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ABSTRACT

Nonuniform Weightied Subsampling for Digital Image Compression

Hani Sorial

This thesis presents Weighted Subsampling (WS), a new nonuniform image
subsampling method suitable for “region-of-interest” applications. The proposed
technique uses a weighting function to change the sampling pattern so that more
samples are taken in important regions of the image. The first order autoregressive
model (AR(1)) is used to model the input image. The signal is weighted and the
cigenvectors of the new autocorrelation matrix are computed. A sampling pattern is
then deduced and applied to the image. The performance of the proposed technique
is compared to uniform subsampling. Both techniques use the same number of
samples. Subjective and objective measures show that the presented scheme is
superior to uniform subsampling at the region of interest in the image.

In WS, the simulated annealing is used to derive the nonuniform sampling
pattern. The large complexity of the algorithm required that this optimization be
done offline. In this thesis, Fast Weighted Subsampling (FWS), a fast method to
deduce the sampling pattern with a considerable lower complexity, is also proposed.

The compression achieved by the subsampling operation is extended using pre-
dictive lossless coding. In the latter, adaptive linear prediction based on the density
of the subsampling pattern is used. Suitable predictors and Huffman codes are de-

signed and simulation verifies the efficacy of the presented scheme.

Keywords: Image compression, subsampling, linear prediction, lossless coding,.
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1.1 Introduction

Human beings perceive most of the information about the world around them
through their visual sense. The amount of data associated with visual information is
so huge that its storage would require enormous storage capacity. Further, transmis-
sion of such data require large bandwidth, which could be very expensive. However,
this data contains considerable redundancy and therefore, compression is possible.
Image compression techniques are concerned with reduction of the amount of data
required to store or transmit an image while maintaining an acceptable image qual-
ity, and consequently, save transmission and storage resources. Image compression
plays a crucial role in many important applications including broadcast television,
teleconferencing, multimedia computing, facsimile transmission, remote sensing via

satellite, medical images, etc.

1.2 Problem Statement

Subsampling is a simple, low complexity image compression method where only a
subset of the pixels are retained, that is, the digital image is represented on a new
sampling lattice with a lower sampling density than the original lattice. The sampled
image can then be processed, stored, or coded for transmission. At the receiver, an
interpolation is carried out to reconstruct an approximation of the original image.
The general goal of a sampling system is to give the best possible reproduction
of the original image by a proper choice of preprocessing, sampling strategies, and
interpolation [1].

Uniform subsampling saves regularly spaced sample locations. This is suitable
when all areas in the image are equally important. In some applications however,
where certain regions are more important than others, it is desirable to represent the
image by a nonuniform sampling scheme that assigns more samples to the important

areas. Consider for example an image of a human face superimposed on a simple



background. The background carries little information and can be represented by
coarse sampling. The face however carries more important information. Therefore,
the remaining samples can be assigned to the face region to enhance its quality in
reconstruction.

This thesis is concerned with digital image compression using a nonuniform
subsampling scheme suitable for “region-of-interest” applications. The class of im-
ages under consideration, whose information varies with spatial coordinates, is rep-
resented by samples distributed nonuniformly with higher sampling density in the
region of interest and a lower density in other areas.

In this work, it is assumed that the part of interest is known a prior: to be
located in a particular region of the image. This is an essential assumption for
Weighted Subsampling (WS) scheme presented in Chapter 3 where the sampling
pattern is derived using the simulated annealing optimization method, as the com-
plexity of the algorithm required that this optimization be done offline. However, in
Fast Weighted Subsampling (FWS) heuristic presented in Chapter 4, this a priori
requirement is of less vital importance as no optimization is needed in deriving the
sampling pattern.

As in subsampling we deal with real images which are usually full band signals,
the image has to be restricted to a certain space prior to subsampling. In the case
of uniform subsampling, and from the classical sampling theorem (2], the images
are restricted to the space of bandlimited signals. A space-invariant lowpass filter
is used for proper image conditioning (bandlimiting) prior to uniforrn subsampling
in order to prevent aliasing effects. For the nonuniform subsampling scheme; the
class of images (which are not bandlimited) are said to belong to the space of locally
bandlimited signals (3, 4]. Image conditioning prior to nonuniform subsampling is
achieved using a space-varying lowpass filter. Thus, images in the space of locally
bandlimited signals are characterized as having a space-varying bandwidth [3, 4].

The bandlimiting process reduces the bandwidth of the original image and



therefore results in some degradation. Thus, the subsampled image wiil no longer
represent the original but rather the bandlimited image. Hence, for a given number
of samples (i.e. for a given compression ratio), assigning a higher sampling density
to the region of interest in the image, then locally bandlimiting the signal, prior to
subsampling, using a spacc-varying lowpass filter, result in less degradation in this
region than if, for the same number of samples, uniform subsampling is used. This
is illustrated in the following example.

Figure 1.1 shows the original Lena image of size 256 x 256 and 8 bits/pixel.
Figures 1.2 and 1.3 show locally bandlimited and bandlimited Lena images prior to
nonuniform and uniform subsampling respectively. In the former, a space-varying
lowpass filter is used. Here, image conditioning (bandlimiting) for both cases are
done in order to retain a subset of size 64 x 64 of the pixels (and therefore, to achieve
a compression ratio of 16 for each case). In Figure 1.2, the region of interest (the
rectangular area) is assigned more samples than the other areas (details on this will
be given in Chapter 3). Note the difference in the quality of this region for both
image conditioning cases. It can be seen that the region of interest in Figure 1.2
has more high frequency details than in Figure 1.3. Consequently, the quality of the
corresponding reconstructed region using nonuniform subsampling will be superior
to the same region reconstructed using uniform subsampling. This idea will be
developed throughout the thesis.

The theory in this thesis will be developed in terms of one-dimensional
sequences and systems (unless otherwise stated). The generalization to two-
dimensions will be achieved in a separable fashion, i.e., the two-dimensional opera-
tion will be performed as two successive applications of one-dimensional operation:

first performed on each row, and then on each column of the image.
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1.3 Digital Image Representation

Visual information is expressed mathematically by numerically representing the dis-
tribution of light energy and wavelengths of an image field. For storage within a
digital media, processing by a digital computer, or transmission via a digital com-
munication channel, an image field is digitized both in spatial coordinates and in
light intensity (brightness), that is, the image is sampled on a discrete grid and each
sample is quantized using a finite number of bits. In this thesis, only monochrome
images will be considered.

A digital image is rcpresented by a two-dimensional array of numbers. The
clements of such a digital array are called picture elements, pizels, or pels. In
standard images, each sample is uniformly quantized with 256 quantization levels
(grey levels). Hence, the luminance is represented by integer numbers between
0 and 255. A value of zero corresponds to black, and 255 corresponds to white.
A monochrome digital image can be considered as a matrix whose row and column
indices give the position of the pixel, and the corresponding value represents the grey
Jevel at that position. An example illustrating the axis convention used throughout
this thesis is shown in Figure 1.4. Note that the notations (ny,n;) and (7,;) will be
used alternatively to denote the axis of a digital image. In the next section, some

popular digital image compression techniques are presented in: brief.

1.4 Popular Image Compression Techniques

Many Image compression techniques have been developed and studied exten-
sively. Some popular techniques include Transform Coding (TC), Vector Quan-
tization (VQ), Subband Coding (SBC), Discrete Wavelet Transform (DWT), Linear
Predictive Coding (LPC) and some Hybrid combinations of these. A brief review of
the basics of each of the above techniques follows.

Transform coding has been studied extensively and has shown a relatively good
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Figure 1.5: A transform coding system: (2) encoder, (b) decoder.

capability for bit rate reduction (5]. Figure 1.5 shows a typical transform coding
system. In this technique, a block of dependent data is transformed into a set of less
correlated coefficients. Often, the transform is linear and orthogonal. A large frac-
tion of the total energy of the data is packed into relatively few coefficients. These
coeflicients are generally related to the spatial frequencies in the image. Since the
human visual system (HVS) is less sensitive to errors in the higher .patial frequencies
than to errors in the lower frequencies, the high-frequency coefficients are quantized
more coarsely than the low-frequency ones to reduce the bit rate. The quantized
coefficients are then coded (usually using variable-length coding) and transmitted.
The decoder implements the inverse sequence (except the quantization) of the en-
coder to reconstruct the image. The optimum transform in a mean-square sense,
is one that minimizes the mean square reconstruction error for a given number of
total bits, resulting in the Karhunen-Loéve Transform [6, 7]. However, the KLT is
data dependent and of relatively high computational complexity. A solution to data
dependency is to use statistical image models (e.g. first order Autoregressive model

AR(1) [6]). Data independent transforms such as Discrete Cosine Transform (DCT),



Input Reconstructed
vector Nearest Index Index Tabl vector
Neighbor ! Chamnel  |—>] able S
Lookup
Rule
Codebook Codebook
Encoder Decoder

Figure 1.6: Vector Quantization.

Walsh-Hadamard Transform (WHT), and the Discrete Fourier Transform (DFT) are
simple and practical to use. The DCT has proved to be of such practical value that
it has become the international standard for transform coding systems [5]. The Joint
Photographic Experts Group (JPEG) [8] and the Moving Pictures Experts Group
(MPEG) [9] have produced their popular DCT-based compression standards for still
images and video sequences, respectively. The DCT provides a good compromise
between the ability of packing the data into few coefficients and the computational
complexity.

Vector quantization is another popular image compression technique. Two
excellent reviews on VQ can be found in {10, 11]. A survey that examines a number
of variations on the VQ design algorithms to allow for the incorporation of image
processing into the compression system is given in [12]. A block diagram of vec-

tor quantization is shown in Figure 1.6. In a vector quantizer, the input vector



is compared to the entries ¢ a codebook containing representative (also called re-
production) vectors. The encoder determines the closest match (the code vector)
according to some distortion criteria. The most commonly used distortion measure
is the Mean Square Error (MSE). The index of the code vector is then transmitted.
At the receiver, the decoder also has a copy of the codebook and operates as a sim-
ple table lookup. The index is used to extract the code vector which represents an
approximation of the original input vector. The codebook in VQ is usually based
on a training set of typical data. The main advantage of vector quantization is the
simple decoder structure. The disadvantage is coder complexity, that is, the large
cffort required to search the whole codebook in order to find the closest match. This
complexity grows exponentially with vector dimension. Further, the optimization of
the codebook itsell involves lot of commputations. Another disadvantage is the fact
that images dissimilar to those in the training set may not be well represented by
the reproduction vectors in the codebook.

Subband coding is a multi-frequency decomposition scheme which has been
shown to be an efficient technique for image coding [13]. A good review of the basic
principles of subband coding can be found in [6]). Figure 1.7 shows a block diagram
of a subband coding system. The general idea of subband coding is to decompose
the [requency band of a signal into a number of subbands using a bank of bandpass
filters. Each subband is then subsampled (decimated or downsampled) and encoded
appropriately. At the receiver, the encoded subbands are interpolated (upsampled)
and then passed through reconstruction filters. The output signals from these filters
are summed to give a close replica of the original signal. Special care should be
taken in designing the bank filters for signal splitting and reconstruction so that
aliasing errors are explicitly canceled out in the reconstruction stage [14]. A main
advantage of subband coding is that by appropriately allocating the number of bits
in different subbands, the overall reconstruction error spectrum can be shaped as

a function of frequency. Further, the quantization error in encoding a subband is
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Figure 1.7: Block diagram of Subband coding.

contained within the subband, and hence doesn’t mask a weak signal in another
subband. This advantage offers perceptual improvement of the coding scheme.

The discrete wavelet transform (DWT) is a powerful tcchniqué for decompos-
ing images into multi-resolution approximations [15, 16]. Multi-resolution decompo-
sition has shown to be very cffective for high-quality image coding at low bit-rate.
The basic idea of the discrete wavelet transform is that of successive approximation,
together with that of “added detail”. At each stage, the input signal is decornposed
into a lowpass approximation and an “added detail” signal (which can be considered
as a highpass version of the input). Hence, the discrete wavelet transform decom-
poses the signal into a set of frequency subbands. Like subband coding, the DWT
has a perceptual advantage. By appropriately allocating the number of bits in cach
band, the overall reconstruction error spectrum can be controlled so as to achieve a
perceptual improvement in the reconstructed image.

Linear Predictive Coding (LPC) is a method that exploits the statistical re-
dundancy expressed in the inter-sample correlation property of images. LPC is used

in almost all lossless compression techniques. In predictive coding schemes, the
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current pixel value is predicted from some N previous pixels (N = 1,2,..) and the
difference between the actual and the predicted pixel value is coded and transmit-
ted. As LPC is used in this thesis to achieve lossless compression, Chapter 2 will
have more details on its theory. Next section presents two fidelity measures used for

evaluation of image quality.

1.5 Image Fidelity Measures

Image fidelity measures are useful for evaluating image quality and for rating the
performance of an image compression scheme. There are two types of fidelity mea-
sures: subjective and objective. The subjective measures use rating scales such as
goodness scales and impairment scales [17). Subjective evaluations are the most
rcliable image fidelity measures as the end user is usually a human observer. In this
thesis, images resulting from different compression schemes are presented and are
left to the reader for a subjective comparison.

As yet there are no agreed upon objective measures of subjective goodness, the
peak signal-to-noise ratio (PSNR) [5] is used in this werk as an objective measure

of image fidelity. This is given by

2552
PSNR = 10log ——
C S ZN 26, 5) - 36, 9))

where N? denotes the number of pixels in the original image, and (%, j) represents

(1.1)

the reconstructed value of the original z(, ).

1.6 Organization of the Thesis

This thesis is organized as follow:
Chapter 2 covers background material related to the work presented in this
thesis. The chapter includes two parts: image sampling and reconstruction, and pre-

dictive coding. In the first part, the sampling and reconstruction of two-dimensional

12



continuous signals is considered. Next, the theory of subsampling (decimation) and
interpolation of two-dimensional discrete signals with application to digital images
is presented. This part also deals with aliasing effects that result when the sampling
theorem is violated.

In the second part, the theory of linear prediction and its application to images
is discussed. The two-dimensional prediction of image models with isotropic and
separable autocorrelation functions is also considered. Next, the theory of variable
length coding (entropy coding) and in particular Huffman coding is reviewed. Many
illustrative examples are given throughout this chapter.

Chapters 3 and 4 represent the contributions of this thesis. Chapter 3 is
divided into two parts. First, nonuniform Weighted Subsampling (WS) for digital
image compression [18], the topic of this thesis, is presented. The idea of WS,
including the algorithm used to derive the sampling pattern, is first described. Next,
Weighted Subsampling using Projection (WSP) is presented. Here, the subsampled
signal is the projection of the weighted input signal. Numerical examples show
how the projection can be exactly reconstructed from its samples. An illustrative
example using test images is also given. Next, signal projection is approximnated
in WS using a space varying linear low pass filter. Image reconstruction using
interpolation is also treated. Finally, experimental results including subjective and
objective evaluations illustrate WS. A comparison between WSP (using projection)
and WS (using filtering) is also considered.

The second part of this chapter extends the compression achieved by WS using
lossless predictive coding. In this method, suitable predictors (based on the density
of the subsampling pattern) and Huffman codes are designed. Lossless compres-
sion ratios of 1.4 are achieved yielding an overall compression ratio (including the
subsampling) of 22 (0.36 bits/pixel).

Chapter 4 presents Fast Weighted Subsampling (FWS), a fast heuristic to de-
rive the sampling pattern of WS (presented in Chapter 3). In the latter, simulated

13



annealing was used to deduce the sampling pattern. The large complexity of the
algorithm required that this optimization be done offline. The heuristic presented
in this chapter has much lower complexity than the simulated annealing. To deduce
a sampling pattern having M samples for an N-dimensional vector (M < N), FWS
requires NM multiplications and additions, and 2N comparisons. Many illustra-
tive examples are given throughout this chapter using different weighting functions.
Finally, subjective and objective evaluations compare the results obtained in WS
(using simulated annealing) to those obtained using FWS.

Chapter 5 concludes the thesis by summarizing the proposed nonuniform sub-
sampling scheme and discussing its performance and contributions. This chapter
also includes future work.

The simulation programs are given in Appendix A. All simulations were done

using MATLARB, Version 4.2c., on a SPARC 5 Sun station.
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Chapter 2

Background

15




2.1 Introduction

The material covered in this chapter includes two parts. First, two-dimensional
sampling of continuous and discrete signals with application to images is exam-
ined. Section 2.2.1 reviews the one-dimensional Shannon sampling theorem which
addresses the problem of uniform sampling and reconstruction of bandlimited sig-
nals. A direct extension of the one-dimensional sampling to the two-dimensional
case is uniform sampling on a rectangular grid discussed in Sections 2.2.2 and 2.2.3.
Section 2.2.4 deals with aliasing effects which result when a signal is undersampled,
i.e., sampled below its Nyquist rate (the Nyquist rate is equal to twice the highest
frequency contained in the signal). As subsampling is the topic of this thesis, it is
essential to review the theory of decimation (subsampling) and interpolation of two-
dimensional discrete signals. This is covered in Sections 2.2.5 and 2.2.6. Aliasing
effects in image subsampling are also considered in Section 2.2.7. Next, an example
of uniform subsampling of images is presented in Section 2.2.8.

