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: ABSTRACT '

Parallelisa in Grtphxca
and its Repesentation in
" Data-flow Lungungea and Architectures

Abel Perreira

This thesis is a theoretical study of pufallelisn in
graphics and the possibility of wusing data-flow
architecture to support this parallelism. It starts with
surveys of graphic systems, data-flow architectures and
languages.' It demonstrates that graphic parallelism can in
effect be supported by data-flow concepts. A data-flow
graphic architecture is presented as a result of this

integration.
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1

Introduction
LN

‘

, Graphic systems are a mandatory component for almost
any type ;f application. If for some, simple graphic
routines are enough (business and education), for others a
sufficiently high performance graphic system does yet not
exist (CAD/CAi, image processing, mapping and animation).
The search for such a machine is presently concentrated in
the increase of graphics ’inéelligence’, i.e. the
optimifation of £he speed of devices and the integration of
more functions in silicon. Very little has been done,
however, in the study of new architectures that could
explore other ways of increasing the performance of graphic
systems. From our past experience we have realized that zhe
}nherent parallelism ‘of graphics operations was not fully
exploited. The search for an architecture that best
supports this parallelism is ﬁhe origin of this work.

On our initial literature search wé realized the
potential of data-flow architectures to support parallelism
(their characteristics, the availability of high-level

languages, the existence of several prototype machines and

the announcement of a data-flow YLSI device dedicated to
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image processing). Further research confirmed this
possibility and dgfined the scope of this?work: a
theoretical study of graphig systems, data-flow computers,
data-flow languages and the\integration of the two domains
in a basic data-flow architecture for graphic systems.

This §ocument starts with a survey of raster scan
displays, their evolution and characteristics. Because of
the extenﬁ‘of the subject, the analysis was concentrated on
details of current graphic architectures to inve;tigate
their limitation at handling parallelism in graphics.

Chapter three is another survey, in this case of data-
flow architectures and computers. First, the concept of
data-flow is explained and compared in its performance to
handle parallelism with control-flow architectures. The
document continues with the description of data-flow graphs
and how they are used to represent data-flow programs.
Details of a small graph language are given. This chapter
finishes with the operational description of a data-flow
computer and an overview of the different types of data-
flow architectures.

Bigh-level languages for data-flow architectures is
the subject of chapter four. It is a description of VALg
the characteristics of the language, the syntax and
semantics of the most representative commanég, and the data

types and structures. To terminate the overview of this
)

A
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high-level language we discuss the format of %atajfloW'

-
»
»

instructions and give an example of a data flow, machine
languaée program derived from a VAL program é;mﬁle. ‘

Chapter five brings together this information in an
analysis of the integration of graphics and data-flow
a’Lhitectures. It starts with a description of different

»
methods of picture representation énd‘an overview of
’ . % A
graphic standards. Parallelism in graphics is the nex?
topic. It is analysed féom the applicatioh d;ﬁn to the
implémentatiqn level. An example is-used to show the
inefficiency of expression of this parallelism in
C9nventional languages. The same example is then *described
in a VAL program wh&ch is analysed in order to illustrate
the support it is”cap§b1é ofiprovidipg‘for graphics
parallelisP. Other issues that rfefer to the quaiity of the
representatioﬁ are also studied. Tﬁe exam;le {s_abso a

“~

vehicle to explain VAL instructions, how graphic(functions

.are integrated, and the GKS language biﬁding.'Finally the
chapter concludes with the presentation of a basic data-

‘flow graphics processor based on the M.I.T. type of data-

flow architecture.
The final chapter of this work is a .detailed
description of the basic architecture pres;nted in the

previous chapter. Each section of the computer is
- it

described, its function analysed and in most of:-the cases a

°

il ‘:



-

'
o

" block diagram illustrates-a ?oasiblejinblﬁmﬁntatiog. Each ‘

ope}atjon wnit is also presented with a subset: of an

3

* - \/ .
1nstruct10n‘pet whenever possible.

v

The conclusion of this document refers to areas of '

. \ . -
further research and analyses the results of this work. .
e L. ' -
N ' '
. . .
) .
1 «
¢ - v L
[ " L.
M 13 " - o i et -
’ B |
o /
) : , : o
- .
)

. . a .
v A
‘ :
-
- . , f
. L]
,
K . " i -
. 1 .
a
, ‘
{
.
.
. .
. . : -4-
»
.
4
.
. . 0
.
. , .
:
. ‘
» 4 .
.
. »
. e 3 ,
S
At




2

Graphic Systeas Model \ﬁr\\

“~ In this chapter an analysis of graphic systems is
perf&rmed. Because of the considﬁrable extent of the
subject -the analysis is directed to;ards the more recent
raster scan systems.:

The first part is a small historical overview of
‘graphic systems which'is followed by a list of the
operations usually performed by 'such systems. Afterwards a
@esc;iptio: of currenﬁ graphic systems at the concept level
is given with exgmples of possﬂble implementations .Finally
., we will show £he limitations‘of these architectures and
‘specify the aspects that can not be improv;d without major
changes in the architecture. |

Early graphic systems used display technologies other
than raster scan such as sifrage tubes and gtroke writing
refresh tubes. The development of high resolution video
screens and the decrease in price of solid state memories
have made the raster scan displa; an incr&asingly
attrh?tive alternative to the storage tube display. The new

technology brought improvements in graphic capabilities as

well as new implementation problems. In the first category,




an example is selective erasing (in storage tubes the whole
picture had to be erased and a new one reconstructed every.
time a par.t of the picture had to be changed), in the
second the aliasing of the picture (oblique lines have a
stairway aspect) and the need for so0lid state memox;ikes with
very fast actess timeé.

A further aspect‘\\in the evoliution in graphics systems
was triggered by th,e_wavailabilit“y of microprocessors and
cost effective dynamic rams. When solid state memory and
cpu’sﬁwhere expensive it was the¢responsii>i1ity of the main
and, most of the time, only CPU to execute the operating
system, control the peripheral deviées, perform all graphic
trax'lsformations and finally convert the image expressed inm
vectors to a bit map representation that was sent to the
screen via specialized hardware. |

Cost e\{fective RAM’s made it pra’ctical to separate the
main memory from the video memory (the one that contains
the bit map representation of the image). Consequently the
main memory was free from the raster scanner accesses that
slowed down its throughput due to the frequency of the
accesses. The vid& memory added yas a dual ported memory
that gave access both to the main CPU and the video
scanner. With the availability of denser and less expensive

RAM's the video memory was increased both in sisze
Ce

(resolution of the screen) and in depth (number of bits per



»

pixel).

The development of powerfui, low cost microprocessors
nade”iﬁ possible to use a dedicated CPW¥ for the graphics
operations. Therefore the video system was composed not
only of the scanner and the video nemory\but also of a CPU
(simple microprocessor, a bit-slice, custom designed VLSI
or a pipelige of processors). The availabilily of this
additional processing power reduced the numser of tasks to
be executed by the main CPU. In fact all the graphic
transformaéions were transferred to the local CPU (the one
in the video section), for example the picture bit mapping,

rotations, translations, window clipping and others.

Furthef improvements are possible as we will show

‘later on, but in the following we will describe and anal}se

the general model of a graphic system [Fole82,Free79].

-

Applicat ion ™| Application *1 Graphics
Data ~Base Program Systems

Fig. 2.1: General System ¥Lde1

The application data-base provides the model and data

N J ~ -7- “ ’ s
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structures of the problem to be handled by the system. With
the application program the model rep.rasenhed by the data-
base can be viewed and operated by the user through the
graphic system interface. i

The application progrnh’ has to describe to the graphic
system in geometric t;arns that portion pf 'the model from
which the user ‘wants a picture. In the other direction
the graphic systenm ’provides geometric information to the
application program as a result of usér interaction. This
information is interpreted by the applicatioyn program in
ornder to modify or add new elements to the data-structured
model .

The form, type and amount of information 'passed
b?tween the graphic system and the application program 1is
different from system to system., The anal;ﬁéis of thig link
lcan‘ reveal the characteristics of the graphic system.

In earlier s‘ystems the it‘xfornation’aboub the contents

'
in the window (the partiof the world or model that the user
wis.hes to see) was provided by graphic output primitives

such as points,\ lines, polygons or graphic strings. The
coordinates of these primitives had already been
transformed to the view-port (the portion of the screen
where the window is to be mapped) and device ‘coordinates.

Subsequent systems improved the set of graphic

primitives with the addition of new primitives and

W



attributes, a more comprehensive set of inpﬁt devices and
pick support, more flexibility in the specification of
coo;dinate values and the possibility to call segments of
the pictu;e definition. fhis last feature is equivalent to
a CPU subroutine jump/return mechanism and it is a very
efficient way to represent a displa; that has repetitive
elements.

Another important advancement was 'QSP when the
coordinates of the display list (the geonet;{c information
passed between the application program and the graphic
system) were changed from the device space to the world or
model space and support to modeling/viewing transformations
was provided. Structu;ed display file capability for
1ruversing an object. hierarchy and composing instance
transformations were therefore necessary. For 3D systems
perspective and projection operations were added to the set
of available graphic commands.

The elements mentioned above are integrated in the

following block diagram of a general graphic systems model

[Fole82].
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; General Graphic System\yodal

Fig. 2.2
| \

AM (the application nodel);Cont:\ns a graphical and
non-graphical description of an object %in a format
determined by the application program.

8DF (the structured display {file)-Contains a
hierarchic description oflth; graphical representation of
the éﬁject }n'integer or floating point world coordinates.’

BM (4he bit map)-A buffer which holds the scan-

converted image.

The logical processors in the system are? \
‘ 3

DFC (the display file compiler)-The part of the
application programscontaining the model traverser and
calls to the graphics package to map the AM to the SDF.

DPU (the display processing unit)-This-unit maps ehe

§

" SDF to the BA. . . ,\
IDS (image display system)-Reads the bit map and‘doeél
any color table mapping before generating aigplay ﬁgnitor'\

signals. . , E ‘ . \

Since most graphic systems approach this model, it is

, ' -10- oo “' -

!
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desirable to have a standard for the display file.
Unfortunately a consensus does not yet exist among the
different standards available, which makes porting
application programs to different graphic systems
difficult., Nevertheless there are ?ome manufacturers that
use one of the standards availablﬁ,(Core, GKS, GéX and

others) with or without modifications. In this work we

choose GKS as an example but the work is applicable to any"

-
N

of the other standards.

A visibleycharacteristic of the graphic system model
is the pipelining of its elements. To achieve some
parallelism and increase throughput this pipelining is used
in the physical implementation of the highest performance
systems. There are nevertheless certain problems with this
type of implementation of a graphic system. The fgrst one
is the fact that the pipeline also exists in the reverse
direction using the same physical path: The second is that
execution times in each element of the pipe as well as in
the same element can differ for different operations.
Finally, the pipeline does not work with a conti:ﬁ;;s and
constant flow of load. These characteristics do not allow
an efficient use of the pipe. For comparison with our
architecture presented later, we provide a block diagram of
the DPU and }DS of the highest performance s;stens

available today [Door84}.

i

-11-
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(\, The main function of the IDS is to transfer the image
repreigntddin.thebit map to thediuplay.Thesinpléstw:y
to do this transfer is to orgnnila,the bit map as ; one to
one representntibn of the screen and let thgﬁIQ? sqhn\it in’
synchronisation with the video rate. Because the memory
devices of }he bit map cannot match the fast pixel rates of
contemporary systems, these are normall& accessed in
parallel to prc.:nride-nora than one pixel/access, The pixel
information is then serialized via shift registers. To add
flexibility to the color manipulntioh, a look‘up table
(LUT) is added between the shift registers and the digital

-/ to analog converters. With a LUT it is -possible to have

multiple planes with dynamic assignment of priority and

linited animation [Levo77,8hou?79].

L Tanite veg. Me 7

o ' 8 ‘ DAC's
Scanner Fanite N LI z r__,_a__D_l.
———aPlane 8 4,8'\\ G
Ram ? 8 Vl
Bit Map | Plane @[ 8 wro g7
~—"|Interface

Fig. 2.3: 1IbS Blogk Diagranm

[

Another possibility for the IDS is to provide image

transformation from the bit map to the screen. Presently

-12-




the type of transformation available is scaling and
translation. With these features the bit map is normally
'bigger’ than the screen and it can contain more than one
image. The IDS will scan each of the images to different
parts of the screen (called view-surfaces). Each one of the
view-surfaces can sometimes be sgsoomed (by pixel
replication) and pan/scrolled independently. A more

difficult transformation is rotation which is not available

.in current systems.

The last function for the IDS is the mixing‘of video
images. This can be done at the DAC level or at the LUT\
li/vel. The last one is more powerful becaused the displays
can be pverlyed (mixed) in almost any p;:ssible combination
depending on how the LUT is programmed.

The DPU in the most complex systems has to perform the
following functions: )

.a-Traverse a hierarchical display list that contains
the graphical inforpnation about the model represented by
the application data-base. This information is provided in
master coordinates (the coordinates used in‘ the definitien
of each object) and normally in floating point format.

b-Perform modelling and instance transformatio‘ns to
construct Uthe world coordinate model.

c-Perform viewing transformations which is a world

coordinate to a viewer coordinate transformation.

-13-
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d-Clip to the window limits in the viewer s}sten.

e-Perform projection transformations.

f-Transform the previous result into a normaliged
device coordinate space by executing window to view-port
transformations with hidden line elimination.

g—Tranélate the final graphic information into the bit
map memory.

In an interactive system the DPU has to give to the
application prog;mm the objects that are pointed by an
input device or just a coordinate when building‘a new
object. In the first case the DPU has to traverse the
display list and find out the objects that are intersected
by a small window centered around the coordinate given by
the input device, after being transformed from device
coordinates into world coordinates.

There are several possible implementations of machines
that execute "all these functions. Depending on cost,
technology and other factors the implementations are
following a tre;? where each step of the process is
executed by a separate processor. This device is no longer
a general purpose CPU but an operation unit dedicateﬁ to a
specific function, for example, a floating poi;t unit
adapted to the graphic resolutions and to perform matrix
operations. Another is a unit dedicated to do clipping and

in the last stage, the most prolific one, vector

-14-.



generators, pixel operators and so on. On the other end a
dedicated display list traverser can substitute for the ¥
general CPU used in the front end for the same function.

A DPU can then be represented by the following block

diagranm:
Display Transfor- WC—=NDC Vector

—={ List 1 mation | Clipper *1 Transf. *1  Gen. *{ Bit Map | T
[Traverser Processor

Fig. 2.4: DPU Block Diagram _

It has been found that the'grqphic systems have
pertinent characteristics that ,can be 2§ed to improve
performance. One is the use of dedicated hardware’fbr
specific functions as it was shown in the previous
paragraph. Another is th; mnapping of each step of the
pipeline onto a physicél component (normally a CPU or
dedicated processor) of a particular implementation
tFole82,Door84].

