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ABSTRACT

On p-adic Computation of
the Rational Form of a Matrix

Marie-Héléne Mathieu

We consider the problem of bringing a given matrix into “cyclic form”, from
which the rational form can be computed easily. Two new algorithms are proposed
(exact and modular), described, implemented and compared to a third algorithm.

For the exact algorithm, matrices are taken to have rational integers and com-
putations are done in the ring Z.

The modular algorithm takes matrices as having p-adic integer entries and
computations are done with rational integer approximation to p-adic integers. We
give bounds on the precision necessary to ensure that the resulting cyclic form is
indeed similar to the original matrix. We also give a criterion for deciding whether
the cyclic form is correct.

These results have been accepted for publication in the Journal of Symbolic

Computation [MF}].
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CHAPTER 1

INTRORUCTION

The two most important canonical forms for matrices are the Jordan form and the
rational normal form.

These canonical forms enable us to compute characteristic roots easily and
to determine if matrices are similar. The advantage of the Jordan form is that it
displays the characteristic roots explicitly (but these values may lic in an extension
of the original field). The advantage of the rational norm.;1 form is that its entries all
iie in the ring generated by the entries of the original matr... it can be coustructed
over any fuclidean ring (see [Her, ch. 6,7]).

Furthermore, the rational normal form gives us the invariant factors (and from
them the characteristic roots) for any given lincar transformation.

We say that two n x n matrices, A and B, are similar, denoted by A ~ B, if

and only if there exists a nousingular matrix T, such that
AT =TB. (1)

Note that (1) is always true for T' = 0; that’s why it is indispensable that
det(T) # 0. To solve (1), we would have to solve an n% x n? system of equa-

tions which would give a family of solutions for T'. In general it would be extremely
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difficult to Jetermine if that family contains an invertible matrix T

Theorem : Two matrices A and B are similar if and enly if iliey represent the

same linear transformation with respect to (possibly) different bases.

This is easily seen from the definition of a matrix in [Her, ch. 6]. o

It follows that matrix similarity is an equivalence relation.
We are concerned with the computation of the rational normal form of a ma-

trix. We have found that it is sufficient to have

AT =TB (mod p%)

TU =p'I (mod p%), ¥ < a

a1 .« 3 (defined in §3.2) determined from A and B with 8 < a — 4.

The first chapter introduces basic concepts and definitions. The second chapter
presents p-adic integers. In chapter 3, we introduce the necessary background to
understand the two new algorithms for computing the cyclic form of a matrix :

1) an exact algorithm (ch. 4)
2) a modular algorithm (ch. 5)

Chapter 6 describes tne procedures used to generate the data used in testing
the algorithms. The results are presented in chapter 7.

Finally, chapter 8 gives an example for which our modular algorithm performs
particulaily well. It also studies the behavior of the other algorithms with respect

to that example.



1.1 Notation

We let V' be a vector space over the field F' and T a linear transformation on V.
V =V, & V; means that V is the direct sum of the subspace V; and 13; i.e., every
vector of V' is the sum of a vector in V] and a vector in V, and V; N¥; = 0, the
zero vector. We denote by fv, f(T') applied to v where f(2) is a polynomial. For
any vector v € V,< v > = {fv | f € FJx]} is the cyclic subspace generatcd by

the vector v.

1.2 Definitions

Every k X k matrix A = (ai ;) with entries in F has a unique monic polynomial,

m(z) in F[z], of least degree for which A is a zero; i.e.

m(A) =mol + miA+maAZ+ ..t m, A" =0

(with » < k and m, = 1). It is called the “minimum polynomial” of the matrix.

Theorem : The degree of the minimum polynomial of a matrix is the dimension

of a maximal cyclic subspace.

[HK, ch. 7] gives a similar theorem which proves this one, o

The “characteristic polynomial” of a matrix A is given by

e(z) =det (2] —~ A) = cez* + ch1z* P+ ez F o

The roots of ¢(z) are called the “characteristic roots” of the linear transformation

represented by the matrix A. For any matrix, we have m(z)|c(z).
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The k x k matrix B = (b;;) is called a “companion matrix” if, for

1<j<k-1,b; =1when:=j+1and b;; =0 otherwise; i.e.

0 00 0 by

1 00 0 bog

010 0 bsx
B={o 01 0

bg,k

0 0 0 ... 1 brx
The minimum polynomial of a companion matrix coincides with its characteristic
polynomial, which is

b(r) = z* -~ bk’kmk—l —eo=by g~ by .

We say a matrix is in “cyclic form” if it is a direct sum of companion matrices; i.e.

¢, 0 ... O
o C, ... 0O
C= T e
0 0o ... C,

where C; is a companion matrix having characteristic polynomial p;(z) and 0 is the
zcro matrix. A matrix is in “rational normal form” (RNF) if it is in cyclic form,
and the characteristic polynomial of each of the companion matrices divides the

characteristic polynomial of the next; i.e.

P1 |le1?3| Te lpr

for the matrix above. These polynomials are called the “invariant factors” of the
matrix. The rational normal form of a matrix gives both the minimum polynomial
and the characteristic polynomial of that matrix; e.g. for the matrix above, its

characteristic polynomial is given by

c(z) = pr(z)pa(z) - - pr() ;5
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its minimum polynomial is given by

m(x) = p,.(.'l:) .

Every matrix is similar to a unique matrix in rational normal form; so two matrices

A and B are similar if and only if RNF(A) = RNF(B).

1.3 Cyclic form vs RNF

We now show that the invariant factors, and hence the rational normal form, can
be easily computed by polynomial ged and lem operations on the characteristic
polynomials of the components of any matrix in cyclic form.
IfV = Vi 8 V,, it follows that each vector v € V is the sum of unique vectors
vieViandvy, € V!
Vi+Ve=Wi4Wy = vi—wW; =W~V €EViINYV,
= Vi—W1 =Wz -Vvy=0

:>W1=V1,W2’:_"V2 [m]

We assume :
V=<vi>d< vy >
fi = minpol(v;) = the minimum polynomial of v,
f2 = minpol(v2)
Let g1 = lem(f1, f2), 92 = ged(fi, f2), b1 = fi/g2, h2 = fa/g2. Compute a1,
ap so that ayfi +az2fa = g2 (and so ajhy + azhy = 1). Let w; =v; —vy,

Wo = (a1 hl)Vl + (aghg)V2.




Claim 1: g¢; = minpol(w;).

PROOF :
1) gi1W1 =giVy— g1V

= frhyvi — frhave
=0-0

=0

2) pw1 =0 = pvi—pvy =0
= pvi=0,pv, =0
= fl'pa f2‘p

= gilp o




Claim 2: g2 = minpol(ws).

PROOF :
1) gaw2 =a1hy1gavi + azhagave

=a; f1v1+ a2 favy

=a; -0+a2-0

=0

2) pwy=0 = pajhyvi+ pahavy =0
= pajhvi = 0, paghavy =0
= filpaihi, fa|pazhz
= g2lparhi, gz2lpazhz
= g2|p(ar1h1 + azhs)
= g2|lp-1

= g2|p o




Claim3: <wi>N<wz>=0.

PROOF : Suppose w € < wy > N < wz >. Then w = pw; = qw; for some

polynomials p and q.

pW1 = qW2 =
=

=

p(v1 — v2) = g(a1h1vy + azhav2)
pvi — pva2 = gayh1vy + qazhave
(p— garhi)vi = (p + qazh2) Ve
(p— garhy)vi =0, (p+gazhs)v2 =0
filp — qaihy, fa2|p+ qazha

g2lp — garhi, ga2lp + qazhe

g2|(p + gazh2) - (p — garh1)
gz2lq(azhs + arhy)

g2lg- 1

g2lq

qwa =0

w=0 o




Claim4: V=<w;>+<wa>.

PROOF : Because < w3 > N < wp > =0, we have
dim(< w1 > + < w3 >) = dim(< wy >) + dim(< wa >)
= deg(g1) + deg(g2)
= deg(lem(f1, f2)) + deg(ged(f1, f2))
= deg(f1) + deg(f2)
= dim(< vy >) + dim(< vz >)

= dim(V) o

The generalization for matrices having more than two components is straightfor-
ward.

So the problem of bringing a given matrix into rational normal form reduces
to that of bringing the matrix into cyclic form. Therefore, from this point on, we
restrict our attention to the problem of bringing a given matrix into cyclic form.

The two algorithms that we propose will solve that problem. For comnparison
purposes, we implemented the second algorithm of Ozello ([Ozel}), whicli computes
the rational normal form of a given matrix with integer entries. So far as we know,
Ozello has the best algorithm using rational integer computations.

Liineberg's recent book ([Liin}) contains a bibliography and a survey of al-
gorithms for computing the rational normal form. He mentions that no one has
found an effective algorithm based on modular arithmetic to compute the rational

normal form of a matrix. He cites difficulties arising from the existence of “bad
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primes”. A paper by Howell ([How]) describes an algorithm based on the Chinese
Remainder Theorem which, as she mentions herself in the paper, fails in general to
produce the rational normal form.
In the next chapter, we will introduce p-adic integers and their properties. We
will sce in chapters 3 and 5 how these properties can be applied to overcome the

difficulties mentioned by Liineberg.




CHAPTER 2

p-ADIC NUMBERS

We now introduce “p-adic integers” (Z,) and “p-adic numbers” (@ ,) . To avoid
confusion between members of Z, and members of Z, the latter will be referred
as “rational integers”.

For the present thesis, our interest lies mostly with p-adic integers; so this
chapter is mostly devoted to p-adic integers with a few words about p-adic numbers.

An accessible treatment of p-adic numbers is in [Mah].

