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:

An autqﬁatic speech recognition system for réédgnizing .

, connected letters belonging 'to the set
(Bl =(P, T K B D YV, E G C 3)T

is, descr}bed. Half of the .letters in the El set are
characterized by plosive. An. expert system approach to
segmentation of \ éontinuous speech which‘ is‘ based on a
Semantic-Syntax-Ditectedthanéition . algo;fthm-' for
transiating primary acoustic- cués into p;iméry phonetic
features hqi_been implemented. Acoustic propéftf extraction . .
and feature hypothesiiation are performed” by a Planniﬁé a '
System. ' Classification is characteriéed by a fuzzy
algqrithm wpich is an applicatiom of fuzzy set theory in
pattern tecoénition. The system is tested on a protocol of
1000 connected pronunciations of symbols,of'the El set in L :
strings:of five symbolg eaéh.,hThg strings were pronounéed
by five male and five female:English spéakers. The average

recognition rate is 90%. Various experimental results are

repofted( ~ , , ' '1
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INTRODUCTION " . )

‘ -

. - ‘ * . ©

8 .
Speech is our everyday, informal, communicatioh medium.

It would be very advantageous and practical if speech could

be used as machine input and output. The problems of

-

communicating with «computers through natural speech begin’

with the nature of speech itself. Speech commﬁnication, is
natural for people but it is not the simp}ést comﬁunication
method for machines. This depends both on the phisical
properties and organization of ghe way we talk. ‘

- * (-.
Now people can extract-.a great deal of meaning from a

very small set of sounds. . Although  this makes Yfor an
extremely efficient, “noiseimmune 'means of communication,
science hasn't yet been able to pin down completely the

- > . . )
characteristics of speech that give our utterances meaning.

And without the knowledge, making machimes that can equal

our own performance as listeners becomes a large-scale task.

Acoustics, the science of heard sound, and Linguistics,

the science of languages, both deal with the investigatiog

of spoken lanquages . Electrical Engineering and Computer

¢
Sbiénpe develop equipments, methodologies and systems  for

automatic speech-understanding. Ally these fields "bring

"contributions ta the new field of speech.science.

. »

.
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» Speech recognition ~can be generally d&efined as -the

process of transforming the continuous acoustic: speech

, . ,

signal ipto discrete representations which may be assigned

- b N

x

proper meanings.and which, when copprehended, may be used'to.

affect responsive behavior. 'The ultimate goal is to

-understand the input sufficiently ‘to selectand prodube\aﬁ .

. < i

Y

appropriate response..
® .
joo

1.1 The Genéralities in Speech'?rpduction'

, A : .
Human voeal tract consists of the pharynx, the mouth or
4 A w

oral® cavity and the nasal cavity. It is convenient to

- -

. L -y ' :
describe the acoustics of speech” produ@tion in terms of

three stages. First, through'interaction between'airflow .

—— .
from the lungs and laryngeal and supraglottal structures, a

-

source of acoustic energy- is created. TBhis acoustiec source

may be one of several types, and may have several possible

)
Sl A
.positions. The source acts as the excitation for "the
. . ¥
cavaties above and below +it. Each cavity ,has its own
resonating characteristics., The filtering that i's imposed

on the sBurce by the vacal' tract. cavities 1is the second
sfége’ in the generation of speech sounds. Finally, speech'

sound is radiated from the lips and/or the nostrils [2j,18].

I 4
.

If the production of speech sound ch be modeled as a

.

¥y

linear system, then the pressure variations recorded outside w

at some distance from the lips will have a spectrum that is
N .

the product of the source spectrum, the vocal tract transfér

¢ . -

‘v,
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according tg their modé of excitation [1].

broad-gpeccrum

function, and the radiation charactey&stics.

e o N . 3 .

*
Speech ggunds can be classified into 3 Qistinctf classes
= L 4

'VOICED SOUNDS,

TENSE FRICATIVES or unvoiced sounds an@ PLOSIVE SOUNDS.

~

Voiced sound are prodﬁced by forcing air through the giottis
with the tegnsion of the vocal cords adjusted so that they
/4Zn A4 relaxation

vibrate oscillation,. thereby producing

quasi-periodic pulses of air which ﬁfcite the wvocal tract.

‘Unvoiced sounds are generat®d by fgrmin'g a constriction at
-

'3

some point in the vocal tract ( usually .toward the mouth

end ), and forcing q{?’through‘the constriction at a high

g;ough _veloc1ty turbulence, thls creates a

A

te produce

. ¥ .
noise source to’ vocal tract.

)

excite the

Plosive sounds result from making a complete closure

( again, usually toward the front of the vocal tract ),

'bULidlng «gp pressure behlnd the closure, J4and abruptly

»
v releasing jt. The resonance frequenc1es of the vocal tract
) aae.called.FORMANT FREéUENCIBS or- simply formants.
. a | . :
t\;\ The formant frequencies: depesd upon the shape and
. ' - - K ; . J—) .
. dimensions of ° the vocal ;ract:&each shape is characterized
v M I} ‘ : .
. by a seb of formant £ uencies. Different sounds are
! / ¢ . . ‘w‘ ' . H
formed by wvarying the iijpe»of the vocal tract. Thus,the
. : - . o
spectral properties of the speech signal vary with time as
' the votal tract shape varies.
. 4 ’,
N o
»
7o .
‘r’ . )
~ . s
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*1.2 Speech Analysis@ B ’ -

)

. Speech analysis mentioned here only means acoustic

processing and phonétic analysis ( APPA ) in a speech

-

;égognition system. The objective of an APPA component is
A >
to accept the continuous speech signal as input and produce

as.outbui a string of discrete units that are often phonetic.’

-
.

in size and nature, These strings are then .accessed by

1]

other compgnents of the system to perform lexical,
syntactic, and semantic analysis in order to decode the

J .,utterance. ‘ ’

~t

3

Thé first questions to be asked when designing an APPA
3 .

component are_ : how the speech should be represgnted: wiat

%' parameters should. be used for phonetic .processing ; and how

~

‘these parameters could "be extracted reliably. -In “this
~ '
v . - . .
section, we, will answer theseé questions 1n a brief way

41,0251, v ° . \ . a

i

"1.2.1 Time-and Frequgpcy~Domain'Representations
- .

-
- of the Speech Sigqal
[ v - b. e ~
. Dué to ®he increasing availability of digital computer -
: “ i ,
and the advantages ©of .competer * environments, most

- 13

. researchers in speech re&ognition nowédays choose digital
p;Bcessiqg techniques ‘over ‘analog. The speech signal is
usually sampled and ’gigitlzed using - an ,analog-;o—digital’hl-

(converter, and stored‘ln'compute;., The éampl;ng\rate used

varies fLom‘6 ©o 20 kHz, and usually 9 to ;6 bits are used

+

L4 ‘ -~ . v
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to represent the speech samples.

Given a -digital representation of the speech signal,
various parametric representations can then" be derived.

. : o co s
Certain  parameters,such asg_ zero-crossing density-. and

fundamental fregquency of’voicing ( FO y, can be derived in

- v .

the time -domain directly Erom the speech signal. On the
other q?nd, expe;ience has shown thats frequency-domain
repre;entatidn of the speech signal often provides greater
insights 'into the relatibnship between the articulatory and
the acoustic relizatidns of speech. For exampde, spectral

peaks in non-nasalized vowels ‘,can, quite relliably ‘be
i ¢ : ’

Il L .
correlaged with the resonant frequencies of the vocal tract,

and the frequency location of the major energy concentration’

in a plosive release .gives good ihdicagions- about the

location of the consttiction-in the gyocal tract. It 1is,

-,

therefore , often desirable to obta+n the shdrt time.
) ’ ' e

-

spectrum of the speech signal.

Short time Spectrum’analysis has been one of the most

impottant speech'proceSSing techniques for many years. Zhe%

* fundamental assumption underlying this and any other short

time analysis 'method is that over a long time’ interval
. % ' ..
speech 1s nonstationary, but that over a sufficiently short

time interval, it can be considered stationary. Thus; the

Fourier transform of a short segment of speech should give a -

good spectral representation of: the spegsh during that time

1

interval. Key perceprual aspects of the speech s3ignal are..

} . - .
. . s

s 4 N parrn A v ¥
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" more evident in its Fourier transform. Two methods are

commonly'useq‘for impiementing short time Fourier analysis.

rw

The _ first uses a bank of bandpass filters. The second uses
a fast Fourier tansform (FFT) algorithm. When implemented
on a computer the FFT method is generally computationally

superior.to the filter bank model.

'
~

.
.

The prevailing iechnique used in APPA s§stem to obtain
the sho:t-time spectrum of the signal  is 'the linear

predlc l?ﬂ or LPCn technlque. .LPC is based on a. specific

speech productlon model, namely that speech is produced by
all-polesydggital filter that is excited by a periodic

l! . . n A .‘
impulse. train for voiced speech and random noise for

.

. unvoiceo'speech. To the extent that this production model
is.'valid, estimation of the short-time spectrum of speech
~ can be reduced to a problem of detefming the coefficients of

the all-pole filter, since the filter coefficignts uniquely

specify ‘the transfer function. .

The reason for using the name linear prediction analysis
o ! ) '
lies ip the. fact that, by ¢ pcsing- a minimum mean-sguared

error criterion, estimatioo/ of the filter coefficients

-

reduceé, to a solution of a set of‘P linear equations, where
P is the order of the all-pole filter. The set of equafions.
, - .

has éerﬁaiq'ﬁmathmatical properties that greatly reduce the
computational complexity of the algorithm.




There are several '‘advantages in choosing LPC over other
spectrum analysis procedures. First, 1linear prediction
seperates the periodic excitation in voiced speech from the
combined effect of the '9io;tal characteristics. The
harmonic structures in the original short-time spectrum are
therefore removed. Secondly, by choosing the order of the

predictor to adegately reflect the number of ' the .formants

within the fregquency range, the peaks in the filter transfer

. »
function often correspond well with the actual formants.

This property greatly reduces the difficulties associated
with the estimation of formant trajectcries in. continuous

speech.

Figure 1.2 compare burst spectra of a pronunciation of
the plosive sound\(d/ obtained'by variﬁus spectral smoothing
techniques :‘(a) and (b) by windowing (with different window
leﬁgth R and fourier transforminé the waveform. L) by
linear prediction. 1In Figure l.2(a), the effect of glottal
periodicities can be seen as tée ripples superimposed. on the
spectral envelcpe. ' These fipple are greatly reduced in
Fiqure l1.2{b) because of the spectral smearing of ¢the the
wiée frequency window. In Figure 1.2(c) the effect of the
glottal excitation is removed by a homomorphic technique.
Since the linear prediction aEalysis is based on a specific
speech production modeI and Lhus limits the number of

spectral peaks, there are no extroneous peaks in Figure

1.2(c). If we compare the locations of the spectral peaks

.

- ' é\ﬁ/’
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with the actual values of the forﬁants,

spectrum derived

from linear prediction provides good formant information.

‘e 1.2.2 Parameters for Phonetic Analysis

\-c.' ' . ‘
In this section, we shall present a representative, but
Wy no means exhaustive, list of such parameters, and comment
(8¢
.on the{i relative merit for phonetic analysis.

4 »

Zero-Crossing Density

) Early work on recognition relied heavily on the use|of

zero-crossing density, i.e., the count of zero crossing |of

", the speech signal -in a 'given interval,.~to perform

This is partly due to the fact that the

-

7~

. " ® Although it is difficult to associate zero-crossing density

N

‘\

3

\,
\

!

N\

‘Although the above justification 1is theoretically sound,

analog hardware.

a]gorrthm// can easily be realizedegipe

.

directly with the underlying acoustic and articulatory

correlates of speech sound, several efforts i phonetlic

recognition, have -+ reported promising results using

zero-crossing density, and modifications. as the primaty

segmentation parameters. ‘

N ' (\[\,/’
Fundamental Frequency of Voicing

2

During the production of voiced sounds, the vocal cords

are set into wvibration. The fundamental frequency af

voicing (F0O), therefore,.can be used as a voicing indicator.

fundamental freéquency has not been widely used in segmentgl:
(
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P

: a .
analysis for several reasons. In the segmentation of vowels

and sonorants, there exist ‘acoustic parameters such as-

low:frgquency energy that are 3just as robust -and much ¢ P

simpler to derive. 1In the case of English consonants, the

_voicing distinction lies more in the du:étional difference

than in the presence’of FO.

Energy Related Parameters&\
*,

One of the most important characteristics of the speech

.

3

'signal is the fact that the intensity varies as a fgfs;ion

of time. Sharp intensity changes in diffe:ént:fgédbency
regions ofteﬁ sighify the boundaries be&ween speech apunds.
For éxample, low overall intensity usually signifies eithé;
a pause, a stop closure, or a weak fricative, whereas a drop

in mid-frequency intensity in a vocalic segment usually

indicates the presence of an intervocalic conscnant.

Formant Frequencies and Trajectories

»

It is well known that the first three formants for
vowels and 'sonorants carry important information about the
articulatory configuration in the production of speech
sound. Steady-state wvalues of formant freguencies can be
used to <classify vowels ‘;nd sonorant consonants. In
additioms -~ formant . trajectories can bhe wused to classify
diphthongs and for characterizing the place of articulation

%f plosive sounds. Formant transitions in adjacent vowels

can be used to determine the place of articulation of

] ‘ °

N
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consonants,

‘ |
Gross Shape Parameters

-Sgme of the acoustic characteristics of the spééch

events, such as production of fricatives and onset of

- .

élosive release, are Pest characterized- in terms of the
gross spectral shape, as opposed-to the frequency locations

. \

of the spectral peéks.,

*, 1.3 Computer Model for Spdéch Reéognition

&

f Speech recognition 'is a part of- a broader speech
/ ' ‘ .
; processing technology also involving computer identification

or verification of speakers, computer synthesis of speech

and production of stored spoken responses, computer analysis

S

of the physical and psychological state of the speaker,
‘ 13

efficient transmission of spoken conversations, detection  of
speech pathologies, and aids to the handicapped.. Only the

task of machine comprehention. ‘of the intended linguistic

. . ~
message is considered here.

