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ABSTRACT

Motion Analysis from a Sequence of Range Images

Peiying Zhu

The main goal of this work is to demonstrate the feasibility and potential of recovering
motion from a sequence of range images as an alternate solution to the complex motion
problem. The work presented in this thesis can be divided into two separate parts. The
first part deseribes the long term process. and the second part discusses the short term

process.

The major problem for the long term process is to reliably find matching features in
two or more successive images. An approach is proposed to establish the best match of
point features hetween successive frames using a Hopfield neural network. A model is
developed to convert the correspondence problem to the problem of minimizing an energy
function, which occurs at the stable state of a Hopfield neural network. After establishing
the feature matching, a é-bound matching concept is introduced to detect the reliable
mateching features, therefore increase the accuracy of the estimated motion parameters by
removing the effect of mismatching features. In this way, the algorithm is tolerant to noise

due to feature detection or occlusion.

For the short term process, the case of a single rigid moving object is first studied. A
simple. yet powerful, algorithm is proposed to estimate motion of a single rigid object.
The motion problem is modeled as solving a set of linear equations. A weighted least
squares technique has been found to provide the best performance among several other

versions of least squares techniques. Theoretical analysis on the necessary and sufficients



conditions for the unique interpretation of the motion parameters and on the sensitwity
of the estimated motion parameters to noise provides further insight into the behavior of

the algorithm.

For more complicated motion such as nonrigid motion, the complete process can be viewed
in two separate levels: low and high. In this thesis, attention has beeun paid to the low level
processing. A 3D velocity field has been chosen to be the output of the low level stage.
We first develop an algorithm which uniquely estimates 3D velocitic .. of points on smooth
surfaces by its first and second order partial derivatives, except at paraholic poiuts. The
algorithm is very fast and easy to implement in hardware or software. However, it does
not provide reliable estimates of velocities near edge points. Hence we propose another
algorithm, which is based on the correlation of the local structure of principal curvatures.
The advantage of this correlation approach is that it can estiniate velocities of both cos

ner points as well as points on smooth curved surfaces, and vernier veloritios of line edge
points. The disadvantage is that it is computationally intensive compared with the ap

proach for smooth surfaces. Therefore. we suggest that two algorithins should be combined

together to give the best performance.

Many experimental results on both synthetic and real images are presented in this thesis.
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Chapter 1

Introduction

1.1 2D Apparent Motion, 3D Motion, Methodologies and
Difficulties

Understanding of motion is one of the principal requirements for a machine or an animal
tointeract meaningfully with its environment. Although human beings appear to perform
this task quite effortlessly, attempts to have a machine duplicate it tuins out to be a
non-trivial task.

When objects move in front of an observer (camera or sensor) or when an observer
moves through a fixed environment, there are corresponding changes in the successive
images, these changes are called 2D apparent motion in images. ‘To recover the relative
3D motion between objects and the observer from the 21> apparent motion has been
one of the major goals pursued by researchers interested in time-varying image processing,
Obviously, at least two main probleims exist. The first involves extracting the 2D apparent
motion from a sequence of images, and the second involves inferring 3D motion from the
extracted apparent motion.

By the term an image, one means the function, F(x,y), at the pixel location (z,y).
The function values may represent depth, intensity, color, or any other signal, depending
on the type of sensor used. The most widely studied images for motion understanding are

intensity images. In this case. the function represents the brightness pattern (intensity)



of 4 scene and the apparent motion is also called 2D visual motion. It is natural for
researchers to choose this kind of images in studying motion analysis since it scems that
the human vision system uses the same kind of input.

Some recent reviews of this area can he found in [81, 5, 107]. It is generally accepted
that the study of motion analysis involves two stages: the measurement of the apparent
motion and the interpretation of the measured apparent motion 1{103, 47]. In analogy with
human vision systems [18, 19], schemes to compute visual motion can be classified accord-
ing to the spatiai-temporal range over which methods are applicable: called short term
process and long term process. Other classifications distinguish between the fundamentally
different processes involved; on the one hand are gradient-based schemes (for examples see
(99, 54, 92, 93, 80, 110] etc.) which use spatial-temporal image brightness gradients to
derive image motion, and on the other hand are correspondence or similarity matching
me thods (for example see [118, 100, 102, 125, 33, 113] etc.). The former are intrinsically
short range, while the latter can be short range or long range. For gradient-based schemes,
computing visual motion is also known as computing optical flow. Usually, a dense depth
image and motion parameters are recovered simultaneously from the optical flow. For the
latter, computing visual motion is a problem of extracting proper features, such as corners,
line segments, facets, etc., and establishing the correspondence of features in successive
images in order to compute the displacements between features. Only sparse depth values
and moton parameters can be recovered from a finite number of displacements.

There is no doubt that significant progress has been made over the last decade,
however, a general solution still eludes researchers. Computing visual motion still remains
a problem for which a bewildering battery of different techniques continue to be proposed.
Moreover, even when the visual motion has been recovered, it may not be immediately
obvious how it is related to the projected motion, the perspective projection of 3D motion

of a scene onto the image plane — if at all. Most work done so far simply assumes that

"1t is by no mean clear whether or not biological systems explicitly recover 2D visual motion as the
itial step, and to what cxtent biological systems use this route alone to process motion — certainly, other
techniques are available. Indeed. the route is not necessary in computational vision: Nagahdaripour, Horn
and Heel [84, 83, 6] have demonstrated the recovery of surface structure and motion without measuring
2D visual motion  Aloimonos {6] has shown that determining the 3D Motion of a rigid surface patch can
be done without correspondence.



the apparent motion is equivalent to the projected motion. However. they are generally
different, unless some special conditions are satisficd. Unfortunately, these conditions are
rarely true in the real world. The well-known example is Horn's rotating sphere [51] 2.
The more general situations have been shown by Verri and Poggio [109).

Assuming that there are no differences between projected motion and 21 visnal
motion, then it is well known that 2D visual motion depends on both scene structure and
motion [75, 74]. There is a depth/speed scaling ambiguity inherent in monocular motion
processing—it is quite impossible to decide whether something is large, far-off and moving,
quickly, or small, nearby and moving slowly. The relation itself is highly nonlincar, which
results in problems such as nonunique interpretation of 3D motion from 21) visual motion,
high sensitivity to noise in 2D visual motion, ete. Some ambiguities are inherent [2, 82].
Despite the concentration of effort on explicit recovery of discrete visual motion, Verri and
Poggio have raised the questions about the usefulness of quantitative optical flow [108].

Perhaps the fundamental reason for the difficultics of the task is the many-to-one
nature of perspective projections. An infinitc number of 31 objects can correspond to any
single view. And therefore, very often the signal processing involved is ill-posed in the sense
that one set of raw data permits a large, possibly infinite number of solutions. Therefore
constraints about the way the world works or more usually, about the way we expect the
world to work must be imposed in order to reconstruct a scene from imagery, moving o
otherwise. Such constraints used may range from planar surface; smooth surface, curved
surface, rigid object, smooth optical flow, constant optical flow in a neighborhood, ete,

Now one may ask, is there any hope for the success of visual motion processing?
How can one proceed? Perhaps no one knows the exact answer. Instead, people tend not
to ask which of these methods is the most correct, but rather which of these methods
is most useful for the task at hand? This attitude resuits in numerous techuigues which
sound very successful in some special conditions. Unfortunately, this choice seems to be
the most practical one at the moment.

Now let us ask ourselves what does motion really mean? Quoted from Ullman {103],

2(a) A smooth sphere is rotating under constant illumination -the image does not change (zero apparent
motion), yet the projected motion 1s nonzero. (b) A fixed sphere 15 Mluminated by a moving source the
shading in the image changes, vet the projected motion is zero
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Motion is a continuous change of location and disposition, hence information
concerning the 3D structure of obhjects, and the way it changes over, bears

directly on the motion of the objects in question.

The process discussed before is called structure from motion by Ullman. He has also
demonstrated that human vision systems employ depth cues to infer motion and he called

this process motion from structure. Quoting again from Ullman,

When both processes are applied to a scene, they usually agree in their results.
They will, however fail to do so when the static perception of structure which

governs the motion from structure process, is erroneous.

Ullman also pointed out that there are some cases where structure from motion fails to
recover motion, while motion from structure succeeds. Therefore, if structure information
can be obtained from sources other than intensity images, a robust and general solution
may be found for the motion problem. Fortunately, this information (depth, range) can
be obtained through stercopsis [41, 76], structured light [85] or an active sensor such as
a range scanner [58, 59]. The above observations motivated us to seek computational
algorithms for motion from structure. Specifically, the author is interested in motion
analysis from a sequence of images obtained from a range scanner, which will be briefly

described in the next section.

1.2 A Triangulating Range Scanner

The principle of a range scanner using triangulation is very simple [64]. Figure 1.1 is a
simplified illustration of such a scanner described in Rioux [87]. Light from laser source
L is reflected from mirror Ay and hits a point Py in a scene. At P; the light is scattered,
some of which is focused by the collector lens onto the fixed mirror M3. From M; the
light is reflected to the back side of mirror Mj and the light comes to a focus at Pj. In the
same direction, the scattered light from another point P, in the scene comes to focus at
P}. The distance between Py and P, corresponds to the distance between P| and P;. A

linear array of photocells is placed in the P{ to P} line. A point P’ is detected by locating



Figure 1.1: The principle of a range scanner.

the maximum signal on the linear array. The angle a,,; is measured and corresponds
to x-dimension. Another mirror Af, is used o deflect both the outgoing and jncoming,
light. The angle a2 corresponds to the y-dimension. After calibration and coordinate
conversions, the range image F(z,y)is obtained from the mirror angles o, and oy, and
distance ( Py, P') where P} is some reference point and I’ is the location of the maximum
signal on the linear photocell array. Such scanners have heen designed for vatious seene
volumes. for example, Im x Im x 1m. Some versions arce commercially available”

There are several drawbacks to the range scanner. The laser light source] used
because of its ability to maintain focus over a long distance, can be harmful to the un
protected human eye. If a surface in a scene is totally absorbing (very black or “furry”)
or highly reflective, then no light is returned and the scanner registers infinite distance,
If a scene contains very reflective surfaces, then the light may “bounce around” and may
be returned at greater intensity to the array from some other direction than the correct
direction in the scene, resulting in distance error. Finally, certain places “seen™ by My

cannot be illuminated by M, or vice versa. However, the absence of light on the diode

3Servo-Robot, 1380 Graham Bell, Boucherville, Quebec J4B 6H5



array is an indicator of infinite distance or some difficulties in “seeing”, and corrective
actions can be taken later.

Despite some of the scanning difficulties, the images obtained are very good. The
number of pixels in each dimension is from 256 up to 1024. The quantization accuracy
on the z axis varies with the depth, since it depends on geometry. It also depends on
the number of photocells used in the array, and the accuracy of locating the position of
the peak signal along the photocell array. There are several other ways of detecting the
range from the observer to the points in a scene, such as stereo, radar, etc. (for details
see [58, 59, 13]), but the laser range scanner “beats” these methods in its simplicity of
design and richness of information delivered since a laser scanner is capable of giving the

distance as well as grey level and even color images of the scene.

1.3 Range Images vs. Intensity Images

Range images provide the position information, thus the apparent motion in range images
is directly related to 3D motion. This greatly simplifies the problem of motion analysis.
As will be shown later on. 31) motion parameters are linearly related to apparent motion
in some cases, therefore the problem turns out to be well-posed. Besides, the problem of
analyzing motion is decoupled from the problem of recovering structure.

Consider a simple example where a mobile robot has to estimate the collision time
with either a moving object or the fixed environment in order to move safely around. It
is extremely easy to extract this information from range images, while it still remains
a diflicult task if using intensity images. In spite of all these potentials, range scanners
will not replace intensity cameras because of the following four reasons. First, it is much
more expensive than a normal camera. Second, it uses a laser beam which may not be
desired in some applications, such as in military applications. Third, it has a smaller field
of view than a normal camera. Fourth, it usually takes longer time to obtain an image
even though the prototype of a video-rate range scanner [12] has been developed by the
National Research Council (NR(C') in Canada, but the image quality is not as good as for

the slower scanner. However, it is also useful in some cases where a normal camera will



fail absolutely. for example. it can "see™ at night, and it also works better than a normal
camera when objects in a scene have nearly uniform illumination and spectiat reflectanee
characteristics. In other words, the study of motion from range image sequences is very

important as an alternative tool.

1.4 Previous Work

Few researchers have studied motion from range image sequences. The main reason, the
author believes, is that a range scanner represents a rather new technique and it used to be
very slow, therefore. it was not suitable for capturing time-varying images. Nevertheless,
there are still several pioneers in this arca. One recent review about different approaches
developed to estimate motion parameters from a sequence of two range images is presented
by Sabata and Aggarwal [89]. The authors subdivided the main issues iuvolved in the

detection of motion from a sequence of range images into three steps:
1. the segmentation of the range images in cach frame and extraction of the hey features,
2. the establishinent of the correspondence of the key features between fromes, and
3. the computation of motion using these feature correspondences,

In the paper. it is assumed that the key features nsed are produced a priovi by an image
segmentation algorithm. Also, the correspondence hetween pairs of features is assumed
to be established in the preprocessing stage. The discussion is focussed on the third issue
under the assumption of rigid object motion. In this case, the problem becomes optinal
parameter estimation. Motion parameters have to be restrained by physical constraints,
such as the rotation matrir has to be orthonormal. In this way, motion estimation usually
turns out to be a constrained nonlinear optimization problem. Various techniques to solve
this optimization problem for different kinds of features are discussed in the paper. Seg
mentation of range images have been extensively studied by researchers in the processing
of 3D images [1., 13, 63, 65. 61].

Kehtarnavaz and Mohan [67] gave a framework for estimation of rigid motion param

eters from range images. They first segmented images into small patehes whose centers of
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masses were taken as foature points, then they established the correspondence between the
pat hes using a graph matching technique, and rigid motion parameters were estimated
using a least squares technique. The weakness of this method is that the center point of
each segment may not exactly correspone to the same 3D point when the object is viewed
from dilferent angles because of sampling of the surface.

Yamamoto et al. [117] described a method capable of estimating motion parameters
of a rigid object as well as a nonrigid object. They used a net of n X n nodes connected by
links as a deformable model to represent surface motion of a nonrigid object. A link can
streteh but not bend. "The links which connect to a universal joint at each node can inde-
pendently rotate relative 1o each other. Then they derived the lincar relations hetween the
small variations of the link parameters (the length and the direction in polar coordinates).
i.c.. motion patameters, and the displacement. Motion parameters are obtained by solving
a system of linear equations, which are usually very large. Therefore, the solution will be
sensitive to noise and the equations can easily become ill-conditioned unless the number
of motion parameters is restricted according to the nature of actual object motion. It also
requived that sutfaces be smooth.

Horn and Harris [53] extended the gradient-based scheme for optical flow to range
image and directly estimated rigid motion parameters using a least squares technique.
This method is similar to a part of chapter 3 in this thesis and to the method for rigid
motion estimation in [117]. However the present algorithin was developed independently.
In addition. the discontinuities of surfaces are considered, and the theoretical analysis
15 cattied out about conditions for unique motion interpretation and error propagation.
which are lacking in the other two papers.

Several other papers propose methods to estimate motion from intensity images
with the assumption of known depth [4, 116]. Chaudhuri and Chatterjee {22] estimated
local deformation parameters from the given 3D point correspondences. Other techniques
which may be useful for motion analysis are the ones for pose determination [15, 20. 25].

In summary, most methods proposed so far are correspondence-based. For these
hinds of methods, teliable feature extracting and matching remains a difficult problem,

even though the features flom range images may possess physical or geometric meaning,.
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Once the correspondence is established, the estimation of rigid motion parameters is made
easier by using range images than by using intensity images. Not much work has been

done toward the analysis of motion of multiple objects, and nonrigid objects.

1.5 Contributions

The main goal of this work is to demonstrate the feasibility and potential of estimating,
motion from a sequence of range images as an alternate solution to the complex motion
problem. Our work is motivated by witnessing the hard struggle of recovering motion
from intensity images and by the impressive new range sensor techniques. We bhelieve
that range images may be more suitable for the study of the motion problem, since they
contain geometric information of a scene. To prove this, we have explored a collection of
ideas and concepts that have been around motion understanding for the past few decades
and modified them to be useful for range images. We have also developed some new ideas

which are suitable for our problem. The principal contributions are as follows:

e We have shown that a Hopfield neural network can be used to establish feature
correspondence. A model is developed to convert the correspondence problem to
the problem of minimizing an energy function, which occurs at the stable state
of a Hopfield neural network. After establishing the feature matching, a6 bound
matching concept is introduced to detect the reliable matching featuies, therefore
increase the accuracy of the estimated motion parameters by removing the eflect of
mismatching features. In this way, the algorithm is tolerant to noise due to feature

detection or occlusion.

o A simple, vet powerful, algorithm is proposed to estimate motion of a single rigid
object. A 3D velocity constraint equation is derived by extending the well-known
brightness change constraint equation, and the motion problem is modeled as solving,
a set of linear equations. A weighted least squares technigue has been found to pro
vide the best performance among several other versions of least squares technigues
We have also proved the necessary and sufficient conditions for the unique interpre

tation of the motion parameters. The sensitivity of the estimated motion paraineters
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1o noise is analyzed. T hese theoretical studies provide the further insight into the

hehavior of the algorithm. Experiments on real range image sequence provided the

promising results.

e An new algorithm was developed to estimate a 3D velocity field, which is useful
for interpreting motion of rigid and nonrigid objects. It has been shown that the
3D velocity of a point on a smooth surface can be uniquely determined by its first
and second order partial derivatives except at a parabolic point. We also proved
that the same algorithm can be derived through gradient based analysis or simi-
latity matching, which are usually considered as two totally different principles in
motion understanding. This proof allowed us to gain a better understanding of these
two fundamental principles. Some practical techniques are proposed to cope with

discontinuities of surfaces and parabolic points.

e We have also demonstrated that 3D velocity field can be estimated based on the
correlation of the local structure of principle curvatures, which are invariant to rigid
motion. The computation method proposed by Kasvand [62], which simulates the
derivation of curvatures in differential geometry is used to estimate curvatures. Since
large curvatures are computed more accurately than small curvatures because of
noise in images, the standard correlation is modified to adapt to this computational
problem. Two techniques are proposed to deal with the correlation surfaces with
nonunique peahs. This algorithm can even estimate full velocities of corners. which
can not be provided by the previous surface. However, this last algorithin is very
computationally intensive. Therefore, we suggested that it should be combined with

the previous algorithm to give the best performance.

1.6 Overview of the Study

The next chapter emphasizes the issue of correspondence. A Hopfield neural network is
used to perform feature matching, and an algorithm. which is able to reliably estimate
motion parameters from the matching results, is developed. The features can be either 3D

points, which are provided by a range scanner, or can be corners, lines, facets etc. 1f all 3D
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points in the images are used as features, then feature extraction can be bypassed. In this
case, the number of feature points is huge. However, since neural networks are essentially
based on parallel processing. the speed will not be reduced dramatically by increasing the
number of features, which is one of the advantages of using necural network for matching.

Chapter 3 is devoted to the estimation of short-term rigid motion of a single object.
An algorithm, which is based on an extension of the brightness change constraint cquation
[54], is used to directly estimate rigid motion parameters by weighted least squares tech-
nique. Theoretical analysis of error propagations and conditions for unique interpretation
of motion parameters are also provided in the chapter.

Chapter 4 describes an algorithm for measuring a 3D velocity field. Tt is shown that
3D velocities can be uniquely determined by the first and second order partial derivatives
except at points with zero Gaussian curvatures. For cach measured velocity, a reliability
measure is provided simultaneously. It will also be proven that the same algerithm can be
obtained by similarity matching and by a gradient-based method under the assumption
that a local smooth surface can be approximated by a second degree polynomial,

Chapter 5 describes an algorithm for computing the 3D velocity by feature matehing,.
Theoretical justification for the invariance of principal curvature features to rigid motion
is obtained by means of differential geometry. Then a matching stiategy is discussed.
Subsequently, two post-processing procedures are proposed to deal with points on line
edges such that the vernier velocities can be estimated at those points.

Chapter 6 proposes a framework for general motion. It divides the tash into: prepro
cessing, estimation of point motion parameters, regulariziction of point motion parameters,
clustering based on coherent motion and estimation of region motion parameters. Theo
retically, it can be used for any kinds of motion.

The final chapter, chapter 7, gives a brief discussion of unsolved problems and areas

of future research.
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Chapter 2

Motion Estimation Based on

Correspondence

An algorithm for estimating motion parameters of a rigid body from range images is
presented in this chapter. The best correspondence between two sets of three-dimensional
points is established using Hopfield neural network. Here the “best” is in the sense that the
number of found matching pairs which satisfy the physical constraints should be as large
as possible. Once the correspondence is built, the é-bound matching concept is introduced
to select reliable matching pairs, which are then used to estimate the motion parameters.
The proposed method can be tolerant to random noise and missing points. It is easily
extended to plane and surface matching. Simulation results are given for noisy synthetic

data.

2.1 Introduction

Correspondence is a process that identifies elements in different views as representing the
same object at different times, therefore maintaining the perceptual identity of objects in
motion or change [103]. This definition gives rise to several questions. What are these
clements? How can they be located? How can they be related to the object to which
they belong? How are these elements recognized? How can these features be tracked?

Unfortunately. the features are in many cases application-dependent, therefore. no single
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approach will be useful for any applications.

The task of establishing and maintaining correspondence is nontrivial. The ambigu-
ity is aggravated by the effects of occlusion which cause features to appear or disappear
and also give rise to “false” features. The development of robust techniques to solve the
correspondence problem is an active area of research and is still in its infancy. The same
problem is common to other areas of computer vision such as stercoscopy, pose determi-
nation and model-based object recognition.

Aggarwal et al. [3] have classified correspondence processes into two categories:
those based on iconic models and those based on structural models. The former approach
uses templates extracted from the first frame which are then detected in the second and
subsequent frames. The second approach consists of extracting tokens with a number of
attributes from the first image, and using domain constraints and structural models to
match these tokens with those extracted from the second and subsequent images. The
former approach will be discussed in chapter 5. Here we will emphasize the latter one,

Sethi and Jain [94] described a method to establish correspondence hetweon feature
points extracted from a long sequence of monocular images. Their algorithms are based
on preserving the smoothness of velocity changes. The iterative optimization algorithms
search for an optimal set of trajectories for feature points in a sequence of images based
on constraints on the direction and magnitude of change in motion. A hypothesize and
test approach is also proposed to handle occlusion. This method hypothesizes ocelusion
if the number of feature points detected in a frame is less thau that detected in two o
more proceeding or succeeding frames. Interpolating the missing point position using the
preceding two frames and testing this with the subsequent two frames verifies the existence
of occlusion. Experiments with manually extracted features illustrate that the approach
is able to deal with limited occlusion. The problem of automated extraction of features,
however, has not been addressed by the authors.

Another class of matching strategies considers matching problem as finding iso
morphic subgraphs from two graphs or finding isomorphic subtrees from two trees using,
different tree-pruning algorithins, such as, Wong [115], Baird [10], Umeyama and Kasvand

(105). Umeyama and Kasvand [106] proposed an eigendecomposition approach to solve a
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weighted graph matching problem.

The relaxation algorithm initially developed by Renade and Rosenfield [86] and
several modified versions have also been applied to the matching problem. In Fang and
Huang’s [31] paper, the relaxation algorithm is modified by incorporating different scales
to allow for large scale changes in the images (due to large translation in depth). Kim [68]
have applied the relaxation technique for matching features in stereo imagery as well as
for matching 3-1) features in depth maps. Barnard and Thompson [11] have proposed an
iterative relaxation labeling technique for matching features in stereo imagery based on
smoothness in change of depth.

In this chapter, an algorithm is presented for finding the best correspondence be-
tween two sets of three-dimensional points using Hopfield [49, 50} neural network. Once
the correspondence is built, the 8-bound matching concept is introduced to select reliable
matching pairs, which are then used to estimate motion parameters. The proposed method
is tolerant to random noise and missing points due to occlusion, and is easily extended
to plane and surface matching. Section 2.2 gives a brief description of Hopfield neural
networh. Section 2.3 discusses point correspondence using neural network. Section 2.4
deseribes 8-bouned matching and the algorithm for estimating motion parameters, Simu-
lation results are given in Section 2.5. Section 2.6 gives the extension of the algorithm to

plane and surface matching.

2.2 Neural Network

The neural network under consideration is based on the Hopfield model. In this network,
cach neuron is implemented by an analog amplifier and an accompanying resistor, capacitor
circuitry. As an example, Figure 2.1 shows a 4 x 4 Hopfield neural network, where neurons
are arranged in a matrix form and cach neuron is identified by a set of double indices x
and i indicating its row and column respectively. The input-output voltage relationship of
a neuron on row x and column i is given as V3; = g(Uy,) shown in Figure 2.2, which is a

sigmoid function. There is a feedback path among pairs of neurons, designated as Ty, y,!,

1 I A
Conductance Tk, y, connects the input of neuron rs to the output of neuron yj
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and referred to as a connection matrix. Further, there is an external bias I, supplied to

each neurons. The differential equation describing the dynamics of a neuron is given by

dUy, Urx
di = ZZTJ‘t,yj r1 I.r: (2”

y=1,=1

where 7 = Rc is time constant.

Hopfield has shown that equation (2.1) for a network with symmetric connection
(T:iy; = Ty,i) has a convergent solution to stable state, in which the outputs of all
neurons remain constant. Also, when the width of the amplifier gain curve is narrow  the
high gain limit—the stable states of a network comprised of N? neurons are the local

minima of the equation
N N N N N N

1
ZZZZTJ"W ai) w ZZ‘J!JI (2.2)

"'.r— 11=1 y=1 =1 r=11=1
The state space over which the circuit operates is the interior of the N-dimensional hy
percube defined by V3, = 0 or 1. However, in the high-gain limit, the minima only oceur
at coruers of this space. Hence, the stable states of the network correspond to those loca
tions in the discrete space consisting of the 2N corners of this hypercube which minimizes

equation (2.2).

2.3 Point Corresponding Using Neural Network

To solve the point corresponding problem, an energy function is constructed in the form of
equation (2.2}, for which local minima correspond to best point matching., It is assumed
that the three-dimensional coordinates of a set of feature points on an object at two time in

stances have been obtained. designated as a = {a;,a,,---,ay}and b = {b), by, bas}.
For calculating all distances between points in the same set, two distance matrices Dy,
and Dy, are obtained, where the element Dy(z,1) denotes the distance between points a,
and a,, and the element Dy(y, j) denotes the distance between points by, and b, lor
rigid motion, distance Do(z,7) should equal to distance Dy(y, ) if points a, and a, match
points by, and b, respectively. Point correspondence is found under this constraint. For
each point in set a, there are M possible corresponding points in set b, or no corresponding

point in set b, but it is not allowed for one point in one set to correspond 1o more than one
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Figure 2.1: A 4 x 4 Hopficld neural network
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Figure 2.2: The input-output voltage relationship of a neuron.

. . . . , ' .
point in another set. Therefore, in the case N < M, there are '(,'tlA—'N)' possible correspon-
dence relations if every point in set a has a corresponding point in set b. Constructing an
M x N permutation matrix V whose rows represent points in set b, and columuns represent

points in set a

' I if point b, matches point a,
i =
0 otherwise

The above discussion shows that there are no more than one element whose value equals

one at each row and column for this matrix. The following matrix is an example.

(1000 0]
00010
01000
0000 I
(0010 0]

It represents correspondence between points by, by, by, by, by and a;,a4,8,,a4,a; respec
tively. It is desirable to find one of such matrix from numerous possible matrices, which

represents the desired matching.
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Constructing an energy function in the following form makes the lowest energy
correspond to the best matching. The “best” is in the sense that the number of found

matching pairs which satisfy the physical constraints should be as ]arge as possible.