Most of these igssues are tied to the evolution of
graphic systems and are therefore limited by tﬁe way this

evolution took place. For example; the pipeline aspect of

-15-
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the graphic systems was emphasized over other aspects like.
the inherent parallelism of the display-list interpretation
and image drawing on a screen. The principal reason for
this emphasis was the fact that the first system had only
one CPU which had to execute all\the phases of the
pipeline, each one represented by a separate sub-progran.
When CPU's and other logic devices become available at
low;r cost and with more functionality‘the natural approach
was to implement the existant sub-programs in different
processors. |

In this work what we are proposing to do is to look
more deeply into the computer graphic process. The most
striking aspect is that many operations in this process can
be done in parallel, from the simple case of the vectors

|
representing an object that can be drawn simultaneously, to

the case of an hierarchical display list wh;re each object
can be transformed and drawn in parallel. 0f course this is
only possigle,if we are not restricted to a single
processor. With multiprocessors the question becomes how
should they be organized? r

We have shown the first approach which is a pipeline
of processors that achieve parallelism whenever there is a
stream of data that requires a fixed sequence oé graphic

operations which is not always the case. Another approach

is a parallel architecture. With this architecture will be

>

-16-



possible to support a single operation applled to multiple

data which is the case, for example, of a graphlcs

L
kY

transformation applied to each object of a display list.
The'prublems associated with this ;rehite;tufe are: The
expression‘of a structured display file in a form suitable
to the architectute, the supporq.éfyseq%ential-operaﬁions
and the reuting ofhtﬁe information flow ‘between the -
, dlfferent operation units. ﬂ )

A data-flow archltecture is¥ able to support both
sequential and parallel operations due to the flexlblllty
of its principle. The flpw)of informatipn i:afnherent‘to
the archltecture and therefore d1rect1y supported by its
implementation and flnally there are hlgh level languages
that can be used to express a structured dlsplay file. The

characteristics . of a data-flow archltecture are presented

"in general termsuln the next sections.

L]
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B}ba—flov Architectures

»

The principles of computer architectures based on the

4 .

van Neumann organization are the following:

a) a éingle computing element that includes processor,

meémory and commuhications;

b) memory onﬁanized in fixed sige éells, with linear
" 1

[y

dddressing;

c), control of computation is sequential and

centraliszed.

<

These principles are reflected in the operation of

such architectures. For example the evaluation of an
expfession sqeh‘as (a+b)/(c+d)  is done-byvsbecifying to the

machine a sequence of operations that are executed ‘ona

’

o 5 .
~after the other (Addition, Addition and Division). The

operands of each one are déaiiable from a specified memory

cell and the result is alsg stored in a memory cell. By

. giving to the machine the operatio/nm be execmnd the

correct memory cell where the operands are stored the
program is”gple to calculate the value of the expression.
Other consequences of the von Ne&mann principles are the

o .

passive nature of the memory, the cells that store data or

. : 18- K
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operands are indistinguishable from the cells that store

the instructidns or operators ;nd pafalleiism is reduced to

the switching of a processor amb;g separﬁﬁe processes o¥

programmer‘spegified decomposition of a progranm into

parallel instruction streans ;o be executed by separate

processors. ° . : ’ x

3.1 Data-flow Concept ° “ o

The need to increase the*throu&hput of-cogputers by
using the inherent parallelism of some apglications has
promoted @hé research of new architectures that have a more
naturalksupport for parallel computgiion. The reiﬁlting
computers can be broadly classified in two fields: data-
flow and demand—drivén. The main éharacteristiclof these
two types: of architectuﬁe; is the way of control}ing ﬁhein
oéeration. It is no longer a progranm couﬁter that selects
the next operation to be executed bu£ the availability of
all operands of an inskruction in the first case and the
Qeed of a result in the second case. To clarify the two
concepts let us consider the evaluation of the expression
given above. In a data-flow computer the availability of
the four values (a,b,c and d) will trigger the'executionvof
the two ;dditipns. Oply when the ‘results of these are

LY
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available is the division then executed, because only at
¢ .

this time are the operands of this operation available. In

a demand-driven computer the need of a result from the

expression will trigger the execution of the division, but

‘this one needs the results of the two additions in order to

proceed. Finally these can be executed because the results

théy need are the values of a,b,é\ind d.

The possibility of executing instructions in parallel

"and without explicit information from the programmer is one

. x
of the main benefits of these architectures and also the

main reason for extensive research in the implementation

~.

and application of the two new types of architgztures.' )
Before making a more detailed examination of data-flow

computers, we will give a brief comparison of the tﬂree

architectures: control-flow or von Neumann, data-flow and

demand-driven fTrelSZ].

With a control-flow there is a complete control over

the sequence of executions but with the dibadvantage of

having to imp?se a programming discipline to avoid run-time
errors (like the execution of data as a program).

J A high degree of implicit pafallelism resulting from
the execution of instructions as soon as ﬁheir operands are
available is the advantage of data-driven computers. Their
disadvantzge is the possibility that instructions may waste

time waiting for unneeded argumehts like for example an if-

-20-




‘then-else which will oﬁLy use two of its three arguments.
The advantage of demand-driven organizations is the
fact that only the instructions whose result is needed are
executed and the mechanism of procedure-calling is built
in. On the other hand, the disadvantage ;f such
architectures is the wasted effort of. propagating demands
for the evaluation ;f expressions such as arithmetic where
;e;ery instruction always contributes to the final result.
Finally a comJon advgntage of "both data—floy and
demand-driven programs is that éhey are free from side
“éffects; making £hem suitable for distributed

implementation.

<

3.2 ‘Pata—flow Progr;-s

In the previous paragraphs we presented.the céncept of
dati;flow with a small expression.'Now‘we will expand the
concept to more general problems and at the same time
introduce the subject of data-flow languages.

The most natural way of representing a datnfflow
program is using a graph [Denn72). In it, nodes represent
operators and the arcs that connect these nodes represent
the operands that flow from ope qperation to another. The

7
expression giyen above can be represented by the following

. - -21-



graph:
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Fig. 3.1: (a+b)/(c+d) Graph

The rules used to write and execute a graph are the
following: . _ "

a) In an operator node there are as many arcs.coming

in as operands.

'b) The result of the operation is provided at the arc

leaving the operator node. S

c) Data links are nodes that have only one incoming

Y

arc and multiple outgoing arcs.

’

d) An arc is said to be active when it contains an
operand or token of information. ' ' ,////

e) An operator node is ready for execution when all
its input arcs are active and its output arc is empty.

These rules are enough to conskruct simple d;ta—flow
programs. In orde’r to support more complex problemé, the
operator set has to be expanded with'operators able to
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perform decisions. They are the gate operators defined

below [Myer81]. : . .

3

T-GATE OPERATOR -- F-GATE OI‘ER\ATOR Y

DECIDER ACTOR -

DATA ARC 1 CONTROL ARC .

3

.;¢Fig. 3.2: Gate Operators

With these operators we introduce -another type of
token: the control token as opposed to data tokens for
arithmetic operators. The new operators are enabled when
their:data.arcs followjt;e condition e) above and there is
altoken on their control arc. Their operation is the
following:

a) The decider actor provides a control token (a

boolean value) depending on the result of the comparison

performed on ihe two inputs. Examples are ¢, >, {(=, >= or

b) The T-gate passes the input token to its output
when there is a token on the control arc with the value
true. Utherwisg no output is produced and both input tokens
are 'consumed’.
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c) The F-gate acts like'££e previous actor but with a
false value ipstead.. |

With this language or similar ones it is possible to
represent a problem in a data—flow‘program [Denn79,Denn80,
Myer8l1] and have a machine that is able to execut; it. The
construction of such machines is the ;ubject of the next
section subject. The problem of expressing data-flow
programalin a more workable languaée will be discussed in

chapter four.

3.3 Data-flow Computers

Eaving described the characteristics of data-flow
architectures and how they execute programs, we will
present some of the implementations. These are the ones
which have resuited frnom. the initial research on data-flow
in the Universities that are involved in this field.

The description given here is.just a brief ov&rview of
the organization of those computers, how they work and what

their main features are [Trel82].

N | )

—24-



3.3.1'M.I.T. Data-flow Computer
3 . v
The research in the data-flow field done at the M.I.T.
has been significant and has formed the basis for other
research projeets. Their computer is therefore the most
o representative of the machines of its type [Denn72,
' f‘(j‘{ " Denn78a].
- a The program organisation follows the data-flow rules
B gxpreased above, which do not allow more than one token in
each arc. The architecture thus provides £o£ acknowledée
signals from the destination operators to the originators.

The computer has five modules: p




PROCESSING SECTION

Po
PN -
. ( 4 )
CONTROL
NETWORK
DISTRIBUTION : : " ARBITRATION
A —
of INSTRUCTION ‘
X . 5 > CELLS . -
NETWORK y ; NETWORK

Fig. 3.3: l.I.T.MData—fiow Computerx

The processing section contains the operation units
responsible for the execution Qf the inst;ﬁctions received
from the arbitration network. This Het;ork passes
information packets, containing instruction ;odes and
operands, from the memory section tb the processing
section. Two types of 'results are available from the
processing units: data tokens that are directed to the
destination instruction cells via the distribution Aetwork

:an c;ntrol tokens that are sent to the instruction cells
through the control network. The first tokens contain input
dat; for the destination cells and the second boolean

\\\,‘; . -26-




vaiueg. These only-éontripute to the triggering of
.  4estiﬁa§ioq instructions and are the result of boolean
‘operators Ar signals used between instructions to inform of
" the availability of data arcs. Finally the memory section
coniains the instruction cells and the logic necessary to

detect when an instruction is ready for execution.

3.3.2 DDM1 Utah Data-driven lzchi;e
\ ‘ ] \ P
Thiéqc;mputer diffgrs markedlf fron“the previous one
with its recursive architecture. It is composed of
,computiqg‘elements (processor memory pairs) where each
element is logically recursive and contains other inferior
elements. Physically the elements are ofganized‘in a tree
étruéture with each element connected to a superior element
and up to eight inferior elements [Davi78y
Other characteristics of this computer are:there are
no control tokens, as the data tokens provide all
communication between instructions, the arcs are viewed as
first—in/first—ouf queues directly supported by the
hardware, and finally it is able to recognize locality of
reference and therefore reduce ghe critical problem of
system wide communication. This latter aspect is considered
importan£ for distributed systems‘exploiting VLSI.
) ‘
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3.3.3 Igvihe Data-flow Machine (Id)

/- \ ‘

This machine was intended to exploit the potential of
YLSI and provide a highly concurfent program organization.
The first feature of this architecture is its sophisticated
toien identification [Arvi77,Arvi8la). A token identifier
consists of the following information: a code block name
identifying a particular procedure or loop; a statement
number within the code block; an initiation number for tke
loop; and a context namé‘identifying the activity invoking
this pro;edure or loop. The second feature is the support
of data structures, such as arrays , by the inclusion of I
structures [Arvi81b)]).. These structures are sets of
components, with each component having an unique idengifier
and being either a value or an unknown if the component is
not yet available.

The Id machine consists of N processing elements and a
NxN communication network for roufing the result of a
processing element to the destination elements. In order to
reduce the overhead in'communication, the matching unit for
tokens for a particular instruction is in the same

processing element as is the storage of that instruction

and there is a path from each processing element into itself
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to route tokens that are destined to the saﬁe element that

generated it [ArviB80].

-

. s
3.3.4 Other Data-flow Computers

el

-

The previous computers are the most representative of |

the research being done .in this fiqld and all of them have
rﬁnning prototypes. There are; nevertheless, other data-
fiow computeis such as the Manchester data—flgw computer
[Trel82], the Toulouse LAU system [Plas76], the Newcastle
data—qontrol flow computer [Trel78], the Texas Instrument
distributed data processor [Corn78] aﬁd finally the
uPD7281D (ImPP) from NEC Inc. [NECE84], the {first
mmercially available VLSI chip §ﬁpporting data-flow
concepts. The architecture of this IC is a very simple
data-flow ring with an addition of input and oustput
controllers used to connect these devices in a chain for
complex systems and also to interface ;ith the other
devices. t

The components of this VLSI data-flow computer are

/
shown in the /following illustration [NECEB4].

N
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. : AG
PU i . ' | DM 5
: - FC
v RC
— IC LT FT

<~

Fig. 3.4: uPD7281’(ImPP) Block Diagram

IC ::Input codt;ﬁllgr. éontr?ls igput data tokens and
determines whether or not an.input data token ghould be
sent to the data-flow ring.

0C :Outpﬁt coﬁ@rollér. Controls output data tokens.

LT :Link table (128 words x 16 bits). Stores

instruction parameters.

-

FT :Function table (64 words x 40 bits). Stores"

instruction parameters.

4,

DM " :Data memofy 55124words x 18 bits). Stores

constants or temporary data.

Q. :Queue (48 words x 60 bité). FIF0O queue. Data

Yo

.
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queue: 32 words x B0 bits; Generator queue: 18 words x 60
bits.

PU :Processing unit. Executes logical, arithmetic

v
©

and b1t operatlons

) DQ Output ‘queue (8 words x 32 b1ts) FIFD queue for
the ostput tokens. ~ ’ R

" AGEPC:Address generator and flow controller. Generates
dddresses for DM and con£rols the flow of tokens.

' RC :Refresh controller. Qeeerates refre&f tokens for
internal DRAMS )

Thls VLSI uses a token- based data flow architecture. a
token entered through the Inpub Controller (IC) is passed
on,to LT to be processed around the ring as many times as
needed When the processing of aetoken ig finished, 'it is |
queued into the Qutput Qéeue (09) and then outputted ‘via,
the Output Controller (OC) Before any process1dg occurs,
Ahe hoet processor down loads the objept°code into LT and
FT of the ImPP by using specially formad%ed input tokens.
At this time, .constants may also be sedt to‘DH to be
stored. The contents of LT ;nd FT are closely related to a
qomputat1ona1 data-flow graph The arcs reeresent the
entries in LT and the nodes represent the entries in FT,
where the o;eratlon‘code is logged along y1¢h t he ) ,
ident;fication informatinn‘ebeut the outgoing arc [NECE84].’

Teufiﬁﬁiizé this‘chapter we will introduce an addition

1 "‘3‘1_ s s ’

v
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(s .

to’ the H,I,T..Ezﬁa-flpw architecture td siupport gtructires.

[Myer81]. T tor
/ 'f
, ) - Operati&n' PR
. Units
. Y ’ ‘ ‘—/‘ ’
yé Control ‘A
Network
Distribution YvYyy | Ar
> Atflnatructiqp >
. bl \ N Cells - .
Network . Network
y " y
A - 1
Structure ‘
Storage
and <
b & Processor
t I_“);
/

Fié.‘3.5: ’M.IiT. Data-fiow with Structure Suppbrt

. '
a

N . @ ‘
In the architecture shown above the structure storage

and processing can\bé considered in itself another &até—
flow ring with its own meﬁory'cerls (solding the
structures), pfocessing units to perforq operations in tﬁe
structures such as'create, add ..., andbth; d}stribution
and arbitration networks that willproute'the tokens betwéén

these elements and also between this .module and the

,distribution and arbitration networks qf the computer. This

-7 - v
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issue and the problems assocliated with it are'analysed in:

chapter six that proposes a data-flow architecture for

graphic systems. In the next chapter we will address the

question of data-flow languaﬁQs and their application to
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. Data-flow Programming Languages * -

It is'a fac£ tﬁat the uéefulge;s:qf ;;d§;ters-is
related to the avgilabilitj of high-level programminé
languages, and the same §£inciple #pplies to data—flowh
com;uters. Since the early stages of data-flow research,
therefore, equal effort has been put into éhe development
of high-level programming languages fo? data;flﬁw
architectures. - The intehtion of this work‘;as to provide a
tool to program and test the new conéepts under developmen£
and verify Fhe application of data-flow to practical

problems.

Two approéches are possible: use available high-level
\

languages and adapt them to ihe ngi concepts, or designlnew\
languages gased on th;se concepts. The first appréaqh has
tﬁe advantage of being relativély e;sy to inp}eﬁent'and can.
profit from a large base of application‘programs.;Tﬁe
second approae& lacks this ;dvantage, but oncthe other hand
allows the implementation of the concepts more airectiy aAd
elininates most of the problems that are present in
standard high-level languages.It\is in this domain-where

research on the new languages has concentrated [Acke79,
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" Back?78, MacL82].

3
i

Almost all of the research groups designed their own
programming language. Of these many different endeavors the

programming language VAL is presently at a more advanced

~ "stage, and is used by other research groups in the‘ahalysis

v

6f language related issues.