The second part in this chapter introduces predictive coding and its application
to images. Predictive coding is used in this work to extend the compression achieved
by the nonuniform subsampling method presented in Chapter 3. Section 2.3 reviews
the theory of linear prediction. An example of two-dimensional prediction for image
models with isotropic and separable autocorrelation functions is presented at the end
of this section. Finally, Section 2.3.3 reviews briefly the theory of variable length
coding and in particular Huffman coding. Many examples illustrate the material

presented throughout this chapter.

2.2 Image Sampling and Reconstruction

For suitable storage, processing or transmission, a continuous image field z,(¢1,12)
has to be digitized both spatially and in amplitude. Digitization of the spatial

coordinates (ty,%7) is known as sampling. The set of sample points might be a

16



rectangular array [2] or other form of spatial sampling (e.g. hexagonal sampling [19]).
In some applications, the sample locations are nonuniformly chosen to lie within a
certain “region-of-interest” according to some given criterion [4]. In all cases, after
processing or transmission, these samples are used to reconstruct a continuous image
for viewing. A simple method of image compression is to further sample the digital
image, i.e. to retain only a subset of the samples, and the: se the retained samples
for reconstruction at the receiver. Sampling and reconstruction of digital images
are known as subsampling and interpolation respectively. In the following, both
continuous and digital images are considered for the analysis of image sampling and

reconstruction methods. Analysis is restricted to rectangular sampling lattices.

2.2.1 The Shannon Sampling Theorem

The Shannon [20] sampling theorem (also known as the Whittaker-Kotel’nikov-
Shannon (WKS) sampling theorem) addresses the problem of uniform sampling
and reconstruction of bandlimited signals. The theorem shows that for a signal z(t)

b}

bandlimited to a frequency f < fo and sampled at the uniform points ¢, = n

(n =0,%1,42,...), and T is the sampling period given by

1 s
T =5 (2.1)

then z(t) is completely determined by its uniform samples z(¢,). The reconstruction
of the signal is
o0

2t)= 3 z(ta)S(t, tn) (2.2)

where S(t,1,) is the composing (or sampling) function given by

St 1) = TR (2.3
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Figure 2.1: Sampling locations in the (¢;,¢;)-plane for rectangular sampling

2.2.2 Image Sampling

A straightforward generalization of the one-dimensional sampling [21] to the two-
dimensional case is uniform sampling in rectangular coordinates, which is simply
called rectangular sampling (2]. Image sampling on a rectangular grid can be
achieved in a separable fashion, i.e., by first sampling each row, then each column.

Let z,(t1,t2) denotes a continuous image field. The discrete signal z(n;, ns)

obtained from a rectangular sampling of the continuous image is given by:
z(n1,n2) = z4(n1 11, n2T2) (2.4)

where Ty and T: are the vertical and horizontal sampling intervals. The sample
locations in the continuous (f,,¢;)-plane are shown in Figure 2.1. In order to find a

relation between the Fourier transforms of the continuous and discrete signals, we

18



start with the two-dimensional Fourier transform relations for continuous signals

XQ(QI,Q2) = ‘/-oo [-m (Ba(tl,tg) exp(-—letl —jngtg)dtldtg (25)

1 c  foo . .
zaltita) = 1 /_ ] /ﬁ ~ Xa(0, 02) exp(iits + jata)dfl (2.6)

Where () and 2, are the frequency axis of the continuous signal in the vertical and

horizontal directions respectively. Combining Equations 2.4 and 2.6, we can write
nl,ng 47I'2 / / Q],Qg exp(]anlTl +]an27 )dﬂldﬂg (27)

The frequency plane (w;,w;) of the discrete signal is related to that of the continuous

signal by
w = QlT) and Wy = QgT) (28)

and from Equations 2.6 and 2.8,

1 o0 oo ] w w
z(n,ng) = P /:_oo ‘/_oo T, (Ti Tz) exp(Jwiny + jwang)dw, dw, (2.9)

The double integral over the entire (w,w;)-plane can be broken into an infinite
series of integrals, each one is over a square of arca 4n?. If A(k), k2) represents the
square {—m+27k; < wy < 7+ 2rky; -+ 2wk, < wy < w4 2wk, }, then Equation 2.9

can be written as

1 w
z(ny,ny) = o) Z//A T, (T T2) exp(jwin) + jwans)dw,dw, (2.10)

The dependence of the limits of integration on k and &; can be removed by Replacing

wy by wy ~ 2wk; and wy by wy — 2mks. This yields

- wi 2tk w21k,
1‘(7’11,”2) - 471’2 /—w[w [T[Tzzzz:x ( T1 ’Tz Tg )]

-exp(jwin; + jwana) exp(—32wkiny — j2wkan,)dw dw,  (2.11)
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The term exp(—j2rkin; — j2mkons) is equal to one for all the integer variables
ny, ky,ng and ky. Comparing the form of Equation 2.11 to that of Equation 2.6 it
can be seen that the former is the inverse Fourier transform of the sampled signal.

Thus we conclude that the Fourier transform of the sampled signal is

wh 27!']61 Wo 27\"62
Xol 7 — 57 — 2.12
Xen) = 7 S5 (- 2 e 2 ) (212)
Alternatively, we can write
2ky 27rk2)
X(T),0.T,) - X, | Q , 0 2.13
R (2.13)

Equation 2.13 gives the relation between the spectrum of the sampled signal and
that of the continuous signal. It can be seen that the spectrum of the sampled signal
consists of the spectrum of the continuous signal repeated over a frequency grid of
resolution 3.—’1' and % in the ; and 9 directions. The terms ?r—’]' and 3,]—32’- represent
the sampling frequencies. If the signal z,(¢),¢2) is a bandlimited signal, that is, if

the Fourier transform X,(€,, ;) is confined to a rectangular region of finite extent

in the (4, Q2)-plane such that
T T
Xa(ﬂl,ﬂz) =0 fOI‘ ‘QII 2 it 'le 2 '7-;' (2.14)
1 2

There will be no spectrum overlap in the sampled image. This condition is equivalent
to the one-dimensional sampling theorem discussed in Section 2.2.1.

Figure 2.2 shows the spectrum of a continuous two-dimensional signal (for
simplicity, a symmetric diamond-shaped spectrum is used). The signal is sampled
at four times the highest frequency components (twice the Nyquist rate) in the
horizontal and vertical directions. The spectrum of the sampled signal is shown in
Figure2.3. Note that for the sampling rates used, The highest frequency components
in the w; and w; directions are each equal to 7/2. Thus, the spectrum can be enclosed
in a square of area 12, It will be shown in Section 2.2.5 that this sampled (discrete)
signal can be subsampled by a factor of 2 in both horizontal and vertical directions

and still represents the original continuous signal.
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Figure 2.3: Frequency domain representation of the sampled two-dimensional sig-
nal (top view). The original continuous signal is shown in Figure 2.2. Here, the
continuous signal is sampled at twice the Nyquist rate.
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2.2.3 Image Reconstruction

If Equation 2.14 is satisfied, then X,(§2,Q,) can be recovered from X (2,71, Q,732)
using Equation 2.13 to get

Ty T2 X (4 Ty. QT U< Z, |<z
X(n,,ng:{ 12X (Th. 1) Ul <7 [l <7 (2.15)

otherwise

Coi equently, it is possible to reconstruct the continuous signal z,(ty,t2) from the

sampled signal by using a rectangular lowpass filter H(£4, ;) given by

T1T2 IQII S %r‘_, lQ2| = Tz

0 otherwise

H(Q, Q) = { (2.16)

'To derive the reconstruction formula in the (1;,12)-domain, we express z,(t1,12) in

terms of its inverse Fourier transform

:Ea(l],tg) = 471’2./ / “1,92 exp(]Qltl +]ta2)dﬂ dQQ
7 7
= m'/_‘-,’;‘- ..’;; T1T2X(Q1T|,QQT2)

. exp(jQ;tl + ]taz)dnldﬂz (2]7)

Expressing X(2,T),,T3) in terms of z(ny,n,) we can write

L
;pa(tl,t2) = -hr_'l_/;T_ﬂ_ T2 T]Tg [ZZ n,,ng exp(-—]QITInI ]Qsznz)
Ty ny n2
exp(]QItl + jQat2)dN,dQ, (2.18)

By interchanging the integrations and the summations, Equation 2.18 can be written

L

+]Q2(t2 - nng)]dQ sz (2.19)

as

T, T

.’L‘u(tl,tg) ZE r(ny, Ny / exp[jﬂ (tl - anl)

m ny

..T’[a I
“]la (% b

Therefore
3

sin[r(ty — niTh)/Th] sin[w(t2 — n,T2) /T3]
ro(tote) = 200 aa(m Ty nale) m(ty—-mT)/Ty 1 m(tz — nsz)z/Tz 2

ny n2

(2.20)
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Equation 2.20 gives the reconstruction of the continuous signal r,(fy,t;) from
its sample values using the two-dimensional sinc! function. This function falls
off rapidly from its peak at the origin. This means that the most signiticant
terms are those for which (n,71,n,T;) are in close proximity of (f),t;). Equa-
tions 2.4, 2.14, 2.15 and 2.20 form the basis of the two-dimensional sampling theo-
rem which states that a bandlimited continuous signal may be recovered completely

from its sample values if the condition in Equation 2.14 is satisfied.

2.2.4 Aliasing Errors and Moiré-Effect

Aliasing errors or spectral foldover occur when a signal is sampled at a rate less than
the Nyquist rate. Figure 2.4 shows aliasing in one-dimension where a sinusoidal
signal of frequency 15 Hz. is sampled at T' = —}: = 0.05 seconds. It can be scen that
there exists another sinusoidal signal with the same set of samples as the original
but with a lower frequency. This ambiguity is known as aliasing. In the frequency
domain, the violation of the sampling theorem results in a spectral foldover. Any
frequency above % (folding frequency) is folded and becomes indistinguishable from
its mirror in the foldover region. This is shown in Figure 2.5 where the 15 Hz.
component is folded to its 5Hz. mirror spectrum.

If an image is undersampled, spectral overlap (foldover) occurs in two-
dimensions. This introduces artificial low spatial frequency components in recon-
struction [22]. The artifacts generated by this two-dimensional aliasing are some-

times called Moiré patterns. Undersampling also results in a loss of some high

spatial frequency components of the image, causing a loss of resolution. Figure 2.6

shows an undersampled two-dimensional function with sampling frequencies ‘I—’: and
3,1—3’2- in the ) and Q, directions respectively. It can be seen that artificial low spatial

frequencies have been introduced (shaded area).

1A sinc function is defined as sinc(v) = 22
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2.2.5 Decimation by Integer Factors (M;, M;):Subsampling

In Sections 2.2.2 and 2.2.3, the sampling and reconstruction of two-dimensional
continuous signals has been considered. This section deals with the sampling of two-
dimensional discrete signals (i e., subsampling) on a rectangular grid. An excellent
textbook that covers the one-dimensional decimation case is given in {23].
Consider the process of reducing the sampling rate (known as subsampling,
downsampling or decimation) of z(n,, n2) by the integer factors (M;, M;). The new

sequence can be written as
Tys(n1,n2) = z(ny My, naMy) = z,(ny Ty My, no To M3) (2.21)

It can be scen that the subsampled signal z,,(n;,n;) can be obtained directly from
the x,(t;,¢2) by sampling with intervals T\’ = Ty M; and Ty’ = T> M,. The relation
between the Fourier transform of the subsampled signal and that of the continuous
signal can be directly derived from Equation 2.12 by replacing T) by Ty’ = T\ M,,
and T3 by Ty' = ToM,.

1 wy — 271y wy —2mr,

Xolorwn) = g % (i g ) @)

re r2

The summation indices ry, and 7, can be expressed as
r=my + kM, and ro = mog + koM, (223)

Where m; and m; are integers such that 0 < m; < M; —1and 0 <my; < M, - 1.

Now Equation 2.22 can be expressed as

1 M;—1M;-1 1
X,,(w] ,w2)

wi 2k, N 2rm,
TiM, Th M’

(1)) 27I'k2 27rm2
A TzMz)] (2:24)

MM, mzzx“

my =0 my=0 ky ka
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The term inside the brackets in Equation 2.24 can be recognized from Equation 2.12

as
wp; —2rmy wy — 2rm, 1 wy —2mm, 2wk,
p(agEmain) | L pn ook
M, M, T, %:‘E T\ M, T\
wy —2rmy 2wk, or
T T ) (2.25)
Therefore, Equation 2.24 can be expressed as
1 MMzl Wy —2mmy wy — 2mm,
Xos(wy,wa) .= X ( , ) 2.26
ss( 1 2) M‘ A/[2 ,,,20 "2_::0 Ml M2 ( )

Equation 2.26 expresses the Fourier transform of the subsampled signal z,,(2, 7,)
(sampling intervals (My, M3)) in terms of the Fourier transform of the discrete signal
z(n1,nz). Thus X,s(w;,w;) can be thought of as being a frequency scaled version
(scaling factors (M, M;)) of the periodic Fourier transform X (wy,wz), shifted by
integer multiples of -:—,"-,- and -:,12 in the wy and w, directions respectively.

Aliasing in subsampling can be avoided by ensuring that X (w;,w;) is bandlim-

ited, i.e.,
Wwy,w2) = or w m, 27

Equation 2.27 can be realized by using a rectangular digital low pass filter that
approximates the ideal characteristics. The frequency response of the filter is given

by

1 |w1|5ﬁ;, |W2|§ﬁ;

H(wy,wy) = (2.28)

0 otherwise

Note that if the original sampling rates used to produce the discrete signal z(ny, n;)
from z,(t1,12) was at least (M, Mz) times twice the highest frequency components
of z,(t1,12), then subsampling z(n;,n;) by factors (M,, M;) results in a signal that
still represents the original continuous signal z,(¢;,¢;). In practice however, z(n;,n,)

may be a full band signal, that is, its spectrum may be nonzero for all frequencies
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in the ranges (-7 < w; < m;—7m < wp < ). Thus, in this case the bandwidth
of z(ny,nz) must be first reduced by factors of (M,, M;) before subsampling. The
subsampled signal z,,(n,,n,) will no longer represent the original continuous signal
Tq(th, t2).

One advantage of subsampling on a rectangular grid is that all operations can
be done in a separable fashion. Thus, the rectangular filter H(w;,w;) in Equa-
tion 2.28 can be implemented as two lowpass filters in cascade H)(w;) and Hy(w;).

The filter Hy(wy) is given by

Hi(wn) = { 1 S (2.29)

0 otherwise
Likewise, Ha(wz) is given by

1 |w2| SK’!,L;-

Hy(wr) = { (2.30)

0 otherwise

To illustrate the subsampling process, the two-dimensional discrete signal
z(n1,n;) whose spectrum is shown in Figure 2.3 is subsampled with factors M; =
M, = 2 and M; = M, = 3. Figure 2.7 shows the spectrum of the subsampled signal
z,5(n,n2) when using the factors M; = M; = 2. As the spectrum of z(n;,n,) is zero
in the ranges (§ < |wi]| < ™% < |wy| < 7), it is possible to subsample z(n1,n2) by
the factors M, = M; = 2 and having a signal z,,(n1,n2) that completely describes
z(ny,ny). How;:ver, subsampling z(ny,n,) with factors My = M, = 3 requires ban-
dlimiting the signal with a rectangular lowpass digital filter in order to avoid aliasing.

This filter is specified by the frequency response (assuming ideal characteristics)

1 lel < %) W2l < % (2 31)

0 otherwise

H(wl,wz) = {

Figure 2.8 shows the spectrum of the lowpass filter. Note that the subsampled signal
Z,s(n1,n2) no longer represents the signal z(ny,n;), but rather a signal Z(ny,ns)

obtained by lowpass filtering z(n;,n2) with the digital filter given in Equation 2.31.
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Figure 2.9 shows the spectrum of the bandlimited signal #(n,n;). The spectrum of
the subsampled signal Z,,(n;,n;) is shown in Figure 2.10.

A block diagram of a separable image subsampling system is shown in Fig-
ure 2.11. The filter Hy(w;) operates on the rows. The output is then fed to the filter
Hy(w) which in turn operates on the columns. Next, the prefiltered image #(n, n,)
is subsampled, first the rows by a factor of M,, then the columns by a factor of M,.
Note that the subscripts 1 and 2 in H;(w:), Ho(w:), M}, and M, are only used to

indicate the axis direction (and not the order) of the operations.