N M
FE = "ZZ Z ViVs + ZZ z V:1Vy|+ (Z va__N])Z
r=11=1} J#I.J—] l—l r=1ytzr,y=1 z=11=1

Y Z Z Z E VeV [ Doz, y) = Da(i, 3)l (2.3)

r=1y#r,y=11=13#1)=1
where the first term equals zero if and only if there is no more than one “1” at each row

of V, which embodies the constraint that one point in b is not allowed to be matched
to more than one point in a, the second term equals zero if and only if there is no more
than one “1" at each column of V., which represents the constraint that one point in a
is not allowed to be matched to more than one point in b, the third term equals zero if
and only if there are Ny “1°5" in the matrix V and the fourth term refers to the rigidity
constraints. Obviously, V represents the desired matching when E reaches a minimum. E

can be rewritien as follows
M N

R A
L= 5 DD I N PAE PG \; Etr,‘y,a,, -6
a,y=11,)=1 ry=11,;=1
rMoN M N
+5 3 N Vb = ON, ZZ\ML 1\,
ray=lig=l r=11=1
Z Z VeV (1 = 8 )1 = 6,)| Do(z, y) = Dali, §) (2.4)
roy=1,y=1
where
1 fr=4y
by = fr=y

0  otherwise
Since the term 55 \f is constant, it does not affect locating the minimum of the energy
function, therefore, it can be omitted.
Let 15, be the output of neuron (7. j) and comparing equation (2.4) with equa-
tion (2.2), we get
Ty, = —:Aby (1 =48,)— Bé,(1- éy)
= = D1 = 8:)(1 = 6,))| Dy(x,y) — Da(i. )]

+CN, (2.5)

——
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where the first term refers to inhibitory connections within each row, the second term
refers to inhibitory connections within each column, the third refers to global inhibition
and the fourth is the data term. Substituting T4, and I, into equation (2.1), the analog

network for the matching problem corresponds to the equations of neuron state

dl,x, L’_-n }\' / AI . 1” N ,
T = T A Y V=B 3 N -COUY Ve - N
J#1)=1 y#Er.y=1 y=1,=1
M N

-D Y Y. VulDdr,y) = Dali )

yEry=1 j#1,)=1

1
Vi g(Uy) = 5(1 4+ tanh(U,,/lo) (2.6)

where T is set to I without loss of generality. Solving the equation sets, the outputs for

the stable state give the desired matching.

2.4 Motion Estimation Using é-Bound Matching Points

Any rigid motion can be uniquely represented by a rotation around an axis passing throngh

the origin of a coordinate system followed by a translation, that is

p' = Rp + T (2-7)
where p and p’ represent 3D coordinates of a point at time t and ¢ 4+ At respectively, R
represents the rotation matrix and T is the translation vector.

("42: —lje+ 1 npnze—mnys  ngn.c+ ngs T Tz 'y
R = nynyetn.s ("3 ~Ne+ 1l nyne—nzs | = | ry Tar T

n.nge—mys  menyCt ngs (ni-1)e+1

-

41 T42 Tay
T=[T, T, T. /. c=(1-cos8), s=sinb

where n = [ n, n, n. |7 is the unit vector of rotation axis, 8 is the rotation angle and
T denotes transpose.

Given two corresponding point sets with noise, P = {py.pz,...,pu} and I’ -

{P}. P2+ .., P4}

p,=Rp.+ T+N, (2.4)
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Figure 2.3: (a} A 8-bound matching. (b) Three 8-bound matching points.

where N, is noise. R and T are found by minimizing

e=1/nY_[Ipi - (Rp: + T)||? (2.9)

=]

There are [ots of algorithms (16, 72, 73, 9, 32, 52] proposed to solve this problem. A
recent review of the various techniques can be found in [89]. Most of the techniques require
that the good correspondence should be established, which is very strict considering the
difliculty of the correspondence problem.

In order toincrease estimation accuracy, the é-bound matching concept given in [105)
is introduced to select reliable matching pairs, which are then used to estimate motion
parameters. Let f be a one-to-one mapping from point set P onto point set P’ it is said

that fis é-bound matching if the following holds
d=p@f”ﬂpd—ﬂhn+THK6 (2.10)
»vebl’

where f(p,) is a point in P’ corresponding to p, in P.

The definition of 8-boundness means that when a point in P’ is superposed on a
point in P by the optimal rotation and translation, the maximum distance between the
corresponding points in P> and P’ is less than or equal to é, see Figure 2.3(a), where

M(P;)= RP; + T.
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Umeyama and Kasvand {105] has shown that the least-mean squared error @ s given

as follows
€ = §% ~ [tr(DS))*/ S} (2.11)

where S} and S%, are variances around the mean vectors of £ and "', Spy» = upv!
is a covariance matrix of P and P', UDVT js singular value decomposition of Spy

D= diag(d,),dl 2 (12 2 e Z dm Z 0

I if det(Sppr) 20
diag(1,1,---.=1) if det(Spp) < 0

When rank(Sppr) = m. The optimal R and T are uniguely determined as follows,

usvT

i

T = mp:—Rmp (212)

where mp and mp/ are mean vectors of I’ and I”'.

Starting from this basic theory, we have developed an algorithm as follows:

1. Find three é-bound matching pairs (py, p)).(pP2. p3)s (P pYy) from given point cor

respondence under the following three constraints.
(dig —28) < dyy < (dyy+ 26)
(dy3 = 26) < dlyy < (dys + 26)
(diyy = 28) < dy; < (day +26)

where dyg. d, dog, diyy. day . dYyy are shown in Figure 23(h). Rand T can be caley

lated from equation (2.12) using these three matching pairs.

2. Suppose k é-bound matching pairs have been obtained. consider a new correspon
+ lz . .
dence (pA.+1,p'A+,). then (mp‘H,.m;u,H;..Sf,_,_H..‘7,,,‘“,.8,'/':’“1) can he com

puted recursively from (mpg.mpr g Sfy, She-Sppr). that s
mpyy = [KAK+ D))(mpr+ prer /)
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3.

2.5

M pg)
-2

-SIn‘A+‘
.2

.sln'k_"]

Sprias

[/ (k + D)](mpig + Plyy /R)
(F/(k+ DISPat+ Il mpx = pagr |7 /(K + 1))

(k/ G+ D[S it | mpok = Pl 117 /(k 4 1)]

(k/(k+ D)[Sppix + (mprg = Py mpk — Prar)/(k + 1))

Find the singular value decomposition of Spp: 41, and calculate £ from equa-

tion (2.11). If ¢ < 42, then (Pk+1,Ph4q) i a é6-bound matching and R and T

are replaced by the new estimated values.

Repeat step 2 until all matching pairs have veen considered.

The wnit vectorn = [, n, n, |7 and 6 can be easily computed from R using

the algorithim given by Tsai and Huang in [101]

sinf =
n, =
n, =
- =

cosfl =

+d/2
(ray — ras)/d
H(rin—ra)/d

t(ry —ri2)/d
1) bl
d<ryy ~(ras—ray)”
d? —(ryo—1ryy)?

wred? = (rya =)t + (= ra1)? 4 (r1 - r12)%. The signs of the rotation angle

and rotation axis cannot be decided because these two sets of solutions are physically

indistinguishable. If ¢ = 0. then # = 0. R = I and n,,n,,n. can be anything since

the rotation axis is meaningless without rotation.

Simulation

A network for matehing two sets of 31) points using the connection matrix and the input

bias terms defined in equation (2.5) was simulated on a digital computer. N points of .et a

were chosen at random (with uniform probability density) on the interior of a cube whose

edge lengths were 256, Given motion parameters n. T and 6, N corresponding points of

set A were calculated using equation (2.7). Those Ny points which were still in the cube

[



after motion were taken as part of point set b. The remaining (N — N3) points were
considered as missing points which were invisible in the second time iustance, and were
thrown away. Al — N, points which were chosen in the same way as for point set a were
added to point set b (random choice). These points were considered as new feature points
which were only visible in the second time instance or random noise points. I'wo Fuclidean
distance matrices were computed and normalized to make the selection of parameters in
equation (2.3) easier.

The Runge-Kutta-Verner fifth-order and sixth-order method? was used to solve the
differential equation set. The initial values were selected as given in [19], which is the

following
l'.rz = I‘UU + 6(]“

where Ugg = M N/N; wlich gave an unbiased choice, 8U,, was added 1o break the sym
metry which will lead to divergence. It is a random variable with uniform distribution in

the interval
01Uy <60, < 0.1,

It is reasonable tolet A = B = D (" < ANy > N in equation (2.3). Chosing,
ALB.CD is relatively casier than chosing Ny, Several sets of parameters were tned, and

it has been found that the following set is suitable.

A = 3000 B = 500
¢ = 200 D = 500
U() = 0.01

Then, experiments for different values of Ny were performed. Figure 2.4 shows the results,
where curves give the speed in which neurons approach stable states, State error is defined

as
e(t) = max{Up,(t)~ Ut —1)| (2.13)

where t denotes iterative time. The results show that there exists an aptitmal Ny which

leads to the shortest converging time. For Ny = 10, and 15, all of the correct matching

2Subroutine IVPRK 1 IMSL library was used to solve the differential equation ot
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. Error for N1= 10

Iterative Time

Figure 2.4: State error vs. iterative time.

pairs were found. For N; = 20, all of the correct matching pairs were also found , but
some extra wrong matching pairs were obtained (seec @M in Figure 2.5). This was expected
since the system was asked to find much more matching pairs (20) than the real number
(10). However, these extra wrong matching pairs were singled out by the followed é-bound
matching verification. It is better to let N, be slightly larger than the actual matching
number.

Since data sets were created randomly, the experiments were repeated 10 times for
each set of given motion parameters. More results on matching can be found in tables
2.1 and 2.2. As shown in these tables, all correct matching pairs are found, but some
extra unmatching pairs are also obtained because the exact number of matching pairs is
unknown. However, these unmatching pairs can be distinguished from correctly matching
pairs by the §-bound matching test. In these experiments, it is assumed that there exists
at least 70% correspondence between two point sets.

Tables 2.3 and 2.4 give the results of estimated motion parameters. Let R, T, f and

0 denote the estimated motion parameters, €g. €. €, and € represent the absolute errors
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Figure 2.5: The output V matrix for A = B = D =500, C =200, M = N = 10, N, = 20,
Uy = 0.01.

Table 2.1: Results of correspondence (noiseless) for Af = 10, N = 10, Ny = 12, n =
(0.70.50.51)7.T =[5 557, 6 = 10"

Trial Input Number of | Output Number of matching points
Number || Matching Points | Correct matching | Wrong, matching
1 9 9 0 B
2 10 10 0o
3 9 9 0
4 9 9 0
b) 10 10 0
6 9 9 (]
7 9 9 0 ]
8 10 10 {)
9 10 10 0
10 9 9 ]




Table 2.2: Results of correspondence (noiseless) for M = 15, N = 15, Ny = 17, n =
[0.7 0.5 0.51)7, T = {10 10 10)7, 6 = 20°.

Trial Input Number of | Output Number of matching points

Number || Matching Points | Correct matching | Wrong matching
1 11 14 0
2 14 14 0
3 14 14 0
4 15 15 0
5 15 15 0
6 14 14 0
7 14 14 0
R 13 13 1
9 15 15 0
10 10 10 3

hetween the estimated values and the actual values, that is,

3
3o IRGig) = R

tr =
=1
4 N
o = 3 T =T
1==1
G = ug =y ny = a4 n - a
= '”“()I

The bias and standard deviation (denoted by ‘standard dev.” in the tables) for each motion
patameter are defined as the mean and standard deviation of absolute errors for repeated
trials. The average percent error (denoted by ‘avg % error’ in the tables) is defined as
the percentage of hias with respect to the real value. As can be seen from the tables, the
results are quite satisfactory.

The algorithm’s sensitivity to noise was tested by adding zero mean Gaussian random
noise N(0,5) to point set b. Table 2.5 shows the matching results and table 2.6 shows the

statistics for the estimated motion parameters. The results are still very promising.
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Table 2.3: Performance statistics for estimated parameters (noiseless) for M = 10, N = 10,
Ny =12,n=[0.70.50.51]7, T = [555]7, 6 = 10°.

| 10 Trials €R e | €9 | o ]
bias 1.7293¢-04 | -0.0235 | -4.2373¢-04 | -0.0:312
standard dev. || 8.9849¢-04 | 0.1983 0.0059 0.0575
avg % error 0.6 3.35 0.86 0.5

‘able 2.4: Performance statistics for estimated parameters (noiseless) for M = 15, N = 15,
Ny =17,n=[0.70.50.51]T, T = [10 10 10)T, 8 = 20°.

[ 10Trals [ v | a | @ | a |

bias 3.1671e-01 | -0.0924 | -2.25039¢-01 | -0.0-147
standard dev. || 9.8695¢-04 | 0.2191 0.0033 0.0:311
avg % error 0.36 2.03 0.47 0.23

Table 2.5: Results of corresrondence (with added Noise) for M = 16, N = 1h, Ny = 17,
n=[0.705051)7, T =10 010}, 6 = 20°.

Trial Input Number of | Qutput Number of matching points

Number || Matching Points | Correct matching | Wrong matching
1 1 14 0o
2 14 14 [ '
3 14 I 0o
4 14 B 0
5 12 12 ]
6 13 13 |
7 12 12 1
8 12 12 |
9 13 13 1
10 10 10 ] N

Table 2.6: Performance statistics for estimated parameters (with added noise) for Af = 15,
N=15N=17,n=[0.7050.51)7,T = [10 10 10]7, 8 = 20".

L 10 Trials W 9] ] o l 4 1 “n _]

bias 2.9602e-04 | -0.1707 | -4.3970¢ 0 0.0527~
standard dev. 0.0051 1.2076 0.0143 .3410
avg % error 1.86 9.9] 2.22 1.2%
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2.6 Extension of the Algorithm for Plane and Surface Cor-

respondence

T'he algorithm for point correspondence can be easily extended to plane and surface match-
ing. For plane matching, given two sets of planes Py, P, constructing a permutation ma-
trix in the same way as for point matching, computing normalized angles ©,(i, j) between
planes i, in plane set a and 0,(7,j) between planes 2,7 in plane set b, we then can

construct the energy function as follows

M N N M M N
g ZZ ‘Z WV, 4+ = Z}: Z ViV + = ZZ Vi = Ny )2
J—I 1=1 j#1,)=1 l’“l r=1 y#r,y=1 .r--l =1

M Al N N

Z Z Z }: V| Os(z,¥) — Oali, j) (2.14)

.r—l y#ry=1 =1 3£, 3=1
Using the Hopfield network, the plane correspondences can then be found. Once the
plane correspondence has been established, the motion parameters can be estimated by
the algorithm given in [105].
For surface matching, the principal axis of a region, or whichever attributes of
a surface that are invariant to rigid motion, can be used to construct an energy func-
tion. Faugeras {32] gave an algorithm for estimating motion parameters using matching

quadratic surfaces.

2.7 Conclusion

In this chapter, an algorithm has been presented to find the matching of features be-
tween two successive frames, and estimate rigid motion parameters. The match is found
through a Hopfield neural network. An energy function is constructed based on the phys-
ical constraints between matching pairs such that the desired matching corresponds to
the minimum value of the energy function, which happens to be the stable state of the
Hopfield network. Therefore, the problem becomes to finding the stable state of Hopfield
network.

In the energy function, a parameter which described the number of matching pairs



has to be predefined. This parameter is usually unknown before the matching is estab-
lished. Fortunately, the experimental results show that it is better to let it be slightly
larger than the actual number of matching pairs, therefore, it can be set to the maximum
number of points among two given sets. When the real number of matching pairs are
much smaller than this number, the neural network will also give some extra matching,
pairs, which are detected by the é-bound matching test. In this way, a high accuracy of
estimated motion parameters can be reached.

One of the remaining problems in the correspondence-based method is how to re-
liably extract features. Using the method presented in this chapter, this step may be
bypassed. All the 3D coordinates provided by a range scanner can be simply taken as
features. In this case, the number of features is enormous. It will take too long for a
conventional matching algorithm to establish the proper matching. However, it will not
dramatically increase the processing time for a neural network, This is a very interesting,
area. Unfortunately, there were no facilities available for the author to do the simulation
for the data sets with large number of points since the available computers wore too slow.,

Further experiments on real data should be done to verify the theory. This involves

developing algorithms needed to extract the necessary features.,
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Chapter 3

Motion Estimation of a Single

Rigid Object

In this chapter, a gradient-based direct method is presented for recovering the motion
of an observer in a static environment from range image sequences. This direct method,
hased on the local veloeity constraint equation which is an extension of commonly used
brightness change constraint equation in optical flow, involves only solving a set of linear
equations with six rigid motion parameters as unknowns.

The necessary and sufficient conditions that an object must satisfy are discussed
such that motion can be uniquely determined by the proposed method.

It will be shown that the method fails to provide an unique estimate of the rigid
motion parameters only for some special types of 3D structures. Their motion can not
be perceived even by a human eye, if there are no other sources of information available,
such as intensity.

The sensitivity of the method against noise is analyzed. The performances of several
least squares methods against noise are also compared. It will be demonstrated that a
weighted least squares method has the best performance. Simulation results on both

synthetic and real data are given.
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3.1 Introduction

Single rigid body motion is the simplest, yet very important, case in motion analysis since
many real world problems belong to this category, such as a moving observer in a static
environment, which is very common for a mobile robot. So far, most work related to
motion is concentrated on this type of motion. In chapter 2 we discussed an algorithm
to estimate rigid motion parameters. Obviously, it can be applied to both loug range
and short range motions. However. for short range motion, other methods can be used to
recover motion parameters without dealing with the complicated correspondence problem,

In this chapter. a direct method will be described. The method only involves solving,
a system of linear equations to obtain rigid motion parameters. In the next section, the
basic formulas used will be derived. Section 3 will show how to solve the equations to
obtain a solution. In section 4, the unigqueness of motion estimation will be investigated.,
Section 5 will be devoted to error analysis, which provides the measure of sensitivity of the
method against noise. In section 6, the various techniques of implementing the algorithm

will be compared. Finally, experimental results will be provided and discussed.

3.2 Formulation of Rigid Body Motion

Let a coordinate system shown in Figure 3.1 be fixed with respect to an observer (a range
finder). The z-axis points along the optical axis. A range finder can measure the 31
coordinates (r,y, =) of points on surfaces in a scene. A time-varying range image can be
considered as a function of time and space, z = F(x,y,t). Suppose that the surfaces are
differentiable. Taking the total derivative of z with respeet to time £ using the chain rule
yields

dz 0F(_1£ aFfl_q oF

il et - - 3.1

PRy PP TILA PPTIR T (3.1)
Letu" =[u w wl=[% % £Ln"=[-F - 1]=[-3 50 1]
and F; = %%. then equation (3.1) can be rewritten as

nsu=1F (3.2)
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Figure 3.1: Coordinate system, where (v, v,. v3), (wy,w2,ws3) are translational and rota-
tional velocitios in the r,.y and = directions.

where Fy, F, and Fy are the first order partial derivatives of > with respect to z,y and ¢, n
is the normal vector. uy.uy and uy are components of 3D instantaneous velocity u of point
(r.y.2)in r,y and =z directions, respectively, and e represents the vector d»t product.
We call this equation a local vclocity constraint equation. This constraint restricts the 3D
velocity vector of a point to a plane, which is parallel to its tangent plane (see Figure 3.2).

1

It gives the velocity component u~ in the normal direction

L F

" = ———————
Ny

Equation (3.2) is essentially very similar to the brightness change constraint equation
used in the measurement of optical flow. Therefore, the well-known aperture problem
Mustrated in Figure 3.3 also exists here, Suppose that a moving plane P is analyzed by
a local motion detector which examines a limited area of the image, represented by the
aperture A. Such a detector can measure only the component of motion in the normal
direction of the plane, indicated by b. The components of motion along the plane are

invisible- through this limited aperture. Thus. a local detector cannot distinguish the true




’ 2 2
Uy Fx +Fy + 1

Figure 3.2: Local velocity constraint plane.

movement indicated by a with b or ¢.

Mathematically. this aperture problem is expressed by an underdetermined system
of equations. In the local velocity constraint equation, the first order derivatives are
measurable for each points, while three velocity components are unknown. If there are
n points in an image. then we have n velocity constraint equations with 32 unknowns.
Therefore, additional constraints have to be found in order to determine the nuknown
velocities. Similar to the computation of optical flow, it may be assumed that the velocity
field is smooth and neighboring points have similar velocities, or velocities are constant
over an entire segment of the image, or velocity field is the result of restricted motion, such
as rigid body motion. In this chapter, we employ the assumption of rigid hody motion.
The following chapters will examine other assumptions.

Assuming that an observer is moving in a static environment, the whole image can
be considered as a rigid object. As shown in Figure 3.1, any rigid body motion can
be resolved into two components: translation and rotation about an axis through the
origin. Let v = [ o v, ny |7 denote the translational velocity of the observer and
w=[w wy ws )’ denote its rotational velocity. Let r" =[ & 4 2 ]7 be the radins

vector of a point on the surface, then according to classical mechanics, the instantancons

[9%]
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Figure 3.3: The aperture problem.
velocity of the point with respect to the observer is
u=-—(v+wxr) (3.3)
Substituting this relation into the velocity constraint equation produces
-ne(v+uwuxr)=l (3.4)
Rearranging the above equation and using equality [abc] = [bea] = [cab], we obtain
-nev —[rnw] = F (3.5)

where [abe] = ae(bx c) = (ax b)ec is vector triple product and x represent vector cross
product. This is a linear equation with six rigid motion parameters, vandw as unknowns,
The coeflicients r and n of the equation are either measurable or computable. For each
point, one such equation can be formed. If there are at least six points in the image, then
it is possible to estimate the rigid motion parameters of the moving observer in a static

cuvironment or vice versa,



3.3 Solution of Rigid Body Motion

At least six points are needed to find motion parameters v and o by solving a set of linear
equations (see equation 3.5). In practice, more than six points are needed to combat noise
in measured depth and calculated gradient values by using the least squares technigue
(LS). If there are n pixels in the image, the resulting n equations can be written in matrin

form as
Am=b (3 6)

where A ¢ R"*" me R¢.be R",

[, . 5 . . . 1
f.l‘] I'y; ‘_l —(I'V|:|+yl) l'11:1+-r| I‘,/‘.l'l - le.'/l
A =
Fe, F, -1 —(F,z+un) Fy 2+ r, Foro- 1o
L ['11‘" Fl/" -1 —(I"lh. n + !In) I'.'J,, n + Iy I';/,.IH - I'l'. h, }
m' = e oo owrowy ]
b = | _p, .. -R _].*,"J

If the coefficient matrix ATA is nonsingular, then equation (3.6) has an unique solution

m which minimizes (Am - b)T(Am — b). The estimated motion parameters are
m=(ATA) AT (3.7)

The requirement that the coefficient matrix ATA is nonsingular is not always sat
isfied as shown in the next section. For certain surfaces, ATA is singular. lu this case,
equation (3.6) does not have an unique solution. In other words, there exists infinite num
ber of interpretations of the motion. What can be done in such situations” Obviously, one
can simply give all the possible sclutions. The interesting question is: can one reasonable
solution be chosen among those infinite number of solutions? If it is posable, how Gan it
be chosen?

Let us look at an example. If an image consists of a portion of a plane translating

along the plane. it will be shown in the next section that in this case A7 A is singular. there
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exist an infinite number of interpretations of the motion. When looking at the two images
in this example, the second image will be exactly the same as the first image if the plane
15 Lrge enongh compared to the movement between two frames. This means the apparent
motion in the images is zero, thus zero motion should be a reasonable explanation although
the true motion may or may not be equal to zero. Mathematically, this explanation is
equivalent 1o selecting the solution with “minimum residue norm)”. It has been proved
[$0] that there is only one solution to satisfy this requirement. This solution can be
found using Singular Value Decomposition (SVD). From theorem A.1 in Appendix A. m

satisfving this requitement is obiained by the following formula
m=A'b (3.8)

where A is the pseudo-inverse of A,

3.4 Ambiguity of Motion Perception

From the previous section, it is known that the true motion is indeterminable if the
coeflicient matrix AT A is singular. Since ATA is a function of the spatial gradients and
position patameters of a range image, the uniqueness of the motion interpretation depends
on the geometrical structure. © . scene. It is interesting to investigate the types of special
structures which are subjeet to ambiguous motion perception. In this section, the sufficient
atdd necessary conditions for det(ATA) = 0 in terms of the geometrical structure of a scene
will be diseussed.

According to linear algebra.

det(AT )= D7 det(A( o i) (3.9)

20 Jm

where A(n. .-+ -0 ) is the minor composed of the ii".i.‘z". --.and is,’l‘ rowof A = Ayxm.
the summation is takhen over (1) combinations of (1q.i9.- - - tm). Thus the necessary and

sullicient condition for det(ATA) = 0 is that

det{A{n -, N =0 (3.10)
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for any combination. Consequently, it is sufficient to examine the singularity of any
six rows of matrix A for our algorithm. The following discussions will start from pure

translation and pure rotation, then extend the results to general motion.

3.4.1 Pure Translation

For pure translation. the analysis is very simple. Without loss of generality, it is suflicient

to consider the following matrix

F-Tx Fln -1 an
A=|F, F, -1 |=-|nt (3.11)
Fry £, =1 nz’

where n; is normal vector at point r;. Points ry.re and rg are any three points on a
surface in a considered scene,

From linear algebra. it is known that the necessary and suflicient condition for
det(A) = 0is that ny.ng and ng are coplanar. Henee they are arthogonal to a straight
line. i.e., the normal of the plane. On the other hand. if three normal veetors are orthogonal
to a straight line. then ny X ng is parallel to the given straight line, therefore it s orthogonal
to ng. then n; x nz e ng = 0. Since det(A) = —ny x nz e ng, thus, det(A) - 0. The

following lemma has been proven.

Lemma 1 The neccssary and sufficient condition for det(A) = 0 s thal all normals lo a

surfacc are orthogonal to a given linc.

In fact. if all the normals to a surface are parallel to each other, then the surface
is a plane. If all the normals to a surface are orthogonal to a given line, the surface is
cylindrical surface [38]. Therefore, the following corollary can be easily derived from the

above discussions.

Corollary 1 Purc translation can not be determined of and ouly of a surfaee e the seene

is a plane or a cylindrical surface.




(1) (b)

Figure 3.4: For a plane (a) and a cylindrical surface (b), their normal vectors are coplanar,
therefore, pure translation cannot be determined.

3.4.2 Pure Rotation

In this caso, it is sufficient to consider the matrix A

(ry x ng)7
A= —1{ (rp ¥ ng)7 (3.12)
(r3 x ng)’

We have the following conclusions:

Lemma 2 The necessary and sufficient condition for det(A) = 0 is that onc of the fol-

lowing conditions holds,
o All the normals' to a surface are parallel to cach other.
o All the normals o a surface intercepl at one common point.
e All the normals 1o a surface intercept a straight line passing through the origin.
Proof:
det(A) = —(ry xn1) X (rz xnz)e(rz X ng) (3.13)
Using the equalities

(ax b)x(c x d)=[acd]b - [bed]a = [abd]c - [abc]d

VIhe normal to a point s dehined as a line passing through the point in the normal vector direction of
the pomnt

(]
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[abe] = [bea] = [cab]
equation (3.13) is reduced to

det(A) = ~([riranz]ny —[nirangjry)e (r3 x ng)

[n2nyro)[rirang] - [ryrgnz)(ngnyrs)] (3.10)
The normal at point ry is

(ri'—r;)xn; = 0 (3.15a}

ri’xnj = rjxn; {3.15b)

where r;’ is the radius vector of a point on the normal at rj. Substituting equation (3.15h)

into equation (3.14) produces
det(A) = [ngniry)[ri1'ra’'ng] ~ [r1'ra'ng)[ngnyr3’] (3.16)

Since rg can be any point on the normal at rj, if det(A) = 0, then one of the following

conditions has to be satisfied
1. [riryng] = [rirgng| =0

[n2nyry] =0

il

2. [n3n1r§;]
3. [ryrgna] = [nznyry] =0
4. [ngnyrg] = [rirgng] = 0

Condition 1 requires that ry’,n;,i = 1,2,3 are coplanar if we let normal vectors stan
at the origin, or ry’,7 = 1,2,3 are collincar. Remembering that ry’ is the radius vector
starting from the origin and ending at the normal of point rj, we can see that there exist
only three cases when ry are coplanar, see Figure 3.5(a), Figure 3.5(b) and Figure 3.5(c),
that is, three normals intercept with ry or £z or yz plane, or at a common point, or with
a straight line. Since nj has to be coplanar with ry/, therefore, for cases shown in Fagure
3.5(a) and Figure 3.5(c), three normals have to be on the plane which is irmpossible for
a 3D surface. The case shown in Figure 3.5(b) is a special case that ry’ are collinear.