4.1 The VAL Programming Language

¢

3
a

'The design goals for .VAL (value-oriented algorithumic
langu;ge) were: to provide’iﬁplicih concu;réﬁcy‘which is to

identify concurrency in algorithnms and to map as much®

conciirrency as possible into the data-flow graphs; and to

®

provide the constructions that enable programmérs to write

correct programs. ' >
A , .

THe_principal\feature“of VAL is its value orientation
: ™~

reflected in the inexistence of assignment constructions,
which are replaced by the‘;oncept of expressions [benn79b,
icGrB?]. A Rrograhﬁin VAL-is an expression in ‘the
mathematical meaning-of the word. Parallelism is implicit
and is imposed by the fact that if two operations do not
depend on the outcome of each other, then they can execute

simultaneously. Another result of the expression

orientation of the language is noninterference: once the
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values of all inputs are known, execution can not influence

the results of any other operations ready to execute.

+

Therefore the features of von Neumann languages, such as

the concept of modifying variables and aliasing are

eliminated. The principles used in this new lﬁnguage havg
also been applied in other languages such as LISP,’and
therefore are not unfamil}ar to computer professionals.

In the fgllowing paragraphé we provide a brief

description of the language in order to support the

examples given in this work. More detailed information

-

4

about the language constructions is available from
[Acke793;Denn79b,chr82].

The data types éf the language are integer, real,
boolean,character-string, arrays and record structures. The‘
usual operators can be applied to £he types integer, real,
boolean and character-string. For ;rrays the following

function invocations are available:

array-adjust shifts the origin
nrrny—addh,arr;y—nddl adds elements to either end
array-reah,array-renl deletes elements at either end
array-join merges two arrays
array-seth,array-setl éet; array bounds
array—limh,array-liml tests array bounds

and the infix operator || to catedate two arrays. Arrays

are created in YAL with expressions that assign an index to

L]
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each element. For example,
fl:elem1;2:e1em2]
is an expression that creates an array with two elements.

The values bound to the two identifiers become the values

for the corresponding array locations. In this case there

.is no concurrency in the construction of the array because

the elements are simple values, but in most of the
applications they are expfessioné thet can be calculated in

parallel. With the functions given above is then possible
n

* to add or delete elements to the array.

Record constructions are simiiar to the arrays in the
way they are created. For example, ’
re?ord[xw-min:flow;xw—max:xmax;

yw-nin:ylow;yw-max:ymax] .
builds a record with four fields (xw-min, xw-max, yw-min,
yw-max). EBach field name is followed by an expression
representingithe value to be entered in the record. As with
arrays the expressions on each field can be calcula%ed
simultaneously.

VAL is a value oriented language, therefore names used

in the language do not refer to memory locations that can

be modified as a result of assignments, but are simple

" binders to a value that are valid for a defined context of

the program. This is commonly referred as single-assignment

rule: once an identifier is bound to a value, that binding
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remains in forée for the entire scope of access to that
identifier. This rule matches the data-flow concept
represented by tokens in the arcs of a graph. Once a token
is put on an arc, the same value must be transmitted to all
re;eiving operators.

The language does not contain statements. It is
completely based on exgressions and functional operators.
Besides the standard arithmetic expressions, and the IF-
THEN-ELSE there is another basic expression particular to
VAL, the LET-IN-ENDLET expression. Tpe language through its
compiler is able to recognigze the implicit parallelism of
such expressions. Two operations can be performed in
parallel if none of them depends on the outcome of the
other. The LET-IN-ENDLET expression is used to introduc;
names for expressions because they are common
subexpressions of larger expressions. The syntax of this

rFExs

construction is the following:

LET

. { <{type declaration) := (expd> ; }
IN <exp>
ENDLET

The names in tybe declarations of a LET block are

local names meaningful only within the block; these names '
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must be distinct fromeach other and mnay appear free in the
expressions.

In quite a number of programs it is possible to carry
operations in parallel, for example in the construction of
an array. To support this type of calculation with an

: 7z
explicit parsllelism, VAL uses the FORALL block.

FORALL <name> IN [ <exp)> . <exp) ]
(1) { <tyﬂ. declaration) := {exp) ; }
l(evaluation) | <construction)
ENDALL .
Cevaluation)::= EVAL PLUS | TIMES | MAX | MIN | AND | OR
{exp>
2construction>::='CUNSTRUCT {exp>

With this expression it is possible to calculate in
parallel all the expressions in (1) for all values of
{name) in the interval [¢exp>.<exp>] and produce a final
value or an array. The first is obtained with the EVAL that
allows the calculation of a value from the results of all
elements of the interval, and tge second with the construct
that creates a hew array and assigns to each index the
result of its expression (there is a one.tﬁ one
correspondence between the indexes of the final array and

the elements of the interval).
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When it is necessary to impose a sequence in the
evaluation of expressions, VAL provides a loop co;struqtipn
that fallows the value orientation of the languagel In this
e;pression values can'be’transmitted from one pass through
the loop to the next. This transmission can only occur by

defining loop parameters and then binding new values to

" them just prior to the beginning of the next pass.

FOR

{ <type declaration) := <exp> ;. }
DO L

{exp>
ENDFOR

{iter-block)::= ITER <(named := <(exp)

) , { ; <name) := (expd> } “

L

~

The loop is initialized by binding names to the values
of the expressions defined between FOR and DO. These values
are used in the calculation of the expression{ in‘the DO
body. Inside this block a conditional c%auae will decide if
the loop terminates or continues. If the result arm
selected by the conditional conta%ns an expression, then
the loop terminates yielding that expression as its result.
Otherwise, the result arm must be an iter-block that

initiates another loop pass.
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Yal functions are similar to functions in other

languages with some exceptions: It is possible to generate

more than one result from a function and in the function

definition the formal parameters name and type all values

to be passed on each call. fhe body of the function is one

or more expressions which produces the result or results.

These expressions can only access the formal parameters and

locally defined names. Because of the single-assignment

rule, the body of the function can not rebind the values

bound to the formal parameters, therefore there are no side

effects. Concurrency is exploited,both in the evaluation of

the expressions in the body of the function and in the

calculation of the formal parameters values.

’

FUNCTION <name)
( <input list> RETURNS <output list) )
{ <¢type declaration) ; }
{ ¢(function def)> ; }

{exp>
ENDFUN
{input list) ::= (type declaration)

{ , <type declarationd> }

{output listd::= Ctyped { , <(type> }

These are the major constructions of VAL. A subset of

{
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the language s}nésk is provided fnlappdndix I.

The following ex;nple is a snaii progran that u;;s"
some of the VAL constructions. The proéril doe; not produce
.any meaningful result. It is‘jéit an example. It takes<én
array nulfiplie& each element with a scale faétor ;nd suns
then. The scale fpctogs'a?e different for Sositive and

negativée numbers.

1 ~ -
k%N . . . .

-42-



”PROGRAﬁ test
" 'FUNCTION calculate (input:ARRAY[REAL] RETURNS REAL )
LET .
scalel: REAL :=XWMAX-XWMIN;
 scale2: REAL .:=YWMAX-YWMIN
™o e
_Eggﬁ;L/{/;N [1..3] .
:,ﬁ/MT/LEVAL PLUS
"IF input[i] <0 ‘
{Fﬁk scalel * inputfi]

, ELSE scale2 i*i]
ENDALL ”

~ ENDLET,
ENDFUN o
calculate ([1:-1;2:3;3:-4])

Ih this program the final result is:
-scalel + 3+scale2 + (-4)+scalel where scalel=XWMAX-XWMIN
and scale2=YWMAX-YWMIN (these names identify constants).
The size of the array was fixed to three to réduce the
" complexity of‘ the program réﬁresentation in machine
language, given in the next section. To make it realistic,
the first statement of the FORALL expression should be:

FORALL i IN [ARRAY-LIML(input) . ARRAY-LIMH(input)]
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To finalize thié overview of a data-flow high-level
language there are two issues that we want to refer to.;Th;
first is the handling of errors or exéeptions. In VAL all
the data types define error values and the corresponding
Op;nators recognize and are'abie to operate with sdgh
values (basicglly vhen an operator }s not able to perform
the task it was assigned it returns the appropfiate error
v#lue. The second is the list of the language limitations:

" Bypassing the problems related to'implementation the
biggest,limitativnsiof the language are the lack of
reﬁursion, of functional ope;aﬂoré (operations that produce

functions as their result) and the omission of general

input/output facilities [McGr82].

4.2 Data-flow -Machine Language

&

-

The graph used to explain the operation of a data-flow

i3

computer is very close to what we call the machine language
of a computer. Each instruction coae includes a field where
the‘destination cell aadresses are s%ored (In conventional
machines the destination field always points to a memory"
location where the result is stored ). The other fields of
the ;nstruction are intimately related to the architecture

4

they support. The ones given here are suitable for E‘%

A
1
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‘H.LT. datn-flow type computer Théy are adapted from

examples given in [HyerBl]

4.2.1 The Instruction Cell

1 3

L

- The contents of the instruction are grouped in two

sets: the header aid the operand .ports.

+ . )¥ * .

HEADER . Operation code | | SIG | Dest. addr.
ToTmee e

. OPERAND Gating code |Gate flag|Value flag| Value
PORT & " =m=m=—mmmmmrh oo oo e

» 'x ' ’
OPERAND Gating code |Gate flag|Value flag| Value
PORT b = —mmmmmmmmmmm oo m oo N
. . . Y
. * These fields: are optional

. HEADER. ;

Operation code-The operation code defineé the type of
operation to be performed w1th or upon the values in the
value f1e1ds Examples of operations are: ADD,HULTIPLY.H

The field next to the operation code gives the number

of signals that the'cell has to receive before it can be .

1
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triggered. These signals are generated' by ?ther instruction
cells and are used to' avoid deadlocks as well as to provide
synchronigation of;different paths in a calcuiation loop. .

'SIG-Thig field indicates that after the execution of

the operation a signal is sent\to the instruction cell

specified by the address in the field.l

Dest. addr.-This field gives the location of the
instruction cells to where the result of the current
' . e
instruction has to be sent. Besides the instruction cell

addrgss it is also given the location of the operand in the

“cell.(

For special operation codes that can provide more than
one result the(instfuétion has more than one group of
destiaation adéresses. ApAgxample of such instructions are
device &epéndeh% operations like input which can provide a
value and.a status.

OPERAND PORTS.
For each oper;nd the ioliowing fields are necess;}y:

Gatiné code-This field provides a code that defines

how and when ‘a value received is going to be used to.

,
G

'tfigger the instruction cell. The four possible gatiﬁg

-
) b

codes are: .
e 4

N-no gating is,;erformedﬁ“lny result directed

here is placed in the value field ( provided that the value

v




field is empty ).

T-a value directéd;heré will‘Se accepted if a
true control value (gate flaé) hasTbe€n<érevi;usly
pTeceived, .or whea a true éate,flag arrive;; otherwise the
value‘i; discarded if and when a false gate flag arrives.

| F-a value directed here will be accepted if a

false control ‘gate has been previously received, : or mﬂen‘a

false flag arriyes; otherwise the value is discarded when a

true'flag arrives.
C-the value is.a constant and is not ‘erased when

the instruction is executed.

Gate flag-The gate flag arrives from the control

1

network. There are three possible values

OFF no control packet (gate"flag) has been

- %
received.

g

T a true control packet has been received.
F a false control packet has been received.

Gate flags are generated by boolean instructions such

as EQUAL,LESS THAN..

. Value flag-This field indicates whether: a value

v
)

currently exists in this operand port:
- : .

Value-The value field is re&eivedyfrom the

distribution netwérk. 5 .

To complete the description of this’ machine language

-

we present below the eiample of the previous section

L 4
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expressed inAOperation codes that can be bxecufed by the
machine- A‘fuil set of these opcoées is giveniin chaﬁtér:‘
si;%yli sﬁo;ld be noted that they are rather more ’hiéh.
level” than the actual opcodeg one could expect in.a
particular machine. They are, hoyngr, sufficiené to
illustrate the concepts analysed in this‘work.

The design process of any high-level langgage is not
finished until a cémpiler is available t6 translate its
cotstructions into ‘a particular machine~1§ngua5e. VAL has
already compilers for the M.I.T. data-flow computer and
other research machines, Ehereéore it is reasonable to
assume that the following machine proéram can be obtained
from example 4.1 through a compilation process. The
problems of compiler design and optimization are outside of
the scope of this work.

s To reduce thg size of this example we will use .a

condensed'versigp of the instruction cell:

#N opcode| |SIG " |Destination addresses

~ gate code s+xx|gate code wsax|

The fields that are only used during execution are not
shown (gate f%ag and value fiag) and the operands are put
together in the same line instead of using a line for each

operand port. The #*+% field contains the value of the
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operand if it is a constant or :b which indicates the
' : . !
instruction cells that can provide a .value for this

operand. N refers to the instruction cell address.

r

§$1  CREATE ARBAY | 3 [SIC |-4a,8a,12a -
C3|TCT=-1]¢C3]|C-4| \
#2  SUBTRACT | 3 |SIG | 6a,10a,14a n
o C XWMAX | C XWMIN | - -
43  SUBTRACT | 3 |SIG | 7a,lla,15a
C YWMAX | C YWMIN | ‘
#4 | ARRAY[] | 3 |SI¢ 1 | 5a,6b,7b
N1 Cc1]cC1|
§& LESS THAN | 2 |SIC 4 | 6b,7b
"N "4] CO | |
#6  MULTIPLY | 1 |SIG 2,4,5 | 16a

f—s

N2 | T"5"4

#7  MULTIPLY | 1 |SIG 3,4,5 | 16a
N“3 | F 5,4 |

48  ARRAY[] | 3 (SIG 1 | 9a,10b,11b-
N*1]62]|C1 | ‘

49  LESS THAN | 2 |SIG'8 [10b,11b

N-8|CO | ”
$10 MULTIPLY |'1 [SIG 2,8,9 | 1Bb
, N‘"2 | T"9,°8 |
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#14 MULTIPLY | 1 |SIC 2,12,13 | 17b

#11 iULTIPpY | 1 |8IG 3?5,9 | - 16b
"N "3 | F "9,"8 | \ | .
$12 ARRAY[] | 3 |SIC 1 | 13a,14b,15b
N1 C3jcC |

“$13 LESS THAN | 2 |SIG 12 | 14b,15b

N"12 | C O |

N "2 | T 13,12 | :
§15 WULTIPLY | 1 |SIG 3,12,13 | 17b-
‘ N “3 j F ~13,°12 |
£16 ADD | 1 |SIG 6,7,10,11 | 17a ‘

‘ N “6,°7 | N “10,°11 | | ‘///,

$17 ADD | |SIG 16 |

N 16 | N “14,°15 |
P)

L

Exanple 4.2

Explanatory notes for this example:

The instruction CREATE ARRAY create; an array in the
structure storage unit. The operands for this instruction
are: the first one gives the number of elemen%s in the
array, and the'remaining the elements of the array in
increasing order of the inde;.

The instruction ARRAY[] retrieves from the structure

storage the array element that corresponds to the index
] . .
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vaﬁue available from the second operand port. The first
I’ ,
%ﬁérand specifies the array and the third specifies, in

this case, that only one element is to be retrieved.
The instruction LESS THAN performs the following

comparison Operandl ¢ Operand2. The result is sent to the

gate flag field of the destination instructions.

