& National Library

Bibhothéque nationale
of Canada

du Canada

Acquisitions and Direction des acquistions et
Bibliographic Services Branch  des services bibliographiques

395 Wethington Street 395, rue Wellington
Ottawa, Ontario Ottawa (Ontano)

K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfiiming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If peges are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sant us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

1+f

Canada

Yo Ble Vo eiereng e

O e Notre il e

AVIS

La qualité de cette microforme
dépend grandement de la qualite
de fa these soumise uu
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, vetillez
communiquer avec l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si i’'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme patrtielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



Influence of Horizontal Restraints

on the Behaviour of Concrete Slabs

Safwat A. H. Ibrahim

A Thesis
in
The Department
of
Civil Engineering

Presented in Partial Fulfillment nf the Regquirements
for the Degree of Doctor of Philosophy at
Concordia University
Montreal, Quebec, Canada

November 1994

© Safwat A. H. Ibrahim, 1994



National Library Bibliothéque nationate
I “' l of Canada du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch  des seivices bibliographiques
395 Wellingtc  Street 395, rue Weilington

Cttawa, Ontano Ottawa (Ontano)

K1A ON4 K1AON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FOPM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-01274-3

Canadi

Your e Volre 18ldrence

Our fhe  Notra réléience

L'AUTEUKR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTi:RESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT L "RE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.



-

iii

ABSTRACT

Influence of Horizontal Restraints

on the Behaviour of Concrete Slabs

Safwat A. H. Ibrahim

A study dealing with the influence of horizontal restraints on the
behaviour of concrete slabs subjected to central concentrated loads is
presented. As a part of this study, an experimental program was
performed on strips of concrete slabs with horizontally restrained
boundaries subjected to concentrated loads at midspans. The tested strip
siabs were provided with minimum struciural reinforcement to eliminate
a sudden collapse at the moment of failure. Comparable tests were
carried out on strip slabs that were simply supported and horizontally
non-restrained with maximum reinforcement ratio.

The tests showed that the carrying capacities of the horizontally
restrained strip slabs with minimum reinforcement ratio were similar to
the capacities of horizontally non-restrained strip slabs with maximum

reinforcement ratio. The enhanced carrying capacity of horizontally



iv
restrained strip slabs can be explained as a result of an arch action at
failure due to the horizontal restraints.

In addition, an analytical study based on the plastic theory was
carried out to analyze strip siabs with full and partial horizontal
restraints. As a result, a plastic analysis method was developed for these
strip slabs. This method was extended to analyze horizontally restrained
squarc slabs subjected to concentrzied leads. Also, non-linear finite
element analysis for the horizontally restrained square slabs and strip
slabs was carried out.

By considering the influence of ho:izontal restraints on a wide
range of applications of reinforced concrete slabs, a significant amount

of reinforcement can be saved without reducing the carrying capacities of

the slabs.
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The definitions of the notations used in the text are as given below

unless indicated in the text otherwise:

Cross-section area of a structural member

Depth of Whitney rectangular compression block (in Chapter 3, ‘a’
is a span length)

Cross section area of steel bars

Depth of a slab segment

Width of cross sections of strip slabs or beams

Compressive forces

Vertical distance from the extremity of the compression fibers to
the neutral axis of a cross section of a concrete member

Vertical distance between top and bottom reinforcement

Modules of elasticity

Force

Compression strength of concrete

Compression strength of mortar

Axial force acting in the member number ‘i’ due to the application
of a unit force at the joint and in the direction where the deflection

needs to be calculated



Tension strength of the steel reinforcement

Depth of slabs or beams

Height or a height of a slab segment

Height at a horizontal distance 'x’

Moment of inertia

Number of a member in structural system

Spring constant or the stiffness of elastic support
The axial stiffness of the strip slab (or beam)
Length of a structural member or span of a beam
Bending moment

Fixed end bending moment

Applied concentrated load

Compression stress acting on a tip of a slab segment
Lever arr: o: the rise of structural system

Relative strength of the strip slabs

Horizontal reaction at a support

Vertical reaction at a support

Reaction located at a horizontal distance ‘x’

Axial deformation of member subjected to axial force
Shortening of member number ‘i’ due to the application of the
actual forces on the structural system

Tension forces

Xxiv



u In-plane displacement

uy In-plane displacements of slabs or strip slabs in x direction

w Deflection of slabs or beams

w;,  Horizontal displacement or horizontal deflection

X,Y,Z General Cartesian coordinates

1} Coefficient of friction

v Poisson’s ratio

€ Strain or the axial strain of a concrete member

) Stress or the compression stress of the concrete

B Taken as 0.85 for concrete strength f, up to and including 30 MPa
and beyond this it is reduced continuously at a rate of 0.08 for
each additional 10 MPa of strength, but with a minimum value of
0.65

P.t Actual reinforcement ratio

c. Compression strength of concrete = f,

Pmax Maximum reinforcement ratio

Pmin Minimum reinforcement ratio

Strain in x direction



Chapter 1

Introduction

1-1 General

Many publications dealt with the problem of concrete slabs
subjected to concentrated loads. However, few publications took into
account the effects of horizontal restraints on the behaviour of such
slabs. Horizontal restraints might change the behaviour and carrying
capacity of concrete slabs. If horizontal restraints have a significant
influence on the behaviour of slabs, then, the effects of the horizontal
restraints need to be considered in the calculations of the carrying
capacities =nd deflections of slabs subjected to lateral loads. The present
study examines some types of concrete slabs subjected to concentrated
loads, taking into consideration the influence of horizontal restraints on

the behaviour of these slabs.

1-2 Concrete Slabs Subjected To Concentrated Load

Designing reinforced concrete slabs subjected to either
concentrated loads or loads not distributed over the entire slab area is
usually a difficult task to perform due to the complexity of the problem.

The designers of such slabs usually deal with this problem either by



replacing the actual loads with equivalent loads uniformly distributed
over the entire area of the slab, or by using methods that consider the
concentrated loads, such as the elastic plate theory or the yield line
method. Methods which consider concentrated loads are demonstrated in
Chapter 2.

The solution which is based on the use of equivalent! uniformly
distributed loads is often recommended by codes of practice. The values
of these uniformly distributed loads are .ometimes specified by building
codes, but more often, the values of the equivalent loads are left to the
judgement of the designer. For example, the National Building Code of
Canada‘’ specifies 12 kN/m? to be used as an equivalent uniformly
distributed live load for designing slabs of garages for loaded buses and
trucks. To estimate the shear force under the wheel load, the same code
replaces the equivalent uniformly distributed live load by a concentrated
live load of 54 kN to be placed anywhere on the slab. It is doubtful that
this method will produce the most economical slabs. In addition, the use
of an equivalent load may be conservative for the moment at one location
in a slab yet not conservative for the moment at another location. Also,
according to codes® ** ¥ dealing with wheel load on the slabs of bridge
decks, it is permissible to substitute the concentrated wheel loads by a
specified uniform load. Other examples where equivalent loads are

usually used are wheel loads from fork lift trucks in manufacturing



buildings or warehouses, and heavy machinery loads distributed over
small areas.

Although it is obvious that moments due to concentrated loads need
to be considered in the design of most floor slabs, the complexity of the
necessary analysis makes the computations of such moments difficult and
impractical. Therefore, in most cases, computations based on equivalent
uniform loads over the entire slab are used, which may or may not yield
consistent or correct results.

On the other hand, solving this problem by using methods that
consider the concentrated loads, such as the elastic plate theory or the
influence surface which is based on the elastic theory (demonstrated in
Chapter 2) is not economical either. In addition to the complexity of
these methods, laboratory investigations on models and full scale tests
have shown that the slabs that are designed using such methods,
especially those forming bridge decks, appear to resist loads by a
mechanism different from that assumed. This leads to load capacities
greater than predicted.

The accidental failure””’

of a slab is a highly visible demonstration
of inadequacy in design. However, the other extreme, where the design
is shown to be overly conservative, is also possible. It is the latter that

has become apparent in the analysis and design of reinforced concrete

slabs subjected to concentrated loads.
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1-3 Influence of Horizontal Restraints

The influence of horizontally restrained boundaries on the
behaviour of reinforced concrete slabs subjected to lateral loads has
became an important topic of research in recent yearsm'“'m.
Horizontally restrained reinforced concrete beams and slabs exhibit
greater carrying capacities than that which they have been designed“®.
Yet horizontally non-restrained simply supported concrete beams and
slabs exhibit in-plane (horizontal) displacements due to the applications
of lateral loads“®.

The tendency of concrete slabs to exhibit in-plane displacements
are restrained, to some degree, by the lateral stiffness of supporting
members such as beams or walls. Adjacent slab panels also form
extremely stiff diaphragms which oppose the expansions of the laterally
loaded slab. Restraining the in-plane displacement results in membrane
compressive forces (arch or dome action) and enhances the carrying
capacity of the slabs. As a part of this study, experimental and
analytical research work has been carried out to examine the behaviour of

horizontally restrained concrete slabs subjected to central concentrated

loads.

1-4 Applications of Horizontal Restraints

Taking advantage of the effects of the horizontal restraints on the



behaviour of horizontally restrained slabs can result in reducing the
flexural reinforcing steel. Moreover, reducing the steel enhances the
durability of concrete against the effect of steel corrosion. The influence
of horizontal restraints on the behaviour of slabs has many engineering
applications. Structural engineers can use advantageously the effects of
horizontal restraints on several types of slabs. According to the present
codes of practice, several types of structural slabs which are horizontally
restrained are designed without taking advantage of their horizontal
restraints. The main reason of that is either shortage of information on
this subject (the influence of horizontal restraints on the behaviour of
slabs) or that the subject is not yet widely known. To provide additional
information on this subject, many experimental programs are required on
horizontally restrained slabs subjected to different patterns of loading
such as uniformly distributed loads and concentrated loads. Advantage
of the influence of horizontal restraints can be taken for some types of
slabs such as two-way floor systems, joist floor systems and some bridge

slab decks. Some of these types will be demonstrated hereinafter.

1-4-1 Two-way slabs supported on beam
The degree of horizontal restraint depends on the horizontal
stiffness of the member that provides the horizontal restraint. When this

stiffness is very high in comparison with the vertical stiffness of the



slab, the degree of horizontal restraint is considered very high. In a
hypothetical case, if the horizontal stiffness of the member that provides
the horizontal restraints is infinity, the degree of the horizontal restraint

is 100% or there is full horizontal restraint.
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Figure 1-1 Two-way slabs supported on beams

All slab panels shown in Figure 1-1 are horizontally restrained.
Slab panel ‘S4’ is horizontally restrained by the adjacent panels. These

adjacent panels provide very stiff horizontal restraints. Therefore slab



panel ‘S4’ can be considered highly horizontally restrained. On the
other hand, slab panel ‘S1’ is horizontally restrained by the supporting

beams. These beams provide only partial horizontal restraint.
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Figure 1-2 One-way joist floor system

As shown in Figure 1-2, the one-way slab panels are supported by

joists. These slab panels are horizontally restrzined by the adjoining



panels. The adjoining panels provide extremely stiff horizontal
restraints. Therefore, advantage can be taken from these horizontal
restraints by enhancing the carrying capacity of these one-way slab
panels. Also, the reinforcement of the ribs can be reduced due to their

horizontal restraints.

1-4-3 - joist floor
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Figure 1-3 Two-way joist floor (waffle slab)

As shown in Figure 1-3, the two-way slab cells are supported by a
grid of joists. These slab cells are horizontally restrained by the
adjoining slab cells and the joists. The adjoining slab cells and the joists

provide extremely stiff horizontal restraints. Therefore, advantage can



be taken from these horizontal restraints by reducing the flexural

reinforcement of these two-way joist floor systems.

1-4-4 Concrete slab supported on box girders

As shown in Figure 1-4, the concrete slab deck is supported by box
girders. These box girders provide partial horizontal restraints. Taking
advantage of these horizontal restraints can result in reducing the

flexural reinforcement of this deck slab.

