o cach region. With RESC
method. we can select the hest itting which is alwavs the largest homogeneous prim-
ihve in the current processing area because the probability of choosing potnts from
this region is highet than from others. Aftera primitive is detenmined. a secgmentation
algorithim is used to segment the prinutive ont of the resion. The further processing
ol the vegion s then performed in a smaller scale. Onr segmentation method differs
frot those of other anthors becanse in the sarface litting process. we already have
the segment implied by fitting the equation which fits a homogencons region of the
sutface. Om segmentation algortlim extracts the largest continuons region which
this equation fits. in the sense that the restdual of cach pisel s within a thireshiold

determmed during the fitting process.

6.2 Preliminary Segmentation

In subsection LS of chapter Lwe mentioned that o preliminary segmentation is
necessary toadivide o laree region into (possibly) several smaller regions in order to
accelerate the processimg speed. Neighboring pivels with discontinnitios are obvi-
oushv mdication of possible edges separating 1wo reeions, We nse a simple step-edee

detector to tind edeesc el a pinel satisties the condition
e ey >~ L or T TR B M t6.1)

then pinel 2 os classthied as a step edae pinel,

[



Fhe inttial region is formed by marking all four neighbor connected pisels whinch
are not step-edge pixels. Each initial region is marked by o temporany label Fhe
step-edge regeon is a region with slope exceeding the step edee threshold Gap regrons,
where the range value is not available. as well as step edee regions, ate siven special

labels in order to identify them during seamentation.
A g oNey

The preliminary segimentationis for reducing the computation load ot the RS
algorithm. It is not a necessay step. Without the preliminan seamentation the ranec
image can still be segmented normalls. o fact. one of the examples (see Faoare ")
in the experiments does not have step edges The RESC can still extiact proonmtive

and segment the range image properlys.

6.3 Segmentation Algorithm

Unsegmented regions are labeled by temporary Tabels e the nahvation proces
including the preliminary segmentation process pedormed byoasiple tepcdee
detector. Segmentation process will label snttace patches with permanent fadw |l
We use a boundary-list method 1o flind a continuons reeion which s fon nemhibon

connected. allowing a one-pisel ontlier. Hereas the basic adea of the aleort i

L. Initially all pixels are unlabeled. and boundary Tists [ and fae e

2 Find a sced whose residual o within the threshold by scanmme the anlabeled
pixels in the curtent processing region Label the ceed prel ad por it

houndary list £,
3. Clear hist [

. Lake every element in the bonndary Dist Loand chiedh it lome neebibor 0o
prel s nnlabeled and s pesidual s wathin the thee hold Taheb o d e

into boundary fist 1

Fo




Figuie 6.1 Segmentation
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o Four Direction

Connection

Threshold: 2.5 sigma

2o Switeh f oand

. Repeat steps 3 and 5 until no elements temain in the lists,

i Repeat step 2 tostep o nntil no unlabeled pisels remain in the enrrent process-

e fevion,

N From the labeled regions. seleet the one having the Largest number of pisels as

the result

We call it boundary fist method heeauwse the aleorithm is hased on two lists which
heep the current bonudaries of the vegion. The basie idea s <hown in Fienre 6.1,
Fhe detals of the aleonithim are explamed below. The algorithim uses a houndary fist
method which vegroves two lists 1 oand £ Fach entey in hst [ ocontaims | elements

as i lable oo

L1



lable 6.1: Elements m hist f

o ]
[P eurrent position (indes of 1/ )

It direction for nest step

{
|
e
|
|

I | residual at current pom

I» 1 outhier counter

Svmbol 4, is the eth entry of the list Lo The same stoacime and the s
expressions (replace Cwith f) hold for list /70 The two hats are switched alternatively
during the segmentation process, Four ditecnon connection s nsed i the aleonthm
The whole algorithm is deseribed in Freure 6.2 and Fignre tof ome 6 s the
segmentation algorithm for finding the lareest continmous tone onther i allowed)

region. Figure 6.3 1s a scarch method used repeatedly m Fiovre 602

The two thresholds in the algorithm can he set accordine to the standard devs
ation @ determined by RESC method durine the fittime process T o enperiment
the thresholds ave determined empirvicalls as: 700 2050 and 7, Voo Mter eadh
segmentation, an analytical relaxation method [51 s vsed to compare cuvrent eo

mentation with its neighbor on the honndary and to adpst sczmentationd necean

In the segimentation process, gap and edee tegtons are novmally partiall croded
by fitted surfaces. The edge regions cannot he fitted well Bhecanse then e anl
few points on the surfaces of large Sloper alsol the ranee data e not vehable ine ks
situations. [ position and orientation hetween the object aud the rane cnon an
changed. these regions may become lareer and have staller dope and the dara wonld

be mnch more reliable. The edoe and cap reswons shonld therelore nor be proce ol




1.

Set 7, as segmentation threshold and 7, as step edge threshold, and 7. <
T..

Calentate residnals of all points in the processing region according to the
patameters determived by RESC algorithm.

I'ind position ¢ in the image where |r,| < a.

From pomt ¢, we can generate Felementsin Lo = 1o obwith I = .
17 0 and 1 in tour different divections. respectively, In the follow-

ing. oll 1T new elements are generated accordingly. exeept for the stated

condition.

Suppose the original Tabel for enrrent region is 4. Deline a temporarny

Label w. which s different trom all other labels,

Clear list 1,

Scan cach elements i the list Loas described i Frgure o3,
Swap lists £ and L

Repeat steps 6 to S until no more elements in the list,

Repeat steps 3 1o 9 1o lind the largest segment within current processing,

1e8ion,

Mark the segment with appropriate label to avoid turther processine.

" — - —

Fieure 6.2 1T he seementation aleorithm
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R

-

3.

L

DR

{i.

Determine a new scarching position p - 1" [*

region. discard /.

If the label of poas different from poand 1t s not the edoee reeon Label

discard /,.
I e, < o dabel pto wand senerate Fnew elementsin [owale [0

£ 4r] > 7 point pis astep edages Do not Jabel pand do ot senerate

any new element.,
Wr o< eyl < nand 10~ O

(il) il Iy has different \i‘.l‘ll with // label Iy torw and venerare oloman

with [ = 0 ( outlier counter |,
(b) otherwise set the | new elements with 7 J
I, < |rpl < and I =1 thew the position gas well as pooation I

considered 1o be in other scoments  Tabel the postions bacl to onm il

label 3.

Fienre 6.3 One vonned earcly

P

I s ont of the tnave:




. For ecach pinel in the small region. cheek its four neighbor points,

N

s neghbors are labeled already {3 may have 1 1o | labeled neighbors,
and thev may have the same or different labels ). calenlate the vesiduals
with the neighbor equations. Compare the residuals determined by its

neighbors and seleet the one with smallest residual as the point fabel.

31 all s neghibors are not labeled. put the pixel ina new small region

and processat later,

. Repeat the steps 12203 antd no more small region left.