. N
‘Accordirg to the complexity ©of our task, we usually

‘choose the model which we are going to use ‘for speech

decoding between two different types : a passive model or an

¢
’

‘active model.
£ S
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- In the passive model, as_shown -in Figure 1.3.1, Lhuman

receptjon of speech is viewed as consisting of sensation
followed byfﬁ%rgeptiona followed by ecognition. Sensation
deals with the raw signal, perception classig;es the
sensation into Qord; or objects” ané cognition eitaglighes
'relationships among the words or objgéts./ This médel-has
been uééd for design}ng systems for the recognition of
isolated words and consists of th? acoustic preprocessing,

" feature extraction, and pattern matching. ~ftw

n

-

It is clear that human listeners use éxpectétion' for
understanding what is being said. In a model of such

behavior, all facets of the listener's knowledge, such as

syntax, semant%gs, pragmatics, phornology, are uded to aid,

- ,
.the decoding. Human perception is thus likely to be .ap

ac;iye process in which cognition may even guide the lower

" levels of decoding..
S \ % , .

"An active model, as shownsin Figure 1.3.2, for speech

understanding involves the ' representation of knowledge at

»
3

- various lievels ( Knowledge Sources : KS ): a procedural

-‘iﬁowledgé _containing rules on how to use the KS éffectively
in order to solve the problem of interpreting a\SLQnal and a
“set of//data structures where the 1nterpretat10n hypotheses

are wxltten. An essential feature of the active model is

that cognition and expection may drive decoding [7].
~ -

-
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3 1.4 A Brief Histor§‘of

. The problems which

Fl

recognizers so hagfd is

ways. Also,

17

LY ' -

Automgtic Speech Recognition

make the development

that, different people

of speech.

speak in

, different a noisy acoustic environment may

)
interfere with reliable interpretation of the acoustic

1

speeth 'sigpal. In addition, even the same single talker

// ' will vary from time to time in his pronunciations. The

-~

problem is complicated considerably by the complekities of

naturelly flowipg connected~speech.

L

If the problem could be carefuily iimiteé: l by
- r “restrictihdz the population of speakers, working with good
acdhstic conditions, and avoiding the complexities ?f fluent
speech, then perhaps some initial capabilities could be
\ demonstrated. fhus, the early histroy of spegch.redognizers
~" focused on isclated word recognizers, Qgiéh could Identify" -
which dwgrd from a small quabulary was spoken, when{
sufficiéntléilence‘preceded and followed the word, to assure
. “easy detectiornvof word boundaries and avoid coafticulatory

effect, between neighooring words. . .
N

-

\ 1.4,1 Begf;ning With Isolated Words Recognition

- X In 1950, the first attempt at automatic speech
g\ . . »

4
recognition was described by Dreyfus-Graf [17]. In his

4 o

‘; ‘ . 'stendsonograph', the speech signal was passed thiough six

t .
bawggass fifZZ:;$ The low-fregquency sound like vowels were
(deflected to . quite déffergn; spots from high frequency
%

- !
- ‘ ~

— . S
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sounds like fricatives. - Different sequences of sounds gave —
different tracks “around the screen. In 1952, Davis,

: Biddulph, and Balashek of BeBl Telephone Laboratories&j}

developed = the first completegy speaker-dependent digit

"recognizer [18], which divided the frequency spectrum into v
two bands, above and below 900 Hertz, aﬁd counted how ofTen T
. . the two signal 1levels passed thmough zero volts ("axis’
crossingf).’ Ovef 97% of the time, the machine correctly

identified which of the ten words was spoken, when the
¥

pattern had been stored for that particular speaker.

‘ A very important event in the history of isolated speech .
| recognition happened in 1958 when Du@ley and Balashek built v
a ~ recognizer. The major aspect o¢f their syséem'was the
segmentation of words into phonetic units. Almost perfect
_recognition accuracy for iﬁdividdrél speaker was reported. .

~

~Performance dropped drastfcally‘for other speakers [19].

~ »
The first work using a digital computer came at around
1960 [20]. Denes introduced the important concept of time
: -

normalization. From then on, speech recogrition researches

advance very quickly. - In 1972, the first commercial
- products from Threshold Technology appeq;ed. Table }.4.; ;
A;hows some ratlier impre s%ve'recognition scores repoted in l
recent yéars for severa) commercially availaﬁle recognizer§
v [22]. o K | Y -
r~ . ’ e
. . ] | - )

J
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1.4.1  Representative recognition scores

' PR
- . for some isolated word recognizers
N - ’
. . MACAIR OF PERCRNTACT ¢
LAY WMETR OF WORDS CORRECT
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. , - s X
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. o
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effective within some Iimits. Expanding’ the vocabulary and
M I - - . ' .

. . _— . # .
the . needing foE speaker independency become the major tasks

in this area. .

< .~ v ' .

o »* Recently, prototypes are developed for -~ the recognltlon

}Sg ' " of isolated words. A‘~low cost boards compatlable wisy
, g

personal computers have beéﬁ produced by many companies.

Among  them it 1s  worth remembezlng VOTAN and * TEXAS

INSTRUMENTS. - Procotyﬁes‘-are avallable . for dictaérng

machines ( IBM, KURTZWEILER ) capable of accepting thousands
- of wéfds in a speaker-dependent way and in syntacpically

constrained protocols. ~ .

1.4.2 Ssteps Toward Continuous Speech Recogmition*

: In the late 1960's ' and ‘early .1970's, several maﬁor

P ‘ .
projects were undertaken tg-develop appropriate technigques
for' recogrition of .connected speech. ‘Otten [21] proposed

the apgélcatloﬁ cf' syl‘ab*c un:its, proscdics, and a, finite
o . \
" state }anguage (Markov Model) to represent the structure of

#

.speech dla;ogue with a mach-ne. Several projects invclived

the phonetlc segmentaw#on of ‘centindcus speech _ Reddy [22],

fpr example, reportedly achieved ~over 80% correct

5
i

identification of - phonemes in nonsense strings and.

mmeaningful ph¥ases. . .

\ ) ! "M .
. *
’ L 4

In 1971, the largest project -.ever’ %ndetaken in speech

»

.

. IS ‘
N recognition was begun, when the Advanced Research Projec:s
, 2

.
S AR e amt N W Pihe § meie PE SESRT Y 4 et e e

. ®

» .. These commercial- ava11able_\$peech reeognlzer///are'
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Agency (ARPA) of the United States Department of Defense

‘started a 5-year project to develop machines that capable of
"understanding" continuously-spoken .sentenéé; involving
‘looo—word vocabulary. ARPA SUR project callealfor machines
'that would accurately (i.é., for over 90% correctness)
accept, continuous speech from many cooperative speakers,
with near-ideal conditions of quiet rooms and ,high—fidelity

.

equipment, Around this time, major advances had been made

in computer technology and "Artificial Intelligence", &uch’
‘ - ' , A

as’ procedures to have . computers make

logical deductions and inferences, fecoénize patterns and

‘rapidly search among thousands of alterhatives to find the

best solution to a problem. . < . i N

v

Later on many systens were built with excellent phonetic

>

seghmentation results. Another very interesting higﬁlight

work is the use of Syntactic Pattern Recognition schemes,
' 4

> —

which model speech waves by strucfural features or units
whose éompositién and combinations are determiqed By
syntéctic rules { R. De Mori, et al., 1975 ) %23]. Around
tﬁis period, Itakura {24] introduced the now-popular
techniéue of dfnamic programming for time normalization, and

1

he definéd a new metric for comparing frquency spectra.

Now, there are many substantial p%ogress toward limited
Ao ) - T
versions of the challenging goal of recognizing continuous

' speech. Table 1.4.2 lists several studies which dealt with

restricted (l.e., hign farmacted ) word sequences [22]..
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Table 1,4.2 “Performance of recognizers

. connected word sequences [22]
, .
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reéognition can not-be measured by increases in recognition

23
A -
©1.4.3 Summary o

The progress in over thirty years of work on speech .

accuraty, though,'there/lhas been some' progress . on that

pérfb;mance facﬁor. The primary gains have béen madé in the

complexities’'of the ‘tasks that have been accurately handled.

Some highiights_in the history of speech recognition can be

seen in Figure 1.4.3.

@ a

In,.iéolatéd word | récognition,n‘iocabplqry “sizes have
inéfeased “from ten to sederal. hundred Qoras; . highly"
eonfusable words have. been distinguishé&g syntéﬁ trees have
been intérpopa&ed xblfestrict acceptabie‘next words to be
withiA small sub;vocabulariés; improved ‘adaption to
individual speakgrnana speaker—indepénaent’syétems.have botﬁ'
been developed; efforis ;of some eﬁv}ronméntal conditions

have also been produced,‘ and applied” in practical

interactions with machines.

. Q_Q * , ) R
Expansiocns to imited forms of cqﬁélnuous speecn have

yielded a ng modestly successful  systems for ‘key word

spotting, a’ number of fairly effecxiﬁe’laboratéqy syéteh and

commercial prdducts for reéogniting digit. strfﬁbs and
S T ik : .
strictly formatted word "sequence, and some limited but

encouraging systems for .sentence understandifig. ’ ,

.
»

)
P ,
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Table 1.4.3 Some highlights in the history
' of speech '"'recognitdon

EARLY HISTORY

1847 SOUND SPECTROGRAPH
1952 DIGITS.USING WORD TEMF_ATE.! SEEARER

1956 DIGITS.USING PHONETIC SEGUENCES

196l GlGITS.DIGITAL COMP.TERX TIME NORMALIZA™1ON
1862 1BM SHUEBO~ necocwxzsg ’ ‘
1964 WOKL RELOGN}ZER FOR LAEAMESE
~\=9c§ VOWE.S AND CONSONARTS DEVETTELSIN CONTINLOUS
. SPEELH (Ao, FUR AIGr-LBLEL LINGLISTICS
e 7 vLILE-ALTUETED ASTéUN»;”uMQpEquRXNu UNIT

~

Y9€c , 54-wURLI RE(OGNIZER,,
~ U DIGIT STRING' (216 ZCDE, KETOGNIZER .
VILENS £0-500 wORUS

s

- ]

Tt ‘ RECENT HISTORY

+ ' * . N .

1965 . VICENS-REDDY RECOGN]ZER LF CONTINUDUS SPEECH '"X

, PIERCE S CAUSTIC LETTEX OBUECTING by
TD SPEECH RECOuUNITION al®w i
“UUMAD SCIENTISTS AND UNTRJSTWORTHY ENGINEERS
197 e \ . .
fg71 ARDA SPEECH UNDERSTANDING 5-YEAR PROJECT.
) D _r3TEN Bl oDERS .
. . 4 RESEAKLn EFFDRTS

YNDERSTANDING  OF TONTT1nudJSLY~SPOKEN
©\| SENTENCES. W00 WORDS
A 3

Td7. Y 1st CUMMERLIAL WORD RELLWUNIZEW

) 130 WCADS w. PRONGLOGHCA. CONSTREINTS -
’ ~ : .:1:: . |

1974 g!nnu;» PROGOIFAMMING (200 wokD3,

‘ TELEFrLKE, S/YGEN MASR Orv3EN MASA
127t Lt AUPRRBET 4.3 UIGITS: ©1 WORDS w/Dvh, PP

L MULTIFLE TALeER, NGO TRAINING -

Sl ) hRea 2YSTEMS, nAki«v‘nEAkS.Av,an.ﬁ, ~

', v1C1 W/ 182 TALRERS{97%), TELEPMINE

RN CH™-CUMEATIABLE vEITE TERMINAL;TRI-SERVICES, REVIEW

1978 1BNM LONTINLOUS SPEECm RECOGNIZER

195; + 1BM, KURTWEI_ER PmONETIC TYPEWRITERS
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1.5 Motivation and Task of This Research

-

Our purpose is to build up a multi-speaker computer
Pag
recognition system for connected 1letters {( unformatted )

. ¢
belonging to the following set : . \

. [ El = (P’T,KIBID’VIEIGI&’3) ]

which is based on specific ~ knowledge about the acoustic

-

properties of the features to be extractedf?

Our main considerations are in the recogﬁftion of
cgnnectedly spoken ietters. We started by collecting a
natural speech data base which eon ins stop-vowel syllables
from several talkers ( 5 male and female ). An active
model of speech recognition has been used in order to apply
a focus of -attention paradigm for recognition. The reason
is that information'about plosive sounds is mostly encoded
in a short transient before the following vowel. As in the
case 'of letters of the El-Set, the vowel is the same for 9
of the elements of the set and /k/ congains a diphthong of
front vowel; global methods, the other approafh, may give a
too‘high importahce‘éo vowel different as due to different
speaker characteristics. This partialy justifies low
recognition rates ( below 50% ) developed so far using

global méthods in a multi-speakgi‘environment.

L U

V4
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e s et gy a5 2 B UMBAY Basr A o 1 shews sme o

-



-«

CHAPTER Il , .

PLOSIVE SOUNDS .

:

. s X
Speech contains many redundant cues, }&Q;éh aid

w < '

perception in adverse circumstances such as a noisy
environment or a speaﬁer with a foreign accent. Speakers
usually take advantage of this redundancy, articulating more
clearly when the need arises, but speaking moré& rapidly and

césually in more . informal conversations. Perception

: o . . :
experiments have attempted to determine the nature of these

cues in the acoustic waveforms of speeéﬁ, in particular,
.acaqstic—phonetic cuei which may be invariant to context or
speaker . Figure 2.0 shows thé phonetic feature of eacﬁ
phoneme o% American English. Suffic;;nt cues have been
discovered whigﬁ can describe ,a great deal about the
perception of phonemes within a language, ?ut the cues are
often not invariant with ré%pect to phonetic context,
stress, and speaking rate. The listener may be born with or
develop certain fe?tu{e detectors, whiqh could be invoked to

classify speech sounds into linguistic categories which

' &iffer by .one or-more features.