2.1 Definitions

For a fixed prime number p, the field @, is defined as the set of all sums of the

form
w .
')b = Z ijJ 3
i=f
with0<r;<p-1forallj, and f € Z.
Similarly, we define the ring Z, to be the sct of all sums of the form
i .
a=)Y rp, (2.1.1)

i=0

with 0 < r; < p—1for all j. The coefficients r, are called the “p-adic digits” of a.
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Alternatively, we will use

-.orjrj_l e .rzrlrop

to denote

ro+rp+rapt + ot riap i 4

where p is called the base.

For « as in (2.1.1), we define
k—1 )
aj = erpJ )
7=0
b .
a=>» (p—1-rjp . (2.1.2)
Jj=0

@ is called the “complement” of a.

Obviously here

o, €Z ,

e S (2.1.3)
ap = ZT‘J‘[)J + ZOP" € Z,, .

j=0 i=k

We say that two p-adic integers, o and f3, are equal if their p-adic digits
coincide. If only the first & digits of @ and 8 coincide, i.e. ai = B, we write
a =p (mod p*). In particular we have @ = o (mod p*).

If ap =0Dbut agyy #0 (ie, rx #0butr; =0for 0 < j < k) then we write
ORD,(«) = k (by convention, ORD,(0) = 00). In more general terms, k is the
highest power of p which divides a.

For any rational integer r, we define the p-adic absolute value of r as

—ORD(r) : |0lp =0.

|"|p =p
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Relative to the p-adic absolute value, every r and s in Z has the following proper-
ties :
i), =l&plr
i) |rlp =pf & |p/rl,=1
iii) for every integer n, |p"r|, =p~"|r|,
iv) |r % s|, < max(|rlp,|s|p)
v) |rslp = |riplslp -
These properties will prove very useful later on. The p-adic absolute value is also
defined for z € @ and similar properties result (see [Mah, ch.1]). Details of the

arithmetic operations in Z, are given below in §2.3.

2.2 Units in Z,

In a ring R, a “unit” is an element a € R for which there exists an clement § € R

such that af = 1; we write § = o™ 1.

Examples :
in Z, the units are 1, -1

in @, the units are @ — {0}
Proposition : a € Z, is a unit if and only if o) # 0.

Proof : Suppose a; # 0. Let B; be the solution of
l1=016; (mod p).
For k > 1, suppose oy, and S have been found so that

1=aBr (mod p*).
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Since p* | (1 — axfBk) and agx =ax  (mod p*) we have

P (1 — eaifi)? =1— carBi(2 — aakBr) .

Therefore, if we take

Bak =Pi(2 — azfr) (mod p*)

we will have

ok = B (mmod p*)

and

1= az2xf (mod p?*) .

In this fashion we determine the p-adic digits of 8, so that af=1. 1

Conversely, suppose a is a unitin Z,. Let g =a~1. Then

1= alﬂl (mOd P) )

and therefore oy # 0. 0

The proof gives us a method to find the inverse of any unit in ZZ,. Here is an
example.

Example : Let p = T,a= 57 € Z7. Find 8 such that af = 1.

Note that a =54+ 0:p+ 0 -p*+0-p* +--- .

1) solving ey =1 (mod p), we find 8; =3.
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Bok = By = B1(2~ azB1) (mod p?)
=3.(2-5-3) (mod 7%)
=3.(-13) (mod 49)
=39 (mod 49)

B=10=83+1-7
so far, f = 13;.

3) k=2
Bak = PB4 = 2(2 —asBz) (mod p4)

=10-(2-5-10) (mod 7%

=10-(—48) (mod 2401)

= —480 (mod 2401)

By =1921=3+1-7+4-7245-T

and soon .

In Z~7, the p-adic digits of 5~ are

<o+ 54137 .

Proposition : For anya € Z,, o € @ if and only if the p-adic digits of a are

eventually Leriodic.

Proof : The proof is in two parts.

(<) If o has periodic p-adic digits then

a=3+7v
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where 8 is the non-periodic finite part of a and 7 is the periodic part.

Let 6 be the k periodic p-adic digits so
y=6+7-p*

and

Since § € Z and 1 — p* € Z then v € @ and thus f+v € @ (since 8 € Z).

Therefore a € Q.

(=) Ifa €@ thena = ,_:- wherer, s € Z, s > 1, (p,s) = 1 (if p* | s then
k
a = 1313'_ where s’ = ;sk- so (p, s') = 1).

By the Euclidean algorithm, we can find integers =, y such that sz +py = 1. Then
s(re) +p(ry) =r,

s(re — kp)+p(ry + ks) =r

with integer & such that 0 <rz - kp<p-— 1.

Let ag = ra — kp and ry = ry + ks then

Similarly,
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so that

Tn

w13

with0<a; <p-1for0<j<n-1.

Let A, =ag+aip+ap® ++++ + an-1p"! then

§=A,,+p"rf, 0<A,<p"-1
and
r,,=-’"—'"pTA'lf, f—"—(%;—l-)—sgr,,g;%.
Therefore, for n — oo
—s<r, <90

and r,, has only finitely many possibilities.

From (2.2.1), we see that

=ao+aip+azp’++ apap" T +p" 2

e

so that @, ard r,4; are uniquely determined from r,. Thus, from (2.2.2), the

sequences ri, T2, T3,--- and ap, aj, az,--- must be periodic from some suffix

waward. O

The periodic digits in a p-adic integer are denoted by a dot above the first and

last digits; e.g. -+ - 2541254125413, will be written as 25413, .

From the proof, we see that given a periodic p-adic integer, we can compute
’ £Cr,

which rational number it represents.
Example : What is the 7-adic integer 254137 ?

Let 8 = 254137, v = 25417 s0 f=3+7-7 .
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We have
4 =25417+4-7" or
v =960 + v-2401 .
Therefore
2
T="3
and
B=3- -‘;i 7= -;-

We thus find 8 =571,

2.3 Arithmetic in Z,

Arithmetic operations, addition, subtraction, multiplication and division are easily

computed in Z,. They are defined as follows for any o and 8 € Z, where
a=ag+ap+- - t+an_1p" 4

B=by+bp+:+-+bogp” 4.
Addition : If 0 < a; + b; < p—1for all j then
Xx=a+f=(a+b)+ (e +b)p+- -+ (an-1+bu-r)p" "+

=CO+CIP+"'+Cn-1pn—1 + -
On the other hand, if 0 < aj +b; <p—1for 0 <j< k-1 and a; + b > p then

co=ap+bo, +,Cr1 = ap—1 + br—y
ar +by =cp+p

(ak +bi)p" = (cx +p)p" = cxp* + 1 p**" .
Now add 1 to the next term, i.e. ¢x4+1 = ar+1 + bg+1 + 1, and proceed to get x. If

the sum is finite (o = ay,, 8 = B,) and k =n — 1 then

X=cotcipt - tenap" T 1"
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We see that addition is defined so that for all £ > 0

(e+ B =ar + B (mod p) .

Subtraction :

From equation (2.1.2), we observe that

(o ]
=1+ (p-1)p =140,
§=0

so that

i
-
i
Ot

In general, we have

=0 J=0
= (p—1)p
=0
=0=-1,
so that
—a=1+4+a. (2.3.1)
Therefore,
o ~f=a+(~f)
=o+(1+p)

i.e., we compute  and then proceed with the addition.
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Multiplication :
For clarity’s sake, we will now assume that
a=apy; =ao+ap+--+ app”,
B=Pny1=bo+bip+- -+ bap" .
Extension to infinite series is straightforward.

Let x = af3, we proceed in a manner similar to polynomial multiplication so
X = (aobo) + (a0b1 + albo)p + (a0b2 + a1b1 + (lzbo)p2 4+ 00 4 (anbn)p2" .

We find the p-adic digits of x in the following manner :
co+ dy - p=aghy 0<¢<p-1
c1+dy-p=agb +ayb+d; 0<c<p-1

co+d3-p=aghy +a1by +azbg+d; 0=Z<c;<p—-1

and so on, so that

n

X =cot+cipt-e+cnp’

Multiplication is thus defined so that for all £ > 0

(af)k = axBi  (mod p*) .

Division :
For any two p-adic integers a and 8 (with £; # 0), % can be rewritten as 87!,

Since 3 is a p-adic unit, we can find 8! as shown in §2.2 and then use multiplica-

tion.
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Here are some examples.

Let

a=13;¢€ Z,
and

B=5:€Z7.
Addition :

a+f=B8+5)+(1+0)-7
=(14+1-7)+1.7

=1+2.7

=217€Z7 b

Subtraction : _ )
B=14+6-T+6-T>4...=61; :

B=14+14+6-7T4+6.-7+.-. %
=246-7+6-72+... =02, ~
a—B=0B+2)+(1+6)7T+6-T2+6-7+-..
=5+0-740-724+0 -7 +---

=57 € Z ;
Multiplication :
af=034+1-7)x(54+0-7)

=154+ (5+0)-7+0-7?

15=1+42.7
54+2=0+1-7

1+40=1+40-7
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so aff =1017 € Z-.
Division :

B! = 925413,

af'=(3+1-T)x(B4+1-7T+4-T*+5-7°+2.7" +..+)
=9+ (3+3)-7+(124+1)- 72 4+(15+4) - T+ (6+5)-7*

+(3+2)-T+(12+1)- 7 +---

9=2+1-7
3+3+1=0+1-7
124+41+1=0+2-7
154+44+2=0+3-7
6+5+3=0+2-7
3+2+2=0+1-7

12414+1=0+4+2-7

from this point on, it is periodic with a period of 4 starting with the third term in

the list above. So
= 027

=27€Z7.

The results are easily verified in this case since

a=10 €EZ

B=5 €EZ
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SO

a-f= €z
af=8+6-7=50 ¢z

[0}
§=2 €cZ.

2.4 Pertinent results

Here are some results arising directly from the definitions given in the first two
section, the most important of which is that Z C Z,.

