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ABSTRACT

Parallel Network Optimization on a Shared Memory Multiprocessor and
Application in VLSI Layout Compaction and Wire Balancing

Raghu Prasad Chalasani, Ph.D.
Concordia University, 1994,

Network optimization refers to the general class of optimization problems defined
on graphs and networks. The transshipment and the dual transshipment problems general-
ize several of the network optimization problems. They can be used to formulate and solve
a large class of industrial and engineering problems. As the complexity and sizes of these
problems increase, there is a growing demand fur more cowputing power. Parallel com-
puting is one of the ways to meet this demand. This has motivated our work in this thesis

on parallel network optimization.

Towards this end. we discuss the design and implementations of three parallel
algorithms - one algorithm for the transshipment problem and two algorithms for the dual
transshipment problem. We also consider an application of these algorithms in solving

VLSI layout compaction and wire balancing problems.

Three basic network optimization algorithms serve as building blocks for our par-
allel algorithms. They are: Algorithm FEASIBLE to test feasibility of the dual transship-
ment problem, Algorithm SHORTEST-PATH to compute shortest paths and Algorithm
MAX-FLOW to compute a maximum flow in a network. Our parallel algorithms for the
dual transshipment problem extensively employ the notions of node/cluster firings and

results from the theory of marked graphs.

Our parallel network primal dual method for the transshipment problem is based
on the traditional network primal dual method. We show that Algorithm FEASIBLE can

be adapted to initialize primal dual method. This obviates the need for constructing an

i



auxiliary network. This is an attrative feature from the point of view of a parallel imple-

mentation.

Two new approaches - MNDS (Modified Network Dual Simplex) and CBDS
(Cluster-Based Dual Simplex) - are developed for solving the dual transshipment problem.
In both these approaches, we do not need to move from one basic solution to another, Con-
structing efficiently a basic feasible solution starting from a feasible solution and perform-
ing efficiently concurrent pivots without destroying feasibility are the distinguishing
features of these two approaches. They differ from one another significantly in the way
they construct a basic feasible solution. A new characterisation of the structure of the opti-

mum solution of the dual transshipment problem is the basis of the CBDS method.

Finally, we show that the wire balancing problem in VLSI physical design can be
formulated as a dual transshipment problem and that layout compaction is a special
instance of this problem. In fact, layout compaction can be achieved using Algorithm
FEASIBLE. We also introduce the integrated layout compaction and wire balancing prob-
lem and present a unified formulation of this problem using the dual transshipment prob-

lem.

A comparative experimental evaluation of our parallel algorithms is also provided.

iv
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CHAPTER 1
INTRODUCTION

In the last decade or so, there has been an intensive interest in parallel processing
research. This can be attributed to the fact that rapid advances in microelectronics technol-
ogy have made available high-performance parallel computers at relatively lower cost.
Fast hardware is essential for many applications, such as those that require real-time com-
putations. Furthermore, by interconnecting computers in an organization and using paral-
lel/distributed algorithms. one can solve efficiently several classes of problems whose
complexity is beyond the ability of any one computer in terms of memory and computing

requirements. Such algorithms also result in effective utilization of computing hardware.

Parallel machines with tens of thousaids of processors are already available com-
mercially, and machines with millions of processors can be built with today’s technology.
Significant progress has been achieved in the application of parallel computing for numer-
ical problems. Such is not the case for problems which involve non-numerical computa-
tions. Perhaps the reason is that until recently, most computationally intensive applications
- aerospace, signal processing, physics etc. - have all been mainly of a numerical nature.
The design and implementation of parallel algorithms for non-numerical problems is also

not well understood.

The rapidly increasing complexity of VLSI circuits puts pressure on VLSI CAD
tools from two directions. First, the amount of data to be processed has risen dramatically.
Second, VLSI designers have come to rely more heavily on CAD tools and demand higher
performance. This demand for speed up of the VLSI design process calls for an applica-
tion of parallel computing technology. In recent years, parallel algorithms for certain
phases (in particular, VLSI physical design) in the VLSI design process have been

reported (See Section 1.2.2). Computations which one encounters in several steps of VLSI



physical design are essentially non-numerical in nature. Almost all problems which arise

in VLSI physical design (layout: floor-planning. placement, routing. compaction, etc) can
be formulated in terms of graph and network optimization problems. Besides VLSI physi-
cal design problems. a number of other problems which arise in VLSI design can also be
formulated as network optimization problems. This motivated us to look into the issue of

designing efficient parallel algorithms for network optimization problems.

The transshipment problem [39] which can be formulated as a linear programming
problem is a general class of network optimization problems. Several network optimiza-
tion problems such as constructing shortest paths. finding a maximum flow, constructing a
min-cost spanning tree, finding matchings in networks etc. are special cases of the trans-
shipment problem. These network optimization problems occur routinely as building
blocks in designing efficient algorithms for more complex problems. The need for parallel
algorithms for the transshipment problem and its variants is apparent when one sees the
range of large engineering applications that can be modeled as a transshipment problem or

its dual. This is indeed the case in VLSI physical design research.

Motivated by the above considerations. this thesis addresses issues in design and
efficient implementation of parallel algorithms for the transshipment problem and its dual
as well as their application in VLSI physical design and. in particular, in VLSI layout

compaction and wire balancing problems.
1.1 Models of Parallel Computations

A detailed discussion of different models of parallel computations and related
issues may be found in [6], [19]. The most widely used taxonomy to characterize parallel
computations is the one proposed by Flynn [19]. He identifies four classes: Single Instruc-
tion, Single Data stream (SISD). Single Instruction, Multiple Data stream (SIMD), Multi-

ple Instruction, Single Data stream (MISD), and Multiple Instruction, Multiple Data




stream (MIMD). The model which one uses would depend on the structure of the compu-
tations involved. In the following sections, the above four models of paralle]l computations

are briefly discussed. More details of these models may be found in [6] and [19].
1.1.1 SISD Computers

In this model, at each step during a computation the control unit emits one instruc-
tion that operates on a datum obtained from the memory unit. Such an instruction may tell
the processor, for example. to perform some arithmetic or logic operation on the datum

and then put it back in memory.

The overwhelming majority of computers today adhere to this model invented by
John von Neumann and his collaborators in the late 1940s. An algorithm for a computer in

this class is said to be sequential (or serial).
1.1.2 MISD Computers

Each of N processors in the class of MISD computers has its own control unit, but
all of them share a common memory unit where data reside. There are N streams of
instructions and one stream of data. At each step, one datum received from memory 1is
operated upon by all the processors simultaneously, each according to the instruction it
receives from its control. Thus, parallelism is achieved by letting the processors do differ-
ent things at the same time on the same datum. This class of computers lends itself natu-
rally to those computations requiring an input to be subjected to several operations, each

receiving the input in its original form.
1.1.3 SIMD Computers

In this class. a parallel computer consists of N identical processors. Each of the N
processors possesses its own local memory where it can store both programs and data. The
processors operate synchronously: At each step. all processors execute the same instruc-

tion, each on a different datum.




Sometimes, it is desirable for the processors to be able to communicate among
themselves during the computation in order to exchange data or intermediate results. This
can be achieved in two ways, giving rise to two subclasses: SIMD computers where com-
munication is through a shared memory and those where it is done via an interconnection

network,
1.1.4  MIMD Computers

Here there are N processors, N streams of instructions and N streams of data. Each
processor operates under the control of an instruction stream issued by its control unit.
Processors typically operate asynchronously. though some algorithms possess structures
amenable for synchronous implementation. Communication between processors is
through a shared memory or an interconnection network. MIMD computers sharing a
common memory are often referred to as multiprocessors (or tightly coupled machines)
while those with an interconnection network are known as multicomputers (or loosely
coupled machines). When a shared memory is involved, issues such as concurrent mem-
ory access conflicts need to be studied and resolved. A review of different popular inter-

connection networks may be found in [6]. [19].

The MIMD model of parallel computation is the most general and powerful model
possible. Computers in this class are used to solve in parallel those problems that lack the
regular structure required by the SIMD model. This generality does not come for free:
Asynchronous algorithms are difficult to design, evaluate. and implement. In order to
appreciate the complexity involved in programming MIMD computers. it is important to
distinguish between the notion of a process and that of a processor. An asynchronous algo-
rithm is a collection of processes some or all of which are executed simultaneously on a
number of available processors. Initially, all pracessors are free. The parallel algorithm
starts its execution on an arbitrarily chosen processor. Shortly thereafter it creates a num-

ber of computational tasks, or processes, to be performed. A process thus corresponds to a




section of the algorithm: There may be several processes associated with the same algo-

rithm section, each with a different parameter.

Once a process is created. it must be executed on a processor. If a free processor is
available, the process is assigned to the processor that performs the computations specified
by the process. Otherwise (if no fiee processor is available). the process is queued and

waits for a processor to become free.

When a processor completes execution of a process, it becomes free. If a process is
waiting to be executed. then it can be assigned to the processor just freed. Otherwise (if no

process is waiting). the processor is queued and waits for a process to be created.

The order in which processes are executed by processors can obey any policy that
assigns priorities to processes. For example, processes can be executed in a first-in-first-
out order. Also, the availability of a processor is sometimes not sufficient for the processor
to be assigned a waiting process. An additional condition may have to be satisfied before
the process starts. Similarly. if a processor has already been assigned a process and an
unsatisfied condition is encountered during execution, then the processor is freed. When
the condition for resumption of that process is later satisfied, a processor (not necessarily
the original one) is assigned to it. These are but a few of the scheduling problems that
characterize the programming of multiprocessors. Finding efficient solutions to these
problems is of paramount importance if MIMD computers are to be efficiently used. Note
that none of these scheduling problems arise on the less flexible but easier to program

SIMD computers.

The MIMD (Multiple Instruction stream and Multiple Data stream) model seems
to be the most appropriate one for the problems encountered in VLSI physical design.

Therefore we use this model as the basis for the development of our algorithms.

In our model of computation, we assign to each process exactly one node of the



graph under consideration. Communication among processes is through shared variables.
We permit concurrent reads. No more than one process can write into a shared variable.
Lock variables are used to achieve this. The number of processes is not restricted to be
equal to the number of processors available on a parallel machine. In our algorithm, dur-
ing a pulse all processes execute the same set of instructions. Some of the processes may
be idle. The actions taken by the processes during a pulse may vary from one process to
another and will depend on the values of certain variables at the beginning of the pulse. A
phase in the algorithm will usually consist of several pulses. All our algorithms have been

implemented on the Shared memory BBN Butterfly machine.
1.2 Review of Literature

1.2.1 Parallel Network Optimization

Kruskal [87] and Prim’s [135] algorithms for the minimum cost tree problem,
Dijkstra’s [49] and Bellman-Ford-Moore’s algorithms [18]. [56]. [109] for the shortest
path problems. Ford-Fulkerson’s algorithm [55] and its several variants (for example,
[50]. [102]) for the maximum flow problem are among the most fundamental algorithms
in network optimization theory [164]. They have also served as the basis for designing
corresponding distributed/parallel algorithms. Some of these distributed network algo-
rithms may be found in [36]. [61], [73] and [94]. Synchronizers have been designed for
efficient implementation of asynchronous algorithms. Issues relating to the synchronizer

design problem have been discussed in [93]. [94] and [145].

A detailed discussion of the transshipment problem and algorithmic solutions may
be found in [39], [138]. There are two basic approaches to this problem - the network sim-
plex method and the primal-dual method. Goldberg [63] presented a variant of the primal-
dual method called the e-relaxation method. References to other e-relaxation methods may

also be found in [63]. The relaxation methods are primarily designed to obtain good com-
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plexity results for the transshipment problem. Goldberg [63] and Goldberg and Tarjan [64]
also presented a novel algorithm for the maximum flow problem. This algorithm for the
maximum flow problem and the primal-dual approach for the transshipment problem and

its variants are quite elegant and amenable to distributed implementation.

Stunkel {154] has reported results of both simplex and revised simplex implemern-
tations on an iPSC/2 hypercube. The methods are primarily row or column oriented and
thus are more suited to large or medium-grained machines. Peters [131] has presented a
parallel implementation of the network simplex method for solving the transshipment
problem. Recently. an overview of parallel algorithms for solving discrete optimization
problems has been provided in [65]. It also provides an extensive reference list of different
parallel algorithms for discrete optimization problems. A distributed protocol for the net-
work primal dual method and its implementation on a shared memory multiprocessor are
discussed in [159]. A parallel algorithm for the transshipment problem based on the pri-
mal-dual method and a unified approach to layout compaction and wire balancing is pre-
sented in [161]. A parallel algorithm for the dual transshipment problem is discussed in
[160]. This approach removes shortcomings of the dual simplex which made the latter

unattractive for parallelization.

A general method for parallelizing Depth-First-Search (DFS) is presented in [54],
[90]. [91]. [107]. This method employs stack splitting in conjunction with receiver initi-
ated subtask distribution schemes. Each processor searches a disjoint part of the search
space in a depth-first fashion. When a goal is found, all of them quit. Saletore and Kale
[144] presented a parallel formulation in which nodes are assigned priorities and are
expanded accordingly. By doing this, they were able to ensure that the nodes are expanded
in the same order as the corresponding sequential formulation. Parallel DFS using sender
initiated subtask distribution has been proposed by a number of researchers [53], [59].

[133],[137], [148].




A number of load balancing schemes for DFS have been explored in [1], [9]. [53],
[59], [66]). [90]. [127]. [133]. [137]. [144], [148]. Finkel and Manber [54] presented per-
formance results for a number of problems such as the travelling salesman problem and
Knights tour for the Crystal multicomputer developed at the University of Wisconsin.
Monien and Vornberger [108] showed linear speedups on a network of transputers for a
variety of combinatorial problems. Kumar et al [8], [90] have showed linear speedups for
problems such as 15 puzzle and tautology verification for various architectures such as a
128 processor BBN Butterfly, 128 processor Intel Hypercube, a 1024 processor nCUBE?2,
and a 128 processor Symult 2010. Kumar etal [66]. {90], {91]. {113] have investigated the
scalability and performance of many of these schemes for a variety of architectures such

as hypercubes, meshes and networks of workstations.

Recent work has shown that SIMD architectures such as CM2 can also be used to
implement parallel DFS algorithms effectively. Powley et al [134] and Mahanti and
Daniels [101] presented parallel cost bounded DFS for solving the 15 puzzle problem on
CM2. Powley’s and Mahanti’s formulations use different triggering and redistribution
mechanisms. However. both schemes report similar results for the 15 puzzle. Karypis and
Kumar [80] have presented a new load balancing technique which is shown to be highly
scalable on SIMD architectures and is shown to be no worse than that of the best load bal-

ancing schemes on MIMD architectures.

Bixby [21] presented a parallel branch and cut algorithm for solving the symmetric
traveling salesman problem. He also presented solutions of the LP relaxations of airline
crew-scheduling models. Miller [105] presented parallel formulations of the best-first
branch and bound technique for solving the asymmetric traveling salesman preblem on
heterogeneous network computer architectures. Roucairol {142] has presented parallel
best-first branch and bound formulations for shared memory computers and used these to

solve the Multiknapsack and Quadratic assignment problems. Pardalos and Crouse [123]




proposed a parallel formulation of the quadratic assignment problem based on best-first
branch and bound search. Experimental results for parallel formulations of more general
problems such as the quadratic (-1 programming problem (using distributed and shared

memory machines) are discussed in [124], [125].

Guibas, Kung and Thomson [68] have developed a systolic algorithm for the
parenthesization problem. Karypis and Kumar [81] analyzed three different mappings of
the systolic algorithm presented by Guibas et al [68] and experimentally evaluated them in
the context of the matrix multiplication parenthesization problem on an nCUBE2. Huang
et al [72] have presented an algorithm for solving a generalized parallel formulation of the
dynamic programming (DP) problem on a CREW-PRAM. This formulation can be
applied to a number of problems. DeMello et al [47] used vectorized formulations of DP
for the Cray to solve optimal control problems. Lee et al [95] have used the divide and
conquer strategy for parallelizing the DP algorithm for the (/1 knapsack problem on a
MIMD distributed memory computer. They demonstrated experimentally that it is possi-
ble to obtain linear speedup for large instances of the problem provided enough memory is

available.
1.22 Parallel CAD for VLSI

In recent years, there has been an intensive research in the application of parallel
computing technology to VLSI CAD problems. Parallel algorithms have been published
for virtually every layout problem except for the integrated layout compaction and wire
balancing problem even though it is a critical step in the final phase of the layout process.
Two recent reviews of this research may be found in [11], [158]. An excellent tutorial on
parallel algorithms for simulations may be found in {4]. Parallel placement has received
extensive attention. Parallel routing and floorplan design have received some attention. A
comprehensive treatment of parallel algorithms for VLSI physical design problems may

be found in the forth coming book [12].
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Research in parallel algorithms for placement has been primarily directed towards
those based on simulated annealing [82]. The motivation for this stems from the success of
the Timber-Wolf placement uniprocessor program which employs simulated annealing. A
major limitation of this program is that it is very slow. So efforts have been directed
towards speeding up simulated annealing through parallel processing. Banerjee, Jones and
Sargent {13] have discussed parallel placement algorithms targeted to run on hypercube
computers. Casotto and Sangiovanni-Vincentelli {31] have given a parallel placement

algorithm for the connection machine.

Casotto et al [30], and Kravitz and Rutenbar [86] have discussed parallel place-
ment algorithms and their implementations on shared-memory multiprocessors. Darema et
al [45) have presented a parallel algorithm for placing a number of equal sized modules
connected by multiterminal nets on a chip represented as a rectangular array. Their algo-
rithm is based on simulated annealing on a shared memory multiprocessor. Natarajan and
Kirkpatrick [118] have reported a ditferent parallel simulated annealing algorithm on a
shared memory multiprocessor using a decomposition approach. A method for standard
cell placement based on a genetic algorithm has been proposed by Mohan and Mazumder

[106] .

Tosupovici. King and Breuer {74] have proposed a special purpose hardware archi-
tecture using a pipelined processor to rapidly evaluate alternative configurations of place-
ments through placement interchanges among modules. A special purpose SIMD
architecture for the above task has been proposed by Kumar and Patnaik [88]. Kumar and
Sastry [89] have discussed a hardware accelerator for a module placement algorithm
based on the Divide and Conquer paradigm. Kling and Banerjee [83] presented a parallel
placement program designed to run on a network of loosely coupled multiprocessors such
as workstations connected via ETHERNET. Rose et al [141] have discussed a parallel

placement algorithm which improves upon simulated annealing. A parallel placement
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algorithm based on pairwise interchange has been proposed by Sugiyama and Watanabe
[155]. Ueda et al [167] have discussed a placement algorithm using adjacent pairwise
interchange on a SIMD architecture with a two-dimensional processor array structure. A
similar strategy has been employed in [40] where a force directed pairwise interchange

algorithm is implemented on a two-dimensional array of Processors.

A parallel floorplanning algorithm suitable for execution on a hypercube based
distributed memory multiprocessor has been reported by Jayaraman and Rutenbar [78]. It
is based on simulated annealing. Cohoon et al [41] have reported a parallel algorithm for
floorplanning based on the theory of punctuated equilibria for genetic algorithms. The
algorithm is suitable for execution on distributed memory multiprocessors. A parallel
algorithm for floorplanning based on parallel depth first search strategies has been pro-

posed by Arvindam et al [8].

Different hardware architectures for implementing Lee based routing algorithms
have been described in [153] and [174]. Watanabe and Sugiyama [ 170] have given a paral-
lel routing algorithm that can control path quality in two point connections. Rose [139],
[140] has presented a parallel global routing algorithm based on enumerating a subset of
all two-bend routes between two points. Zargham [177] has given a parallel algorithm
based on a shared-memory multiprocessor for solving the problem of channel and switch-
box routing. A parallel algorithm for global routing that is suitable for execution on a
shared memory multiprocessor has been proposed by Nair et al on an array processor

hardware [114].

Thulasiraman et al [163], [161] have proposed an approach for parallel layout

compaction and wire balancing.

Bier and Pleszkun [20] presented a parallel algorithm for design rule checking. It
works on the flattened representations of mask layouts and uses a data decomposition

strategy. Gregoretti and Segall [67] have proposed a parallel bottom-up approach to design
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rule checking which is suitable for execut.on on a shared memory multiprocessor. Carlson
and Rutenbar [28]. [29] have described massively parallel SIMD algorithms based on
scanline approach for design rule checking on Hattened representation. Blank et al [22]
have proposed a bit mapped processor consisting of a three dimensional data structure of
bits in hardware which can be programmed to perform DRC using the window checking
scheme. Seiler [146] has presented a window processor which performs the DRC using
rasterization hardware, a local checking hardware and an error reporting hardware. Carl-
son and Rutenbar [27] have proposed a scanline data structure processor for performing

design rule checking.

A parallel algorithm for speeding up the task of circuit extraction was proposed by
Levitin [98]. This approach involves splitting the design into equal size horizontal slices,
and assigning one slice to each processor. Belkhale and Banerjee [15]. [16]. [17] have
reported on the results of an implementation of a parallel algorithm for circuiv extraction
on an Intel iPSC/2 hypercube and have reported speedups of about 12 to 14 on 16 proces-
sors for various benchmark circuits. Tonkin [165] has presented a parallel version of a

well-known sequential extractor.

Sadayappan and Viswanathan [143] have proposed a fine-grained parallel algo-
rithm for circuit simulation on a vector multiprocessor, the Alliant FX/8 using a compiled/
interpretive code approach. Trotter and Agarwal [166] have looked at the issues of imple-
menting row-level parallel algorithms in distributed memory multiprocessors. Yuan et al
[176] have implemented a PECSI circuit simulator on a hypercube using a distributed
multifrontal method. Parallel algorithms for iterated timing analysis have been imple-
mented in the MSPLICE program on the BBN Butterfly [48]. [77]. A massively parallel
algorithm for circuit simulation that is suitable for execution on an SIMD machine has

been presented by Webber and Sangiovanni-Vincentelli [171].

Smart and Trick [149] have reported results of a parallel Waveform Relaxation
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algorithm using the Gauss-Jacobi method of iterative solution on an Alliant FX/8 which is
a 8 processor shared memory multiprocessor. A distributed memory parallel waveform
rclaxation algorithm based on a modified Gauss-Seidel algorithm has been proposed by
Johnson and Zukowski [79]. White et al {172] have reported the implementation of the
timepoint pipelining algorithm on a 10 processor Sequent Balance 8000 shared memory
multiprocessor. Nakata et al {115] have developed a hardware accelerator for speeding up

the direct method for circuit simulation.

The HSS program [14], developed by Barzilai et al at IBM, simulates a single
good or faulty circuit on up to 32 patterns simultaneously. The FSS program developed by
Tan [157] was designed to compute the expected signatures for circuits containing linear
feedback shift registers. Bryant [26] has proposed two data parallel algorithms for the
switch-level simulator COSMOS. Using a simple mode of concurrency, Smith et al [150]
compared the effectiveness of several partitioning schemes for parallel logic simulation.
Recently, several partitioning strategies have been proposed by Patil, Banerjee and Poly-
chronopolous [130] and by Chamberlain and Franklin [33] which address the interproces-

sor communication cost explicitly during the partitioning.

Kravitz et al [85] have demonstrated the feasibility of mapping switch-level simu-
lation onto a massively parallel SIMD Connection Machine. Soule and Blank [151]
reported on an implementation of a simple parallel algorithm for event driven logic simu-
lation on a shared memory multiprocessor. Mueller-Thuns et al [ 111] have reported on a
parallel logic simulation algorithm for sequential circuits consisting of combinational
gates and latches using a loosely synchronous model suitable for execution on distributed
memory multiprocessors. Chandy and Misra [35] developed an alternative approach to
parallel simulation which avoids the sending of null messages. Lubachevsky [100] pro-
posed the use of a moving simulated time window to reduce the overhead associated with

determining when it is safe to process an event. Soule and Gupta [ 152] have implemented
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a parallel logic simulation algorithm using the conservative approach with deadlock detec-
tion and recovery. Arnold and Terman [7] used a greedy algorithm based on clustering for
assigning the partitions to processors. followed by an iterative improvement stage which
moves groups from one partition to another if there is a lot of communication across the
groups in two partitions. More recently. Briner [25] has reported on parallel logic simula-
tion algorithms on a shared memory multiprocessor which applied the Virtual Time/Time

Warp paradigm maore rigorously by using a combination of several optimizations.

IBM has built three generations of simulation engines that use circuit parallel algo-
rithms using the compiled synchronous approach. The machines are the Logic Simulation
Machine (LSM) [70]. the Yorktown Simulation Engine [132] and the Engineering Verifi-
cation Engine [{52]. The MARS hardware accelerator [2]. [3] uses the functional parallel
approach to parallel logic simulation. Algorithms and implementations of logic simulation

on vector processing machines are discussed in [112], [76]. [136].

The simplest way to parallelize an automatic test pattern generation algorithm is to
divide the fault list among the processors. Each processor then gencrates tests for each
fault on its portion of the fault list until tests for all the faults have been generated. Such a
scheme has been proposed by Chandra and Patel [34]. Communication among processors
can be reduced or eliminated altogether by dividing the fault sets into independent fault
sets [5]. Patil and Banerjee [128] have proposed a distributed memory parallel algorithm
for test generation of combinational circuits which uses fault parallelism. Their method is
a compromise between purely static and purely dynamic fault partitioning. Fujiwara and
Inoue [57]. [58] have presented an approach to parallel processing of test generation in a
loosely coupled distributed network of workstations and analyzed the effects of allocation
of target faults to processors. the optimal granularity (grain size of target faults), and the

speedup ratio.

The PODEM-based test generator using parallel branch and bound has been imple-
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mented on a 16 node Intel iPSC/2 hypercube [127]. Recently, Arvindam et al [10] have
reported a parallel implementation of a similar parallel algorithm for ATPG on a network
of Sun Workstations. Patil, Banerjee and Patel have reported on a parallel implementation
of sequential circuit test generation using OR-parallel functional decomposition on a
shared memory multiprocessor [129]. Motohara et al [110] implemented a version of
AND-parallel functional decomposition on a distributed memory multicomputer system
called LINKS-1 consisting of 50 processors connected as a tree of processors. Patil [126]
has proposed an AND-parallel functional decomposition of test generation for sequential

circuits suitable for shared memory multiprocessors.

