z

v

E‘
&
e
4
i

National Library
of Canada

b

du Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfiiming
Every effort has been made to ensure the highest qualty of
reproduction possible.

' pages are missing, contact the university which granted
the degree

Some pages inay have indistinct print especially if the
original pages were typed with a poor tvpewrniter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R SC 1970, ¢ C-30, and
subsequent amendments.

NL 339 (r 88/04) ¢

Bibliothéque nationale

Service des théses canadiennes

AVIS

La qualité de cette microtorme depend grandement de 1a
qualité de la thése sourmise au microfilmage Nous avons
tout fait pour assurer une quahté supéneure de reproduc
tion

S'il manque des pages, veulllez communuquer Javix
funiversité qui a contéré le grade

L.a qualité d''mpression de certaines pages peut laisser
désirer, surtout si les pages onginales ont été dactylogra
phiées a l'aide d'un ruban usé ou si l'unwversité nous a fau
parvenir une photocopie de qualité inférieure

La reproduction, méme partielle, de celle microforme: el
soumise 4 la Lol canadienne sur te droit d'auteur, SIRG
1970, ¢ C-30, et ses amendements subséquents

led

Canadi

i+l

Bibliothéque nationale
du Canada

National Library
of Canada

Canadian Theses Service Service des théses canadiennes

Ontawag, Canada
F1A ONA

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa these
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protege sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-59164-1

Canadi

o madaean e S o o b e g SRy

e me s k.

Ll

Programming an ISDN Intelligent Personal Workstation:
An Architecture and Language

Robert D. Rourke

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University
Montréal, Québec, Canada

June 1990

© Robert D. Rourke, 1950

ABSTRACT

PRCGRAMMING AN ISDN INTELLIGENT PERSONAL WORKSTATION:
AN ARCHITECTURE AND LANGUAGE

Robert D. Rourke

The conventional approach to providing user access to ISDN, e.g., an
ISDN terminal, is based on a personal computer with ISDN access provided as
an add-on feature. A serious shortcoming of this approach is its inability to
come to grips with the issue of how ISDN users can effectively program it. As
a consequence, the conventional approach does not allow ISDN users to fully
exploit the information services that will be accessible via ISDN. Most of these
services require a heuristic-based programming environment to facilitate the
development of programs that deal with uncertainty and imprecision.

This thesis is that the shortcoming of the conventional approach can be
overcome with a software architecture based on a knowledge-based system.
An Intelligent ISDN Personal Workstation, which may be viewed as a software
augmentation of the conventional ISDN terminal, provides an effective
platform for creating and running user-defined knowledge-hased application
that exploit ISDN information services. This report presents a softwarce
architecture for an Intelligent ISDN Personal Workstation, and, a knowledzc-

based language to program it.

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Dr. Tho Le-Ngoc for his
guidance throughout this research, and for his advice and suggestions during
the preparation of this thesis.

I was very fortunate to be working with Zenon Slodki on the ISDN
Personal Workstation project. Without the operating system he built, the
development of the knowledge-based system would not have been possible. I
also appreciate his honesty and friendship which permitted him to
constructively criticise my work and offer many useful ideas.

I thank John Rourke and Scott McKenzie for proof-reading my many
final drafts.

I greatly appreciate the financial support provided for this project
through a Canada NSERC grant A5987 and a Québec I'CAR grant ER-0106.

and support given to me by Teleglobe Canada through a graduate fellowship.

v

To users of ISDN

CHAPTER 1
1.1

1.2

1.2.1

1.2.2

1.2.3

1.3

1.3.1

1.3.2

1.3.3

CHAPTER 2

2.1.2

2.1.3

2.1.4

2.2

2.2.1

TABLE OF CONTENTS

List of Figures .

List of Tables

Introduction .

Design Motivations . .

Design Criteria .

User's Paint of View .

OS Point of View .
Communications Point of View .
Plan and Scope

Limitations of an ISDN Terminal
Solution

Outline .

Architecture of an Intelligent Personal Workstation

Characteristics of an Intelligent Person Workstation

Control Workstation Resources .
Handles Real-Time Information .
Easy to Use and Program .

Support for Multiple Problem Solving .

Architecture of an Intelligent Workstation

Basic structure .

11

11

13

14

15

16

17

18

19

20

TRE

22.2

22.3

2.2.4

2.2.5

2.3
CHAPTER 3
3.1

3.2

3.3

3.3.1

3.3.2

3.4

3.5

3.5.1

3.5.2

3.6

3.6.1

3.6.2

3.7
CHAPTER 4

4.1

Belief Manager .

Inference Engine .

Actic.. Generator .

Dynamic Modification

Conclusion

The KOOLA Production System: Basic Concepts
Introduction to KOOLA .

Knowledge Representation in KOOLA

Uncertainty Modelling in a Knowledge-Based System .

Symbalic Processing

Symbolic Information .

An Uncertainty Model for KOOLA. .

Fact Based Algorithm for Inference

Effective Rule Sets . .

Calculating a new belief from facts

Belief-based Algorithm for Inference

Effective Rule Set for Secondary Beliefs
Calculating a New Belief from Supporting Beliefs

Fault Tolerance

The KOOLA Producticn System: Language Elements .

KOOLA Support Primitives

29

29

31

28

33

34

37

38

38

39

42

42

43

47

47

4.1.1

4.1.2

41.3

41.4

4.1.5

41.7

4.2

4.2.1

422

4.2.3

4.2.4

4.2.41

4.2.4.2

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.4

General Belief Primitives

Support Primitive Definitions and the

Working Set Domain
The Variable Construct .
Internal Enquiry
External Enquiry

Belief

External Action . .

Rules .

Production Rule Requirements .

Production Rule Format
Backward Chaining
Syntax .

Fact-Based Rule Syntax
Fact-Based Rule Syntax
Goals .

The Format of 2 GOAL .
Goal Inference Strategy
Real-Time Control
Meta-Control

Goal Syntax .

A KOOLA Application

viii

80
47
53
57
59
60
60
60
61
62
65
65
66
67
68
€3
71

72

74

P> ey

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5

CHAPTER 5

5.1
52

5.2.1

5.2.2

5.2.3
CHAPTER 6
6.1

6.2

6.3
REFERENCES
APPENDIX |
APPENDIX I

APPENDIX 1l

Problem Description .
Starting with Goals
Entering Enquiries
Entering Production Rules .
Summary .

Implementation of a KOOLA Run-Time Inference
Engine for the ISDN Workstation

Software Approach
Architecture .

Comparison Between the General and
Actual Architectures .

Detailed implementation
Algorithm for Solving a Goal Belief
Summary and Conclusion .
Summary .

Conclusions .

Suggestions for Future Studies .

Koola Source Code for HIDS Application

Hardware Configuration and Schematic Diagrams

Source Code Listing .

1X

85

88

88

89

93

a5

97

98

10

. 103

. 106

Figure 1

2

14
15

16

LIST OF FIGURES

The user’s point of view of the ISDN workstation.

Organisation of the operating system to support the
expert system shell. .

Mapping of the workstation resources onto the OSI-ISO
Reference Model.

The observe-reason-act loop on which the intelligent
workstation architecture is based.

Architecture of an intelligent workstation based on an
expert system design

Hierarchical organisation of belief types in term of their
abstraction.

Generalised inference chain. .

An inference network of goals showing the forward
chaining control used to solve for one inference chain.

High-level flow for the HIDS knowledge-based system. .

Template for entering a goal.
Possible point of observation of a person’s face.
A template for entering a question.

An inference network illustrating some of the heuristics
employed in HIDS. .

Rule template.
Object-oriented organisation of the KOOLA shell.

KOOQOLA Architecture. .

10

2
to

50

64

71
77
78
79

g0

82

87

88

\

\
Figure 17

18

Block diagram of a possible configuration for a hybrid
Private Branch Exchange (PBX) . .

Experimental ISDN personal workstation, shown with the ISDN
network simulator. .

OO

7

Table |

LIST OF TABLES

KOOLA Language Elements

xii

CHAPTER 1
INTRODUCTION

During the last decade, the amount of information available to the user through
personal computers (PC) has exploded. With a PC and the appropriate network intertuce
hardware, users can access local information through local area networks, and remore
information through packet-switched networks like X.25. There is no shortage of
information, but its usefulness is limited because the current level of computation
available with database systems, does not provide sufficient support for informed decision
making.

This is because user applications leave the bulk of processing to the user. Most
of the information available to networl: users is stored in the form of relational databases.
PC’s limit the manipulation of information in a database to query functions. From a
symbolic processing point of view, this functionality relates to the word and relation level
of computation [1]. A database organises information as records, with each record
comprising a set of fixed fields. Each field stores the same kind of data in every record.
For example, a database of people would have, at least, onc field for first nume and
another field for last name. A user, therefore, could query the database for information
on a given person, but the user must interpret the data to derive a meaning from it.

We feel the user’s primary need for the information contained in databases s
informed decision making. One can find the level of computation required for intelligent
decision making in current knowledge-based systems, and expert systems. There are

already many decision making applications using this type of program, especially in

22-

medicine and engineering, but users must enter the data rather than the program obtaining
the data from a network.

We foresee a day when knowledge-based applications will provide users with
improved information processing and data handling capabilities. The purpose of this
thesis is to research the type of processing this will entail, so we could provide an
appropriate platfonm for these applications. We have made the assumption that in the
future most people will have access to the standardised user digital network--Integrated
Services Digital Network (ISDN)--vig a basic rate interface (BRI) [2]. Consequently, the
architecture of the intelligent personal workstation shall include an ISDN interface.

Having established the reason why an intelligent personal workstation should be
developed, let us consider more deeply the reasons for it by examining the motivations

affecting its design.

1.1. Design Motivations

In this section we will examine the two principle factors motivating the research
into intelligent personal workstation. Both are related to features we feel users will
expect from a personal computer connected to an ISDN network. The first feature is the
ability to exploit (i.e., fully make use of) ISDN information services. The second is the
ability to support autonomous control of the local environment in an intelligent home of
the future [3].

ISDN provides the workstation with a gateway for both information and

communication services. From this fact stem our strongest motivations. These services

23-
(or capabilities) are made possible by the fact that ISDN will have common service access
points, based on the OSI reference model. With common protocols internationally
standardised, users of ISDN can expect practically universal access to a network of
various commercial third-party information services. An important example of this type
of service is data retrieval from huge databases.

So why is the feature, exploiting ISDN information services, an important
consideration in the design of the workstation? Certainly its usefulness to the subscriber
is obvious. The answer lies in the fact that this feature causes special processing
requirements. An information-based application running on a workstation will have
access to copious amounts of information, via the ISDN in order to solve problems for
the user. However, it has been shown that when the amount of knowledge or data is very
large, heuristics must be applied in defining a restricted set of knowledge or data 1o use
in problems solving [1,4]. For the workstation to effectively run information-based
applications that use heuristic processing techniques, the architecture of the operating
system must be able to support the integration of these applications with the communica-
tion facilities. ,

The second motivating feature in the design of the workstation is to give users
primitives for autonomous control. A computer that supports autonomous control cin
solve problems on its own, without the user’s intervention. It can also control its local
environment, which defincs the physical boundaries over which the workstation can

sample and/or exert control. We identify two types of autonomous control that the work-

station should provide the user:

-4-

1) Remote digital control via ISDN

2) Autonomous multitasking

With ISDN providing the workstation with communication services, the potential
for remote control exists. In particular, ISDN supports a low bit-rate packet switched
connection that is ideal for transmitting low volume, bursty information'. Two
computers can use this connection to exchange the small size packets needed for
comma:.d and telemetry information that are essential in remote control. A user would
take advantage of this ISDN-based remote control by accessing home status information
and initiating control functicns from another station. Clearly, the architecture of the
workstation must include facilities for centralised control of the devices in its local
environment to achieve the first type of autonomous control.

Autonomous multitasking, the second type of autonomous control, is the term
we use to define a special class of operating system services. It is a conglomeration of
capabilities that permits the workstation to perform control operations on its own. These
types of operations would require some intervention if they were running on personal
computers with a regular multitasking operating system. Applications requiring
intelligence could use the operating system capabilities to either run in the background
or run at pre-specified times, even in the absence of an operator. For example, the user

could run a workstation application that transfers a large file across the ISDN late at

' The CCITT defines the D-channel in ISDN basic rate service as a 16 kb/s, packet
switched channel. One use the CCITT intended for the D-channel was to carry packets
containing telemetry information [2].

.5-
night. An application could also use the background capability to gather large amounts
of information through the ISDN to solve a problem.

Services to support operations such as these are more than a centralisation of con-
trol devices needed for remote control. Rather, they correspond to provisions in the
software architecture for an abstract set of primitives to exploit these devices. When
teamed-up with a set of real-time constructs, this architecture gives workstation users a
platform capable of concurrent, intelligent problem solving.

By examining the motivations behind the design of the intelligent personal
workstation, two key requirements for its software architecture have been precipitated.
One requirement is architectural support for heuristic processing of the informaton
available through ISDN third-party information services. The other is to provide, in the
software architecture, the management of the centralised control. We feel that a software
architecture built around an expert system shell’ provides a solid foundation to achieve

these goals.

1.2. Design Criteria

In this section we present the design requirements for the intelligent personal
workstation. The approach taken involves making a detailed examination of what we
expect the workstation to be like from three principle points of view. Since the most

important is the user, we start by describing what it will look like from the user’s pont

! We loosely use the term expert system shell 1o denote the operating system support

for intelligent processing in the intelligent personal workstation. We do not use the term
inference engine since, in its true meaning, it would refer to something less sophisticated.

-6-
of view. We then describe the integration of the workstation operating system and an

expert system shell. This is followed by an examination of how the expert system shell

fits into the OSI model for network protocols.

1.2.1. User’s Point of View

From the user’s point of view, the ISDN workstation must strike a proper balance
between usability and ease of use. These two factors, in many ways, represent opposing
concerns. Typically, in the world of machines, people are faced with a conundrum--the
more things a device can do, the harder it is to use. For example, a wordproccesor is
harder to use than a typewriter, but can do much more. The tension between these
opposing concerns strongly influenced the design of the workstation.

Figure 1 illustrates how we envision the ISDN workstation appearing from the
user’s point of view. This diagram contains both user interface devices for ease of use,
and external interface components for useability (e.g., the ISDN Access and Home Con-
trol). These components for useability create the potential for automated home control
and access to remote information services via ISDN. The task we face is to ensure that
these potentials are fulfilled, by providing a user with a means for effective and simple

control.

1.2.2. OS Point of View

Figure 2 demonstrates the hierarchical organisation of an operating system capable

of supporting an expert system shell. It contains three layers. This diagram is not meant

PP

s

Third Party
Information Services

@ > ISDN
@ @ Public
Network

Local
Home Environment

I HOME CONTROL

HANDSET

«

[&

The user point of view of the

Fr N orion. o
to be a detailed description of the actual operating system needed for the ISDN
workstation. Rather, it highlights the organisation of an operating system from the point
of view of the expert system shell.

We desire a workstation that is a real-time system so that it can respond to rapid
changes in its environment. The most important consideration in designing an evens
driven real-time expert system is that it must be data-driven [5]. Described another way,

the primary factor directing the activity in the expert system shell (problem solving) must

be the state of its cxternal environment. Being data-driven also implies that any change

0S LAYER ACTIVITIES

Prioritisaa all problams that the ES should
work On, ang uses the outcoms 10
contral the ES's ordar of work.

FRONT END

Provides a kernel for the eflicient
processing of intelligent spplicationa.

ES SHELL

Provides epplications running under
the ES shell easy access to a
multitude of externai and local

HIGH-LEVEL

DEVICE DRIVER.S sarvices.

¥ + R A

: e,

satio

n of the oprating syste tosupport hc xpert system shell.

gr - rgi
in state may precipitate a change in problem ordering. To accommodate these needs, the
Front End must have the ability to sample the state, and use this to decide the order of
problem solving in the expert system shell.

The concept behind the central layer, the High-Level Device Drivers layer, comes
from the idea of Device Independent I/O [6] that is common in most layered operating
system designs. A Device Independent I/0 layer of software in an operating system
provides higher layers a common access point for using any 1/O device that is

independent of the device. Such an interface removes the complexity of using different

types of devices in a system.

-9-

The High-Level Device Driver layer extends the idea of device independent /O
incorporating all services in a workstation. These are services that a knowledge-based
system application must use (hardware, software, or communications). This layer
embodies the detailed procedural-oriented software for controlling devices.

This separation, in processing between the expert system shell and the operaung
system, is not just done for design simplicity. A rule-based production system {7}, the
basic component of most expert systems, is a good medium for representing and using
heuristic knowledge (i.e., knowledge that gives a system intelligence). Itis not, however,
very easy to directly control hardware devices with a rule-based production system.

Production systems may not be able to control hardware devices directly, but they
have been shown to provide an excellent interface between procedural knowledge (¢ g
device drivers) and heuristic knowledge [1]. Thus, the burden of procedural processing
is off-loaded to the operating system. As a result, knowledge-based system applications
running on the intelligent personal workstation will employ the lower layer of the oper-

ating system to use workstation resources.

1.2.3. Communications Point of View

The design of our expert system shell and ISDN interface falls into the ISO-OS]
Reference Model. The International Standards Organisation (ISO) has proposed a
model for layered network protocols called the ISO-OSI (Open System Interconnection)
Reference Model. Further, the standards established for ISDN by the Committee

Consultative Téléphonique et Télégraphique (CCITT) can be mapped onto the 1SO

-10-

model [8]. To illustrate this point, in Figure 3 we group the ISDN specifications for

network access [2] into the first three layers of the OSI model.

1S0-0SI| Reference

(/) ¢ . S
7 | Application / \
Expert system shell
S o running intelligent
6 Presentation N user applications
~ ~ -
5 Session N K J

4 Transport

s]| (- B

ISDN access hardware

1.440s 14410 and software
2 Data link
1.430s 1.431e

1 Physical K /

® NOTE: Refers to CCIIT ISDN recommendalions (1984)

PO CRPEIN SE SRS Bl F R

Mappin of the Workstation resources onto the OSIS Reference Model.

The application layer of the ISO-OSI model contains routines for performing
general-purpose and special-purpose tasks [8]. In the ISDN workstation, the inference
engine is a general-purpose task for establishing what and when something should be
done on the network. It also augments basic services with concise rule-sets (i.e., a small
knowledge-based system program). These rule-sets can gather specific classes of inform-
ation for user applications, from the network. Thus, the expert system shell maps into

layer 7 of the ISO-OSI reference model.

-11-
The CCITT have made no formal ISDN definition for layers 4, § & 6. These

depend on third party protocols for accessing information services like databases, horwe
shopping, or even access to other networks [8,9]. It is not in the scope of this thesis to
discuss the problems with the standardisation of these layers, but we feel this problem

certainly is not trivial.

1.3. Plan and scope

In this section we present the scope of the thesis research, the initial research plan,

and the thesis outline.

1.3.1. Limitations of an ISDN terminal

Underlying the solution we adopt for designing an intelligent personal workstation
is the belief that current ISDN terminals are not suited to deal with the problem. Maost
ISDN terminals are just regular personal computer (PC) augmented with an ISDN BRI
interface [10,11,12,13]. Consequently, ISDN terminals operate under the control of a
regular PC operating system.

As we previously discussed, PC operating systems do not run applications that can
provide users with intelligent decision making support. This is because PC operatny
systems do not have the architectural framework needed to sufficiently integrate these
applications with an ISDN communication facility. Further, PC operating systems do not

directly support the level of symbolic processing needed by intelligent applications. Thus,

-12-
the problem of creating an ISDN workstation shall not be solved by imbedding ISDN

access hardware and software into a PC, but requires a modification to this architecture.

1.3.2. Solution

The solution we do adopt is to develop a new software architecture for the basic
ISDN terminal. We call the new system an intelligent personal workstation to
emphasise our desire to provide intelligent services to the end-user. One may consider
this type of system an augmentation of the capabilities of a conventional ISDN terminal.
Before starting the research into the software architecture of an intelligent pérsonal
workstation, we foresaw a number of problems that must be addressed in the thesis, they
arc:
1. The development of a mechanism that permits the gathering of external

information for intelligent decision-making applications.

9

Investigate the problem associated with using this external information in a
knowledge-based system. In particular we must consider factors like temporal
dependency and uncertainty.

3. The system must have a mechanism that facilitates the transfer of problem solving
skills from human experts into the intelligent personal workstation. This will
require the development of a programming facility.

4 We must structure the software architecture so that it can operate on its own in

an autonomous mode.

-13-
1.3.3. Outline

We proceed as follows. In Chapter 2, the characteristics, and a formal architecture
of the intelligent personal workstation is presented. In Chapter 3, we present details of
the KOOLA (Knowledge-Based Object-Oriented Language) language for programming
the workstation. In Chapter 4, the formal language constructs for the KOOLA production
system are given, and ends with an example of a KOOLA application. 1In Chapter 5, we
examine the implementation of an experimental intelligent personal workstation that we
call the ISDN Workstation. In Chapter 6, we summarise our conclusions, and discuss

future work.

CHAPTER 2
ARCHITECTURE OF AN INTELLIGENT
PERSONAL WORKSTATION

In this chapter we present the software architecture of an intelligent personal
workstation oy examining its characteristics, then its realisation.

The idea of an intelligent personal workstation was presented in the Introduction.
Generally, we defined it as a personal computer--connected to an ISDN network--with a
software architecture built around a knowledge-based system. In this chapter, we will
examine the characteristics of an intelligent personal workstation and then its software

architecture.

2.1. Characteristics of an Intelligent Personal Workstation

The two primary features expected from an intelligent personal workstation. that
v cre presented in the first chapter, are:

. An intelligent workstation should help users exploit ISDN services. In
particular, this feature includes the ability to access and use third party informa-
tion services.

. An intelligent personal workstation should have the capability of
supporting autonomous control of the user’s local environment (i.e., devices in his
or her own home). To accomplish this, an intelligent workstation must have the

intelligence to work in the absence of the user.

-15-

From these features we extract the characteristics of an intelligent personal
workstation. These characteristics naturally precipitate when we consider these feaures
more deeply. We will now examine, qualitatively, the four characteristics of an intelligent

workstation.

2.1.1. Control Workstation Resources

The most important characteristic of an intelligent personal workstation for the
autonomous control feature is its ability to control resources. In particular, a knowledge-
based system running on the workstation, used for autonomous control, would have o
control the local environment. To do this, however, requires special hardware und
software interfaces in the workstation. At the same time, the knowledge-based system
would have to be able to use those interfaces.

A knowledge-based system’s inference engine processes declarative knowledge on
how to solve problems [1,14,7]. It is not an appropriate place to embody procedural
knowledge [1]. The software interfaces needed for autonomous control is an example of
the type of procedure knowledge which the workstation must use. Therefore, not all of
the knowledge processing can be done by an inference engine--there must be another
mechanism for processing procedural knowledge.

A characteristic of an intelligent personal workstation is that it must facilitate the
use of both declarative knowledge and procedural knowledge. But since decisions made

by one part of such a system (an inference engine for example) can affect the operations

-16-

in another part of the system (e.g., a device driver), the different parts must communicate
effortlessly.

The feasibility of any intelligent workstation design hinges on the whole system’s
zbiliyy to control the local environment. No matter how much intelligence a system
obtains internally, if it cannot control external objects, then from the point of view of a

computer for autonomous control, the whole system is quite impotent.

2.1.2. Handles Real-Time Information

Much of the information handled by an intelligent workstation connected to an
ISDN is time dependent, or real-time [4]. This is especially true for data used in an
information application.

A system that manages ISDN information services should strive to minimise the
expense of using the network (i.e., be frugal). If designed this way, the intelligent
personal workstation can be considered a frugal network user [15]. When the cost of
network communications is not free, a frugal network user will try to minimise its use of
this resource.

The intelligent personal workstation should minimise its use of the ISDN resource.
It can accomplish this by not requesting information that it previously received. The only
difficulty in following such a regiment is; that information already received may become
outdated. and no longer accurate.

Facts used in decision making remain valid (true) for a finite length of time. For

example, information about the availability and cost of certain resources may change

-17-

daily. Other information, however, may only change in the order of weeks or even
months, still some in the order of minutes or hours such as stock-market information.
The length of time a fact remains valid depends on the domain and meaning of the tuct.

Any part of an intelligent workstation that processes time dependent data should
be characterised as having real-time primitives. It is also the case that a knowledge-based
system would make much use of time dependent external data in the form of facts.
Consequently, the characteristics of its fact handling parts, must be built with the ability

to perform real-time information processing.

2.1.3. Easy to Use and Program

From the point of view of the end-user, the degree of simplicity with which he or
she can operate or program a computer is most important. Therefore an intelligent work-
station should be easy to use and easy to program.

We quantify "easy to use” in terms of how many sub-steps a system can perform
on its own, on behalf of the user. For example, consider the case of a user wishing to
receive a file from an external database. Performing such a transfer starts with the
creation of a communications link, then establishing end-point protocols for the file
format, and finally actually sending a file (similar to using a PC and a modem). If the
system takes on the burden of doing these sub-steps, then receiving a file is greatly
simplified for the user. In fact, it may even be impossible for novice users without

intelligent assistance . A characteristic of an intelligent workstation, therefore, is that it

-18-

should have the intelligence to autonomously perform most common computations on its
own.

The user also requires a means to easily write programs which control the local
environment and access workstation facilities. To do this, she or he needs a special
programming language. The language must be able to exploit the high-level control primi-
tives of the intelligent workstation and the real-time primitives of the operating system.
For example, a program to send a file at night would need primitives for controlling the
ISDN connection. Also, real-time constructs for specifying the time to send the file are
needed.

A second characteristic of an intelligent workstation’s language is that it should
be universally applicable throughout the entire workstation environment. This applies to
both the system’s programming environment and its interactive command interface. There
should he a single, intelligent interface that can be utilised to modify applications or write
new ones. We feel the language should have features similar to those found in interpre-
tive BASIC on an IBM PC [16], where the same set of commands are used interactively

and in writing programs.

2.1.4. Support for Multiple Problem Solving

The local environment of an intelligent workstation will be the source of many
events and problems. In terms of the local environment, we define an evenr as an
unpredictable state change in the local environment, culminating in some form of signal

to the workstation. The state change could be a broken window in the home, and the

-19-

corresponding signal, an alarm. Considered at a higher level of abstraction, an event
becomes a problem that must be processed. This is in accordance with the previous
definition of a problem as the processing required to diagnose an event and determuane
what actions (if any) to initiate in response to the state change. A common charactenstic
of events is, from the point of view of software running on the workstation, that they wie
stochastic (random with respect to time).

The changes in local state, signalled via the occurrence of events, may have
different levels of importance. A fire alarm, for example, is more important than a signal
that someone just entered the home. There is no guarantce that the inter-arrival time of
events (front-end granularity) will not exceed the speed with which the intelligent
workstation can process all of them. To deal with this conundrum, the front-end must be
able to prioritize problems and process them concurrently. Thus, the fourth characteristic
of an intelligent workstation is the ability to process asynchronous problems concurrently,

while considering their importance.

2.2. Architecture of an Intelligent Workstation

We now propose a possible architecture for an intelligent personal workstation,
based on a distributed knowledge-based system design. In our implementation, major
software components are distributed, with some communication ability needed between
certain components. Central to the design of each component is its main method of

knowledge representation.

-20-

2.2.1. Basic Structure

The structure of the architecture is similar to the Expert Manager proposed by
J. Pasquale [17], which he developed to manage large distributed computer networks. In
particular, we base the architecture of the workstation on the control structure he calls an
observe-reason-act’ loop, shown in Figure 4. Each of the blocks in the structure
(observe, reason or act) corresponds to major steps in the control system. Observe
corresponds to detecting and measuring external information. Reason, is the high-level

manipulation of the observed information. Act is the process of performing an external

Reason

i ¥

Observe T Act

B T W AT 1L SN DO U P! S 2 B R Ut P R IR S N SN

hg,ure 4 1hc obscrve -reason-act loop on whxch the intelligent worksmuon drc.huecturc
is buased.

action based on the outcome of the reasoning step.

"The observe-reason-act control structure is an extension of the classical observe-ac:
structure used in control systems. For more information on this structure the reader is
directed to Pasquale’s Ph.D. dissertation [15].

21-
There are two possible paths for the flow of activity in the contiol structure shown
in Figure 4. One path goes directly from observe to act. This would correspond to
conventional processing in the workstation that would be supported by an operating
system. The second path (shown with heavier arrows) corresponds to the workstation's
intelligence, and constitutes the discussion in the remainder of this section.

We are most concerned with how such a system will help people make better use
of controllable devices in their homes, especially an ISDN subscription. Consequently,
the goal of this architecture is to provide people with a framework for constructing
intelligent autonomous applications that help them exploit ISDN information services.
For this reason, the ability of the system to interface with hardware devices is as
important to this architecture as its intelligence.

Figure 5 illustrates the architecture of our intelliggent workstation. It is based on
the observe-reason-act loop defined above. The Belief Manager (BM) and the Experiment
Generator (EG) correspond to observe. The Inference Engine (IE) provides the system
reasoning, and the Action Generator (AG), with the ability to acr.

To see how this architecture maps onto the observe-reason-act loop, we can trice
the flow of information and computation through the system. To begin with, the
observations and processing required to sample facts are done by the EG. These new
facts are stored by the BM, which gives all the new facts a time-stamp. Operating with
the rules located in the two knowledge bases, the IE uses these facts to infer new beliefs

(which subsequently, are returned to the BM for maintenance). The IE then decides

which actions to take, and informs the AG. The AG receives these requests for actions,

222-

....

..........................
..................

.......

,

Disk storage
of new rules

Real Time
Clack :
Compiled Dynomic new rule
Knowledge 8 Knowledge definition :
Base *., | Bose (LISP like) i
[. .__‘1' 4 ...'
Belief Manager s | Inference Action
BM . Engine IE Generator AG
3
Breer Erent Brien
enarator (Control ?’acility)
4

Interface to
the External

Environment
{ N N)

Humon Interface Network Interface

y»\ V‘i* lp

l'lg,ure 5 Archxtecture of an mtclhgent workstanon based on an expcrt systcm design.

and performs the processing needed to complete them.
We will now take a closer look at the three main blocks that were introduced in

the previous flow (BM, IE and AG), as well as the learn module.

2.2.2. Belief Manager

The belief manager is responsible for supporting the system’s real-time data
handling requirements. The belief manager detects invalid (i.e., spoiled) beliefs, by

keeping track of how old its supporing facts are. A method currently used in network

223-
expert systems, to do this, is to time-stamp dynamic data [5], which is also how our BM
detects expired information.

The experiment generator is associated with BM and is used to obtain informaton.
When a programmer writes a procedure, for the EG, to gather information, he or she
decides haw long the facr (data collected as a result of running the procedure) will remain
accurate. This time estimate is always stored with the data-value of a fact in the BM.

The length of time the programmer estimates a fact will remain valid is referred
to as its preassigned expected shelf-life [5]. From the point of view of the belief
manager, this parameter is pre-assigned to it by the prograramer. It is also the
expectation (or the average) of the length of time it should remain valid. The use of the
term shelf-life comes from the idea of a consumer products that can only be stored for
a limited amount of time on the shelf of a store.

The belief manager monitors the aging of facts by comparing the arrival time-
stamp with the preassigned expected shelf-life. When the inference engine asks for a fact
that has spoiled, the belief manager forwards the request to the experiment generator,
which then reacquires the fact.

A second important function of the belief manager is to maintain a consistent st
of global beliefs. The use of global beliefs improves the efficiency of a knowledge-bascd
system because beliefs can be shared among different problems. Duplicated effort in
acquiring data for the beliefs is eliminated if they can be used by multiple applications.

To support global belief storage, a memory structure consisting of one global pool

and many individual local pools is defined. Any inference may add beliefs to the global

-24-

pool, providing the rules used to develop the belief are part of the global rule-set’. If.
however, the belief is locally defined, then the belief is stored in that inference’s private

pool. This ensures consistency of beliefs within an environment of shared beliefs.

2.2.3. Inference Engine

The mechanism for inferring new beliefs (problem solving) is provided by the
inference engine. The inference engine controls the processing of declarative knowledge
that is usually coded as rules®. By working with probabilities and using heuristics, the
inference engine can deal with and use both incomplete and potentially inaccurate (i.e.,
fuzzy or noisy) facts to form conclusions (beliefs).

A requirement identified for an intelligent workstation is that it must support mul-
tiple concurrent inferences®. This means that it can work on more than one problem at
a time. But since, in our architecture, there is only a single inference engine, this
requirement is not immediately met. The solution we use involves giving the inference
engine a problem schedular that is separate from its rule schedular.

The problem schedular maintains a queue of all active inferences (one for each

problem). It uses round-robin arbitration to select which problem to work on next. The

For a compete description of rule-sets the reader is directed to Section 4.1.3, which
discusses the KOOLA variable construct.

2 Production rules allow programmers to translate heuristic information into a

tangible and precise computer format. The rules embody specific information
corresponding to human problem solving skills.

 Inference is defined as the processing done by an inference engine for each
application it runs.

e ST R A

ol

-25-

problem schedular is a fair schedular. This ensures that low priority problems are not
starved. Rather, they receive proportionally less processing time.

The facility for external control is the part of the problem schedular which
receives the priorities from the operating system. The operating system can stut a
problem, change the priority of a problem, or terminate a problem through it.

The component of the operating system that would use the facility for external
control would be an event-driven schedular. In Chapter 1 we situated this operating
system components in a layer above the knowledge based system. Its task is to receive
external events, and do the processing needed to start knowledge-based application. In
the software architecture of the intelligent personal workstation, this layer is called

HALOS (High Level Operating System Schedular) [18].

2.2.4. Action Generator

The requirement for controlling the workstation interfaces is met with the action
generator. Once the inference engine decides to perform a certain action, the mechanisin
to translate the desire into an actual operation involves the action generator. The AG
performs operations by issues commands to an appropriate operating system “cervice
routine. Next, we will show how the action generator can be viewed as an engine that
processes object-oriented procedural knowledge.

We have made the action generator a separate entity from the inference engine,
thus providing a means to express the knowledge of how to control external objects,

different from the heuristic representation supported by the inference engine. Current rc-

-26-

search on graphical user interfaces and network modelling suggests that the set of
paradigms available with object-oriented programming techniques is suitable to capture
interfacing knowledge [19,14]. A major influence in the action generator’s design came
from our decision to express this knowledge in ohject form.

The attraction of using object-oriented design for external interfaces is that
interfaces developed as class objects may be easier to use than procedural-based ones.
A key to this is that users (final programs) do not access low-level code (such as an
interface’s initialization procedures) or private variables (used to maintain such concepts
as states) [19]. Rather, users access public functions that are defined for the object’s class
which hide much of the object’s details. This makes the interface between the inference

engine and the action generator very simple.

2.2.5. Dynamic Modification

The three blocks in Figure 5, circumscribed with a dotted line, encompass the
intelligent personal workstation’s ability to be modified by the end-user. This is used if
the user decides she or he would like to add or modify rules in the production system.
The reason could be to customise a large application, or create a personal one. Either
way, new rules are entered through a special user interface that checks them for global
consistency and verifies that their consequences do not conflict with older rules in the
production system. Once a rule is validated, it is placed into the dynamic knowledge

base. Finally, for long term storage, the user can save a new rule-set as a data-file.

27

Our architecture derives the important characteristic of being “easy to program and
use," as defined in section 2.1.3, from this module. We say this because of how it
provides user/programmers access to system capabilities, and its intelligent user interface.

Programs coded by rules in the dynamic knowledge-base run on the inference
engine. The inference engine can access and use any information in the workstation
This includes information on how to gather facts and start actions; also, the heuristic
knowledge maintained in the compiled knowledge base is available. Since programs
written by the end-user reside in the dynamic knowledge-base, these programs may access
all the workstation’s resources.

Writing rules is almost the same as issuing commands to the system. To illustrate
this point, we will show an abstract rule, and an abstract interactive command.

A single-rule knowledge-based system to send a file at night could be written as:

I it is later than 12 pm

THEN send myfile to myoffice.

An interactive command to send a file is almost the same as the consequence of the
previous rule. For example, the abstract command to send a file would be:

Send myfile to myoffice.

These two actions are coded the same. Therefore, if the user knows how to send a file

interactively, he or she can will know how to write a program that does it automatically

-28-
2.3. Conclusion

Ir. the future, personal computers with ISDN capabilities shall be more responsive
to user needs. This will be precipitated by software technologies similar to those used
in expert systems. We believe that systems will appear with characteristics similar to
those outlined in section 2.1. These new systems--intelligent personal workstations--shall
do more for the people they serve by supporting autonomous control of their home
environment.

Autonomous control will spread to the man nent of future communication
resources such as ISDN. With knowledge processing primitives, intelligent workstations
will permit people to exploit the information potential inherent in these geographically
large networks.

This chapter serves to sketch out a conceptual personal workstation. We have
developed an experimental system to test the feasibility of a personal workstation design
hased on the integration of a knowledge-based system with an ISDN connection. Chapter
5 provides details pertaining to an implementation of the knowledge-based system shell

for the workstation.

CHAPTER 3
THE KOOLA PRODUCTION SYSTEM:
BASIC CONCEPTS

In this chapter we define the basic concepts behind a production system for
programming knowledge-based applications on an intelligent personal workstation.

Previously (in Chapter 2), we developed a model for an intelligent personal
workstation capable of concolling external devices like an ISDN connection. In this
chapter and the next, we elaborate un this model by developing a lan<uage to program
it. This development leads to a refinement of the model through the specification of a
set of language constructs, that must be supported by a run-time implementation of the

model (or run-time kernel).

3.1. Introduction to XOOLA

The name "KOOLA" is an acronym for Knowledge-Based Object-Oriented
Language. We say that it is a knowledge-based language because it is a means for
gathering and representing general declarative knowledge [1]. Because KGOLA only
comprises a set of classes which are used to declire new objects, it is also an object-
oriented language [19]. A full justification for using these two attributes to dehine
KOOLA will be made in the next two chapters.

Like any language for developing knowledge-based systems, KOOLA supports the

separation of knowledge which pertains to a specific problem domain, from the control

-30-

information which specifies the use of this knowledge [15]. The if-then rule format is the
knowledge representation method used in KOOLA to encode this domain-specific
knowledge. For these reasons we can designate the KOOLA programming language as
a Production System [1]. We commonly refer to the KOOLA language as the KOOLA
production system to make the distinction between it and traditional procedural languages
like C, Pascal or LISP.

The KOOLA production system is a program that facilitates the development of
knowledge-based applications. Templates are used within the production system for all
programming. All objects in KOOLA are defined by interactively filling in a template
on the screen of a computer. The objects are automatically stored once they are entered,
and may be revised at any time.

Another part of the production system is the KOOLA compiler. This program
compiles the source code of knowledge-based application into a format that can be
processed by a run-time kernel. At the same time, this process optimises the storage of
the knowledge. Optimising involves stripping most of the symbolic references, and
replacing them with numerical references. It also involves pre-sorting the references to
improve searching. Therefore, the compiler reduces memory requirements and unproves
processing time of a final application.

The name we use for a knowledge-based application developed using the KOOLA
production svstem; compiled with the KOOLA compiler; and, ready to run on an
intelligent personal workstation is: a knowledge-based system. A knowledge-based system

uses its compiled knowledge to solve specific problems for the end-user of the

31-

workstation. In this context, we say that the run-time kemel gets assigned problems to
solve, much like an operating system schedular gets assigned applications to run.

An inference is the type of processing done by a run-time kernel while it solves
an assigned problem. This processing involves using rules in a knowledge-based system
and facts (i.e., easily obtained data) to derive conclusions about the workstation’s extwernal
environment. Conclusions are used by the run-time kernel to decide when to sty new

actions, according to the application.

3.2. Knowledge Representation in KOOLA

A production system must be built from an expressive knowledge representation
scheme for its domain-specific knowledge. The KOOLA production system tries 1o
satisfy this essential requirement with an infrastructure that incorporates two knowledge
representation methods. These methods correspond to the KOOLA rule and the KOOLA
goal class. They permit the gathering and storage of specific information on humin
problem solving skills. Since they are based on a symbolic processing model, we nust
understand this model in order to examine these constructs more deeply.

In symbolic processing, multiple schemes for representing knowledge are bei
understood in the context of a general knowledge processing model [1]. Within such
model, a distinction is made between meta-level knowledge and processing knowied:
Processing knowledge corresponds to the type of procedural knowledge embedded i

software procedures like a KOOLA run-time kernel. In general, it is knowicd.

.32-

to the use of domain specific data. For the run-time kernel, it pertains to the ability to
manipulate facts.

Analogous to the relationship between processing knowledge and its data, meta-
level knowledge is knowledge pertaining to the use of processing knowledge. Since meta-
level knowledge is knowledge about using other knowledge the meta prefix is used. In
KOOLA, the goal and the rule are meta-level knowledge representation schemes. Their
knowledge is used to manipulate the run-time kernel.

The next concept in the knowledge processing model we need to examine is that
meta-level knowledge may be organised into a hierarchy of meta-level knowledge. This
means that meta-level knowledge at one level directs the use of meta-level knowledge at
a lower level, but both still direct the use of processing knowledge.

As the reader may have already surmised, the knowledge represented by the
KOOLA rule and goal also form a hierarchy of meta-level knowledge. Knowledge
represented by goals direct the use of rules by establishing objects to be solved with
rules. These objects are called goal beliefs, which will be covered in depth in the next
chapter.

The two knowledge representation schemes in KOOLA correspond to two different
symbolic processing requirements. In the section on rules, we will see that rules are best
suited for gathering unceriain heuristic knowledge. In section 4.3 we will see how goals

are able to control an application’s flow, and why we refer to them as mera-rules.

-33-
3.3. Uncertainty Modelling in a Knowledge-Based System
This section examines the effects of uncertainty in a knowledge-based system
ruﬁning on an intelligent personal workstation. It also includes the default uncertainty
model defined for the KOOLA production system, and explains the algorithm used by the

default model for inferring beliefs.

3.3.1. Symbolic Processing

A knowledge-based system is a program that is used to solve complicated
problems. When the problem solving ability of a knowledge-based system approaches
the level of a human expert on a particular subject, the program can be classificd as an
expert system [14]. To achieve this intelligence, a knowledge-based system must
internally store all of the information needed to solve its specific problems.
Consequently, the main activity of a knowledge-based system can be viewed as the
processing of this information.

What is the nature of the information that a knowledge-based svstem must
internally store? It can be considered a symbolic representation for the real world idiomns
that define a problem [14]. The term "real world" refers to something physical or
conceptual that exists outside of the computer program. For example, a real world
concept that a knowledge-based system must represent is knowledge, and the idiom used
is the rule. In this sense, an idiom is the symbolic representation of a real world concept.
Since knowledge-based systems employ these types of symbolic representations, they

have been classified as symbolic processing applications [1].

34-

Current research in symbolic processing indicates that the most important require-
ment for any symbolic processing application is the ability to perform computations with
information that may be:

1) Uncertain

2) Incomplete '

3) Conflicting [1].

How these characteristics of information can affect a knowledge-based system is

examined next.

3.3.2. Symbolic Information

In the context of symbolic processing, the term information has a specific
meaning. Generally, information is something that can be stored digitally in a computer.
We divide information into two classes. The first class is knowledge which can be
declarative (e.g., rules) or procedural (e.g., a software routine). The second class is data,
that applications use and store in a computer. In fact, "Knowledge can te considered [as]
data at a high level of abstraction...[4]", therefore they must share some common
attributes.

Incompleteness, the sccond characteristic of symbolic information listed above,
deals mostly with information in the context of knowledge processing. The problem of
incomplete knowledge often occurs in Al applications. This is due to the nature of Al
applications. In particular. developers of Al systems have incomplete knowledge of the

problem to solve, and subsequenty, how to solve it. If they did (i.e.. have a definite

-35.-

algorithm), then there would be no Al requirement [7]. For such problems, we employ
heuristics to express our partial understanding of events. Of course, a knowledge-based
system provides useful paradigms for processing incomplete heuristic knowledge.

Applications using symbolic processing deal with conflicting information. This
is mostly a problem when rules are added o the system dynamically. Since the
knowledge base for a KOOLA application is verified by the compiler, and there is no
provision for default reasoning, this is not a problem for the KOOLA production system.

With respect to the workstation’s knowledge-based system, the most important
symbolic processing characteristic is the requirement to deal with uncertain information.
Unlike the previous two requirements, this one includes both classes of information (facts
and knowledge). This requirement deals with uncertain facts, as well as uncertinty in
the knowledge. The consideration of these two symbolic processing requirements,
dictates the default uncertainty model for KOOLA.

Information in the form of facts alone may not always be certain tor a symbolic
process. For a system working trom a large distributed network (an ISDN for example)
the uncertainty may depend on when it received the fact. With an OSI communication
protocol based on error checking, a process can assume that the raw-data received is
always correct, but the symbolic attribute of the information (meaning) may be norsy

Another way uncertainty gets introduced into the facts used by a system is if they
are limited. That is if the system does not use all facts pertaining to the probiem. This

occurs if the domain of facts is too, or even infinitely large [4]. In such cases only a

-36-

subset of the facts are available to the symbolic process. The information contained by
such a subset of facts is incomplete and becomes uncertain because of this limitation.

This problem is also seen when dealing with human sources of information. The
expert system MYCIN [20], for example, lets doctors assign certainty factors to
observations. A doctor could say "I am 60% certain that ...". This is referred to as
symbolic uncertainty, and means the same as "I am fairly certain...". Fuzzy logic is a
symbolic primitive that can deal with this type of uncertainty in facts [22].

The second class of uncertain information in symbolic processing is uncertainty
in an application’s knowledge. This may stem from the problem of incomplete
information. If one does not completely understand a problem, or can not list all
possible logical relationships defining its solution (it may be too large), then the
knou'/lcdge she or he expresses will be a limited subset of the full knowledge of the
problem. As in the problem of limiting the set of facts, this introduces uncertainty into
the knowledge.

Thus, for this situation there must be a means to express uncertain information in
a symbolic application. For a production system using rules, there should be way for a
programmer to express the certainty (or uncertainty) of his or her knowledge in the rule
syntax. Also, a means of dealing with uncertain facts is needed. The approach we used
to deal with this problem in KOOLA involves using ideas from probability theory and

Baysian statistics.

PRT T DI QS S

va e

Bse oo e

g

-37-
34. An Uncertainty Model for KOOLA

Whatever method a knowledge-based system has to deal with uncertainty (i.c. its
uncertainty model), the choice of model usually influences two important sub-systems in
the overall system. In terms of the run-time kernel, or more precisely its inference
engine, the uncertainty model dictates how uncertainty values (belief factors, probabilities,
weights, etc..) are combined through rules. The uncertainty model also influences the
syntax of the knowledge representation scheme used to codify heuristics. The objects
(rules for example) must embody all of the necessary parameters required by the inference
engine. At the same time, the objects must facilitate knowledge engineering. IHow an
inference engine combines uncertainty values for a KOOLA knowledge-based application
is examined next.

We have defined a default mechanism for solving probability inierences in
KOOLA that uses both the probability and weight parameters stored with KOOLA rules.
The structure of the default technique and the inference algorithun it emplovs; is framed
by the environment the KOOLA knowledge-based system must operate in--gn event
driven, real-time, communications and control environment.

The default mechanism is based on a weighted average algorithm that assumes that
rules form a medium to express an a priori probability that indicates how cne helief
affects the probability of another. We call the dynamic probability values calculated by
the inference engine an accumulative probability, because it is accumuluted {Tom all

supporting rules. Rules that affect a belief’s probability are either fact based or helief

-38-

based (generating primary or secondary beliefs), therefore, there are two variations of the

algorithm.

3.5. Fact Based Algorithm for Inference

An examination of how a fact-based rule can contribute to a belief’s accurmulative
probability provides a useful framework for obtaining the salient aspects of the fact-

oriented algorithm.