Therefore, we can conchide that if condition 1 helds. then the vy’ have to bhe collinear,
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(a) (b) (c)

Figuie 3.5: Three cases when r;’ are coplanar.

which means that three normals intercept either at a common point or with a straight line
passing through the origin. Since rj,i = 1,2,3 are any combinations of three points on
the surface, the conclusion has to be applied to all normals, otherwise, we can always find
one combination to violate the condition. So far, we have proved that if det{A) = 0, then
all normals to a surface cither intercept at a common point or intercept with a straight
line passing through the origin. Likewise, we can see that if condition 2 is satisfied, then
the normals have to be parallel each other. Conditions 3 and 4 are actually the same if
we consider that rq,rg and r3 are any combination of three points on a surface. They
require ry'ong, i = 1,2,3 are coplanar or normal passing through the origin, which is a
special case that all normals intercept at a common point. All the statements above imply
the necessary condition for det(A) = 0.

The sufficient conditions are easy to prove: if all normals are parallel to each other,
then [ngnyrg] = [ngnyrs] = 0, and it is obvious from equation (3.14) that det(A) = 0.

If all normals intercept at a common point rg, then, taking r1’ = ry’ = r¢, we have
[rereng] = [rerena] = 0. then det(A) = 0.

If all normals intercept with a given line passing through the origin, assuming the
direction vector of the line is 1. and taking intercepting point as rj’, then r;’ = A1, where
A, is constant, then {riryna] = AA(llng) = 0 and [rjrang] = 0, hence, det(A) = 0.

Q.E.D.
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In fact, if all the normals to a surface are concurrent, then the surface is a sphere
or part of it. If all normals to a surface intercept with a given straight line. then it is a

surface of revolution [38]. Hence, the following corollary can be obtained.

Corollary 2 Rotation can not be determined if and only if a surface 1s a plane or

sphere, or a surfacc of revolution with its aris of rcvolution passing through the origin.

3.4.3 General Rigid Motion

Since pure translation and pure rotation are two kinds of special motion of general rigid
motion, the necessary conditions for general rigid motion have to include necessary con-
ditions for pure translation and pure rotation. Now let us consider sufficient conditions
for general rigid motion. Rigid motion parameters can always be obtained by the follow-
ing iteration method: first assuming that translation is known (say vg — 0), then from

equation (3.5) the initial estimate wy for rotation can be obtained by solving,
[rnw] = -nevy - F (3.17)

This intitial estimate wp can be used to obtain the new estimate for translation vy by

solving
nev=—[rnwg| - F, (3.18)

Repeat this procedure until a satisfactory result is achieved for translation and rotation.
Therefore, as long as sufficient conditions for both translation and rotation are satisfied, the
estimate for rigid motion parameters v and w can be always found. Hence, the following

conclusions can be drawn:

Lemma 3 Rigid motion cannot be dclermined if and only if the surfacc in a seene 1s
a plane, or a cylindrical surface, or a sphere, or a surface of revolution with its ars of

revolution passing through the origin.

In fact, for surfaces discussed above, it is impossible to perceive rigid motion based
only on shape information, even by the human vision system. Other information such as

intensity has to be incorporated with shape information in order to discorn the motion.
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3.5 Error Analysis

The theory of the existence of a solution does not provide any information about the
reliability of the solution. In order to obtain a solution, gradient values have to be es-
timated from discrete images, which will be inaccurate due to the noise created during
imaging process, quantization and sampling procedure. The inaccuracy in gradients and
coordinates results in errors in the coefficients of the liaear system for motion parameters.
If these small errors in the coeflicients of a linear system lead to totally incorrect results,
then the lincar system is very ill-conditioned. In other words, the system is very sensitive
to small perturbations in the coeflicients.

In this section, the factors that contribute to the gradient measurement errors and
the factors that determine the conditioning of the linear system will be examined. The
measurement errors in coordinates (z,y,z) are determined by the range scanner itself.
Usually, it depends on how far the point is from the camera, the resolution of CCD
position sensor, the accuracy of the rotating mirror, quantization errors etc. (for details,

see [27]). The work in this section is inspired by Kearney and Thompson [66].

3.5.1 Gradient Measurement Error

The estimates of the gradients Fr, F,. F; will be corrupted by errors in the depth mea-
surements, and inaccuracies introduced by sampling the surface discretely in time and
space.

The errors in the depths are random and result from a variety of sources as we
mentioned above. Usually, noise is proportional to the depth value, that is, the further
the object is from the camera, the more noisy is the measured depth. It is assumed that
the depth error is approximately additive and independent among neighboring pixels. The
gradients, estimated from changes in the depth measurements, will contain a component
of random error which is distributed like the error in the depth function. The random
component of the gradient error will be additive and independent of the magnitude of the
gradient to the extent that the depth noise is additive,

The depth function is sampled discretely in time and space. This will introduce a



systematic measurement error in the estimates Fy, Fy, }¢ of the gradients.
The gradient sampling error depends on the second and higher order derivatives
of the surface. To examine the sampling error in F, the depth function evaluated at

(z 4+ Az, y,t) around the point (z,y,t} is expanded as
1
Fr+ Az, g, t) = Flr.y. )+ FeAr + 51-‘,,42: +0(A%r) (3.19)

where Fy, F;, are the first and second order partial derivatives of the depth in the r
direction evaluated at (z,y,t).

Rearranging ter-ns, an estimate is obtained for the gradient in the & direction

. F(1+AJ‘.yJ)—F(-?“3/-’)
Fro= Ar

Fr + 1rnm + O(A%r) (3.20)

The sampling error ¢f, is defined as Fy = Fy, the difference between the computed

and true values. From equation (3.20), we obtain the approximate relationship

€F, %FJ-TAJ‘ (3.21)
Similarly, the sampling error in the estimates ly and Fy are approximated by

¢, =~ —;—E,,,,Ay (3.22)
€~ %F,,At (:3.23)

The sampling error of the spatial gradient depends on the spatial resolution of the camera
Az and Ay, and the second order spatial derivatives Fy,, Iy, of the surface. The sampling
error for the temporal gradient ¢z, is influenced by the frame rate Af and the higher order
derivatives of the depth function over time. In fact, ¢g, can be expressed in terms of spatial
derivatives and motion.

Differentiating the local velocity constraint equation (3.2) with respect to z,y and ¢

respectively gives

., Ju Juy  Ou: .

—Fp = Foou+F )‘ +1,,,u2+r,,02 7)?5 (3.21a)
duy  duy 0

Iy = I}yul-}-r (,) -’r]yy’llz*}-ly-(jj—%— (.f.l’“))
duy duy  du .

~Fy = Feus+ F2 Lt Fyug + F ”‘ - -(-);i (3.24¢)
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Rewriting these formulas produces

. - F,
h] ul
“Feo= LB Byl (DB 52 2R (3.252)
2
- - -1
[ | =
. . . ny
—Fu o= [ Fy Byl ) +[ga Zu 2m ]l p (3.25b)
2
L ~1
F
Al u'
—Fy = [ F, [.*yt] ) + g:;ill %!tz %“.tl] F, (3.25¢)
2
-1
Substituting equation (3.25a) and equation (3.25b) into equation (3.25¢), we get
a 8 3 Fy
, For Foy |} wy P 37 Br
o= [u, 712] +[u1 u2] F,
; ; u duy  Buz Juy
Ty vy 2 Jy Jy 3y —1
I,
Hi S %A (3.26)
-1
When At is small, motion may be considered uniform, therefore, %’% = %’—‘f = ng- =0,
then
F,
, 111 Fry uy '83_i.lrL _%uzz %_1;1 ; -
Fae={uy upl . . +H oy owg ) sn o B F, |(3.27)
]'J-y fyy [{p] 'z;—y‘l' 73}2 y -1

Now, let us first tilt the zyz coordinate system such that the z axis is parallel to the

rotation axis (the direction cosines of the rotation axis are (I%'I, ]‘i’j[, ‘ﬁf[)), thenw; =wy; =0

and w3 = |w| in the new coordinate system, from equation (3.3) we have the following

relation
wy =~y + ylwl (3.28a)
up = —uvp - rjw (3.28b)
uz = -y (3.28¢)

44



Taking partial derivatives, we have

[%grl aur ?gu?w] — [0 —uwy 0] (3.29&!)
(% B B = (w0 0] v

Substituting these partial derivatives into equation (3.27), we get

Fu={u up) For Py L w Fyws + upFrws (3.30)
zy  Fuy u2
Now let us rotate the coordinate system around z axis (rotation axis) again so that
the x axis coincides with the direction (u;. uy,0), that is, the projection direction of u on
the 2y plane (zy plane is orthogonal to the rotation axis). This plane is called the rotation

planc. In this new coordinate system, u; is the magnitude of the projection velocity of u

on the rotation plane. denoted by u;, and uy = 0, Fy reduces to
Fy = 4% Fpp — uy Fylw| (3.31)

It is clear that the magnitude of Fy; depends on the second order derivatives of the depth
function along the projection direction of motion on the rotation plane, the fitst order
derivatives in the perpendicular projection direction of motion on the rotation plane, the
magnitudes of projection motion u; itself and the rotational velocity.

The temporal derivative will be well estimated only where the spatial depth function
is nearly linear along the projection direction of motion on the rotation plane and is nearly
constant along the perpendicular projection direction.

For pure translation,

Fy = u?F,, (3.32)
The temporal derivative will be well estimated only if the partial derivative of the depth
function is nearly linear along the projection direction of motion on the zy plane orif the
motion is small.

3.5.2 Conditioning

The accuracy of the estimated motion parameters depends on the measurement errors in

the gradients and the error propagation characteristics of the linear equation. When a
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systemn of linear equations is very sensitive to small errors in the coefficients or right-hand
side of equations, it is said to be ill-conditioned. The condition number of the coefficient

matrix A is defined by
w(A) = JAJIA7Y (3.33)

where || @ || denote norm of a matrix or a vector. The condition number roughly estimates
the extent to which relative errors in the coefficients and the right-hand side magnifies the

error in the estimate of the unknown. If
(A 4+ F)m(c)=b+ f (3.34)

where ¢ F and of are noise in A and b, the error in m caused by the noise is equal to

- {
i) = mll A pa + o] + O() (3.35)
on]
where
_IF e

S NI ]
represent the relative errors in A and b, respectively. Thus, the relative error in m can
be K(A) times the relative errors in A and b. In this sense, the condition number &(A)
quantifies the sensitivity of the Am = b problem.

‘There are many ways to calculate the norm of a matrix and a vector. 2-norm for
vectors and Irobenius norm for matrices will be used in this thesis. 2-norm of a vector

X € R" is defined as
x|l = (Jea]? + -+ o)) = (xTx)1/2

Frobenius norm of a matrix A € R™*" is defined as

1/2

m n

“A“ = Z E,(Iu,?

1=1)=1
T'wo kinds of special motion: pure translation and pure rotation, will be consid-
ered. As pointed out before, general rigid motion can be obtained through iteration. If

the system of equations for both pure translation and rotation are well-conditioned, the

46



solution of gencral rigid motion will be not very sensitive to noise. Theoretically, three
well-distributed points are enough to estimate motion for either pure translation or pure
rotation. In practice, over-determined systems are used to reduce the effects of errors in

the motion constraint equations. Square system will be examined.

Pure Translation

The following equation set is solved to estimate translation of an object.

Av=>b (3.36)
where
F F, -1 ni’ -F,
A=|F, F, -1|=~]nT], b= -F,
Fry, Fy, ~1 ng’ s

where n] = [ Fy, F, —1]isthe normal vector at point rj. It is obvious that
ALl = (Inal? + (In2fl? + [Ingf1*)/?

The calculation of [|A~!|| is more complicated than that of ||A||. Using theorem A.2 given

in Appendix A. the Frobenius norm of A~! is

2 2 2 M
1A = [ lInz x ng lIng x ny]] In1 % na| } (1.37)

(nz xngeni)? (ngxnjenz)? (ny xngeng)?
Let 6; be the angle between vectors ng X ng and ny, 6, be the angle between vectors

ng x n1 and ng and 83 be the angle between vectors ny % ng and ng, taen

A== [ l T — + : ]W (13.38)
In||2cos28; * |nz]|2cos282  |Ing||? cos? by
The condition number x(A)
“(A) = [(linal?+ gl + gl ( ||n1||21cos'2 ot ||n2||2]co.s2 W
1 1/2
+W)] (3.39)

As pointed out from previous discussions, the error in the solution of Ax = b caused by
errors in the coefficients A and b is proportional to £(A), therefore, it is desirable that

k(A)is minimized. It is easy to prove the following lemma.
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Lemma 4 If three points rq,rg and rg are choosen such that their normal vectors to the
surface ny, ng and ng are orthogonal to each other and [n1]| = [n2|| = [|n3l|, then k(A)

reaches ils minimumn value.

Proof:
Since k(A) and x?(A) reach their minima at the same point, k?(A) is considered.
Taking partial derivatives of k?(A) with respect to 6y, 6, 63, [In1|], ||n2|] and ||ng]|

respectively, and set them to zero

0.2 :
g%)?()%x_) - ”_"_:;_,%7‘ =0 (3.40)
- "
"“aé;“ } ”unlfl:lcnof;of (342
0.2
R o
gﬁ%ﬁj’ - -2I|xlelrz—m=o (3.44)
1),.2
Tl = el e =0 4
where

er = [Infl? + [Inz]l? + [ing]]?

1 1 1

Co =

'

il cos?6; * [IngPcos?8; * Mgl cos? 6y
From equations (3.40, 3.41, 3.42),
()[ = 02 = 0;; =0

Since ) is the angle between nz x ng and nq, np is parallel to nz x ng when 6, = 0.
Hence. np L ng and ny L ng. Similarly, from 6, = 63 = 0, we can conclude that nj, ng
and ng are orthogonal to each other.

Substituting 6; = 6, = 63 = 0 in equations (3.43, 3.44, 3.45), and rearranging them

produces
Illfez—er = 0 (3.46)
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ngli'cz—c; = 0 W3 17)

||n3||"c-2 -¢; = 0 (3.18)
We can find that
{Iny]] = |Inz2]| = {|ng]|

Q.E.D.

Pure Rotation

Rotation can be obtained by solving

Aw=b (3.19)
where
(l‘l X ny )T - I’Vfl
A=-1(rgxn2) |. b=\ -F,
(rg x ng)” -1y,

Similar to the derivation of equation (3.39), the condition mumber for pure rotation is

; , ; 1
s(A) = [(ltry x mol + e mg)lP 4 lea » mal?) (o

oy il oot on

1 1 12 -
+||r2 x ng||? cos? ¢, i lrs % nglj? cos? (;>3>] (3.50)
where ¢, is the angle between vectors (rg x ng) x (rg ¥ ng) and (ry ~ ny). ¢, is the angle
between vectors (rg X ng) x (r1 X np) and (rg ¥ na), ¢y is the angle betweey veetors
(ri x n1) x (rg2 x nz) and (rg X ng).

According to Lemma 4, when (r; ¥ ny),(rg ¥ ng) and (rz ~# ng) are mutually
orthogonal and |jr; x ni|| = |irz x ng|| = |[r3 x ng||, &(A) is minimized. As shown in
Figure 3.6, in order to reach minimum condition number, planes Py, 1% and Py should
be orthogonal to each other, where plane P, is constructed by vectors vy and n;. This
requirement implies that rj should be orthogonal to eachi other, which means the field
of view has to be very large. For a narrow viewing angle, ri tend to be parallel to each
other. Therefore, for small objects or objects far away from the observer, the estimation

of rotation will be very sensitive to noise in the data.
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and P3 are orthogonal to cach other, the problem

Figure 3.6 When three planes Py, P
tend 1o be well-conditioned. where plane P, is constructed by two vectors rj ans nj

3.6 Implementation

Standard LS usually works well for Am = b + éb when

[ he compouents &b are independent Caussian noise with the same variance

2 A s known without error.

-

Obvionsly. both conditions may be grossly violated in our problem. In this section. the

problem of how to deal with these violations will be addressed

3.6.1 Weighted Least Squares Method
has been assumed that surfaces are differentiable in order to obtain the local velocity

I'his assumption will often be violated for most of real world images

constraint equation.
In fact. most range data contain several kinds of discontinuities such as jump edges (z is

discontinuous) and roof edges (= is continuous but the first derivative is discontinnous)

\lthough it may be justified that the local velocity constraint equation will still hold

[61). Mthough it may
when an image contains discontinuities, as Schunck has proved for the brightness change
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constraint equation {91], the first order partial derivatives still have to be appronimated
by differences. As sbown before. the errors in the estimates will be proportional to the
second order derivatives.

The first order approximation may result in large errors near jump edges, roof edges
and high curvatuie points. These points are called break points, which simply means that
they break the local velocity constraint equation. This kind of violation will contribute to
&b, therefore, the components o éb will have different variances.

Obviously, one possible way to avoid this problem is to locate the break pomts first
and then remove them from further consideration. The problem of locating break pomts
has been addressed by many researchers [61]. Unfortunately, there is no simple way to do
it. Most of the methods require computation of the curvature, which is also very sensitive
to noise. On the other hand. our purpose is not to precisely locate these points, but instead
to reduce the effects of these points on the solution of equation (3.7). This supgests that
a weighted least squares (WLS) method miay be a better choice. A weight is assigned 1o
cach point in the image. Break points are given smaller weiphts than other pommts. Now
the problem is how to determine these weights. Obviously if the tangent plane at a break
point is fitted in its neighborhood, it will result in large fitting errors in that neighbothood,
therefore, a point can be simply assigned a weight which is inversely propottional to the

variance of fitting errors in the neighborhood of this pomt. That is,

1 N 2
—— {fo“(c.y) < thrar
wir.y)= V() foiey (350)
0 othorwise

whete A is a constant preventing w(r,y) from becoming infinite when a?(r.y) equals
zero, thear is a predefined threshold used to remove points on jump edges from furthes
consideration by assiguing it a zero weight, and o*(r. y)is a fitting variance of pomt (r, y)
2 _ 2 N
oz, y) = U A ENIEN D AR
r,€S5y,€8
where 5 is a predefi ~d neighborhood of point (r,y). Ny is the number of pixels o the

neighborhood, and ¢(z,.y,) is the fitting error of point (r,.y,) defined as

C(-Tuyj): 1"(-7"-.'/) ')_[l'q(fs?ﬁ”‘i" [oo(r =0 )+ I‘,,*(W/— .7/,;‘}
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where ¢ (r,y) is the mean error in the neighborhood.
(r,y)= > D ez y,)/Ns
TES !I]CS

WLS method can be used to find the solution which minimizes
(Am —b)"W(Am —b)

where W= diag(w(z), i1 ). w(T2,¥2), eoes W(Tpy Yn)) i5 the weight matrix. If ATWA is

nonsingular. then the solution is

m={ATW2ZA) 'ATwW2 (3.52)
if ATW2A is singular. then using SVD, the solution is

m = (WA )*Whbh (3.53)

As shown in Figures 3,15 and 3.18 in section 3.7. the weights chosen as in the above are
stnaller around those brcak points | hence the WLS method is expected to give better
results than the LS method.

Choosing the variance of fitting errors instead of the sum of fitting errors is based
on the following intuitive arguments. Suppose that the weight for a point P is estimated
in terms of the fitting errors in the neighborhood § (see Figure 3.7(a)). if some of the
neighbering points (for examples, Py, P)) of P happen to be subject to a large random
noise, then the sum of the fitting errors in S will be very large, while the variance of the
fitting errors tend to be small if the majority of neighboring points are not very noisy.
therefore, a large weight will be assigned to point P by equation (3.51) as it should be. In
this sense, the variance of fitting errors is less sensitive to random noise.

Another reason to choose the variance is that thear is much easier to set. As shown
in Figure 3.7(b), both I’y a.d P, are two points on jump edges, which shon'd be discarded
from further consideration it thear is set properly. The sum of the fitting errers is much
more sensitive to the height of a jump edge than is the variance of the fitting errors.
Therefore, it is harder to choose a proper thrar in order to single out both P, and P,

if we use the sum of fitting errors. It has been found through experiments that thevar
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Figure 3.7: (a) Sum of fitting errors is more sensitive to random noise than vatiance of
fitting errors. (b) Sum of fitting errors is more sensitive to the height of a jump edge than
variance of fitting errors.

can change within a relatively large range without dramatically affecting the resulisif the
variance is used. and a fixed thear works very well for different Kinds of images in the

shown experiments.

3.6.2 Total Least Squares Method

The requirement that A is known without error is usually not held because the elements
of A are functions of the first order partial derivatives, which are estimated fiom the noisy
depth values. In this case, the total least squares (‘'T'LS) methad as provided in [10, 39]
may be used. The application of this method in motion analysis has been investigated in
[23] where the author concluded that the TLS is much better than the LS. We here show
how to solve our equations by the TLS method.

Assume that both A and b he noisy, equation (3.6) would be given by
{A+6A)m = (b 4+ éb) (354)
where 6A and éb are noise. The TLS solution is given by minimizing

crns = |6A]% + ||6b))? (3.55)




subject to b + 6b € R(A + 8A), where R(e) denotes the range space of the argument.

Equation (3.51) can be expressed as

m
[A+6A,b+ 6b) =0 (3.56)
-1

where [A + 6A,b + éb] is an augmented matrix representation with dimension n x 7.
n] - - -

is a vector of length 7. Using the SVD, the augmented matrix can be decomposed
-1

as
[A,b] = UAVT (3.57)

where U € R"*7, V € R™7 are orthogonal matrices and A € R7*7 is a diagonal matrix
(A = diag(ay,0,.---,07)). In the noise free case, i.e. éA = 0,6b = 0, b is in the range
space of A, where only six of the seven singular values are nonzero. Due to the presence
of noise, rank[A,b] = 7. Thus the dimensionality of the null space of [A,b]is zero, and
no exact solution for equation (3.56) exists. A rank-6 approximation for the augmented

matrix is taken, i.e.,
[A.b] = UAVT (3.58)

where the smallest singular value of A has been set to zero in A. The solution mtyg can
be obtained from A and b since b is in the range space of A. The solution given in [39]

by partitioning 'V as

Vii Vi2
Va1 Va2

V =

where Vg € ‘R“"“.Vlg € RGXI.Vzl € RlXG.sz € R'*1, then
A=-Vi2/Vao (3.59)

It has been proved [39] that if g > a7, then Vg will be guaranteed nonzero. For the case
where this condition is not satisfied, the solution is nonunique, but a “minimum residue
norm™ solution may still be obtained as in the ordinary LS (pseudo-inverse) (see [39, 40]

for details).
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3.6.3 Normalizing the Coefficients

As discussed in section 3.5.2, the effect of éA and éb on the solution is propottional to
the condition number &(A). If x(A) is small, 6A and &b lead to small error in m. One
of the conditions to minimize x(A) is that |la;|| = ||a;||. where a; and a; are i*h and yth
rows of A. Therefore, it is better to normalize a; before solving the set of linear equations.

Equation (3.6) is rewritten as
Am=b (3.60)

where the i** row &; of A and the 1* row b; of b are

_ a;

a3 = . = 3 7 s B 0 " ) P
' {1+ ]'1?, + 11/2, + (I'y.:l +u)+ (I‘J',zl + 1'3)2 + (]'u.-rt - l'.r..'/t)“)l/b

b. = "I'h

(1 + 1‘12. + qu. + (Fyuzl + y:)2 + (1"1.31 + JT.)'Z + (l"u- Sy - l"_r, Ys )2 )—l_/&z

3.7 Simulation and Results

To verify the proposed theory and study the performance of different linear least squares
methods in presence of noise, simulation experiments on both synthetic and real data

have been performed. All experiments were carried out on the VAX-6110 using, the ¢

programming language and the IMSL library.

3.7.1 Experiment 1: Performances of the Various Least Squares against

Noise

The goal of this experiment is to study the performances of the different least squares
methods against noise. Eight algorithms are implemented, ie., ordinary least squares
(LS), weighted least squares (WLS), normalized least squares (NLS), normalized weighted
least squares (NWLS), ordinary total least squares (TLS), weighted total least squares
(WTLS), normalized total least squares (NTLS) and normalized weighted total leas
squares (NWTLS), where normalized least squares methods refer 16 least squares solu-

tions of equation (3.60).

[y }
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Spatial and temporal derivatives are found using the operator given by Horn and
Schunck [54): The 3D rigid motion is accomplished by a 3D motion simulation program.

The details of the algorithm is found in Appendix C.

The test wa, done on a synthetic range image shown in Figure 3.8. The object in

Figure 3.8 is defined by the equation:

[ —?[_7 ifz<03(02-z2—y2)>0
z={ o/i-G+H=0 if220,(1-5+1#)>0
] otherwise

where a = 52,0 = 26, ¢ = 52. The defined object was moved to the center of the image
and the image size was 128 x 128, This object was chosen because it contains jump edges,
roof edges and corner points which violate the smooth surface assumption.

The inter-frame motion parameters are t = [ ¢, ¢, ¢, T =111 1]7/pizel,
n=[n, n n T =105 05 0.7)7,8 = 1°, where t is translation vector, n is
rotation axis and # is the rotation angle. Rotation is around the axis through the center
point of the image.

Since the noise in range data taken by the range finder is proportional to the distance
between the sensor and the point being measured, uniform noise, whose range was a certain
percentage of the considered = to each point was added to the images. Let N.SR denote

the measure of added random noise. If a point has a depth z, then noisy 2 is

S=c4 NSR+bx:
where & is a sample of an uniform random variable whose probability distribution is (-1, 1).
For different NSR. rigid motion parameters were estimated by different least squares
methods. thear is fixed at 3.0. The set of translational and angular velocity parameters

is converted to translation vector t, rotation axis n and rotation angle 8. The accuracy of

estimated motion was measured by three error measures: ¢, €, and €4, which were defined

as
It - €li
(=
lIt]l
(g = ms"’(noﬁ)
_e-4
AT
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where ¢; measures the relative estimation error in the translation, ¢,, measures how well
the estimated rotation a-is coincides with the real rotation axis, and ¢z measures the
relative estimation error in the rotation angle. The estimated errors ¢, ¢, and ¢ are
plotted against the noise NSR in Figure 3.9, Figure 3.10 and Figure 3.11 for different
least squares methods.

From these plots, it is surprisingly noted that the total least squares method has
comparable performance for images with small noise, but definitely much worse perfor-
mance for images with large noise compared with the least squares method. This is due
to the fact that when the data is very noisy, such that any singular value associated with
the noise subspace exceeds the corresponding singular value associated with the single
subspace, the smallest singular value is comparable to other singular values, thus, the
obtained TLS solution by setting this singular value 10 zero is no longer a good estimate.
This is known as the threshold break. In our case, even for very small random noise, there
still exist large systematic noise introduced by the 31 motion program, estimating errors
in gradients etc.. TLS does not provide better performance than LS.

The errors against noise for the LS, WLS, NLS, and WNLS methods are replotted
in Figure 3.12, Figure 3.13 and Figure 3.14 for a better visualization. Several conclusions

may be drawn from these plots.

I. The WLS, NLS and NWLS methods give much better performance than the LS

method.

2. When the noise is small, the WLS and NWLS methods are slightly better than NLS

method, while for large noise, they are comparable.

3. The WLS and NWLS methods are comparable and have the best performance,

Conclusion 1 is expected. For conclusion 2, when random noise is simall, break pomnds in
the image have stronger effect on the solution than random noise, the WLS and NWLS
methods reduce the effect of break points, thus, they show better performance than the
NLS method. Forlarge noise, the break points are no longer dominant, therefore, the WLS,

NWLS and NLS methods become comparable. As far as conclusion 3 is concerned, errors

1 ]
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Figure 3.8: A synthetic range image.

in the solution are also proportional to errors in A and b. If weights are chosen properly,
they equivalently reduce the errors in A and b, therefore, decreasing the condition number
of WA thiough normalization does not have much effect on the solution, hence the WLS
and the NWLS methods are comparable.

Weights and variances of fitting errors are shown in Figures 3.15 and 3.16. It is clear

that the veights are small and the variances are large around the break points.