Taking instruction #6 as an example we can say that it
performs a multiplication, H;s.to receive cne signal (fronm
instruction cell 16 informing that -operand port a is ready
to receive a value), generates three signals one for each
of the instructions that provide an operand (they are 2:4
and 5), the result is'seAt to instruction 16 operand port
a, the first operana is not gated and it is received from
instruction 2 and finally the second operand is gated (has
to receive a true flag from instruction:5) and the value is
received from instruction 4. When in a value field there
are more than one originator it canm be one of the two
cases:

a) The operand is gated and the first originatof
refers to the instruction originating the gate flag.

b) The originators come from two mutually exclusive
branchs of a conditional instructigg, which is the case of

instructions 16 and 17.
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Graphic Systems and Data-flow Computers

/

/

/

In the first chapter we described the evolution of
graphic systems and the general model for such machines. In
the second and third we presented data-flow architectures
and languages. In this chapter we will show how graphic
systems and data-flow architectures can be matched: First
we describe the different methods of pict&re representation
in a graphic system; A graph aﬁproach fo? such
representations is then proposed and analysed; Finally,
based on the graphic system model and the conclusions
about picture representation, we propose a data-flow

architecture for graphic systems.

5.1 Picture Representation

AN

Since graphic‘devices were first integrated in %
computers it has been necessary to address the problem of
picture generation [Berg78,Free79]. One technique .was %p
simply integrate in a program the instructions to th

W

graphic device to draw the picture the programmer wants.
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Let’s assume, for example, that we have a system consisting
of a general purpose CPU and a graphics device only able to
write and read a pixel (these actions are given to the
graphics hardware via ;ommand registers located in the I/0
space of the CPU) and we want a routine to draw a line
given the start and end points. The program presented in
appendix II achieves this using the Bresenham algorithm.
With more powerful graphic systems, programs like these are
no longer necessary because they are directly performed in
the graphic system. Nevertheless, the programs designed to
use those systems are quite similar in nature: routines
that execute in the main CPU (the host CPUlrand utilige the
graphic commands. These routines are themselves
incorporated in application programs. In summary, a picture
is generated via a program that runs on the host CPU and
sends commands to the graphic systenm.

® This approach is suitable for syéfems that do not
support all or almost all of the graphic operations
(projections, transformation, clipﬁing.“) because to
generate the desired fiﬂal picture the host CPU has to be
used intensively. In graphic systems that support the above
operations it is possible to make a deeper separation
between the application and the graphical representation of
the model, as is(shown in figure 2.2. In order to obtain a

picture it is not necessary to embed graphic commands in a
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host program but simply provide a list of commands (display
list) to the graphic system. The application program in the
host builds display lists (normally in main memory) and
ins£ructs the graphic system which lists to use and what
kind of transformations to apply [Matr84].

The advantage of displ;y lists reside in the reduction
of interaction between the host CPU and the graphic system
(allowing for more par&llelisn) and the possibility of
having the display lists organized in a data base and
easily available to be incorporated in more complex
pictures (these display lists are normally referred as
segments). It is easier to work with these lists
incorporated in the application program than to use a set
of routines that not only have to zeretrieved from storage
but executed by the host CPU (this 1is in some way
equivalent to overlay techniques).\

Another advantage of display lists is that they can be
considered as“functionslor routines to be exec%ted by the
graphic system. With this extension in the use of the
display list some graphic systems are able to support
'instructions' very similar to instructions of general
purpose CPUs. For example, ’'GOTO’ a particular location in
the display list and continue interpretation from there,
'"CALL’ a display list or perform conditional jumps. These

instructions give more flexibility\xo the process of
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creating a display list (a picture that contains repetitive
elements can include CALLs to a display list that
represents that element, instead‘of iepeating the same list
for every occurrence). .

In both ways of passing infgrmation to a graphic
system there is a need for standardization. The J;signers
of application packages want their programs to be
independent of the particularities of the hardware. There
are presently several graphics standard available: the CORE
system, GK3, GSX and others. The first two are lhe most
popular. CORE is a set %f subroutine calls to be
incorporated in FORTRAN programs. An application progran
only has to link these rout%nes without concern of most of
the characteristics of the graphic system. This standard-
was the first one to be widely used. It was design for
vector displays but has since\been expanded for raster scan
systems [Fole79]. CORE shpport; three dimensional graphics
but does not support segments. GKS is a more recent

\\standard and therefore incorporates new concepts such as
workstations, segments and a mul%itude of input devices and
input modes [GKS84,Hopg83,Inter81]. Unfortunately it does
not support 3D, however bHe expansion to include three
dimensional coordinates is not difficult and a proposal for
such extension already exists. GKS is also a set of
routines that can be bound to any programming\language. The

o
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éuppo}t of displhy lists that are called metafiles in GKS
are still under discussion. In this work we will use GKS
nomenclature for our examples, but the use of this standard
does not preclude the use of the ideas presented here with
other standards. A list of GKS ’'commands’ with a short

description is given in appendix III.

5.2 Parallelism in Graphics

Most appfications that use a graphic interface for
both output and input use a struptired approach to ’'build’
the pictures that support the application program. This
approach is used 1in order(to improve theusystem
capabilities and throughput.

For example, a package to automate PCB design will
have a data-base that contains all the electronic
components supported tInter84]u For each component, the
data-base must have logical informatign (logié operation
for fimulation, type of input and ouﬂput.“), electrical

information (propagation delays, voltage and current levels

for each input/output...), mechanical information (body

dimensions, clearance area...), and graphic information

(schematic ,symbol, pad layout...). A final PCB design will

include a components list, a connections list, a schematic
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diigram, components 'p].‘ICCIBllt, connec'ti'ons routing,
usi.}lultt‘:i.ou vectors u;d others. Let’s consider the schematic
‘ udiugral which is basically grapfuic information.
® In large circuits, the design is partiticned in
logical blo\t‘:\ks to improve othe design phase (each block ca."n
~1':’0 done bly-d‘ifferent‘peovgle at the/aa.ne tine), the.
ver’ifica.‘t(ion phase (the compliance with the product
sbecification ‘is easier to verify), and the ‘simulation
ph'aae.yTheb layout and artwork design is facilitated and
blocks of th'e' des‘.ign can be use;l in other circuits. A
de'sign‘structure‘ like the following is therefore quite.

COBROn.
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sus o " MEMORY ~ ZAROR
' INTERFACE sLock CORRECTION
/ \
v
. - .
MULTISUS nwex CACHE MAIN
MEMORY
0 ’ -
= > - R . )

Fig. 5.1: 'ﬁie:archical Circuit Design
- | . ' .

The §chematic of this circuit ,has the same structure.: .
Let's consider ﬁow how the graphic information for the
schematic is organized. ft is assumed éhat all logic
symbols are already'avéilable, tha@ thex can be referenced
by the dévice number, and that they have their -coordinates
defined relaiivento the origiﬂ (for completeness, the
‘position of the origin.relati;e to the symbol is the
position of the bottom l;ft corner ,of a hypothetical
rectangle that encircles th; sfﬁboi. The same principle
applies for block feference;). The'graphig informatioﬁ for

* -
each block of the schematiciis:-a.transformation matrix

~



that gives the position in world ﬁoordinifes, the scaling

factor and angle of rotation (very unlikely); a viewport

b

array that defxnes the portlon of bhe world space that
- should be displayed; the v1ewg\rt to window transformatlon,
the V1ewport pr1or1ty level (used durlng a pick operation
when the p1ck dev1ceg301nts ‘t6 anm area of the screen with
overlapped v1ewports), éhe blocks or devices that belong to

"it; a list of vectors that interconnect the different

components and a list of sﬁringsvthat represent_the labels

N -

.

in the schematic. —t . -

For illustration purposes let the following cir;uit be

a block of a more complex circuit:-

. ) ' .



? « s °
' T ‘ - AN
- - . " '
& a ’ .o Y R
. . \ “W%\
174 741800 . )
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[ 7 :
) . -3 > 4
2 .
, . Al , v .
b 1/2 74L874 ¢
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“’
A2 .
7 5 - ' - »
. Fig. 5.2 Schematic Block ‘ .

.

' t .
The, lower case letters besides the connection are

13

.

there just for reference. . ' ’ A

. '_ . .
The. graphic inforwmation of t(ik block will contain:
‘ : .
-'a) ‘A transformation matrix to be applied to all

.. components of the block and the priority of the segment.

v .-

b) A windo%'and‘iiewport coordinates. ’ ¢

.c) Five polylines (see appendix III), one for each of
the c;nnectionp (a to e).’ coT e

» b) Seven striggs,'oﬂe for each of the labels.
c) Two symbol “references. Eéch“ode-withxits_oin

'local’) transfommat¥on matrix to position it in the block
_QNP ) L ? g
. e AN . . .
. ‘ N N -
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-

Y

¥ ¢ 4 * 4

space. ‘ ’ :
pa . L e

.Each of the symbols in this pictire are represented
. 4 ! R * ® 'y
respectively by: : , : . ,

; Y ' - " : o

The NAN‘ ' Pte- f . B A ‘4 v ' ’ . )

a) One /polyline for the symbol. body. - T , /,»

b) One circle for the output pim (use the GKS

{ » 3
- ‘generalized output primitive).
c) Thiee, strings, each of gPem a single ﬁﬁmber for %he -~
b ) .

# the set and reset pi

pin numbers,
- L3 1‘

The D FLIP-FLOP. :
a) Two polylines. One for the square bpdyhénd the
other for the small clock input ﬁriangie. .

b) Two other polylines to draw the.+5V connections to -

. &m

or the set and reset inputs.

- +
5.

c) Two circles,
" -

d) Nine strings, fdﬁ\the ‘three letters and six numbers
of the’ symbol. :
ﬂ N ' .
This description can be put more formally in the
-« (- e .
fdllowihg ’pgeudo’ FORTRAN program (no restrictions are

followed Yor.variable'hames,,variible declarations ar‘ not‘ ™ “j
gi;en, and instead of CALL PdLyLINE we just write POLYLINE) ;m'*
S . - T o
" OPEN SEGMENT (clock block) , . <
° . | ' g{efineé the gubseQuent‘c;ils 3s .. .
Z part of a blocf. ,
S -61- . v
. ARY
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o - ' o ¢ ' ' <

SET SEGMENT TRANS (cléck block,block matrix)
i - sets the transforasation matrix to

S ' . ; be usedﬁéﬁ‘nlﬂ outputs included

in .this block.

Che

LSBT ... o <

SET ... calls to set all the " parameteérs
’ vindéw,' vi;vport andl ) gext
o at&ribute?. D
EVALUATE .,nandz evalh;tes' the tfans{drnation
: ‘, : ﬁ\\, . matrix for the NAND'éate: i
\’///g;ﬁhUATE (..., dff) evaiu;tes tSe trsnsfarlation

matrix for the D-FLIP-FLOP:

SET SEGMENT TRANS (74LS00,nand) . .

draws. . the - NAND gate  after

//’transfbrn;tipn. The segnént for

the ﬂANa‘gate is already defined.

'SET SEGMENT -TRANS (74LS74,dff)

. ’ same as"Qboye for the D flip-

v 4 . .
¢ Ytlop. oo
POLYLINE (4,XDa,YDa) draws-line .a. XDa and YDa are

v
4

- '

POLYLINE (4,XDb,YDb)

arrays with respectively the X

aid Y coordinates for line a;:'

line b ) E ' P
v '
?ULYLINE (4,¥ac,YDC) line ¢ .
. \ ]
'POLYLINE (2,XDd,YDd)  line d

_82-
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POLYLINE (2,XDe,YDe) line e
TEXT (X1,Y1,’ENB’) writes string. ’ENB’ starting at
‘ . the X1,Y1 position.
TEXT (X2,Y2,'1/4 74LS00’) ’
. TEXT (X3,Y3,’A1")
TEXT (X4,Yd,’1/2 74LS74°)
TEXT (xs:vs,'chx’)
TEXT (X8,Y6,'CLK2’) , ' v
' Té\T\(x7 Y7, ’A2’) | : SR

Yhen execut;ng this progranm the host CPU will invoke the
GKS subroutines which viil‘pasﬁ the appropriate conﬁands to
the grapgic system. The order in which the picture will
appear in the screen. is the order given here for GKS calls.
First the NAND sylbol is drawn followed by th‘RD FLIP-FLOP,
the connecti®n 11nes,‘aud flnally the schematic labels. It
is not difficult to realise that there is no reason for
th;s particular order (all the output calls in the previous
program can be interchanged in Fheﬁr position). fhis is
nerell th; result of the inHerﬁht‘parallelisy of tho§e
calls. All the graphic outputs or all the conpogents of the
pic@ure could be drawd simultanéously without affecting Phe
final picture. The only r;striction to delay their
execution is the availability of the pran;?ormatioh

- s
matrices and other attributes. In other words, these values
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' ' . '
| v |
!

are/tﬁe‘inputs fﬁ: the graphic functions that’ can Se
exeéutag as soon as their inputsiare available. If we refer
back to previous Ehapters this is .no more than the
ﬁriggering condition for insgr ction cells in data-flow
cpmpﬁters. Therefore, a data-f1 ;‘c;-putet can be us;d in
the d%qglay ;rocessin unit of a‘graphic systen. Béfoge
descrising such an architectuée, we shall show how a high-
level data—flgv‘langugge ;an be used to describe a piéfure

and utilise at the same time the implicit par:}delia- in

&
the picture gen{rntion process.

+ o -

»
. .

° . . ‘
4

5.3 Picture Description with VAL

Ye have just shown that the data-flow concept can be
applied to graphic routines or primitives. If so, they can
be represented with a graph, as we can see in thefollowing.'
figufc.

o

\
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Fig. 5.3: Graph of Circuit Block

A Lt

\ The next step is to demonstrate that the program of a

graphic system can be done with a high level data-flow

h)

e

language (YAL).

The first issue to be resolved is the support of

‘input/output. One of the reasons ﬁ%y YAL does not support
4. . .

- such constructions resides in thgir lack of conformity with

the mathematical definition of a function (the basis for an

applicative: language). An output” does not produce a result,

it modifies some global environmemt, which can be

considered a side effect. Both input and outPut can be
]

invoked simultaneously by independent branches of a graph,

T
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making it impossible to e;sure the proper sequencing JL
output data as well as a coherent sequence of input data. i
° _ These ;onsiderations are not, however, valid in thé
case of a graphia display program. First, the propeA‘
sequencing of output is irrelevant because of the
‘ parallelism in the operations of building a picture. Th;
elements of a picture can be drawn independently as well as
the more primitive components of each element. There is,
however, an except‘id’n to this rule. It is possil;le to have
two pictures that are considered independent ‘bu’c whose bit
map images overlap and therefore it is necessary to ensure
a deterministic result. This problem can be solved in two
way‘s: a)\if the hardware supports s’egment‘ priority, it is
only necessary to have contingent pictures with different
priorities, ‘a. necessity ifb picking is supported. The
hardware will take care of using the priorities to decide
wvhich of the pictures overlaps the other; b) with the
graphic func‘tions defined in VYAL for graphic
representation it is possible to impose a sequence in the
graphic outputs. This is discussed in the next paragraphs.
Second, the inputs in graphic systems are used to interact
with the operator. The characteristics of this type of
input are different from input to general programs. It is
serial 'and very slow compared with CPU speeds. It is

therefore not necessary to support it with more than one
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input function in the graphics program. The problem of
inconsequent input data is therefore not a problem in this
particular application. Finally, although output functions
produce side effects, in our particular case these are
outside the program context and can not influence the
'behavior' of any of the programs in the graphic system:
The only ’glébal environment’ affected is the operator but.
this is the purpose of a graphic systen.

In order to conform to an existing standard we shall
use GKS primitives, but because of VAL’s nature certain
modifications are necessary.