A massively parallel SIMD algorithm for test generation has been recently pro-
posed for the Connection Machine [104]. Duba et al [5]] proposed a fault partitioned
approach to parallel fault simulation based on a concurrent hierarchical fault simulator.
Recently, Markas et al [103] have reported a distributed fault simulation algorithm on a
heterogeneous network of workstations connected through a local area network. Ostapko
et al [120] proposed a parallel algorithm for fault simulation using data parallel compiled
simulation techniques. Recently. Kung and Lin [92] have proposed the Parallel Sequence
Fault Simulation (PSS) algorithm for synchronous sequential circuits. Warshawsky and
Rajski [169] have developed a parallel algorithm for fault simulation using input vector
set partitioning that is suitable for use on distributed memory multiprocessor and networks

of workstations.

One of the earliest works in parallel fault simulation based on circuit decomposi-
tion was proposed by Levendel, Menon and Patel [97]. Recently, Mueller-Thuns et al
[111] have reported on a distributed memory parallel algorithm for fault simulation based
on circuit decomposition for sequential circuits. A related parallel algerithm for fault sim-
uvlation on a hypercube based distributed memory multiprocessor has been reported by

Nelson [119]. More recently, Ghosh [62] has proposed a similar parallel circuit partitioned
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algorithm called NODIFS for combinational and sequential circuits. Various techniques
have been proposed in the past for parallel logic simulation using circuit partitioning

[150], [151].

Narayan and Pitchumani [116]. [117] have reported on massively parallel SIMD
algorithms for fault simulation. Ozguner et al [121] have presented a parallel fault simula-
tion algorithm using a pipelined decomposition. Chakradhar et al [32] have proposed a
massively parallel algorithm for test generation using a neural network model of a logic
circuit. Ishiura et al [75] proposed a dynamic two-dimensional parallel fault simulation
technique where large vector lengths were obtained by utilizing both pattern and fault par-
allelism. Algorithms and implementations of fault simulation on vector processing

machines are discussed in [168].[76].{75] and [122].

A parallel algorithm for two-level logic minimization based on ESPRESSO was
proposed by Galivanche and Reddy [60]. Lim et al [99] have reported on a shared memory
parallel implementation of a logic synthesis system using both circuit partitioned parallel-
ism and intra-partition algorithmic partitioning. De, Ramkumar and Banerjee {46] pro-
posed a novel asynchronous parallel algorithm for logic synthesis for distributed memory
multiprocessors. A parallel algorithm for multilevel tautology checking based on a recur-
sive divide and conquer sequential algorithm has been proposed by Hachtel and

Moceyunas [69].
1.3 Integrated Layout Compaction and Wire Balancing

In this thesis, the integrated layout compaction and wire balancing (ILCWB) prob-
lem is used as an application to demonstrate the effectiveness of our parallel algorithms
even though these algorithms can be used to solve many other problems that arise in engi-

neering and industrial applications.

There are basically three approaches to layout compaction: compression ridges
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(also known as shear-line), virtual grid and constraint graph compaction. For a discussion
of these approaches. see [23]. [37] and [96]]. They also contain an extensive list of refer-
ences. We will use the constraint graph approach and formulate the problem in terms of

the dual transshipment problem.
1.3.1 Constraint Graph Approach

The constraint graph approach is the most popular compaction method. This
approach consists of two main steps: i) build the constraint graph to indicate the relative
positions and the minimum distance required among the elements, ii) solve the constraint
graph to minimize the chip area using the shortest/longest path method. Constraint graph
compactors are generally one-dimensional compactors and require at least one X compac-

tion pass and one Y compaction pass.

A directed graph is constructed to represent the layout where each node represents
an element or a group of elcments that move together and edges represent minimum spac-
ing requirements between nodes. Since spacing constraints are translated into edge
weights, each node must be at least longest path distance away from the boundary element
to satisfy all the constraints. Hence a solution to the compaction problem is to keep each
element at the longest path distance from the boundary assuming the boundary element is
at zero coordinate. This solution also corrects design rule violations, if any. in the direction

of compaction.

The main advantage of the constraint graph approach is the flexibility of the
model. Incorporating user-defined constraints is very easy. The major drawback is that all
objects are pushed toward the boundary as much as possible or evenly distributed. Fea-
tures that lie on a longest path have no freedom to move, but features that do not lie on a
longest path can be placed in a variety of possible locations. This additional freedom can
be used to perform further optimizations on the layout. One popular optimization is total

wire length minimization or wire balancing. Here, the features that do not lie on a longest
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path are placed such that the total length of the horizontal (vertical) wires is minimized.
Note that wires are not explicitly represented in the geometrical layout. Technological

aspects can also enter this optimization.

The first graph based approach for layout compaction was reported by Cho et al
[38). But the details of their algorithms were not released to the public until much later.
The CABBAGE [71] compactor of Hseueh is the most widely known constraint graph
compactor and the general understanding of compaction was greatly enhanced by his
comprehensive Ph.D. thesis. Since then a number of algorithms have been published using
the constraint graph approach. Yoshimura [175] formulated the layout compaction and
wire balancing problem as a dual transshipment problem and solved it using the simplex
method. An extensive list of references are available in [24], [37]. [96]. The constraint
graph approach and the integrated layout compaction and wire balancing problems will be

discussed further in Chapter 7.
1.4 Expressing Algorithms

To describe our parallel algorithms, we shall use the notation used by Akl [6} with
slight modifications. This notation combines plain English with widely known program-

ming constructs. For more information. see [6].

A paralle] algorithm will normally consist of two kinds of operations: sequential
and parallel. In describing the former, we use statements similar to those of a typical struc-
tured programming language. Examples of such statements include: if ... then ... else,
while ... do, for ... do, assignment statements, input and output statements, and so on. The
meanings of these statements are assumed to be known. A left-pointing arrow denotes the
assignment operator: thus @ < b means that the value of b is assigned to a. The logical
operations and, or, xor (exclusive-or), and not are used in their familiar connotation.

Thus, if @ and b are two expressions, each taking one of the values true or false, then
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1. (aand b) is true if borh a and b are true: otherwise (a and b) is false;

2. (aor b)istrueif at least one of a and b is true; otherwise (a or b) is false;
3. (axor b)is true if exactly one of a and b is true; otherwise (a xor b) is false: and

4. (not a) is true if a is false; otherwise (not a) is false.

Parallel operations, on the other hand, are expressed by two kinds of statements:

1.  When several steps are to be done at the same time, we write
do steps i toj in parallel
step 1

stepi+ 1

step j.
2. When several processors are to perform the same operations simultaneously until a

boolean condition is satisfied, we write
i) while (boolean expression) do in parallel

{The operations to be performed by P; are stated here }
end while

where boolean expression is evaluated first, or
i)  doin parallel

{The operations to be performed by P; are stated here }

while (boolean expression)

where the statement(s) are executed once before the boolean expression is
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evaluated.
3. When several processors are to perform the same operation simultaneously, we write
i)  fori¢-jtokdoin parallel

{The operations to be performed by P; are stated here }

end for
where i takes every integer value from j to k, or
ii) fori ¢ s, ..., tdoin parallel

{The operations to be performed by P; are stated here }

end for
where the integer values taken by i are enumerated, or
iii) forall iin S do in parallel

{The operations to be performed by P, are stated here )

end for
where S is a given set of integers.

Comments in algorithm descriptions are surrounded with curly brackets (braces)
{}, as shown in the preceding. Curly brackets are also used to denote a sequence of ele-
ments as. for example. in A = {ap. a,. ...,a,.;} orin E = {S; € S: s; = m}. Both uses are

fairly standard and easy to recognize from the context.

We also add an ext:a construct lock to indicate the semaphore write (or exclusive
write) to a data structure. We assume that there are lock and unlock operations available
to the processes either implicitly or explicitly so that only one process can lock and there-
fore write to that data structure while other processes will wait for this process to unlock

the data structure when it finishes. This is expressed in two ways.
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1. lock operation is assumed to be in effect for the duration of the execution of a state-

ment. An unlock operation is implicitly assumed after the execution of the statement

is over.
lock statement
2. lock and unlock are explicitly stated. This is useful to execute a number of statements
under locked condition.
lock
{The operations to be performed are stated here

unlock
1.5 Scope of the Thesis

This thesis is concerned with the development of efficient parallel algorithms for
the transshipment problem and its dual, and their application in the integrated VLSI layout
compaction and wire balancing problem. Three different parallel algorithms are developed

and implemented on a shared-memory multiprocessor.

Chapters 2 - 7 of the thesis address the development of parallel algorithms for the
transshipment problem and the dual transshipment problem. Chapter 2 discusses the trans-
shipment problem in general aﬁd reviews the previous algorithms (sequential and parallel)
in this area. It also outlines our three approaches. Chapter 3 discusses three basic network
optimization algorithms that serve as building blocks in our parallel algorithms. A detailed

discussion of their implementations is also given.

Our first parallel algorithm is for the transshipment problem. This is based on the

primal-dual method. This parallel algorithm is discussed in Chapter 4.

Chapter 5 develops a new algorithm for the dual transshipment problem. This is

based on the dual simplex method and is called the Modified Network Dual Simplex
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(MNDS) method. This algorithm overcomes certain shortcomings of the dual simplex

method which make it unattractive for parallelization.

Chapter 6 develops a novel approach, called the Cluster-Based Dual Simplex
(CBDS) method, for the dual transshipment problem. This algorithm is based on a new

characterisation of the optimum solutions of the dual transshipment problem.

Both MNDS and CBDS methads extensively use the notion of firings and are

based on the theory of marked graphs.

In Chapter 7. we present results of an experimental evaluation of the three parallel
algorithms - network primal dual, MNDS and CBDS methods - of Chapters 4 - 6. The

algorithms have been implemented on the BBN Butterfly machine.

Chapter 8 of this thesis is concerned with the application of our parallel algorithms
in VLSI layout compaction and wire balancing problems. In this chapter, the integrated
layout compaction and wire balancing problem is defined. A unified formulation of this
problem using the dual transshipment problem is developed. A comparative experimental
evaluation of MNDS and CBDS algorithms as regards their performance in solving the

integrated layout compaction and wire balancing problem is also given.

Finally. in Chapter 9, we summarize our contributions in this thesis and point out

certain problems for future study.
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CHAPTER 2

THE TRANSSHIPMENT PROBLEM AND ITS DUAL

Network optimization refers to the class of optimization problems defined on
graphs or networks. These problems include the problem of constructing shortest paths,
finding a maximum flow, constructing a minimum cost spanning tree, finding matchings in
a network, etc. These problems occur in a variety of applications. While they are them-
selves significant in their fullness, they also occur as subproblems in several other applica-
tions. The transshipment problem (also known as the minimum cost flow problem)

generalizes several of the network optimization problems [39].

The transshipment problem can be formulated as a linear program and therefore
can be solved by the simplex method using any one of three approaches, namely, the pri-
mal, the dual or the primal-dual methods. The network simplex algorithm is an efficient
implementation of the primal method for solving the transshipment problem and has been
extensively studied in the literature. However, the dual method has received very little
attention, since one can construct an optimum solution of the primal problem from an opti-
mum solution of the dual. As we shall point out later that the network simplex algorithm is
essentially sequential in nature and does not offer much scope for an efficient distributed
implementation. This has motivated us to select the dual and the primal-dual methods as

candidates to design efficient parallel algorithms for network optimization problems.

In this chapter, we give an introduction to the transshipment problem and its dual.

We also give definitions of certain concepts that will be used in the remaining chapters.

2.1 The Transshipment Problem

The transshipment problem is defined as follows. We are given a network N inter-

cunnecting several nodes. Some of the nodes in N represent sources (e.g. manufacturing




centers) and are called supply nodes. Some of the others represent sinks and are called
demand nodes. There may be several nodes which neither supply nor demand. These
nodes are called neutral nodes. Each edge in the network is assigned a cost which repre-
sents the cost of transporting a unit quantity of a commodity. Given the supplies available
at the sources, and the demands at the sinks, the transshipment problem is to arrive at a

routing pattern for a given commodity so that the demands are satisfied at minimum cost.
In our formulation of this problem. we use the following notation.

The nodes of N will be denoted by the integers 1, 2, .., n. Thus V = {1. 2, .... n}.
The supply or demand at a node i is denoted by w;. Each edge e = (i, j) is associated with a
real number my; called the token of e. m;; represents the cost of transporting unit quantity
of the commodity along the edge e. Each edge (i, j) is also associated with a real number
¢jj called capacity of the edge. cjj represents the maximum quantity of the commodity that
each (i, j) can accomodate. Thus, if xjj represents the flow along the edge (i, j), then 0 < Xjj
< ¢jj. Itis assumed that the sum of the flows into a node is equal to the sum of the flows out

of the node.

We follow the convention that w; is negative if node i is a supply node; otherwise
w; is non-negative. Thus -w; will denote the total supply available at a supply node i.

Clearly, w; = 0 if node i is a neutral node.

With the different variables defined above we can formulate the transshipment

problem as an LP problem as defined below.

Minimize : M X

subject to :
A"X=w 2.1
<X <C (2.2)
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where

M = Row vector of edge tokens m;;.

X = Column vector of edge flows Xj-

A* = —A. where A is the incidence matrix of the graph G.
C = Column vector of edge capacities Cjje

W = Column vector of node supplies or demands.

Note that w; = sum of the flows into node i - sum of the flows out of node /.

We assume without loss of generality that the total supply available is equal to the

total demand. Thus.

As an example, a network N representing a transshipment problem is shown in

Figure 2.1. The corresponding linear program is given below.

Minimize 3.\712 + 5.\']3 + X5+ X9y + 4X42 + X+ 6x53 + Xgy + Xsg + Xgo + Xgg

subject to :

Zwi =
i

- X2 - X3 - X5 = -9

Xp-X3+ X+ Xqn = 4

X3+ X3+ X3+ X7 = 17

“Xgp - Xga + Xsq + Xgq = 1
Xi5 - X53 - X5q - Xsg = -5
Xsg - Xe = Xgg = -8

()le?. < 2
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0€£x;3510
0<x5<10
0£x,356
0<xn<8
0£x;359
0€x57,<9
0€xs,<10

0< X564 <6

(4) ~=&—. demand

-9
f
supply edge token
/
1.10 !

V7
A
E

capacity

(-8)

1.6

Node numbers are shown inside nodes.
Node Demands and edge tokens are as shown.

Figure 2.1 AnExample: A Network N for the Transshipment Problem.




2.2 The Dual Transshipment Problem (DTP)

Associated with any linear programming problem there is a duwal problem. The
original problem is then called the primal problem. The dual of the transshipment problem
has n dual variables y;, v, . . ., ¥,,- The optimum values for y;'s would maximize the sum
Zwiy i Let A’ be the transpose of the incidence matrix A of G. If we assume that there is

1
no upper bound o edge flows (that is. ¢;;'s equal to o), then the dual transshipment prob-

lem is defined as follows.
Maximize: W'Y
subject to
AlY>-M (2.3)

Y 20. (2.4)
Note that the inequality in (2.3) corresponding to each (i, j) will be of the form
i) 2 - m,
For instance. the inequality corresponding to edge (1. 2) in Figure 2.1 is
y1-y22-3
2.3 Structure of Optimum Solutions for the Transshipment Problem
and its Dual '
An importan: result in linear programming theory is stated next.

If x,~]’s and y;'s represent optimum solutions for the primal and dual problems,

respectively. then
X =0, ifyj-y+ nj > ()

X = Cjj if yj- y; +m;<0 (2.5)
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The above conditions are called the complementary slackness conditions. We can now say

that for any optimum solution X for the transshipment problem the following are true:
iv), AX=W.
v) 02X <C
vi)  There exists y;’s such that (2.5) is true.

At this point, it will be useful to explain the significance of the complementary

slackness conditions.

Consider an edge (i, j) of N with flow x;; . In linear programming theory, the quan-
tity y; - y; + my; is called the relative cost coefficient of (i, j). In this thesis. we shall refer to
this as the residual token of (i, j). This quantity has an important role to play. If the flows
in all the edges except (, j) are kept unchanged and x;, is changed to x;; + Ay, then we can
show that the objective function ,-Z-m" X will change by (y; - vj +mA;,;. Since no further
decrease in the value of the objective function of the transshipment problem is possible

once an optimum is reached, it means that at that point

x;=0,if y; - 3+ my >0

Xjj = Cjj ify; - yj+m;<Q. (2.6)

There are three distinct approaches to the transshipment problem - the primal, dual
and primal - dual approaches [39]. The primal approach called the Network Simplex
Method, starts with an X satisfying (2.1) and (2.2), repeatedly update.s X (without violat-
ing (2.1) and (2.2)) until (2.5) is satisfied. The update of X is achieved through what is
called a pivot operation. Note that each new X leads to a value for the objective function
WX that is not greater than the previous value. As a sequential algorithm . the primal
approach is known to be a very efficient one. However, unfortunately. it is not suited for a
distributed or parallel implementation. The bottleneck here is the pivot operation which is

inherently sequential in nature.
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The Network Dual Simplex method is the same as the primal approach applied to

the dual transshipment problem and hence it is also not suitable for a parallel implementa-

tion,

The primal - dual approach starts with an X and Y satisfying (2.2) and (2.5). It then
updates X and Y (without violating (2.2) and (2.5)) until X satisfies (2.1). This approach is
quite amenable to distributed and parallel implementations, since it uses the maximum
flow and shortest path algorithms, as building blocks. Chapters 3 and 4 are concerned with

the development of such a parallel algorithm.

Our algorithms in Chapters 5 and 6 deal with the dual transshipment problem.
Both these algorithms extensively use the notion of node/cluster firings and results from

the theory of marked graphs.
2.4 Basic Definitions

Given a directed graph G = (V, E), (i, j) € E will refer to the edge directed from i to
Jj. Anode j is an oumode at node i, if (i. j) is an edge in G. Similarly. a node k is an innode
at node 7, if (k, i) is an edge in G. Given Sc V, S = V - S will refer to the complement of S
in V. (S, S) will refer to the set of edges connecting the nodes in S with those in S. Thus if

(i,) e (S.S), theneitheri e« Sandje Sorie Sandje S.

Given a spanning tree T of G. consider an edge e = (i, j) of T. Removing ¢ from T
will result in two connected subgraphs Ty and T, with node sets Vi and V,. Note that Vy
=V - V,. Then (V1, V;) will be referred to as the fundamental cutset with respect to the

edge e of T.

The notion of firing {42}, [43], [162] will be used extensively in the development
of our algorithms in this thesis. Positive firing of a node i, x times is the operation of add-
ing x to the token of every outgoing edge (i, j) and subtracting x from the token of every

incoming edge (j, i). Negative firing of a node i. x times is the operation of adding x to the
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token of every incoming edge (j, i) and subtracting x from the token of every outgoing
edge (i, j). A subset of nodes will be called a cluster. Firing a cluster x times results in fir-
ing every node in the cluster x times. The firing number of a node is the number of times
this node has been fired. After a positive (negative) firing of a node, the node firing num-
ber is increased (decreased) by the appropriate number. A firing, positive or negative.
should not cause any edge token to become negative. Unless otherwise stated, firing

would mean a positive firing.

The roken of a directed path will refer to the sum of the tokens of the edges on this
path. The token of a directed circuir is defined similarly. d;; will denote the token of a min-
imum-token directed path from node i to j. A minimum-token path from i to j will be
referred to as a shortest path from i to j. For definitions of other standard graph-theoretic

terms [164] may be referred to.

The variable Y in (2.3) and (2.4) is 4 column vector of node variables 1. y2. ...
and they will be referred to as firing numbers. Thus y; will denote the firing number of

node i. With these definitions, we can now seethat the dual transshipment problem (DTP)
AN

seeks to obtain a vector Y such that
1 W 'Y is maximum, and

2 the residual token on every edge is non-negative if the nodes are fired as speci-

fied by the firing numbers y;’s.

A vector Y is called a feasible solution of the DTP if Y satisfies constraint (2.3). A
vector Y is called a basic feasible solution if G has a spanning tree T such that the residual
tokens of all edges of T become zero when the nodes are fired as specified by the node fir-
ing numbers y;. The tree T is then called a basic feasible tree corresponding to the basic

feasible solution Y. Such a tree T will also be called a O-token spanning tree.

Since during a firing no residual edge token should become negative. it follows
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that a node i can be positively fired at most y; times where y; is the smallest residual token
on any incoming edge (j, /). Note that if residual tokens permit firings of nodes i and j, then
these firings can be done concurrently without making any resulting residual edge token
negative. It is this property of firings that we take advantage of in developing vur parallel

algorithm.

Let Y be a basic feasible solution and T be the corresponding basic feasible tree.
Consider an edge (i, j) and let (S, S) be the corresponding fundamental cutset with i € S
and j e S. Then S and S will be called fundamental clusters with respect to edge (i, j) of
tree T. A dual pivot operation is permissible if W(S) 2 0 where W(S) = Z W(i).If no
dual pivot operation is permissible, then the solution Y is optimum. The élelafpivot opera-
tion consists of firing the cluster S the maximum possible number of times and construct-

ing a new basic feasible tree. Note that firing S results in a new Y vector and new residual

tokens. It can be shown that the new Y is also a basic feasible solution.

2.5 Summary

In this chapter, the transshipment problem and its dual are defined. The transship-
ment problem is also illustrated through an example. We have discussed the relationship
between the optimum solutions for the transshipment problem and its dual. We have given
some basic definitions which will be used in the development of our algorithms in the fol-
lowing chapters. For graph-theoretic definitions, Thulasiraman and Swamy [164] may be

referred.
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CHAPTER 3

BASIC NETWORK OPTIMIZATION ALGORITHMS

In this chapter, we discuss three basic network optimization algorithms and their
parallel shared memory implementations. They are: Algorithm FEASIBLE to test the fea-
sibility of the dual transshipment problem, Algorithm SHORTEST-PATH for the single-
source shortest path problem, and the Maximum Flow (also known as Max Flow) Algo-
rithm, These algorithms serve as building blocks for the algorithms to be developed in the
following chapters. They also occur as subproblems in several other applications even
though they are by themselves significant in their usefulness. Our discussion is based on

[42], [43]. [44], [63], [94].
3.1 Algorithm FEASIBLE

Consider the dual transshipment problem (DTP) defined in Section 2.2.
Maximize: W'Y
subject to
AlY >-M (3.1)
Y20 (3.2)
Recall (Section 2.4) that a vector Y is called a feasible solution of the DTP, if Y =
0 and satisfies (3.1). If such a vector exists, then the given DTP is feasible. It can be shown

[44] that a DTP is feasible if and only if the underlying graph G has no directed circuit of

negative token. The following theorem also proved in [44] gives a solution to the DTP.
Theorem 3.1

Let o; = Max {0, - min {dU}}.i= 1.2, ...n.




Then the vector Y = (o1, ..., o) is a feasible solution of the DTP if the graph G has

no negative token directed circuit. Q

Clearly, using a shortest path algorithm we can determine the vector Y defined in
the above theorem. But such an algorithm would require constructing an auxiliary graph.
In [44] an algorithm called Algorithm FEASIBLE wkich determines a feasible vector has
been presented. This algorithm executes on the original graph itself and requires no auxil-
iary graph. An asynchronous distributed implementation of this algorithm as well as an
efficient implementation using a synchronizer have also been presented in [44]. The time
and message complexities of the synchronous version of this algorithm are O(n) and
O(@mn) respectively. Details of these algorithms and their proofs of correctness may be

found in [44].

‘We now present an outline of a synchronous parallel version of Algorithm FEASI-
BLE. This algorithm computes o;’s as defined in Theorem 3.1. Here, M will denote the
initial token vector. The algorithm starts with o; = 0, for all / and proceeds in pulses. All
processors execute the following sequence of instructions in parallel during a pulse. These

instructions for node 7 are:
1. Foreach edge (i, j), compute the residual token m;; + g; - ©;.
Setrj=m;; +0;-

2. Compute Min (i) = Max{0. max {~rl.j} }
J

3. If Min (7) > 0, then fire node i, Min (i) times.

The above algorithm will terminate if during a pulse Min (/) = (» for all i. It can be
shown that the algorithm will terminate within n - 1 pulses, if the graph has no negative
token directed circuit. If the algorithm does not terminate in n pulses, then the DTP is
infeasible and in such a case we can also locate a negative token directed circuit by incor-

porating a suitable mechanism in the algorithm. A detailed discussion of these issues may
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be found in [44).

Note that each processor i calculates the residual tokens in its local memory. This
operation will require only reading the values of o; and o; and m;; which can be done con-
currently. So to implement this step, no lock operations will be required. It was found that

the performance of the algorithm improves considerably because of this.

Also, we need no explicit synchronizer mechanism unlike in the distributed imple-
mentation discussed in {44]. The inherent syrchronization available when one spawns dif-

ferent processes in the BBN parallel computer itself serves as a synchronizer.

The following data structures are used in the parallel implementation of Algorithm

FEASIBLE.

token : a 2-dimensional array of integers. token [i] [j] represents
the value of token of edge (i. j) directed from node i to
node j if this edge exists in the graph G: otherwise it con-
tains a special value INFINITY outside the range of edge
tokens.

outNodes . anarray of sets. outNodes [i] is a set containing all the out-
nodes at node .

firing_no :an armray of integers. At any time. firing_no [i] represents

the current firing number of node i.

Algorithm FEASIBLE is formally presented as follows.
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Algorithm FEASIBLE

procedure initialize_feasible (/)

{ This procedure initializes firing_no [i] to the value of the most negative token of
an outgoing edge at node i. If there is no such edge at node j, then firing_no [i] to

zero. }
fno « 0;
for all jin outNodes [ijdo
if (token [i] [j] < fno)
then fno «- token [i] [j]
end if;
end for,
firing_no [i] « - fno;
if (fno<0)
then notFinished « TRUE
end if;
end procedure { initialize_feasible }
procedure get_most_negative_edge_token ( i)

{ This procedure calculates the new relative tokens for all the out-edges at node i

and then retums the the value of the most negative edge token }
fno « 0;
for all jin outNodes [i] do
temp « token [i] [j] + firing_no [i] - firing_no [j};

if (temp < fno)
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then fno « temp

end if;
end for;
return fno;
end procedure { get_most_negative_edge_token }
procedure fire_if_negative_edge ()
{ It fires node /if there is at least one negative token at an outgoing edge }
new_fno « get_most_negative_edge_weight ());
if (new_fno = 0)
then
notFinished « TRUE;
firing_no [i] « firing_no [i]- new_fno;
end if;
end procedure { fire_if_negative_edge }
procedure feasible ()
{ main procedure }
notFinished «— FALSE;
for i< 0toN - 1do in parallel
initialize_feasible (j)
end for;
npulses « 0;
while (notFinished and npulses < N) do

notFinished « FALSE;
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npulses « npulses + 1;
for i« 0to N - 1 doin parallel
fire_if_negative_edge (J)

end for;

end while;

it (npuises < N)

then return TRUE

else return FALSE

end if;

end procedure { feasible }

3.2 Algorithm SHORTEST-PATH

Consider a connected directed graph G with tokens assigned to the edges of G.
Recall that (Section 2.4) the token of a directed path in G denotes the sum of the tokens of
the edges in the path. A minimum token directed s-¢ path in G is called a shortest path
from s to 1. The token of a shortest directed s-¢ path, called the distance from s to ¢, is
denoted as d(s, t). In the single-source shortest path problem, one is interested in finding

the shortest paths from a specified node s to all the nodes in G.