3.7.2 Experiment 2: Estimating Different Motion

The second experiment was done on a quasi-real data. The first frame of the sequence was
taken using the laser finder at the National Research Council of Canada (NRC). The image
is shown in Figure 3.17. The size of the image is reduced to 128 x 128. The second image
wis generated by the 3D movement simulation program. The purpose of this experiment
i~ to get the performance of the algorithm for the various motion parameters. Table 3.1
shows the main results using the WLS method. It can be scen that the algorithm works

quite well even for relatively large motion.
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Figure 3.10: The relative error of rotation axis ¢, is plotted as a function of noise NSR
for LS. WLS, NLS.NWLS, TLS. WTLS, NTLS and NWTLS methods.

60



|

f

|

|

|

]
0.20

3 ~ -
H \“\\ o0
”‘“ r\u S P
< n -
PO BSMSLLTWl
o T~ 0 hi lW.T
Seay I8zzF32Z
o7 T T
‘ ’4 M ] ¥
ST — . . [} 3
:.:,«. rt\l'\,..\ IR | 3 n
J— -
I3 . .
UA\, (@]

0.10

v,
0.05

-
-
[V SN SIS DUV DS

3 (
!
!
t
#
S
!
|
t
i
|
L
3
g
I
0.00

% r < - o 2 h
e = = o o o o

~ -~ -~

10
10

ajbue uoNEBIOI JO 10118 BAIEIEY

Noise

The relative error of rotation angle ¢ is plotted as a function of noise NSH¢
61

for LS. WLS. NLSNWLS. TLS, WTLS. NTLS and NWTLS methods

Figure 3.11:
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Figure 3.15: The weight image of the synthetic tange image

Figure 3.16: The variance itnage of fitting errors of the synthetie dmape.
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Pigure 3.17: Grip5 range image taken by a range finder.

Figure 3.18: The weight image of Griph.
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Figure 3.20: The break pondsin Griph range ithage,
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Table 3.1: Estimated rigid motion parameters using WLS zrip range image.

[T a1 & [ t5 [ m | no [ ng [ 6 ]
true || 1.0000 | 1.0000 ] 1.0000 | 0.0000 ] 0.0000 | 1.0000 | 1.0000
et || 0.9642 | 0.9793 | 0.9976 | 0.0043 | -0.0011 | 1.0000 | 0.9602
frue || 2.0000 | 2.0000 | 2.0000 | 0.0000 { 0.0000 | 1.0000 | 2.0000
ool || 1.9992 | 2.1347 | 1.9512 | 0.0195 | -0.0136 | 0.9987 | 2.0655
true || 1.0000 | 1.0000 | 1.0000 | 0.2000 | 0.2000 | 0.9592 | 1.0000

“ost, 1 0.9611 | 0.9742 | 1.0028 | 0.2095 | 0.2067 | 0.9557 | 0.9504
true |1 2.0000 | 2.0000 | 2.0000 | 0.2000 | 0.2000 | 0.9592 { 2.0000
ost. || 2.5200 | 2.0236 | 2.0468 | 0.2676 | 0.0900 | 0.9593 | 1.9073
true || 1.0000 [ 1.0000 | 1.0000 | 0.5000 | 0.5000 | 0.7071 | 1.0000
et || 0.93258 [ 0.9936 | 1.0063 | 0.5200 | 0.5206 | 0.6772 | 0.9593

Table 3.2: Estimat~d motion parameters by WLS and LS without break points for Griph
range image. thvar = 3.

lr—. ” '] | " l (R} l Wi l w9 l w3 | “V” ' 0 |
~‘(ii\'vn 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 1.0000| 0.0174 | 1.0000
WIS 0.9642 1 0.9793 | 0.9976 | 0.00241 | -0.0043 | 1.0000 | 0.01627 | 0.9602

Nonedge || 0.9174 | 0.9852 | 1.0235 | 0.0782 | -0.0259 | 0.9966 | 0.0046 | 0.2649
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Table 3.3: Estimated region motion parameters for shut sequence using WILS.

r H 8 [ 12 l 13 ] ny ] n l 71—;_ul“—(ﬂf

shutp810 || -0.0514 | -2.3206 | 0.0471 | 0.9999 | 0.0037 [ 0.0061 [ -2.0225
shutp68 || -0.0240 | -2.2676 | 0.0312 | 0.9999 | 0.0013 | 0.0111 |-1.9793
shutpd6 || 0.0359 | -2.2982 | 0.0266 | 0.9999 | 0.0000 | 0.0081 | -1.9934
shutp21 || -0.0490 | -2.2972 | 0.0449 [ 0.9999 | 0.0031 | 0.0073 | -2.0071
shutp02 || 0.0222 | -2.2333 [ 0.0117 | 0.9999 | -0.0109 | 0.0019 | -2.0024
shutm02 || 0.0139 | 2.5286 | 0.0439 | 0.9999 | -0.0071 | -0.0000 | 2.0050
shutm21 || -0.0242 | 2.4214 | -0.0097 | 0.9999 | 0.0001 | -0.0019 | 2.0145
shutmd6 || 0.0517 | 2.1564 | -0.0259 | 0.9999 | -0.0053 | 0.0051 | 20115

Shutm68 11-0.0572 | 2.1152 | 0.0008 | 0.0999 | 0.0006 | 0.0055 | 2.0055

ShutmB10 |1 -0.0796 | 2.137 | -0.0016 | 0.9999 | -0.0016 | 0.0026 | 1.9959

Anotlier test was done in this experiment as follows. Fitst, the image is segmented
using the algorithm given in [62], then the break pownts are located as shown in Figue
3.20, and motion is estimated without these points using the LS method  Similat roesults

were obtained as with the WLS method (see Table 3.2).

3.7.3 Experiment 3: Results on Real Data

The third experiment was carried out on a real sequence of images, which were agar faken
at NRC'. The image sequence contains 11 images: shutQ.vin taken in the starting, position,
shut2p.vin. shutdp.yin. shut6p.yin, shut8p.yin and shut [0p.yin taken at positions when the
shuttle rolls 2, 1. 6. 8 and 10 degrees in clockwise direction, and shut2o.yin, shutdm vin
shut6m.vin. shut8m.yin and shut10m.yin taken at positions when the shuttle rolls 2.1, 6.
8 and 10 degrees in anticlockwise direction. Figure 3.21 shows some of these images
this case. the rotation axis is known in the r axis direction, and inter-frame rotation angle
is £ 2 degrees, but the exact parameters for translation is uni nown. The WIS method
was applied to this sequence. Table 3.3 gives the estimated motion parameters, it can be
seon that the relative errors of the estimated and real rotation angle are less than 2%.
which are very promising results. Errors for the rotation axis are even smaller. Figore

3.22 gives the plots of table 3.3.
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Prgre 3,21 =Shut vin™ sequence: top: shutpl0.vin. bottom: shutm10.yin.
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3.8 Conclusion

In summary, a simple, straightforward, yet very powerful direct method has been presented
to estimate 31) motion parameters of a rigid body from range image sequences.

A local 31) velocily constraint cquation has been derived relating 3D velocity to spa-
tial and temporal derivatives is derived. This equation is an extension of the cornmonly
used brightness change constraint equation. Based on this equation, six rigid motion pa-
rameters of a single rigid moving object can be directly obtained by solving a set of linear
equations using least squares techniques. Several least squares methods have been com-
pared according to their performance against noise and the results show that a weighted
least squares mothod provides the best performance among those different versions of
tested least squares methods.

The suflicient and necessary conditiv - 1 the unique interpretation of motion using
the proposed method have been discussed. The vaiiueness of interpretation depends on
the strneture of the 31 object. It has been found that rigid motion cannot be determined
if and only if the surface in a scene is a plane. or a cylindrical surface, or a sphere. or a
sutface of revolution with its axis of revolution passing through the origin.

The behavior of the algorithm has been analyzed in two steps. First error sources
have been discussed, then sensitivity of the algorithm to these errors has been analyzed. It
has been demonstrated that the major error. gradient measurement error, consists of two
components: random error from random noise in measured depth and systematic error
introduced by sampling surfaces discretely in time and space. The random error is deter-
mined by the range scanner, The systematic error depends on the spatial resolution of the
cameta, time interval between two successive frames, the second order partial derivatives
of the surface, and motion itself. The error will be reduced if the spatial resolution of
the camera and the sampling rate in time are increased. The slower the motion and the
surface change in space, the smaller the systematic error.

The sensitivity of the algorithm to noise also depends on the condition number of
the linear system. It has also been proven that if normal vectors of a surface tend to be

orthogonal to cach other. then the system will be less sensitive to noise if the motion is



translation. and for small objects or objects far away from the observer, the estimate of

rotation will be very sensitive to noise in data.
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Chapter 4

Measuring 3D Velocity Field
through Spatial-Temporal
Gradient Analysis

The analysis of the single rigid motion problem is only a small branch of motion under-
standing. ‘There are many applications which require analysis of more complicated motion,
such as nonrigid motion, multiple objects in motion, etc. In these cases. the processing can
be cartied out at two separate levels: low and high. Typically, low level processing locally
extracts motion informaticn. In high level processing, the final description of motion is
derived.

tn this chapter, attention will be paid to low level processing. A 3D velocity field has
been chosen to be the output of this level. Several plausible techniques will be reviewed and
compared. A new algorithm will be proposed. This algorithm is able to uniquely determine
the 3D velocity of each point by using the first and second order spatial and temporal
partial derivatives, except at parabolic points where Gaussian curvatures are equal to zero.
For cach calculated velocity, a measure of the reliability is calculated. For those parabolic
points., their velocities are interpolated from the reliable velocities of their neighbors. It will
also be shown that the same algorithm can be developed through similarity matching and

a gradient-based method, under the assumption that a local surface can be approximated



by a second degree polynomial function.

4.1 Introduction

4.1.1 Low-Level Processing vs. High-Level Processing

It is well known that the motion of a rigid object can be uniquely expressed by a set of six
parameters, as discussed in the previous chapter, while how to represent general motion
of an unknown object remains an open question.

Looking out the window, a scene, which contains a swinging flag on the top of a
building and a flying bird, may be perceived by a human vision system. This vision system
is able to provide several levels of descriptions about the scene shown in Figure 1.1, At
the lowest level, it detects that something in the scene is moving because the change in
the scene is perceived from time to time, furthermore, it may discern that there are two
moving objects, more precisely, it may notice that the smaller object is moving, from left
to right and the bigger object is moving “irregularly”. Here “irregularly™ means the kind
of motion different from rigid motion. Finally, it may explain the scene iu the following,
way: a white bird is flying in the sky from left to right, a red and white flag s swingimg
with the wind.

In terms of computer vision literature, there are two kinds of processes, i.e. low level
process and high-level process. involved in visual systems. The task of the low level process
is to measure motion, and that of the high-level is to interpret the measured motion.

As can be seen from the example, the low-level process usually does not require
information about the types of motion (rigid or nonrigid, chaotic, etc.), the nmmber ol
moving objects (single or multiple), overlapping or nonoverlapping objects, et Because
of the nature of the low-level processes, the output provided hy these processes shonld
be pixel-based or local neighborhood-based. One possible choice for the output s the
velocities of all pixels.

The high-level process can jrovide different interpretations of motion depending on
the purpose of the vision process (or the applications of the vision systems). Therefore,

the representation of motio.. at this stage is also goal oriented or application dependent
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At some level, the integration of motion analysis with object recognition is needed.

This chapter will concentrate on the low-level process, specifically, the measurement
of a 3D velocity field. A velocity vector field is important. At the basic level, it allows
scene segmentation into moving and stationary objects from the perception of motion
boundaries. It may extract something worth noticing. which is useful, for example, for
moving object tracking, for collision avoidance, etc. Furthermore, it allows scene segmen
tation into different coherent moving regions as will be discussed later in chapter 6, which

may also be helpful in object recognition.

4.1.2 3D Velocity Vector Field vs. 3D Displacement Vector Field

Assuming the same coordinate system as in Figure 3.1, given a point r = [ o+ y = 7 on
some surface in a 3D scene, its image is then located at x = [ r ¢ J". Let a point. which
is located at time t at position r on a surface in the 3D scene, move during, the interval
At relative to the camera to a new position ' = [ ¢/ 4 2 7, with an imape x’. The
Jdifference r — r’ between positions of this 3D point at times £ and £+ Al is denoted by a
3D displacement vector Ar. Dividing the position difference Ar by the time interval A,
when At — 0, one obtains the 3D instantancous velocity vector u.

The range image = = F(x,1). observable as a function of the image location x and
time 1. encodes the local variation of depth value structure, not the mage position of
identifiable mathematical points in 3D space. It is in general not | .sible, therefore, to
solve the so-called correspondence problem. i.e. for cach image focation x at time 1, to
determine exactly the corresponding image location x" at time ¢ § Atf. This happens when
a 3D point is occluded or because its new position at time f + At is not op the sampling
grid. However, when both spatial and temporal sampling resolutions are high enough,
this problem can be ignored. We will approximate the displacement vector by the shift of
image positions and depth values ignoring the difference.

The collection of such displacement vectors or instantancons velocity vectors for the
entire image at all pixel positions constitutes the 3D displacement vector field or the 31)
velocity vector field. If the time interval At is not too large. then Ar = ull. Unless

the distinction between the displacement vector and velodity vector needs to he made
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explicitly. the time interval in question will be set to 1 and the symbol u will also be used
for the displacement vector. The displacement field will not be distinguished fiom the

velocity field.

4.2 Related Work

A 3D velocity field can be estimated using algorithms which are similar to those used for
2D visual motion (optical flow). The most common methods proposed to compute the

optical flow fall into two broad classes:
o gradient-based schemes
e token tracking and matching schemes

Gradient-based schemes rely on the well-known brightness change constraint equation
which relates optical velocities to spatial and temporal changes in an image. Token tracking
schemes first detect distinctive image features (tokens) and their correspondences are
tracked from frame to frame. In this chapter, it will be shown that a 3D velocity field can
he estimated from the local velocity constraint equation in a way such that the optical flow
is computed based on the brightness change constraint equation. Token tracking schemes
are studied in the next chapter.

The well-known brightness change constraint equatior is derived from the assuinp

tion that image brightness does nct change with time, that is,

{E
%{—:E,u-nyvﬁ- Ei=0 (1.1)

where E(z,y,t) denotes the image brightness at point (z,y) in the image plane at time
t. E.,E, and F, represent the partial derivatives of image brightness with respect to e,y
and i, respectively. u = dz/dt and v = dy/dt are the image velocity components in the
directions z and y, associated with point (z,y). The collection of such velocity vectors for
the entire immage constitutes the optical flow for the image.

Equation (4.1) embodies two unknowns u and v, and is not sufficient by itself 10

specify the optical flow uniquely. This problem is also referred to by some researchers as
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aperture problem, that is. the local measurement of movement in the changing images gen-
crally provides only one component of local velocity, rather than the full two-dimensional
velodity wector. Additional constraints have to be found in order to uniquely compute
optical flow topether with the brightness change constraint equation. Various additional

constraints bave been proposed in the literature. Some of the heuristic ones used include:
1. the optical flow is constant over an area of the image [71, 34, 77, 99, 90},

2. the optical flow is smooth, and exhibits the least variation among the set of velocity

ficlds consistent with the changing image [54, 80, 47).

3. and the optical flow is the result of restricted motion, for example, planar rigid

motion.

Different techniques have been developed to solve equation (4.1) subject to certain con-
straints. Among the techniques are least squares methods [99], clustering [99, 93], modified
Hough transform [34], maximum likehood estimation [90]. which use the assumption of
locally constant optical flow. Horn and Schunck [54] and Hildreth [47] utilize 2 smoothness
constraint on (u, ). Waxman et al [111. 112] impose a polynomial model on (u,v) for
this purpose. A Fourier domain method for image flow extraction is found in [36, 45].
The following sections will discuss the possibility of applying some of these techniques to

compute a 3D velocity field,

4.3 Least Squares Methods

In many situations, 31 velocities are approximately constant in a small but finite neigh-
borhood. Examples include: a moving object that is far away, a nearby object rotating
around a point which is far away, an object translating in 3D space, an object undergoing
a rigid motion with large translational velocity and small rotational velocity. Let S, be
a small but finite neighborhood of a point (g, y). If the surface in Sy, only undergoes a
translation or a translation with a relatively small rotation with respect to the translation,

then the former case is called a locally pure translation and the latter a locally dominant

-1
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translation. In these two cases, 3D instantaneous velocities are either the same or alimont
the same in S, so that they can be treated as equal.
As discussed in the previous chapter, for each point (r,.y,) in 5, its 3D velocity is

confined to the velocity constraint plane, which is
Frouy + Fyup + Fy, = ug (1.2)

where F; , Fy, . F;, are the first order partial derivatives at point (r,,4,), up uy, uy are
translational velocities of the surface in 5y,. Assuming that there exist n points in S5,
then estimating 3D velocity can be viewed as a problem of fitting a plane to a set of »
noisy data Fy , Fy, . Fy,. i = 1.---,n, where uy, ug, ug are the parameters of the fitted plane.

The simplest way to deal with this problem is the least squares method. There aie n
linear equations with 3 unknowns (uy. uy. uz). Any standard least squares or weighted Jeast
squares or total least squares method can then be used for this problem. The standard

least squares solution is

u=A%h (-1.3)
where
i -, -F, 1 Iy,
u = iy A= e h=
LR} _I“J n - If‘/n ] l“t n

Problems with this approach are obvious. First, the least squares method is ap
propriate only if a single translational surface is present in S,. If more than one moving
object appears in the neighborhood S, the least squares methods approximaiely provide
the average of translational velocities of these objects if the sizes of these objects are com
parable (see Figure 4.2). Second, when one or more points in 5, are corrupted by impulse
noises or the calculated data Fy,, F,, F;, are unreliable, the least squares methods give
unreliable solutions.

The first problem is not very serious if the size of Sy, is not very large. Besides, if there
is more than one moving object in Sy, then very likely there exist depth discontinuities

(object boundaries) in $,. If the residuals of the least squares solution are large and
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Lecast square solution

Figure 4.2: 1{ more than one moving object is present in 55, least squares methods provide
the average of the translational velocities of these objects.

Least square solution

Figure -1.3: When one or more points in Sy, are affected by large noise such that their
velocity constraint planes are far away from the correct intercepting point, least squares
methods give a unreliable solutions.
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there are object boundaries. these indicate the presence of multiple moving objects. Low
confidence can be assigned to the estimates of velocities at these points or §,, should be
changed so that no boundaries are included in §,,.

The second problem is severe considering that the size of S, is not very large and
images are always subject to various kinds of random and systematic noise. Mathemati-
cally, those points which create large residuals are called outliers. Three kinds of outliers
exist in our problem: first, those points subject to large impulse noise during sampling
process, second, those points whose first order derivatives can not be reliably estimated,
third, the points which are not on the same object to which the considered point helongs if
there is more than one moving object in S,,. Usually, the effect of the first kind of outliers
on the solution can be reduced by increasing the size of S, however, the size of 5, is
limited by other factors discussed above. The WLS can reduce the effect of the second
kind of outliers on the result by assigning small weights to possible outlie rs as was done for
estimating motion of a single rigid object. Unfortunately, WLS does not work very well
for the first and third kind of outliers. Robust regression methods such as M-estimators
[44], R-estimators, L-estimators [55], random sample consensus (RANSAC) [35, 17], Least
Median Squares method (LMS) [88] and Median of the Intercepts (MT) [60] ete., have been

developed to reduce the effect of outliers.

4.4 Robust Regression Methods

A review of robust regression methods for computer vision can be found in [79]. The
breakdown point of a regression method is the smallest amount of outlier contamination
that may force the value of the estimate outside an arbitrary range. For example, the
standard least squares algorithm has a breakdown point of 0 since one outlier may corrupt
the result. Robust estimation methods are designed to increase the breakdown point.
Robust is in the sense that parameter estimation can tolerate the outliers.

The M-estimators minimize the sum of a symmetric, positive definite function p(r,)
of the residual r,, with an unique minimum at r, = 0. A residual is defined as the difference

between the data point and the fitted value. In our problem, r, = I, wy + I, uy + Iy, — us.
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Instead of using p(r,) = r2 as in the standard least squares method, several p functions
have been proposed to reduce the influence of large residual values on the estimated fit.
for example, the squared error for small residuals and the absolute error for large residuals
[55) and a squared sine function for small residuals and a constant for large residuals [8].

The M-estimates of the parameters are then obtained by converting the minimization

min Zp(r,) (4.4)

into a weighted least squares problem. The weights depend on the assumed p function
and the data.
The R-estimators are based on ordering the set of residuals. Jaeckel [57] proposed

to obtain the parameter estimate by solving the minimization problem
min Z a,(R)r, (4.5)
1

where R, is the location of the residual in the ordered list, that is, its rank and a, is
a score. Scale invariance (independence from the variance of the noise) is an important
advantage of R-estimators over M-estimators.

The L-estimators employ combinations of order statistics and various simulations
have shown that L-estimators give less satisfactory results than the other two classes. The
AM-L R-, and L-estimators have breakdown points that are less than 0.25 for planar surface
fitting.

RANSAC. LMS and MI have breakdown close to 0.5. The basic ideas behind those
robust regression methods are very similar. Instead of using all points for fitting, they
choose some subset of data to estimate parameters. Taking plane fitting as an example,
RANSAC works as follows: given a set of n points P (n > 3), randomly select a 3-tuple
of data points from P, solve a system of 3 linear equations to obtain a fitted plane defined
by this 3-tuple, determine subset S of all points in P ( consensus set ) whose residuals
based on the fitted plane are within some error tolerance, if the number of points in S is
greater than threshold 7', use S to estimate new parameters. If the number of points in
S is less than threshold 7', randomly select a new 3-tuple, repeat the remaining process.
After some predetermined number of trials or exhaustively chosing all combinations of

three points, no consensus set with more than T points has been found. either estimate
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the parameters using the largest consensus set found, or termirate in failure. In order to
use RANSAC, the error tolerance and the consensus set acceptance threshold I' must be
set a priori. The parameters are hard to predetermine because they depend on the noise
levels and the types of fitting models used.

Similar to RANSAC, LMS randomly selects a 3-tuple of data points from I’ to
obtain a fitted plane defined by the 3-tuple, computes the squared residuals of all points
in P related to this plane, finds the median of these square residuals (the middle element
of the sorted squared residuals), and take this median as the residual for this particular
3-tuple. After repeating the above process A™ times, the 3-tuple with the least residual is
finally used to determine the fitted plane. The points in P can be classitied into inliers
and outliers relative to this final set. The final fitted plane can be found from those inliers,

MI searches all possible 3-tuples and estimates the parameters of the plane for each
3-tuple, the medians of the estimated parameters are taken as the final estimated values.

All these three methods are based on the assumption that at least one subset of
data carry the correct model. When noise corrupts all the data (c.g. Gaussian noise)
the quality of the initial model estimates degrades and could lead to incorrect decisions.
Besides, they are usually time consuming. For the small number of outliers, Ly solution
(minimization of the sum of the absolute values of the residuals) may he a hetter choice

since the L; solution is obtained in one shot [1].

4.5 Clustering Approaches

Instead of treating velocity estimation as regression analysis, we can also look at this
problem from another point of view. The motion constraint equation of one point in 5,
forms a plane in velocity space. For n points, we have n such constraint planes. Ideally,
these planes will intercept at a common point in velocity space as shown in Figure 4.4
if S, undergoes pure translation, or they intercept in the vicinity of a common point as
illustrated in Figure 4.5if .S,, undergoes dominant translation. This common point can be
used as the estimate of 3D velocity of point (z¢, yo)-

Three well behaved planes should intercept at one point. If we take any three planes
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from n motion constraint planes formed by points in §,. the intercepting point of those
three planes forms a point in 3D velocity space. There are n(n — 1){n — 2)/3 combinations
of three constraint planes from n points in &, the intercepting points for all combinations

may have the following possible distributions in velocity space:

¢ One blob as shown in Figure 4.6(a) if only a single surface is translating in 5,,.

e More than one blob as shown in Figure 4.6(b) if there are more than one moving

surface in 5,,.

e One blob and some scattered points as shown in Figure 1.6(c) if part of the surface

in S, is subject to noise.
e Scattered points as shown in Figure 14.6(d) if the surface is very noisy.

e Scattered points along one axis as shown in Figure -1.6(¢) if the surface in 5, is a

cylindrical.

Any clustering algorithms used for pattern classification [28] could be used to locate
cluster centers. If more than one cluster center are found, the one closest to the veloeity
constraint plane of point (g, yp) should be chosen to he the estimate of 3D velocity for
point (o, #10). The principal axis can be used as the measure of confidence of the estimated
velocities. The advantages of this method are that it is able to deal with multiple moving
objects in Sy, and is less sensitive to “outliers”. The disadvantages are that much more
computations are involved compared with the least squares method and to correctly locate
the cluster centers may become a problem.

A related technique is Hough transformation. A three-dimensional histogram of
possible velocities is computed as follows. An array of accumulators is created, indexed
by discrete values of u;, uy and ug. Accumulator cells are initially set to zero. IT possible
uy,u2 and uz values are on one of the constraint plane. Increment the accumulator cell
corresponding to the possible values by one, then the cell with the largest value is detected,
and velocities associated with this cell can be used as the estimates. More than one peak
in the histogram indicates the possibility of multiple moving objects. The method can

also filter out outliers, but reliable location of the peaks may be another problem.
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4.6 Least Squares, Robust Regression vs. Clustering Ap-

proaches

As discussed before, boih robust regression methods and clustering approaches improve
the accuracy of the estimated velocities by increasing the cost of computation through
extensively searching for the most potential candidates in the parameter space. The
advantages of the standard least squares method are its simplicity and ease of computation.
However, LS might provide inaccurate results if there are outliers in the data. Therefore,
there is a compromise between the accuracy and the time affecting the choice between
LS and other methods. In fact, very often, the discontinuities (edges) in range images
indicate the possible existence of outliers in the data, hence, LS may be used for smooth
surfaces and the other methods for edges.

The basic ideas behind the robust regression methods and clustering approaches
are very similar, therefore, their performances are almost equivalent. The choice hetween
them depends on the particular application. As have heen already shown, the successes of
both methods relies on whether there exists at least one correct subset of data. Il images
are subject to large random noise, they will fail without an appropriate filter such as @
preprocessor to reduce the random noise.

All the methods discussed so far utilize the velocity constraint equation as the model
for further processing. This equation is derived under the assumption that a continnons
surface in the xyzt space is available. In practice, only a sequence of images is obtained,
which are discrete in both space and time. In this case, the velocity constraint equation
holds only at the points which are on a plane translating in the 3D space, and is approx
imately valid for curved surfaces. For edge points it might be far from the truth. The
fact that the performance of robust regression and clustering approaches will deteriorate

imply the inaccuracy of the model.

4.7 Using the Second Order Derivative Information

The biggest difficulty with the least squares method, regression analysis, and the clustering

methods is that they require the image gradients to vary slowly. In this section, an
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Figure 4.7: Coordinate system.

algorithm will be proposed, which estimates velocities by using the second order derivative

information.