2.2.6 Interpolation by Integer factors (L, Ly): Upsampling

The process of increasing the sampling rate (upsampling or interpolation) of a dis-
crete signal z(n,n,) involves operations analogous to that of digital-to-analog con-
version. If the sampling rates are increased by integer factors (L;, Lz), then the new

sampling intervals can be written as
TYY=— and Ty=-—= (2.32)

The new sequence z.(ny,n2) resulting from upsampling can be written in terms of

z(ni1,n;) as

:l:(m' 22,)’ ny = 0,:‘1:L1,:*:2L1,. . and ng = O,ﬂ:Lg,iZLz,.

Ze(ny,ng) = L Ly (2.33)
otherwise
Equation 2.33 can be expressed in the form
n,,ng Z E .’D(m;, m2 5[1’11 my L),nz - mng] (2.34)

mi=—00 ma=-~0Q
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Figure 2.7: Spectrum of the subsampled signal T45(n1,n2) When M =M = 2
(top view). The spectrum of the original discrete signal is shown in Figure 2.3.
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Figure 2.8: Spectrum of the rectangular digital anti-aliasing filter (top view) given
by Equation 2.31 (assuming ideal characteristics). The filter is used to bandlimit the
discrete signal z(n;,n;) whose spectrum is shown in Figure 2.3 before subsampling

by factors M; = M, = 3.
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Figure 2.9: Spectrum of the bandlimited signal Z(ny,n2) after applying the digital
filter shown in Figure 2.8 (top view). The spectrum of the original discrete signal is

shown in Figure 2.3.
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Figure 2.10: Spectrum of the subsampled signal ,,(n;,nz) when My = Mz = 3 (lop
view). The spectrum of the original discrete signal is shown in Figure 2.3.
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Digital Image Prefiltered Image Subsampled Image
x(n 10 nz) Hz(“),) Hl(o’)l) ;( nl, n2) ;(nlMl, nIMZ)
— Gain=1 e Gain=1 > ¢M2 = \l: M
Cutefl = (1/M,) Cutoff = (wM,)

Rows Columns Rows Columns

Figure 2.11: Image subsampling system (separable). The operations are done first
on the rows, then on the columns.

The Fourier transform of z.(n;,nz) can then be written as

Xwnws) = 3 3 (ff 3 x(m;,mg)J[nl—-mlLl,ng—mng])

N=—00 N2==—00 \Mj|=-=00 M2=~00C

'exP(_‘jwlnl - jwznz)

2: E :z:(ml,mg) exp(-jw1L1m1 - jszzmz)

my=-~00 Ma=—00
= X(wl L],szz) (235)

Therefore, the Fourier transform of z.(n1,n2) is a frequency scaled version of the
Fourier transform of z(n;,n2). To recover the baseband of interest, i.e., The spec-
trum within the rectangular region (—f- <wi < £~ —f; <w; < {7), it is necessary
to filter the signal z.(ny,ny) with a digital Jowpass (anti-imaging) filter which ap-
proximaltes the ideal characteristics. The frequency response of the filter is given
by
L\L, wif < 7, w| <1
H{wywn) = { ol = 27l <1, (2.36)
(0 otherwise

Analogous to the continuous case, The reconstruction equation that yields (n;,n,)

can be cxpressed as

. _ sin[r(ny — m1Ly)/L1] sin[m(n2 — myLy)/ Ly
Z(ny,ng) = g;}:c(ml,mg) (na l—mlLl)/Ll 1 Y] (2.37)

Unlike the continuous case (Equation 2.20) where all continuous values of the signal
T4(t1,t;) are interpolated from the sequence z(ny,n2); in the above equation only

specific values need to be determined.
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x(ny, n,)

-—>TL2+>

| XNy, 0,) Hy(w,) H(w) X(ng, ny)
Ll > Gain=L2 > Gain==L, -
Cutoff =(n/L,) Cutoff = (wL,)

Rows Columns Rows Columns

Figure 2.12: Image interpolation system (separable). The operations are done first
on the rows, then on the columns.

Figure 2.17 shows a block diagram of a separable image interpolation system.
The rows of the input image z(ny, n;) are first stuffed with Ly —1 zero-valued samples
between each pair of samples. The same procedure is then applied to the columns
of the resulting signal by filling in L; — 1 zeros between each pair of samples. After
increasing the sampling rate, the signal is passed through two filters in cascade.
H,(w;) operates on the rows and has a cutoff frequency of 7/ L; and a g~in equal to
L,. The output of Hy(w;) is fed into H,(w,) which in turn operates on the columns

and has a cutoff frequency of /L, and a gain equal to L,.

2.2.7 Aliasing in Subsampling

If a digital image is to be subsampled by factors (Mi, M;), then prefiltering is
necessary prior to subsampling to bandlimit the image to (W;T’Tl"?) so that aliasing
effects are eliminated. Figure 2.13 shows the original Cameraman test image. The
reconstructed image using prefiltering prior to the subsampling operation is shown
in Figure 2.14. Here M; = M; = 2. Figure 2.15 shows aliasing effects, in the
reconstructed image, when no prefiltering is used.

To show how prefiltering affects the original signal, the intensity variation of
line 20) of the original and the bandlimited Cameraman image for My, = M, = 4
is plotted in Figure 2.16. It can be seen that prefiltering removes excess picture

details.
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2.2.8 Uniform Subsampling of Images: An Example

This section illustrates practical applications of uniform subsampling for digital
image compression. Uniform subsampling represents an image on a new sampling
lattice with equally spaced samples and a lower sampling density than the original
lattice. Figure 2.17 (a) shows the original lattice of an image. The new sampling
Jattices using uniform subsampling with factors M} = M; = 2, and M, = M; =4
are shown in Figure 2.17 (b) and (c) respectively. The solid dots shows the pixels
that are saved and transmitted.

An example using the Peppers test image illustrates uniform subsampling. The
block diagram of the subsampling and interpolation systems used in this example
are shown (previously) in Figures 2.11 and 2.12 respectively. Figure 2.18 (a) shows
the original image of size 512 x 512 and 8 bits/pixels. Figures 2.18 (b), (c) and (d)
show the subsampled images for the different decimating factors M; = M; = 4,8
and 16 respectively. The FIR digital filters used to bandlimit the images prior
to subsampling are denoted by h,, h, and h. respectively. The coefficients of these
filters are shown in Table 2.1. Here the length [ of a filter is related to the decimating
factor M = M; = M, by the equation ! = 1 + 2(M + 1). This has shown a better
performance than using a fixed length for all filters. Figure 2.19 shows the magnitude
response of the FIR filters given in Table 2.1. The cutoff frequency of h,,hs and
he are chosen to be %, £ and & respectively. Figures 2.20 (a), (b) and (c) show
the reconstruction from the subsampled images of Figures 2.18 (b), (c) and (d)
respectively. In reconstruction, the same filters used to bandlimit the signals are
also used for interpolation. The multipliers 4,8 and 16 are used with hg, h; and A,

respectively to adjust the gain of the interpolation filters.

36



_'-lh, N ||H |+ c}

Faorre 2000 Onieinal Camctatian iaee 1256

Fable 200 Cocthoients of the anty aliase I hlver b b vl b ool Jor 1
'I"lilll.l!ﬂ%l:l.titr[\'_l \"..[ul [ |1~]n-.l|w]\

5 0,003 00000 02 BTG 02207 2o~ 0oy,
LT 00320 00000 L0 9

T 00002 00000 0003 0ol a0t unos s
/ L I I T O U SR U B BT D325 2y o~y anyye
00305 ol uuusy OO0 gt

OO0 00000 O000% DO OOt G005, o
.00 0.0l 00206 4 DU 0, TRTIID

/, 0630 Du6LTT ot or OoOvIs HosnT  uhh,, RITY
OSSO 0lMT 0oty ugsll S I TP I I R N Y
Oouty oSy oo IR OGS, 00l g

37



[ rewe 2001 Reconstincted Cametatnian o aliasing ofleors.

{

Prenre 200 Reconstonated Cameraman.,

vesult when the mace is not handlimited prior to subsamipline,

The artons <how aliasine offecr< v,

34




1
0 50 100 150 200 250

(b)

1 1 I

- 1
1] 50 100 150 200 250
index

Figure 2.16: Prefiltering prior to subsampling is necessary to avoid aliasing. (a) line
200 of original Cameraman image (256 x 256). (b) line 200 of the prefiltered image
(All== A45== 4).
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Figure 2.17: Uniform subsampling of an image. (a) Original lattice. (b) Subsampling
by a factor of 2 in both horizontal and vertical directions (M; = M3 = 2). (c) Sub-
sampling by a factor of 4 in both horizontal and vertical directions (M, = M, = 4).
The solid dots are the pixels that are saved and transmitted.
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Figure 2.19: Magnitude response of the FIR anti-aliasing filters used in the subsam-
pling process. a) Filter hy: cutoff = § (I =11 and M = 4). b) Filter hy: cutoff = §
(l=19 and M = 8). c) Filter A.: cutoff =  ({ = 35 and M = 16).
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2.3 Predictive Coding

Predictive coding (6, 24, 25] also known as differential pulse code modula-
tion (DPCM) is a standard lossless compression method [8] that exploits the sta-
tistical redundancy of waveforms to realize straightforward reductions in bit rate.

The basic idea in predictive coding is to generate a prediction &(n) of the input

data z(n), from N previous samples, i.e.
E(n) = f(z(n-1),z(n - 2),...,z(n ~ N)) (2.38)

If we restrict Equation 2.38 to linear prediction, then #(n) can be expressed as

N

&(n) =Y hyz(n - j) (2.39)

i=1
Where h; are the prediction coeflicients.  Figure 2.21 shows a block diagram of
a linear predictive coding scheme. Both transmitter and receiver use the same
predictor type. The prediction error sequence e(n) = z(n) — &(n) is then quantized,
entropy coded and transmitted. At the receiver, the quantized error e (n) of the
decoder output is added to the predicted value Z(n) to reproduce z(n) which, with
error free transmission, differs from z(n) only by the quantization error. The best
linear predictor in a mean square sense, is the set of coefficients h, which, on the
average, minimizes e?(n).

A general equation for optimum linear predictor of order N is derived in Sec-
tion 2.3.1. For analytical simplicity, prediction based on past unquantized samples
rather than on quantized samples is assumed. An important application of linear
prediction is the two-dimensional image predictor discussed in Section 2.3.2. Two
special cases of interest, corresponding to image models with isotropic and separable
autocorrelation functions, are discussed. An example illustrates the two-dimensional
second and third order prediction of images and shows the prediction error for both

isotropic and separable models.
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Figure 2.21: Linear Predictive Coding. (a) Transmitter. (b) Receiver.
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Lossless Predictive coding is used to extend the compression achieved by the

nonuniform subsampling method (the topic of this thesis) presented in Chapter 3.

2.3.1 Optimum Prediction

Consider the case where it is desired to estimate z(n), the current sample value,
from the set of N past input samples represented by the random sequence {r(n —

1),z(n —2),...,z(n — N) }. A linear prediction of z(n) can be written as

F h] ]
’12
i(n) = [ zn—-1) z(rn-2) z(n-3) ... z(n—N) ] hs (2.40)
hy ]
in vector notation
& =x"h (2.41)

where £ (or #(n)) is the predicted value of z(n), T denotes the transpose, x is
a column vector containing the past sample values and h is the vector of filter

coefficients appropriately chosen to minimize the mean-square error given by
APIRLY
a7 = E{(z(n) - £(n))’} (2.42)

Where E denotes the statistical expectation. Here it is assumed a zero-mean wide
sense stationary (WSS) process. The vector h minimizes the mean-square error if

its coefficients are chosen such that
E{e(n)z(n—-1i)} =0 1=12,...,N (2.43)

That is, the minimum error z(n) — Z(n) is statistically orthogonal to all the data

used in the prediction. In a vector form, this can be written as
E{x(z(n) - x"h)} =0 (2.44)

45



Resulting in

[ R.(1) | [ Res(0) Roa(1) Ree(?) - Rea(N=1)][ #1 ]

R:-(2) R..(1) R..(0) R..(1) « R.x(N—=2){ ha

R:z::c(3) = Rzr(Q) Rz:z(l) er(o) - Rzr(N - 3) h3 (245)
| RIT(N) ] | Rrr(N - I) Rz::(N - 2) Rza:(N - 3) ¢ er:(o) i LhN 1

Equation 2.45 can be written in matrix notation as
rzz = R;-h (2.46)
where
reo!] = {R.(i)}; and Ry, = {Re. (i —J|)}; i,7=1,2,...,N (2.47)

The correlation matrix R, is a symmetric Toeplitz matrix. If the values of the cor-
relation function are known, then Equation 2.46 can be solved with matrix inversion

to get the set of coefficients for the optimum predictor,
h=R_!r., (2.48)

Note that the values of the correlation function may be calculated using typical
statistical models (e.g. first order Autoregressive model (AR(1)) [6]), or empirically
measured from real data. Equations 2.46, 2.47 and 2.48 are called normal equations,

Yule- Walker prediction equations or Wiener-Hopf equations [6).

2.3.2 Two-Dimensional Image Predictor

A typical two-dimensional image predictor is designed to estimate the current pixel
r(1,7) from its causal neighbor.i:g pixels (7,7—1), z(:—1,j),and z(: —~1,j — 1) asil-
lustrated in Figure 2.22. Two special cases of interest are the isotropic and separable
autocorrelation models. In fact, according to experimental data, the autocorrela-

tion functions of a large variety of images follow one of these two models [6, 22].
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Figure 2.22: Neighboring pixels used in prediction of current pixel z(z, j).

In Sections 2.3.2 and 2.3.2 both models are considered for two-dimensional image
prediction.

Let p denotes the one-lag normalized autocorrelation value R-(1)/R::(0).
Assuming wide-sense stationarity, the correlation factor between adjacent samples in
Figure 2.22 is equal to p. Further, samples on the diagonal have a correlation factor
equal to p™ where m = /2 for an image model with an isotropic autocorrelation

function and m = 2 for a separable image model [6].

Two-Dimensional Second Order Prediction

Consider the prediction of pixel intensity z(z, j) from the previous samples z(z, j—1)
on the same line, and z(i — 1,;) on the previous neighbor line (sece Figure 2.22).

This can be expressed in the form

8(3,5) = haz(i,§ = 1) + haz(i = 1,) (2.49)
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where h; and h, are the predictor coefficients. The optimal coefficients of the second

order prediction filter [6] arc given by

hy = ho = ; +”pm (2.50)

where m = /2 for an image model with an isotropic autocorrelation function, and

m = 2 for a model with a separable autocorrelation function. For a value p = 0.95
the optimal coeflicients for the separable and isotropic models are approximately

hy = hy = 0.5 which can be interpreted as an averaging predictor.

Two-Dimensional Third order Prediction

Consider the prediction of pixel z(z, 7) from the three neighbors z(z,j—1), z(: -1, j)

and z(¢ — 1,7 — 1) shown in Figure 2.22. This can be expressed in the form
.’i(i,]) = h,z(z,] - 1) + hQIB(i - 1,]) + ham(‘l - 1,] - 1) (251)

The optimal coefficients of the third order predictor, for an image model with an

isotropic autocorrelatior: function [6], are

p(1 - p¥%)
h=hy = —— 1 2.52
1 2 ] + Pﬁ _ 2/)2 ( )
and
20°(1 = p?)
hy=pV2 LA F 2.53
3=P I +P‘/§—2P2 ( )

Likewise, the opiimal coeflicients for a model with a separable autocorrelation func-
tion are given Dy

hy=hy=p and  hz = —p? (2.54)

For a value p = 0.95, the predictor coefficients for an isotropic model are hy = hy =
0.53 and h3 = —0.08. For a separable model, the coefficients are h; = hp = 0.95
and hs = -0.9. Note that an approximation to the separable predictor is the easily

implemented planar predictor [6] defined by

hi=hy=1; and hz=-1 (2.55)
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Table 2.2: MSE for a 2-D second and third order prediction of Bridge, Airplane
and Boy test images.

Prediction order | model MSE
Bridge (256 x 256) | Airplane (512 x 512) | Boy (256 x 256)
2 isotropic 279.48 459.07 71.30
2 separable 277.94 425.47 66.92
3 isotropic 269.21 420.31 65.51
3 separable 361.77 243.02 41.77

Two Dimensional Prediction: An Example

An example using test images illustrates second and third order prediction of images
discussed in Sections 2.3.2 and 2.3.2.