3.5.1. Effective Rule Sets

Of course, the inference engine does not employ all the rules in a full-size
knowledge base to solve a belief. Those that it does, however, are said to be members
of the belief’s effecrive rule-ser. Membership requires that the fact/belicf relationship
defined by the rule meet the following two requirements:

1. Static Requirements: The belief must be specifically defined in the conse-

quence of a rule. This is done by the knowledge engineer.

2. Dynamic Requirements: After solving the antecedent of the rule (oy comparing

some facts), the rule must still infer some information pertaining to the belief.

The first requirement is met ahead of time, and is flagged by a KOOLA compiler.
The most important operation performed by a KOOLA compiler in creating a knowledge-
based application is building an inference network. In this context, an inference network

is a data structure that, with the help of the new rules, logically combires all beliefs in

-39-

an application forming a directed graph. Imbedded in this type of data structure are all
rule-sets, for all beliefs in the application, that an inference engine would work on. This
information is imbedded in the data structure, because for all beliefs, there is a set of
pointers (based on the rules) that identifies all of the belief’s supporting elements (facts
or beliefs). For any belief, this set of pointers, which are defined by the knowledge
engineer’s rules, are called the belief’s rule-set, because they definitely meet the first
membership criterium.

It may be the case that not all rules in a belief’s rule-set will end up helping o
solve the belief’s probability when the system is finally running. In other words some
rule/fact pairs meet the first criterium, but not the second. This results from the problem
that there is no way of knowing the outcome of an experiment, or the value a fact may
acquire, before a knowledge-based system is actually running an appiication.
Consequently, not all promising rules (elements in the rule set) checked by an nterence
engine yield useful information concerning the belief that the inference engine is working
on. A fact may not be available, or the outcome of the rule’s antecedent may estuablish
a condition in which the rule cannot infer anything about the belicf (e.g. a false outcome
with no ELSE clause). We are now ready to see how a set of successful rule/fact pars

infers a new belief.

3.5.2. Calculating a new belief from facts

An inference engine using the KOOLA inference algorithm 10 calculaie a primary

belief, may only employ the clements in the belief’s effective rule-ser. For thewe

o dma e

1

-40-

clements, two key parameters are read. The first is the probability associated with the
belief, and the second is its weight.

According to the definition for the KOOLA uncertainty model, the probability
parameter in a production rule is an indication of the knowledge engineer’s certainty, He
or she should use rules to express the certainty of the consequential belief occurring,
given that the antecedent fact is true. When calculating a new value for the accurnulated
probability of a fact, the inference engine averages out the probabilities of the supporting
rule/fact pairs,

The well-known method to find the average of a set of n numbers involves adding
them together, and dividing their sum by n. We define a weighted-average in the same
way, however, each number is multiplied by a weight fac'or before they are added, and
then the sum is divided by a scaling factor.

A KOOLA inference engine calculates the accumulated probability of a belief, by
employing this weighted-average scheme. This provides a knowledge engineer with a
primitive for expressing the importance of the fact-belief relationship of one rule, with
respect 10 other rules. At the same time, this system permits the inference engine to
calculate a new belief in the presence of missing facts®.

To see how this method works, we will examine the contribution of one successful
rule/tact pair to the accumulared probability (Ac) of a belief. Basically, the contribution

equals the product of the a priori probability (Pr) (defined in the rule) multiplied by a

This idea will be elaborated on in the section on fault tolerence (Sec 3.4.4).

-41-
weight factor (Wf). Where the weight factor scales the contribution, based on the relative
importance of the rule with respect to all the others used in the calculation.

The contribution of the /* successful rule to the I* belief’s accumular ive-

probability (Ac) is:

Aclj = Wf, Pry 3.1
The weight factor of one rule depends on the rest of the rules used to calculate the
accumulative probability (all elements in the effective rule-set). The weighs fuctor is an
indication of the relative importance of the information gained from the rule, with respect
to the rest of the rules. The weight factor for a rule is formed by the quotient of its
weight with the sum of all other weights in the effective rule-ser. Where the weight is
initially defined in the nle.
If there are n total rules used to calcuiate the Ac, then the weight factor tor the
" belief used in the j* assignment is:
W'I.
wr, - —L

2 W,
i-1

(3.2)

To find the final accurnulated probability of the [* belief, the inference engine
would add the contributions of each rule in the effective ride set, in the following

manner.:

By substituting in equation 3.2, we get:

-42.

n
Ac, = Y, Wy; Pr (3.3)
j=1
1 n
Ac; - —— }: W,Pr, (3.4
J=1

Equation 3.4 defines how the accumulated probability of the [* primary belief is
calculated from a set of rules, and facts. In the next section we will see how this scheme

1s extended to deal with secondary beliefs.

3.6. Belief-based Algorithm for Inference

The bhelief-based algorithm defines a way for an inference engine to infer
information about a secondary belief. Secondary beliefs were defined as beliefs that are
inferred from other belicfs {(secondary or primary), but not from facts. Like all definitions
for inferring information, the belief-based algorithm depends on the knowledge stored in

KOOLA rules.

3.6.1. Effective Rule Set for Secodary Beliefs

In solving a secondary belief, an inference engine employs the information stored
in the belief’s effective rule-ser (similar to that in section 3-3). As with fact-based rules,
the effective rule-ser is a subset of the belief’s rule-ser. Also, as with fact-based rules,

a belief's rule-ser is created by the KOOLA compiler, based on production rules. The

-43-

main difference between the two, is that an element in a secondary belief's rule-ser can
only become a member of its effecrive rule-ser if at least one of the supporting beliefs in
the antecedent of the rule is well defined.

For a belief to be well defined, its effective rule-ser must be a non-empty set. Thus
means that if it is a primary belief, at least one fact must be known that supports it. For
secondary beliefs, at least one supporting belief must be well defined. For example, the
system could base a secondary belief on a single belief that itself, was only based on a
subset of supporting facts. Since this type of information is only known during run-time,
an inference engine decides dynamically if a belief is well defined. Next, we will
examine how to calculate a secondary belief’s accurnulated probability, using its effective

rule-set.

3.6.2. Calculating a New Belief from Supporting Beliefs

The weighted-average scheme used to calculite the accwnulative probability of
a primary or fact-based belief, must be modified to deal with the calculation of belief-
based (or secondary) beliefs. Equaticn 3.1 illustrated the amount a successtul rule could
contribute to the accumulative probability of a given belief. It was formed by the
multiplication of a probability with a weight factor. A third term, however, was not
shown in this equatic.:--a Boolean variable to account for the logical outcome of the

sampled facts and compared to the antecedent of the rule, to establish if the rule fires'.

' A rule is said to fire if the boolean equation in its "if" part (antecedent) is calculated by

the inference engine, and found true.

-44-

Since we only consider rules that were already found to be true, the addition of this term
would be redundant.

Consideration of this third term cannot be omitted with the algorithm for
calculating secondary beliefs. The production rules that express the probability of a new
belicf, given a supporting belief, are interpreted by the uncertainty model as saying:
"Given that the supporting belief is certain, there exists a certain probability Pr, that the
consequential belief is true.”

When new secondary beliefs are formed, however, the supporting beliefs are not
100% true. The truth of any belief is defined by its accumulative probabiliry. Thus,
when a belief is used to infer another belief, the third term (previously the boolean
variable) becomes the accumulative probability, and is multiplied by the a priori
probability of the rule. We call this third term the supporting belief (Sb).

Another way to view the equation which defines the contribution of a belief-based
rule 1o the accumulative probability of a new belief is in terms of classical probability
theory for dealing with independent events, i.e., the joint probability of two independent
events equals the product of their individual probabilities. Following this theory, we say
that a rule indicates that the probability of the new belief equals the product of the
probability of the supporting belief and that of the rule.

Therefore, the factor contributed by the * successful belief-rule pair to the

accumuldated probability of the m™ belief (Ac) is:

-45-

Acml = u-/fml {Prmlsp ml}

The weight factor (Wf) is calculated the same as that in equation 2:

—
'
v
N
~

Wi

Z IVmi

i=1

Adding all n contributions of supporting beliet/rules pairs yiclds the following:

N
Acm = lzl: mel) {Prmlspml} (3.7

Substituting equation 3-8 results is the following:

N
1
Ac, = ——— > WoiProySp,,
i1

Z V/mi

i~1

(3.8)

3.7. Fault Tolerance

Previously, we stated that the environment in which the ISDN workstation would
operate in affects the design of the default KOOLA inference mechanism. The main
environmental consideration is the ISDN network, and the workstation’s reliance on it to
deliver inforrnation. The network may not always be able to deliver the required fucts

due to problems in the network, or with third party information services (e.g., data-bases).

-46-

With its inference mechanism, a KOOLA knowledge-based system can cope with
a partially incomplete set of facts (information), while maintaining the integrity of its
process. This comes from the distinction we made between an initial rule set, and its
final effective rule set. As we stated, as long as there is sufficient information to satisfy
at least one rule (i.e., an non-empty effective rule set) an inference engine may infer a
belief from the facts, and thus continue processing inspite of the missing information.

This ability is enhanced in KOOLA with the use of rule weighting. A knowledge-
based system may contain a number of backup rules with low weighting that normally
do not have much effect on the outcome. If all of the main rules fail, however, the
inference engine falls back on the backup rules to continue processing. In effect, a form

of fault tolerance through knowledge redundancy.

CHAPTER 4
THE KOOLA PRODUCTION SYSTEM:
LANGUAGE ELEMENTS

In this chapter we present the language elements of the KOOLA production
system, and examine the development of a KOOLA knowledge-based application.

The basic concepts of the KOOLA production system were presented in Chapter
3. In that chapter we investigated a model to organise different knowledge representation
schemes. From this we demonstrated that a hierarchy of meta-level knowledge could be
used in KOOLA. With a review of uncertainty in symbolic processing, we were able 1o
present how the KOOLA inference algorithm deals with information uncertaintics. With
this background, we will proceed with the language elements that make up the KOOILA
production system.

We proceed as follows in this chapter. In Section 4.1, we present the KOOLA
language elements that are used to represent procedural knowledge. In Section 4.2, we
present the KOOLA rule. In Section 4.3 we present the KOOLA goal. In the last

section, we detail the steps used to develop a KOOLA knowledge-based applicauon.

4.1. KOOLA Support Primitives

Support primitives are the KOOLA language elements which are used to represent
procedural knowledge and help in the definition of rules and goals. They are not ud

to represent declarative knowledge. Table 1 contains the list of KOOLA language

-48-

elements, and includes the four support primitives. We will examine the characteristics

shared by these primitives, especially the relationship that exists between the first three.

TABLE |. KOOLA LANGUAGE ELEMENTS.

PRIMITIVE LTYPE DESCRIPTION .
External BELIEF Defines how to get data from the ISDN net-
Request work or from any other external device.
Internal BELIEF Defines how to get data from the end-user
Request by asking her or him a question.
Primary & Specifies the names of the intermediate and
Secondary BELIEF the final conclusions that the inference
Belief engine will make when solving a problem.
External ACTION Defines how the system can do something
Action with the ISDN network or another device.
Rule' KNOWLEDGE | A heuristic equation that relates facts and
beliefs to other secondary beliefs.
Goal KNOWLEDGE | Defines which beliefs the system will work
on, also indicates when to undertake a
specific External Actions.

4.1.1. General Belief Primitives

The first three elements are defined as being of type BELIEF. We make this
distinction because they represent objects maintained by the Belief Manager of the
proposed intelligent workstation architecture examined in Chapter 2. Requests primitives

fall under this classification, because they define how to acquire a fucr. In KOOLA, a

' The rule and the goal are not support primitives, but are included in this table for

completeness.

-49.

fact is classified as a form of belief that is always certain. For example if the end-user
states that there is someone at the door, then that fact (someone is at the door) 1s
considered 100% certain, and the complimentary fact (someone is not at the door) 1s
considered 0% certain. In general, any defined fact in KOOLA is either true (100
certain) or false (0% certain).

The primary and secondary belief primitives define a conclusion that may be
reached by processing facts. In KOOLA, rules are used to define how these conclusions
are processed (or inferred) from facts. Unlike facts, primary and secondary beliefs are
not always certain. A primary belief is inferred from a fact, and a secondary belief 1y
inferred from a primary belief or another secondary belief. We will show how their
inter-relationship leads to the hierarchical organisation shown in Figure 6.

We say that when one type of information is inferred from another, then the
former type of information is more abstract' than the latter. A fact is less abstract than
its inferred belief because it is directly measurable. A secondary belief inferred from a
primary belief is based less on physical facts--therefore more abstract. The organisation
depicted in Figure 6 results from using this definition, and ordering the belief primitives
by the degree of abstraction associated with the information they represent. The arrows
in this drawing indicate the direction of inference. The ideas presented in this model help

to explain the placement of these primitives in rules and goals.

! The level of a belief’s abstraction is an indication of how far its meaning is from

an easy measurable fact.

-50-

External Facts

Primary Beliefs

¢ co Temt e oo - » w20 e i A R N o
llz,ure 6 errar(,hxcal organisation of behet types in terms ot theu’ abstracnon The
arrows indicate the direction of inference.

4.1.2. Support Primitive Definitions and the Working Set Domain

A KOOLA programmer defines support primitives prior to employing them in a
rule. Like with the C language, defining a type creates an instance of the type and an
association between the name given and the instance of the type [23]. Also, initialisation
values are set during definition. Unless a primitive is defined as variable (which will be
enplained later) its instance is pussed down to the knowledge-based system as a static
primitive entity--created once and never destroyed.

Many of the KOOLA constructs are used in the definition of rules. For example,

an enquiry is used in the antecedent of a production rule. In KOOLA, we stipulate that

-51-

before a programmer can use a construct in a rule, it must be already defined. Also, we
define that the set of all defined constructs, which may be used in a rule, as the working
set domain. The reader should note that all elements in the working set domain are
mutually exclusive.

The concept of a working set domain forces a developer to keep rules consistent.
All operands of a new rule must be in the working set domain of its object. This
construct also helps knowledge engineers use a bottom up approach to knowledge-based
design, in association with the KOOLA production system. The developer can first state
all beliefs, actions and information the system will use, then add the rules that use the
information and effect the beliefs.

The concept of a working set domain for every support primitive object also
simplifies the translation of KOOLA source code into the primitive knowledge format
which a run-time kernel can use. The translation simplification is a result of the comptler

not needing to extract this information from the rule in order to compile the rules.

4.1.3. The Variable Construct

The inclusion of the variable construct into the KOOLA language was to fucilitate
the development of more advanced applications. In particular, this permits applications
to evaluate a (possibly unbounded) number of external objects using the same sct of
KOOLA primitives to classify each object. Typically, such applications choose a single
"best" object, or all objects that meet a set threshold. An example will illustrate the

usefulness of the construct.

-52-

Consider a knowledge-based system which evaluates stocks in a stock-exchange.
Such a system would evaluate all candidate stocks, and then present the end-user with a
list of the top 10. Since most stocks are evaluated in a similar manner, the system could
use an identical set of rules to evaluate each candidate stock. If it did, however, the
conclusions it reached (beliefs), for each candidate, would be stored in the same belief
variables--resulting in the beliefs of one candidate over-writing the beliefs of another.

An unsatisfactory approach would be to write a new set of rules for each candidate
stock evaluated. Each set of rules would store beliefs for its candidate stock in a separate
set of belief variables. Once the system had evaluated all of the candidate, it would
presents the final beliefs, for each candidate, to the end-user. This approach is impractical
due to the excessive programming effort required to write a new set of rules for each
candidate.

The approach KOOLA supports makes use of the variable construct. Using this,
the knowledge-based system would dynamically allocate a new set of variable beliefs for
each stock evaluated. Each set of variable beliefs would hold the conclusions for the
candidate it evaluated. The common set of rules used to evaluate each candidate would
belong to the application’s variable rule set.

For an example of how this construct can be put into practice consider the

following abstract rule':

An Abstract Rule is analogous to an abstract data type. It is a way of describing
the meaning of a rules in English.

Rl e A5)

T T T

e

-53-
FOR a given stock

IF its value has been increasing in the last month,

AND its value has been increasing in the last three month,
AND its value has been increasing in the last six month,
AND its value has been increasing in the lost year,

THEN conclude favourably about the given stock

The variable type in this rule is "given stock”. A knowledge-based application with this
rule would also have a number of beliefs with the same variable type. It would have
beliefs like given stock-buy or given stock-sell. Every time a new candidate was
identified, the Belief Manager would make a copy of all these beliefs, and associate them
with the new candidate. For example, if the new candidate was IBM, then IBM would
be the "given stock".

If the variable construct wus not used in such an application, the rule base would
require a similar rule for each possible stock that it might evaluate. Thus, in this type of
application, the variable construct decreases the number of required rules, and allows 1t

to solve an indefinite number of stocks.

4.1.4. Internal Enquiry

Internal enquiries provide a means by which a programmer can specify how a

question should be asked of the end-user. By asking questions, a knowledge-based

-54.-

system can gather the facts it needs from the user. A knowledge-based system would
gather facts because they are used to solve problems by inferring new beliefs.

Like all KOOLA fact-constructs, an internal enquiry has a shelf life. In Chapter
3 we saw how the Belief Manager uses this information to maintain all facts and beliefs
in a run-time kernel up-to-date. A shelf life of 99999 indicates that the fact does not
expire.

In the KOOLA production system there are two ways of defining an internal
enquiries. A separate template is used for each definition. The way that an internal
enquiry is defined depends on the nature of the question asked.

An internal enquiry may define a question that requires a numerical answer. If
this is the case, the programmer selects the numeric-based template to define the enquiry.
For example, if the knowledge-based system asks the end-user a questions such as: "How
old are you (in yeurs)", then the answer would be a number from 1 to 100. To help
prevent the user from entering a totally invalid answer, this type of enquiry sets a range
of valid replies. For age, the range could be from 1 to 100 years old.

The following example shows a numeric-based internal enquiry that asks the end-
user to estimate the age of an unknown person. The variable class in this object is

unknewn_person.

B e MENRS

-55-
FOR: unknown_person
INTERNAL ENQUIRY: age
ASK: Estimate the age of the person we are trying to identify
LOWER BOUND: 1
UPPER BOUND: 100
SHELF LIFE: 99999

"

In the section on rules (Sec 4.2), we will see that the antecedent ("if ..." put) ot
a KOOLA rule contains a Boclean expression that defines how a fact should be tested.
For example, the Boolean expression unknown_person:age = I is only true if the age of
the person is one years old. If a range is more appropriate, a Boolean expression can be
written as F<=2 AND F>=8, given that F is any fact. In this case as long as F is between
two and eight, the result is true.

The second kind of internal enquiry is for text-based answers. With this type of
question, the user is expected to select her or his answer from a fixed-set of allowable
responses. As in the other enquiry, the template for defining a text-based internal
enquiry contains the field for the questions. In addition, it also has eight blank ficlds for

entering the allowable responses.

The following internal enquiry asks the user to define the size of a person:

-56-
FOR: unknown_person
INTERNAL ENQUIRY: size
ASK: What size is the person?
CHOICES: (finy) (small) (medium) (lcrge) (huge) (enormous) O O

SHELF LIFE: 9999

KOOLA treats the allowable responses entered as an ordered set of symbolic
atoms'. This means that the fact defined by a text-based internal enquiry takes on the
characteristics of an integer when processed by a run-time kernel. For example. if the
user selected the fourth response (large) when asked the previous question, then the fact
associated with unknown_person:size would be set to four. This is an important feature,
because it provides additional flexibility in defining a boolean equation: and, we as we
shall see, overcomes an infermation uncertainty problem.

One of the problems discussed, 1n Section 3.3.2, about uncertainty was the
presence of symbolic uncertainty in facts. We saw that this form of uncertainty shows
up when English (or any other nawral language) is used to qualitatively describe
charactenistics of something. This is usually the case when an end-user is asked a text-
based question like the previous example. A person may be considered huge by one
observer, but only large by another. The KOOLA approach to this problem maxes use

of the ordering of the symbolic atoms i an internal enquiry.

' We call each response a symbolic arom since it is a character string with a real-

world symFolic meaning. Symbolic atoms can also be characterised by their ability to
be ordered by their real-world meaning.

-57-

Let us now consider the following boolean equations, and contemplue the

conditions required to make each one true:

IF unknown_person:size < 4,
IF unknown_person:size = 4,

IF unknown_person-size >= 2 .AND. unknown_person:size <= 4

The first expression is true if the person’s size is identified as being less than large The
second equation is true only if the person is considered large. The last expression 1s tue
if the person is considered anything from small to large. If internal enquiries are uscd
in this manner, i.e., defining a range of acceptable answers, the problem associated with
symbolic uncertainty, using a natural language, is reduced, since this manner allows for

a greater range in COrTect answers.

4.1.5. External Enquiry

A knowledge-based system developed with KOOLA can use the external enquiny
to gather facrs that do not come from the end-user. A construct that implements i,
capability is not common in most preduction systems. The KOOLA production sysiem
however, must provide external fact gathering in order for it to support the developric:
of autonomous applications. The reason that such applications need the external encuirs
is that autonomous applications should gather data on their own, without & hun.r

operator present, .

-58-

For the experimental ISDN workstation, the main use of the external enquiry is
to gather facts from the ISDN network. For example, the external enquiry can be used
to obtain status information about the ISDN connection. It can also be used to make data
base queries to third-party data base services through the network. A secondary use of
the enquiry is to obtain control information from any other device connected to the
workstation (e.g., the centralised controller').

Syntactically, the external enquiry is much like the previous numeric-based
internal enquiry. The only difference is the TOKEN field. For the experimental ISDN
workstation, this field is used to specify an operating system service. The type of service
defined in the TOKEN field should corespond to the information required by an
application.

One of the services supported by the operating system of the experimental ISDN
workstgation returns the status of an ISDN channel. The following external enquiry

would defines how to get the status of a voice channel.

FOR: isdn_voice
EXTERNAL ENQUIRY: channel_state
TOKEN: 12323

SHELF LIFE: 1

! The Centralised Controller is a hardware device connected to the experimental

ISDN workstation. It can measure and report temperature. It can also control electrical

appliances plugged into it. Appendix 3 shows how it is connected to the workstation
platform.

P e e SR DR T T

m‘_

-59-

The fact obtained by this enquiry could be used in a rule to determiine if a voice cnannel

is free so that a call could be made.

4.1.6. Belief

The belief is the simplest object to define. It consists of a variable class and 4
name. There are two sub-classes of beliefs called the primary and secondary helief 1y
Figure 6, we saw that the difference between the two classes of beliets was that a
primary belief is inferred from fact(s); and that a Secondary belief is inferred from othes
belief(s).

The KOOLA language must distinguish between the two sub-classes of behiets,
The factor that decides the sub-class of a belief is how it is used in a rule. The convention

used to do this is:

1- If a belier is used by any rule that contains a fuct-based antecedent, then that
belief is a primary beiief.

2- If a belief is not a primary belief, then it is a secondary belicf.

A Secondary belief (i.e., a belief that is inferred from another beliet) ma tr
designated as a goal belief. This designation indicates that the Secondary belicf
important, and is used to regulate the application it belongs to. We will examine how 1
does this in the next section on rules. The most important point the reader should .o

is that any Secondary belief can be designated as a goal belief.

4.1.7. External Action

The external action is the support construct that gives KOOLA applications the
ability to control physical devices. For the ISDN workstation, the main use of this
language element is to control the ISDN network interface. Through an external action,
a knowledge-based system running on the workstation can make an ISDN data call.

The syntax of the external action follows the general format of all support
constructs. When used for the ISDN workstation, the TOKEN field identifies an
operating system service that can be used by a knowledge-based application. The

following external action could be used to make an ISDN data connection:

FOR: isdn_data
EXTERNAL ACTION: mcke connection

TOKEN: 456

4.2. Rules

This section contains the language description for KOOLA rules and explains how

they are used by the KOOLA production system to codify knowledge.

4.2.1. Production Rule Requirements
To develop a knowledge-based system, a human expert is required. This person
possesses much knowledge about the problem that the knowledge-based system will work

oa. The relevant problem solving knowledge held by this person is frequently called

-61-

domain specific knowledge, to distinguish it from the general programming knowledge
needed to develop routines like an inference engine. In general, the creation of a
knowledge-based application is the process of transferring the subject matter expert's,
domnain specific knowledge, into a program.

The task of the KOOLA production system is to facilitate this transfer ol
knowledge. The most important consideration is the method used to represent the domam
specific knowledge in the computer (i.e., the knowledge representation method). The
method must be easy for the user to use, expressive enough that the user can embed detal
knowledge about the problem domain, and it must be a format that can be manipulated
by a computer.

What is the nature of the domain specific knowledge that must be stored in the
knowledge base of a krowledge-based system? It is sometimes called heurisue (a.k.a.,
rule of thumb) knowledge to emphasise its incxact nature [1]. From our discussion on
uncertainty (Section 3.3), we saw that domain specific knowledge contains many type,
of uncertainty, Therefore, the data in a knowledge base can be characterised as heurisuc
knowledge about uncertain information. Any knowledge representation method that uses

this type of knowledge must effectively take these characteristics into account.

4.2.2, Production Rule Format

The KOOLA knowledge representation method that responds to the necds o

codifying domain specific knowledge is the production rule format.

-62-

The production rule comprises two components. The first component consists
of an "IF" followed by a boolean equation that checks a fact. Since this part of the rule
is processed first, it is called the antecedent. The second component consists of a
"THEN" followed by a belief-based assignment. This assignment is an indication of how
true a certain belief is, given that the antecedent is true. This part is called the rule’s
consequence, since it is processed as a consequence of evaluating the antecedent. The
rule format we have just seen is referred to as the if-then format [1,14].

To summarise, a KOOLA rule expresses the probabilistic association between a
sampled external event (fact) and the conclusion one could draw from these observations
(beliefs). If the antecedent of a KOOLA rule contains a belief instead of a fact, the rule
expresses a probabilistic association between one conclusion and a more abstract
conclusion. For this reason, we define a KOOLA rule as: A heuristic equation that uses

uncertainty and operates on beliefs or facts to formulate more abstract beliefs.

4.2.3. Backward Chaining

Rules are processed in a knowledge-based system so that the certainty of a belief
can be established. In general, they are processed in an inference engine by martching
their antecedents to facts; if they match, then the actions outlined in their consequence
are performed [1,14]. In KOOLA, that action involves updating the certainty of a belief,
using one of the algorithms given in Chapter 3. The action of checking an antecedent.
and finding it to be true; is called firing a rule A rule is said to have fired if this action

Ceurs.

PR ¢ < Ta ek

-63-

The key consideration in the design of an inference engine is which rule to process
next. Most knowledge-based system, and all expert systems, have huge knowledge bases
(14]). The number of rules is usually so large that they cannot all be tested to solve a
given problem. Also, different rules can make different conclusions about the same
belief. This leads to the need for an effective scheme to decide the next rule to test--this
is called the scheduling algorithm (7].

The KOOLA scheduling algorithm for rules makes use of a special set of beliels
we call goal beliefs. The algorithm works by designating one belief as the goal belief,
and only testing the rules that affect the goal belief. If one of the rules that affects the
goal belief also has a belief in its antecedent, then all the rules that atfect the new belief
are also tested. Eventually, the inference engine is only left with fact-based rules, which
car be fired directly.

This algorithm keeps the inference engine working towards solving one belief, the
goal belief. In other words, it is goal oriented. For this reason, the method used by
KCOLA to schedule rules is called the goal oriented method | 14]. Since the establishment
of goal beliefs dictates which rules the inference engine will work on, a KOOLA
programmer may use this mechanism to control the flow of an application. An
explanation of how a programmer can exploit this control primitive is made in the nexi
section on goals.

The mechanism we just described can be shown with a relational diagram. This
diagram highlights the backward movement from a goal belief through supporting beliefs,

down to facts. This movement is called chaining since one belief connects to another

-64-

From this point of view, the mechanism can be called backward chaining [14]. A
diagram which shows an instance of chaining is called an inference chain [14].

Figure 7 presents a typical inference chain for KOOLA rules. In this diagram, one
arrow shows the direction the inference engine searches for a fact-based rule to start with.
The other arrow shows the direction beliefs are inferred from the facts. The inference

chain alsc highlights the relationships between primary, secondary, and goal beliefs.

PROOQG. .

— 1

‘_1—,__‘> Direction of Systern Leliefs
A LECEND:

O ner
Goal
D SECONDARY BELIEF

PRIMARY BELIEF

. L D R
RN AT b P N)}_Q‘.. R

& v Tt g Bl k¥ g e
Figure 7. Generalised inference chain

-65-
4.2.4. Syntax
We use the if-then format for KOOLA rules. Following this format, a rule is
divided into an antecedent that describes what the rule should test, and a consequence,
that describes which belief should be affected by firing the rule (i.e. finding its antecedent

true). We define two kinds of antecedents, which leads to two sub-classes of rules. Lact

based and belief-bused. We will examine the syniax of both sub-classes of rules.

4.2.4.1. Fact-Based Rule Syntax

As discussed in section <4.1.4. a KOOLA fact is acquired and represented as
numerical data that contains the value of something measured in the internal or external
environment of a knowledge-based system. Since a fact involves a direct measurement,
it is an exact value with no uncertainty. For example, a run-time kernel could establish
that fact Q equals 23.

The antecedent of a fact-based rule comprises Boolean expressions with facts. ‘The
Boolean expression defines how to test a fact. It does this with simple comparauve
operators that relate facts to numbers. For example an antecedent with the equation fact
Q < 23 would be false, since Q is not less than 23. An antecedent may group multple
Boolean expressions together by ANDing their outcomes.

The next two fact-based rules are part of a knowledge-based svstem that identit.es
people. They both belong to the variable class unknown person. In the system, they help

to strengthen or weaken the belief that the unknown person is Jim, by evaluating his face

-66-
FOR unknown person:

IF: eve colour == blue

THEN: jim’s face 100 weighted 95

ELSE: jim’s face 5 weighted 95
FOR unknown person:

IF: hair coleur == brown

AND: hair length > shoulder length

THEN: jim’s face 90 weighted 90

ELSE: jim’s face 10 weighted 40

Both rules define facts that can be tested to establish the primary belief: jim's face.
The first rule is true if the eye colour of the unknown person is blue. The second rule
is only true if the hair is brown and longer than shoulder-length.

The primary belief defined in the rules is jim's face. This belief is in both the
"THEN" and "ELSE" parts of their consequence. Which part would be used depends on
the facts. An inference engine would use the assignment in the "THEN" part if the rule
is true, otherwise, use the "ELSE" part.

The consequence of a belief includes parameters that define a probabilitv and a
weight. For the first rule, the parameters used to calculate jim's face are 100%, weighted

95/100: if the rule is true, and 3% weighted 95/100, otherwise.

o xmm—— e =

-67-
4.2.4.2. Belief-Basea Rule Syntax
The second sub-class of KOOLA’s if-then rule syntax is the belict-based rule
syntax. A belief-based rule has beliefs in both its antecedent and its consequence. These
rules express a probabilistic relationship between the two beliefs. The exact relationship
is defined by the inference algorithm in section 3.4.
Consider the next two rules from a human identification knowledge-based system.
FOR: unknown person
IF jim’s face
THEN jim 100 weighted $0
FOR: unknown person
IF jim’s body
THEN jim 100 weighted 60
These rules infer the belief jim. Since this belief is inferred from another (more defimie)
belief, it is a secondary belief. In this example, both rules have primary beliefs in therr
antecedents, but they could also have had secondary beliefs. In general, for a belief-based
rule, the antecedent may be any type of belief, but the consequence is always a secondary
oelief.

4.3, Goals

This section contains the language description for KOOLA goals and explains how
they are used by the KOOLA preducticn system to codify control knowledge.
In the previous section, we saw how a knowledge-based system could use KOOFA

rules to calculate the certainty of a goal belief (expressed as a probability). We wiro

-68-

introduced the notion that a KOOLA construct for establishing the order in which goal
beliefs are calculated, would permii. a programmer to dictate the flow of an application.
We will now introduce that construct.

The goal permits knowledge engineers to control an application’s flow. It
provides two control oriented primitives. Of these, establishing goal beliefs is the most
important primitive. The second primitive builds on the first. It permits programmers
to express when his or her knowledge-based application should initiate an external action,
based on the certainty of a goal belief. Together these two primitives provide the ability

to codify control knrowledge in a production system.

4.3.1. The format of a GOAL

The goal is a special class of production rule that uses the "if-then" format. We
established that a production rule is an antecedent-consequence pair. The antecedeuwt of
a goal contains a goal belief, and the consequence contains an external action identifier.
The consequence defines what actions a system will take after evaluating the antecedent.

A run-time kernel starts executing a KKOOLA application by processing the
application’s initial goal. The first step in processing a goal involves checking its
antecedent. The antecedent contains a goal belief in a Boolean expression. Before
evaluating the Boolean expression, it must ascertain the certainty of its goal belief.
KOOLA rules are used to establish this certainty. Once a goal belief is known, its value
is substituted back into the Boolean expression; and the antecedent is either found true

ur false.

-69-

The second part of goal processing involves performing the appropriate acticn
defined in the consequence. To facilitate this, the consequence is divided into a "THEN"
consequence and an "ELSE" consequence. The "THEN" consequence is performed if the
antecedent is found to be true, and the "ELSE" if found false. The action performed s
specified by the external action identifier in the appropriate consequence.

The format of the goal leads to a useful interaction between beliefs and actions
in a knowledge-based system. Beliefs are the result of employing the heuristics ermbodicd
by KOOLA rules, and are characterised by levels of cerainty. Actions, on the other
hand, represent procedural knowledge, that can either be done or not done (i, no
uncertainty). Thus, goals act as an interface between the probabilistic domain of heuristic

knowledge, and the ceriain domain of procedural knowledge.

4.3.2. Goal Inference Strategy

The consequence of a goal identifies more than just what action the system should
take. It also contains a field that identifies the next goal that will be processed in the
application. This field controls the chaining of goals, since the next goal a run-time
kernel will process depends on which consequence it selects. As we saw, this selection
depends on the goal’s antecedent.

The manner just prescribed for chaining goals is framed by the decision to let
goals explicitly define the next goal in its inference chain. A KOOLA application alwiy >
starts at its initial goal. After establishing the goal belief, the run-time kernel either uses

the "THEN" or "ELSE" consequence to select the next gnal to chainto. Likewise, which

-70-

ever goal it chains to; the new goal is processed in the same way. The inference ends
(and so does the application) once it encounters a consequence with a terminating clause.

This type of chaining involves a run-ume kernel moving forward from one goal
to the next. The kernel never needs to do the type of backward chaining required to solve
KOOLA rules. The applications start at a well-defined initial goal, then moves forward
through intermediate goals, until reaching 4 terminating goal. Since this type of inference
is always moving forward, it is called the forward chaining method [1,14,7), and a
KOOLA goal can be classified as a forward chaining rule {1,14,7].

A diagram showing all possible paths an inference engine could take from an
initial rule is an inference nerwork [14]. Figure 8 is a KOOLA inference network for
chaining goals. In this inference network, we demarcate one path with a heavier line.
Gince this path shows only one instance of a path that a system could take, it is called an
inference chain [14].

A common characteristic of all forward chaining inference methods is the
uapredictability of their actual inference chains. Even though they start at a known
location (the ininal goal for example), their final location is determined dynamically
whiie the system runs. It is the dura used in the antecedents that dictates the path taken,
and the end-point in the inference chain. For this reason, forward-chaining inference

techniques are also called data-driven techniques [14].

—r—

271-

Goel Format:
it Forward-Chaining flow
<GOAL BELIEF> Initial Goal '
THEN | ELSE l
/4. Lk\ mo | &
MK R]

v

LT‘ l IRND [[] l

ARG AVAVA

Flgure 8 An mference network of ;,oals showmg the torward chammg u)mml usul to
solve for one inference chain.

4.3.3. Real-time Control.

By letting programmers explicitly define the next goal in an inference, KOOJL A
gives programmers more control over the chaining of data-driven goals, than wuh
backward-chaining rules. For similar reasons, other developers have found that the data
driven technique is suitable to meet the needs of a real-time event-driven system |5

Texas Instruments has developed an expert system shell for real-ume pros
control called PICON [26]. One of the inference strategics that its inference eng
supports, is similar to KOOLA’s forward-chaining strategy for goals. In parucuisr, o

permits one rule to explicitly call another rule in its consequence.

-72-

By establishing goal beliefs, goals control the use of rules in a run-ame kernel.
In a real-time event driven control system, this ensures that goal beliefs are developed so
that the importance of the most recent events is taken into consideration. Programmers
can specify the order in which goal will be processed. Since this ordering affects when
things are done in a run-time kernel, KOOLA can guarantee that the temporal order,

specified for a real-time application, is followed.

4.3.4. Meta-Control

Previously we said that goals are a form of forward-chaining rules. We have also
demonstrated that they control the use of heuristic-based rules. In effect, goals represent
controi knowledge on how to use hcu}'istic knowledge. For this reason we can call the
knowledge embodied in goals, meta-knowledge (a.k.a. knowledge about knowledge). We
can also call goals, mera-rules [26).

This cuncept brings us back to the ideas expressed in Section 3.2. In that section,
we introduced the theory of a knowledge processing model for symbolic processing
applications that favours the organisation of knowledge into a hierarchy of mera-level
knowledge.

The reader should see that the KOOLA goal and rule form such a hierarchy, with
goals on top. Work on symbolic processing suggests that adding an extra level of meta-
level knowledge to a system can improve system performance in lieu of more heuristics
[1]. Thus, goals do not only improve the control a programmer has over an application,

bt also reduce the amount of required heuristic knowledge.

PO U T W >~u-mm§ﬁ1£b_

et et e la i r Do et

"

-73-

A meta-rule construct is applicable to expert systems in structuring the
consultation phase of operations. The consultation phase involves the expert system
extracting facts from the user, and inferring beliefs from the facts. Personal Consultant
Plus, an expert system shell, uses meta-rules to ensure that the flow of questions ashed
of the user, during consultation, follows a logical progression [26] (i.e., one subject at a
time and using a logical progression from subject to subject).

A knowledge-based system designer, using KOOLA, can employ gouals to
influence the consultation phase (if user information is required) in an applicauon
Setting a specific goal belief, forces the system (0 concentrate on rules pertaining to the
belief, which keeps the question it asks focused on one subject. Because the progranumner
also controls the order in which goal beliefs are set, she or he can ensure that they gener

ate a logicul progression of question flow for the end-user.

4.3.5. Goal Syntax

The following is an example goal, showing how it would appeir in the KOOIL.A

production system:

-74-
GOAL: make call
FOR: ISDN voice channel
IF: free >= 95%
THEN DO: place call
THEN CHAIN: call in progress
ELSE DO:
ELSE CHAIN: TERMINATE

The nume of the goal is make call. 1t works with the variable class ISDN voice
channel. This goal asserts that if the belief /SDN voice channel:free has a probability
greater then 95% the knowledge-based system should continue by placing the call. At
the same time it asserts that if the belief is not true, then the system should do nothing

and end the application.

4.4. A Koola Application

This section explains how to build a knowledge-based application using templates
in the KOOLA programming environment. We illustrate the tunctionality of the
programming environment by detailing the steps that were involved in developing a
knowledge-based system in KOOLA.

The application we selected to demonstrate the KOOLA production system is
called the Human Identification Knowledge-Based System (HIDS). HIDS is a very

simiple knowledge-based system (i.e. a problem in the 1oy domain), but it exercises all of

S,

-75-

KOOLA'’s components. We decided on this simplified knowledge-based application to
prevent the important details of an implementation form being eclipsed by the complexity

of a large application. The source listing for HIDS can be found in appendix 1.

4.4.1. Problem Description

What should a young person do if someone is knocking on the front door of their
house? It could be a family friend. It might be someone soliciting a product. Tt could
also be a potential intruder or someone even worse. If the person is a friend, then they
should be let in. Otherwise, the stranger must not be let in and the child’s parents should
be notified of the situation. But how can the child identify someone? HIDS 15 a
proposed software solution to this problem.

HIDS will be a knowiedge-based application that will run on the inference engine
of the ISDN workstation. Its main task will be to help young people to idenufy any
stranger that knocks on the door of his or her home. Its secondary task will be to sound
an alarm if the stranger can not be identified. An alarm will involve sending a message
through ISDN to a parent informing them of the situation. The program must oleraie
error in its input data since the user may make a few errors when describing the unknown

person, also it should be easy to use.

4.4.2. Starting With Goals

Since we prefer to use a top-down approach to software development, a logical

starting point for programming HIDS would be to map out its high level flow conirol.

-76-

Fortunately KOOLA provides programmers with a meta-control primitive to manage the
flow of processing in a target system. This meta-control primitive is the goal construct.

The mechanism by which goals arc able to provide control is through the
establishment of goal beliefs. By setting intermediate goal beliefs, that the inference
engine will solve, goals indirectly controls the inference engine’s processing. Also, by
setting the threshold of certainty needed of a goal belief (i.e., level of probability), before
a system action is started; goals directly control all external actions. For example, one
of the goal in HIDS decides when to send the help message on the ISDN.

The high-level flow we decided on for HIDS is mapped out in Figure 9. We were
able to make this drawing as a direct consequence of the problem description. It shows
that the first goal belief we wish to work on is whether the application even needs to be
run. Obviously if no one is at the door, the ISDN workstation should not be asking the
user about the unknown person there. This makes sense since this application could be
triggered by the door bell (i.e., if the door bell rings then there might be someone at the
door). We decided on the rest of the blocks in Figure 9 using a similar general

understanding ot the problem domain, and some rules-of-thumb.

-17-

Is the unknown No
parson Jane?
{Check Jane]
NO
-
I8 there 8n unknown YES is the unknown Send the warning /
person at the door? ” person a man? message on ISDN
{Chack door] (Fing Sex) /
YES NO
18 the unknown No Is the unknown
person Robart? — person Jim?
{Check Robert]) {Chaeck Jim)
P I B Y A U N A o8 ’ ' n b WA

Figur 9. High-vel flow for t ISegc~based systeu.
With the high-level flow of HIDS mapped out, we were ready to enter the goals
for this application. We employed KOOLA goal templates in the programming shell o
do this. An example of a goal template for this application is illustrated in Figure 10,
The name of the goal is: Check Robert, and states that if the probability of the goal
belief: unknown pers--Robert exceeds 60% then the application will termunate. Thiy
means that, a probability of over 60% indicates that the person is identified and the
application has solve its problem
Figure 10 also shows the state of a goal template while the ficld "else chmn™ 15

being entered. This field is highlighted with an astrict. The programmer would be using

the menu on the right side of the screen to select a goal identifier for this ficld. The

1 St wa

-78-

¥_.uLA Prcduction Environment V2.20 2 Feb 1990 GOAL
change Examine Reindex Print Quit I
“1t opoedit Enter a Goal:

Check Jane

L lo-elx Robert Check Jim !
T .n4nIwn person Check Robert i

Torenn >= 60% NEW :
oIl TERMINATE

FINISHED CHAIY |
< oT. Ty NS ACTION !
TL. 0 20 NS ACTICHN
ELSE CHAIN:

I B Y T B R A R R L R T A A N TS

, SPHT A A
Figure 10. Template for entering a goal.
wdentifier could be either the name of another goal or the terminating identifier.
4.4.3. Entering Enquiries

By entering a set of goals for the application, we created a set of goal belicfs
which must be solved. For example, the previous goal template contained the belief
unknown pers--Robert in its antecedent. It does not. however, indicate in any way how
(o ascertain this belief. KOOLA production rules are the primitives which lets a
programmer express the heuristic relationship between external facts and beliefs. Before
we can statt entering these rules, however, the set of facts available to the application
must be defined.

The two KOOLA primitives which we used to define what facts were available

to the application was the internal and external enquiries. The set of possible external

Y

B i wiiiam - -

-79-

enquiries is limited by the operating system because they defines a fact that a tuget

system may ascertain from its operating system. For example, we used the external

enquiry : ISDN data -- is channel free, before deciding to send a message in HIDS.
Internal enquiries define questions that may be asked of the end user, and we

defined by the application programmer. The question asked will depend on the type ot

; \ $=———!brown eyss
{ smatl gars |"' — "—Ismall nose !

* [poimed chur]

i PR . iy b

. -] : . . P A AN R R e AT PR B N \,'ﬂq(’_‘j;k,/"/
Figure 11. Possible point of observations of a person’s face.

-80-

data needed. For HIDS, we examined a picture of a person as in Figure 11, to see what
kind of information we could use to identify someone. This figure shows the type or
human facial features which might help HIDS identify a person. Once we decided the
type of facts we could draw from the end-user we started to enter the internal enquiries
to define it.

A KOOLA internal enquiry template is shown in Figure 12. [t corresponds t0
the question: unknown person--nose. It coninins text for the question and lists all valid
answers. The first three responses are ordered from small to large. This order is

exploited in the rule that we will show next.

KOULA Production Environment V2.20 2 Feb 1950 INQUIRE
Change Examine Reindex Print Quit
Add or edity

Enter an internal inguiry

age

‘ Shelf life:

(V%)
ok
o

Question: What type of nose does the perscn have?

) Answer 1: Small i

i Answer 2: Medium T

. Answer 3: lLarge oo

{ Answer 4: Hooked [I

i Answer S: flat o

. Answer 6: pointed oo

; Answer 7T: : ;

| | |
| !

- e Press Pgln when Finished ‘

il
o0 R P A IR o UL K

Figure 12. A template for entering a question.

-81-
4.4.4. Entering Production Rules

Once we knew what goal beliefs we wanted to solve. and which facts would be
available; we were ready to start the toughest part of developing HIDS--cmwenny
production rules.

In chapter 3 we described the KOOLA rule as: A probabilistic equation iha:
maps facts into beliefs. This implies that in order for a programmer to define rules, she
or he must use probabilities to convert heuristic knowledge of the problem domiun into
KOOLA rules. Since any KOOLA knowledge-based application must contain rules. o
KOOLA programmer must be able to use the rule template correctly. The programmung
of HIDE was no exception.

By the very nature of heuristic knowledge its use is hard to describe. This tvpe
of knowledge is uncertain, not fully understood, subject to personal observations, and
based on general rules-of-thumb. In Figure 13 we have organised some of the heurisues
knowledge used in HIDS, to show how certain facts infer a given goal belief. Thr,
drawing illustrates that five facts are needed to define a person’s face, and that based on
face and body, a general belief can be inferred. Any one can argue against the heunstics
we presented in Figure 13. The only way to decide if we are right or wrong is to run the
knowledge-based system many times. If it operates with the degree of correctnes

required by the problem then its heuristics are good.

GOAL BELIEF
Robert
r %
Belief: Robert's face Beliet: Robert's body

+ 4t

T T R T B A G T

o

Figure 13. An inference network ilhstrating some of the heuristics employed in HIDS.

The KOOLA rule template that defines the HIDS rule unknown person--Robert is
shown in Figure 14. We based the antecedent of this rule on the end-user’s observation
of the unknown person’s nose size. As we alluded to in the previous section, this rule
exploits the ordering of the allowable responses in the enquiry. The rule states that if
the size of the nose is between small and medium, the system may conclude that the
probability of the face being Robert’s is 90%. It also indicates that this conclusion carries

a weighr of 80 over 100. The rule also states that if the antecedent is not met, the system

flas~)

Dl

-83-

KOOLA Production Environment V2.20 2 Feb 1990 RULR
Change Examine Reindex Print Quit
Add or edit

unkown person ::rob nose

=
1)

Intern:nose >= Small JAND.
Intern:nose <= Medium

THEN: Robert face prob:20% Weight :80/200
ELSE: Robert face prob:10% Weitht :30/100

RRTT

Wl el e fke o da

e i ;‘-q-,»,,v.“.{r_'j,{_._*‘<__' AR il e R A SRR A LIS I 4
Figure 14. Rule template.

is given licence to conclude that the probability of the face being Robert’s is 10%, wuh
a lesser weight of 30 over 100.

Choosing the probabilities for rules and goals is perhaps the most difficult pun
of KOOLA programming. We selected the thresholds for goal beliefs in HIDS to be 601
with the idea that 50% would imply being half certain of a person’s identity. The
previous rule would assign a probability of 90% to a favourable observation (that the nose
meets Robert’s criterium), and 10% for an unfavourable one (that it does not). ¢ ¢
probabilities are assigned around a central probability of 50%. Thus, this rule will cither
increase the certainty of a belief, or it will decrease it.