4.7.1 Derivation of the Formula

Assume that the first image of a sequence has been taken at time g, and without loss
of generality, we may always set fp = 0. Consider the local surface Sy around the point
ro = (2o. ¥o. 20)7 at time tg. Let XY Z be the local coordinate system with the rg as the
origin and X, Y and Z axes parallel to r, y and z axes (see Figure 4.7). If Sp is smooth and
small enough, then it can be well approximated by a second degree polynomial function
using Taylor's expansion in the local coordinate system. Taking time as an additional
dimension to the XY Z space, as the surface Sy translates in the 3D space, it forms a

surface in the Y'Y Zt coordinate system. It has been proved in Appendix E that the

resultant surface can be expressed by

Z = FpoX 4 FY + Figl + Fayg XY + Foy Xt + F Yt

ro-

F1/2Fer g X2 4 1/2F,, Y2 4 1/2F, 12 (4.6)
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where Fro. Fygo Fioe Frygs Fytos Frto Frzgs Fyyo and Fyy ave the first and second order partial
derivatives of Sy calculated at point (rp. yo. 20.20). Taking the total derivative of 7 with

respect to f, we get

dZ , NAY . e .
—(-iT = (F.'L‘o + F.ryo} + F.rlo! + Fz'ro-\ )‘(i’_’ + (1'1/0 + I'_, ,m.\ + l'vfn’
N . -
+EIIU0)I)-{F+(EO+FJ10‘\ +I‘ulo‘ +P!lo’) (1.7)
Because the XY Zt is the translation of the ry=t, % = ‘(—’ﬁ,'—f;‘f— = ‘{ﬁ"% = (‘117 Let

(14, U2y, U3, ) Tepresent the translational velocity of Sy at time ¢ = {y = 0, substituting

them into equation (4.7) viclds
wze, = (Fag+ FryY + Frog X )tig + (Fyy + Fryg X+ Fyy Y uy,
+(Fo + Foto X + FyrpY') (-1.8)
Rearranging equation -1.8 yields
(Frottiy + Fygitey + Fry — uag) + (Fryottig + Froygttzy 4 Fiey) X
F{( Fryottrg + Fyptizg + Fytg)Y =0 (1.9)

This equation is valid for any point (X, Y)on the surface Sy, thus the coeflicients of X and
Y must equal zero since Fyy, Fyys Fros Frygy Fytos Frigs Frros Fyyer Freg and g ug  uy, are

constants. From this requircment, a system of linear equations can be formed as follows

Frrguig + Fryotigg + Fryy = 0 (4.10a)
Fryoulo + Fyyo uy, + Fy’O = 0 (4.10h)
Frouyg + Fyugy + Fig—uz, = 0 (1.10¢)

The solution of this equation set gives us the estimate of the 3D velocity of point (X, Yy)
at time t = ty. Similarly, we can find the estimates for any other points. In general, a 31

velocity field (up, uz, u3) can be uniquely estimated, except at points where F2 1, I,

v
equals zero since

Frqut - Fnyrt

u : (4.114)
: an'Fyy - Fa?y

4y F,yFIi~ Fzrszt (4.11h)
Frrfyy —Fry

u3 = Fouy+ Fyup+ Fy (4.11¢)
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Figure 4.8: Eight types of fundamental surfaces.

where F and F are the first and the second order derivatives of point (z,y) computed
at time {q.

According to differential geometry! ny—F,,Fyy is proportional to Gaussian curvature?.
There exist eight types of fundamental local surfaces [13] as shown in Figure 4.8, among
which four types of local surfaces have zero Gaussian curvature®. They are: planar, cone-
shaped, ridge-shaped, or valley-shaped. Looking at such surfaces locally, certain motions
cannot be perceived: a translation in the direction which is orthogonal to the normal
vector of a planar surface, a translation along the ridge of a ridge-shaped surface, if no
other information is available. Thus, an unique interpretation of motion cannot be locally
obtained for such surfaces. For any zero Gaussian curvature points ( parabolic points),
their motions have to be inferred from their neighboring points.

If the local coordinate system is transformed such that it is aligned with the principal
axis, say, .\, Y and Z axis are aligned with the maximum curvature, minimum curvature
and normal directions (principal coordinates), respectively, as illustrated in Figure 4.9,

equations (4.11a.4.11b.4.1]1¢) are simplified to

U, = = rt/F.rr (4.123)

'An mtroduction to differential geometry is included in the next chapter.

*For simphaty, F?, — Fis F,, will be referred as Gaussian cutvature as long as it does not cause any
confusion.

*A point with zero Gaussian curvature is called a parabolic point.
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Figure 4.9: Principal coordinate system for planar and cylindrical surfaces.

ug = —Fy/Fyy (1.12D)

us

“FrFrt/FIJ~—FyFyf/Fyy+Fg (112()

since Fy, equals zero in this new coordinate system.

From the above equation set. some clear explanation of the motion of a plane or a
cylinder can be obtained. For a plane in the principal coordinate system, r.y axis are on
the plane, z avis is in the normal direction, Fpy = Fy = 0, I} = Fy, = 0, hence any
arbitrary values of u; and u; are valid because they are velocities orthogonal to the normal
vector. but u3 = F; can be uniquely determined. Similarly, for a cylinder, Iy, = 0 because
the minimum curvature is zero for a cylinder surface, so we can uniquely determine uy and

u3, while u3 cannot be determined uniquely because it represents the velocity component

along its symmetry axis.

4.7.2 Geometric Explanation

Equations (4.11a,4.11b.4.11c) can be explained in another way. In terms of the assumption
of pure translation or dominant translation in a local area, the direction and magnitude
of the spatial gradient of the surface in the local area do not change with time. If I, is

not equal zero, then

d F, a.
d_t(E) = 0 (4.134)
d
;E(F3+Fy2) = 0 (4.13b)

Expanding them yields
dFy - _ dF.
it — G Fy

F2

T

= 0 (4.14a)
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2%{"’ 2%/“ =0 (4.14b)
where

Y RSB, (4150

%Tv = FIU%’“FM%}J’Ww (4.15b)

Since Fy is not zero, equations (4.14a) and (4.14b) are equivalent to

dF, .. dF,

-—=F, = 4.16a
o 0 (4.162)
"; F, +’Il’"r = 0 (4.16b)

Summing equations (4.16a) and (4.16b) produces

dr,

k=0 (4.17)

Subtracting equation (1.16a) from equation (4.16b) gives

dr,

= 43
T — 1. =0 (4.18)

If both I, and Fy, are not equal to zero, then equations (4.17) and (4.18) can be reduced
to
dr,
dt

dr,
dt

= 0 (4.192)

]

0 (4.19b)
that is,

Foruy + Foyug + ey = 0 (4.20a)

it
o

Fryuy + Fyyuz + Fye (4.20b)

These two equations together with the 3D velocity constraint equation give the same
solution as equations (4.11a.4.11bd.11c¢).
4.7.3 3D Displacement Field: The Discontinuous Case

The above formula are derived under the assumption that a continuous surface in zyzt

coordinate system is given. In practice, only a sequence of images are available, They
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Figure 1.10: Coordinate system for 3D displacement.

are discrete in both space and time. In this case, only the 3D displacement field can be
estimated.

Assuming that two range images have been recorded at times {; and 1y, taking,
consideration of a local surface Sy in the neighborhood of the image position (rg,y0),
under the assumption of small inter-frame movement, the surface S, at time {; can be
considered to be translated by a 3D displacement vector d = (w,Al, ua At u, A1) (sen
Figure 4.10), where u = (u;, uz, u3)7T is the 3D instantancous velocity of point (x4, ¥, 20)
and At = 13 — ;. Without loss of generality, At may be set to 1. Let XY Z he the local
coordinate system with the point (X, Yp,0) as the origin, and F1{X,Y) denote the range
value at image position {z, y) in the first image, then this point will be at image position
(z + uy, ¥+ uz) with range value Fy(X,Y)+ uy in the sccond image. Lot Fo(X,Y) denote
the range value at image position (z, y) in the second image, if u; and u; are small enough
such that the depth at image position (z + u;,y + u2) remains well approximated by the
same function used for image position (z,y) in the second image, then range value at

position (z + u;,y + u2) in the second image is Fo( X + v, Y 4 u2). Obviously,
FQ(A’+U1,)’+UQ)= F](/\',Y)-’r?l:; (4.21)
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Equivalently, the range value at image position (z,y) is
Fy(X,Y)y=F\(X —u,Y —ug) + u3 (4.22)

where it is assumed that u; and u; are small enough such that the depth at image position
(r — uy,y — uy) remains well approximated by the same analytic function used for image
position (r,y) in the first image. u is determined from the following requirement that
E=) (F(X,Y)= Fi(X - up,Y - u3) - u3)? = min (4.23)
AY
summed over the neighborhood of (zg, y). As discussed before, So can be well approxi-

mated by a second degree polvnomial function
MXY)Y= g+ 3, Y+ FY + R, XY + 1/2F, X%+ 1/2Flw}’2 (4.24)

Let the neighborhood of (z¢,yo) be chosen as a square window centered at (zo, yo)

with length 28 4 1,k = 1,2,.... Then E can now be rewritten as

k
E = Y [FANY)=Fy- A (X -w) = F (Y —u) = F(X - u)
X Y==4A
(Y —uy) = 1/2F, (X - uy)? = 1/2F, (Y — u3)? - u3)? (4.25)

Taking the partial derivative of E with respect to u;,us and u3 yields

A A )

.(_—- = -2 Z [FI" + Flly()’ - u2) + Fﬂl:.‘r(‘X - U )]C (4263)

()lll XYook

oF

oy = 2 S [Ry + Ry (X = 1)+ FuylY = ) (4.26b)
2 XY=k

ar ) Z*: (4260

dus € .26¢

duy XY=k

where

c = 1'12(4\',}') - 110 - Fl,(-x’ - ul) - F]y(y - u2) - Fl,y()( - ul)(}’ - UQ)
= 1/2F1, (X = w))? = 1/2Fy (Y - u)* — 3

There are many ways to calculate the first and the second partial derivatives from

a given image. Here the method described in AppendixD is used. Let
k

Skper = Y XPYIF(X, Y)Y
XY ==k
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If » = 0, the following notation is used

k
Spe0 = Z APy
XY=-k

Because the selected neighborhood is symmetrical, for any odd p and ¢

Setting g—f—, 3—5; and g—% to zero, and using the notation Sy, yields

0 = (FZ, S0+ F{,, Soz0)ur + Fi,,(Fi,, S200 + Fi,, Sooo )z
+ F1,.(S2100 = F1,5200) + F1,,(S2011 = Fi,5020)

0 = F,,(F,, S0+ Fiy,Soo)ts + (F{,, So20 + F{,, Sa0)uz
+ F1,,(S2100 = F1,5200) + Fi,, (52011 = F1,5020)

0 = Sa2001 = SoooF1, = 1/2F1,, 5200 — 1/211,,5020 + Soool I,

(1.27a)

(1.27h)

- 1/2F,,u1)uy + Soool F1,, = 1/2F1, u2)uy = Fy,, Sovoty uz = Seootes (1.27¢)

Dividing both sides of equations (4.27a,4.27b) by S200 and equation (-1.27¢) by Syoo yiclds

0 = (F?

Irr

+ P (52101/ 5200 = F1,) + Fupy (S2011/ Sa00 = 11,,)
0 = Fl-ty(F1.t:+Flyy)ul +(I:‘l2yy+F2

lsy

+ Fl.zry)ul + F‘Iy(Flu + ]"lyy)“'z

Juz
+ F1,,(S2101/S200 = F1, ) + F,,(S2011/ S200 — 11,)

0 = S2001/So00 = (SoooF1, + 1/2F1,, So2o + 1/2Fy,, Se02)/ Soon
+(F1, = Y2Fw)uy + (B = 1/2F)up)uy

-F,, u1uz - uz

(4.284)

{1.28h)

(1.28¢)

Summing both sides of zquation (4.24) over the neighborhood, it can be easily proved

that
S1001 = SnooF1, + 1/2F1,, So20 + 1/2F1,, 5002

From equations (D.15, D.21, D.22) in Appendix D, we know 540 =

Sy and I, =

52101/5200, ng = 520”/5200. Let FQ denote .5'2001/5000 and 1"1 denote .S'H,(,./.S'm,‘,, stthsti-

tuting them into equations (4.28a,4.28b, 4.28¢ ) produces

0 = (F}

]12

+ Flz,y)ul + [, (R, + 1y )
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+ AL (e, = R+ Ry (B - R (4.29a)

0 = I"lzy(plzr + Flw)ul + (F]2yy + Ff,y)w
+ R, (F, - )+ Ry (R, - Fy) (4.29b)

1:12 - F] + (1‘—']z - 1/2F]111l1)u1 + (Fl,,

o
]

- 1/2R, uz)u; ~ F,,uyug — u3 (4.29¢)

Now multiplying equation (4.29a) by Fy , and equation (4.29b) by Fy, , and subtracting
the results, then multiplying equation (4.29a) by Fy,, and equation (4.29b) by Fy,_, and

subtracting the results, we obtain

0 = (F,,F,,~F F,,u+R,u+ B -R,) (4.30a)
0 = (Fi, Ry, — F, A+ Ryut By - Fy) (4.30b)

When (F,, I, - Ffw) is nonzero, then these two equations are equivalent to

0 = ]“1” up + Fh,ull') + th - FI: (4.31&)
0 = Fl,yul + 1"1yy112 + Fzy - Fly (4.31b)

Equation (-1.31a) and equation (4.31b) are two linear equations of u; and u;. Solving
these equations and substituting u;,u; into equation (4.29c), if the Gaussian curvature

l\' = 1"1“ F‘yv - ['12

1

, at point (z,y) in the first image does not equal zero, the displacement
vector u can be caleulated as follows

(Fy, - 1), - (F, - B,

m = —= = 4.32a

1 Ik, - }fw ( )
(Fa, - 1)V, ~ (F2y - B R

u x x 11 Ixr 4.32b

2 Fl_ul'lyy _ Flzzy ( )

Uy = F) -~ F] + U](F], - 1/2[‘1"111) + ’U2(F1y - 1/2F1W‘U,2) - F]xyu1U2 (4.32C)

In the above equations, if we approximate F, — Fy, by Fy; and Fy, — Fy, by Fy, and
onit the second order term ujus. uf, u$ when ¢ — 0, then equation (4.32a,4.32b,4.32c) and
cquation ({.11ad.11b4.11c) are equivalent, which means that similarity matching gives
rise to the same result as the gradient-based method does if the sampling rate is high

enough.
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4.7.4 Implementation

The implementation of the proposed algorithm is very easy, the most time consuming
computations are the calculations of the second order derivatives based on the method
described in Appendix D, yet each item can be obtained by a close-form formula. ‘This is
the most elegant characteristic of the algorithm.

Given two images, the basic algorithm is as follows
1. Preprocess the images using a noise filter (e.g., a median filter or a Gaussian filter).

2. For each considered pixel (z,y), estimate the first order and second order derivatives
for the first image and the first order derivatives for the second image using equations

(D.21-D.25).

3. Calculate the Gaussian curvature I at the pixel in the first image, if A is larger
than a predefined threshold T, then go to the next step, otherwise, mark this pixel

and go to the previous step to process the next pixel.
4. Calculate u; and u, from equations (4.32a,4.32b).

. Calculate F} and Fj. then find us from equation (4.32¢), where uy and uy are sub

(1]

stituted by the results calculated from the previous step.

6. If all the pixels have been processed, then terminate, otherwise, go back to the second

step to process the next pixel.

Two parameters: the size N of a neighborhood for estimating the derivatives, and the
threshold T, have to be predefined in the algorithm. At least two problems exist for this
basic algorithm. First, how to deal with areas where the assumption of local quadratic sur-
face is not valid? Second, how to estimate velocities of pixels whose Gaussian Curvatures

are close to zero? These details will be discussed in the following sections.

The Neighborhood Size for Surface Fitting

The selection of the neighborhood size should consider the following facts. If the neigh

borhoods is small, then the surface in the neighborhood will be closer to a quadratic
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Figure 4.11: The neighborhood size for surface fitting.

surface, which satisfies the assumption for the algorithm. Theoretically, the minimum size
of a local surface is six pixels. However, it should be always larger than this minimum
size because the bigger the local surface is, the less sensitive to random noise the fitted
surface is. On the other hand, the velocities can not be treated as approximately con-
stant if the neighborhood is too large and the motion is not pure translation. Recall that
when the algorithm was derived , it has been assumed that the depth at image position
(r — uy,y — uz) remains well approximated by the same analytic function used for image
position (r,y). Therefore, if N is the size for which the assumption of constant motion is
valid, then the size of the neighborhood in which the second degree polynomial function
is fitted should be (N + 2u;) x (N + 2uy). This idea is illustrated in Figure 4.11. Let
wymear and uymar be the maximum velocities for u; and u,, then the size for surface

fitting should be (N + 2uymaz) x (N 4 2uymaz).

Threshold for Gaussian Curvature

One intuitive argument for the selection of the threshold T is that it should be related to
the noise level in the estimated Gaussian Curvature K, which in fact is dependent on the
noise level in the images. The threshold T should be at least larger than the standard

deviation of the estimated Gaussian Curvature A'. Let

K = FypFyy — F2

Iy

represent the estimated Gaussian Curvature. The formula derived by Nagel in [80] is used

for the estimate of the variance of A'. According to error propagation theory, the variance
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of K may be approximated by
K \? oK 2 . ON 2 '
AFJ‘I 2 A 2 h 1 2
(aF”) ( )* + (6Fw) (AFy) + (c‘)l'}y (A Fiy)
(Fu) (AFer ) + (FeeP(AF) 4+ (2Fr) (A Fry P (433)

(AK)?

Since we are only interested in a threshold value, the squared parameters (F;,)?, (Fy, )¢ and
(Fry)? can be replaced by (AF:z)?%, (AFy,)? and (A Fyy)?, which represents a reasonable
lower limit for them. Now, assuming that the measurement errors for image pixels are
independent of each other, and distributed according to a zero-mean normal distribution

N(0,0), then from [80],

(AF)? = (AF,)? = 46%/(Si00 = S220) (1.34a)
(AF,)? = 0*/S220 (4.34b)

Substituting these formulas into equation (4.33) yields

(AK)? = 2(40%/(Ss00 = S200))* + 4(3?/S220)? (-1.35)
For example, if 3 x 3 neighborhood is chosen, then Syo0 = 6 and S = 1,

(AK)? = 2.50%
The threshold T should therefore be

T>AK

Confidence Measure

As mentioned before, there exist some areas where the estimates of velocities from the

basic algorithm are not reliable. The accuracy of estimates of velocities is affected hy:
o How well a local surface fits a second degree polynomial function
¢ The condition number of the system of equations (4.29a, 4.29h )

o How well the motion of a considered local surface can be approximated by a single

translational motion
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The first factor can he measured by a fitting error defined by
era= 3 (F(X,Y) - F(X,Y))? (4.36)
XY
where F(X,Y) is the measured surface by a sensor and F(X,Y) is the fitted surface.
The second factor characterizes the error propagation, details of which can be found
in the last chapter. The condition number of the system of equations (4.31a,4.31b ) can

be easily calculated, if Frobenius norm is used, by

(FZ, +2F% + FP )

1!/!!

A,y - FE

11y

(4.37)

cond =

The combination of these two measures can be used as a measure of confidence for
estimated velocities from the basic algorithm. If the condition number or the fitting error
for one pixel is larger than a certain value, then the estimated velocity for the point is not

reliable, and the estimate should be discarded from further consideration.

Coping with Parabolic Points

For parabolic points, it is impossible to locally determine their velocities. These velocities
have to be interpolated from their neighboring points. A similar problem appears in the
computation of optical flow if the intensity of an image is uniform. To overcome this
problem, additional information must be available. The most common assumption in
optical flow is that the optical flow is smooth and the resultant velocity field should vary
least [5]. The problem is that the smoothness assumption is always violated in real images
and it is very hard to locate the areas where the assumption is not valid [78]. However,
for range images, the discontinuities of a velocity field can be located in most cases. It
is safe to assume that the discontinuities of a velocity field only occur where depth is
discontinuous. Therefore, the velocity field can be smoothed within areas where there are
no discontinuities. Based on this idea, edges are first detected using a Sobel operator.
Then the smoothing problem is formulated as a minimization problem in a similar way as
in [93].

Let uy. uz and u3 denote the z,y and z components of the estimated velocity field

obtained after reliability checking. Let 1w, #; and u3 denote the smoothed velocity field. A

101



smoothed velocity field is found such that a cost for the lack of smoothness in the velocity
field between motion boundaries and a cost on the deviation of the smoothed velocity field
from the estimated velocity field will be minimized. The cost assigned to the deviation of

the smoothed velocity field from the original velocity field estimate is
(w1 — )% + (uz - %) + (u3 — 1iz)?

The cost assigned to the lack of smoothness is the sum of the squares of the magni-

tudes of the gradients of the = and y velocity field components which is
if, + 8, + @3, + 5, + @3, + 4§,
The combined optimization criterion is
/ f (K202, + a3, 403, + ud, + 03, + 85+ (wr =iy )P+ (g —1i2) (s — ua ) ]drdy(1.38)

where k2 weighs the degree of smoothing versus the degree of deviation from the original
estimated velocity field. The optimization problem is easily solved by the calculus of

variation. The result is a set of linear partial differential equations:

k2A2ﬂ1—U| = 0
k2A2'l_12—‘llg = 0

F2A%i3-u3 = 0

The equation can be solved iteratively by approximating the Laplacian with a nine point

mask
1 4 1
A~ |4 -20 4
1 4 1

The iterative solution is

1
—n+1 ~ ,2. N 4.39;
“ Traonzln HE ()] (4.49)
- 1 -n vs-n ‘
B = gl tRS ) (4.39b)
-n 1 =n ‘(= 39¢
L2 Tr 20k t k2S5 (a3)) (4.39¢)
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Figure 4.12: An example of subsampling scheme for the LMS method, where the neigh-
borhood is 5 x 5, it is subsampled at black dots such that the effective window is 3 x 3.

where the function §(-) represents the computation at the eight surrounding points for
calculating the approximation of the Laplacian. If any of the eight points are on the
motion boundary, then the velocity field value at the center nf th.¢ Laplacian replaces the

velocity field value at any point that is a boundary point.

Algorithm

After all these considerations, the final algorithm is as follows:
1. The basic algorithm to create the initial estimate of a velocity field (u;,uz, u3).
2. Reliability check to obtain the reliable velocity field (ruy, ruq, rug).

3. Iteratively smooth velocity field (ruy, rus, ru3) to get the smoothed velocity field

(s, suz, sug).

4.8 Experimental Results

In this section, the experimental results carried out on both real and synthetic images will
be presented. The algorithms discussed in the previous section and a robust regression
algorithm (LMS) were tested on the same data in order to compare their performances.
One thing that should be mentioned, is that, the solution space was exhaustively searched
for the LMS method. For example, for 3 X 3 neighborhood, all 24 possible 3-tuples were
used to obtain the possible estimates of velocities. However, if the size of the neighborhood
is larger, the complete search is very slow. The neighborhood was subsampled such that

the effective size is 3 x 3. Figure 4.12 shows an example of subsampling.
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Figure 4.13: Left: the first balloon image, right: the second halloou wnage

Six image sequences were used. Only two successive images were nsed in cach ea
periment. Among the images, two sequences are real images, two are synthet imapes
and the remaining two are quasi-real images. By the term quasi real image sequences, i
is meant that the second image in a sequence is obtained by moving the first imave uoang

a 3D motion simulation program, while the first image was taken by a range censo

Rubber Balloon

The balloon images were taken by a video rate range linder at NRC' The details of the
video rate range finder can be found in [12]. The image size was 200 < 200 The cainera
also provided an intensity image which is in registration with the ranpe smape  Fapnie
4.13 shows two successive intensity images. It is clear that the halloon v shnmking towand
a middle point at bottom of the balloon.

The estimated 3D velocity field is displayed by three projected 210 veloaty field on
the three planes. ujuo—, uyusz— and uyugz—planes. The velocity field is yeduced tao 50 50
in order to get a better visualization. Figures 414, 4.15 and 116 show the eshinated
velocity field by the basic algorithm, where a velocity 15 set to 20 3f it b Targer than 20,

It is obvious that the estimated velocity field is correct excopt near the boundario, of
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the balloon and the boy's image on the balloon, where the surface is very flat and the
measured depths are noisy hecause of the reflection of the shining parts of the boy.

The reliable velocity field is shown in Figures 4.17.4.18 and 4.19, where “thgau, thfit,
theond, thvel” denote the thresholds for the Gaussian curvature, fitting error, condition
nimber and the maximum possible velocity. Most of the unreliable estimates are removed
from vhe original estimates. Figure 4.20 shows four binary images, where white pixels
locat > unreliable estimates of velocities based on corresponding confidence measures. The
upper left image is obtained by checking the Gaussian curvature, where a white pixel
means that the Gaussian curvature at the point is smaller than “thgau”. The upper right
image is obtained by checking the condition number, where a white pixel means that the
condition number at the point is larger than “thcond”. The bottom left image is created
by checking the sum of the fitting errors in the first image and the second image, where
a white pixel means that the sum of the fitting errors at the point is larger than “thfit™.
The bottom right image is created by checking the maximum allowable velocity for each
component, where a white pixel means that one of velocity components at the point is
larger than “thvel”.

From these images, it can be scen that the measure of the fitting error is very
important. Notice that there is a black area between two white areas on the top of the
binary image obtained from the fitting error. This area also has unreliable estimates of
velocities but it is not possible to discern by checking the fitting error alone. The reason
for this is that the pixels in that black area belong to the smooth surface of the balloon in
the first image, and they belong to the background in the second image. The fitting errors
in the black area of both images are small, but the estimated velocities are unreliable
because the algorithm is asked to relate two totally different surfaces to each other. This
is an extreme example. The movement around the black area is too great for the small
motion assumption. In normal case the measure of the fitting error alone can locate most
of the unreliable estimated velocities.

The thresholds for reliability checking can be chosen from the histograms of the
calculated values. Figure 4.21 shows the histogiams of the Gaussian curvature, condition

number. the fitting errors of the first image and the second image from upper left, upper
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Figure 4.14: The projected 2D velocity field on ujuz-plane of the estimated velocity from
the basic algorithm, where the neighborhood is 9 x 9.

right. bottom left and bottom right, respectively. Histograms were created by using 64
equally spaced accumulators. If a value is less than the lowest accumulator, then it is
considered to belong to the lowest accumulator. In a similar manner, a value which is
larger than the highest accumulator is considered to belong to the highest accumulator.
For the histogram of the Gaussian curvature, the accumulators are in the range [-0.1,0.1].
For the condition number, the accumulators are in the range [0, 50], where zero condition
number is assigned to a point with zero Gaussian curvature. For the fitting error, the
accumulators are in the range [0, 50]. For each histogram, the number of pixels is set to
1000 if exceeded.

The smoothed velocity field after 5 iterations is shown in Figures 4.22, 4.23 and 4.24.
It does provide a more uniform velocity field.

Figure 4.25 shows the projected 2D velocity field on ujuz-plane of the estimated
velocity field using the LMS method. 7 x 7 Gaussian smoothing was first applied to

both images since the LMS method is sensitive to random noise. Compared with Figure
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where thgau = 0.00001, th fit = 20.0, thcond = 20.0, thvel = 20.0.

4. 14, the result from the LMS method is slightly worse than that from the proposed
algorithm, especially near the boy’s arca, where the depth values contain more noise. It
does not show any improvement near the boundaries since the movement is so large in this
image sequence that there does not even exist one 3-tuple which well satisfies the velocity

constraint equation near the boundaries. Besides, the LMS method is much slower than

the proposed algorithm even after subsampling.

4.8.1 Doll

The doll image sequence was taken by the range sensor at McGill University’s Research
Center for Intelligent Machines. The range sensor was mounted on the end of the Puma
robot arm. The robot arm can move freely so that we can simulate a 3D camera motion.
Two images are shown in Figure 4.26. They are range images displayed as gray level
images. The image size was 256 x 256. Three “cones” were used as markers. Two of them

were positioned at the top shoulders of the doll, and the third one was put between one
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Figure 4.26: Top: the first doll image. Bottom: the second doll image.

arm and one leg of the doll. These markers were used to roughly validate the results. the
positions of the markers were manually located in both images. It was found from these
positions that the doll was roughly moved toward the upper left corner about 2 pixels,
and was slightly rotated in anticlockwise direction.

Figure 4.27 shows the projected 21) velocity field on wujuz-plane of the estimated
velocity field. Figure 4.28 shows the projected 2I) velocity field on wjuy-plane of the es-
timated velocity field after reliability checking. There are many pixels on the doll whose
velocities can not be estimated, since the doll is basically made of cylindrical surfaces.
Figure 4.29 shows four binary images as we explained in last experiment. The projected
2D velocity field on ujuz-plane of the smoothed velocity field is shown in Figure 4.30.
Figure 4.31 shows the projected 2D velocity field on ujus-plane of the estimated velocity
field using the LMS method. In the figures, a velocity is set to 3 if it is exceeded for a
better visualization. The doll image sequences are very noisy, therefore the initial esti
mated velocity field contains large number of unreliable estimates of velocities from both

algorithms.
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Figure 4.29: Upper left: binary image of Gaussian curvature. Upper right: binary image
of condition number. Bottom left: binary image of fitting error. Bottom right: binary
image of maximum allowable velocity.
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Figure 4.30: The projected 2D velocity field on uyuy-plane of the smoothed velocity field
after 100 iterations, where k = 16.
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Figure -1.31: The projected 2D velocity field on ujus-plane of the estimated velocity field
using the LMS method, where the neighborhood is 9 x 9.