The Bellman-Ford-Moore (BFM) algorithm [164] for the single-source shortest
path problem is very elegant and easy to present. It is also amenable for parallel imple-
mentation. Initially this algorithm assigns a label DISTANCE (s) = 0 to the node s and
assigns DISTANCE (i) = oo, for every other node i. The algorithm then repeatedly per-

forms the following operation:
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DISTANCE -UPDATE:

Select an edge ¢ = (i, j) such that DISTANCE (j) > DISTANCE (i) + nyj.

Set DISTANCE (j) = DISTANCE (i) + m;.

The algorithm terminates when DISTANCE -UPDATE is no longer applicable.
Termination occurs iff there are no negative token directed circuits in G. At termination

DISTANCE (i) gives the token of a shortest path from s to i.

An efficient implementation of the BFM algorithm is as follows. Order the nodes
as 1, 2, ..., n. Pick nodes in this order, and for each node i selected. examine all the edges
directed out of i and perform DISTANCE -UPDATE on these edges whenever it is appli-
cable. After one such sweep (examination) of all the nodes. perform additional sweeps

until an entire sweep produces no changes in the node labels.

A variant of the BFM algorithm that is amenable for a distributed implementation
is presented in [94]. This can also be easily extended to the multiple source multiple desti-

nation case,

In the following. we present a parallel shared memory implementation of the
above algorithm. Since the parallel algorithms developed in the following chapters would
require shortest path computations only after an application of Algorithm FEASIBLE, the
graphs under consideration at that point will have no negative tokens. Therefore, termina-
tion detection in our shortest path algorithm is much simpler than the one presented in
[S4]. The algorithm will be terminated when DISTANCE -UPDATE is no longer applica-
ble. Also, successful termination of this shortest path algorithm will occur in less than n

pulses.

The following data structures are used.
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token : a 2-dimensional array of integers. token [i] [j] represents
the value of token of edge (i, j) directed from node i to
node j if this edge exists in the graph G; otherwise it con-
tains a special value INFINITY outside the range of edge

tokens.

outNodes : an array of sets. outNodes [i] is a set containing all the out-

nodes at node i.

pred : an array of integers. At termination, pred [i] indicates the
predecessor of node i in a shortest path from the source to

node i. Each pred [i] is initialized to i.

distance . an array of integers. At termination, distance [i] indicates
the shortest distance of node i from the source. Each dis-

tance [i] is initialized to INFINITY.

newDistance : an array of integers. newDistance [i] indicates the change
in the shortest distance for node ¢ since the last update.
newDistance [i] is initialized to zero if node i is a source;

otherwise it is initialized to INFINITY.

There are two pulses in this algorithm. First one is the initialization pulse and the
second pulse is the main iterative one. The second pulse is repeated until all nodes reach
their shortest distances. This can be detected when distance [i] = newdistance [i] for all i.
This will happen within n pulses since the graph contains no negative token directed cir-

cuits.

In the first (initialization) pulse, each node i will initialize its distance [i] to
INFINITY. The source node will initialize its newDistance variable to zero while all other

nodes will initialize their newDistance variables to INFINITY.
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In each iteration of the second pulse, every node i inspects if there is a change inits
distance since the last update and if so, then node i will calculate the new shortest distance
for each of its outnodes and propagate this new distance to each outnode if it is less than

the previous distance value at that node.

Following is a formal presentation of our parallel shortest path algorithm.

Aigorithm SHORTEST-PATH

procedure sp_initialize (j)
distance [i] « INFINITY;
pred [i] « i,
if (= SOURCE)
then newDistance [j] « INFINITY
else
newDislance [f] « O;
notFinished « TRUE; { This condition is used in Chapter 5 }
end if;
end procedure ( sp_initialize }
procedure propagate_shortest_distances (/)
{ Do DISTANCE _UPDATE operation for node i}
d « newDistance [if;
if (d < distance [i])
then

distance [i] <« d;

notFinished «— TRUE;

for all jin outNodes [i] do

40




t « token [i] [j] + d;
lock j;
if (t < newDistance [j))
then
newDistance [j] «-t;
pred [j] « i
end if;
unlock j;
end for;
end if;
end procedure { propagate_shortest_distances }
procedure shortest_paths ()
{ rain algorithm }
fori« Oto N - 1 do in paraliel
sp_initialize ()
end for;
do
notFinished < FALSE;
for i« Oto N - 1 do in parallel
propagate_shortest_distances (/)
end for;
while (notFinished);

end procedure { shortest_paths }
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3.3 Algorithm MAX-FLOW

A transport network represents a model for transportation of a commodity from its
production center to its market through communication routes. The network is thus a con-
nected directed graph N=(V, E) with no self loops (cannot transport to itself). N has to sat-

isfy the following conditions.

There is only one node with zero indegree; this is designated as the source (pro-
duction center) and is denoted as s. There is only one node with zero outdegree; this is des-
ignated as the sink (market) and is denoted as t. Every directed edge e = (i, j) in N is
assigned a non-negative real number cy;, the capacity of (i, j). ¢;; = 0 if there is no edge
directed from i to j. Every directed edge e=(i, j) in N is also assigned a non-negative real

number called the flow f,-j on (i, j).

A flow f through a transport network N is an assignment of non-negative real num-

bers f; to the edges (i, j) such that the following conditions are satisfied:
1. capacity constraint: 0 < f;; < ¢, for (i, j) € E.

2. conservation constraint: For each node i, except the source s and the sink 1, the

material transported into i is equal to the material transported out of i.

The value val( f) of a flow fis defined as

val (f) = Yf(s,i) = Xf(, 1)
i i

A flowf “ina transport network N is said to be maximum if there is no flow finN
such that val( f) > val(f *Y. The maximum flow (in short, the max-flow) problem is to find

a maximum flow in a transport network.
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The Push-Relabel Preflow Algorithm: Goldberg and Tarjan

The earliest algorithm for the max flow problem was due to Ford and Fulkerson
[56]. Several variations of the Ford-Fulkerson algorithm were subsequently presented
resulting in algorithms with better complexities. Recently Goldberg and Tarjan [63], [64]
presented an approach that is fundamentally different from that of Ford and Fulkerson.
This algorithm is quite amenable for distributed/parallel implementation. We now proceed

to present Goldberg and Tarjan’s max-flow algorithm.

Let N=(V, E) be a network with each edge assigned a non-negative real capacity.
Without loss of generality assume that N has no multiple edges. If there is an edge from a
node i to a node j, this edge is unique by the assumption and is denoted by (i, j). A pseud-

oflow is a function f: E — R that satisfies the following constraints.
fij S cije ¥ (i, j) € E (capacity constraint)
j}-,- = —f,-j. V (i, j) € E (antisymmetry constraint)

We let ¢j; = 0 if (i, j) € E. Given a pseudoflow f, the excess function e;:V — R is
defined by,
er(i) = X fi
/ keV ki

Thus e (i ) is the net flow into i. A node i has excess if er (i) is positive. This indicates that
some amount of flow can be pushed out from node i. A node i has deficit if ef (i) is nega-

tive.

Given a pseudoflow f, the residual capacity function cs: E — R is defined by cf(i,
J)=cjj - L. The residual graph with respect to a pseudoflow f is given by Gy = (V, Ep),
where Eg= {(i, j) € E. | (i J) >0}. Edge (i, j) is a residual edge if ¢, (i, j) > 0.

A preflow fis a pseudoflow f such that the ey (7) 2 O for all nodes { other than s and
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The push-relabel preflow algorithm of Goldberg and Tarjan starts with a preflow
and a distance labeling, and uses two operations, pushing and relabeling, to update the
preflow and the labeling, repeating them until a maximum flow is found. For a given pre-
flow £, a valid distance labeling is a function d from the nodes to the non-negative integers

such that d(s) = n, d(t) = 0 and d(i) £ d(j) + 1 for all residual edges (, j).

Anode i issaidto beactive ifi & {s, r} and es(i) > 0. An edge (i, j) is admissible if

¢r (i, j) > 0 and d(i) = d(j) + 1.

The push-relabel algorithm begins with an initialization phase. The flow on each
edge leaving the source is set equal to the edge capacity, and all other edges not incident
on the source have zero flow. For each node j, the excess e (j) is calculated. It is clear that
since some flow is pushed from the source, there exists at least one node with positive
excess. So there exists at least . 2 active node. Each node je V - {s} is assigned an initial
labeling d(j) = 0. For node s, d(s) = n. Then an update operation is selected and applied to
an active node. This process continues until there are no more active nodes at which point
the algorithm terminates, with a preflow f with no active nodes. fis a maximum flow at ter-

mination.

We next present the update operations. The push operation modifies the preflow f

and the relabel operation modifies the valid distance labeling d.
Push (i, j).
Applicability
i is active, ¢r(i, j) > O and d(i) = d(j) + 1.
Action

send 8 = min(ey(i). ¢/ (i, j)) units of flow from i to ji:




f,j (—-fu + S;ffi (—fii - 6;

er(i) «— e (i) - & ep(j) & ef(j) + 9,

Relabel @@).
Applicability

iisactiveand V je V, cs(i, j) > 0 = d(i) < d(j).

Action

d (i) « f"in {d () + 1}
cf(”j)>0

(If this minimum is over an empty set, d(i) ¢ oo).

An efficient implementation of the push/relabel algorithm is discussed next. In this
implementation, an unordered pair {i, j} such that (i, /) € E or (j, i) € E is an undirected
edge of G. Each undirected edge {i, j} is associated with three values cjjp ¢jj and Jij (= Jji)-
Each node i has a list of the incident edges {i, j}, in fixed but arbitrary order. Thus each
edge {i, j} appears in exactly two lists, the one for i and the one for j. Each node i has a
current edge {i, j) which is the current candidate for a pushing operation from i. The max-
flow algorithm repeats the push/rzlabel operation given below until there are no more

active nodes. The push/relabel operation combines the basic push and relabel operations.
Push/Relabel (i).
Applicability

i is active.

45




Action

Let {i, j} be the current edge of i.
If push (i, j) is applicable then push (i, j)
else
If {i, j} is not the last edge on the edge list of i
then replace {/, j} as the current edge of i by the next edge on the edge list of i;
else begin
make the first edge on the edge list of i the current edge;
relabel (i),

end.

In a parallel implementation of the push-relabel preflow max-flow algorithm, the
nodes perform in parallel the following pulses (sets of sequential instructions) in that

order.
1.  Push
2. Relabel, if necessary
3. Update flows and compute excess flows

These pulses are repeated until termination. It should be ensured that relabeling is
done only after all the nodes have completed the push operations. For this reason, the
push/relabel (i) operation as described above is not appropriate for use in a parallel envi-
ronment. Furthermore, on the completion of push operations by the nodes, each node
should have information about the flows pushed into itself from the adjacent nodes. This is
essential to update the edge flows and to compute the excess flow at each node. This
means that during a push pulse, each node should consider all incident edges for a possible

push operation and inform the adjacent nodes about the flows pushed. This also means that
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if even when a push operation is not applicable along an edge (i, j), node i should inform
so node j. This is done by pushing a flow of zero value along (i, j). These issues are taken

into consideration in the presentation of the parallel max flow algorithm described next.

As regards termination, the algorithm may be terminated when there are no active
nodes at the end of a push pulse. An alternate termination detection scheme based on the
following theorem is more elegant. It is this scheme we have used in our algorithm devel-

opment.

Theorem 3.2

If at any pulse, the total flow out of the source is equal to the total flow into the

sink, then at that pulse and all subsequent pulses there will be no active nodes. a

We next give a formal presentation of a parallel shared memory implementation of

the push/relabel max-flow algorithm. The following data structures are used to describe

the algorithm.

totalOutFlow : an integer variable to indicate the total flow out of the
source. It is initialized to zero.

totalinFlow . an integer variable to indicate the total flow into the sink.
It is initialized to zero. When totallnFlow equals totalOut-
Flow, the algorithm is terminated.

isRelabelNeeded : an array of boolean variables. isRelubelNeeded [i] equal to
TRUE indicates that the node i needs to be relabeled.

outNodes : an array of sets. outNodes [i] is a set containing all the out-

nodes at node .
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inNodes

label

tempLabel

excessFlow

capacity

outFlow

inFlow

outDelta

an array of sets. inNodes [i] is a set containing all the

innodes at node i,

an array of integers. label [i] indicates the label of node i.
The label of source is initialized to n while the labels for

all other nodes are initialized to zero.

an array of integers. rempLabel [i] is the label of node i

after a relabeling operation.

an array of integers. excessFlow [i] indicates the excess
flow at node i at any time. Each excessFlow [i] is initial-

ized to zero.

a 2-dimensional array of integers. capaciry [i] [j] indicates
the capacity of the edge (i, j) if (i, j) is in G; otherwise it is

equal to zero.

a 2-dimensional array of integers. outFlow [i] [j] indicates
the flow from node i to node j along the edge (i, j), if (i, j)
is an outgoing edge at i. Each outFlow [i] [j] is initialized

to zero.

a 2-dimensional array of integers. inFlow [i] [j] indicates
the flow from node i to node j if (j, i) is an incoming edge
at node i. inFlow [i] [i] is equal to —outFlow [j] [i]. Each

inFlow [i] [f] is initialized to zero.

a 2-dimensional array of integers. outDelta [i] [j] indi-
cates the flow pushed from node i to node j along outgoing

edge (i, j). Each outDelta [i] [j] is initialized to zero.
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inDelta : a 2-dimensional array of integers. inDelta [i] [j] indicates
the negative value of the flow pushed from node i to node j
along incoming edge (j, i). Each inDelra [i] [j] is initial-

ized to zero.

The parallel max-flow algorithm is formally presented next.

Algorithm MAX-FLOW

procedure mf_initialization ( /)
label [i] « 0;
tempLabel [i] « 0;
excessFlow [i] « 0;
isRelabelNeeded [i] «+- FALSE;
forj—Oton-1do

outFlow [i] [jl < 0,

inFlow [i] [j] « ©;

outDefta [i] [j] «— ©;

inDelta [i] {j] « O,
end for;

end procedure { mf_initialization }

procedure start_with_source ()

{ The source node will start the process by sending the initial flow }
totalOutFlow « 0;
totalinFlow « 0,

s« SOURCE;

label [s] « n;

49




for all jin outNodes [s]do
outFlow [s] [j] « capacity [s] [},
inDelta [j] [s] «- — capacity [s] [j];
excessFlow [f] « excessFlow [jl- inDelta [j] [s},
inFlow [j] [s] « inFlow [j] [s] + inDelta [j] [s}
totalOutFlow « totalOutFiow + capacity [s] [j};
end for;
end procedure { start_with_source }
procedure isLastEdge (i, ce)
{is the current edge ‘ce’ the last edge at node i}
if (inNodes [i] # @)
then
if (ce is the last member of inNodes [i})
then return TRUE
end if
elsif (ce is the last member of outNodes [i))
then return TRUE
end if;
return FALSE;
end procedure { isLastEdge }
procedure determine_next_edge (/, ce)
{ determine the next edge after the current edge ‘ce’ at node /)

if (ce € outNodes [i))




then

if (ce is not the last member of outNodes [i))
then temp < next member in outNodes [i] after ce
elsif (inNodes [i] # D)
then temp « first member of inNodes [i]
else

temp « first member of outNodes [i};

if (excessFlow [i] > 0)

then isRelabelNeeded [i] « TRUE

end if;
end if

else

if (ce is not the last member of /inNodes [i])
then temp < next member in inNodes [i] after ce
elsif (outNodes [i] # D)
then temp «- first member of owutNodes [i]
else

temp « first member of inNodes [i];

if (excessFlow [i] > 0)

then isRelabelNeeded [ij «— TRUE

end if;
end if

end if;
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return temp;
end procedure { determine_next_edge }
procedure push ( i)
lastEdge « FALSE;
{ Make the first available edge at node jas the current edge 'ce’ }
if (outNodes [i] = @)
then ce « first member in outNodes (i
else ce « first member in inNodes [i]
end if;
if (excessFlow [i] = 0)
then
for all jin outNodes [ij do
inDelta [j] [i] < O
end for;
for all kin inNodes [ij do
outDelta [k] [i] « O
end for;
end if;
while (excessFlow [i] # 0 and not lastEdge) do
if (ce € outNodes [if)
then residualcap « capacity [i] [ce] - outFlow [i] [ce]
else residualcap « ~ inFlow [i] [ce]

end if;
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if (residualcap > 0 and label [i] = label [ce] + 1)

then
if (excessFlow [i] < residualcap)
then temp «— excessFlow [i]
else temp « residualcap
end if;
excessFlow [i] « excessFlow [i] - temp;
if (ce e outNodes [i))
then
inDelta [ce] [i] « - temp;
outFlow [i] [ce] « outFlow [i] [ce] + temp;
eise
outDelta [ce] [i] « ~ temp;
inFlow [i] [ce] « inFlow [i] [ce] + temp;
end if;
end if;
if (isLastEdge (i, ce))
then lastEdge « TRUE
else ce « determine_next_edge (i, ce) {Make next edge as current edge}
end if;
end while;

end procedure { push }

53




procedure relabel (/)
if (isRelabelNeeded [i))
then
dist « INFINITY;
for all jin outNodes [i] do
| residualcap « capacity [i] [j] - outFiow [i] [j};
if (residualcap > 0 and /abel [j] < dist)

then dist « label [j]

end if;
end for;
for all kin inNodes [ijdo
residuaicap « - inFlow [i] [j],
if (residualcap > 0 and /label [k] < dist)
then dist « Jabel [k]
end if;
end for;
if (dist < INFINITY)
then tempLabel [i] « dist + 1
end if;
end if
end procedure { relabel }
procedure broadcast_label { /)

if (isRelabelNeeded [i})
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then /abel [i] « templLabel [if,
end if
end procedure { broadcast_label }
procedure calculate_total_out_flow ()
{ Calculates the total flow out of the source }
totalQutFlow « 0;
s « SOURCE;
for all jin outNodes [s] do
outFlow [s] [j] « outFlow [s] [j] + outDelta [s] [j},
totalOutFlow « totalOutFlow + outFlow [s] [j];
end for;
end procedure { calculate_total_out_flow }
procedure calculate_total_in_flow ()
{ Calculates the total flow into the sink }
totalinFlow « 0,
t « SINK;
for all kin inNodes [t]do
inFlow [t] [k] « inFlow [t] [k] + inDelta [t] [K].
totalinFlow « totalinFlow - inFlow [t] [k},
end for;
end procedure { calculate_total_in_flow }
procedure calculate_excess_flow (/)

for all j in outNodes [il do
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excessFlow [i] — excessFlow [i] - outDelta [i] [j},
outFlow [i] [j] < outFlow [i] [j] + outDelta [i] [j},
end for;
for all kin inNodes (il do
excessFlow [il «— excessFlow [i] - inDelta [i] [k},
inFlow [i] [k] « inFlow [i] [k] + inDelta [i] [k],
end for;
end procedure { calculate_excess_flow )
procedure update_flows ( /)
if (/= SOURCE)
then calculate_total_out_fiow ()
elsif (/ = SINK)
then calculate_total_in_flow ()
else calculate_excess_flow ( /)
end if
end procedure { update_flows }
procedure max_fiow ()
{ main procedure }
for i« Oto n-1doin parallel
mf_initialization ( /)
end for;
start_with_source ();

while (totalOutFlow # totallnFlow) do
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for i< Oto n- 1 doin parallel
if (/= SOURCE and /= SINK)
then push (/)
end if

end for;

for i< Oto n- 1doin parallel
if (i= SOURCE and i+ SINK)
then relabel ( /)
end if

end for;

for i« Oto n- 1 doin parallel
if (/= SOURCE and /= SINK)
then broadcast_label ( /)
end if

end for;

for i< Oto n- 1 do in parallel
update_flows (/)

end for;

end while;

end procedure { max_flow }

3.4 Summary

In this chapter. we have discussed three basic network optimization algorithms and
their parallel implementations. These algorithms will serve as building blocks in the paral-

lel algorithms to be developed in the following chapters. Algorithm FEASIBLE to test
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feasibility of the DTP will be used in the two parallel algorithms for the DTP discussed in
Chapters 5 and 6. As will be shown in Chapter 4, this algorithm can also be adapted to ini-
tialize the primal-dual method and is quite an attractive alternative to the traditional
approach to primal-dual initialization. The shortest path algorithm will be required for
both the primal-dual method as well as for the modified network dual simplex method
developed in Chapter 5. The max-flow algorithm will be required in the development of
the primal-dual method. Besides this application, the max-flow algorithm has several
applications in network optimization since many network optimization problems can be
transformed into equivalent max-flow problems. Some of these may be found in [164].
Though Goldberg and Tarjan’s max-flow algorithm is very elegant and amenable for a par-
allel implementation, its parallelization does not permit incorporating certain features of

the elegant sequential implementation analyzed in [64].
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CHAPTER 4

PARALLEL NETWORK PRIMAL DUAL METHOD

In this chapter, we discuss the network primal-dua! method for the transshipment
problem and its implementation on the shared memory model. This work has been
reported in [161]. First, we briefly recall the definition and formulation of the transship-
ment problem (; resented in Chapter 2) and the basic structure of an optimum solution for

the problem.

The transshipment problem is concerned with a network N having the underlying
directed graph G = (V, E). The network N has n nodes. Some of these nodes are supply
nodes, some are demand nodes and the others are neutral nodes. Each node i is associated
with a real number w; representing the demand or supply of a commodity at node i. We
follow the convention that w; is negative if node i is a supply node; otherwise w; is non-
negative. It is assumed that the total supply is equal to the total demand. Each edge e = (i,
J) is associated with a real number Cij called the capacity of (i, j) and another real number
my; called the token of e. The capacity cjj represents the maximum quantity of the com-
modity that each (i, j) can accomodate and m;; represents the cost of transporting unit
quantity of the commodity along the edge e. Thus, if x;j represents the flow along the edge
(i, ). then 0 < x;j < ¢j. It is assumed to satisfy the conservative constraint: The sum of the
flows into a node is equal to the sum of the flows out of the node. The transshipment prob-
lem is to arrive at a pattern of tranporting the commodity from the supply nodes to the
demand nodes at minimum cost. The problem can be formulated as the following linear

programming problem, where M, X, A™ and W are as defined in Section 2.1.
Minimize : M X
subject to :

A X=W 4.1)




0<X<C 4.2)

Associated with a linear program, there is a dual problem. The original problem is
called the primal problem. The dual problem has » dual variables, yq, y5, ..., y,,, one for
each one of the n nodes. The optimum values for y;’s would maximize Zw;y;, We shall
refer 10 ¥y, ¥, ..., ¥, as firing numbers since they indeed play the role of firing numbers as

will be seen in Chapters 5 and 6.

It x;;’s and y;’s represent the optimum solutions for the primal and dual problems

respectively, then
x;=0, if yi- ¥+ mi>0
Xij = Cij if}’f - Yj +m,'j <0 4.3)

Thus, for any optimum solution X for the transshipment problem, the following

are true:
i)y AX=W
ii) 0=X<C

iii)  There exists y;'s such that (4.3) is true.

The primal-dual approach for solving the transshipment problem starts with an X
and Y satisfying (4.2) and (4.3). It then repeatedly updates X and ¥ (without violating (4.2)
and (4.3)) until X satisfies (4.1). This approach is quite amenable to distributed and paral-
lel implementations. since it uses the maximum flow and shortest path algorithms, as

building blocks.
4.1 Primal-Dual Method

The primal-dual method for the transshipment problem consists of three main

steps:
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1.  Initialization.
2. Updating Y.
3. Updating X.

Each of these steps is explained in detail in the following sections. The graph G in
Figure 4.1 is used to illustrate the different steps in the Primal-Dual method. Note that this

is the same as the graph used in Chapter 2 to illustrate the transshipment problem (See

Figure 2.1).
(4) =& — demand
-9
o
§
|
supply edge token
I/[
1?7
1,10 ’
capacity
6) (.
5) 1,6 -8)

Node numbers are shown inside nodes.
Node Demands and edge tokens are as shown.

Figure 4.1 An Example: A Network N for the Transshipment Problem.

4.1.1 Initialization of the Primal-Dual Method

In this step, a pair of vectors X and Y is selected such that the complementary

slackness conditions are satisfied.
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D55 e
i’ YiTrjTmy;
The traditional approach to this initialization problem discussed in [39] is to apply

the primal dual method to a new network constructed from the given network. We now

point out that Algorithm FEASIBLE discussed in Section 3.1 can be adapted to solve this

problem.
Three cases arise.
Case 1 : All my;’s are positive.

In this case, selecting all X;;’s and y;’s equal to zero will result in a pair of X and ¥

satisfying the complementary slackness conditions.
Cuse 2 : cjj=o° for all edges (i, j).

In this case, we need to find y;s such that y; - yj+ m;j 20 for all edges (i, j). These
¥;'s can be found by applying Algorithm FEASIBLE on G. The corresponding X vector is

to be selected with all x, ;'S equal to zero.
Cuase 3 : o finite for some edges (i, j).

In this case, we need to find y;'s such that for all edges (i, j) with Cij=o0. Y-y +
m;; 2 0. Such y;’s can be obtained by applying Algorithm FEASIBLE on G after removing
all those edges (i, j) with ¢jj finite (see Case 2). The X vector can then be selected satisfy-

ing the complementary slackness conditions.

Note that in all these cases, we ensure that y; - yj + mj; 2 0 whenever ¢jj = oo. Fur-
thermore, we can apply Algorithm Feasible without explicitly removing certain edges as

required in Case 3.
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4.1.2 Updating the Dual Vector Y

Given a pair of X and Y vectors satisfying (4.2) and (4.3), we now explain how we

can update X and Y without violating these conditions.

From X and W we first calculate the new demand vector W “as follows.

wi = w;-net flowinto node i
= Wi XXt 2y
J J
Each w; then gives the current supply available or the current demand at node 7.

Following Chvatal [39]. we shall call a node i wet, balanced or dry if w”; is negative, zero

or positive, respectively.