This is easily seen since a positive rational integer o can be written (base p)

in the form (2.1.1) with only finitely many non-zero digits (as shown in (2.1.3)).
From (2.3.1), it follows that the negative rational integers are also present in Z,.
From now on, we should think of Z as special p-adic integers that satisfy either
1) all but finitely many of its digits equal to zero (a 2> 0)
2) all but finitely many of its digits equal to p— 1 (a < 0).
With respect to the p-adic absolute value, we find that Z is dense in Z, (equiva-
lently, Z, is the completion of Z).
Similarly, we can deduce that @ C @, and regard @, as the completion of @
with respect to the p-adic absolute value.
For the second result we require the following definition :
Given I{, a commutative ring with identity 1, and w, a mapping from I to the set
of non-negative real numbers. If
1) w(0)=0; w(a) >0ifae K - {0}

2) w(a£b) <w(a)+ w(b), Ve,be K
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3) w(ab) = w(a)w(d) , Va,be K
then w is called a valuation.

In [Mah, ch.2] Mahler gives the construction of K, the completion of the field
K with respect to the valuation w, as a set of residue classes modulo a prime ideal.
It follows from this construction that every element of K, can be approximated
arbitrarily closely relative to w by elements of K.

From the def .ition of p-adic absolute value of a rational integer r and its
properties, we see that r — |r|, is a valuation. Therefore, by the above statement,
we know that any p-adic integer can be approximated “arbitrarily closely” by a
rational integer. We say that z and y are “close” if p* | (z — y) for some large
positive integer k. (The larger k, the closer z and y.)

This result is very important for implementation of algorithms which use mod-
ular arithmetic.

Two more facts should be stated here :

1)InZ,,a|forf|laora=pg=0.
2) The p-adic Greatest Common Divisor and Least Common Multiple of two

p-adic integers are powers of p.

Example :
t=p'q, pfq
y=p°t, plt

min(r,s)

ged(z,y) =p
max(r,s) )

lem(x,y) =p

Since ¢ and t are units, we ignore them.
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More pertinent results from linear algebra may be found in [Sch, ch.4] and

At this point, one question that we may ask is “How big is Z, ?”. A standard
diagonalization argument can be used to prove that Z, is uncountable. It can
similarly be shown that @ , is an uncountable extension of Q.

Modular arithmetic has many well known applications. One easy example
is “two’s complement arithmetic” which is actually 2-adic arithmetic with values
computed modulo 2%, (Typically, & = 16 or 32 .) By convention, the “sign bit” is
propagated to oo.

Another useful and well known application is Hensel’s lemima which leads to
factorization of polynomials in Z[z] (see [Zas]). We shall apply p-adic properties

in a somewhat similar fashion in Chapter 3.




CHAPTER 3

BACKGROUND

From this point on, unless otherwise specified, matrices and vectors have p-adic
integer entries.

The elementary row (column) operations on matrices from a ring R are defined
as

(i) interchange two rows (columns)
(i) multiplication of a row (column) by a unit of R
(iii) addition of u times one row (column) to another row (column) (where
s ER).

Matrices which effect those operations are called elementary matrices.

Similarly, we define elementary p-adic row (column) operations on p-adic ma-

trices as
(i) interchange two rows (columns)
(ii) multiplication of a row (column) by a unit of Z,
(i1) addition of x times one row (column) to another row (column) (where
nEZy).

We also define elementary p-adic matrices as the matrices which effect elementary
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p-adic operations.

The first two sections deal with the concept of p-adic “lifting” by which we
mean iterative (linear) substitutions producing a p-adically convergent sequence.
Lifting originates with Hensel (see the standard proof of Hensel's lemma from num-
ber theory [VAW2, p. 204]), and was applied by Zassenhaus in [Zas] to give the
weil known algorithm for factorization of polynomials with rational integer cocffi-

cients.

3.1 Lifting a system of linear congruences

The Smith normal form (SNF') of a rational integer matrix is defined as

(@ )

0 0

where D = diag(éy,:-,6,), with &, -+, 6, positive integers such that 6|6, |6,,
and r is the rank of the matrix.

Every rational matrix A can be transformed into Smith normal form using
elementary row and column operations. [Newm, ch.IT §15] proves this and gives
a simple method to compute the Smith normal form. Consequently, for any rational
integer matrix A there are unimodular matrices L and R such that the product
LAR is in Smith normal form ([Sch, ch. 4]).

Similarly, for any & x k matrix C' = (¢; ;) (€ Z:x") there exist kx k elementary
p-adic matrices L and R each with determinant a p-adic unit (thus invertible in
Zﬁxk by Cramer’s rule (see [ND, p. 207-208])) such that the product LCR is in

Smith normal form, with its non-zero entries all being powers of p.
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To see that, assume C # 0 and suppose we have applied row and column

exchanges so that
ORDy(c1,1) = min{ORDy(c; ;) | 1< 4,5 < k} .

Let ¢;,; = pP1¢q (¢ a unit) and write

b1 d
_ [ Pa
o=("" »)

where d is a 1 x (k — 1) row vector, e is a 1 x (k — 1) column vector, and D' is a
(k—=1) x (k—1) submatrix.

1 we get

B -1
[P q
c=(% )

and, by minimality of ¢;,1, we can get

B
_(P 0
=" »)

using clementary p-adic operation (iii). Again by minimality of ¢, , pPr divides

Multiplying the first row by ¢~

cvery entry of D'.

By induction, D' can be transformed by elementary p-adic operations into

D" 0
(5 0)

with D" = diag(p??,--, pPr), so that we finally have

Smith normal form

(0 0 0 0y
0 p# ... 0 0 .0
ICR=| 0 o ... 0 0 (3.1.1)
0 0 0 0 0
\0 0 .. 0 0 ..0)/
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with fy < 2 < --- < Br = 8.

Let
(pﬂ-f’t 0 0 0 0 0\
0 pfA 0 00 0
D= 0 0 pf~F 0 0 0
0 0 0 1 0 0
0 0 0 01 0
\ 0 0 0 00 1)
then
(pﬂ 0 G 0 0 0
0 pf 0 0 0 0
_ 0 (.)...p.ﬂOO ol _ /P, 0
DICR = 0 0 ... 00 0 "(0 0
0 0 0 0 0 0
\0 0 ... 0 00 .. 0/

where I, is the 7 x r identity matrix and 0 is the zero matrix, so
(DLCR)* = pP(DLCR) .

Therefore

0=p’DLCR— DLCRDLCR

= DL(pC - CRDLC)R
with D,L, R invertible, so that

0=p?C-CRDLC

= C(p’I - RDLC) .
Defining C = RDLC, we have

CP’I-C)=0.
Suppose we have a solution vector X for the k x k system of lincar congruences

CX =0 (modp”). (3.1.2)
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Then
CX =p%Y,
for some vector Y, and )
CX = RDLCX
= p*RDLY
=p*W.

If B < a, we may set

A

X=X-p*W

so that

cX =p~PC(’I-C)X

=0

and

X=X (modp #.

(3.1.3)

In other words, for any square matrix C, if « is sufficiently large, any solution

modulo p® can be lifted to an exact so.ution in Z,. Loosely speaking, 5 measures

the loss of precision in lifting.

3.2 Lifting a matri.: similarity congruence

Now suppose we have the congruence

AT =TB (mod p®)

TU = p'I (mod p%)

(3.2.1)

(3.2.2)
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where A, T', B, and U are n x n matrices, B is in cyclic form and o > 4. Let the

n? x 1 matrix X be defined by

13
t2
X=1.
tn
where ¢; is the i*! column of T', and
A=bial  —byal ... —baal
~biol  A—byal ... —bol
C= _ . , , (3.2.3)
byl —bpnd ... A—bpnl

where B = (b; ;). Then the system (3.1.2) is equivalent to the congruence (3.2.1)
with k = n?.
We determine 3 as in (3.1.1) and X (and the corresponding n x n matrix T')

as in (2 1.3) so that
AT =TB,

T=T (modp*?P),
TU = p*I (mod p®~¥) .
If ¥y < a — B, it follows that T is non-singular, and therefore that A and B are
similar.

(In practice we do not actually compute T —in general the entries of T' are
non-rational p-adic integers — but as long as we know that § is small enough we
know that 7 exists and lifting is possible.)

Now we know that for any matrices A and B (in cyclic form), if a is sufficiently
large, any solution T modulo p® can be lifted to an exact solution in Z,. Here
again, we can say that 8 measures the loss of precision in lifting.

We now show how to improve the precision of congruences (3.2.1) and (3.2.2).
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Theorem 3.2.1 :° If TU = p°I (mod p*), k> c then

implies R
1) TU =p°I (mod p?*~°)

2) U=U (modp*°)
3) pT 'ezZy*"

4) U=p°T"! (mod p*~°)

i.e. U can be made ar precise an approximation to p°T~! as we want.

PROOF :
1)
TU = p°I (mod p*)
pI-TU =0 (mod p*)
(I -TU)? =0 (mod p*)
p*°I —2p°TU + TUTU =0 (mod p**)
%°TU — TUTU = p**I (mod p**)
2TU — p~*TUTU =p°I (mod p**~°)
TU(2I — p~°TU) = p°I (mod p?*~°)
TU = p°I (mod p**~°) .
2)

U=U@I-p °TV)
=U+U—p~°UTU

=U+U(I - p~°TU)
(p°I-TU)

(o4

=U+U

(3.2.4)
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¢ ptI-TU
pc

Bu =0 (mod p*~¢), therefore
U=U (modp* ).