Figure 1-4 Concrete slab supported on box girders

'1-4-5 Concrete slab supported on_multicell box girders

The concrete slab deck that is shown in Figure 1-5 is supported by
multicell box girders. The internal concrete slab panels are horizontally
restrained by the adjoining slab panels and by the vertical walls of the
box girders. The exterior slab panels are horizontally restrained by the
vertical walls of the box girders. Taking advantage of these horizontal

restraints can result in reducing the flexural reinforcement of this deca

slab.
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Figure 1-5 Cross section of multicell box girder bridge

1-5 Scope of the Study

The subject of this research is the influence of horizontal restraints
on the behaviour and on the strength of some types of concrete slabs
subjected to central concentrated loads. During the course of this
research, experimental tests, analytical study and finite element analysis
were performed.

An experimental program was carried out on strips of concrete
slabs with horizontally restrained boundaries and subjected to central
concentrated loads. Additional comparable tests were carried out on
simply supported horizontally non-restrained strip slabs.

Analytical studies based on the theory of elasticity and the theory
of plasticity were carried out. A plastic analysis method based on an
iterative procedure for simply supported and horizontally restrained strip

slabs was developed.
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The research has been extended to analyze horizontally restrained
square concrete slabs”subjected to central concentrated loads. The
internal stresses that are acting on the segments of the square slab were
examined by the finite element method. The finite element program
“ADINA"® was used ‘o perform the analysis. An approximate solution,
based on the theory of plasticity, for square slabs with horizestal

restraints on the boundaries, subjected to central concentrated loads is

presented.
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Literature Survey and

Review of Methods of Analysis

2-1 Introduction

Several methods of analysis are used to predict the behaviour of
reinforced concrete slabs under the action of concentrated loads. Some
of these methods deal with slabs or plates in the elastic range, and others
deal with slabs or plates in the ultimate state condition. Also, some of
these methods solve only for moments, and some others solve for
moments and shears (shear force at any location in the slab and punching
shear at the vicinity of the concentrated luvad or column). Each one of
these methods has its own assumptions. However, all of these methods

disregard the in-plane displacements of the slabs.

2-2 The Elastic Theory
The most common method of analysis is the elastic plate theory.
This method can be more correctly described as the theory of the bending

of elastic plates with small deflections. Timoshenko and Woinowsky-
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Krieger®, in their introduction to what has become a standard reference
for the subject, describe the assumptions, the method and the solutions
(for some applications) given by this theory. Several numerical examples
and illustrations using this theory are given by Rudolph Szilard”’, Park

and Gamble®

, among others. This theory represents the behaviour of an
elastic plate subjected to lateral loads in a fourth order,
non-homogeneous, partial differential equation, governed by the

deflection ‘w’ of the plate and given in the following form:

o'w o'w 'w  P.xy)

+ 2 +
dx’ ax’9y’ 9y’ D

The elastic plate theory presents solutions for plates of various
loading and boundary conditions'®.  Laboratory tests have shown
discrepancies between the theoretical analysis obtained by using this
theory and the resuits that are obtained from experimental tests for some
boundary conditions. The discrepancies are mainly due to ignoring the
in-plane displacement.

Several techniques are used either to solve the differential equation
of the elastic plate theory directly or to use the result of the elastic plate

theory to produce solutions for the problem of plates subjected to

concentrated loads in different forms. The differential equation may, of
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course, b solved by the use of finite difference method®’ '@, Also, the

(i

results of the elastic plate theory have been used by Pucher and

“2), among others, to produce an influence surface t¢ obtain the

Woodring
values of the bending moments for plates subjected to concentrated loads
in arbitrary positions with various boundary conditions. Hrennikoff'?
and Lightfoot'® described the method of a grid framework analogy for
lateraily loaded plates. The grid framework analogy is based on
replacing the plate by means of a gridwork of beams and the lateral loads
to be placed on those beams. The gridwork method is also based on the

elastic theory and its accuracy is similar to the accuracy of the elastic

theory.

2-3 Influence Surface

An influence surface can be generated by applying a unit
concentrated load to numerous points of the plate and evaluating the
required effect (moment, shear, etc.), produced at an observation point
(6, n). The results are then pluiied as ordinates at the point of
applications (x;,y;) of the unit load. Although such an approach is
straightforward, its use is discouraged because of the large amount of

computational work involved.
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Figure 2-1 Example of influence surface for bending moment,

(a) rectangular plate, (b) ordinates of influence surface
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Instead, Maxwell's theorem of reciprocal deflection!"

is applied,
which states that an influence surface may be cor ‘dered as a deflected
plate surface due to an affine unit motion introduced at the observation
point (see Figure 2-1). Because the influence surface solutions are based

on the principles of the elastic plate theory, the accuracy of the results of

the two methods are identical.

2-4 Plastic Theory

A structural analysis based on the elastic theory fails to assess the
real load carrying rapacity of siabs at failure. In most cases, an elastic
design is excessively conservative. Consequently, information obtained
on the factor of safety against collapse is not accurate. Since a
knowledge of the real factor of safety is mandatory to be able to design
structures within economical limits, and since plastic analysis is able to
estimate the real carrying capacity of reinforced concrete slabs, the
plastic theory becomes the natural replacement of the elastic theory.

The mathematical theory of plasticity of plates is often more

complex than its elastic counterpart“s' 16),

The most common technique
utilizing the plastic behaviour of reinforced concrete slabs is the yield

line analysis.
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2-5 Yield Line Analysis

After introducing the plastic analysis for beam and frame
structures, which is based on the deformation pattern of a structure on
the verge of collapse or what is known as the failure mechanism due to

the formation of plastic hinges, Johansen”

in 1943 extended the plastic
analysis to .cinforced concrete slabs by presenting the concept of yield
lines, which are the two dimensional counterparts of plastic hinges for
beams and frames. When a laterally loaded slab verges on collapse,
yield lines are formed at the locations of the maximum pusitive and
negative moments. These yield lines subdivide the slab into plane
segments. The slab segments rotate as rigid bodies along the yield lines
(see Figure 2-2). The assumptions used in yield line analysis are

available in many publications dealing with this topic!'® ' 2®,

A—-A —— = Positive Yield Line
——— = Negative Yield Line
X
B-B B 0
— X 8 ¢
A : : A
L) il
| |
| |
| |
| |
| |
B,
7 Y
Y (a) (b)

Figure 2-2 Failure mechanism of a rectangular slab
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The ultimate load of a given slab, for a certain distribution of
load, may be determined by using either the work method (sometimes
called the energy method) which is considered an upper bound method or

the equilibrium method which provides a lower bound solution®®* %,

Projected
Moment
\\ Vector

\ m'
\ u

(b) Triangular Element

(a) Circular "Fan"

Figure 2-3 Localized failure under a concentrated load

As shown in Figure 2-3, the failure of a slab under a concentrated

load is a localized slab collapse'”. Positive yield lines radiate straight

from the point of application of the concentrated load until they intersect

with a curved, negative yield line, which bounds the conical failure

an

mechanism Such a collapse mode is called a fan-type failure

mechanism©?,
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Although the yield line analysis has advantages over the elastic
plate theory due to the utilization of the plastic range, the assumptions of
the yield linc theory, as with the assumptions of the elastic plate theory,
do not recognize the in-plane displacements. This means that when
there is restraint against the in-plane displacement on the boundaries,
this restraint is not recognized by either theory, which results in
disregarding the additional carrying capacity. This additional capacity

has been demonstrated by laboratory tests’®4°:47,

In addition, the
maximum deflections, which might control the design, cannot be

estimated through the yield line analysis, moreover, theoretically, the

law of superposition is not valid.

2-6 Punching Shear Analysis

Quite often the punching shear strength, rather than the moment
resistance, limits the load carrying capacity for slabs subjected to point
loads. The theoretical solution of the problem is quite complex.
Therefore, designs for punching shear are based on empirical equations,
formulated to fit the results of laboratory testing. In all the shear
formulas, the shear stress is assumed to act on a critical section at some
fixed distance from the perimeter of the loaded area of the slab. In most
cases, the critical section is assumed to be at a distance of one half the

(33, 34, 3%)

effective depth of the slab from the loaded area However,
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British codes®® *”) use a distance of 1.5 times the total depth of the slab.
Most codes consider the shear stress to be constant around the critical
section for slabs of constant depth (assuming cases without moment
transfer). Also, they consider the shear strength to be proportional to
the square root of the concrete cylinder strength.

Most codes and specifications consider the shear strength due to
punching shear to be largely independent of flexural conditions existing
in the region of the concentrated load, and also independent of the

38)

and others®® 40’,

boundary conditions of the slab. Kuang and Morley
through their experimental programs, proved that the value of the
punching shear is affected by the boundary conditions, and the punching
shear strength is enhanced if the in-plane displacement is restrained.
This enhanced capacity is the result of compressive membrane action
caused by providing the restraints. Present design procedures for
punching failure in reinforced concrete slabs subjected to concentrated
loads are based largely on experimental studies of the behavicur and
strength of simply supported horizontally non-restrained slabs.
Consequently, punching shear provisions incorporated in various codes of
practice are a direct result of the empirical procedures, and they do not
usually provide an accurate prediction of the ultirate load capacity of a
restrained slab, as no direct account is taken of the considerable

enhancement due to the ii:-plane restraint in many types of reinforced
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concrete slab systems(”).

2-7 Finite Element Analysis

In the last twenty five years, the finite element method has been
applied extensively to the analysis of reinforced and plain concrete

structures(“' 42, 4, 44).

The earlier applications of the finite element
method were only for two dimensional problems using linear analysis.
Recently, the advancement of non-linear finite element analysis and
better understanding of the non-linear behaviour of concrete under the
triaxial state of stresses have increased the importance of analyzing
concrete slabs using the finite element method. Non-linear finite element
analysis can be ~onsidered a better method to predict the behaviour of
concrete slabs subjected to concentrated loads.

The finite element method has several advantages over the methods
that have been mentioned above. However, it also has some
disadvantages. The advantages of the non-linear finite element method
are:

- Generally, it can be used for several types of loading

(concentrated load, uniformly distributed load, ...etc.) applied
separately or simultaneously to a slab.

- It can be used for slabs having different dimensions and

different boundary conditions.
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- It can predict strain or displacement at a given location

for a loaded slab in the plastic state.

- It can predict stresses or forces at a given location for a

loaded slab in the plastic state.

The disadvantages of the finite element method are:

The failure criteria considered in each program are different.

- It requires expensive computer facilities.

- It requires a great amount of time to learn and run one of the
available programs te solve a simpie problem.

- It requires an even greater amount of time to create a program

to solve a simple problem.

Applications of three dimensional non-linear finite element analysis
were carried out in this research using a commercial program called
ADINA® . The results of the finite element analysis will be compared to
the results obtained from the experimental work and to results obtained

from the developed analytical methods.

2-8 n f Horizontal Restraint
Several publications® "°U#" 39 gealt with the problem of the

horizontal restraints effect on the behaviour of concrete slabs and beams.
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Hyttinen“®

in 1970 studied the influence of restrained boundaries on the
behaviour of reinforced concrete square slabs subjected to central
concentrated loads. In his research, siabs wiih different boundaries,
such as simply supported and fixed boundaries, were tested. Enhanced
carrying capacity was recorded due to the dome action of reinforced
concrete slabs with restrained boundaries.

Vecchio and Tang(m in 1990 discussed the influence of
compressive membrane action in reinforced concrete slabs. Two
reinforced strip slab specimens, each supported on two columns, were
tested under concentrated midspan loads. One slab was restrained against
lateral expansion at the ends, while the other was free to elongate. The
laterally restrained specimen developed membrane campressive forces,
which resulted in enhanced load capacity.

Kuang and Morleym)

in 1992 reported the results of punching
shear tests on restrained reinforced concrete square slabs subjected to
central concentrated loads. The slab panels were supported and
restrained on all four sides by edge beams. The punching shear strengths
observed were higher than those predicted. The enhanced punching shear
capacity was a result of compressive membrane action caused by
restraining the slab boundaries.