-

2.1 The Acoustic Properties of Plosive Sound

14

The plosive ysounds, or stop consonants /P,T,K,B,D,G/,

consist of voiced and unvoiced stop consonants. , TRe voiced
P .
stop consorants B,, /D/, /G/ are transient, noncontinuan*

2
'
3

.
.

mpeemon: 1, LB 0 S TR TRt £ G Aract i o A
*
-
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3
5

sounds which are produced by building up pressure behind a

. total constriction somewhere in the oral tract, and suddenly

}eleasing the presgﬁre;' For /B/ the cofhstriction is at the
lips; for /D/. the constriction is back of the teeth ; and
for /G/ it is .near the velum. During the period when there

is a total constriction in thé' tract, there is no sound

‘radiated from the 1lips. However, there is.often a small

[

g .
amount of low frequency energy radiated through the Wwalk of
the throat { sometimes called a voice bar ), this occure
1 . N .
when the vocal cords are able to vibrate even though the
~

vocdl tract is closed at some point.

[

The .unvoiced stop consonants /P/, /T/, /K/ are similar
to their voiced cognates /B/,/D/, and /G/ with _one major
exception. During the period of total closure of the tract,
as the pressure builds up, the voiced cords do not vibrate;
thus, following the period of cjosure, as the air presfure
is released, there is a brief interval of frication ( ?ue to
sudden turbulence of the escaping air ) followed by a period
of aépiration ( steady air flow from the glottis exciting
the resonanéeé\gf the vocalztract ) before goiced excitation
begins. Fiéure 2.1 shows the place 6f'articulifjbn of th

-

stop consonants.

Generation of these -consonants depend§ upon vocal tract
dynamics. Since the stop sounds are dynamical in nature,
their properties are highly influenced by the vowel which

follows the stop conscnant {5]. o,
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2.2 Perception qf Manner of Articulation

Among the distinctive features, those dealing with
manner of articulation are perhaps the least controversial
and simplest to e€xplain. Manner perception concerns
acoustic features which permit\‘the listener to clas;ify
speech into one of the following _categories : .vowels

(including liquids), glides, nasals,’stops, and fricatives.

a
s

Vowels are perceived when the -speech sound is voiced,

with suffiéient amplitude and duration and a‘sE§QQ? formant .

}

strugture { the: lower formant excited with relative'narrow\wﬁ_,

bandwidths ). Glides can usually be distinguished from.
v o L ’ : , £
vowels .by weaker amplitude, briefer durations, and -a greater

tendency toward dynamic spectral pattern.  Nasals can ke

distinguished from vowels by their weaker amplitude, wider

bandwidths, and higher concentration of energy at
frequenbies.\ Sound with high frequency noise of sufficient
duraticn are perceived as fricatives. Stop; of course, a

% ¢ ’ i
heard when a period of silence interrupts the speech .signa

L

or a brief pahse‘gi followed by a sudden, Short burst

noise. P : .

-

;:\ crucial features which separate these manner‘classe
involve amplitude, duration, general formant structure,
the balance between low freqguency voiced %nergy and high

frequency frication. The most basic factor invelves whether

e et e § e s e ey St GEY Lyt RSt e e, e . -
18 :

.
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m,, Cof
the, sound has an aperiodiy
X , :
’
fricatives ). We call those acoustic cues which are mainly
v - .
telated to thé perception of manner of articulation as

component ( st s(Kan

~

-

manner cues.

*

- In Table 2.2 [2], we give out an example of manner . cues -
. “ N ‘ .

.which describe the shape and speed of all formant -

- v

transitions (1 aﬁd 2), the locus or starting point of the
e . ¥

L3

first foFmant (3 to 6), presence gnd duration of turbulent
i po;se (7 and 8), preSence and continuancy of formant-like
periodic 1links (é to 11), and éix cués for- the voicing
distipction. These six cues gre the duration of a hold
(12{; length 9f theiﬁ&eceding vowéi (13), cutback describing
the'eliminaE{g;ng the initial poréio;v;;~:;§\first formant

{(14), .intensity of a turbulence (15), voice bar within a

hold or a tufbplen&e‘(l6), and aspiration (17).
Loty ' .

The most- common perceptual confusions due to errors in

°

' d
~

manner » of ‘¥articulation involve the nén—stridqnt voiced
{
A—fricativ%f and voiced stops ( especially /b/ ), and to a

)

lesser  extent thgirA unvoiced cognates. The(non-strident
fzgcathes are sufficiently weak that they are often hard to
diét}nguiéh*\from a stop,. especiall§ a labial stop, which is
. usually weakly released and has formant tréﬁsiti::s similar

to tHose of the labial and dental fricatives.
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Tab%e 2.2 Acoustic cues for manner of articulation '4”

>

o

» ®
1. Direct formant transitiony / reverse.

2. Fast formant transition / slow.

3. Fl locus at 0 Hz-/ riot at 0 Hz.

\ L
4. Fl locus at 250 Hz / not at 250 Hz.

- .

! 5. Fl lotus at 400 Hz / not at 400 Hz.

-~
o

6. Fl locus at 700 Hz_/ not at 700 Hz,

7. Turbulence / no turbulsnce. -

8. Short turbulence / long turbulence.

9. %Pw pefiodfg*l;mkh7’no.low per: links.
10. Discontiguous links / éontinuous links.
}i.,shorx hold / lgng hoid.

12. High‘beriodicslinks*/.no high per. links.
13. Long preceding vowel'/ short pféq.'vowel.

14.  Cutback / no cutback. oA

15. Weak turbulence / strong turbulence.

, ' ) .
l6. Voice b7j// no voice bar.

17..Aspiration / no aspiration:

o
~

|

$
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2.3 Perception of Place oE/Articulation

i

The deséripfion of the acoustic cues to place of

articulation of stop in the past has  been based on two

’

sources of information. In one approach, the acoustic”

properties have been calculated from theoretical model of
the stqp‘\consonént articulafory gestures. In the other,
acoustic correlates have been measured from sauﬁd
spectrogfams or estimated usiﬁg~other analysis techniques
?10]. Although a great deal of detaiied. knowledge has

accumulated  over the years, it hgg“been difficult to verify

particular sets of acoustic properties as both necessary and

sufficignt perceptuél cues to place of articulation for the
o

human listener [11].

. .

The place cues 1in Table 2.3 describe the locus of the
b4 !

second formant (1 to 4), the locus of the_ghird formant {S¢

tc 8), and spectral energy distribution of .a turbulence or

4

burst (92 to il).

3 \

The, acoustic cues for place of articulation in stop

consonants have been basically thought to lie in two readily

observable acoustic segments, the release burst and the "

formant transitions. Many "investigators have madé the
. v ..

assumption that these two segments are independent and

separagble [12] [13], but the others have assumed that these

acoustic segments are not separable at all but constitute a

inltary cr-integrated acoustic stimulus for specifying.
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Table 2.3

10.

11.

o s e e

s
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‘place 'in stops [8] [9].

0

' The premise that 'the release burst and formant

<
transitions are separable degéves primarily from the

A\

apparent distinctiveness of their visual répresentationsg i
ostillograms and-same spectrograms. Typically, the spectral

properties of the burst have been examined and measured

‘primarily from sound spectrograms and perceptual cues have

been described in terms of change in frequency over time.
Many speech perception studies have "been carried out over

years to verify the role of these acoustic «cues to place.

\ ‘

., )
The results of studies investigating formant-transitions in

Fl

isolaticon or ' with bursts have shown that the .acoustic

N o~

information for place of articulation varies /with the
following vowel context. In contrast, other studies have

focused on the burst in a limited number of vowel contexts

r

and concluded that most of the plaée information is located

-

in the release burst. The more general conclusion has been

that both the burst and the formant transitions contributew

+
to 'specifying place information in a complementary way

depending on the following vowel context [15].

Al

Both Fant [26] and Stevens and Blumstein (9] [28} have
arqued that the acoustic information fon specifying place of
articulatign is independent of vowel context and 1s located
in the first 10 to 30 ms of the stop consonant‘waveform and
invariant acoustic‘properties'for plrace can be found 1n  the

] L}

gross  shape of the s rum at the znset >f -ne re_2ase

&

i‘-—-—-..
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burst. Some experimental findings by Stevens and Blpmstein

have been interpreted as support for this vYew. Bué their

results showed that the fairly accuracy éaﬁ be get only in

stops in. ' syllable-initial position, not of stopé in

syllable-final position. Nevertheless, these particular

claims motivated several aspects of * the. present

investigation. The otﬁer‘reseaﬁphers further claimed that

descriptioﬁs of these acoustié cues mugtd include ' both

spectral and temporal propertie§ in order to capture the

relévant temporél differences associated with the underlying

artiéulatory gestures [11]/{8) [26]). This conclusion is
[ 4

dlso in g?neral‘ agreemént with the views of Liberman and

other investigators at Haskins "Laboratories 4&hg :ﬁave

.emphased - the .dynamic nature of the speech cues [27} [15] -

N,

[29] [62].

In our research work, we have employed this. new point of
view that argues for the existence of invariant cues for the
perception of place in stop consonants.

“

2.4 Stop + Vowel Stimuli

-

In the case of unreleased plosives in VC sy.lables,

spectral transit:ons provide the sole- place cues. For

released plosives in CV syllables, the situation is more

" complex, since acoustic cues for place of articulation in

the bur re.ease, the spectral behavior during the. ensuing

asp:rat.-pn per:>d, and, i:f fcllowed by a voiced phoqﬁme, the

.o ! . x

b
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aspiration duration, as well as 1in spectral transitions
N ‘ . o
during adjacent phonemes.

kJ
‘

Early 'research found evidence of a "starting locus" of
F2 for each of‘/bpd»gy in the perception of two-formant CV

stimuli. With F1 having a 50-ms rising transition (typical

of all voiced stops), if F2 started at 1800 Hz, /d/ was

heard, whereas an initial 720 Hz caused /b/ perception. A

¢

3000 Hz start yielded /g/ for most ensuing vowels, but for

high * and mid back vowels, a lower locug was necessary.

N * »
Generalizing, one can say that rising F2 indicates a ,labial

stop, relatively flat F2 tends tc be heard as alveolar, and
a falling F2 yields velar perception. In all cases, it was
necessary however to eliminate the first S0 ms of the F2
t%ansition (so that the transition "pointed to"'flhe locus,

rather than actually started there), otherwise different

stops would be heard.
. ' 4
The difficulty here lies in extending the results of

" this study td natural speech, which has more than two

formants. Many two-formant CV stimuli lack natural quality,
and provide listeners with ambiguous phonetic cues. There
is evidence that; for CV stimuli from natural speech, stop
burst and ensuing formant transitions have “equivalent
perceptual weight and act in complementary fashion depending
;pon context. When formant transition are brief, due to
short articulator movements or due to anticipatory

coarticulaticn, the release burst lies near the major

Id

. ~

3 ' : g

ER Y
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spectral peak of the following vowel and contributes
significantly to placd perception. Conversely, where
formant transition are extensive, the burst is distinct from
the vowel spectral peaks and tﬁeaformant transitions are

more important for stop place perception.

& . . . .
When the unvoiced portion of plosive+V and V+plosive

stimuli are removed , listenersgidentify the consonant less

accurately for the CV case, since spectral “transitions .

)

dgging the aspiration are absent. This ig éspeédally'the
case for uévoiced'plosives, with their 1long VOTs (voice
onset: times). Recent studies have noted that,- although the
primary cues to place are found in spectral behavior, VOT
and amplitude also hav% effects on place perception. When
F2 and F3 transitions give ambiguous cues, VOT duration ' can
help to distiﬁguish labial from alveolar stops. Changes in
spectrum anlitude at high frequencies (F4 and higher
formants) have also been found to reliably separate labial
and alveolar stops : when high frequecy amplitude 1is lower
at stqp release than 1in the ensuing vowel, Jlabials are
perqeivedﬂ

\
.

It has recentlf been argued that certa;n aspects of
spectgal pattern of releases in stops distinguish place.of
a;ticuldpion: The concentration or spread of energy
(diffuse wvs. Compact) and whether the main spectral trend

is rising, flat, or falling:+ with frequency have been

suggested as crucial spectral aspects. These
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Table 2.4 The characteristics of the gross

spectral shapes of plosives

A

L I .
N ‘\ " -
- w PLOSI'%‘\EJ : PHONETIC FEATURE BURST SPECTRAL
. | !
Y AT labial tense diffuse falling
/T/ S alvelor -tense diffuse rising
./K/ palatal tense compact
. /B/ -labial iaﬂ‘,; " diffuse falling
K /D/ aivelOr lax hiffuse rising
’ /G/ pa}atal lax compact

s ey Do o A

iy, o pmienns -

o
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characteristics €for the distinction between plosive sounds

have Béen shown 1in T?ble 2.4. Our experiment has similar
results, they can be seen from Appendix 1I. M;nipulating
buzz-bar détection, burst spectra and starting formant
frequencies led to unambiguous place iéentification among

stops when the onset spect}a were either :digfuse—failing.

diffuse-rising, or compact.

\ o

Thus the gross properties of: the spectrum over the

‘initial 10-20 ms of a stop consonant may provide inyariant

cuea to place perception. When the ;nitial spectrum is

ambiguous (e.g., diffuse, but flat), we can utilize formant

transitions to distinguish place. Such tradsi;ions

temporally link the primary place cues in the stop release

to. the slowly-varying vowel spectrum, with no further abrupt

~ spectral discqntznuitieéqafter the stop release.  In this

view, the formant pattern act as secondary cues, which are
involved when the primary cues of the release spectrum are

ambiguous. N

2.5 Summary

The specification of the acoustic cues to-place of

articulation in stop consonants has continued to be .a

‘ T . .
prominent issue in research on speech perception. But, it

1s obvious that the hope of finding a one-to-one
correspondence i% natural speech between invariant acoustic

cues and \phcnemes has not beén_lfulfilled. Therefore the

N



question was raised as ta\whélherkgggre is at leastva,simple
relationship between acoustic cues ;nd diétinctive feaéures.
Distinctive features are characteristi&e of phonological .
segments which compose ;he phonemes of a language. Several
systems of distinctive .features _which can be used for
phonemically relevant distinctions have been described in
the 1literature [30) ([31]. But, the complex relations
between distinctive Features and acoustic cues have to be
determined which is not much easier than to determine
relations between cues and phdnemes. It would 'seem to be
essential to cénstruct suitable model;' which take into
account the various results and complex relationskkno;n from
perception expé}imznts, The application of syntactic
pattern. recognition algorithm could ‘be a _gvod  tool for

handlinq'these complex relationships [2].