Figure 6.1 Frosion algorithm
6.4 Small Region Handling

[he cquation for the primitive requires a certam mimmunm nunber of data point-, .\
tegion with lewer pisels caunot be fitted and is therefore treated as a “small veeion.”
Notmallyve small regions ocem either at the boundary or mside a resion where the
testdital 1s greater than the ittine thieshold, I regions are to small to be htted, we
constder them as onthers, sinee the shape with too few pinels does not have enoneh
intormation tor further processing and those regions shonld bhe chminated. We nse
the aleotithm desenihed e Fieate 6.1 1o erode them.  AMter runnine the croston

aleonithm. snrface patches become less fragmented.,

6.5 Summary

[n thas chapters we have desonbed v detail a prelinmany scementation aleotithm.

the scamentation aleortthm and the ctosion aleotithin The prehiminary seamen
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tation can reduce the computation load of RESC method and specd ap the whole
processing. By the tobnst RESC algorithi. each rewion s fitted with tin st or wevond
order primitive and the noise level (standavd deviationy s well estimated The e
mentation algorithm will seleet a largest region i which all tesrduals are withim the
estimated notse level, The seementation aleorithin nses two hist< whiech ctone bonnd
aries of the processing region. Four-ucighbor connectivity s ised  he ~eementation
process is casy when all required information s present The seomentation alvonithg

in this chapter is well developed. thotouehly tested. and works ethaenty




Chapter 7

Experiments of RESC method

and Range Image Segmentation

Wehave cmpinically tested the proposed RESC method. The expetiments were
et pettonmed on two dimensional svnthetic data and protiles of range nmage hecanse
s eastet to demonstrate the results of fittine and scementation. therefore it s casier
to develop and test the aleotithm. After two-dimenswonal experinments. we expanid
the aleortthum to thiee dimensional cases. The RESC aleorithm part is the same.
but the random sampling method ol o two-dimensional tegion and the segmentation

aleonthm are dillerent,

[he mam resnlts of this chapter were published in the Proccedimgs of 040 1992
Computer Viscon and Pattcrn Becogmilion [S6]0 Procecdmgs of the SPH Vdvances i
Litodleqent Robotie Systems, Scasor Fuseon IV Control Pavadagms and Dala St -
tures S3Land Procecdings of the Canadian Confircnce on Flechraal and Compuler

Pigencering "SEE T was also subotted to 180 F Pransactions on Pattern Analyses



and Machme Intelligenee [87].

-

Section 7.1 brietly introditees the experimental envnonment and hsts the nses
modifiable parameters of the experimental algorithim. A two dunensional expen
ments are explained in section 7.2 and three ditnensional i section 7230 Tn syvnthetn
data experiments we control the notse levels, the number of pivels. the shape ol un
ages. cte. 1t may clearly demonstrate the performance of the algorthnm i vanone
conditions. Real data experiments can verify the conelusions from the svnthetic ones
and demonstrate the uselnlness of the algorithm in real sitnations. We have pe
formed both sy nthetic data experiments and real range nase data expetients

sections 7.2 and 7.3, Section 7.1 summaries the chapter,

7.1 Experimental Environment

Our program implementing the RESC aloorithim is wotten o Coand o andd
implemented on the Silicon Graphics GITN 220 computer with CPU specd ol 20
MIPS. Part of the experiments have time counting. \lthonelo the computer T two
CPUs, onr algorithm is a setial one without nsing the parallel processme capabibits
In the futwre, we mas parallelize onr aleorithu moorder to speedat np binther The
Ganssian noises are generated with the IMSE Bhrary on VANGYTO Moo=t allo tranon

hignres are generated with the NEATEAB soltware pachagee,

Al user-modifiable parameters of the seomentation and Wittt deanthne are

listed in Table 7.0, Fach symbol and ats meanine can he fomd nevelated chapte

We do not have a high guahty laser ranee finder i one laborators We oo the
ranee itnages provided by the Photomes and Sensors Section i D on o Flectneal
Fangineering at the National Rescarch Connal of Canada o NBC L and vl Parvery
Recosnition and hnage Processing Laboratory of Michioan State Dpeer o oS

PRIP Labi in public networlk domeam M vanee mnaees are rendered betechng
| !

P~




Table 710 Parameter values in experiments

Name Svmbol | Value
l;vlvrminnnl validation ( [g=10
—('-1-;;;11'('»(-4 Histogram O st .05
i, 2000

g .12

O 1.3

3 1.4

¢ (.88

_lall;il}::mi;'l' switch I -
Numbey ul';i—\vls I a region I, [H00
V:l;wu'ti« algorithm N i0
Ay 2000

\/ 0.1

Segmentation algorithin 7. 20T
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of computer graphics. Although range images have only depth value of cach point.
we produce quite realistic images with the support of the graphies ibrary of Silicon
Grraphics computers, he materials, light sonrcesand highting models can be detined
We define surfaces of objects in range image as shiny metal sutlaces Some hghhehts
can be seen from the rendered images. 'he objects in the scene can be scaled. moved
or turned on screen so that we can see details ol any position of ohject and can see

the objeet from any view point.

Our tmplementation of the RESC and genetie alwornithim s highly visual able
and interactive, Fach region of the process range image are colored dhifferentiy in
ing the processing of the range image. cach vandom <ample point and covrent hest
sample point set can be seen dynamicallve Mo any tine of the processime. we can
panse the process to cheek valnes ol onginal image and the fitting surface at the c
sor point by click a mouse button. 1t also shows the Ganssian and mean curvates ol
each point and the imariants and pose matuy and quadiatic sutaces (see \ppendis

). The software system provides a good testhed for tanee e proces-ine

In svnthetic data eaperiments (subseetion 7200 and 7400 we have e tieated
the fitting errors of different methods with varions noise levels and onther percentaoe.
Comparisons ol the fitting error of cach set of parameters ol the pomntive fiave heen
plotted for different methods. In onr tests we have nsed three different method the
least squares (LS) method. the feast median squares (LMS) method aned the RESE
method. For cach experiment. we have analvzed the expermmental vesalt o b thie
dimensional synthetic data experiments in section 7230 we tested averaee petlonance
of the LMS and RESC methods for planar and quadiatie subaces nider vanons o
levels and outlier pereentages. s far as real range paves experiment care coneened
we demonstrate in sections 722 and 783 the littine and ~eementation proce ol

the RESC method {or several images, such as a wiipe o pace shatthe ofe

[ 20}




7.2 Two-Dimensional Cases

Two-dimensional figutes and data points are much casier to plot and casier to un-
derstand. Compated to three dimensional surfaces, the computational complexity
ol two dimensional case is much less than three-dimensional case. The program is
therefore caster to test on the two-dimensional frames. We did both synthetic data

cxperiments and real range image profile data experiments.