3) Repeatedly substitute
U« U2l -p~°TU)

ke—2k-c
until p* J det(T) so p*T—' € Z 5", then
TU = p°I + p*W

- ch-lT + pkW
pPT=U-p*T'W € Zp*".
4)
TU = p°I + p*W
U= ch—I + ka—IW
— ch-l +pk—c(ch—1vv)

= p°T™! (mod p*~°) o

Theorem 3.2.2 : Given the congruences (3.2.1) and (3.2.2), if y < a <+~
then we may

1) lift U, using (3.2.4), until

TU =p'I (mod p?*+37)

2) substitute
B~ p"UAT (3.2.5)
so that

(i) AT=TB (mod p?*t7)

(i) B=B (mod p*~7)
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PROOF :

p'B=UAT
p"TB = TUAT
= TUAT (mod p?°+%7)
= p"TT AT (mod p?**+?7)

= p"AT (mod p?*127)

so TB = AT (mod p?o+7),

(ii)

so B=B (modp*7) a

It is important to note that even though B is in cyclic form, B (3.2.5) may only
be congruent to a cyclic form, i.e. some work may need to be done on B to bring

it into cyclic form.

3.3 Similarity with a matrix in cyclic form

Recall that 8 is important since it gives us a criterion for determining if an ap-
proximate similarity can be lifted to an exact similarity (namely 8 < @ — 7). The
computation of 3 for the matrix C (3.2.3) involves bringing an n? x n? matrix into

Smith normal form which in general requires O(n®) operations.
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Making the assumption that B = (b; ;) is a companion matrix, the matrix C

has the form

( A -1 0 0 0 0 \
0 A -I 0 0 0
0 0 A 0 0 0
E : : . : : : (3.3.1)
0 0 0 ces A -1 0
0 0 0 . 0 A = |
k—bl,nI _bZ,nI —b3,nI s —bn—2,nI "bn-l,nI A - bn,nI/

We can use elementary row and column operations to bring C into the form

I 0 O 0 0 0
/OIO 0 0 0\
0 0 I 0 0o 0
0 0 O I 0 0
0 0 O 0 I 0
00 0 0 0 f(A)/

where f(z) is the characteristic polynomial of B. It is evident that the Smith
normal form of f(A) is equivalent to the Smith normal form of C. Therefore, 8

can be determined from the Smith normal form of f(A).

We should note here that the matrix f(A) is of size n so only O(n®) operations
are required to bring it into Smith normal form. Taking into account that comn-
puting f(A) requires O(n*) operations, we can determine 8 in O(n*) operations

(compared to O(n?)).

In the case of B in cyclic form, the matrix C will be the direct sum of matrices

of the type (3.3.1). The value of § is the maximum value of f; determined from

each summand of C individually.
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3.4 Estimating the entries of the Smith normal form

In this section, we assume that matrices and vectors have rational integer entries.

For A = (a; ;) we take

EIEIODPIL-NLE
i
and for U = (u;) we take
U= _uh?

We denote the j*" column of the matrix M by M;.
The Schwarz inequality ([Her, p. 153]) states that for any two vectors
u, veV

| <u,o> | <l vl

where < -,- > denotes the dot product of two vectors. It follows that, for any

column vector W,

1AWl =32 3 eswi)')?
< (Jz_a?,j)(‘;w?) )?
= ((;(ia?,j)) (;S w})?
=0 ;Ja?,j)% (}waz)%

AW < Al W] - (3.4.1)

We know that

40 <14l
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by definition of || - ||. From (3.4.1), we get
(45511 = 1441l < 1Al 1145
so
(4250l < 1Af*

By induction, we get

ICA);1 = lA(A* =)
< Al feash;l
< {4l )t

I(A%);] < NA)*
for k > 0.

Let F = f(A) where
f@)=dy+diz+---+diz* € Z[a].
Then
IE5 1| = lldoI; + dy A + - + die(A¥);]

< Ndo Il + lldy Al + -+« + [ldi(A");

IF50 < ldo] + lda] AN+ -+ + |dul JlA]* - (3.4.2)

The diagonal entries of the Smith normal form of F' can be expressed in terins
of the subdeterminants of F (see [Newm, p. 28] and [Sch, ch. 4]). Hadamard’s

bound on determinants ([Buch, p. 259]) states that, for any matrix A

| det(4)] < JT 1451l -
i
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Let
(& 0 0 0\
1o 5. 0 0
SNE(F)=1,4 7" ¢ ¢ 0
Ko ... 00 o)
then

s< I IRl i=1-yr

11

17, lI0

where the ||F}||’s are bounded according to inequality (3.4.2).
We could use this last inequality to estimate # in §3.3 but, since this is usually

a big over-estimate, we might end up lifting an exact similarity (useless work !).

3.5 Estimating the entries of a cyclic form

We now assume that the entries of the matrices A and B are rational integers, and
that B is in cyclic form.

Let the characteristic polynomial of A be given by

c(r) =det(zl —A)=co+ciz+ -+ cpz” (3.5.1)
and let
b(z) = [J(= + Il 4;ll) = bo + brz + - + bpz™ . (3.5.2)
J

To get c, the coefficient of z* in (3.5.1), we need exactly k of the z’s that appear
on the diagonal of (zI — A). For each choice of k z’s , the corresponding k rows
and columns of A are excluded from the factors contributing to the corresponding

term of cy.
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n

k

in each case, so that +c; is given by the sum of these subdeterminants. Suppose

There are ( ) ways to choose the z’s, leaving a (n—k) x(n— k) subdeterminant
for example that we are left with rows 1 through (n — k) (and columns 1 through
(n — k)), then Hadamard’s bound (= ||A;]|| - || An—&]||) can be applied and, since
we only need (n — k) entries from each column 1 through (n — k), we get an upper
bound for the absolute value of c;.

So, we now have

leol < JT Nsll

i=1

leal < 3 CIT 143

i=1 j=1
J#i

n
len—1] <) 114;]1
=1

len] =1.

It is therefore evident, by the definition of b(z), that |¢;| < b; for 0 < j < n.

Given

d(z) = do + dyz + -+ + dyz* |
a divisor of ¢(z) (with k& < n), Mignotte’s bound ([Mig]) directly gives
Yolgi <2t (S eyt
J J
<2F (Y owy?
j

<2t )b
J
Dol <2F TTa+n4:0) - (3.5.3)
j j
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Therefore, when k = n, (3.5.3) gives us an upper bound for the entries of a cyclic
form of A.
Furthermore, if d(z) | ¢(z) then d(||A||z) must divide ¢(]|A]|z) so, from Mi-

gnotte’s bound ([Mig]), we have

DIl Al s 2% Qe al)?
J j
<28 QoG4

<2 3 bill4lp
=2 f_[(nAn +11451)
< 2k f‘[znAu
<2n IJI2||A||
5,.: AP < (35.4)

The next chapter gives an algorithm to compute the cyclic form of a matrix
using rational integer computations. Chapter 5 will combine the cyclic algorithm
from chapter 4 and the material covered in this chapter to give the p-adic algorithm
to compute the cyclic form of a matrix. The last two sections of this chapter will

be used in the analysis of the complexity of the p-adic algorithm.



CHAPTER 4

EXACT CYCLIC FORM ALGORITHM

A well known algorithm for computing the characteristic polynomial of a matrix A
is due to Danilevskii [Fad]. Algorithms derived from Danilevskii’s algorithm can
be used to find matrices B and T satisfying AT = T'B, with B in rational normal
form. Ozello developed such an algorithm in [Ozel]. In general, these algorithms
require O(n?) operations (additions and multiplications) to produce the rational

normal form. (Here we neglect the effect of the size of the numbers.)

The algorithm that follows is similar to the original algorithm of Danilevskii.
Given a matrix A with rational integer entries, the algorithm finds matrices B and
T, with B in cyclic form. All operations are performed in @, the ficld of rational
numbers (thus the algorithm is exact). Although the performance of this algorithm
is much worse than that of Ozello’s algorithm, it is of interest because it yields a

superior modular algorithm.

We present the details of the exact algorithm now and in the next chapter we

will draw a parallel between the modular algorithm and the exact one.

R o .
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4.1 The algorithm

We use three elementary similarity transformations :

Ei(i,j) : row i & row j, and

col i col J;

Ey(i,j,q):row i e—~row i — g Xrow j . and

col je—col j+qxcoli;

Es(i,q) :row i e~ ¢~ 1 xrow ¢, and

col i &~ g xcol 7;

where row i (col 2) is the i'* row (column) of a matrix and g€ @ .

Given h, we consider the k x k matrix A to be composed of four sub-matrices :

Y P
1= (& x)
where Y is hx h, X is (k—h) x(k~R), P is hx(k—h),and @ is (k—h) x h.

We define the configurations “Q clear” and “P clear” as follows. ( * indicates

an arbitrary value; — indicates zero.)

:

LR N
* ¥ X ¥ ¥
* ¥ X ¥ ¥
* X O ¥ ¥
* X ¥ ¥ X
* X K X ¥
* X ¥ X *
*

*
*
*

Q@ clear :

*
*
*
*
¥*
*

I

1

I

1

|

—
= 3 %

% %X ¥
*

W,
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Q is zero if is it clear and its first row is zero.

/* * ¥ ok *k - - - *\
* k% ok *k - - - %
* ok Kk k% - — = X%
* ok K Kk K - = - %
* ok ok kK - - —- %

P clear :

* k% ok ok * Kk kx  x
* k k k% 1 *x % %

K* * ok ok k - 1 *x =x
* ok ok x %k - -1 *)

P is zero if it is clear and its last column is zero.
At any time during the computation, we will be in one of three sitnations :
1) @ is not zero, and either @ is clear or P is zero
2) P is not zero, and either P is clear or Q is zero (4.1.1)
3) P and @ are both zero.
Initially, h = k& — 1 so both P and @ are clear (and possibly either or both of P
and @ are zero).

We repeatedly apply the following steps until k = 0.