Using w “and X we construct an auxiliary network N”from the original network as

follows:

1) N’has an edge (i, j) with token y; - v; + m; for each original edge (i, j) with x;; <
CU
ii)  N’has an edge (j, i) with token y; - y; - m;; for each original edge (i, j) with Xij >

0.
iii) Add a new node s and new edges (s, i) with zero token for every wet node i.

For example, for the network in Figure 4.1 with flows as shown in Figure 4.2(a)

and the following y;’s,
Y=[012100]

the corresponding auxiliary network with node demands and edge tokens is shown in Fig-

ure 4.2(b).

To update Y, we apply the single-source shortest path algorithm (Algorithm

SHORTEST-PATH) of Section 3.2 to N”” and determine the shortest paths and distances
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from s to all the nodes in N*”, The new Y’is given by

YiEyitd,

where d ; is the length of a shortest path from s to/in N

It can be shown that the new vector ¥'"and X satisfy equation (4.3). In other words,
the update of Y has been achieved without violating the complementary slackness condi-

tions.
4.1.3  Updating the Flow Vector X

Given X and Y’, we now show how X can be updated to a new X “such that both X~

and Y’ satisfy complementary slackness conditions.

Our aim really is to update X so that we make as much progress as possible
towards satisfying (4.1), namely, the equation A X = W. This requires that we push as
much flow as possible from the current wet nodes towards the dry nodes. But this should
be accomplished without violating (4.2) and (4.3). Thus, we can modify the flows only on
those edges (i, j) for which y5-y 5+ m,, =0. Intercstingly, all the edges on a shortest path
from s to node i satisfy this requirement. Thus while pushing the flows from the wet to the

dry nodes, we should use only these edges.
This suggests the use of the following network N for modifying the X vector:
i)  N7is asubnetwork of N".
i)  N”"has an edge (i, j) of capacity c;; - x;; for each original edge (i, j) for which y;

-yj+m,«j=Oandx,-j<c,-j.

iii)) N""has an edge (j, i) of capacity x;, for each original edge (i, j) for which y; - y;

+my =0andx,;>0.

iv)  For each wet node i, N""has edge (s, i) with capacity -w .




v) N has anew node r and an edge (i, t) of capacity w; for each dry node i.

(b) Auxiliary Network N” with Edge Tokens

Figure 4.2 Construction of Auxiliary Network
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Figure 4.3 Network N constructed from Network N of Figure 4.2 with given

Flows and y values.

Thus pushing as much as possible from the wet nodes to the dry nodes reduces to

| pushing a maximum flow from s to rin N°”

For our example, the network N’ constructed from N~ of Figure 4.2 is shown in

Figure 4.3. Here the edge capacities are shown next to the edges.

At the completion of the maximum flow algorithm, we update the flow vector X to

a new vector X “as follows.

For each (i, j) in the original network, let x;;"and x;;"" be the corresponding flows

in N°”. Then the new flow x;;“of the vector X “is given by

x,-j = Xjj + Xij - in
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Algorithm FEASIBLE:

Initialization

Feasible ?

Stop:
Problem
Infeasible

Construct Auxiliary Network N*

'

Algorithm SHORTEST PATH

l

Construct Network N**

'

Algorithm MAX-FL.OW

All

Demand and
Supply Constraints
Satisfied ?

Stop:
Optimum Solution

Figure 4.4 Primal-Dual Method
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Note that some of the edges in N

» s

may not lie on any path from s to ¢. These edges

would not play any role while performing the maximum flow algorithm. So, for an effi-

cient implementation, it will be worthwhile to remove these edges before applying the

maximum flow algorithm.

The network primal-dual method described above is summarized in Figure 4.4.

Clearly, the primal dual method involves the three basic algorithms already discussed in

the previous chapter. We now give a formal presentation of a parallel version of the primal

dual method.

The following data structures are used in this algorithm.

outNodes

inNodes

activeQutNodes

activelnNodes

nodeWeight

demand

demandZero

an array of sets. outNodes [i] is a set containing all the out-

nodes at node { in the original graph G.

an array of sets. inNodes [i] is a set containing all the

innodes at node i in the original graph G.

an array of sets. activeOutNodes [i] is a set containing all

the outnodes at node i in the current graph G .

an array of sets. activeInNodes [i] is a set containing all

the innodes at node i in the current graph G,

an array of integers. nodeWeight [i] indicates the original

supply or demand at node 1.

an array of integers. demand [i] indicates the current sup-

ply or demand at node /.

an array of boolean. demandZero [i] = TRUE indicates the
condition demand [i] = 0 for the node 1. It is initialized to

FALSE.
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firing_no

token

activeToken

capacity

activeCapuacity

flowOut

floveIn

an array of integers. At any time. firing_no [i] represents

the current firing number (dual variable) of node i.

a 2-dimensional array of integers. roken [i] [ j] represents
the value of token of the edge from node i to node j. if
there is an edge (i, j) in the original graph G; otherwise it
contains a special value INFINITY outside the range of

edge tokens.

a 2-dimensional array of integers. activeToken [i] [j] rep-
resents the value of residual token for the edge (i, j), if
there is edge (i, j) in the current contracted graph G; oth-
erwise it contains a special value INFINITY outside the
range of edge tokens. The variable activeToken [i] [j] is

initialized to foken [i] [j].

a 2-dimensional array of integers. capacity [i] [ 7] indicates
the capacity of the edge (i, j) if (i, j) is in the original graph

G; otherwise it is equal to zero.

a 2-dimensional array of integers. activeCapaciry [i] [j]
indicates the capacity of the edge (i, j) if (i, j) is in the cur-

rent graph G *, otherwise it is equal to zero.

a 2-dimensional array of integers. flowOQut [i] [j] indicates
the flow at node i along the edge (i, j), if j is an outnode at

i. Each flowOut [i] [j] is initialized to zero.

a 2-dime 1sional array of integers. flowIn [i] [j] indicates
the flow at node i along the edge (j, i), if j is an innode at i.

fowin [i] [j] is equal to =flowOut [}] [i;.
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Parallel Network Primal Dual Algorithm

procedure pd_initialization ( /)
{ Initialization of different variables assuming the input is read into the

corresponding inNodes, outNodes, token, capacity, and nodeWeight }
terminate « n - 2; { SOURCE and SINK don't have to do any work }
activeOutNodes [i] « @;
activeOutNodes [i] — @;
demandZero [i] «— FALSE;
end procedure { pd_initialization }
procedure initialize_fiow ( /)
for all jin outNodes [i] do
if (firing_no [i] + token [i] [j] 2 firing_no [f))
then
flowOut [i] [j] « O;
flowln [j] [i] < 0,
else
flowOut [i] [j] « capacity [i] [j}
flowln [j] [i] < - flowOut [i] [j}:
end if
end for
end procedure { initialize_flow }
procedure initialize_demand ( i)

demand {i] < nodeWeight [i].
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for all jin outNodes [i] do
demand [i] « demand [i] + flowOut [i] [j]
end for;
for all kin inNodes [i] do
demand [i] « demand [i] + flowln [i] [k]
end for;
if (demand [i] = 0 and demandZero [i] = FALSE)
then
lock terminate « terminate - 1;
demandZero [i] «— TRUE;
end if;
end procedure { initialize_demand }
procedure create_active_neighbor_list ( i)
for all jin outNodes [i] do
if (flowOut [i] [j] < capacity [i] [j])
then
lock add jto activeOutNodes [i}
lock add ito activelnNodes [j}:
activeToken [i] [j] « firing_no [i] - firing_no [f] + token [i] [jj:
end if;
if (flowOut [i] [j]> 0)
then

lock add jto activelnNodes [i]:
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lock add i to activeOutNodes [k}
activeToken [j] [i] « firing_no [] - firing_no [i] - token [i] [,
end if;
end for;
if (demand [ij< 0)
then
lock add ito activeOutNodes [SOURCE},
lock add SOURCE to activelnNodes [i],
activeToken [SOURCE] [i] < 0;
end if;
end procedure { create_active_neighbor_list }
procedure mark_nodes_and_update_firing_no ( )
activeOutNodes [i] « @,
activelnNodes [i] « @;
if (i= SOURCE and 1= SINK)
then
{ distance [i] represents token of a shortest path }
firing_no [i] < firing_no [i] + distance [i}
if (demand [i] > 0)
then
mark [i] «— TRUE;
while (pred [i] # i and not mark [pred [i])) do

i pred[i]
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mark [i] « TRUE;
end while;
end if
end if
end procedure { mark_nodes_and_update_firing_no )
procedure update_active_edges (/)
if (mark [i})
then
for all jin outNodes [i] do
if (mark [j] and firing_no [f] = firing_no [i] + token [i] [j])
then
if (flowOut [i] [j] < capacity [i] [i}
then
add jto activeOutNodes [if;
countOut [i] < countQut [ij + 1;
activeCapacity [i] [j] « capacity [i] [j] - flowOut [i] [j],
end if;
if (flowOQut [i] [j]> 0)
then
add jto activelnNodes [if,
countin [i] « countin [i]+ 1,
activeCapacity [i] [j] « flowln [i] [j].

end if;
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end if
end for;
end if
end procedure { update_active_edges }
procedure create_antisymmetric_edges ( /)
if (mark [i))
then
for all jin outNodes [i] do
if (mark [j] and firing_no [j] = firing_no [i] + token [i] [i)
then
if (flowQut [i] [j] < capacity {i] i}
then
add jto activeOutNodes [},
end if;
if (flowOut [i] [j]> 0)
then
add fto activelnNodes [if,
activeCapacity [i] [j] « flowin [i] [j];
end if;
end if
end for;
end if

end procedure { create_antisymmetric_edges }
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procedure update_source_and_sink_edges (i)
s «+ SOURCE;
t « SINK;
if (mark [i))
then
if (demand [i] < 0)
then
add i to activeOutNodes [s],
add s to activelnNodes [i;
activeCapacity [s] [i] « - demand [i},
elsif (demand [i} > 0)
then
add t to activeOutNodes [if;
add i to activelnNodes ft},
activeCapacity [i] ] « demand [i;
end if
end procedure { update_source_and_sink_edges }
procedure update_new_flow (/)
num « 0;
for all jin activeOutNodes [il do
num < num + 1;
if (num < countOut [if)

then
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flowOut [i] [j] « flowOut [i] [j] + outFlow [i] [j};
flowin [j] [i] < - flowOut [i] [j},
end if;
end for;
num « 0,
for all jin activelnNodes [il do
num <« num+ 1;
if (num < countin [ij)
then
flowOut [i] [j] « flowOut [i] [j] + inFlow [i] (i},
flowin [j] [i] «+ — flowOut [i] [j}
end if;
end for;
end procedure { update_nevi_flow }
procedure update_new_demand ( /)
for all jin outNodes [i] do
demand [i] <— demand [i] + flowQOut [i] [j]
end for;
for all kin inNodes [ijdo
demand [i} «- demand [i] + flowln [i] [K]
end for;
if (demand [i} = 0 and demandZero [i] = FALSE)

then
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lock terminate « terminate - 1;
demandZero [i] «- TRUE;

end if:

end procedure { update_new_demand }

procedure primal_dual ()

{ main procedure }

for i« Oto n-1doin parallel
pd_initialization ( i)

end for;

feasible ();

for i« Oto n- 1doin parallel
if (/= SOURCE and i # SINK)
then initialize_flow ( /)
end if

end for;

for i« Oto n- 1do in parallel
if (/+ SOURCE and /= SINK)
then initialize_demand ( /)
end if

end for;

while (terminate > 0) do
for i< 0to n-1doin parallel

if (i # SOURCE and / = SINK)
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then create_active_neighbor_list ( /)
end if
end for;
shortest_path ();
for i— Oto n-1do in parallel
mark_nodes_and_update_firing_no (/)
end for;
for i<~ Oto n-1do in parallel
if (/ « SOURCE and i= SINK)
then update_active_edges (/)
end if
end for;
for i« O to n- 1do in parallel
if (= SOURCE and i# SINK)
then create_antisymmetric_edges (/)
end if
end for,
for i« O to n- 1do in parallel
if (i SOURCE and / # SINK)
then update_source_and_sink_edges ( /)
end if
end for,

max_flow ();
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fori« Oto n-1doin parallel
if (/= SOURCE and / # SINK)
then update_new_flow (/)
end if

end for;

fori« Oto n-1doin parallel
if (= SOURCE and j = SINK)
then update_new_demand ( i)
end if

end for;

end while;

end procedure { primal_dual }

4.2 Summary

In this chapter, we have discussed the details of the primal-dual approach to the
transshipment problem as well as its parallel implementation. The network primal-dual
approach involves repeated applications of the max-flow and shortest path algorithms dis-
cussed in the previous chapter. We have shown that Algorithm FEASIBLE can be adapted
for initialization of the primal-dual method. This approach to initialization does not
require constructing an auxiliary graph unlike the traditional approach to primal-dual ini-

tialization.
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CHAPTER 5§
PARALLEL NETWORK DUAL SIMPLEX METHOD

In this chapter, we develop a new approach to the solution of the dual transship-
ment problem and discuss its parallel implementation. This approach, called the Modified
Network Dual Simplex method, is based on the traditional network dual simplex method
[39] and uses concepts and results from the theory of marked graphs [43], [162]. As we

shall see, this approach has several features which make it amenable for parallelisation.

The Modified Network Dual Simplex (MNDS) method for the solution of the dual
transshipment problem involves repeated applications of three basic steps, namely, testing
feasibility, shortest-path computations and performing concurrent pivot operations. In the
following sections, we will present the essential features of this new approach and details

of its implementation in a shared-memory programming environment.

5.1 Network Dual Simplex Method

Given a directed graph G = (V. E). let A, M and W be defined as in Section 2.1.
Then we recall (Section 2.2) that the dual transshipment problem (DTP) is a linear pro-
gram defined as follows.
Maximize: W'Y
subject to
AlY = -M (5.1
Y =0, (5.2)

where Y is the column vector of node firing numbers. Thus. in DTP. we seek to find Y

which maximizes W' Y.

The network dual simplex method is essentially the simplex method of linear pro-




gramming applied to solve the DTP. Thus the method consists of the following steps.

1 Construct an initial basic feasible solution Y, if it exists. This is achieved by
constructing an auxiliary network and applying the dual simplex method on this

network. This step detects infeasibility of the DTP. whenever that is the case.

2 Perform a dual pivot operation (See Section 2.4). If a dual pivot operation is

permissible, then it results in an improved value for the objective WY.

3 Check the new basic feasible solution for optimality. (The solution is optimal if
the corresponding basic feasible tree permits no dual pivot operation.) If the
solution is optimal, then the algorithm terminates. Otherwise, repeat step (2)

starting from the current basic feasible solution.

Unboundedness of the DTP is detected if we encounter a fundamental cluster S
such that W(S) > 0 and every edge in (S, S) is directed from a node in S to a node in S,
Note that in such a case the cluster S can be fired an unbounded number of times leading
to an unbounded value for the objective WY. To avoid cycling, Bland’s anti-cycling rule
[39] can be used in step (2) while selecting a pivot operation. Consult [39] for the details

of the network dual simplex method.
5.2 Parallel Network Dual Simplex Method

As can be noted from the outline of the network dual simplex method presented in
the previous section, this method moves from one basic feasible solution to another, per-
forming one pivot operation at a time. Any parallel implementation of this method will
focus on the parallelization of the pivot operation. But during a pivot operation only a
small subgraph of the given graph will be involved. Thus such an approach does not offer

much scope for achieving gouod speed up.

We resolve the above difficulty by permitting concurrent pivot operations. But at
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the end of concurrent pivots. the resulting solution may not be basic. So. we need an alzo-
rithm to generate a basic feasible solution from a given feasible solution. But while doing
so we should ensure that the objective value WY never decreases. Our method to be called
Modified Network Dual Simplex Method takes care of these considerations. An outline of

this method is as follows.

5.3 Modified Network Dual Simplex Method

1 Test feasibility of the DTP (Apply Algorithra FEASIBLE). If feasible, construct

a feasible solution.

2 Given a feasible solution Y, construct a basic feasible solution Y~ with WY’ 2

WY

3 Check the optimality of the basic feasible solution Y~ obtained in step 2. If it i3
optimal, the algorithm terminates. Otherwise. perform concurrent pivot opera-
tions starting from Y". (This involves selecting the fundamental clusters defined
by the basic feasible tree T corresponding to Y~ and firing them in an appropri-

ate manner),

4  Repeat steps 2 and 3.

Note that the above method does not require constructing an auxiliary network to
test feasibility. This is an attractive feature from the point of view of designing distributed/

parallel implementations.

The first step in the solution of the dual transshipment problem is to test the feasi-
bility of the problem. Suppose that the given dual transshipment problem is feasible. Then.
after an application of Algorithm FEASIBLE (explained in Chapter 3), all the residual

tokens associated with the edges will be non-negative. Let the corresponding graph be G,




From this point onwards, our approach is to increase the value of the objective WY as
much as possible until optimality is reached. This is achieved by firing the nodes in an
appropriate manner without ever allowing the tokens to become negative. Thus we fire
only positive weight nodes. This is repeated until no further firing of these nodes is possi-
ble. Let the graph at this point be denoted as G Note that in G~ at each positive weight

node, there will be at least one edge with zero token, incident into the node.

Implementing the above step as described may result in redundant firings. We

adopt the following strategy to avoid redundant firings.

Interestingly, we show that while transforming G”to G”, node i in G would be
fired exactly f; times where f; is the token in G of a shortest path to i from a non-positive
weight node. So to avoid redundant firings we compute in G *the value of fi's for all the
positive weight nodes and then fire the nodes accordingly. This will transform the graph
G”to G Note that this step involves only shortest path computations and can be done

very efficiently using the parallel algorithm SHORTEST-PATH presented in Chapter 3.

Consider now the graph G A number of edge tokens in G **will be zero. As men-
tioned above, no positive weight node can be fired in G “because each such node will have
an incident edge with zero residual token. So. at this point the only way we could increase
the objective WY is to identify clusters of nodes in G~ with the following properties and

fire them.

i) The weight of the cluster (the sum of the weights of the nodes in the cluster) is

positive.

i1)  For every node i in the cluster, there is no incident edge (j, i) with zero residual

token, and with node j out side the cluster.
To identify such clusters, we proceed as follows.

First, we identify the subgraphs of G induced by those edges with zero rzsidual
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tokens. This subgraph may not be connected. In that case. let the connected components of
this subgraph be G . G, ..., G > Among these connected components, those with pos-
itive weight are precisely the clusters which satisfy the properties mentioned above and
their firings would increase the value of the objective WY, Again, io carry out this in an

efficient manner. we proceed as follows.

First, we construct a graph G**as follows. Node i in G*** represents G;”"and the
edge e (directed from node i to node j) will be assigned the smallest of the residual
tokens of all edges directed from G, to G, Next we compute the weight of each node
(which is now a cluster of nodes) in G “** given by the sum of the weights of all the nodes
in the corresponding cluster. Then we apply the algorithm SHORTEST-PATH to compute
for each positive weight node i, a shortest path from a non-positive weight node to i and
then fire these nodes by the appropriate amounts. Note that firing a cluster x times results

in adding x to the current firing numbers of all the nodes in the cluster.

We repeat the above process until all nodes coalesce into a single cluster. In other
words, the edges with zero residual tokens would span all the nodes in G. At this point we
can construct a basic feasible solution (represented by a O-token spanning tree) of the dual
simplex. We now test the optimality of the solution using the simplex optimality criterion.
Suppose the solution is not optimal. Then we determine for each branch (i, J) of the span-
ning tree (representing the basic solution) the corresponding fundamental cutset. Let the
corresponding node partition be (V,. V,). Assume without loss of generality that the node i
is in V;. Then recall that V; is the fundamental cluster corresponding to the branch (i, j). If
the weight of the cluster V; is positive then we can fire V; to increase the value of the
objective. Again, note that firing a fundamental cluster V; is in fact the same as a simplex
pivot operation with respect to the branch (i, j). Our intention is to fire all the positive
weight fundamental clusters concurrently. In doing so, we encounter two problems. First,

firing all positive weight fundamental clusters concurrently may result in producing nega-
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tive residual tokens. Secondly, we need an efficient strategy to identify the positive funda-

mental clusters in the graph. Our strategy is as follows.

Instead of looking for positive fundamental clusters. our approach is to identify a
fundamental cluster and fire that cluster appropriately. That is, if the cluster is positive
weighted, then fire that cluster in a regular manner (using positive firing). On the other
hand, if the fundamental cluster is negative weighted, then we use negative firing to fire

that cluster.

The advantage of employing both forms of firing is that after we have computed a
fundamental cluster. we do not have to discard it even if it is negative weighted. This
would save a lot of computations and also the number of pulses required to traverse the
tree. In fact. if we employ this strategy, then the number of pulses required to complete the
concurrent pivot phase of our algorithm, will be half the length of a longest path in the
basic feasible tree. The problem, however, is that we cannot employ both forms of firing in
the same pulse. So we use two subpulses in each firing pulse. One is to fire in a positive

way and the other to fire in a negative way. Some details of this approach are given next.

In each iteration of the concurrent pivot phase, only the pendant nodes (nodes with
only one tree edge) will be active. Each of them checks their node weights and participates
in the appropriate firing pulse. Then they traverse the tree along the only tree edge they
have and merges with the node at the other end. This will result in a shorter tree with new
pendant nodes/clusters. Therefore. the number of pendant nodes in each iteration varies
dynamically. but we are guaranteed that there will be at least two pendant nodes in each
iteration. So, the number of pulses required to traverse the complete tree will be at most

half the length of a longest path in the tree.

The above step is repeated until the whole tree collapses into one node/cluster.
Note, at any stage, the pendant nodes/clusters that are active are mutually exclusive (i.e.,

not overlapping with each other) and therefore can be fired and merged with the other
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nodes concurrently.

If there is any non-zero firing at any stage of concurrent pivots, this means the
solution is not basic any mare. So, the algorithm will go back to the second step of cluster-
ing and computing shortest paths to find a new basic feasible solution. The objective value
of this new solution will be greater than or equal to that of the previous one. This guaran-
tees the progress of the algorithm and its eventual termination. If no firing takes place at
any stage of the concurrent pivot phase, then the algorithm terminates and the solution will

be optimum.

Since concurrent pivots employ both negative and positive firings, at optimalilty,
the final y;’s while satisfying the constraint (2.3), may not satisfy the constraint (2.4). This
can easily be corrected by reducing all the y;'s by an amount equal to the minimum of all

¥;’s. In other words, we perform the following:
k& min{y;}
yj = y;—k foralli

Summarizing, the Modified Dual Simplex method consists of the following main

steps. We start with the given graph and the associated edge tokens prescribed by M.

Step 1: We apply Algorithm FEASIBLE to test feasibility of the problem. At the end of

this step, all the edge tokens will be non-negative.

Step 2: We then fire positive weight nodes as much as possible with a view to increasing
the objective function. This process can be performed very efficiently using Algorithm
SHORTEST-PATH. When no more firings of positive weight nodes are possible, the nodes
will partition into clusters. At this point, we fire positive weight clusters as much as possi-
ble. Again. this can be done efficiently by consiructing a smaller graph in which a node

represents a cluster and then applying Algorithm SHORTEST-PATH on this new graph.
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Step 3: We repeat Step 2 until we obtain a basic solution (represented by a spanning tree)
of the dual simplex. At this point, we test the optimality of the solution using the simplex
optimality criterion. If the solution is not optimal, we fire concurrently the fundamental

clusters in an appropriate manner and increase the value of the objective as much as possi-

ble.

At the end of Step 3. the solution may not be basic. We now repeat steps 2 and 3

until optimality is reached.
The interesting features of the above approach are:
i) No auxiliary graph is constructed to test feasibility.

il)  Node and cluster firing operations of Step 2 can be performed efficiently using

Algorithm SHORTEST-PATH.

iii)  Several simplex pivot operations are performed concurrently in Step 3. The
classical simplex approach does not permit concurrent pivots because these

operations may destroy basicness of the solution.

iv)  If the solution at the end of Step 3 is not basic, Step 2 will convert it to a basic
solution with an objective value greater than or equal to that of the previous
basic solution. In other words, Step 2 converts a non-basic solution to a basic

one without ever decreasing the value of the objective function.

Figure 5.1 summarizes the different steps of MNDS method. A parallel implemen-
tation of the above algorithm and the resolution of several issues that we encounter are
explained next. The graph G shown in Figure 5.2 will be used to illustrate each step of our

algorithm.
5.4 Implementation of MNDS Method

As before each node is associated with a single processor and information is com-
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Algorithm FEASIBLE:
Initialization

Stop:
Feasibie ? Problem
Infeasible
> Clustering -t
Contraction
No the; number of Yes
nodes in the new graph
>17?
Build (-token Spanning Tree Shortest Path Computation
Concurrent Pivots Firing

Is
the solution
optimum ?

Yes Stop:
Optimum Solution

Figure 5.1 Modified Network Dual Simplex Method
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municated from one processor to another through shared-memory.

54.1 Data Structures

The following data structures are used in the implementation of this algorithm.
Data structures which are used only in certain procedures will be defined at the appropri-

ate places.

(-1) (5)

OF
&

node weight

Node numbers are shown inside nodes.
Node Weights and edge tokens are as shown.

Figure 5.2 Anexample to illustrate our algorithm: Given graph G.

n . an integer variable. It denotes the number of nodes in the
original graph G.
activeN : an integer variable. It denotes the number of nodes in the

current contracted graph G”.

token . a 2-dimensional array of integers. foken [i] [j] represents
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activeToken

inNodes

outNodes

activeOutNodes

firing_no

nodeWeight

clusterWeight

the value of the token of the edge (i. j). if there is such an
edge in the original graph G: otherwise it contains a spe-

cial value INFINITY outside the range of edge tokens.

a 2-dimensional array of integers. activeToken [i] [j] rep-
resents the value of residual token of the edge (i, j) in the
current contracted graph G”. If there is no edge (i, j) in G*,
activeToken [i] [j] contains a special value INFINITY out-
side the range of edge tokens. The variable activeToken [i]

[j] is initialized to token [i] [j].

an array of sets. inNodes [i] is a set containing all the

innodes at node i.

an array of sets. outNodes [i] is a set containing all the out-

nodes at node i.

an array of sets. activeOutNodes [i] is a set containing all
the nodes j such that (i, j) is an edge in the current con-
tracted graph G”. This variable is initialized to outNodes

[i].

an array of integers. At any time, firing_no [i] represents

the current firing nuiber of node /.

an array of integers. nodeWeight [i] represents the weight

of the node /.

an array of integers. Each clusterWeight [i] is initialized to
nodeWeight [i] which is the weight of node i. At termina-
tion, clusterWeight [i] represents the weight of the cluster

containing node i.
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source : an array of integers. The variable source [i] contains the

root of the cluster in which node i is present. (The root of a
cluster is a node in the cluster selected to represent this

cluster. This term will be defined formally in a later sec-

tion.)

zeroNodes : an array of sets. zeroNodes [i; contains all zero outnodes
at node /.

treeNodes : an array of sets. The variable rreeNodes [i] indicates the

set of adjacent nodes (both incoming and outgoing) at
node i such that the edges between i and each node j in the

set treeNodes [i] are in the tree.