~
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DATA ACQUISITION AND PREPROCESSING

Thevtesting samples are coliected’from‘lo nativé English
speakers ( 5 male and 5 female ). Eéch speaker waé invited
to our laboratcry and a;ked to speak twc“different connected
strings of letters té the microphone. Each striné of

letters was repeated 10 times.. For the testing convenience,

each stfing includes five.different letters. ' Actually, the

. system does not require any limitation on the length of the
string and the order of the letters. So, these collections
g;ve us loo’speech patterns for each letter in the El-Set in
a noisy ( from the air conditioner ) environment. A
multiple speaker continuous speech recqgnition system is
theg develcoped on a DEC Vax-780 machine

A data base of digi;ized speech sentences was prepared
ffom the inpug gpeech aﬁalog signals. The incoming speech
signal 1is filtered in 0.10 KHz to 6.8 KHz frequency band by
A

‘a programmable bandpass filter. A simple block diagram of

the preprocessing part of the-+recognition system is shown in

Figure 3.1. Where LPF stands for low pass filter, and HPF .

-for high pass filter.

When an analogue signal is converted to digital form, it

Y
is made discrete both in time apd amplitude. Discretization

~(\
in time is the operation of sampling, while in amplitude it

Ramne
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is quantizigg. The transmission of analogue information by
digital means is called " PCM " étaqding for " pulse code
modulation ", ' : )

In applying the sampling theorem to a digital

Erepresentation of speech there are “two main concerns [A;l.

If the siénal bandwidth is W Hertz, then the éamp¥;ng period -

must be T <=tl/(2W) seconds. Since' the samples of the
signal' genefally take on a continuous range of values, they
mustvbe quantized for transmissionnor digital stérage. .If
we ;epreseﬁt the famples as B-bit binary WOrd,‘%hen the bit
rate is 2BW bi%/s. The vdlue of W required for speech

signalg)depends on the ultimate use of the samples. .We know

from measurements and theoretical studies‘that speech sounds

. . . , . s
such as fricatives have rather -wide bandwidths ( on the

order of '10 KHz ). On the other hand much of .information

"required for séeech intelligibility  is contained in the

1 L.

variation of the first three formant frequencies of voiced

speech and these are typically bellow 3 KHz. Thus, a

sampling rate between 6 KHz and 20 KHz is generally used.

i

No matter what thé‘sampiing rate is, the speech signal must

be suitably low-pass ﬁiltered:priqr‘tg>tpe sampling process

Ce . . . 4
to eliminate undesired high frequencies of the speech and

l high frequency noise.

. The choice of the number of bits per sample B . is also

e

dependent upon the \iptended use of the samples. If our

-

purpose is transmission or computer gtorage followed by
SN P

N

N
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conversion back 2;0 an analog signal, we are’only concerned

that the resulting analog signal be perceptually acceptable.‘

Also, the sampling process just described is generally the
I 4
first step in any diglital speech.analysis'ﬁechniques, since

errors incurred in the sampling probess will propagate to

more refined diéital representations, we,are often justified

[

-in a very generous alloment of ‘bits and samplxﬁﬁ rate if the

- ¢ x

sampled speech wave™ is to . undergo Ffurther processxng
r

However it should be noted that the amount of processing

required to implement most systems is proportional _to

éamblingu rate. Thus we sh&uiﬁ try to Keep the samplig rate

as low as possible, consistent with other objectives.

According to the precedlng ‘discussiong, we chose the
sampling rate and the number of bits per sample as 20 KHz
and 12 bit/sample, respectively. The | bit rate 1is then

240000 bits/s. T

.
» -

Once the param€tricr representation of the speech signal’
: ' )

- has been.obtained, the next step is segmentation. . Since

phone-sized segments mostly can not be localized and

1

sepafated in the signal domain. It was suggested that
farger .unkts be Used ‘yhich are at ledst as l@ng as a
syltable. This corresponds with /the theory that' syllable

A3 ~ *

can Pe Qiewq%‘as articulatory ufit (33). 1In our experiments

.( CV syllable ), it is very conwenient. that segmentatjon on
° .

consonants and the vowels within a sentence can be co ed
] .

~—

for vowel identifications.

. /
. . v/
g /
: - [
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~ CHAPTER IV

’

3

b » AN EXPERT SYSTEM APPPROACH TO SEGMENTATION

R

Since the high complexity of ﬁﬂe taski the system for
extracting acoustic Eroperties Mas been conceived in the
framework éf‘distnibufed.problsﬁ so}ving in which acousgic
propertieé are facts that drivg computatzonal processes to

.

the achievement of goals consisting in hyﬁﬁthesis

generaiioq. The major - considerations in favour of

distributed system are the fdllowing
(l1). A distributed processing model can be implemented with
parallel computer - architecture caéable 'of 'reaching

.- real-time performances ;

*
L 4

(2). A distributed “6n6@ledge module .can provide the
convenience for separately ppdating .each source ' of
knowledge when new knowledge becomes available. Further

Jnore, different data structures and learning algorithms

N

(3). A control strategy capable of scheduling the papa}leL 

execution cf sensory ,procedures which ‘extract new
- ) N

properties from . the data when this is required.'

o »

Based on above considerations, an expert system proposed.
5 B . v . ’ .

by De Mori [34] has been developed for extracting acoustic
] PN * ) R '
cues, generating sy.lablie Hypothesis from continuous speech.

[

Part , of =~he Knocwlesgge -f such a system 1s a semant.c syntax

3 . -
- direznei crgns.oation (S8SHTY zlTornionm, than SE3ITe7TS

]

‘can be used for each source of ‘knowledge; ﬂi{’ f
[ v ‘. \ -
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‘EXPj creats’'an instantiation. Let INSfjl,..., INST{k be the
: . o

- requests from higher level experts or %General Controller .

‘(strategy KS). The experts do not communicate through a

47

¥

¢ontinuous speech into Pseudo-syllabic segments and

generaﬁes "hypotheses about phonetic feéatures in each

segment. *
_ N 2
’ ¥
4.1 Structure of An Exp X
4 . B '
The behaviour of an Expert is shown in Figure 4.1. To /J/\

each expeft EXP 5 is associated with a Long Term.Memory (LTM)
containing the speéific-Expert S Knowledge and a Short Term
Memory (STM) where data interpretations are written. To
each expert FXP] is als® associated a message queue 'MQ5
containing\the requests made to it from other experts. EXPj4 if\
reads sequentially these requests. If a request concerns ‘ .

some information which has not been requested before, then

instantiations created at a given time t [7]. ‘ ”

N . . » . ‘
An instantiation is a computing agent that may create . -

other instantiations or send requests to other experts or

. . - : - r - ’
gend answers to the experts which have made reguests to
- - }'

v

EXP:. In other qg;&%, an instantiation INST 4y canysend a

ﬁeésa@g\MESSjk to cother experts. Messageé'fof experts carn

.

be st:mui: coming from lower level experts or verification

‘commen data-base. They are provided with an elaborate

control stnategy. ‘ o e T ;f | f o
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wWhen an instantiation .has performed its task, it

terminates and leaves the system. AR expert receives

1

‘requests. for the generation of h¥potheses from other .

\ ] .
experts. Expert# are grouped into Societies according to

their level of exper:t:ise.

. BThe task-independent knowledge 15 'structured On two

L

_levels, ccrresponding to the Auditory Expert Society (AES)

and the Syliabic Expert Society (SES).

v
!

Chapter V in mcre detail. , 1

) ]
.

4.2 Representation of Expert's Knowledgel

In thet A.I. Program, knowiedge is usually rep:ésented
in the lchca;ffo:mél;sms, such as predicate logic. ~ Its
m;jaf advartage 15 that they can be combined with simpie,
powerf;l.zﬁference»mechanlsms that make reasoning gxth the
f%cts’ easy;‘ To deal with fﬁzzy knowledée ( Eor example, -

“ucs are.very ycung." Heow can relative degrees of oung be
b z Y 2 . J

- reprece=-g¥ 2 1, pecple have developed corresponding logic

moceis |35}, such as Fuzzv icgic whicn preovides a way of

4

represerting fuzzy ‘or cocntinuous properties of objects [36]°

.137}.  Fuzzy knowledge répresentaélon will be expiained in

L 4

-

.

Byt the. op-ects in thcse Tepresentati?nslare'so simple
that much of the comp.ex structure of the world can not be

-

desc:z.oes eas:ily. It i1s often to collect these properties -

e
Ul

gether 'ty form a single description of a "complex odBject. <

One acdvan-ege 'z2f sucn a scheme 1s that it enables a system

- ' ' AR
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i -

to focus its attention on entire objects without also having

Y

to consider all the other facts it knows. This is imSortant
A

since straightforward, uniform approaches tend to lead to
: N \

~combinatorial explosion if the amount of knowledge they

have to deal with is very large.

A good system for the representation of complex

structured knowledge in a particular domain should posses

the following four properties

S
f

(1) %Epresentational Adequecy ~—~-=~ the ability . to

.S . C s - .
-Jepresent all of knowledge that are needed in that

[ 4

domainﬂ

(2) Inferéntial Adequecy ------ the ability to manibulate

—

the representational structures 1in .such a way as to
derive new structures correéponding to .new knowledge

inferred from old.
AQW '

il

(3) Inferential Efficiency ------ the ability to incorporate

into the knowledge structtre additional information that

-

can be used to focus the attention of the inference

- LY
mechanisms in the most promising directions.

(4) Acquisitional Efficfé%éy —————— the ability to acquire

new information easily. The simplest case involves

direct insertion, by a person, of new knowledge intd the’

database.  Ideally, the program itself would be able to

Ve .

control knowledge acquisition. ‘s

N $

>
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Seveiil techniques for accomplishing these objectives

have been developed. These teéhniques' can roughly be

divided into two types : M
' - i‘s\ !
N
declarative mathods,

procedural methods.

-

For declarative methods (such as predicate logic), most

of the knowledgé is represented as a static collection of.

o ) s
"~ facts accompanied by a small set of general procedures for .
manipulating them; for procedural methods, the bulk of the
knowledge is represented as procedures for using 1it. The
major advantages of a declarative representation are : Cs ‘ <2
(a) Each fact need only be stored once, regardless of the
number of different ways in which it can be used.
(b) It is easy to add new facts to the system, without
'< changing either the other facts or the small proé%dures.
The major advantages of a procedural representation are
(1) It is easy to represent knowledge of how to do
, .
things. F( ' .
(ii1) It is easy to represent knowledge that does not fit
i well 1nto many simple declarative sc¢hemes. Examples of
this are default and probabilistic reasoning. o T B

(c) It is easv =~ represent he.r:stic xnow.edge of now =c do
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things efficiently.

In many domains, there is need for both kind of

information. And so, 1n practice, most representations -

" employ a combggation of both, and the new idea of Knowledge

Structure i5 - introduced.

N .
The Knowledge Structure is a data structure 1in which

N
knowledge about particular problem doméin;\can be‘§tored
{35]. Many of knowledge struékures are composed of smaller
structures. Thus the term knowledge structur; wil®
sometimes means a completg database of information about a
particular domain and will scmetimes refer to substructures
within the larder structure. These subst;uctures will
usually correspond to sq:;> things as objectsAor events

within the domain. There are many types of descriptions

about knowledge structures, like

-~

A Y .
frames ------ often used: to desé¢riber a \Qsllectipn of

aftrlbutes that a given object normally possesses.

rule models -=----- used to describe common features shared

among a set of rules in a production system.

Knowledge structures 1n our expert system are generated
¥ i

by a frame-structure grammar which defines a language for

rep;esenténg LTM knowledge. The knowledge stored in the LTM

of an expert :s a ccllection of algorithms. The algorithms

*
for genering descripricns  f acocustic  data and for

.-
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generating'hypotheses of corresponding phonetic features are
expressed - in a frame language. Frame language 1is
particularly suitable for integrating structural and

procedural knowledge, and making inference.

~

A frame is an information structure made of a frame-name.
and a number of slots. & slot is the holdgp‘of infprmation
éoncerning a particﬁlar 4tem called ‘slot-filler" [38].
Slot-fillers may be descriptions of events, relations or
results of' procedure, Attempti'to £i11 the slots are made
during a frame instantiation. A frame instantiation can be
started by'.a simple  reasoning prégram of an expert after
having received a messaée. After a frame is instantiated, a
copy éf its LTM structure 1is 'created into STM. At the
. begining all the slots in the STM are empty and the expert

which created the instantiation attempts to fill the slots

sequentially [39] [40]) [41]. ’ _ .

Frame strucE:res are precisely defined by the rulgs of a
. grammar defining all the acceptable composition of the
attribute relations [42]. Tabie 4.2 shows the rules of this
frame-struc:ure grammar. The exponent k > 1 of an
expression means that the expression.can be rewritten aﬁy
- number' of times greater than 1. Brackets in Table 4.2
céntain optional items which can be repeated any number of
times. The terminal symbols are written in lower case

letters and the non-terminals in upper case. The starting

symble is < frame >.
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Table 4.2 Rules of the frame-structure grammar

<FRAME> " :=(<NAME> <SLOT-LIST>)
<SLOT-LIST>  :=(<NAME> [ (<DESCRIPTION>)])K>0

v &

<DESCRIPTION> :=(DESCRIBED-AS <CHDES>) L

L

: = (<CONNECTIVE> <DESCRIPTION>K>!
:=(not <DESCRIPTION>)
:=(filled-by <FRAME>) .

":=<CONDITIONAL>

N .
ES

‘ :%(result;of <proc>)

- <CONDITIONAL> :=(WHEN.<PREDICATE EXPRESSION>
~<D£scélgri0N>

.. [lelse <DESCRIPTION>)] oo

' . , :=(unless.sDEéCRIPTION><DESCRIPTION>)

1=(case <NAME> of
o | _ (<DESCRIPTION> filled-by
<FRAME>)K>1 | .
<CONNECTIVE>  :=OR
‘:=and

:“= X0 f.