Table 2.2 shows the mean square eiror for a 2-D second and third order
prediction of originals Bridge, Airplane and Boy test images using separable and
isotropic models (p = 0.85). The original images are shown in Figure 2.24 (a),
Figure 2.26 (a) and Figure 2.28 (a) respectively. The mean square prediction crror
(MSE) was evaluated using a deterministic equation [22] given by

1 N N

MSE =+ g; [z(i,4) — () (2.56)
where N? is the number of pixels in the original N x N image, and i(i,7) is the
predicted value of the original z(z,3). It can be seen from Table 2.2 that the third
order prediction (in general) do better than second order prediction, [Further, a
comparisor between Bridge and Boy images (as they both have the same size) shows
that the prediction error is smaller for images having large areas of slowly varying
luminance and simple details.

The prediction error is usually coded using variable-length coding (entropy
coding). This method is discussed briefly in the next Section. Huffman coding,
an efficient variable length coding technique, is discussed in Section 2.3.3. This

technique is used in Chapter 3 to code the prediction error of the subsampled images.
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2.3.3 Variable Length Coding

Consider a monochrome image quantized to B bits/pixel. A reduction in the av-
crage number of bits per word can be achieved by assigning shorter code-words
to luminance levels having high probability of occurrence, whereas longer code-
words are assigned to levels having lower probability. This method is called
Variable Length Coding (VLC) [5]. The average code-word length for the im-

age will be
Bay = Z Ly Py (257)
k

where L denotes the code-word length assigned to the kth luminance level, and
Py is its probability of occurrence. A fundamental result due to Shannon [26]
cstablishes the entropy H of the source as a lower bound for the average number of

bits per source symbol needed to code a discrete source, i.e.,
B.,,> H (2.58)
and

H=—Y Pdog,P, (2.59)
k

as { P} becomes highly concentrated, the entropy becomes smaller, and a variable

length coding technique is more advantageous.

Huffman Coding

Huffman code [27, 28] is a statistical variable-length coding that satisfies the
prefiz rule, which states that no code word forms the prefix of any other, that
is, 1 cocle is uniquely decodable once the starting point of the symbol sequences
is known. The code achieves the entropy rate when all symbol probabilities are

integral powers of 1/2. The Huffman coding scheme is as follow:
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Figure 2.23: An example of Huffman Coding.

o List all possible set of symbols with their probabilities, in decreasing proba-

bility order.

¢ Locate the two symbols with the smallest probabilities and aggregate them into

a single new node whose probability is the sum of their individual probabilities.

o Repeat until the entire symbol set is represented by a single node.

The result is a Huffman tree with all symbols as leaf nodes. A code can be gener-
ated for each symbol by assigning a binary digit to each branch, then by following
the path from the top node to the symbol leaf node. Figure 2.23 illustrates the
Huffman coding for a message having the symbols {A, £, [, O,U, !} with probability
{0.2,0.3,0.1,0.2,0.1, 0.1} respectively.

Huffman code has an average word-length that lies in the range
H<L B,y <H+1 (2.60)

However, as symbols in a Huffman coding scheme translate into integral number of

bits; the average word-length is also constrained by
Ry, > 1 bit/symbol (2.61)
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regardless of how small the entropy is. Note that for a given probability distribution,
there are many possible Huffman codes having the same word-length. Furthermore,
Huffman coding requires that one or more sets of Huffman code tables be specified by
the application, that is, the same tables used for coding are also needed for decoding.
Other variable length coding techniques that can approach the theoretical entropy
bound to compression efficiency are available (e.g. arithmetic coding (29, 30, 31]),

but simple methods like Huffman coding are good enough to be used in this work.

Variable Length Coding: An Example

The advantage of using a variable length coding technique to code the prediction
error of images is illustrated in this example.

Figure 2.25 (a), Figure 2.27 (a) and Figure 2.29 (a) show the histograms of
original (Program A.1) Bridge, Airplane and Boy images respectively. The pre-
dictors used in this example are different from those discussed previously. Here
a predictor is selected from one of the seven types used by the Joint Photographic
Experts Group (JPEG) [8] and shown in Table 2.3. These predictors have the advan-
tage that they are easy to implement in practice. Note that selection 7 corresponds
to the two-dimensional second order prediction for both isotropic and separable
models discussed in Section 2.3.2 with p = 1, while selection 4 corresponds to the
two-dimensional third order prediction of a separable model with p = 1. Selections
1 to 3 are one-dimensional predictors, while 4 to 7 form two-dimensional predictors.
The predictor can switch between any of the seven selections. The one which yields
the minimum mean square prediction error defined by Equation 2.56 is chosen.

The prediction error images of Bridge, Airplane and Boy are shown in Fig-
ure 2.24 (b), Figure 2.26 (b) and Figure 2.28 (b). respectively. These images are
formed by a linear mapping of the difference (which can be both positive or negative)
between the original and the prediction images onto the range 0 — 255 (8 bits/pixel)

for display. It can be seen that linear prediction removes much of the redundant
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Table 2.3: 1 — D and 2 — D Practical predictors
Selection value | Prediction

1 z(i,y — 1)
:E(l - 13.7)
z(i—-1,7-1)
(i, —1)+2(i-1,5) -
z(i,j — 1) +{(z(i - 1,5)
z(t— 1,7) + {(z(i,5 - 1)
[z(t, i =) +2(i—1,j)]/2

z(t—1,7-1)
-—m(i—' Lj— l))/2]
~z(i—~1,5~1))/2]

-~ Oy Ot LN

information from the image, leaving only information about the edges. The predic-
tion error histograms (Program A.2) are shown in Figure 2.25 (b), Figure 2.27 (b)
and Figure 2.29 (b) for Bridge, Airplane and Boy images respectively. Because a
great deal of inter-pixel redundancy is removed by the prediction, the histogram of
the prediction error is, in general, highly peaked about zero.

The entropy values of the original images and of their corresponding prediction
error are shown in Table 2.4. Note the reduction of / as the visual appearance of
images becomes simpler, and larger areas of uniform or slowly varying luminance
are present. Moreover, the entropy of the prediction error is significantly smaller
than the entropy of the corresponding original images. It can be seen that a variable
length coding leads to a much smaller average word-length in coding the prediction
error than in coding the original image. In fact, the amount of compression achieved
in lossless predictive coding is related directly to the entropy reduction that results
from mapping the input image into the prediction error sequence.

Next chapter presents the topic of this thesis,. a nonuniform subsampling

method suitable for “region-of-interest” applications.
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Figure 2.25: a) Histogram of the original Bridge image, b) Prediction error histogram
(prediction using selection 7 in Table 2.3).
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Table 2.4: Entropy values (bits per pixel) of original Bridge, Airplane and Boy
images and of their corresponding prediction error.

Image H (original image) | H (prediction error)
Bridge 7.6686 6.0117
Airplane 6.7990 4.5868
Boy 6.3264 4.3911
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Chapter 3

Nonuniform Weighted
Subsampling for Digital Image

Compression
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3.1 Introduction

Subsampling is a simple image compression method where only a subset of the pixels
are retained. Uniform subsampling saves regularly spaced pixel locations. This
method is suitable when all regions in the image are equally importan .. However,
in applications where a prior knowledge of a certain region-of-interest is available,
a nonuniform subsampling scheme is more eflective. Nonuniform subsampling can
be used to assign more samples to important regions cf the image, enhancing their
quality in reconstruction.

Many studies in the literature have applied the subsampling method in image
compression. In [32], uniform subsampling was used in chreminance decimation
of color images. In (33], adaptive subsampling was presented. Here the image is
divided into square blocks and each is assigned a subsar.;pling mode depending on
the rate-distortion of that block. In highly detailed Blocks a dense sampling lattice
is used, and in blocks with little details or slowly varying luininance, only a few
pixels are retained. This results in discontinuities in the sampling grid. The time-
axis transform (TAT) was presented in [34]. The TAT compresses the bandwidth
{ picture signals by reducing the number of transmitted pixels based on a hybrid
systein of fixed and variable sampling. In [4], a nonuniform image representation

:heme suitable for “area-of-interest” imaging was presented. The scheme considers
tiie class of images that can be sampled according to a nonuniform sampling grid
with emphasis on the case of sampling density that is monotonically decreasing as a
function of the centre of the area of interest. ", generalized pyramidal approach with
application to images sampled nonuniformly both in Cartesian and polar coordinate
systems was also presented.

In this chapter, Weighted Subsampling (WS), a new nonuniform image sub-
sampling scheme is presented [18]. The method uses a weighting function to change
the sampling pattern so that more samples are taken in irnportant regions of the im:-

age. The first order autore3ressive model (AR(1)) [6, 35| is used to model the input
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image. This model has received much attention because of its analytical and com-
putational tractability as well as its good performance in representing correlation
matrices of real images.

In the presented scheme, it is assumed that some portions of the image are
known a priori to be more important *han others. WS is derived so that there are
more samples in th se portions than in other arcas. Classes of images where this
sort of a priori knowledge may be available are data bases of human faces where
the (visually important) face is centered, or in industrial inspection photographs
where the part of interest is known to always be located in a particular region of the
image. Here we use WS to code images of human faces. Chapter 5 will present future
work including an adaptive WS able to lecate human faces. Various applications
result from combining an automatic human face loc: “ion system Lo the proposed

WS method. Some of these applications are:
¢ Automatic human face recognition systems.
¢ Identification of criminals.

Teleconference.

Verification of identity at security sites.

Surveillance systems.

The material in this chapter includes two parts. The first part presents the
ne wuniform weighted subsampling scheme. In Section 3.2.) an approach to uniform
subsampling starting with an AR(1) model is preserted. The idea of WS is then
described in Section 3.2.2. The simulated anncaling algorithm used to deduce the
nonuniform sampling pattern is presented in Section 3.3. This optimization is done
offline.

Weighted Subsampling using Projection (WSP) is presented in Section 3.4.

Here, the signal which is subsampled and transmitted is the projection of the
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weighted input signal. This projection is in effect the KL transform of the signal.
In Section 3.4.4, an example using tcst images illustrates WSP.

In WS, signal projection is approximated using a space varying linear low
filter. This is described in Section 3.5. Image reconstruction from its nonuniform
samples is treated in Section 3.6 where a space varying interpolation filter with
an adjustable gain is used to reconstruct the image. In Section 3.7, experimental
results including subjective and objective evaluations demonstrate the effectiveness
of WS. A comparison between WSP (using projection) and WS (using filtering) is
also presented.

The second part in this chapter extends the compression achieved by WS
using lossless predictive coding. A switched prediction based on the density of the
sampling pattern is used. In Section 3.8.1 a suitable prediction filter for each type
of subsampling pattern is evaluated using the least-square method. The prediction
error 18 then computed and coded using a Huffman code. Section 3.8.2 shows the

results obtained by combining WS with lossless ccmpression.

3.2 Weighted Subsampling

The input signals are assumed to be finite length digital signals and are denoted
z € RV, The subsampling problem is to select a subset of the components of z
which represents the entire signal. In the remainder of this work analysis is done
on one dimensional signals and the results are extended to two dimensions by first

sampling horizontally, then vertically (i.e. separable model).

3.2.1 Uniform Subsampling

One of the ways that uniform subsampling can be derived for digital images is to

start with the AR(1) model. The autocorrelation matrix (R.;) is N x N and the
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element in its ith row and jth column is pt*=7l; i.c.

1 p p? pN-1 1
p 1 p
2 1
Ree=a2| 7 7 (3.1)
p 1
P
] pN—l . . . I ]

where o2 is the variance of the ensemble of samples and p is the model parameter
(intersample correlation coefficient). The eigenvectors of this matrix yield the
Karhunen-Loéve Transform (KLT) [6, 36] for this model (since the matrix is sym-
metric they will be orthogonal). Since R;; is a symmetric positive definite matrix,
its eigenvalues are real and positive. The eigenvalue associated with each eigenvee-
tor gives a measure of how much of the signal energy lies along the direction of that
eigenvector. The higher the eigenvalue the “n.ore important” the corresponding
eigenvector [6, 7]. Selecting the (M < N) eigenvectors with the highest cigenvalues
defines the most important subspace of dimension M. Putting these cigenvectors
as columns into the N x M matrix A the pcojestion of the input signal to this

subspace is:
z,= Ay = AATz (3.2)

Here y contains the M most important KLT coeflicients. Note that the cigenvectois
in the matrix A are normalized to length one. Figure 3.1 shows the cight cigenvectors
with the largest eigen values for a 256 x 256 autocorrelation matrix with p = 0.95.
The corresponding eigen values are given in Table 3.1. A plot of all cigenvalues for
this autocorrelation matrix is shown in Figure 3.2. it can be seen from the plot that
the KLT has the capability of compacting the energy in few coefficients.

If A contains M orthogonal rows then z, can be represented by the correspond-

ing M components of z,. (this is “essentially” Kramer’s sampling theorem [20, 37).)
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Figure 3.1: The eight eigenvectors corresponding to the largest eigenvalues for a
256 x 256 autocorrelation matrix of an AR(1) model (p = 0.95).

66



Table 3.1: Eigenvalues associated with the eight eigenvectors of Figure 3.1,

Eigenvector No. | Eigenvalues
1 37.3829
2 33.1968
3 27.8738
4 22.6520
5 18.1630
6 14.5557
7 11.7450
8 9.5766
40 ¥ T T T IT
35} '1
30y+
25H
3
[
@
15} 1
10| .
5
0 o b 1 L
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index

Figure 3.2: Plot of all eigenvalues for a 256 x 256 autocorrelation matrix of an AR(1)
model (p = 0.95).
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‘able 3.2: Eigenvectors of an 8 x 8 autocorrelation matrix R, and their correspond-
ing eigenvalues (p = 0.95).

Eigenvectors Eigenvalues

0.3383 0.3512 0.3599 0.3642 0.3642 0.3599 0.3512 0.3383 7.0303
-0.4809 -0.4204 -0.2860 -0.1013 0.1013 0.2860 0.4204 0.4809 0.5751
0.4665 0.2065 -0.1789 -0.4557 -0.4557 -0.1789 0.2065 0.4665 0.1683
0.4226 -0.0854 -0.4865 -0.2783 0.2783 0.4865 0.0854 -0.4226 0.0818
0.3602 -0.3468 -0.3558 0.3513 0.3513 -0.3558 -0.3468 0.3602 0.0509
0.2833 -0.4882 0.0942 0.4154 -0.4154 -0.0942 0.4882 -0.2833 0.0370
-0.1952 0.4623 -0.4603 0.1904 0.1904 -0.4603 0.4623 -0.1952 0.0300
0.0996 -0.2786 0.4156 -0.4896 0.4896 -0.4156 0.2786 -0.0996 0.0266

If the parameter p in the standard AR(1) model is close to one, the eigenvectors
approach sinusoids, evenly spaced in frequency, with higher eigenvalues being as-
sociated with the lower frequencies (see Figure 3.1 and Table 3.1). In this case,
selecting the M eigenvectors with the largest eigenvalues and projecting the signal
onto them is approximately equivalent to bandlimiting the signal. If M is a factor of

N, evenly spaced rows of A will be orthogonal, thus yielding uniform subsampling.

Uniform Subsampling: An example

A numerical example illustrates the approach to uniform subsampling discussed in
this section. The eigenvectors of an 8 x 8 auiocorrelation matrix (p = 0.95) and
their corresponding eigenvalues are given in Table 3.2. Selecting four eigenvectors
corresponding to the largest eigenvalues, and putting them as columns in a matrix
A, the task is to find four rows of this matrix which are “most” orthogonal. This was
measured by normalizing each row to be of length one and then checking the deter-

minant of the different 4 x 4 submatrices, Jooking for the largest one. Normalizing
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the rows of A results in the matrix

0.1906  0.5416 —0.5583 0.3023
—0.1444  0.3491 —0.7106 0.5936
—-0.7022 —0.2583 —0.4128 0.5195
—0.4254 —0.6965 —0.1548 0.5567
Ay = (3.3)
0.4254 —0.6965 0.1548 0.5567
0.7022 —0.2583 0.4128 0.5195
0.1444  0.3491  0.7106  0.5936

L—0.4906 0.5416  0.5583  0.3928

where the suffix in Ay denotes the normalization of the rows of A. A full search
algorithm is used for this (small scale) problem to check the determinant of all com-
binations of 4 x 4 submatrices looking for the largest one. The highest determinant
value in this problem is 0.9320 and corresponds to the rows nnmber: 2,4,6, and 8.
Note that rows: 1,3,5, and 7 have also the same determinant value. It can he seen
that the result agree with the approach presented in this section, i.c., the indices of

these rows yield uniform subsampling.