The SET commands of GKS can bé eliminated fpr th;
simple reason that fhey are not functions. They were
designed to set a value in a specific memory location or
register and all the graphic commands following them will
usé that value for their operation. For example, SET
POLYLINE INDEX (N) sets the polyline color and texture to a
_certain value and all POLYLINE commands executed after this
stateme%f will use that color and texture, until it is
modified by another SET POLYLINE INDEX command. Instead of
using the SET commands to define values that are bhe;
implicitly used by graphic functions we will pass those
values dir;ctl[ to the function. This follows the
principles used in VAL design, and at the same time makes

it easier to write, verify and understand a graphics

-

!’
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program. We will know what the attributes of a graphic
function are because they are explicit in the function
parameters, instead of beingtdefined;spmewhere else in the
program and Eeing implicitly defined ;hen the function is
called. o

In terms of the VAL language, a f&nction has to
produce an output in order to be usable in the program
expressions. If we restrict the graphic functions only to
produce graphic outputs, we could not use th;m in a VAL
program without major changes in the language principles.
To eliminate this problen, e;ery graphic function will
return a boolean value to tbe‘prograu environment. With
this value graphic functions can be included in boolean
ekpreésions and conditional expressions. Still go be
defined iS'fhe meaning of the two possible values of the
éutput. Simply expressed, a TﬂUE value implies that ghe

function was executed successfully, otherwise it was not

executed or an error occurred. In summary a picture

description is an expression ihat produces a boolean result
with the implications given above
As an example of a GKS function in VAL, let’s consider
the polyline function. '
-
POLYLINE (window,view,transf,polyindex,

coordinates,trigger)

4 ,

>



vhere
window: is an array defining the window rec£ah51; (two
ﬁg_and Y world coordinates).
viéw: is another array specifying the: normaliged
coordinates of the vie;ing rectangle.
transf: is a matrix that defines the scaling,
translation and rotation to be applied to the line.
polyindex: defines the coclor and texture of the line.
coordinates: is a structure with n elements, each one‘
of then specifying the coordinates of a ;ertex. The order
in which they are in the structure defines the polyline to
‘be drawn (V1,V2,V3... implies a line f}on V1 to V2,'a line
from V2 to V3 and so on until Vn).
trigger: this is a boolean value. If TRUE the function
is executed when all the other inputs are available and
provides after execution a boolean value as specified
above. If FALSE the function does not provide any graphic
output and provides a FALSE value to the other VAL
expressions. As with other inputs the function is not
executed until this input is received. The main reason for
this input is to facilitate the sequencing of graphic

functions when this is necessary.
\
The definition of this and other GKS functions in VAL
syntax can be found in appendix IV.

Using the previous constructions we can express the
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small schematic of figure 5.2 in a VAL program.

FUNCTION clock bleck (window,view,transf:ARRAY [REAL];

LET

trigger:ﬁUOBEAN RETURNS BOOLEAN)
{The OPEN and CLOSE statements are replaced by a
function definition. The parameters define what
are the window'and viewport for clipping and
normalization plus the transformation éo‘apply to
the all block. The input trigger has the same
function of the 'input of the same name in

POLYLINE given aBove.}

polyindex:INTEGER:=xxx ;.
"{this name identifies the color }

transfnand:ARRAY [REAL}:= ACCUMULATE |

(transf, [1:xx;2:xx....]);

{transfnand identifies the transformation to
apply to the NAND symbol. It is the result
of the multiplication of two matrices, the
transf ma;rix of the clock block and the
matrix defining the'position of the symboi
in the block.}

transfdff:ARRAY (REAL] := ACCUMULATE

(transf, [1:xx;2:xx....]);

{the same for the D FLIP-FLOP}
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. cbnﬁecta:ZDLINE:=[4,qul,yl;iZ;y23x3,y3;x4,y4]}
| {defines the vertices for conne;tiOn a. The
‘structure 2DLINE is eiplained at the end of
- the example.} ;.‘ |
{repeat the same for the other connéctions}
textpath:INTEGER:=¥xx;
{defines text path for strings}
{prévide all the oéher attributes‘for‘text}
-1abels:BUULEAN::TExr(textpgth,.,L,x§1,yt1,
'ENB’ ,TRUE) _
AND TEXT(....,xt2,yt2,’1/4 é4Lsoo',TRUE)
AND TEXT(....,xt7,yt7,'A2’,TRUE);
{labels are output to the screen and when
) cSnpieged the identifier label will have a
TRUE value bound to it. The TEXT function
draws the string speéifi;d ~at  the given
positions. The 1initial values pa;sed are
pirameters to specify character features. A
TRUE value is.given to the tr;gger' Anput
‘beqause all these functions are ' not
dependent on other graphic functions.}
connections:BUOLEAN;=POLYLINE(window,view,transf,
polyindex,connecta,TRUE)
A POLYLINE (....,connectb,TRUE)
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AND POLYLINE (....,connecte, TRUE);
{eaéh ‘of the ' polyline functioﬂs draws a
connection of the schematic}
symbols:BOOLEAN:= 74LS00(window,view,
. . transfn;nd,TRUE)
AND 74LS74(window,viey,transdff,TRUE);
{fhe functions 74LSOO and 74LS74 wuse the
inpuésv received here to‘ draw the two
symbols.}
IN
labels AND connections AND sympois

.

{tﬁis expression simply gives a structure to
* the  drawing process. The parallélism
inherent to these expression; is determined.
by the data dependeqcigs, a normél function
for a VAL cohpilgr. lThese,data dqpendéncies
Looowill impoée a graph similar to the grgph‘ of
. E ' figure.5.3.} ‘
ENDLET _ g i ./;%N' | o
CENDRUN - . : - “ C
The following consideration; are neéesgarj-to complete
this chapter. The ét;uct;re 2DLINE was introducea_to reduce
the number of‘referenceg when passing ihe codrdinates'of a
line."In its place we had £O P§e°tvO ;rrays,—one fog.thé X
72—, . ~ N
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coordinates and another for the Y coordinates has specified

.in GKS. The first element of the structure specifies the

[
number of vertices, the second the priority of the line and

the remaining are pairs of X and Y coordinates.

Adaptihg these concepts for a three dimensional

‘graphic system isonot difficult. The coordinates wild have

three values, the ;indows.w@11°be parallelepipeds and the

transformations will include projection..Some of these

. operations are discussed in the next chapter.

) . . P
Inproved error processing could be added by
modification of the'triggggrtype.@Boolean types only have

two values. In the graphic functions, we use values of this

.type as outputs (see above)., It is advantageous if instead

of this type we define a type W{th'one data‘value and ane

or more error values. These;could be used to trigger

" certain actions that will correct or, overcome the error. In

this case £he AND‘operator’used in ehehgrapﬁic expressions
will be‘substiﬁuted by a new qperat;r capable of performing
such aétions. TQ§~applfcaﬁion of this new‘type has to be
studied to verify its real usefulfiess. -

Non'e of‘fhe graphic fﬁnﬁtions used- in the example‘h;ve

any'interdepéndencg.‘lf in a2 graphic program it "is

necessary to ensure that one function is executed only

N

after another one,'it. can be easily expressed with the

following constructions: J T 8 , s
' X - P -.h‘.

3
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POLYLINE (....... POLYLINE (..... ,QRUE) !
or ' ' , ‘ \\‘ ) .
. LET ‘ \\

e 4w e . — ‘ ’ ’.1 ,
seq:BOOLEAN:=POLYLINE Q..,TRUE)'AND.TEXT (..., TRUE);
: * . ) ' ‘

.

3 ,;
i .
- . .
.

e 4

. ( - C
. .
.

seql BOOLEAN RDLYLINE ( .,8eq) AND-POLYLINE(...,seq)
‘ ¢ )

-~

] <.

both - exp/;ss1ons use s?andard VlL datardependency to impose

sequencing. Therefore the sequence of graphlc expresslons

-

c#ﬁ bdgenéhred through a varlety ‘of formats. . '

. 0f-all the graphic functioﬁs,.the ;uﬁctigns related to
. . L I

graphic input provide more - than one result For example a

REQUEST LUCATOR prOV1des status, a now&allzat1bn array and

4
a X,Y pa1r of coordlnate . These multlple ‘results are,
v NI ¢ .
‘easily accommodated by he language. L -
e, L.
' . W e -
status INTEGER ‘ N . ) Lot
. - s . l‘ .\
fvnorm ARRAY [REAL]k ‘ NS I ' . "

- '
[

xpos ypos REAL ' c . .
* .l!"" &REQUEST chunn ( 5...);

}
/

| S i

which is a standard approach for VAL to handle mu1t1p1e .

J
QJLults frot fun®tions. Edch of the results of the function,
M LN

o

v,




the: body of the function, the expressions, that give the °

lfunctions are quite complex m}ograms because most of the

amerelyewtransiatlon of parameters. We have demomstrated

1 . ' . 4

is bound to the respec}@ve name of the type declaration. In . K

four results must be in the same ordel:‘t: 2t the names give(n

(e, ~”
e
above. . _— ‘ :

5.4 Data-flow Architecture for Graphics -

. « : : o e
” -~ ; . . v
+

1 In the prev1ous sect1ons we hawe shown how a graph1cs
L

A3

!

‘program can be written in VAL, It remains to be shown how .

the graphic! functlons are expressed. Their 1mplementatlon

is depehdent on the characteristics of the graphic sysﬁem:
s o -

If this has very limited graphic hardware primitives, these

- i .
operations have to be executed in-a géneral pirpose

- et

v . . ' ~ 7 @"
operation unit. -If, hgbevdr, the g\\fhic system is able to

}
support most of the graphlc operatlo sy these funct1ons are

"

that the parallellsm of graphlcs can be’ expressed in a

.

data fiow language using a graph1cs standard to malntaln "

@®
LY

hardware 1ndependence It follows\hhat th!g parallellsm can,
¢

be’exploated thrdﬁgh the use of data flow archltecture. It,
is our ;ntqntlon, in the following, to propose *an . -
architecture based qﬁ_a datasz w organization. 'We have

a 4 *

f . . 4 S - '
eﬁosen, in our design, to propose implemgntation of most of-

I - . . 3 .7
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the graph1c operatlons in hardware, as thxs approach is the

lost direct way to ach1eve a powerful, 5pec1al purpose
/\

architecture \Some of these units, ;n fact, are alreaéy“

implemented in trecent. commercial LLéI devices [BLTCS84,
ClarSO,NECE84,VLSIB4], and others are suitable candidates.
‘Because VAL was designed and &Eed on a M.I.T. data-

flow computer we will base ogf architecture in- this
A . " "
computer. Starting from a computer that ®upports structures

i

as shown in figure 3.5, we shall assume  hat the opefation

. ooty ~
units are not only standard ALU’s but %lqo specialiged

¥ 1

‘devices able to execute graphic functions such as

transfo}nation; projection,'clipping add‘opérate on the bit

map such as vector generg&or, raster operator and so on. A

‘general block diagranm 1nc1ud1ng the specxalxzed operation

units is shown in the following figure.
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How these units can be inteZrated in the standard ‘
\ ‘ data-flow architecture and the fiodifications to be:
’ introduced are the sub"jei:tk of the next chapter.
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Data-flow Graphics Computer ~
é ' R

It we analyse the block diagram of the architecture

given in figure 5.4 it is possible to recognize{
a) A data-flow ring that includes the instruction

t

. cells, the distribution networks for both data and signal,

the arbitrgpion network and the operation units.
¢ Id
’ b) A ring where the strucéures are stg;ed and
¢ ! . ’
processed. : : <

-
.

c) A set of operation units, each one with its
s ‘ ) 2
specific func¥ignality. ’ p

d) The diagram of a bit map and image display systenm.

B

If ;e refer £oyfigure 2.4 the items dgscribed in a,b and ¢
are the const:lgents of the DPU (display proces;ing unit).
To deéscribe in more detaillthis‘architecture we will
start by the operation gnits; followed by the bit m;ﬁ
interface and finally the data-flow ring, structure s£orage

o

and processing. Because this architecture is intended for
gfaphic‘“ .applicatfons we will conc&gijrate on the

'part{cularities‘of the machine that age directly related to

» -graphics and give only a general description of the

possfble implementations of the data-flow ring and
J . g
. : ~-78- i



structure hafxdling.’ .

6.1 The Operation Units. : - .

-

w

2 -

‘The operation units g‘inven in the diagi'am of figure 5.4

are very diversified in their functionality'and i{1 their
implementation. The following paragraph will provide for

each unit a description of its functionality, its set of

inputs and outputs, a subset of the instructions it can

execute with a suggested format and syntax, a diagram of an.
+ .

implem‘entation, and a description of its opertation ( the

) s v
interfaces to the bit map and to the data-flow ring for all

operation units where applicable/aref described at pa.ra.gra.plh

6,2 and 6.3 respectively).‘ oo
. L . ¢

o

]

6.1.1-Vector Genera?tor . -

The unitsaof this type are responéible for scan

converting a vector into a set of pixels in the bit map.
-t

‘This‘\ conversion is normally based ,on the Bresenham’s

algorithm [Fo]heBZ,SuerﬂQ] .

The input provided to these units is the ins.t,ruction'

Il . 4
described below and the output is a signal (implying

¢

~

of



o
2

completion) jsent to the destination instruction -cells. The

command accépted by the vector'generator is:

'MULINE |SIG x,x...|PAR1 |PARZ |

X
i)
<

W

v

)

Where PARY is a digit specifying color and texture and

PAR2 a pointer to a 2DLINE structure in the structure
/ v :

storage (if the data-flow implementation chaosgs to pass

directly a structure to the operation units, the PAR2/

should be substitued by the values of'the 2DLINE

"structure). The 2DLINEws£ruch¥e starts with a number of

vertices (n) follow£4‘§y the segment priority, and by n
* * ' lig

p;&rs of X and Y coordinates, one for each vertex of the

line./ . .

With this command, the vector genefator converts each

segment into a set of p¥xels in the bit map that starts &nd’
o

ends at the specified end ﬁoints.

The following implementation of such units is one of

Y H

many possibilities. In this one the main objective besides

- the implementation of the previous command is ‘to be able

to integrate the hardware into a gate array ar custom VLSI.
i \
- . {

~
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‘ng————— - :
' - lﬂfx DECX
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) " CLEAR X
l ‘ COUNTER | >
o .
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N . K Z REG. . ADDRESS
Y
COUNTER >
DATA r *
) OVERFLOW '
' INCY DECY |
EOP f——— INCX -
4 T |coNTROL:|—~ iNcY .
i ! o
* TJ CIRCUIT DECY DATA
. DATA
REG. >
- PRIORITY
REG.
Fig. 6.1: Vector Generator Block Diagram
~ l
1
The operation of the circuit represented by 'the
‘ " previous block diagram is the following: The length module
controls the length of the operation that is equ1va1ent to
the length of the line and the texture module spec1f1es
~
when a pixel should be written or when a skip should be -
performed. This allows the support of dotted or dashed
’ +lines. The main blocks of the tircuit are the X and Y
Q. .
\ i °
-81-
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cownters, the K and data registers and finally the a&der,
multiplexer an&-cpnt:?l circuit. Before a 1ine'is drawn the
X and Y registers are loaded with the coordinates of the
first dot, the‘data register with the color of the pixel
and its segment priority, the length register with the
number of pixels on the line, the texture register with a
sequence of on;s and zeroes that represent the desired
textur;, and the K register with the slope of the line. At
every cycle of the line generatio; process, the length
register is décremented, the K value add:d to the previous
results via the feedback loop on the adder, and the X and Y
registers incremented accordingyto the following rule: if
there is no overflow in the addition only X is incremen@?d
otherwise both registers are incremented. This rule is
adapted to a K greater than one by interchanging X with Y.
By selecting'incremeng or decrement operations, the circuit
can write lipes in any direction. The texture'registef is
circulated with every cycle and the bit presented at the
output specifies fhat a write is to be performed if equal
to one or 'no write operation if it is a zero. When the
control circuit detects that the length register is zero

“ ) [d 1}
the’ process is terminated.