{=sequence

et wens b, AT



<PREDICATE EXPRESSION>

<PROC>

<NAME>

<CHDES>

Table 4.2 (continued)

:=<PREDICATE>

:={not <PREDICATE>)

s

:2P-<procedure>

=F~<FUNCTION>

:=ANY string of charaétefs

= (<CONNECTIVE> { <PREDICATE>K>1))

AN

:=ANY cue or hypothesis description .

[(PA)

3l

........
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2} w

The slot described as < CHDES > gets filled by

generating descriptions of acoustic cues or interpreting
nterpreting

hypotheses. The execution of a prbcedure can be initiated
by tr&ing to fill that particula; slot of the frame,. A
procedure in a given instantiation has access to all the
slots which have already been filled ' for that particular’

‘instantiation.

The slot gilled-by < CHDES > corresponding to the

instantiation of a frahe represented by i;s NAME. The slots

]

. M » . .
with connective  descriptions may cause the invocation of

R

other frames and executicn of procedures for ®extracting new

cues 1f necessary for evi:dence. The connective sequence

implies that/

describing the ’temporél sequence of events such that tne

‘time- cons.stency must be maintained while
(:+1)5% event mus: begin ax the end >f the 1t§ one.
+ . . « .
4.3 Auditory Experts for Interpreting Speech Patterns
- A} .
‘ Inzerpretatlon and segmentazicn cf the speech waveform
are generated py an Expert Society. Its structure-is shown

in Figure 4.3... Th:is Expert Society Contains two parts

Auditory Experts (AE) and Syllabic Expert (SE;. SE will be

introduced in nex: secticn.

fhe ex-raction of acSust;c cues Erom .spectrograms is
.performed by a group of experts reffered to as the Auditory
'Experts. Act:ons of writing into and reading from Short
‘Te:m‘Mem:r;es are represenced by dashed argows. Requests

¢
“a .
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Yand control messages are exchanged among Experts through the
"message exchange network". Data, cues, descriptions and
hypotheses are written by an Expert into its own Short Term

Memory (STM), only the Expert which owns the STM can write

~

into it, but any Expert can read‘any STM. C e

-

The speech 'signal is sampled, quantized, stored into a

"SIGNAL-STM* and transformed by an expert called "Auditory
. L S -
Expert fogl End-Point Detection and Signal Transformation"

x < L

(AEPDST) . AEPDST looks for the starting point of a sentence

by using a set .of rUles for end-points detection. When this

point has been detected, AEDPST starts transforming the

signal 1in order to obtain a frequency—doﬁain representation

P

.of it which is stored into the "SPECTRA-STM". Some ' gross

spectral features (GSF)' are computed from the specfra and

-+

stored into the "GSF-STM". The LTM of AEDPST, denoted . LTMI,

contains , rules for end-point ?etection i?d spectral
transformdcion.‘ After a'long enough part of the signal 'ﬁas
been transfd;med, a synchfonization signal is sent to the
Expert for the descrip&izi of the £ime evolution  of the

total energy (TE-DESCRIPTOR). B -

. ) » ' R
TE—DESCRIPQ%B has the task of describing the time

evolution of the total energy?:f the signal‘(TE)‘in terms of

peaks and valleys based on zero-crossing densities. These

2
2

descriptions are so-called Primary Acoustic¢ Cues (PAC), ’as
. Py N ; .

shown in Table %.3.1 and gttributes in that table are’

\

described 1n Table 4.3.2. At the same time, AEDPST

2 . 8

" .
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Sy%bol _%ttributes
o

t
<
S

MVI

LDD
SpD
. LMD
’SMD
LHD

SHD

- tp,te,m},zx

th,te,ml, 2z

A

““ + emin,tb,te,zx

-

_g\

L, ; Qﬁfcriptlon ~ .
. /
long pea% of/total energy (TE}

dax’g
shqort peak gf TE

»

peak of TE of medium duration

low energy peax of TE L
t

lonc nonsonorant tract
medium- nonsonorant tract’

short nonsonorant tract

.

long vocalic tract adjacent to

a LNS or a MNS in a TE peak

medium vocalic tract adjacent

a LNS or a MYS 1in a TE peak

long deep df; qf total eneragy
swort, deep dip of total energy
lqﬁg'dlp of TE with ﬁeélum dep
shorﬁ dip of TE with medium de

long non-deep dip of TE .

short non-deep dip of TE

. . ’ 4%

to

th

pth

9

»
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® continues to transform another port.on of the signal and

send a message to TE-DESCRIPTOR. This operation is repeated

'until a sentence

TE-DESCRIPTOR, dencted LTM2, contains aggrammar GTE

The attributed grammar GTE nas the

(34]

GTE

The
Al

controls a coding of TE :n

terhinal a.phabe~ T
’ &

end pcint

N
-

represent:ng peaxs anc va..eys

T. = (peax,dip)

The nonterm:.nal

sympc. < SENTENCE

ru.es RR.I are

< SENTENCE »>

e

The - f

Time
\v

assoc.ated Tz
ar-ributed ik
- »

peak .anc

the descriptions

1
exiracn.

tzribute

WY

a.phabet Nl

> and the term < ZETA >.

ZETA

Pl

It

< ZETA

d:p peax

di

|%

generated

-

LS

{Ti,Nl1, <sentence>, RR.}

£

s

C

”
iS5

«+ SENT
€

segin.ng ancé tne t:me =f enc are - a

e .the-cocrd.nates of the maximum

2f the minimum value of a dip are alsc associated

snder

¢

m
i

he ,LTM of

detected.

-
-

.
|8

ha

terms of peaks and valleys.

foilowing form 07,

cf symbols

GTE - .s made
, ) ™™

made - of the starting

’

'The rewriting

NC

alg (z2)Y

-

“tr.bures

A .
the de-ected <terminal sympols. Ot&er

value of a

4

GT
'

med

0]

Contros

“ne

(@]
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[
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Algor:thms' (2Z1) ané (Z2) a.so prov:de a translation of

phrases compcsed zf symbc.s of the alphabet Tl into more

- N —\. ”
detailed descr:pt.cns °f peaxks and valleys using the symbols

) F
-~

» - ”, ‘ﬂ
introduced .r Taple 4.3.%.
i L
The algcr.tnms represeng an augmentaticn of grammar GTE.
- o =

A oprief agescriptizn of tne cues <hey produce :is5 g:iven :ih

[ SN
rre £collow.ng. N

Algcrithr (Z.) anal.yzes eacn DIP of TE and describes :t

as LONG =r &SEORT depeéd;ng 5n :ts duration. Furthermore,

re

{1
rs

L . ‘ Co .
eacn di:p, "he difference between the minimum wvaiue of

the energy .7 =he d:p and tne energy .eve. of the 'background

ncise

dip :s cdescribed as DEEP ; 1f the difference 1s large, then

. . ¢ .

. ) ‘. 4 . »
~re 2:p :s descr:bed as HIGH, otherwise .t is described as
, . . . .
MEDIUM. Deep  dip characterizes  pause,. plosive ‘and
_ -
cont.nuany ccnsonants  and, sometumes, the ' nonsonorant
affr.ca-e V . Deep Z.p tencds =z pe shore {cr woiced (lax)

‘pics.ves and long for snvciced (tense) plosives. High dips
¥ R >
. A bl
characrer.ze sonznant corscrants, Medium dip character.zes
a _arge wvar.ety of ccnscnants.

I
.

Alg {Z.) descr.pes dip and invokes. alg (22y for peax

descriptions. Peaks' are described.as’ short (SPK), medium .

(MPK) or .cng  (LPK) dependlﬁg 5’ their  durations.-

Nonsonorans +racts :nside .a peax are described by ‘LNS if

they .are .-mg, I-nerw.se, they are described py MNS

3]
s

nd even

. \ i
:s computed. If tnis difference :s smalil, then the
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A
v

¢

SNS. +If a peak contains a nonsoncrant hnd’a soncorant track,
the Imtter is~described as LVI if 1long, MVI otherwise. A .
nonscnorant tract 1s characterized by high zero-crossing
density and low low-to-high frequen;y‘ energy ;atib. The .
- . latter parameter .is computed by a sensory procedure invoked .

, , » _ .
by alg (Z2) when the value of the zero—grossing density does
* - £ -3
nct shcow  tC make a reliable decision about the natur'e of ' a
v .
trace. ,
N 7

/.
Amﬁm\ Examplq; of &ar;ﬁgs types‘of PAOs are shown in Figure'

|4 ,

4.3.3. The tws curves in Figure 4.3.3 represent the time -

l

evolut:cn of the s:i:gnal energy (

) and the zero-crossing .

»

counts ( --- ) in successive intervals of 10-mseec of the
first derivat:ve of the signal. The phrase is the seguence

of batters KCBTD, Taple 4.3.3 shows the corresponding PAC.

-

descripzicr., Time unit is 0.0l sec.. ° -

’ A\

Description of” the 'signal- energy (TE) are 'sent to
anctner expert, ca.led ™SSF-DESCRIPTOR", wh:ch prcvides the

accust.c cues for segmentation. The ordaniza&.:zrn of . the
knowiedge grored \ln:c. the Long—?efm Memcry of the
GSFLDESéR:P;OR 15 described py means of a £frame language
introcuced Sn [42).. |

|

.y |

: - . \ . : N
v Acoust:c. Experts can.perform various types of signa.l

transformat.zns, exzracting and describing acocustic cues.
The acdust:c cpes will be used for indicating spectral or

PEERY

signal prcperties describing &pects tha: are relevant for

(2

. 4 -
' . ¢
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Takble 4.3.3

Y

The PAC description corresponding

to the signal in Fiocure 4,3.3

10
T4

19

48

.20

63

72

111

116

”~

138

151

161"

170
198
207
209

. 238

132

lo

10
14
17
a8
49
57
63
72
111
116

132

.



. SYMBOL

VF
Ve
VB
VEC

VBC

NI
NA

NC
SON
NIV -

. SONV

’
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Table 4.4 Primary phonetic features

—

-

1

. FEATURE DESCRIPTIONS

3

Front vowel
.Cenfrél vowel
Back vowel
Front or qentral'voﬁel'
Back or centraf vowel
Uncertain onel
- Non-sonorant inEerrﬁpted consdnant
Non-sonorant affricate consonant

. Y .
. Ad
Non-sonorant continuant consonant

. Sonorant consgrant :

The -’v/ or a NI consonant
A sonorant or the /v/ consenant

4

"~
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‘hypothesizing phonetic features. Except the peaks and

valleys of signal enégy, these acoustic cues cculd be

formant loci, characteristics of burst spectra, etc.

4.4 The Syllabic Expert for'Syllabjc Hypotheses

The priﬁary'acoustic cues generated by Acoustic Experts

“are \sen: to the SE which dbtermine pseudc-syllabic bounds,

generated some primary phonetic feature  (PPF) using

cBrzex-independent tules and extracts detailed, acoustic cues’

_to be used for pseudo syllabic segments ° (PSS)-

nypothesxzaizon{ Table 4.4 shows the alphabet of PPF.

The trganization of knowledge stored into the LTM of the

Syllabzc’Expert are described by a frame language. It

contains a Seman:zic Syntax - Directed Transition (SSDT)

algcriznm. The SSDT algcrithm receives "at' the i1aput  PAC

[
x

descripticns, app.ies the rules of an attrippgted grammar and

Vo)
[N
<2

[

ve: #5S5 hyp.ineses don:a;ﬁé PPF hypctheses as & result of

translat:zn. Ge~e®ar.cn  of hypctheses. about segments

-

between two successive wocalic intervals * and ' placement of

syilabic bcunds ;s‘also'perﬁormgd under the control of SSDT

.
‘.

whose defirit:on.is given in the fcllowing (46].

A SSPT isa S5-:zuple [44::

it

ssoT = { N,Z,8,5,2 )} - 7

&here : ' »

z

. \
I:s a set >f .nput symbols: Lo

y .

1s a set of ncnterminal symbcls; - N A



7
<

68"

4 is a set of output symbols;
S ¢.N Is the start symbol;

P is the set of rules.

The set ogﬁinput symbols is giver in Table 4.3.1 plus SN

and‘\st Every symbol is associated a vector of attribltes.

- ¢ .

The meaning of the attributes is given in Table 4.3.2. The

set of ‘output  symbols is given in Table 4.4. The start

symbol s'is ‘denoted PSS. The réwriting rules have the

Eollowtng general form : K N )
PK X i= ¥B; ¥G; " Alg (K)

where, X ¢ N is a nontermina. symbol; Y ¢ N* is a ( possible.

empty ) string of . nonterminal symbols; B ¢ =* is a

-

{ possible empty ) string of inpdt symbols.;.G e 2" is a set

of strings of‘outbut symbols.

The seguences YB,YG can appear in the reverse order,

i.e. BY,GY. 1In any case, Y is in the same position in both
. . [N
éxpressions.

—

Alg (K) 'is an algorithm that may <contain a condition

" made of a 'logica} expression of predicates defined by

semantié"atta;hment;; the rule can‘be applied only if the
condit}on is verified. - .

Each symbcl of N or I is assocliated - a vector of
attributes. The.att};buteé asso&iatgd‘with X belong to tée
vector A(X). . In"a srmilar way: the att;ibutgs associlated
with the symbols of. B are grouped :nto A(B);

"
Ve
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»'Thé kalgorgthm Alg(K) may contain a semantic rulel
Ex(A(Y), A(B))' which allows tc compute the attributes of‘
A(X) of X given the attributes of A(f) and‘ ;(E). Another
semantic rule'f'k(A(By) a.lows =C compute the attributes of
the output hypotheses G, g:iven the attributes of symbois in
B which have been translated into G.  The ae:ails of the

segmentation grammar can be 'seen in 45, r34).