47)

Fang et al. in 1994 reported the test results of partially

restrained reinforced concrete slabs with isotropic reinforcement under
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central concentrated loads. The dimensions of the tested rectangular slab
panels were 1000 mm by 2300 mm. The slabs were supported on two
edge beams along their long sides. The tested reinforced slabs exhibited
additional carrying capacities due to the compressive membrane action
caused by the partially restrained boundaries.

Most of the previous research studies were performed on
reinforced concrete slabs and did not provide a complete method of
analysis to formulate the influence of horizontal restraints on slabs
subjected to concentrated loads. Therefore, additional research work to
study the influence of horizontal restraints on non-reinforced concrete

slabs is required. Also, a method of analysis needs to be established.
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Elastic Analysis of Horizontally Restrained Slabs

3-1 The Importance of the Elastic Theory

The elastic theory is an important step toward an advanced analysis
using plastic theory. The formulation of the elastic plate theory ignores
the effects of horizontally restrained boundaries on the behaviour of
slabs subjected to lateral loads. To exainine the effects of the horizontal
restraints using plastic theory, it is necessary first to examine these
effects using elastic theory. In addition, their existence needs to be
considered by the elastic theory, which might provide some guidance in
developing the experimental program and in further developing the
required plastic analysis. In inis chapter, observation on the behaviour
of horizontally restrained slabs will be considered and an elastic analysis

will be carried out.

3-2 Behaviour of Reinforced Concrete Slab Subjected to a Point Load

(48)

Westergaard and Slater' °, who in 1921 tested a number of full

scale slab panels supported on four sides and loaded to ultimate capacity,

47)

and Westergaard" ’, who in 1930 studied stresses caused in bridge slabs
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by wheel loads, encountered larger ultimate load capacity than was
expected. At that time, a satisfactory account could not be made for the
unexpectedly high strength exhibited by the slabs.

. . . 0
In recent publications, Hyttinen” and others*$: *®

, were able to
find out the reason for the observed additional carrying capacity of slabs
restrained at the boundaries against in-plane expanding and subjected to

transverse concentrated loads. This additional carrying capacity was due

to a compressive arch action caused by :he restraints at the boundaries.

h/2
ux——u——_f

s, r|
Figure 3-1 In-plane displacements ‘u,’ due to the rotation of the

segments of the slab

Consider the performance of a one-way simply supported
reinforced concrete slab or a beam subjected to a concentrated load at
midspan (as shown in Figure 3-1). Hinged supports are located at the

horizontal middle surface plane of the slab. At the ultimate load, the
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slab will be divided into segments. The maximum deflection will occur
at midspan. This deflection is a result of the rotation of each segment at

its yield line at midspan and at the hinged boundary. The presence of the

13 L

in-plane displacements ‘u,’ is due to the rotation of the segment, (see
Figure 3-1). If these in-plane displacements are restrained, the ultimate
carrying capacity of the slab would be enhanced, as will be explained

below.

Figure 3-2 Development of the arch action

Consider the behaviour of a reinforced concrete slab subjected to a
concentrated load, where the rotations at the supports are restrained and
the in-plane displacements are non-restrained (as shown in Figure 3-2).

Applying a small concentrated load, compressive membrane stresses will
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be generated. The tension stresses will be carried totally by the concrete
(for very small loads). As the load increases to reach its ultimate value,
the slab deflects and the compressive membrane stresses in the concrete
increase to reach its crushing value. The tension stresses will be carried
totally by the reinforcement, which reaches its yielding state, with the
generation of principal cracks in the tension faces of the concrete.
Despite the restrained boundaries against rotations. the edges of the slab
will undergo rotations, which will produce cracks in the' top fibres and
expansions of the bottom fibres near the supports, resulting in in-plone

[3

displacements ‘u,’ (see Tigure 3-2). In this case, the compressive
membrane forces ‘C’ in the concrete are balanced by tension forces ‘T’

in the reinforcing steel.
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Figure 3-3 Slab with fixed boundary subjected to a concentrated load

As shown in Figure 3-3, for non-reinforced concrete slabs with
boundaries restrained against in-plane displacements, the compressive

membrane forces in the concrete will be balanced by horizontal reaction
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forces ‘R;’ at the boundaries.

In most slab structures, the tendency to expand will be prevented,
to some degree, by the lateral stiffness of supporting beam or walls.
Also, adjoining slab panels will form an extremely stiff diaphragm which
will oppose the expansion of the loaded slab. When the in-plane
displacements are restrained, the ultimate flexural capacity, the shearing

capacity and the punching shear capacity will increase.

3-3 Matbematical Formulations by The Elastic Theory

Several recent publications link the observed additional carrying
capacity of slabs subjected to a concentrated load to the in-plane
restraints provided at the boundaries of these slabs. However, completely
satisfactory mathematical explanations to describe this relation between
the additional carrying capacity and the in-plane restraints are not yet
perfectly established. Also, a mathematical solution to calculate the in-
plane displacement is not yet entirely formulated.

As was mentioned earlier, the main reason for causing the in-plane
displacement of simply supported reinforced concrete slabs subjected to
concentrated loads is due to the rotation of the slab segments at the yield
lines and/or at the boundaries. It is possible to calculate the in-plane
displacement of such slabs as will be demonstrated in the following

sections.
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To determine the value of the in-plane displacement due to the
rotations of the edges of a simply supported slab subjected to a
concentrated load, the elastic plate theory will be used. To calculate the
angles of rotation of the elastic curve at the edges of the deflected slab,

the moment area method will be used.

3-4 Sl f Elastic Surface of Plates Under Lateral L
The moment area method is usually used in the computation of the

(51, 52, 53) In

deflections and slopes of elastic lines for beams and frames
this section, the moment area method will be used to obtain the angles of
rotations of plates subjected to lateral loads.

Referring to Figure 3-4, consider portion ACB of the elastic curve
of a slab that was initially straight and continuous in the position Ag-B,
in its unstressed condition. The tangents to the elastic curve at points A
and B are as shown. The angle AO,p is the change in the slope between
the tangents at points A and B. The inclination of any tangent to the
elastic curve is so small that an angle such as 0, is approximately equal
to its sine and its tangent, and its cosine is approximately equal to unity.

Consider a differential element of this curve having a horizontal
projection dx, and draw the tangents to the elastic curve at each end of

this element. The change in slope between these tangents is the angle

dO, and its value can be obtained by considering Figure 3-5.



3

X dx x' ,
Ao Bo 7
Op
| -
A 6 |
| C — |7
0 [x'deo
d
| A8,y A
[
I
| D

Figure 3-4 Derivation of the moment area theorems

Figure 3-5 Differential change in the slope



32

_ Ox -
do _—E(h/Z) 72 (3-1)

The total change in the slope 0, between the tangents at A and B is

the sum of all the angles dO for all the elements dx along the elastic

curve ACB.

Using relations between stress and strain, given by the theory of

elasticity, (the complete method of how they are derived is available in

54, 56))
’

many publications dealing with this topic"’ the following

equations are obtained;

Q
i}
~
~
o
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From the elastic theory of plates, the following equations are given
by Timoshenko® and Szilard”. These equations are relations between

strain and displacement and betweer moment and displacement.

h J'w

e,—-;X'é'F ...................... (3-5)
h Fw

£,=-3X—}7 ............................... (3-6)
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Also, the bending moments M, and M, (for plates with constant depth
having different shapes and boundary conditions) are expressed in terms of

the lateral deflection ‘w’, as follows:

E p’ Iw ’'w

M, = - 12(]- ‘;) (ax2 +Va—y2) ........... (3-7)
B Eh’ a?w a)w
My = - 5o (ay’ G v — (3-8)

Substituting from Equations (3-53), (3-6) and (3-7) into Equation

(3-3), we obtain;

Substituting from Equation (3-9) into Equations (3-1) and (2-2),
the following equation is obtained;

12 (&
h’E A --------------------

0, =

Following the same method, the following equation is obtained;

Y (3-11)

0 = WE

The above two Equations (3-10) and (3-11) represent the change in
slopes between two points A and B of the elastic curve for a deflected

simply supported plate, at given sections in x and y directions
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respectively, for given bending moments M, and M,.

3-5 In-Plane Displacement of Reinforced Concrete Slabs

P Detail A
Rotation of the f— — o
edge of the slab. 7[ \( | h/2
/ . h/2
u

Deflected Slab Detail A

Figure 3-6 The rotation of the edge of the slab producing in-plane

displacement

As shown in Figure 3-6, if the value of the angle of rotation at the
boundary is known, the value of the in-plane displacement can be

obtained as follows,

u
@ = tanf = ——
h/2

u=0(h/2) .iiiiiiiiiiiiiii (3-12)

Now, let us consider the case of an infinitely long simply
supported plate, as shown in Figure 3-7. The expression for the bending
moment M, of this plate, for given section x, at y=0, is given in

Timoshenko and Woinowsky- Krieger® as follows:
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1+v)P ~ 1 ) mu x
M,=( )z——xmn-——-—xmn
2n - M a
A
£
0 A X
A
a__|

Figure 3-7 Infinitely long simply supported plate

Substituting from the above equation into Equation (3-10), the

following equation will be obtained.

12(1+ v )P 2_1_ mn . mx x

s = X si X Jsin
0 2Er Zm " "

By integrating the above equation we get
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_ 6(l+v)Pa mné mn x
9, - - Z ’nz

sin—= X cos
T WER® a

+C

Where C is the constant of the integration.

To find out the value of C, let us consider the following case;
a
$=3
a
x = e
2

The value of O, in this location, must equal zero, and the

summation part of the slope equation will become zero, which means;

21 xmnﬂxcosﬂ—o
il 8 2 2

Which leads to C = 0, and the slope of the elastic surface in x
direction will become;

6(1+ v )Pa 2 1 . mx mz x
—_— ]

- 5
6, = - WEn? m,xsm 5 X0

m=]
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Substituting from the above equation into Equation (3-12), the in-
plane displacement for a simply supported plate, with very long length,

can be obtained as shown below;

3(1+v)Pa < 1 . mng mg x
= TRER 2w X

3-6 Illustrative Examuple (1)

Hyttinen“s) did some experimental work on reinforced concrete
slabs subjected to centrally concentrated loads with varying dimensions
and varying boundary conditions. He used, in some cases, slabs with a
width of 1400 mm and depth of 60 mm which were able .0 support a
considerably heavy concentrated load. In this example, consider a one
way slab with a span of 1400 mm and depth of 60 mm, having very long
length, and a concentrated load of 20 kN applied at the centre of the
slab, as shown in Figure 3-8. To get the in-plane displacement, use

Equation (3-13) with the following values;

é = a/2s X = 0,
E = 29400 MPa, h = 60 mm,
P = 20000 N, a = 1400 mm

and v =0.25
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\/\ P=20KN
.8/2 1 8/2_

e
.
i

X o) 0 | 60mm
L——1400mm————|

P

\/\

a=1400mm

Y
Figure 3-8 Simply supported and infinitely long slab (horizontally

non-restrained) subjected to a point load

Substituting the above values into Equation (3-13), we obtain

uy = 0.1mm

In the above method, the value of the in-plane dispiacement was
obtained by using elastic theory. It may also be possible to obtain the
in-plane displacement by using plastic theory as will be shown in

Chapter §.

3-7 The Effects of Restraining the In-Plane Displacement
Assuming a horizontal restraining force ‘F’ per linear width is

applied to the bottom fibers of the slab to prevent it from expanding, the



39

value of this restraining force ‘F’ at x=0 and at x=a needs to be
obtained.

Knowing the in-plane displacements that will occur on both sides
of the slab, the strain €, can be obtained. Knowing the strain, the stress

that is required to put back this strain to zero can also be obtained as

shown in Figure 3-9.