10

(1)3 0

(21 3 5)__ 1ol

\,

Fifing number

131
-1

Firing numbers of nodes are shown in square brackets.

Figure 5.3 The graph G after feasibility testing.
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542 Testing Feasibility of the Dual Transshipment Problem

Complete details of a parallel implementation of Algorithm FEASIBLE to test the

feasibility of DTP are given in Section 3.1.

Figure 5.3 shows the graph G afier applying Algorithm FEASIBLE on the graph G
in Figure 5.2.

Figure 5.4 Illustration of a Problem.

©) (23)

543 Constructing a Basic Feasible Solution

Given a feasible solution Y of the DTP, we would like to construct a basic feasible

solution Y” such that WY” 2 WY. To do so we proceed as follows.

First, we fire the positive weight nodes concurrently as much as possible. We then
repeat these concurrent firings until no further firings are possible. Note that these firings

will not decrease the value of the objective WY.

We now illustrate a difficulty that we may encounter if we perform the node firings

as above. Consider the graph shown in Figure 5.4. During the first pulse of concurrent fir-
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ings. all the nodes will be fired exactly once. After twenty pulses of these firings. the resid-
ual tokens will be as shown in Figure 5.4(b). After the 23rd pulse, the residual tokens will
be as shown in Figure 5.4(c). The total number of firings of each node is also given in this

figure.

On the other hand, suppose we first determine the tokens of the shortest paths from
nade ¢ to all other nodes. We find that these tokens are precisely the number of times the
different nodes would be fired as in Figure 5.4(c). This is not an accident. In fact we can

prove the following.
Theorem 5.1

If there exists a directed path from i to j of token x, then the node j can be fired at

most x times. a

So computing first the tokens of shortest paths and then firing would save a large
number of pulses. (Note that, for this example. shortest path computations will take only 5
pulses). In our algorithm we employ this strategy. Since we are interested in firing only
positive weight nodes, we need to compute for each positive node j, the token of a shortest

path from a non-positive weight node to node i.

Note that some of the residual edge tokens corresponding to a feasible solution
may be equal to zero. But a node i with an incoming edge (j, i) of zero residual token can-
not be fired at all, if node j is negative weighted. In such cases. we should group nodes i
and j into one cluster and consider firing this group. So, our strategy is to first partition the
node set V into subsets Sy, ..., §; such that each S; with IS,] > 1 has at least one non-posi-
tive weight node and all nodes reachable from this node by a directed path of zero residual
token are also in S,. If a node in S; is reachable from more than one non-positive weight

node, then all such non-positive nodes will also be in S,.

Firing these clusters of nodes may then be performed.
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Our approach to construct a basic feasible solution from a given feasible solution

involves repeated application of the following phases.
l Clustering.

2 Contraction. (Note that if we find. after contraction, that the nodes of G have
joined to form one single cluster. then we have reached a basic feasible solu-
tion. In this case. the phases listed below will not be necessary. See Section

54.4.)
3 Shortest path computations and cluster firings.
Each one of these phases is discussed below.
54.3.1 Clustering

Clustering involves finding for each non-positive weighted node i, the set of all
nodes reachable from i by directed paths of edges with zero residual tokens. If a positive
weight node j is reachable from more than one non-positive weight node, then the union of
the corresponding sets will represent the cluster containing node j. The root of a cluster is
the least-numbered non-positive weight node in that cluster. In our description of the clus-

tering process. we use the following additional data structures.

source . source [i] at the end of this phase represents the root of the
cluster in which node i is present. source [i] is initialized
to NOTHING if the weight of the node i is positive, other-

wise it is initialized to i.

jobDone . an array of boolean. In the beginning. for each i, jobDone
[i] is initialized to FALSE. As node i propagates source [i]
to all of its zero outnodes, it will change jobDone [i] to

TRUE.
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The clustering phase has three subphases.
Subphase 1

In the first pulse of this subphase, variables are initialized as described above. Dur-

ing subsequent pulses each node i performs the following actions.

If source [i] = NOTHING. no action is taken. Otherwise, if jobDone [i] = FALSE,
then node i sets jobDone [i] = TRUE and performs the following for each zero out-

node j.
1 If source [j] = NOTHING. node i writes source [j] = source [i]..
2 If source [j] # NOTHING. then node i will do the following operations.

a) Node i examines the source variables in the order source [i]. source
{source [i]]. .... source [source [... [source [i] ... ]Jand picks the first node
k in this sequence for which source (k] = k.

b) Node i examines the source variables in the arder source [j]. source
[source [j]], .... source [source ... [source [j] ... ]Jand picks the first node
[ in this sequence for which source [1] = 1.

¢) it I <k, then node i writes source [k] = | and source [i] = [: otherwise it

writes source [1] = k.

The above pulses of operations are repeated if no action is taken by any processor
during a pulse. Though this subphase may contain several pulses. each node i will propa-

gate its source value during only one pulse.

Note that at the end of the first subphase each non-positive node i will have source
[i] € 1i. Ttis likely that certain positive nodes have their source variables equal to NOTH-
ING, unchanged from their initial values. For such nodes we set source [i] =i before initi-

ating subphase 2.
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Subphase 2

In this subphase only non-positive nodes will be active. During this subphase, each

node i performs the following actions.

Nede i examines the source variables in the order source [i]. source [source [i]],

. source {source [... [source [i] ... ]] and picks the first node k in this sequence for which

source [k] = k. Node i then writes source [i] = k.

We can easily show that at the end of the second subphase. source [i] for each non-

positive node will contain the Jeast numbered non-positive node in its cluster.

{1,2.3.5,6,7,8) {1,2,3,5,6,7,8)
(-2) (5) (-2 [0} 0 (5 __121

(-3) (3= 101
(a) The graph G’ after contracting G. (b) Shortest path calculations and Firing of G,
(1,2.3,4,5,6,7,8) 5 {1,2,3,4.5,6,7, 8} 4
@ =0
<3)CD - 1 .(C? 3) 1[ o 0 (-;) 101
(¢) The graph G”” after contracting G”. (d) Shortest path calculati«ins and Firing of G",

Note: Each thick-lined node here represents the source of a cluster.
The corresponding set of nodes is indicated in braces.

Figure 5.5 Illustration of contraction and shortest path calculations for G of

Figure 5.3.

Subphase 3

In this subphase. each positive node i will wriie source [i! = source [source [i]].
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It can be shown that, at the end of the third subphase, all nodes with the same value
for their source variables represent the members of a cluster. This common source value
will also give the least-numbered non-positive node in that cluster if the cluster has cardi-
nality greater than 1. In other words. source [i] is in fact the root of the cluster containing

node i.

For our example, each thick-lined node in Figure 5.5 represents a cluster. The
nodes in that cluster are given in braces. Nodes 4 and 9 will not join any cluster and there-
fore the source of node 4 is NOTHING while the source of node 9 is itself. Node 1 is the

source of the cluster {1, 2,3, 5, 6, 7, 8} (See Figure 5.5(a)).
This completes our discussion of the clustering phase.

A formal presentation of a parallel version of the above algorithm for clustering is

given next.

procedure get_last_link ( /)
{ travels through the chain of sources at node jand returns the source at the end
of this chain }
te— i
s « source [t];
while (s# f) do
tes;
s « source (t);
end while;
return s;

end procedure {get_last_link}
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procedure change_links (n1, n2)

{ Two chains of sources at n1 and n2 are traversed and linked together with the

smallest source in these chains }
s1 « get_last_link (n1);
s2 « get_last_link (n2);
if (s1 < s2)
then
S « s1;
source [s2] « s1;
else
S ¢ 82,
source [s1] «+ s2;
end if;
return s;
end procedure {change_links}
procedure propogate_source (/)

{ The node i will propagate its source information to each of its zero outnodes. If
there is more than one source at any node, then these sources are linked and the

least numbered one will be propagated further. }
if (not jobDone fi] and source [i] * NOTHING)
then
if (zeroNodes [i] # @)
then

notFinished « TRUE;
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s « source [i}.
for all jin zeroNodes [i] do
lock source [j};
if (source [j]# NOTHING)
then s « change_links (s, source [j])
else source [jl« s
end if;
unlock source [j],
end for;
end if;
jobDone [i] — TRUE;
end if;
end procedure {propagate_source)
procedure find_negative_source ( /)
{ Each non-positive node i will find its root }
if (clusterWeight [i] < 0)
then
source [i] « get_last_link ( /);
if (i = source [i))
then no_of_nodes « no_of_nodes + 1
end if;
end if

end procedure {find_negative_source}

99




procedure find_positive_source ( /)
{ Each positive node i will find its root )
if (clusterWeight [i] > 0)
then source [i] « get_last_link (/)
end if
end procedure {find_positive_source}
procedure clustering ()
{ main algorithm )
notFinished « TRUE;
for i< Oto N - 1 do in parallel { initialization }
jobDone [i] < FALSE;
if (clusterWeight [i] < 0)
then source [i] « i
else source [i] «— NOTHING
end if;
end for;
while (notFinished) do
notFinished « FALSE;
for i< 0to N - 1 do in parallel
propagate_source ( /)
end for;
end while;

for i< OtoN - 1 do in parallel

100




find_negative_source ( i)
end for;
for i« Oto N - 1 do in parallel
find_positive_source (i)
end for;

end procedure { clustering }

5.4.3.2 Contraction

Let Sy, ..., S; be the clusters formed by the clustering phase. Recall that source [i]
denotes the root of cluster S;. Now we wish to contract all the nodes in each cluster and
construct implicitly a graph G’ in which each node represents a cluster. Also in this graph,
there will be at most one edge directed from source [i] to any source [j]. j #i. The residual
token of such an edge will be the minimum of the tokens of all edges in G directed from a
node in §; to a node in S;. The weight of each cluster and the corresponding node in G’

will be the sum of weights of all the nodes in that cluster.

Now we proceed to present the details of our algorithm to construct the contracted

graph G” from G.

In G, each cluster will be represented by its root. The weight of a root will be the
weight of the corresponding cluster. To compute this weight, each node i, if it is not a root,
will add its weight to its root’s weight. The value of the source variable will also tell if a
node is a root node or it belongs to a cluster, or simply it is a node by itself. If source [i] is
equal to i, then the node i is the root of the cluster containing node i. If source [i] is equal
to NOTHING (a special value), then the node i belongs to a cluster of cardinality equal to
unity. This could be the case for some positive nodes, especially after the feasibility phase.

If source [i] is not equal to i and is also not equal to NOTHING, then the node i belongs to
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the cluster containing source [i]. In this case, node i should add clusterWeight [i] to the

clusterWeight [source [i]].

That is, node { writes

clusterWeight[source[i]] = clusterWeight [source[i]] + clusterWeight [i], if source [i] #1.

Since there may be more than one node trying to access the root’s clusterWeight

variable at the same time, the clusterWeight variable of the root is locked before it is

updated. After the update, the node will unlock this variable so that another node can
update it. Note the locking and unlocking of each root’s clusterWeight variable can be

done independently.

Next the set of activeOutNodes as well as residual tokens of edges (activeTokens)

in G” have to be calculated. This is accomplished in two steps.

First, each node i will process its acriveOutNodes [i] set one by one. For example,
assume node i is processing node j in activeOutNodes [i]. Suppose k is the root of the node

i and / is the root of the node j. Then node i takes the following actions.
1 If k = I, then remove j from activeOutNodes [i].
2 If k=l and [l #, then do the following:

a) remove j from activeQutNodes [i].
b)  add /! toactiveOutNodes [i].

c) If activeTokens [i] [j] < activeTokens [i] [1], then write activeTokens [i]

[1] = activeTokens [i] [j].

At the end of this step, for each node i and each node j € activeOutNodes [i], an
edge (i, /) will be created where [ = source [j], whenever source (j] # source [i]. The resid-
uval token of this edge is the minimum token of all the edges between 7 and all j such that /

= source [j].
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In the second step, each node i will process the edges in activeOutNodes [i] so that
root’s activeTokens set will contain only the most constraining edges, and then combine its
activeOutNodes set with that of the root. That is, it will calculate activeOQutNodes[i] U

activeOutNodes [source [i].

Note that there may be conflicts among nodes when they try to access their root’s
data structures. Therefore locking and unlocking of root’s data structure is necessary in
this step. But the data structure of each root can be locked and unlocked independent of

each other.

At the end of the second step. all nodes except the roots will become inactive, thus

making contraction of the graph complete.

The formal presentation of the algorithm is given next.

procedure process_edges ( /)
{ Each node i will process its active outnodes and change each outnode to the root
of the cluster in which the outnode is present. if there is more than one edge to a root
then it will keep the most constraining edge-token as the new token. }
for all jin activeOutNodes [i] do
if (source [j] = source [i})
then delete jfrom activeOutNodes [i]
elsif (source [j] £ ))
then
if (token [i] [j] < token [i] [source []])
then token [i] [source [jj] < token [i] [j]
end if;

delete jfrom activeOutNodes [i);
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add source [j]to activeOutNodes [i}
end if
end for
end procedure {process_edges)
procedure merge_edges (/)

{ In this procedure, each node i will merge its active outnodes set and its edges

with that of its root, if the root of the cluster is not itself. }
for all jin activeOutNodes [i] do
lock source [iJ;
if (token [i] [j] < token [source [i]] [f])
then token [source [i]] [j] « token [i] [j]
end if;
unlock source [i;
end for;
lock activeOutNodes [sourceli]] « activeOutNodes [sourceli]] U
activeOutNodes [i];
end procedure {merge_edges)
procedure contraction ()
{ main algorithm }
fori<— 0to N-1do in parallel
process_edges (i)
end for;

for i« O0to N-1do in parallel
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s « source [iJ;
if (/+59)
then
lock clusterWeight [s] = clusterWeight [s] + clusterWeight [i];
merge_edges (i);
end if;
end for;

end procedure { contraction )

5.4.3.3 Shortest Path Computations and Firings

We now have a contracted graph G” in which each node represents a cluster of
nodes of the given graph G. We also have for each node in G’ its weight (the weight of the

corresponding cluster) and for each edge its residual token.

We now need to find for each positive node i in G” a shortest path to it from a non-
positive weight node. The token of such a path specifies the number of times node / could
be fired without resulting in any negative residual token. These shortest path computations
can be done in parallel by using the algorithm SHORTEST-PATH explained in Chapter 3.
It should be noted that the graph G* under consideration will have no negative residual
tokens and so successful termination of this shortest path algorithm will occur in less than
n pulses. Also, it should be noted that if a positive weight node i is not reachable from any
non-positive node. then the shortest path algorithm will terminate with distance [i] = o,
where distance [i] refers to the token of a shortest path 7 from a non-positive node. This
indicates unboundedness of the DTP because the node i can be fired an unbounded num-
ber of times increasing the value of WY to an unbounded value. If this happens, our algo-

rithm will terminate with an appropriate error message.
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In the algorithm SHORTEST-PATH. all the sources will initialize their newDis-
tance variables to zero while other nodes will initialize them to INFINITY. Thus, all non-
positive weighted clusters will act as sources and initialize their newDistance variables to
zero and all positive weighted clusters will initialize their newDistance variables to
INFINITY. But it could so happen that the graph at an intermediate stage is made up
entirely of zero weight nodes. This condition can be detected by checking if at least one
newDistance variable in the graph is initialized to INFINITY. If not, then a special initial-
ization routine is called to initialize the graph. The special initialization routine will allow
only one node to initialize its newDistance variable to zero while all other nodes are
allowed to initialize their newDistance variables to INFINITY. This node will be selected
on a first-come first-serve basis. but it should have at least one outgoing edge. The formal

details of this special initialization routine are given next.

procedure sp_special_initialize ( i)
{ This procedure is called if the variable notFinished is still FALSE after the
procedure sp_initialize is executed for all the active nodes. This happens only when
the entire graph is made up of zero weight nodes. One node with at least one
outgoing edge will be picked as source and initialized accordingly while ali other
nodes are initialized as non-source nodes. }
if (lactive OutNodes [ill > 0)
then
lock if (notFinished)
then newDistance [i] « INFINITY
else
newDistance [i] « 0,
notFinished « TRUE;

end if
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end procedure { sp_special_initialize }

else newDistance [j] « INFINITY

This completes our discussion of the three phases in our algorithm to construct a

basic feasible solution.

Summarizing, our algorithm to construct a basic feasible solution starting from a

given feasible solution Y is as follows.

1

544

Perfoim on G, the following sequence of operations. (Note that the edge tokens
are the residual tokens that result after firing the nodes as specified by Y).

a)  Clustering.

b)  Contraction.

c)  Shortest path computation and firings.

If clustering results in a graph G~ which consists of exactly one node, proceed

to step (3). otherwise let G = G” and repeat step 1.

(At this point, we have a spanning subgraph of G in which residual tokens of all
edges are equal to zero and so the node firing numbers represent a basic feasible
solution.) Build a O-token spanning tree of G. This tree is a required basic feasi-

ble tree.

Building a 0-token Spanning Tree

A 0-token spanning tree as required in step (3) above can be easily built using a

parallel depth-first search of the subgraph of zero-token edges referred to in step (3), if at

each node i we maintain the set consisting of the nodes - both incoming and outgoing -

adjacent to i. Maintaining such a set has not been necessary for any of the algorithms dis-

cussed thus far in this section: we have so far used only the sets outNodes [i]. We have
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designed a parallel algorithm to build the required spanning tree using only these sets. We

next explain the details of this algorithm.
The following data structures are used.

tree : aset containing all the nodes that have joined the tree till

that time. Initially it is a null set.

treeNodes : an array of sets. treeNodes [i] indicates the set of nodes
(both incoming and outgoing) adjacent to node i such that
the edges between i and each node j in the set treeNodes
[i] are in the tree. Each treeNodes [i] is initialized to the

null set.
ROOT is a node chosen arbitrarily. We select the node numbered zero as ROOT.

The algorithm to build the O-token tree is an iterative one. The algorithm termi-
nates when jobDone [i] is equal to TRUE for all i. A node i can join the tree only if it is
adjacent to at least one node in the tree. In other words, node i can join the tree only if tree
M zeroNodes [i] # . Locking and unlocking operations are used to make sure only one
node can join the tree at a time. Initially, the tree is empty and so any node can join the tree
by simply adding all of its zeroNodes to tree. Of course, locking and unlocking operations

prevent more than one node seeing the tree empty and joining it simultaneously.
The following operations are performed at node .

if (zeroNodes [i] N tree #D or i e tree)

then

treeNodes [i] = treeNodes [i] U (zeroNodes [i] - tree)
tree = tree U zeroNodes [i]

tree = tree + i
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The algorithm terminates when all nodes have joined the tree. We can show very
easily that the algorithm terminates eventually. Since this phase is entered only upon the
successful termination of the clustering, contraction and shortest paths phases at the end of
which all the nodes in the graph are collapsed into one single cluster, we can prove that
there will be a zero-weighted (undirected) path between every pair of nodes and therefore

a (-token spanning tree can be built using only 0-token edges.

For our example, after performing the clustering and contraction on graph G”” in
Figure 5.5(d). all the nodes coalesce into a single node. The graph G with node firing num-
bers (performed thus far) and the residual tokens is shown in Figure 5.6. At this point a 0-

token spanning tree is available. This is shown in Figure 5.7.

(1~ 0 -1, I3] 1 (5)__13

(-3)

(-D [1] 4
Figure 5.6 Graph G with its residual tokens at the end of clustering and shortest

path calculations phase.
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(-1) 1

Figure 5.7 A 0-token spanning tree of the graph G in Figure 5.6.

The formal algorithm is presented next.

procedure initialize_tree (/)
calculate new residual tokens ;
calculate new zero outnodes ;
JobDone [i] « FALSE ;
treeNodes [i] « @;
if (i= ROOT)
then tree « @
end if,
end procedure { initialize_tree )
procedure inform_other_end (i, temp)
{ If an edge (i, j)is in the O-token spanning tree, then inform the node jabout it. }

for all jin temp do
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treeNodes [j] « treeNodes [j] + i
end for
end procedure {inform_other_end}
procedure join_tree (/)
{ Each node i joins the tree either if it is the first one to do so or if it or one of its

Zero outnades is already in the tree. It also calculates which of its zero outgoing

edges will be in the tree and informs the corresponding zero outnodes. }
temp « zeroNodes [i] + i;
if (/=ROOT)
then
fock tree « temp ;
treeNodes [i] «- zeroNodes [i]
inform_other_end (i, zeroNodes [i]) ;
jobDone [i] < TRUE ;
elsif ( treentemp= @)
then
lock tree;
tcopy « tree;
tree « tree U temp ;
unlock tree,
temp « zeroNodes [i] - tcopy ;
if (i ¢ tcopy)

then
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s « zeroNodes [i]  tcopy ;
m « get the first memberins ;
temp « temp + m;
end if ;
inform_other_end (i, temp) ;
treeNodes [i] « treeNodes [i] U temp;
JjobDone [i] « TRUE ;
end if;
end procedure { join_tree }
procedure build_tree ()
{ main algorithm )
for i« Oto N - 1 do in parallel
initialize_tree (/i)
end for;
for i<~ Oto N - 1do in parallel
join_tree (i)
end for ;

end procedure {build_tree}

5.4.5 Concurrent Pivots

Given a basic feasible solution Y and the corresponding basic feasible tree T, con-
current pivoting essentially involves traversing the tree bottom up (starting from the

leaves), identifying the fundamental clusters and firing them in an appropriate manner.

For each node i, father [i] will denote the unique father of i in a depth-first-search

of the basic feasible tree T,

112



We assume that the following additional data structures are available at each node.

num_tree_edges

new_num_tree_edges

cluster_firing_no

an array of integers. Initially, num_tree_edges [i] will

denote the number of nodes that are adjacenttoiin T.

Same as num_tree_edges. As the bottom-up traversal of T
proceeds, the edges will be contracted and the tree will
shrink dynamically. This dynamic change of tree edges in
an iteration is indicated by new_num_tree_edges. At the
end of each iteration, new_num_tree_edges is copied into

num_tree_edges.

an array of integers. cluster_firing_no [source [i]] will
denote the maximum number of times the fundamental
cluster which contains node i can be fired. This variable is

initialized to INFINITY.

At the end of a cluster finding pulse, source [i] will denote the root of the funda-

mental cluster which contains node i (Note that this fundamental cluster will also define a

unique subtree of T rooted at source [i].) and clusterWeight [source [i]] will denote the

weight of this cluster. Initially, clusterWeight [i] = nodeWeight [i].

Concurrent pivoting involves two phases: cluster firing and determining new clus-

ters.

Cluster Firing

In this phase, there are two subpulses: the positive cluster firing pulse and the neg-

ative cluster firing pulse.

Positive Cluster Firing

During the positive firing pulse, only nodes i with num_tree_edges [i] < 1 and
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clusterWeight [i] > 0 will be active. Each such node i will process the nodes j in treeNodes
[i] one by one and discard those edges (j, i) with source (j] = source [i]. From the remain-
ing edges, it will calculate the minimum residual edge token., say, f;. Note that f; will be the
minimum of the residual token on the incoming edges at i. After calculating f,, node i will

lock the clusterFiringNumber variable of source [i] and will write
clusterFiringNumber [source [i]] = f;, if f; < clusterFiringNumber [source [i]]

At the end of this pulse. clusterFiringNumber [source [i]] will give the number of
times each node in the cluster with source [i] as root can be fired positively. Each node i
will find its firing number from clusterFiringNumber [source [i]] and update the residual

edge-tokens accordingly.
Negative Cluster Firing

This is similar to the positive cluster firing pulse except that to calculate f; each
node will examine the outgoing edges instead of incoming edges. and perform negative

firing instead of positive firing.
Note that the above two subpulses will not be executed concurrently.
Determining New Clusters

The purpose of this phase is to determine new fundamental clusters and determine

their weights. There are two pulses in this phase.
In the first pulse, each node i with num_tree_edges [i] = 1 will do the following.
1 Write clusterWeight [father [i]] = clusterWeight [father [i]] + clusterWeight [i]
2 Decrement new_num_tree_edges [i] by 1
3 Decrement new_num_tree_edges [father[i]] by 1

4 Delete i from rreeNodes [father [i]]
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Write source [i] = father [i].

During the second pulse only nodes with num_tree_edges [i] < 1 will be active.

Each such node i will write
source [i] = source [source [i]]

num_tree_edges [i] = new_num_tree_edges [i]

3 clusterWeight [i] = clusterWeight [father [i]]

Thus at the end of this puise each node will have the information about source of

the fundamental cluster it is in as well as the weight of this cluster.

{-3

<-4®‘1 0

(1.2}

(1]

{0

(4.5)
(1) (6.9)

{7,8)
(a) After one iteration.

-1 10}
{,2,3,4,5)

(101
{6,7.8,9)

(b) After two iterations.

Figure 5.8 The 0-token spanning tree at different iterations.

Figure 5.8 shows the zero token spanning tree at different points in the concurrent

pivoting phase. After one iteration, the tree will be as shown in Figure 5.8(a). Here node 7
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(representing the cluster {7, 8}) will fire 3 times while node 5 (representing the cluster {4,
5}) will fire once. Both these clusters fire concurrently. On the other hand, node 2 (repre-
senting the cluster {1, 2}) will negative fire 3 times. Then the tree will contract to as
shown in Figure 5.8(b). After this pulse, the tree will coalesce into one cluster thus termi-
nating the concurrent pivots phase. Then the algorithm will return to clustering and short-
est path computation phase, but quickly terminate that phase without any improvement in
the objecting value. One can build a new O-token spanning tree and proceed to the concur-
rent pivot phase. Here again nodes 3, 4, 5, 6 and 9 together fire 3 times. The algorithm
goes through the clustering and shortest path computations and then concurrent pivots
again without any improvement in the objective value. At this point, the algorithm termi-

nates. The final firing numbers and residual tokens of the graph G are shown in Figure 5.9.