. v
-3

Refering back to Figure 4.3.1 on the Expert system,
there 1s an Lnté:—expert communiqatxon link between any two
;xperts°:hrough ~he message éxchanée network. .The Syllabic
Expert'repeatedly intéracts with the AEPDST. Tge 1nvocation’ .
of AEPDST occure as a result of a frame i1nstantiation in_éE.
The AEPDST carries out various signal transformations

depending on the message .it receives from SE. The SE' could

also retr:ieve iqformatzon stored in GSF-STM, This 1is
'necgssary when- the cues generated by TE aqg GSP are

tnsufficient tu make a hypothegis of PSS or PPF.

- - . .

. ) - . M . o
‘" Basically, - Auditory Experts may perform "spontaneoug"

data-d;LQen activities, and éxpectation-driven activities
\ o '
based on requests issued by other Experts. The Syllabic
. - ‘ ) o

Expert 'has a spontaneous activity in which it receives

primaiy acoustic cue descriptions and generates PSS

.

Hypotheses with Primary Phonetic Feature hypotheses.  PPF

hypatheses are ' sent to the ;exiqél level-and aré used to -
.. access'a lexicéi-subset, based op 'whicﬁ> requests for g

. b, . ' .
detaried detection of the place and manner of articulation

»

<,/

.
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of' some phonemes will be issued. SE also generates scores

of syllabic hypotheses.

chapter.

This can be explained in the next

r

RN

Rl

e



CHAPTER V.

3

THE PLANNING SYSTEM FOR E1-SET RECOGNITION

S%T“ﬁﬁy Planning - »
' L e N

After segmentation, hierarchical feature extracting is

per formed. Hypothesis genera&ﬁdn should be performed at the

highest possible level as long as matches are good, drépping

*

rdown 'stoward the acoustic level only when the higher-level

matcbing“process°gets in trouble [51]. For example, In our

expergm;ntv in order to distinguish between /p/ and st/ the
pléce of articulation 1s the only distinctive‘ feature ';nd
?ts detection "may require the execution of sﬁecial
procedﬁres on a l;mltgd portion of the s%qnal with :a~ time
resoiution finer than ;b.msec. ‘ThlS suggeé:éd qé intrgggce
plans fér hypotheses generation and disambiguation ({49]

{50].°

The pldanning concept comes from A.I. Techhiques., For

— - . e
complicated problem sodkving, 1t can be worked out on small

“pleces of a problém‘separately and then combine the partial

solutions at the end  into a compleée _problem‘ solution.
Planning just focuses on ways of decomposing the original’
problem into appropriate subparts and on ways of recordfng
énd handling ;nteractionS“among gﬂe subparts as ﬁhey are’

detected during értblemjsOLVLng process.



The recognition of unconstrained sequences of connected

letters is a problem unsolved so far. Using a redundant set.

of acoustic properties for characterizing place and manner -

of articulation of some sounds makes it possrbf% to have an

accurate phoneme hypothesization even in .difficult éz

h ]

protpcols. The hierarchical application of Tecognition

algorithms for plosive sounds recognition has been

ihtroduced in our system by using planning. In this éystgmr

computer perception of speech is modelled ‘with perceptual .

plans containing operators. .These operators may translate a
description c¢f acoustic properties ingo more abstgact
descriptioens or they may extract useful properties.
Operators may also kcontaih the execution of sensory
procedures. ‘Operator application .fs‘ conditioned by the

.verification of some preconditions depending on already

generated descriptions [48]. -

5.2 The System of Plans -~

[
)
1 .

~ The , speech ‘signal is first analyzed on the basis of
loudness, zero-crossing rates and broad-band energy using

the expert system described—in—the last chapter. The result

R Y

of this analysis is a string , of symbbls and . attributes.
Symbois beléng 'to.kan alphabet of Primary Acoustic Cues
(PAC), after = that a'FSSDT a;goiithm operates . on éAC
descriﬁtions and ghrOugh the use of sensory procedures
identifies the wvocalic and the‘ consonantal ségmé%ts of

’ 3
syllable nucle: and for the veccalic segments hypothesizes

sl .

S . -3
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Figure 5.2.2 shows the envelope curve in the energy dip
preceding the onset of /b/. The\time reference 0 in .Figure
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descr:beé as BZ.
the cf

PEl2 descr:bes tne puzz-par by analyzing shape

‘

time waveform ard of the spectra befcre the vcice onset,

[ - »

the

»

alphaoets cf tne descr.pti1ons it prcduces are:

. , , -

" BzAa. & { NOB, BU., BU2, BU )

The

for time wavelicrm and |
Bza2 = { NBP, BPL, BP2, BP3, BP , \,.
for nhe spectra. ' ’ '
i N
\ : :
NOB anc NBP medar no buzz'an the <ctner three symocls
cdescr_te Ydegree - p.zz-bar evidence ( BUl, BPl : l:it:tle
v:dence, BU, 8F : strcong ev.dence ). Based on the waveform

cf Figure'\5.2.2 <tne ,segrent 1s &escg:bed as BU. Figure

tre slgnal

+

5.2.3 shows the spectirum g

shown in  Figure

wir-rn

2.2, P.

N

I:/}s descr .ped as

FEL3 dna.yzes tempora. events at tne vo.ce cnset.. These
—.events are re_ated - v&cce orset tipe They are:
—_— : &~
. ¢ . )
‘ P \ vos
o et ~ne delay betyeen tne cnset <f low “and high
' . / . 1
- freguency edér%;es. o ‘ , .
.
« , .
1Q -=---- the duraticn c¢f the largest zero-crossing
:nterva. <f tne sigra. at the cnset. )
T fé - -
" A . ' . : . '
ZR --=--=-~- the number cf zero-crossing counts 1in the
‘ N s - “ » j

7« largest (seQuence of s?cce551vé zero-zrossing.interval's with'

Bl

. . . <
duration less than 0.5 msecs. BT T
. ‘ o PR
v ‘ N P . ¢
4 - b &

.
‘ |
Y
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A Y
.
.
N
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.
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Fig.re 5,2.2 sh-ws an exargp.e -f ZQ.

in Tablie A.3(il ) cor cf snore envelzpe peax =r cf .a

r ! B
peak 1n  2-4 KHz energy at ith

vcice cnse-. PFEld aiso .
detects fricat.zn Lntervals at tre vc.ce cCrses <They are
’
i > : ) & .
crnaracter.zec by peaks of the zerc—-cressirg censxéy =t the

d.ps <f

ncy” en y B.rst and fricat.on specpra are computed
v . Ny ﬂ . ’

from otne cceffit.ents -f an 8-pZle model c¢f the vocal

Thay wher pirsw and €r.za-..n are detected. The spectra are

Q
34}
]
(3]
e
3
&)
D
(9]
X
]
"
S
1
oY
1]
tn
Y
[
»
o0
€
.
3
9]
u
[
i
]
[+Y
O
m
‘Y

N

. COMPACT, - S

v
'
1

¥

. DIFFUSE FALLING, .

\ X oirr a:s:xs.“ N

"1

¢!

DIFTUS

14

M 13

-  SONORANT-LIKE.)

"

SONUPANT-LI¥E specira are <=hcse presenting res

fregquencies ahd band-~.dtn comparapie I thcse of the/
4
) {

z.ncs. Pzr <Le compact spectra sime parare-ters are
1 R , S

further .rcompa-ed, such s as the frequency ccrrespcrding t

Y

£ tre-highest peak and the ratioc between .the:

Pl

grav.ty center

maximum energ@ and tne averaqgy 1in the 0.2-1.0 KEZ paﬁﬁ.
Figure 5.2.4 shows the burst peak of /k/ in ther‘ll—ZO
centisecond <fnterval and in the 2-4 KHz band. Figure 5.8.5 -
. i L ) o : b SR S
shows the compgct burst spectrum of [fk/- L vl \
’ ‘ " RN v ‘ Vol - ‘ {
. +
. ». ! '
° . i
. - ) . . '
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" ‘transit.ons are described oy the fzllow:ng alphabet :

T PEL .dkscrlbes\\t:ansi:;ons 2f the segcond and third

formant at tne vcice onset. Formants are tracked backwards

\
4

from the steady-state "portion .2f the vowel. Formant

v

FTA = { ASCENDANT,

QUASI-ASCENDANT, .

. HDRIZONTAL,

e . DESCENDANT, )

@ | |
PRc\nd.nions fir plan ‘executi:cn  are, learned witn a

gerera.-p¥rp.se-a.corienr Wnose deta.ls are g:iven ' in \[52°.

Tne algcoritnms i parareter extract.ng and ana.lyz:nj Jused by

BUDP.ANS w... be .ntraduced :n “hHe nex: sect-.on.

.

S . ! -

usecd .n  f.zzy relat.:ons for feature hypothes:ization., This
ase ¢ flzoy 4.gir.tmrs L5 un srder ¢ mode. to some  extent
the fac- ?Qa: m.3t <! “ne acoust.c-pncnet.C propertiés cof

speecr. £3.nds are Znly «<niwn w.tn a deagree’ f wvagueness.
for example, tne concentrat:on or spread of energy idiffuse
- ‘ ) ' -
vs. Compact ) - and whether the main spectral trend s
A}

ris:ing, flat, ¢r falling with frequency are crucial spectra.
B . \ \
aspects; etc. - In this section,'séme\ba51c Fuzzy Set Theory

(53] [7] will be‘introduce? before the éxpLanaEions of the

1
methdds for feature hypothesization using fuzzy relations.

Tre parame-ers ex-rac-ed oy PLL3,  PEis, and PELS are

[
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5.3.1 Introduction to Fuzzy Set Theory

Definition Of Fuzzy Set
, “ . ' o
The theory of fuzzy sets deal with a subset § of the
universe of diseourse U, where the transifxon between full

LY

-membership and no membershup is gradual rather than abrupt.

. Fuzzy set__theory, .1ntroduced by Zadeh in 1965 [36], 1s a

generalization of abstract set theory. A fuzzy set 15 a’

class - that - -admits the pess:ibility of part:al membership in
. ‘ . ’ ) . . ’ ‘ . ‘
1t. oL, A . o ‘ o J
I ) . . //'
ter U = { u } deno e a space "f ob]eczs Then a fuzzy
.. ) fer ).
set F in U 15 a set of ordered pairs, expressed as .-
.

F=alt(u, uy by weu

where #_1s termed " the grade of membersh.p of u in F ",
—~

Usualiy, the graaéé df‘membershlp“afe assumed to be real

?npmbers lying 1n the interval [0, l] with 0 and 1 denoting -no

a~

membership and full membership respectively.

-

A fuzzy set can b¥ also defined lntroducing'a,function
Kf(u) mapping a S%f. U ‘into the ‘unit !ntefval [0!11 as,

.
follows : o

~
.

Jb mE(U) : | N ‘  C

where J~ represents the/unlon cf the FUZZY SINGLETON wug( u)/u

¢
v

for all u e U. .

—

) v N . -~

4

2 . LN

. objetts in the un&verse. It is-interesting to note that the.

The gfédes‘.of membership ﬂreflecé an ?ordering" of ~

4
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~

grade of membership vaiue Hg(u) of an object u in F can be

possible to interpret pg(u)-as the degree of possibility

that u is the value of a parameter fuzzily restricted- by F.'

\

Operations On Fuzzy Sets - v -
. ) qw&
If F1 and F2 are fuzzy subsets of U, then their ' union’

(U), ‘Yntersection (), and complement, ( coMpL{ } 5(

-
‘

operations are definedoas fqllows
(1) union ¢ Fl1 U F2 = fU'(ﬂfl(u) v ﬂfz(u))/u \

where = means "by definition" and V is an max operator which

-
»

takes the maximum of ﬁfl(u) and ufz(uj. L

(2) intersection \'Flﬂ F2A=.fU (HEp(u) A Mgp(u))/u

where A is  the minooperator which takes the minimum of the

operands. R , &
 (3) compiement COMPL{F} of a fuzzy set F of U is
defined by
A

compL(r} =,fu (L-Hetu))/u

N ——

It 1s clear that a fuzzy algebra can be introduced based

on above cperations which.satisfy with the strict algebra
{

axiom ,system. It is interesting that Boolean algebraAis a
. N ‘ -

specific case of a fuzzy algebra [53) (7).

w d

Fuzzy Restrictions And Rossibili*y Distributions .

A Kuzzy~sét“F can be used to define the extent to which
an element u € U possesses a certain property X. This

\ .
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2
- .

property can be represented by a variable taking wvalues -in

N
o v

uU.
—
The property., X may define a- binary valued restriction
(ha;éugdundeg lntérval)]on J g in thig‘case a;varlable taées
value 1 for every: élewehg‘ of{U*hav1né the property X; 0-

14
otherwise. ‘ ot A ’

A property X may also induce a fuzzy restrict.on defined

NEES

over U ;. 1in th:is case the rgssr.ct.on :s represenczed .by a
L i .
fuzzy subset F of U acting as an elas-.c¢ constraint (soft

'boundi, interva.) on tne elements 3f U wrR.ch may posses the

prcperty X. Based sr fuzzy restr.cticn, the concept of
possibllify distribuzions can be introduced. |

4

Let x be a variaple'taking value in U and F represents a

fuzzy restrictisn, " R{x) asscc:ateé w.-h x. Then the

)

NN . A , ~
pripCSltlcn "X 15 F" which -ransigzes :nto :°
.Rix) .= F £ Y

| . .

associates a pecssib.lity diszoibuziosn My, witn x which 1s

9

‘e
] o ’

postulated to be equal to R(x):. . L .

A possibiliry distr.bution 7y associated .with x 1is
4

defined as": | N

ﬂx(u)'= He(u) V\u J‘U;f

»

qrx(u) 1s the pcssib;lity thaé'x=u.

G . .
- ) " .'rs

Possibi%ity relates to'the perception of, the'degree of

Qéasibil;ty whereas prqbébillty is. assoc;ateq with .thé

A, . < . ~
. "y

r
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concept of -frequencty of occurence. The only connection

o

.between them 1is that impossibility (zero possib}lity)

1
i

+ implies ‘improbability but not vice versa.
Althbugh possibilities are non-statistical in nature,
this does nat prevent "one from using statistics in  the

estimation of membership Ffunctions. But this estimations
ddes not require necessarily as large a number. of
“experfhéqts as -the ggtiﬁation of a probability density. The-

induction of a possibility density .can be largely influenced:

by ' the a pribsi knowledge of human experience and 1s less

constrained. . . y

'fn investigating models for speech recognition, we are

»

a

interested' in evaluating the possibility that a feature t is

1

J

in 4 pattern P, i.e.y
‘ . POSS (t is :in P). . ' é .
The algorighm used for evéluatxng the possfbllity cfﬂgﬁ“

‘ hypothesis will be referred as fuzzy algor:thm..