Odue to the rotation of the edge
s g

7 ~
/ \’J_\
Ve
4

N

4/_/ \\ . -_L_Izmnm Ih/2=3omm

| u u l a \
Stress required to
put back u=0
a/2 ! | a/2

Figure 3-9 Stress required 10 bring >ack the strain to zero

e, = —— = %1 _ 50001
a’/2 140072

The stress results due to this strain is calculated as follows:
=ExXeg, = 29400x0.0001 =4,2 MPa

The distribution of the stress o required to put this strain to zero is

shown in Figure 3-9. The resultant force ‘F’ due to the stress o is

calculated as follows:
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F=0 X 30;"'" =150

The stress at the bottom fibres of the slab due to the application of
the resultant force ‘F’ must be equal to 4.2 MPa per mm width along x
axis. The value of the stress ~ required to prevent the in-plane

dispalcement of the slab can be calculated as follows:

F Fx20 150 . 150%20

+ = + ——=0.75¢0
60x1 1x(60°/6) 60x1 1x(60°/6)

4.2 MPa=

o=22 _s56 MPa
0.75

The value of the resultant force ‘F’ (or the restraining force) due

to the o stress is calculated as follows:

F = 5.6 MPa x >2mm

= 84 N per mm of width

The force F is located at a distance of %xg (20 mm) from the

neutral axis of the slab (see Figure 3-9). Thus, a negative bending
moment equal to the product of this force times the 20 mm will be

obtained and this moment will oppose the positive bending moment
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produced by the concentrated load. In other words, by restraining the
in-plane displacement of slabs, an effect similar to prestressing is
generated.  This effect is activated due to the application of the

concentrated load and is caused by restraining the in-plane displacement

of the slab.

3-8 Illustrative Example (2)

Consider a case of a simply supported and infinitely long
reinforced slab subjected to a linear load of 78 N/mm applied at midspan
as shown in Figure 3-10. The span and the depth of this slab are 2400
mm and 100 mm respectively. To calculate the in-plane displacement
due to the applied load, a strip of this slab will be considered. Assume
the width of this strip is 200 mm. By considering a strip taken from this
slab, this problem, actually, will be reduced to the case of a simply
supported beam having cross section dimensions of width and depth equal

to 200 mm and 100 mm respectively.

Solution

It is known that the value of the maximum bending moment at

midspan of this beam is equal to Pxa and the value of the slope of the

2

angle O at th ts i 1 to .
g € supports is equa TexEl

Referring to Figure 3-6 and
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Figure 3-9, and considering the slope of the angle 0 is so small that it is

approx:mately equal to its tangent, then the value of the in-piane

displacement ‘u’ that is given by Eq. (3-12) can be obtained as follows:

Pxa?
16 %X EI

h
u=— X
2

MP-—_?B N per mm
15.6 kN

a/2 |
/—Strip slab

ZEmm Q © 1 100mm

L—2400mm———|

Strip slab

NSNS AT\ —

7.

i

|
a=2400mm

Figure 3-10 Infinitely long slab subjected to linear load at midspan

As has been mentioned earlier, the restraining force ‘F’ that needs
to put back the value of the in-plane displacement to zero can be

obtained through the following steps.

The value of the strain €, due the in-plane displacement is
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16XEI ~ a  16XEI

Pxa’ « 2 . Pxaxh

The value of the stresses due to this strain is calculated as follows:

Pxaxh Pxaxh
= ExXg,=E X — =
16 X EI 16x71

B xb

where I=

3xPxa _ 3x15.6X10° x 2400

= =14.04 MP
4% xb 4x100*x200 4.04 a

i.e. Exeg =

The distribution of the stress o required to put this strain to zero is
shown in Figure 3-9. The resultant force ‘F’ due to the stress o is

calculated as follows:

F= o x 30;"”’ X 200= 30000

The stress results at the bottom fibres of the slab due to the
application of the resultant force ‘F’ must be equal to 14.04 MPa. The
value of the stress o required to preveat the in-plane dispalcement of the

strip slab can be calculated as follows:

F Fx20 30000 x 30000 %20 =0.330

4.04 MPa = X = =
bxh bx(h*/6) 200x100 200x(100%/6)

i.e o = 4255 MPa
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As shown in Figure 3-9, the value of the restraining force ‘F’ can

be obtained as follows:

i.e. F = 30000=127.64%x10° N =127.64 kN

The above expression presents the value of the horizontal reaction
‘F’ that is required to prevent the horizontal displacement of the strip
slab. The above restraining force ‘F’ is calculated using elastic theory
with the angle of the slope of the elastic curve at the support. As will be
*hown in Chapter 5, the failure load of this strip slab, caiculated by
plastic analysis, is actually 15.6 ! N as given in this example. Also, the
value of the restraining force ‘F’ that will be obtained using plastic

analysis is much greater than the above obtained value.
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Chapter 4

4-1 Objectives of the Research

The purpose of this research is to achieve the following objectives:

1- To better understand the behaviour of concrete slabs subjected to
concentrated loads, taking into account the effects of horizontally
restrained boundaries.

2- To develop a method of analysis, based on the theory of plasticity,
which takes into account the effects of the in-plane restraints on the
behaviour of strip slabs and square slabs subjected to central

concentrated loads.

4-2 The Experimenta) Program

The experimental program was designed to test simply supported
strips of concrete slabs with and without horizontally restrained
boundaries. The tested slabs were subjected to ceatral concentrated
loads.

The choice of strip slabs for testing was based on the fact that they



simulate, to some degree, one way slabs and shallow beams. Also, they
may provide guidance in understanding the behaviour of two way slabs

restrained against in-plane displacements and in preparing for future tests
for two way slabs.

The experimental tests were carried out on two similar series of
slabs. The results of the first series were examined and evaluated, and,
accordingly, some modifications were introduced to the tests of the

second series.

4-3 ipti f the Sla nd Boundar onditions

The test program included twelve concrete slabs divided into two
series, each series consisting of six slabs. All twelve slabs had the
nominal cross section dimensions of 100 mm depth by 200 mm width.
The spans of the slabs of the first series were equal to 2400 mm. Due to
modifications implanted on the set-up for the tests of the second series,
spans of 2421 mm were used for the horizontally restrained slabs and
spans of 2400 mm for the horizontally non-restrained slabs. Each series

consisted of the following type of slabs:

1- Two reinforced concrete slabs were tested as simply supported
horizontally non-restrained as well as having heavy reinforcement
reaching the balanced condition (maximum reinforcement ratio).
Rollers were placed at supports. The purpose of testing these strip
slabs was to comnipare their carrying capacity to the carrying capacity

of the horizontally restrained strip slabs with minimum reinforcement
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ratio.

2- Four concrete strip slabs were tested with their boundaries restrained
against horizontal displacement and with minimum reinforcement ratio
(approximately 0.3%) as required by the Canadian code®”. The
purpose of this reinforcement was to prevent the sudden collapse of

slabs at failure stage.

The details of the tested slabs are shown in Figure 4-1 and Figure
4-2. Additional reinforcements were provided to the extremities of the
slabs to prevent them from early collapse during the tests. The details of
the reinforcement at the extremities are shown in Figure 4-1 and Figure
4-4. In Figure 4-2, the steel hangers used to carry the slab during
transportation are shown in the details of the cross-sections d-d and e-e.

The details of the wood forms are shown in Figure 4-3.

4-4 Testing Set-up

The general arrangement for the tests is shown in Figure 4-5 and
Figure 4-10. Figure 4-6 and Figure 4-10 show how the central
concentrated load is applied. The details of the support for strip slabs
with restrained in-plane displacements, for the first series of tests, are
shown in Figure 4-7 and Figure 4-11. The details at the support for the
second series of tests are shown in Figure 4-8 and Figure 4-12. As can

be seen in Figure 4-8 and Figure 4-12, a rectangular steel bar was placed
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under the extremity of the strip slabs to reduce the support area. A

8 which has early high compression strength, was used

special mortar
to create the horizontal restraint as shown in Figure 4-11 and Figure
4-12. The details of the end conditions for simply supported horizontally

ron-restrained slabs are shown in Figure 4-9 and Figure 4-13. All the

tested strip slabs are shown in Figure 4-14.

4-5 Material Testing

The strength of the concrete, steel bars and mortar was tested,

during this experimental program, as follows:

1- Specimens of concrete cylinders having a diameter of 76.2 mm (3
inches) and a height of 152.4 mm (6 inches) were taken during the
casting of the concrete slabs (cylinders available in the structural
laboratory). The total number of the tested cylinders was 36, with 18
cylinders tested for each series. The compression strength of three
cylinders was tested simultaneously with each slab test to measure the
average compression strength of the concrete of the slab. Concrete
samples are shown in Figure 4-15.

2- The tension strength of the steel bars was tested and the
load-deformation curve for every test was plotted. A total of 18 tests

were carried out on the steel bars, Y tests for the steel batch of each
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series. Three specimens were tested for each bar diameter. The bar
diameters are 6 mm, 11 mm and 16 mm, corresponding to bar
numbers 6M, 10M and 15M.

3- Three mortar cylinders were tested simultaneously with each test of a
horizontally restrained slab to measure the average compression
strength of the mortar. The meriar tests were carried out during the
two series of tests. Error occurred during testing the mortar cylinders
for slab number S10. Thercfore, the mortar strength for S10 was

eliminated. Mortar samples are shown in Figure 4-15.

The results of the average compression strength of the concrete
cylinders are presented in Table 4-1 The results of all compression tests
(three tests for each slab) are presented in Appendix A (Section A-2).

The results of the tests for the average tension strength ‘f,’ of the
steel are presented in Table 4-2. The graphs of the load-deformation
curves that were obtained from the steel tests are given in Appendix A
(Section A-4).

The results of the mortar compression strength tests are presented
in Table 4-3. The results of all the mortar compression tests (three tests

for each slab) are presented in Appendix A (Section A-2).



Table 4-1 The compression strength of the concrete

Test No. Concrete strength f'c MPa
S1 28.55
S2 31.88
S3 32.32
S4 33.23
S5 34.14
S6 32.58
S7 45.65
S8 37.55
S9 32.69
S10 37.65
S11 37.07 ]
S12 38.60

Table 4-2 The results of the tension strength of the steel bars

ifyl
for bars having

diameter of

lfy’

for bars having

diameter of

lfy’
for bars having

diameter of

6 mm (MPa) 10 mm (MPa) 16 mm (MPa)
First series 504.40 535.16 441.12
Second series 456.24 536.33 370.50

50
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Table 4-3 The compression strength of the mortar

Test No. Mortar strength f'ﬂLMPa

S1 24.65
S2 31.60
S3 35.44
S4 31.86
S9 33.12
S10 -

Sil 25.10
S12 32.99

4-6 The Test Results

The central concentrated load was applied in incremental sequences
to each strip slab test. At each incremental load the value of the
deflection at the center of the strip slab was recorded. A curve
representing the applied load versus the deflection was plotted for each
slab test. The values of the applied loads versus the deflections for all
the tests are presented in Appendix A (Section A-3).

For the first test ‘S1°, after reaching the failure load, the slab was
reloaded and subjected to another cycle of loading. However, the strip
slab did not have sufficient stiffness to support additional load. For

‘S1’, iie first cycle of loading was recorded and the second cycle has
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been eliminated.

The load-deflection curves for tests ‘S1’ through ‘'S4’ are shown in
Figure 4-16 (horizontally restrained slabs of the first series). Figure
4-17 shows the load-deflection curves for the two simply supported
horizontally non-restrained slabs of the first series. Figure 4-18 shows
all the curves of the slabs of the first series. The results of the simply
supported horizontally non-restrained slabs for the second series are
presented in Figure 4-19. The results of the horizontally restrained slabs
are presented in Figure 4-20. The results of all the tests of the second
series are presented in Figure 4-21. The results of all the tests for strip
slabs having horizontally restrained boundaries are presented in Figure
4-22. The results of all the tests for horizontally non-restrained strip
slabs are shown in Figure 4-23. A summary of the results of the
experimental program is presented in Table 4-4 and Table 4-5. The load-
deflection curve for each slab test is presented in Appendix A (Section

A-3, Figure A-1 through Figure A-12).