3.2.2 Nonuniform Weighted Subsampling (WS)

In the previous section all spatial locations are given the same weight. In this section
more importance is placed on certain pixel locations using a weighting function. A
typical weighting function is shown in Fig. 3.3. Here pixels in the centre are more

important than pixels on the sides. The weighted signal is:
u = diag|W (i)]c = Dwe (3.4)

Where W(7) is the weighting function. Weighting the signal can be thought as
weighting the norm of the error. Thus, errors in the regions where the weighting

function is large have a more dramatic effect on the norm of the error. Usually, the
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Figure 3.3: Weighting function.
values of W (i) are chosen such that
0<W(@E) L1 (3.5)

If tuie part of interest in the image is not centered, then two different weighting func-
tions could be used for the horizontal and vertical directions. The autocorrelation

matrix of the weighted signal u is:
Ry = E[uu”) = E[Dwzz"Dw] = Dw R..Dw (3.6)

Iigure 3.4 shows the 8 eigenvectors of R,, (256 x 256) corresponding to the largest
cigenvalues (p = 0.95). Here the weighting function given in Figure 3.3 is used.
Sclecting the M eigenvectors of R,, with the largest eigenvalues and putting them
as columns in matrix Ay the task is to find M rows of this matrix which are “most”
orthogonal. This is measured, as previous, by normalizing each row to be of length
one and then checking the determinant of the different M x M submatrices, looking
for the largest one. Simulated Annealing [38] is used to optimize over the N choose
M possibilities. This optimization is done offline once the weighting function is set
and is not required for each image. Fig. 3.5 shows selected pixel locations for the

given weighting function with N = 256, M = 64 and p = 0.95. These represent the
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Figure 3.4: The eight eigenvectors corresponding to the largest eigenvalues for a
256 x 256 autocorrelation matrix of the weighted signal(Equation 3.6). Here p =
0.95.
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1 ‘ 256

Figure 3.5: Selected pixel locations representing the nonuniform subsampling pat-
tern,

nonuniform sampling paltern applied to each row and column. The main program
of WS used to derive thc sampling pattern, together with the simulated annealing

algorithm are given in Programs A.6 and A.T7 respectively.

Nonuniform Weighted Subsampling: An Example

A numerical (small scale) example illustrates the proposed WS scheme. The auto-
correlation R,, of the weighted signal given by equation 3.6 is computed using an

8 x 8 autocorrelation matrix R, with p = 0.95 and a weighting function

w=[o.1 01 111101 0.1] (3.7)

Table 3.3 shows the eigenvectors of R,, and their corresponding eigenvalues. The
four eigenvectors corresponding to the largest eigenvalues are selected. Putting these

eigenvectors as columns in a matrix Aw and normalizing each row of this matrix to
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Table 3.3: Eigenvectors of the 8 x 8 autocorrelation matrix R,, and their corre-
sponding eigenvalues (p = 0.95).

Eigenvectors

Eigenvalues

0.0444 0.0467 0.4917
-0.0594 -0.0622 -0.6471
0.0477 0.0492 0.4994
0.0268 0.0273  0.2691
-0.5946 -0.3717 0.0913
-0.5946 -0.3717 0.0913
-0.3762 0.5961 -0.0228
-0.3781 0.5993 -0.0229

0.5040 0.5040 0.4917
-0.2718 0.2718  0.6471
-0.4959 -0.4959 0.4994
-0.6528 0.6528  -0.2691
-0.0022 -0.0022 0.0913
-0.0023 0.0023 -0.0913
0.0001 -0.0001 0.0229
0.0001 0.0001 -1.0228

0.0467
0.0622
0.0492
-0.0273
-0.3717
0.3717
-0.5993
0.5961

0.0444
0.0594
0.0477
-0.0268
-0.5946
0.5946
0.3781
-0.3762

3.788235226122
0.165059658751
0.051071122171
0.030054325999
0.002400771 066
0.002400699938
0.000389132974
0.000389132975

a length one yields the matrix Ay, given by:

Awy =

[ 02006 05175
0.2841  0.5129
02715  0.5038

—0.6528 —0.4959
0.6528 —0.4959

~0.2715  0.5038

~0.2841 05129

~0.2906 0.5175

—0.6447
—0.6476
—0.6529
~0.2718
0.2718
0.6529
0.6476
0.6447

0.4819
0.4868
0.4961
0.5040
0.5040
0.4961
0.4868
0.4819

o

(3.8)

A full search is used (Program A.5), as in previous example of the uniform case, to

find the set of four most orthogonal rows of Aw,,. Hcre, the largest determinant

value is 1 and 'corresponds to the rows number 3,4,5, and 6. Note that for a

determinant value of one (optimal value), the corresponding rows are orthogonal.

The above result was expected as the weighting function places more importance on

the central componerts of the signal.

In WS, the sampling pattern for a certain weighting function is derived of-

fline using the simulated annealing optimization method. Next section presents the

simulated annealing algorithm used for this particular problem.
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3.3 The Simulated Annealing Algorithm

The method of Simulated Annealing (SA) [38, 39] has attracted many researchers as
it is suitable for combinatorial optimization problems of large scale. The algorithm
can be seen as an iterative improvement (or local search) that focuses on finding
minimum or maximum values of a function of independent variables. This function is
usually called the cost function or objective function. A solution to the optimization
problem is often referred to as a “configuration”. The moves from one configuration
to another is randomly chosen. An annealing schedule is used to contro] the moves
between configurations.

For our particular problem, the objective function is the determinant value
D of the matrix Aw,, (of normalized rows), and its maximization is the goal of the
algorithm. A configuration C is defined as the set of M rows of Aw,,. In each move
to a new configuration, the resulting difference AD between determinants value of

the new and old configurations is computed.
AD = Dyey — Doid (3.9)

The new configuration C.,, is accepted if AD > 0 and accepted with probability
exp(AD/T.) if AD < 0 where T, is a control parameter (usually called temperature).
The starting value of the parameter T, is chosen considerably larger than the largest
AD such that all proposed reconfigurations are accepted. Here a value of T, = 10
is chosen as initial temperature. A cooling schedule decides how the value of T is
updated (lowered) as well as the number of iterations for each temperature. The
algorithm is stopped when no further imp:ovement is expected. This condition is
known as “thermal equilibrium”. The simulated annealing optimization method

used for this particular problem is as follows:

1. Choose an initial configuration Cp selected at random.
Choose an initial temperature T, and a temperature reduction coeflicient ar,.

Set Cota = Co and Dyg = Dp (Dy is the determinant value of Cyp).
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2. Generate a new configuration Ce,.
If Dyew > Doiq then accept the new configuration,

set cold = Cncw and Dota = Dhyew:

else:
compute the acceptance probability r = exp (_z-.s__._D “jl:’_)uld)

If random (0,1) < r then set Corg = Crew and Dotg = Dy

3. Update T, after a number J recounfigurations or A successful reconfigurations
(J > K) is reached, whichever comes first. An updating rule proposed in [39]
is used. This is given by:

TCu = (YTcTc
where T,, and T, are the new and current temiperature parameter values re-

spectively and 0 < ar, < 1. Here, ar, = 0.9 is used.

4. If thermal equilibrium is not reached, then goto step 2.
else, Copt = Crew and Dopt = Dyeyy.

Output best configuration C,p, its corresponding row indices, and stop.

Figure 3.6 shows the search algorithm looking for the largest normalized determi-
nant. The search was used to derive the sampling pattern of Figure 3.5. 'The

computation time was eviiuated on a SPARC 5 station.

3.4 Weighted Subsampling Using Projection
(WSP)

In Section 3.2.2 the signal which is subsampled, is the projection of the weighted
input signal onto the selected subspace of M eigenvectors. Only M samples of the
projection are saved. Signal reconstruction can be achieved using straightforward
matrix manipulation and an inverse weighting. ‘Weighted Subsampling using Projec-

tion (WSP) is equivalent to a KLT coding of the weighied signal, with the difference
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Figure 3.6: Simulated Annealing search over 256 choose 64 possibilitics.

in that, the subsampled projection is transmitted instead of the KLT coeflicients.

Next, WS.? is discussed in details, including subjective and objective evaluations.

3.4.1 KL Transform : An Optimal Sampling Approach

Projecting the input signal onto the eigenvectors of its autocorrelation matrix is
equivalent to performing the KL transform (a forward transform followed by an
inverse transform) of the signal. This section reviews the basics of the KL transform

with an approach to optimal sampling.

One-Dimensional Signals

Let an N x 1 vector z represe..ts the input signal. The basis vectors of the KL
transform are given by the orthonormalized eigenvectors of the signal autocorrela-

tion matrix R.;. The set of eigenvectors I; and their corresponding eigenvalues Ag
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associated with R, are defined by:
Rezly = Al k=1,2,...,N (3.10)
'The KL transform of z is defined as
y=ATz (3.11)

where y is the vector of transform coefficients. The columns of A are the eigenvec-
tors of the autocorrelation matrix R,,. Equation 3.11 can be written as

y(k) = im (n)¢(k,n) k=12,...,N (3.12)

n=1

where ¢(k,n) is a forward transformation kernel and represents the element of AT
at row k£ and column n. The inverse transform that recovers the input sequence is

given by
T = Ay (313)

This can be written as

N
z(n) =Y y(k)0(n, k) n=1,2,...,N (3.14)

k=1
whe.c ¢(n,k) is the inverse transformation kernel and represents the element of A
at row n and column k. Ordering the eigenvalues according to their magnitude,
maximum energy is compacted in the M coefficients corresponding to the eigenvec-
turs of the M largest eigenvalues [6]. If only these M coefficients are sent, then the
reconstructed signal is

M
Z(n) = Ey(k)ﬂ(n,k) n=12,...,N (3.15)

k=1
At the receiver, the reconstruction error is given by

N

Y Am (3.16)

m=M+1

(4



This is usually small, since only the smallest eigenvalues are included in the above
summation.

Equation 3.15 car be considered as a generalized form of sampling, with a
sampling function 0(n, k), where the reconstructed signal & converges to the original
in the mean square sense {17}, and for a given number of M terms, the mean square
error in the reconstructed image is minimum among all possible sampling functions.
The main difficulty in using this result for optimal sampling of images is in generating
the coefficients y(k) as compared to the conventional sampling of bandlimited signal
discussed in Chapter 2 where the sampling function is the sinc function and the
coefficients are simply the values of the signal at the sampling instants which are

easy and simple to obtained.

Two-dimensional Signals

The KL transform of an N x N image z using a separable autocorrelation model is

given by
y=ATzA (3.17)

where A is an V x N transform matrix and its columns are the eigenvectors of the
autocorrelation matrix R, of size N x N. The advantage of modeling an image
autocorrelation function by a separable model {17] is that instead of solving the
N? x N? matrix eigenvalue problem, only two IV x N eigenvalue problems need to be
solved. Since an N x N matrix eigenvalue problem requires O(N?®) computations, the
reduction in complexity achieved using a separable model is O(N®)/O(N?3) = O(N?)
which is very significant. Image reconstruction is achieved using the inverse KL

transform given by
z = AyAT (3.18)

Note that Equations 3.17 and 3.18 assume a zero mean image. Here the mean is

found, substructed from the original prior to transformation, then sent with the final
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encoded image.

3.4.2 Uniform Subsampling

In Section 3.2.1 an approach to uniform subsampling starting with an AR(1) model
was presented. The M eigenvectors (corresponding to the largest eigenvalues) of
the autocorrelation matrix of this model were used to form the matrix A, defining
the most important subspace of eigenvectors. It was shown that the M “most”
orthogonal rows of A (these rows are also independent) yielded uniform subsampling.

Here, the projection z, (Equation 3.2) is subsampled at M locations corre-
sponding to the set of M most orthogonal rows of A, yielding the signal z,_ . This
signal is then transmitted. At the receiver, in order to reconstruct z,, a matrix A,
is formed from the M rows of A (which is available at the receiver) corresponding

to the subsampled components of z,. A vector C of coeflicients is computed from
C=Alz,, (3.19)
The reconstructed signal  is given by
&= AC (3.20)

In the next example it is shown that the signal & (assuming a zero mean signal) is
exactly the projection signal z,. that is, z, is completely determined from its M
components corresponding to the set of M most orthogonal rows of A.

Uniform Subsampling: An Example

Consider the same example of an 8 x 8 autocorrelation matrix (p = 0.95) given in

Section 3.2.1. Selecting four eigenvectors corresponding to the largest eigenvalues,
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and arranging them as columns in a matrix A, this matrix is computed as

0.4226  0.4665 —0.4809 0.3383 |
~0.0854 0.2065 —0.4204 0.3512
0.4865 —0.1789 —0.2860 0.3599
~0.2783 —0.4557 —0.1013 0.3642
0.2783 —0.4557 0.1013  0.3642
0.4865 —0.1739 0.2860  0.3509
0.0854  0.2065 04204 0.3512
~0.4226  0.4665 0.4809  0.3383

Consider a signal z of -length N = 8 given by the vector
c=[s5654567] (3.22)
Subtracting the mean value (here 5.375) from z yields
T = [—0.375 —0.375 0.625 -—-0.375 -1.375 —0.375 0.625 1.625 ]T (3.23)
From Equation 3.2, projecting T onto the matrix A results in the signal

,
mp=[—0.4878 ~0.0143 0.1956 —0.3221 -0.9693 —0.7186 0.5617 1.7576] (3.24)

Previous results in Section 3.2.1 show that the rows number: 1,3,5, and 7 (as well
as rows number: 2,4,6, and 8) are the most orthogonal rows of the matrix A.

Subsampling the signal z, at the indices 1, 3,5, and 7 results in

T
x,,,,=[_o.4878 0.1956 —0.9693 0.5617] (3.25)

If z,,, is sent, then at the receiver z, can be completely recovered from i, as
follows:

A matrix A,, is formed from rows number 1,3, 5, and 7 of the matrix A. Thus,

[ 0.4226  0.4665 —0.4809 0.3383

0.4865 ~0.1789 —0.2860 0.3599

A, = (3.26)
0.2783 —0.4557 0.1013 0.3642

| 0.0854 0.2065  0.4204 0.3512 |
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The vector C of coefficients is computed from Equation 3.19 as

[ 7
~1.5245
1.3876
C= (3.27)
0.9950

| -0.0367

Therefore, using Equation 3.20 the reconstructed signal Z (before adding the mean)

is evaluated as

T
13=[——0.4878 —0.0143 0.1956 —0.3221 —0.9693 —0.7186 0.5617 1.7576] (3.28)
Thus, adding the mean yields

T
T = [4.8872 5.3607 5.5706 5.0529 4.4057 4.6564 5.9367 7.1326] (3.29)

Note that the same result is obtained if rows number: 2,4, 6, and 8 are chosen. From

the above, it can be scen that the reconstructed signal Z is exactly the projection z,.

3.4.3 Nonuniform Weighted Subsampling Using Projec-
tion (WSP)

In Section 3.2.2, more importance is placed on certain pixel locations by weighting
the input signal (Equation 3.4). The autocorrelation matrix Ry, of the weighted
signal is computed (Equation 3.6) and a matrix Aw is formed having as columns
the M eigenvectors of R, corresponding to the largest eigenvalues. The projection

of the weighted input signal onto the matrix Aw is given by
u, = AwAwTu (3.30)

The sampling pattern is deduced by searching for a set of M most orthogonal rows
of Aw. The signal u, is subsampled at these corresponding M locations and then

transmitted. At the receiver, a matrix Aw,, is formed using the M rows of Ay
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corresponding to the M subsampled components of u,. A vector of coeflicients Cyy:

is evaluated from
Cw = Awj, Up, (3.31)

where u,_, is the subsampled version of the signal u,. The reconstruction of the

weighted signal is given by
t = AwCw (3.32)

The signal 4 is exactly the projection signal u,. An inverse weighting is performed

to reconstruct an approximation of the original input signal. This is written as
&= Dy ' (3.33)

The next example illustrates nonuniform weighted subsampling using projection.

Nonuniform Weighted Subsampling Using Projection: An example

Consider the signal z, of the previous example (Equation 3.22), given by the vector
z =15 5 6, 5 4, 5, 6, 7]7. Removing the mean of z leads to the signal z
(see Equation 3.23). Using the weighting function given in Equation 3.7, then by
weighting T (Equation 3.4) we have

.
u=|-00375 —0.0375 0.6250 —0.3750 —1.3750 —0.3750 0.0625 0.1625] (3.34)

As in the example of Section 3.2.2, The autocorrelation matrix Ry, of the weighted
signal (Equation 3.6) is computed using an 8 x 8 autocorrelation matrix K., with
p = 0.95 and the weighting function of Equation 3.7. Selecting four eigenvectors

of Ry, corresponding to the largest eigenvalues and putting them as columns in a
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matrix Aw, this matrix is evaluated as

Aw =

and from Equation 3.30, projecting the signal u onto the matrix Ay yields

0.0268

0.0273
0.2691

0.0477 —0.0594
0.0492 —0.0622
0.4994 —0.6471

-0.6528 —0.4959 —0.2718
0.6528 —-0.4959 0.2718
—0.2691 0.4994  0.6471
~-0.0273 0.0492  0.0622
—0.0268 0.0477  0.0594

0.0444
0.0467
0.4917
0.5040
0.5040
0.4917
0.0467

0.0444

(3.35)

T
"p=[0.0573 0.0594 0.6068 -—0.3746 —1.3757 —0.3481 —0.0312 —0.0288] (3.36)

From the pr vious example in Section 3.2.2, it has been shown that the rows num-

ber 3,4,5, and 6 of the matrix Ay are orthogonal. Subsampling the signal u, at

corresponding components results in a signal

T
Upyy = [ 0.6068 —0.3746 —1.3757 —0.3481 ]

(3.37)

At the receiver, u, can be recovered from the subsampled signal u,,, as follows:

The matrix Aw,, is formed from rows number 3,4, 5, and 6 of Ay. Thus,

AW.u =

Using Equation 3.31, the vector of coefficients Cw is evaluated as

-

0.2691

~0.6528 —0.4959
0.6528 —0.4959 0.2718 0.5040
0.4917 |

—0.2691

‘ CW —

0.4994 —0.6471 0.4917 |
~0.2718 0.5040

0.4994  0.6471

[ ~0.3918 |
0.9999

~0.9008

| -0.7524 |
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Table 3.4: Original signal (Equation 3.22) and reconstructed signals using WSP and
uniform subsampling.