J Fuzzy relations add‘fuzzy languages/are also important

‘concepts which will bw ¥sed in.the fuzzy algorithm in the
ey .

-~ ¢

later. They 'are‘nomitﬁeﬁ for. the sake of brevity. It is

also easier to understand after these.

b - co s
I, .
5.3.2 The Basic Mathematical Model:-of Fuzzy:Algorithms

e
v

fofn this section, the fuzzy /algorithm model will be
. , - : .
explained thrqugh an example in the following,

A
N i

-y

i

— e ol

3



‘Let Hp}p) be a hypothesis about a plosive sound in the

-

acoustic pattern p. . Hp(ﬁ) takes values on the fdliowing set

p 8t phoneme labels for plosive sound
I
P = ,t,k,b,d, .
[ p 29 I

*

Hypotheses in P qge‘assxgned By a fuzzy aigorithm, which

is executed whenever a . consonan is hypothesizea in an
i . ‘
intervai [ ty, t- ] of the acoustic pattern and the

-

poss:bility -thatw the consonant may be nonsdnorant and

ihterrupted.i;xh{gi/gpough.

The fuzzy algorithm for generating plosivg.hypobhesis“is

based on a set of fuzzy codpos;te guestions of the type

| of Hp } = "is Hp in P(ei,t)" : Ny

. J .
w?ere Hp takes values in P. ~

h Y ~

The universe of discourse U of Q{Hp} f all

15 thﬁ set%‘o

possible acoustic patterns, the . body B is a structured
linguistic variable having a label belonging te -P and the
answer sey A of Q(Hp} is a set of linguistic a posteriori
Aéossibilities,.Eégressing the evidence of Hp in p, based on
the evaluation of the possibilities
) : ‘_ v Al .
POSS { Hp is in p(ti,tj) } V Hp ¢ P
- " ‘. ‘ & if'i‘;.
. Eath structural linguistic variégég réprésenéﬁng a
’ ’ ] . o Ve

u

phoﬁemic hypothesis is a triple H' = { Hp, U, R(H) )'r where
. . . : : . 1 ;

U is’ _the previously defined universe of acoustic patterns, °

Hp is a label in P, ande(H) is a fuzzy restrictign of U

« . ” )
-

-

Al
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.

associated with Hp: R(H) defines)\ the meaning of Hp.

'
'

’ B O
Spo., . each plosive phoneme E; be regarded as a fuzzy

‘linguistic variaple defiéing a set bf P on which H takes

~

values.

The futh restriction R(H) defﬂnea ovef ‘an-acoustic cue
»
U could, be seen as a fuzzy relation which can be

scharacterized by a vector of break:po;ntsj:

V(u) = [ u3,u,eeeveeug J, uj € U (I =1,2,...n).

let the corresponding lables of the fuzzy restrictions are:
-~ ‘ N
{ KlU'KZU""""KmU }, m«<=n1.

»

Figure 5.§\é shows an example of fuzzy.restriction R(H).

Where K;, covers the lowest part of the interval over the

y U-axis. The membership'of Kyy takes value 1 for u <= ujy and
decreases lineary, taking the value 0 on u3. The membership

Y : ‘ ‘ ,
of fuzzy 'restriction K, assumes value 1 for u; <= u <= uj3
v , .

and decrease lineary to 0 fromiup to uj; and from u3z to uy.

It is possible that there are some intervals on which -

4

memberships are all equal to 0. ‘
. . -7

These fuzzy restrictions over acoustic cue U can be get

by some observations of histogram and designer's knowledge.

-
1

A
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"5.3.3 Parameter Extractfﬁg\agp~reatur: Hypothesization
p e

The phcnemes . involved in El-Set contain plosive ( in
K,B,T,D,P ), fricative ( in 3, V, C ), affricate (in G ) and

- . . . ' N
vacalic (in E ) sounds, etc. !
/

Plosives are characterized acoustically by a period of
prolonged silence, followed by an abrupt increase in
amplitude at the consonant release; the release is
accompanied by a burst of fricative noise. Fricatives are
detectable by the presence of turbulence noise. The

Yaffricate are often considered to be a plosive followed by a
St . . ' - :
. fricative.' Vowels can be detected by the ‘preséncé of

\
substantial energy in the low- and mid-frequency regions.

They are characterized mainly by the/stgady state value of

the first three formant frequencies. ;

L] N

So,. the important time interals for extracting acoustic
cues could be Pre-Onséet Time, Voice OnéetlTime (VOT) defined
as the duration between the release and the onset of normal

voicing for the following vowel, and transition interval

from consonant to the following vowel. |

»

In the pre-onset time, the voiced stops are OFTEN

-

prevoiced) they create §the voice-bar or buzz-bar in the
low-frequency region during the closure interval. It is

'impoptapt to detect the occurence of quiescence or buzz-bagﬂ{

.

in this interval .for recognition of plos{ves. Subplan PE12

is of this task.

.
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In the voice onset time, subplan PEl13 analyzes temporal

prbperties and PE14 achieves the burst or frication épectraﬂ

analysis. The duration of silence following the burst is
critical to plosive detection. Voiced stops tend to léngthen
;he duration of the preceding vowel [54] [27]. A silence
duration exceeding 70 ms meéns'that the sound is tagged as a
fricative [7] [57]. The duration ‘of the frication in
affricate is typically half as long as in other occurrences
of those fricatives. Recogpnition according’ to place of
articulation for plosive is done by finding the frequency
location and the relative strenth of t%e major
concentrations of energy in the, burst spectrum. Bricatives
can often be determlnggpby examlng the gross spectral shape

during the fricative. ([57] P58]).

3

The acoustic cues analysed during the temporal of
transitions are concerned with formant transition, i.e. :
formant pseudo-loci and formant slopes. Formant pseudo-loéci
are defined as the first formant samples which are detected
at the beginning of the tfansitién.abéfore the vowel
follqwihg the plosive, ™ Formant slope is defined as the
difference between the freduency of thé pseudo~locus and the

frequency of the second formant when the formant amplitude

reaches the absolute maximum on a vowel. Subplan PE15 will.

give. the descriptions about formant slopes as Mmentioned in -

the last chapter.
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: > -
The parameters extracted by PE13,PEl14,PEl5 are used in
fuzzy relations. fThe features are described by a set of T\'

fuzzy sets which will be introduced in the following.

-

Feature Hypothesization By PEl3

. The parameters extracted by 'PE13 are D,ZQ,ZR (sée
"section 5.2). The labels for the fuzzy restrictions over D -
are '
{ 'sp, MD, LD}

w}th the corresponding vector of break-points

V(D) = [ 3,10,12,16,20 ]. ‘ [
where SD means "short delay", and LD means "long delaf",
eﬁc. ‘The membership function of the:fuzzy restriction is

shown in Figure 5.3.3 (a).

Ve -
The labels of fuzzy restriction§ over ZQ are

oy

| { szQ, 201, 2Q2, LzQ )
with‘the cérresponding vector of break-points
v(zQ) = { 10,25,40,50,60,70,80 ].
where SZQ means "short ZQ", and LZQ me;%s )"long ZQ", etc.
g .

The membership function of the: fuzzy restriction is shown in -

Figure 5.3.3 (b{.

The labels of fuzzy restrictions over ZR are

»

1 { LZR,2R1,ZR1,HZR }
with the corresponding vector of break-points :
V(ZR) = [ 10,15'20;25’35'45'60770 }-"

where LZR means "little ZR", and HZR means "high 2ZR", etc.

’
f A7 [

\»

e

- !mw~ o
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SD MD LD

"/

}membership

(b)

Gmembership

LZIR
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The membership function of. the fuzzy
restrictions over the parameters in PE13
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the membership function of the fuzzy restriction is shown in
. o i

[

Figure 5.3.3 (c). o i

Feature Hypothesization By PE14 , " /
. PE14 provxdes a fuzzy language FL- for bu;s&xanalysis.

This fuzzy language FL is a fuzzy relatzon from tﬁe set of

terms BSA. (see sectloQ E .2) to a Carteszan product space
/

U=U1xUpXeooinn X Un, B
each qu' i=1,2,...,n% is one kind of paraggtéf set and is
characterized by a membership function : /
. Mpp : BSA XU -=---- > 10,1) . s
for any element E = { UlsU2seeeaevsluny ) € /U, where u; ¢ Uj
and i=l, 2,....n, theré is a . ' ' / ‘
upL( *»/E ). Vx « BSA, Lo //

.which deﬁxnes a fuzzy set D(E) in ;SA called "descriptor"

and serves’ to charactesize the exteng to whlch each term  in .

BSA describes - a "~ given element /@ of U. According to the
/ ' .
relations between BSA and plosivq/sounds or others, we can

get the similarity evaluation §7é each sound. - '
/ ¥
In the above, FL has ,/been described as a binary
zela¢gon, ggtually it cou%d/ge ajn-ary relation. Anyhow the
fpoint is how to deterfiﬁgthe Hpp. In the followzng, this

fuzzy relation will be andlyzed in more detail.
i ° /
' N ‘ ’/ . N
On the other hand,/%he fuzzy relation FL can also ‘be
/

seen as a fdzzy re74riction induced by BSA defined over U.

" In this case the rgstriction is represented by .a fuzzy
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L3

\ ‘ . subset D of U'acting as an elastic constraint on the element

6f U.whicﬁ may posses the property ’ .

x ¢ BSA.

H

' . kA :
Now let D3, D2,...,Dpn be .fuizy subsets of U3, Up,..., Up

b ' respéctiveli, each Dj can be seen as the fuzzy restriction

defined over Uj, 1 = 1,2,.

H
¢

fuzzy sets, ‘their Cartesian product is : -

D Dy XDaX ... X Dp

-
\

fu,.u‘.,,;, Un no'(\ul)“/\llo‘,(qé)/\... A ﬂq‘(un)/(U, A R TS

~

q

-

and D is a fuzzy subset of'u"= UjxUzx...x Uy which can be

defined as the ﬁhzz§ restriction over U. . e

~

)
’ This result is

restriction defined over U = UpxUpx... XUp can be get from

So far, the

.

Where uj.e¢ Uj, i=1,2,4..,n. . g

+

very useful, it means that the fuzzy

each fuzzy resyt:ction defined-over Uj, i=1,2,...,n.

mathematical model of feature

...Nn. According to the theory of.

‘hypothesization "for PEl4 has been built. up. In . the
following, we will intfoduce .various parameter sets 'or

‘a “ ' [ .
elements in U and its corresponding -fuzzy restriction. which

can be further combined from a set of fuzzy restrictions-in

it [7].

! ”

*In our system U = U; xUpzxUj, this means that th¥fee kind’

. of .parameters have

been considered for burst spectra




\

analysis, etc. They are

U : frequency'corresponding to the grSvit& center.

highest peak in the 2-7 KHz band. - -

the

4

Up : the ratio between the maximum eneray and the average.

Uz : frequency corresponding to the highest peak,.

4
spectra

_diéﬁr;butione in gaghs 3-ary space of each plosive

.energy in the 0.2-1.0 KHz Band . <t

the

Their fuzzy restrictions ‘are 'baébd on the feature

sound or

others so .that the property x ¢ BSA for each plosive sound

bl

could be represented by a strxng of labels or

prepernles

i 1nduc1ng these fuzzy restrlctlons.o In thls ‘way, the fuzzy

relatlon for each sound can be generated flexlbly

The labels ( not need to be strictly meaningful in

level ) for the‘f’)zy restrxctlons over Ul are
{ A1,Bl,C1,D1,EL )} N ‘& ‘ 0
w1th the correspondlng vector of break p01nt
| AL 0.8 1.2 1,81‘2.2'
'BL 1.6 2,1 3.9 4.3
Cl- 3.6 .4.1 5.1 é.q
D1 4.8- 5.2 5.9 6.4

F R 5% 6.0 7.5 8.0

-~ ¢

a

t -

The labels ‘for fuzzy restrlctzons over Uz are .
{ a2, B2, c2, D2, E2; F2 }

\Jﬁith the correspohéing vectar of’breakrpoints 3

.
S ‘<

t

this .

-
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« . A2 8.0 10.0 ‘15.0 17.8° T

96

A

B2 . 12.0 15.0 20.0 27.0
« a2 L 15.0 20.0 27.0 325
C b2, 25.0 30,0 38.0 41.0 ' ‘
, CE2 . "35.0 40,0 50.0 55.0
TP 4s.0, s2.0 60.0 70.0 |
. fhe labels for the fuzzy restrictio;s over Uj ége
’{,A3;33,c3fo3,z3,F3,G3 }
iwith the cor?éspon&inq vector’of break-points : ',
BT 12,4 2.7 3.0 3.2
B3 2.8 3.1 3.5 3.7
ci 3.3 3.5 3.8 4.0 | e
. b3 3.8 4.0 4.4 4.6

E3 4.2 4.5 4.8 5.0

\ . -3

F3°  4.85°510 5.4 5.§

.-
. The figures of the membership functions of the fuzzy
Cho k , :

restrictions are omitted here since they are similaf to

»

Figure 5.3.3.
Feature Hypptﬁesization By PE15

The algorithm model of‘.ﬁsls is same as that of PEl4.
The fuzzy_laﬁgqage presentéa by PE15 is exactiy a, binar§
FUZZY rélation. Based on the parameter distributions of
some statistics Of the sounds, the cbrresponding;-fpzzy

. o -
restrictions could be get and the fuzzy relations for the

[ 4 - ¢

‘. 6™ 5.3 5.5 6.2 6.5 . , A

FRINT I

—————— .
S A
' - T
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L . h C)
sounds can e pbnerated. The details of the fuzzy

réstrictions are omitted here «&or the sake of brevity.