4.8.2 A Piece of Paper

Figure .1.32 shows “a gray level encoded” range image of a crunched piece of paper. The
image was also taken by NRC' video rate range finder. The image size was 256 x 256.
Figure -1.33 is the wireframe plot of the same image. The second image is obtained by
translating the first image one pixel each in the z,y and 2 directions. Figures 4.34 and
1.35 shows the projected 2D velocity field on ujuz-plane of the estimated velocity field
before and after reliability checking. Figure 4.36 shows four binary images as explained in
the balloon experiment. The projected 2D velocity field on u;us-plane of the smoothed
velocity field after 10 iterations is shown in Figure 4.37. Figure 4.38 shows the projected
2D velocity field on u; up-plane of the estimated velocity field using the LMS method. In
the figures, a velocity is set to § if it is exceeded for a better visualization. For this scene,
the LMS method gives much better results because the scene consists of approximately

piecewise planar surfaces.



Figure 4.32: A piece of paper
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Figure 4.36: Upper left: binary image of Gaussian curvature. Upper right: binary image
of condition number. Bottom left: binary image of fitting error. Bottom right: binary
image of maximum allowable velocity.

Figure 4.37: The projected 2D velocity field on ujuz-plane of the smoothed velodity field
after 10 iterations. where k& = 16.
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Figure 4.39: The projected 2D velocity field on u; u,-plane of the estimated velocity field,
where the neighborhood is 9 x 9.
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Figure 4.40: The projected 2D velocity field on uyusz-plane of the reliable velocity field,
where thgau = 0.0001, th fit = 150.0, theond = 50.0, thvel = 5.0.
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Figure 4.43: The projected 2D velocity field on ujuz-plane of the reliable velocity field,
where the neighborhood is 5 x 5.

was sampled to create the first image, then the second image was obtained after 1otating,
the surface 2 degrees around the : axis by 3D motion program. The image size was
128 x 128. Figure 4.43 shows the projecied 2D velocity field on uyug-plane of the estimated
velocity field. The rotation around the origin can be clearly seen. Since the surface
is a quadratic with nonzero Gaussian curvature, the whole velocity field can he reliably
estimated. Figure 4.4 shows the projected 2D velocity field on u) u,-plane of the estimated

velocity field using the LMS method. In this scene, the LMS method gives a very similar

result because the surface is changing slowly.

4.8.5 Half Sphere and Half Ellipsoid

In this experiment, images were also generated synthetically. The first image is shown in
Figure 3.8. The image size was 128 x 128. The second image was obtained by translating
the object one pixel in each of the z,y and z directions, respectively, by the 31) motion

program. Figures 4.45 and 4.46 show the projected 2D velocity on uyuy-plane of the
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Figure -1.44: The projected 2D velocity field on upuz-plane of the estimated velocity field
using the LMS method, where the neighborhood is 5 x 5.

estimated velocity field using the proposed algorithm and the LMS method, where a
velocity is set to 5 if it is exceeded. The LMS method gives better results around the edge
between two different surfaces, while the algorithm using the second order derivatives
provides better estimates around the boundary since the surfaces change fast there.

The experiment was repeated for rotation. The second image was obtained by
rotating the surface 2 degrees around the z axis passing through the center point of the
image by the 31 motion program. Figures 4.47 and 4.48 show the projected 2D velocity
fields on wuyuy-planc of the estimated velocity field using the algorithm and the LMS
method. Since the surface contains a half sphere, and was rotated around the center of

the sphere, velocities are unable to be estimated for the half sphere.

4.9 Conclusion

In this chapter, an new motion estimation algorithm has been proposed. This algorithm is

able to uniquely determine the 3D velocity for each point except points with zero Gaussian
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curvatures. The algorithm can be derived from either gradient-based principle or similarity
matching, which are usually considered as two totally different processes. There are some
areas where 3D velocities can not be estimated locally. This problem has been coped with
by introducing reliability checking and interpolation. If the measured velocity of a point
is not reliable, then it is inferred from its neighboring points.

Several other possible techniques, such as least squares methods, clustering, Hough
transform, have also been discussed. The least median squares method has been imple-
mented in order to compare the performance with the proposed algorithm. The results
have shown that the proposed algorithm is better than the LMS method for noisy and
curved surfaces. The LMS method is better for slowly changing surfaces. However the

LMS method is much more time consuming,.
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Chapter 5

Analyzing 3D Velocity Field by

Matching Surface Features

A method to estimate 31) velocity field through token (feature) matching is proposed in
this chapter. Principal curvatures are chosen to be the features since they are invariant
to both rigid motion and different parametrization of a surface. The 3D velocity at point
P is obtained by locating a matching point whose distribution of principal curvatures in
its neighborhood is similar to that of point P. If point P is on a line edge, then its full
velocity can not be determined because of aperture problem. However, its vernier velocity
can be determined. Two algorithms are described to cope with this problem.

The advantage of this feature matching approach is that it can estimate velocities
of both corner points as well as points on smooth curved surfaces and vernier velocities
of line edge points, while the method discussed in the previous chapter is unable to deal
with corner points and line edge points. For objects like polyhedra, it is very important
to estimate motion on corners and line edges. The disadvantage of the feature matching
method is that it is computationally intensive compared with the approach in the last
chapter. 1t is possible to combine them, for example, one technique being used for line

edges and corners, and the other technique for smooth surfaces.
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5.1 Introduction

The methods discussed in the last chapter work very well when a scene contains curved
smooth surfaces. However, they may fail in estimating motion of polyhedra since the
motion of polyhedra is perceived from that of line edges and corners of the polyhedra, and
the analytic method proposed in the last chapter does not provide good estimates near
line edges and corners.

In this chapter, a method will be discussed to estimate a 3D velocity field through
token (feature) matching. A set of tokens (features) is extracted from both images, points
with similar features in both images are considered as matching pairs, and the displacement
within the matching pair is taken as the estimate of the 3D velocity at the point. The
idea behind the token matching is much more straightforward and intuitive than that of

the analytic method. Naturely, one may ask the following questions:
1. What are the appropriate features?
2. How to reliably extriact the chosen features?
3. What are the criteria for matching?
4. How to deal with one-to-many or one-to-zero matchings?

These questions will be discussed in the remaining part of the chapter.
Related work can be found in the calculation of optical flow [7, 21, 43, 95], and in

stereopsis [42, 70)].

5.1.1 Motion Invariance

Since it is desirable to compute a rather dense 3D velocity field, therefore, features should
be pixel-based or small neighborhood-based. There are not many choices for pixel-based
features, except if different kinds of registered images are used. For example, if both range
and intensity images are used. then for each pixel, there are two candidate features: gray
level and depth value. If combined with RGB images, then there exist five candidates:

gray level, depth value, red value, green value and blue value. Any combinations of these
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five candidates can be used as pixel features. Based on matching of features, a dense
velocity field can be obtained. In this work, only one kind of image: range image, is
considered, thus the only pixel feature is depth value, which is obviously not suitable for
feature matching since the depth of a point changes with motion. Neighborhood-based
features have to be considered.

Computing surface features for feature matching purposes is the first step towards
the final goal of the motion understanding. Objects are viewed from different directions
as they move in front of a camera or as a camera moves past the objects. To handle the
problem of arbitrary viewing directions, viewpoint invariant surface features are needed.

As described by [13], a quantity is invariant with respect to a group of transforma-
tions if those transforms do not change its value. For example, the length of a 3D line
segment does not change under the group of rotation transformations, and is therefore
said to be rotationally invariant, but the length of a 3D line segment projected into a
21 image plane does change under the rotation and is not invariant. In general, opaque,
rigid. physical objects do not possess explicit surface features that are visible from any
viewing angle. There are almost always degenerate viewing angles in which visible ob ject
features are radically different. For example, consider an object as simple as a cylinder.
A flat planar surface with a circular boundary is visible when looking down the axis of
a cylinder. In contrast. a curved surface with rectangular projected boundary is visible
when looking perpendicular to the axis direction. There are no explicit invariant features
even in this simple area. In this example, although the same object is viewed, in fact,
the totally different parts of the object are viewed, and one visible part in one viewing
direction is not visible in another viewing direction. This situation will not be discussed in
this thesis. By invariant features, one means that features are invariant if they are visible.
In motion literature, when a part of a surface is visible at one time instant and invisible
at another time instant, it is said that this part of the surface is occluded. If a part of the
surface is invisible at one time instant and visible at another time instant, it is said that
this part of the surface is uncovered. In this sense, the term “invariant” means “invariant
if neither occluded nor uncovered™ within the interval of the observation.

A nonrigid moving object may not possess invariant surface features even if all the

131



surfaces are visible at different time instants. The shape of the object may be totally
different after a certain time. In this chapter, it is assumed that this will not happen in
a short time. Therefore, invariant features are only considered under different viewing
angles, or under euclidean rigid motion. In this sense, a visinle-invariant surface feature
is a quantitative feature of visible surfaces that does not change under the set of viewing,
transformations (rigid motions) that do not affect the visibility of that region.

It is equally important that surface features are invariant to changes in the parametriza
tion of a surface. When a visible, smooth, curved surface is sampled on a rectangular image
grid from two different viewpoints, the effective grid parameterizations of the surface in the
two corresponding range images are different. Hence, numerical visible-invariant surface
quantities must also be invariant to changes in surface parameterization.

In this thesis, maximum and minimum principal curvatures (A and A';) have been
chosen as surface features and collectively referred to principal curvatures. The defini
tions of these terms are discussed in Appendix B. When a surface pateh is visible, its
principal curvatures are invariant not only to rigid motion, but also to changes in surface

parameterization. (see Appendix A in [13]).

5.2 Computing Surface Features

Although a nice theory exists for continuously differentiable surfaces as seen from the
last section, scenes in real world are normally not so smooth, and they usually contain
clearly definable objects with distingnishable boundaries between the sides or facets of each
object. These surfaces are usually not suitable for partial differentiation. Furthermore,
range images are quantized in the z,y and z directions. A variety sources of noise are
introduced during scanning, which make the computation of surface features nontrivial,
even though it appears straightforward theoretically. Hence an appropriate computation
method has to be developed.

A range image represents a surface with the height F(r,y) above the “support”
plane defined by the two coordinates (z,y). This representation is known as the graph

surface representation and the surface is sometimes called a Monge pateh. A 3D point on
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the surface is given by X(z,y) = (z,y, F(z,y)). Computation methods will be studied
which are based only on the graphic representation.

There exist several kinds of approaches to calculate curvatures. A comparison study
of various algorithms can be found in [37]. Curvature measurement of arbitrary 3D objects

can be found in [97). Some of the algorithms currently being used include:

1. The formal approach, by direct application of the formulas given in differential ge-

ometry, after conversicn to difference equations.
2. Surface fitting from which the partial derivatives for the formulas can be obtained.

3. Numerical estimates which compute curvatures by numerical simulation of the deriva-

tion process in differential geometry.

The formal approach in case 1 is computationally the shortest of the above three
approaches since it is basically a matter of approximating the formulas by numerical meth-
ods. given the samples F(r.y) and x,y. The formulas for curvatures are quite complex,
especially for the principal curvatures ky and k9, and require the first and second order
partial derivatives as a starting point. Since images always contain some noise, as well as
discontinuities (such as jump edge, roof edge etc.), the derivatives can contain considerable
errors, and it is rather difficult to estimate the accuracy of the results.

In case 2, analytic functions, such as orthogonal polynomials, second degree poly-
nomial function, B-spline etc.. are fitted to the range values in the “neighborhood™ of the
point of interest, from which the required derivatives are obtained. However, at jump
edges, the fitting technique can cause problems.

Ittner and Jain [56] and Hoffman and Jain [48] produce curvature estimates at a point
p by considering the orientation between it and its neighbors. The computation method
proposed by Kasvand [62] essentially simulates the derivation of curvatures in differential
geometry. It provides a better insight into “what is going on” and various intermediate
results are available from which errors can be estimated. We use this method in our work.

A brief discussion will be given here, the details can be found in [62].

133



Surface Normal

The numerical computation of curvatures is based on surface normals. The numeric com-
putation of the surface normal image N(x,y) does not represent a major problem since
N(z,y) is only the first order difference in F(z,y). A Sobel operator is used to compute
gradients resulting in the image Fi(r,y) and Fy(z,y). The surface normal vector N(r, y)

is then obtained from:

INll = \/F2+FZ +1 (5.1)

where the direction cosines (Nx.Ny,Nz) of the normal N are

1’11‘
Nx = =——t
x N
N —_ ___Ii.- 5.2
y = TN (5.2)
1
N, = —
2 = NI

The gradient magnitude Z,, and the orientation 8 and tilt ] angles of N (see Figure h.1(a))

are obtained from

lpm = \/FJ?‘*'F!? (h.sl)
F
0 = 1972 .
9 T, (H.1)
. 1
f = tg“Zm (5.5)

Principal Curvatures and Their Directions

The numerical computation of the surface curvatures xy(z,y) and ko(r,y), and the cor-
responding unit vectors U(z,y) and Ua(z,y) is rather complicated. The simulation for
the derivation procedure is mainly outlined as follows:

1. As shown in Figure 5.1(b), the surface normal N and the direction vectors Uy
and Ug for the x; and &, form an orthogonal triplet. The tangent vector tis in the plane
formed by Uy and Ug, and it is orthogonal to N. When the tangent vector t is rotated
around the normal vector N, the corresponding surface curvature value at the point /2 in

the direction of t goes through maximum and minimum values. The maximum curvatare
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(a) (b)

Figure 5.1: (a) The surface normal N, the orientation angle @ and the tilt angle . (b)
The surface element in the differential geometry. The orthogonal unit vectors Uy, Ug and
N, define the orientation of the surface element, where N is the normal vector, Uj is
the direction of maximum surface curvature, and Us is the direction of minimum surface
curvature,

value is ky and the minimum is k2, and these are the quantities wanted. At any pixel in
F'(r.y) image, the normal vector is known from previous calculations.

2. Consider a point P on the surface of F(z,y). the (z,y, ) coordinates of P are
rand y in the image plane and F(x,y)is z. These are indicated as (zq, yo,20) in Figure
5.2, Place a disk or a circle such as €y with radius R at the point P and tangent to
the F'(x, y) surface. The surface normal N is the normal of C;. We want the values of
the surface normals around the periphery of Cy since the angle difference d3 between the

surface normals at the diametrically opposite points on Cy is proportional to the normal

curvature x,, (see Figures 5.1(b), 5.2, 5.3). Formally,

Ky = lim (—({é) (5.6)

ds—eo ds

where ds in the present case is equivalent to 2R or the diameter of the disk C;, but see
further on. The problem thus consists of computing the angles of the normal vectors
around the periphery of C'y and finding the maximum and minimum angle differences.

3. The circle Cy at point P projects into an ellipse C; on the image plane, see Figure

5.2, The general equation for an ellipse is

Lod

r = acosa (5.7)
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Figure 5.2: The disk C'; and its projection Cy in the zy space,
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Figure 5.3: The normal vectors around the periphery of C;.
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y = bsina (5.8)

where a is the major axis, b is the minor axis, and a is the angle of the radius vector
with respect to the x-axis. The minor axis of the ellipse C; is in the direction € and its
magnitude depends on the tilt angle §. Thus, the ellipse rotates as a function of 8 and its
minor diameter varies as a function of 6 (a = R and b = Rsinf). A point P, at (r,y,3)

on C; transforms to a point P, at (z,y,0) on C2. The coordinates of the point P}, are

]
I

zg + Rsinfcos(a - f)cosd — Rsin(a ~ 6)sinf (5.9)

Yo + Rsinfbcos(a ~ é)siné - Rsin(a -~ 6)cosd (5.10)

<
i

In practice it is easier to transform the point P},

ata =0{r=0p+ R,y=y.2=0)10
the circle Cy. define a rotating coordinate system around the normal vector N and then
transform the point P, back into the zy plane. This allows the use of uniform angutar
displacements (a'}) around the periphery of ('y (around N). The Fuler transforms are,
Ty = rotation around z-axis by 8, Ty = rotation around y’'—axis by 90° - 0, and T}y =

rotation around z—axis by a’. Thus, in matrix form

cosf  sinf 0
T, = —sin@  cosf 0
0 0 1

cos(90 —6) 0 sin(90 — 8)
T, = 0 1 0
~sin(90 — 6) 0 cos(90 — 6)
cosa’  sind’ 0

T3 = ~sine’ cosa’ 0

0 0 1

L

where the signs in front of the sin terms is changed from 4+ to — or from - to + to define
the direction of rotation.

4. A point P, on C, is unlikely to “hit” a (sample) pixel value at P on the ry
plane. Hence, the neighboring zy values of the point P! have to be found and the values

m

of F(z,y), Fx(z,y)and Fy(z,y)interpolated from these. A suitable interpolation formula
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Figure 5.4: Interpolation on the zy-plane.

should be chosen. A simple 4-point formula is given below, see Figure 5.4, where F(-,-) is
any function.

(.I'—.Tl)[F(Q,l)—F(l,])]

Fr.l) = F(1, 5.11
(r.1) a0 + F(1,1) (5.11)
Fr2) = &7 2)[F(2.2) - F(1,2)] +1(1,2) (5.12)
(r2 — xy)
(2= 1)

5. Thus, compute the values of F(«r, y), Fx(z,y) and Fy(z,y) along the periphery of
(') for n steps, say n = 8 or 12 or more and tabulate Ty(k), Ty-(k), Tyy(k),k =1,2,---,n.
Of course, an even value n should be chosen in order to find the diametrically opposite
values for k,ie., k and &y = k + § (module n), see Figure 5.3. Apply some smoothing if
necessary. Compute the corresponding direction cosines for the surface normal Vi around
.

6. The normal vectors Vi bk = 1,2,... n around the periphery of C; are unlikely
to be in the plane P, defined by the normal vector N and the tangent vector t, see Figure

5.3, 1.e.. Vi has a component Vi (or Vi and Vi) in plane P;, and a component V
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along C'y. The vector on the diametrically opposite point on Cy is Vi, where &y = &4 2.
The angle between the vectors V. and Vi is denoted by 3;, which is normalized by
dividing with the distance between the z,y, s values at k and &, to yield

-1
cos” (vrw v, + v u,
B = (vrws + vy, ) (5.1.4)
dir + diy

where (v, vy, v:) and (wz, wy. w;) are the direction cosines of V,x and Vouk1, respectively,
and di and dj, are the distances between the x,y, 2 values at k and ky and P, gy is the
normal curvature K.

7. The principal curvatures x; and x; are

Ki = Igéf\(ﬂu (H.15)
k=1
n/2

Ky = r‘:l_illl(/h) (h.16G)

Let k,, and k, denote the locations of the maximum and minimum, respectively, then ay
and K3 can be located more accurately by interpolation , for example, a second degree
polynomial fitted at 3(k, — 1).8{k) and gk, + 1) for the maximum, and at gk, -
1), B(k,) and B(k, + 1) for the minimum.

8. In differential geometry, the sign of s, (or ;) has no geometrical significance
since it depends on the orientation of the surface normal N with respect to the surface S|
or the choice of the direction for Uy and Ugz. In the case of range images, however, the
surfaces are only “seen™ from one side in any one image. It is important to know whether
a surface js convex (say K, is positive) or concave (say, K, is negative). ‘The signs of &)
and K are decided by the sign of d; — d; (see Figure 5.5).

9. An error measure is given by

n Vc
e(z,y) = Zﬁ (5.17)
k=1

5.3 Matching Strategy

In the previous sections, it has been shown that principal curvatures are good candi
dates for feature matching because they are invariant under rigid motion and different,

parametrization, they contain substantial inforination abonut local surface shape and have
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Figure 5.5: Determining the sign of the curvatures.

clear geometrical meaning. Therefore, they are chosen for the estimation of a 3D displace-
ment field.

Letu=[u wu u ]7 be the displacement vector of point P : (z,y,2) at time ¢,
this point is moved to point Py : (z +uy,y+ug, 2+ uz) at time &, If ¢ -1, = 1, thenu =
[ wy wuy uy )" is approximately equal to the velocity vector of point P. Theoretically,
the principal curvatures in the neighborhood of P and the principal curvatures in the
neighborhood of point Py should have the same distributions. In practice, they are not
exactly equal but similar because of noise in discrete images. Therefore, a correlation
matching procedure can be used to find the 3D displacement field. The algorithm could
be as simple as follows: choose a m x m neighborhood of point P, search around the
corresponding I’ in the second image to find the best matching position where the error

surface reaches its extreme. The error surface is defined as follows:

Elaug) = Y M@y ) = 81(z0 + v, 4 + w2, 12))2
I.-y-G—V
+Ag[m2( T, gis 1) — Ka(ze + ug, gi + ug, t2))°} (5.18)
where wy,up = =1,--+,0,---,1, 21 + 1 is the size of the search area, and the maximum

displacement should be smaller than I/, M is the neighborhood of P, A, and A; are constants
reflecting the relative importance of &1 and k. The location (u;, up) where E(uj,u3)
reachs the minimum value is considered as the estimate of the displacement vector of

point P’. uy can be simply obtained by
uy = Fr+u.y+ . t2) = F(x,y.1y)

where F(r 4+ uy + y + ua.ta) is the range image at time t,.
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.

Obviously, there exist many problems in this simple version of the algorithm. First,
it is assumed that the error surface for each point will have an unique peak , which is
not always true for points on a flat area or on edges (or on a cylinder). In the first case,
the error surface will be flat with small fluctuation. In the second case, the error surface
will be of a ridge shape. Simply locating extreme points in the error surface will cause
problems. Even in the case of an unique peak, if the peak is not sharp enough, it is hard
to locate. Second, inter-pixel displacement cannot be estimated.

Instead of using equation (5.18) for error surface, the following formula is used to

calculate the correlation surface

Y 1y 1t x ' s Y1 PARY
Cluy up) = Z (M VIKIE g0 )R (20 1y, g+ ug, )]

Iy €A l"‘l(rt»:‘/lsil)_ KI(T|+ uloyt+ "'bf').)l'" a

) \/I’{2(Iuyn!])'€2($l+ Uy, Yy + “2\’2”
k20T th) — Ko(x + g,y + ug ) 4+ 0

+ } (5.19)

where o is a constant to prevent C(uy,uz) becoming infinite. In this formula, the corre
lation will be small if the principal curvatures are small even in its corresponding point
because this corresponds to a flat area. If principal curvatures are different, then the corre
lation value is small, if the principal curvatures are large and similar, then the correlation
value is large. Compared with equation (5.18), this formula reduces the effect of small
principal curvatures because the accuracy of estimated small curvatures is lower than that
of larger curvatures.

The error measure in computing x; and &g is used to prevent incorrectly estimated
principal curvatures affecting the correlation surface. If the error measures for ny and
are large, then these £, and k2 will not be used for correlation.

The correlation surface is interpolated by a second degree polynomial funetion
around 3 X 3 neighborhood of the peak. The (u;,u;) where this second degree poly-
nomial function reaches maximum gives the estimate of displacement vector at point .
Thus, inter-pixel displacement can be estimated.

The correlation surfaces with nonunique peaks are further processed by the proce-

dure discussed in the next section.
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5.4 Coping with Nonunique Peaks

As discussed hefore, the correlation surface may be flat, ridge shape, or have multiple
peaks. Figure 5.7 shows the correlation surfaces computed from a synthetic image (see
Figure 5.6), where the template size is 5 X 5 and the search size is 9 x 9. The image size is
64 x 64. The ohject in the image is a polyhedron which consists of flat surfaces and line
edges between them. The object is translated toward upper right corners by two pixels.
For each pixel, a 9 x 9 correlation surface is obtained. A zero value boundary is inserted
between two correlation surfaces for a better view. The darker the pixel is, the smaller the
correlation value is. It is clear that the correlation surfaces for corner points have single
bright points, which means that the correlation surfaces have unique peaks (Figure 5.8(a)
shows the correlation surface at corner pixel (15,15)), therefore, the displacement vectors
of those pixels can be determined uniquely. For pixels near line edges, their correlation
surfaces have a line of bright spots, i.e., the correlation surfaces have ridge shapes (Figure
5.8(b) shows the correlation surface at edge pixel (32,17)), the displacement of a point
on a ridge is ambiguous, its component in the perpendicular direction of the ridge is
unambiguous. This phenomenon is the well-known aperture problem. For a pixel on a
plane, its correlation surface is flat, there are no enough information to locally determine
the displacement vector of the pixel. Since there always exist edges in most of real scenes,
the algorithm has to be able to cope with these problems.

There are several ways to deal with the problem. Obviously, one can first locate
corners, line edges, planes or cylinders in images, which have been studied by lots of
people (see (64, 61] etc.). Once this information is obtained, appropriate methods can be
used to deal with different cases.

‘The other way is to directly process correlation surfaces. Correlation surfaces can
be classified into peak, flat, or ridge etc., then appropriate methods are utilized to deal
with different cases.

The latter method has been chosen since some reliability measures can be obtained
at the same time.

Two techniques to classify the correlation surfaces have been developed. They will
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Figure 5.6: A synthetic polyhedron image.

be described in the following sections.

5.4.1 Algorithm 1
The principle of the first algorithin is as follows:

L. Threshold a correlation surface into a binary image, where *17 for peak area and ' for

non-peak area. Let C} denote the correlation surfaco for pixel P and Cui )4, =

average correfation vadue (7,
2

~{,++,0,---,1 be correlation values, then calculate

! {
Cp= Z{ Z
t=-{3

=]

)

olis 7)
{2

Convert the correlation surface into a binary image Cpy according 1o

Vif {Cpld )= Cy) > thavy

0 otherwise

Con{i,j)=

where thavg is a predefined threshold, it is set to thavg = 1.5 for all experiments.
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Figure 5.7: Correlation surfaces for the polyhedron image.
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(a) (h)

Figure 5.8: (a) The correlation surface at corner pixel (15,15). (b) The correlation surface
at line edge pixel (32,17).

v

2. Thin the resultant binary image C
[96] (see Figure 5.9).

pb Lo yield Chppe using the algorithm deseribed in

3. Label each connected *1° segment in the image (s and store the resultant image
pbt g

into Cppy

4. Classify the correlation surface into one of the five classes: flat peak, maulti-peaks,
line pcak, uni-peak, multi-linc peak, by checking the image Cpq according to the

following rules

(a) If there is no connected ‘1’ segment (the maximum label number is zero in

image Cppy1), ther no peak exists in the correlation surface, return flat peak

(b) If only one connected ‘1’ segment exists (the maximum label number is one in
image Cppy) and if this segment forms a line, then return hne peak, otherwise

return uni-peak

(c) If there exists more than one connected ‘1’ segment (the maximum label number
is larger than 1in image Cpyt), then more than one peak exist in the correlation

surface. if these ‘1" segments form a line, then return multi-line peak, otherwise
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Figure 5.10: Classification of correlation surfaces for the polyhedron using the fitst algo
rithm.

return multi-peak

‘

Figure 5.10 shows the classified image, where *." denotes flat peak, *** for hne peak,

‘o' for uni-peak and ‘#° for multi-line peak.

5.4.2 Algorithm 2

The second technique classifies a correlation surface into one of the following, categories:
flat peak, where the correlation surface is flat, multi-peak where more than two peaks exist
in the correlation surface, linc peek, where the correlation surface has a ridge shape, wn-
peak, where there exists one sharp peak in the correlation surface, boundary peak, where

peak is near the boundary, unknown peak, where the correlation surface is irregular.
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el |

6.

Obtain peak areas by thresholding: let C, denote the correlation surface for pixel P

and C(4,7),1,j = =1,---,0,---1 be correlation values, calculate the average corre-

lation value €,

where [is the scarch size. If (Cp(i, j)— Cp) > thavg, then (i, j) belongs to peak area,

where thavg is a predefined threshold, it is set to thavg = 1.5 for all experiments.

If the number of points in the peak areas is zero, then return flat peak, otherwise

continue,

Locate peaks in the peak area. if more than two peaks exist. then return multi-peak.

otherwise continue,

If the peak is on the boundary of correlation surface, return boundary peak, otherwise

continue.