4-7 Behavioral rvations and the Sequen f Crackin
In general, the behavior of the horizontally restrained and
horizontally non-restrained strip slabs differed at different load levels.

The crack patterns and the sequences of cracking were different.
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For horizontally non-restrained strip slabs, the crack patterns and
sequence of cracking at failure load are shown in Figure 4-24. For these
strip slabs, increasing the load resulted in one or two thin cracks on the
bottom fibers at mid-span. Increasing the load further, the number of
cracks progressed from the centers of the strip slabs toward the supports.
As well, the width of the previously created cracks increased. Also, the
directions of the cracks from the very bottom fibers to the tension
reinforcement were vertical. The tips of the cracks changed direction at
the level of the tension reinforcement and penetrated toward the point of
application of the concentrated lcad.

For horizontally restrained strip slabs, the crack patterns and
sequence of cracking at different levels of loads are shown in Figure
4-25. For these strip slabs, at very low levels of loading, one or two
cracks were initiated at the bottom fibers at mid-span. Increasing the
load, the width of these cracks increased and they penetrated vertically
toward the point of application of the ~oncentrated loads up to the failure
of the strip slabs. These cracks divided each horizontally restrained strip
slab into two segments. Each strip slab behaved as if it was composed of
two members separated by the cracks at mid-span on the bottom fibers.
These two members were connected at mid-span on the top fibers through

the compression zone.



4-8 Discussion of the Load-Deflection Curves

The load-deflection curves represent the deflection behavior of the
tested strip slabs at different levels of loading. As shown in these
curves, the deflections of the horizontally restrained strip slabs before
and after the failure loads differ from the deflections of the horizontally
non-restrained strip slabs. Also, the failure loads of the horizontally
restrained strip slabs of the first series were, in general, higher than the
failure loads of the horizontally restrained strip slabs of the second
series.

A comparison of load-deflection curves of the first series for
horizontally and non-horizontally restrained strip slabs indicates that
before reaching the failure loads horizontally restrained strip slabs had
less deflection than horizontally non-restrained strip slabs. For example,
a comparison of the load deflection curves of Figure 4-16 and 4-17
indicates that at a load of 15 kN the horizontally restrained strip slabs
had, on average, a deflection of about 8 mm and the horizontally non-
restrained strip slabs had, on average, a deflection of about 12 mm.
Also, a comparison of the deflections of the strip slabs of the second
series indicates similar results. For example, a comparison of the load
deflection curves of Figure 4-19 and 4-20 indicates that at a load of 12.5

kN the horizontally restrained strip slabs had, on average, a deflection of
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about 8 mm and the horizontally uon-restrained strip slabs had, on
average, a deflection of about 11 mm,

After reaching the failure loads, the horizontally restrained strip
slabs had a very rapid decrease in their carrying capacities. However,
the horizontally non-restrained strip slabs had a slow decrease in their
carrying capacities. In the horizontally restrained strip slabs, the amount
of reinforcement was minimum. Therefore, they did not have enough
stiffness after reaching the failure conditions to sustain further load. In
the horizontally non-restrained strip slabs, the amount of reinforcement
was maximum. Therefore, they were able to sustain further loads after
reaching the failure conditions.

At more advanced levels of deflections, the concrete was
completely crushed, leaving only the reinforcement to act as a tensile
net. For all the strip slabs, this stage is indicated by the horizontal
plateau of the load-deflection curves, as shown in Figure 4-18 and Figure
4-21. The horizontal plateaus of the horizontally non-restrained strip
slabs had higher values due to the very high amount of reinforcement in
these strips. Due to the presence of a very little amount of
reinforcement in the horizontally restrained strips, the horizontal

plateaus of their load-deflection curves had low values.
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Figure 4-4 Reinforcement used at the extremities of the strip slabs
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Figure 4-11 Horizontally restrained support for the first series



Figure 4-13

The simply supported end conditions
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.

Figure 4-14 All the strip slabs after testing

Figure 4-15 Concrete and mortar cylinders before the strength tests
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Figure 4-16 Load-deflection curves for tests of the first series
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Figure 4-17 Load-deflection curves for tests of the first series (simply

supported boundaries)
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Figure 4-18 Load-deflection curves for all the tests of the first series
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Figure 4-19 Load-deflection curves for tests of the second series (simply

supported Horizontally non-restrained)
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Figure 4-20 Load-deflection curves for tests of the second series

(restrained boundaries)
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Figure 4-21 Load-deflection curves for all the tests of the second series
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Figure 4-22 Load-deflection curves for all the tests of the strip slabs
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Figure 4-23 Load-deflection curves for all the tests of the simply

supported strip slabs
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Figure 4-24 Patterns of cracks in a horizontally non-retrained strip slab
(the strip was horizontally restrained at the point of application of the

concentrated load)
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Figure 4-25 Patterns of cracks in a horizontally retrained strip slab
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Plastic Analysis of One Way Strip Slabs Horizontally

Restrained Subjected to Central Concentrated Loads

5-1 Simply Supported Horizontally Restrain rip Sl

The problem of one way strip slabs subjected to a concentrated
load, such the ones used in our experimental program, is similar to the
problem of simply supported beams with or without horizontal restraints.
In the many publications‘sg) dealing with this problem, the values of the

reactions are given as shown in Figure 5-1.

Rum0—— A T =~ Ry=0
) | i
], /2 L/ 2———
- L -
R,=P/2 R,=P/2

Figure 5-1 Simply supported beam with horizontally restrained boundary
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The method®® that is used to obtain the reactions shown in the
above figure is one of the fundamental basics of mechanics of materials
and has been widely used for reinforced concrete structures.

The accuracy of the obtained horizontal reactions has been altered
after examining the results of our experimental program. The above
solution ignores the horizontal reactions that act on the horizontally
restrained concrete beam, which is opposite to the results of our
laboratory tests that show the horizontal reactions have high values and
great effects on the behavior of the concrete beams. Therefore, this

problem should be looked at in a different way.

Compression plestic hinges

Tension crack

Figure 5-2 The formation of compression plastic hinges
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Figure 5-2 shows a non-reinforced concrete strip slab or beam at
the point of impending collapse under the application of a concentrated
load at midspan. It also shows the tension crack and the plastic hinges.
The plastic hinges are formed by the concrete which is on the verge of
crushing. The beam is divided into two segments which are working as
compresnion members. The cumpression forces are acting along the
thrust lines, as shown in Figure 5-2 and Figure 5-3. The segments
become members of a mechanism system, as shown in Figure 5-3.

To analyze the problem shown in Figure 5-3, the compression

zones at some cross section need to be considered as shown in Figure

5-4.

o

Figure 5-3 The mechanism of the strip slab at impending collapse

In Figure 5-4, the value of 'a' represents the depth of the
compression zone and the value of 'w' represents the deflection at the
center of the beam. The compression zone at the center of the span is

located at the top fibers of the strip slab. At the extreme ends of the
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span, the compression zone is located at the bottom fibers. The

compression forces at section B-B must cqual the compression forces at

section C-C.

oA e b —

Sec. A-A
Before applying the load

U 77

——-|"‘—

Sec. B—-B

&
f sec c-c

After applying the load

Figure 5-4 The locations of the compression zones

The internal and external horizontal forces, acting on a half beam
scgment of this system, are forming the resisting couple of the beam as
shown in Figure 5-5. The maximum bending moment that can be carried
by this beam is equal to the multiplication of these horizontal

compression forces ‘F,’ by the lever arm ‘r’ which is equal to ‘h-w-a’.
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P/2
0.85 f; l

- - ¥ _ rh-w-a=
. l , --———-]{—— :{ w—a=r
e — e —= =

T _k________‘_*h-._ - Q =Rh
Half strip slab se:grnentk 4
P/2=Rv

Figure 5-5 The forces that are acting on one segment of the slab

The resisting bending moment can be calculated as follows:

M=F. xr i (5-1)

M=F(h-w=a) ... i (5-2)
M=085f, ba(h-w—a)
Taking, C = Constant = 0.85 f,; b

ie. M=Cha - Cwa ~ Ca%*  ....co... (5-3)

In Equation (5-1), the value of the moment ‘M’ is a function of the

values of ‘r’ and ‘F.’. Different values of ‘r’ are shown in Figure 5-6.

As shown in Figure 5-6-a, before applying the concentrated load and

ignoring the own weight of the beam, the value of ‘r’ is given as

follows:

r=h-w-a=h ,
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Where a=0 and w=0
Consequently, F. =085 f ba=0
Substituting into Equation (5-1)

M=FExh=0

R, R,
(b)

o ® o r=0
()

Figure 5-6 Different values of the rise ‘r’

After applying the load, the values of ‘r’ and ‘M’ are given by

Equation (5-2) and the value of ‘r’ is shown in Figure 5-6-b.
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In Figure 5-6-c, the value of ‘r’ is given as follows:
r=0
Where w=h—a
In Equation (5-3) the values of the variables 'a' and 'w' are
unknown and they need to be determined. To determine the value of 'a’,
an assumed reasonable value can be assigned to 'w' and a curve hetween
'M' and 'a’' for different given values of 'a' can be plotted. Curves are

p:otted as shown in Figure 5-7 for ‘M’ versus ‘a’ for different values of

w.

12

w5 mim=0{05h

1 - S
E ) . AN
0 VAR e
- / ﬁjﬂ\h AN Mooy
f 9 ////// NN
5 N /7 w=18|mme0.18n N N\ '\
g 8 / /// N )
= v/ ¥4 NN _
2 4 /// A N\
: 14 .
2 '

5 _

10 20 30 40 50 60 70 80
Compression zone depth 'a' in mm.

Figure 5-7 Relation between the resisting moment ‘M’ and the

compression zone depth ‘a’ for different values of ‘w’
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The curves shown in Figure 5-7 are obtained by using values for
the beam depth ‘h’ and the beam width ‘b’ equal to 100 mim and 200 mm
respectively. The values of the deflection ‘w’ that are used to obtain

these curves are shown in the figure.

From the above curves, it is obvious that the maximum moment is
obtained when the slope of the tangent to a curve is zero, which means,

the maximum moment ‘M’ can be obtained when,

== =0

da

As an example, the maximum bending moment ‘M,,,’ for the curve
which has a deflection value equal to 0.14h = 14 mm is shown in
Figure 5-7.

Substituting from the above equation into Equation (5-3)

ﬂ= Ch-Cw-2Ca =0
da

which means
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The above Cquation (5-4) presents the depth of the compression
zone 'a' as a function of the deflection 'w'. The value of ‘a’ in this
equation corresponds to the maximum resisting moment. The maximum
resisting moment results from the maximum concentrated load ‘P’ that
can be carried by the beam. Also, Equation (5-4) indicates that the value
of the depth of the compression zone ‘a’ at the maximum load ‘P’ will
be, always, less than 0.5h (less than half the tv.al depth of the beam).

The deflection 'w' in Equation (5-4) is unknown and it needs to be
determined. To calculate the deflection 'w' for the structure shown in

Figure 5-3 the method of virtual work®' 3% 39

will be used. The
deflection should be calculated using a plastic analysis. This means the

constitutive stress-strain relations need to be considered.

5-2 Stress-Strain Relations

Bathe®®” et al., used stress-strain curves, which had been

(61, 62) (63)

introduced by Kupfer et al. and Saenz The plastic siress-strain
relations introduced by Kupfer in 1969, were examined by Chen"® in
1¥32. The stress-strain curve of Kupfer et al. will be adopted in this
study. The compression part of this curve is shown in Figure 5-8.