7.2.1 Synthetic Data Experiments

In the svathetic data experiments. we fit a line into a set of two-dimensional data

points. The noise level and outliers can be controlled. The original line equation is:
y= .14 B (v.1)

where (U= 2 and 13 = 1.29203, We compare three-different methods in the fitting

PLoCcess:

. RESC method,
2. Least median squares (LMS) method, and

3. Least squares (LS) method.

We generate data with 128 points hased on equation 7.1 In Figure 7.1 and Figme
720 we add Ganssian noise (Equation ((1.25)) with standard deviation o shown in the
fignre. For cach data set. we it a line using three different method, The ditferences
in parameter values of the fitted equation and the original equation is caleulated
and shown in ditferent figures. The hottom figures in Figure 7.1 and Figure 7.2 are
standard deviation of residuals for data points and hitted equations versus <synthetie

noise levels. From these ligures we can see that the least squares method is the best
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one for the case of Gaussian noise and without outlicis  LThe least squates method
has been proved to be optimal for the Gaussian noise. Therefore, no other method
surpass it. RESC and LMS are stochastic methods. therefore, estimated parameter
values by the two method tluctiwate near the original values This can be seen cleary

in IMigure 7.2,

Outliers are added to the data i a given percentage. Outlicrs are given v
formly in the range of the line and their values are uniformly distributed mothe ranee
[—50.130]. Figure 7.3 shows the case of fitting the synthetre data with onthers and
Gaussian noise. In case of outliers, estimation by the least squares miethod is obyvy
ously biased from the original parameter value. The LMS method s sood when the
number ol outliers is less than 0%, RESC method s sood even when outhers are
near S0% range. Figure 7.1 shows the case of synthetic data with S0 onthers and 01
standard deviation Gaussian noise. Only RESC method can tolerate SOUT ot outher
In real situations. S0% of outliers like in Fignre 7.0 s uncommon Considenne the
case in Figure 7.5, we can fit one segment of the data by o line and conspder the orhies
segments as outliers. In Figure 7.5 we inpnt the whole set ol data pormts iarked by
‘o in the figure to RESCL it suceeeds in linding o line segment and treats ather e
ments as outliers. The number of data points helongimg to the hine seement v abon
1 7% of the total number points in the input data. Lhis demonstiates that RTSC can
tolerate abont S3% outliers. Someone may argue that i Fiewe @05 althonel the
RESC method fits a line to the datac it mav also fit o line ta other part of the data
and it seems no obvious reason to prefer one over the other s trae that ofl the e
six line segments have equal length and the same noise fevel, Which one s cho ey
determined by the highest level consensus (e the listogram power ) of the cinrent
search. With different seed value for the random vmnber cenerator the RESC
fit another segment. In this application. we do not requive a nmgae ot 1
eriterion is that if we can find o line i this casel we sav the method worl and
robust.  The unigneness eriterion of Ronsseenw and Loy 169 s not applicabile

this case. We claborate maore on the highest breakdown pomr ob aorobasr o tiaton
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Fignie 7.1 Fitting errors ve. Ganssian noise level {line)

Foriorin A Frrorin BB

. e gm e e g ceees . B

nnp

nuISE

14

nies

o

Ernrin b

ntns

LIXEIR S

DHsE

e e e e e e wod

"l n; e 0y I [N i (I3 [ 2 " "2 0 06 (A4 t 12 [} In

Noase leved Soee el

Standard Deviation

Falraerr s

N e lovad

Note: (1) solid line represents errors of the RESC method. 2) dashed
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ine represents errors of the least squares method:

123




baworin A

Figure 7.2: Fitting errors vs. Gaussian noise lesel (line fine mtervaly
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Figme 7.3 Fitting errors vs. ontliers (line)
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Note: (1) solid line represents errors of the RESC method. (2) dashed
line represents ertors of the least median squares method: (3) the dotted

line represents errors ol the least squares method:

i subsection 7.3.2.

By climinating, points on the line segment and repeating the process on the
teduced size datas RESC can segment and fit all the sis line segments. Qur seg-
mentation and fitting is based npon this consideration.  Therefore. a highly robnst

estimator is essential for sueh processes. The example of the seamentation of the

whole inpuat data ol a real range image profile is shown in the next section,

7.2.2 Real Range Profile Data Experiments

he range image profile data are taken fron one line of rauge image shown in Figure
-
[

¢ Phe primitives i the 2D prolile experiment ave straight ines ( F(ey) =
At By Comnnber of saniple points po== 2 ) and conie curves ( Fleoy) = s +
Bay v Cy® v Do+ Fy+ Gop = 5. The twoditfferent primitives ave switched

antomatically by the method described before, Inthe experiments. cach segment has

it own standard deviation, and they range from 0,02 to 0,120 Uhis demonstrates

125



Figure 7.1 Fitting a line to the data with X070 of outhers
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Note: (1) "o” represents a data point: data consists of SU'C of onthers and 20' ¢ o
inliers with ¢ = 0.1 Gaussian noise. (2) the sohid line o the ovemad e 3y the
dashed line is the fitting by RESC method. (1) the dashdot Tine s the littine by the
least median squares method: (5) the dotted line is the hittine by the least square

met hod:

Figure 7.5: Fitting o line 1o the data

0 5 10} 15 20 25 ) 318
Note: (1) the o represents adata point: (2 the dotted Trne s the fictme be thie Jea

squares method: (3) the solid e is the fittime by the RESC method
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Freme 7.06: Orieinal ranee imaee profiles
S - S

10
38

30

10

y] 20 0 ol) 80 100 120 110

Fignre 7.7: Seamentation and fittineg with <traight hines

10

W0

20

10

g

() 20 10 ot) 80 100 120 140

P Yt

-4



Figure 7.8: Segmentation and fitting with come cueve and straeht Toes
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the importance of calculating 7 for cach segment and the usefulness of compressed
histogram (v ranges from 1 1o 12 when 6 = 0.01 ). Figure 7.6 is the original range
itnage prohile. We can see the effeet of noise which makes the profile rugged. Fignre
7.7 s the reconstiuetion from segmented Hnes, This is the first stage of segmentation
with only the tirst order primitive. Fignre 7.8 is the reconstraction from hoth the
first aned second order prmmitives. We can see that the curved part is much smoother
than line fittines  Fignre 7.9 15 a superimpose of Fig. 7.6 and Fig. 7.8 <olid lines
represent the oniginal profile and dash Tines represent the fitted profile. .\ svinbol
‘o indicates the place where two conic curves join smoothlv, Several examples are

tested and the tesults are very enconragine,

7.3 Three-Dimensional Data Experiments

N nmnber ol threee dimensional experiments have been performed on bhoth sy nthetic
data and real vange image data from the Photonies and Sensors Gronp in Division of
Flectiieal ngimeering at the National Research Counetl of Canada (NRCY and from
the Patten Recognition and Image Processing Labotatory of Michigan State Univen
Sy (MSU PRIP Lab) in public domain (gecko.ceeswsnedu, TP address: 13 012132017
and Itpaads.com). For svathetic data experiments, varions noise levels and ontlien
percentages ave been tested by thice-different method: the Jeast squares ethod,
the Teast median squares method and the RESC method. For real range image data.
we demonstrate the lillillg and segientation Process of RESC method for <everal

objects, such as grip. space shattle, /e,

7.3.1 Synthetic Data Experiments

he two dimensional ssnthetic data expetiments, we have seen that the resnlts by

RESC and LMS Slightly deviate from the actial value.  Phis Huctnating nature
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of the results is due to stochastic process governme bath BESE and PSS erh
ods. Since three-dimensional experiments are more tuportant to s we evaluate the
experiments by averagmg the experimental vesulis 1o compare the pertonmnance ol

different methods 1 a statistical sense

Averaging the Results

To better understand the algorithm’™s petfornance the reaabt dionld be averaned

and evaluated in a statistical sense, We nsed (o wavs of avetaoine the 1o i

o DNata-arvcrage: generate 30 ditferent sets of sonthetic dota aned v the preoetan
onee for each set of data. The average s on the S re-ult fram o diberem o

of data.