1) If @ is not zero:

If @ is not clear, we apply E, repeatedly between the columns of X and the

columns of @ so as to leave @ clear. These operations do not affect P, but

could leave @ = 0 (which would leave us in situation 3).

Q#0:
Determine j such that as43,; # 0 has minimal absolute value among th~
non-zero elements of Q. If j # h, apply E(j, h) to bring aj41,; in position
(h+1,h).

Apply Ej(h, ap1,4) to put a 1 in position (h + 1,h).
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Apply E; repeatedly among the columns of @, to achieve the form

( * ok ok kX x k% *\
* Kk kK % *x ok k%
* ok kK % *x % K %
* k  k  *x % x ok %k
*k ok Kk k% * ok ok % ,
(4.1.2)

|

|

|

|

|

—
— % *

,
|
|
1
|
|
|
!
- % %
N——

Replace h by h — 1 to re-define X,Y,P,Q. At this point, either @ :s
clear and not zero (in which case, we remain in situation 1) or @ is zero
(in which case, we are in situation 2 or 3 depending on the effect those

operations had on P).

2) If P is not zero:

If P is not clear, we apply E» repeatedly between the rows of X and the rows
of P so as to leave P clear. These operations do not affect @, but could leave

P = 0 (which would leave us in situation 3).
IfP+#£0:

Determine ¢ such that a;; # 0 has minimal absolute value among the
non-zero elements of P. If ¢ # h, apply Ej(i, h) to bring a; ; in position

(h,R).

Apply Es(h,an) to put a 1 in position (h,k).
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Apply E, repeatedly among the rows of P, to achieve the form

(* *  x  k * —_ - - -—\
* ok x %k * - - = -
* ok k  k * _— e e e
* ok x  k * - - =~
* ok k% * - - - 1
* ok x % * x ok % %
* k¥ *x % * 1 *x *x =%
* K ok ok * - 1 = *)

\* * ok ok * - = 1 =«

Finally, apply E; repeatedly to perform adjacent row and column inter-
changes until row h has been moved below row k (column h has moved to

the right of column k).

/* * k% - - - = \

* ok ok ok - - = =

x ok ¥k - - = =

* % K * - - - - *

Xk ok ok Xk k% * (4.1.3)
* ok kK 1 * *x * *

O - 1 x % *

* ok kK - - 1 = *

\* ¥ k¥ - - -1 * )
Replace h by h — 1 to re-define X,Y,P, Q. At this point, cither P is
clear and not zero (in which case, we remain in situation 2) or P is zero
(in : hich case, we are in situation 1 or 3 depending on the effect those

operations had on Q).

3) If P and @ are both zero, we apply E» repecatedly to the rows and columnns of
X to bring X into companion form. (These operations do not affect P or (Q.)

X is now a direct summand of A and plays no further part in the computation. If
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h = 0, A is in cyclic form and we are done. Otherwise, replace k by h, h by h — 1,

and proceed to bring the sub-matrix ¥ into cyclic form.

The algorithm is short and simple (thus easy to implement). We will now show

that it is also correct.

4.2 Correctness

Algorithm correctness means that the algorithm terminates and gives the mandated
result given any proper input.

The cyclic algorithm has as input a square matrix of size k. Initially, we set
=k —1. At any time during the computation we are in one of three situa-
tions (4.1.1). In each situation the value of A is decreased by 1 after performing
the described operations. Eventually, h will be equal to 0 and the algorithm will
terminate.

We know that a matrix is in cyclic form if it is a direct summand of companion
blocks. (Recall that a companion block has 1’s below the main diagonal and 0’s
clsewhere except maybe for the last ¢olumn.)

In situation 1, if @ is not clear we have

* ® * X %
* % %X *x %
* % ¥ X %
* % ¥ X %

|

|

I

I

—
— % %

* % * %
¥* ¥ ¥ *
* % % %
* % x %
I
!
— % X %
~—

\r
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and repeated applications of E; between the columns of X and @ will leave Q clear
(or zero) but will not affect P or the lower triangular part of X. At this point, if
Q is not zero we can easily see that the subsequent operations leave 1's below the
main diagonal and 0’s below the first row of @ as shown in (4.1.2) (which implies

0’s in the lower triangular part of X).

In situation 2, if P is not clear we have

(***** ****\
k% % % * ok k%
* ok k% ok * k% ok
* ok % ko x Ok x %
* ok ok x  * * % % %
I x ok Kk %k
N — * ok ok
- - - = = - 1 * =%
S

and repeated applications of F; between the rows of X and the rows of P will
leave P clear (or zero) but will not affect @ or the lower triangular part of X. At
this point, if P is not zero we can easily see that the subsequent operations leave

1's below the main diagonal and 0’s in the lower triangular part of X as shown in

(4.1.3).

Therciore, in the first two stages we gradually bring X into “ncar companion”

form; namely

—

— X ¥
[l R S
* ¥ ¥ ¥
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In situation 3, we have
(* * % % * - - - —\
* %k ok Kk - - = -
X ok KX K X - - - =
% k% % - - = -
% kK % - - - -
S — * x  *k *
- - = - - 1 * =% =%
_ —- = = - — 1 * =
\—= - = - =~ 1 «/

with X in near companion form. Repeated applications of E; to the rows and
coluinns of X will bring X into the desired companion forin without affecting P or
Q.

Therefore the last stage gives us one more companion block. Then we proceed
if necessary to build the next companion block. Thus eventually, the input matrix
is transformed into a direct summand of companion blocks — a cyclic form.

Now, since clementary similarity transformations preserve similarity, the re-
sulting cyclic form is similar to the input matrix, and is therefore a cyclic form for
the input matrix.

We have thus proved that the exact cyclic form algorithm is correct. We will
see, in the next chapter, how we can use this algorithm in association with the
results from chapter 3 to obtain an efficient modular algorithm to compute the

cyclic form of a matrix.




CHAPTER 5

MODULAR ALGORITHM

As mentioned in chapter 4, algorithms derived from the Danilevskii’s algorithm for
the charateristic polynomial can be used to find B and T satisfying (3.2.1), with B
in cyclic form (see [How}, [Liin], [Ozel]).

We will use a modified version of the algorithm presented in chapter 4 (sce
§5.1) to find matrices B (explicitly), T and U (implicitly), and an exponent v, with
B in cyclic form, such that (3.2.1) and (3.2.2) are satisfied with o = u — «.

In §5.2, we describe how to use the results from chapter 3 in conjunction with
the algorithm from §5.1 to compute the rational form. Sections 5.3 and 5.4 deal
with the correciness and performance of the modular algorithin. The last scction
presents an alternate alg. ithm less efficient than the modular algorithm but still

worth investigating.

5.1 The modular cyclic form algorithm

The algorithm that follows is a modified version of the algorithm presented in
chapter 4. Given a matrix A with p-adic integer entries, the algorithm puts A
into cyclic form performing all computations modulo p*. (If A has rational integer

entries then all operations can be performed in @, the field of rational numbers.)
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We take the p-adic (exponential) valuation of a p-adic integer to be

val(p¥q) =k if ged(p,g) =1

val(0) = oo

We use the three elementary similarity transformations described in §4.1 with the
difference that ¢ is now a unit in Z,. The matrix A is still considered to be
composed of four sub-matrices and the configurations “Q clear” and “P clear” are
defined as in §4.1.

Again, at any time during the computation we will be in one of the three
situations described by (4.1.1).

Initially, o = &k — 1 and we repeatedly apply the steps described in §4.1 until

h = 0 except for the following modifications.

DIEQF#0:
Determine j such that an43,; has minimal p-adic value among the elements of
@. Lect this p-adic value be v.
If v >0, apply E5 to rows and columns k + 1 through k, with ¢ = p¥. This
increases v by v and leaves ap41,; a p-adic unit.
If j # h, apply E1(j, ) to bring ap4,,; in position (h + 1, h).

Then proceed as decribed to achieve the form (4.1.2) and re-define X,Y, P, Q.

2)IfEP#0:
Determine ¢ such that a; ; has minimal p-adic value among the elements of P.
Let this p-adic value be v.
If v > 0, apply E3 to rows and columns 1 through h, with ¢ = p®. This

increases v by v and leaves a; ;. a p-adic unit.
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If ¢ # h, apply Ey(i, h) to bring a; & in position (h, k).

Then proceed as descibed to achieve the form (4.1.3) and re-define X, Y, P, Q.

There are no changes for situation 3.

We will now show how to use this algorithm to get the rational form.

5.2 Computing the rational form

For a given matrix A we define g = po(A) to be minimal such that p#° > max; |b;l,
with b; defined as in (3.5.2). (This being an upper bound on the entries of the cyclic
form of A, it has the effect of making the recomputation of the cyclic form modulo
a higher power of p unlikely.)

Initially, we set u = po.

We apply the algorithm from §5.1, performing all arithmetic operations modulo
p*. The result is a matrix B in cyclic form and an exponent v such that (3.2.1) is
satisfied with a = p — 4. Moreover, there exist p-adic integer matrices T and U
satisfying (3.2.2) with o = p — 7.

If 4 > 2y we compute S as descibed in §3.3. First, for cach component of B,
we determine its characteristic polynomial, say f, and we compute f(A) exactly
then bring f(A) into p-adic Smith normal form. If u < 27 we can avoid computing

B (we set 8 = 0) since we already know that u is too small.
If u > B+ 2~ then B is a correct cyclic form for A, and we are done.

If 4 < po + 27, we replace p « po + 27; otherwise we replace p «— 2u. We

then recompute B and v using the algorithm from §5.1.
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5.3 Correctness

We have already proved in §4.2 that the cyclic form algorithm _rminates and gives
a cyclic form for the input matrix. It is easily seen that the modificatiuns described
in §5.1 will not affect termina.ion and the output is still a cyclic form.