Figure 5.9 The optimum solution of the graph G.
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Formal Presentation of the Concurrent Pivot Algorithm
procedure initialize_cpivots { /)
clusterWeight [i] « nodeWeight [iJ;

source [i] « i

num_tree_edges [i] « new_num_tree_edges [i] « | treeNodes {i]{;

if (num_tree_edges [i]= 1)
then notFinished + TRUE
end if;
cluster_firing_no [i] «<— INFINITY;
positive_fire_flag « negative_fire_flag «— FALSE;
end procedure {initialize_cpivots)
procedure positive_fire_check (i)
node « the (only) member in treeNodes [i;
if (node ¢ inNodes [i))
then positive_fire_flag «+ TRUE;
end if;
end procedure {positive_fire_check}
procedure check_if_branches_in_right_direction ( /)
if (num_tree_edges [i] = 1)
then
if (clusterWeight [i] > 0)
then positive_fire_check ( /)

elsif (clusterWeight [i] < 0)
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then negative_fire_check ( /)
end if
end if
end procedure {check_if_branches_in_right_direction}
procedure get_min_positive_firing_no ( /)
fno « INFINITY;
for all jin inNodes [i] do
it (token [j] [i] < fno and source [j] # source [i])
then fno « token [j] [i]
end if;
end for;
return fno;
end procedure {get_min_positive_firing_no}
procedure calculate_positive_firing_no ( /)
if (num_tree_edges [i] < 2 and clusterWeight [i] > 0)
then
fno « get_min_positive_firing_no (i);
lock if (fno < cluster_firing_no [source [i]))
then cluster_firing_no [source [i]] « fno
end if;
end if

end procedure {calculate_positive_firing_no}
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procedure fire (i, fno)
if (fno = INFINITY)
then unbounded « TRUE
else
firing_no [i] « firing_nc [i] + fno;
for all jin inNodes [i] do
token [j] [i] < token [j] [il- fno
end for;
for all jin outNodes [ij do
token [i] [j] « token [i] [j] + fno
end for;
end if
end procedure {fire}
procedure positive_fire ( /)
if (num_tree_edges [i]< 2 and clusterWeight [i] > 0)
then
fno « cluster_firing_no [source [ij}
if (fno > 0)
then notOptimal « TRUE
end if;
fire (i, fno);
end if

end procedure {positive_fire)
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procedure get_min_negative_firing_no ( /)
fno « INFINITY;
for all j in outNodes [ijdo
if (token [i] [j] < fno and source [j] # source [i])
then fno « token [i] [j]
end if
end for;
return fno;
end procedure {get_min_negative_firing_no)
procedure calculate_negative_firing_no ( /)
it (num_tree_edges [i]< 2 and clusterWeight [i] < 0)
then
fno < get_min_negative_firing_no (i);
lock if (fno < cluster_firing_no [source [i]))
then cluster_firing_no [source [i]] «— fnc
end if;
end if
end procedure {calculate_negative_firing_no}
procedure negative_fire ( i)
it (num_tree_edges [i] < 2 and clusterWeight [i] < 0)
then
fno « cluster._firing_no [source [i]],

if (fno > 0)
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then notOptimal «+~ TRUE
end if,
fire (J, - fno);
end if
end procedure { negative_fire }
procedure climb_up_tree (/)
if (num_tree_edges [ij= 1)
then
new_num_tree_edges [i] « 0;
if (treeNodes [i] # @)
then
node « the (only) member in treeNodes [if,
source [i] « node;
lock clusterWeight [node] «— clusterWeight [node] + clusterWeight [i];
lock new_num_tree_edges[node] «- new_num_tree_edges[node] - 1;
lock delete / from treeNodes [node];
end if;
end if
end procedure {climb_up_tree}
procedure find_new_sources ( /)
num_tree_edges [i] « new_num_tree_edges [i];
if (num_tree_edges [i]= 1)

then notFinished + TRUE;
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elsif (num_tree_edges [i] = 0)
then
S|
while (s = source [s]) do
S « source [s]
end while;
source [i] « s;
clusterWeight [i] « clusterWeight [s];
end if;
end procedure { find_new_sources )
procedure concurrent_pivots ()
{ main algorithm }
notFinished « FALSE;
for i« Oto N - 1 do in parallel
initialize_cpivots ( /)
end for;
while (notFinished) do
notFinished « FALSE;
for i< 0to N - 1 do in paralle!
check_if_branches_in_right_direction ( /)
end for;
if (positive_fire_flag)

then
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positive_fire_flag « FALSE;

for i« Oto N - 1 do in parallel
calculate_positive_firing_no ( /)
end for;
for i< Oto N - 1 do in parallel
positive_fire (/)
end for;
if (unbounded)
then exit_with_error_message ()
end if;
end if;
it (negative_fire_flag)
then
negative_fire_flag « FALSE;
fori<— Qto N - 1 do in parallel
calculate_negative_firing_no ( /)
end for;
fori< Oto N - 1 do in parallel
negative_fire ( /)
end for;
if (unbounded)
then exit_with_error_message ()

end if;
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L aem

end if;

for i« OtoN-1do in parallel
climb_up_tree ( i)

end for;

for i~ OtoN-1do in parallel
ind_new_sources ( /)

end for;

end while;

end procedure { concurrent_pivots )

5.4.6  Avoidance of Cycling

We have incorporated in the Concurrent pivoting phase, Bland’s anti-cycling rule
[39] to avoid occurrence of cycling. Bland’s anti-cycling rule states that if there is a choice
in picking the entering and leaving variables, then always pick the candidate x;, that has

the smallest subscript £.

Cycling can occur in our algorithm only if there are more than one degenerate
pivot in one iteration in the concurrent pivots phase. The degenerate pivots can be easily
recognized because the firing number in this case is zero. Also one can number the edges
in such a way that the smallest edge can be recognized by looking at the node numbers.

This can be done as follows.
1 All incoming edges at node i will have lower number than any incoming edge at
node jifi <.
2 Of any incoming edges at node i, edge (k, i) will have lower number than the

edge (1,i)ifk <L

124



The Bland’s anti-cycling rule now can be easily incorporated in our algorithm by
simply recognizing degenerate pivots and allowing the least numbered node to leave and
another least numbered node to enter the spanning tree. In the case of negative firing, we

will compare the nodes at the other end of the edges that are entering/leaving the tree.

The formal presentation ot main algorithm is given next.

Parallel Network Dual Simplex Algorithm

procedure MNDS ()
{ main algorithm }
feasible ();
do
notOptimal <+ FALSE;
do
no_of_nodes « 0;
clustering ();
if (no_of_nodes > 1)
then
contraction ();
shortest_path ();
firing ();
end if;
while (no_of_nodes > 1);
build_tree ();
concurrent_pivots ();
while (notOptimal);

end procedure { MNDS }
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5.5 Summary

In this chapter, we have presented a new approach to solve the dual transshipment
problem. This approach, called the Modified Network Dual Simplex (MNDS), involves
repeated applications of three basic algorithms: Algorithm FEASIBLE to test feasibility of
the DTP, Algorithm SHORTEST-PATH to compute shortest paths in a multiple source -
multiple sink network and Concurrent pivots. Starting with a feasible solution, the nodes
attempt to improve the value of the objective as much as possible using node and cluster
firing operations. When no more improvement is possible, we will have reached a basic
feasible solution at which point the algorithm improves the objective through concurrent
pivot operations. This phase - node/cluster firing and concurrent pivots - is repeated until
we reach a basic feasible solution which does not permit pivot operations. Unlike the tra-
ditional network dual simplex method, MNDS does not move from one basic feasible
solution to another. Implementing node/cluster firings through shortest path computations
and carrying out concurrent pivots efficiently and without destroying feasibility are the
distinct features of MNDS. An experimental evaluation of MNDS will be discussed in

Chapter 7.
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CHAPTER 6

A CLUSTER-BASED PARALLEL ALGORITHM FOR THE DUAL
TRANSSHIPMENT PROBLEM

In this chapter, we develop a novel approach to the solution of the dual transship-
ment problem. Towards this end, we first establish a new characterisation of the optimum
solutions of DTP. This characterisation relates the structure of an optimum solution to the
structure of certain zero-residual token clusters rooted at the negative weighted nodes. Our
approach. to be called the Cluster-Based Dual Simplex (CBDS) method, uses concepts
and results from the theory of marked graphs. CBDS has several distinguishing features
which make it amenable for an efficient parallel implementation.

The CBDS method to the solution of the DTP involves repeated applications of
three basic steps, namely, feasibility testing. cluster optimization and performing concur-
rent pivots. In the cluster optimization step, certain clusters rooted at negative-weighted
nodes are constructed using an algorithm which resembles Prim’s approach to the mini-
mum cost spanning tree problem [135]. This step is the most distinguishing feature of
CBDS. In the following sections, we develop CBDS and discuss essential features of its
implementation in a shared memory programming environment.

In this chapter, unless otherwise stated, firing would mean negative firing.
6.1 Basic Definitions

Consider a directed graph G = (V, E). Let A denote the incidence matrix of G, M
denote the column vector of edge tokens and W denote the colum vector of node weights.
Recall again that the dual transshipment problem (Section 2.2) is a linear program defined

as follows:

Maximize: W'Y




subject to
Ay >-M (6.1)
Y 20, (6.2)

where Y is the column vector of node firing numbers.

Clearly, in DTP, we seek to determine Y such that W’ Y is maximum and (6.1) and
(6.2) are satisfied. Any vector Y which satisfies (6.1) and (6.2) is a feasible solution of the

DTP.

Given a feasible solution yy, ya. ..., ¥, of the DTP, the residual token on the edge (i,

J) is given by
Yi-yj+my;.

Note that feasible solution Y guarantees that the residual tokens are all non-nega-
tive. We can easily show that the residual edge tokens define a feasible Y to within an
additive constant [44], [162]. So, we can view the residual edge tokens as defining a solu-

tion to the DTP.

Let V,, be the set of negative weight nodes in G. Then, given a feasible solution to
the DTP, cluster C;, for each negative node i € V,,, is defined as the set of nodes reachable
from i through O-token directed paths. The negative node i is called the source of the clus-

ter C;. The weight of the cluster C; is the sum of the weights of all the nodes in that cluster.

Clusters C; and C; are said to be mutually exclusive if C; N C; = &. Three or more
clusters are mutually exclusive if every pair of them are also mutually exclusive. Clusters

C,' and C] are said to be linked if Ci M Cj #J.
A collection S;, of clusters is said to be maximally linked if
i)  ifacluster C; € Sy, then all clusters that are linked to C; are also in S, and

ii) ifacluster Cj& Sy thenC;NC;=(, forall C; € §;.
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6.2 A Characterisation of Optimum Solutions for the DTP

Recall (Section 2.4) that a basic feasible solution Y of a DTP is optimum iff no
dual pivot operation is permissible under this solution. This is. in fact, the simplex crite-
rion for optimality. We now present an alternate characterisation of optimality in terms of

the clusters defined in the previous section.
Theorem 6.1

A solution to the DTP is optimum iff the corresponding clusters satisfy the follow-

ing properties:
P1.  For each negative node i, the weight of the cluster C; is non-negative.

P2, The weight of the union of two or more clusters is non-negative.
Proof
Necessity

Suppose a solution Y is optimum and the corresponding clusters do not satisfy
(P1.) or (P2.). Then there would exist a group S of nodes with W(S) < 0. Since the edges
going out of each cluster have non-zero residual tokens, it follows that S can be fired a
non-zero number of times, thus improving objective W' Y. This contradicts the optimality

of Y. Thus the clusters corresponding to Y satisfy (P1.) and (P2.).
Sufficiency

Suppose that the clusters corresponding to a solution Y satisfy (P1.) and (P2.). We
show that for every group S of nodes with W(S) < 0, there is a zero token edge going out
of S. This could then mean that no further negative firing of nodes is possible and hence

the objective W' Y cannot be improved any more (establishing the optimality of Y).
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Consider a group S of nodes with W(S) < 0. Let v,, v,. ..., v; be the negative nodes
in § and C,, C,. ..., C; be the corresponding clusters. Suppose all these clusters lie entirely
in S. By (P2.), the union of these clusters have non-negative weight. Since the negative
nodes vy, v,, ..., Vi are all in this union, the weight of S will be non-negative contradicting

that W(S) < 0.

If, on the other hand, C; - S # &, for some C;, 1 < i <k, then there exists an edge
(v, vp) with zero residual token and with v, € S and v, € S. Thus, for every group S of

nodes with W(S) <0, there is a zero-token edge going out of S. Q
6.3 Outline of a Cluster-Based Algorithm for the DTP

The optimality criteria proved in Theorem 6.1 has the following algorithmic impli-

cation.

Suppose there are k negative nodes and hence £ clusters which satisfy (P1.). Then
to test for property (P2.). we need to generate all the 2 - 1 combinations of clusters and
check if any one of these combinations is negative. The solution is optimum if all of them
are non-negative. An approach based on this optimality criteria will be attractive only for
values of k £3. So, our approach will not employ the test for property (P2.) though it will
be based on clusters which satisfy property (P1.). For this reason, we shall refer to this

approach as the Cluster Based Dual Simplex (CBDS) method.
The main steps of the CBDS method for the DTP are:
1. Feasibility Testing.
2. Cluster Forming.
3.  Cluster Optimization.

4,  Cluster Union.
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5. Firing Zero Combinations.
6.  Concurrent Pivots.

We first test if the DTP is feasible (Step 1). The algorithm would terminate if the
DTP is not feasible. Otherwise, we form clusters (Step 2). If any of these clusters has neg-
ative weight, then we fire these clusters in an appropriate manner until all the clusters have

non-negative weight (Step 3).

If, at the end of Step 3, the subgraph of zero residual tokens is not connected, then
each connected component will correspond to a set of maximally linked clusters. In Step
4, we combine these clusters. and treating each such combination as a cluster. we return to
Step 3.While optimizing these combinations, it may so happen that some of these combi-
nations may be reduced in size. When this happens, the clusters inside these combinations
may not be connected with a zero-token edge. So, to avoid this case, if any combination is

reduced in size. the algorithm will go back to Step 2 to form new clusters.

If, at the end of Step 4, the weight of the sum of the nodes in every connected com-
ponent of zero-token edges is zero, then we fire these components in an appropriate man-

ner to create a connected spanning subgraph of zero-token edges (Step 5).

At this point, a O-token spanning tree will be available. Using this tree, we perform

concurrent pivots as described in the previous chapter (Step 6).

Step 5 will not be required if, at the end of Step 4. the subgraph of zero-token

edges is connected and spans all the nodes in the graph.
Steps 2-6 would be repeated if optimality is not detected at Step 6.
These steps will be discussed in detail in the following sections.

An outline of the above algorithm is given in Figure 6.1.
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Algorithm FEASIBLE:
Initialization

Cluster Forming

'

Cluster Optimization

!

Cluster Union

Is
there any
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there reduction
in combinations ?
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Feasible ?

Stop:
Problem

Infeasible
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Optimum
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Is
the solution
optimum ?

Concurrent Pivots

T

Build O-token Spanning Tree

Figure 6.1 Cluster-Based Dual Simplex Method for the DTP
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The graph G shown in Figure 6.2 will be used to illustrate each step of our algo-
rithm. Again this is the same example we used to illustrate our other algorithms in the pre-

vious chapters.

oB
i

node'weigm

Node numbers are shown inside nodes.
Node Weights and edge tokens are as shown.

Figure 6.2 Anexample to illustrate our algorithm: Given graph G.

6.4 Feasibility Testing

We apply Algorithm FEASIBLE to test the feasibility of the problem as explained
in the previous chapters. If the problem is not feasible, then the algorithm stops here; oth-
erwise it will proceed to the next step. Figure 6.3 shows our graph after the application of

Algorithm FEASIBLE.
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Firing number

Firing numbers of nodes are shown in square brackets,

Figure 6.3 The graph G after feasibility testing.

6.5 Cluster Forming

In this step, a cluster C; is formed for each negative node i € V. It involves find-

ing for each negative node i, the set of all nodes reachable from i by directed paths with

zero residual tokens.

A cluster can also be viewed as a 0-token subtree rooted at each negative node. A

cluster can be overlapping with other clusters either completely or partially. Different

examples of overlapping clusters are shown in the Figure 6.4.
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Circles represented by n; are negative nodes and dark lined circles represented by
t; are O-token subtrees consisting of only non-negative nodes. The weights are given in

parentheses.

Figure 6.4 Anillustration of different overlapping clusters.

Clusters are only a ‘soft’ grouping of nodes i.e., the nodes in a cluster are not con-
tracted into one single node as in our previous algorithm. They still keep their individual

identities and are aware of all the clusters in which they are present.

There are two phases in this step. The first one, called Cluster Initialization, will be
used to form a initial cluster at each negative node consisting of only itself. The second
phase, called Cluster Expansion, will be used to expand each cluster as much as possible.

The following data structures are used to explain the implementation details of these

phases.
n . an integer variable. It denotes the number of nodes in the
graph G.
token : a 2-dimensional array of integers. foken [i] [j] represents

the value of the token of the edge (i. j), if there is such an
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outNodes

firingNo

nodeWeight

clusterWeight

sources

newSources

zeroNodes

isSimpleClusters

edge in the original graph G: otherwise it contains a spe-

cial value INFINITY outside the range of edge tokens.

an array of sets. outNodes [i] is a set containing all the out-

nodes at node i.

an array of integers. At any time, firingNo [i] represents

the current firing number of node i.

an array of integers. nodeWeight [i] represents the weight

of the node |.

an array of integers. Each clusterWeight [i] is initialized to
nodeWeight [i] which is the weight of node i. At termina-
tion, clusterWeight [i] represents the weight of the cluster,

if node i is the source of the cluster..

an array of sets, The variable sources [i] contains the set of

the sources of all the clusters in which node i is present.

an array of sets. The variable newSources [i] contains the

set of the new sources inviting node i to join their clusters.

an array of sets. zeroNodes [i] contains all zero outnodes

at node i.

a boolean variable. isSimpleClusters equal to TRUE indi-
cates that the clusters formed are simple clusters at each
negative node; otherwise, it indicates that the clusters are

combinations..

6.5.1 Cluster Initialization

There is only one pulse in this phase. Each node keeps track of the clusters in
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which itis present by using a set variable called sources. Each sources [i] will comain all
the sources in whose clusters node i is present. To initialize the process, each negative

node i will add its node number i to its sources [i] and its node weight to clusterWeight [i].

A formal presentation of Cluster Initialization is given next.

procedure cluster_initialization ())
zeroNodes [i] « @;
sources [i] < newSources [i] «— @,
if (nodeWeight [i] < 0)
then
add ito sources [i];
clusterWeight [i] < nodeWeight [i}
clusterFiringNo [i] «— INFINITY;
else clusterWeight [i] «— 0,
end if;

end procedure { cluster_initialization )

6.5.2 Cluster Expansion

In the first pulse of this phase. each node will calculate its zero outnodes and prop-
agate its sources information to any new zero outnodes. (See procedures get_new_zeroN-

odes, propagate_sources_to_new_zeroNodes and calculate_zeroNodes.)

In the subsequent pulse. each node will examine its newSources variable and if any
new sources have been added to it since the last iteration, then it will propagate this new
sources information to each of its zero outnodes. It will also update the cluster weights of
new sources by adding its node weight to the weight of each of their clusters. This pulse is

repeated until there is no new propagation at any node in one pulse. (See procedures prop-
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agate_new_sources and calculate_cluster_weight.)

2
(-5)
D
() (5
% {2,3,5)
Cluster weight

A

1
The set of nodes
in its cluster

Figure 6.5 The graph G after clustering.

The above implementation can be done in an asynchronous manner. Also, each
node doesn’t have to wait or synchronize for any particular data; it propagates as and when
it ‘sees’ it. The cluster for each negative node in our example is shown ... braces in Figure

6.5. The weight of each cluster is also shown in double parenthesis at each negative node.

A formal presentation of the cluster expansion phase is given next.

procedure get_new_zeroNodes (j)
{ Find all zero outnodes at node i}
newZnodes « @;
for all jin outNodes [i] do
temp « token [i] [j] + firingNo [i] - firingNo [j}:

if (temp = 0)
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then add jto newZnodes;
end if;
end for,
return newZnodes;
end procedure { get_new_zeroNodes )
procedure propagate_sources_to_new_zeroNodes (j, newZnodes)
{ Propagate sources information to all new zero outnodes }
if (sources [i] # @)
then
znodes « newZnodes - zeroNodes [i}
if (znodes = @)
then
for all jin znodes do
lock newSources [jj «— newSources [jj u sources [i]
end for;
notFinished « TRUE;
end if;
end if;
end procedure { propagate_sources_to_new_zeroNodes }
procedure calculate_zeroNodes ( /)
newZnodes « get_new_zeroNodes ( /);
propagate_sources_to_new_zeroNodes (i, newZnodes);

zeroNodes [i] < newZnodes;
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e gk

if (nodeWeight [i] < 0)
then clusterFiringNo [i] — INFINITY:
end if;
end procedure { calculate_zeroNodes }
procedure propagate_new_sources ( i)
temp « newSources [i] - sources [ij,
it (temp 2 D)
then
sources [i] « sources [i] U temp;
if (zeroNodes [i] # @)
then
for all jin zeroNodes [ildo

lock newSources [j] < newSources [jju temp

end for,
notFinished « TRUE:
end if;

for all kin temp do

lock clusterWeight [k] « clusterWeight [k] + nodeWeight [i]

end for;
end if;
end procedure { propagate_new_sources }
procedure cluster_expansion ()

notFinished « FALSE;
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for i« 0to n- 1 do in parallel
calculate_zeroNodes ( /)

end for;

while (notFinished) do
notFinished « FALSE;
for i« Oto n- 1 do in parallel

propagate_new_sources ( /)

end for;

end while;

end procedure { cluster_expansion }

Now, we will put to, ther the above two phases and give the main procedure for

the Cluster Forming step.

procedure cluster_forming ()
{ main procedure )
isSimpleClusters « TRUE;
fori«< Oto n-1doin parallel
form_initial_clusters ( /)
end for;

expand_clusters ();

end procedure { cluster_forming }

6.6 Cluster Optimization

There are two phases in this step. The first phase is to fire those clusters whose
weights are negative. The second phase is to expand the clusters that have been fired in the

first phase. These two phases will be repeated until all the clusters in the graph have
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become non-negative weighted. We will explain each of these phases in detail in the fol-

lowing subsections.
6.6.1 Cluster Firing

There are four pulses in this phase. The first pulse is used to check if there is any
negative weighted cluster in the graph. If not, then this phase is terminated and the algo-

rithm proceeds to the Cluster Union step.

The firing number for each cluster is calculated in the second pulse. To find the fir-
ing number of a cluster Cj, each node in that cluster will examine its outgoing edges one
by one. It will examine only those outgoing edges that are also going out of the cluster G
and pick the minimum residual edge token. Note that the outgoing edges at a node i that
are going out of the cluster C; may not be the sume as the ones that are going out of the
cluster Cy if node i is present in both the cluster C; and the cluster Cy. So, a node may have

to process its outgoing edges more than once if it is present in more than one cluster.

The minimum residual edge token computed by a node in Cluster C, will be the
maximum number of times this cluster could be fired. After computing this firing number,
it will compare this value with that of the source and make the smaller of these two as the
new firing number of the source. This process is repeated by each node in the cluster.
Thus, the most constraining firing number of all the nodes in the cluster Cj will be written

as the cluster firing number at the source.

In the third pulse, each negative node will examine its cluster weight. If the cluster
weight is non-negative, then that cluster is not permitted to fire unless if it is part of
another negative cluster. Therefore, each negative node will make its cluster firing number
zero if the weight of its cluster is non-negative and it is not part of any negative cluster, If
its cluster weight is non-negative and it is part of negative cluster(s), then it will initialize

its cluster firing number to the greatest of the firing numbers of the negative clusters which
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itis part of.

In the fourth pulse, each node i will get the cluster firing number from each of its
sources. The maximum of these numbers is its firing number and it will fire by that
amount. Thus, if a node i is present in more than one cluster, then it will fire along with the
cluster whose cluster firing number is greater than or equal to the cluster firing numbers of
the other clusters in which it is present. After this firing, node i will not be part of those
clusters whose firing numbers are less than its firing number. The weights of these clusters
will be adjusted accordingly. This also means a cluster which has non-negative weight in
one iteration may become negative weighted and need to participate in the subsequent
iterations of these pulses. One can easily verify that this scheme will not make the residual

edge tokens of any node negative. (See procedure fire.)

Suppose a cluster is negative weighted and there is no edge going out of this clus-
ter, then this cluster can fire e times which implies that the problem is unbounded. This
can easily be detected in this phase and the algorithm will exit with appropriate error mes-

sages.

Every cluster that has been fired will create at least one O-token outgoing edge
from the cluster. In the second phase, clusters will expand along with these newly created

O-token edges.This phase is the same as the one explained in Section 6.5.2.

For our example, the graph at the end of the first iteration of cluster firing will be as
shown in Figure 6.6. At this point, all the clusters are non-negative weighted and the algo-

rithm moves to the next step.
The cluster optimization step is summarized below.

while (there is at least one cluster with negative weight) do
a)  Fire Negative Weight Clusters

b)  Expand Clusters
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end while
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Figure 6.6 The graph G with new clusters after cluster firing.