o [tun-avcrage: generate only one set of data ad tan the prosiam 0 tne sk
different seeds in random number cencrator The averaee 0 talen osar Mo

for one set of data.
Sinee data-average tests o mnnber of different <ers ol data 00wt ca e ta bt

a stable average. Run-average vields more stable result < than data avoraee O

comparisons for different methods are mostle ased on the tan s eraee

Planar Primitive

In expetiments involving 31 svnthetie datas we teoted voadidbe o o \
plane. the first order primtive, has the equation.
VI8 vty !
We sencrate = values from this cquation on a 125 12% wipd e 500 0 0
5 |

tlll‘l -‘“‘ oy l“ (;i\"‘ll r .lll(l ! \«llllt-\, ‘ '»4III|4‘1,|H In g ',|!H“ Yoy | epdal oo
b / !
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Frenre 7000 N plane with Ganssian noise 15 = 1)

Y. ’\,1 iﬂ.‘;\.\ . '
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A
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AN R ‘-.'ifjf\ *‘fff?f}‘l P
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' A

T2 We ke patameters,
\ 3. = 0.3, (" =105, (7.3

Ciansstan norse s added to the  valne ol the sunthetie data. Fienre 7010 show s what
the plane Tooks ke when ¢ apted by Gaussian norse with @ = 1 Fiewe 700 shows
the fittime eirors versis the Gansstan noise lesel, Lhe noise level is a o equation
29 The mean valne poas set to O The Teast wquares niethod is evidently the hest
tor Gatssian nose waithout onthers  Phe tielt botiom fiemne in Franre 701 shows
the ~standaad deviation of the residaals calenlated from the fitting equation. Fiame
L contans onlhv one set o) dataar dilferent noise levelss Fieme 712 <hows the
data averave tesults The rtesults of tan average on 20 s of the RESC and LAIS

are shown o Frence 7030 10 seems that no methods supenior 1o others

Stce the deast squates method has a breakdown point ol 0 o lence it does not
pettorme well m the presence of onthers, To test the tobustness of the aleonthims m
the presence ot outhers ve add onthiers 1o the svathesized plane. Frewe 01T <hows

o phane wrth 3 and oo ot onthers Fven waith this percentaee of onthers, it is ven



Figure T.01: Fitting errors v Gatssian notse evels (plane s imdivdual expermeoent)

Forror in .\

0.1}

Frror

0.4 — 004 ,
0.31 02 !
0 |
0.21 ' \/ ) ’ / ) |
' -0.02 \/\/\/ !

0044 .

0

0.1t

0.2}

-0.3 ——
0 02040608 1 121410618 2

Nuose Level

[ortor m ¢

_ '\‘./V Ny
006 . h \/\V /\,“\ j
-0 08

01 \/ (

12 . . . . . . .
OD20430608 | 2011618
Notse el

Standard Deviation

.
'

)

0.08 .- > S,
0.06} | |
. 2l 4
0.04 , = e
0.02} R
l 5 e i
0 s
-0.02} | oo
-0.04
!
0.06} 0 s // |
0.08] :

HOJ | — S
0 02030608 1 (2141618 2

Noise [ evel

() . R , . . ,
O 0o204060% 1 211601 S
Noise fevel

)

Note: (h<ohd fine represents entors of the RESCiethod 02y da lied
line tepresents errors of the least median squares mmethod 03 b dotted

line tepresents errors ol the leas sgHate method,

142



Fignre 7.02: Fatting errors vs. Ganssian noise levels (sy nthetie plane. data-averase

ol 30 samples)
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Figure 7.13: Fitting ervors vs. Gausstan notse levels (svithetie plane tun averase of
20 runs)
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Figwe 7.11: A plane with ontliers

I outliers 60Y outliers
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hard to see the original plane from the preture, In Figure 70050 ontliers are added

to the svnthetie data and the inliers are also perturbed with Ganssian noise with

a 1. The graphs show clearly that the RESC method s the best when there
w is a high percentage ol ontliers, The least squares method can tolerate no ontliers,
Fhe LMS can tolerate about 5040 of outhiers. We find to our surprise that RESC

can tolerate even 90% ountliers m these examples. Figure 7005 shows only one pass
for cachy ontlier percentage, To hetter understand the algorithm’s petformance, the
restults are averaged. For cach ontlier pereentage, we run RESC and LS 20 times

with ditferent seeds, The averages are shown in Figure 7.16 and 7.17. 1t is clear that

RESC can tolerate on the average SOUC of outliers, and even Q0% in some cases,

Quadratic Primitive

[o generate a synthetic range image ol a second order primitive, we take an ellipsoid
with equaation

0010 #0017 0027 ~ | (7.1

Phe notmalived eigenvalues devived from this equation (see A ppendin ) ares

\ o0 N, 02\ = 0 (730
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Figure 7.15: Fitting errors vs ontliers (synthetic planes mdividual experiment
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Fignre 7.16: Fitting crrors vs. outliers (svnthetie

Faror in A\

planc. data-average of 30 samples)
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Fleure 7.17: Fitting crrors vs. outliers (synthetic plane, tun average ol 20 rans)
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Fignre T IR An ellipsoid with Ganssian noise (o = 0.3)

On o 125 <128 grid. @ values are generated and the corresponding o and i values
arein the range [ 10100 Given o and gy values, @ vahies can be generated from
Fenation 71 For the pomnt ontside the ellipsoid. < is assigned 1o a backgronnd valne,
Gassian noise is added to 2 values. Figure 78 shows an ellipsoid contaminated with
Caanssian noise (= 0.5). fn Fignre 7,19, which shows fitting errors in the invariants
Ao \and Ay the Jeast-squares method fits the second-order primitive poorlv. | his
poor it oceurs becatse the prinutive equation involves all the variables implicitly
[S5]. Compared with the planar cases, the second order primitive is much more
dificudt to fit correctly. As before, we average the vesults statisticallv, Figure 7.20
shows the tesults of data-average for 30 sets of different data. Fiaure 7.21 shows the

tun average of 20 runs,

Fignre 7.22 sbows the ellipsoid contaminated with 30 and 604 ol outliers.
Ontliers are distributed unformly on the ellipsoid surface range. From Fiaure 7.19
we can see the errars in the invatiants of Ao Ay and A, vespectively. o ontlier

percentage. 30 sets of diferent synthetie data are generated. The resihts are averaged

and shown o Froure 721 Fiaure 7.25 <hows the tun averase of 20 1ume,
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Figure 7200 Fitting ertors vs. Ganssian noise levels (ellipsoid. data-average of 30

satnples)
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Figure 7.21: Vitting crrors vs. Gaussian noise levels (ellipsoid. tnn aetage of 2

rLs)
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7.3.2 Analysis of Experimental Results