’

9
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6.1.2-laster Operators

‘These units manipulate raster display data in the bit
map (or display memory) by means of user selected primitive
"operations. The raster operators can modi}y or combine

rectangular areas to provide the complete generality needed

- -

to gcroll screens, manipulate windoxf or ’'paint’
characters. The output data sent to the bit map is

generated according to the function specified by the,
L 3

instruction and of data présent in the source and

destination pixels and a pattern register. Betause these

are three boolean operands (source,destination an pattern)'
\ 1,

there are 256 possible functions. 0f these we will praovide

the most common subset. .

As for the vector generators, the input of these units

are the instructions and the output a completion signal.

»

RCOPY |SIG x,x... |XO |YO [X1 |Y1 |¥X2 |Y2

<

This command asks the operation unit to simply copy

the contents of the bit- map in the rectanglé

-83-
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Xo,Yo

. : x.,yu‘

Fig. 6.2: Working Areas

to a similar area of the bit map that has the top‘}eft

corner located at (X2,Y2).

RCOMPL |SIG x,x... |XO |Yd [X1 | Y1 | ' .

o This‘command complements the contents of.the\bit map
rectanglf defined by the two ;ertices (X0,Y0) and (X1,Y1)
as Qhown in thecprevious figure.

The next three commands are equivalent with the
exception of the boolean operation applied to each ;z;el of

. t -
the source and destinatgon rectangles. The result is

written back to the destination rectangle. .

ROR [SIC x,x... [XO [YO [X1 |Y1 |X2 |Y2 |
RAND ' . .
RXOR

BV L

o . -84~

o
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The following diagram describes a possible

implenentation of a raster operator unit. It is based on a

Rasterop chip designed by ‘8ilicon Compilers [VB@I84]:

]

& interface
Dat:‘-’-‘gow Command Raster OP to bit
interface " Decoder chip map
. ! T
Raster OP
control

Fig. 6.3: . RasterIOperaﬁor Module

2
\ 1

The data-flow ring interface passes to the command

[
i

decoder the instruction to b; executed by tﬂe.unit:
Furthermore it sets up the‘Easterop chip by }Aading theA
internal registers of the Rasterop chip by strobing the
chip select, write and foﬁf address lines f;r each, registef
to be loaded. These regist%rs remain,fixed.fo; the durgtion
of the Rasterop opera£ion. . | |

The command decoder loads the registerg of the
Rasfqrop control ‘with the vertices availagle fr;m the
‘instruction fiélds. ¥ith this infogmation the Rasterop
control reads 16 pixels of display memory to.the Rasterop

chip source registers. It also reads 18 pixels of the area

to be updated to the déstination‘rpgister. Finally +the

-85- .



outpuﬁ of ﬁhe\Rastergp‘chip is send back to the diéplay
memory. The Rgsterap-cbntfol is also regbghsible for
display area defined in the instruction fields.
. N .o
A- very brief degcgiptibn'of_the Rasterop chip is given

here. More iqqup;tion is available from [VLSI84].

* )

repeéting this"brocedure'for:each;iﬁ pide/cbll of the

¥

i -86- -

v ‘ | sourcet | - SOURCE 2
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The two source registers receive ‘the data from two

N P . B . -
consecutive 16 pixel words. The source extractor receives

v

information from the shift register and decoder to decide

>

which pixel to provide to the. function decoder (this

allows the alignment -at the pixel level of the source field

L]

to the destination field).® The pattern and function

H 9

\ \ .
registers ﬁ;ovide the functiion decoder with the necessary

"information ‘that together with the data from the source and

! °

destination registers will give the final output. ﬂask& and -

o

Mask?2 registers:allow certain pixels of the destinationd

register to be written back without change, k

¥We have been rtferring to pixels instead of bits but

° v

the Rasterop chip works only with a one bit plane. In order

""to work with all bit planes of each pixel, this operation

©

unit needs an appropriate number of Rasterop chips.

) . o o

6.1.3-Normaliser - ) .

This unit transforms world coordinates into device
ST ; S o

.coofdinates. This transformation is done through a linear

" conversion given below.

- . I

-

c
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‘ \ Fig. 6.5: Vindow and Viewpoft
- : / ~ v
; , v
, XV= XVMIN + (XW-XWNIN) (xvuw N)'/ (XWMAX-XWNIN)
YV= YVMIN + (YW-YWKIN) + (YVMAX-YVNIN) / (YWMAX- YWHIN)

A}

B

" nmormalisation array is the same .

Units-of this type receive one instruction as input

and provide a normalised set of coordinates as output.

*ts the

iye only instruction accepted by these units

following: A \;

NORM |[x,x... |PARI |PAR2 |

" M
where PARliis,a?pointgr to an array with eight
elemen%s kfour x,y pairs) tlat define ,the window and the
viewporta\PAR2 points to a 2DLINE structure {(the same
comment give; for the v&étorAgenerntors ap liQs here). It
is quite possible'that for ; large number of v;rtices the

This means that for each

instruction the array has to be passed to the operation
'

‘-88-'
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unit. An improvement to this aitu-gionhis to 'store’ the

<

'nornilisingiarray in the operation unit. This action goes-

against th date—flow principles. A compromise is to
L ' ¢ ! )

implement the follo'ing‘pfbtobolz PAR1 istn labeljor

‘ instance of a structure in the structure storage. Every

h

time the structure is loadgd the label is changed. In the
operation units, if the instance is the same as the current
array in the unit it just carries on with the execution. If
noy, the unit<requests a copy of th; art;y from the
structure storage. This technique can be used for
paraneters that are frequently used in cbnseéxtiva
operations without -the penalty of repeatedly loading the
same information. - In addition the protocol of copying
maintains the principles of data-flow architecture.

A possible implementation of such units is:

. .
- "89" e . *
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A \ 4 o -
Lo ~
Da"{a‘low PAR 1 ‘ Array . -
ring \a verify > re'gistors
interface, - logic \\ (a}’. ’ -
ALU ¢
e %nu; o
’ . registers N
Structure > ‘
—> handier :
t Control )
Fig. 6.6% Normalizer Block Diagranm

The PAR1 verify logic“b],ock is only available if we
implement the instance labelﬂng described above. The array
regist;.ers cor:tain the four x/,y pairs defining the yindéw
‘and viewports. The scale registers contain the. ratios
and

(XVMAX-XVMIN)/(XWMAX-XWMIN) (YVMAX-YVMIN) /(YWNAX-

"YWNIN). These the

registers are updated every time
normalization array‘is changed. .The structure handler gets
x,y pairs from the 2DLINE structure and feeds them to the
ALU. The results from the ALU are send to the same block
_that:constructs a 2DLINE structure for output. Even if not
explic;it in the diagrag, the ALU section can be madelinx

-90-
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such a way to support simultaneous calculations for the x,y #
ppir ofy values. P ( )
* “
. : .. : 2

6.1.4-Transformer

Tﬁese units are basically matrix iultiplie;s. They are
responsible for applying to a vertex the transfornaﬁion
matrix that represents‘rotation, translation and scaling.

As in the'previous operstfon units, these receivela
trgnsfo;-ation matrix and graphic structures as input and
provide gltransforled line structure to the subsequeﬁt
instruction cells . ‘ ».

The units arfe able to support 2D or 3D —-

transformations.. Two commands’are therefore available:

'2DTRANS |[x,x... |PARL |PAR2 |
and . . ' <

3DTRANS [x,x... |PAR1 |PAR2 |
$

In both commands PAR1 receives the trinsfornatiqn
watrix and PAR2 the graphic structures. The same,
considerations given for the normaliser units npplylhere. by

‘ The world chFdinates presehted to the trun(ornér
~units are homogeneous, therefore the trsnsfo;nation

!

-01-



v matrices nie‘?qu:re nat’rices of 3+3 and 444 for‘2b tndf3D
espectively. The contents of the -stric;s and theirgp
inp11cut10n in the offxc1ency of the execution are not
discussed here. More 1nfornntxon about this matter can-be
,found in [Roge78]. ’
The block diagram of a transformer unit is repreaented

in the following figure.

{ _FI
Dat:in; o —— »lcommand Matrix
‘ interface decoder registers
a 3 -
Matrix
Y , : Multiplier
. PAR 1 '
. > verity
) logic
[
Structure
> handler .-
N 4
Fig. 6.7: Transformer Block Diagranm

*

The blocks in this picture have the same functionality
as similar blocks in other wunits. Only tl}e matrix
. multipdier has not yet been presented .There are several

4
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ways to implement this block:
a) With one ALﬁ and several registers, perform the
multiplicatfon and addition to genornte_éhg elements of the

output matrix. : _ -

-

b) Have four ALU's in such a way that a row and column
multiplication can be done in one pass. In this case' the
operations to generate one coordinate are done

simultaneously.

{m

c) To pipeline the arithmetic operations with the

structures handler. *

-
< ?

/ [

8.1.6-Projection Units
/ . ‘ :
The main dlfference between this type of unit and thq

transformers is the legufng of the elements of the matrix.

[
,

In some cases the pro;ect;on;and transformation matrices

3

can be comblned in, on; A detailed description of the

’

mathematics of plnna& gegnetr1c projections is given in

[Carl78,Roge78]. fﬁ ?“‘4U m o

PROJECT |x,x:.. |[PAR1 |PAR2 |
e ,

3

is the qonnand‘%ccdppgd.by ﬁHese units and the parameters

are the same as the ones for 2DTRANS or' 3DTRANS.

-93-
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Bdug—COlplex Picture Generator

The vector generator units are the sinpiest case of
dedicagdd circuitry to scan convert pi!tuies. Not all
graphics are composed’of just straight lines. It is useful

3 to rely on hardware to generate more co;plgx pictures such
as circles, ellipses respective arcs and filléd polygons.
These functions s§e available today in VLSI chips like the
ACRTC from Hitachi [Hita84]. If <hips like these are used

, as operation units in the architecture they will be

responsible for such commands as: | ?

CRCL |SIG x,x... |X0 |YO |R | N ks
ELPS |SIG x,x... |X0 |YO [A |B |DX |.

R -

, JARERRE
[

where X0,Y0 are the coordinates of the center point
for both the circle and the ellipse; R the radius of the

circle; A and B represent the ratio X++2/Y+s2 on the elipse

equation and DX the maximum displacement in the x

coordinates from the ellipse center.
‘ ¢
In order to integrate this chip in a data-flow ring

[

the interface circuit can be organised as shown in the
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data -Flow
{ ring
interface
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following block diagram.

7

&

—

Command
adapter

> ACRTC

The command adapter block

Fig. 6.8: ACRTC Block Diagram

Y

]

Bit map
interface

is responsible for the

conversion of the command code and parameters to the ones

accepted by the ACRTC chip. It also generates the signal to

be sent to the destination instruction cells.

86.1.7-Clipper

Any picture that is drawn in the screen has to be

clipped to 5\20 or BD window. When this operation is

performed the

outpu

is

a different picture from the

original, when the output crosses the windo‘ boundary. The’

same picture as the original if it is inside the window,

and when it resides completely outside the window the

result is an ‘empty’ picture.

Q te

.
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Fig. 6.9: Window Clipping .
I} b
This last case is supported through a specif#l code of
. the graphic -structures. In order to terminate préperly the
execution of anf picture description and avoid deadlocks,

this siructure is given to the destination instruction
.

ceils. ‘k

The two commands accepted by this unit are the
following:

2DCLIP |x,x... |PAR1 |PAR2 |

3DCLIP |x,x... |PAR1 |PAR2 |

.

han ¥ N !
Where PAR1 defines the clipping window and PAR2 the
picture structure to be clipped.
A
Due to the complexity of this operation it is

difficult at the current state of art to have a dedicated

v 3
piece of hardware that directly implements a clipping

- ]
.
,
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aléO{ithl!'The best solution for this typequ unit is to

have a very fast CPU, ROK, RA nd the nterf?ce circuits.

Some of ghe controllers gvailable for digital signal

processing can be us;d in this application [E;xa82].
N

6.1.8-Input Devices

The ipput devices are responsible for interfacing user
input to <;f system. Due to the diversity of input’devioes
and ways 0£ interfacing them we will consider here the
catdgories defined by GKS for styles of intergction:
Request,Sample and Event modes.

In request mode the application program requests an
input and then waits for a response from the input device.
A similar operation exists with the sample mode, the only
difference being that the input device is continously
sampled. In the last mode the data received from the input‘
device is put in a queue. The application program first
asks for data and if thete is some in the queue it gets it
through a request (GET command) [Hopg83]. ’
To the unit these modes are implemented by diff;rent

commands. The output of the unit is a signal for the event

mode and the input data for all modes,
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REQUEST n |x,x... | (reqidst nc;::)
"SAMPLE n |x,x... | (s:np‘le mode) ' !
lA'AI‘I:. n |8IG x | (event mode)
GET n |x,%... | . .
. "

In any of these commands the suffix n is used to
select which input device is addressed. This selection can
be done by the arbitration circuit or if the devices are

grouped by classes, in the interface with the data;flow

ring.
Input : ;
dovucoc =
Data-Flow Command ' '
. fing “decoder [ '
interface device select ,
1
) «

Input
device 2t

Fig. 6.10: Input Module

)

The previous diagram is a sketch of ¢the

interconnection of input devices to a data-flow ring.

/
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: 7 8.1.9-ALUs T (O
. - . ' | : "
These units are ‘responsible for thI' operations™

normally executed by thy ALU of a géheral—purpoae conput:r.

They include the following sub-set: :

.

ADD '|x,x... |PAR1 |PARZ |
SUB |x,x... |PAR1 |PAR2 |
- BuL [x,x... [PARI |PARZ |
" OB |x,x... |PARL |PAR2 |
AND |a,a... |PAR1:|PAR2 |

o 4

Depinding on the requirements of the implementation

v

these units can be simple ALU’s or complex ' circuits
including bit-slices or microprocessors with the
corresponding mathematical coprocessor. In this case the

block diagram of such units will resemble the” following:

~
“

4

o
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- . » .
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DATA-FLOW ’ NPUT L s :u , ’ " . .
: o - MICROPROCES COPROCESSOR -
Rina 1 | w0 MICROP )
INTERFACE , . ' ' '
. ’ ’ . -

LOCAL: .
o ROM/BAM

&
§

)
’ .

‘ Fig. 6.11: ALU Module . ‘

6.2-Bit' Map Interface 7 ‘
- ¥y " oL -n.' N e EE '

The units ' that operate on ,the bi map have to

interface to the video memory. ‘Before we 'describe how it is®
dore let’s look with more detail at the ,,o,rg.a.nizatgi‘.on of

Py .
.

this memory. - -

S

In current designs this video memory is accessed by

o

! . . . L 4 e
two different circuits: one does a scan of the memory and

) . °
provides the video output circuit with the contents of each

~ pixel; the other is respongible for the interface between

o ‘

~100- ' :



("“—\\ - t,he v1deo memory and the display processor udit. Another
|
L : characteristic of the b1t map is the organlna.txon imposed .

)
by the video l@/d/wxdth necessary for the high resolutmnsu
used nowadays. This bandwidth does not have a reciprocal in
mmnor.y accesses, therefore in the same memory cycle more
tha.n one pixel data is stored in a shxf‘t regxster (8 16,
32 or even 64). Another 1mp11cat1on. of high resolutlons is

. the impossibility of interlogving refresh and DPU accesses
(wha.t.}\is called .transparent access to the video meﬂory).

‘These are done Huring the horizontal and vertical blank

portions of the video.

------

S B i ;d'.