We assign a higher weight for a favourable outcome of the previous rule than in

unfavourable cutcome. We employ this seemingly unbalanced scheme for most of HIDS®

-

-84-

rules. It reflects the idea that a favourable observation strongly supports a conclusion,
while an unfavourable observation weakly disproves a c:onclu.vimz. Again, the sceptic may
wish to argue with this scheme, but this idea does work.

A complete examination of probabilistic reasoning in an intelligent svstem is tar
too complex a subject to cover here. It is, however, a very imponant concept in KOOL A
programming. For this we can strongly recommend reference [20]. The othe

consideration in this type of reasoning is to understand the algorithms used to infer beliets

in KOOLA.

4.4.5. Summary

In this section we summarise the ideas presented in this chapter on creating
knowledge-based systems with KOOLA.

From the sample application, we defined three sequential steps for building «
knowledge-based application from KOOLA. They are summarised as follows:

1. Establish the application flow with goals

2. Decide what facts are available with enquiries

3. Define a set of production rules using heuristics from the problem doman

The issue of using KOOLA’s support for uncertainty was also presented. From
this, we saw that the most important and most complex puart of knowledge-baed
programming is dealing with uncertainty. Also, that the primitives available in KOOI1.A

for dealing with this problem are strong.

CHAPTER 5
IMPLEMENTATION OF A KOOLA RUN-TIME
INFERENCE ENGINE FOR THE ISDN
WORKSTATION

In this chapter we describe the implementation of the KOOLA knowledge-based
system run-time shell. The source code for this shell was written for the RMX C-286 "C"
compiler, to run under the RMX operating system. Appendix 4 contains a complete
listing of this source code. The KOOLA run-time shell supports knowledge-based

applications developed in the KOOLA programming environment.

5.1. Software Approach

We follow an approach to software development referred to as the object- oriented
approach [19.24.25]. The main concept in this approach is the division of software into
selt contained modules. Instead of using globally accessible data-structures, all major
data-structures are place into modules, which are called objects. Aay routine that needs
to manipulate a data-structure in a foreign object does so by calling a special access
function in the foreign object. Consequently, routines never directly access data-structures
that are not in their object.

In the object-oriented vernacular, software engineers consider an access function

a method that belongs to an object {19]. The data-structures and methods are therefore

-86-

called members of their object [19]. The process of calling a method becomes sending
a message io an object [19]. In an abstract sense, a software engineer views the
execution of an object oriented program as a series of messages being sent, received, and
acted on.

Another important consideration in object-oriented programming is the cructium
by which the members of an object are organised. The correct approach to follow is to
group things together that have common characteristics or use the same data {25]. Tias
permits each object to be developed and tested individually. Another beneticial
consequence of this approach is the improvement in source code re-usability [24].

We did not use an object-oriented language for the implementation'. This meant
that the compiler did not enforce the object-oriented constraints, like not dircetly
accessing data across an object boundary. But, by imposing the set of constramnts as
programming conventions, it became possible to adopt the object- oriented approach 10
conventional "C" programming. The caveat was that the set of constraints has to be self-
imposed rather than compiler enforced, which meant that there was no error checking for
violations

Employing object oriented constructs, we organised the KOOLA run-time kernel
into six objects. Figure 15 depicts the software structure resulting from this organisatict
Each object in KOOLA is represented as a block in Figure 15. Every object except thie

bottom one can only use the merhod [24] of the object below it.

! Initially we attempted to port MS-DOS Guidelines C++ compiler w0 the RM

operating system. When this proved to be unsuccessful, we settled on using the RMX
"C" stand-alone.

-87-

KOQLA OBJECT METHOD SUPPORTED

USER ACCESS
META CONTROL (Stort ot o goal)
SECONDARY IE (Get o secondary belief)
PRIMARY IE (Get a primary belief)
FACT MANAGER (Cet a fact)
HUMAN INT (Ask the user a question)
Figure 15. Object-oriented organisation of the KOOLA shell

bottom one can only use the method [24] of the object below it.

The most important consequence of this organisation is the support it gives for
data abstraction. With these constraints in place, member functions at level n can only
use the method of the next object down. Further, the functions at level n must go through
level n-1 to access information stored in any object at a lower level than #-1. If such a

system is designed correctly, these constraints do not impose a severe performarce

PR

E N e N

5.2. Architecture

-88-

complete system into more manageable sub-modules.

reduction. They do, on the other hand, go a long way in isolating the complexity of the

The actual implementation of the KOOLA shell follows from the architecture we

proposed in Chapter 2. It satisfies the symbolic processing requirements of a KOOI A

production system, as discussed in Chapters 3 and 4.

5.2.1. Comparison Between the General and Actual Architectures

Figure 16 illustrates the experimental architecture of the KOOLA run-time shell,

Since this implementation follows from the intelligent personal workstation architecture

(Figure 6), we next show the relationship between the

architectures.

foct Magaager

Ciperiment Genecalor

Primory

Beliel Kanager

Secondary

Istiel Manager

general and experimental

Meia Comtrol

Token
[niernal
HI
Vaiue)
——— —
oren gxiernai
-
—A
05 value U
8ack End

Figure 16.

" KOOLA

felief (D PlE betiat 1D SIE Sellel 1D MC
Siole ﬁ siare ﬁ slale ﬁ
Valnaﬁ Prod Prod
[Tnlerence [interence | interance
Engine tagine thgiae

T TN

Architecture

Action

Gs

Frort Ena

-89-

In the experimental architecture, we have combined the functions of the BM and
some of the functions of the IE. The resulting software has been divided into a primary
and secondary belief manager/inference engine, which is depicted in Figure 16. The rest
of the functions associated with an IE are implemented as the meta-control object.

In the experimental architecture, the EG comprises the experiment generator
object, the human interface, and the operating system primitives used by the experiment
generator. Functions of the AG are partly handled by the meta-control object, but mostly
by the operating system.

The learning capabilities illustrated in Figure 6 correspond to the KOOLA
language. This is not a full implementation of its dynamic learning capabilities we
envisioned, but is sufficient to satisfy the requirements of the experimental ISDN

workstation.

5.2.2. Detailed Implementation

The. KOOLA run-time shell is a hybrid inference engine that processes forward
chaining goal rules, backward chaining production rules. and the information stored as
requests and actions.

The front end of the architecture, which is on the right side of Figure 16,
comprises the meta control centre, and it receives commands from the cperating system.
The back end comprises the fact acquisition centre which uses facilities in the operating
system to gather facts from the ISDN network or the user. To illustrate the operation of

this system we examine the processing done to solve a set of goals.

-90-

The Meta Control (MC) contains a knowledge base of goal rules and its own
inference engine which uses them. The knowledge base is separate from the inference
engine. Consequently, a knowledge engineer may change the knowledge base without
modifying the source code of the inference engine. But because we want this svstem 1o
run optimally, the knowledge base is linked with the inference engine when the system
is built in RMX. This quasi separation between declarative and procedural knowledye
is present throughout this architecture.

In general, KOOLA processing starts only after the MC receives a vahid Goal
Identifier (GID). Thus when the operating system sends the MC a GID it is infornuny
it of two things: that it should start processing; and, that it should start at the goal
indicated. The GID is a system token which uniquely identifies one of the goal rules in
the knowledge base. Information stored by the identified goal rule is used to continue the
processing.

The first piece of information that the MC uses from the goal rule stored in its
knowledge base is the identifier for the secondary belief (or goal belief) the antecedent
of the rule is based on. The MC does not store the probabilistic value of any behets.
Consequently, to ascertain the value of the goal belief it passes a request to the next
object to its left in Figure 16.

The Secondary Inference Engine (SIE) receives requests to determine the
probability value of goal beliefs from the MC. Like the MC, the SIE has an inference:
engine and a knowledge base. One type of information that the SIE's knowledge ba:c

contains defines a static inference network that corresponds to the rules programmed by

91-

the knowledge engineer'. The other information is dynamic information and this includes
the state of all beliefs and their probability-values (if defined).

The first thing done by SIE when it receives a request identifying a goal belief is
to determine its state in the knowledge base. If it is the case that the state of the goal
belief is defined then no further processing is required from SIE, and it retumns the value
of thc‘bclief to the MC. On the other hand if the state is undefined more processing is
needed to solve the goal belief.

To solve a belief, SIE uses the inference network defined in its knowledge base.
For any given belief the inference network defines the beliefs that support this belief.
Thus to solve the goal belief SIE must scive 4il of its supporting beliefs.

According to the KOOLA definition ihe supporting beliefs of a secondary belief
may be either primary beliefs, or secondary beliefs. If they are secondary beliefs then
they are also solved the same way. Obviously this is a recursive relationship. A FIFO
queue manages the recursion, that will be defined by the main system algorithm in the
next section.

At some point, processing on an inference network always ends with a set of
primary beliefs. Since SIE does not solve primary beliefs, like the MC, it passes them
as requests to the next module on its left (the PIE).

The Primary Inference Engine (PIE) receives requests from SIE for the

probability-values of primary beliefs. Like the MC and SIE, PIE has an inference engine

' This refers to the type of diagram shown in Figure 4.2 (a KOOLA inference

network)

-92-

and a knowledge base. The knowledge base contains a one-level inference network that
relates beliefs directly to facts. It also contains dynamic information that is similar to the
dynamic information in the SIE knowledge base.

Like the SIE, PIE first checks if the state of a requested primary belief is defived
If it is, then the value of that belief is returned immediately. If it is not, then PIE look-
in its knowledge base to find all of the facts needed to support the belief Since s
inference network is only one deep, there is no recursion in PIE.

To ascertain the value of the facts need to calculate a primary belief, P sends
requests to the next object on its left.

The final object in this sequence is the Fact Manager (FM). We say that i
consists of procedures and a data base since it does not do any heuristic processing
Like the previous two objects it keeps track of states and values. The values 1t keeps,
though, correspond to actual facts (for example the user’s answer o a question). Values
are store as 32-bit floating point numbers.

If the FM does not already have the value of a requested fact it either requests
from the operating system or it requests it from the human interface.

Going back to the first object we examined, the Meta Control (MC) object we
can complete the discussion. The MC gets back the value of its goal belief and can fire
its rule. Based on the outcome, and the current goal rule it is working on, the MC mayv
send the OS an action request and/or it may chain to another goal rule, thus propagating

the processing.

-93.

5.2.3. Algorithm For Solving a Goal Belief

1.
2.

This section contains the main KOOLA algorithm for solving an inference.

Place the given goal belief on a LIFO queue.

Repeat the next steps until the goal belief is solved, or found to be

unavailable (or block).

3.
4.

7.

Examine (do not remove) the next belief at the head of the queue.

If the belief is a fact:

4.0 aond the state of the fact is nct available or defined, then
remove the fact (belief).

4b else leave the fact on the queue, request that it be scived,
wait until it gets sclved (block).

Else, if the state of the belief is defined:.

5.a and the belief is the goal belief, then stop and anncunce
success.

5.b else remove the belief from the queue.

Eise, if the state of the belief is not available:

6.0 and the belief is the goal belief, then stop and announce
failure.

6.b else remove the belief form the queue.

Otherwise, the state of the belief is undefined. Expand the belief into

all its supporting beliefs, called its children. For each of the children, do the
following steps

8.

7.a |If the state of the child is defined, save the probability of the
child (If it is a fact, save its value).

7.b Else, if the state of the child is not available, do nothing with it.

7.c Else, the state of the child is undefined. Place the child on the
queue.

If all states of all the children were not available, then define the

belief the same way.

Q.

Else, if cll of the children were defined, solve the probability of the

belief, stcre it, and set the state of the belief as defined.

-94-

10. Otherwise, some of the children were not defined, so leave the beliof
on the queue.

CHAPTER 6
SUMMARY AND CONCLUSIONS

In this chapter we summarise the main points of this thesis, present the major

conclusions, and provide some suggestions for future work.

6.1. Summary

In chapter 1, we introduced the idea of an intelligent ISDN personal workstation.
The purpose of our research was to design the knowledge based component of such a
system. We determined that the design should be bounded by the desire to have a target
system with these two key abilities:
L. The ability to help people exploit ISDN information services
2. The ability to support autonomous control activities.

In chapter 2, we presented four characteristics of an ISDN based intelligent
system with these abilities. Those characteristics were:
1. Control Workstution Resources: have a software mechanism that permits

application programs to control all hardware connected to the workstation.

t9

Handle Real-Time Information: the ability to recognise spoiled information
caused by the elapse of time, and take the necessary steps if it occurs.

Easy to Use and Program: A user of the system should find it easy to modify

LY

(program) the workstation so that it can work on her or his own particular

problems.

.96-

4. Multiple Problem Solving: Deal with an environment in which more than one
problem at a time may occur.

In the second half of chapter 2 we used these characteristics as the underlying
requirements for our approach to the design. In particular, our approach involved
developing a knowledge-based system shell. The first part of our solution was 10 propose
a run-time architecture for an ISDN-oriented knowledge-based system. The important

contributions in the first part of our approach include the following developments:

. An inference engine kernel capably of working on many problems at a tine,

. Separate inference engines for dealing with different symbolic processing
needs

. Strongly connected to the cxternal environment

. Extremely controllable by higher-levels of the workstation’s operating system.

The second part of our approach involved developing a special programming
system for our run-time architecture. We defined the KOOLA rule-based production
system as the primary method to program our knowledge-based system shell. The
following five attributes of KOOLA distinguishes it from other production systems (1 ¢,

our contributions):

1. Meta-Control rules: A class of rules used to guide the symbolic processing.

)

Network Oriented Fault Tolerance: A unique use of probabilities and
uncertainty that permits the system to continue processing in spite of the inability

to ascertain some information,

.97.

3. Variable Construct: A production system paradigm which permits the system
to solve multiple occurrences of the same problem while using a common set of
rules.

4. Expected Shelf Life: Permits a programmer to specify how long a fact can
remain valid.

5. ISDN Aciions and Requests Objects: An object-oriented programming method
of gathering information from the network, which is fully integrated to the

symbolic processing of the inference engine.

0.2. Conclusions

Since the ISDN workstation project is still on-going, we cannot draw too many
conclusions from testing our implementation of the KOOLA knowledge-based system.
We can, however, draw conclusions from the research we performed on artificial
intelligence and provide suggestions for continuing the projec.

The major conclusions we draw from this research are the following ones:
A network-connected, knowledge-based systemn must deal with the loss of informat-
ion,
Informuation, or data, in such a system may sometimes be unavailable due to a network
problem, or the inability to access an external service (for exainple a third-party data-base
service). To overcome this potential problem, the system’s inference engine should be
designed with the ability to continue processing despite the fact that it could be missing

relevant data. We implemented this idea in the design of the KOOLA infereuce engine.

-98-
Rules are more expressive if they contain primitives for quantifying importance.
When referring to importance we make a distinction between using probabilities or
certainty factors in the consequence of a rule, and expressing how important the rule 1.
For example, when more then one rule infers different levels of a given beliel™s
probability, importance defines which rule should be given greater weighting 10 e
outcome. In KOOLA we implemented this idea with the weight paradigm e
consequence of rules.
A knowledge-based system can run under any primitive operating system environ-
ment.
Normally a system must provide symbolic-processing primitive before it can suppoit o
knowledge-based system. If, however, the run-time part of a knowledge-based system is
written in a general-purpose, well support language (e.g. C), it can be ported to any
platform that has a corresponding compiler. Our run-time implementation of KOOLA
was on such a platform (the RMX OS8). Our knowledge entry, which requires symbolic
processing primitives, was developed on a separate platform. In the KOOLA system,
knowledge is pre-compiled in a form acceptable to the RMX C compiler. When

compiled, and linked with the binary shell thev torm a target knowledge-based system.

6.3. Suggestions for Future YWork
The main suggestion we propose is to complete the project as is. This would

involve using KOOLA to build a full-featured knowledge-based system or even an exper

-99-
system. From this, a final evaluation of this knowledge-based system shell would be
possible.

The second suggestion we propose involves taking the ISDN workstation out of
the home environment. We built the workstation on top of the RMX real-time operating
system kemel. Currently we do not make use of this potential for real-time processing.
Witk a real-time operating system, however, the platform might be able to support the
low-level, high-speed, switching and routing functions required of a hybrid private branch

exchange, like the one shown in Figure 17.

ES NETWORK MANAGER

KOOLA KBS SHELL

REAL TIME 0S

Locol Arec Network HA RD WA RE Local Digital Circuit-

Switched Network
ISON Primary Rate Interface
e el T A e Al 5

External
Carier
21593 A A

Fiure 17. Block digro a possibc conﬁgurai for hybnid Private rc
Exchange (PBX).

P

~-100-

A network management expert system built on this platform, would provide
intelligent control of local network resources. The real-time OS kernel would guarantee
that the hardware would get the real-time response it needed, while the expert system
would make intelligent routing and resource assignment decisions based on cost and
utilisation criteria. Apart from requiring a few software modifications, the system would

need a primary-rate ISDN connection and LAN access hardware.

(1]

(3]

(4]

(5]

(6]

[7]

[8]

(9]

£10]

(11
[12]

[13]

[14]

REFERENCES

W. W. Benjamin et al, "Computers for symbolic Processiug”, Proceed-
ings of the IEEE (invited paper), vol.77, no. 4, April 1889, pp. 509-539.

---, Integrated Services Digital Network (ISDN), VIIith Plenary Assembly
CCITT Recommendations of the Series I Red Book, Vol.3., Fascicle I11.5,
1985.

G. Hanover, "Networking the Intelligent Home", IEEE Spectrum, Vol.
26, No. 10., Oct 1989, pp. 48-49.

C. V. Ramamoorthy, W. W. Benjamin, "Knowledge and Data
Engineering" [EEE Transactions of Knowledge and data engineering,
Vol. 1 No. 1, Mar 1989, pp. 9-15.

M. sutter & P. Zeldin, "Designing Expert Systems for Real-Time
Diagnosis of Self-Correcting Networks," IEEE Network, vol. 2, no. 5,
September 1988, pp. 43-51.

Robert L. Brown, et al. Levels of Abstraction in Operating System.
NASA Technical Report Contract NAS2-11530, July 1984,

P. Winston Artificial Intelligence (Second edition), Addison-Wesley,
Mass., 1984.

A. S. Tanenbaum, Computer Networks, Second Edition, Prentice Hall,
Englewood Cliffs N.J., 1988.

W. Stallings, ISDN an introduction, Macmillan, New York, N.Y., 1989.

---, ISP188/ISDN Basic Access Product Binary Manual, DGM&S, New
Jersey, 1989,

--=, Microelectronics Data Book, Mitel, Ottawa, Ontario, 1989.
--=. ISPN Development Kit 29C53 User’s Manual, Intel, California, 1988.

J. Chatterley, B. Newman and R. Wellard, "The ISDN PC: A Flexible
Voice Data Workstation," IEEE Globecom ‘86, 1986, pp. 1504-1508.

P. Waterman, A Guide to Expert Systerns, Addison Wesley, California,
1986.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

-102-

Computer Systems," Ph.D. Dissertation, University of California,
Berkeley, May 1988.

B. Gates, "The 25th Birthday of BASIC," BYTE, McGraw-Hill, New
York, N.Y., Vol.14, No.10, October 1989, pp.269-276.

J. Pasquale, "Using Expert Systems to Manage Distributed Computer
Systems," IEEE Network, vol. 2, no. 5, September 1988, pp. 22-27.

Z. Slodki, A Knowledge-Based, Event-Driven, Real-Time Operating
System for an ISDN Personal Workstation, M. Eng. Thesis, Concovdia
University, Montreal, June 1990.

B. Stroustrup, The C++ Programming Language Addison-Wesley New
Jersey 1987.

J. Pearl Probabilistic Reasoning in Intelligent Systems Morgan
Kaufmann, California, 1988.

L. A. Zadeh, "Knowledge Representation in Fuzzy Logic', IEEE
Transactions of Knowledge and data engineering, Vol. 1 No. 1., March
1989, pp.89-100.

M Stefik et al, "The Architecture of Expert Systems", Building expert
system, Addison Wesly, Reading, Mass., 1983.

B. W. Kernighan, D. M. Ritchie, The C Programming Language
Second Edition, Prentice Hall, New Jersey, 1988.

K. Gorlen, "An Object-Oriented Class for C++ Programs," Software
Practice and Experience, vol. 17, John Wiley & Sons Ltd, Dec 1987,
pPp.899-922.

D, Hy, C/C++ for Expert Systems, MIS PRess, California, 1989.

J. Martin, S. Oxman, Building Expert Systems Prentice Hall, New
Jersey, 1988.

---, System 120 Hardware Installation and User’s Guide, Intel,
California, 1988.

---, IBM Technical Reference Personal Computer AT, IBM, Florida, 1984.

APPENDIX |
KQOLA SOURCE CODE FOR HIDS
APPLICATION

KOOLA Production System Rule Listing Date: 06/07/1990

FOR: isdn

Primary Rule (1): prim file free
IF External: file conct stat == .00
THEN: file free p 90 Weight: 100
ELSE: file free p 10 Weight: 100

Secondary Rule (2): rl
IF: use voic
THEN: voice 100 Weight: 100

Primary Rule (3): r2p
IF: phone == yes
AND External: voic conct stat == 0.00
THEN: use voic 90 Weight: 100
ELSE: use voic 10 Weight: 100

Secondary Rule (4): sect file free
IF: file free p
THEN: file free s 100 Weight: 100

Primary Rule (5): user data p
IF: phone == no
AND External: file conct stat == 0.00
THEN: user data p 90 Weight: 100
ELSE: user data p 10 Weight: 100

Secondary Rule (6): user data s
IF: user data p
THEN: user data s 100 wWeight: 100

104

KOOLA Rule Listing Date: 06/07/1990 Page:

Primary Rule (7): voice free p
IF External: voic conct stat == 0.00
THEN: voice free p 90 Weight: 100
ELSE: voice free p 10 Weight: 100

Secondary Rule (8): voice free s

IF: voice free p

THEN: voice free s 100 Weight: 100
FOR: operator

Primary Rule (1): want to ID p
IF: want to ID pers == YES
THEN: wnt I.D. prim 100 Weight: 100
ELSE: wnt I.D. prim 0 Weight: 100

Secondary Rule (2): want to ID s
IF: wnt I.D. prim
THEN: wnt I.D. person 100 Weight: 100

FOR: unknown person

Primary Rule (1): Jane body gen
Ir Question: body weight > 40.00
AND Question: body weight < 50.00
AND: body breasts >= Small
AND: body breasts <= Full figured
THEN: Jane body 80 Weight: 90
ELSE: Jane body 20 Weight: 90

Primary Rule (2): Jane face

IF: face shape == Medium features
AND: nose < Medium

AND Question: age > 18.00
AND Question: age < 22.00

THEN: Jane face 90 Weight: 80
ELSE: Jane face 10 Weight: 40

N

105

KOOLA Rule Listing Date: 06/07/1990 Page:
Primary Rule (3): Jane lenght
IF Question: body length > 110.00
AND Question: body length < 130.00

THEN: Jane body 90 Weight: 90

ELSE: Jane body 10 Weight: 90
Secondary Rule (4): Jane s

IF: Jane body

AND: Jane face

THEN: Jane 100 Weight: 100
Primary Rule (5): rob eyes

IF: eye colour == Brown

THEN: Robert face 95 Weight: 100

ELSE: Robert face 5 Weight: 100

Primary Rule (6): rob face 1
IF: face shape == Long
AND: face beard == Medium beard but clean shaven
THEN: Robert face 90 Weight: 80
ELSE: Robert face 10 Weight: 80

Primary Rule (7): rob length
IF Question: body length > 120.00
AND Question: body length < 136.00
THEN: Robert body 80 Weight: 80
ELSE: Robert body 20 Weight: §C

Primary Rule (8): rob nose
IF: nose >= Small
AND: nose <= Medium
THEN: Robert face 90 Weight: 80
ELSE: Robert face 10 Weight: 30

Primary Rule (9): rob weight
IF Question: body weight > 58.00
AND Question: body weight < 78.00
THEN: Robert body 90 Weight: 80
ELSE: Robert body 10 Weight: 80

Secondary Rule (10): robert s
IF: Robert body
AND: Robert face
THEN: Robert 100 Weight: 100

-

APPENDIX Il
HARDWARE CONFIGURATION AND
SCHEMATIC DIAGRAMS

Figure 18 illustrates the hardware architecture of our ISDN work
station. Since we still consider it a development platform, it is constructed
from mostly off the self components—resulting in a physically large and
distributed system. The current configuration consists of the following
hardware:

1 Intel system 120 host, running Intel's iRMX II.3 real-time

operating system [40].

2. An IBM AT with an Intel PC53 ISDN basic rate access card [-41]
connected to its’ expansion bus. DGM&S ISP-188 version 3.0
basic rate ISDN software, configured as a TE, runs on the card
[42].

3. A second IBM AT with the same configuration as the previous,
only the DGM&S software is set-up to run in NT mode.

4, Custom built centralised controller.

5. Three custom built 16/24-bit parallel VO cards, that are
compatible with the IBM AT expansion bus specifications {473].

The Intel system 120 is a 386 based computer configured with 2 M-bytes

of RAM and a 387 floating point coprocessor. This configuration is suitable for

107

ISDN Workstation

Anglog input .
aloq nau Network Simulator
co“t’°| . . PRERTY ce ae .
TE connsction NT Connection
Sensora
intel
l System 120
with
AT style expansion 1B = AT 18M — AT
y(s!ols Computer §1 Computer #2
Centralised
e O Controller

e

24-bit

S loop (28+0)
both directions '

16-bit
Parallel Parallel Paraliel
1/0 cord 1/0 card 1/0 card
_J

Exponsion bus Expansion bus Exponsion bus

Figure 7
Experimental ISDN personal workstation, shown with the ISDN network
simulator.

executing the workstation’s operating system with its knowledge-based system.
We chose the system 120 as the main host for the ISDN workstation because
it can run the Intel real-time kernel; and because its’ expansion bus follows the
IBM AT standard, increasing che availability of third party expansion cards,
and facilitating the development of custom built cards. All programming for
the System 120 is done in C, using the Intel C-286 compiler.

The centralisation of control devices is achieved in hardware by the
centralised controller. Currently the controller does no processing on its own,
but does have an 8-bit analog to digital converter. Other operations performed

by the controller includes sampling six inputs and controlling six outputs, all

Dot . e e

TR ST

[AT R JRC P

108

using standard 12VAC signalling. It communicates with the host via one of
the 24-bit parallel cards. Additional controllers can be added to the system by
placing another parallel card in the System 120.

All ISDN communications go through DGM&S ISDN cards. These cards
are compatible with an IBM-AT expansion bus and are all mounted in A'l's
An 80188 microprocessor provides these card with sufficient pracessing ulnlity
to execute the DGM&S ISDN network layer software. Animportant limitation
with the DGM&S software is that the drivers and the loader are only available
for MS-DOS, with the result that the ISDN cards must operate in an IBM-A'T,
running that operating system.

The first IBM-AT provides the ISDN TE' access for the workstation’s
operating system. Owing to the limitations outline above, this card can not
operate directly in the iRMX environment, which is why it is connected
through a 16-bit parallel card. In the future we plan to develop an iRMX
driver for the card, and thus eliminating the need for this sub-system.

The second AT provides a network simulator to test the ISDN
workstation. As such, the ISDN software ruaning on it is configured in [SDN

NT? mode.

! The CCITT defines the reference configuration TE: terminal equipment functions. Thi,
functional grouping represents equipment such as voice/data terminals with protocol handling and
interface capabilities{26].

% The CCITT defined NT: network termination equipment functions as broadly equivalent to
layer 1 of the OSI reference madel (24]. The equipment also provides timing and power to the TE.
It also multiplexes the inboard and outboard chains {26].

-109-

Q L [F) Jo 53
B o)
g)
{
m
) £
4 € y sl
4
¢ -
. - i
.) U .
[U . |
3| & ELY
U3
] t | oy
"] | Ui
> el Y
'
- gl =]l iy
- e [s 18 (=] B
4 Vol e =iy
x 90 - u ol
W - P P
> ww| W ¢)
[Qg Sid’
Z {3 =]
5 en DiEOlw
u s|8 00
I~ T e D7 et
e - - Bl
a ux’ﬂ o, it
[4 w g tyafe
o ¢ § i
Q «3 g>
M Z 4L A 3 I
3 o Wt JSi ™
9 O ag y3 '
-] Qs
TININY - le
et - N g
PR -t - LI
|] |' 1 AN = |
al .
T
L
’v = 1
& : A
O ! :
LIXINRY N0 Q
e ZZIZIZVNZ T [¥) 5
[+410)] > '
- -
!
b ;
2 ZiZiz|ZiZ|2 z-.Iil J
LYY Y Y Y Y Y Y Y Y Y Y Y L .V .Y.Y., F
hed MU DA SN D MR D =D »
Nttt = NNNNNIM MM TP TS
- ONTVDANVNTHATNTIDONT VOO
NTYDAAAASNENNNIMPOIMT T T TN ;
jodedetogepogelsqepe b 1”] ,'J'Trw?vr;(rY' o] ,
olo’(.- uloIvlIY uio .
b Z|ZI2)1Z1Z| 2 221 Z|Z) -
>
‘ll. yf O pmamr N A e S U \
NP MO <© * i
I 2o |
N " bt .
+OIOKC i} nia ‘3 L
T)) i
P
L r
t
i
|
i
s o
)
: .
H
I
] »
t
I 1
P
of o
|
- 1 2 3 ’

-110-

it B -

> —
X

. 22 %

T33CE 0651 0

Cs-ssnow] H.w‘w.
SNy jusundog eztd

nad

3A5NOK NQS!:

21373

avJnod Qg A
BUYIBBUIBUY *NOD B "1D913

ALISYININN UIAYOOINOD

TRy unwag
v 3anQ

a

—

A9

T

CQ3SYIAIY ST HOIHM) 318YD 3HI ION

aNy

‘HO1D3INNOD 3IH1 40 SUINIM 3ML

HO 11
N3

VO LOINNQD 3INOHI

4D

01 SONOJISINYNOD 3IJOD UNOTIO0D SIHL 3I1ION = I .
v25T02L ven
zZ
2
T a
- TTSUT+
) ¥O123INNOD IANOHd =
o)
4
HOTIJA
- e 1) = -
25702
23A anzz y
- T v
h[.
440% < TONTH
q £2
¥3Mod £0 nM.
. N SRR
fodety) 29A
) 28 A E I (3 I 1 z T

b4

-111-

DG S S-S B 4 4 I U N 4 ¥ .3 ! _ A A S
Lol L SR B Tt g (TS T
o £® UZT1YIsCw) Tdd L
asguny yusenzod es s
130d¢ SUBTIEDTUINAIDY YIP TAPLUER USTH '
s1avy .
Fhanoy T8 'e TR URE g i
SUTIPBUTEUY “wGwod § BI8yY “Je¢sQ :
ALTISH3IAIND U1ONOINOD H LI IS
S
sna w.al..!l««aj
R LD I) Uil ™\ ML *ng TTRGYS
£ sosusy Y nse i
sy 4mot IOL_*IIW €00 - ort wIIAS
1% L1 RILULCINE zar
wtn
he _ :
THRE B H 134 . [
$3d 34> sne
= = . rosare
<SS NS 124 cre .
34 “.wﬂxn_ re————graT—<JIENEI_INIRN
<1IEINEYH URIE ATELIN-~ (21 :
:
€L 43IHEI 184 ' .
sdd —<IT 51 :
e 12e83 — 1) - H
594 v ¥
mnu '™ Luy s
o84 B . m.“ i
s L] 49
it sSud 2o
c #] &va so|¥y
Flfod s .
2od 7" za i
Tod 1a
14 211 { S —
ST -
€z 1seqsy I0Y 5 as. . i
13- 2 B :
at i=1 oz H
& ;
<TG ord Ou i
u RS “
‘
4] ot :
wn A—O NG H 1
sd 3} e
4 H
ce il
10 At vze
(43 T vy .
| 4 fe ZT— 3ty .
ve 49 szy
B i
oz
RS o iy
S o rWE T TOTYTT woEey———gyns TTY
RASDS .

CO 10T 11

M 4UL-0UE 1 ENOUDLATUAS TR B4 JO) Serippy

-112-

- - - s w e e — -
I UF YL T ISTIETILONIS D (8T
-lﬂ ¢ 1,743 lde L}
3 eemecu 1ieon2230713
106 SLTTIEIT NG WIS TR A B
s11Y
F="Cyg & & %% «=¥%.§
Sutsspurs /) weny § I8 |] Jee]
ALISNIAINA W2QNOINDD

<XTEUIY J Hed

L’MW WI: L14

P &7]
71

(T

By

C3d) »0Q

A

)

G-m357m

P LT R ELILs) 3
.ummm | ane LEbarY Ex g
ow FA{E < 1cw
Tl e5=

mm T —fte
- Lygz-vie

29 zovw
33 Nmm - fov
sa 450y
[+ -4 S0v
[3 X— s0v
i iz
ca m e e TSl § B R XSL

R 11

o

A0 ASe
T

ABIOIHLL

o0 9101 11

Y 4YE-0YE T SnoUOUNIUA

d 4o} ssauppy

»

i
i
'

DEY WYiSLS

: Jl.o ror

tre ey IS XENCIRED

APPENDIX 1l
SOURCE CODE LISTING

/*=====n========== —————————————————
= Project KOOLA shell =
= Sub~Project Human interface =
= File fm.c =
= Author Robert D. Rourke =
= Start Date 01 Mar 1990 =
= Update 10 Apr 1990 =

*/".— - -

/*#define TESTON*/

/*#define RMXON*/

/*#define USECQOSI*/

/*#define LINKZEN*/

#include <stdio.h>

#include <ctype.h>

tifdef RMXON

#include <udi.h>

#irclude <rmx.h>

fendif

#include "extreq.h"

#include “huminter.h"

#include "hi.hx"

#include "fm.h"

#define CLEARBUF getchar ().

/* _______________________________ - -
- Function fact_value -
- Input highlevel fact ID (exess 500) -
- Qutput value of the fact -
- Action -
- Date 22 Feb 90 -
- UpDate -

float fact_value(hl_factid)

unsigned hl_factid;

(
i£ (hl_factid < EXCESS) return (intern_getvalue(hl_factid)):
else return{extern getvalue(hl_factid-EXCESS));

]/«

* EXTERNAL OBJECTS
*/

/t _________________________________
- Function extern_constructor -
- Input B none
- Qutput none -
- Acticen reads questions sets up list of gquestions -
- Date 22 Feb 90 -
- 05 Mar 90 -

114
/*
:/ Principle storage of the external facts
fact Extern_fact [NUMEXRQ];
void extern_constructor()
{ extern fact Extern_fact [NUMEXRQ];

char fact_date [DATESIZE]:;
fact* this_extern;

char dummy[80];

float shelflife;

FILE* datafile;

int i;

printf ("\n\nloading the fact manager info...\n");

/* open the input data file terminate if error */

if ((datafile = fopen(DATAFILE, "r"))==NULL)
terror("Missing the main fact file"):

/* remove the header store date stamp */
for (i=1;i<DATELOC;i++)
fscanf (datafile, "%s",dummy);
fscanf (datafile, "3%s"“,fact_date);
printf {"\nThe enquiry token date-stamp: %s\n", fact_date};

/* load all external tokens */
for(this_extern=Extern_fact;:this_externt+) |{

if (fscanf(datafile, "%d"T&(this_extern->cositoken))~~hcb)
break;

printf(".");
/* printf ("\ntoken: %d", (this_extern->cositoken));*/

fscanf (datafile, "%f"“,&shelflife);
/* printf (" The shelf life: %f",shelflife);*/

/* initialise the structure to undefined */
this_extern->state = UNDEFINED;
this_extern->value = INITVAL;
}/*for ever*/
fcloseldatafile) ;
printf("\nAll facts loaded\n");
} /*end extern_constructor()*/

J* o m e e = m e e e = mm e m e e o e e e om e o= e e e e = -
- Function : extern_getstate extern_getvalu ..gettoken -
- Input : extern fact ID (starting at 1) -
- Output : state of the fact -
- Action : looks up the fact and returns it state -~
- Date : 22 Feb 90 -
- UpDate -
________________________________ P

unsigned extern_getstate(ext_index)

unsigned ext_index;

{

extern fact Extern_fact [NUMEXRQ];
if (--ext_index > NUMEXRQ) terror("Fact ID out of index"):;
return(Extern_fact[ext_index].state);

}

unsigned extern_gettokan(ext _index)

unsigned ext__index;
{

}

115

extern fact Extern_fact [NUMEXRQ]:;
if (-~ext_index > NUMEXRQ) terror("Fact ID out of index");
return(Extern_fact{ext_index].cositoken);

float extern_getvalue(ext_index)

{

unsigned ext_index;
fact* this_fact;
extern fact Extern_fact [NUMEXRQ}:
if (--ext_index > NUMEXRQ) terror("Fact ID out of index");
if ((this_fact=&Extern_fact[ext_index])->state == UNDEFINED) {

this_fact->value = rqgst_ext (ext_index);
this_fact->state = KNOWN;

}
return(this_fact->value);

/* _________________________________
- Function : rqst_ext -
- Input : extrern fact index (starting at 0) -
- Output H value of the fact requested -
- Action : Displays the token of the fact, ask for numer -
- Date : 0S5 Mar 90 -
- UpDate : 10 Apr 90 -
——————————————————————————————— - - x/

float newval;

float rgst_ext (fact_id)

unsigned fact_id;

{

extern int WCOSISRESPONSESDMB;

extern int WCOSI$COMMANDSDMB;

int except;

extern fact Extern_fact [NUMEXRQ]:/

/*
* Later on this will pass a message to the OS to get the fact
*/

printf("\n Simulating mailbox call to get info from COSI:");
printf("\n The token is: %u ", Extern_fact[fact_id].cositoken);
wait () ;

#ifdef USECOSI

rqg$send$data (WCOSISCOMMANDSDMB, &Extern_fact[fact_id].cositoken, 2,

kexcept) ;
rqSreceiveS$Sdata (WCOSISRESPONSESDMB, &newval, FOREVER, &except);
printf ("\n Return from COSI with %£: ", newval);

wait();
telse

printf (" Enter a value: ");

scanf ("¥£", &newval) ; CLEARBUF
t¥endif

return(newval) ;
}
F7H h e e m m em w m ar w o e o e e m e e o e e W e e e e o e = - - -
- Function : intern_constructor -
- Input : none -
- Output : none -
- Action : reads questions sets up list cof guestions -
- Date : 22 Feb 90 -
- UpDate : -

PR Y o sy

R

il E IR E Sl in s e S

.t

oo

Principle storage of facts
fact Intern_fact [NUMQUEST];

void intern_constructor()

extern fact Intern_fact [NUMQUEST):
fact* this_intern;
int i;

printf("\nInitialise the inernal FM...");
/* initialise the structure to undefined */
for (1=0; 1<NUMQUEST; i++) {
(this_intern=&Intern_fact(i])->state = UNDEFINED;
this_Intern->value = INITVAL;
}/*for ever*/
} /*end intern_constructor () */

- Function : intern_getstate intern_getvalu ..gettoken -
- Input : intern fact ID starting at 1 -
- Cutput : state of the fact -
- Action : looks up the fact and returns it state -
- Dace : 22 Feb 90 ~
- UpDate :

unsigned intern_getstate (ext_index)

unsigned ext_index;

{
extern fact Intern_fact [NUMQUEST];
if (--ext_index >= NUMQUEST) terror("Fact ID out ¢f index stat.");
return(Intern_ fact {ext_index] .state);

}

unsigned intern_gettoken(ext_index)
unsigned ext_index;

{
}

return{ext_index);

float intern getvalue (ext_index)
unsigned ext_index:
{
extern fact Intern fact [NUMQUEST]:
fact* this_fact;
if (ext_index > NUMQUEST) terror("Fact ID out of index int-vil "),
if ((this_fact=&Intern fact[ext_index-1])->state == UNLDEFINLL) |
this_fact->value = ask_quest (ext_index);
this_fact->state = KNOWN;
}
return(this_fact->value);

}

#ifdef LINKZEN

#else

void wait ()

{
printf("\nPress Return to Continue..."):
getchar () ;

117

#endif

/*

end file fm.c */

/ks::::E-ﬂ-==========================
= Project : KOOLA shell =
= Sub-Project : Human interface =
= File : hi.c =
= Author : Robert D. Rourke =
= Start Date : 22 Feb 1990 =
= Update : 28 Feb 1990 =

Ir/ o - - - - - T

/ *#¥define TESTON*/
/ *#define RMXON*/

#include <stdio.h>

/*#include <conio.h> not suported in rmx*/

#include <math.h>

#include <ctype.h>

#include "huminter.h"

#include *hi.h"

/* _________________________________
- Function : main -
- Input : none -
- Output : none -
- Action : Test the reading the printing of file -
- Date : 22 Feb 90 -
- UpDate : -
_________________________________ x/

/*

main ()

{

test_hiread();

}

*/

/X =@ = e e e e m e o m e mm e e e e m = e m e a o
- Functicn : test hiread -
- Input : none -
- Out put : none -
- Action : Test the human intreface -
- Date : 22 Feb 90 -
- UpDate : -
_________________________________ +/

void test_hiread{()

int i;
float response:
char dummy;

hi_constructor();
/* test verification for the numbers */
/* for (i=0;i<NUMNUMR;i++) {
response = ask_numr(&Numr_list{i});
printf ("\n--~>The answer to %u is %f ", i, response);

/* printf{™\ntesting the text"):

for (i=0;i<NUMTEXT;it++) {
response = ask_text (&Text_list[i]):
printf ("\n--->The answer to %u is %£f", i, response);
}
*/
for t::){
printf ("\n\nEnter a questior ID: ");
scanf ("%d%c", &1, &dummy) ;
response = ask_quest (i);
printf {("\n--->The answer to %u is %f ", i, response);
}
exit (0);

} /*end test_hiread*/

J*¥ = = = e = m e m e e m o e e e e e e o e e e e oo e - - - - -
- Function hi_constructor -
- Input : none -
- Cutput : none -
- Action reads questions sets up list of questioas -
- Date : 22 Feb 90 -
-~ UpDate : -
_________________________________ ﬁ/

/*

Principle storage of symbolic question information

*/

/* the list of all questions, ids the sub list */

questref Quest_list [NUMQUEST];

/* The list of all numerical-based questions */

numrquest Numr_list [NUMNUMR];

/* The list of all text-based questions */

textquest Text_list (NUMTEXT];

/* Date stamp of the input text file */

char Date_stamp[DATESIZE]:

void hi_c

{

onstructor ()

extern questref Quest list [NUMQUEST];
extern numrquest Numr_list [NUMNUMR];
extern textquest Text_list (NUMTEXT):
extern char Date_stamp [DATESIZE];
numrquest* this_numr;

textquest* this_text;

questref* this_quest;

char quest_type (TYPESIZE];

char dummy (Q_SIZE+1l];

unsigned num_ans, 1, curt_quest, curt_ans:
unsigned curt_text, curt_ numr;

float timestamp;

FILE* datafile;

/* open the input data file terminate if error */
if ((datafile = fopen(DATAFILE, "r"))==NULL)
terror("Missing the main data file"):

/* remove the header store date stamp */

119

printf ("\nLoading the questions..."):

for (i=1;i<DATELOC;i++) fscanf (datafile, "%s",dummy);
fscanf (datafile, "%s",Date_stamp);

printf ("\nThe date stamp: %s\n",Date_ stamp);

/* load the questions */
curt_text = curt_numr = 0;
for(this quest-Quest list;:;this_quest++) {

printf(".");
if (fscanf(datafile, "%s",quest_type)==EQF) break;
/* printf("\n type: %s",quest_type);*/
fscanf (datafile, "%£",×tamp);
/* printf ("the float %f %£f",0.34556,timestamp); */

if (quest_ type[O]-=TEXTID) {
/* then it is a text-based question */
this_text = &Text list{curt_text++];
/* clear 1 leading space */~
fgets (dummy, CLSPACE,datafile);
fgets((this_text->question),Q SIZE,datafile):;

/* printf ("\n Question:%s", (this_text->question));*/
fscanf (datafile, "%d",&num_ans);
/* printf(" %u ",num_ans); */

for (curt_ans=0;curt_ans<num_ans;curt_ans++) {
/* clear 1 leading space */
fgets (dummy, CLSPACE, datafile);

fgets((this_text->answer{curt_ans)),A SIZE,datafile);
/* prlntf("\nsns %s",(thls text->answer [curt_ans]));
*
/
}
this_text->num_ans = num_ans;
this quest >quest _type= =TEXTID;
this_quest->index = (char*)this text;

else |
/* then it is numeric */
this_numr = &Numr_list(curt_numr++];
fgets (dummy, CLSPACE, datafile) ;
fgets((this_numr->question),Q_SIZE,datafile);
/% printf("\n Question:%s\n", (this_numr->question));*/
fscanf(datafile, "%f", (& (this_numr->upper)));
/* printf ("upper %.2f " (this_numr->upper); */
fscanf (datafile, "%f£", (&(thls _numr->lower)));
/* printf ("lower %£.2", thls_numr—>lower), */
this_quest->quest_type=NUMRID:
this_quest->index = (char*)this_numr;
)
/* printf("\n"); */
}/*for ever*/
£close (datafile):;
printf ("\nData loaded"):
} /*end hi_constructor()*/

/k —————————————————————————————————
- Function : ask_quest -
- Input : question ID index -
- Jutput : response -
- Action : ask the user a num or text guestion -
- Date : 01 Mar 90 -
- UpDate : Mar 90 -

float ask_quest (quest_id)

120

unsigned quest_id;

{
extern questref Quest_list [NUMQUEST]:
questref* this_quest;
float respons;

/* A small error check */
if (quest_id > NUMQUEST) terror("Question ID out of index");
if ((this_quest=&Quest_list[--quest_id])->quest type==TEXTID)
return(ask_text((textquest*) (this_quest->index)));
else
return{ask_numr{ {(numrquest*) ({this_quest->index}));

J¥ = = = = m m e e e o o e e ma e mm e o == e e e m e = -
- Function : ask_numr -
- Input : pointer to a numr question data -
- Output : response -
- Action : ask the user on question -
- Date : 26 Feb 90 -
- UpbDate : Feb 90 -

float ask_numr(this_numr)
numrquest* this_numr;

{
float respons;

/* do a little error check on the question */
if (strlen{this_numr->question)<l) terror ("ask_numt");

/* set up the dispay */
printf (*\n"™);
for (;:) 1
printf ("\nQuestion:"):
printf (*\%s", (this_numr->question));
printf(*\nThe range is %.2f to %.2f :",
this_numr->lower, this_numr->upper):;
scanf ("%f", &respons);
/* remove the CR character. */
getchar();
if ({{respons<=this_numr->upper) b
(respons>=this_numr->lower))
break:
printf£("\a Wroung!!!\n");
}
return {(respons) ;

}/*end funcion ask_numr */

J¥ = = = e m e e = e n o e m m e . m e~ - = -
- Function : ask_text -
- Input : pointer to a text question data -
- Output : response ~
- Action : ask the user on question -
- Date : 28 Feb 90 -
- UpDate : Feb 90 -

float ask_text (this_text)
textquest* this_text:

/*

/*

/t

}

121

int i;
char resp;
int respi:

/* do a little error check on the question */
if (strlen(this_text->question)<l) terror ("ask_numt");

/¢ set up the dispay */
printf("\n");

printf ("\nQuestion: ");

rrintf ("\%s", (this_text->question))
for (i=0;i<this text->num ans;i++)

.
’

printf ("\n%c- %s",i+'A’,this_text->answer[il);

printf ("\nSelect an answer :");
for (::) |

resp = getch(); */

resp = getchar();

getchar (),

fread (&resp, 8sizeof(resp),l,stdin);*/
if (resp<='2‘') respi = resp-'Af;

else respi = resp-’‘a’;

if (respi >= 0 && respi < this_text->num_ans) ({

putch (toupper (resp));*/
putchar (toupper (resp))
break:

}

printf("\a"):

return((float) respi+l);

}/*end funcion ask_text */

Function : terror

Input : none

Output : none

Action : Test the reading the printing of file
Date : 22 Feb 90

UpDate

- e ar e e e wm wm e e e er e em e A e em S mE Gm ew a ws em em em e e e ee e

/*

terror (Message)
Message;

fprintf (stderr,"\aCritical terminating error: "):;

fprintf (stderr,Message);
fprintf (stderr,"\n");
exit(l);

end file hi.c */

/*auzaa---aa-s::s::::

Project : KOOLA shell
Sub-Project Human interface
File : test_fm.c

Author : Robert D. Rourke

Start Date : 01 Mar 1990

= = @ | =R == o= o= o=

hon

*/

122

= Update : 28 Mar 1990 =
*/
#define TESTON
/*#define RMXON*/
#include <stdio.h>
#include <ctype.h>
#include "extreq.h"
#include "huminter.h"
#include "hi.hx"
#include "fm.hx"

void test_f

#define

J* = = - = =
- Functi
- Input
- Output
- Action
- Date
-~ UpDate

main ()

{

test_f£
exit (0

}

/* = = « - =
- Functi
- Input
- Output
- Action
- Date
- UpDate

- = as s o -

void test_f£

int i,
float
hi_con

m{void) :

CLEARBUF getchar();

on : main -

none -
Test the readaing the printing of file -
22 Feb 90 -

m{);
)

on : test_fm -
: none -

none -

Test the human intreface -

22 Feb 90 -

m{)

k;
response;
structor():

extern_constructor();
intern_constructor():

wait ()
for (i

}
wait ()
for (i

woit ()

for (k

—1; i<x=NUMQUEST; i++) {
printf("\n %d The state %d ",i,intern_getstate(i));

=1;i<=NUMEXRQ; i++)
printf("\nEX state %d ",extern_getstate(i)):

.
’

=0;k<5;k++) {
printf ("\n\nEnter a high level fact ID: "):
scanf ("%d", &i) ; CLEARBUF

123

regsponse = fact_valuel(i);
printf ("\n--->The answer to %u is %f ", i,response);

wait ();
}

for (i=1;i<=NUMQUEST;i++))
printf("\n state %d ",intern_getstate(i));
wait();

for (i=1;i<=NUMEXRQ;i++)
printf("\nEX state %d ",extern_getstate(i)):;

printf{"\n Test Complete\n");
} /*end test_fm*/

/*a = = = = = = = = =z = = = = == = = = = = = = = = = = = = = = = = = =

= Project : KOOLA programing language =

= Sub-project : Include file for external requests =

= Language : C-286 for intel RMX operating System =

= File : extreqg.h =

= Date : 02/05/1990 =

o= = = = = = = = = = = = a= = = = = = = = = = = == = = - = = = = = = = =
Warning: do not make any changes to this file because it can be

automaticaly update by the KOOLA compiler

*/

#ifndef _EXTRQINTER

#define _EXTRQINTER 1

/*
Some maximum values used to ccmpile the interface to COSI:

*/

fdefine NUMEXRQ 3 /* total number of questions

defined */
#endif

/* end file huminter.h */

/* = = = = = = = = = = = - = —3 = = = = = = = = = = = = = = = = = - =
= Project : KOCOLA shell =
= Sub-Project : Human interface =
= File : hi.h =
= Author : Robert D. Rourke =
= Start Date : 22 Feb 1990 =
= Update : 28 Mar 1990 =

x/

¥define DATAFILE "huminter.dat"

ddefine Q_SIZ2E 61

fdefine A_SIZE 31

#define CLSPACE 2

#define DATESIZE 15

#define TYPESIZE 4

tdefine DATELOQC 9

tdefine TEXTID rT

#tdefine NUMRID N’

/* list of all questions */

typedef stru
{

124

ct

unsigned quest_type:;

char*
} questref;
/* a nume

index;

ric-based question node */

typedef struct

{

char question([Q_SIZ2E];

float
} numrquest;

/* a text

upper, lower;

-based question nocde */

typedef struct

{

char question([Q_SIZE];
char num_ans;

char a
| textquest;

#ifdef RMXON

nswer [MAXANSWERS] [A_SIZE];

void test_hiread():
void terror():
void hi_constructor();
float ask_numr ()’
float ask_text();
float ask_quest ()
#else
void test_hiread(void);
void terror (char Errxor_message(]l);
void hi_constructor(void);
float ask_numr (numrquest* one_numeric_struc);
float ask_text (textquest* one_text_struc);
float ask_quest (unsigned quest_id);
#endif
/*=:===_-====================-
= Project KCOLA shell
= Sub~Project : Fact Manager cof the Belief Manager
= File : fm.hx
= Author : Robert D. Rourke
= Start Date : 06 Mar 1990
= Update : 28 Mar 1990
Description:
This file defines the "external" members of the fact manaqge:
x/

#ifdef RMXON

void
void
float

telse
void
void
float
#endif
/*

extern_constructor();
intern_constructor();
fact_value();

extern_constructor(void);
intern_constructor(void);
fact_value(unsigned highlevel factid);

end file fm.hx */

125

[T T A T

/*a==----====’=n====.’====s
= Project : KOOLA shell
= Sub-Project : Human interface
= File : hi.hx
= Author : Robert D. Rourke
= Start Date : 22 Feb 1990
= Update : 28 Feb 1990
Access procedure for other tasks to use the hi
£/
kifdef RMXON
float ask_quest();
void hi_constructor();
telse
float ask_quest (unsigned quest_id):
void ai_constructor{void);
fendif
/*==================—.====
= Project : KOCLA shell
= Sub-Project : Human interface
= File : fr.h
= Author : Robert D. Rourke
= Start Date : 02 Mar 1990
= Update : 05 Mar 1990
k/— —————————————————————
fdefine FOREVER Ox£fff
tdefine DATAFILE "extreqg.datc"”
fdefine CLSPACE 2
f{define DATESIZE 40
tdefine TYPESIZE 4
fdefine UNDEFINED -1
tdefine UNAVAILAB 1
idefine KNOWN 2
fdefine INITVAL ~-33.0
fdefine EXCESS 500
fdefine DATELOC 3
S * list of any fact */
typedef struct
{
unsigned cositoken;
unsigned state;
tloat value;
} fact:;
$itdef RMXON
unsigned intern_getstate();
unsigned intern_gettoken():
tloat intern_getvalue();

void
void
void

unsigned
unsigned
float
float

#else

unsigned
unsigned
float

void
void
void

unsigned
unsigned
float
float

#endif
/*

end file

*

Pr
Su
La
Fi

Wa

*/
#ifndef
#define
/*

*/
#define
defined

So

#endif
/*
/*

end £

{2 VI | 1 A

Descript
Th

126

test_f£m();
terror();
wait ()

extern_getstate();
extern_gettoken ()
extern_getvalue ();
rqst_ext();

intern_getstate (unsigned int_index):;
intern_gettoken (unsigned int_index);
intern_getvalue (unsigned int_index);

test_fm(void);
wait (void);
terror (char* Messagestr);

extern _getstate (unsigned ext_index);
extern_gettoken (unsigned ext_index);
extern_getvalue (unsigned ext_index);
rgst_ext (unsigned fact_id);

fm.h */
oject KOOLA programing language
b-project Include file for external requests
nguage C-286 for intel RMX operating System
le extreq.h -
te 02/05/1990 =
rning: do not make any changes to this file because it <an t.:
automaticaly update by the XOOLA compiler
_EXTRQINTER
_EXTRQINTER 1

me maximum values used to compile the interface to COSI:

NUMEXRQ 3 /* total number of

Guestion:,

*/

ile huminter.h */

Project KCOLA shell -
Sub-Proiject Fact Manager of the Belief Manager

File fm.hx -
Author Robert D. Kkourke

Start Date 06 Mar 1990 =
Update 28 Mar 1990 -
ion:

is file defines the "external" members c¢f£ rthe fact manaqys:r

127

*x/

#ifdef RMAON

void extern_constructor();

void intern_constructor{);

float fact_value();

#else

void extern_constructor(void):

void intern_constructor(void);

float fact_value(unsigned highlevel factid);

¥endif

/x

end file fm.hx */

/*=====l============================‘
= Project : KOOLA shell =
= Sub=-Project : Human interface =
= File : pie.h =
= Author : Robert D. Rourke =
= Start Date : 22 Feb 1990 =
= Update : 23 Mar 1990 =

i/_._ -STTErEEETEEEEAOm oo m o m T T

#define DATAFILE "prknbase.dat"

#define MAXFACT 20

#define CLSPACE 2

#define DATESIZE 15

#define TYPESIZE 4

#define DATELOC 9

#define EXCESS 500

#define THENRULE 1 /* possible rule senarics */

$define ELSERULE 2

#define CONTINUED 3

#define ENDRULE 0x10

#define MASKEND 3

4define DEFINED 1 /* states */

#define UNDEFINED 2

#define UNAVAILABLE 3

$define INVALIDPR -333

]

* One component of the primary knowledge base
*/

typedef struct
{

char contex; /* then or else clause */
int fact;

char prob;

char weight;

char opratr;

float cprand;
} pr: /*primary rule*/

tvoedef struct

{

128

unsigned num_fact;

pr rule [MAXFACT] :

float dyprob; /* dynamical determinad
=dprob/10,000 */

char state;
} prmblf;

#ifdef RMXON

int solv_brule();

int chk_logic ():

#else

int solv_brule(pr* startof_rule);

int chk_logic (float* operandl, int operator, float* operani’);
#endif

/*=====================ﬂ====$===:S=.:

= Project : KOOLA programing language

= Sub-~project : Include file for primary inference eng

= Language : C-286 for intel RMX operating System

= File : knowbase.h

= Date : 02/05/1990

Warning: do not make any changes to this file because it can !.o
automaticaly update by the KOOLA compiler

*/

#ifndef _PRIMARYINF

#define _PRIMARYINF

/*

Some maximum values used by the RMX C compiler for the inference

engines:

*/

#define NUMPRMBLF 12 /* total number of primaty
beliefs */

#define NUMSECBLF 9 /* total number of seconda:y
beliefs */

#define NUMGOAL 10 /* total number of goals */
#endif

/* end file knowbese.h */

/*===========================a=::=..
= Project : KOOLA shell -
= Sub-Project : Human interface :
= File : pie.c
= Author : Robert D. Rourke
= Start Date : 06 Mar 1990
= Update : 23 Mar 1990

x/ o T T " - S B o

/*#define TESTON*/

$define RMXON

#include <stdio.h>

#include <ctype.h>

#include "knowbase.h"

#include "fm.hx"

#include "pie.h"

*/

/*

/*
*/

129

Function : find_pbelief -
Input : none -
Qutput : none -
Action : Test the reading the printing of file -
Date : 22 Feb 90 -
UpDate : -
------------------------------ */

find_pbelief (pr_belief)

pr_belief;
extern problf Prm btree [NUMPRMBLF];
prmblf* this_blf;
int cur_fact;
pr* this_fact;
int end_fact;
int solved flg;

fleoat ac_prob, ac_weight;

/* convert from a primary belief ID into a pointer to that belief
if (pr_belief>NUMPRMBLF | |pr_belief<«0)

terror ("Primary belief ID out of rang");
this_blf = &Prm_btree(pr_belief-1]3;

solved_flg = 0;

ac_prob = 0.0;

ac_weight = 0.0;

end_fact = this_blf->num_fact;

/* £ind out if the belief i3 known */
if (this_blf->state==UNAVAILABLE) return (INVALIDPR);
if (this_blf->state==DEFINED) return (this_blf->dyprob);

/* the belief must be UNDEFINED, this routin will try to define

for (cur_fact=0;cur_fact<end_fact ;cur_fact++) {
printf (*\n\nChecking the next rule:");*/
if (sclv brule(thls fact-&(thls blf~ >rule[cur fact]))) {
printf ("\n\nthe outcome is true assign p %i w %i ",
this_fact~->prob,this_fact->weight) ;

x e} b +

a c _ P
{(float) {this_fact->prob) * (float) (this_fact->weight)/10%.0;

/*

ac_weight += this_fact->weight;
printf ("\nThe current value of prob and wight

%f",ac_prob,ac_weight);*/

/*
/*

solved flgt+;
)
else printf ("\nthe outcome false nothing assigned");*/
printf ("\nThe current wvalue of prob and wight

", ac_prob,ac_weight);*/

4/*

/* make sure we are at the end */

x/

i&-

%

PRy
L&1Y

while (this_blf->rulefcur_fact].contex<ENDRULE) cur_fact-++;

}
print £ ("\nThe current value of prob and wight

i, ac_prob, ac_weight);*/

/t

’ *

if (solved_flg) {
printf("\nBelief solved:");*/
this_blf- >dyprob=100*ac_prob/ac weight;
print£ ("\nthe output probability is: %f ",this_blf->dyprcd) ;

3t

*/

/*

130

this_blf->state = DEFINED;
return (this_blf->dyp~ob);
}
else {
this_blf->state = UNAVAILABLE;
printf ("\nthe belief is not available™);*/
this_blf->dyprob=INVALIDPR;
return (INVALIDPR);
}

} /*find _pbelief*/

*/
int
pr*

/*

Function solv_brule -
Input : pointer to the start of rule -

Qutput outcome of the the antecedent -
Action decides if the facts suport the anteedent -
Date : 07 Mar 90 -
UpDate : -

set the current fact to the first
do until the current fact-cluase is false or the rule ends
compaire the current fact to see is true
if found false terminate with false
set the current fact to the next
if the next fact is not part of this rule terminat true

solv_brule(this_fact)
this_fact;

int fact_id;
float fact_val;

char operator;
float number;

int logics:

logics = (this_fact->contex & MASKEND)==THENRULE;
printf ("\nthe logic is based on (=else l=then ii", lcgics);*/
for (;;this_fact++) |

fact_id = this_fact->fact;

operator = this_fact->opratr;

number = this_fact->oprand;

fact_val = fact_value(fact_id) :

$ifdef TESTON

fendif

/*-_

printf("\nThe fact we are looking for is:ki ™, fact_id);
printf (" \nthe operator is %i", operator);
printf("”\nthe number is %f", number);

printf ("\nThe fact value is:%f ",fact_val);

/* test for one false fact that can terminate the rule */
if (!chk_logic(&fact_val,operator,&number)) return(!loyi..j,
/* if all facts or pcssitive, then the rule i3 possitive */
if (this_fact->contex > ENDRULE) return (logics);

Function : cnk_logic -

Input : operandl ? operatnd22 == -

*/

int
float*
int
float*
{

] *

131

Qutput : logical outcome

Action : decides if the facts suport the anteedent
Date : 07 Mar 90

UpDate

- v wm ww wm s aw wm e wm e em mm tw Mm mws am mw em mm e mm am mm am me e e ae

chk_logic (float operandl, int operator, float operand?)

chk_logic (operandl, operator, operand2)
operandl;
operator;
operand2;

printf (" The operand 1is (at the chk_logic: %i,

%£",operator, *operandl, *operand2) ; ¥/

switch (operator) {

case 1l:
if (*operandl==*coperand2) return (1);
break;

case 2:
if (*operandl<*operand2) return (1);
break;

case 3:
if (*operandl>*operand2) return (1});
break:

case 4:
if (*operandl<=*operand2) return (1);
break:

case 5:
if (*operandl>=*operandc) return (1);
break;

case 6:
if (*operandl!=*operand2) return (1):
break;

default:

terror ("unknown compar operator®);
}
printf ("fell through") */
return (0);

Function : pie_dump -
Input : none

Output : none

Action : reads the primary knowledge base form file
Date : 06 Mar 90

UpDate

pie_dump ()

extern prmblf Prm btree [NUMPRMBLF] ;
unsigned numfacts; -

unsigned curtfact;

int j:

for (j=0; J<NUMPRMBLF; j++) {
numfacts=Prm btree{j].num_fact;
for (curtfact=0;curtfact<numfacts;curtfact++)

132

printf(" R: %i", Prm_btree(j].rule[curtfact].contex);

wait () ;

H /* enter the facts directly */
' for (curtfact=0;curtfact<numfacts;curtfact++)
printf(" F: %i", Prm_btree{j].rule(curtfact].fact):

wait () ;

/* enter the probability in it is % form */
for {curtfact=0;curtfact<numfacts;curtfact++)

printf(" P: %i", Prm_btree[j].rulelcurtfact].pruob),
wait () :

/* enter the weight, it is in % form */

for (curtfact=0;curtfact<numfacts;curtfact++)
printf(" W: %i", Prm btree[jl.rule(curtfact].weight),
wait () ;

/* enter the operator */
for (curtfact=0;curtfact<numfacts;curtfact++)

printf (" o0d: %i", Prm_btree(j].rulefcurtfact].oprat:),
wait () ;

/* enter the number (float) it is compaired to */
for (curtfact=0;curtfact<numfacts;curtfact++)

zintf(" 0: %f", Prm btree(jl.rule({curtfact].oprand),
wait () ;

} /*until EOF */
} /*end pie_dump{) */

/* _________________________________
- Function : pie_constructor -
- Input : none ~
- Output : none -
- Action : reads the primary knowledge base form file -
- Date : 06 Mar 90 -
- UpDate : 08 Mar 90 format of rule contex -
________________________________ - */
/*
Principle storage of symbolic question Infcrmation

*/

/* the list of all bliefs forming a tree */

prmblf Prm_btree [NUMPRMBLF];

void pie_constructor()

{

extern prmblf Prm_btree {NUMPPMELF];
char date_stamp [DATESIZE+36];

char dummy {80} ;

unsigned numfacts;

unsigned curtfact;

int i;

int input:

133

int prvrule, newrule;
prmblf* this blf;
FILE* datafile;

hi_constructor();

extern_constructor();

intern_constructor();

/* open the input data file terminate if error */

if ((datafile = fopen(DATAFILE, "r"))==NULL)
terror("Missing the primary KB file");

/* remove the header store date stamp */

/* printf ("\nLoading the primary knowledge base...");*/
for (i=1;i<DATELOC;i++) fscanf(datafile, "%s",dummy);
fscanf (datafile, " %s ",date_stamp);
printf ("\nPrimary KB date stamp: %s\n",date_stamp):

/* load the questions */
for(this_blf=Prm_btree;:this_blf++) ({
print€("...");

/* read the number of suporting facts and save this wvalue */
if (fscanf (datafile, "%d",&numfacts)==EOF) break;
/ * printf ("Number of facts: %i",numfacts):*/
this blf->num_fact = numfacts;
this blf->state = UNDEFINED;
this_blf->dyprob = (float) INVALIDPR;

/* enter the first rule ids */

fscanf (datafile, "%d",&newrule):
/* printf{"\nFirst rule id: %i%,newrule);*/

if ((prvrule=newrule)>EZXC
this blf->rule(0].contex=ELSERULE;

else this_blf->rule([0].contex=THENRULE;

[&]
w
w

/* enter the rest using the prv rule to chain x/
for (curtfact=l;curtfact<numfacts:;curtfact++) |

/* fscanf (datafile, "%i",&newrule);*/
fscanf(datafile, "%d",&newrule);
/* printf ("\nRule id: %i",newrule); */

if (newrule>EXCESS)
this_blf->rule(curtfact] .contex=ELSERULE;
else this_blf->rule{curtfact].contex=THENRULE;

1f (prvrule!=newrule) {

/*indicate that the previocus fact was the last of
the rule */

this_blf->rule[(curtfact-1})].contex += ENDRULE;
}

prvrule=newrule;
this_blf->rule((curtfact-1)].contex += ENDRULE;
A wait ();*/
/* enter the facts directly */
for (curtfact=0;curtfact<numfacts;curtfacct++) {

fscanf (datafile, "%d", &(this_blf->rulelcurtzact].fazs))
A printf ("\nFact id: %i",this_bif->rule{curtfacet].facc);~/

bt

o g S B T

134
/* wait();*/

/* enter the probability in it is % form */
for (curtfact=0;curtfact<numfacts;curtfact++) |
fscanf (datafile, "%d",&input);
this_blf->rule[curtfact] .prob=(char)input;
/* printf ("\nProb id: %d",this_blf->rule{curtfact] .prob); */
}

/* wait();*/

/* enter the weight, it is in % form */
for (curtfact=0;curtfact<numfacts;curtfact++) |
fscanf (datafile, "3%d",&input);
this_blf->rule([curtfact] .weight=(char) input;
/* p r in¢t £ (" \ nWe ig h t i
%d",this_blf->rulel[curtfact] .weight);*/
}

/* wait();*/

/* enter the operator */
for (curtfact=0;curtfact<numfacts;curtfact++) |
fscanf (datafile, "%d",&input);
this blf->rule{curtfact] .opratr={char) input;
/* p rin¢tf ("\ nOopoz«ratr i
%i",this_blf->rulel[curtfact].opratr);*/
}

/* wait():*/

/* enter the number (float) it is compaired to */
for (curtfact=0;curtfact<numfacts;curtfact++) |

£ s ¢ a n £ | d a t a £ i 1 e ,
"%£", & (this_blf->rule(curtfact)}.oprand));
/* p rintf (" \ nOoporatrt id

%f",this_blf->rulelcurtfact] .oprand);*/
}
/* wait():*/

} /*until EOF =/

fclose (datafile) ;

printf ("\nPrim Knowledge loaded"):
} /*end pie_constructor()*/

/*

end file pie.c */

/*===========================.—_==-_-_..
= Project : KOOLA shell =
= Sub-Project : primry infernce =
= File : test_pie.c -
= Author : Robert D. Rourke -
= Start Date : 23 Mar 1990
= Update : 23 Mar 1990 -

« B - B B S o

/*#define TESTON*/

#define RMXON

¥include <stdio.h>

135

#include <ctype.h>
#include "pie.hx"

void pie_test();

/% = = = % e e = e = e = oe e = om = m .= = e o= == = = e = ===
- Function : main -
- Input : none -
- Qutput : none -
- Action : Test the reading the printing of file -
- Date : 23 Mar 90 -
- UpDate : 23 Mar —/
main()
{
pie_constructor():
wait ()
pie_test();
pie_dump();
}
/% = = m oo e e mm e e m e e m e m e e e = = = o= o= = -
- Function : pie_test -
- Input : none -
- Output : none -
- Action : Test the reading the printing of file -
- Date : 22 Feb 90 -
- UpDate : 23 Mar 90 -
_________________________________ *x/
void pie_test()
{
int belief;
float value;
for (;:) |
printf ("\n\nEnter a primary belief, (0=exit): *);
scanf ("%d", &belief);
getchar();
if (belief==0) break;
value = find pbelief (belief);
printf ("\n\n Value calculated is : 3f",value):;
}
printf ("\nTest ended.");
}
/"= = = = = = = = = = = = = = = = = = 3 = = = = = = = = = = = = = = =
= Project : KOOLA programing language =
= Sub-project : Include file for external reguests =
= Language : C-286 for intel RMX operating System =
= File : extreqg.h =
= Date : 17/04/1990 =
Warning: do not make any changes to this file because it can be
automaticaly update by the KOOLA compiler
*/
4ifndef _EXTRQINTER
tdefine _EXTRQINTER 1
/i

Some maximum values used to compile the interface tc COSI:

£/

136

#define NUMEXRQ 3 /* total number of
defined */
#endif
/* end file huminter.h */
/*===ﬂs-’==ﬂ==:-ﬂﬂ'ﬂ==’=a=-=====
= Project : KOOLA shell
= Sub-Project : Human interface
= File : pie.hx
= Author : Robert D. Rourke
= Start Date : 23 Mar 19990
= Update : 23 Mar 1990
*/
#ifdef RMXON
void pie_constructor ();
void pie_dump ()
float find pbelief();
#else
void pie_constructor (void);
void pie_dump (void) ;
float find pbelief(int belief_ id):
#endif
/*==========ﬂ=============ﬂ=====
= Project : KOOLA shell
= Sub-Project : Secondary Inference Engine
= File : queue.hx
= Author : Robert D. Rourke
= Start Date : 25 Mar 1990
= Update : 25 Mar 1990
x/
#ifdef RMXON
int qupop () ;
int quexam() ;
void qupush() ;
void qu_constructor() ;
int quempt () ;
#else
int qupop (void);
int quexam(void);
void qupush(int);
void qu_constructor (void);
int quempt (void) ;
#endif
/*==============================
= Project : KOQOLA shell
= Sub-Project : Secondary Inference Engine
= File : sie.c
= Author : Robert D. Rourke
= Start Date : 23 Mar 1990
= Update : 30 Mar 1990
*/

/*#define TESTON*/
/*#define RMXON*/

questions

no

f
t
f

4

[A]

o
e

Lo led

e

P e

#inclu

de

#include

#inclu
#inclu

de
de

#include
#include

Pt

Functi
Input
Qutput
Action
Date
UpDate

find_s
goal;

extern
int

if (go

/* cre
qu_con
qupush
/* mai
for (;

137

<stdio.h>
<ctype.h>
"knowbase.h"
llpie R hx"
"gueue.hx"
*gie.h"

on find_sbelief
none
none
reads the primary knowledge base form file ~
26 Mar 90 -

belief(goal)

secblf Sec_btree [NUMSECBLF] ;
curt_blf;

al > NUMSECBLF)
terror ("Goal belief out of range");

at the stack and put the goal on it */
structor();

(goal--);

n loop till goal is sclved */

)

#ifdef TESTON

#endif
x/

#ifdet

#endif

#ifdef

¥endit

#ifdef

#endif

printf ("\n\nTop of sbelief: ");

/* examine the next belief if it is goal and defined success
curt blf = quexam()-1;
TESTON
printf ("\n Now pulled %d",curt_blf+l);
printf (" it has a state of: 3%d",Sec_btree(curt blf].state);
if (curt_blf==goal) {
if (Sec_btree(curt_blf].state==DEFINED) {
/* success */
TESTON
printf ("success");
return (Sec_btree[curt_blf] .dyprob);
)
if (Sec_btreelcurt blf}.state==UNAVAILABLE) {
/* failure *7
TESTON
printf ("failure™):

return (INVALIDPR);
}
} /*end if goal*/

switch (Sec_btree{curt_blf].state) |
case DEFINED:
case UNAVAILABLE:
qupop () ;
break;
case UNDEFINED:

138

sove_suport (curt_blf);
break;
default:
terror ("Unkwon state"):
break;
}

}/* repeat forever */
}/*end function find sbelief*/

/*

float find_pbelief():

*/

[m = = = m = = mm === e = e == = - = e e e e e
- Function : sove_suport

- Input ¢ target belief

- Qutput : none

- Action : tryes to solve the target belief

- Date : 27 Mar 90 -
- UpDate -
_________________________ _ . e e e e o kg
binf Suports{MAXBELF];

/ *#define TESTSOLV*/

void sove_suport (targ_blf)
int targ_blf:
{

extern binf Suports[MAXBELF];

extern secblf Sec_btree[NUMSECBLF] ;
int curt_supt;

int solvable,available, enough:

sr* this__sup;

binf* this_solv;

float ac_prob, ac_weight:
float prob, weight;
float minprob;

solvable = 1; /* assume there will be enough info .
*/
/r
* step 1 load all suporting beliefs into the suport array
*/
#ifdef TESTON
printf ("\nStart of save, Number of SUpDOLY
td",Sec_btree(targ blf] .num belf):
fendif
for (curt_supt=0;curt_supt<Sec_btree({targ blf] .num belf;curt - .-
{
this_sup - &(Sec_btree(targ blf] .rule([curt_suptj);
this_solv = &Suports{curt_supt];
#ifdef TESTSOLV

printf ("\nAt the top of the loop in sclve
blef=%d", this_sup->belf);
#endif
if (this_sup->belf>EXCESS) |
#1fdef TESTON
printt ("\nThe bel_ef was found primary”):
#endif

this_solv->dyprob = £ind ptelief(this sup--beli-.000 .

s he 22

139

else |
$ifdef TESTON
printf ("\nThe belief was second now testing its state:
td", find_state(this_sup->belf)};
#endif
switch {(find_state(this_sup->belf}) |
case UNDEFINED:
qupush (this_sup->belf)
this_solv->dyprob = -6666.0;/*only for error
trapping */
solvable = 0;
break:
case DEFINED:
this _solv->dyp=zohb =
find_val(this_sup->belf);
break;
case UNAVAILABLE:
this_solv->dyprob = (float) NOTAVALABLE;
break:
default:
#ifdef TESTON

", find_state(this_sup->belf));

tendif
terros ("Unkown state of belief"):
break:;

]
}/*end for all suporting beliefs step 1 */
if (!solvable) |

#ifdef TESTON
printf ("\nCould not solve the target this time"):

#endif
ceturn;
1
/ %
* Step 2 try to derive the value of the current belief
* Uses the infor stored in the solve array
x/
ac_prob = 0.0;
ac_weight = 0.0;
available = 0;
/* for all suporting beliefs */
for (curt_supt=0;curt_supt<Sec_btree[targ blf] .num belf;curt_supt++)
{
this_sup = &(Sec_btreeltarg _blif].rule{curt_supt]);
prob = (float)this_sup->prob; /* from the
knowledge base */
weight = (float)this_sup->weight; /* £rom the knowledge base
*/
enough = 0; /* 1if the following sub-set can

conclude */
minprob = 100.0; /* find the worst case beleif */

for (;:;curt_supt++) |{
this_sup = &(Sec_btreeltarg blf].rulelcnrt_suptl);
this_solv = &Scports(curt_supti;
tifdef TESTSOLV

140

printf {("\nThe prob of the next belief: LS
",this_solv->dyprob) ;
#endif
if (this_solv->dyprob > 0) { /* by defin. a valid proo
*/
enough++;
if (this_solv->dyprob < minprob)
minprob = this_solv->dyprob:;
}
/* UNTIL last belief in rule */
if (this_sup->contex >= ENDRULE) break;
}
$ifdef TESTSOLV

printf ("\nOne complete rule set examined min
:%£", minprob) ;
#endif
if (enough) {
available++;
ac_prob += minprob*prob*weight/100.0;
ac_weight += weight;
#ifdef TESTSOLV
printf ("\nThe current value of prob and wight %t it",
ac_prob,ac_weight) ;
#endif

}
#ifdef TESTON

else printf ("\nNot enough info ");
#endif

}/*end for all suportin beleirfs*/
if (available) {
#ifdef TESTON
printf (“\nThe current value solved of prob and wight *& 4",
ac_prob,ac_weight);
printf ("\n the final prob is: %f", ac_prob/ac_weight);

#endif
/* change the state */
Sec_btree(targ blf].dyprob = ac_prob/ac_weight;
Sec_btree(targ blf].state = DEFINED;
}
else {

#ifdef TESTON
printf ("\nthe current belief was not sloved"):

#endif
Sec_btree(targ_blf].dyprob = (float) NOTAVALABLE;
Sec_btree[targ blf].state = UNAVAILABLE;
}
#ifdef TESTSOLV
wait();
#endif
return;
} /*end functicn sove_suport */
/¥ = = o e e e e h e e m e e m o m e e == m e e - . o - - - - .
- Function : find_state find val
- Input : secondary klelief in highlevel ID -
- OQutput :
- Action : tryes to solve the target belief -
- Date : 27 Mar 90 -
- UpDate : 27 Mar 90 -

int find_state (belief)

141

int belief;

{
extern secblf Sec_btree [NUMSECBLF] ;

if (belief>NUMSECBLF) {
printf ("\n\n belief ID in error: 3%d\n",belief):;
terror ("Belief ID out of range at find_state");

return (Sec_btree[--belief].state);

float find val (belief)
int belief;

extern secblf Sec_btree [NUMSECBLF];

if (belief>NUMSECBLF) {
printf ("\n belief ID in error: %d\n",belief);
terror ("Belief ID out of range at find val.");

)
if (find_state(belief) != DEFINED)

terror ("Trying to retreave an undefined belief");
return (Sec_btree[--belief].dyprob);

/k _________________________________
- Function : sie_dump -
- Input : none -
- Output : none -
- Action : reads the primary knowledge base form f£ile -
- Date : 06 Mar 90 -
- UpDate : -

void sie dump()

extern secblf Sec_btree [NUMSECBLF];
unsigned numbelfs;
unsigned curtbelf;
int j:

printf ("\n\n Sec Knowledge base dump:");

for (3=0; JKNUMSECBLF; j++) {
numbelfs=Sec_btree{j].num belf;
if (numbelfs) {
printf ("\nThe number of suport of: %d is: %d ", 3+,
numbelfs) ;
print€ ("\n Its state and dynamic prob s:id,
pr:if\n", Sec_btree(j).state,Sec_btree(]j] .dyprob);
for (curtbelf=0;curtbelf<numbelfs;curtbelf++)
r in¢t £ (" R : $ 4 " ,
Sec_btree(j].rule{curtbelf].contex);
printf ("\n");

/* enter the belfs directly */
for (curtbelf=0;curtbelf<numbelfs;curtbelf++)
rint £ (" 3 : %
Sec_btiee[j].rule({curtbelf).belf);
printf ("\n");

2

142

/* enter the probability in it is % form */
for {curtbelf=0;curtbelf<numbelfs;curtbelf++)
r int £ (" P od "
Sec_btree([j].rule[curtbelf].prob);
printf (*\n");

r

/* enter the weight, it is in % form */

for (curtbelf=0;curtbelf<numbelfs;curtbelf++)
p r int £ (" W o $ 4 "
Sec_btree{j]l.rulelcurtbelf].weight);
wait();

}

} /*until EOF */
} /*end sie_dump () */

J = = e e e e e e e e e e e e m e e e m e e m e m - - -
- Function : sie_constructor -
- Input : none -
- Output : none -
- Action : reads the secondary knowledge base from file -
- Date : 23 Mar 90 -
- UpDate : 23 Mar 90 -
_________________________________ x/

/*

Principle storage of secondary knowledge base

*/

secblf Sec_btree [NUMSECBLF] ;

void sie_constructor()

/*#define TESTCONS*/

{

extern secblf Sec_btree[NUMSECBLF);
char date_stamp[DATESIZE+56]
char dummy (80] ;
int numbelfs;
int curtbelf;
int i
int input;
int prvrule, newrule;
secblf* this_blf;
FILE* datafile;
pie_constructor():;
/* open the input data file terminate if error */
if ((datafile = fopen(DATAFILE, "x"))==NULL)

terror ("Missing the primary KB file"):
/* remove the header store date stamp */
for (i=1;i<DATELCC;i++) fscanf(datafile, "%s",dummy);
fscanf (datafile, " ¥s ",date_stamp):
printf ("\nSecondary KB date stamp: %s\n",date_stamp);
/* load the rules */
for(this_blf=Sec_btree;;this_blf++) |

printf{(".");
/* read trhe number cf suporting Suports and zave this value */

if (fscanf(datafile, "%d",&numbelfs)==ECF) breax;
#ifdef TESTCONS

143

printf ("Number of belfs: %d",numbelfs);
#endif

this_blf->num_belf = numbelfs;

this blf->state = UNDEFINED;

this_blf->dyprob = (float)INVALIDPR;

/* enter the first rule ids */
if (numbelfs > 0) {
fscanf (datafile, "%d",&newrule);
#ifdef TESTCONS
printf ("\nFirst rule id: %d",newrule);
tendif
i€ ({({prvrule=newrule)>EXCESS)
this_blf->rule(0}.contex=ELSERULE;
else this_blf->rule(0].contex=THENRULE;
}
/* enter the rest using the prv rule to chain */
for (curtbelf=1;curtbelf<numbelfs;curtbelf++) {
fscanf(datafile, "%d",&newrule);
$ifdef TESTCONS
printf("\nRule id: 3%d",newrule);
#endif
if (newrule>EXCESS)
this_blf->rule(curtbelf].contex=ELSERULE;
else this_blf->rulefcurtbelf].contex=THENRULE;

if (prvrule!=newrule)
/*indicate that the previous belf was the last of
the rule */
this_blf~>rule((curtbeif-1}].contex += ENDRULE;
)
prvrule=newrule;
I
/* the last is aways an endrule */
this_blf->rule] (curtbelf-1l)}.ccntex += ENDRULE;

#ifdef TESTCONS
wait{):
fendif

/* enter the belfs directly */
for (curtbelf=0;curtkelf<numbelfs;curthelf++) |
fscanf(datafile, "%d",&(this_bl<->rule(curtbelf] .belf)):
#ifdet TESTCONS
printf("\nbelf id: %d",this_blf->rule{curtbelf].belf);

}
t1ifdet TESTCONS
wait ()

/* enter the probability in it is % form =/
for (curtbelf=0;curtbelf<numbelfs;curtbelf++) {
fscanf({datafile, "3%d",&input);
this_blf->rule(curtbelf].prob=(char)input;
#ifdef TESTCONS
printf{"\nPrcb id: 3%d“,this_blf->rulelcurtbelf].prob};
tendif
]

tifdef TESTCONS
wait ();

144
#endif

/* enter the weight, it is in % form */
for (curtbelf=0;curtbelf<numbelfs;curtbelf++) {
fscanf (datafile, "%d",&input):
this_blf->rule(curtbelf].weight=(char) input;
#ifdef TESTCONS
print f£f (" \n Weligh't
$d",this_blf->rule(curtbelf] .weight);
#endif
}

#ifdef TESTCONS
wait ()
#endif

} /*until EOF */

fclose({datafile);

printf("\nSecondary Knowledge loaded \n");
} /*end sie_constructor()*/

/*
end file sie.c */
/'k==========================s.::::‘-
= Project : KOOLA shell
= Sub-Project : Secondary Inference Engine
= File : queue.c
= Author : Robert D. Rourke
= Start Date : 25 Mar 1950
= Update : 27 Mar 1990
*/_—_ B S S T T T
/*#define TESTON*/
/*#define RMXON*/
#include <stdio.h>
#include <ctype.h>
#include *queue.hx"
#define MAXQUEUE 100
#define TLEMPTY a

/* A stack like queue LIFQ */
typedef struct
{

int tail;
int max;
int info [MAXQUEUE] ;
} lifoqu;
/*
main()
{
int i;

qu_constructor();

for (i=0;i<MAXCUEUE:i++) {
printf("\n IN %1",i);
qupush(i);

1

for (;'quempt();) printf ("\n GUT 3%i",quexam());

145

*/
JX = = = m e = = == e m e e == m e == ===~ e = e — == - -
- Function : qupop
. Input : none
- Cutput : none
- Action : queue-
- Date : 26 Mar 90
- UpDate : 26 Mar 90
int qupop ()
{
extern lifoqu Secqueue;
#ifdef TESTON
printf ("<<poping a belief>>");
#endif

if (quempt ())
terror ("Queue underflow");

return (Secqueue.info[-~Secqueue.taill);

/*end funciton qupop*/

[% = = = e m e = e = m e e e m e = e e m e m = o= e = = -
- Function : quexam
- Input : none
- Qutput : none
- Action : queue-
- Date : 26 Mar 90
- UpDate : 26 Mar 90
int quexam()
{
extern lifoqu Secqueue;
#ifdef TESTON

printf ("<<examing a belief>>");
$endif

if (quempt ())
terror ("Queue underflow");

return (Secqueue.infol(Secqueue.tail-1)1]);

/*end funciton quexam*/

- Function : quempt
- Input : none
- Output : 0 if not emplty, 1 if empty
- Action : queue-
- Date : 26 Mar 90
- UpDate : 26 Mar 90
int quempt {)
{
extern lifoqu Secqueue;

return (Secqueue.tail == TLEMPTY):

146

}
/*end funciton quempt*/

/¥ = = = o e - s mmm e e mm e e e mmm .= m = oo oo -
- Function : qupush -
- ' Input : none -
- Output H none -
- Action : queue- -
- Date : 26 Mar 90 -
- UpDate : 26 Mar 90 -
————————————————————————————————— ﬁ/

void qupush(newinfo)

int newinfo;

{

extern lifoqu Secqueue;
#ifdef TESTON
printf ("<<pushing a belief>>");
#endif
if (Secqueue.tail >= MAXQUEUE)
terror ("Queue overflow");
Secqueue.info[Secqueue.tail++] = newinfo;

1

/*end funciton qupush*/

J* = = e e e e e e e e m e e e e m e e e e e e e e e e - -
- Function : qu_constructor -
- Input : none -
- OQutput : none -
- Action : queue- -
- Date : 26 Mar 90 -
- UpDate : 26 Mar 90 -
_________________________________ «/

/* Convention:

if tail = 0 then queue is empty

the tail points to an open slot

to enter, tail slot is filled then incremented
*/

lifoqu Secqueue;

void qu_constructor()

{

extern lifoqu Secqueue;

register i;

Secqueue.tail = TLEMPTY;

Secqueuve.max = MAXQUEUE;

for (i=0;i<MAXQUEUE; i++)
Secqueue.info[i])=-22;

}

/*end funciton qu_constructor*/

/* end file queue.c
*/

/*=========================S=:====&!