The least-squares method fits the second-order primitive peorly. This poor fit ocenrs
becanse the primitive equation involves all the variables implicitly [85]. Fhe least
squares minimizes the so-called algcbrace distanee  or difference hetween the two sides
of the fitting equation. tather than the geometrie residual. This is not a drawback of

the deast squares method itsell, hut of the way it is used,

It is tmpossible to nse the Hinear least squares 1o minimize the geometrie dis-
tance, Taubin [78] derives expressions for approximate orthogonal distance from
curves and surfaces given in implicit form. The distance is in the ditection perpen
dicular to the surface normal. whereas the ervor of the real range image is mainly
in the o dueetion. The mininnzation of the approximate mean square distance is a
nonlinear least squares problem. although in certain cases it rednces to a generalized
cigenvector ht, In the general case one has to use an iterative Levenberg-Marqguardt
aleorithi involving extensive computation. The method investigated in [75] may
fal if there are ontliers, The LNMS method nses the median residual 1o represent
the itting for the whole vregion. There is no particular reason to seleet the median
restdual as a criterion Why not at the 70% or 309 quantile” We do not know which
position divides inhier part from the onther part by the LMS method. In ontlier-lree
cases. the Teast median is a weak enterion. he RESC method solves this problem by
a lustogram method to correetly estimate the whole inlier part. and the optimization
15 based on the whole indier part. Figuee 721 and Figure 7.23 prove that RESC s

suceessiul not only in handling ontliers bat also in handline Ganssian noise.

PFhe RESC method s not Tast compared with the least-squares method bhin it
i~ tobust with respect to ontliers, Fhe Teast median squares method and the RESC
method work well i the presence of Gansstan noise, althongh the estimated value is

sotiew hat macenrate for the followme reasons:

LoEAES aned RESC take o sinadl number ol pomnts ftom the sample region 1o

LS



Figure 7.220 An ellipsoud with onthers

3% outliers bl outhers

solve the equation (3 for planar primitive and 9 Tor quadiatie pmativer e
acenracy of the results depends on the partionfar porats chosen Pl et

valie may vary slightly from one set of points to anothe

2. These methods, being stochastie searches, do not ind the bhest alnnon dete
ministically. Rather they converse asvmptonically to the apronad olotien e
probabilistic sense.

Figure 7.23 and Fignre 7.25 show the hrting results o the percentaoe

ontliers. The least squarcs method toletates no ontliers. EAIS tolerate whout 1070l
ontliers and RESC 60% ol outliers. Compared with the plana orlace Bittime o

the curved surfaces are much more dithealt to fit acomatelv The brealidovn pon

of the method is lower than in the case ob o planar prnmtive

We can see that S0% breakdown point can onlv he achiered ot the doe e
of noises. With increase of the noise level, the bhreakdown pomt v deorea e The
nre 7.26 shows the inflnence of norse on the hrealdown pomt of e RESC 1
llig]l(‘l' the noise level, the smaller the hreakdown ot When the nono Te ool
high. acceurate ltting is diffionlt even with no onthers Cleale the e taee ol

estimator to onthiers can be mbuenced by nonee devel SWhat o the el 0 breadado -0

L1



Frome 7230 Fitting ertors vs, ontliers (ellipsod. mdividaal expernmen |
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Fignre 7.210: Fitting errors v, onthiers (elhipsoid . data average ol 30 samples)
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Figure 7.25: Fitting errors vs, outliers (ellipsoid.

foror in A,

[orror Ay

run-average of 20 runs)
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Figure 7.26: Breakdown points vs, Ganssian nose Jevel
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point a robust estimator can aclieve! We have observed that RESC method achieves
9% breakdown point for planar prinitive fittie, Ronsseenw and Letoy 69 prove

that 50% breakdown point is the hest achievable for 1obust estination method

Fhe

proof ol the theorem shows that they require the estination method 1o produce
unique solution. When there are 500 or more onthiers. the estirnation method ey
have mnltiple solntions, Our applications do wot requive the soluton to e wniegune

Il case of multiple solutions, the RESC method will choose the one which has the
best residual consensiis,

7.3.3 Real Range Data Experiments

In onr 31 ranee imase experiments, prinutives aie planat aned oeneral ogmadiat
g ] |

surfaces. The primnitive equations are

Fivoy.y= Vet v Byt v C Doy s oo Ly i Iy o L o k)

for the second order prinntive and
Voev 12y o 0
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Table 7.2: Fitting, data for the

L Y I Equation Parameters ~\

L] 32%92 1 0.07 12,139 0.004103 ().()()l(iw‘_ .

2 2259 1 0.06 | -0.00003% -0.000231 0.0002140 WU._(_) l—l-
-0.000127 0.0001 13 -0.0000 12 | 0.012
0.0036:30 0.028161 0.015197 2707

3 325 0.10 | 0.00036:3 0.000361 -0.000271 —_()-.‘hH;H
0.000009 -0.000037 0.000151 0752
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Figure 7.28: Harris cup
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Table 7.3: Fitting data for the Harrs anp

Rotation Matiis
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Fable 7.1 Fitting data for the Harns cup (continued)

\ I Fguation Parameters A Rotation Matrix Ir.
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Fable 7.5 Fitting data for the bigw e
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L Y r Fquation Paramoetoers
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Table 7.6: Iitting data for the bigwye (continued)
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for the tirst order primitive. The constant term s <et to | tor the gquadiat
equation. therefore Y points from range tmage ate necessary to ~olve the eqnation

We list the parameters of some real tanse mage experinent
! }

Weo nsed o realistic graphie rendering svstem developed o Jaboratony to
how range images. The object can be seen lihe a 1eal one and 1t can be caled.
translated and rotated. o the experimental resnbis, we show ongimal ranse imase,
reconstructed range image, preliminany scgmentation and hial seomentation b
some sitnpleobject. we label the so Fice and hst equation patamerers ol cach nidace
patch. We now explain the meaning of cach hield in the hsee Phe bt column 70 the
label of the patch. Tt matches the label i the seementation hewre N the v
of points in the pateh, I s the averase cvror m the patech Fquation patameter are
valnes of 1L 1 of Equation .60 when there are 9 values Thev ae Teded by onder i
three lines. Itis also indicate that the surtace tvpe s quadiate When there coe onh
three numbers, they are 0 B and ¢ i Fquation 77 and ondicate that the anface
is a plance. The column N s for mnvartants of quadcatie sobace v V0V dond V)
Fguation C.8 The totation mattrs and transtation sector o b the tabider connpo
the pose of the patch The detail explanations ol the mvariont aned poo e ob qadian
curlace can be found m Nppendiv €0 Note that the vaned maees Trom Nichiman
State University have different vt from that of NRC Therelore we cade s by i
ordet to get similar @ tange, For comples object althoneh we o el pavanne to
I is very tii”i(‘nll to label it on the seernentation liewe O onr compter e o
move cursor to cach pateh and chele the mowse bacton to chedd ol andoniaton o

the sereen.