All that we need to show now is that the modular cyclic form algorithm gives us
a matrix B in cyclic form, matrices T and U (implicit) and an exponent v, satisfying
(3.2.1) and (3.2.2). From that and results from chapter 3, we will demonstrate that
the entire algorithm (§5.2) is correct.

We know that U reflects elementary transformations performed on the rows of
A, and similarly, T reflects elementary transformations performed on the columns
of A.

Applying E3 to rows and columns:, h+1 through k (or 1 through k) with ¢ = p*
(for v > 0) only diminishes the precision in computing the cyclic form. l.e. suppose

we are at the i*" step in the computation and we find v; > 0. At this point we have

i~1
Y= zvj ’

i=0
AT) = TOBG  (mod p*~7)

TOU® =771 (mod p*~7)
where X (9 represents the state of matrix X at the i** step. The effect of applying
E3 with ¢ =p" is

AT = 7 g (mod p#—('7+va)) ,

7O = p’I (mod pu-—(7+vs)) )

Therefore, when the algorithm terminates, we have 7, the summation of all the

v;'s > 0 found, and (3.2.1) and (3.2.2) are satisfied.
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Now, we know that the procedure descibed in §5.2 terminates since the al-
gorithm to compute B is exact over the p-adic integers. Given that congruences

(3.2.1) and (3.2.2) are satisfied, correctness follows from the result of §3.2.

5.4 Complexity

We will assume (justified experimentally) that the number of recomputations of 3
is O(1), and that the value of v is dominated by yo. (In fact, chapter 7 will show

that the choice of a large prime p will make values of 4 > 0 unlikely.)

We define

a = max |a; ;| .

?

The time required to perform an addition or subtraction modulo p* is O(u); the
time required to perform a multiplication or division modulo p* is O(ulog 1) (as-
suming Fast Fourier Transform multiplication and division). Given b; defined as in

(3.5.2), we have

= % 4l (])may

J at a time

so that

Y b <1+ na)®
i

and

max [bj] < (1 4+ na)” .
J
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Choosing p#® > 2max; |bj|, we get
po = log, 2m?x 1;1
= [log, 2max |b;{]
< [log, 2(1 + na)™]
< [log, 21 (na)"]
= [(n 4+ 1)log, 2 4 nlog,(na)]
= [(n + 1)log, 2 + n(log, n + log, a)]
so pg = O(n(log n + log a)).
Thercfore the time required to perform a single arithmetic operation modulo

p* is

O(p log ) = O(n(logn + log a) log(n(log n + log a)))
= O(n(logn + log a)(log n + log(log n + log a)))

= O(n(logn + log a)(log n + log(log na))) . (5.4.1)
Assuming that a is bounded, we certainly have

log(log(na)) = O(logn)

so that

logn + log(log(na)) = O(log n)

and (5.4.1) reduces to

O(nlogn(log n + loga)) .
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Since the modular algorithm for the cyclic form requires O(n*) operations, we

find that the time required to construct the cyclic form of a n X » matrix is
O(n® logn(logn + log a)) . (5.4.2)
From inequality (3.4.2), we have
P <D ldslllA)"
j
and from inequality (3.5.4), we have

D> _ld;lilAl < 4mi4)" .

J

Since ||A|| < na, we find
PP @Ay

< ( L an)n

= (4na)"2 .
Therefore, the p-adic Smith normal form of f(A) can be computed modulo p® if
p® > (4na)™. Since p’ is

O(n*(logn + loga)) ,
the time required for a single arithmetic operation modulo p® is
O(n? logn(log n + log a))

(again assuming a bounded).
Computing f(A) requires n matrix multiplications, each requiring O(n®) op-

erations for a total of O(n*) operations; bringing f(A) into Smith normal form
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requires O(n®) operations. Therefore, the time required to construct the p-adic

Smith normal form of f(A) is
O(n® logn(logn + log a)) . (5.4.3)

It follows, from (5.4.2) and (5.4.3), that (5.4.3) is the complexity for the entire
algorithm. Experiments suggest that the actual performance of the algorithm is

closer to O(n®) (see ch. 7, table 4).

5.5 Alternate algorithm
We use the algorithm descibed in §5.1 with the added modification that we actually
compute T and U. Computations are done modulo p* and we find matrices B,T,U
and an exponent v, with B in cyclic form, such that (3.2.1) and (3.2.2) are satisfied
with @ = y — 4. We then compute 3 according to §3.3 (or set § = 0if up < 27).

If ¢ > 3+ 2+, then B is a correct cyclic form for A, and we are done.

If B4+2y > p > 24, then from Theorem 3.2.1 we can apply p-adic lifting to

refine U to U satisfying

TU =p'I (mod p**) .

Then from Theorem 3.2.2, taking

we have

p"TB = TUAT = p"AT (mod p**)

so that

AT =TB (mod p**~7).
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After the substitutions
B 2u,

B(—-—B,

~

U«U,

@ p~7
congruences (3.2.1) and (3.2.2) are satisfied, and we continue with the modular
computation to bring B into cyclic form.

If 2y > p > v we replace p + 2u; otherwise we replace u +— 2v + 1. In either
case, we perform the modular computation to determine B,T,U and v satisfying
(3.2.1) and (3.2.2) with B in cyclic form.

Correctness for this algorithm follows from an analysis similar to that made in
$5.3.

This algorithm corresponds directly with the general lifting algorithm. There
are two major reasons why we do not use it though. First, if the initial pg is chosen
as described in §5.2, then recomputation of B is unlikely, so that we do not benefit
from the lifting procedure and the overhead induced by the computation of T' and
U makes the algorithm significantly slower than the algorithm in §5.2.

Secondly, for a “bad” initial choice of g, in the case of f 4+ 2y > pu > 2v we
find that, during recomputation of B, 4 grows quite large, inducing more recom-
putations of B and modulo a higher power of p than necessary.

If we were to find a way to control the growth of ¥, we suspect that this
algorithm would be more efficient than the algorithm from §5.2 for “bad” initial

choice of .
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The next chapter describes how we got the data to test and compare the

algorithms from chapters 4 2r..! 5 with the algorithm from [Ozel].




CHAPTER 6

TEST DATA

In computing the rational form an uninteresting case arises when the rational form
of a given matrix consists of a single block (i.e, the matrix is “non-derogatory”
[Wilk] having one n x n cyclic block). Filling up the entries of a matrix randomly
will in practice almost always give a non-derogatory matrix.

We devised a way to generate random derogatory matrices that we used in
testing the algorithms. First we generate polynomial degrees, and then use those
to gencrate a matrix B in cyclic (in fact, rational) form. We then generate a non-
singular transform matrix 7 and compute its adjoint, T* (T* = det(T)T™?). The

. N 1
matrix used {or testing is given by A = ;-Ao, where
Ay =TBT*,

g = ged of entries of Ay .

In each step, we use carcfully chosen bounds to ensure some control over the

size of the entries of A.

6.1 Generating polynomial degrees

The polynomial degrees are generated randomly. They will be used in §6.2 to

generate n X n rational form matrices. The procedure is in three steps.
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First we generate the number of cyclic blocks of the rational form matrix.
Using a (uniform) random number generator, we get a number 0 < r < 1, then
compute s = 2r — 1 (so —1 < s < 1). The number of cyclic Llocks, k, is given by

(n—2)33+(n+2)J
2

k=]

so that 2 < k < n ~ 1. (We thus exclude non-derogatory matrices and matrices
with rational form having n cyclic blocks.)

The next step consists of partitioning n into k parts. Using an array
d=(dy,dy,-,dn-1,d,), initialized to (0,0,---,0,1), we repeatedly generate ran-
dom indices, 1 <i < n-—1. if d, =0 then we set d; = 1, otherwise we get another
index. We repeat this until the array contains k 1’s.

The partition p is given by the successive differences between indices for which
d, = 1. We then sort the partition in decreasing order.

Here is an example to illustrate the first two steps. Suppose
n=6, k=4

dp =0,1,0,1,1,0,1 = dg

then

In the last step we derive the polynomial degrees, [fi] 1 < ¢ < n, from the

partition p. Initially we sct

[f]=0 i=1,--,n,i#k

[f]l=pr .
Then

k
[ft]=pl_(Z[fJ])’ i=k—1,k—~2,---,1.

J=141
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This last step is explained by the fact that we subsequently want to generate a
matrix in rational form. Let f; be a polynomial of degree [fi] and F, be the
characteristic polynomial associated with the A'® cyclic block of the matrix. Then

we will have
k
Fo=[fi, r=1,-k
i=h
and

)
deg(F) = »_[fj] -
j=h

k
There ore Fh41|Fh as required, and Z deg(Fp) = n.
h=1
Using the example above as an illustration of the last step, we find

[fl] =0 [f4] =1
[f2l=1 [fs]=0
[fa] =0 [fc] =0.

Finally, we apply a criterion to ensure that there are not too many polynomials

of degree 1; namely if

n
iz
j=1

(7;]=1

we repeat the procedure for this instance. (Our example fails to meet this criterion

o3

so it would be rejected.)
We gencrated 100 polynomial degrees for cach matrix size 11 < n < 20 and

used them to generate rational form matrices (as described in the next section).

6.2 Generating the rational form matrix

Using the polynomial degrees generated in §6.1 and a pscudo-normalized random

number generator (described below) we will generate an n x n rational form matrix.

e vty Rtk s el b TN

:
!
!

PRI Y
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Standard random number generators give (approximately) uniformly distribu-
ted random variables. We want a random number generator that gives roughly

normally distributed variables.

Given a distribution function ¢(z) : (—o0, +00) — (0, 00), its density function,
az) = [ o,
- 00

has an inverse ®~1(y), so that ®~1(®(z)) = =, ®(®~1(y)) = v.
Let u be uniformly distributed over the interval (0,1), and let v = &7 (u).