A formal presentation of the cluster optimization step is given next.

procedure is_any_negative_cluster (j)
if (nodeWeight [i] < 0)
then
if (clusterWeight [i] < 0)
then notFinished « TRUE
end if
else
temp « @&;
for all jin sources [i]do
temp « temp u sources [j]

end for;
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sources [i] « temp;
end if
end procedure { is_any_negative_cluster }
procedure find_cluster_firingNo (i, temp_outnodes, temp_sources)
while (temp_sources = @ and temp_outnodes = &) do
fno « INFINITY;
for all jin temp_outnodes do
temp « token [i] [j] + firingNo [i] - firingNo [j}
if (temp < fno)
then
fno « temp;
min_outnode « j,
end if;
end for;
common_sources < temp_sources n sources [min_outnode];
other_sources « temp_sources - common_sources;
oRoot « first member in sources [min_outnode];
for all kin other_sources do
lock clusterFiringNo [K],
if (fno < clusterFiringNo [k])
then
clusterFiringNo [k] « fno;

otherRoot [k} « oRoot;
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end if:
unlock clusterFiringNo [k},
end for;
temp_sources « common_sources;
delete min_outnode from temp_outnodes:
end while;
end procedure { find_cluster_firingNo }
procedure calculate_cluster_firingNo (/)
temp_outnodes « outNodes [i] - zeroNodes [i];
temp_sources « sources [i],
find_cluster_firingNo (i, temp_outnodes, temp_sources):
end procedure { calculate_cluster_firingNo }
procedure to_fire_or_not ( /)

{ This is done by sources only. They will decide for their cluster whether to

participate in the firing pulse or not )
if (nodeWeight [i] < 0)
then
it (clusterlWeight [i] > 0)
then fno < 0
else fno « clusterFiringNo [i]
end if;
for all jin sources [i]do

if (clusterWeight [j] < 0 and clusterFiringNo [j] > fno)
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then fno « clusterFiringNo [j]
end if
end for;
clusterFiringNo [i] < fno;
end if
end procedure { to_fire_or_not }
procedure fire (i)
fno « O;
new_sources « J;
for all jin sources [ijdo
if (clusterFiringNo [j] > fno)
then
fno « clusterFiringNo [j}
new_sources « J;
add jto new_sources;
elsif (clusterFiringNo [j] = fno)
then add jto new_sources
end if
end for;
if (fno = INFINITY)
then unbounded « TRUE
elsif (fno > 0)

then
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rm_sources « sources [i] - new_sources;
if (rm_sources # @)
then
isReduced «+ TRUE;
for all kin rm_sources do
lock clusterWeight [k] « clusterWeight [k]- nodeWeight [i]
end for;
sources [i] « sources [i] - rm_sources:
newSources [i] «— newSources [i] - rm_sources;
firingNo [i] « firingNo [i] - fno;
end if;
end If;
end procedure { fire }
procedure cluster_optimization ()
{ main procedure )
nolterations «- 0;
do
notFinished « FALSE;
nolterations « nolterations + 1;

for i« O to n- 1 do in parallel

is_any_negative_cluster ( /)
end for;

if (notFinished)
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then
fori— Oto n- 1 doin parallel
calculate_cluster_firingNo ( /)
end for,
it (isSimpleClusters)
then
for i< Oto n- 1 doin parallel
to_fire_or_not (/)
end for
end if;
for i« Oto n- 1 do inparallel
fire (/)
end for;
if (not unbounded)
then cluster_expansion ()
end if;
end if;
if (nolterations 2 n)
then unbounded « TRUE
end if;
while (notFinished and not unbounded);
if (unbounded)

then
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print “The problem is unbounded";
stop;
end if:

end procedure { cluster_optimization )

6.7 Cluster Union

When the algorithm enters this step, there is a cluster rooted at each negative node
and the weight of every such cluster is non-negative. Thus, the clusters satisfy property

(P1.) in Theorem 6.1.

In the Cluster Union Step, clusters which are overlapping with each other are com-
bined into one. If there are more than one combinations at the end of this step, then the
algorithm goes back to the Cluster Optimization step at the end of which all the combina-

tions are non-negative weighted.

There are four pulses in this step like in the previous step. In the first pulse, all pos-
itive nodes with no zero outnodes will examine their source variables. If they have more
than one source, then they pick the least numbered source as the root and inform every one
in the source variable about this root. They use the variable combination to propagate this
root information. Also, each source (negative node) i will re-initialize its clusterWeight [i]

to zero.

In the second pulse, each source will check its combination variable and propagate
the root information to other sources in that combination. This pulse will be repeated until
all nodes complete the propagation. At the end of this pulse, all sources will be aware of

the root of the combination.

In the third pulse, each node will get the root information from their sources and

add its weight to the clusterWeight of the root. Each node i will also re-initialize its
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sources [i] to root.

The fourth pulse will be used to check if there is any negative combination formed
in this step. If so, then the algorithm will go back to the Cluster Optimization step to fire
and expand those negative combinations. Otherwise, it will proceed to the next step: Fir-
ing Zero Combinations. In this pulse, each root will also increase by 1 the no_of_clusters
variable so that the algorithm will know if there are more than one combination when it

goes to the Firing Zero Combinations phase.
The following additional data structure is used in this step.

combination : an array of sets. The variable combination [i] contains the
set of the sources that should be combined with the source

i.

A formal presentation of the Cluster Union step is given next.

procedure propagate_min_source (/)
if (nodeWeight [i] < 0)
then
clusterWeight [i] « O,
s « first member in sources [if;
for all jin sources [ijdo
add s to combination [j]
end for,
elsif (zeroNodes [i] = (@ and sources [i] # @)
then
s « first member in sources [i,
for all jin sources [ij do

add s to combination [j]
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end for;
end if
end procedure { propagate_min_source }
procedure get_last_link (s)
t « first member in combination [s];
while (t = s) do
s« t;
t « first member in combination [s};
end while;
return s;
end procedure { get_last_link }
procedure find_combination_root ( )
if (nodeWeight [i] < 0 and combination [i] = @)
then
flag « FALSE;
t « first member in combination [i},
s « get_last_link (t);
for all jin combination [i] do
t « get_last_link (j);
delete jfrom combination [i},
if(t<s)
then

add t to combination [s}];
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Set;
flag « TRUE;
elsif (s < 1)
then
add s to combination {];
flag « TRUE;
end if;
end for;
add s to combination [i},
if (flag)
then notFinished « TRUE
end if;
end if
end procedure { find_combination_root }
procedure find_combination_weight ( /)
if (sources [i] # ©)
then
j « first member in sources [i};
it (combination [i] # @)
then s « first member in combination [j]
else s« J
end if;

sources [i] « @;
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add sto sources [i],
lock clusterWeight [s] « clusterWeight [s] + nodeWeight [i]
end if
end procedure { find_combination_weight }
procedure is_there_any_negative_combination ( i)
if (nodeWeight [i] < 0)
then
combination [i] « @,
if (clusterWeight [i] < 0)
then notCompleted « TRUE
else lock no_of_clusters « no_of_clusters + 1
end if;
elsif (nodeWeight [i] = 0)
lock no_of_clusters « no_of_clusters + 1
end if
end procedure { is_there_any_negative_combination }
procedure cluster_union ()
for i« Oto n- 1 do in parallel
propagate_min_source ( /)
end for;
do
notFinished « FALSE;

for i< 0to n-1do in parallel
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find_combination_root ( /)
end for;
while (notFinished);
for i<~ 0to n-1doin parallel
find_combination_weight (/)
end for;
for i« 0to n-1doin parallel
is_there_any_negative_combination ( /)
end for,
if (isSimpleClusters)
then isSimpleCiusters « FALSE
end if;

end procedure { cluster_union }

6.8 Firing Zero Combinations

If the number of combinations formed at the end of the Cluster Union step is more
than one and if the weight of each such combination is non-negative, then each of these
combinations has zero weight. This is because we are assuming that the sum of the
weights of all the nodes in the graph is zero. At this stage. the algorithm has to use the
Concurrent Pivots step to check the optimality of the solution, but there may not be any 0-
token spanning tree available. So, in the Firing Zero Combinations step. each zero combi-
nation is fired appropriately to merge with other zero combination(s), until all the nodes

are coalesced into one combination.

There are, again, four pulses in this step. In the first pulse. each zero combination
will calculate its firing number as explained in the Cluster Optimization step. It will also

find out the root of the other combinations they are going to merge with, if it fires by its fir-



ing number.

In the second pulse, each combination will check if it is allowed to fire. If cluster i
is allowed to fire and if it is going to merge with cluster J» then cluster j is not allowed to
fire as explained before. This is decided on a first-come first-serve basis using a set vari-

able firingGroup,

i) If firingGroup = @, then cluster i will add i and J to firingGroup and set isFire
[i] = TRUE, or

i) If firingGroup = G and i e firingGroup and J € firingGroup, then cluster i will
add i and j to firingGroup and set isFire [i] = TRUE.
Otherwise, it will set isFire [i] = FALSE.

In the third pulse, each cluster i that is allowed to fire will fire by the amount it cal-

culated in the first pulse.

In the fourth pulse, each cluster that is fired in the previous pulse will merge with
the other cluster j. Again, the smaller of (i, j) will become the root of that combination.
Since these are non-overlapping clusters, the weight of the combination will be sum of the

weights of the clusters.
The following additional data structures are used in this step.

SiringGroup : aset variable. This variable will be used to decide which

zero combination will be allowed to fire.

isRoot : an array of boolean. The variable isRoot [i] is TRUE if
node i is the root of the combination in which node i is
present.

isFire : an array of boolean. The variable isFire [i] is TRUE if

node i is the root of the combination and if that combina-
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tion is allowed to fire.

otherRoot : an array of integers. The variable otherRoot [i] contains
the root of the other combination into which it is going to
merge, if node i is the root of the combination and if that

combination is allowed to fire.

The formal presentation of this step is given next.

procedure calculate_zeroCluster_firingNo ( /)
temp_outnodes « outNodes [i] - zeroNodes [ij;
if (temp_outnodes # @)
then
temp_sources « sources [i],
if (temp_sources = @ and nodeWeight [i] = 0)
then
add /to temp_sources;
add ito sources [i].
end if;
find_cluster_firingNo (/, temp_outnodes, temp_sources):
end if
end procedure { calculate_zeroCluster_firingNo }
procedure can_|_fire (i)
isFire [i] — FALSE;
Jj « first member in sources [i}
if (i=))
then

isRoot [i] « TRUE;
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if (clusterFiringNo [i] < INFINITY)
then
my_group « @;
add jto my_group;
add otherRoot [ to my_group;
lock firingGroup;
if (my_group n firingGroup = @)
then
isFire [i] <« TRUE;
firingGroup « firingGroup v my_group;
end if;
unlock firingGroup;
end if;
else isRoot [i] — FALSE
end if;
end procedure { can_|_fire }
procedure fire_zero_combination ( /)
if (sources [i]# @)
then
if (isRoot [i})
then j« i
else j « first member in sources [i]

end if;




if (isFire [j))

then
fno « clusterFiringNo [j};
firingNo [i] « firingNo [i] - fno;
it(i=))
then
if (i < otherRoot [i})
then
Yock sources [otherRoot [i]};
sources [otherRoot [ij] « @;
add ito sources [otherRoot [i]];
unlock sources [otherRoot [ij};
else
lock sources [i];
sources [i] « &,
add otherRoot [i] to sources [i].
unlock sources [if;
end if
end if;
end if,;
end if
end procedure { fire_zero_combination }

procedure merge_zero_combinations ( /)
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zeroNodes [i] «— get_new_zeroNodes ();

if (sources [i] # @)
then
J « first member in sources (i},
if (i#))
then
k « first member in sources [j];
lock sources [i;
sources [i] — B,
add kto sources [i}
unlock sources [i],
if (isRoot [i)
then lock clusterWeight [k] < clusterWeight [k] + clusterWeight [i};
end if;
else
no_of_clusters « no_of clusters + 1;
clusterFiringNo [i] « INFINITY;
end if;
end if
end procedure { merge_zero_combinations }
procedure zero_combinations ()
while (no_of_clusters > 1) do

firingGroup « @,
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for i< Oton-1doinparallel

calculate_zeroCluster_firingNo ( /)

end for;

for i< Oton-1doinparallel
can_!_fire (),

end for;

for i« O to n- 1 do in paraliel
fire_zero_combination ( /)

end for;

no_of_clusters « (;

fori « Oton- 1 doinparallel
merge_zero_combinations ( /)
end for;
end while

end procedure { zero_combinations }

6.9 Concurrent Pivots

At the end of Step 5 (Firing Zero Combinations). a 0-token spanning tree is avail-
able and we have a basic feasible solution. So, the algorithm builds a O-token spanning
tree and tests it for optimality using the Concurrent Pivots step (Step 6). This step is
explained in detail, in the previous chapter. So, we will not elaborate it further. If the solu-

tion is not optimum, then the algorithm goes back to the Cluster Forming step.

Now, for our example, the clusters in Figure 6.6 can be redrawn to bring out the
different clusters as shown in Figure 6.7. This will also be a 0-token spanning tree to be

used in the concurrent pivots step. Since it is not optimum, there will be some firings in
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concurrent pivots step. The new clusters are as shown in Figure 6.8. Since the solution is

optimum at this stage, the algorithm terminates at this point.

@ 5

o 3

Figure 6.7 The clusters of the graph in Figure 6.6.
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Figure 6.8 The graph G with new clusters after concurrent pivots.
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6.10 Summary of the Parallel Algorithm

A formal presentation of our parallel algorithm for the DTP, involving procedures

described in the previous sections is given next.

Parallel Cluster-Based Dual Simplex Algorithm

procedure CBDS ()
{ main procedure )
if (not feasible ())
then STOP
end if;
unbounded « FALSE;
do
do
form_clusters ();
isReduced « FALSE;
do
cluster_optimization ();
if (not isReduced)
then
notCompleted « FALSE;
no_of_clusters « 0,
cluster_union ();
end if;
while (notCompleted and rot isReduced);
while (isReduceq);

zero_combinations ()
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notOptimal «<— FALSE;
concurrent_pivots ();
while (notOptimal);

end procedure { CBDS }

6.11 Summary

In this chapter, we have presented a novel approach to solve the dual transshipment
problem. This approach. called the Cluster-Based Dual Simplex (CBDS), involves
repeated applications of three basic algorithms: Algorithm FEASIBLE to test feasibility of
the DTP, the Cluster Optimization algorithm and Concurrent Pivots. Starting with a feasi-
ble solution, the negative weighted nodes attempt to improve the value of the objective as
much as possible using cluster firing operations. When no further improvement is possi-
ble. the algorithm will have constructed non-negative weighted clusters rooted at the neg-
ative nodes. The cluster optimization step is carried out using an algorithm similar to
Prim’s min-cost spanning tree algorithm. Repeated applications of cluster optimization
will result in a basic feasible solution. The algorithm then attempts further improvement of
the objective through concurrent pivot operations. This phase - cluster optimization and
concurrent pivots - is repeated until we reach a basic feasible solution which does not per-
mit any pivot operations. Like the MNDS method of the previous chapter, CBDS does not
move from one basic solution to another (in contrast to the traditional network dual sim-
plex method). The cluster optimization step distinguishes CBDS from MNDS. An experi-

mental evaluation of CBDS will be discussed in Chapter 7.
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CHAPTER 7
EXPERIMENTAL EVALUATION

In this chapter, we report results of an experimental evaluation of the three parallel
algorithms - Network Primal Dual, MNDS and CBDS - developed in Chapters 4 - 6. We
have implemented these algorithms on the BBN Butterfly parallel computer (Mach 1000).

We also present certain conclusions on the relative merits of these algorithms.

For our experimentation, we have used NETGEN, a program for generating a vari-
ety of network problems. NETGEN can generate capacitated and uncapacitated transship-
ment problems as well as assignment problems. This program was originally developed by
a group of researchers at the University of Texas at Austin. A detailed discussion of the

development and implementation of NETGEN may be found in [84].

We present two sets of results. In Tables 7.1 - 7.5, we present results of implemen-
tations of the network primal-dual, MNDS and CBDS algorithms. These results are pre-
sented for graphs of varying sizes generated by NETGEN. In each case. we have
presented results for up to 10 processors. In Tables 7.6 - 7.10, we present similar results

for the MNDS and CBDS algorithms.

Following are certain general conclusions based on the tabulated results. An itera-
tion in the case of the network primal-dual method will refer to one application of the
shortest path and the max-flow algorithms. For the MNDS algorithm. this refers to the step
in which a basic feasible solution is generated using shortest path and clustering algo-
rithms. For the CBDS algorithm, an iteration refers to the step in which a basic feasible

solution is generated using cluster optimization ard clustering algorithms.

An examination of the tabulated results shows that the network primal dual
method is considerably slower than the other twu algorithms. We have observed that the

max-flow algorithm used in the network primal dual method performs an excessively large




number of relabeling operations before performing a push operation. Since a large number
of iterations are required in the network primal dual case, these relabeling operations seem
to be the main source of the poor performance of the network primal dual method. We
expect better performance if the Goldberg-Tarjan max-flow algorithm is replaced by Din-

ic’s and MPM algorithms [50]. [102].

Tables 7.1 - 7.10 indicate that the CBDS algorithm is. in general. faster than the
MNDS algorithm. Also. CBDS requires lesser number of iterations than MNDS. This con-
firms our expectation that in each iteration of the CBDS. considerable amount of improve-
ment in the objective value is achieved than in each iteration of MNDS. Also. CBDS. in
general. gives better speed up than MNDS. The improved speed up observed for CBDS is
also in agreement with our expectation. In fact. CBDS was designed specifically to
achieve better speed up than MNDS. In CBDS. almost all nodes remain active during a
good part of each iteration. Whereas. in the case of MNDS. once certain nodes coalesce to

form a cluster. most of the work is done by the root of the cluster.
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Proce PD MNDS CBDS
$s0r8 Time in Parallel Time in Parallel Time in Parallel
p Seconds Speed Seconds Speed Seconds Speed
up up up
1 4437 1.0 553 1.0 6.46 1.0
2 30.29 1.5 3.60 1.5 4.01 1.6
3 24.71 1.8 2.86 1.9 3.14 2.1
4 21.85 2.0 2.56 2.2 2.77 2.3
5 20.36 22 2.36 23 2.52 2.6
6 19.72 23 2.07 27 2.25 29
7 18.76 2.4 1.96 2.8 2.12 30
8 18.65 24 1.91 2.9 2.07 3.1
9 18.18 24 215 26 209 3.1
10 18.34 24 2.3 24 2.00 3.2
Noof
iterati 14 1
ons

Table 7.1: Graph with 50 nodes and 500 edges
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Proce PD MNDS CBDS
ssors Time in Parallel Time in Parallel Time in Parallel
p Seconds Speed Seconds Speed Seconds Speed
up up up
1 285.32 1.0 23.63 1.0 11.78 1.0
2 182.48 1.6 14.52 1.6 6.76 1.7
3 143.93 2.0 10.79 2.2 5.05 23
4 123.51 23 9.04 2.6 4.47 2.6
5 111.95 2.5 7.93 3.0 424 2.8
6 106.08 2.7 6.18 38 3.34 3.5
7 101.28 2.8 6.19 38 3.22 3.7
8 98.89 2.9 6.50 36 3.03 39
9 98.59 29 5.99 39 3.02 39
10 98.32 29 5.51 43 2.88 4.1
No of
iterati 31 6 2

ons

Table 7.2: Graph with 80 nodes and 1000 edges
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Proce PD MNDS CBDS
S8OrS Time in Parallel Time in Parallel Time in Parallel
P Seconds Speed Seconds Speed Seconds Speed
up up up
e L —
1 432,47 1.0 24.13 1.0 21.93 1.0
2 267.72 1.6 14.17 1.7 12.66 1.7
3 207.54 2.1 10.77 2.2 9.20 24
4 175.20 2.5 9.01 2.7 7.47 2.9
5 158.42 2.7 8.03 3.0 6.47 3.4
6 148.28 29 7.41 33 6.33 3.5
7 141.05 3.1 6.94 35 5.47 4.0
8 135.28 3.2 6.99 35 5.20 4.2
9 132.68 33 6.81 35 5.07 43
10 130.87 3.3 8.67 2.8 5.04 43
No of
iterati 3() 3 3

ons

Table 7.3: Graph with 100 nodes and 800 edges
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Proce PD MNDS CBDS
$S0rS Time in Parallel Time in Parallel Time in Parallel
p Seconds Speed Seconds Speed Seconds Speed
—— e —— e e
1 ﬁ 1356.65 1.0 76.98 1.0 57.29 1.0
2 811.60 1.7 43.36 1.8 32.19 1.8
3 623.14 2.2 31.69 2.4 24.26 2.4
4 521.60 2.6 22.81 3.4 18.99 3.0
5 465.93 2.9 20.70 3.7 16.69 3.4
6 424.52 3.2 18.72 4.1 15.08 3.8
7 400.84 3.4 17.33 4.4 13.91 4.1
8 379.04 3.6 18.30 4.2 10.79 53
9 378.98 3.6 16.75 4.6 9.57 6.0
10 367.90 3.7 15.25 5.0 8.48 6.8
No of
iterati 4()
ons

Table 7.4: Graph with 130 nodes and 2500 edges
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Proce PD MNDS CBDS
ssors Time in Paraliel Time in Parallel Time in Parallel
P Seconds Speed Seconds Speed Seconds Speed
up up up
1 | 1611.95 1.0 128.17 10 82.11 1.0
2 934.30) 1.7 71.15 1.8 44.79 1.8
3 695.11 2.3 51.86 2.5 32.36 2.5
4 573.44 28 41.17 3.1 26.73 3.1
5 499.15 32 43.41 3.0 22.31 3.7
6 452.22 3.6 37.62 34 21.12 39
7 418.11 39 37.37 34 19.13 4.3
8 398.47 4.0 26.76 4.8 20.61 4.0
9 377.22 4.3 30.35 42 17.02 4.8
10 367.70 44 25.36 5.1 17.45 4.7
No of
iterati 41 3

ons

17

Table 7.5: Graph with 160 nodes and 3500 edges




MNDS CBDS
Processors Time in Parallel Time in Parallel

p Seconds Speed up Seconds Speed up
1 -T502.96 1.0 1068.46 1.0

2 784.19 1.9 554.06 1.9

3 545.80 2.8 388.02 2.8
4 425.92 35 302.05 35

5 356.91 4.2 251.77 4.2

6 328.84 4.6 217.63 4.9

7 268.51 5.6 196.64 54

8 229.82 6.5 186.40 5.7

9 221.33 6.8 166.57 6.4
10 187.34 8.0 168.44 6.3
11 246.11 6.1 197.10 5.4
12 211.36 7.1 156.83 6.8
13 215.67 7.0 119.04 9.0
14 193.97 7.7 116.13 9.2
15 272.29 5.5 166.21 6.4

No of
iterations

Table 7.6: Graph with 500 nodes and 12000 edges
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MNDS CBDS
Processors Time in Parallel Time in Parallel

P Seconds Speed up Seconds Speed up
1 9257.07 1.0 3830.57 1.0

2 4756.11 1.9 1978.63 1.9
3 3059.46 3.0 1349.56 2.8

4 2357.17 39 1084.92 3.5

5 1934.54 4.3 841.72 4.6

6 1644.51 5.6 729.10 53

7 880.77 10.5 673.42 5.7

8 866.33 10.7 612.95 6.2

9 1006.72 9.2 534.53 7.2
10 740.45 12.5 521.83 7.3
11 707.61 13.1 463.58 8.3
12 573.84 16.1 486.00 7.9
13 679.79 13.6 375.95 10.2
14 626.13 14.8 373.76 10.2
15 748.00 12.4 334.32 11.5

No of
3

iterations

Table 7.7: Graph with 700 nodes and 25000 edges
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MNDS CBDS

Processors Time in Parallel Time in Parallel
P Seconds Speed up Seconds Speed up
1 7788.36 1.0 6092.57 1.0
2 4059.64 1.9 3109.96 2.0
3 2962.46 2.6 2112.22 29
4 2282.27 34 1615.84 3.8
5 1882.29 4.1 1324.02 4.6
6 1598.59 4.9 1123.69 5.4
7 1410.49 5.5 910.25 6.7
8 1179.37 6.6 951.54 6.4
9 773.70 10.1 672.13 9.1
10 1013.09 1.7 632.82 9.6
11 777.86 10.0 575.55 10.6
12 §88.68 8.8 622.80 9.8
13 803.98 9.7 493.71 12.3
14 655.77 11.9 530.31 11.5
15 773.81 10.1 505.55 12.1

No of
. ' 5 4
iterations

Table 7.8: Graph with 1000 nodes and 25000 edges
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MNDS CBDS
Processors | Timein | Parallel | Timein | Paralkl
P Seconds Speed up Seconds Speed up
1 2554271 1.0 1 136()7113 1.0
2 12920.70 2.0 5978.98 19
3 6231.98 4.1 4057.16 2.8
4 5896.98 4.3 3005.84 38
5 5011.89 5.1 2038.12 5.6
6 3751.74 6.8 1984.88 5.7
7 3436.68 7.4 1829.64 6.2
8 3063.71 8.3 1676.71 6.8
9 2463.64 10.4 1508.53 7.5
10 2191.07 11.7 1231.60 9.2
11 2102.92 12.1 1311.31 8.7
12 1929.91 13.2 1182.04 9.6
13 2804.87 9.1 1107.76 10.3
14 2208.71 11.6 1032.73 11.0
15 1812.91 4.1 962.72 11.8
No of

iterations

Table 7.9: Graph with 1200 nodes and 35000 edges
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MNDS CBDS
Processors ™ rinein | Pamllel | Timein Parallel

p Seconds Speed up Seconds Speed up

1 37022.75 1.0 40667.69 1.0

2 18697.69 20 20888.46 1.9

3 12575.27 29 11304.75 3.6

4 9385.40 39 10877.06 3.7

5 7737.92 4.3 7298.14 5.6

6 6267.44 59 6153.18 6.6

7 5113.30 7.2 5355.38 7.6

8 5209.42 7.1 4775.39 8.5

9 4404.56 8.4 4358.10 93
10 4181.29 8.9 3973.10 10.2
11 4146.25 8.9 3335.38 11.1
12 3819.22 9.7 3137.52 11.8
13 3264.70 113 2961.82 12.5
14 3210.79 11.5 3009.98 12.3
15 3895.15 9.5 2826.16 13.1

No of

iterations

Table 7.10: Graph with 2000 nodes and 30000 edges
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CHAPTER 8

INTEGRATED VLSI LAYOUT COMPACTION
AND WIRE BALANCING

Layout compaction is an important final step in VLSI physi}cal design process.
Compaction is very critical for full-custom layouts, especially for high performance
designs. The goal of compaction is to minimize the total layout area without violating any
design rules. The process of compaction is very well understood. Complete details of dif-
ferent types of compaction and their relative advantages and disadvantages may be found
in [96], [147], [173]. They also contain an extensive list of references relating to compac-

tion.

As mentioned before, Integrated Layout Compaction and Wire Balancing problem
is one of the many problems that can be formulated as a dual transshipment problem and
solved using one of the algorithms presented in the previous chapters. In this chapter, we
will elaborate on the layout compaction and wire balancing problem and show how our

algorithms can be used to efficiently solve this problem.