Original signal 5 5 6 5 4 5 6 7

WSP 5.9480 5.9690 5.9818 ©5.0004 3.9993 5.0269 5.0625 5.0874

Uniform subsampling | 4.8872 5.3607 5.5706 5.0529 4.4057 4.6564 5.9367 T7.13261

and from Equation 3.32, the reconstruction of the weighted signal is

"
@=|0.0573 0.0594 0.6068 —0.3746 —1.3757 —0.3481 —0.0312 —().()288] (3.10)

Note that & = u,. That is, the projection u, is exactly recovered from its subsam-
pled version u,_, given in Equation 3.37. The signal r is recconstructed by inverse

weighting the signal ¢ and then by adding the mean. This yields

T
-’5=[5.9480 5.9690 5.9818 5.0004 3.9993 5.0269 5.0625 5.0874] (3.41)

For an easy comparison, Table 3.4 shows the original signal (Equation 3.22), with
both reconstructed signals using WSP (Equation 3.41) and uniform subsampling
(Equation 3.28). It can be seen in WSP that, as the weighting function places more
importance on the elements number 3,4, 5, and 6, these elements have their values
much closer to their corresponding components in the original signal than in the
case of uniform subsampling. Furthermore, larger errors result in elements number

1,2,7, and 8. For these elements, uniform subsampling has a lower reconstruction

error than WSP.

3.4.4 Illustration of WSP: A Practical Example

An example using Lena and Girl test images illustrates WSP. Here, N = 256,
M = 64, and p = 0.95. The original Lena and Girl images are shown in Fig-
ures 3.7 and 3.8 respectively. The reconstructed images using WSP and uniform
subsampling (using projection) are shown in Figurzs 3.9 and 3.10 respectively for

the Lena image, and in Figures 3.11 and 3.12 respectively for the Girl image. Both
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Table 3.5: SNR for different regions of the reconstructed image for both WSP and
uniform subsampling

Reconstructed image | Image region SNR (dB)
WSP | Uniform subsampling

Lena central region | 24.4 22.8

entire image | 24.2 24.8

Girl central region | 29.3 26.6

entirc image | 26.4 27.8

W5P and uniform subsampling use the same number of samples. It can be seen
that WSP is subjectively superior to uniform subsampling at the centre of the im-
age (the region-of-interest). As an objective measure, the peak signal-to-noise ratio
(PSNR) was computed from Equation 1.1. WSP has a lower reconstruction error
than uniform subsampling at the centre. Table 3.5 shows the PSNR taken over the

central region, as well as over the entire reconstructed images.

3.5 Projection onto the Selected Subspace or
Bandlimiting

In WSP, the projection onto the Selected Subspace of M eingenvectors (Equa-
tions 3.2 and 3.30) involves N x M operations at compression time. Since sub-
sampling is usually thought of as a low complexity operation, this is excessive. To
easc this concern a space varying linear lowpass filter (Program A.4) is used to
“bandlimit” the signal. This is thought to be sufficiently close to projection to ease
aliasing concerns. One of the main reasons that this is valid is that the M eigen-
vectors corresponding to the largest eigenvalues are those vectors having the lowest
frequencies (this is generally true for R,. eigenvectors as well). Thus projecting the
signal onto this subspace is approximately equivalent to passing it through a low
pass filter. The case of using filtering instead of projection is simply referred to

as WS. Here, the complexity is reduced to N x I operations, where [ is the filter
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Linear Linear

Original _,{ Space-varying Nonuniform Channel Space-varying | Reconstructed
Image | Anti-aliasing Subsampling Interpolation Image
Prefilter Filter

Figure 3.13: Nonuniform Subsampling

length (I < M).

A block diagram of WS is shown in Figure 3.13. It consists of a linear space
varying anti-aliasing filter to bandliinit the input signal, followed by the nonuniform
subsampling scheme. The subsampled image is saved, processed, or transmitted. At
the receiver, an appropriate zero stuffing followed by a linear space varying interpo-
lation filter is used for reconstruction. Next section deals with image reconstruction

from its nonuniform samples.

3.6 Image Reconstruction from its Nonuniform
Samples

Image reconstruction is accomplished by appropriate zero stuffing followed by space
varying filtering (Program A.8). This filter uses an adjustable gain to ensure that
a dc signal is recovered without magnitude degradation. Consider a bandlimited
signal z € RY subsampled at nonuniform locations n, € Z, where I is defined as
the set of all indices of the samples of z. The space varying filter uses a window w
of fixed length which scans all the Z-space. For each n, a suitable cutoff frequency
Jn is used depending on the largest number of consecutive zeros within the window.
An adjustable gain is achieved using multipliers given by

-1

M(n) = | 3 gny) 2n2nfaln = 1)

9€w 27 fa(n — ng) (3.42)
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where g(n,) is a subsampled unit dc signal at lucations n, € n,. Note that the
locations n, are those of the nonuniform sampling pattern n, within the window w.
The reconstruction of the signal z is given by

(n) = M(n) S z(nq)Sin 2n/n(n — ny)

o 27 fa(n — ny)

(3.43)

where Z(n) is the reconstructed sample value and (n,) is the subsampled value of
thesignal « that lie within the window. lere, the window in Equations 3.42 and 3.43

is always centered on tle nth reconstruction sample.

3.7 Illustration of WS: A Practical Exampl=

An example using the original Lena (IFigure 3.7) and Girl (Figure 3.8) images il-
lustrates the proposed WS technique. Here, N = 256, M = 64, and p = 0.95
(same values as in Section 3.4.4). The nonuniformly and uniformly subsampled
Lena and Girl images are shown in Figures 3.14 and 3.15 respectively. It can be
seen that the nonuniform case has more pixels taken from the centre than from the
sides of the original image. The reconstructed images using WS and uniform sub-
sampling are shown in Figures 3.16 and 3.17 respectively for the Lena image, and
Figures 3.16 and 3.17 respectively for the Girl image. Both techniques use the same
number of samples. It can be seen that WS is subjectively superior to the uniform
subsampling at the centre of the image. In terms of objective measure, the peak
signal-to-noise ratio (PSNR) was computed from Equation 1.1. WS has lower re-
construction error than uniform subsampling in the central region. Table 3.6 shows
the PSNR taken over this region and over the entire image.

Comparing the results of Table 3.5 to that of Table 3.6 it can be seen that
WSP is objectively superior to WS for the same compression ratio. Subjectively,
images from both WS and WSP methods are quite similar. Note that WS uses

filtering which, for an image with autocorrelation function mcdeled by an AR(1)
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Table 3.6: SNR for different regions of the reconstructed image for both WS and
uniform subsampling.

Compressed image | Image region SNR (dB)
WS | Uniform subsampling
Lena central region | 24.2 22
entire image | 23.4 23.9
Girl central region | 29.2 25.3
entire image | 25.4 26.5

process, is a sub-optimal method compared to WSP. However, the projection in the
latter involves N x M operations at subsampling time, while in WS, the filtering
requires N x | operations where [ is the length of the filter (I < M).

In the next section, lossless predictive coding is used to extend the compression
achieved by WS. Suitable predictors and Huffman codes are designed and experi-

mental results illustrate the lossless compression scheme.
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3.8 Lossless Compression

In the previous sections, nonuniform Weighted Subsampling (WS) was presented.
In WS more important areas of the image (based on the weighting function) are
sampled more finely. This section extends the compression achieved by subsampling
using predictive lossless compression. Here switched prediction based on the density
of the subsan pling pattern is used. The prediction error sequence is coded using
a suitable huffman code [27, 23] designed from a set of typical facial images. This
eliminates the cost of sending the Huffman codebook. Lossless compression ratios of
1.4 are achieved yiclding an oveiall compression ratio (including the subsampling)
of 22 (0.36 bits/pixel). The lossless scheme is presented in Section 3.8.1 followed by

experimental results in Section 3.8.2.

3.8.1 Lossless Predictive Coding

Most lossless image compression techniques use predictive coding to exploit the sta-
tistical redundancy expressed in the correlation property of neighboring pixels. Here
we use adaptive linear prediction method [6]. Lossless techniques mainly involve two
stages: a prediction stage in which pixel values are predicted, and a coding stage
in which the difference between the actual pixel value and the predicted value is
coded (8].
Let z(i,7) be the value of the grey-scale image at row ¢ and column j. Using
a left to right top to bottom scanning strategy, the causal linear filter that predicts
pixel z(z,7) is:
z(1,7) = hiz(3,7 = 1) + haz(z — 1,5) + haz(i — 1,5 — 1) (3.44)
where Ay, ha, and ha, are the filter coefficients. Figure 2.22 in the previous chapter
shows the three neighboring pixels used in prediction of pixel z(z, 7). The weighting

function used in WS here emphasizes the central portion of the image. This is

thought to be an appropriate strategy for the coding of face portraits. This results
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(coarse,fine) (fine,fine) (coarse,fine)
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Figure 3.20: The subsampling patterns used in WS. (.,.) defines the sampling pat-
tern in the horizontal and vertical directions respectively.

in four different types of subsampling patterns (See Figure 3.20). The lossless scheme
will use a different predictive filter in each of these four areas. To determine the
best filter for a particular area A we use the Least Squares (LS) method [40).

Specifically we form M >> 3 equations each of the form:
2(i,j) = hyz(i,§ = 1) + hoz(3 = 1,5) + haz(i — 1,5 - 1);  V(i,j) € A (3.45)
Putting this in matrix form:
x = A;h (3.46)

where x is a column vector containing the left hand side of Equation 3.45, A,
contains the image values used for prediction and h contains the predictive filter
coefficients. The problem is to choose the best h that minimizes the error [x - A;h]

in the least squares sense. The solution satisfies the orthogonality principles:
AT(x—-Ah)=0 (3.47)
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Table 3.7: Prediction filters for the subsampled Lena image (64 x 64).

Sampling Pattern hy ha ha

(coarse,coarse) 0.3988 | 0.8800 | -0.2980
(coarse,fine) 0.3230 | 1.0089 | -0.3427
(fine,coarse) 0.5365 | 0.5562 | -0.0835
(fine,fine) 0.5169 | 0.8249 | -0.3603

Table 3.8: Prediction filters for the subsampled Girl image (64 x 64).

Sampling Pattern hy ha hs
(coarse,coarse) 0.7248 | 0.2587 | 0.0194
(coarse,fine) 0.6597 | 0.9027 | -0.5660
(fine,coarse) 0.8888 | 0.4324 | -0.3158
(fine,fine) 0.7970 | 0.6603 | -0.4572
The best h is:
h=(ATA,)'ATx (3.48)

The prediction filters are computed for each image, then sent to the receiver with
the coded image. Tables 3.7 and 3.8 give the prediction filters (Program A.9) for
each of the sampling patterns shown in Figure 3.20 for the subsampled Lena and
Girl images respectively.

Using these filters a prediction image is constructed, it is subtracted from the
original and the difference or residue is compressed using a Huffman code. Pro-

gram A.10 is used to generate the prediction error sequence.

3.8.2 Experimental Results

The test images used in this section are Lena and Girl shown previously in fig-
ures 3.7 and 3.8 respectively. The prediction error images of the nonuniformly sub-
sampled Lena and Girl using adaptive prediction are shown in Figure 3.22. These
images are formed by mapping the difference between the original and the prediction
images onto the range 0 — 255 so that the prediction error sequence could be dis-

played as an image. The prediction error is losslessly compressed using a Huffman
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Table 3.9: Average bits/pixel of the compressed (256 x 256) image, after losslessly
encoding the nonuniform subsampled images.
average bits/pixel using a typical
Coded image preset Huffman codebook
Lena 0.3632
Girl 0.3436

code. Here, a preset typical Huffman code is designed using several facial images.
Thus the Huffman codebook need not be sent. Figure 3.21 shows the relation be-
tween the code length and the prediction error value. It can be seen that the code
has a minimum length about zero, as the prediction error is highly peaked at that
region. This shows the advantage of a variable length coding technique in assigning
shorter code-words to prediction error values having high probability of occurrence
so that a reduction in the average number of bits per word is achieved. Table 3.9
shows the bit rate achieved by combining WS with lossless compression. Note that
the Lena image was outside the test set used to design the Huffman code. Girl was
in the test set. Here the coefficients of the prediction filters have been quantized to
8 bits and their cost has been added in.

In WS, the simulated annealing is used to deduce the sampling pattern. The
optimization algorithm is of very high complexity (however, it is done offline). Next
chapter presents a fast heuristic, to derive the sampling pattern, which has signifi-

cantly lower complexity.
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Chapter 4

A Fast Method for Nonuniform
Weighted Subsampling of Digital

Images
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4.1 Introduction

In Chapter 3, nonuniform Weighted Subsampling (WS) was presented [18]. In WS
more important areas of the image are indicated by a weighting function and are
sampled more finely. Simulated Annealing (SA) is used to derive the subsampling
pattern. The SA process is done offline after the weighting function is set. However,
the convergence of the algorithm takes a considerable amount of computational
time. As an example, it takes approximately 60 hours CPU-time on a SPARC 5
Sun station to optimize over 256 choose 64 in order to derive the sampling pattern
shown in Figure 3.5. Thus, if WS is made adaptive (which is beyond the scope of
this thesis), i.e., if the system is able to locate the faceand hence to assigh a suitable
weighting function, the simulated annealing will represent a major constraint due
to its computational complexity.

This chapter presents Fast Weighted Subsampling (FWS), a fast heuristic that
takes 0.45 second for the above problem. Section 4.2.1 presents the idea of the
heuristic with an approach to uniform subsampling. FWS is then preseated in
Section 4.2.2 with various illustrative examples. Finally, subjective and objective
measurements in Section 4.4 show that the proposed method gives results similar to

those obtained using the SA algorithm.

4.2 Fast Weighted Subsampling (FWS)

In WS, a matrix A, of M eigenvectors (corresponding to the M largest cigenvalues)
of the autocorrelation matrix of the weighted signal was used to derive the sampling
pattern. This was achieved by searching for the M “most” orthogonal rows of A,,
(see Section 3.2.2). Here, a heuristic to derive the sampling pattern, by selecting

the subset of M rows that reflect most of the energy of the signal, is presented.
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4.2.1 Uniform Subsampling

Consider the case where M samples of a are to be retained. The autocorrelation
matrix R;. has its parameter p close to one. The matrix A is N x M and contains
the M eigenvectors of R, with the largest eigenvalues and normalized to length one
(see Section 3.2.1).

a1 412 *© 4 .M

azy 022

| ANy aN2 ° OGNM

The energy in each row is evaluated as

e(z) = Za?.j (4.1)

Putting thisin a vector £ = [e(1) e(2) ... e(N)], this can be thought as a summation
of M squared sinusoid vectors (which could be approximated by the DCT basis
vectors (as p —+ 1)) uniformly distributed in frequency in (0,#) [6, 41). In all
our examples, the resulting £-curve has M maxima. These represent the points of
energy-maxima along the subset of M eigenvectors. The location of these maxima

gives the required uniform sampling pattern.

4.2.2 Nonuniform Subsampling

The same heuristic is applied to the nonuniform subsampling case. The matrix A
is replaced by Aw which contains the M eigenvector (with the largest eigenvalues)
of Ry, (the autocorrelation matrix of the weighted signal). Often the £-curve has
M maxima. Their location represents the nonuniform sampling pattern. The case
where the resulting £-curve has not the required M maxima will be addressed in
Section 4.3.

In terms of complexity, Equation 4.1 involves N M multiplications and addi-

tions, while fiuding maxima of £ needs 2N operations. For a 256 choose 64 sample
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points, this method takes 0.45 second on a SPARC 5 Sun station compared with
SA which takes approximately 60 hours to derive the sampling pattern shown in
Figure 3.5. Note that the computational speed in evaluating Equation 4.1 can be
improved by using a parallel structure.