Il the peak is ambiguous, for example. the correlation surface has a ridge shape. then
calculate the center of gravity of the peak area as the peak point. Let points in the
peak area be (ryoy Freyn)) (r2, 90 F(22,92))s 0+, (Tny Yoo F(Tn, Ya ). the center

of gravity (r,.y,) is defined as

r )::;1 'rll"“'l-yx)
! Pl
)

=1 Flreoy)

Yy =

Take a 3 x 3 neighborhood around the peak point, fit a second degree surface into
the local surface in this neighborhood, calculate principal curvatures sy, k3 and their

directions from the fitted surface

. Classify the local surface based on principal curvatures. If k1 > thk1 and k2 > thk?2,

then return uni-peak, If k1 < thk1 and A2 < thk2, then return flat peak, If k1 > thkl
and &2 < thk2, then return line peak, otherwise, return unknown peak. thk1 and thk2
are two thresholds. They are sct to thkl = 0.05,thk2 = 0.05 for all exper 1ents.

Figure 5.11 shows the classification results for the polyhedra of Figure 5.6.
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1

Figure 5.11: Classification of correlation surfaces for the polyhedron using the second
algorithm.

Once the classification of correlation surfaces is obtained using one of these two

algorithims . the displacement field is estimated by the following algorithm:
1. Classify a correlation surface by one of the above techniques.

2. If the peak ts uni-pcak. then the peak point of the correlation surface gives an unique
estimate of the velocity. In order to obtain inter-pixel movement, a sutface is fitted

around the peak and velocity can be obtained from the peak of the fitted surface,

3. If the peak is linc peak, then only the normal velocity can be estimated, which is
equal to the distance between the center of the correlation surface and the peak
line, the line passing through the center of gravity of the peak area in the principal
direction k2 (normal direction). The following steps are taken to obtain this normal

velocity.

(a) Find the equation of the peak line. Let 8 be the angle of the normal direction

with respect to x (see Figure 5.12), then vhe normal vector is (cosf),sin @), the
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(xc, yc)

Figure 5.12: Peak line.

veetor (r — 1,y — ¥y,) is perpendicular to the normal vector, therefore, their

dot productor is zero, the line equation can be obtained from
(r—a,)cosf+ (y~y,)sinf =0
reosf + (y~ rg)sinfcosf - ygosind =0

Line parameters are

a = cosf

b ISTIN.

—r,cosf — y,sin 8

..
1l

(b) Calculate the distance d of the line to the origin
d = ~¢
o= d
whete v is the normal velocity.
(¢) Assuming that the velocity along the line is zero, then the x, y velocities are

ry cosf

i
ty = Uy sin @
where 8 = tan~'(b/a).
‘1. Tor all other peahs. no estimates of velocities can be obtained, set them to zeros.

Figures (5.15) and (5.16) show the estimated full velocity field and the normal velocity field

based on the classification of the correlation surfaces using the first algorithm. Figures
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Figure 5.13: Full velocity field by the first algorithm.

(5.13) and (5.14) show the estimated full velocity field and the normal velodity field based
on the classification of the correlation surfaces using the second algorithm. It is clear that
velocities can be estimated uniquely at the corner pixels, and only normal velocitios can be
estimated at line edge points. However, the classification of the correlation surfaces using,
the first algorithmn is very sensitive to the threshold “thavg”. In addition. the principal
curvatures at the peak point of a correlation surface provided by the second algorithm
can be used as reliability measure of the estimated velocity. If both principal curvatures
are large, then the peak is very sharp, which means that the estimated velocity is more
reliable. Therefore, it is better to use the second algorithm to classify cortelation surfaces,

The remaining experiments in this chapter will use the second algorithm.

5.5 Experimental Results

More experiments have been done on both real and synthetic image sequences. Tn ths

section. part of the results will be presented. Most image sequences used are the same as
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Figure 5.16: Normal velocity field by the second algorithm.

the ones used in the previous chapter.

5.5.1 A Piece of Paper

The description of the paper image sequence can be found in the previous chapter. 9+ 9
was used for the search size. and 5x 5 for the template size. Figures 5.17 and 5.18 show the
calculated principal curvatures. Since the object in the scene contains many plane facets,
principal curvatures are very small in those areas, and the estimates of the velocitios are
unable to be obtained in these areas. Figure 5.19 shows the classification of peaks of
correlation surfaces, where a white pixel for an uni-peak, a black for a flat peak and a gray
pixel for a linc peak. The estimated full velocity field is shown in Figure 5.20. It is well

estimated for uni-peak pixels.

5.5.2 Grip

The description of Grip image sequence has been given in the previous chapter. 9~ 9 was

used for the search size. and 5 x 5 for the template size. The estimated full velocity fiold
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Figure 5.18: Minimum curvature image of paper sequence.
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Figure 5.21: Estimated full velocity field of gr

is shown in Figure 5.21. The object in the scene is made of planes, conic surfaces and

cylindrical surfaces. Therefore, full velocities can not be estimated for these surfaces. Full

velocities are well estimated around the boundaries of these surfaces.

5.5.3 Doll

Phe description of image sequence can be found in the previous chapter. 11 x 11 was used

r

ze, and 5 x 5 for the template size. The estimated full velocity field is

.

S1

for the search

shown in figure 5.22.

5.6 Further Improvement

In this section, some possible improvements will be discussed for the algorithm discussed

above.
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Figure 5.22: Estimated full velocity field of doll image sequence.

5.6.1 Using the Principal Directions

In the previous discussions, only principal curvatures are used to estimate displacement
vector fields. It is obvious that a correlation surface of a point will be flat if the point is
on a spherical surface, because principal curvatures are equal for a spherical surface. In
this case, other features have to be used for matching. One possible way to avoid this
problem is to use the angle differences between triplets Uy(z, y,¢), Ua(r, y, 1), N(r,y. 1)
and Up(r+1,y+1,0),Ug(r+1,y+1,8), N(r+1,y+ 1,1),expressed by three Fuler angles
dlz,y.t),¢(z,y.t)and 6(x,y,1). These angle images are also intrinsic properties of a rigid
object. These angles can be added to the formula of the correlation function.

Another way is to increase the size of a template such that the distributions of £y an
#z in the template appear sufficiently changed. However, in the above matching process,
it is assumed that the displacements of all points in the template are near constant. If
the size of the template is too large, this assumption would be violated. Therefore, it is

better to use the angle information when a scene contains spherical surfaces (k) = #y).
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5.6.2 Decoupling Rotation and Translation

Iu the case of rigid motion, the displacement vector results from a translational vector and
a rotational vector. These two components in fact may be determined separately.

If point P at time t; is translated to point P; at time £, then the maximum curvature
direction, the minimum curvature direction and the normal direction at point P should be
the same as those directions at Py, respectively. Any direction changes of U3, Uz and N
are caused by a rigid rotation. This idea is used to decouple the rotation and translation
components. Let (uy,uz, u3) be the displacement vector between P and P, then the
Fuler angles between their corresponding orthogonal triplets at P and P; represent the
rotation component from P to Py, since P : (z + u3,y + uz) may not be on the sampling
grid, an appropriate vector interpolation procedure is needed to find Uy, Ug and N at
point I’} from the nearest neighbors of Py. The interpola ion has to keep the orthogonal
properties of Uy, Ug and N. From Euler angles, the rotation matrix Ry, can be obtained.

Translation vector is obtained by
tp = (I-Rp)u (5.20)

where t4, is the translation vector, u is the displacement vector and I is a unit matrix. tp
and Ry, are computed at point P. If the translation and rotation is expressed with respect

to the origin, then
Ry = Rp
to = (I-Rp)P+u

where P={g 4 2 ]0

5.6.3 Increasing Speed

The disadvantage of the feature matching approach is that it is time consuming, especially
when the motion is large such that a large search size has to be used. One of the many
possible techniques to increasing the speed is to use multiple resolutions {7, 29, 30]. At
lower resolution. motion is small, therefore, only a small area need to be searched. At

higher resolution, matching is found around potential points provided by the lower level.
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The algorithm discussed in the previous chapter is very fast, however, it will fail
around the areas where surfaces are discontinuous. Therefore, it may be combined with
the feature matching algorithm, used only in the areas which other algorithm cannot

handle.

5.7 Conclusion

In this chapter, an approach has been proposed to estimate a 3D velocity field through
token (feature) matching. Principal curvatures are chosen to be the features since they
are invariant to both rigid motion and different parametrization of a surface. The 3D
velocity at point P is obtained by locating a matching point whose distribution of principal
curvatures in its neighborhood is similar to that of point P. If point P is on a line edpe,
then its full velocity cannot be determined bhecause of the aperture problem, however, its
vernier velocity can be determined. Two algorithms have been desceribed to cope with
this problem. The advantage of the feature matching approach is that it can estimate
velocities of both corner points as well as points on smooth curved sw faces, and vernier
velocities of line edge points. The method discussed in the previous chapter is unable to
deal with corner points and line edge points. For objects like the polyliedra, it is very
important to estimate the motion on corners and line edges. The disadvantage of the
feature matching method is that it is very time consuming compared with the approach i
the previous chapter. To increase processing speed, it is possible to combine them so that
one technique can be used for line edges and corners, and the other technique for smooth

surfaces.
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Chapter 6

General Motion

In the previous chapters, the estimation of motion of a single rigid object and low level
processing for more complicated motions have been discussed. In this chapter, a framework
will be proposed which allows us to apply previous knowledge to analyze more general and

higher level motion,

6.1 Representation of the High Level Process

Any arbitrary relative movement hetween objects in a scene and an observer can be ex-
pressed by a motion field where a 31 instantancous velocity vector has been assigned to
cach point in the image at ecach time instance.

Letu(w oy )= wy(a,y.1) wo(r oy ) usz(z.y. 1) ]7 denote a motion field, that is.
a function of both space and time. The motion field describes the local properties of
motion, which is the goal pursued by a low level process but does not directly provide the
relation of movements between neighboring points.

In the high level process. one has to interpret the motion field in order to provide
more compact mformation about motion. If, for example, objects in a scene are rigid,
then six rigid motion. parameters for each object uniquely describe motion of the objects.
Usually, the output of the high level process depends on the requirements of a specific
application, or the nature of the objects. and therefore, there is no general representation

for the high level process in this sense. In this section. the representation of the high level
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process wili be discussed assuming that there is no prior knowledge about the applications
or the objects. A question can be posed: what is the appropriate representation”?

Most work done so far use the model of uniform rigid body motion or special kinds
of nonrigid motions [69. 24, 22, 10-). Subbarao [98] provided a model for general non- rigid
motion of a small surface patch. In his model, the motion field is expressed locally as a
polynomial function of position and time. This is a gnod model when no prior knowledge
about the objects or motion is available. In this paper, the following representation is
adopted: an image is segmented into several connected regions in which points tend to
move coherently, and for each region, motion is represented by a polynowial function,
This resembles the “common fate™ law in Gestalist theory [120].

Let the segmentatior at time o be § = (&1, 8%, ---,5™), where §'is the o7 region
in which all points undergo similar motion and m is the number of regions. Then the

I‘lh

motion field in the region can be expressed as

u(zr.y,f)=aj+apr+ayy+aiz+ajt+--- (6.1)

where a} = [ a',J a, (IF,J ]1. The a} s are called regron motion parame lers or simply

rcgion paramcicrs. Based on this model, the tash for motion analysis is to find 5" and

1 '

a'r=1o---omagiven theinput =z = F(r,ylo). - - 2= Far, g ty), where nis the number

J
of images used in motion analysis. The range of 7 depends on the degree of the poly nomial
which reflects the nature of motion.

(]

In the case of the uniform motion of rigid bodies. the motion field in the 1™ region

is

u(z.y)=vi4+uw xr (6.2)

where v = [ 1w} o} K

7, is translational velocity, w' = [ W} Wl W} 17 s rotational

velocity and r = { 7 y = |7, a) = a}y = alyy = v} al) = aby, =Yy, 0l - ay,  wl,

y = ah = w4y, = ayy = Wi The task for motion analysis is to segment i scene
into regions. each of which is undergoing a rigid motion, and estimate six rigid motion
parameters for each region.

For the uniform motion of deformable objects, the m tion field in the /' regron can
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be expressed by
Wz, y,1) = ah + aje + ahy + ahz (6.3)

where the first order partial derivatives form a velocity tensor. Rigid translation, rotation
and deformation parameters, such as stretching and shear, can be uniquely determined
from a [98]. In the next scctions, an approach will be presented which analyzes motion
based on the above model.

There are several ways to achieve the goal. One of the possible ways is the following:
estimate the motion field using any one of the methods discussed in the previous chapters,
then extract region parameters locally from estimated motion field. After that, cluster
these local results to form segmentation, and finally compute the region parameters. In the
next sections. it will be shown that the first two steps may be combined to directly extract

point parameters from cach local area. then continue the process from these results.

6.2 Overview of the Approach

Figure 6.1 shows a block diagram of the proposed approach. It consists of six main

modules.

1. Pieprocessing
Before any processing is performed on the image, it is necessary to filter out noise
since the second derivatives of a surface need to be calculated, and they are sensitive

to noise. A median filter may be a good choice since it does not corrupt boundaries.

2. Local measurement of point motion parameters
Assuming that an arbitrary surface can be approximated by a second degree poly-
nomial function in a very small but finite neighborhood, motion parameters are
estimated in that neighborhood and the estimated values are assigned to the center
point of the ucighborhood, and are called point motion parameters (or point parame-
ters). All point parameters form the point motion parameter field. At the same time,

cach poirt is assigned a weight reflecting the reliability of point motion parameters,
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Figure 6.1: Block diagram of the approach.

3. Regularization of point motion parameters by motion coherence theory
The estimated point motion parameter field 1s usually noisy and not very accurate
There are some poim.s whose parameters cannot be estimated, or only some of the
parameters can be ostimated. The motion coherence theory [119, 120] 15 used to

regularize (smooth) this parameter field.

4. Segmentation based on common motion
If points helong to the same moving object, then their parameters should he simi
lar. This idea is used to group points together to segment the image into a set of

connected regions.

5. Estimation of region motion parameters
Motion parameters of a region could simply take the average of point parameters in
the same region. It is not a recommended method because the local measurements
of point parameters are relatively noisy. Instead, a direct method is used to recover

region motion parameters globally.

In the following sections, a detailed description of cach module is presented.
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6.3 Local Measurement of Point Motion Parameters

A method will be presented to estimate point parameters starting from a very simple but
important case of locally pure translation or dominant translation, and then it is extended

to general motion,

6.3.1 Uniform Locally Pure Translation or Dominant Translation

Let Sy be a small but finite neighborhood of a point P:[ z5 yo 2z ]. If the surface in
Su undergoes only translation or translation with a relativelv small rotation with respect
to translation, then the former case is called locally pure translation and the latter locally
dominant translation. In these two cases, 3D instantancous velocities are either the same
o1 nearly the same in S, so that they can be trecated as equal. This 3D velocity vector
is the point parameter to be estimated. Any of the methods discussed in the last two

chapters can be used in this case.

6.3.2 Uniform Locally Rigid Motion

In the previous section, it is assumed that the velocities are constant in a small neighbor-
hood. In fact. the method discussed in chapter 4 can be easily extended to any locally rigid
motion. Consider a local surface Sy around the point P:rg=[ 2o yo 2z )7 at time fo.
Let XY Z be a local coordinate system with the point rg as the origin and the X,Y and
Z axes parallel to the o,y and 2 axes (see Figure 4.7). In this case, point parameters of
I’ a1e expressed by six rigid motion parameters v and w. 3D instantaneous velocity u of

point I is related to these rigid parameters by

iy = w2+ 20) (Y + wo) + 1
) = u.“{(.\' + .l'(]) - + :()) + v (6.4)

un = (Y + ) — (X + xo) + v

Assuming that the local surface Sp can be approximated by the second order polynomial
surface, then, since Sy is undergoing a rotation, Z = F(X,Y.t) can not be approximated

by a second order polynomial function, instead it can be approximated by the following
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function (see Appendix E) in the local coordinate system

Z = FX+FY+ Ft4 Foy XY + Foe N+ Fu Y+ 128, X 4 1 /21,08
+1/2F ¢t + Frp XYt 4+ 1 2F 0 N2+ 1/2F,, Y (6.5)
Substituting this value of Z into equation (6.5), then substituting the resultant equa

tion into the 3D velocity constraint equation (3.2) produces, using symbolic computation

program (Maple), we get
o+ a1 X +aY + a3 XY + a4 X%+ a5Y 2+ a6 XY 4 a:V2XN +ag X+ agY ™t = 0(6.6)
where

o = (=Fyzo—yo)wr + (Fozo+re)oy + (Fyro — Foyo)w: + Fovy § Fyro— vyt 1
ay = (=Fryzo— FyFe)w, + (14 [;) + Frrzo)wy + (1 + Foydo = Foryolw:
+ vy + Fryva + Foy
a4 = (-1- Fy2 = fywzo)wsr + (Fryzo + FyFr)wy + (= Fyyo + Fyyro = 1) )w:
+ vy + Fyyve + By
ay = (=2FyFoy— Fyylp)wr + (215 Fr + Fylns )y + (Fyy = Faswe - Py

Wy = (=1/2F,Fyp = Foyle)wr + 3/2F Frowy + Fyyws + 12805,
a5 = =3/2F, Fyywy + (1/2F,, Fy + Fy Fry)wy = Fryws + 128,

ag = (=FZ, = 1/2F, Fry)wr + 3/2F:, Frrw,

ar = =3/2Fy Fywr + (F2 + 1/2F, Forwy
ag = —1/21'111/ Frrwr + ]/2]’?,&),/
g = —-1/21’3wa + 1/2F1'yl"yywl/

Equation (6.6) is valid for all neighboring points of the interested point I?) as long as the
number of points of this neighborhood is larger than 10, then a, = 0,2 = 0.---,9. This is
a set of 10 linear equations with six unknowns for which it is easy to find the least squares
estimates of six rigid motion parameters for the point (g, yy, 20). In the same way, motion
parameters can be locally estimated for all other points. It is an interesting problem to

see if there are some points for which motion cannot be locally recovered.
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6.3.3 Arbitrary Motion: Nonrigid and Nonuniform

So far the problem how to measure point parameter field of a locally rigid body has
been discussed. Actually, the method can be generalized to any arbitrary time-varying
3D scenes, which include nonrigid and nonuniform motions !. For arbitrary motion, 3D

velocities of a point can be expressed by

= ajo+an(X + 20)+ a12(Y + yo) + a13(Z + 20) + a14(t + 20) + 02(X, Y, Z,1)

upy = ago +an(X + zo) +az(Y + y0) + a23(Z + 20) + a24(t + o) + 02(X,Y, Z,1)

wy = aso+az (X + x0) + as2(Y + yo) + a33(Z + 20) + azq(t + o) + O2(X,Y, Z,1)
whete O(X,Y, Z, 1) denotes the second and higher order terms of X,Y,Z and . As
discussed before, the existence of coefficient a,, depends on the nature of the motion. For
example, for uniform motion of a deformable surface, the first four terms of each velocity
component exist. For nonuniform motion of a deformable surface, the coefficients of the
term (1 = fy) are included. In these two cases, instead of considering two frames, multiple
frames have to be considered. After a very similar computation procedure as before, the

following equation is obtained,
bo+ by 4+ bpy + byt + -+ + biza® + bysy® + biot® = 0 (6.7)

where b,.0 = 0.---, 19 are linear functions of a,,.

by Feayg + Fyroan + Fryoarz + Frzoasz + Fyaze + Fyzoan

+Fyyon22 + Fyzot23 — azo — oz — yoasz — 20033 + Fi

by = Firaw+ (Ferro + Foan + Fezyotiz + (Ferzo + F2)arz + Fryagg
H(Ey + Fryao)aar + Fryyoazz + (Fryzo + FyFrlazs — azy — Frass + Fr

by = Fryaro+ Frydotn + (Fryyo + Fr)ar2 + (Fry20 + FyFr)aia + Fyyazo
+ g man + (Fyuyo + Fyag + (Fyyso + Fyz)azs ~ agz — Fyasz + Fy

by = 3/2F Froaa+ (V2Fy Fer + FryFri)ags + Fu

by = Feygan + Frpayy + (2F ey 8 + FyFrp)ars

+ Fuu"'Zl + quﬂ:z + (.—)FryFy + F:Fyy)a23 - F:ya&'j

"Nonumform motion means that motion parameters change with time
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bs = Fran + (2Fn+ ForF)az + Fyag
H(FrFy + FoyFy + FrFy)ags — Fpaag
be = Frann+ (FulFy+ Frylt + FoFyaa + Fuapg
+(FyyFr + 2F Fyt)azs — Fyaas
b; = Frap+ Fraoan + Fuyoarz + (F; Fy + Fryzo)ana + Frayg
+Fyzoan + Fyuyoazs + (Fyizo + Fy Fr)ag — Fasy
bs = Fuyarz+(1/2F:Fyy + FuyF))ars + Fygzs + 3/2F, Fyyans — 1/2F,
by = (FuFi+1/2F:F)an+ (1/2F, Fy + Fylagy — 12 Faq
bio = (FyFor + 2F Fr)ans+ (Folyy + 285, Fy)ag
by = (ny + 1/2F  Fyy)arz + 3/ 28 Fyyuas
bia = 3/2FyFerarz+ (F2, 4 1/2F Iy
bis = 3/2Flerars+ (1 2Fy Fer + FryFrg)agy
by = (1/2FFyy + FryFy)a + 3/21, Fyyays
bis = (1/2FeFo + Fi)aws + (FyFoo + 1/2F0 Fy)az
bie = (FyuFe+ 1/2F Fu)as+ (Fh + 12, Fu)as
by = 1/2Frais+ 1)2FyFrrags
big = 1/2F; Fyyays+ 1/2F a0

bio = 1/2F Fyays+ 1/2F, Fuayy

For the same reason as before. b, must equal zero, and so a set of 20 linear equations with
12 unknowns are formed for which it is easy to find the least square solution. Here I},
has to be calculated, thus at least three frames are needed. For nonuniform motion ol
a deformable surface, the coefficients of the term (2 — 1) are included. After a similar
procedure, a set of 20 linear equations with 15 unknown will be obtained. For any other
more complicated nonrigid motion which includes coefficients of the second or higher crder
terms, the second order approximation of z is not enough to estimate the point motion
parameters. but these parameters can be estimated in a very small region by a similar

procedure.
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6.4 Regularization of Point Motion Parameters

So far, point motion parameters are being estimated at all points except where they
cannot be locally estimated. Forexample, for local translation, point parameters cannot be
estimated at points with zero Gaussian curvature. However, our segmentation by common
motion required a dense point motion parameter field. Also, the local measurements of
point motion parameters are not accurate near boundaries. Smoothing and interpolating
procedure (regularization) is needed for these points. Recently, Yuille and Grzywacz [119,
120] proposed a motion coherence theory which performs smoothing and interpolation.
Their results are extended to our problem by introducing a weight for each measured
value. Since r and y components of the velocity field in motion coherence theory do not
interact, cach component can be treated separately. Let a; be one component of point
motion parameters measured at vy = [ 7, y; |7 The motion coherence theory suggests
the construction of a smoothed component a(z. /; <ach Jhat the following function is
minimized

F(r.a)= Z w(r - a,)? + /\/ Z em(D™a)? (6.8)

m=0
where D?Ma = A?"a, D™ +lg = A(A?™a), A > 0 and ¢,, > 0 are constant. The index i
runs over all points with estimated motion parameters and w; is a normalized weight which
represents reliability of the measured value. The weight is given during the measurement
of point parameters. The solution of the above equation has the form

31 - - Iy 2
a(r) = 22;02 ( ”"20‘" I ) (6.9)

1

where the g, are solutions of

Z(/\bu + w, ()3, = w,a,
J

where

. 1 —Ir; — 3l

The error function F contains an approximation-error term and a smoothness term. Pa-

rameter A determines the importance of smoothness while parameter o determines the
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desirec range of influence of this smoothing and interpolating process. This smoothing
process can also be extended to include partially estimated parameters, for example, the

normal velccity.

6.5 Segmentation by Motion Coherence

An image is segmented into regions which have similar point motion parameters. The
method is an extension of Kasvand’s 2D clustering method [65]. First, construct a his
togram H(a), where a is point parameter vector, smooth I/ (a), and carry out dynamic
thresholding to obtain cluster centers. Give “identity” to the isolated centers by region la-
beling and “spread” the labels out since dynamic thresholding only preserves the peaks and
ridges in H(a). Map the cluster labels back into the image space. This produces the labeled
image where each label corresponds to a region moving coherently. Label relaxation may
be needed if measured point motion parameters are too noisy. Connected cluster labels in
image space are given new unique labels. Finally, a segmentation § = (5!, 5%,---,5™)is

obtained in the image space.

6.6 Estimation of Region Motion Parameters

If a scene consists of locally rigid objects, then the estimation of region motion parameters
is the same as the estimation of a single rigid object motion, since each region can he
treated as a single rigid object. The method discussed in chapter 3 can be easily applied
here. Furthermore, the method can be extended to general motion, the only difference is

the number of motion parameters.
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6.7 Experiments

To test the feasibility of the method, a preliminary experiment on the synthetic images
shown in Figure 6.2 has been performed. The image size is 128x 128. Two over-
lapping objects are moving in the opposite directions. The left object is moving to-
ward upper right and the right object is moving toward bottom left. The motion pa-
rameters for the left object are T =[1 1 1 ]7/pizel,0 =1°%n =9 ¢ 1]7 and
T=[-1 -1 -1])7,06==1%n=[0 0o 1]7 for the right object, where 8 is rotation
angle, T is translation vector and n is unit vector of rotation axis. The rotation axes
are passing through point [ 48 48 0 )7 for the left object and point [ 75 75 0 ]7 for
the right object. The noise of range data taken by the range finder is proportional to
the distance between the sensor and the point being measured. Therefore, uniforn: noise
whose range is 10 percent of the considered z to each point were added to the images.
Figure 6.3 shows the estimated velocities using the method discussed in Chapter 3 with-
out reliability checking and smoothing. Absolute velocities larger than the threshold (5)
are set to the threshold for display and images are reduced to 64 x 64. In order to show
the effect of noise, no preprocessing is used. Better results can be expected if a filter is
applied first. Figure 6.4 shows the smoothed velocity field. Weights are shown in Figure
6.5. Segmentation is given in Figure 6.6, where each symbol represents a region in which

points are moving coherently.

6.8 Conclusion

In this chapter, a framework has been described for recovering general motion from range
image sequences. It consists of four main steps: local estimation of point motion param-
eters, regularization of point parameters, segmentation based on common motion, and
region motion parameter estimation. Motion for both rigid and nonrigid objects are ob-
tained from solving a set of linear equations. The framework is proposed to illustrate the
potential extensions of the work done so far and for further future works. For each step in
the frameworh. there exist numerous ways to reach the goal. Here, only some possibilities

are pointed out. Further study needs to be done to find the best algorithm.
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Figure 6.3: Estimated point parameters of synthetic image: half sphere - half ellipse.
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Chapter 7

Conclusion

Our final chapter summaries the work done so far, and provides a brief intioduction to
future research.
The work presented in this thesis can be divided into two separate parts. Chapter

2 describes the long termn process, and chapter 3 to 6 discuss the short term process.

7.1 The Long Term Process

In the long term process, it is assumed that motion is recovered in two stages: the obtain
ing of correspondence of features and the estimation of motion parameter from niatehing
features. Chapter 2 proposes an approach to establish the best match of point features
between successive frammes using a Hopfield neural network. The “best™ is in the sense
that the number of found matching pairs which satisfy the physical constraints should
be as large as possible. Two physical constraints have been considered, that is, there
exists no one-to-many matching and points are the features of rigid ohjects. These con-
straints are used to model the Hopfield ncural network such that the stable state of the
network corresponds to the matching solution which is being sought. Once the matehing
is established, a é-bound matching test is used to discard mismatched features during
parameter estimation. Therefore, the estimated motion is less sensitive to noisy features
and occlusions.

The proposed approach has been tested on noisy synthetic data. Very promising

—
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results hiave been obtained. No tests on real data have been done since it invelves devel-
oping algorithms to extract features, which is beyond the scope of this thesis. However,
featnre extraction may be bypassed using the method proposed in chapter 3 if ali the 3D
coordinates in both images are taken as point features, provided by the range scanner
directly. In this case, the number of features is huge. It takes too long for a conventional
matching »lgorithm to process them. However, it should not dramatically increase the
processing time for a neural network which essentially performs parallel processing. This
idea has not been tested due to the lack of sufficient facilities. It should be verified in the
future.