Frowe 7.27 stows the orrenpal 2060 2960 ranee e e s od i hillore
perspective views with <haded siataces The nose effeor oo be cleand oo the o
hontes, Seamentation and Gttine of the sop tanee o ool G cooned ol 1

CPU e nsine o noplementation Phe botvorn i a0 Faoare 0 200 di pla

onr segmentation of the ranee nnase  Ne e entoned Lefore e ot g e



teetons are not fited vesalting in gaps hetween fitted 1egions. The teconsiiction m
Frgure 727 also shows the different siews of the objeat. The reconstincted images
ate quite simlar 1o the oiginal except that they are noise-free and have gaps bhetween
the Bitted strface patches, In Fiome 732 the onginal range image ol a space shuttle
has tesolution 512 1000 Sesmentation result and reconstruction is also displaved
i Fme 7320 The piocessing tnne tor the space shuttle range image s abont 100
seconds  Premre 730 shows a junk of objects. Fignie 731 shows the tube. Nature
objects are more interesting Frgwe 733 shows some fruits and Fienre 731 shows
some vegetables. We see that second order st faces have Tanitations to express these
(umplw-. object  Nso. the details of the object are considered as noise and fitted by

o Laree smooth smface patch

Bessdes the tanee nmages om VRO we also tested several tange images from
MSU PRI Laboan public domam, Freome 7.2% and Franre 729 display the seginen-
tation and 1econstiietion ob tange tmages provided by the MSU PRIP Lan. Note
that m Frevre 729 there are no juinp edees between the segrnents and no seenent
las mote than 1000 of the 1otal awiea Inthis cases RESC has succeeded i hittime

cach seement diectlv iom the whole pmace  This demonstrates the tobmstness of

the RESC miethod

7.4 Summary

hi thes chapter we have descnbed the resnlts of extensive svinthens o coments on
the RESC alvorthm and demonstrated the secomentation and httme of the real tanwee
mases L he experiments vevealed that RESC method s highly robust 1o ontliers,
Fhe hiehest hieakdown pomt observed mothe expernments s 990 T he breakdown
pornt decreases withomcreaste norse tevelss Conved stutaces ate much more ditticult
to be estimnated cotrectl The hreakdown pomt for curved <urfaces i~ nneh Tower

than that o the planae suclaces We found that when the pnt data were not

fna



contaminated by outhiers. the LMS method was weak The TMS micthod i this case
ignores all npper part of tesiduals, The nunimization s only based an the lower pant
of residuals. The RESC method has a hetter petformance msnch <imnatons hoeca e

the optimization is based on the whole inher paint

In real range image experiments, we demonstiated the whole seomentatien aid
fitting process, Fhe teconstructed tange images are almost exactlhy the sane as the

otiginal except we cannot see any notse effect,

Compatison of scementation results s dithonbe There rono standard evaboaton
criterion. . We measire omr segmentation resualts by evaliate the fotme croom ol
cach sutlace patche Hothe average errors are Tess than o ecen threshold, then the
fitting is accepted. Onr segmentation aleotithin s hased on the vandom amphoge
principle. 1The lareer patches and the fess nose patches are titted Bt hereton

onr seementation starts from the casiest patch

Our scgmentation is actiuallv a promitive extraction proceso It proside o v
conventent toaol for ()l:i(‘('[ rv(ugllillun When "l'l"" taoddel core oot ondy foriteity o

We cat tnate h |)l"llllill\('~ 1o the ui)iv( t model after ~comnmentation

Ow robust titting technigue.undihe other< |5 7220 cantolerare s Lo percom
age of outhiers, Inreal range mmaces outhers ocom frequently They aoom o peaall
when object ~suttace has some tiny sovatch or sty parch Tt en e o 1

15 robust.

Ot tanee unaze renderime system produaces mpre e depla Feproe e

aoway to veryv the seamentation and fittme vesalt b cendern el vocon e

)= - —~

ranee nnaees, In the hteratimre eco 27 5 7 20 we boand that ot gt poe

1li\[)|.|\ tahee illhl‘_;(‘\ I Hiappinge the e [)Ill of cach P el ro ot by e IR

attthors give seementatien re-nlts withont yecon tractiong
Ovir aleonthom s vers sanple Toy core o craapdoment \irbo o 0o
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selecting some adjustable parameters. it works well with these parameter settings.

Iy onn ecpernnents, all images were processed with the same parameter settimaes,

Companng tinune s difficalt if not impossible.

)



Chapter 8

Conclusions and Directions for

Future Research

We conclude the dissertation i section S 1 and propose Intnre te carch e o

tion 8.2,

8.1 Conclusions

fn this dissertation, we propose a new ///4//; hoeabdown prerin corhust oo demadion v thod
(RESCHY and we apply 1t tor proamitive extraction bonn o data et The RTSC
substantial improvement to the TS and can be need movanons avea whore vobn o
estimation is needed, Uulihe ENIS nethod RESC adiow o data to b o mnone tha
\“(/e/ ol ‘J(If“"('\. Wh('lf':l\ I\IS \\ul,wtm'\ tor the data vl e Pl S0 b on o

Histoeram method makes residual statistics of each vandors wiple and oo o

hest alriong all \cllll|)|l“*~ which <how vesedvwal cousrn o Ve v oo Tesprens Jreviee




fhe object tanction ol the RESC process is histogram power. It considers two factors:
the number of pormts onand near the primitive surface should he as large as possible
andd the residuals of the 1otal mbier points should be as small as possible. By the
combination ol the two factors. RESC achieves hetter performance than LMS becanse
evaluation ot the median point only s o weak erteria of LMS. With this nistogram
tethod, the i part and the outler part can be separated. Compressed histogram
method works at different noise levels, 'The experimental results show that the RESC
algonithim has mmch hetter petdore e than the least squares method and the least

median squares method in the secomd Ger primitive estimation.

We apply the RESC miethod to vove tmage segmentation and fitting.  he
RESC extracts fust order and second order ceometrie primitives from ranee inmage.
Fach proinmtive is classtlied as a segment. The whole range image is then seomented
mito these primitive surface patehes: Tt always segiments the laraest patch finst hecanse
pornts trome the largest patch are mote likely to be chosen than those from smatlen
patches, Since standard devianion o for cach surface patch can be correct]s estimated
from the Instogran, the segmentation is reliable even lor smoothly connected curved

Tegtons

Fhe different primitive tvpe switching is based on the validation of the ~<ample
pornts, the mvatiants extiacted from guadiatic suiface parameters and the averaee
cnvatnees  he method which assumes the second order prinitive at the beeinning
and then switch ot to the first order promtive it it belonas to the st ovder promitne

caneasond repeated surtace hitting tor every 1egion,

Fhe experimental tesults Tor svnthetic data and 3D range timages are visually

il «pl.ul!lhnl\e'l\ CONN T

\ venetic aleonthnm (G Vs mcorpotated mto our RESC method to accelerate
the processing Most eenes i the hiterature are binany eenes Our aenes are mtegets

which are pomt imdices of the mput pomts in the cnrent processime teaion We

[O7



analyvzed the situation it sucly integer genes are expressed m binany torm - Crosove
operator will break. with very high probabihitv, the integers eiving a new value for
the integer. Such a break is equivalent to a mutat on operation and the equivalem
mutation rate is calenlated for n-point crossover opetator - We cannot contiol the
mutation if the gene is expressed as binary digits, theretores we do not nse binany

gene.