Then
Pla<v<b)=Pla< ®7'(u) < b)

= P(®(a) < u < ®(b))
= @§(b) — ®(a)
b
= f é(t)dt .
So given a uniformly distributed random variable u, taking v = ®~!(u) will produce

a variable v having distribution ¢(z).

Using
-1 _ 2u _1 9
¢~ (u) = /\———-—u(l _— (6.2.1)

as a random number generator, with u being (approximately) uniformly
distributed * over the interval (0,1), gives a distribution function ¢(z) roughly

similar to a normal distribution about z = 0. The value A (0 < A < 1)is a

! To generate pseudo-uniformly distributed random numbers we used an implemen-
tation in the ALGEB language [Ford] of the VAX VMS mith$random random number

generator [VMS,RTL-433}, which is of the linear congruentiai type [Knuth I, ch.3).
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(rational) parameter chosen experimentally to make ®~1(u) close to 0 sufficiently
often.

Using this random number generator, we generate the rational form matrix as
follows.

Initially we set an array e = ([f1],-- -, [fa]); at the end e will contain the initial
partition from which [f1],---,[fa] were derived and will be used to construct the
rational form matrix.

For each degree [f;], 1 < ¢ < k (k = number of cyclic blocks), we generate [ f;]

coefficients, c; (0 < j < [f;] — 1), for a monic polynomial f; using (6.2.1) with

\ = [100/%]
T 1000

~ L
v~
If |c;| = 100 we recompute it. If c; = 0 for all j, we get another polynomial.

As we generate the polynomials, we compute the characteristic polynomials
Fj=Fj*f;, j=1,---,k,1=73,---,k
and the partition
ei=ei+[fi], =1k, 0=,k

i.e.

¢
F=1]s

i=j

k
€= Z[f:] .

i=j

We are now ready to build the rational form matrix. The size of the ht" cyclic

block is given by e and it has characteristic polynomial F,.
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The first row (column) number of the h*! cyclic block is given by

and the last by

The characteristic polynomial, F}, goes in the last column of the block with its last

cocflicient, ¢, in the first row of the block; i.e. with d = [f,] we have

0 0 O —Cp
1 00 —C1
0 1 0 —C2
0 0 0 ... —c4g—

Initially we take the rational form matrix to be a single n x n cyclic block.
Then we proceed to build the matrix according to the array e. The end of the hth
h h
cyclic block is defined by changing the 1 at position (1 + Z €i, Z e;) to 0 (except
i=1 =1
of course for the last cyclic block).

The rational normal form matrix just constructed has entries bounded by 100.

It will be used in §6.4 to generate test data.

6.3 Generating the transform matrix

The entries of the n X n matrix T are generated randomly. Each entry t¢;; is

. . . . . 1
given by the normalized random number generator given in (6.2.1) with A = e If

100
t, ;| > — we recompute the entry.
WJ n 1 Y

Therefore the absolute value of each entry is bounded by [1%0-_[, so that the

test matrix is likely to meet the criterion for acceptance (see §6.4).
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6.4 The test matrix

We are now ready to generate the n X n matrix A. Our criterion for accepting a
matrix as test data is that it should not be sparse and should have entries bounded
by 105.

First we generate a matrix B in rational form as described in §6.2. We then
repeatedly generate a matrix T as in §6.3 until its determinant is not zero (to ensure
the existence of its adjoint).

We compute

A=TBT"

then divide each entry of A by the greatest common divisor of its entrics.
This matrix will be accepted if it passes the three following tests :
1) lai ;| < 5000n ,j=1,---,n
‘o ensure entries bounded by 10;
2) [Irow;j(A)|I? —a?;>10n  j=1,---,n,and

3) | eol;(4)]

t-a?;>10n  j=1,-,n,
to ensure that the matrix is not sparse.
If the matrix fails any of these tests it is rejected and we repeat the proeedure,
We thus can generate derogatory matrices of degree n with entries bounded
by 10° and a rational form having between 2 and n — 1 cyclic blocks.
We tested all three algorithms using a set of matrices constructed using this

procedure. The results are given in the next chapter.

PRRPLT.Y St




CHAPTER 7

RESULTS

We generated 1000 example matrices, 100 for each degree from 11 to 20, with
cntrics not exceeding five decimal digits in size (as descibed in chapter 6).

The first section presents the results of our computations using the exact al-
gorithm described in chapter 4. As will be seen, the computations are quite slow;
in some cases computations had to be aborted because of the excessive computing
time required.

The second section presents the results using our modular algorithm (described
in chapter 5). We used the second algorithm of Ozello ([Ozel]) as our standard for

comparison.

7.1 Exact algorithm results

The computations were performed on a MicroVAX III in the Computer Science
Department of Concordia University.

Table 1 shows the average time (in CPU-seconds) to compute the cyclic form
of a matrix of degree n. In computing the average time for each degree, we exclude
examples for which the tiine required to compute the cyclic form excceds 5 times

the average time of the previous examples of the same degree. We also exclude
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examples for which computation was aborted for the reason stated above. So for
each degree, table 1 also gives the number of examples, m (out of 100), used in
getting the average time.

We see that the algorithm is quite slow (especially if we compare the results
from table 1 to the results from table 4). This is due to the size of the numbers
involved during the computation. (Chapter 8 will show an example in which num-
bers exceed 10000 digits.) To speed things up we decided to do computations using

modular arithmetic (our modular algorithm). The results follow.

7.2 Modular algorithm results

The computations were performed on a MicroVAX II computer in the Computer
Science Department of Concordia University. (Note that the ratio of speed between
the MicroVAX III and the MicroVAX Il is 5 : 2.)

The data in table 2 and table 3 was obtained using 10 matrices of each degree;
in the other tables (4, 5, and 6) the complete set of 100 matrices of cach degree
was used. All times are expressed in CPU-seconds.

Our algorithm was run with six different choices for p, 2 < P, < 2% :

Py =2

P2 =17

Pz =199

Py = 8821

Ps = 2090177

Pe = 42904967291 .

e
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Results from Ozello’s algorithm are labelled Po.

Table 2 shows the total execution times for initial values of u given by Cpeg
(po defined in §5.2), with 0.5 £ C < 1.0. The performance of the algorithm is
highly sensitive to the initial value chosen for u. The high execution times for low
values of C are due to repeated computation of B. As can be seen in the table 3,
B is frequently recomputed with C' = 0.5 and C = 0.6, but for C > 0.7, B is not
recomputed at all with this set of exaniples. These results convinced us that pg is
a good choice for the initial value of pu.

In table 4 we compare the performance of the modular algorithm, with various
choices of p, with that of Ozello’s algorithm. For each choice P, &k = 0,---,6 ,
a straight line was fit to the 1000 data points (logn,logt) by the least squares
method.

We can sce that Ozello’s algorithm is generally faster in the range 11 <n < 20
and has a smaller standard deviation but the coefficients from the linear regression
on the data points suggest that the performance our algorithm will surpass that of
Ozello’s somewhere between n = 65 and n = 90.

The performance of our algorithm is not sensitive to the choice of p, except
that it is somewhat slower when p is very small. From table 5 we can see that the
degradation in performance with small p is due to the substantial values of v that
arise. Since the algorithm computes a relatively small number of inverses, with a
large prime the likelihood is very great that all of them will be p-adic units. (The
value of 4 changes only when the inverse of a non-unit is computed.) So one might

expect the effect of 4 on the performance to vanish with large p. (In fact none of
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the examples gave ¥ > 0 with p > 199.)

In the case p = 2, machine-level implementation might offset the disadvantage
associated with small primes because of the extreme ease with which arithmetic
modulo a power of 2 may be performed.

Table 6 shows the percentage of the total time that is spent computing . It
is clear that this computation dominates the total time, and that, as n increases,
it takes an increasing proportion of the total.

It would be highly desirable to avoid (or at least speed up) the computation
of 5.

A remark of Ozello ([Ozel, p. 48]) implies that, if (3.2.1) and (3.2.2) hold, and
p*727 > (2na)”, then A4 and B are similar. Unfortunately, Ozello does not prove his
remark, and it is not obvious why it should be true. The basic theoretical obstacle
is that, while the coefficients of the characteristic polynomial, being sums of sub-
determinants of the matrix, are continuous functions of the entries, the coefficients
of the invariant factors, and even their degrees, are not.

On the other hand, none of our test cases provide a counterexample. In fact,
in every case it was sufficient to have p = p¢ +2y to obtain a correct cyclic
form; the replacement p — 2u was never required. This bound is even weaker than
Ozello’s (his bound is chosen to exceed twice the magnitude of any coefficient of any
polynomial dividing the characteristic polynomial of 4), in that it is chosen merely
to exceed twice the magnitude of any coefficient of the characteristic polynomial
of A. We determined its effectivencss experimentally, and are not in a position to

prove that it is sufficient.
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Should Ozello’s hypothesis be shown correct, computation of 8 could be by-
passed entirely, improving the complexity of our algorithm by O(n).
The next chapter analyzes the behavior of the three algorithms for what we

consider an interesting example.
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TABLE 1 : EXACT ALGORITHM PERFORMANCE

n

m

97
87
95
90
92
84
82
86
85
79

average
time
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TABLE 2: CONSEQUENCES OF COMPUTING 5 PREMATURELY
Time for 10 examples of each degree, with initial g = Co