= Project : KCOLA shell =

Sub-Project : Human interface

File
Author

Update

*/

#define DATAFILE
#define MAXBELF

Start Date

: sie.h

Robert D. Rourke
23 Mar 1990
23 Mar 1990

™ M Oxm 3 s T S 2 2= 4 = T = 3 @ =X

supportin beliefs */

#tdefine CLSPACE

tdefine DATESIZE 15
#define TYPESIZE 4

tdefine DATELQC

#define EXCESS
primar & second */

500

¥define THENRULE 1

*/

#define ELSERULE
¥define CONTINUED
#define ENDRULE
tdefine MASKEND

#define DEF INED
kdefine UNDEFINED
¥define UNAVAILABLE

#define INVALIDPR
#define NOTAVALAEBLE

/*

[FLIN N

[SS 3N]

-444

"sdknbase.dat"
20

0x10

-666

nnounh

/* max naum of

/* diferenc between

/* possible rule senarios

/* added to last rule */

/* blief states */

* One compenent of the secondary knowledge base

x/

typedef struct
{
char
int
char
char

} sr; /*secondary

typedet struct
{
unsigned
sr
float
char
} secblf;

typedef struct
{
float
int
} bing;

¢ifdef RMXON

contex;
belf;
prob;
welght;

rule*/

num belf;

rule (MAXBELF]

dyprob;

state;

dyprob;

state;

int chk_logic ():

/* then or else clause */

148

void sie_dump();

void sie_constructor();
void sove_suport();

int find_state():
float find_val();

float find_sbelief () :
#else

void sie_constructor(void);
void sie_dump(void);

int chk_logic (float* operandl, int operator, float* operand.):
void sove suport(lnt targ_blf);
int find_state(int highlevel_beliefID);

float find val(lnt highlevel_ beliefID);
float find_. |_sbelief (int goal_blelief);

#¥endif

/* - == = == == 3 == -1 o= - = = = o= = x - == == = = = = ax = e E = =3 I= = ~ -
= Project : KOOLA shell
= Sub-Project : Goal Manager =
= File : es.c =
= Author : Robert D. Rourke =
= Start Date : 30 Mar 1990 =
= Update : 30 Mar 1990 =

*/ - - - - = = = = = = -3 - == =

#define TESTON

/*#define RMXON* /

/*#define USEHALOS*/

#include <stdio.h>

#include <ctype.h>

#ifdef RMXON

#include <udi.h>

#include <rmx.h>

#endif

#include "gm.hx"

#include "es.h"

int error_state;
#ifdef RMXON
main() {
extern void WESSTASK{():

printf ("\nAbout to creat");

wait () ;

rg3create$task (PRIORITY, (char*)WESSTASK, (int)0, (char*)0L,STLKL 20,
l,&error_state);

printf ("\n created "):

WESSTASK() ;
}

¥else
void WESSTASK():

main() {

149

WESSTASK () :
}
#endif
[* m o= m m e m o= e m = e m = oo = m e m = om e e = = — = = = = = - -
- Function : WESS$TASK -
- Input : none -
- Output : none =
- Action : -
- Date : 30 Mar 90 -
- UpDate -
________________________________ - */
int Aut_goal:;
void WESSTASK()
{
extern int WESSCCMMANDSDMB;
extern int Aut_goal;
int goal;
int error_state;
int numreturn;
#ifdef RMXON
rq$sleep (1000, &error_state):
#endif
printf ("\n THe WESTASK is running."):;
wait ()
for (;;) |
goal = 1;
for({;goal;) |
gm_constructor();
if (goal=List_goal()) Start_goal(goal):
}
printf {"\n\n Auotomatic monitoring procedures

initiated...\n");

#ifdef USEHALOS
numreturn = rqg$receive$data (WESS$SCOMMANDSDMB,
&Aut_goal,WAIT4EVER, &error_state);

if (numreturn '= sizeof(int)) {
printf ("\nWrong size of token %d",numreturn);
terror ("expert system task"):

}

Start _goal (Aut_goal);

#else
wait ()
#endif
}

)
/t ________________________________
- Function : es$constructor{)

- Input : ncne

- Output : none

- Action : Creates the mail boxes and the ES task

- Date : 30 Mar S0
- UpDate :

- e e e e e e s ms @ e m e e M em wm e wm T w wm we ue e e mA e e e e me e

150

#ifdef RMXON
sdsadsadsad
int WES$SCOMMAND $DMB;
extern void WESSTASK():
extern int WESSCOMMAND SDMB;

void esS$constructor()
{

/* the mail box used to recieve commands */
WES$COMMANDSDMB = rqgS$createSmailbox (DATAMB, &error_state);

/* the main task in the ES */

printf (™\nAbout to creat"):

wait ()

rg$create$task (PRIORITY, (char*)WESSTASK,0, (char*)01l, STCKSIZL,
FLOATS, &error_state);

printf ("\n created "}):;

wait ():

return;

}

#endif
/%
end file es.c */

/*
Project : KOOLA shell =
Sub~Project : Goal Manager -
File : es.c =
Author : Robert D. Rourke =
Start Date : 30 Mar 1990 -
Update : 30 Mar 1990 =

=2 = xRS =2 =R S S = S 2 S &£ &M S X = =T = 2 = I} =T = M| o= = 3w T

[I NI |

*/

#define TESTON

/*#define RMXON*/
/*#define USEHALOS*/

#include <stdio.h>
#include <ctype.h>

#ifdef RMXON
#include <udi.h>
#include <rmx.h>
$endif

#include "gm.hx"
#include "es.h"

int error_state;
#ifdef RMXON
main() {
extern void WESSTASK():;

printf ("\nAbout to creat");

wait (),

rgScreateStask (PRIORITY, (char*)WESSTASK, (int) 0, (char*)QL,ITC/o0.,
l,&error_state);

printf (“\n created ");

151

WESSTASK() ;
}

#else
void WESS$STASK():

main() |

WESSTASK() ;
}

#¥endif

[* = = = = = e m m e m e mm m e e m e — = - = = =~ o
- Function : WESSTASK

- Input : none

- Output : none

- Action

- Date : 30 Mar 90

- UpDate
int Aut_goal;

void WESSTASKI()

extern int WES$COMMANDSDMB ;
extern int Aut_goal;
int goal:
int error_state;
int numreturn;
#ifdef RMXON
rq$sleep (1000,&error_state);
tendif
printf ("\n THe WESTASK is running."):
wait ();
for (;:) |
goal = 1;

for(;gecal;) {
gm_constructor();
if (gocal=List_goal{)) Start_goal(goal);
}
printf {"\n\n Auotomatic monitoring
initiated...\n");

¢ifdef USEHALOQS
numreturn = rgSreceiveSdata (WESSCOMMANDSDMB,
&Aut_goal,WAIT4EVER, éerror_state):
if (numreturn != sizeof(int)) ({

printf ("\nWrong size of token %d",numreturn);

terror ("expert system task");
)
Start_goal {Aut_goal);
#else
wait () :
#endif

I

procedures

152

- Function : es$constructor () -
- Input : none -
- Qutput : none -
- Action : Creates the mail boxes and the ES task -
- Date : 30 Mar 90 -
- UpDate -
————————————————————————————————— A/
#ifdef RMXON
sdsadsadsad

int WES $SCOMMANDSDMB ;

extern void WESSTASK():

extern int WESSCOMMAND SDMB

void esSconstructor ()
{

/* the mail box used to recieve commands */
WES$SCOMMANDSDMB = rg$createS$mailbox (DATAME, &error_state);

/* the main task in the ES */

printf ("\nAbout to creat"):

waic ();

rg$create$task (PRIORITY, (char*)WESSTASK,0, (char*)01,STCKSIZE,
FLOATS, éerror_state)

printf ("\n created ")

wait();
return;

}

#endif

/*

end file es.c */

/* = = = = = = E—3 = = = — = == == = = = = = = = = = = - = = = = = = =~ =
= Project : KOOLA shell -
= Sub-Project : Goal Manager =
= File : es.h =
= Author : Robert D. Rourke -
= Start Date : 30 Mar 1990 =
= Update : 02 Apr 1990 =

% TS To T T

/* RMX constants */
/* task constants */

#define PRIORITY 150 /* for any task started
#define NODATASEG 0 /* disk uses private DS =/
#define NOSTCKPNT oL /* rmx creats the gtack
#define FLOATS 1 /* task may use floating ont
/* vask flags
*/
#define STCKSIZE 16000 /* size of stack qiven to riew */
/* task
*/
#define DATAMB 0x0020 /* data FIFD mai.hox
*/
#define TOKCNMB 0 /* token FIFO mallbox

*/
4define WAIT4EVER Oxffff /* used for waiting ar M/B "/

-/

r
s

153

/*
end file es.h */
/t=.----a---s:s:nn-sn:a::s::::::xs::

= Project : KOOLA shell =
= Sub-Project : Goal Manager =
= File : gm.c =
= Author : Robert D. Rourke =
= Start Date : 28 Mar 1990 =
= Update : 02 Apr 1990 =

k/) B N
#define TESTON
/*#defire RMXON*/

/*#define USECOSI*/

#include <stdio.h>
$include <ctype.h>

#ifdef RMXON
§include <udi.h>
#include <rmx.h>
#endif

$include ‘knowbase.h"

{include "gm.h"

#include "pie.hx"

#include "sie.hx"

/% = = e m e m e e e m o mm e e m o e e e e e e m e = = o= -
- Function : List_goal -
- Input : none -
- Output : highlevel goal id selected -
- Action : Displays all startable goal £frames -
- Date : 29 Mar 90 -
- UpDate : -
__________________ ~_—-..___.._._...-..._x/
int List_goall()

{

extern metarl Goal_tree [NUMGOAL]:
int goal_disp[MAXGOALDISPLAY+1]:
int num_goals, cur_goal;

int gl;

int rep;

/* load all of the valid goals */
num_goals=0;
for (gl=0;gl<NUMGOAL&&num_goals<MAXGOALDISPLAY;gl++)
if (Goal_tree[(gl)].start) goal_disp[num goals++]=gl;
for (;;) {
/* display all of the goals */
printf ("\n\nSelect an kncwledge-base application to run

KOOLA:") ;

for (gl=0;gl<num_goals;gl++)
printf ("\n
38", " A’+9l,Goal_treelacal_dispigl]}].name);
printf (“\n\n

‘s",’A’ +gl, "AUTONOMCUSE CONTROL") ;

printf ("\nPiease enter a letter: ");

154

rep = getchar();
getchar():
if (rep>’2’) rep=rep-'a’;
else rep=rep-'A’;
if {rep<0| | rep>num_goals) printf ("\aWrong!!!
again...\n"});
else break:
}

if (rep==num_goals) return (0); /*autonomouse control*/
/* p r in¢tf { " \n S el e c t : bl
»,Goal_tree[goal_disp(repl).name,goal_displrepl+l);*/

return ((goal_displrepl+1l));
}

/*float find_cbelief (int hl_belief_id);*/

void action_gen();

/X = = = = = 2 . = e e e = e e omm o om e m = = e e o= - o - - - -
- Function : Start_goal -
- Input : none -
-~ Output : none -
- Action : reads the primary knowledge base form £file -
- Date : 26 Mar 90 -
- UpDate -
- me W s em e mm em M es wm mm ex m ms we Mw UW wk ew A% Am me an em mm e W e e e - w7

int Start_goal(init_goal)

int init_goal:

{

extern metarl Gecal_tree[NUMGOAL];
int nextgoal;

metarl* this_geal;

conseq* next;

int depth;

float belf;

/* check if it is a valid start goal */

if (init_goal<=0|!}init_goal>NUMGOAL) terror ("Envalid gra! IL",
if (!Goal_treelinit_goal-l].start) terrzor ("Not a ‘wva.::
goal");
nextgoal = init_goal;
for (depth=1;nextgoal!=TERMINATE;depth++) |
printf ("\n\n\nDepth :%4d",depth);
this_goal = &Goal tree[nextgoal-lj:

printf ", Currently working on geal T
%¥s",this_goal->name):
/* printf ("Requesting a sec belief : zd",this_goal--ue. 1,

belf=find sbelief(this_gocal->pbelier);
printf("\nReturn prob: if",belf);
if (belf<0) !
printf ("\n Cculd not succesfuly solwve “ne gua. a7 u-
3d",depth) ;
return (0);
}
if (chk_logic (sbelf,this_goal-»operat, sth.s_jual-snom or
next = &cthis_geal->thn;

.t

155

else next = &this_goal->els;
/* do the action */
if (next->action!=NOACTION)
action_gen(next->action);
else |
printf ("\nNo action needed");
}
/* next goal to do */
nextgoal = next->chain;
/* check for excessive looping */
if (depth > MAXDEPTH) terror ("Goal solwving gone to deep"):
J
printf ("\nApplication terminated at depth %d, no errors.",depth);
wait ()
return (depth);
}/*end function Start_goal*/

/t
float find_sbhelief(int hl_belief id)
{

float prob:

print £ ("\n=**Enter the secondary belief [%d] :",hl_telief id);
scanf ("%f",&prch)

getchar ()

return (prob):

}
~/

[* = e e e e s e e e e e e e e s e m e == e = - = - - - . = e -
- Function : action_gen -
- Input : token -
- Qutput : none -
- Action . 3ends a token to COSI -
- Date : 28 Mar 90 -
- UpDate : 28 Mar 90 -

e e e e o e o e o e e e me m m e e o = = LI T e 4

veid actlion_gen(action)

‘it action;
extern int WCOSISCCMMANDSDMB;
extern int WCOSIS$SREADYS1US:

int error_state;

printf ("\nWe are sending the action tcken [%d]} to CCSI",acticn);
§:def USECOSI

rq$sendSdata (WCOSISCOMMANDSDMB, &action, sizeosf (int), Serror_stace);
rgSreceive$units (WCOSISREADYS1US, ONEUNIT, ©CREVER, &erzor_state);
fela~e
wait ()
tondat
}
L - - o A am ms e ar um e un em s wm e e om ws e e e - e e am e e o e e o
Function : gm_constructor -

- Iinpuc : none -

156

- OQutput : none
- Action : reads the meta knowledge base from file
- Date : 28 Mar 90
- UpDate : 28 Mar 90
/* i
Principle storage of secondary knowledge base
*/
metarl Goal_tree [NUMGOAL];

veid gm_constructor()
/*#define TESTCONS*/
{

extern metarl Goal_tree [NUMGOAL]:
char date_stamp{DATESIZE+56];

char dummy (80] ;

FILE* datafile;

metarl* this_goal;

int i;

int strt_f£flg;

sie_constructor():

/* open the input data file terminate if error */

if ((datafile = fopen(DATAFILE, "r"“))==NULL)
terror ("Missing the meta KB file");

/* remove the header store date stamp */
for (i=1;i<DATELOC; i++) fscanf(datafile, "is",dummy);
fscanf (datafile, " %s ",date_stamp);
printf ("\nMeta KB date stamp: %s\n",date_stamp);
/* load the rules */
for(this_goal=Goal tree;;this_goal++) |
printf{(".");

/* read the name of the goal */

if (£scanf(datafile, "%d",&strt_£1lg)==EOF) break;
#ifdef TESTCONS

printf("Startablility of this geal: %d",strt_£flg);
#endif

this_goal->start = strt_flg;

/* enter the rest of th: goal */

fgets (dummy, CLSPACE, datafile);
this_goal->name[NAMESIZE]= *\0';
fgets (this_goal->name,NAMESIZ2E,datafile);

/* f£scanf (datafile, "%s",this_goal->name);*/

fscanf (datafile, "%d",&(this goal->pelief));
fscanf (datafile, "%d",&(this_goal->operat));
fscanf (datafile, "%f",&(this_goal->numper));
fscanf (datafile, "3%d",é&(this_goal->rhn.chain});
fscanf (datafile, "%d",<his_goal->els.chain}):
fscanf (datafile, "%d",&(this_goal->thn.action));
fscanf (datafile, "%d",&(this goal--els.acticn));

#ifdef TESTCCNS
print £ ("\nName: %3",this_goal->name);
print £ ("\nBelief :3d",this_qgoai->reli=f);

157

printf ("\nOprerator :%d",this_goal->operat);
printf (*\nNumbert :%£",this_goal->number);
printf(*\n then chain:%d ", this_goal->thn.chain};

printf(*else chain:%d ",this_goal->els.chain);
printf{“\n then action:%d *,this_goal->thn.action):
printf ("then action %d",this_goal->els.action);
wait():

fendif

} /*until EOF */

fclose (datafile);

printf ("\nMeta Knowledge loaded \n");
| /*end gm_constructor()*/

/ir

end file gm.c */

/kn-------ssz:sua--n::n::=:=======3
= Project : KOOLA shell =
= Sub-Project : Goal Manager =
= File : gm.h =
= Author : Robert D. Rourke =
= Start Date : 28 Mar 1990 =
= Update : 28 Mar 1990 =

x/ S S o o h T

#ifdef RMXON

void gm_dump () ;

void gm_constructor (),

int Start_goal():

int List_goal():;

felse

void gm_const ructor (void);

void gm_dump (void) ;

int Start_goal{int init _goal);

int List_goal (void) :

#endif

/t

end file gm.h */

/k=============:==== 2= o= = = S =S S = = = = = = =
= Project : KOOLA shell =
= Sub-Project : Goal Manager =
= File : gm.h =
= Author : Robert D. Rourke =
= Start Date : 28 Mar 1990 =
= Update : 10 Apr 1950 =

t/ - S - S

/* RMX constants */

tdefine PRIORIRY 150 /* for any task started */

#define DATAMB 0x0020 /* data FIFO mailbox

t¢define TOKONMB 0 /* token FIFO mailbox */

#define ONEUNIT 1 /* one token for the semephore =/

#define FOREVER ORZEES /* wait at an rmx call for ever */

2% Entering data from file */

#define DATAFILE "mtknbase.dat"

fdefine NAMESIZE 10

$define CLSPACE 7

Eha

158
#define DATESIZE 15
#define TYPESIZE 4
#define DATELOC 9
#define EXCESS 500

primar & second */

#define TERMINATE 0

#define NOACTION O

#define MAXDEPTH 100 /*
processing */

#¥define INVALIDPR ~444

#define NOTAVALABLE -666

#define MAXGOALDISPLAY 15 /*
displayed */

/%

/* diferenc betwoeoen

maximum depth

maximum number

L

* One component of the secondary knowledge base

*/

typedef struct
{

int chain;

int action;
} conseq;

typedef struct
{

char name [NAMESIZE+1] :
int start;
int belief;
int operat;
float number:;
conseq thn;
conseq els;
} metarl;

#ifdef RMXON
#else

#endif

/%

end file gm.h */

ot

ot

qQovit

>

159 ks

* E] - = t 3 -m e W =m = = = - - = = = -» o W = - 3= = = = == = = = -~ = o= = = =

oo Project : KOOLA programing language Shell =

LA Sub-project : Entry for objects =

¥ o File : main.prg =

- Author : Robert D. Rourke =

* o= Date : 16 Mar 1989 =

« = Update : 25 Sep 1989 =

* = = B m = w = W = =m = = = B Om =)
* 4
* Databasges: ;
* Select Name Index Code '
¥ eeacmea b ——— e e LT - :
* 1 rule rule r

* 2 goal goal g

* 3 belief belief b

* 4 internal internal i

* 5 extreq extreq X

* 6 action action a

* all index set for var_class+name except goal

*

EXTERNAL Add_belief
EXTERNAL Add_rule
EXTERNAL Print_rule
EXTERNAL Add_goal

Date =’ 2 Feb 1990’
Version = *2.20'

PUBLIC Deflt path, Escape
* set the colour for a colour monitor
In_colour = .f.
IF iscolor ()
PUBLIC Colour_Edit
PUBLIC Colour_Menu
In_colour = .T.
Colour_Edit = “GR+/B, GR+/B, B, B, W+/RB"
Colour_Menu = "GR+,W+/B,B,B,W+/BG"
setcolor (Colour Menu)
ENDIF -
SET CENTURY ON
SKET DATE BRITISH
SET WRAP ON
CLEAR

Deflt_Path = Get_direct(’sim\‘)
File_error = .F.

SELECT 1
File_name = ‘rule.dbf’
IF file (File_name)

USE &File_name
. index on var_class+name to rule
ELSE

File error = .T.

? 'Missing file: ‘+File_name
INDIF

“LECT 3
:ie_name = ‘belief.dbf’
‘¥ file (File_name)

160

USE &File_name
ELSE

File error = .T.

? 'Missing file: ’‘+File_name
ENDIF

\ SELECT 4
File name = ’'internal.dbf’
IF file (File_name)

USE &File_name

ELSE

File erxor = .T.

? ’MIssing file: '+File_name
ENDIF
SELECT 5

File_name = ’‘extreq.dbf’
IF file (File_name)
USE &File_name

ELSE

File error = .T.

? ’'Missing file: ’'+File_name
ENDIF
SELECT 6

File_name = ’action.dbf’
IF file (File name)
USE &File_name

ELSE

File_error = .T.

? ’'Missing file: ’'+File_name
ENDIF
SELECT 2

File name = ‘goal.dbf’
IF file (File_name)
USE &File_name

* INDEX ON name to Goal
ELSE

File error = .T.

? ‘Missing file: 'tFile_name
ENDIF

IF File_error
? ’*xx File Error termination of KCOLA **~*f
ed
RETURN

ENDIF

CLEAR

PRIVATE Main_loop

Main loop = 1

*

* main program loop repeat utill
*
DO WHILE .T.
CLEAR
SET MESSAGE TO 2
MsgCent (’MENU’)
SET INDEX TO

161

Main_loop = Main_menu(Main_loop)
DO CASE
CASE Main_loop = 1
Koola_title({()
CLEAR
CASE Main_loop = 2
*Goal Frame
SELECT 2 &&goal.dbf
SET INDEX TO goal
DO_object (’GOAL')
CASE Main_loop = 3
*Rule
SELECT 1 &&rule.dbf
SET INDEX TO rule
DO_object (' RULE’)
CASE Main_loop = 4
*Belief
SELECT 3 && belief.dbf
SET INDEX TO belief
DO_object (Y BELIEF')
CASE Main_loop = 5
*External inquiry
SELECT 5 &&extreq.dbf
SET INDEX TO extreq
Do_object (Y EXTREQ')
CASE Main_loop = 6
*human interface enquiry
SELECT 4 &&internal .dbf
SET INDEX TO internal
Do_object (/ INTERNAL')
CASE Main_loop = 7
*Action
SELECT 6
SET INDEX TO action
Do_object (* ACTION')
CASE Main_loop = 8
*file
File proc ()

OTHERWISE
*quit
MsgCent (' QUIT')
IF Quit_menu() = 2
EXIT
ENDIF
ENDCASE
ENDDO
CLEAR
Beep(’'F’)
T fxxx Normal termination of KCCLA *xx/
> '{c) R. Rourke 1989, 1990’
* ’(c) ZenRob ISDN developments 19907

a

RETURN

RN e ke e s e ee e wm we = e em e wm am m mm e e = - _- e = e e = e = -
- Function : Main_menu

- Input : void

* - Output : ralue ot choice

* - Date : 34 Mar 89

- UpDate : 89

162

FUNCTION Main_menu
PARAMETER WaitKey
@ 1,0 CLEAR TO 2,79
@ 23, 0 CLEAR
@ 24, 0 SAY dtoc(date())
@ 24, 20 SAY Deflt_Path
SET COLOR TO 7+
@ 0, 0 SAY ‘KOOLA Production Environment V’/+Version+’ ‘+Date
IF In_colour
setcolor(Colour_Menu)
ELSE
SET COLOR
ENDIF
01, O PROMPT 'Info’ MESSAGE ‘Info about KOOLA’
01, col()+2 PROMPT ’'uoal’ MESSAGE ‘Goal rules that starts an infe:rence!
01, col()+2 PROMPT ‘Rule’ MESSAGE ’Backward chanining production rule’
01, col{()+2 PROMPT ’'Belief’ MESSAGE 'An infered belief’
01, col()+2 PROMPT ’'External’ MESSAGE ‘External inquiry’
01, col()+2 PROMPT ‘Human’ MESSAGE ‘Human interface inquiry’
01, col()+2 PROMPT ’'Action’ MESSAGE ‘External action’
01, col()+2 PROMPT ’'File’ MESSAGE ‘Directory List’
01, col()+2 PROMPT 'Quit’ MESSAGE ’‘Quit the program’
MENU TO WaitKey
RETURN (WaitKey)
*end menu main_menu

PEA®O®DE®

K o o em es e e am 4 e e am m e a e e e e e e e mr e e -_ - e e = e -
* - Function : Obj_menu -
* - Input : void -
* - Output : value of choice -
* - Date : 23 May 89 -
* - UpDate : 89 -

K = m m e e e e e e w e mm e wm em m w wm m w em ow e = =

FUNCTION Obj_menu
PARAMETER WaitKey
@ 1,0 CLEAR TO 2,79
@ 01, O PROMPT ‘Change’ MESSAGE 'Add or edit’
@ 01, col()+2 PROMPT ’E:.camine’ MESSAGE ;
Observe the objects in a spread sheet’
@ 01, col()+2 PROMPT ’'Reindex’ MESSAGE ‘Verify the order of the object:’
@ 01, col()+2 PROMPT ’'Print’ MESSAGE ’‘Print the current object’
@ 01, col()+2 PROMPT ’'Quit’ MESSAGE ’'Return to previous menu’
MENU TO WaitKey
RETURN (WaitKey)
*and menu Obj_menu

* - Function : Rule menu

* - Input : void™

* - Cutput : value of choice -
* - Date : 23 May 89 ~
* - UpDate : 89 ’

»

FUNCTION Rule_menu
PARAMETER WaitKey

@ 1,0 CLEAR TO 2,79

@ 01, O PROMPT ’Fact’ MESSAGE ’Add scme new fact-baszed rule«n’

Q@ 01, col{)+2 PROMPT ‘Belief’ MESSAGE ‘Add some new belief-pansad ri.. ;'

@ 01, col()+2 PROMPT ’‘Examine’ MESSAGE ;

‘Cbhserve the objects in a spread sheet’

@ 01, col()+2 PROMPT 'Reindex’ MESSAGE 'Verify the order of tne ru...!

@ 01, col()+2 PRCMPT ’‘Print’ MESSAGE ‘Print the current opject’

163

@ 01, col()+2 PROMPT ‘Quit’ MESSAGE ’'Return to main menu’
MENU TO WaitKey

RETURN (WaitKey)

*end menu Rule_menu

* - Function : Goal_menu

£ - Input : void

* - Output H value of choice
- Date : 23 May 89

L UpDate : 89

»

> e e M wm et e wm em e wm e mm e e wm ms e wm me e W m m we e e =, e = s -

FUNCTION Goal_me .u
PRIVATE WaitKey
@ 1,0 CLEAR TO 2,79
@ 01, O PROMPT ‘Change’ MESSAGE ’'Add some new Goals’
@ 01, col()+2 PROMPT ’‘Examine’ MESSAGE ;
’Observe the goals in a spread sheet’
@ 01, col()+2 PROMPT ‘Reindex’ MESSAGE ‘Verify the order of the goals’
@ 01, col()+2 PROMPT ‘Print’ MESSAGE ’'Print the current object’
@ 01, col()+2 PROMPT ‘Quit’ MESSAGE ’Return to main menu’
MENU TO WaitKey
RETURN (WaitKey)
*end menu Goal_menu

»

- e % e wm m mm mm em wm mm en s e s wm e e m W wm wm e s em e = am = e —

* - Function : Not_yet

- Input : void

* - Qutput : value of choice
L Date : 23 May 89

* - UpDate : 89

K e o e e er em e e am e e am e e e ua e em e mm mm em e e e wm e e e e
FUNCTION Not_yet

beep ()

ErrWait (“This routine is not yet supported, Press Esc DU")

@ 24, 0 CLEAR

RETURN(.T.)

A e o e mr ws e w mm am ms s wm em e ew ma e W em ew me M MR ax mm em W e W em wn e e
- Function : DO_object

- Input : volid

r - Qutput : value of choice

- Date : 23 May 89

L UpDhate : 89

K e e e mm s e e me e ew e wmm mm e e e e W wn e o e m e e wm vm e e me e e =

FUNCTION DO_obiject
PARAMETER Obj_name

DECLARE Ans|3]
PRIVATE Levl, Lev2, Macro, S buf
Levl = 1 -
SAVE SCREEN TO §_buf
DO WHILE .T.
MsgCent (Cbj_name)
Levl = QObj_menu(levl)
DC CASE
CASE Levl = 1
*build
Macro = ‘Add_’ +Cbj_name
PRIVAT Contn
DO WHILE .T.

164

DO &Macro
IF !Escape
IF !AskN ("Enter another object?")
EXIT
ENDIF
ELSE
EXIT
ENDIF
ENDDO
RESTORE SCREEN FROM S_buf
CASE Levl = 2
*examine
browse ()
CASE Levl = 3
*reindex
MsgWait ()
PACK
CASE Levl = 4
*print
IF file (Obj_name+’ .frm’)
Macro = Obj_name
PntWait ()
SET CONSOLE OFF
REPORT FORM &Macro TQO PRINT
SET CONSOQOLE ON

ELSE
Macro = /PRINT_’+0bj_name
DO &Macro
ENDIF
OTHERWISE
EXIT
ENDCASE
ENDDO
RETURN(.T.)

*end function DO_object

*

*end file main.prg
*================================
* = Project : KOOLA programming language

* = Sub~project : Entry for objects

* = File : action.prg

* = Author : Robert D. Rourke

* = Date : 19 Mar 1989

* = Update : 02 Oct 1989
*=====================z========2:
*

* FUNCTIONS:

* Add_action

* Get_action

* act_var

* Get_var

K e e o e wm om e e o o em e - - e e am am w m m e m ee = e e e e =
* - Function : Get_action

* - Input : The variable class

* - Output : action chosen

* - Date : 19 May 89

- UpDate : 02 Sep 89

K e e e m e e e o m e e -

FUNCTION Get_action
PARAMETER Var &athe var class to use

1656

SELECT 6 && action.dbf

SET INDEX TQ action

PRIVATE Act_new, Act pnt, B acticn,S_buf
SAVE SCREEN TO S_buf

*

*make a list of previous actions

X

Act_pnt = 0

Act_new = 0

PRIVATE Act_list

DECLARE Act_list([50]

SEEK Var

DO WHILE var_class = var
Act_pnt = Act_pnt + 1
Act_list[Act_pnt] = name
SKIP

ENDDO

Act_pnt = Act_pnt + 1

Act_list[Act_pnt] = 'NO ACTION'

PRIVATE Navigate
Navigate = 1
DO WHILE .7T.
DO CASE
CASE. Navigate = 0
RESTORE SCREEN FROM S_buf
RETURN (’ NUL')
CASE Navigate =1
RESTORE SCREEN FROM S__buf
2,40 CLEAR TO 22, 78
1,39 TO 23,79 DOUBLE
2, 40 SAY ’'Select an action: '’
3,40 SAY 'var Class = '+Var

» * @ DD D

make selection
x
PRIVATE i
FOR i = 1 TO Act_pnt
@ 4+i,55 PROMPT Act_list[i]
NEXT
@ 4+i, 55 PROMPT '*NEW '
PRIVATE Select
Select = Act_pnt
MENU TO Select
DO CASE
CASE Select = O
Navigate = Navigate - 1
CASE Select > Act_pnt
Navigate = Navigate + 1
OTHERWISE
RESTORE SCREEN FROM S_buf
RETURN (Act_list [Select])
ENDCASE

CASE Navigate = 2
* add a new action
B_action = space(15)
Act_new = Act_new + 1
@ 4+Act_pnt+Act_new, 40 SAY ‘Enter action: ’ GET B_action
READ
IF { !'updated() .OR. lastkey() = 27)

166

Act_new = Act_new -1
Nawvigate = Navigate ~ 1

ELSE
SEEK (var+B_action)
IF eofl)
*does not already exists
¢ 4+Act_pnt+Act_new, 55 SAY B action
Navigate = Navigate + 1
ELSE
Act_new = Act_new -]
ErrWait (’action name already exists')
ENDIF
ENDIF

CASE Nawvigate = 3
* add the rest of the enquiry
IF Cmplt_action(B_action)
Navigate = Navigate + 1
REPLACE var_class WITH var
REPLACE name WITH B_action

Act new = Act_new - 1
Navigate = Navigate - 1
ENDIF

CASE Navigate = 4
RESTORE SCREEN FROM 5_buf
RETURN (B_action)

ENDCASE

ENDDO

* end function Find_action
- Function : Add_action
- Input : none
- Output : sets Escape
- Date : 19 May 89
- UpDate : 25 Sep 89

Synopses :
Adds new actions using new or old variable
Pseudo:
While add more actions
Decide the wvariable class
While using the same variable class
Add a action

UNCTION Add action

*UTF ok b ok % A ok % b o % % % F % ¥ %

* display all of the possible variables
*
PRIVATE Var, Act_pnt, B _action,5 buf
SAVE SCREEN TO S_buf
PRIVATE Navigate
Navigate =1
DO WHILE .T.

DO CASE

CASE Navigate = 0

EXIT
CASE Navigate = 1

classes.

167

*find a var_class
RESTORE SCREEN FROM S _buf
@ 1,39 TO 23,79 DOUBLE
@ 2, 40 SAY ’Enter an action:
Var = Get_var({()
IF Var = 'NIL’
Navigate = Navigate - 1

’

ELSE
Navigate = Navigate + 1
@ 3,40 SAY ’'Var Class = '+Var
*list previous ones
Act_pnt = 0
Act new =
SEEK Var
DO WHILE var_class = var
Act_pnt = Act_pnt + 1
@ 4+Act_pnt,55 SAY name
SKIP
ENDDO
ENDIF

CASE Navigate = 2
* add a new action
B_action = space(l5)
Act_new = Act_new + 1

@ 4+Act_pnt+Act_new, 40 SAY ‘Enter a name: ' GET B_action
READ
IF (len(trim(B_action)) < 1 .OR. lastkev() = 27)
Navigate = Navigate - 1
ELSE
SEEK (var+B_action)
IF eof ()
*does not already exists
@ 4+Act_pnt+Act_new, 55 SAY B_acticn
Navigate = Navigate + 1
ELSE
Act_new = Act_new -~ 1
ErrWait (fextenal enquiry already exists’)
ENDIF
ENDIF

CASE Navigate = 3

* add the rest of the enquiry

IF Cmplt_action’3 action)
Navigate = Navigate + 1
REPLACE var_class WITH var
REPLACT. name WITH B action

ELSE -
Act_new = Act new - 1
Navigate = Navigate - 1

ENDIF

CASE Navigate = 4
* add a new object
IF AskY("Enter another enquiry for the variable class
"+rtrim(Var)+/?')
@ 24,0 CLEAR
Navigate = 2 &&start at the name
ZLSE
Navigate = Navigate + 1
ENDIF

168

CASE Navigate = §
EXIT
ENDCASE
ENDDO
RESTORE SCREEN FROM §&_buf
IF Navigate > 0
Escape = .F.
RETURN({.T.)
ELSE
Escape = .T.
RETURN (.F.)
ENDIF
* end function Find_action

*

- at e e e e e e e e o W e ee W wm e e m e ar e A = ow =

* - Function : Cmplt_action()

* - Input : none

x - Qutput H error

* - Date : 02 Oct 89

* - UpDate H 02 Oct 89

K oo ew mm m wm m w em em e e m wm m m wm e e m em e e e ma e = we =
* Assumes the file is pointing to the record to add

FUNCTION Cmplt action

PARAMETER Engire

PRIVATE S_buf

SAVE SCREEN TO S_buf

PRIVATE B_token

B_token = space (8)

15,40 CLEAR TO 22,78

15,39 TQ 15,79

15,39 say * v

15,79 sSay = v

15, 55 SAY rtrim("Eng: "+Engire)

17,41 SAY "OS token:" GET B roken PICTURE "9999g9"

READ -

IF (lastkey() # 27 .AND., updated{())
APPEND BLANK
REPLACE token WITH b_token
RESTORE SCREEN FROM S_buf

D@D

RETURN (.T.)
ELSE
RESTORE SCREEN FRCOM S _buf
RETURN (.F.)
ENDIF
K cr wm am a e wt em w wm m e e mm mm w e e mm e e um e mm m as e e =
* - Function : Act_var
* - Input : none
X - Output : variable class
* - Date : 19 May 89
* - UpDate : 25 Sep 89

K o m e e w e e om e e e e o e e o e m e e e = =

FUNCTION Act_var

SELECT 6 && action.dbf
SET INDEX T0 acticen
PRIVATE B_var

B _var = Get_var ()

SET INDEX TO

169

FETURN (B_var)

*
*end function Act_var

i
[

= = 3} M = M W ™ X

0

FUNCTIONS:
Add belief
Get belief
Bel var
Get_var

- Function : Get_belief

- Input :

- Qutput :

- Date : 19 May 89

- UpDate : 10 Nov 89

A e s e e am e m am mr e we we wm em m wme em e em
FUNCTION Get_belief

PARAMETER Var &&the var class to
SELECT 3 4& belief.dbf

SET INDEX TO belief

PRIVATE Blf new, Blf pnt, B _belief,S_buf
SAVE SCREEN TO S_buf

*

Dt!‘bb'.'?‘.')'..".

*make a list of previous beliefs

*

Blf_ pnt 0

Blf new = 0

PRIVATE B1lf list

DECLARE B1f list [50])

SEEK Var

DO WHILE var_class = var
Blf pnt = B1lf pnt + 1
Blf list[Blf pnt] = name
SKIP

I

ENDDO

PRIVATE Navigate
Navigate = 1
DO WHILE .T.
DO CASE
CASE Navigate = (
RESTORE SCREEN FROM § buf
RETURN (' NUL’) -
CASE Navigate = 1
RESTORE SCREEN FROM S_buf
2,40 CLEAR TO 22, 78
1,39 TO 23,79 DOUBLE
2, 40 SAY ’'Enter a belief: '
3,40 SAY ’Var Class = ’'+Var

make selection

@
@
@
¢
*
*

= Project : KOCLA programming language
= Sub-project : Entry for objects

= File : belief.prg

= Author : Robert D. Rourke

= Date : 19 Mar 1989

= Update : 10 Nov 1989

use

Woonn oo

170

PRIVATE i
FOR i = 1 TO Blf_pnt
@ 4+i,55 PROMPT B1lf_list[i]
NEXT
@ 4+i, 55 PROMPT ' *NEW '
PRIVATE Select
Select = Blf pnt
MENU TO Select
DO CASE
CASE Select =0
Navigate = Navigate - 1
CASE Select > Blf pnt
Navigate = Navigate + 1
OTHERWISE
RESTORE SCREEN FROM S_buf
RETURN {(Blf list([Select]))
ENDCASE

CASE Navigate = 2
* add a new belief
B belief = space(15)
Blf new = Blf new + 1
@ 4+Blf_pnt+Blf new, 40 SAY ’'Enter belief: ' GET B hLinliet

READ
IF (len(trim(B_belief)) < 1 .OR. lastkey() = 27)
Navigate = Navigate - 1
ELSE
SEEK (var+B_belief)
IF eof ()
*does not already exists
@ 4+Blf_pnt+Blf new, 55 SAY B_belief
APPEND BLANK
REPLACE var_class WITH var
REPLACE name WITH B_belief
RESTORE SCREEN FROM S_buf
RETURN (B_belief)
ELSE
Blf new = Blf new =~ 1
ErrWait (’Belief name already exista’)
ENDIF
ENDIF
ENDCASE

ENDDO
* end function Find _beleif

- Function i Add_belief
* - Input : none

* - Output : sets Escape
* - Date : 19 May 89

* - UpDate : 25 Sep 89

* Synopses:

* Adds new beliefs using new or old variable classes.
* Pseudo:

* While add more beliefs

* Decide the variable class

* While using the same variable class

* Add a belief

*
*
b

UNCTION Add_belief

* alternate super class for goal
SELECT 3 &5 belief.dbf

SET INDEX TO belief

*

* display all of the possible variables
*

PRIVATE Var, Blf pnt, B _belief,S_buf
SAVE SCREEN TO S_buf
PRIVATE Navigate
Navigate = 1
DO WHILE .T.
DO CASE
CASE Navigate = 0
EXIT
CASE Navigate = 1
*find a Var_class
RESTORE SCREEN FRCM S_buf
@ 1,39 TO 23,79 DOUBLE
@ 2, 40 SAY 'Enter a belief: ’
Var = Get_var{)
IF Var = 'NIL’
Navigate = Navigate - 1

ELSE
Navigate = Navigate + 1
@ 3,40 SAY ’'Var Class = ’+Var
*1ist previous ones
Blf pnt = 0
B1f new = 0
SEEK Var
DO WHILE var_class = var
Blf pnt = Blf pnt + 1
@ 4+Blf_pnt,55 SAY name
SKIP
ENDDO
ENDIF

CASE Navigate = 2
* add a new belief
B_belief = space(l5)
Blf new = Blf new + 1
@ 4+Blf pnt+Blf new, 40 SAY 'Enter belief: ’ GET B_belief

READ
IF (len(trim(B_belief)) < 1 .OR. lastkey() = 27)
Navigate = Navigate - 1
ELSE
SEEK (var+B_belief)
IF eof()
*does not already exists
@ 4+Blf_pnt+Blf new, 55 SAY B_belief
APPEND BLANK
REPLACE var_class WITH var
REPLACE name WITH B_belief
Navigate = Navigate + 1
ELSE
Blf new = Blf new - 1
ErrWait (’Belief name already exists’)
ENDIF
ENDIF

CASE Navigate = 3
* add a new object

Wiy

172

IF AskY("Enter another belief for the variable

"+rerim(Var)+’?’)
@ 24,0 CLEAR
Navigate = Navigate - 1

ELSE
Navigate = Navigate + 1
ENDIF
CASE Navigate = 4
EXIT
ENDCASE

ENDDO
RESTORE SCREEN FROM S_buf
IF Navigate > 0
Escape = .F.
RETURN (.T.)
ELSE
Escape = .T.
RETURN(.F.)
ENDIF
* end function Find_belief

*

* - Function : Bel var

* - Input : none

* - Output : variable class
* - Date : 19 May 89

x - UpDate : 25 Sep 89

K o e m m m m e m m e = e om e e e o e e e o e =

FUNCTION Bel_var

SELECT 3 && belief .dbf
SET INDEX TO belief
PRIVATE B_var

B_var = Get_var()

SET INDEX TO

RETURN (B_var)

*

* - Function : Get_var

x - Input :

* - Qutput : var

- Date : 25 Sep 89

* - UpDate : 89

KX ae e em e e o o em e e e m em e me e e o am =
* Assumes: Database is index to var_class

FUNCTION Get_var
*

* create a list of wvariables
*

PRIVATE Var_lst, Var_pnt, S_buf
SAVE SCREEN TO S_buf

Var_pnt = 0
DECLARE Vat_1lst({50]
GO TOP

DO WHILE !eof ()
Var_pnt = Var_pnt + 1
Vat_lst [Var_pnt] = var_class
DO WHILE Vat_lst[Var_pnt] = var_class .AND.
SKIP 1
ENDDO
ENDDO
PRIVATE Navigate

- e wm M mm e e ws mm me e mm m em e e e e e e m e wm e mm e e e e e

taof ()

class

173

Navigate = 1

DO WHILE .T.

DO CASE

CASE Navigate = (

RESTORE SCREEN FROM §_buf
RETURN (’NIL’)

CASE Navigate = 1
*

* Make the choice
*
RESTORE SCREEN FRCOM S_buf
@ 2,40 CLEAR TO 22, 78
@ 1,39 TO 23,79
PRIVATE i
@3, 40 SAY ’‘Select a variable class:’
FOR i = 1 TO Var_pnt
@ 4+i, 40 PROMPT Vat_lst[i]
NEXT
Q@ 4+i, 40 PROMPT ' *NEW ’
PRIVATE Select
Select = Var_pnt
MENU TO Select
DO CASE
CASE Select = 0
Navigate = Navigate - 1
CASE Select > Var_pnt
Navigate = Navigate + 1
OTHERWISE
RESTORE SCREEN FROM S_buf
RETURN (Vat_lst(Select])
ENDCASE

CASE Navigate = 2

PRIVATE B_var

B_var = space(1l5)

@ 4+i, 40 Get B_var
READ

IF (len(trim(B_var)) < 1 .OR. lastkey() = 27)
Navigate = Navigate - 1
ELSE
RESTORE SCREEN FROM S_buf
RETURN (lower (B_var))
ENDIF
ENDCASE
ENDDO
*return Get_var
x = = = = = = = = = = = = T o= == = = = o= = = = = = = = = =
£ = Project : KOOLA programming language
* = Sub-project : Entry for objects
A= File : goal.pxg
v o= Author : Robert D. Rourke
v = Date : 06 Nov 1989
ro= Update : 08 Nov 1989
* = = = = = = = = = = = = = 2 = 2 3 =2 =2 =m || 3 = = = = == = = =
A
* FUNCTIONS:
* Add _goal
* Get_goal
* goal_var

T m w em m e o em e e e e M e wm an m o em wm e em em e me wm W e mm me em e em

[

174
* - Function : Add_goal -
* - Input : none -
* - Output : sets Escape -
* - Date : 06 Nov 89 -
* - UpDate : 08 Nov 89 -

*

™ an ws e wm e E em W me mm e M ms wm e W am e e W e e A W et e e = o e

*

FUNCTION Add_goal

PRIVATE S_buf
SAVE SCREEN TO S_buf
PRIVATE Iner_var,T_action, Goal_select, This_goal
PRIVATE Navigate
Navigate = 1
DO WHILE .T.
DO CASE
CASE Navigate = 0
RESTORE SCREEN FROM S_buf
RETURN (.F.)
CASE Navigate = 1
*find the name of the goal
*display the old goal
@ 24,0 CLEAR
Goal_select = Goal_name()
This_goal = recno()
IF Goal_select = 0
Navigate = Navigate =~ 1
ELSE
@ 5, 0 SAY "GOAL: "+name
@ 6, 0 SAY ‘FOR: ‘+var_class
@ 7, 0 SAY "IF: ’‘+belif+" "+operand
@ 7, 25 SAY prob
??"%"
@ 8, 0 SAY ’THEN DO: ‘+then_do
@ 9, 0 SAY ’'THEN CHAIN: ‘+then chain
@10, 0 SAY 'ELSE DO: ’+else_do
@11, 0 SAY 'ELSE CAHIN: ‘+else_chain
ENDIF
IF Goal_select =1
*edit an old
Iner_var = var_class
*
* Special check if it is porly defiend
*
IF empty(Iner_var)
Navigate = Navigate + 1
ELSE
Navigate = 10
ENDIF
ELSEIF Goal_select = 2
*new
Navigate = Navigate + 1
ENDIF
CASE Navigate = 2
*find the variable class for the goal
*from the list of beilfs
@ 6, 0 SAY 'FOR: * i’
SELECT 3 && belief.dbf
SET INDEX TO belief
Iner var = Get_var()
SELECT 2 && goal.dbf
GO This_goal

175

IF Iner_var = ’'NIL’
Navigate = Navigate - 1
@ 6, 0 SAY 'FOR: !
SELECT 2 && goal.dbf
SET INDEX TO goal
GO This_goal
DELETE
PACK
8@ S5, 6 SAY space {(20)
ELSE
REPLACE var_class WITH Iner_var
@ 6, 0 SAY 'FOR: '+var_class
Navigate = Navigate + 1
ENDIF
CASE Navigate = 3
*find the belief to base it on
@ 7, 0 SAY 'IF: «*
B_belief = Get_belief (Iner_var)
SELECT 2 && goal.dbf
GO This_goal
IF B_belief = 'NUL’
Navigate = Navigate - 1
@ 7, 0 sAY ’'IF: !

ELSE
REPLACE belif WITH B_belief
@ 7, 0 SAY 'IF: ’+belif
Navigate = Navigate + 1
ENDIF

CASE Navigate = 4
*find an operand
SELECT 2 && goal.dbf
GO This_goal
@ 7, 0 SAY "IF: ’'4balif GET operand
@ 24, 0 CLEAR
@ 24, 0 5AY "Enter an operand"

READ
@ 7, 0 SAY 'IF: ’+belif+" "+operand
IF lastkey() = 27
Navigate = Navigate - 1
ELSE
Navigate = Navigate + 1
ENDIF

CASE Navigate = 5

*find the prob to compair to
SELECT 2 && goal.dbf
GO This_goal
@ 7, 25 GET prob RANGE 0,100
??n%n
@ 24, 0 CLEAR
@ 24, 0 SAY "Enter the probability”
READ
@ 24, 0 CLEAR
@ 7, 25 SAY prob
IF lastkey() = 27

Navigate = Navigate - 1
ELSE

Navigate = Navigate + 1
ENDIF

CASE Navigate = 6

176

*find the then action
@ 8, 0 SAY 'THEN DO: *
T_action = Get_action(Iner_var)
SELECT 2 && goal.dbf
IF T action = ’NUL’
Navigate = Navigate - 1
@ 8, 0 SAY ’'THEN DOC: ’

ELSE
REPLACE then_do WITH T action
@ 8, 0O SAY ‘THEN DO: ’+then_do
Navigate = Navigate + 1

ENDIF

CASE Navigate = 7
*find the then chain
@ 9, 0 SAY ‘THEN CHAIN: *
T_nxgoal = Goal_name (' FINISHED CHIAN')
IF T_nxgoal = {
@ 9, 0 SAY ‘THEN CHAIN: !
Navigate = Navigate - 1
ELSE
IF T_nxgoal = 3
t_buf = ‘TERMINATE’
ELSE
t_buf = name
ENDIF
SELECT 2 && goal.dbf
GO This_goal
REPLACE then_chain WITH t_buf
@ 9, 0 SAY ‘THEN CHAIN: '+then_chain
Navigate = Navigate + 1
ENDIF

CASE Navigate = 8

*find the then action

SELECT 2 && goal.dbf

GO This_goal

@10, 0 SAY 'ELSE DOQ: *

T_action = Get_action(Iner_var)

SELECT 2 && goal.dbf

IF T_action = ’'NUL’
Navigate = Navigate ~ 1
@10, 0 SAY 'ELSE DO: !

ELSE
REPLACE else_do WITH T_action
@10, 0 SAY 'ELSE DO: ‘+telse_do
Navigate = Navigate + 1

ENDIF

CASE Navigate = 9
*find the else chain
@11, 0 SAY ‘ELSE CAHIN: *
T_nxgoal = Goal_ name (’/FINISHED CHIAN')
IF T _nxgoal = 0
Navigate = Navigate - 1
@11, 0 SAY ‘ELSE CAHIN: !
ELSE
IF T nxgoal = 3
t_buf = *TERMINATE'
ELSE
t_buf = name
ENDIF

177

SELECT 2 && goal.dbf
GO This_goal
REPLACE else_chain WITH t_buf
@11, 0 SAY ’ELSE CAHIN: ’+else_chain
Navigate = Navigate + 1
ENDIF

CASE Navigate = 10
* finished
@23,0

WAIT "This is the complete goal, Pres Esc to change it."

IF lastkey() # 27

Navigate = Navigate + 1
ELSE

Navigate = Navigate - 1
ENDIF

CASE Navigate = 11
RESTORE SCREEN FROM S_buf

RETURN(.T.)
OTHERWISE

?'Falling out of the loop ::/

??Navigate

WAIT

EXIT

ENDCASE

ENDDO
K e v w e e e aa e e e am e e s mm e me e m e v e e e e e e wm em e - e -
* - Function : goal_fact ()
* - Input : no input
* - Output : number enterered
* - Date : 06 Oct 89
* - UpDate : 27 Oct 89
A e o e mm e e wm e mm e e et m e o er o e w em e e mm w e e e em e = e e an -
* Convention: this is a member of Cmplt_goal, and should
* called by any other function.
* Assumes: many variables and files and screen
* and that the goal_ type is FCT
*

FUNCTION goal fact
PARAMETER Antc_pnt
*

* Establish the buffers from the record or start as blank

*

@8, 0SAY "IF:"
[F Edit_flg
FOR i = 0 TO Max_ Antec-l
Mac = ’‘if’+str(i,l)
if lst(i+l]l=&Mac
Mac = "oper"+str(i,l)
oper_lst(i+l]l=&Mac
Mac = "extrn"+str(i,l)
Extrn_lst[i+1]=&Mac
Mac = "ans"+str(i,l)
ans_1lst[i+1]=&Mac
Mac = "num"+str(i,l)
num_lst [i+1]=&Mac
NEXT
FOR i = 1 TO Antc_pnt
IF Extrn_lst (Antc_pnt]

not be

ELSE

ENDIF

DO WHILE .T.

NEXT

178
@8+i, 5 SAY "Extern:"
ELSE
@8+i, 5 SAY "Intern:"
ENDIF

@8+i,12 SAY if_ lst[i]

@8+i, 30 SAY oper_lst[i]

IF !'Extrn_lst{Antc_pnt] .AND. (len(trim(Ans_lst{i}); > 1)
@8+i, 35 SAY Ans_lst[i]

ELSE
@8+i, 35 SAY num_lst([i]

ENDIF

PRIVATE Navigate
Navigate = 5

FOR 1 = 0 TO Max_Antec-1

NEXT

oper_lst[i+l)=space(2)
ane_lsat[i+1]=space(30)
num_lst(i+11=0.0
Extrn_lst (i+l]=.F.