The proposed method is not restricted to point features. It has been shown that
the idea can be easily extended to line, plane and surface matching. The method can also
he used to estimate motions of multiple rigid objects. In this case, nothing needs to be

changed at the matching stage. The algorithm to estimate rigid motion parameters need

to be modified. One possible way is to check all found matched features by the é-bound
test. The features which pass the test are considered to belong to one object, and the
remaining matched features belong to other objects. The features which belong to the
second object can be found by repeating the é-bound test on these remaining matched
features. The same procedure can be repeated until no more matched features can fit a
rigid object. These ideas should be further explored, and experiments on real data should

he done.

7.2 The Short Term Process

The methods for the long term process can certainly be used for the short term process.
However, in the latter case, other techniques which do not require correspondence can also
be used to solve the problem. Furthermore, for a nonrigid object, its motion may not be
recovered simply by matching features. It is necessary to study short term motion in its
own right.

In this thesis. the case of a single rigid moving object is first studied in chapter 3.

It is the simplest type of motion. yet it is often encountered. For example, when a mobile
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robot moves in a static emvironment, the scene can be considered as a single rigid object.

A simple, straightforward, and very powerful direct method has been developed
for this purpose. The method utilizes a similar idea which is used for optical flow to
derive a local 3D velocity constraint equation. Based on this constraint, six rigid motion
parameters of a single rigid moving object can be directly obtained by solving a set of
linear equations using least squares techniques. It has been found that a weighted least
squares method provides the best performance after comparing the performance of several
least squares methods against noise.

Sufficient and necessary conditions for the uniqueness of the motion perception have
been discussed. The uniqueness of the motion perception depends on the structure of the
3D object in a scene. It has been proven that if and ounly if the surface in a scene is a plane,
or a cylindrical surface, or a sphere, or a surface of revolution with its axis of revolution
passing through the origin, then their rigid motion cannot be uniquely determined.

The behavior of the algorithm with noisy data has been analyzed in two steps.
First the error sources have been discussed, then sensitivity of the algorithm to these
errors has been analyzed. It has been shown that the major error, gradient measurement
error, consicts of two components: random error from random noise in measured depth
and systematic error introduced by sampling surfaces discretely in time and space. The
random error is determined by the range scanner. The systematic error depends on the
spatial resolution of the camera, time interval hetween two successive frames, the second
of partial derivatives of the surface, and motion itself. The error will be redaced if the
spatial resolution of the camera and the sampling rate in time are increased, The slower
the motion and the surface change in space, the smaller the systematic error is.

The sensitivity of the estimated motion parameters to noise also depends on the
condition number of the linear system. It has also been proven that if normal vectors
of a surface tends to be orthogonal to each other, then the system will be least sensitive
to noise if the motion is translation, and for small objects or objects far away from the
observer, the estimate of rotation will be very sensitive to noise in data.

The algorithm is tested on a real “shut” image sequence, the estimation error for

the rotation angle is less than 2%.




The analysis of the single rigid motion problem is only a small branch of motion
understanding. There are many applications which require analysis of more complicated
motion, such as nonrigid motion, multiple objects in motion, etc. In these cases, Typically,
low level processing locally extracts motion information. In high level processing, the final
description of motion is derived.

In this thesis, attention has been paid to the low level processing since the high level
processing is usually application dependent, and this thesis aims to explore more general
principles behind understanding motion. A 3D velocity field has been chosen to be the
output of the jow level stage.

(‘hapter 4 first reviews and compares several plausible techniques: least squares
method. robust regression methods, clustering approaches, for the estimation of the local
motion. The major drawback of these techniques is that they are only suitable to surfaces
which can be locally approximated by planes. To overcome this problem, a new algorithm
is proposed. This algorithm is based on the assumptions that a local surface can be
approximated by a second degree polynomial function. and 3D velocities are constant in
a very small neighborhood. The algorithm uniquely determines the 3D velocity of each
point by using the first and second order spatial and temporal partial derivatives, except
at parabolic points where Gaussian curvatures are equal to zero.

For each calculated velocity, a measure of the reliability is calculated according to
the following criteria: the value of Gaussian curvature, the coefficient matrix of the linear
system which determines the 3D velocity, and how well a local surface is fitted by a second
degree polynomial function.

For those parabolic points, their velocities are interpolated from the reliable velocities
of their neighbors. For range images, it is recasonable to assume that the discontinuities
of a velocity field only occur where depth is discontinuous. Therefore, the velocity field
can be smoothed within arcas where there are no discontinuities. Based on this idea, the
interpolation problem is solved by smoothing the estimated reliable velocity field within
motion boundaries.

The advantage of this algorithm is that it is very fast and easy to implement in

hardware or software. The problem with this algorithm is that only velocities of smooth
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surfaces can be estimated. For edge points. their velocities have to be inferred fiom their

neighbors. However. for an object like polyhedron, its motion is perceived by the motion
of its edges and corners. The proposed algorithm fails in this case.

Chapter 5 describes another algorithm to estimate 3D velocity field through token
(feature) matching. Principal curvatures features are chosen since they are invariant to
both rigid motion and different parametrization of a surface. The basic idea of the algo-
rithm is that the 3D velocity at a point P can be obtained by locating, a matching point
whose distribution of principal curvatures in its neighborhood is similar to that of point
P. The advantage of the feature matching approach is that it can estimate velocities of
both corner points as well as points on smooth curved surfaces, and vernier velocities of
line edge points.

If point P is on a line edge, then its full velocity canuot be determined because of
the aperture problem, however, its vernier velocity can be determined. Two technigques
have been developed to cope with this problen.

The disadvantage of the feature matching method is that it is computationally inten-
sive compared with the approach of the proceeding chapter. To increase processing speed,
it is possible to combine them, for example, into one algorithm in which one techuique is
used for line edges and corners, and the other technique is u.ed for smooth surfaces.

These two algorithms to estimate 3D velocity are tested on real and synthetic images.
For most image sequences. they provides reasonable results.

This feature matching method can also determine the rotation of a local surface by
detecting the rotation of the principal curvature directions and normal vector. Therefore,
translation and rotation of a local surface can be estimated separately. This ideas should
be further explored. Besides, multiple resolution images can be used to speed up the
correlation. This should be also studied in the future.

Once a 3D velocity field is obtained, higher level description of motion can be de-
rived. Some ideas toward this end are presented in chapter 6. However, only preliminary
experiments on the synthetic images were performed to test the feasibility of the approach.

In the future. work should be done to verify and improve suggested ideas,
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Appendix A

Linear Algebra

This appendix includes some mathematic background used in the thesis. For details see

(40, 114, 38]

A.1 Singular Value Decomposition

Theorem A.1 Let
r=rank(A)

_ Y
A= z o,

=1

where U = [uy,+-,um]. V = [vy,-++,vy] be the SVD of A € R™*"(m 2 n). Ifbe ™

then
XLs = Z(u;Tbo,)v; (A1)
=1
pLs = 3 (w'b) (A.2)
1=r+1
Let
AY =vtu?
where

Tt = diag(oy!,---.07,0,---,0) € R™™
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then
x.s = Atb pLs = (1 - AA+)b||2

where At is referred to as the pseudo-inverse of A, xps is the least squares solution and

pLs is the projection of b on the range space of A.

A.2 Inverse of a 3 x3 Matrix

Theorem A.2 If B € R3*3 and B is nonsingular, then there erists a unique inverse

malriz B!

-1 _ _ boxb baxb bqxb
B™ = [ €1 C2 C3 ]"[ (52_‘,&;3).5‘1 (B3xby)eby (B‘lxgz).:‘gs" ] (A3)

where ¢ is ' column of B~! and by is the it" row of B.

Proof: It can be directly proved by calculating BB~! = 1.
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Appendix B

Differential Geometry Review

Classical differential geometry is the study of local properties of curves and surfaces.
It is used to motivate and justify the choice of surface features. Vor this reason, the
basic concepts and terms of differential geometry are briefly reviewed here. For more

information, the reader should consult one of the many books on the subject [2v, 70].

B.1 Space Curves

Some local properties of curves appear while studying surfaces, therefore, this section will
be used for a brief treatment of curves.
General space curves are represented parametrically as a function of an interval of

the real value. A curve C is written as follows
C = {X(s): (z(s), y(5),2(s)) € R%a< s < b} (B.")

where s is parameter. It is assumed that curves are parameterized by arc length in order to
have a better geometric explanation. Only smooth curves are considered with components
of X(s) having continuous second order derivatives.
S (DT s

The first derivative X'(s) = 7—9 of C at point s is called the tangent veetor of the

curve C at s. When s is the arc length, the tangent vector X'(s) is a unit vector. The
'

norm || X"(s)|| = H%éﬂn of the second order derivative measures the rate of change of the

angle which neighboring tangents make with the tangent at s. It is called the curvature
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X'(s) — X'(s)
X'(s)
X''(s)
| m m
X

"(S)
X! (s

Figure B.1: Characteristics of a space curve, where X'(s) = dxi’ and X"(s) = %—l.

of C at s, denoted by k(s) = ||X"(s)|]. x(s) is a measure of how rapidly the curve “pulls
away” from the tangent line at s, in a neighborhood of s (see Figure B.1).

A unit vector n(s) in the direction X”(s) is well defined by the equation X"(s) =
t(s)n(s). Moreover, X"(s) is normal to X'(s), thus n(s) is normal to X'(s) and is called
the normal vector.

Let t(s) = X'(s) denote the unit tangent vector of C at s, then t(s) and n(s)
determine a plane called the osculating plane. The unit vector b(s) = t(s) x n(s) is
normal to the osculating plane, and is therefore called the binormal vector of C at s. Since
b(s) is a unit vector, the length ||b'(s)|| measures the rate of change of the neighboring
osculating planes with the osculating plane at s; thus, b’(s) measures how rapidly the
curve “pulls away” from the the osculating plane at s in a neighborhood of s (see Figure

B.2). b/(s) is parallel to n(s), and may be written as
b'(s) = 7(s)n(s) (B.2)

for some function 7(s). 7(s)is called the torsion of C at s.
Three orthogonal unit vectors t(s), n(s) and b(s) are referred to as the Frenet tri-
hedron at s. Their derivatives t'(s),n’(s) and b/(s), when expressed in the basis {t,n, b},

vield the famous Frenet formulas, which can be written as a matrix of ordinary differential

equations
t'(s) 0 K(8) 0 t(s)
n(s) | = -s(s) 0 -7(s) n(s) (B.3)
b'(s) 0 T(s) 0 b(s)
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Figure B.2: Osculating planes determined by vectors t and n.

The well known fact that a smooth continuous curve C in the Fuclidean 3D space
is fully specified by the Frenet formulas comes from the following fundamental theorem of

the local theory of curves.

Theorem B.3 Given diffcrentiable function k(s) > 0 and 7(s) > 0, there exists a smooth
parametrized curve C such that s is the arc length, K(s) is the curvature, and v(s) is the
torsion of C. Moreover, any other curve C, salisfying the same conditions, differs from ¢

only by a rigid motion.

The above theorem is not restricted to arc length. For details see {26].

Curvature, torsion and the parameter s uniquely determine the shape of the curve.
They are invariant to rigid motions and have one-to-one relationship with curve shapes.
These characteristics are the ideal candidates for feature matching. Surface characteristics

with similar properties are discussed in the next section.

B.2 Surface

The parametric form of a general surface with respect to a known coordinate system may

be written as follows:

z z(u,v)
S={XeR: | y|=1| yuv) |.(0,v)e DCR? (B.4)
z 2u.v)
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This general parametric representation is referred to as X(u, v) where the z-component
of X is z(u,»), the y-component is y(u,v), and the z-component is z(u,v). Range im-
age surface functions are represented by the graph surface form, where z = z(u,v) =
u,y = y(u,v) = v and z = z(z,y). A surface can also be represented by an implicit form
F(x,y,z) =0, but this kind of surface representation is not considered here. Only regular
parametric surfaces are considered. The definition of a regular surface can be found in
[26]). Roughly speaking, it means that all three parametric functions z(u,v), y(u,v) and
z(u,v) are smooth, and possesses continuous second order partial derivatives.

There are two basic mathematical entities that are considered in the differential
geometry of surfaces. In classical differential geometry, they are known as the first and
the second fundamental forms of a surface. Modern mathematics uses differential forms
and favors an equivalent formulation of these quantifies in terms of the metric tensor
and the Weingarten mapping (the “shape” operator). Complete knowledge of either of
these forms at every surface point uniquely quantities general surface shape. In general,
the modern approach is preferred. especially by mathematicians, because of its simpler
formulas to work with once all the necessary terminology is established. The classical
approach is favored in engineering since more people are familiar with partial derivatives
than differential forms. In this thesis, 3D surface is introduced from the concepts of 3D
curve because some ideas will be used to compute geometric identities later on, and it also
allows a better geometric explanation.

For each point p € S, there exists a set of curves which lie in S and pass through p,
the set of tangent vectors to the curves constitutes a plane, which is called tangent plane,
denoted T,,(5).

The first fundamental form I,(S) of the surface S is defined as a quadratic form on

T,(5)
L(S)=wew (B.5)

where w is a vector on the tangent plane T,(S). If the first fundamental form is expressed

in the basis {Xy. Xy} associated to a parametrization X(u,v)
L(S) = (Xut' +Xyv') e (Xuu' + Xy2')
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= E() 4+ 2Fu'v' + G(v')? (B.6)
where
E=Xye Xy F=X,¢Xy E=XyeX,y
and Xy = Q%,Xv = %% are refered to as the u-tangent vector and v-tangent vector,
respectively.

The most important factor about the first fundamental form is that it allows us to
make measurements on the surface (lengths of curves, angles of tangents, areas of regions)
without referring back to the ambient space R® where the surface lies.

The unit normal vector at each point of X(u,v) is given by

Xu x Xy
N=ze—m———— B.7
o x X -0
It is also the normal vector of the tangent plane.
The second fundamental form of S at p is defined as
II(S)= -dNpew (B.8)

where w is a vector on the tangent plane Tp,(.5).

Let C be a curve in S passing through p, & the curvature of €' at p, and 8 is the
angle between n and N, where n is the normal vector to C and N is the normal vector to
S at p. The number &, = Kcos(f) is then called the normal curvature of € € .5 at p (see

Figure B.3(a)). If the curve is parametrized by the arc length, then
II,(S) = kn (B.9)

that is, the value of the second fundamental form for a unit vector w € T,(.9) is equal to
the normal curvature of a curve passing through p and tangent to w. Given a unit vector
w € Ty(5), the intersection of S with the plane containing w and N is called the normal
section of S at p along w (see Figure B.3(b)). The maximum normal curvature iy and
minimum normal curvature x; are called the principal curvatures at p, the corresponding,
directions are called the principal directions.

The knowledge of the principal curvatures at p allows us to compute easily the

normal curvature along given direction of Ty(S). Let w € Tp(S5) with |[wi| = 1, 8 he
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Normal section at p along v

(a) b

Figure B.3: (a) Normal curvature. (b) Normai section.

the angle between w and the maximum principle curvature direction, then the normal

curvature x,, along w is given hy
Ko = 11,(9) = Kk100820 + Kosin0 (B.10)

This expression is known as the Fuler formula, actually, it is the expression of the second
fundamental form in the basis of the principal directions.

The expression of the second fundamental form in the basis {Xy, Xv} is given by
11,(8) = c(u' V2 4 2fu' v + g(v')? (B.11)
where

¢=Xuyue N f=XuveN g=XyeN

. 02X ax 22X
and Xyy = 57, Xuv = msxvv = G

[

Similar to the Frenet formulas, the Gauss-Weingarten equations for 3D surfaces

express the derivatives of the vectors Xy, Xy, N in the basis {Xy, Xy, N} by

[ Xuu | [ THXu+THXy +eN ]
Xuw IoXu + Xy + /N
Xew | _ I X + I3, Xy + fN (B.12)
X I3 Xu + I3 Xv + gN
N. anXy + a2 Xy
| No | [ anXu+ a2Xy ]

200




where Tk

,J,i.j.k = 1,2 are called the Christoffel symbols of §. They are determined in

terms of the coefficients of the first fundamental form E, F.G and their derivatives

TLE4TLF = Xy oXy= %E,, (1.13)
PLF4T3G = XuwoXy= F,- %1; (B.14)
ILE+TLF = XupeXu= %F (B.15)
TLE4TLG = XuweXy= %Gu (B.16)
ILE+TL,F = Xy eXu=F,+ -;-G (B.17)
TLFE4T5,G = XpeXy= %( (B.18)

where a,;,17,j = 1,2 are obtained by

a a e F F
SR [ / (B.19)
azr 022 [ 9 F G
This relation together with
Nu=a11 Xy + 412X
u 11 un 12 v ( I“Z”)
Ny = a51 Xy + 022Xy
are known as the equation of Weingarten.
The determinant A" of matrix (a,,)
. i '
K= (1("(([,’1) = -E—G-'—_—'*]—Z- (“Zl)

is called Gaussian curvature. The negative of half of the trace of matrix (a,,) is called the

mean curvature H

a+an _1eG-2fF+ gk

— - 13.22
1 2 2 EG- F? (h22)
It is easy to prove that
K = Kikq (13.23)
H o= ftm (B.24)
2
and the principal curvatures &1, %3 are the roots of the equation
K= 20+ K =0 (B.25)

The fundamental theorem for 3D surfaces is
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Theorem B.4 Lt E,F,G, ¢, f,q be differentiable functions, defined in an open set v €
R? with ¥ > 0 and G > 0. Assume that the given functions satisfy formally the Gauss
equation (B.26) and Mainardi-Codazzi equations (B.27) and that EG — F? > 0, then
there exists an unique surface patch defined in the neighborhood of g such that E, F,G and
¢, f, g arc the coefficients of the first and second fundamental forms, respectively. Furiher-
more, if lwo surfaces S and § possess coefficients of fundamental forms E, F, G e, f,g and

E,F,G, e, [, g respectively such that the following relations hold

E=F F=F G=0G
c=c /=17 9=y

then there erisls an approviate rigid motion such that S and S coincide ezactly implying
they have the same shape.

Where the Gauss formula is
= J2 = (%) = (1), + ThT - Thid)
E(1},1] + T30, — TiaTiz = THI,) (B.26)
and the Mainardi-Codarr: cqualtions arc

v~ fu “r=2+f(l"f2"]‘}l)-yr%l
jt' -0y = ('I"EQ + f( l‘gz - I‘{')) - gr‘?Q

This theorem tells us that an arbitrary smooth surface shape is captured by six

(B.27)

scalar functions: E.F,GLe. f, g.

Unfortunately, it is difficult to interpret what each of these functions are individ-
ually telling us about surface shape. However, there are several combinations of these
functions that yield more easily interpretabl> surface shape characteristics, particularly,
mean curvature and Gaussian curvature or the principal curvatures and their directions.
These curvature functions usually do not contain all the 3D shape information contained
m F.F.Goe. f.g.but they do contain a substantial amount of useful information in some
special cases. Details can be found in [13].

A set of Gaussian curvatures and mean curvatures are analytically equivalent to

the set of principal curvatures. The principal curvatures have been chosen as candidate
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Figure B.4: Surface shapes and principal curvatures.

features instead of Guassian and mean curvatures mainly because two extra principal cur-
vature directions could be useful for motion analysis as discussed later. Besides, principal
curvatures provide better geometric explanations to commonly occurred surface shapes in
our daily life as may be seen in Figure B.4. It is clear that if k; and K, are equal, then
the local shape is spherical, and if x; is a constant (larger than zero) and &z is zero, then
the local shape is cylindrical, etc. Since k; and &, are functions of E, F,G, e, f, g, they are

invariant to a rigid mection.
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Appendix C

Simulating 3D Rigid Motion

Simulating a 3D motion of an arbitrary object is a quite complex task since the z values
are known only at the grid points. Theoretically, a point p is moved to point p; according

to the following relation
pt=Rp+T (C.1)

where R and T denote rotation matrix and translation vector. However, p; may not
coincide with the grid point, it may become occluded, or may disappear from the field
of view. A resampling of the transformed surface is needed. In addition, a point on the
grid in the second image may correspond to a point which has not been on the grid in the
first image or it comes from the surface which is invisible in the first image, and therefore
some kind of extrapolation is necessary. How to deal with these problems is a subject
of computer graphics, which is beyond of the scope of this work. In this appendix, an
algorithm is presented to simulate 3D rigid motion used in the experiments in this thesis.
It may not be as good as some algorithms used for animation. However, some inaccuracy,
which can be considered as noise in data acquisition, is allowed on purpose.

The outline of the algorithm is as follows:

1. Given four grid points (i,7), (7,74 1),(7 + 1,7),(: + 1,7 + 1) in the first image,
approximate the surface inside them by two plane facets T'1 and T2, which are

determined by poiuts P1P2P3 and P1P3P4 (see Figure C.1(a)).
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. Move P1P3P4 to P1'P3' P4 according to equation (C.1), P1'P3 Y’ forms facet T'

(see Figure C.1).

. Find the external square of the facet T'1 on the image plane ( sce Figure C.1(b) ).

. For each grid point inside the external square in the second image, find the inter-

cepting point P of the light ray starting from the grid point and the facet T'l, the z

value of the intercepting point is taken as the z value of the grid point.

. If the light ray intercepts with more than one facet, then the largest z value among

all intercepting points is selected.

. If the z value is smaller than 0, discard it since z value is the distance from the point

to a reference surface, therefore, it has to be positive.

. Repeat the above steps until all possible grid points in the first image have been

considered.

Examine all grid points in the second image, and for the grid point whose z value is

undetermined, calculate the z value by extrapolating the nearest useful facet.
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P4

external square

grid point

(+1,) (i+1,j+1)
() (b)

Figure (.1: Simulating 3D motion. (a) Approximating a local surface by plane facets. (b)
Resampling by locating the intercepting point of a light ray and the facet.
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Appendix D

Approximating Quadric

In this appendix, an algorithm will be described to approximate a quadratic suiface. This
algorithm is based on the one presented by Nagel in [80)].

Given a (2k 4+ 1) x (2k + 1) domain for the digitized range function F(r,y) with

z,y=—-k,-k+1,..-,-1,0.1,---, k., the free parameters in the quadric
Flz,y)= Fo+ For + Fyy+ 1/2F 7% + Fryry 4 1/28,,4° (h.1)

are determined in such a way that the sum of the squared difference hetween the mea-
surement and the approximating expression is minimized.

Let (z1, 1)y (Z0y0)y - - - (2N, yn) denote the raster points in the given domain,
where the points are numbered by starting with the leftmost pixel in the top row, and
proceeding row by row from left to right. N is the number of points in the given domain
(N = (2k + 1)?). This order is used to introduce column vectors with ¥ components for

measurement values

g=F(z,,y:), i=12,---N (D.2)
and the approximation function

F(p) = F(z,,y:p), 1=1,2,---,N, (D.3)
where p represents the column vector parameters

P = (P, P2 P3P 5. 06) = (Fo, Fry Fyy Fray Foyy Fyy)' (D.4)
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With these conventions, the expression to be minimized can be written

M = (F(p) - g)(F(p) - g) (D.5)
Let A denote the matrix of derivatives of F with respect to the components of p, i.e.,

IF(z,,y;p)/0p:, 1=12,---,N, 1=1,2,---,6, (D.6)

Ly

a; (l,z.,y,,l/?z?,z.y.,1/2y,2) i=1,---,N (D.7)
Then F can be written as

F=Ap (D.8)
Substituting F into equation (1D.5) leads

M=(Ap-g)(Ap-g) (D.9)

The requirement to minimize this expression by appropriate choice of parameters yields

IM/op = 0= AT(Ap - g) (D.10)
or
p=(ATA)'ATg (D.11)
Define
AY
Spar = Y_alylyl (D.12)
1=1

Due to the symmetry of the domain, term with r = 0 and odd powers of z; or y; vanish.

Using this convention, the matrix ATA can be written in the form

S 0 0 1/2500 0 1/2S020 )
0 Swo O 0 0 0
0 0 S 0 0 0
ATA = 020 (D.13)
1/2500 0 0 1/4500 0 1/4Sx0
0 0 0 0 S220 0

\ 1/2S020 0 0 1/4S220 0 1/4So040 )
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where
Sooo
S200
S220

S400

N = (2k+1)?

Sozo = %k(k +1)(2k +1)?
%kz(k +1)%(2k + 1)
Tok(k + 1)(2k + 12(3K + 3k~ 1)

from which it follows that

2 2
50005220 = S300 = So20

1 L A
det(ATA) = TE530052220(5400 ~ S220)?

After tedious algebra, the element of p are

"

P2

p3

P4

Ps

Peé

R = {S400 + S200) 5001 — S2005201 — 0205021

Sovol Sa00 = S220)
Fy = 53005101/(S50005220) = S101/S200

Fy = S0205011/(50005220) = So11/S020
o= 2( 50005201 = S2005001)
= Sooo(S400 — S220)
Fry = 5111/ 5220
Fy = 2( 80005021 = So205001)
Sooo( Sa00 ~ S220)
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Appendix E

Representing a Moving Object in
a World Coordinate System

Let xyztand XY Zt be the world coordinate system (WCS) and object-centered coordinate
system (OCS) respectively as shown in Fig.E.1, and let for simplicity the OCS be aligned
with the WCS at the initial time t = {y = 0. Assume that the surface of the moving object
be represented by an analytic function in the OCS,

Z=F(X. Y1) (E.1)

where Z is allowed to be a function of spatial variables (X,Y) and t means that the surface
of the moving object may change with the time, as in the case of a nonrigid object. In the

case of a rigid object, Z is a function of spatial variables (X,Y") only.

Theorem E.5 A uniformly translating second degree polynomial surface can be repre-

sented by the following analytic function in the WCS,
2 = 2o+ Fer+ Fyy+ Fit 4 Fort + Fuyt + Fpyzy (E.2)

+1/2F 2% 4+ 1/2F,, 4% + 1/2Ft* (E.3)

Proof:
Since the object is undergoing rigid motion, the shape of its surface is unchanged

with respect to the OCS, and therefore, at any time, it can be represented by

Z=f(X.Y)=ao+a X +aY +azXY +a, X2 +a5Y? (E4)
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Figure E.1: ryzt and XY ZT represent the world coordinate system (WC'S) and object-
centered coordinate system (OCS), where the OCS be aligned with WS at the initial
time t = 13 = 0.
where f(X,Y) is the second order polynomial function.

Let the object translate with a constant velocity u = [ u;, w, uy J7. A point
Po=[z0 yo 20 17 on the object at time #g = 0 is moved to point pg = | y 2 17

time ¢t. The following relation between pg and pg holds in WCS
Pt = po + ut (E.h)

Since the WCS and the OCS are aligned with each other at time t = 0, then py =
(X Y z]7 and

(E.6)

N =<
]
N
|
=2 13
R

Substituting the above relation into Eq.( E.4) yields
z = F(z,y,1)
= flz—ut,y— uzt) + usl
= ag+ a1z — wit) + ax(y — ual) + az(z — uyt)(y — uzt)
a4z — uit)? +as(y ~ ugt)? + uyt

= by+bz+ bgy + +bat + byxy + bzt + beyt + [)7272 + 1)3]]2 + ’Igf2 ”47)
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where

by = ag

by = a;

’)2 = a3

’)3 = Uy — a uy — aiy

’)4 = Uz

1)5 = ~aiu) - azlg — 2(1411]
b = —aguy— azguy — 2asug
by = —ay

bt& = -5

by = azuyuy+ u.,uf 4 a_r,ug

Obviously, Eq.(E.3) is equivalent to Eq.(E.T). Q.E.D.
If a second order surface is undergoing a translation and rotation, then the resulting

suriace in the WCS can no longer be expressed by an explicit function.

T = Flr,y,t) (E.8)
Instead, it should be represented by an implicit form

F(r,y.z.)=0 (E.9)

However, when the motion is small, this implicit function can be well approximated
by an explicit function (theoretical proof can be found in [26]). F(z,y,?) may be approx-
imated by a polynomial function using Talor’s series. In order to estimate rotation, the
third order terms in the polynomial expression have to be kept. Therefore, the following

polynomial function can be used to represent a surface in the WCS

Z = FeXN4 LY+ fl+ fey XV 4 froXt4 fuYt+1/2f: X2+ 1/2f,,¥2 (E.10)

F1/2ful® + feut XV 12 ere X204+ 1/2fp Y
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