In layout compaction one starts with an initial layout and seeks to achieve a final
mask layout (without changing the topology) which has minimum chip area and is consis-
tent with the design rules. Invariance of network topology is required in order not to ren-
der the previous steps of placement and routing obsolete. At the end of layout compaction
relative positions of all the circuit elements will be available. Changing the positions of
these elements (to be precise. those elements which lie on a longest path between the chip
boundaries) will result in increased chip width. But the positions of the others could be
varied without causing design rule violations and yet maintaining compacted chip width.
Whereas in wire balancing. one seeks to achieve minimum overall wire length by adjust-

ing the positions of the elements without violating any design rules, integrated layout




compaction and wire balancing aims at minimizing wire length without increasing the
area of the compacted layout. In other words, integrated layout compaction and wire bal-
ancing achieves minimum total wire length by adjusting the positions of only those ele-

ments which do not lie on the longest paths mentioned above.
8.1 The Constraint Graph Approach

The constraint graph approach to the layout compaction and wire balancing prob-
lem proceeds as follows. From the initial layout a gral;h G = (V, E), called the constraint
graph, is constructed. We assume that the layout is Manhattan, i.e., edges of circuit ele-
ments are either horizontal or vertical. Each node of G represents a circuit element or a
group of circuit elements that are physically connected. Each node v; is associated with a
variable y; representing the position of the corresponding circuit element. In the following
the circuit element corresponding to node v; will also be referred to as v;. In G, there is an
edge between two nodes, if there is a design rule constraint between the corresponding

elements. There are three types of constraints: minimum, maximum and equality con-

straints,

A minimum constraint of the type ¥j - yi 2 a states that v; is to the left of vj and
there is a minimum spacing requirement of ‘a’ units between them. This constraint can
also be stated as y; - ; 'y < —a and is represented in G by an edge (vj, v,) directed from vjto v;
with an associated token mj; of value -a.

A maximum constraint of the form ¥j-¥i < b or equivalently v; - yj 2 -b is repre-

sented by an edge (v;, v)) directed from v; to v; with token m;; of value “b”.

An equality constraint can be regarded as a pair of minimum and maximum con-
straints. Thus an equality constraint will be represented by a pair of oppositely directed

edges both with zero token.

Two special nodes, called the source (v,) and the sink (v,), are used to represent the
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right most boundary and the left most boundary of the layout, respectively. Circuit ele-
ments which correspond to nodes with no outgoing edges could be placed at the left
boundary. and so we add to G edges directed from each one of these nodes to the sink v,.
These edges have zero token. For a similar reason, we add to G zero-token edges directed
from the source v, to the nodes with no incoming edges. The additional edges so xdded
ensure that the circuit elements will not be moved beyond the left and the right boundaries.

These edges play a key role in the wire balancing phase.

5
1
~g 15 o
3
-5
6
) -y 5
4
e L s e L e ol § -
0 7

Figure 8.1 Anexample of a layout

Besides tokens. edges are also associated with weights to indicate the relative costs
of wires. We derive node weights from edge weights as follows. Let w,; denote the weight
of the edge (v;, v)) directed from v; to v, Then the weight w; of node v; is given

W, = ?n'i}-— W

J
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Here we assume that wy; = 0 if there is no wire between v; and v;. Thus a negative
node weight indicates that moving the node to the right will decrease the overall wire

length and a positive node weight indicates that moving a node to the right will increase

the overall wire length.

Yo-y1 50
Yor¥250

Y-yas-10

Y-y $-15
Ya-y4<-15
Vi-ys <-10
¥3-¥<-10

Yi-yeS$-15

Ys-y1S-15 O (1
Yo ¥15-3

(a) Minimum spacing constraints (b) Constraint graph

Figure 8.2 Spacing Constraints and the Constraint Graph for the layout in Fig. 8.1.

As an example, consider the layout shown in Figure 8.1. The cell numbers are
shown inside the cells and cell widths are as shown. We assume that the Iayout is to be
compacted in the x-direction. We also assume, for the sake of simplicity that the minimum
spacing requirements between any two cells are 5 units. There is no minimum spacing
requirements between a cell and chip boundary. Further, we assume that each cell’s posi-
tion is represented by its left x-coordinate. Therefore, to calculate minimum spacing

between two cells, the cell width of left cell has to be added to 5. We also assign a node
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weight of -1 to node 1 and 1 to node 6. All other nodes will have a weight of zero. Now,

the minimum spacing constraints and its corresponding constraint graph are as shown in

Figure 8.2.
8.2 Layout Compaction

Let Y denote the vector of y;'s, M’ the vector of m;;’s and W, the vector of node
weights. Let A be the incidence matrix of G. Then in layout compaction we seek to obtain

aY 2 0 such that

A'Y2>-M
and that the difference between the largest and the smallest y;’s is as small as possible.
Thus we can formulate this problem as an LP problem as follows.
Minimize: y, - y,
subject to
A'Y z-M

Y =2 0.

Assuming that the position of the sink is at zero coordinate, the above formulation

can be written as
Minimize: y;
subject to
Ay =-M
Y 20. (8.1)
The above formulation of the layout compaction is clearly a special case of the
dual transshipment problem. Our algorithm FEASIBLE in fact solves the above layout

compaction problem if there are no negative-token directed circuits in G. If we assume

that there are no such circuits, then the y;-values obtained at the end of FEASIBLE repre-
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sent the positions of the different circuit elements. Each node v; with y; = 0 will be at the
left boundary and each v; with the maximum y; will be at the right boundary. It can be
shown that the maximum y;-value in fact is the length of the most negative token directed
path in G from the source to the sink. In traditional approaches, such a path in fact corre-

sponds to a longest path from the sink v, to the source v

Figure 8.3 shows the graph after applying Algorithm FEASIBLE on the constraint
graph of Figure 8.2 and the corresponding cell positions. Also, cells 1 and 6 can be moved
to the right upto 5 units without increasing the width of the total layout. This can be calcu-

lated by looking at the residual tokens of the incoming edges at each node.

0 Yo=0
(0] D 5 ) (15] 0 [25] 0
5 O _\'] =()
¥=0
o) [40] =15
() y4=15
¥s=25
ye=30
o O nsy 0
(©0) (1 y7=40
(2) Graph After Compaction (b) Cell Positions

Figure 8.3 The Layout Compaction

8.3 Wire Balancing

The wire balancing problem where we seek to find a Y which minimizes Y w.y;
i

can be formulated as the following linear programming problem.
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Minimize: W'Y
subject to
Ay >-M

Y 20. (8.2)

o, o Qo 130 T
vy =10
y,=0
(0) [45] y3=20
() Ya=15
¥s =30
v =30
o 0 Sgus O vo = 45
(a) Graph After Wire Balancing (b) Cell Positions

Figure 8.4 The Wire Balancing

Note that layout compaction (8.1) is a special case of the wire balancing problem.
Algorithm FEASIBLE determines y;'s which satisfy A’ Y 2 -M ' and so this algorithm
determines a feasible solution for both (8.1) and (8.2). Thus algorithm FEASIBLE serves

as a link between the layout compaction and wire balancing problems.

If the graph in Figure 8.2 is solved using the above formulation, then the resulting
graph and the corresponding cell positions will be as shown in Figure 8.4. Notice the

width of the chip is not minimum even though the total wire length is minimum here.
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8.4 Integrated VLSI Layout Compaction And Wire Balancing

Let y; = A; at the end of Algorithm FEASIBLE. Recall that this algorithm modifies
the edge tokens at each step. When all the edge tokens are non-negative (that is A, - 7Lj +
my; 2 (), the algorithm terminates. Interestingly, at termination the tokens of the edges on
the most negative token directed path from v, to v, will all be zero. In other words, for
every (i, j) on such paths y; - y; + m;;=0. So by a simple traversal of G starting from v, we
can identify all the nodes on these most negative token paths. Let S; denote the set of these

nodes.

As we mentioned before, our aim in integrated compaction and wire balancing is
to keep each node v; € S;at y; = A; and adjust the y-values of those nodes not in §; so that
total wire length can be minimized without increasing the area of the layout. Thus we have

the following formulation of the integrated compaction and wire balancing problem.

Minimize: W'Y

subject to
A'Y >-M
Y 20. (8.3)
yi= A forv;e S, (8.4)

y; 20, for all other v;
But, as seen above constraint (8.4) can be replaced by:
Yi-yj+m=0 (8.5)
for every edge (v, v;) on a most negative token path from v to v;.
Now it is a simple matter to represent each of the above equality constraints by

adding to G oppositely oriented edges with tokens m;; and m;; between v; and v; , and

between v; and v; and then proceed with the solution of the resulting optimization problem.
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However, such an approach will result in a significant increase in the size of the graph. In

fact, we can considerably reduce the size of the graph as discussed below.
Constraint (8.5) suggests that in any new solution of the wire balancing problem,

yi= }\.,' + k, for Vi € S]

where k is a fixed constant. We can take advantage of this property as follows.

We construct a new graph G” by replacing the nodes in S; by a single new node,
say, v, and then removing all the edges connecting the nodes in S;. Consider now an edge
vy v)in G. If v; ¢ S;and v; ¢ S;, G” will have an edge (v vj) with token my;. If v; € S,
then G” will have an edge (v, vj) with token (A; + m,j). If Vi€ S, then G” will have an edge
(v, v;) with token (-A; + my). If after this contruction. there are parallel edges, in G,
between two nodes then we can remove all of them except the one with the smallest token.
Let the new graph be denoted by G™. In G the weight of every node v; € S; will be equal
to w;. For the new node v; representing S;, the weight w; will be given by

wy = vi%g{wi.
We now have the following formulation of the integrated compaction and wire bal-

ancing problem, where w;, y;, m; refer to the quantities defined for G,

Mmmuze%u i

subject to
A'Y > -M!
Y >0, (8.6)

where A is the incidence matrix of G”.

Figure 8.5 shows the graph after solving it as a integrated layout compaction and

wire balancing problem. Notice here the chip width is minimum, but total wire length is
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not the minimum possible.

151D g (0 (15 0 [25] yo=0
yi=5
v =0
(0) 140) ya=15
() ye=15
Vs =235
ye =30
o 0 gty ¥ =40
(a) Graph After Integrated Compaction
and Wire Balancing (b) Cell Positions

Figure 8.5 The Integrated Layout Compaction and Wire Balancing

8.5 Experimental Results

The wire balancing problem can be formulated as a dual transshipment problem.
So. from our results in the previous chapter, we can conclude that CBDS has better perfor-

mance than MNDS when used to solve the wire balancing problem.

To test the performance of these two algorithms for the integrated layout compac-
tion and wire balancing problem, we have applied them on constraint graphs derived from
large industrial designs supplied by Cadence Design Systems. In integrated layout com-
paction and wire balancing problem. the positions of the nodes which lie on longest pathr,
between the source and the sink are fixed afte: the layout compaction phase. This can be
done in two ways. The first way of fixing the positions of the nodes on longest paths is by

introducing a 0-token edge directed from the sink to the source. Tables 8.1 - 8.5 give
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results obtained in this way for different graphs. The second way of fixing the positions of
the nodes on longest paths is by coalescing them into one node. Tables 8.6 - 8.10 give
results obtained in this way. Also, for large graphs, longest path condensation achieves
about 30% reduction in computation time. These results show that MNDS has a better per-

formance than CBDS. This could be explained as follows.

The integrated layout compaction and wire balancing problem consists two steps.
First, layout compaction is achieved. In the second phase. all the nodes which lie on long-
est paths between the source and the sink are coalesced into a single cluster C. The number
of such nodes will usually be large. In the subsequent steps of the second phase of MNDS,
C will becume part of a big cluster S which contains all the negative nodes in the graph.
The only nodes which are not part of S are the non-negative nodes which are not part of C.
On the other hand. in the CBDS algorithm, overlapping clusters are not combined. they
are treated as distinct clusters. As a result, cluster firings during the cluster optimization
step of CBDS will cause repeated cluster expansions and cluster reductions. resulting in

considerable overhead cost.

We have also summarized in Table 8.11 the savings in layout area and minimum
total wire length achieved by wire balancing as well as integrated layout compaction and

wire balancing.
8.6 Summary

In this chapter, we have shown that the wire balancing problem can be formulated
as a dual transshipment problem (DTP) and that the layout compaction problem is a spe-
cial instance of the DTP. In fact, layout compaction can be accomplished by applying
Algorithm FEASIBLE to test feasibility of the DTP. We have also introduced and pre-
sented a unified formulation of the integrated layout compaction and wire balancing prob-

lem. We have shown that the integrated layout compaction and wire balancing problem
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can be solved in two steps:
1 First apply Algorithm FEASIBLE to achieve compaction.

2 Then solve DTP on a condensed graph obtained by coalescing the nodes on

longest paths (between the source and the sink) into a single node.

We have also tested the CBDS and MNDS algorithms of Chapters 5 and 6 to eval-
uate their performance for the integrated layout compaction and wire balancing problem.

Our results show that MNDS has better performance in this case than CBDS.

We have also summarized in a table the savings in layout area and wire length
achieved by integrated layout compaction and wire balancing. For large graphs, these sav-

ings are significant.
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Proce MNDS CBDS
ssors Time in Parallel Time in Parallel
p Seconds Speed up Seconds Speed up
e T e
2 23.49 1.6 37.15 1.8
3 17.29 2.2 25.69 2.6
4 14.43 2.6 21.37 3.1
5 13.32 29 18.80 3.5
6 11.48 3.3 17.16 39
7 9.69 3.9 15.68 4.2
8 9.57 4.0 12.79 5.2
9 8.08 4.7 13.84 4.8
10 7.94 4.8 11.26 5.9

Table 8.1: Graph with 149 nodes
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Proce MNDS CBDS
ssors Time in Parallel Time in Parallel
p Seconds Speed up Seconds Speed up
BT
2 14.88 1.7 28.68 1.7
3 11.46 2.2 21.13 24
4 9.25 2.7 17.36 29
5 8.99 2.8 15.06 33
6 8.31 3.0 13.16 3.8
7 7.55 33 12.28 4.1
8 6.93 3.6 11.65 4.3
9 5.17 4.8 10.56 4.1
10 5.10 4.9 9.94 5.0

Table 8.2: Graph with 157 nodes
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Proce MNDS CBDS

$8018 Time in Parallel Time in Parallel
p Seconds Speed up Seconds Speed up
1 9594.12 1.0 14471;334 1.0 |
2 4149.77 23 7502.77 1.9
3 2430.60 39 5103.73 2.8
4 1989.72 4.8 3987.87 3.6
5 1719.53 5.6 3226.58 4.5
6 1325.65 7.2 2752.19 52
7 1313.02 73 2354.14 6.1
8 1149.14 8.3 214671 6.7
9 924.03 10.4 1915.57 7.5
10 911.42 10.5 1779.97 8.1
11 847.72 11.3 1662.91 8.7
12 840.76 11.4 1559.26 9.3
13 808.08 11.9 1485.32 9.7
14 754.63 12.7 1409.30 10.3
15 763.76 12.6 1338.17 10.8

Table 8.3: Graph with 1265 nodes
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Proce MNDS CBDS
ssors Time in Parallel Time in Parallel
j p Seconds Speed up Seconds Speed up
j i 13900.81 10 76979.97 T 0
2 7647.31 1.8 41145.48 1.9
3 496().28 2.8 27205.57 28
4 4040.12 34 21460.55 3.6
5 3212.87 4.3 17770.85 43
6 2698.88 5.2 14677.87 5.2
7 2620.52 53 13193.71 5.8
8 2438.55 5.7 11830.17 6.5
9 2220.26 6.3 10676.41 7.2
10 1969.57 7.1 08418.20 7.8
I 1786.19 7.8 9192.89 8.4
12 1905.69 7.3 8600.66 9.0
13 1408.92 9.9 8178.21 94
14 1767.32 7.9 7849.30 9.8
15 1630.05 8.5 7375.50 10.4

Table 8.4: Graph with 1612 nodes



Proce MNDS CBDS

ssors Time in Parallel Time in Paralle]
p Seconds Speed up Seconds Speed up
U | 3956742 | 10 | 4954582 | 10
2 18139.42 2.2 26076.75 1.9
3 13079.62 3.0 17660.34 2.8
4 9078.71 4.4 14033.11 35
5 8513.56 4.6 11281.16 4.4
6 7039.69 5.6 9382.05 52
7 5867.42 6.7 9222.33 54
8 5360.34 7.4 7451.10 6.6
9 5088.48 7.8 6593.45 7.5
10 4594.10 8.6 6083.19 8.1
11 4220.74 94 5689.40 8.7
12 4110.56 9.6 5785.26 8.6
13 3996.97 9.9 4916.21 10.1
14 3816.34 10.4 4504.17 11.0
15 3647.82 10.8 4630.45 10.7

Table 8.5: Graph with 2087 nodes
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Proce MNDS CBDS
ssors Time in Parallel Time in Parallel
p Seconds Speed up Seconds Speed up
2 10.01 1.7 13.59 2.0
3 8.04 2.1 11.37 24
4 6.58 25 9.34 29
5 5.99 MR 8.34 33
6 5.84 29 6.98 39
7 5.35 3.1 5.38 5.1
8 5.06 3.3 5.97 4.6
9 4.93 34 5.85 4.7
10 4.92 34 5.04 54

Table 8.6: Graph with 149 nodes after longest path condensation
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Proce

§801S

p
1

9

10

MNDS CBDS

Time in Parallel Time in Parallel

Seconds Speed up Seconds Speed up
—————:_—::-9—_.—;;: 1.0 21.23 1.0
5.80 1.7 11.81 1.8
4.32 23 8.39 2.5
3.69 2.7 6.80 3.1
3.39 29 5.84 3.6
3.18 3.1 5.28 4.0
2.65 3.8 4.80 44
2.81 35 4.49 4.7
2.22 4.5 4.31] 4.9
2.10 4.7 4.14 5.1

195

Table 8.7: Graph with 157 nodes after longest path condensation




Proce

ssors

10

11

12

13

14

15

MNDS CBDS
Time in Parallel Time in Parallel
Seconds Speed up Seconds Speed up
6246.28 10 759;:4_—_7:1:.0#
2940.98 2.1 5737.28 20
2099.63 3.0 3854.87 29
1654.00 3.8 2962.38 3.8
1206.52 5.2 2401.74 4.7
1169.54 53 2050.52 55
1131.48 5.5 1783.32 6.3
949.17 6.6 1597.68 7.1
793.67 7.9 1439.47 7.8
901.98 6.9 1331.03 8.5
663.51 94 1242.09 9.1
609.81 10.2 1163.48 9.7
653.85 9.6 1107.19 10.2
741.68 8.4 1054.64 10.7
724.64 8.6 1016.64 11.1

Table 8.8: Graph with 1265 nodes after longest path

condensation

196




Proce MNDS CBDS

ssors Time in Parallel Time in Parallel
p Seconds Speed up Seconds Speed up

10013.66 1.0 57714.52 1.0

2 4882.85 21 29156.66 2.0
3 3055.94 33 19757.81 29
4 2512.66 4.0 15014.36 3.8
5 2353.02 4.3 12013.04 4.8
6 1922.75 52 10110.98 5.7
7 1731.23 5.8 §913.39 6.5
8 1567.94 6.4 8090.20 7.1
9 1415.48 7.1 7347.97 1.9
10 1487.65 6.7 6817.72 8.5
11 1320.82 7.6 6372.41 9.1
12 1389.09 7.2 5999.99 9.6
13 1175.26 8.5 5730.26 10.1
14 1176.46 8.5 5466.35 10.6
15 1307.63 7.7 5263.27 11.0

Table 8.9: Graph with 1612 nodes after longest path

condensation
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Proce MNDS CBDS
ssors Time in Parallel Time in Parallel
p Seconds Speed up Seconds Speed up
1 33738.35 1.0 36366.62 1.0
2 16606.27 2.0 18972.09 1.9
3 11830.75 29 12811.18 2.8
4 9313.02 3.6 9621.03 3.8
5 8157.26 4.1 7903.62 4.6
6 6807.90 5.0 7099.16 5.1
7 5655.07 6.0 5900.93 6.2
8 5126.10 6.6 5155.67 7.1
9 5162.44 6.5 4917.64 7.4
10 4557.98 7.4 4169.96 8.7
11 4453.89 7.6 4370.84 8.3
12 4217.13 8.0 3891.69 93
13 4089.29 8.3 3716.85 0.8
14 4075.00 8.3 3691.56 9.9
15 3881.05 8.7 3853.43 9.4

Table 8.10: Graph with 2087 nodes after longest path

condensation
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No of
Nodes Objective | Improve Chip Improve
N x10% | ment% | Width | ment%
Layout Compaction 505788 | = | 49600 Z
Wire Balancing 149 33.35350 6.46 49600 0
Integrated Layout 33.35350 6.46 49600 0
Compaction & Wire
Balancing
Layout Compaction 8.270312 - 123800 -
Wire Balancing 157 6.396859 22.65 128300 -3.63
Integrated Layout 6.654659 19.54 123800 0
Compaction & Wire
Balancing
Layout Compaction 11348.29 - 331450 -
Wire Balancing 1265 5636.508 50.33 370250 -11.71
Integrated Layout 6239.136 45.02 331450 0
Compaction & Wire
Balancing
Layout Compaction 52485.97 - 321000 -
Wire Balancing 1612 28140.84 46.38 321000 0
Integrated Layout 28140.84 46.38 321000 0
Compaction & Wire
Balancing
Layout Compaction 378.7866 - 1016000 -
Wire Balancing 2087 307.5949 18.79 1025500 -0.94
Integrated Layout 307.7869 18.74 1016000 0
Compaction & Wire
Balancing

Table 8.11: Savings in Chip Width and Total Wire Length

199




CHAPTER 9

SUMMARY AND PROBLEMS FOR FUTURE STUDY

In this concluding chapter. we present a summary of the work reported in this the-

sis and suggest a few problems for further study.
9.1 Summary

Network optimization refers to the general class of optimization problems defined
on graphs and networks. The transshipment and the dual transshipment problems general-
ize several of the network optimization problems which include the shortest paths, max-
flow and matching algorithms. These problems can be used to formulate and solve a large
class of industrial and engineering problems. As the complexity and sizes of these prob-
lems increase. there is a growing demand for more computing power. Paraliel computing
is one of the ways to meet this demand. This has motivated our work in this thesis on par-

allel network optimization.

Chapters 2 - 7 are concerned with the design, implementation and experimental
evaluation of three parallel algorithms - one for the transshipment problem and two for its
dual. Chapter 8 is concerned with the application of our algorithms in VLSI layout com-
paction and wire balancing problems. Our algorithms extensively use the notion of node/

cluster firings and results from the theory of marked graphs.

In Chapter 2, we reviewed the transshipment problem and its dual as well as cer-

tain basic results and definitions which are used in the development of our algorithms.

In Chapter 3, three basic network optimization algorithms and their parallel imple-
mentations were discussed. They are: Algorithm FEASIBLE to test feasibility of the dual
transshipment problem. Bellman-Ford-Moore shortest path algorithm and Goldberg-Tar-

jan max-flow algorithm. These algorithms serve as building blocks in our parallel algo-




rithms for solving the transshipment and dual transshipment problems.

In Chapter 4, we discussed the details of the primal-dual approach to the transship-
ment problem as well as the issues which are encountered in its parallel implementation.
The primal-dual approach involves repeated applications of the max-ﬂov.v and shortest
path algorithms discussed in Chapter 3. We have shown that Algorithm FEASIBLE can be
adapted for initialization of the primal-dual method. This approach to initialization does
not require constructing an auxiliary graph unlike the traditional approach to primal-dual

initialization. This is quite attractive from the point of view of a parallel implementation.

The network dual simplex method is known to be a very efficient approach for
solving the dual transshipment problem, but it does not offer much scope for parallelisa-
tion. In Chapter 4, we developed a new approach to the dual transshipment problem. This
method. called the Modified Network Dual Simplex (MNDS) method, has several features
which make it amenable for an efficient parallel implementation. Unlike the traditional
network dual simplex method, MNDS does not move from one basic solution to another.
MNDS employs Algorithm FEASIBLE to test feasibility and then involves repeated
applications of the shortest path algorithm and concurrent pivot operations. Performing
concurrent pivots efficiently without destroying feasibility, and transforming a feasible
solution to a basic feasible solution through shortest path computations without decreasing

the objective value are the distinguishing features of MNDS.

In Chapter 6, we first established a new characterisation of the optimum solutions
to the dual transshipment problem in terms of certain clusters rooted at negative-weighted
nodes. Based on this characterisation, we then developed a novel parallel algorithm for the
dual transshipment problem. This new algorithm, called the Cluster-Based Dual Simplex
(CBDS) method, employs Algorithm FEASIBLE to test feasibility and involves repeated
applications of a cluster optimization algorithm (node/cluster firings) and concurrent piv-

ots. CBDS significantly differs from MNDS from the way a feasible solution is trans-
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formed to a basic feasible solution. The cluster optimization algorithm used in CBDS

resembles Prim’s algorithm for constructing a min-cost spanning tree.

We have reported in Chapter 7, results of an experimental evaluation of the three
parallel algorithms developed in Chapters 4 - 6. The evaluation has been carried out in a

shared memory parallel programming environment.

Finally, in Chapter 8, we considered application of our parallel network optimiza-
tion algorithms in VLSI layout compaction and wire balancing problems. We first showed
that the wire balancing problem can be formulated as a dual transshipment problem and
that layout compaction is a special instance of the dual transshipment problem. We then
introduced the integrated layout compaction and wire balancing problem and presented a
unified formulation of this problem in terms of the dual transshipment problem. We have
also reported results of a comparative evaluation of the CBDS and MNDS algorithms with
respect to their suitability for the wire balancing and the integrated layout compaction and

wire balancing problems.
9.2 Problems for Future Study

Our work in this thesis suggest a few problems for further study:

® The network primal dual method is known to be a very efficient sequential algo-
rithm for solving the transshipment problem. This does not appear to be the case
from the point of view of a parallel implementation. As we have pointed out in
Chapter 7. our choice of Goldberg-Tarjan algorithm for the max-flow problem may
be the source of the poor performance of the network primal dual method. It will be
interesting to study its performance using Dinic’s and MPM’s algorithms for max-
flow computations and compare this performance with that of the parallel network

simplex method discussed in [131], [154].

e The CBDS and MNDS algorithms have been designed to incorporate features which
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make them amenable for efficient parallel implementations. However, we believe

that even as sequential algorithms they are comparable to the network dual simplex
method. Implementation of these algorithms on a uniprocessor might provide

insight on their relative merits.

We believe that the network dual simplex method is not suited for parallel imple-
mentation. However, a parallel implementation of this method is needed to establish

its merit relative to our parallel algorithms based on MNDS and CBDS.

Implementing the CBDS and MNDS algorithms with upper bounds on the y-values

is another direction of work worth pursuing.

Our implementations have assumed a shared-memory programming environment.
Adaptability of CBDS and MNDS to suit implementations under the message-pass-

ing and workstation-based models [156] requires investigation.

The structure of the optimum solutions as presented in Theorem 6.1 has not been
fully used by CBDS as a test for optimality. It will be worth investigating whether
this structure would lead to a simpler test for optimality other than the traditional

simplex criterion.
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