PRIVATE Navigate
Navigate = 1

DO CASE
CASE Navigate = 0

*backed out

IF Antc_pnt > 1
Antc_pnt = Antc_pnt - 1
Navigate = 4

ELSE
SELECT 2 &&goal .dbf
SET INDEX TO goal
RETURN (0)

ENDIF

CASE Navigate = 1

* find out what type of fact human or external
@24, 0 CLEAR
@8+Antc_pnt, 5 SAY "* "
@24, 0 SAY "Is this antecedent based on external facrLsz”",
GET Extrn_lst[Antc_pnt] &&a logic
READ
IF lastkey() # 27

Navigate = Navigate + 1

IF Extrn_lst[Antc_pnt]

@8+Antc_pnt, 5 SAY "Extern:"

ELSE
@8+antc_pnt, 5 SAY "Intern:"”
ENDIF
ELSE
Navigate = Navigate - 1
ENDIF

CASE Navigate = 2

* enter the next fact name
@8+Antc_pnt, 12 CLEAR TO 8+Antc_pnt, 30
IF Extrn_lst[Antc_pnt]
if_lst[Antc_pnt] = Get_extreq(Var_cls)
ELSE
if lst(Antc_pnt] = Get_internal(Var_cls)

179

ENDIF
IF if_lst[Antc_pnt]# ’'NIL’
Navigate = Navigate + 1
@8+Antc_pnt,12 SAY if_lst[Antc_pnt]
ELSE
Navigate = Navigate - 1
ENDIF
CASE Navigate = 3
* get the operand of the fact
824,00 CLEAR
@24,0 SAY "Enter an operand”
@88+Antc_pnt, 30 GET oper_lst[Antc_pnt]
READ
IF lastkey() # 27
Navigate = Navigate + 1
@8+antc_pnt, 30 SAY oper_lst [Antc_pnt]
ELSE
@8+Antc_pnt, 30 CLEAR TO B8+Antc_pnt, 36
Navigate = Navigate - 1
ENDIF
CASE Navigate = 4
* get the number/symbol of the fact
@24,0 CLEAR
@8+Antc_pnt, 35 CLEAR TO 8+Antc_pnt, 60
IF Extrn_lst (Antc_pnt]
@8+Antc_pnt, 35 GET num_lst [Antc_pnt] PICTURE "99999.99"
READ
IF lastkey() # 27
@8+Antc_pnt, 35 SAY num_lst[Antc_pnt] PICTURE

*99999,99"
Navigate = Navigate + 1
ELSE
@8+antc_pnt, 35 CLEAR TO 8+Antc_pnt, 60
Navigate = Navigate - 1
ENDIF

ELSE
*human interface
PRIVATE text_ans, answ_text, answ_num, error_flag
text ans = .T.
answ_text = 7’
answ_num = 0
error_flag = .T.
D 0 A n 8 _ i n t e r W oI
Text_ans, Answ_text,Answ_num,Error_flag,;
Var_cls,if lst{Antc_pnt]
IF Error_flag
Navigate = Navigate -~ 1

+3
o

ELSE
IF Text_ans
ans_lst [Antc_pnt] = Answ_text
@8+Antc_pnt, 35 SAY Answ_text
ELSE
num_lst[Antc_pnt] = Answ_num
@8+Antc_pnt, 35 SAY Answ_num
ENDIF
Navigate = Navigate + 1
ENDIF
ENDIF

CASE Navigate = §
* if there is space get another antecedent
@24,0 CLEAR

180

IF Antc_pnt < Max_Antec
IF AskY ("Enter another antecedent?")
Antc_pnt = Antc_pnt + 1
Navigate = 1

ELSE
Navigate = Navigate + 1
ENDIF
ELSE
@23,0
WAIT "Antecedent full, Pres Esc to change"
IF lastkey() # 27
Navigate = Navigate + 1
ELSE
Navigate = Navigate - 1
ENDIF
ENDIF
CASE Navigate = 6
EXIT
ENDCASE
ENDDO
*
* Do much saving

*

SELECT 2 &&goal.dbf
SET INDEX TO goal
IF !Edit_flg

APPEND BLANK

REPLACE goal_ typ WITH ‘FCT!
ELSE

SEEK Var_cls+rul_name
ENDIF

FOR i = 0 TO Max_Antec-1
Mac = "if’+str(i,1)
REPLACE &Mac WITH if lst[i+1]
Mac = "oper"+str(i,1l)
REPLACE &Mac WITH oper_ lst{i+l]
Mac = "extrn"+str(i,1l)
REPLACE &Mac WITH Extrn_lst[i+l]
Mac = "ans"+str(i,l)
REPLACE &Mac WITH ans_lst [i+1]
Mac = "num"+str(i,1l)
REPLACE &Mac WITH num_lst[i+1)
REPLACE num_antec WITH Antc_pnt

NEXT

RETURN (Antc_pnt)

K e e e oam wm mm wm wm e e o e e e o e A e m e e m m m — e e = - -
* - Function : goal _belief ()

* - Input : no input

* - Output : number enterered

* - Date : 06 Oct 89

* - UpDate : 27 Oct 89

K o wm wm aw en am ar m em em e e o e e m mm e wm e e e v e me e am - - - -
* Convention: this is a member of Cmplt_goal, and should not he
* called by any other function.

* Assumes: many variables and files and screen

*

and that the goal type is FCT
*

FUNCTION goal_belief

PARAMETER Antc_pnt

*

181

* Establish the buffers from the record or start as blank
*
@8, 0SAay "IF:"
IF Edit_flg
b_then = then
b_then_p = then p
E_then w = then w
FOR i = 0 TO Max_Antec-1
Mac = ’'if’+str(i,l)
if_1lst[i+l]=&Mac
NEXT
FOR i = 1 TO Antc_pnt
@8+i,8 SAY if 1lst[i]
NEXT
@ 20, 7 SAY +b_then

PPIVATE Navigate
Navigate = 4
ELSE
PRIVATE Navigate
b _then p = 0
b_then _w = 0
Navigate = 1
ENDIF
DO WHILE .T.
DO CASE
CASE Navigate = 0
*backed out
IF Antc_pnt > 1
Antc_pnt = Antc_pnt - 1
Navigate = 2

ELSE
SELECT 2 &&goal.dbf
SET INDEX TO goal
RETURN (0)

ENDIF

CASE Navigate = 1
* enter the next fact name
@8+Antc_pnt, 8 SAY "*"+space(30)
if_lst[Antc_pnt] = Get_belief (Var_cls)
IF if lst{Antc_pnt]# ’'NUL’
Navigate = Navigate + 1
@8+Antc_pnt,8 SAY if lst[Antc_pnt]
ELSE
Navigate = Navigate - 1
ENDIF

CASE Navigate = 2
* if there 138 space get another antecedent
@24,0 CLEAR
IF Antc_pnt < Max_Antec
IF AskY ("Enter another antecedent?")
IF lastkey() # 27
Antc_pnt = Antc_pnt + 1
Navigate = 1
ELSE
Navigate = Navigate - 1
ENDIF
ELSE
Navigate = Navigate + 1
ENDIF

182

ELSE
@23,0

WAIT "Antecedent full, Pres Esc to change"

IF lastkey() # 27

Navigate = Navigate + 1

ELSE

Navigate = Navigate - 1

ENDIF
ENDIF

CASE Navigate = 3
*the new belief
b_then = Get_belief (Var_cls)
IF b_then = TNUL/
Navigate = Navigate - 1
ELSE
Navigate = Navigate + 1
@ 20, 7 SAY +b_then

ENDIF

CASE Navigate = 4

*the weight of the new belief
@ 20, 25 SAY "prob:" GET b_then_p

PICTURE "999" RANGE 0, 100

@ 20, 37 SAY "Weight:" GET b_then_w PICTURE "999" RaANGE 0, 100

READ
IF lastkey() = 27

Navigate = Navigate - 1

ELSE

Navigate = Navigate + 1
@ 20, 31 SAY b_then_p
@ 20, 45 SAY b_then_w PICTURE

ENDIF

CASE Navigate = S
EXIT
ENDCASE
ENDDO
*

* Do much saving
*
SELECT 2 &&goal.dbf
SET INDEX TO geal
IF !'Edit_flg

APPEND BLANK

REPLACE goal typ WITH ‘BLF’
ELSE

SEEK Var_cls+rul_ name
ENDIF
REPLACE num_antec WITH Antc_pnt
FOR i = 0 TO Max _Antec-1

Mac = if’¥str(i,1)

REPLACE &Mac WITH if lst{i+1]
NEXT -
REPLACE then WITH b_then
REPLACE then_p WITH b_then p
REPLACE then_w WITH b_then_w

RETURN (Antc_pnt)
*end function goal belief

"999"
"999"

- e e = wm mr wr am we am e em e e

183

* - Function : goal_name -
* - Input : none -
* - Qutput : 0- error 1- old 2-new -
* - Date : 06 Oct 89 -
* - UpDate : 06 Oct 89 -

»*

- ew mm ws e e s mm am em e e em Em wm am W we s e Ee em e W wm W Mk e em . we ve e =

FUNCTION Goal_name
PARAMETER Other_chs

PRIVATE S_buf
SAVE SCREEN TO S_buf

SELECT 2 && goal.dbf
SET INDEX TO goal
PRIVATE Num goal
Num_goal = reccount ()
DECLARE Goal_list [Num_goal]
PRIVATE goal pnt
goal_pnt = 0
GO TOP
DO WHILE t!eof()
goa._pnt = Goal pnt + 1
Goal _list[Goal_pnt] = name
SKIP
ENDDO
PRIVATE i
DO WHILE .T.
@ 2,40 CLEAR TO 22, 78
@ 1,39 TO 23,79 DOUBLE
@ 2, 40 SAY ‘Enter a Goal: '
FOR i = 1 TO Num goal
@ 4+i,55 PROMPT Goal_list (i]
NEXT
@ S5+goal_pnt, 55 PROMPT ’NEW '
IF pcount() > 0
@ 6+goal_pnt, 55 PROMPT Other_chs
ENDIF
MENU TO Select
DO CASE
CASE Select = 0
RESTORE SCREEN FROM S _buf
RETURN (0)
CASE Select <= goal_pnt
*edit an old old
RESTORE SCREEN FROM S_buf
SEEK (Goal_list{Select])

RETURN (1)
CASE Select = goal_ pnt+2
RETURN (3)
OTHERWISE

* add a new goal
B _goal = space(15)
@ S5+goal_pnt, 40 SAY 'Enter a name: ' GET B_goal
READ
IF (len(trim(B_goal)) < 1 .OR. lastkey() = 27)
* loop around again
ELSE
SEEK (B_goal)
IF eocf ()
*does not already exists
@ 5+goal_pnt, 40 CLEAR TO S5+gcal_pnt, 55
@ 5+goal_pnt, 55 SAY B_goal

184

APPEND BLANK
REPLACE name WITH b _goal
RESTORE SCREEN FROM §_buf

RETURN (2)
ELSE
ErrWait (‘goal already exists’)
* loop around again
ENDIF
ENDIF
ENDCASE

ENDDO
*end function

»*

*end file goal.prg

¥ 3y = s WE ER N2 I N X Sk 3 S SN =E S 28 I B =B =R T O = O o= = O=| OZT®P = |- =S O=
k= Project : KOOLA programing language Shell

X o= Sub=-project : Entry for objects

X = File : p_rule.prg

LI Author : Robert D. Rourke

* = Date : 19 Nov 1989

X o= Update : 19 Nov 1989
*:ﬂﬂ’:===:=‘83==-==ﬂ==3==l=l========
K em e em wm am e e s e an W em es wm wm W mm ws W s e mr v w e A ep wm wm me == e e
- Function : Rept_mnu

LI Input : previous selection

- Output : new selection

* - Date : 19 Nov 1989

- UpDate : 19 Nov 1989

K wm e e wm wm e e wm e e W am wm e e s wm e M m W W e W e M em o w e o e =

FUNCTION Print_rule

SELECT 1 &&rule.dbf

SET INDEX TO rule

PRIVATE Page_Message

Page_Message = 'KOOLA Rule Listing Date: ’'+dtoc(date())
PRIVATE S_buf

SAVE SCREEN TO S_buf

PRIVATE Left Margin, Top_Margin, Bottom Margin,
Left_Margin = 5

Top_Margin = 3

Bottom Margin = 59

PRIVATE Line_counter,Page_Counter
Line_Counter = Top_Margin
Page_Counter = 1

PRIVATE B_var_class, B_name, R_count
GO TOP

SET PRINTER TO myout

@ 4, 25 CLEAR TO 14, 53
@ 4, 25 TO 14, 53
@ S5, 28 SAY "RELEVE DE L’ IMPRESSION"

@ 9, 32 SAY 'PAGE LIGNE’
*@ 5, 31 SAY 'PRINTING STATUS’
*@ 9, 32 SAY ‘PAGE LINE’

@ 11, 32 SAY '[’

@ 11, 33 SAYy ‘01’

@ 11, 35 SAY /] [’

@ 11, 43 SAY ‘00’

@ 11, 45 SAY ')’

¢ 6, 29 TO 13, 49 DOUBLE

nowon oo onouon

185

@ 9, 39 TO 12, 39
@ 8, 30 TO0 8, 47

WriteLn ()

Writeln (’/KOOLA Production System Rule Listing '+;
'Date: '+dtoc(date()) }

WriteLn ()

WritelLn ()

DO WHILE !eof ()
IF Line_Counter > (Bottom_Margin - 6)
NewPage ()
ENDIF
B_var_class = var_class
R_count = 1
WriteLn ('FOR: ’'+B_var_ class)
Writeln ()
DO WHILE B_var_class = var_class .AND. !eof ()
IF rule_typ = "FCT"
fct_rule (R_count)
ELSE
blf rule(R_count)
ENDIF
WriteLn ()
R_count = R count + 1
SKIP + 1
ENDDO
Writeln ()
ENDDO

WriteLn ("End of report.")
EJECT

RESTORE SCREEN FROM S_buf
*end function go_print

*

- o em e e em e Gr M e e we e em wm e e em e e we er er e wm ms es e e wm m me

* - Function : fct_rule(() -
* - Input : previous selection -
* - Output : new selection -
* - Date : 19 Nov 1989 -
* - UpDate : 19 Nov 1989 -

»*»
[}
t
I
!
|
1
1
!
|
i
1
t
|
!
]
|
I
|
i
|
!
1
I
[
]
1
|
!
I
|
1
}
|
!

FUNCTION Fct_rule
PARAMETER Counter
WriteLn (’Primary Rule (’+s3tr(Counter,2)+’): ‘+name)
IF extrnl
WriteLn (' IF External: ‘+trim(if0)+’ ’+oper0+’ ’+atr(numl,,.),

ELSE
IF (len(trim{ans0)) > 1)
WritelLn ('’ IF: ’'+trim(if0)+’ ’+oper0+’' ’+trim(ans0))
ELSE
WriteLn (' IF Question: f+trim(if0)+’ T roper g’
*+str (numd,8,2))
ENDIF
ENDIF

PRIVATE i, Macro, Pointer,M _oper,M if,M ans
FOR i = 1 TO num_antec-1

Pointer = str(i, 1)

Macro = ’‘extrn’+Pointer

M _if = ‘IF’'+Pointer

M oper= /OPER’+Pointer

186

IF &Macro
M_ans = 'NUM’+Pointer
WriteLn(’ AND External: ‘+trim(&M_if)+’ '+&M_oper+’
’ +str(&M_ans,8,2))
ELSE

M_ans = ’/ANS’+Pointer
IF (len(trim(&M_ans)) > 1)

WriteLn(' AND: ‘+trim(eM_if) +’ '+§M oper+’
’+trim(&M_ans))
ELSE
M_ans = 'NUM’+Pointer
WriteLn(’ AND Question: ‘+trim(&M if)+’ '+&M_oper+’
’+str(&M_ans, 8, 2))
ENDIF

ENDIF
NEXT
WriteLn(’ WHEN: ’'+trim(then)+’ ‘+str{then_p,3)+’ Weight: ’+str(then_w,3)

)
IF (else # 'NUL’)

Writeln(’ ELSE: '+trim(else)+’ '+str(else p,3)+’ Weight:
*+str(else_w,3))
ENDIF
*end function fct_rule
K ew or v = m am wm wm e w= = - “ @ ar m am w e e w % ew e e we e em mm e -
x - Function : blf rule() -
* - Input : previous selection -
* - Output : new selection -
* - Date : 19 Nov 1989 -
- UpDate : 19 Nov 1989 -

*
!

- e ws w ms e e e e me e am e o e W me wm M am s ee s em we e mw me wm e em

FUNCTION blf rule
PARAMETER Counter
WriteLn(’ Secondary Rule (’+str{(Counter,2)+’): ’+name)
WriteLn(’ IF: "+trim(if0))
PRIVATE i, Macro, Pointer,M_if
FOR i = 1 TO num_antec-1
Pointer = str(i, 1)
M_if = ’IF’+Pointer
Writeln(’ AND: ’+trim (&M 1if))
NEXT -
Writeln(’ THEN: '+trim(then)+’ ’+str(then_p,3)+’ Weight: ! +str(then_w,3)
)
IF else# ’'NUL’
Writeln(’ ELSE: '+trim(else)+’ "+str(else_p,3)+’ Weight:
‘+str(else_w,3))
ENDIF
*end function blf rule

Ko o ow = e m em = m e m e e e e e e m am wm m ar e S e e e e e m m e e e

FUNCTION WriteLn
PARAMETERS Chr_String
. 4

* Write a line to the default device. use the global variables :
* Left_Margin, Top_Margin, Bottom Margin,Line_Counter, Page_Counter
*
Line_Counter = Line_ Counter + 1
*IF Line_Counter > (Bottom Margin - 2)
IF Line_Counter > Bottom Margin
NewPage ()
ENDIF
@ 11, 43 SAY Line_Counter PICTURE '99°

187

SET DEVICE TO PRINT
IF pcount() > 0
@ Line_Count, Left_ Margin SAY Chr_String
ENDIF
SET DEVICE TO SCREEN
*end procedure Writeln

FUNCTION NewPage
*

* starts a new Page for printing

*

PRIVATE Page_String

Page Counter = Page Counter + 1

Page String = stx (Page_Count,2,0)

@ 11, 33 SAY Page_Count PICTURE ’99’'

SET DEVICE TO PRINT

*@ Bottom_Margin, 65 SAY ’.../’+Page_String
Line_Counter = Top_Margin

@ Line_Counter, Left_Margin SAY Page_Message+;
space(20) +’Page: ’+Page_String

SET DEVICE 10 SCREEN

Line Counter = Line Counter + 2

*end procedure NewPage

*

*end file p_rule.prg

* = = = E] E_ I M m = = == = - m = = = 3 = = = == - 3 = = - = L] = = =
* o Project : KOOLA programming language

* = Sub-project : Entrzy for objects

* = File : extern.prg

* = Author H Robert D. Rourke

* = Date : 19 Mar 1989

* = Update : 10 Oct 1989

* = = = = = = = a2 = = = = = = = m m = -~ = = = = = = = o= = == = - = - =
*

* FUNCTIONS:

* Add_extreq

* Get_extreq

* exr_var

* Get_var

X o m m e e m am o om m e m owm e e e m e e e e e e e e e e = e - -
* - Function : Add_extreq -
* - Input : -
* - Qutput : -
* - Date : 19 May 89 -
* - UpDate : 02 Sep 89 -
K o er wr am mm o mm em e w e e e mw e wm m e wm = e en e m wr w wm e e e e -
FUNCTION Get_extreq

PARAMETER Var &&the wvar class to use

SELECT 5 && extreq.dbf

SET INDEX TO extreq

PRIVATE Exr new, Exr pnt, B extreq,S_buf
SAVE SCREEN TO S_buf

*

*make a list of previous extreqgs
*

Exr pnt = 0

Exr new = 0

PRIVATE Exr_list

DECLARE Exr list [50]

SEEK Var

[I | S S R T

4

188

DO WHILE var_class = var
Exr_pnt = Exr_pnt + 1
Exr_list [Exr_pnt] = name
SKIP

ENDDO

PRIVATE Navigate
Navigate = 1
DO WHILE .T.
DO CASE
CASE Navigate = 0
RESTORE SCREEN FROM S_buf
RETURN (/NIL’)
CASE Navigate = 1
RESTORE SCREEN FROM S_buf
1,39 TO 23,79 DOUBLE
2, 40 SAY ’'Enter a extreq: '
3,40 SAY ‘Var Class = ’+Var

* DM

make selectioa
*
PRIVATE i
FOR i = 1 TO Exr_pnt
@ 4+i,55 PROMPT Exr_list(i]
NEXT
@ 4+i, 55 PROMPT ’ *NEW !
PRIVATE Select
Select = Exr_pnt
MENU TO Select
DO CASE
CASE Select = 0
Navigate = Navigate - 1
CASE Select > Exr_pnt
Navigate = Navigate + 1
OTHERWISE
RESTORE SCREEN FROM §_buf
RETURN (Exr_list[Select])
ENDCASE

CASE Navigate = 2
* add a new extreq
B_extreq = space(l5)
Exr_new = Exr new + 1
@ 4+Exr_pnt+Exr_new, 40 SAY ‘Enter extreq: ' GET B_extreq
READ
IF (!updated() .OR. lastkey() = 27)
Exr new = EXr _new - 1
Navigate = Navigate - 1

ELSE
SEEK (var+B_extreq)
IF eof ()
*does not already exists
@ 4+Exr_pnt+Exr_new, 55 SAY B_extre
Navigate = Navigate + 1
ELSE
Exr new = Exr new =~ 1
ErrWait (’extreq name already exists’)
ENDIF
ENDIF

CASE Navigate = 3
* add the rest of the enquiry

189

IF Cmplt_extreq(B_extreq)
Navigate = Navigate + 1
REPLACE var_class WITH var
REPLACE name WITH B_extreq

ELSE
Exr new = EXr new - 1
Navigate = Navigate - 1

ENDIF

CASE Navigate = 4
RESTORE SCREEN FROM S_buf
RETURN (B_extreq)

ENDCASE

ENDDO
* end function Find_extreq

*

* - Function : Add_extreq

* - Input : none

* - Output : sets Escape

* - Date : 19 May 89

* - UpDate : 25 Sep 89

X m = et e o e e e m e e e m em e s e o= e e = e am = = - . m e = = -
* Synopses:

* Adds new extreqs using new or old variable classes.
* Pseudo:

* While add more extreqgs

* Decide the variable class

* While using the same variable class

* Add a extreq

*

*

FUNCTION Add_extreq

*

* display all of the possible variables
*
PRIVATE Var, Exr_pnt, B_extreq,S_buf
SAVE SCREEN TO S_buf
PRIVATE Navigate
Navigate = 1
DO WHILE .T.
DO CASE
CASE Navigate = 0
EXIT
CASE Navigate = 1
*find a Var_class
RESTORE SCREEN FROM S_buf
@ 1,39 TO 23,79 DOUBLE
@ 2, 40 SAY 'Enter a external enquiry: '
Var = Get_var()
IF Var = 'NIL’
Navigate = Navigate - 1
ELSE

[y

Navigate = Navigate +

@ 3,40 SAY ’'Var Class

*1ist previous ones

Exr pnt = 0

Exr new = 0

SEEK Var

DO WHILE var_class = var
Exr pnt = Exr pnt + 2

"+ar

190

@ 4+Exr_pnt, 55 SAY name
SKIP
ENDDO
ENDIF

CASE Navigate = 2
* add a new extreq
B_extreq = space(l5)
Exr new = Exr new + 1

READ
IF (len(trim(B_extreq)) < 1 .OR. lastkey() = 27)
Navigate = Navigate - 1

ELSE
SEEK (var+B_extreq)
IF eof()
*does not already exists
@ 4+Exr_pnt+Exr_new, 55 SAY B extreq
Navigate = Navigate + 1
ELSE
Exr_new = EXr new ~ 1
ErrWait (‘extenal enquiry already exists’)
ENDIF
ENDIF

CASE Navigate = 3

* add the rest of the enquiry

IF Cmplt_extreq(B_extreq)
Navigate = Navigate + 1
REPLACE var_class WITH var
REPLACE name WITH B_extreq

ELSE
Exr new = Exr new - 1
Navigate = Navigate -~ 1

ENDIF

CASE Navigate = 4
* add a new object

IF AskY("Enter another enquiry for the variable
"+rtrim(vVar)+’?2’)

@ 24,0 CLEAR

Navigate = 2 &&start at the name
ELSE
Navigate = Navigate + 1
ENDIF
CASE Navigate = 5
EXIT
ENDCASE

ENDDO
RESTORE SCREEN FROM S_buf
IF Navigate > 0
Escape = .F.
RETURN({.T.)
ELSE

Escape = .T.
RETURN(.F.)
ENDIF

* end function Find_extreq

- @ wm o e W o w e M e o e e e m m @ e mm e W mm e @ em wm e

@ 4+Exr_pnt+Exr_new, 40 SAY ‘Enter a name: ' GET B_extreq

ciass

P Sy

191

* - Function : Cmplt_extreq()

* - Input : none

* - Output : error

* Date : 02 Oct 89

* UpDate : 02 Oct 89

KX e e @ m we we e e @ e e e M an e w wm s s e W em wem s e m e o= e m em -
* Assumes the file is pointing to the record to add

FUNCTION Cmplt_ extreq
PARAMETER Engire
PRIVATE S_buf
SAVE SCREEN TO S_buf
PRIVATE B_shelf life
B_shelf_life = 0
PRIVATE B_token
B_token = space(8)
15,40 CLEAR TO 22,78
15,39 TO 15,79
15,39 say » "
15,79 say = "
15, 55 SAY rtrim("Enqg: "+Enqgire)
17,41 SAY "0OS token:" GET B_token PICTURE "999993%"
19, 41 SAY "Self life (seconds):"” GET B_shelf_life RANGE 0, 10000000
READ
IF (lastkey() # 27 .AND. update())
APPEND BLANK
REPLACE token WITH b_token
REPLACE shelf life WITH b_shelf life
RESTORE SCREEN FROM S_buf

meEmmwm

RETURN (.T.)
ELSE
RESTORE SCREEN FROM §_buf
RETURN (.F.)
ENDIF
® - ee Em wm me e mm e e e mm e e e e W wm e s w W o e e e e e wm e e e - -
* - Function : exr var
* - Input : none
* - Output : variable class
* - Date : 19 May 89
* - UpDate : 25 Sep 89

K o wm s em e m o o m wm wm e e e e e m e m e o em e e m e = = e

FUNCTION exr_var

SELECT S && extreq.dbf
SET INDEX TO extreq
PRIVATE B_var

B_var = Get_var()

SET INDEX TO

RETURN (B_var)

*
*end function exr_var

*x = = = = = = == = = = = = = E 3 = = = = = = = = = = = = = = = = =
* = Project : KCOLA programming language

* = Sub-project : Entry for objects

* o= File : internal.prg

* = Author : Robert D. PRcurke

* = Date : 02 Oct 1989

192

k = Update : 23 Oct 1989

A si 3 S ®E SR I S R W S8 3 I M M N I B W 3 X I\ I I I WM |\ M IE oW ;= ™ = T X
*

* FUNCTIONS :

* Add_internal

* Get_internal

* inr_var

K am om em ew wm ws we mn em em e we e e e e em o W e e e e e e e e e e e
- Procedure : Ans_inter -
- Input : -
* - Output : -
- Date : 23 Oct 89 -
* - UpDate : 23 Oct 89 -

KN o s am e o e am o @ e e mr @ W em @ m M e w @ wm e m W w e e @ mm = es = e

PROCEDURE Ans_inter

PARAMETER Text_ans,; &&return logic of type
Answ_text,; &&if text answer stored here
Answ_num,; &&if numeric stored here
Errox_flg,:
var, ; &&variable class
Qu_name &&question name

PRIVATE S_buf
SAVE SCREEN TO S§ buf
@ 2,40 CLEAR TO 22, 78
@ 1,39 TO 23,79 DOUBLE
@ 2, 40 SAY ’'Enter an answere: '
@ 3,40 SAY ‘Var Class = ’+Var
@ 4, 40 SAY ’'Name =‘+Qu_name
SELECT 4 && internal.dbf
SET INDEX TO internal
SEEK Var+Qu name
IF eof()
? ’'Internal error question missing’
WAIT
Error_ flg = .T.
RESTORE SCREEN FROM S_buf
RETURN
ENDIF

IF inquir_typ = ’'NUM’
Answ_num = lower
@15, 41 GET Answ_num RANGE lower, upper
READ
IF lastkey() = 27
Error_flg = .T.
RESTORE SCREEN FROM S_buf
RETURN
ENDIF
Text_ans = .F.
ELSE
PRIVATE i, Mac_st, Ans_buf
DECLARE Ans_buf [num_ams]
FOR i = 0 TO num_ams - 1
Mac_st = ’ANS’/+str(i,1l)
Ans_buf [i+1] = g&Mac_st
@ 15+i, 42 PROMPT Ans_ buf[i+1]
NEXT
PRIVATE Select
MENU TO Select
IF Select = 0
Error_flg = .T,

193

RESTORE SCREEN FROM §_buf

RETURN
ELSE
Answ_text = Ans_buf([Select]
Text_ans = .T,
ENDIF
ENDIF

Error_flg = .F.

RESTORE SCREEN FPOM S_buf
RETURN

*end procedure Ans_inter

* - Function : Get_internal -
* - Input : -
* - Output : -
* - Date : 02 Oct 89 -
* - UpDate : 02 Oct 89 . -

%*

FUNCTION Get_internal

PARAMETER Var &&the var class to use
SELECT 4 && internal.dbf

SET INDEX TO internal

PRIVATE Inr_new, Inr_pnt, B_internal,S_buf
SAVE SCREEN TO S_buf

*

*make a list of previous internals

*

Inr pnt = 0

Inr new = 0

PRIVATE Inx_list

DECLARE Inr_list(50]

SEEK Var

DO WHILE var_class = var
Inr pnt = Inr_pnt + 1
Inr_list[Inr_pnt] = name
SKIP

ZNDDO

PRIVATE Navigate
Navigate = 1
DO WHILE .T.
DO CASE
CASE Navigate = 0
RESTORE SCREEN FRCM S_buf
RETURN('NIL')
CASE Navigate = 1
RESTORE SCREEN FROM S_buf
2,40 CLEAR TO 22, 78
1,39 TO 23,79 DOUBLE
2, 40 SAY ’'Enter an internal: '
3,40 SAY ’‘Var Class = ‘+Var

make selection

* ¥ DD DD

PRIVATE i
FOR 1 = 1 TO Inr_pnt

@ 4+i,55 PROMPT Inr_list([i}
NEXT
@ 4+4i, 55 PROMPT ‘NEW ’
PRIVATE Select
Select = Inr pnt

194

MENU TO Select
DC CASE
CASE Select = 0
Navigate = Navigate -1
CASE Select > Inr_pnt
Navigate = Navigate + 1
OTHERWISE
RESTORE SCREEN FROM S_buf
RETURN (Inr_list[Selectl])
ENDCASE

CASE Navigate = 2
* add a new internal
B_internal = space(1l5)
Inr new = Inr new + 1
@ 4+Inr_pnt+Inr_new, 40 SAY 'Enter a name: ‘' GET B_internal

READ
IF (!updated() .OR. lastkey() = 27)
Inr_new = Inr_new - 1
Navigate = Navigate -1
ELSE
SEEK (var+B_internal)
IF eof()
*does not already exists
@ 4+Inr_pnt+Inr_new, 55 SAY B_internal
Navigate = Navigate + 1
ELSE
Inr_new = Inr new - 1
ErrWait (’internal name alzready exists’)
ENDIF
ENDIF

CASE Navigate = 3

* add the rest of the enquiry

IF Cmplt_internal (B_internal, .F.) &¬ edit mode
Navigate = Navigyate + 1
REPLACE var_ class WITH var
REPLACE name WITH B_internal

ELSE
Inr_new = Inr _new - 1
Navigate = Navigate -1

ENDIF

CASE Navigate = 4
RESTORE SCREEN FROM §5_buf
RETURN (B_internal)
ENDCASE

ENDDO
* end function Find internal

- Function : Add_internal -

- Input : none -

- Output : sets Escape -

- Date : 02 Oct 89 -
UpDate : 02 Oct 89 -

Synopses:

Adds new internals using new or old variable classes.
Pseudo:
While add more internals

R A& X % A& £ A 2 2 =
H

prorr

s i ek

LRV NE RIS WAL T

195

Decide the wvariable class
While using the same variable class
Add a internal

UNCTION Add_internal

* 1T % % ¥ % %

* display all of the possible variables
*
PRIVATE Var, Inr_pnt, B_internal,S_buf
SAVE SCREEN TO S buf
PRIVATE Navigate
Navigate = 1
DO WHILE .T.
DO CASE
CASE Navigate = 0
EXIT
CASE Navigate = 1
*find a Var_class
RESTORE SCREEN FROM S _buf
@ 1,39 TO 23,79 DOUBLE
@ 2, 40 SAY 'Enter an internal inquriry: '
Var = Get_var|{)
IF Vvar = ‘NIL’'
Navigate = Navigate - 1
ELSE
PRIVATE Select
Select = 99 &sused by the next step
PRIVATE Inr_list, Inr_pnt
DECLARE Inr_list([50]
Navigate = Navigate + 1
@ 3,40 SAY ’Var Class = * +Var
*list previous ones
Inr_pnt = 0
Inr new = 0
SEEK Var
DO WHILE var_class = var
Inr_ ont = Inx pnt + 1
@ 4+Inr_pnt, 55 SAY name
Inr_list{Clas_pnt] = name
SKIP
ENDDO
ENDIF

* % % X % kX X X N

CASE Navigate = 2
PRIVATE Inr pnt
Inr pnt = 0
SEEK Var
DO WHILE var_class = var
Inr_pnt = Inr pnt + 1
Inr_list[Inr_pnt] = name
@ 4+Inr_pnt,55 PROMPT Inr_list(Inr_pnt]
SKIP
ENDDO
@ 5+Inr _pnt, 55 PROMPT ’NEW '
MENU TO Select
DO CASE
CASE Select = 0
Navigate = Navigate - 1
CASE Select <= Inr_pnt
*edit ar. old old
SEEK var+Inr_list (Select]

196

IF Cmplt_internal(Inr_list (Select],.T.)&& edit mode
Navigate = Navigate -1

ELSE
*back to this one

ENDIF

OTHERWISE

* add a new internal

B_internal = space (15)

@ S+Inr_pnt, 40 SAY ‘Enter a name: ' GET B_internal

READ

IF (len(trim(B_internal)) < 1 .OR. lastkey() = 27)
Navigate = Navigate -~ 1

ELSE
SEEK (var+B_internal)
IF eof ()
*does not already exists
@ 5+Inr_pnt, 40 CLEAR T0 5+Inr_pnt, 55
@ 5+Inx_pnt, 5SS SAY B_internal
Navigate = Navigate + 1
ELSE
Errflait (’extenal enquiry already exists’)
ENDIF
ENDIF
ENDCASE

CASE Navigate = 3

* add the rest of the enquiry

IF Cmplt_internal (B_internal,.F.) &¬ edit mode
Navigate = Navigate + 1
REPLACE var_class WITH var
REPLACE name WITH B_internal

ELSE
Navigate = Navigate - 1

ENDIF

CASE Navigate = 4
* add a new object

IF AskY("Enter another enquiry for the wvariable class
“4rtrim(var)+'2?”7)
@ 24,0 CLEAR

Select = 99
Navigate = 2 &&start at the name
ELSE
Navigate = Navigate + 1
ENDIF
CASE Navigate = 5
EXIT
ENDCASE

IENDDO

RESTORE SCREEN FROM S_buf

IF Navigate > 0
Escape = .F.
RETURN(.T.)

ELSE
Escape = .T.
RETURN(.F.)

ENDIF

* end function Find_internal

N w m e e e m wm e e em e o w am o e o s e ® e m e m am wm w= wm ae e am o =

197

* - Function : Cmplt_internal() -
* - Input : Enquiry name, edit flag -
* - Qutput : error -
* - Date : 02 Oct 89 -
* - UpDate : 02 Oct 89 -
K o = m we e mm e o em wm em w W mm m wm w e w W owm m e = - e e e e . -
* Assumes the file is pointing to the record to add

FUNCTION Cmplt_internal
PARAMETER Enqire, Edit_flg
PRIVATE S_buf

SAVE SCREEN TO S_buf

*

* load the buffers
*
PRIVATE Text_based
PRIVATE B_question, Ans_lst, i
DECLARE Ans_lis (7]
PRIVATE B_shelf life
PRIVATE B lower, B_upper
IF Edit_flg
Text_based = (inquir_typ='TEX’)
B_shelf life = shelf life
B_question = subst(questiontspace(60),1,60)
IF Text_based
PRIVATE Mac
FOR i = 0 To 6
Mac = "ANS"+str(i, 1)
Ans_lis[i+1]=subst (&Mact+space(30),1,30)
NEXT
ELSE
B_upper = upper
B_lower = lower
ENDIF

ELSE
Text_based = AskY (" Does this question have a texed based answer?")
@24, 0 CLEAR
B_shelf life = 0
B_question = space (60)
IF Text_based
FOR i =1 TO 7
Ans_1is [i] = space (30)
NEXT
ELSE
B_upper = 0
B_lower = 0
ENDIF
ENDIF

@ 8,0 CLEAR TO 22,77
@ 7,4 TO 22,77 DOUBLE
@ 7, 10 SAY "["+trim(Enqgire)+"]"
@ 22, 45 SAY ’'Press PgDn when finished’
IF Text_based .AND. !In_colour

SET COLOUR TO W/N,U/N
ENDIF
@ 9, 30 SAY "Shelf life:"GET B_shelf life
@ 12, 5 SAY "Question :" GET B_question
IF Text_based

FOR i = 11T0 7

@ 13+i, 30 SAY "Answer "+str(i, 1) GET 2Ans_lis{i]
NEXT

198
ELSE
@ 14, 30 SAY "Lower bound:"GET B_lower
@ 16, 30 SAY "Upper bound:"GET B_upper
ENDIF
READ

IF Text_based .AND. !In_colour
SET COLOUR TO
ENDIF
IF (lastkey () # 27 .AND. updated())
IF 'Edit_flg
APPEND BLANK
ENDIF
REPLACE shelf life WITH B_shelf_life
T.ACE questlon WITH B quest:.on
IF Text based
REPLACE inquir _typ WITH 'TEX’
i=0
DO WHILE (len (trim(Ans_lis[i+1])) > 0)
Mac = "ANS"t+str(i,l)
REPLACE &Mac WITH Ans_lis([i+1]
i=1i+1
IFi= 7
EXIT
ENDIF
ENDDO
REPLACE num_ams WITH i
ELSE
REPLACE inquir _typ WITH ' NUM'
REPLACE lower WITH B_lower
REPLACE upper WITH B__upper
ENDIF
RESTORE SCREEN FROM S _buf
RETURN (.T.)
ELSE
RESTORE SCREEN FROM S_buf
RETURN (.F.)
ENDIF

- e o e am e W wm o e R am e M mm we W o e W W we w = mm e & me wm v A mm

L

- Function : Inr_var -
L Input : none -
LI Output : variable class -
L Date : 02 Oct 89 -
- UpDate : 02 Oct 89 -

* e w em e o wm e e m wm m e mm e w m mm e m em aw e m mm e e e = e -

E‘UNCTION Inxr var

SELECT 4 %& internal.dbf
SET INDEX TO internal
PRIVATE B_var

B var = Get _var()

SET INDEX ~ T0

RETURN (B_var)

*

*end function Inr_wvar

T 3B M a3 am B Dk o B IR e g B I X3 M R Iy I I W S N S == o o S oz =X == =

* E

o= Project : KOOLA programing language Shell
o= Sub-project : Entry for objects

o= File : p_rule.prg

L I I}

199

* om Author ; Robert D. Rourke -
o= Date : 12 Dec 1989 -
LA Update : 12 Dec 1989 =
X ™M 3= m M SR o W 2 I WM 3 I M W W N IR M M YR M M NS 3 W M mr W M W™ u w N s m
X o me e w e e e o= - - e ™ e e w e e e o s me ow . am wm e - - - = -

x - Function : Print_internal -

* - Input : previous selection -
LI Output : new selection -

* - Date : 12 Dec 1989 -
o= UpDate : 12 Dec 19489 -

K = am o = o oam T o o w = - v @ me mm m w e m e me e o ™ oem e = = e o e e
FUNCTION Print internal

SELECT 4 &&internal.dbf

SET INDEX TO internal

PRIVATE Page_Message

Page_Message = 'KOOLA Question Listing Date: ‘+dtoc (date())
PRIVATE S_buf

SAVE SCREEN TO S_buf

PRIVATE Left Margin, To~_Margin, Bottom_Margin,

Left_Margin = 5

Top_Margin = 3

Bottom Margin = 59

PRIVATE Line_counter,Page Counter
Line_Counter = Top_Margin
Page_Counter =1

PRIVATE B var_ class, B_name, R _count
GO TOP

4, 25 CLEAR TO 14, 53

4, 2570 14, 53

S, 28 SAY "RELEVE DE L’ IMPRESS ION"
9, 32 SAY 'PAGE LIGNE'
*@ 5, 31 SAY 'PRINTING STATUS'
*@ 9, 32 SAY 'PAGE LINE'
11, 32 SAY ‘[’

11, 33 SAY ‘01’

11, 35 SAY '] [

11, 43 SAY '00°

11, 45 SAY '}’

6, 29 TO 13, 49 DOUBLE
9, 39 TO 12, 39

8, 30 TO 8, 47

(D (B @ DD D (D

WriteLn ()

WriteLn ('KOOLA Production System Question Listing '+;
'Date: 'tdtoc(date()))

WriteLn ()

WriteLn ()

DO WHILE !eof ()
B _var_class = var class
R _count =1
IF Line_Counter > (Bottom_Margin - 6)

NewPage ()
ENDIF
WriteLn ('FOR: '+B_var_class)
WriteLn ()

DO WHILE B_var_class = var_class .AND. !eof ()
IF inquir typ = "TEX"
Txt_internal(R_count)

ENDDO

200

ELSE
Num_internal (R_count)
ENDIF
WriteLn!)
R count = R _count + 1
SKIP + 1
ENDDO
IF leof()
WriteLn{)
WriteLn (! -——==-recc s mcerr e -7
WriteLn()
ENDIF

Writeln ("End of report.")

EJECT

RESTORE SCREEN FROM §_buf
*end function go_print

¥ ¥ % ¥ W ¥

*

W mm em em M wm m e Ym e w S e s M W am em e o

Function : Tex internal()
Input : previous selection
Output : new selection
Date : 12 Dec 1989
UpDate : 12 Dec 1990

FUNCTION Txt_internal
PARAMETER Counter

Writeln(’ Question (’+stxr (Countexr,2)+’') : ’+name)
Writeln(’ ' +question)

PRIVATE Macro

FOR i = 0 TO num _ams ~ 1

NEXT
*end function Txt_internal

* A * * W

*

Macro = 'ANS’+str(i,1)
Writeln(’ ! +&Macro)

Function : Num_internal()
Input : previous selection
Output : new selection
Date : 12 Dec 1989
UpDate : 12 Dec 1990

FUNCTION Num_ internal

PARAMETER Counter

Writeln(’Question (’+str (Countexr,2)+’'): ’+name)
WriteLn(’ '+question)

WritelLn(’

*end function Num_internal

* & * X * X A X X

K E R R

Ans: from ’'+str(lower)+’ to ’+str (upper))

Project : KOOLA programming language
Sub-project : Entry for objects

File : rule.prg

Author : Robert D. Rourke

Date : 06 Oct 1989

Update : 03 Jan 1990

Boouw o wnnu

W

* % %

* % % % % A % % N % % %

FUNCTIONS:
Add_rule
Get_rule
rule_var

Function
Input
Qutput
Date
UpDate

Agsumes:

201

Rule_consq()
no input

number
27 Oct
06 Nov

Convention: this is a member
called by any other function.

enterered
89
89

of Cmplt rule,

and that the rule_type is FCT

Function: adds an then and an else to a rule

FUNCTION Rule consq

*
*
*

Creat the buffers

PRIVATE b_then, b eles
PRIVATE Navigate
IF Edit_flg

ELSE

ENDIF

b _then =
b_then_p
b_then w
@ 20, 25
?72then_p
@ 20, 37
22then_w
b_else =
b else_p
b_else_w

then

else

= then_p
= then w
SAY "prob:

SAY "Weight :

= else_p
= else _w

* put them on the sreen
@ 20, 0 SAY 'THEN:
IF B_else # 'NUL/

@21, 0 SAY 'ELSE:

@ 21, 25

??else_p

@ 21, 37

?2else_w

Navigate
ELSE

Navigate
ENDIF

b_then = 'NUL’
b _then_w =0
b_then_p = 0
b_else = /NUL’
b _else_w = 0
b_ else_p = {
Navigate = 1

DO WHILE .T.

DO CASE

" +b_then

SAY "prob: "

SAY "Weight:

= 4
=5

CASE Navigate = 0

* backed

outs

'tbh_else

and

many variables and files and screen

should not

be

202

SELECT 1 &&rule.dbf
SET INDEX TO rule
RETURN (.F.)

CASE Navigate = 1
* add the then
@ 20, 0 CLEAR
@ 20, O SAY ” THEN: ’

b_then = Get_belief (Var cls)

IF b _then = NUL’

Navigate = Navigate -
ELSE

Navigate = Navigate +

@ 20, 7 SAY +b_then
ENDIF

CASE Navigate = 2
*add the weight

1
1

@ 20, 25 SAY "prob:" GET b_then p PICTURE "999" RANGE 0, 100
@ 20, 37 SAY “Weight:" GET b_then_w PICTURE "999" RANGE 0, 100

| READ
| IF lastkey() = 27

PICTURE "999"

Navigate = Navigate - 1
ELSE

Navigate = Navigate + 1

@ 20, 31 SAY b_then p

@ 20, 45 SAY b_then_w PICTURE "999"
ENDIF

CASE Navigate = 3
* add the else
@ 21, O CLEAR

| IF AskN (’'Is there an ELSE clause in the consequence?’)
| b_else = Get_belief(Vax_cls)

IF b _else # "NUL’

Navigate = Nevigate + 1
@ 21, 0 SAY ELSE: ’'+b_else

ENDIF
ELSE
IF lastkey() = 27
Navigate = Navigate - 1
ELSE
Navigate = Navigate + 2
ENDIF
ENDIF

CASE Navigate = 4
*add the weight

READ
IF lastkey() = 27

CASE Navigate = 5
*last chance
@ 24, 0 CLEAR

@ 21, 25 SAY “prob:" GET b_else_p PICTURE "999" RANGE 0, 100
@ 21, 37 SAY "Weight:™ GET b_else_w PICTURE "999" RANGE 0, 100

Navigate = Navigate - 1

PICTURE "999"

ELSE

Navijate = Navigate + 1

@ 21, 31 SAY b _else p

@ 21, 45 SAay b_else__w PICTURE "999"
ENDIF

-, - e LS

204

IF Var = /NIL’
Navigate = Navigate - 1
ELSE
PRIVATE Select
Select = 99 &&used by the next step
PRIVATE rule list
DECLARE rule_list(50]
Navigate = Navigate + 1
@ 3,40 SAY ’'Var Class = ’+vVar
ENDIF

CASE Navigate = 2
PRIVATE rule pnt
rule_pnt = 0
SEEK Var
DO WHILE var_class = var
rule pnt = rule pnt + 1
rule_list{rule_pnt] = name
@ 4+rule_pnt,55 PROMPT rule_list[rule_pnt]
SKIP
ENDDO
@ S+rule_pnt, 55 PROMPT 'NEW '
MENU TO Select
DO CASE
CASE Select = 0
Navigate = Navigate - 1
CASE Select <= rule pnt
*edit an old old
SEEK var+rule_list[Select]
IF Cmplt_rule{var, rule_list [Select], .T.)&& edit mode
Navigate = Navigate - 1
ELSE
*back to this one
ENDIF
OTHERWISE
* add a new rule
B_rule = gpace(15)
@ S+rule_pnt, 40 SAY 'Enter a name: ‘ GET B_rule
READ
IF (len(trim(B_rule)) < 1 .OR. lastkey() = 27)
Navigate = Navigate - 1

ELSE
SEEK (var+B_rule)
IF eof()
*does not already exists
@ S+rule_pnt, 40 CLEAR TO S+rule_pn',‘' "
@ S+rule_pnt, 55 SAY B_rule
Navigate = Navigate + 1
ELSE
ErrWait (’rule already exists’)
ENDIF
ENDIF
ENDCASE

CASE Navigate = 3

* add the rest of the rule

IF Cmplt_rule(var, B_rule, .F.) &¬ edit mode
Navigate = Navigate + 1
REPLACE var_class WITH var
REPLACE name WITH B_rule

ELSE
Navigate = Navigate - 1

203

@ 23,0
WAIT “Rule finished, Press Esc to modify’
IF lastkey() = 27
IF B_else # 'NUL’
Navigate = Navigate - 1
ELSE
Navigate = Navigate - 2
ENDIF
ELSE
EXIT
ENDIF
ENDCASE
ENDDO

*

* Save the new values

*

SELECT 1 &&rule.dbf

SET INDEX TO rule

SEEK Var_cls+rul_name
REPLACE then WITH b_then
REPLACE then_w WITH b t:hen \d
REPLACE then_p WITH b then_p
REPLACE else WITH b_else
REPLACE else w WITH b _else w
REPLACE else_p WITH b_else p
RETURN (.T.)