By performing a regression analysis(g) on the coordinates of the

curve shown in Figure 5-8, a polynomial equation presenting this curve

can be obtained as follows:
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y=9/ =-0.003+1054.36E-324118.98E" +2316471L79E" ..... (5-5)

Equation (5-5) is valid from € =0 to € = 0.00315

Y= Uloc
1.1

1.0 i ] —
0.9 o ~]
0.8
07 ~
0.8
0.5
0.4
/

0.3 -
0.2
/

0.1 /

00 —f X

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
Strain ¢

\\‘Eﬂ

Figure 5-8 Stress-strain curve

Equation (5-5) presents the stresses as a function of the strain,
which means for a given value of a strain the equivalent stress can be
calculated. However, in some cases, the stress is known and the strain
needs to be obtained. Therefore, by reversing the coordinates of the

curve shown in Figure 5-8, a new curve can be obtained which is shown



in Figare 5-9.

Strain €
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Figure 5-9 Strain-stress curve

Using regression analysis, the polynomial equation of the curve
that is shown in Figure 5-9, where the strain is presented as a function of

the stress, is given as follows:

£=0.00003y +0.0071y* —0.01434)° +0.00939y* ...... (5-6)

Where vy is equal to o/c,
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It can be seen in Figure 5-9 that the deviation between the actual
curve and the curve represented by Equation (5-6) is negligible. The

) for the curve

value of the coefficient of multiple determination®
represented by Equation (5-6) is 0.999. This coefficient measures the
accuracy of the coordinates of the points of the curve represented by
Equation (5-6) in compression with the coordinates of the points

represented by the actual curve. Equation (5-6) presents the value of the

strain for a given value of stresses and is valid from y=0 to y=1. The

values of y and € for the curves of Figures 5-8 and 5-9 are tabulated as

shown in Table 5-1.

Table 5-1 Stress-strain values

y = 0/0, ) E
0 0
0.2 0.000212
0.4 0.000442
0.6 0.000712
0.8 0.001096
0.9 0.001442
1.0 0.002192
0.83 0.003153




5-3 Plastic deformation by the virtual work method

The virtual work method®!: 3% 3%

is used widely in calculating the
deflections (or deformations) of structures using elastic analysis. To
calculate deflections using the virtual work method, for a structure
composed of several members, the deformations of the individual
members need to be calculated. In the elastic analysis, the deformations
are calculated using modulus of elasticity ‘E’. In this study a plastic
analysis will be considered. Thus, equation (5-6) will be used to

calculate the deformation ‘s’ of a member subjected to axial force ‘F’ as

shown in Figure 5-10.

F

L

ol g

T
Ly

Figure 5-10 Shortening of a member due to axial compression loads

The value of ‘y=o/0,’ that is shown in Figures 5-8 and 5-9 is

calculated as follows:

Where:



37
A = the cross-section area of the member
fc' = o, = the compression strength of the concrete
o = the compression stress in the concrete

Equation 5-7 is valid for members subjected to axial compression

force ‘F’ as shown in Figure 5-10. Substituting the value of ‘y’ in

Equation (5-6) or in Table 5-1, the value of the strain ‘€‘ can be

obtained. Knowing the value of the strain ‘€‘, the axial deformation ‘s’

can be calculated as follows:

where L= The length of the member

The deflection ‘w’ of a structure that consists of members which
are subjected to axial forces only, using the virtual work method, is

given as follows:

W= O FuXS  veveiiiriiininininns (5-9)

Where ‘F,;’ is the value of the axial force acting in the member
number ‘i’ of the structure. The value of ‘F,;’ is due to the application
of a unit force at the joint and in the direction where the deflection needs

to be calculated. And ‘s;" is the shortening of the member number ‘i’



due to the application of the actual forces.

5-4 Partial Horizontal Restraint

The degree of rigidity of the horizontal restraint may vary
depending on the horizontal stiffness of the members that are providing
these restraints. For an interior slab panel of a floor system, the
surrounding slabs provide almost full horizontal restraints for this
interior slab. This full restraint is due to the great rigidity of the
surrounding slabs in the horizontal directions. On the other hand, for a
single slab supported by four beams (depending on the rigidity of the
beams in the horizontal directions), the horizontal restraints of the slab
can be considered partial horizontal restraints.

The problem of partial horizontal restraint of a strip slab can be
treated similarly to what has been mentioned above for a strip slab with
full horizontal restraint. To treat this problem, the rigid horizontal
supports shown in Figure 5-3 will be replaced by horizontal elastic
supports as shown in Figure 5-11. The value of the spring constant ‘k’
for the elastic horizontal support is defined as the value of the reaction
‘Ry‘ required to produce a unit horizontal deflection for the spring. The
inverse of ‘k’, which is ‘1/k’, is defined as the horizantal deflection of

the spring due to a value of ‘R,* equal to a unit force.
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Figure 5-11 Elastic horizontal supports

5-5 Illustrative Exampl

The dimension of the strip siabs that have been used in our
experimental program will be used in this numerical example. As shown
in Figure 5-12, the span of the non-reinforced concrete beam is
2400 mm, the depth and the width of the cross section are 100 mm and
200 mm respectively. The compression strength of the concrete is 30
MPa. The maximum value of the concentrated applied lcad ‘P’ is
required. Solve this problem, first assuming the supports provide full
horizontal restraints, and compare the obtained maximum load by the
maximum load that can be carried by this strip beam if it is simply
supported without horizontal restraints having maximum reinforcement
ratio (assuming ‘fy’ is equal to 400 MPa). Second, solve the problem
considering elastic horizontal supports having spring constant ‘k’ equal
to 625 kN per mm (the value of ‘k’ was calculated for the structural

scheme of the test set-up as given in Appendix C Section C-1).



Solution

For this problem, the maximum compression depth ‘a’ should be
smaller than 0.5h, as has been discussed earlier concerning Equation
(5-4). The value of ‘a’ will t= assumed equal to 0.5h = 50 mm. Also,
the value of the deflection ‘w’ is unknown. Therefore, it will be

assumed equal to an unity (1 mm).

T l
_L __+\; _}_
h-a e - T\‘\\“" h=100mm
TiE .

L'—-—--— L=2400 mm ——————lT T

Before deflection

P

F F
c

b
I—»— L/2 L/2

P/2 P/2

i

After deflection

Figure 5-12 Dimensions and forces for the illustrative example
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Because the convergence of the solution of this problem will
require more than one trial, the assumed values of ‘a’ and ‘w’ will be
modified during the solution until their exact values are reached. In the
first trial, the assumed compression depth ‘a’ is 50 mm and the assumed
deflection is 1 mm. Therefore, the vertical distance 'r’ between joint
‘m’ and joints ‘b’ or ‘c’ is equal to the depth of the beam ‘h’ minus the
compression depth ‘a’ and minus the deflection ‘w’, as shown in Figure
5-12, which is equal to 49 mm.

r=h—-a-w=100-50-1=49 mm
The value of cos 0 (see Figure 5-12) can be calculated as follows:

r 49

tanf = =
0.5L 1200

= 0.04083

ie 0 = 233%
cosf® = 0.999

The ultimate compression forces ‘F’ in the members of the beam

are calculated as follows:

x102 = 25526 KN

1 . 1 1
F=FEX——=085f.ab (——)=0.85x30%50x200x
‘ cos@ Je (cose) 0.999

.

Now, the value of the horizontal reaction ‘R,’ can be obtained as
follows:

R,= F cos@ = 255.26 x 0.995 = 255 KN



By taking the moment at joint ‘m’, the maximum value of the load
‘P’ can be calculated and modified in the following trials until its exact

value is obtained.

R,x 49 = §x1200
P=R, x49x—2—
1200

P= 255><49xi=20.8KN
1200

1 KN

4
r=49mm Rhu——-o'//O\ \._o___

T
i——‘ 2400 mm ‘—{
1/2 KN

1/2 KN

Figure 5-13 Forces used in the virtual work method

As shown in Figure 5-13, the method of virtual work is used.
Taking the moment at joint ‘m’, the values of the horizontal reaction

‘Ry,’ and the compression force ‘F,’ that acts in the members due to the



application of a unit load at joint ‘m’ can be obtained as follows:
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Using Equation (5-7), the value of y = o/o. can be calculated due

to the application of the load ‘P’ at joint ‘m’ as shown in Figure 5-12,

3
y=/ __F _ 25526 %100 1 _ .,
. " Af  100x200 30

Substituting in Equation (5-6),
€ = 0.000501
or by interpolation in Table 5-1,

E

0.000508

Using the value obtained from Equation (5-6), the value of the

axial shortening ‘s’ of a member in this structure, due to the application

of the load ‘P’ at joint ‘m’, can be calculated by Equation (5-8) as

follows:

s=€—=—= 0.000501 x 1220 _ 06015 mm
0.999

2XcosBO
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The deflection ‘w’ is calculated by Equation (5-9) as follows:

w=) FEXs=2XFXxs

=2 % 1226 X 0.6015 = 1475 mm

Using Equation (5-4), the assumed value of the depth of the
compression zone ‘a’ can be checked whether it is due to the required

maximum load ‘P’. This value has been assumed earlier as 50 mm,

1 1
a= —h - —w= 50 - —1-127—5 = 42.63 mm

2 2

I I

r=42.63mm p O//fn\o Ry,
_T b c
2400 mm
1/2 P 1/2 P

Figure 5-14 The configuration that is considered in the second trial
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The obtained values of ‘a’ and ‘w’ do not match the assumed

values. Therefore, a second trial should be performed using values of

[ ]

a’ and ‘w’ that have been obtained from the first trial equal to
42.63 mm and 14.75 mm respectively. The new values of ‘a’ and ‘w’
lead to a structure having a vertical distance ‘r’ between joint ‘m’ and

joints ‘c' or ‘b' equal to 42.63 mm as shown in Figure 5-14.

r=h-a-w=100-42.63~14.75=42.63 mm

Table 5-2 The results of the first part of the illustrative example

Trial | A<sumed | Obtained | Applied | Assumed | Obtained | Horizontal
No. [Compres. | Compres. | Load | Deflect. Deflect. | Reaction
Depth ‘a’ | Depth ‘a’ ‘P’ ‘w' ‘w’ ‘Ry’
mm mm kN mm mm kN
1 50 42.63 20.80 1 14.75 255.00
2 42 .63 42.85 15.43 14.75 14.31 217.36
3 42 _85 42.84 15.59 14.31 14.32 218.48
4 42 .84 42.84 15.59 14.32 14.32 218.45
5 42 .84 42.84 15.59 14.32 14.32 218.45

The convergence is reached very rapidly, and for practical

engineering purposes, the second or third trial will give satisfactory
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results. The results of the additional trials are presented in Table 5-2.
As can be seen in Table 5-2, the variation of the value of the applied
load ‘P’ from trial number 2 and the value obtained from the last trial is
about one percent.

According to the Canadian Code, a maximum load of 18.17 kN can
be carried by this strip slab if it is horizontally unrestrained and if it has
maximum reinforcement ratio of pg.,x = 0.032513 corresponding to the
balanced conditions. From the above results, the maximum load that can
be carried by the horizontally restrained non-reinforced strip slab s
equal to 86% of the load that can be carried by this strip slab if it is
simply supported without horizontal restraints and with maximum
reinforcement ratio.

To solve the second part of the problem, where horizontal elastic
supports are assumed to be resisting the horizontal reactions as shown in
Figure 5-11, the elastic supports will be replaced by horizontal members
as shown in Figure §5-15.

The shortening of these horizontal members will be calculated as

follows:
1 1
s,=;xF;=—ExR,, ........... (5-10)

Where ‘s,' is the shortening of an elastic support or thc shortening

of a horizontal member as shown in Figure 5-15. This horizontal
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shortening is due to the horizontal reaction ‘R’ that is equal to the force
‘F;'. The value of the spring constant ‘k’ for the elastic supports used in
this problem is the actual value for the spring constant of the test set-up

used in our experimental program.