We follow with some examples to illustrate the proposed method. Figure 4.1
shows the weighting functions used in this example. The plot of £ for different M
values (M = 1, 4, 8, and 12) for the weighted and non-weighted cases is shown
in Figure 4.2. It can be seen that the sampling patterns follow the corresponding
weighting functions, in a sense that, samples are denser where the weighting function
is larger. Figure 4.3 shows a plot of £ for the weighting functions shown in Figure 4.1
with M = 64, N = 256 and p = 0.95. Each £-curve has 64 maxima corresponding
to the 64 nonuniform sample points. The sampling pattern obtained for cach of the

above weighting functions is shown in Figure 4.4

4.3 Loss of Spatial Resolution: A Solution

This section dea:s with the case where the resulting £-curve has not the desired
M maxima. We refer to this case by the term “loss of spatial resolution”. This is
illustrated by the following example.

Choose the weighting function shown in Figure 4.5. This function is similar
to the one in Figure 4.1 (b), the only difference is that its lower values equal to 0.1
instead of 0.3. Here it is required to retain 64 out of 256 samples. The weighting

function is given as

0.1 1<i<75
W(E)=141 76 < i < 181 (4.2)
0.1 182 < i < 256

The &-curve corresponding to this weighting function is shown in Figure 4.6 (here

p = 0.95). In this case, the resulting £-curve has only 55 maxima. The locations of
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Figure 4.1: Weighting functions used to illustrate FWS.
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Figure 4.2: Plot of £ for M = 1, 4, 8 and 12 for the weighted cases (Figure 4.2 (a),
(b), and (c)) and for the non-weighted case (Figure 4.2 (d)). For the weighted cases,
the corresponding weighting functions shown in Figure 4.1 (a), (b), and (c) are
respectively used. The stars on the curves denote the sample points. Here p = 0.95.
Note that the sample points are denser where the value of the weighting function is
larger.
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(b) and (c) correspond respectively to the weighting functions shown in Fig-
ures 4.1 (a), (b) and (c). Here each curve has 64 maxima corresponding to the
64 nonuniform sample points.
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Figure 4.4: Sampling patterns deduced from the £-curves of Figure 4.3. Here,
Figures 4.4 (2), (b) and (c) correspond respectively to the weighting functions shown
in Figures 4.1 (a), (b) and (c).
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N = 256,M = 64 problem.

these maxima are given in Table 4.1. It can be seen that, due to the lower values
of the weighting function in the intervals 1 <7 < 75 and 182 < i < 256, only few
samples (here, three samples) are assigned to each of these intervals. In other words,
such a weighting function assigns most of the samples to the interval 76 < ¢ < 181
which has a length of 106. In this interval the £-curve can only have a number of
maxima not exceeding 53. Hence, the overall £-curve will have a number of maxima
which is less than the required M samples. Comparing the resulting £-curve to the
one obtained using the weighting function of Figure 4.1 (b), it can be seen that in
the latter curve (i.e., Figure 4.3 (b)) the intervals 1 < z < 75 and 182 <1 < 256
(where the value of the weighting function is 0.3) both have 9 maxima, and therefore
allowing to have the remaining maxima in the interval 76 < ¢ < 181. A solution to
the loss of spatial resolution follows.

The weighting function in Equation 4.2 is linearly interpolated to increase its
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Figure 4.6: €-curve corresponding to the weighting function given by Equation 4.2
(p = 0.95). The curve has 55 maxima.

samples from 256 to 1024 elements. The new weighting function is then given by

0.1 1<i<300
W@E) =4 1 301 <4< 724 (4.3)
0.1 725 <1 < 1024

Using this weighting function, a 1024 x 1024 autocorrelation matrix R,, is computed
from Equation 3.6, with a 1024 x 1024 matrix R.; having p = 0.95'/4, The problem
of finding 64 out of 256 sample points is then converted to that of finding 64 out of
1024 samples. The resulting £-curve has 64 maxima. This is shown in Figure 4.7.
The locations of the maxima, which span the range 1 —1024 are then linearly mapped
to the range 1-256. A rounding to the nearest integer can be used when the mapped
value is not an integer. Note that the problem of loss of spatial resolution can be

solved adaptively.

110



025 y T an

o2r 1

015}

o1r

005)

0O 100 200 300 400 50: 600 700 800 900 1000
ingex

Figure 4.7: €-curve corresponding to the weighting function given by Equation 4.3
(p = 0.95'/%), The curve has 64 maxima.

Table 4.1: Locations of maxima corresponding to the €-curve of Figure 4.6 (No. of
maxima = 55).

7 33 58 76 78 8 8 8 8 8 91 9%
9 98 100 102 104 107 109 111 113 115 118 120
122 124 126 128 131 133 135 137 139 142 144 146
148 150 153 155 157 159 161 163 166 168 170 172
174 177 179 181 199 224 250

Table 4.2: Locations of maxima corresponding to the £-curve of Figure 4.7 (No. of
maxima = 64).

4 25 4 62 75 78 8 81 8 8 87 89
91 93 95 97 99 101 103 104 106 108 110 112
114 116 118 120 122 123 125 127 129 131 133 135
137 139 141 143 144 146 148 150 152 154 156 158
160 162 164 165 167 169 171 173 175 177 179 181
194 213 232 252
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Table 4.3: PSNR for different regions of the reconstructed image for WS, FWS and

uniform subsampling.

Image region PSNR (dB)

FWS | WS | Uniform subsampling
central region | 2% | 24.2 22
entire image | 23.3 | 23.4 23.9

4.4 Experimental results

An example using the Lena test image and the weighting function of Figure 4.1 (a)
illustrates the proposed technique. Here the weighting function assigns more sam-
ples to the central region of the image. The sampling patterns obtained using FWS
and WS are shown in Figures 4.8 and 4.9. It can be seen that both sampling patterns
are similar. The reconstructed images using FWS, WS and uniform subsampling
are shown in Figures 4.10, 4.11 and 4.12 respectively. All techniques use the same
number of samples. It can be seen that both FWS and WS techniques are subjec-
tively superior to uniform subsampling at the centre of the image. Further, thesc
two techniques give similar results. In terms of objective measure, the pcak signal-
to-noise ratio (PSNR) [5] was calculated from equation 1.1. Both FWS and WS
methods have lower reconstruction error than uniform subsampling at the centre of
the image. The two methods also have very close signal to noise ratios. Tabic 4.3

shows the PSNR taken over different regions in the image.

4.5 Summary

In conclusion, subjective and objective measures show that the FWS heuristic gives
similar results to those obtained using WS. A major advantage of this heuristic over
WS is its very low complexity. Note that still an eigenvectors calculation needs to
be done with complexity O(N3) for an N x N autocorrelation matrix. However in

WS, the complexity of the simulated annealing dominates.
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Figure 4.8: Sampling pattern obtained using FWS and corresponds to the weighting
function of Figure 4.1 (a).

1 256

Figure 4.9: Sampling pattern obtained using WS and corresponds to the weighting
function of Figure 4.1 (a).
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Next chapter concludes the thesis by discussing the contributions of this work,

and finally presents future work.
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Chapter 5

Conclusion
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5.1 Contributions

In Chapter 3, Weighted Subsampling (WS), a new nonuniform subsampling method
suitable for “region-of-interest” applications was presented. The main idea of WS
is Lo assign more samples (using a weighting function) to important regions of the
image to enhance their quality in reconstruction. Here, WS was used to compress
images of human faces. The performance of this method was evaluated and com-
pared to uniform subsampling. Experimental results using Lena and Girl test images
have shown that WS is subjectively superior to uniform subsampling at the region
of interest in the image. In terms of objective measures, the peak signal-to-noise
ratio was computed in this region for WS and uniform subsampling. An increase of
2.2 dB for Lena and 3.9 dB for Girl images has been achieved using WS.

Weighted Subsampling using projection (WSP) was also presented in this chap-
ter. This technique is different from WS in that the subsampled signal is the pro-
jection of the weighted input signal, while in WS the projection is approximated
using filtering. It was shown that reconstruction can be achieved using matrix ma-
nipulation and inverse weighting. WSP is superior to WS for an image with an
autocorrelation function modeled by an AR(1) process. However, WSP method has
a higher complexity.

In Section 3.8 lossless predictive coding was used to extend the compression
achieved by WS. The prediction error of the subsampled image was obtained using
difterent predictors based on the density of the sampling pattern. A preset typical
Huffman codebook has been designed using several facial images. This codebook
was used to code the prediction error sequence. A lossless compression ratio of 1.4
has been achieved yielding an overall compression ratio (including the subsampling)
of 22 (0.36 bits/pixel).

In WS, the simulated aiinealing (SA) was used to derive the subsampling
pattern. The optimization algorithm was the part of highest complexity (however,

this was done offline). As an example, to optimize over 256 choose 64 has taken
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approximately 60 hours CPU-time on a SPARC 5 Sun station. Chapter | has
presented Fast Weighted Subsampling (FWS), a fast heuristic which has taken 0.5
seconds for the above problem. It has been shown that FWS gives similar results to

those obtained using WS method.

5.2 Future Work

Future work related to this thesis includes an adaptive nonuniform weighted subsam-
pling scheme able to locate the human face and consequently uses a suitable weight-
ing function. Further, improving the computational speed of the above method using
parallel implementation is also another concern for real-time applications. These two

are briefly discussed next.

5.2.1 Face Location

The face location problem represents an important task for the nonuniform sub-
sampling scheme presented in this thesis. The result of combining an automatic
human face location system to FWS heuristic presented in Chapter 4, is very ad-
vantageous. Such a system will throw out the a priori knowledge (about the location
of the area of interest) that was needed to set the weighting function. Thus, a face
location system together with a parallel implementation structure makes it possible
for real-time applications. This results in various applications (sce Section 3.1).

Face location represents a challenging task because of the wide variation in the
appearance of a particular face due to imaging conditions such as lighting, changing
in facial expression, and different viewing directions (different pose) [42]. A facial
feature finder can locate the major facial features such as the eyes, nose, mouth and
face outline and uses these location to geometrically mark the boundary between
the face region and the background.

Many studies have addressed the problem of detecting and locating human
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faces. One popular approach is termplate matching or deformable templates 43, 44,
45, 46]. The general idea in template matching is the construction of an artificial
template to match a corresponding feature of the face. The template consists of a
collection of parametrized curves which describe the shape of the feature (such as
eyes, mouth, nose, etc.) to be detected in the image. An energy function which
links edges, peaks and valleys in the image intensity to corresponding properties of
the template is defined. The template can adjust itself to the image by altering its
parameter values to minimize the energy function. Thus the problem of fitting the
template to the image is reduced to the problem of minimizing the energy function.

Another method of face location is detecting and extracting face contours and
facial features using edge information [47, 48]. Lines and curves of facial features
arc detected using the Hough transform [49]. A major limitation of this method is
the dependence on the quality of edge detection. Poor lighting conditions and low
image quality result in a loss of edge information and “ence may cause errors in
capturing the correct face location.

An approach for detecting and locating human faces using eigenfaces is given
in [50]. In this method, face images are projected onto a feature space called “face
space”. The face space is defined by the “ecigenfaces”, which are the eigenvectors of
the covariance matrix of a training set of face images. The image is projected onto
the face space and the distance between the image and its projection can be used to
detect the presence of a face in a scene. The result of calculating the distance from
face space at every point in the image is a “face map”. A minimum in the face map
gives the location of the face in the image. This technique was extended in [51} to
include a facial feature extraction method using feature eigentemplates.

In summary, a good human face location system should accomplish the fol-

lowing tasks:

e The system should be able to handle different lighting conditions, and to dis-

tinguish faces from complex backgrounds.
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o The system should have a good precision in locating facial features. It should
handle different head orientations and sizes, different facial expressions and

occluded faces.
e The system should handle faces with glasses or beards.

o The face location algorithm should be fast enough to make it possible for

real-time applications.

The speed of the algorithm may be improved by using a parallel structure.

5.2.2 Implementation

In the Fast Weighted Subsampling (FWS) heuristic presented in Chapter 4, signal
bandlimiting and interpolation can be achieved using a parallel filtering structure,
that is, the operations can be done separately (in parallel) for each row, then for
each column of the image. Further, Equation 4.1, which computes the energy in
each of the rows of matrix A (or Aw), can be also parallelized.

Future work will also include investigation on solving the eigenvalue problem
using a parallel structure. This may also allow the use of a nonseparable autocorre-
lation image model, and hence, a nonseparable sampling pattern.

In summary, It can be seen that an automatic face location system and a par-
allel implementation structure are two of major importance in realizing an adaptive
nonuniform subsampling scheme suitable for real-time applications. Thesc are left

for future investigation.
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A.1 Original Image Histogram

function [occ,pelvall=histogram(x,Qlevels);

% histogram Returns the frequency of ocuurence at each grey
% level.
h

%4 [occ,pelvall=histogram(x,Qlevels) returns in vectors
% occ and pelval the number of occurrence at each grey
% level and the corresponding grey level respectively.
% Input image and number of grey levels are x and

% Qlevels respectively.

%

x=round (x) ;
range=Qlevels-1;
[k,1]=size(x);

%

% Evaluating for each row the frequency of occurence at each grey level
%
for i=1:X,
for r=0:range,
m=find(x(i, :)==r);
num_perline(i,r+1)=length(m);
end
end
%
% Outputs the frequency of occurence and grey level vectors
[/
occ=sum(num_perline) ;
pelval=0:range;
/
[/
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A.2 Prediction Error Histogram
function [occ,diffvall=diffhist(x,Qlevels);

% diffhist Returns the frequency of ocuurence at each

% prediction error value.

4,

%

% [occ,diffval]=diffhist(x,Qlevels) returns in vectors
% occ and diffval the number of occurrence at each

A prediction error value and the corresponding value

% respectively. The input prediction error sequence

% and the number of grey levels of the original

% image are x and Qlevels respectively.

x=round(x) ;
MAXrange=Qlevels-1;
MINrange=-Qlevels+1i;
[k,1)=size(x);
h
% Evaluating for each row the frequency of occurence at each
% prediction error value
h
for i=1:k,
for r=MINrange:MAXrange,
m=find (x(i, :)==r);
num_perline(i,r+abs(MINrange)+1)=1length(m);
end
end
%
% Output frequency of occurence and corresponding prediction
% error vectors
%
occ=sum(num_perline);
diffval=MINrange:MAXrange;
)
/
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A.3 Switched Predictor

function [imp,imd,error,typel=imagepredict(x,row,col,Q)

% imagepredict Returns the prediction image and its corresponding

% prediction error sequence that yield a minimum

% square error.

9

h

% [imp,imd,error,typel=imagepredict(x,row,col,Q) returns
h the prediction image and its corresponding prediction
h error sequence in matrix imp and imd respectively.

% The vector error is of length 7 and contains the mean
h square prediction error of the seven types of predictors.
h The predictor that yields minimum square error is

h given in type.

h Input image, number of rows, of columns, and number of
% grey levels are x, row, col, and Q respectively.

4,

h

%

)

im_predict(1,1)=.5%R;
im_predict(1,2:col)=x(1,1:col-1);
for i=2:row,
im_predict(i,1)=x(i-1,1);
end
A
for i=2:row,
im_predict(i,2:col)=x(i,1:col-1);
end
imd1=x-im_predict;
error (1)=(1/(row*col))*sum (sum((abs(imd1))."2));
.}mp1=im_predict ;
for i=2:row,
im_predict(i,2:col)=x(i-1,2:col);
end
imd2=x-im_predict;
erroxr (2)=(1/(row*col))*sum (sum((abs(ind2))."2));
imp2=im_predict;
h
for i=2:row,
im_predict(i,2:col)=x(i-1,1:col-1);
end
imd3=x-im_predict;
error (3)=(1/(xrow*col))*sum (sumn((abs(imd3))."2));
imp3=1im_predict;

%

130



for i=2:row,
im_predict(i,2:col)=x(i,1:col-1)+x(i-1,2:col)-x(i-1,1:col-1);
end
imd4=x-im_predict;
error(4)=(1/(row*col))*sum(sum((abs(ind4))."2));
imp4=im_predict;
[}
for i=2:row,
im_predict(i,2:col)=x(i,1:col-1)+((x(i-1,2:co0l)-x(i-1,1:c0l-1))./2);
end
imd5=x-im_predict;
error(5)=(1/(row*col))*sum(sum((abs(imd5))."2));
imp5=im_predict;
for i=2:row,
im_predict(i,2:col)=x(i-1,2:col)+((x(i,1:col-1)-x{i-1,1:c0l-1))./2);
end
imd6=x-im_predict;
error(6)=(1/(row*col))*sum(sum((abs(imd6))."~2));
imp6=im_predict;
L)
for i=2:row,
im_predict(i,2:co0l)=(x(i,1:col-1)+x(i-1,2:co0l))./2;
end
imd7=x-im_predict;
error(7)=(1/(row*col))*sum(sum({abs(imd7))."2));
imp7=im_predict;
[}

opt=min(error);

type=find (error==opt);

)

4

if type==1,imp=impl;imd=imdi;end
if type==2,imp=imp2;imd=imd2;end
if type==3,imp=imp3;imd=imd3;end
if type==4,imp=imp4;imd=imd4;end
if type==5,imp=imp5;imd=imd5;end
if type==6,imp=imp6;imd=imd6;end
}f type==7,imp=imp7;imd=imd7;end
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A.4 Space Varying Antialiasing Prefilter

function y=bandlimit(x,index,row,col)

% bandlimit Space varying antialiasing prefilter.