Although there is still no tundamental theory about the performance and con
vergenee of GUAL the empirical studies give a snideline for the selecnons ol G0N patam
cters Two different GAs are tested. .\ steady state G has el better perlommanee
than a generational replacenient GAL The experimental vesults show that the o
tation rate of the best settings is much heher than the ranve snevested by othe
researchers. Using integer gene inour G\ s one teason for such bieh mstation rate
Upon a good selection of the mntation rate. popalation size is not a very en e
ractor, (LA can work well over a laree tanee of population size The RESC aloant g
works very well under the support of G or the stochastie searchme of e b

sample points over the unsegmented ranee inaces

I'he Hlilj()l‘ contributions of the dissertation and the ;H||»||1 atton . b ed an the

dissertation are listed 1 Section . of (‘h.:[m-l I

8.2 Future Research

We propose the followine research ditections m the futare
pProg 5

e Robust estimation is very nmportant not only iy comnpater vaon atea bt ol o
mestatistics mnathe natie s ol Robustne <ol an estimator can e e e o
cmphastzed. The RESC method achieve one ol the olpecre e el b de

pomt. T the fntare, o fuel efficiencs foald al o be crpha zea T TRt

6~




least squares method as highly efficient. but it s not robust to onthers. We

have to pay a price for tobustness by sacrificing efficiency.

The RESC imethod s more complicated than the least squnares method and the
least wedian squares method. Several parameters must be determined properly
in order Tor RESC to work well, Tt will he uselul to simplify the aleorithin and

L 4
tediiee the adjustable parameters,

Genetic algorithms are mcorporated in the RESC method and search speed s
accelerated, T s necessary to investivate further on how the G works and

how to mcrease the ellicencys of G

Fhe parameter settings of GX are determined by extensive esperiments. We
found that difterent situations may requive dilferent parameter settines and
the best settings in o case s dhilferent from the stnegested ranee onen In
other tesearchers i other sitnations, An easy way 1o determine the parameters

shonld be exploted 1o save time and effort.

Wense two orders of surface primitives to seement object surfaces. Tt works
well for stmple objecrs, Teis dithicndt 1o express complex objeet usime onhy 1w
otders ol printives. N eenetal prorpose vision system should have more pow
ethil means to represent smfaces. The other tepresentations, such as splines.
NURBS (Non Unitorm Ratiwonal B-Sphiner. ofe.. shonld be esplored  \ iohns

seementation for these tepresentations will he very usetul.

[t s possible to extend the proposed method 1o erey level images Ranee immaee
has depth calues tor cach pivels. theretore it is casier 1o process. Grev level
tiages are mote natinal, however, sinee onr eves are mote sensitive to colo
and birelirness than depth. Ranee iiage is notmally obtained by am active wan
st laser inders Tos lonits some of the applications where an active sensor

I~ 1ot I)n\\ll?](‘

Phe recornmmon aleonthm proposed e the dissertation s hased on anadiati

tnatants - The decomposition of o compley sutface mto gquadiatie <artaces i

fon



not unique.  This raises ditheulty tor the tecogmuion based onlv on quadiati
invariants. For a complete sastem. it has to constder other suttace 1y pes other

than planar and quadratic sutfaces.

o | heestimation of the imariants of o quadiatic surface patch lrom nova data i
very ditticult. A tested methods can tolerate only o small amonnt of nor ¢\
little higher noise level mas change the mvatants diasticaliv: N better estunaton

which is robust to noise 1= needed.

\We believe that computer vision is one ol the most chadlensime e carch area i
the next century, Many applications need further development ol computer and wen
sor hardware, The fundamental theoties of vision system shondd heomore e tenacels
explored. More efficient aleorithims and more robust methods Tonve 1o he develaped
In the future we believe that computer vision will catehoap and acrnadiy e cecd 1he

ability of Inunan vision.
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Appendix A

Derivation of Singular Matrix

When a second order primitive model is applied to a lirst order data set. then
the mattin Xoin Fouation (1.20) 15 sienbar, Here we derive two-dimensional cases.
Fhe results can be generalized to three dimensional sitnations, For convenience, we
nse svinbob A instead of Xoin Equation ( 1.20). \ two dimensional second order

primitive model (ftom Fable 3.1) 1
Dy l)_»‘l/': Fdwyg +dr + )y = | t\.

Mattiv A inegnation (120) in this case is
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Appendix B

Curvature Calculation of

Quadratic Surfaces

I he general Qnadratic sirtace equation can he tep, ssented by
I roipeYy -y e t 4/_.//" + q;:“‘ Py’ gt g s gzt gat gl A g = 013 1

Ditferent iate equation (B.1).
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Appendix C

Invariants and Pose
Determination of Quadratic

Surfaces

[n this appendix. we derive the mmeariants and pose of quadiatic smifaces, The
invariants of gquadiatic surlace can be extracted to represent the shape. The pose

matris can then be determined,



C.1 Invariants and Pose of Quadratic Surface

C.1.1 Diagonalization by Rotation Matrix

Quadratic sutface can be represented by
q”.r“+(/_)_._r/“+(/,;;;') A2y 2g0y s 2 P 2g0 00 F 2gan b g vy 0t

or in matrix form

X,QX =10

where Xo= [y < 1" is a veetor and

i Y12 iy (g
oy oo v (g

G2 Gy iy

da e e G|

is a symmefra matris.,

We will trausform the quadratic equation to lovm shape parameters which ae
invariant under transformations and pose parameters which can he ed for funthe
processing. By lincar algebra. matris Q of the quadtatic equation can be tean lored

to a diagonal matrix, We express Q m the hlock matris form

C u
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where @ is a3 < 3 svinmetric mateis and wos a3 - D oobnnn vector Fer v w
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By a vnitary transformation [39). there exists a3 3arthonormal tiatos v than
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late the cigenvaliues of q and the orthonovmal warne o Phe crmon alne ol op e

N9




anieue ot a given quadiatic equation il we disregard the order. But for a quadiatic
sitface matrix. Q is not nmegne. I we have equation X'QX = 0. then the equation

X'(aQ)X = 0 also holds, for amy scale faclor o # 0. To eliminate the scale factor,

we choose A from the A's to be of the largest magnitnde and set © A = A /A for
' 1,203 Assume that gqnadiatic equation is not degenerated to a plavar equa-

tion. therefore, A £ 00 We sort XM in desecnding ovder. and arrange eigensectors (
colmmmns in v ) accordigly. Nttervsuch arrangement, N s are imeariant ander rotation

and translation and | = |

Geometrie significanee of the process is that the surface is transformed to a new
cootdinate system whose axes are alone the proveipal ares ol the quadratic surface.
Ihe cigenvectors correspond to the principal axe<. Becanse principal axes are non-
directional. the coordinate axis can take anv of the firo dirvections along the principal

NS

e followie theorem states that the rotation mateis rin equation (1.2 1s not

Hnigue.