N R—

HORIZONTAL BLANK

T
VERTICAL BLANK : : I
\”/ DPU
. VIDEO POSSIBILITY OF ACCESSES
possiBiLITY OF DPU accesses I
' v ¢ : 1

RESERVED FOR
VIDEO SCAN ACCESSES

- . g Fig. 6.12: Video Signal

- ' In the above circumstances the’"DPU accesses to the

memory may become a bottleneck and a limitation factor in_

.the performance of the machine. Fortunately there are tpo‘day
! \—-\ . .

a new generation of DRAI(s ‘that overcome this problem

[Most84 NECE85 Tex384] In the RAM internal circuit a long



a_hiﬂ_ft fggister (.up*o 266 bits) is loaded in one RAS cycle

and while its contents are shifted out the memory cells are

available for DPU accesses. Wigy this shift regi;ter, he

’ * number of accesses to refresh the screen are re&uceéﬁit\a
v

factor of 16 in average. The increased gvailability of

menmory cycles for DPU accesses allows faster updates and

- -~
better performances.
1/03
1/01
1701
' [t IT cownu““
X o [ + | [ 288 | pecooen
s 5 e
- s
- A8 MEMORY ARNAY
; ,_8, 200 5 1024
3| |3
u § 268 -
\ r
I DATA TRANSFIN OATE |
1
LA:;::;I | DATA meORTER )
b to . SEMAL ! . 208 SERAL
sl | Aconee °]11 1rrL 1 IIJ “c“".o’
tloex LV ' . 5 l 10,
20,
b S 9
Fig. 6.13: Memory Chip Block Diagranm (
“ ) !
/, The time available for bit map accesses has to be

distributed among the units that interface with it. This

operation is performed by an - arbitrator that selects which

! -



of the units has access to the video memory.

—_ o

AZQ 1
GRAPHIC " .

GRANT 1| w1 v : . ‘
i3 ’ M L

o

92! amarmic | : MEMORY
UNIT 2 :> \ CONTROLLER

MEMORY
ARRAY -

RANT 2

ARBITRATOR

REQ I '

GAAPHIC ' ‘
ANT 3 UNIT 3 ) :> . ’

«

Fig. 6.14: ,"_Bi't ‘Hap Interface

s

In the previous circuit when a unit has to perform a

.

memory\‘c“cess it sets its request signal. The arbitration
betweenh requesting units is done while an access to the

v

memory is performed.
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MEMORY ACCESS 1 MEMORY ACCESS 2

RESOLVE PRIORITY  RESOUVE PRIORITY
FOR ACCESS 2 FORACCESSS ~  \

N
‘Fig. 6.16: Arbitration Timing

With this pipelining of acceses and arbitr;tion the
lyteﬁcy\;f the circuit is reduced. The arbitration
algeritbl will depend in the characteristics of the
requesting units. If these have the same throughput the
circuit should rotate the priority of the access between
all the units., If the units have different throughput the

arbitration circuit should use a weighted priority.

Each access to the bit map is actually a read modify

.write cycle. The read portion is used to make available the

contents of the z buffer or ségnent priority. This part of
the memory provides for each pixel its Z coordinate in a 3D
system or the segment priority in a 2D machine. The value
read is compared in the Write Conftrol circuit with the
value given by the accessing uniti A lower value in the bit
map implies a replagb action on the write portion of the
cycle. Otherwise a new value is written into the»bixel

cell.
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6.3-Data-flow Ring Interface ’
| ¢
The interface of each of the operation units with the
data-flow ring is described in a general form and for the
case of multiple units i.e. more th;n one unit of the sam;.
kiné, ;s for exnhpleN nor; than one vector gemerator.

, Let’s c%nsider first ﬁhat the arbitration network
routes the instruction to the appropriate set of units
using the information of the, operation code, of the
instruction. The pac}et is then abs?rbed by ghe group
interface ci%cuit. This circuit i; responsible for
receiving the packet and store it in a temporary FIFD.
Every operation unit, after reset ag completion of an
execution, provides to this circuit 2 ready signal and
stays in a wait mode -until it receives a packet, after
whicﬁ‘it disasserts the }eady line. The interface circuit
is responsible for choosing between the avai}able units, of
"which one will receive the instruction packet.

The output part of tlre operation units have a similar
interface. At the end of the execution the results are sent
to the control FIF0s or data FIFO0s (the number of FIFOs is

imposed by the organisation of the distribution network.

Because several units can access the same FIF0, each one
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has nnwnrbitrtt{on circuit that decides which of the units

gets the access to this common resource. At the same time

. the arbitration circuit holds the‘operntion unit in case of
A

FIF0 full or unavailability of the common bus to the FIFO.

The block diagram of such a general interface circuit

is repr;sented in the followingt}ig<re: >

OPERATION OPERATION
Uit 1 ! T m
I 1"}
5 ||
"
MEADY o MADY ¥
"h
samacTon 1
CONYROL TEMPORARY 4

o

ET"

NETWORK
NTENACE .
OPERATION [ OPERATION
' UMNIT 1 UNIT N
i o SR , C
REQ 1| REQN : )
7 vl l
ARBITRATOR FiFo0 : FiFrO
.

Fig. 6.16: Data-flow Interface
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8.4-Data-flow Ring Architecture

P -
-

—_ -
~

All the units described above can be incorporated in
any data-flow architecture that auppbrtu structures. Here

ve will propose a block diagram for a suitabie architecture
based on the fequlrements 1nposed by the appl1cat1on and on

previous implementations [Denn84,Denn80, myerBI Rumb77].

6.4.1-Instruction Cells

Referring back to the general{block diugrﬁm of the
architecture (figure3.5) let’s first consider the
instrqgtion cell block. The main functions of this block is
to store the instructions of a data-flow program, to store
the operands of such instructions received from the
distribution network, keep track of the numbei of operands
received at each,instruction and provide to the arbitrabio:
network the instructions that can be executed. |

The main characteristic of the.}nplenent;tibn we
propose here is the existence of two memories. One, the
data memory, holds the operation code, the'degtinaﬁion

addresses and the operand values. The Qe;ond, the control

memory, holds the control information necessary to triggek
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‘the instruction which is: gating codes, gate flag and value

f1ag for each operand, the total number of signals‘thht has

-~

to be received before the instruction can be executed, the
actusl number ‘of received signals, a trigger expressio& and
a pointer to the instruction structure in the other memory.
This memory is supported by » control circuit that
executes the following algorithnm:

a) After program loading or  after an instruction
packet is send, reset all the flags and the counter of
signals received.

b) When a signal 'is received increase the signal
counter and compare to the total number to be received. In
case of equality set the signal flag.

c) If an operand is received set the value flag and
store the operand in the instruction menmory.

d) Set the gating flag when a control code is received
and matches the gating code of the operand. Otherwvise
disregard it. . , .

e) Yor every signal,gating code or value received
calculate éhe triggering expression which is:

8 Signal flag AND Value flag 1 AND Value flag 2 AND ...
AND Value flag n AND Gate code 1 AND date‘coﬂe 2 AND ..
AND Gate code n

When this expression is true the instruction is ready

for execution.
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The folloﬁing‘block diagram gives the organisation of

the instruction cell block as well as a more detailed

overview of the control memory.

PAOM

ONTRBUTION
———————

| mscanvan

CONTROL
MEMORY

DATA
MEMOAY

paCKLY

BIONALS
GATE FLAGE
VALUR FLAOS

TRIGQER
CONTROL

1.

orcoot
DRETINATION CRLLS
OPERANOS

NETAUCTION
AMD FELD

ADDNISS

NORX
TasLE

PACKET
OEMERATOR

CONTROL
MEMORY

SIGMAL COUNTEA

»

Fig. 6.17: Instruction Cells Module

¢

N

CONTROL
Loac

GATE CODL
OGATE FLAG
VALUR FLAG

/

r

GATE COOK
GATE FLAG
VALUE FLAO
TRQOUN RXP

TO ARBITRATION
NETWORK

L4

The packet receiver block is responsible for sending

a

the information received to the appropriaté locatioas in

the data and/or control memory. The address of suph

e

e ]
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locations is maintained in an index table initialised when
a program is loaded in the memory. The packet that
circulates in the distribution network has the following

format: Header, destination address of the instruction cell

“and the destination field. The header contains the sise of

th; packet and a code specifying if the information is a
signal, a gating code, a value or an instruction to be
loaded in the instruction memories. .
The packet ;enerntor circuit is"responsiblg for
retrieving the necessary information from the aata memory
and building a packet that is then send to the arbitration
circuit. This packet should have a format similar to ghe
following: Header, operation code{ address of destination
cells and operand values. The header contains information
about the Jige of the packet and the code that specifies
what type of execution"units can execu%e the inétruction in

the packet.
6.4.2-Arbitration and Distribution Networks

The function of these two blocks is to route the
instructions with their operands to the operation units
(the’ arbitration netw;rk) and the results from the

operation units to the instruction ¢ells (the distribution
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network). The throughput of the system is highly depen&ent
on the performance and the degree of parallelism that can
be incorporated in these circuits. )

A direct interconnection between each instruFtioﬁ cell
and each operation unit is impracticable due to the Jarge
number of connections necessary. To reduce this number the
elements of both blocks are grouped in an hierarchy. The
punber of levels in thias hierarchy will depend on t%g
speed of the interconnection network and the number of

units and instruction cells to connect [Myer81].

—_—
——*l1AMTRATOR (L0} I —

——

’ ARBITRATOR SwiTeH E::

N S

e
—cd
—_—

ARSITRATOR \duthiciad
10

DATRUCTION
[4 (Y% }

ARSITRATON $wrrcn

L

ARBITRATOR wiicw

ARSITRATOA twcw

L

Fig. 6.18: Arbitration Network
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When we “described zhe operation units and their
interface to the data-flow ring we emphasired the
possibility of grouping together units of the same type B!
order to simplify the interface circuit. At the same time
in the description of this interface circuit we implicitly
gave the description of an arbitration circuit on the input
side and of a distribution circuit on the output side of
the execution units.

The #ame type of circuits can be'used toinplemenéthe .
two networks that are the subject of this paragraph. The

folfbying diagrams and description explain in more detail

the operation of both networks.

-+ a) The arbitration network

The packets generated in the diffe;ent groups of
instruction cells are stored in'a FIF0 located in the
packet generator ;ection of the instruction cell block. The
packet generators that are connected to the same channel
request the actess to that channel via a.request signal to
an arbitrator. This aréitrator determines which of the
packet generators should have access to the arbitrator
FIF0. The request arbitration is done at the same time that
another packet generator transfers its packet to the FIFOD.
From this FIFO a switch cir;uit selects one of the output

sections of the arbitration circuit based on information
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.provided in the header of the packet. Each output section
has its one‘FIFb vhere packets are stored until they can be

passed to the next arbitration unit. The arbitration of
these output sections is done in’the(same,way as it was

-

done for the packet generator circuits.

| ARBITRATOR

MRQ/ONTY 1 2)3]e

rom C) ot [
Posket Oenersier s

7 other Arditration
Unit. .

Prom E "ro 1 :

Pechet Gonersier
or othor Ardiireltion

‘ : )
. ::> "o ‘K SELECTOR K
. From :> o3 D . ‘ ; :

Pasket Genaraler
or other Arbltration

Frem [: v 4 D e

Pochet Gonoreter
o7 other ArdRirstion

U L ¢ e .

,"Fig. 8.19: Arbitration Module

'

v «

The network can b? built with such units until they

L4

are directly interfaced with the execution units or the -

structure section of the machine. In a reduced system the

output sections of the first afbitrator could interface,

directly with the execution units interface circuit.
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b) ‘The :distribution network . K . ’f/
The disﬁr&bubion network is similar to the a;bitratidn'
network in its ébnstruction with tﬁe oniy difference in the /o
first stage that is a sw1tch1ng c1rcu1t The results comlng !
"out 6f each operatlon unit generates one or more packets ' ‘-
, - " that are send to a specific FIFO. ;l‘his select:.onh is bas.ed
on tbe address of .the destination avaif&bie in the header
of the paCket and the groupmng of the instruction cells
Each FIgh of each group of ope{Pt1on units that address the
- same group of ins@ructlon cells shares the same -
_bdmmunication channel. An arBitra?pF degcimines rhich FIFO N
- will have its packet sent to the next switchiéé circuit. -

. ?

s

: . : o . . -114-
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Fig.t6.20: Distribution Network

.

) o

The process is terminated when the next switching circuit

‘

.is the one incorporated in the packet ;eceiver circuit of a

.
~

gréhp of instruction cells. \
' ! . f
" ] [ -
" "‘:u
8.5 Structure Storage and Processing -. : .
The O;Erationlof this block of the architecture is
equivalent . to the operation units sectiof. It receives from
the arbigration network iﬂst;uctions and"operaﬁds and after
proceésing,‘a result is sesd to the distribution network.
- )
-115- . .
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Thé main characteristic of its instructions is that they
op;rate in data structures [Acke78]. Conside¥, for example,
the case of an%}rfayﬁhThe operations that Fan'be applied to
this structure are: l-create the array;~2—;dd'an element to
it; 3-delete an element; 4-find out the limits of the
;rray; and othe;s‘és defined in 4.1. For the first one the
operands sent with'the %nstructién are Fhe‘valuQS of the

elements of the array. Upon receiving an instruction like

this the storage unit will determine a location to store -

b

o?

the elements and build the appropriate indexing tables. If’
the instruction received is a delete instruction,‘tﬁe
operand is the index of the element to be deleéted and yhef

function of the unit will be to rearrange the links and

index tables dependiqg on the way it supportg the
structures. Another possible and uéeful iﬂstrhption not
mentioned above is the retrieve instruction. Its fugctidﬁ
is to read an element whose index is specified in the

B

operand of the instruction. The value is then sent to the

distribution network. The following list is a subset of the

instruction that ,can be supported by this block of the

architecture,

CREATE ARRAY [SIG x,x... |no |EL1 [EL2 '|... |ELn |
The operands for this instruction are: the nuiber of
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elements .followed by the value of each element in
inci;ising order of their index.

4

ADD ELEMENT |SIG x,x... |NAME |EL |

NAME is the label or identtification of the array and
EL the value to be added. Tk{\addipion is done at the end

of the array.

DELETE ELEMENT |SIG x,x... |NAME |INDEX |
A

deleted from the array identified by NAME.

ARRAY[] [x,x... |NAME |INDEX |N |

-

bl

The values of the N elements of the array NAME
;tarting from INDEX are sent to the dis;ributign network.
1 Two‘aifferegt structures can be used (2DLINE and
3DLINE). The difference between them and the array is that
their elements have two or three values respectively, and
the structure has a header fbat contains the number of

coordinates and the priority of the segment to which this

-

structure belongs. The instructions that support these .

g A .
structures are very similar to the ones given above for

’ : -117-
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sf;ays.

The matrices that are used for transformations can be
represented with a single array or more appropriately by an
array of an array. It was mentiongd that most of the
transformations do not change frequently. It weu{d
therefore be more efficient if these operation units stored
the transformation array. To support this feature we
described the concept of instance and instance labeling in
section 6.1.3. Two(different instructions would be required

to retrieve complete structures: one, the most often used,

" would provide the structure instance as output; the other

would provide all values of the structure, to be used when
an operation unit has to update the transformation mptrix.
Thé idea of instances it is not new in data-flow
ar;hitecturesh[Arvi81,Davi78]7' |

“ The hardware that implements this structure storage
.and processiné unit is a complex unit, possibly based on a,
general purpose CPU with special circuits to improve the
support of the structure operations.'The block diagram for

this unit resembles the block diagram of figure 6.11.
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/"’"



TN

7

Conclusion

#

The architecture presented in the previous chapter is
the final element in our study. We have shown that current
graphic systems do not take full advantage of graphic
parailelism, and that this characteristic matches data-flow
principles well enough to allow the use of data-flow
languages and data-flow computers in display processing
units. .