]

*«

5.4 Hypothesizing Generation Rules
. : 1S

Learning rules from examples can be seen as.the process
of generalizing descriptiong ‘pf positive and negative _

examples and previous learned rukes to form new candidate

rules. When applied incrementally, this methodology can

produce results which depend on the order in which examples
are supplied and on the occurence of examples which are

exceptions_to the relevant rules. Incremental learning of

<

rules has to come out with & set of rules that is the most

"mpnsistent with the examples encountered sa, far [52].

LI N °
13

Expressions mpade of symbols extracted by subplans PEll
~ . ) - .

and PEl2 and represBnting positive amd -negative examples

have be8% inferred for "each PAC description and for each

~ v
*

phonéme us.ng tne iearmnng algorithm presented in [52].
/
~ ¥

An example of such rules is given in the following :

E‘:= NCB NBP NBZ NST NBU NPB

- B := BU BP BZ NST NBU PBU \S§
There are 96 of such rules in the system [48].

A PAC descciption is used for indexing a set of rules

that 1is masg:ed against the input description produced by -

the plan, As rules and descriptions contain the same number

of . symbols, »a s:milarity index Sl between a rule and a

A :
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© " . . E ) \
descriptions is computed by the following algorithm.

A;éoiithm Similarity (rule,desFraeﬁion) : A ’
!"é;gip | '; ~ . N !
‘ C =0 N . | . o
8 D :=0 .
for each I do - .
begin

if';uleféymbdi(i) matches description—qymgbl(i)
then D := D + 1
else D (=D -1 ;
C:=C+1 o'
endf |
siyila;ity :; k D+C )/ 2

End. , : , .

" Another similarity 82 is compu%ed from PE13 by using ‘MAX

operator for disjunctions and by summing the contributions

e

of each clauses and dividing the sum by the number of

1]
clauses. S : .

#

An example of clauses involved in fuzzy relations is the
following : )
E := ( Short- D ) (Short 2Q) (LOW ZR)‘ .
. K := ( Long D ) (Short 2Q) (HIGH ZR) ’
whgfe "short, long, high, low" are defined by correspondipg
fuziy restricticns over the’cues. There are 43. of _such

relations.
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. . Similarly,*the fuzzy relatign frem PEl5 compute the

simiiarftj‘ S3. An example’ of these relations 1is the

4 -

. following : ‘ . ”
",‘ T := (Horizontal 1) (Horizontal 2) . r
» B := (Ascendant 2) tAscendant 3)

-~ W
-

there are B8 of such relatiogs in the systém.

The fuzzy relation from PEl4 compute the simi}arity”éd}'
. . .

/) . the relations are more complicated. They reflect.the rules
between.ﬁach/phdneme and a set  of parameters under, certain

preconditions. ' They have a mathematical Backéround in the
o \

fuzzy algebra (5% -[56]. An example of these fuzzy

relations is the following : “// _—

'poss{k} := Poss{c2}*P0oss{E1} + POSS{B3}*poSs{B2}

where the operators * and + are MAX and MIN operators,

-

(- .
respectiyely. Tyere are 36 ofsuch.relations.

-

.

5.5 Hierarchical Recognition Strateg&
f 4

® L -

' Recognition of the sounds in E1-SET is Bottom-Up . At

-

the first level, if the PAC description is unambiguous then

a decision is made immediately. If.not; the PAC description
7 a

&
L will invgke a set of Eules-and recognition process goes to
1

the next level. ' . ' _ .

N

At the second level, similarity measurements . are

. . . ' ' -
computed for the hypothesgs generated by PE11l,PE12 and PE13

and avéraged. The parameter . . ' N i 1'
. T ’ . J !
s v S12 = (Sl + S2)/2
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is used for seiecting the three rgandidaées halFdn
T N . FH
highest . similarity wit the data. If the algor}j

3

»

o
only one.candﬁdatg, then decisipn is made. ‘'If not’, ' formant
N

“transitions fare analyzed by PE15 at'the third level and a

new similarity wvalue S3 1is computed for the three
. - N

+

candidates. ° S3 is used for cﬁénging or confirming the

"

qrdering ;{iipiished by S12. If-the algorithm for analyzing

-

formant 4nsitions doe< not find acceptable formants, then

—

;53 is not used. In this case, if Preconditibns (see 5.2)

- 4

‘for executing PEl4 are ﬁbund,athén a last similarity value

N

S4 is computed. Usualzzfﬁﬁ id very reliable. It seems that
burst and transition§ complehent  ®ach other in the.sense

. that when one cue is weak, the other is.stroné.

- 1

EY -

During the wholk recognition process, expectations  are
built up using a-priori knowledge and parameter histograms.

Candidates)are then ranked according to how well do 'the?l

match expectations baked on a voting critterion. Table 5.5°

- ; e
shows the similarity 5&,82,83,54 in a testing experiment.-
/ - x R B
\ - .
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; CHAPTER VI

SYSTEM PERFORMANCE AND EVALUATION |
N L, :

‘

.

6.1 Experimental Results and piscussions .
i - ) . ’ "
The system has been tested on a protocol of .1000

*

_connected pronunciations of symbols of the El set in sttihgs

of five symbols each. The strings were pronounced by five
,
male and five female English speakers. The voice from two
male and two female speakers *has been used'for derxv1ng the
v

rules. -« The average recognltlon rate is around 90% which is

preeminent [59]. The system response time for each complete

,string 1is around 1.5 minutes. The results are satisfactory

PR

since implementation is o a timesharing machine. In
‘ *

addition, the system has been conceiVed in a distributed

e e

<« processing model, but row it is'implemented in a classical

1

\

sequential machine. Reg}-time operaéion would be reached by

ey

implementatign ¢on a parallel computer architecture. -
In the following, we will analyze the elements which

affect the recdan;éion accuracy or performances. ’

N .

Figure 6.1 shows the system performance improvement when
more subplans are introduced: A set of experimenté' have

« ‘ . t
been carried. out to check the quality of subplans. Inh the

"beginning, only subplans PE11l, PEl2 and PEl13 were used, the
- .

P R T T e 2 I CU N
: H
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~

system achieved .80% goftect recognition of the letters of

\ I3

El set. When -PEl4 was put into the system, the correct

.

recognition rate.reached 86%. Finally the system arrives at

around 90% .correct recognition when all of designed

n

subplans worked cooperatively. Further dreat improvement

&

. was limited by the system segmentation accuracy which

achieved 95% coftect detections of syllables.

The experiments have shown that the planning system is a
powerful tool for extracting features in continuous speech

and an a priori syllable segmentation followed by

recognition, the reéognition accuracy is limited by the

qlgorithm'é ability to segment continuous speech into

syllable-sized units [60]; ‘Even so, the expert system
appr&ach‘to segmentatioq has shown an ‘excellent result
instead of the following conditions '

{l1) Some letters in the s;ring.had been prpnounced by error
because of the carelessness of long time repeat.

(2) The letters in ine “middle of the strings had been
pronounced too weak because of the‘customs with some
speakers. This _case happened very often since the
spéakefs usualiy pronounced very heavy in the beginnin;
and the end, the data .acquisition instrumeﬁts still
acceptéd that kind of speegh data as “good"’one.

(3) Some speech signals had been missgd éince sbeaker

-~

speaked earlier than the onset of the acquisition..3

(4) The heavy ncise and other persons walking in and out :

-
st st pemtrirns siopy ) 4 - )
- - - e p—————— T R R e

g



105

/
disturbed the data acquisition quality.
(5) No any speaker had been trained for the way of speaking.
The speaking épeed is quite different from one to

another among the ten speakers.

Since some of the above cases are avoidable, the system
performance could be improved in the further experiments by

no means of any refinements of the algorithms,

Another set of experiments on testing the system are
shown in Table 6:1 . Each row in theé Table 6.1 shows the
absolute error recognition rate of corresponding letter or

letters(segmentation error is not included), and especially

’

-its error distribution among subplahs or what aspects and -

how extent that errors result from. For example, the
recognition of letters B or By has the absolute error rate

1.5% and 70% of these errors come from fhe mistakés of PEl1l,

PE12 and PEl13; 15% of these errors coﬁe from PE14 and s on.

From Table ‘6.1 we can see _that the burst analysis and

4

gross spectra description about "the properties in: transient
time are very reliable for the recognitions of plosive and
fricative segments. The. formant transition analysis-is‘also
'.very important for the recognition of. plosive sounds.
Another aspect we can see is that the acoustic;phonekic
decoding of  a sentence is a major bottleneck'in‘éontidupus

speech recognition. ' Co

A s 0, LS G PR VR st 5 o 070 i Srammme e
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\'ta

Ao ) .
. Other important facts observed are that the burst of

. plosive sounds is often 'missed in continuous speech and for

" voiced stops, the buzz-bar is not easily detected This is

probabl§ the reason why voiced stops have relatively highef

error recognition rate in thé first part of Table 6.1.

I
[

In addition, Table 6.} has shown that /E/, /G/ and /V/

‘have considerable high error recognition rate. From
e

experiments we have found that /E/ is usually confused with

,/T/, /¢/, /B/, and /G/ is uégally confused with /p/, /D/,

/T/, and vice—&brsa. The former observation can be
éxélained as follows. In many cases _the prevocalic
transient of /T/ and./P/‘or /B/ is missed "and ’ the plan
analyzing the beginning of. the vowel classifies it as a /E%Qx
In some other -cases, the onset of /E/ from the Silence is‘
preceded ,QXQ? transieng that makes it appear siﬁilar to Fhe
transient of /T/ or /P/. Probabiy, a better burst
charactepization will reduce this error (34]. /G/ is an
affricate with charactéristics'between ploéiyg and.fricative
sounds. Intrbduciné /;U¥E§ﬁ@ transition dnalysis rules for
/G/ "and /V/ will prbbably reduce the errors in the
recognition of this sound. s ~

- . .
Other recognition.errors in /C/ and /3/ are very small.

* The confusion table is shown in Table 6.2 which does not

A
include 5% segmentation error.
1

[ ' : ? s
.

2

I e g i DL
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Table 6.2 The confusion table

§

N
3

e
A

PRONOUNCED
P T K B | D G C \ E 3
P 93 1 2 2 2
T 92 | 4 2 2 1 1
K 2 94 o B :
B 5 93 | 4 - 3 1
D 2 2 90 2
G. 3 1|2 |09 1 b~ | 1 ‘
C . 1 | 100
v ) 2 2 92 1
'E 2 1 ) 1 95
3 1° “ 1 97
{ N
Segmentation Error Rate:

5% .

N s e



1/-- e : " 109
' . ' 4
4 »

Learning for knowledge acquisition now mainly consists

-

of automatic collecting and classifying the facts, such as
>
break-point data for fuzzy sets, etc. It is possible to ,

introduce complete automatic learning. This can be achieved

.soon. ! ) \\\

6.2 Conclusions

Y

The 'multi-speaker computer recognitiow system for the

‘tecognition of connectediy-spoken letters in the El set has

i

been successfully implemented. A set of algorithmsy for

L.
extracting acoustic cues and phonetic features Bhas} been

2

5\\w~ introduced. These algorithms have been embedded into a
lanning system. The experimental results have shown that
p 9 :

\ ‘ these features can be useful for ségment;ng continuous
speech into syllabic segments and for a bottom-up generation

1 of hypotheses. The system  recognition accuracy is

sat.sfactcory . The artificial ‘intelligence methodology of

incorporating in the sfstem some kind of reasoning on the
basis of speech knowledge at each level appears very
promising. Some of the characteristics of the system can be

simply ‘'summarized as follows.

(1) As the recognition algorithm, is syllable based, the
&
recognition is not constrained by the number of

syllables and the order they appeared in the string.
(2) A-distributed knowledge base system allows one easy to
- ~3%
find a detailed explanation of the errors 'indicating

along which directions the system should grow.

b

Ly
¥



(3)

!

r10
R
Burst analysis .and formant transition analysis

complément each other for providing important cues of

_-eharacterizing plosive sounds.

(4)

a

(5)

[ (6)

(7)

(8)

forTimproving system performance.

(a)

Phonetic features are characterized by acoustic

o

properties. Redundancies in this representation improve
. .
the recognition accuracy.

Statistical algorithm has- - been used for clustering
parameters uéed by plan. Clustg;s«are characterized by
fuzzy sets which provide useful methods for describing
speaker independent knowledge. R ‘

The excellent segmentation performances partition the
difficulty of continuous speech recognition in
speaker-independent circumstances.

Various meghods for knowledge representation have been
used in a distributed knowledge base. - Frdmes and rule
models structurized Knowledge uses different types of
acoustic analysis and of phonetic features in phoneteic
decoding of continuous speech and controling the
recoghition process in bianning system which is more’
sophisticated control than that in classical syséem.

Distributed protessing model makes it possible to reach

real-time per formance in parallel ! computer

architectures.

Furthe? work . shown in the following s probably useful

~

The acoustic-phonetic decoding of 'a sentence is critical
@ .

A {

P F O

.

L

o
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- both to the ‘segmentation and the hypothesization ig

1

continuous speech recognition. The results generated
v w .

from Acoustic Expert and Syllabic Expett have to.be as

1

good as possible. .

(b) More parameters can be extracted in burst analysis in

ofdéfﬁgb iwprové“the accuracy of desgription about burst

property. Befégéidoing .this, thgitrade off between the

dimensions of | the n-ary fuzzy relétion and the g
processing complexity should be consideréd. .

{c) The accurate formanf tracking of natural econtifiuous -
speech is still an open question., Better algoritﬁms for

\ -
formant analysis will improve the quality of the

analyses. The experimental results have shown that stop
burst and ensuing formant. transitions have gquivalen%yfy
aperceptual weight. " | ' -

(d) The strategy for contrpling the recognition process in .
the planning system could be im;roved. Results have
shown that the acoustic .cues are rich enough for a
reliable hypothesization.

(e) The total software system structure can be refined in
order to decrease the response time., Even though, the
most important speed-up can .be achieved by introducing
p;rallel processing for ;?hieving real-time performance.

(f£) Automatic learning by machine is very impértant aw§3h;§:
to be performed. Its realization will al&ow aéquisition -

of large population of speakers

~
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