c 1 12 13 14 15 16 17 18 19 20
0.5 3562 1202 1565 1554 1144 3016 2157 2849 13197 3500
0.6 266 908 1257 1231 1352 3021 1299 1602 10595 2498
0.7 160 520 915 1401 718 979 1042 1752 42556 2524
0.8 163 368 539 867 722 910 1054 3662 2124 2551
0.9 163 290 346 637 635 991 1063 1539 2154 2585
1.0 165 2056 351 805 643 904 1078 1558 2180 2618
0.5 255 621 877 1552 1443 1297 982 2753 12613 2522
0.6 153 303 754 883 1381 849 996 1500 3106 2548
0.7 156 277 320 467 604 1165 1004 1517 2059 23573
0.8 157 281 323 472 611 858 1014 1546 2095 2606
0.9 159 285 327 481 620 874 1027 1563 2119 2650
1.0 160 289 333 488 625 886 1043 1595 2153 2677
0.5 186 597 895 1576 1016 1370 999 1510 12551 2554
0.6 153 306 535 759 1013 852 1005 1523 3077 2580
0.7 156 281 324 476 607 866 1017 1542 2043 2604
0.8 157 284 328 483 615 874 1027 1575 2084 2645
09 160 289 332 400 621 891 1040 1591 2116 2683
1.0 163 293 339 501 G636 902 1063 1621 2143 2715
0.5 185 622 882 1509 1019 835 995 1531 8386 2549
0.6 155 302 598 G603 977 840 1003 1538 2091 2575
0.7 157 280 535 47¢ 614 853 1014 1556 2056 2605
0.8 159 282 326 481 617 862 1025 1580 2078 2638
09 161 286 332 489 627 877 1038 1599 2109 2666
1.0 162 289 332 497 633 886 1051 1626 2124 2707
0.5 154 275 770 1504 975 835 987 1503 7529 2533
0.6 155 275 316 806 599 840 996 1521 2017 2557
0.7 158 279 321 467 608 852 1009 1539 2037 2580
0.8 158 283 3256 472 615 865 1021 1564 2073 2616
0.9 159 9283 320 479 618 875 1034 1591 2102 2653
1.0 16”7 289 333 487 629 887 1052 1616 2131 2676
0. 152 510 512 1311 791 816 968 1476 7160 2461
0.6 152 273 J14 455 796 824 975 1492 3019 2480
0.7 156 276 314 458 593 828 986 1509 1092 2505
0.8 155 278 317 467 601 846 997 1529 2024 2545
0.9 160 287 325 473 612 852 1013 1556 2052 2578
1.0 160 288 328 483 617 869 1030 1589 2088 2614

[ENDPRPC R

mad rms Shtntfat.
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TABLE 3: TOTAL B COMPUTATIONS

For 10 examples of each degree, with initial ¢ = Cpyg
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990
767
31
1713
1707
1700
1675

74

TABLE 4 : COMPARATIVE PERFORMANCE

12

1417
2627
2564
2563
2562
2547
2512

11 12

Py 1946

P2 54 88

=
ccooc

10

SO0

2420

13

1092
3935
3551
3599
3602
3559
3502

W nnnn

4
4
4
4
4
4
4

15
3965

16
5767

6640 10295

6340
6407
6321
6309
6233

9720
9913
9944
9961
9697

.849LOG n — 9.433
.527LOG n - 8.039
.562LOG n — 8.179 o
.559LOG n — 8.160
574LOG n — 8.198
.573LOG n — 8.200
.542LOG n — 8.135

17

7202
12785
12217
12302
12588
12424
12173

TABLE 5: TOTAL v VALUES

13

299

ot

14

15

16

17

18

10421
16479
16124
16224
16373
16413
15870

o = 0.291
o = 0.362
0.353
o = 0.353

18

19

14841
23769
21145
21319
21203
21148
20565

19

§ 2716 2508 3227 3487 4089 4127

59

OO

72

OO

82

OO

97

OSOO =

04
1

oCOoOCOr

24

QO ON

TABLE 6: PERCENTAGE OF TIME COMPUTING j3

13

76.35
75.35
74.66
74.63
75.00
75.48

14

75.98
76.07
75.99
75.80
76.19
76.32

15

77.50
78.24
77.62
77.60
77.54
78.12

16

80.66
80.61
§0.81
80.53
80.38
80.74

17

81.35
81.48
81.39
81.47
81.26
81.47

18

81.50
82.63
82.53
82.27
82.51
82.63

19

84.82
83.71
83.38
83.40
83.39
83.62

20

18118
27589
26702
26967
27035
26710
20041

20

4707
149

cCOoCH

20

84.16
84.46
84.24
84.15
~4.28
34.56




CHAPTER 8

AN INTERESTING EXAMPLE

An 18 x 18 matrix (p. 78) was used to trace the algorithms (exact, modular and
Ozello’s) in order to try to analyze their behavior.

We chose this matrix because it illustrates an important point, namely relative
ceatrol over the size of the nuinbers involved during the computation of the rational
form is intimately related to algorithm’s efficiency (in terms of computing time).

The matrix has integer entries ranging {from —44196 to 37324. Its cyclic form
(p. 78) contains two blocks and integer entries between —3.53 % 1023 and 5.95 % 1019,
Here is how cach algorithm behaved during the computation of the cyclic form of

the matrix.

8.1 Using the exact algorithin

This is one of the few examples for which excessive computing time forced us to
abort the computations (done on a MicroVAX III).

In monitoring the size of the numbers involved during the computations, we
found that we get numbers with more than 13500 digits (after only a few minutes
of comput.ng time). We find that the numbers get much bigger than that as time

goes on using more and more memory space and slowing down the algorithm to
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the point of becoming totally impractical.

8.2 Using Ozello’s algorithm

Ozcllo’s algorithm gets the rational form of an n X n matrix A by finding vectors
fi,-++, fi such that my, = ma,_,, for ¢ = 1,---,k , where k is the number of
blocks, 7, is the minimal polynomial of f; modulo (;_;, the subspace induced by
fi,-+, fi—., and m4;_, is the minimal polynomial of 4;-;, the endomorphism of
the quotient space €/¢;—; induced by A (e is a vector space of size n over a field).
(For detailed explanations of the algorithm see [Ozel].)

Even though finding these vectors is generally fast, this method can in certain
cases fail to keep the size of the numbers involved small during the computations.

For this particular example, the required vector is found on the first try for
cach block but the algorithm has to deal with numbers as big as 700 digits in the
process. These numbers are much smaller than those encountered in the exact
algorithm but still, the total time to compute the rational form was 99.48 CPU-

seconds. (Computations were done on a MicroVAX 1I.)

We will now sec how this compares to our modular algorithm.

8.3 Using the modular algorithm

Recall that computations are done modulo p#°® (for some prime number p and pq as
defined in §5.2). Therefore throughout the computations, the numbers will always

be between 0 and [p#° — 1|.
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For this particular example, we have

p pno d
Py 248 75
P, 61 76
P; 33 76
Py 19 75
Ps 12 76
Pe 8 T8

where d is the number of digits of the modulus. We see that the number of digits
involved here are hundreds of times smaller than those of the exact algorithm, and
ten times smaller than those of Ozello’s. Accordingly, our algorithm is faster than
the other two.

The times to compute the cyclic form range from 72.43 (for p = Pg) to 78.81
(for p = P5) CPU-seconds (on a MicroVAX II). This is 1.37 times faster than
Ozello’s algorithm.

I believe that this example proves our point. Even though for most of the
matrices tested Ozello’s algorithm was faster and the exact algorithm manages to
complete its computations, the advantage of the modular algorithm comes from the
fact that it tackles one of the problems relatced to computing the rational form of a
matrix, control of the size of intermediate values. (This is one of Qzello’s goals that
he failed to achieve ([Ozel,p.58]).) The next step will be to solve the problems

related to the computation of § (sce §7.2).




Original Matrix

-1764

37324

21044

29184

12456

1876

-4364

-13800

-6604

1084

10200

-412

8468

882

2086

1334

-7182

3524

2534

10012

-1156

76

-4180

-1202

1216

532

798

456

<1110

14406

8470

9462

-7242

-1820

-978

1680

554

2220

-2916

-6106

15904

-212

Cyclic Formm Matrix

-912

6688

5624

9120

1064

-912

608

1824

2128

-912

3800

-3496

-6384

-912

456

905

3395

2191

-4123

1976

1970

398

-1591

-4603

260

-2941

900

2361

-328

802

875

-10002

<290

78

-228 1659 364
2660 -2663 -676
1900 1333 676
-2660 -16473 -2964
0 1976 0
-2584 -1270 -312
-5168 -6622 -.936
-228 411 -260
-2812 -9569 -1716
0 isl2 312
-2508 -7959 -1186
-2432 -4300 624
1748 8315 -260
-1520 -6776 -728
2584 8134 1768
2356 11353 1924
-5168 -21702 -1560
-1368 -1798 -728
c 0
0 C

274

-42

1790

-2090

-604

-2040

586

-434

-156

-314

-548

1852

2230

-1728

-852

-2251

5999

1867

16777

-1976

2950

414

-379

6497

-1924

6647

3220

-6307

5984

-7318

-8945

12166

1158

182

-3302

-3614

-2470

-156

520

-130

130

156

-598

312

-130

-364

884

962

2184

-364

where C is a cyclic block having characteristic polynomial

0 1536
-3952 -10952
-1976 -5312

0 -12084

0 0

0 -1208
1976 2836

0 2160
1876 3084

0 676

0 360

0 -2752

0 2160

0 -4060

0 3704

0 7424
5928 5436

0 272

114

6486

38

1330

1292

1596

1254

1216

114

760

-1292

<1178

-380

684

-228

684

-76

-3648

-2584

-4180

-228

-1824

988

-2508

-2432

1748

-2508

4560

2356

-2204

-1368

c = 2% — 39528 4+ 390457627 + 77154421762 — 25 + 30125530349797376z4

— 59528047971199614976x> + 352882268373271317577728z% —

568

-664

-400

-2508

-992

-604

780

-112

984

-148

392

440

1772

80

1954

-17146

-10442

-6878

6164

11652

2578

10874

1664

8910

3024

-1374

3008

-3668

4422

18204

2780
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