* - e e m @ uwm w wmm e w T m e e am m w e e e mm ew mm wm w em e em e e e e e
* - Function : Add_rule -
- Input : none -
- Output : sets Escape -
* - Date : 06 Oct 89 -
- UpDate : 27 Oct 8% -
* e e e em mm e ms wms o e e e ws e Es wm e e wm e ew e e s e am am e am e e e = =
* Synopses:

* Adds new rules using new or old variable classes.

* Pseudo:

* While add more rules

* Decide the variable class

* While using the same variable class

* Add a rule

*

*

FUNCTION Add_rule
EXTERNAL Ans_inter

PRIVATE Var, rule_pnt, B_rule,5_buf
SAVE SCREEN TO S_buf
PRIVATE Navigate
Navigate = 1
DO WHILE .T.
DO CASE
CASE Navigate = 0
EXIT
CASE Navigate = 1
*find a Var_class
RESTORE SCREEN FROM S_buf
@ 1,39 TO 23,79 DOUBLE
@ 2, 40 SAY 'Enter an rule: '
Var = Get_var()

205

ENDIF

CASE Navigate = 4
* add a new object

IF AskY("Enter another rule for the variable class
"+rerim(Var)+’?’)
@ 24,0 CLEAR
Select = 99

Navigate = 2 &&start at the name
ELSE
Navigate = Navigate + 1
ENDIF
CASE Navigate = 5
EXIT
ENDCASE

ENDDO
RESTORE SCREEN FROM § buf
IF Navigate > 0

Escape = .F.

RETURN(.T.)
ELSE

Escape = .T.

RETURN (.F.)
ENDIF

* end function Find_rule

* - Function : Cmplt_rule() -
* - Input : Enquiry name, edit flag -
* - Output : error -
* - Date : 06 Oct 89 -
* - UpDate : 03 Jan 90 -
K o wa wr e e em e wm e m e e e s s mm wm e em mm e e o w em e e e e e = o -
* Assumes the file is pointing to the record to add
* Called from Find rule or Add_rule, once the name of the rule i1
known
FUNCTION Cmplt_rule
PARAMETER Var_cls, ; && the varable class of the rule
rul name,; && the name of this rule
Edit_flg && edit an old rule, or modif an exist ing
rule

PRIVATE S_buf

SAVE SCREEN TO S_buf

@ 1,30 CLEAR

@ 4, 0 SAY Var_cls+’::’+rul_name
PRIVATE Max_Antec

Max_Antec = 6

*

* buffers to store the rule

*

PRIVATE belf based

PRIVATE B_question, Ans_lst, i

PRIVATE Num_antec

PRIVATE if_1st, oper_lst, ans_lst, num _lst, Extrn_lst
DECLARE if lst[Max_Antec]

DECLARE oper_lst(Max_Antec]

DECLARE Extrn_lst [Max_Antec]

DECLARE ans_1lst [Max Antec]

206

DECLARE num_lst [Max_Antec]

PRIVATE Mac
DO WHILE .T.

IF Edit_flg

defined

ELSE

ENDIFP

PRIVATE rec_pnt
belf based = (rule_typ='BLF’)
Antec_pnt = num_antec
* set the antecedent
FOR i = 0 TO Max_Antec-1
* load all possible ones since they are blank if not

Mac = "if"+str(i,l)
if_1st[i+l])=&Mac
NEXT
*

* construct the defined section of the rule
*
IF belf based

Antec_pnt = Rule_belief (Antec_pnt)
ELSE

Antec_pnt = Rule_fact (Antec_pnt)
ENDIF
IF Antec_pnt = 0

? 'Delete this rule’

SEEK Var_cls+rul name

? name

DELETE

PACK

WAIT

RESTORE SCREEN FROM S buf

RETURN (.F.)
ENDIF

* new rule
belf based = AskN (" Is this a belief-based rule?")
@24, 0 CLEAR
* set all storage buffer to empty
FOR i = 0 TO Max_Antec-1
if lst(i+l]=space(15)
NEXT
IF belf based
Antec_pnt = Rule_belief (1)
ELSE
* Add the body of the rule starting with no antecdents
Antec pnt = Rule_fact(l)
ENDIF
IF Antec_pnt = 0
RESTORE SCREEN FROM S_buf

RETURN .F.
ELSE
REPLACE var_class WITH Var_cls
REPLACE name WITH rul_ name
ENDIF

Now add the consequence of the rule

IF Rule_consqg()
EXIT
ELSE
Edit_flg = .T.
SEEK Var_cls+rul_name

207

ENDIF
*** IF !belf based
* % x IF Rule_consqg()
* % X EXIT
* k% ELSE
* ok x Edit_flg = .T.
* Kk SEEK Var_cls+rul name
* k% ENDIF
* k% ELSE
*xx EXIT
* % % ENDIF
ENDDO
RESTORE SCREEN FROM S_buf

*end function

* % % % X X %

* % A X %

- Function ¢ Rule_fact() -
- Input : no input -
- OQutput : number enterered -
- Date : 06 Oct 89 -
- UpDate : 27 Oct 89 -

- em s M e em @ M e e e @ @ M e w W e e e W em s e mm e en mm e me e em e e

Convention: this is a member of Cmplt_rule, and should not be
called by any other function.

Assumes: many variables and files and screen
and that the rule_type is FCT

FUNCTION Rule_fact
PARAMETER AntcC_pnt

*
*
*x

@8,

Establish the buffers from the record or start as blank

0SAY "IF:"

IF Edit_ flg

FOR 1 = 0 TO Max_Antec-1
Mac = 7if’+str(i,1)
if_1st{i+l]=&Mac
Mac = "oper"+str(i,l)
oper_lst([i+l]=&Mac
Mac = "extrn"+str(i,l)
Extrn_lst(i+1]=&Mac
Mac = "ans"+str(i, 1)
ans_lst[i+l]=gMac
Mac = "num"+str(i, 1)
num_lst[i+1])=&Mac
NEXT
FOR 1 = 1 TO Antc_pnt
IF Extrn _lst [i]
@8+i, 5 SAY "Extern:"
ELSE
@8+i, 5 SAY "Intern:"
ENDIF
@8+i,12 SAY if lst(i]
@8+i, 30 SAY oper_lst[i]
IF !Extrn_lst(i] .AND. (len(trim(Ans_lst[i])) > 0)
@8+1I, 35 SAY Ans_lst{i])
ELSE
@8+i, 35 SAY num_lst{i]
ENDIF
NEXT
PRIVATE Nawvigate

208

Navigate = 5
ELSE
FOR i = 0 TO Max_Antec-1
oper_lst [i+l]=space(2)
ans_lst(i+l]=space(30)
num lst[i+1]=0.0
Extrn_lst[i+l]=.F.
NEXT
PRIVATE Navigate
Navigate = 1
ENDIF
DO WHILE .T.
DO CASE
CASE Navigate = 0
*backed out
IF Antc_pnt > 1
Antc_pnt = Antc _pnt - 1
Navigate = 4

ELSE
SELECT 1 &&rule.dbf
SET INDEX TO rule
RETURN (0)

ENDIF

CASE Navigate = 1

* find out what type of fact human or external
@24, 0 CLEAR
@8+Antc_pnt, 5 SAY "* "
@24, 0 SAY "Is this antecedent based on external facts?";
GET Extrn_lst[Antc_pnt] &&a logic
READ
IF lastkey{) # 27

Navigate = Navigate + 1

IF Extrn_lst{Antc_pnt]

@8+Antc_pnt, 5 SAY "Extern:"

ELSE
@8+Antc_pnt, 5 SAY "Intern:"
ENDIF
ELSE
Navigate = Navigate - 1
ENDIF

CASE Navigate = 2
* enter the next fact name
@8+Antc_pnt, 12 CLEAR TO 8+Antc_pnt, 30
IF Extrn_lst[Antc_pnt]
if_lst{Antc_pnt] = Get_extreq(Var_cls)
ELSE
if_lst[Antc_pnt] = Get_internal (Var_cls)
ENDIF
IF if_lst [Antc_pnt]# ’/NIL’/
Navigate = Navigate + 1
@8+Antc_pnt, 12 SAY if_ lst[Antc_pnt]
ELSE
Navigate = Navigate - 1
ENDIF
CASE Navigate = 3
* get the operand of the fact
@24,0 CLEAR
@24,0 SAY "Enter an operand”
@8+Antc_pnt, 30 GET oper_lst{Antc_pnt]
READ

209

IF lastkey() # 27
Navigate = Navigate + 1
@8+Antc_pnt, 30 SAY oper_lst{Antc_pnt]
ELSE
@8+Antc_pnt, 30 CLEAR TO 8+Antc_pnt, 36
Navigate = Navigate - 1
ENDIF
CASE Navigate = 4
* get the number/symbol of the fact
@24,0 CLEAR
@8+Antc_pnt, 35 CLEAR TO 8+Antc_pnt, 60
IF Extrn_lst{Antc_pnt]
@8+Antc_pnt, 35 GET num_lst [Antc_pnt] PICTURE "99999.99"
READ
IF lastkey() # 27
@8+Antc_pnt, 35 SAY num_lst([Antc_pnt] PICTURF

"98989. 99"
Navigate = Navigate + 1
ELSE
@8+Antc_pnt, 35 CLEAR TO 8+Antc_pnt, 60
Navigate = Navigate - 1
ENDIF

ELSE
*human interface
PRIVATE text_ans, answ_text, answ_num, error_flag
text_ans = .T.
answ_text = '
answ_num = {
error_flag = .T.
D © A n s i n t e r W I T U
Text_ans,Answ_text,Answ_num, Error_ flag,,
Var_cls,if_lst[Antc_pnt]
IF Error_flag
Navigate = Navigate - 1
ELSE
IF Text_ans
ans_1lst[Antc_pnt] = Answ_text
@8+Antc_pnt, 35 SAY Answ_text
ELSE
num_lst (Antc_pnt] = Answ_num
@8+Antc_pnt, 35 SAY Answ_num
ENDIF
Navigate = Navigate + 1
ENDIF
ENDIF

CASE Navigate = 5
* if there is space get another antecedent
@24,0 CLEAR
IF Antc_pnt < Max Antec
IF AskY ("Enter another antecedent?")
Antc_pnt = Antc_pnt + 1
Navigate = 1
ELSE
Navigate = Navigate + 1
ENDIF
ELSE
@23,0
WAIT "Antecedent ful), Pres Esc to change"
IF lastkey () # 27
Navigate = Navigate + 1
EL3E

210
Navigate = Navigate - 1
ENDIF
ENDIF
CASE Navigate = 6
EXIT
ENDCASE
ENDDO
*
* Do much saving

*

SELECT 1 &&rule.dbf
SET INDEX TO rule
IF !Edit_flg

APPEND BLANK

REPLACE rule_typ WITH ’'FCT’
ELSE

SEEK Var_cls+rul_name
ENDIF

FOR i = 0 TO Max_Antec-l
Mac = 'if’+str(i,1)
REPLACE &Mac WITH if_ lst[i+1]
Mac = “oper"+str(i, 1)
REPLACE &Mac WITH oper_lst [i+l]
Mac = "extrn"+str(i, 1)
REPLACE &Mac WITH Extrn_lst [i+1]
Mac = "ans"+str(i,1l)
REPLACE &Mac WITH ans_lst[i+l]
Mac = "num"+str(i,1)
REPLACE &Mac WITH num_lst{i+1]
REPLACE num_antec WITH Antc_pnt

NEXT

RETURN (Antc_pnt)

K em ms i e ww as wme wm wm s wm ww e @e mm ws e e wm e @ em A em w Wm e e e ew ew W e =
* - Function : Rule_belief () -
* - Input : no input -
L Output : number enterered -
LA Date : 06 Oct 89 -
* - UpDate : 03 Jan 90 -
* - et wm emw mm e am wm em wm em e w mm mm mm mn ms e wm em em e em em me we wm e am ee mm em we
* Convention: this is a member of Cmplt_rule, and should not be

* called by any other function.

* Assumes: many variables and files and screen

* and that the rule_type is FCT

*

FUNCTION Rule_belief
PARAMETER Antc_pnt
*

o Establish the buffers from the record or start as blank
*
@8, OSAY "IF:"
IF Edit_flg
FOR i = 0 TO Max_Antec-l
Mac = ’'if’+str(i,l)
if lst[i+l]=&Mac
NEXT
FOR i = 1 TO Antc_pnt
@8+i,8 SAY if 1st[i]
NEXT

PRIVATE Navigate

211
Navigate = 2

ELSE
PRIVATE Navigate
Navigate = 1
ENDIF
DO WHILE .T.
DO CASE
CASE Navigate = 0
*backed out
IF Antc_pnt > 1
Antc_pnt = Antc_pnt - 1
Navigate = 2
ELSE
SELECT 1 &&rule.dbf
SET INDEX TO rule
RETURN (0)
ENDIF

CASE Navigate = 1
* enter the next fact name
@8+Antc_pnt, 8 SAY "*"+space (30)
if_lst(Antc_pnt] = Get_belief (Var_cls)
IF if_ lst[Antc_pnt]l# ’NUL’
Navigate = Navigate + 1
@8+Antc_pnt,8 SAY if_lst([Antc_pnt]

ELSE
Navigate = Navigate - 1
ENDIF

CASE Navigate = 2
* if there is space get another antecedent
@24,0 CLEAR
IF Antc_pnt < Max Antec
IF AskY ("Enter another antecedent?")
IF lastkey() # 27
Antc_pnt = Antc_pnt + 1
Navigate = 1
ELSE
Navigate = Navigate - 1
ENDIF
ELSE
Navigate = Navigate + 1
ENDIF
ELSE
@23,0
WAIT "Antecedent full, Pres Esc to change"
IF lastkey() # 27
Navigate = 5

ELSE
Navigate = Navigate - 1
ENDIF
ENDIF

CASE Navigate = 3
EXIT
ENDCASE
ENDDO
*x

* Do much saving
*

212

SELECT 1 &&rule.dbf
SET INDEX TO rule
IF !Edit_flg

APPEND BLANK

REPLACE rule_typ WITH ’‘BLF'
ELSE

SEEK Var_cls+xul name
ENDIF
REPLACE num_antec WITH Antc_pnt
FOR i = 0 TO Max_Antec-1l

Mac = 'if’+str(i, 1)

REPLACE &Mac WITH if_ 1lst(i+1]
NEXT

RETURN (Antc_pnt)
*end function Rule belief

*

- Function : rule_var

L Input : none

* - Output : variable class
- Date : 06 Oct 89

- UpDate : 06 Oct 89

A e e o e wm em e o e e e o am m e v w e e e e e e e

FUNCTION rule_var
SELECT 4 && rule.dbf
SET INDEX TO rule
PRIVATE B_var

B_var = Get_var()

SET INDEX TO

RETURN (B_var)

L4

*end function rule_var

- et e e em em o e e e e e @ W M e Em s @ em e = e -

213

= Project : KOOLA programing language Shell =
- Sub-project : Compiler -
= File : main.prg =
= Author : Robert D. Rourke =
= Date : 19 Dec 1989 =
= Update : 04 Jan 1990 -

Databases:

Select Name Index Code

------- tommcmcermrete e ——— e —————
1 rule rule r
2 goal goal g
3 belief belief b
4 internal internal i
S extreq extreq x
6 action action a
7 primary primary P
8 second second s
all index set for var_class+name except goal

This file contains the rourtines to do the first two passes of the
KOOLA compiler. This includes generating the primary and secondary
belief files.

% % % % % % Ok % % % X % Ok % % A % % % X X F X * %

*

Date =’19 Dec 1989/
Version = ’x.10’

Deflt_ Path = Get_direct (’sim\’)

PUBLIC Deflt_path, Escape
* get the colour for a colour monitor
In_colour = .f.
IF iscolor ()
PUBLIC Colour_Edit
PUBLIC Colour_Menu
In_colour = .T.
Colour_Edit = "GR+/B,GR+/B,B,B,W+/RB"
Colour_Menu = "GR+,W+/B,B,B,W+/BG"
setcolor (Colour_Menu)
ENDIF
SET CENTURY ON
SET DATE BRITISH
SET WRAP ON
CLEAR

*Deflt_Path = Get_direct()
Deflt Path = ’‘
File_error = .F.

SELECT 1

File_name = ‘rule.dbf’

IF file (File_name)
USE &File_name

ELSE

File error = ,T.

? ’'Missing file: ’'+File_name
ENDIF
SELECT 2

File name = ’‘goal.dbf’

IF file (r'ile_name)
USE &File_name

ELSE

File error = .T.

? 'MIssing file: ’+File_name
ENDIF
SELECT 7

File_name = ‘primary.dbf’
IF file (File_name)
USE &File_ name

ELSE

File_error = .T.

? 'Missing file: ’+File_name
ENDIF
SELECT 8

File name = ’second.dbf’
IF file (File_name)
USE &File_name

ELSE

File error = .T,

? 'Missing file: ’+File_name
ENDIF
SELECT 3

File_name = ’'belief.dbf’
IF file (File name)
USE &File_name

ELSE

File error = .T,

? 'Missing file: ‘+File_name
ENDIF
SELECT 4

File name = ’'internal.dbf’
IF file (File_name)
USE &File_name

ELSE

File error = .T.

? ’'Missing file: ’+File_name
ENDIF
SELECT S5

File name = ’extreq.dbf’
IF file (File_name)
USE &File_name

ELSE

File error = .T.

? ’‘Missing file: ’‘+4File_name
ENDIF
SELECT 6

File_name = "action.dbf’
IF file (File_name)
USE &File name
ELSE B
File_error = .7,

? 'Missing file: ’+File name

ENDIF

214

215

IF File_erxror
?2 '**x* File Error termination of KOOLA *x*/
-

RETURN

ENDIF

x

* Start of routine

*

T o e om0 e e T R a0t P S e R AP P T S e T e P s W = -
* - -
* Pass One of the Compiler -
X - -
K o e o o o 0 e v e 000 o o s P T e = W P WD S TR e e D S S e e =
*

* copy all the belief into the primary belief file
*x

SELECT 7 &&primary.dbf

ZAP

APPEND FROM belief

SELECT 1 &&rule

; GO 1
; PRIVATE Rec
| Rec = 1
?’Passe one...’
5
DO WHILE !eof()
WL
*check the rule type
DO CASE
CASE rule_typ = 'FCT/
Prim_rule(Rec)
CASE rule_typ = ’/BLF’
*skip over
OTHERWISE
?’Error unkown rule type’
WAIT
ENDCASE
Rec = Rec + 1
SELECT 1 &&rule
GO Rec
ENDDO
*
* Find out what beliefs in the primary base have no facts atached.
* These type of beliefs are secondary beliefs and should be moved
*

to the secondary rule base.
*
SET INDEX TO
SELECT 7 &&primary.dbf
GO TOP
DO WHILE !eof()

IF num facts > 0

x

* This check indicaces that there is no facts supporting

216
the
> belief. Therefor, the belief is not primary. As a
result,
* the belief is keep if concidered primary, and copied if
not
*
REPLACE defined WITH .F.
ELSE
REPLACE defined WITH .T.
ENDIF
SKIP 1
ENDDO

USE &&close the file to permit appending

SELECT 8 &&second.dbf

ZAP

APPEND FROM primary FOR defined
INDEX ON var_class+name to second

SELECT 7 &&primary.dbf

USE primary

DELETE FOR Jdefined

PACK

INDEX ON var_class+name to primary

BNt T e S AT gt RE A ARSI v b pad A AN

GO 1 :
PRIVATE Rec ;
Rec = 1 :
?’Pass two...'
2
DO WHILE 'eof ()
22 !
*check the rule type
DO CASE
CASE rule typ = 'FCT/
*skip over
CASE rule_typ = /BLF’
Secd_rule (Rec)
OTHERWISE
?'Error unkown rule type’
WAIT
ENDCASE
Rec = Rec + 1
SELECT 1 &&rule ;

At e e -

PRIVATE Num_rec, Cur_rec, B_beliefpnt
Num_rec = reccount ()

GO Rec

ENDDO :
K e o e m e m e e e e 1;
* o - ¢
* - Pass three copy secblf pointers to goal- ;
* - - :
A e m—m——————————— :

:
SELECT 2 s6goal.dbf ;

"

217

2?’Pass three’

FOR Cur_rec=l TO Num_rec
GO Cur_rec
REPLACE operand_cd WITH Map_opcode (operand)
B_beliefpnt = F_Sbelf(var_class,belif)
SELECT 2 &&goal.dbf
REPLACE belif_pnt WITH B_beliefpnt

NEXT

*

* Generate the goal pointers for forward chaining
*

SELECT 2 &&goal.dbf

SET INDEX TO goal

GO ToP

PRIVATE b_then,b_thenpnt,b_else,b_elsepnt

FOR Cur_rec=1 TO Num_rec
GO Cur_rec
b_then = then_chain
b_else = else_chain

IF b_then # /TERMINATE’
SEEK B_then

IF eof ()
? 'Error in looking up a goal: '
? B_then
wait
b_thenpnt = -999
ELSE
b_thenpnt = recno ()
ENDIF
ELSE
b_thenpnt = 0
ENDIF

IF b_else # ’'TERMINATE’
SEEK B _else

IF eof()
? 'Error in looking up a goal!’
wait
b_elsepnt = -993
ELSE
b_elsepnt = recno()
ENDIF
ELSE
b_elsepnt =
ENDIF
SELECT 2 &&goal .dbf

GO Cur_rec

REPLACE tchn_pnt WITH b_thenpnt

REPLACE echn_pnt WITH b_elsepnt
NEXT

* this should be after the compiling
Generat_ie()

RETURN

*
*end file main.prg

*a:-::---:-as-s:=-ﬂ-==================
* = Project : KOOLA programing language Shell =
* = Sub-project : Compiler =
x = File : geninclu.prg =
* = Author : Robert D. Rourke =
* = Date : 25 Jan 1990 =
* o= Update : 24 Feb 1990 =
*===-ﬂﬂ=-==-===-=‘==================

*

FUNCTION Generat_inc
? 'Please stand by...’

SELECT 4 &&internal.dbf’
*

* Find the number of each type
*

GO TOP

Num_text = 0
Num_numr = 0
DO WHILE '!eof ()
IF inquir_typ = ’TEX'
Num_text = Num text + 1
E1SE
Num_numr = Num numr + 1
ENDIF
SKIP
ENDDO

* set up output file
SET INDEX TO internail
GO TOP

SET PRINTER TO huminter.h
SET DEVICE TC PRINT

SET PRINT ON

SET CONSOLE OFF

@o, 0

griniff’ /¥= = m = = amz==sa==s=sas=s====2=s5=3======
prin?f(' = Project : KOOLA programing language

prii?%(’ = Sub~-project : Include file for human interface
printf (’ = Language : C-286 for intel RMX operating System

:’)
printf (/

=)

File : huminter.h

T

g LR, v

M m—— e, W g

219

printf(’ = Date : ’ +dtoc(date()) +;
[-l)
printf('--u---'------'----n----------a--

= = =)

printf(’ ')

printf (’ Warning: do not make any changes to this file because it
can be’)
printf (¢ automaticaly update by the KOOLA compiler’)

printf(* */’)

printf (’ #ifndef HUMANINTER’)

printf (’ #define _HUMANINTER 17)

printf (7 /*’)

printf (’ Some maximum values used to compile the human interface:')
printf (' */’)

printf (7 #define MAXANSWERS 7 /* max number of questiuns
per question */')

printf (’ #define NUMQUEST ‘+ltrim(str{reccount{))) +' A/
total number of questions defined */')

printf (* #define NUMTEXT +ltrim(str (Num_text)) +' £/
number of text based quest*/’)

printf (’ #define NUMNUMR ‘+ltrim(str(Num_numr))+’ ~/

number of numer based quest*/’)
printf(’ ’)
printf(’ /*’)
printf (’ The constants for accessing the human interface:’)
printf (7 */7)
GO TOP
printf(’ *)
printf (’/* variable class: ’+trim(var_class)+’ */’)
DO WHILE var_class = ’0QS'
printf(’)
printf(’//* type: ‘+trim(inquir_typ)+’ */')
printf(’ #define ’+/HIQST ’+upper(trim(name})+;
’ ’+str(recno(),5,0))
printf (’ #define "+/HISIZE_' +upper (trim(name))+;
’ ’+str(num_ams,5,0))
SKIP
ENDDO
printf(’)
printf (’ #endif’)
print£(’ ')
printf£(’/* end file huminter.h */’)
*

* Close the file
*

SET CONSOLE ON

SET DEVICE TO SCREEN
SET PRINT OFF

SET PRINTER TO

*

* Start creating the data file

*

SET PRINTER TO huminter.dat

SET DEVICE TO PRINT

SET PRINT ON

SET CONSOLE OFF

prints (HUMAN INTERFACE DATA FILE Rourke 90 De -~ date: ’+dtoc(da%ef)))
printf(’’)

220

printf{’’)
SET INDEX TO
GO TOP
DO WHILE 'eof()
prints (inquir_typ)
prints (Shelf_life)
prints (question)
IF inquir typ = ’TEX'
prints (num_ams)
FOR i= 0 TO num_ams-1
Macro = ’ANS’+str(i, 1)
prints (&aMacro)
NEXT
ELSE
prints (uppe:)
prints(lower)
ENDIF
printf(’'’)
SKIP
ENDDO
SET CONSQLE ON
SET DEVICE TO SCREEN
SET PRINT OFF
SET PRINTER TO

¥

* The external requests
*

SELECT 5 &textreq.dbf
@Q o, 0

SET PRINTER TO extreqg.h
SET DEVICE TO PRINT

SET PRINT ON

SET CONSOLE OFF

printf.('/*===============

= = n')
printf(’ = Project
n')
printf(’ = Sub-project

x’)

KOOLA programing language
Include file for external requests

C-286 for intel RMX operating System

prin?f(' = Language
printf(’ = File : extreq.h
-’)
printf (! = Date : +dtoc (date()) +;
1’

=)

]

printf (!’

=ra-')

printf({’)

= 8 2= s o=E=R=E=sSo=

printf (' Warning: do not make any changes to this file because it
can be’)
printf (! automaticaly update by the KOOLA compiler’)

printf (' */7)

221

printf (’ #ifndef EXTRQINTER’)

printf (' #define _EXTRQINTER 1)

print£(’/*’)

print£ (/ Some maximum values used to compile the interface to COSI:’)
printf£('*/’)

printf (' #define NUMEXRQ ‘+ltrim(str(reccount{)))+’ ./

total number of questions defined */’)
printf(’ ')

printf (’ #endif’)

printf(’)

printf(’/* end file huminter.h */’)

SET CONSOLE ON

SET DEVICE TO SCREEN
SET PRINT OFF

SET PRINTER TO

@ 0, 0

SET PRINTER TO extreq.dat

SET DEVICE TO PRINT

SET PRINT ON

SET CONSOQOLE OFF

prints (' EXTERNAL REQUESTS DATA FILE Rourke 90 Data date: ‘+dtoc(date())

)

printf(‘’)

printf(’'’)

SET INDEX TO

GO TOP

DO WHILE !eof ()
printf (token)
prints (shelf_ life)
SKIP

ENDDO

SET CONSOLE ON

SET DEVICE TO SCREEN

SET PRINT OFF

SET PRINTER TO

FUNCTION printf
PARAMETER string
? string

FUNCTION prints
PARAMETER string

?? string

??I ’

*

*end file geninclude
*===ﬂ-='=‘====='--=ﬂ=‘===:H’a:z:::“_a
* = Project : KOOLA programing language Shell

* = Sub=-project : Compiler -
* o= File : secondary.prg =
* = Author : Robert D. Rourke =
* o= Date : 29 Dec 2089 =
* = Update : 29 Dec 1989 -
* = =

= S S = S5 ZZ D N S8 X =2 3 o= S = I = 2 -mO3N & S IDOSX X O3S M O 3IOX o= O R

222
A o o ow e e am e e s o am wm emm ap M m em @ e A o s Em Em e et W Em s e e = e =
* - Function : Secd _rule -
* - Input : record number of the rule -
* - Output : nul -
* - Action : Compiles one secondary rule -
* - Date : 29 Dec 89 -
- UpDate : 29 Dec 89 -
K ar wr mm ws e wm ee e em em m me e mm e w e w m e wm v mr e e s mm wm e e e = ea =
FUNCTION Secd_rule
PARAMETER rule_pnt
SELECT 1 &&rule
GO rule_pnt
PRIVATE B_var
B_var = var_class
*
* Loads all values from the rule

*

PRIVATE B_then, B_then_w, B_then_p
B_then = then

B_then_w = then_w

B_then_p = then_p

PRIVATE b_else, B_else w, B_else_p
B_else = else

B else w = else_w

B_else_p = else p

PRIVATE Num_Sbelf, Sbelf
Num_Sbelf = num _antec
DECLARE Sbelf [Num_Sbelf]
PRIVATE Sbelf id

DECLARE Sbhelf id(Num Sbelf]

*
* Load the Sbelfs of the rule

X

PRIVATE i, Macro

FOR i = 0 TO Num_Sbelf-1
Macro = 'IF’'+str(i, 1)
Sbelf{i+1. = &Macro

ko x ? 'The belief and the id:’

* ok ok ?2Sbelf{i+l]

NEXT i

FOR i = 0 TO Num_Sbelf-1
Sbelf_ia(i+l] = F_Sbelf (B_var,Sbelf[i+1])

* A K 272Sbelf_id[i+1]

NEXT i

*

* display the new belief for then

*

*SET PRINT ON

#**x2 ’‘The then belief followed by prob and weight then rule ID:’
***? B_then

***22 B_then_p

**x22? B_then_w

***2?2 rule_pnt

***FOR i = 1 TO Num_Sbelf

223

*h*x ?’ Sbelf id: '
* ke k 2?Sbelf_id(i]
*k K 2

***NEXT
Ssecd belf (B_var, B_then, rule pnt, Sbelf id(l],B_then_p,B_then_w)

FOR 1 = 2 TO Num Sbelf

Ssecd belf (B_var, B_then, rule pnt, Sbelf_id(i], -1,-1)
NEXT
*

* store the else beliefs
*
IF B_else # 'NUL'
Ssecd_belf (B_var, B_else, rule_pnt+500,
Sbelf id([1],B_else_p,B_else_w)
FOR i = 2 TO Num Sbelf
Ssecd belf (B_var, B_else, rule pnt+500, Sbelf id(i}],-2,-2)
NEXT
ENDIF
*end function Prim_rule

* Function : F_Sbelf -
* - Input : var and name of suport belief -
* - Output : Sbelf ID in excess 500 0 = not found -
* - Action : locates a belf in the prim or secd db -
* - Date : 29 Dec 89 -
* - UpDate : 04 Jan 90 -

*

- em am e mr @ o W W e e e G am e wm em m = s e e W em o we wm em o W e e o e

* An excess ¢f 500 is added if the beief is found in the primary
* database.
FUNCTION F_Sbelf
PARAMETER Var, ; &&3tr, the wvariable class
Sbelf name &&str, the name of the Sbelf
*

* Check if its in the primary db first
*
SELECT 7 && primary
SET INDEX TO primary
SEEK Var+Sbelf name
IF !eof ()
RETURN (recno () +500)
ENDIF
SELECT 8 && second.dbf’
SET INDEX TO second
SEEK Var+Sbelf name
IF eof ()
? ’‘belief not found var and name:’
?2var+’, ’'+Sbelf name

WAIT

RETURN (0)
ELSE

RETURN (recno())
ENDIF

*end function F_Sbelf

*
*end file secondar.prg

X 2 w = m W 2 W\ = X oy x D SE E M T S 3 = 2% M X MM I M M DM o M W I @ R @

* = Project : KOOLA programing language Shell =

224

*

FUNCTION Generat_ie
? ’‘Please stand by...’ s

SET CONSQLE OFF
@ 0,0
SET PRINTER TO prknbase.dat
SET DEVICE TO PRINT
SET PRINT ON
prints (/PRIMARY BELIEFS KNOWLEDGE BASE Rourke 90
’ +dtoc (date()))
printf(’7)
printf (")
SET INDEX TO
SELECT 7 &&primary.dbf
GO TOP
PRIVATE Macrstr, rec
PRIVATE Numb_blf
Numb_blf = reccount()
FOR rec = 1 TO Numb_blf
GO rec
printf (num_facts)
printf(’’)
FOR i = 1 to num_facts
Macrstr = 'R’+ltrim(str(i,2))
prints (&Macrstr)
NEXT
printf(’’)
FOR i = 1 to num_facts
Macrstr = "F'+ltrim(str(i,2))
printz (&Macrstr)
NEXT
printf(’’)
FOR i = 1 to num_facts
Macrstr = "P'+ltrim(str{i,2))
prints (&Macrstr)
NEXT
printf(’’)
FOR i = 1 to num_ facts
Macrstr = ‘W +ltrim(stso(4i,2))
prints (&Macrstr)
NEXT
printf(’’)
FOR i = 1 to num_facts
Macrstr = 7Q'+ltrim(str(i,2))
prints (&Macrstr)
NEXT
printf(’’)
FOR i = 1 to num_facts
Macrstr = ‘N’+ltrim(str(i,2))
prints (&Macratr)
NEXT
printf(’7)
printf(’’)
NEXT rec
SET CONSOLE ON

* - Sub-project : Compiler

* om File : ie.prg

* o= Author : Robert D. Rourke

* = Date : 25 Jan 1990

* - Update : 14 Apr 1990
*--------ﬂﬂlﬂ“’=ﬂﬂ=======I=====

Data

date:

225

SET DEVICE TO SCREEN
SET PRINT OFF
SET PRINTER TO

SET CONSOLE OFF

@ 0, 0

SET PRINTER TO sdknbase.dat
SET DEVICE TO PRINT

SET PRINT ON

prints(’ SECONDARY BELIEFS KNOWLEDGE BASE Rourke 90 Data date:
’ +dtoc(date()))

printf(’’)

printf(’’)

SET INDEX TO

SELECT 8 &&second.dbf
GO TOP

PRIVATE Macrstr, Num_secrule
Num _secrule = 0

PRIVATE Numb blf, Rec
Numb blf = reccount()
FOR Rec = 1 T0O Numb blf
GO Rec
IF num belief > O
Num secrule = Num_secrule + 1
printf (num_belief)
printf(’’)
FOR i = 1 to num belief
Macrstr = ‘R’ +ltrim(str(i, 2))
prints (&Macrstr)
NEXT
printf£(’'")
FOR i =1 to num _belief
Macrstr = 'B’ +1ltrim(str(i,2))
prints (&Macrstr)
NEXT
print£('’)
FOR i =1 to num_belief
Macrstr = 'P’ +ltrim(str(i, 2))
prints (&Macrstr)
NEXT
print£('")
FOR i = 1 to num _belief
Macrstr = ‘W’ +ltrim(str(i,2))
prints (&Macrstr)

NEXT

print £{'')

print£('’)
ELSE

print £(0)

print£(’’)
ENDIF

NEXT

SET CONSOLE ON

SET DEVICE TO SCREEN
SET PRINT OFF

SET PRINTER TO

SET CONSOLE OFF
@ 0,0

226

SET PRINTER TO mtknbase.dat
SET DEVICE TO PRINT
SET PRINT ON

prints (‘META-KNOWLEDGE GOAL KNOWLEDGE BASE

‘+dtoc (date ()))

print£(’’)

print£ (")

SET INDEX TO

SELECT 2 &&goal.dbf
GO TOP

PRIVATE num_goal

num _goal = reccount ()

FOR i = 1 TO num goal

GO i
IF start goal
printf (’ 1 ")
ELSE
. printf(’ 0 ")
ENDIF

prints (name)
printf (belif_ pnt)
printf (operand_cd)
printf (prob)
printf (tchn_pnt)
prints (" ")
prints (echn_pnt)
printf (F_Action(var_class,then_do))
SELECT 2 &&goal.dbf
Go i
prints (" ")
prints (F_Action(var_class,else_do))
SELECT 2 &&goal.dbf
printf(* ")
printf(’ 7)
SKIP
NEXT
SET CONSOLE ON
SET DEVICE TO SCREEN
SET PRINT OFF
SET PRINTER TO

SET CONSOQOLE OFF

@Qo, 0

SET PRINTER TO knowbase.h
SET DEVICE TO PRINT

SET PRINT ON

90

Data date:

p[intf('/*----x--:a-s:--nua’==s=—========

=as’)

print':f(’ - Project

pri;t’:)f(’ - Sub-project

pri;t,:)f(' = Language

print)f (' = File : knowbase.h

!)
printf (' = Date
f

=)

printf(' M M I ® W = | R X I X M T M W T SF = X SY mm o= = =%

:xm’)

f +dtoc (date()) +;

KCOLA programing language

Include file for primary inference eng

C-286 for intel RMX operating System

227

print£(’ ')

print £ (’ Warning: do not make any changes to this file because it
can be’)
print € (' automaticaly update by the KOOLA compiler’)

print£ (' */")

print £ (‘#ifndef _PRIMARYINF')

printf (‘#define _PRIMARYINF')

print£ (' /*)

print £ (' Some maximum values used by the PMX C compiler for the
inference engines:’)

print£(’'*/")

SELECT 7 &sprimary.dbf

**USE primary

printf ('#define NUMPRMBLF ‘+ltrim(str(reccount ()))+ x/
total number of primary beliefs */7)

SELECT 8 &&second.dbf

print £ (‘#define NUMSECBLF +ltrim(str(reccount ()))+’ Ly
total number of secondary beliefs */’)

SELECT 2 &&goal.dbf

print £ (‘#define NUMGOAL "+ltrim(str(reccount {)))+’ */

total number of goals */')

print£(’)

print £ (/ #endif’)

print£(’ /)

print£('/* end file knowbase.h */’)
?

SET CONSOLE ON
SET DEVICE TO SCREEN
SET PRINT OFF
SET PRINTER TO

K m e e e em we w wm wm e s e wm e e e - e 8 e s e M am e w m em e we
* - Function : F_Action -
* - Input : var and name of action -
X - Output : code number of acktions -
- Action : locates -
X - Date : 17 Apr 90 -
LI UpDate : 17 Apx 90 -
K o ae e m m e e m w am e o m oem - ar aw em e m e am e w em e e e em m e e
FUNCTION F_Action
PARAMETER Var,; &&str, the variable class
G_name &&str, the name of the Sbelf

IF G_name = ’‘NO ACTION'

RETURN (0)
ENDIF
PRIVATE action_id
SELECT 6 &gaction.dbf

SET INDEX TO action
SEEK Var+G_name
IF eof ()
? 'Action not found’
?var+g_name
Action_id = 0
ELSE
Action_id = token
ENDIF
SET INDEX TO
RETURN (Action_id)
*end function F_Action

228
*
*end file ie.prg
N = 2 =w e S W m 3 IR I = M = 3 W B I 1| W IR & M B I W| X = M T =T = =X = X O=2
* = Project : KOOLA programing language Shell =
* = Sub-project : Compiler =
* = File : prim.prg =
* m Author : Robert D. Rourke =
* = Date : 19 Dec 2089 =
* = Update : 04 Jan 1990 =
A 2 M 2 m WM MM W M I\ I X Z WM M X T O WM I WM X N =} @ [o= = |joxX | oS3 o= =S
N o om me e m wm o wm wm er o w e en e e e @ W ek s o W em m m = em e T wm es o =
* - Function : Prim rule -
* - Input : record number of the rule -
* Output H nul -
* - Action : Compiles one primary rule -
* - Date : 19 Dec 89 -
* - UpDate : 04 Jan 90 -
K o0 = am e m e e e e e e e em w m m em e e o e W m e o me em e W e o e e
FUNCTION Prim_rule
PARAMETER rule_ pnt
SELECT 1 &&rule
GO rule_pnt
PRIVATE B_var
B_var = var_class
*
* Loads all values from the rule

*

PRIVATE B_then, B_then_w, B_then_p
B_then = then

B _then w = then w

B_then_p = then_p

PRIVATE b_else, B_else w, B_else_p
B_else = else

B_else_w = else_w

B_else_p = else p

PRIVATE Num Sfact, Fact, Operand, Operator, F_exter, Numer_ oper
Num Sfact = num_antec

DECLARE Fact [Num Sfact]

DECLARE Operand [Num_ Sfact]

DECLARE Operator[Num_Sfact]

DECLARE F_exter[Num Sfact]

DECLARE Numer oper(Num_ Sfact]

*

* Load the facts of the rule

*

PRIVATE i, Macro

FOR i = 0 TO Num Sfact-1
Macro = ’IF'+str(i,l)
Fact{i+l] = &Macro
Macro = ‘QPER’+str(i, 1)
Operator {i+l] = Map_opcode(&Macro)
Macro = ’EXTRN’ +str(i, 1)
F_exter[i+l] = &Macro
Macro = fANS’+str(i,l)
Operand[i+l] = trim(&Macro)

229

Macro = ’NUM’+str(i,l)
Numer_opex(i+l] = §Macro
NEXT i

*

* Find the IDs of those facts

*

PRIVATE Fact_id, Oper_code, Ans_code
DECLARE Fact_id [Num_SFact)

DECLARE Oper_ code[Num Sfact]

DECLARE Ans_code [Num_. Sfact)

FOR 1 = 0 TO Num Sfact-1l
Fact id(1+1] = F_fact (B_var,Facti+l],F_exter(itl])

* if the fact is human-text, then find an index for its correct
answer
*
IF (len{(trim(Operand(i+1])) > 0) && only text answers have one
*a texted based answer
Ans_code[i+l] = F_anscode(Fact_id[i+1],Operand[i+l])
ELSE
*
| * The offset of 500 is automaticaly added for extern
, *
| Ans_code[i+l] = Numer_oper([i+l)
ENDIF
NEXT
*
* display the new belief for then

*

*SET PRINT ON

**? 'The then belief followed by prob and weight then rule ID:’'
**? B_then

**2? B_then_p

**2? B_then_w

**22 rule_pnt

SPrim belf (B_war, B_then, rule pnt, Fact_id(l], Operator(1],;
Ans_code (1], B_then_p,B_then_w)
**? 'The facts fol: id, operand code, answer code:’
FOR i = 2 TO Num Sfact
SPrim | belf (B _var, B_then, rule_pnt, Fact_id[i), Operator[i],;
Ans code[:.], T-1,-1)

* % 27 Fact id: *

* X ??Fact_id[i]

* K 2?2’ Operantor: ’
*x ?20perator(i]

* ok ?’ Answer code: '
**x ?2Ans_code(i]

* X ?

NEXT

IF B_else # ’'NUL'
“SPrim belf (B_var, B_else, rule_pnt+500, Fact _id(11, operator(l],:
Ans code[l], B_else_p,B_else_w)
FOR I = 2 T0 Num_Sfact
SPrim belf (B_wvar, B_else, rule_pnt+500, Fact _idii],
Operator([il],:
Ans _code[i],-2,-2)
NEXT
* % ? ’The else belief followed by prob and weight el3e rule I

o

230
*# ? B_else
*x 27 B else p
bl 7?7 B else w
xx ?? rule_pnt
ENDIF
**browse ()
*SET PRINT OFF
*end function Prim_rule
K o am w e w wm m w mm wm e W mm e W wm ma m T mm @ W e W W en e e ™ me
L Function : F_fact
k- Input : var and name and type
k- Output : fact ID in excess 500 0 = not found
- Action : locates a fact and returns its ID
x - Date : 06 Nov 89
LA UpDate : 08 Nov 89
X o= an e m em mm o m e e @ ™ am w W WE am W W we em W O e e W wm aw W W um e
FUNCTION F_fact
PARAMETER Var, ; &&str, the variable class
Fact_name,; &&str, the name of the fact
Ext_fact tklogic T= external F=human

IF Ext_fact
SELECT S &&extreq
SET INDEX TO extreq
ELSE
SELECT 4 &&internal
SET INDEX T0 internal
ENDIF

SEEK Var+Fact_name
IF eof ()
? 'Fact not found var and name:’
2?27var+’ , '+Fact name
WAIT -
RETURN (0)
ENDIF
IF Ext_fact
RETURN (recno () +500)
ELSE
RETURN (recno())
ENDIF
*end function F_fact

A e am e e em mm e m e e o W we wm m v e e 4 e em e ww em e tm ma am we e am e
k- Funct ion : Map_opcode

* - Input : Opcode string

* - Qutput : number of the opcode

* - Action : translate the string into opcode index
* - Date : 19 Dec 89

- UpDate : 01 Jan 90

K e e e m m e e s e e e m e om e e am o e s e o e em o w e e o e e e

FUNCTION Map_opcode
PARAMETER String

DO CASE

CASE String = ’==/ OR. String = '=
RETURN (1)

CASE String = <’/
RETURN (2)

CASE String = ’> !/
RETURN (3)

CASE String = ‘<=’

231

RETURN (4)
CASE String = />=’
RETURN (5)
CASE String = ¥’ _OR. String = ’!=/ ,OR. String = '<>’
RETURN (6)
OTHERWISE
?'’Unknown operand : ‘
275tring+’, '
‘WAIT
RETURN (0)
ENDCASE
*end function Map_opcode

K on am e m w e w mm e W mm ae o m W mm e ® e wm o w wm am am = - e . mm e e =
LIS Funct ion : F_anscode

* - Input : humand fact id , operand

* = Output : index of fact

LA Action : finds the answer and returns the offset
LI Date : 19 Dec 89

LI UpDate : 01 Jan 90

X o e m m em am o m e ow e o= - = e w e e w e em wm m m e ow e e e o~ -

FUNCTION F_anscode

PARAMETER Fact_id, Operadn

*? 'Looking for the answer :’+Operadn
SELECT 4 &&internal

GO Fact_id

*

* Find the answer
*
PRIVATE This_ans, i
i=0
DO WHILE .T.
This_ans = 'ANS’+str (i,1)
IF (§This_ans = Operadn)
RETURN (i+1)
ENDIF
i=1i+1
IFi= 7
EXIT
ENDIF
ENDDO
?'Error answer not found!’
WAIT
RETURN (0)
*end function F_anscode

»*

*end f£ile prim,.prg

¥ 2 =z m M I W W W T om X ST m M W WX N R WM W M M I am = N wm m M % w4
* o= Project : KOOLA programing language Shell

¥ o= Sub-project : Compiler

ko= File : store .prg

ko om Author : Robert D. Rourke

o= Date : 28 Dec 1989

¥ = Update : 28 Dec 1989

* = = = I= o= m = = X =2 = == o = = - - 3 = ™ =, = = - = s = = = == - =
A = o m @ m m @ m e e = em oaw m e e e em e w wm ee = = - - = -
* - Function : SPrim_belf

* o~ Input : belief, ruleID, factlD, Prob, Weigh
- Output : nul

- Action : locates the belief and stores fact

232
* - Date : 28 Dec 89 -
* - Upbate : 28 Dec 89 -

A w mm am e wm mm m e mm o o e e m > e em w m wm we m w

FUNCTION 5Prim_ belf _
PARAMETER Var, Belf, RulelID, FactlD, Operat, Number, Probt, Weigh

*

* locate the belief
*
SELECT 7
LOCATE FOR var_class = Var .AND. name = Belf
IF eof ()
?’Error primary belief not found’
WAIT
RETURN(.F.)
ENDIF
%
* Locate everything using macros
*
IF num_facts = 20
2’Error overflow in the number of fact’
WAIT
RETURN(.F.)
ENDIF
PRIVATE Macro, Offset
REPLACE num_facts WITH num_ facts + 1
Offset = ltrim(str(num_facts,2,0))
Macro = ‘R'+0ffset
REPLACE &Macro WITH RulelD
Macro = 'F'+0ffset
REPLACE &Macro WITH FactID
Macro = ‘Q'+0ffset
REPLACE &Macro WITH Operat
Macro = 'N'+0ffset
REPLACE &Macro WITH Number
Macro = ’'P/+0ffset
REPLACE &Macro WITH Probt
Macro = "W +0ffset
REPLACE &Macro WITH Weigh

*ond function SPrim belf

* - - -— em e - - - . -— o == - - o - P - e = - e = - e am - - - - -—
* - Function : Ssecd_belf -
* - Input : belief, ruleID, BeliefID, Prob, Weigh -
- Qutput : nul -
* - Action : locates the belief and stores fact -
* - Date : 28 Dec 893 -
* . Upbate : 28 Dec 89 -
4 - w -— e e e we e = -— e e et e wm aw em W am -— am W wm e @ cas am ms e .