In order to apply the results of this !ork to the
development of a new tyﬁe of- graphic systems, more research
has to be done in both fields, graphics and data-flow.

The areas that need further research are: definition
of a complete GKS language binding to VAL; study of the
implications of using VAL in the design of graphic
programs; examination of the modifications to currentVXAL
compilers needed to aceommodate the heterogeneous set of
operation units; definition and study of the implementation
of the operation units dedicated to graphic functions;
investigation of the communipaﬁion problems in the
arbitration and distribution networks; study and simulation

of the architecture to verify performance characteristics
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. Appendix I “‘  . ,,: '

.;VAL Syntax ‘ |

s

The VAL;sygtgiupresénted here is hof complete and ﬁ

: péssiply incorrect'as a iaqgﬁage.gyntax. Iﬂ_shéqld}be“used |

as a guide for the examplés and“eiplanabions‘usgd in the
text. These }ules ar? an’adaptatioh.from a syntax
_description given in [Denn79b] and’ exsmples from [McGr82].
Poss1bly because the lan‘égge is exper;mental we were
unahle to f1nd a conplete, up to date syntax: The command

fornats for bhe@graph1c functlons are glvan in appendlx IV,:j
éprogi#m) = PROGRAN <name> { <funct1on def> } <{exp> END ‘ﬁ: S
<funct10n def>: FUNCTION (name) - ‘“
T o un ( (1nput list)> RETURNS <Coutput 11st> ) :
h o "{ {type declaration> ; } . ﬂ o
_{ <function def> ; } “
' Cexp> ENDFUN ’
(inputlli§t>::= Séype declarationd { , <type declafatﬁon) f ’ ‘
{type declnra@ion)::= <name)> { , <{name) } : <tYPF>‘

<output listd::= (typed> { , <(typed> }
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. /
! <exp)::= <primitive oprd>

| <exp> { , <exp> }
+ | <let-block exp>
- \ | <conditional exp)
| <forall exp)
| <fordo exp>
| <iter-block)
| <applicatfon exp) h ,

{primitive opr)>::= <(exp> <primihi§e opr> <exp)

| <primitive oprd ( <exp) )

. ( | <name) v
A | <constant) ‘
\ ’ {conditional exp>::= IF <exp)> THEN <(exp> ELSE <exp) ENDIF
<let-block exp)::= LET { (type declaration) := <exp) ;~}
IN <exp> ENDLET ‘ -
{forall exp>::= FdRALL ¢name) IN [ Cexp> . <exp> |} 5ff

{ <type declarationd := <{expd> ; }
<evaluation)> | <comstruction> -

. ENDALL

¢evaluationd::= EVAL PLUS | -TIMES | MAX | MIN | AND | OR
<exp>
L (consfruction)::= CONSTRUCT <exp>
¢fordo exp>::= FOR { (type declarationd := <exp> ; } -
DO <exp> ENDFOR ‘

{iter-block)::= ITER (name), := {exp) { ; <named> := (exp> }
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Appendix II

Examples of Graphic Programs

Two examples are given in this appendix. The first one
is a routine to draw a line using the Bresenham algorithm,
assuming a very primitive graphic system (the only graphic
function used is WRITE-PIXEL). It was extracted from
[FoleB2]. The second is a very simple exampie that gives an
idea about the format of a display. It was extracted from
[Matr84].

The Bresenham’s algorithm is attractive because it
uses only integer arithmetic. No real variables are used,
and hence rounding is not needed. This version works only
for lix;es vith slope betweex'x 0 and' 1, it can be generalized
for lines with other slopes.

PROCEDURE Bresenham (x1,yl,x2,y2,value:INTEGER);

VAR dx,dy,incrl,d,x,y,xend:INTEGER;

BEGIN .

dx:=ABS (x2-x1);

dy:=ABS (y2-yl); - . ~——

d:=2+dy-dx;

inerl:=2«dy;
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N - | | | . ) S
' iner2:=2+«(dy-dx); ' ~ J :
IF x1 > x2°
THEN BEGIN
R:=x2;
y:=y2; C ' i
xend:=x1 | |
END
L .ELSE BEGIN
" x:=x];
y:=yl;
xend:=x2
END ‘

VRITE-PIXEL (x,y,value);
YHILE x < xend DO BEGIN
x:=x+1;
IFd <O
- THEN d:=d+inecrl ' .

ELSE BEGIN
: y:=y+1;
) d:=d+incr2
END .
 WRITE-PIXEL (x,y,value)
~ . END |
END )
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The followxng list is a dlsplay list for a DPU wlth
suppord;of high-level graphxc' comnands The codes ngen

1nc1ude the opcode and the parameters

24,A0,00,A0,00b - ' ;Move absolute to (A0, AO)

80,A0,00 _) " ;Circle with radéyaéAO‘
R 24,E0,01;40,01 . sMove absolute to (1E0,140)

80,50,00 .+ 3;0ircle with radius=50

This display lisf can be located.anxwhere‘in main
memory. When instructed the DPU will read it and execute
the commands specified above when finished it advises the’

host CPU that it is ready for another list.
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Appendix III
CKS Commands

e ‘ 0

The following is a subset of the most: important

~comnmands in VAL. For each one it is given the commnand name, -

"the inputé and a brief description of the command

1

operation.
Graphical output.

POLYLINE (N,XPTS, YPTS)
, ‘N Nuamber of points
XPTS X coordinates
YPTS Y coordinates
Draws N-1 segments joining adjacent points gt;rting
with the first point and ending with the last.
SET POLYLINE INDEX(N)
. N Representation index
Selects line repr;sentation for all subsequent
polilines: | |
POLYMARKER (N,XPTS., YPTS)
N Number of poi?ta

XPTS X coordinates
YPTS Y coordinates
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Places a centered marker at each point. .

. SET POLYMARKER INDEX(N)

N ' Representation index
Seiects:mafkef representation for all subsequent

polymarkers. ) ' ‘ .. |
FILL AREA(N,XPTS,YPTS)

N . Number of poin£s.

XPTS X coordinates

YPTS Y coordinates
, Filis the area delimited by the bolyline
(N,XPTS,YPTS), If the area is not close the polylxne is
extende’ to join the last point to tha £1rst point. Thee

poly11ne is not drawn.

o

SET FILL AREA INDEX(N)

N Pattern index

Selects fill area pattern for all subsequent_ fill

"Bre as. L]
TEXT (X,Y, STRING) v

X X qyard?hite

Y Y coordinate

STRING String of characters
' Vrites string in th; position (X,Y).
SET CHARACTER HEIGHT(H)
- H Height index

. Sets character height for all subsequent text

-139-



, cbmmdnds.
»SET CHARACTER UP VECTdR(X;Y)
X X component
Y Y component
Defines character orientation and is used:as a
reference f&r text path and‘text alignment.
'SET TEXT(PATH) - . >
| PATE  [RIGHT,LEFT |
UP,DOWN] \

Defines character position’in reference to the up

vector direction.

o

SET TEXT ALIGNMENT(HORIZ,VERT)
HORIZ [LEFT,CENTER,RIGHT]
VERT [TOP,BOTTOM, CAP,
HALF , BASE]
Defines position of the string in relation to the
. string position point. .

SET TEXT INDEX(N)

Defines character quality.
Coordinate systems.
World coordinates(WC)-Cartesian coordinate system used to
present graphical output to GKS.

QNornulized device coordinate(NDC)-Virtual or normalised.
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device which has a display sﬁnface yisible in th; pinge 0
to l,in’both the xuand y directions,

Window-Area of the world space to be displaydd;
Viewport-Area of the normaliged device Qheré a'window will
+be. displayed.

. r
“a Q?

SELEdT»NDRMALIZATIQN‘TRANSthHATIDN(N)
Selects the windéw to viewpoit transformation ‘defined
by window N andiviéwport N.
SET WINDOW(N,XWMIN,XWMAX, YWMIN, YWNAX)
Defines window in world coordinates. -
SET VIEWPORT(N;XVHIN,XVﬁAX,YVMIN,YVMAX)
Defines viewport in ND coordinates,
- S8ET CLIPPING INDICATOR(IND)
IND [CLIP,NOCLIP]

.Indicates if images will be clipped or.not to the

)
viewport boundary.

Segments.

[

CREATE SEGMENT(ID)

P

A
ID Segment identification

Y

Opens a segment. Subsequent calls to output primitive

functions will be inserted into the segment and outputed.

3

CLOSE SEGMENT

Closes :a segment. Note-only one segment is allowed to

Y
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be open at any time.
. > DELETE SEGMENT(ID)
: ID Segment”identificatioﬁ
 Deletes the segment identified.
, SET SEGMENT TRANSFORMATIGN(Ib,KATRIX)
ID- + Segment identifica?ion
MATRIX 243 Transformation " matrix :
All;wg scading,‘rotﬁtipn and translation 45?

« -

the
desighated segment..
EVALUATE TRKNéFDRMATION MATRIX : kA
(FX,FY,TX,TY,R,SX,SY,SWITCH, MATRIX)
FX,FY X,Y of fulcrum'poipt
TX,TY Transiation vector
R' Rotation angle‘ih radians \ Y
8X,8Y .Scaling factor | . .
SWITCH WC or NDC- | ‘
. MATRIX Output matrix
Constructs trangfprmatio& matrix bésed‘oh_the input
éarameters. | i Lo o
ACCUMULATE TRANSFURMA?ION MATRIX '
' (MATIN,FX,#Y,TX,TY,R,SX,SY,SWiTGH;MATUU?),
‘ Allows more general transfopmatigd matrices to be

i ° i
constructed. . . A

3.

.SET VISIBILITY(ID,VIS) . . 8 . *
VIS [VISIBLE,INVISIBLE] .
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| >

Defiﬁes if the segment'félvisible or invisible.
SET HIGHLIGHTING(ID,HIGH)"
HIGH - [HIGHLIGHTED,NORMAL)

Indicates if the segment should be highlighted or

- normal. : . ' \

SET SEGMENT PRIORITY(ID,PRIORITY)
PRIORITY O< <1.0
Defines 'the segment priority.
RENAME SEGMENT(QLD,NEW) C Repame‘segment. o
-
Graphical inﬁuf devices.
There are six classes of input devices. | \%

LOGATOR ~ “Which inputs a position .

PICK ' Which identifies andisplaied object

°  CHOICB " Which selects from a set‘of“algernatives .
VALUATOR Which inputs a value e o
QSTRING Which inputs a string of characters ////
STROKE - ¥hich inputs.a sequence of (X,Y) poqitions' -

In the following compands there are three common

B

. 4
parameters:

. WS Wo;kétation.identification
by | Device.identification . ¥ '
‘ ST z.Device status - - -
REQUEST LOCATOR(WS,DV,ST,NORMTR, ]
' XPOS,YPOS) '“ o
: -143-
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' REQUEST CHOICE(WS,DV,ST,CH)

{

Returns a positf&ﬁ iq world’co§rdinates and a
normaligation tr;nsformatiéd NORMTR. ‘
SET VIEWPORT INPUT PRiQRITYg . ‘ﬁ
(TR1,TR2, HILO)

TRi Viewportanumber
TR2 ' v
~ HILO  [HIGHER,LOWER]

Defines}priority of the viewp;rts to allow the return
of a NORMTR ;hén two viewports overlap. " )
REQUEST PICK(WS,DV,ST,SEG,PICKID) -// 

SEG Segment number " /
PICKID Pick number s

Returns a segme;t iéengification and 'the
identification assigned for\p;cks,(allqwé fo differentiate
elements inside a segment). . : | -
SET PICK IDENTIFfER(N) . . .

Defines the pick identifier for the subsequent output

primitives. e

"SET DETECTABILITY(ID,DET)

DET [DETECTABLE,UN..]

3

Defines if a segment is.detectable or not.

Returns an, integer identifying the choice.

. REQUEST VALUATOR(WS,DV,ST,VAL)

Returns a real number.
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REQUEST STRING(WS,DV,ST,NCHARS,STR)

LI

Feturns a character string gna the Pumbe} of
“haracters entered. | Q
REQUEST S@fDKE(WS,DV,PTSHAX,ST,NT,
NPTS,X,Y) '
‘Repurns,a stream of NPT poé#tions with a maxinum of

PTSMAX with,a.normalization transformation‘NT.
» ) )

The input of graphical devices can be done in three modes:
\-REQUEST The application brogram and input
processor work alternatively. ° .
SAMNPLE Both are active together but the
application program is the master.
EVENT Bot{ are active but the inpu§~process is
the doninang partner.
SET XXXX MODE(WS,DV,MODE,EC)
XXXX Logical devi;e typ;
HOB& [REQUEST,SAMPLE,EVENT]
EC . [ECEO,NOECHO] ,
Segs the mode for a particﬁlar device.
| SAMPLE YYYY(WS,DV,NT,,,)
Sample functions do not have a status.
AWAIT EVENT(TIMEOUT,WS,DVCLASS,DY)

If the device queue is empty, the application program

is put on hold until an event occurs or the timeout is
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elapsed. DVCLASS can return NONE of the device class.The
device number is given. by DV. ,
GET ZZZZ(output parameters) “

Once an event hgs b?gn recognised a GET C;;Ilnd will
be used to read the input. ‘

ZZZZ'any of the device types.
fLUSﬁ DEVICE EVENTS(WS,DVCLASS,DYV).

Vhen called removes all inputs in the queﬁe from ‘the

devipe specified.



Appendix IV
GKS Binding to VAL
The GKS commands described in .the previous appendix
have to be bound to a particular language 'by a set of

A}

routines. . For most languages the binding is a set of

' routines, one for each GKS command. This is not the case

f&r YAL because of the npplicative nature of the language.

7A11'£he GKS commands used to set attributes and

transformations for the'graphic‘systens ;re passed as
parameters go the graphic functigns in VAL. The folléwing
list"proyideq a su?set of.a:GKS binaing'for VAL. To
sidplify, the list parameters that have ghe same name also
have the same type and function, therefore they are only

defined once.

POLYLINE (window,view,transf,polyindex,coord,trigger)

In ARRAY[REAL] window :window coordinates

In ARRAY[REAL] view :viewport coordinates
In ARRAY[REAL] transf :transformation matrix
In-INTEGER polyindex , :color and line texture

In 2DLINE coord . :coordinates of line vertices

and segment priority
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+ In BOOLEAN trigger :general input to control

{
éﬁﬁ function execution
,ﬁ Returns BOOLEAN _ ‘:output required by VAL
. TEXT (window,view,transf,attrib,x,y,string,trigger)
In ARRAY[INTEGER] attrib :array with text attributes:
' ‘ l-character quality |
2-text path
3-character height
4-alignmenf horizontal
5-alignment vertical
6-character vector x axis
7-character vector y axis
In REAL x,y :beginning of string
Iﬁ dBARACTER—STRING string :string to be written
Returns BOOLEAN toutput required by VAL .
- .

FILL AREA (window,view,transf,areaind,coord,trigger)

In INTEGER areaind rarea fill pattern

a

Returns BOOLEAN toutput required by VAL

ACCUMULATE (matrixl,matrix2)
In ARRAY[REAL] patrixl,natrix2™:combines the trapnsformation

of the two matrices

Returns ARRAY [REAL] :result matrix .

3
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REQUEST LOCATOR (ws,device)

In INTEGER ws :workstation identification
In INTEGER device  idevice identification |
] ‘ﬁeturns INTEGER :status of device
ARRAY [REAL] :normaligtion to be applied

to coordinates
REAL :X coord. of device position
REAL ' ' :Y coord. of device position

REQUEST PICK (ws,device)

v

Returns INTEGER ' :device status

INTEGER :segment number
INTEGER ' " :pick number
i o
3
, -1489- .