F F
m
Ry —= F = ~ Fy ——Rp
T-_ 2400 mm ——-——‘1
/2 B/2

Figure 5-15 Horizontal members replacing the elastic supports

The solution of the second part of this problem is similar to the
first part except for taking into consideration the effects of these
additional horizontal members. The first trial will be represented
hereinafter as has been done in the first part. The depth of the
compression zone ‘a’ and the deflection ‘w’ will be assumed equal to 50
mm and 1 mm respectively.

cosf = 0.999 (See the first part)
F=085f ab (—l—) = 0.85X 30X 50X 200X ——x107 = 255.26 KN
cos O 0.999

R,=F=F cosf = 255.26 x 0.999 = 255 KN
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Ry using Equation (5-10)
5,=0.0016 X255=0.408 mm

Taking the moment at joint ‘m’ and calculating P (see the first

part),
2
P= 255 x 49 X —— = 20.8 KN
1200
Using the virtual work method as shown in Figure 5-16,
1] KN
Fu Fu
Ful m Fu
Rhy — b C ~— Rhu
I 2400 mm -————{
1/2 1/2

Figure 5-16 The forces produced by a unit load

Taking the moment at joint ‘m’ and calculating ‘F,’,

1200

— = 12.25 KN
49

1
=F =~ X
Rhy ul 2
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poo B 1225

* 7 cos®  0.999

= 12.26 KN

Using Equation (5-7),

F 255.26 x 10° 1
=0 = - = . X — = 0.425
Y /, A f 100 x 200 ~ 30

Substituting in Equation (5-6),
€ = 0.000501
The value of the axial shortening ‘s’ of a diagonal member in this

structure is given in as follows:

L = 0,000501 x 120(; = 0.6015 mm

2XcosO .

s=EX

The deflection ‘w’ is given in Equation (5-9) as follows:

w=Y FXs§ =(2x%F X $)+(2xF,xs)

w = (2X12.26X0,6015)+(2x12.25% 0.408) = 24.74 mm

Check whether the depth of the compression zone “a’ is due to the

required maximum load ‘P’,

a= %h - -1—w= 50 — -2—‘121‘1 = 37.63 mm
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The obtained values of ‘a’ and ‘w’ do not match the assumed
values. In the second trial, the assumed values of the compression depth
‘a’ and the deflection ‘w’ that will be used are 37.63 mm and 24.74 mm
respectively. The trials are to be continued until convergence is reached.
Convergence is considered to be reached when the assumed values of ‘a’
and ‘w’ at the beginning of one trial are equal to the obtained values at
the end of the trial. The results of the following trials are represented in
Table 5-3.

As can be seen in Table 5-3, the convergence of the solution is
reached very rapidly, and acceptable results can be obtained from trial
number 2 or 3 or a higher order. This rapid convergence is due to the
rate of the value of ‘k’ that is ussd in this problem. The speed of
convergence is a function of the value of ‘k’. For a very high value of
‘k’, the convergence will be rapid and for a very low value of ‘k’ the
convergence will be slow.

Because of the presence of horizontal displacements ‘w,’ as shown
in Table 5-3 (the horizontal displacements that are shown in the table are
the total horizontal displacements due to the deformation of the two
elastic horizontal supports), there is a variation between the maximum
load ‘P’ that is obtained from the first part of the problem (where rigid

supports are used) and the maximum load ‘P’ that is obtained from the



second part of the problem (where elastic supports are used).
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Table 5-3 The results of the second part of the illustrative example

Trial | Assumed | Obtained | Applied | Assumed | Obtained | Horizo. | Total
No. |Compres. | Compres. Load | Deflect. | Deflect. | React.
Depth ‘a’ | Depth ‘a’ ‘P’ ‘w’ ‘w’ ‘Ry’ ‘wy*
mm mm kN mm mm kN mm
1 50 37.63 20.80 1 24.74 255.00 | 0.82
2 37.63 38.11 12.03 24.74 23.78 191.76 | 0.61
3 38.11 38.09 12 33 23.78 23.82 194.17 | 0.62
4 38.09 38.09 12.32 23.82 23.82 194.07 | 0.62
5 38.09 38.09 12.32 23.82 23.82 194.08 | 0.62
6 38.09 38.09 12.32 23.82 23.82 194.08 | 0.62
*w;, = Horizontal displacement due to the deformations of both supports.

5-6 Horizontally Restrained Reinforced Concrete Strip Slal

It is important to examine the case of horizontally restrained
reinforced concrete beam or strip slab. Most of concrete beams or slabs

are reinforced. This case s demons.rated through an 1illustrative

example.
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5-6-1 Illustrative Example 11

A strip slab similar to the one used in the illustrative example of
the preceding section is used in this section. The dimensions of the cross
section and the span of the strip slab ar¢ shown in Figure 5-17. This
strip slab is reinforced with two bars having area steel equal to 28.27
mm? each (the diameter of each bar is 6 mm). The stiffness of the
horizontal elastic support is 625 kN per millimeter of horizontal
displacement (this is the actual value of the experimental set-up).
Determine the maximum value of the concentrated load ‘P’ that can be

carried by the strip slab.

o

fe————— L=2400 mm ———

e; =38.08
a;= 4.44

-
20mm
As

Figure 5-17 Horizontally restrained reinforced strip slab

The tension force in the reinforcement is calculated as follows:
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A, X F,=2%x28.27X400= 22616 N

The depth ‘a’ of the compression zone is given as follows:

4 A xF, 22616
27 085% £, xb  0.85x30x200

=4.44 mm

Where ‘a,’ is the depth of the comp.ession zone due to the presence of
the reinforcement and ‘a;’ is the depth of the compression zone due to
the horizontal restraint and is obtained from Table 5-3 (trial No. 6).

The moment resistance ‘M’ due to the reinforcement is equal to

M=A,x1«;(d— 1) = 22616(4191—iﬁ)10“‘_09 kN.m

Where ‘d’ is equal to =h-cover-a; =100-20-38.09=41.91 mm
The additional load ‘P,’ that can be carried by the strip slab due to

the presence of the reinforcement can be calculated as follows:

poMx4_09x4_, oy
L 2.4

Assuming the deflectioa is linearly proportional to the applied
concentrated load, the deflection *A* due to unit load can be calculated as
follows (the values of the deflection and the load are obtained from the
illustrative example in the preceding section):

A= (23.82 mm)/(12.32 kN) = 1.93344 mm
The additional deflection ‘w,’ due to load P, is calculated as

follows:
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w; =AXP, =1933442X1.5=2.9 mm
To maintain the compatibility, this additional deficction must be
added to equation (5-4) as an imposed deflection, which results in a

decrease in the value of the depth of the compression zone *a’.

Modified a _h_(wtw,) 100 23.82+2.9

=36.64 mm

where w1l is the vertical deflection due to the horizontal restraint
From Figure 5-12, the compression force ‘F’, the horizontal

reaction ‘R’ and the rise of the strip slab are calcuiated as follows:

F=0.85xf. xaxbx %107 =187.05 kN

=0.85x30x36.64 x200x%
cos@ .999

R, = Fxcos0=187.05x0.999 = 186.86 kN

r=h-w—a=100-26.72-36.64 =36.64 mm

From Figure 5-12, the value of ‘P, due to the horizontal restraint

can be calculated by taking the moment at joint ‘m’.

_R,xrx4 186.86x36.64x4

A
L 2400

=1L41 AN

P=PR+P,=1141+1.5=12.91 kN
Total a=36.64+4.44=41.08 mm

Total deflection w=23.82+2.9=26.72 mm



zone ‘a,’ was obtained which results in new value for ‘d’.
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In the above iteration a new value for the depth of the compression

Therefore,

additional iterations are required until convergence is reached. The

subsequent iterations are given in Table 5-4.

Table 5-4 Results of the horizoutally restrained reinforced strip slab

Trial a; a Q01a1 P, P, Piotal W, w, Wiotal
NO mm mm mm kN kN kN mm mm mm
1 36.64 | 4.44 |41.08|11.41 | 1.50 |12.91 |23.82| 2.90 |26.72
2 37.47 | 4.44 | 41.91{11.93 ]| 1.55 [13.93 |22.06| 3.00 |25.06
3 37.00 | 4.44 [41.44 111.63 | 1.52 |13.15[23.07] 2.94 |26.01
4 37.27 | 4.44 141.71 { 11.81 | 1.54 [13.35(22.49| 2.97 |25.46
5 37.11 { 4.44 {41.55|11.71} 1.53 |13.24 {22.83| 2.95 [25.78
6 37.2 | 4.44 [41.64|11.76 | 1.53 }13.29 [22.64] 2.96 | 25.6
7 37.15 | 4.44 [41.59 |11.73 | 1.53 [13.26 |22.74| 2.96 {25.70
8 37.18 | 4.44 [41.62 11.75]| 1.53 |13.28 | 22.68| 2.96 {25.64
9 37.16 | 4.44 [41.60 | 11.74 | 1.53 |13.27 [22.72 ] 2.96 |25.68

yielding stress, the maximem depth of the compression zone ‘a
to be greater or equal to the total depth ‘a,,,’.

the compression zone ‘a,,,’ is calculated as follows:

To insure that the stress in the reinforcing steel is equal to its

max

needs

The maximum depth of




8., =PXc, = 0.856

600
0+ f,

5.7 Summary

d=0.85

600

————80=40.8mm = 416
600+ 400 mm

[Assume 'a= 0.5h' and 'w=1j

se the obtained
w

U
values of 'a' and '

(Calculate 'F', 'R'and 'ﬂ

Calculate 'P' which is
corresponding to the
above values

Calculate the deflection 'w' due to 'P
using the plastic stress-strain relation
and the virtual work method

1\

Calculate 'a' and check whether i
is corresponding to the maximum
load 'P'

No

Yes

Solution is terminated and the
maximum load 'P' is obtained
in addition to the vriables ‘a’,
'R' and the deflection 'w' are
also obtained

Figure 5-18 The flow chart of the plastic analytical method
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Plastic analysis method for non reinforced concrete strip slabs or
beams horizontally restrained subjected to concentrated loads at
mid-spans was presented. Through this analysis, we were able to
establish the values of the maximum load that can be carried by the strip
slabs, the maximum deflection and the value of the horizontal reaction.
This method can be used for strip slabs (or beams) fully or partially
horizontally restrained. The flow chart of the plastic analytical method is

shown in Figure 5-18.
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Finite Element

Analysis and Parametric Study

6-1 Introduction

A review of reported applications of the finite element method to
the analysis of concrete slabs shows that over the last 20 years many
comprehensive and sophisticated techniques have been developed. These
are apparently capable of modeling many of the aspects of concrete and
reinforced concrete slab behavior that commonly used methods of
analysis ignore.

During the period of the 60s to early 70s many papers were
published dealing with the linear finite element method‘®*: %%+ 69, mainly

(67)

to model beams and walls, also to model elastic slabs™ '’, mostly using

three-node triangular elements.

In the period of the late 70s, the non-linear finite element method
dominated the publications dealing with concrete slabs. Ghoneim®®* in
1978 and Jackson®® in 1979 among others worked with layered non-

linear finite element models for concrete slabs which are considered to be
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‘first generation’ models. They used quadrilateral plate bending

elements to model the slabs.
During the 80s and up to the present time, most of the non-linear

0. 7L 7D that deal with three-dimensional

finite element publications
models of concrete slabs use or refer to brick elements of 8 and 20
nodes. In these models the 1.on linearities of reinforced and non
reinforced concrete slabs are simulated to a high degree of accuracy.

) was used to

In this study, the commercial program ADINA
analyze the model of the experimental specimen. This program is
capable of performing three dimensional non-linear analysis using
triaxial stress envelopes for compression and tension stresses, to simulate
the multiaxial stress conditions that occur within a prism of concrete
subjected to external loads. Also, it is capable of taking into account the
increase of the values of the strength parameters, namely the stress-strain
parameters, for models under multiaxial stress conditions.

Bathe®” et al. in 1989 presented a paper that includes the
assumptions of this program. The failure criteria were not mentioned in
the published paper or in the manual of the program. However, through
communications with the designer of program ADINA, he indicated that
the failure criterion is reached when the maximum strain ic reached.