FUNCTION Ssecd_belf
PARAMETER Var, Belf, RuleID, BeliefID, Probt, Weigh
4

* locate the belief

X

SELECT 8 && second

SET INDEX TO second

SEEK Var+Belf

IF eof ()
?’Error secondary belief not found (var and belf) :’
2?2 var+’ b=’+Belf

D S NS

R

233

WAIT
browse ()
RETURN (.F.)
ENDIF
*
* lLocate everything using macros

*

IF num beliefs = 20
* the current limit on the number of belief IDs that can be stored
?’Error overflow in the number of fact’
WAIT
RETURN (.Y,

ENDIF

PRIVATE Macro, Offset

REPLACE num_belief WITH num belief + 1

Offsec = ltrim(str (num belief,2,0))

Macro = 'R’+Qffset

REPLACE &Macro WITH RuleID

Macro = 'B’+0Offset

REPLACE &Macro WITH BeliefID

Macro = 'P!+0Offset

REPLACE &Macro WITH Probt

Macro = "W’ +Qffset

REPLACE &Macro WITH Weigh

*end function Ssecd_belf
*

*end file store

234

- Project : KOOLA programing language Shell
- Sub-project : Simulator

- File : main.prg

- Author : Robert L. Rourke

- Date : 19 Dec 1989

- Update : 15 Jan 1990

Databases:

*
*
*
*
*
*
*x
*
*
*
*
b4
*
*
4
L
*
~
*
x
*

L3

Date =08 Jan 1990’
Version = ’x.10’

Select Name Index Code

------- ettt EEE LR
1 rule rule r
2 goal goal g
3 belief belief b
4 internal internal i
S extreq extreq X
6 action action a
7 primary primary p
8 second second s
all index set for var_class+name except goal

debug_on = .f.
debug_prm = .f.
debug_scd = .f.
debug _stack = .f.
debug_goal = .£.

PRIVATE Max_store
Max_store = 20

PUBLIC Deflt path, Escape
* get the colour for a colour monitor
In _colour = .f.
IF iscolor ()
PUBLIC Colour_Edit
PUBLIC Colour_Menu
In_colour = .T.
Colour_Edit = “GR+/B,GR+/B,B,B, W+/RB"
Colour Menu = "GR+, W+/B,B,B,W+/BG"
setcolor(Colour_Menu)
ENDIF
SET CENTURY ON
SET DATE BRITISH
SET WRAP ON
CLEAR

*Deflt _Path = Get_direct ()
MsgWait ()
File_error = .F.

SELECT 1
¥ile name = ‘rule.dbf’
I[F file (File_name)
USE &File_name
ELSE -
File_error = .T.
? ‘Missing file: ‘+File_name

235
ENDIF

SELECT 2
File name = ‘goal.dbf’
IF file (File_name)
USE &File_name
* INDEX ON name to Goal
ELSE
File error = .T.
? ’'Missing file: ’+File_name
ENDIF

SELECT 7
File name = ’‘primary.dbf’
IF file (File name)

USE &File_name

ELSE

File error = .T.

? 'Missing file: ’+File_name
ENDIF
SELECT 8

File name = ’'second.dbf’
IF file (File_name)
USE &File_name

ELSE

File error = ,T.

? 'Missing file: ’+File_name
ENDIF
SELECT 3

File name = ‘belief.dbf’
IF file (File_rame)
USE &File_name

ELSE

File error = .T.

? 'Missing file: ’+File_name
ENDIF
SELECT 4

File name = ‘internal.dbf’
IF file (File_name)
USE &File_name

ELSE

File error = T.

? ’'Missing file: ‘+File_name
ENDIF
SELECT 5

File name = ’‘extreq.dbf’
IF file (File_name)
USE &File_name

ELSE

File_error = T,

? ’Missing file: ’+File_name
ENDIF
SELECT §

File_name = ‘action.dbf’
IF file (File_name)

USE &File_name
ELSE

236

File_error = ,T.
? 'Missing file: ’+File_name
ENDIF

IF File error
? '***x File Error termination of KOOLA
’
RETURN

ENDIF

MsgCent (' MAIN’)

IF Aski(’Reset all beliefs?’)

SELECT & &&extingr.dbf
PRIVATE Num_quest
Num_quest = reccount ()
GO TOP
FOR i = 1 TO Num quest
REPLACE defined WITH .F.
REPLACE available WIIMH .T.

SKIP
NEXT
SELECT 4 &&internal.dbf
Num_quest = reccount ()
GO TOP

FOR i = 1 TO Num quest
REPLACE defined WITH .F.
REPLACE available WITH .T.
SKIP

NEXT

SELECT 7 &&primary.dbf
GO TOP

DO WHILE !eof ()

* Kk k!

* run through all of the beliefs

REPLACE defined WITH .F.
REPLACE available WITH .T.
REPLACE prob WITH -77
SKIP

ENDDO

SELECT 8 &&second.dbf
GO TOP

DC WHILE l!eof()

* run through all of the beliefs

REPLACE defined WITH .F.
REPLACE available WITH .T.
REPLACE prob WITH -88
SKIP
ENDDO
ENDIF

PRIVATE Num goals, Curt_goal

I

e~ = s R DO g

237

Variable = ’The var class’

DO WHILE .T.
@ 0,0 SAY 'KOOLA Simulation Expert Shell’
MsgCent (' MAIN')

First set all facts to undefined
Including both human interface and external facts

* X * %

start_blf = 0
Variable = subst((Variable+space(20)),1,20)

@ 9, 0 TO 16, 79

@ 12,1 SAY ’‘Please enter a starting goal rule:‘GET start Dbl!

@ 15, 1 SAY ’'What is the current value of the variable class:’;
GET Variable PICTURE"@K"

READ
GoalChain(Start_blf, Variable)
*xx 2 Solve_goal(Start_blf, Variable)
IF askY('exit the program?’)
EXIT
ENDIF

clear
ENDDOQ
CLEAR
SET COLOUR TO
et

?’Normal termination’
el

* - Function : GoalChain -
* - Input : starting goal

* - Output : -
* - Action : does a complete chaining through goals -
* - Date : 11 Jan 90 -
* - UpDate : 11 Jan 90 -

FUNCTION GoalChain

PARAMETER Int_goal, Varb

CLEAR

PRIVATE Curt_goal, Curt_prob, Next_ act

SELECT 2 &&goal.dbf

GO TOP

DO WHILE 'eof()
REPLACE Once_thr WITH .F.
SKIP

ENDDO

Curt_goal = Int_goal

DO WHILE .T.
®

* Solve the curent goal
d

CLEAR
IF debug_goal

238

? fcurrent goal: '/
??2Curt_goal
WAIT ‘Top of goal solving algorithm curetn goal ’/
ENDIF
SELECT 2 &&goal.dbf
GO Curt_goal
IF Once_thr
?
? '*** Warning Circular reference error ***/
?
beep ()
beep ()
WAIT
ENDIF
REPLACE Once_thr WITH .T.
Curt_prob = Solve_goal(Belif_ pnt, Varb)
CLEAR
SELECT 2 &&goal.dbf
GO Curt_goal
@ 5,0
2'Prob back:
??Curt_goal
@ row()+1,3 SAY "Change the curt prob" GET Curt_prob
READ
*

* Find out if antecedent meet
n
IF Curt_prob < 0

* unavailable error

CLEAR

? Can not solve the goal’
wait

Solved goal (0)

RETURN (1)

ENDIF
IF Check_value (Curt_prob, prob,operand_cd)
*

* then case

*

IF debug _goal
? ‘then....’
wait

ENDIF

Curt_goal = tchn_pnt

Next_act = then_do

ELSE
*
* else case
*
IF debug_goal
? 'else....’
wait
ENDIF
Curt_goal = echn_pnt
Next_act = else_do
ENDIF

SAVE SCREEN TO S_buf

@ 7, 39 CLEAR TO 17, 73

@ 10,40 TO 16, 70 DOUBLE

@ 10,45 SAY ’'DOING ACTION: ’
@ 12,50 SAY Next_act

239

WAIT ’Action...’
IF Curt_goal = 0
EXIT

ENDIF

ENDDO
beep(’g’)
clear

?

‘Goal rule soved’

wait
Solved_goal (0)
*aend function GoalChain

*

¥ ¥ X A ¥ X * % % % N ¥ ¥ * *

* *

*

end file main.prg

= Project : KOOLA programing language Shell
= Sub-project : Simulator

= File : ask.prg

= Author : Robert D. Rourke

= Date : 08 Jan 1990

= Update : 08 Jan 19930

M I M IM M M M X TE I SR I W S I 3 M IR X B I W X IR IR I N £ I % I O

- Functicen : Ffact_value -
- Input : fact pointer -
- Output : value of the fact -
- Action : finds the value of any fact -
- Date : 11 Jan 90 -
- UpDate : 11 Jan 90 -

Convetion: It is eliegal to call this function if the fact is not
none

FUNCTION Ffact_value
PARAMETER Fact_ID

IF Fact_ID < 500
SELECT 4 &&internal.dbf
GO Fact_ID
ELSE
SELECT 5 && extreq
GO Fact_ID-500
ENDIF
IF !defined
* grave error
WAIT ‘Trying to read an undefined fact...’
RETURN (-9999)
ENDIF

RETURN (value)

*end function Ffact_value

*

* X F X X %

*

- Function : Ffact_state

- Input : fact pointer

- Output : 1= defined, 2 = not availble 3 = undif:

- Action : Checks the fact -
- Date : 11 Jan 90 -
- UpDate : 11 Jan 90 -

FUNCTION Ffact_state
PARAMETER Fact_ID

B w0 B K OB MK

*
* Find the Question

*
IF Fact_ID < 500
SELECT 4
GO Fact_1ID
ELSE
SELECT 5
GO Fact_ID-500
ENDIF

IF defined

240

&&internal.dbf

&& extreq

*if defined most be available

RETURN (1)
ELSEIF available

* if available then only undefined

RETURN (3)
ELSE
RETURN (2)
ENDIF
*end function Fint_state

- Function
- Input

- Output
Action

- Date

* o % X ow %
!

X o m m ew we e e ar e e e e

FUNCTION Solve_fact
PARAMETER Fact_1ID,

*

rule_ID,

* Find the Question
&

IF Fact ID < 500

Solve_fact

fact pointer

The value of the solved fact
Solves the given fact

17 Jan 90

17 Jan 90

Curr_var

* internal human interface

RETURN (AskUser (Fact_ID,

ELSE
* external fact based

rule_ID, Curr_var))

RETURN (AskExter (Fact_ID-500, rule_ID, Curr_var))

ENDIF
‘end function Solve_fact

- en e s em o o e e m S e e o e e e e

v - Function AskUser

v - Input record number of the rule
- Gutput nul

b Action Compiles one primary rule
£ - Date 08 San 90

- UpDate 08 Jan 90

L 4 - e we e wm wm me em s e e e am e W AE wn ew R am Sn mm em M ae Er G ms e s e e e
YUNCTICN AskUser

"ARAMETER Fact_1ID, rule ID, Curr _var

L

. Find the Question

«

SELECT 4 &&internal.dbf

1O Fact ID

SRIVATE Response
IF inquir_typ=’TEX’
Response = AskText ()

241
ELSEIF inquir_typ=’NUM’
Response = AskNum()
ELSE
?’Error unkown type’
?2inquir_typ
WAILT
ENDIF
SELECT 4 &&internal.dbf
GO Fact_1ID
REPLACE value WITH Response
REPLACE defined WITH .%.
RETURN (value)
*end function AskUser
AR = e = e o owm om m om om + o e e om e = e e e
* - Function i AskExter
* - Input : nul
* - Output : value
* - Action :
* - Date : 12 Jan 90
* - UpDate : 12 Jan 90

»*

FUNCTION AskExter
PARAMETER OSfact_ID, rule_ID, Curr_var
*

* Find the 0OSfaction

*x

SELECT 5 && extreq
GO OSfact_1D

PRIVATE Str_from

Str_from = 1

PRIVATE S_buf

SAVE SCREEN TO S_buf

*
Build screen

Str_from, 6 CLEAR TO Str_from+5, 76
Str_from, 7 TO Str_from+5, 75 DOUBLE

Str from, 12 SAY upper({trim(name))

DR @@DE * »

Str_from+2, 9 SAY ‘TOKEN: ’+token
PRIVATE i, Ans, Macro

Ans = (

DO WHILE .T.

SELECT 5 && extreq
GO 0OSfact_1ID

{5+5tr_from), 50 SAY '“W for Explanation’

Str_from+l, 9 SAY ‘FOR: ’+trim(var_class)+’

- e e e wm e ms em = om = e - =

:= "+Curr_var

@ Str_from+3, 65 GET Ans PICTURE ‘99999.99'

READ

IF lastkey() = 23
ExpRule (rule_ID)

ELSEIF lastkey() # 27

EXIT
ENDIF
ENDDO
RESTORE SCREEN FROM S_buf
SELECT 5 && extreq

GO OSfact_1ID
REPLACE value WITH Ans

242

REPLACE defined WITH .T.
RETURN (Ans)
*and function AskExter

* - Function : AskText -
- Input : nul -
* - Output : Answer -
* - Action : Ask the user a text question -
* - Date : 08 Jan 90 -
* - UpDate : 08 Jan 90 -
K i e e wn wm e e mm aw e mm e e w e s w e mm e e A wm wm e s wm mm e m wm em e e
* Assumes: database open and pointed to correct record

* Global: rule_ID defined in the Askuser

* Curr_var the current value of the variable class

*

FUNCTION AskText
PRIVATE Str_from
Str_from = 0

PRIVATE S_buf

SAVE SCREEN TO S_buf

PRIVATE this_gst

This_qst = recno()
*

* Build screen
*
@ Str_from, 7 CLEAR TO (3+num_ams+Str_from), 71
@ Str_from, 7 TO (3+num_ams+Str_from), 71 DOUBLE
@ (3+num_ams+Str_from), 50 SAY ‘"W for Explanation’
@ Sstr_from, 12 SAY upper(trim(name))
@ str_from+l, 9 SAY ‘FOR: '+trim(var_class)+’ := ’+Curr_var
@ Str_from+2, 9 SAY question
PRIVATE i, Select, Macro
Select = 0
DO WHILE .T.
SELECT 4 &&internal.dbf

GO This_qgst
FOR i = 1 TO num_ams
Macro = YANS’+str(i-1,1)
@ (Str_from+2+i),40 PROMPT str(i,l)+’'~ ’+trim(&Macro)
NEXT
MENU TO Select
IF lastkey() = 23
*escape pressed, explain
ExpRule(rule_ ID)
ELSEIF lastkey() # 27
EXIT
ENDIF
ENDDO
RESTORE SCREEN FROM S_buf
RETURN (Select)
*end function AskText

* - Function : ExpRule -
* - Input : rule pointer -

243
* - Output : nul -
* - Action : -
* - Date : 08 Jan 90 -
* - UpDate : 08 Jan 90 -

*

FUNCTION ExpRule
PARAMETER ID
else_calse = .F.

IF ID > 500
*then else classe
else calse = .T.
ID = ID - 500
ENDIF

PRIVATE Str_ from
Str_from =

PRIVATE S_buf
SAVE SCREEN TO S_buf

SELECT 1 &srule.dbf
SET INDEX TO rule
GO ID
PRIVATE Curr_col
Curr_col = setcolor()
SET COLOUR TO I
@ str_from+2,10 CLEAR TO (Str_from+l3+num antec),77
DsplRule()
else_calse = .F.
5 setcolor (Curr_col)
| PRIVATE Last_key
DO WHILE .T.
@ 23,0
WAIT ’‘Any other key to continue’
@ Str_from+2,10 CLEAR TO (Str_from+13+num_antec),77
Last_key = lastkey()
IF Last_key = 18
*PgUp
IF !bof ()
SKIP -1
ENDIF
ELSEIF Last_key = 3
*PgDn
IF leof()
SKIP 1
ENDIF
ELSE
EXIT
ENDIF
DsplRule ()
ENDDO
SET INDEX TO
RESTORE SCREEN FROM S_buf
*end function ExpRule

* - Function : DsplRule -
* - Input : nul -
* - Output : nul -
*x - Action : -
* .

- Date : 09 Jan 90

244

* - UpDate : 09 Jan 90 -

* Assumes the current record to be displayed
FUNCTION DsplRule

*@ Str_from+2,10 CLEAR TO (Str_from+1l3+num_antec),77
Str_from+3, 13 TO (Str_from+l2+num antec), 74

Str from+3, 18 SAY ‘EXPLANATION’

str from+3, 65 SAY ’'"~X PqUp’
(StT_from+12+num_antec), 65 SAY ’'~Y PgDn’

[X RN

Str_from+4, 15 SAY ‘Rule number: ’+str(recno(),4)
Str_from+6, 15 SAY ‘FOR: ’+var_class
Str_from+7, 15 SAY ‘Primary Rule: ’ +name
IF extrn0
@ str_fromt8, 18 SAY'IF, COSI: "+trim(1£0) +° " +oper0+’
’+3tr(numl, 8, 2)
ELSEIF !'empty(ansQ)
@ Str_from+8, 18 SAY'IF, Quest: ‘+trim{if0)+’ * +toper0+’ ’+trim(ans0)

D

ELSE
@ Str_from+8, 18 SAY’IF, Num Quest: '+trim(if0)+’ '+oper0+’
’+str(numd, 8, 2)
ENDIF
PRIVATE i, Macro, Pointer,M_oper,M_if,M ans
FOR i = 1 TO num_antec-1
Pointer = str(i,1)
Macro = ’extrn’+Pointer
M_if = ! IF’+Pointer
M _oper= ‘OPER’+Pointer
IF &Macro &&external
M_ans = ‘NUM’+Pointer
@ (Str_from+8+i), 18 SAY’AND, COSI: f+trim(aM if)+/
‘+&M_oper+’ ‘+str{&M_ans,8,2) -
ELSE
M_ans = ’'ANS’+Pointer
IF !empty(&M_ans)
@ (Str_from+8+i), 18 SAY ’'AND, Quest: ’+trim(&M_if)+’
‘+&M_oper+’ ‘+trim(&M_ans)
ELSE
M_ans = ’NUM’+Pointer
@ (Stx_from+8+i), 18 SAY ’ AND, Num Quest:
‘+trim(&M_if)+’ ’+&M_oper+’ ’+stx(&M_ans,8,2)
ENDIF
ENDIF
NEXT
@ (Str_from+9+i), 18 SAY ‘THEN: ’+trim(then)+’ ’+str(then_p,3)+’ Weight:
‘+str{then_w,3)
IF (else # 'NUL')
IF else_calse

@ (Str_from+10+i), 15 SAY ’-->ELSE: "+trim(else)+’
‘tstr(else_p,3)+’ Weight: ’+str(else_w,3)
ELSE
@ (Str_fromt+l0+i), 18 SAY 'ELSE: '+trim(else)+’
"+3tr(else_p,3)+’ Weight: ’‘+stx(else_w,3)
ENDIF

ENDIF
*end function DsplRule

x - Function : AskNum -
* - Input : nul -
* - Output : nul -

245

* - Action : -
* - Date : 08 Jan 90 -
* - UpDate : 08 Jan 90 -
K o e e om m wm e o m e e e w o e w e m om e m e m e e m e me = e = =
* Global: rule_ID defined in the Askuser

* Curr_var the current value of the variable class

FUNCTION AskNum
PRIVATE Str from
Str_from = 1

PRIVATE S_buf

SAVE SCREEN TO S_buf
PRIVATE this_gst
This_gst = recno ()

*

Build screen

Str_from, 7 CLEAR TO Str_from+5, 75
Str_from, 7 TO Str_from+5, 75 DOUBLE
(5+Str_from), 50 SAY ‘"W for Explanation’
Str_from, 12 SAY upper(trim{name))
Str_from+l, 9 SAY "FOR: ’+trim(var_class)+’ := ‘+Curr_var
Str_from+2, 9 SAY question

Str from+4, 20 SAY ’Range: '

?2?1ltrim{str (lower,8,2))

?2?2', TO: '

??1ltrim(str(upper,8,2))

PRIVATE i, Ans, Macro

Ans = lower + (upper-lower)/2

DM % *

DO WHILE .T.
SELECT 4 &&internal.dbf
GO This_gst
@ str_from+3, 65 GET Ans PICTURE ‘99999.99’ RANGE lower, upper
READ

IF lastkey() = 23
ExpRule(rule_ID)
ELSEIF lastkey() # 27
EXIT
ENDIF
ENDDO
RESTORE SCREEN FROM S_buf
RETURN (Ans)
*end function AskNum

*
*end file ask.prg

*s--un:aa:anaa::--au-x=-==-=-,a=_:u_.
* = Project : KOOLA programing language Shell

* = Sub-project : Simulator

* = File : prmblf.prg

* = Author : Robert D. Rourke

* = Date : 19 Jan 1990

* = Update : 31 Jan 1990
*nz::::u:-aa:n::nn-::xnaa--z:-n=-=~.
* debug_prm

K = e am e e e o aw e m wm e e es e w e m m wm e e e o e s e e o - -
* o= Function : Expand_prim

* - Input : Values to be checked check type

* - Output : value of the fact

* - Action : finds the value of any fact

* - Date : 17 Jan 90

*

- UpDate : 17 Jan 90

This function is called if a primary belief is taken from the
queue. It expands it out by supporting fact. All facts that
are not known are put on the queue

* x =

*

FUNCTION Expand_prim
PARAMETER Prim blf

SET DECIMALS TO 2
PRIVATE Final prob, Solved
Solved = .F.

PRIVATE Sigma_prob, Sigma_weight
Sigma_prob = 0
Sigma_weight = 0

SELECT 7 &&primary.dbf

GO Prim blf

Curt_blief = name

Total_facts = num_facts

* debug_prm

IF debug_prm
? 'Expanding, Name of primary belief:
?? name
2! This belief hase supporting facts
??Total_facts
wait

’

’

ENDIF

DECLARE Fact_lst{Total_ facts], Oper_lst{Total_£facts],
Fnum_lst [Total_facts]

DECLARE Frul lst{Total_facts+l), Valu_lst([Total_facts]

Frul lst[Total_facts+l] = -9999

FOR i = 1 TO Total_ facts
L

* load all of the facts for this belief then decide what to
* do with them
»*
Macro = 'F’/+ltrim(str(i,2)) && the factID
Fact_lst[i] = &Macro
Macro = ‘O’ +ltrim(str(i,2)) && the operator to test it
Oper_lst [i] = &Macro
Macro = 'R’+ltrim(str(i,2)) && rule reference number
Frul_lst[i] = &Macro
Macro = ‘N’+ltrim(str(i,2))
Fnum lst[i] = &Macro && the number it should equale
NEXT
3

* Find out which of these facts are defined
*

PRIVATE True Ilag, Solvable

PRIVATE Cur_prob, Cur_ weight, Cur_rule
Reset_Expand_prim(l)

x

* the facts are ordered by rule grouping
*
PRIVATE CurtFct
CurtFct = 1
20 WHILE CurtFct <= Total_facts
State_fct = Ffact_state(Fact_lst([CurtFct])

247

IF debug_prm

clear

? Curt_blief

?2? !

Index :’

?? CurtFct

2 /R =

?? Frul_ lst[CurtFct]
2 'F = !

?? Fact_lst [CurtFct]
2 'S = !

?? State_fct

ENDIF

IF (State_fct = 3)

* not

defined

IF debug_prm

ENDIF

? ’'Not defined Soving the fact ’
wait

Solve_fact (Fact_lst[CurtFct], Frul_lst[CurtFct], Curr_ var)

ENDIF
State fct =

Ffact_state(Fact_lst[CurtFct])

IF (State_fct = 2)
*not available
Solvable = ,F.

wait

ELSEIF (State_fct = 3)

* not

defined

Solvable = .F.
IF debug _prm

ENDIF
ELSE

? 'Fact still not defined’
WAIT

* At this point it must be defined
Dyn_value = Ffact_ value (Fact_lst [CurtFct])
IF !Check_value(Dyn_value, Fnum_lst [CurtFct],Oper_lst[CurtFct])

should

ENDIF
ENDIF known
*
* Check
* reset

*
IF Cur rule

* % *]

may

IF debug_prm
?'Found false, should finish’
ENDIF
True flag = .F.
Solvable = .T.
*

* if the result is false, then the answer is crmpletly
* known for this sub rule. Consequently the -<earch

* stop. Note the answer is false

*

* Start the next

DO WHILE Frul_lst([CurtFct+l] = Cur_rule
* remove all facts that apply to this rule
CurtFct = CurtFct + 1

ENDDO

if it is the last part of a rule. If it i3 then
the true flag. Also add its probability to the Lalict

Frul lst [CurtFct+1]

next fact is not part of this rule set

be the end of the fact list

248

*

IF debug_prm
beep ()
Py

? 3
ENDIF
IF !Solvable
IF debug prm
?'Fact Can not be sloved’
ENDIF
ELSE]
IF Cur_rule > 500
*else clause
True_flag = !True flag

PR -

ENDIF
IF True_flag
Solved = .T.
*
* Calculate the prob place in a tempory array

>

Sigma_prob = Sigma_prob + Cur_prob*Cur_weight
Sigma_weight = Sigma_weight+Cur_weight
IF debug _prm
? 'Sigma weight:: ’
?? Sigma_weight
? 'Sigma prob:: ’
?? Sigma_prob
? 'Cur_prob '
2?2 Cur_prob :
? ! Cur_weight '/
?? Cur_weight

Tan AT a3 TR A .

ENDIF
ELSE
IF debug_prm
?2'This set of facts did not affect the
belief’
ENDIF
ENDIF
IF CurtFct < Total_facts
Reset_Expand prim(CurtFct+l)
ENDIF
ENDIF over set
ENDIF
CurtFct = CurtFct + 1
ENDDO
SELECT 7 &&éprimary.dbf
GO Prim blf

iF Solved
IF debug_prm
? 'Sigma weight:: '’
?? Sigma_weigh!
? ’'Sigma prob:.
?? Sigma_prob
? 'Final prob:: '
" Sigma_prob/Sigma_weight*100
ENDIF
REPLACE prob WITH Sigma_prob/Sigma_weight*100
REPLACE Defined WITH .T.
REPLACE Available WITH .T.
* the probability -1 if undefined -2 if not available
RETURN (Sigma_prob/Sigma_weight*100)

Sy

249

ELSE
REPLACE prob WITH -2
REPLACE Defined WITH .F.
REPLACE Available WITH .F.
RETURN (-2)

ENDIF

*end function Expand_prim

* - Function : Reset_Expand prim -
* - Input : -
* - Output : -
* - Action : -
* - Date : 17 Jan 90 -
* - UpDate : 17 Jan 90 -

*

FUNCTION Reset Expand_prim
PARAMETER Offset

Solvable = .T.

True_flag = .T.

Cur_rule = Frul_lst [Offset]
SELECT 7 &&primary.dbf
GO Prim blf

Macro = 'P’+ltrim(str(Offset,2))
Cur_prob = &Macro/100

Macro = ’'W +ltrim(str(Offset,2))
Cur_weight = &Macro/100

*end function Reset_Expand p.im

* - Function : Check_value -
* - Input : Values to be checked check type -
* - Output : value of the fact -
* - Acticn : finds the value of any fact -
* - Date : 17 Jan 990 -
* - UpDate : 17 Jan 90 -

*

- e e m e an en e ms e ew e e ew em e mm em s e wm me e wm e em wm wm em mm = e e e

FUNCTION Check_value
PARAMETERS Valuel, Valuel, Operat

DO CASE
CASE Operat = 1
X =
IF Valuel = Value2
IF debug prm
? 'Found TRUE...’
ENDIF
RETURN (.T.)
ENDIF
CASE Operat = 2
* <
IF Valuel < Value2
IF debug _prm
? 'Found TRUE’
ENDIF
RETURN (.T.)
ENDIF
CASE Operat = 3
*>
IF Valuel > Value2
IF debug_prm
? 'Found TRUE’

ENDIF
RETURN (.T.)
ENDIF
CASE Operat = 4
L€]
IF Valuel <= Value2
IF debug_prm

250

? 'Found TRUE'

ENDIF
RETURN (.T.)
ENDIF
CASE Operat = §
>
IF Valuel >= Valuel2
IF debug_pmm

? ’'Found TRUE'

ENDIF
RETURN (.T.)
ENDIF
CASE Operat = 6
* 4
IF Valuel # Value2
IF debug_prm

? 'Found TRUE’

ENDIF
RETURN (.T.)
ENDIF
OTHERWISE
?’Error in the operato
WAIT
ENDCASE

IF debug_prm

? ’'Found to be False...

ENDIF
RETURN (.F.)
*end function Check_value

*

*end file prmblf

A 2w = = 3 om o= om == o= | =
* o Project

X o= Sub-project

* o= File

Ao Author

+ o= Date

ro= Update

¥ = = = = W™ = =, 3 =T = OE = o=

- Modual
- Purpose
- Date

» & = » 2 &

- Function
Input

- Qutput

- Action

»& A& & & A
I

r index’

KOOLA programing language Shell
Simulator

stack.prg

Robert D. Rourke

18 Jan 1990

18 Jan 1990

= o= o\ o= = = s S | = = = o= = = = = = = =

Stack modual -
finds the value of any fact -
18 Jan 90 -
18 Jan 90 -

— e e o e wm Em em E e e o mm e e o e em e e e

Stack_constructor -
nil -

Initisilised the stack -

hw o n

1

251

* - Date : 18 Jan 90
* - UpDate : 18 Jan 90
\ X = o m e e = e mm e e = e o e o= - - - - e = e . o

o FUNCTION Stack_constructor

; PUBLIC Max_stack
Max_stack = 100
PUBLIC Stack_ID([Max_ stack]
PUBLIC Stack_pointer
Stack_pointexr = 1
?/Stack initialised’
*end function Stack_constructor

*

* - Function : Stack_empty

* - Input : nil

LA Output : true if empty
* - Action :

* - Date : 18 Jan 90
LI UpDate : 18 Jan 90

K o e m m e m m mm e = e em o m w e m e e e e A em e =

FUNCTION Stack_empty
RETURN (Stack_pointer <= 1)

K o - e e emm e e owm om e e e e owm e e m e e e e e o ow = - . . = e -~

* - Function : Push_stack

x - Input : Fact or belief ID / type true= beliet
* - Output : value of the fact

* - Action : Places one "belief" on the stack

* - Date : 18 Jan 90

* - UpDate : 18 Jan 90

X o oo @ e w m e me e o m om e e e m e o w e m w m em = e - - .- . — e e -

FUNCTION Push_stack
PARAMETER ID
IF debug_stack
WAIT ‘Push down stack : ’'+str(ID)
ENDIF
IF Stack_pointer > Max_stack
?2'Error, stack overflow..’

ELSE
Stack_ID(Stack_pointer] = ID
Stack_pointer = Stack_pointer + 1
ENDIF
K o o m wm e o e s e e e e w e e e - - e o em e e wm am e = o e
* - Function : Pop_stack
* - Input : nil
* - Output : An id of a fact or blier
* - Action : Places one "belief™ on the stack
* - Date : 18 Jan 90
x - UpDate : 18 Jan 90
X = e = om o wm owm m e e om e e = e e e - . = e wm m = o m = -
* Globals: sets/resets GIs_belief

FUNCTION Pop_stack
IF Stack_pointer <= 1
?’Error, stack underflow..’
WAIT
ELSE
IF debuqg_stack
WAIT ‘Pop stack : '+str(Stack_ID[Stack pointer-1})
ENDIF
Stack_pointer = Stack_pointer - 1

252

RETURN (Stack_ID [Stack_pointer])

ENDIF

RETURN (-9999)

* S o S . - -
* - Function : Examire_stack -
* - Input : nil -
* - Qutput : An id of a fact or blief -
* - Action : retruns the belief on the statck -
- Date : 18 Jan 90 -
* - UpDate : 18 Jan 90 -
* - - - e eh e e e e ww wm o e em me @ mm W am e ww e e = - e W wm am em we - - e

»

Globals: sets/resets GIs_belief
FUNCTION Examine stack

IF Stack_pointer <= 1

?’'Error, stack underflow..’

WAIT
ELSE
IF debug_stack
WAIT 'Examine stack : ’'+str(Stack_ID[Stack_pointer-1])
ENDIF
RETURN (Stack_ID {Stack_pointer-1}])
ENDIF

RETURN (-9999)
*end function Examine_stack
*

*end file stack.prg

* - =| =X = = = m = X 3x = m W IR = 2 = = &= =2 = == = = = = = = = = = = = =
* = Project : KOOLA programing language Shell =
* = Sub-pro-iect : Simulator =
* o= File : secbelf.prg =
* = Author : Robert D. Rourke =
* o= Date : 26 Jan 1990 =
* = Update : 31 Jan 1990 =
x = = == = ™ = = I I X = - M ® O =: I = == = = s = = = = = == = == = = = = =
*

* - o e e ms > e e e am e w w wm ws w - wm e wm we s M me e w8 am e e ™ e aw e

x - Function : Solve_goal -

£ - Input : fact pointer -

* - Output : value of the fact -

* - Action : finds the value of any fact -
* - Date : 11 Jan 90 -
- UpDate : 11 Jan 90 -

w - e e er e S e an e e e o v ws o e e - s ws em - e W em e W wm mk s e wm e e

FUNCTION Solve_goal
PARAMETER Goal _blf, Curx var

*

* Add a goal belief
L3

Stack_constructor ()
Push_stack (Goal_ blf)

*

* Go into the main loop
L
PRIVATE Head blf, State_head blf
2O WHILE .T.
CLEAR
IF debug_on
?'*** Top of the algorithm’
ENDIF

253

Head blf = Examine_stack()
State_head = Fbelief state (Head blf)

IF State_head = 1
*defined
IF Head_blf = Goal_blf
*success!
Solved_goal (Goal_blf)
EXIT

ELSE
*just remove the belief
?2'Popping a defined belief’
Pop_stack()

ENDIF

ELSEIF State head = 2

*not available

IF Head _blf = Goal_blf
*fail
Solved_goal (Goal_blf)
RETURN (-2)

ELSE
*just remove the belief
IF debug_on

2’Popping a not available belief’

ENDIF
Pop_stack!)

ENDIF

ELSEIF State_head = 3
*not defined leave on stack

IF Fbelief type(Head blf) && if secondary
IF debug_on
WAIT ’‘belief is a secondary belief and will be
expanded’
ENDIF
Expand_scdn(Head _blf)
ELSE
IF debug_on
WAIT ’‘belief is a primary belief and wili be
expanded’
ENDIF
Expand prim(Head blf-500)
ENDIF
ELSE
?2'Error in belief state unknown’
WAIT
ENDIF
ENDDO

RETURN (Fbelief_prob(Goal bilf))

*end function solve_goal

* - Function : Expand_scdn -
* - Input : A secondary belief -
* - Output : value of the belief -
* - Action : tries to find the value of a sec belief -
*

- Date : 17 Jan 90 -

254

UpDate : 17 Jan 90 -

— e M wm me e W™ wm e wm .

This function is called if a secondary belif is taken from the
queue. It expands it out by supporting fact. All facts that
are not known are put on the queue

* x x % »

&

FUNCTION Expand_scdn
PARAMETER Secd blf

SELECT 8 &&second.dbf
GO Secd blf
curt bllef = name
Numb blf = num belief
¥ debug scd
2?7 name
2! This belief hase supporting beliefs : *
?7?Numb_blf
walit
ENDIF
DECLARE PrmBLlf lst [Numb blf], PrmR_1st(Numb_blf+l])
DECLARE Valu_1lst[Numb | blf]
DECLARE Parm wt[Numb blf]
DECLARE Parm_pr [Numb_blf)

PrmR_1st [Numb_blf+l] = -3999

FOR i = 1 TO Numb_blgf

*

* load all of the supporting beliefs
*

Macro = 'B’+ltrim(str (i, 2)) && the factID
PrmBlf 1lst(i] = &Macro
Macro = ‘R’'+ltrim(str(i,2)) && rule reference number

PrmR_lst[i] = &Macro

Macro = ‘W +ltrim(stxr(i,2))
Parm _wt {i] = (gMacro)
Macro = ‘P’/+ltrimi{str (i,2))
Parm pr {i] = (&Macro)

NEXT

x

. Find out which of these beliefs are defined

* If so use there number, if not put on stack

*

PRIVATE Solve_ pasl tédertermines if it is not solvable pass one

Solve_pasl = T,

PRIVATE Cur_prob, Cur_weight, Cur_rule
Cur_rule = PrmR lst[l]
FOR CrtBlf = 1 TO Numb blf
State_blf = Fbellef_state(PrmBlf_lst [CrtBlf])
IF debug scd
2 "TR= "
2?22 PrmR__1st(CrtBlf]
? 'Bel = index’
2?22 PrmBlf 1st {CrtBlf]
? ‘value of rule weight: ’
??2 Parm_wt [CrtB1f]
Is - l

" ? State_blf

\)

ENDIF
IF (State_blf = 3)

255

* not defined
IF debug_scd
? ‘Belief not defined placing on stack’
ENDIF
Valu_lst[CrtBlf] = -1
Solve_pasl = .F.
Push_stack (PrmBlf lst[CrtBlf}])
ELSEIF (State blf = 2)
* not avaliable
Valu_lst[CrtBlf] = -2
IF debug_scd
? "Belief not avalable’
ENDIF
ELSEIF (State blf = 1)
*Available
Valu_lst [CrtBlf] = Fbelief prob (PrmBlf_1st(CrtBlf])
IF debug_scd
? Valu_lst (CrtBlf]
WAIT ‘Belief Available saving its value for futurs’
ENDIF

ELSE
? fError state value wrong'’
WAIT

ENDIF

NEXT
PRIVATE Cur_rule
IF Solve pasl
* may be solved
PRIVATE Cur_rule
Cur_rule = PrmR_1st(1l]
PRIVATE Solve_pas2
Sove_pas2 = .F.
PRIVATE Sig_weight, Sig_prob
Sig_weight = 0
Sig prob = 0
CrtBlf = 1
DO WHILE CrtBlf <= Numb_ blf
IF debug_scd
WAIT ‘New rule’
ENDIF
Cur_weight = Parm wt([CrtBlf]
Cur_prob = Parm_pr(CrtB1f]
Cur_rule = PmmR_1st(CrtB1lf]
DO WHILE Cur_rule = PrmR_1st{Crt3lf]
State_u]:. = Fbelief state (PrmBlf 1lst{Cr-3lt})
IF debug_scd
? CrtBlf
? 'The rule :‘
?2?PrmR_1st [CrtBlf)
? 'The value of the belief: ’
?? Valu_lst [CrtBlf]
? 'The rule probs: and weight'
?? Parm pr(CrtBlf]
?? Parm_wt [CrtBlf]
ENDIF

IF (State_blf = 3)
*not defined
7"Error in belief routine should ncr feve rzacned
unsolved’

on the worst

256

WAIT

ELSEIF (State_blf = 2)

*Not available

ELSEIF (State_blf = 1)
*

* known, Calculate the an accumalated prob based

* worst supporting belief in a common rule

x

Sove_pas2 = _.T.

Worst_prob = Valu lst[CrtBlf]

DO WHILE PrmR_1lst{CrtBlf] = PrmR_1st (CrtB1f+1]
CrtBlf = CrtBlf + 1
IF Worst_prob > Valu_1lst(CrtBlf] .AND.;
Fbelief state (PrmBlf_lst(CrtBlf]) =1

Worst_prob = Valu lst [CrtBlf]

ENDIF
ENDDO
Sig_weight = Sig weight + Cur_weight/100
si g pr ob = S ig __pro b +

Cur_prob*Worst_prob*Cur_weight /1000000

ELSE

ENDIF

IF debug_on
? 'Worst prob: !
27 Worst _prob
? 'Sigma prob and weight: '
2? Sig_prob
?? Sig_weight
WAIT
ENDIF

?’Error internal state’
WAIT

CrtBlf = CrtBlf + 1

ENDDO while same rule

ENDDO while crtBlf < number of belf

IF Sove_pas2
return_prob = Sig_prob/Sig_weight

ELSE

ENDIF
ELSE

return_prob = 0

ENDIF
IF debug_on

@ row()+1,

READ
ENDIF
SELECT 8
GO Secd blf

return_prob = -2

10 SAY "what wvalue of prob :" GET return_prob

&&second.dbf

IF return_prob < 0
REPLACE Defined WITH .F.
REPLACE Available WITH .F.

ELSEIF return_pxob = 0
REPLACE Defined WITH .F.
REPLACE Available WITH .T.

ELOE

REPLACE prob WITH return_ prob*100
REPLACE Defined WITH .T.
REPLACE Available WITH .T.

ENDIF

RETURN (return_prob)

257

*end function Expand_scdn

* - e = e e W EE e e m e m w E em w ® e e m e e o e e e o e e e =
* - Function : Solved goal

* - Input : belief pointe

* - Output :

* - Action : finds the type ¢£ belief

* - Date : 11 Jan 90

* - UpDate : 11 Jan 90

* - e e e w ® e wn = e e om e e o om = o e e Em e e e e e m e e e =

FUNCTION Solved_goal
PARAMETER Goal blief
CLEAR
IF Goal_blief > O
IF Goal_blief > 500
SELECT 7 &&primary .dbf
GO Goal_blief-500
ELSE
SELECT 8 & &second . dbf
GO Goal blief
ENDIF -
IF defined
7?7 ’The goal belief: '’ +trim(var class)+':’+namet’
' +str(prob,3)+ %’ B

ELSE
?? ‘The goal belief: ’+trim(var _class)+':’+namet’
defined)’
ENDIF
IF 'AsSkN(’Would you like to see a sumery of all beliefs?’)
RETURN(1)
ENDIF
ENDIF
@ 2,2
SELECT 7 téprimary.dbf
GO ToP

? “The primary beliefs: ¢
DO WHILE !eof()
* run through all of the beliefs
IF defined
trim(var_class)+’ :’ +name+’ Pr= * +striprob}+’ %*
ENDIF
IF !available
?trim(var_class)+’ :’ +name+’ (Not available)’
ENDIF
SKIP
ENDDO

SELECT 8 &&second.dbf
GO ToOP
2

? “The secondary beliefs:’
DO WHILE !eofl()
* run through all of the beliefs
IF defined
? name+’ Pr= '+str(prob)+’%’
ENDIF
IF 'available
? name+’ (Not available)’

Pr=

(Nr?f

257

*end function Expand_scdn

*

LR Function : Solved_goal -
* - Input : belief pointe -
x - Qutput : -
* - Action : finds the type of belief -
LI Date : 11 Jan 90 -
LR Uphate : 11 Jan 90 -

L] - ee W W me wm ™ an e @ " an m W wr am M S o wm e W W am o ® wm e = e

FUNCTION Solved_goal
PARAMETER Goal blief
CLEAR
IF Goal blief > 0
IF Goal_blief > 500
SELECT 7 téprimary.dbf
GO Goal_blief-500

ELSE
SELECT 8 éésecond.dbt
GO Goal_Dblief
ENDIF
IF defined
?2? 'The goal belief: ‘+trim(var_class)+’ :’+name+’ Pr=
‘+str (prob,3) +’%'
ELSE
?2? 'The goal belief: '+trim(var_class)+’:'+name+’ (Not
defined)’
ENDIF
IF !AskN (‘Would you like to see a sumery of all beliefs?’)
RETURN(1)
ENDIF
ENDIF
@ 2,2
SELECT 7 &§&primary .dbf
GO TOP

? 'The primary beliefs: '/
DO WHILE !eof ()
* run through all of the beliefs
IF defined
2trim(var_class) +':'+name+’ Pr= '+str(prob)+’%’
ENDIF
IF 'available
2trim(var_class) +’':'+name+’ (Not available)’
ENDIF
SKIP
ENDDO

SELECT 8 &&second.dbf
GO TOP
?
? 'The secondary beliefs:’
DO WHILE !eof ()
* run through all of the beliefs
IF defined
? namet’ Pr= ‘+str(prob)+'%’
ENDIF
IF !available
? name+’ (Not available)’

* - Function

* - Input

* - OQutput

* - Action

* - Date

* - UpDate

K - m e m = e o - -
FUNCTION Fbelief type
PARAMETER belief ID
RETURN (belief_ID<500)

Function
Input
Qutput
Action
Date
Uphate

* X % % 4 X
1

FUNCTION Fbeli=f state
PARAMETER belief ID
IF belief ID > 3500

SELECT 7

GO belie€_ID-500
ELSE

SELECT 8

GO beliexl ID
ENDIF

IF defined

258

Fbelief type
belief pointe

finds the type of belief

11 Jan 90
11 Jan 90

- e m = am o =

Fbelief state
belief pointer

1= defined, 2 = not awvailble
Checks the belief

11 Jan 90
11 Jan 90

&4primary.dbf

&&second.dbf

*3f defined most be available

RETURN (1)
ELSEIF available

* jif available then only undefined

RETURN (3)

RETURN (2)
ENDIF
*end function Fbelief

* - e em en W W am s = am e = we
* - Function

* - Input

* - Qutput

* - Action

* - Date

* - UpDate

*

FUNCTION Fbelief prob
PARAMETER belief ID
IF belief ID > 500

- e W e

Fbelief_ prob
belief pointer

- e e e e

1= defined, 2 = not availble 3 = undifi
Checks the belief

11 Jan 90
11 Jan 990

268

ENDIF
SKIP
ENDDQ
WAIT

*end function solved goal

* e - s e aw e e W am e @ m e W mm o M = e = e = e =
- Function : Fbelief_type
* - Input : belief pointe
- Qutput :
- Action : finds the tyve of belief
* - Date : 11 Jan 90
* - UpDate : 11 Jan 90
*x - s o e e m e am s m me m m T s e W e em = e em e = = - e me we o e
FUNCTION Fbelief type
PARAMETER belief ID
RETURN (belief ID<500)
* - M e am m W am wm e mm e W M mm w W em an w w wm e e e - m W mm ee e s
* Function : Fbelief_ state
* Input : belief pointer
* - Output : 1= defined, 2 = not availble 3 = undifi
- Action : Checks the belief
- Date : 11 Jan 90
- UpbDate : 11 Jan 90
* - e o em s e e wm w e ee e @ T em o wr wm wm e e wm e e = - = e e = o -
FUNCTION Fbelief state
PARAMETER belief ID
IF belief 1ID > 500
SELECT 17 &sprimary.dbf
GO belief_ID-500
ELSE
SELECT 8 &&second.dbf
GO belief_ID
ENDIF
IF defined
*if defined most be available
RETURN (1)

ELSEIF available
* if available then only undefined

RETURN (3)
ELSE
RETURN (2}
ENDIF
*end function Fbelief
+ - e @ e em mm W am 2w em mm e e ™ wa e mm wm am wm = == - o S em e W em e = =
£ - Function : Fbelief prob
x - Input : belief pointer
- Out,put : 1= defined, 2 = not availble 3 = undifi
t - Action : Checks the belief
- Date : 11 Jan 90
- UpDate : 11 Jan 90
+ - w e am em e w mm ws W e - m P wm s > wm e wm o - s - - et wm e s am =

FUNCTION Fbelief prob
PARAMETER belief ID
F belief_ID > 500

P

3 et esnatadors, S

1

259

SELECT 7 &&¢primary.dbf
GO bulief_ID-500

ELSE
SELECT 8 &&second.dbf
GO belief ID

ENDIF

IF defined
RETURN (prob)
ELSE
?7Error program is reading an undfined probability’
WAIT
RETURN (0)
ENDIF
*end function Fbelief_prob

*
*end file secbelf.prg

-

259

SELECT 7 &sprimary.dbf
GO belief_ ID-500

ELSE
SELECT 8 &&second.dbf
GO belief ID

ENDIF

IF defined
REZTURN (prob)

ELSE
?’Error program is reading an undfined probability’
WAIT
RETURN (0)

ENDIF

*end function Fbelief prob

*

*end file secbelf.prg