%

% y=bandlimit (x,index,row,col), y is the output of

% the space varying linear low pass filter. The input
% image x is of size (row, col). The nonuniform sample
% locations are given in vector index.

%

I=[0 index col+1];
len=length(I);
for i=2:len;
M(i)=abs(I(i)-I(i-1)-1);
end
range=max(M)+2;
z=zeros(1,range);
A=ones(1,col);
dc=ones(1,col);
a=zeros(1,col);
a(1,index)=dc(1,index);
[

AA=[z A 2];
aa=[z a z];
Z=zeros(row,range) ;
XzZ=[Z x 2];
%
for i=1:col
%
/A
if idrange & i<col-range+l
m=find(index >(i-range-1)&index<(i+range+1));
t=[a(l,i-range:i+range) 1];
count=0;
s=[1;
for k=1:2*range+2,
if t(k)==
count=count+];
else
s(k)=count;
count=0;
end
end
We=1/(max(s+1));
B=fir1(2#*range,¥Wc);
x_prefilt(:,i)=x(:,i-range:i+range)*B’;
end
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h
%

end

%

if

(i>0 & i<range+1) | (id>col-range & i<col+1)

m=find(index>(i-range-1)&index<(i+range+1));

tt=[aa(1,1i:i+2*range) 1];
count=0;
s=[];
for k=1:2*range+2,
if tt(k)==
count=count+1;
else
s(k)=count;
count=0;
end
end
We=1/(max(s+1));
B=fir1(2*range,Wc) ;
mult=AA(1,i:i+2*%range)*B’;
x_prefilt(:,i)=XZ(:,i:i+2*range)*B’/mult;

end

y=x_prefilt;
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A.5 Full Search of Example 3.2.2

4 Rxx of an AR(1) process of size 8x8
L)
/A
ro=.95;
for k=1:8,

for 1=1:8,

rxx(k,1)=ro"abs(k-1);

end
end
%
% Weighting the signal and computing eigenvectors
% of the new autocorrelation matrix
(]
f=[0.10.111110.10.1];
k=diag(f);
ruu=k*rxx*k;
Fvecruu,valruu]=eig(ruu);

% taking 4 eigenvectors with largest eigenvalues
)

auu(:,1:4)=vecruu(:,5:8);
[

? Normalization of rows of auu
[]
for i=1:8,
auunorm(i,:)=auu(i,:)./norm(auu(i,:));
end
0/.
% Search for the most orthogonal 4 rows of auu
L)
A
s=8; n=4; t=s-n+1;
temp=0; count=0; time=0;
o,
%
% temp shows how orthogonal is the set of rows.
% count gives the No. of determinant computations
% time gives the cputime.
[}
%
time = cputime; for il=i:t,
for i2=(i1+1):(t+1),
for i3=(i2+1):(t+2),
for i4=(i3+1):(t+3),
m=[auunorm(ii, :) ;auunorm(i2, :);auunorm(i3, :);auunorm{i4, :)];
d=det (m) ;
count = count+l;
if abs(d) > temp
temp = abs(d);
mostorth=[auu(il,:); auu(i2,:); auu(i3,:); auu(i4,:)];
rowauu=[i1;i2;13;i4];
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end
end
end
end
end; time = cputime-time, count, temp, rowauu,
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A.6 Main Program of WS

%Rxx of an AR(1) process of size 256x256.
row=256; co0l=256; rho=.95; M=64;
for k=1:row,
for 1=1:col,
rxx(k,1)=rho"abs(k-1);
end
end

% Weighting the signal and computing eigenvectors
% of the new autocorrelation matrix

load Weight_func
k=diag(Weight_func); ruu=k*rxx*k; [vecruu,valruu]=eig(ruu);
[}

%Taking M eigenvectors with the largest eigenvalues
%
diagval=diag(valruu);
if diagval(l) < diagval(col)

auu(:,1:M)=vecruu(:,1:M);
else

auu(:,1:M)=vecruu(:,col-M+1);
end
%
% Random permutation of rows of auu
4
rand(’seed’,sum(100*clock))
rnd = randperm(row) ;
for j=1:row,

auu_random(j,:) = auu(rnd(j),:) ;

end
index=rnd(1:M);
%
%Normalization of rows of auu_random
"
h
for i=1:row,

auunorm_random(i, :)=auu_random(i, :)./norm{auu_random(i,:));

auunorm_init (i, :)=auu(i,:)./norm(auwu(i,:));

end
h
4ASearch for M most orthogonal rows of auu_random
A
T=10; alpha=.9; v=auunorm_random(1:M,:); vuu=auu_random(1:M,:);
dold = abs(det(v)); count_success=0; count_reconfig=0;
dsuccess_reconfig=0; store_high=0; store_orthog=0; store_index=0;
m=v; time = cputime; SA_64_256; dval=dd; store_time=interval_time;

%
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% Stopping criterion
[}
while store_high < .9999
SA_64_256;
dval=[dval dd]; store_time=[store_time interval_time];
save main_64_256 dval store_index store_high
end
time = cputime - time, temp = store_high
mostorth=store_orthog, row_index = sort(store_index),
L)
i
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A.7 Simulated Annealing Algorithm

" SA_64_256

%

%

dd=0; interval_time=0;

for k=1:M,

l=randperm(N);

for j= 1:N,
if (1(j)==index(1)) | (1(j)==index(2)) 1(1(j)==index(3)
(1(j)==index(5)) | (1(j)==index(6)) 1 (1(j)==index(7)) I(
(1(j)==1index(9)) | (1 (j)==index(10) )} (1(j)==index(11))
(1(j)==index(13)) | (1(j)==index(14)) | (1(j)==index (15)
(1(j)==index(17)) 1 (1 (j)==index(18)) | (1(j)==index(19)
(1(j)==index(21)) | (1 (j)==index(22)) | (1(j)==index (23)
(1(j)==index(25)) | (1 (j)==index(26)) | (1{j)==index(27)

ndex(8)) ...
=index(12)) 1.

=index(20)
=index(24)
index(28)

nonont
llll

1(j)=
)==i
()=
1(j)
1(3)
1(3)
1(j)
1(3)

EIEJ;==index(29))|(l(j)==index(30))I(l(J)==1ndex(31) =index(32)
1 j)==

(1(3)==1ndex(37)) 1 (1 (j)==index(38)) | (1(j)==index(39)
(1(j)==index(41)) 1 (1(j)==index(42)) | (1(j)==index(43)) | (1(j)==index(44)
(1(j)==index(45)) 1 (1 (j)==index(46)) | (1(j)==index(47)) | (1(j)==index(48)
(1(j)==index(49)) | (1(j)==index(50)) | (1(j)==index(51)) | (1(j)==index(52)

(1(j)==index(53)) | (1(j)==index(54)) | (1(j)==index (55)
(1(j)==index(57)) | (1 (j)==index(58)) | (1(j)==index(59)
(1(j)==index(61)) | (1 (j)==index(62)) | (1(j) ==index (63)
m=v;
else
m(k, :)=auunorm_init (1(j),:);
dnew= abs(det(m));
if dnew > dold
v=m; Jdold=dnew; vuu(k,:)=auu(1(j),:);
index(k)=1(j);
else
y=exp((dnevw - dold)/((dnew + dold)*T)});
r=rand(1);
if r<y
v=m; dold=dnew; vuu(k,:)=auwu(1(j),:);
index(k)=1(j);
else
mn=v;
end
end

1(j)==index(56)
1(j)==index(60)

|
(
(
|
|
|
|
|
I
|
|
|
|
|
| (1(j)==index(64));

(
J
1
(
(
(
(
(
EI(J)==1ndex(36)
(
(
(
(
(
(

)
1
;
)
) )
) )
3 3
index(33)) |1 (1(j)==index(34)) | (1(j)==index(35)) ...
; 1(j)==index(40))|..
)
) )
) )
) )
) )
) )

//
(]
%counting reconfigurations

’

h
A

%counting successfull reconfigurations

count_reconfig = count_reconfig + 1;
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1)
A
if dold > dsuccess_reconfig
count_success = count_success + 1;
dsuccess_reconfig = dold;
end

% Holding T constant for 6400 reconfigurations or for
% 640 successful reconfigurations, whichever comes first.

if (count_success == 640) | (count_reconfig == 6400)
T = alpha*T;
count_success = 0; count_reconfig = 0;
end
h
end;
h
% Store always the highest value of determinant
% (dold) and its corresponding matrix.

4,
%
if store_high < dold
store_high = dold; store_orthog = vuu;
store_index = index;
end
/

end; dd(k)=dold; interval_time(k)=cputime-time;
[/

end;

%

%
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A.8 Space Varying Interpolation Filter

function y=reconstruct(x,index,row,col)

% reconstruct Space varying interpolation filter.
p ying p

% y=reconstruct(x,index,row,col), y is the reconstructed

% image . The input x is the subsampled image stuffed with
% zeros and of size (row x col). The sample locations are
% given in vector index.

I=[0 index col+1];

len=length(I);

for i=2:len;
M(i)=abs(I(i)-I(i-1)-1);

end

fange=max(M)+2;

% Subsample a Unit DC

[)

dc=ones(1,col);
A=zeros(1,col);
A(1,index)=dc(1,index);
%

z=zeros(1,range);
AA=[z A Zz];
=zeros (row,range) ;
XZ=[z x 2];
A
¥ Find suitable cutoff frequency and do interpolation
for i=l:col
if idrange & i<col-range+1
m=find(index >(i-range-1)&index<(i+range+1));
t=[A(1,i-range:i+range) 1];
count=0;
s=[];
for k=1:2*range+2,
if t(k)==
count=count+1;
else
s(k)=count;
count=0;
end
end
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Wec=1/(max(s+1));

A active_pel=length(m);

% Wc=1/((2*range +1)/active_pel);
B=fir1(2*range,Wc);
mult=A(1,i-range:i+range)*B’;
x_recov(:,i)=x(:,i-range:i+range)*B’/mult;

end

/
h

if (i>0 & i<range+1)|(i>col-range & i<col+1)
mn=find(index>(i-range-1)&index<(i+range+1));
tt=[AA(1,i:i+2#range) 1];
count=0;
s=[];
for k=1:2%range+2,
if tt(k)==0
count=count+1;
else
s(k)=count;
count=0;
end
end
We=1/(max(s+1));

% active_pel=length(m);

h Wec=1/((2*range +1) /active_pel);
B=fir1(2*range,Wc);
mult=AA(1,i:i+2*range)*B’;
x_recov(:,i)=XZ(:,i:i+2*range)*B’/mult;

end

end

%

y=Xx_recov;
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A.9 Prediction Filters using LS Method

function [coeffl,coeff2,coeff3,coeff4]=least_square(x,row,col,rl,r2,ci,c2)

%least_square Output the prediction filters for different areas in the
% image.

% [H1,H2,H3,H4]=1least_square(x,row,col,ri,r2,c1,c2) output
% filter coefficients for different areas determined by

% the rows and columns rl, r2, cl and c2. The input image
% is x of size (row x col). H1i, H2, H3, and H4 are vectors
% each of length 3 and containing the filter coefficients.

% Find filter coefficients for the sampling
% pattern (coarse,coarse)

temp2=[1;
tempx2=[];
for i=r2:rowv,

for j=c2:col,
temp=[x(i-1,j-1) x(i-1,j) x(i,j-1)]1;
tempx=x(i,j);
temp2=[temp2;temp] ;
tempx2=[tempx2;tempx] ;
end
end
yl=temp2;xx1=tempx2;
mi=inv(y1’*yl);
ni=y1’*xx1;
coeffi=mi*ni;
h
% Find filter coefficients for the sampling
% pattern (coarse,fine)
]
%
temp2=[];
tempx2=[];
for i=ri:r2,

for j=c2:col,
temp=[x(i-1,j-1) x(i-1,j) x(i,j-1)];
tempx=x(i,j);
temp2=[temp2;temp] ;
tempx2=[tempx2;tempx];
end
end
y2=temp2;xx2=tempx?2;
m2=inv(y2’*y2);
n2=y2’*xx2;
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coeff2=m2*n2;
[}
b
% Find filter coefficients for the sampling
% pattern (fine,coarse)
9,
A
temp2=[];
tempx2=[];
for i=r2:row,
for j=cil:c2,
temp=[x(i-1,j-1) x(i-1,3) x(i,j-1)];
tempx=x(i,j);
temp2=[temp2;temp] ;
tempx2=[tempx2;tempx] ;
end
end
y3=temp2;xx3=tempx2;
m3=inv(y3’'*y3);
n3=y3’*xx3;
coeff3=m3#*n3;
A
% Find filter coefficients for the sampling
? pattern (fine,fine)

temp2=[];
tempx2=[];
for i=rl:r2,

for j=ci:c2,
temp=[x(i-1,j-1) x(i-1,j) x(i,j-1)];
tempx=x(i,j);
temp2=[temp2;temp] ;
tempx2=[tempx2;tempx];
end
end
y4=temp2;xx4=tempx2;
m4=inv(y4’*y4);

n4=y4'%*xx4;
coeff4=m4*n4;
%

A
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A.10 Prediction Error Sequence using LS
Method

function [imp,imd,MSE]=1spredict(x,row,col,Q,H1,H2,H3,H4,r1,r2,c1,c2)

% lspredict Returns the prediction error sequence using the suitable

% predictor for each region (determined using LS method).

)

/A

% [imp,imd,MSE]l=1spredict(x,row,col,Q,H1,H2,H3,H4,r1,r2,c1,c2)
% output predicted image and prediction error sequence in imp
% and imd respectively.

% The mean square error of the prediction is given in MSE.

% The input image is x of size (row,col). Q is the number of
% grey levels. H1, H2, H3, and H4 are the filters

A obtained using the Least Square method. Areas of different
% sampling pattern are determined by ri1, r2, cl, and c2.

im_predict(1,1)=.5%Q;
im_predict(1,2:col)=x(1,1:col-1);
for i=2:row,
im_predict(i,1)=x(i-1,1);
end
%
for i=2:ri,
for j=2:ci,
im_predict(i,j)=H1(3)*x(i,j-1)+H1(2)*x(i-1,j)...
+H1 (1) *x(i-1,j-1);
end
end
%
for i=2:ri,
for j=cl+l:c2,
im_predict(i,j)=H3(3)*x(i,j-1)+H3(2)*x(i-1,j)..
+H3(1)*x(i-1,j-1);
end
end
%
for i=2:ri,
for j=c2+1:col,
im_predict(i,j)=H1(3)*x(i,j-1)+H1(2)*x(i-1,j)...
+H1 (1) *x(i-1,j~-1);
end
end
%
for i=ri+l:r2,
for j=2:ci,
im_predict(i,j)=H2(3)*x(i,j-1)+H2(2)*x(i-1,j)...
+H2(1) *x(i-1,j-1);
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end
end
%
for i=ri+1:r2,
for j=cil+l:c2,
im_predict(i,j)=H4(3)*x(i,j-1)+H4(2)*x(i-1,j)..
+H4 (1) *x(i-1,j-1);
end
end
h
for i=ri1+41:r2,
for j=c2+1l:col,
im_predict(i,j)=H2(3)*x(i,j-1)+H2(2)*x(i-1,j)..
+H2(1) *x(i-1,j-1);
end
end
%
for i=r2+1:row,
for j=2:ci,

im_predict(i,j)=H1(3)*x(i,j-1)+H1(2)*x(i-1,3)...

+H1 (1) *x(i-1,j-1);
end
end
%
for i=r2+1:row,
for j=cil+l:c2,

im_predict(i,j)=H3(3)#*x(i,j-1)+H3(2)*x(i-1,3)...

+H3(1) *x(i-1,j-1);
end
end
%
for i=r2+1:row,
for j=c2+1:col,

im_predict(i,j)=H1(3)*x(i,j-1)+H1(2)*x(i-1,j)...

+H1(1)*x(i-1,j-1);
end
end
%
imp=im_predict;
imd=x-im_predict;
$SE=(1/(row*col))*sum(sum((abs(imd\).‘2));
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