Theoremv U Fhere are four volulion malrices wheeh can divgonalize sqmetvie qua-

dralic matroe g of ¢ has destoned cogenvalues,

Uroof © Suppose that ¢ has 3 distinet eigenvectors @ xp. Xy and x0 Matrix rcan be
a combination of them v =[x £ xof £ x40 Amone these X ditferent e's. four
ol them are rotation mattices ( dedier) = 1) and the others are reflection matrices |
detcedy - 1y Only rotation matrices are possible solutions in a real sitnation. If
clieenvalues ate not distinet. tes the mnltiplicity of the eigenvalues is ereater than
one. then theve will be wnlimeted numbe r of orthonormal matrices satisfving equation

(CU2 We call this a degenerate case and analyze it in Appendis D,

When we calondate craenvectors with Jacoban method, r s a real 1otation

matiin, Onlv alter we teattanee cleenvectors in sotting cieenvabines, ©is possibly
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changed to a reflection matrin. Lherefores in practice we connt the monber of colamin
exchanges of v in the sorting procedure, i the nuniher s odd then v has been caneed
to a reflection matrix and we have to maltiply v ] to change 1t hack, otherw e

it is still a rotation matrin. We can express the four dillerent v's as
) = rg,. for v - 0.3 (o

where g, s a votation matrix defined by a moditied unit maton with s colinmn-

other than o's multiplied by ~1.

C.1.2 Translation Matrix

In the diagonalization process. g is rotated by matiis v to w dneonal matne A W
need to simplify it further to eliminate the tiest ordet tetmns eoyg and Fatend v o

al « I matrix:

R = e

where o is a column <cro vector (3 - Py WA has o full vankh el Qs nondigonciaty
(vartous degenerate cases ate analyzed o Nppendis Dy then AV cast By e

the translation matrix V:

e -A'r'u ¢ v
V= -
o' I o
where e denotes a 3 < 3 unit matris and v A Yo g hhanstation cocior 4|

). we can get the standard quadratie form F

A o
F = V'RQRV ey
o \\/
where
N gneou'rA 'r'u oy,

and F s o diagonal matn, ranslanion vector v mdependent of the cale facno

becanse for aQ. v = (A" "or'ton) Ar'u Mo abd e calendated frony QL

(!




cquation (C.y then ady results from o Q. To eliminate seale factor o and to make

Ay nnigne, we set

A= A/ (C.7)

Note that even it we replace rowith s @ = g for ¢ = 0. ... 3. as expressed
in cquation (C23). the multiplication of eA= (el) has the same value for different

s This is casy 1o verify.

C.1.3 Invariants and Pose Matrix

Now. we can conclhude the following, ¢

Theorem 2 Four tnvariants of a quadratic surface under translateon and rotation
are!

L=[\) N, N\ (N

hey avc andependent of the seale factor of quadralic cqualions,

Becanse \] is normalized to 1 we need only 3 parameters 1o determine a given
quadratic surface. To make the expression simple, we define a normalized standard
quadratic matiix ( arvareant matrer ) as S = F/ N where Sisa |+ Fdiagonal matris

and the clements of Tare the diagonal elements of S. Let

r rv I w
P =RV = =
o | o' |
where w = v = e A7 remains constant when we replace owith rV<, We

call P othe pose matries and express equation (C.0) as F = P'QP and normalized
standard matrin 8 as § = (P'QPY/\ = P'QP. where Q = Q/\. Now we have
sphit the oviginal Q into shape pavameter S and pose matrer P. Sinee there are four

dufferent r's inequation (C200 there are also four pose matnees P's accordinely  The
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four P's can be expressed as ¢

pU =

rg,

0!

w
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Appendix D

Quadratic Surface Classification

Fable DL Surfaces of the second order with no point of svmmetry

Normal form s At + oyt +ms+n =10

no. N LA [T naie of suface

L >0 >0 | <0 | elliptic paraboloid

210 <0 <0 ] hyperbolie parabolotd ( saddle surface )

,‘{J ~(0 1 =0 =0 p(n'.‘\lmli( ('_\“n(l('l'




Table D.2: Surfaces of the second order with o point of synunetiy

Normal form : N\pr? 4 Apy? 1 V22 b o0

no. | A | N TN | d name ol surface

>0 1 >0 >0 <0 | ellipsoid

20 >0 | >0 =01 >0 | imaginamy quadne

31 >0 >0 >0 =0]degenerate ellipsoid ( single point )
] >0 | >0 ] <0 <0 | hyperboloid of ane sheet

S >0 >0 <] >0 hy perboloid of twa sheets

6 >0 (>0 <0 | =0]clliptic double cone

T >0 >0 =01 >0 cvlinder with fivaginary sencrators
NS>0 >0 =0 <0 | elliptic ovlinder

91 >0 | >0 | =0 | =0 | pair of intersecting iinagiary planes
10 >0 | <0 =01 #0 ] hyperbolic exhinde

| >0 [ <0 | =0 =0 pair of intersecting real planes

121 >0 1 =0} =01<07{2 parailel planes

{

3] >0 | =0]=0]>0{2imaginay parallel planes

FH) >0 1 =0 =0 =0 | coordinate plane (y - plane
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Appendix E

Degenerate Cases

Quadratic parameters may be in degenerale form i which the rank of A is ess
than 3, e, there is at least one cigenvalue equal to 0. or in the case of malliplicity
of cigenvalues greater than one. I rank of A is | or O quadratic surface mayv cven
degenerate into planar surface. Here we assume that the quadratic surfaces are not

degenerated to the planar surfaces,

E.1 Rank of .\ is Less Than Three

Let A = R'QR. where R s from equation (C.D). When rank(\) < 3. A i of the

form :

) () [) thyy

o «o « d
L 12 i L



Table E.l: Translation vector and invariants i degenerate cases

Rank(.\) Type v - 1
ayy =0 *-u:/-“\r" — ‘
2 elliptic exvlinder S ITAY \o\
hyperbolic evlinder n/a
ayy # 0 _‘;I_I-/ﬁ\_l
2 elliptic paraboloid X TTAY Vo Vs
hyperbolic paraboloid | =(ayy = af, /Ny = a3,/ V) (2a)
SCUTTAY
I parabolic evlinder n/a (WRTRRVA
_ ‘“(”Il_’i’lll/\I)/(:"”H)

Here we assume Ay = 0 when rank(\) = 20 and A, A O bt ay /0 when
rank(\) = L. In Table oo we list surface type. ranstation vedtar voand invanant
I in various degenerate cases. "'n/a’ in transtation vector means that the translation

in this direction is not applicable hecanse of the sirface propern

E.2 Multiplicity of Eigenvalues is Greater T"han
One

Although in this case cigenvalues mav not equal to zero, the tatation matt cannol
be determined becanse of symmetry of the swiface, Fuamples ob this case are on
cular cylindcr, dliptee eylinder, ete. The cigemedtor contespondine to the di tindt
eigenvalue is along direction of the svinmetry asis the other two cpoenveator an
orthogonal to the ssmmetry asis. Unfortanatelh, there s anlimted nimber of uek

cigenvectors satisfving this condition. We cannot deterime the whole tra foration

N




matrixin this case from just one sinface pateh,

In the case of sphere the moltiphicity of the eigenvalues is three. Tt is obvions
that we cannot determine ovientation of the sphere. bt we can determine the pusit jon
ol the center o the spheres Ty most cases, there are patches other than sphere in the

scene, By combinations with more than one such case. we can still determine object

[posc,