For non-reinforced concrete, the program has great difficulties

performing convergence for the constitutive relation of the stress-strain
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curve. The incremental load method"?

is used in the analysis performed
by the program. For some load increments (near the maximum load), the
user needs to modify the value of the load increment by trial and error io
choose the proper value that will allow the program to perform a
successful convergence. In some cases, the program has to be run many
times to test each modified load increment to be able to get the proper
value that will result in successful convergence. In some other cases,
even after running the program several times, the proper load increment
can not be obtained, and the analysis stops. The value of the
concentrated load that is obtained from such unsuccessful running is less
than the maximum load that can be carried by the beam, and the
deviation between the obtained value and the maximum value is
unknown.

In the analysis of the strip slab, we encountered such unsuccessful
running of the program. The designer of the program admitted the
difficulties of convergence for non-reinforced concrete beams and
directed us to use some technique to overcome this problem. However,
this technique was also based on trial and error and requires running the
program several times.

Despite the difficulties that have been encountered using program
ADINA, the program uses very advanced techniques to modci the three

dimensional aspects of non-linearity of concrete and reinforced concrete
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structures which most other programs ignore. Also, the program has a
plotting software package which is cavable of drafting many applications.

The cross sectional dimensions of the non-linear finite element
model are 100 mm in depth and 200 mm in width. A view of the model

and the boundary conditions is shown in Figure 6-1.

e =

Fixed

N
N
N
N

U 2400 mm S—

AN\

100 mm

Figure 6-1 The model analyzed by ADINA

In the 3-D model, eight-..ode brick elements were used in the finite
element mesh that represent the strip slab. The value of the maximum
load obtained was higher than expected. Also, the value of the
deflection was smailer than expected. The designer of program ADINA
recommended the use of twenty-node brick elements (it better simulates
non-reinforced concrete) to model the strip slab. The command program
using eight-node brick elements is presented in Appendix B (Sections
B-1) as program SS2.

Twenty-node brick elements and non-reinforced concrete with a
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compressive strength of 30 MPa are used to simulate the strip slab. The
concentrated load P was uniformly distributed over 96 mm at midspan

and on the top fibers.

One element

lﬁ 1\“_"1

I 2 elements 100

25 elements

Figure 6-2 The 3-D element: mesh used to analyze the model

The span length of the model was divided io accommodate 25
elements. The width of 200 mm was divided to accrmmodate one
element and the depth of 100 mm was divided to accommodate 2
elements, which means the model was divided into 50 elements as shown
in Figure 6-2. The command programs that were used to run program
Adina, for the model is given in Appendix B (Sections B-2) as program
SS4. A command program recommended by the designer of Adina to
help reduce the difficulty of convergence is also included in Appendix B

(Section B-3).
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Deflection mm.

Figure 6-3 Load-deflection curve from the finite zlement analysis for

the strip slab of the 2400 mm span

The maximum load and deflection for the model of the twenty-node
brick elements were 16.50 kN and 14.0 mm respectively without any
difficulties reaching convergence. The load-deflection curve for the
model is shown in Figure 6-3.

Comparison between the results that are obtained form the finite

element method and the analytical method that was presented earlier in

Chapter 5 is presented in Table 6-1. The results of the analytical
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analysis are shown in Table 5-2.

Table 6-1 Comparison between results obtained from the

finite element method and the analytical method

Finite element Analytical Ratio of

method (A) method (B) (A)/(B)

Failure load ‘P’ kN 16.50 15.59 1.058

Deflection ‘w’ mm 14.00 14.32 0.978

6-2 Parametric Study

It is important to examine the effects of some of the parameters
that influence the carrying capacity of the considered strip slab.
Examining the influence of these parameters can be useful in establishing
a design procedure for horizontally restrained strip slabs or beams. The
influences of three parameters were examined. These parameters are: the
variation of the reinforcement ratio in the horizontally restrained strip
slab, the degree of the horizontal restraints (the variation of the stiffness
of the horizontal elastic support) and the span to depth ratio. Program
ADINA was used to perform this parametric study. To optimize the use
of the computer facilities, two dimensional models were used in the

analysis. Taking advantage of the symmetry of the strip slab(or beam),
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one half was simulated in the analysis.

6-2-1 Infiuence of the Reinforcement Ratio

The model used to examine the influence of the reinforcement ratio
on the behavior of horizontally restrained strip slabs or beams is shown
in Figure 6-4. As shown, the span of one half of the beam was divided
into 6 elements and the depth was divided into three elements. At the
center line of the span, horizontal restraints were provided and vertical
displacement was not restrained. At the support, the elements located at
the bottom fibers were horizontally restrained. Also, a vertical restraint

was provided.

P/2
1
i 20
100 ;— Z :<; 5 3 elements
L > 7 \ :
i+ 2 \_ <E L20
i Reinforcement
1200
o—————§ elements —————»

€
R |
|

Figure 6-4 Model used to examine the influence of the reinforcement

ratio
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In the analysis that was presented in the preceding chapter, the
reinforcement ratio was considered to be null. In this section, different
reinforcement ratios were used and the maximum concentrated load that
can be carried by the beam was obtained for every case. Several
analyses were carried out. In the first analysis the reinforcement ratic
was considered to be zero and in the subsequent analyses this ratio was
increased to become maximum at the last analysis.

Figure 6-5 shows the value of the maximum load versus the ratio
of the reinforcement. While running that analysis, the finite element
program had difficulties performing convergence. Therefore, the path of
the curve connects the ordinates that have upper concentrated !oad
values.

The results obtained from the curve indicate that at zero
reinforcement ratio the maximum concentrated load was 16.02 kN, which
confirms the results that were obtained from the 3 dimensional analysis
in the preceding section. In every subsequent analysis, the area of the
steel was increased 50 mm? until it became 550 mm?, which is slightly
higher than maximum area steel (maximum area steel is 520.2 mmz)
requircil/by the Canadian Code. The maximum area steel corresponds to
a reinforcement ratio equal to 0.032513. At maximum reinforcement

ratio, the maximum value of the concentrated load was 21.2 kN.
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Figure 6-5 The reinforcement ratio versus the maximum load

As shown in the graph, there is an increase in the carrying capacity
of the beam due to the presence of the reinforcement. Up to a
reinforcement ratio equal to 0.01, which corresponds to area steel
approximately equal to 150 mm?, the maximum load was 20.32 kN which
represents approximately a 20 percent addition in the carrying capacity.
Increasing the area steel from 150 mm? to 550 mm? results in increase of
the load from 20.32 kN to 21.20 kN which represents less than a 5

percent increase in the carrying capacity. From these results it can be
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concluded that using more than 0.01 reinforcement ratio for the
horizentally restrained strip slab (or beam) will result in a negligible
increase in the carrying capacity and will also result in using additional
steel that is not required. A sample of the programs that are used to
perform the analysis presented in this section is given in Appendix B

(Section B-4). This sample is for the case of area steel equal to 150 mm?.

6-2-2 Influence of the Span to Depth Ratio

Finite element analyses were carried out to examine the influence
of the span to depth ratio on the behavior of horizontally restrained strip
slabs. During the analyses, different strip slabs were examined with
shear span to depth ratio ‘S/h’, varying from zero to 20. The boundary
conditions that were used in the analysis are shown in Figure 6-6.

A curve represeniing the shear span to depth ratio versus the
concentrated load is presented in Figure 6-7. As can be seen from the
presented curve, at a shear span to depth ratio equal to 20, the locad that
can be carried by the strip slab is 5.64 kN. This shear span ‘S’ is 2.0
meters with a depth of 0.1 meter. For the horizontally restrained non-
reinforced strip slab, this load of 5.64 kN is approximately 5.6 times
greater than its carrying capacity if it is horizontally non-restrained
(assuming 30 MPa and 3 MPa as compression and tensile concrete

strengths respectively and a cross section width equal to 200 mm).
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Figure 6-6 The boundaries used to examine the influence of the shear

span to depth ratio

Decreasing the span of the strip slab (which decreases the shear
span to depth ratio), the corresponding carrying capacity increases. When
the shear span to depth ratio is approximately 6, the carrying capacity of
the strip slab is controlled by its shearing strength. When this ratio is
less than 6, the carrying capacity of the strip slab increases very rapidly.
When the ratio is less than 1, the strip slab start to behave as a column.
When the span of the strip slab is reduced to zero, that means, the span
of the element which transfers the load to the support becomes null, that
results in zero carrying capacity. A sample of the programs that are used
to perform the analysis presented in this section is given in Appendix B
(Section B-5). This sample is for the case of a shear span to depth ratio

equal to 8 which corresponds to a span equal to 1.6 meter.
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Figure 6-7 The shear span to depth ratio 'S/h’ versus the concentrated

load

6-2-3 Influence of the Stiffness of the Horizontal Elastic Support

The value of the stiffness of the horizontal elastic support has
great influence on the value of the concentrated load that can be carried
by the strip slab. For non-reinforced horizontally restrained strip slabs,
when the value of the stiffness of the horizontal supports approaches
infinity, the concentrated load can reach its maximum value. When this
stiffness value is zero (a horizontally non-restrained strip slab), the

carrying capacity will be controlled by the moment resistance of the
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cross section of the strip slab at midspan.

The model shown in Figure 0-8 is used to examine the influence of
the stiffness of the horizontal elastic support on the behavior of the strip
slab. Spring elements were placed at bottom fibers of the strip slab at
the location of the support to provide the horizontal restraints. Several
analyses were carried out, each with a different stiffness value for the

spring support.

Elastic P/2

Elements
r -
100 §<E

50 )
L%
1200
R
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|

Figure 6-8 Model used to examine the influence of the stiffness of the

elastic support

In the analysis, the values of the stiffness of the elastic supports
were varied from zero (a strip slab horizontally non-restrained) to 625
kN per mm. To present the resuits, a ratio of the stiffness of the elastic

support to the axial stiffness of the strip slab was used. The axial
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stiffness of the strip slab (or beam) °‘k,’ is defined as the axial force that
can produce a unit axial deformation of the strip slab and is given as
follows:

_AXE

k, I

where:
A is the cross section area =200x100 = 20000 rmm?
E is the modulus of elasticity of the concrete =27368 MPa

L is the span of the strip slab = 2400 mm

_ 20000 27368
b 2400

X107 =228.22 kN per mm

The ratio of the stiffness of the elastic support ‘k’ to the axial

stiffness of the strip slab ‘k,* is equal to i A curve representing the
b

ratio of the elastic support stiffness co the strip slab axial stiffness versus
the maximum load is presented in Figure 6-9. When the elastic support
stiffness is zero, the carrying capacity of the strip slab is due to its
flexural resistance at midspan and the load that can be carried by this
strip slab is 2.7 kN.

Increasing the value of the elastic support stiffness from zero

results in a rapid increase in the carrying capacity of the strip slab up to
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a ratio (the ratio of the elastic support stiffness to the longitudinal strip
slab axial stiffness) approximately equal to 0.75, which corresponds to a
support stiffness equal to 180 kN. The load that can be carried by a
strip slab at this ratio is approximately equal to 12.2 kN. After this
ratio, increasing the stiffness of the support results in a slow increase in
the carrying capacity of the strip slab. For example, when the stiffness
of the support is increased to 625 kN (this value representing the
experimental program value) which corresponds to a ratio approximately
equal to 2.75, the concentrated load is increased to 13.36 kN (similar to
the value obtained from the analytical analysis presented in Section 5-5).
When the support stiffness approaches infinity, the value of the
concentrated load is increased to 16.02 kN as has been mentioned in the
preceding section. It can be concluded that a horizontal elastic support
having stiffness equal to or greaicr than 0.75 of the axial stiffness of the
strip slab will result in a major 1ncrease in the carrying capacity of the
strip slab. A sample of the programs that are used to perform the
analysis that is presented in this section is given in Appendix B (Section
B-6). This sample is for the case of an elastic support stiffness of
approximately 180 kN per mm, which is equivalent to a ratio of

approximately 0.75.
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Figure 6-9 Influence of the ratio of the elastic support stiffness to the

strip siab axial stiffness on the maximum load

6-3 Membrane Action (Arch Action) Versus Bending Effects
Several publications dealt with membrane action in slabs®443:26.87)

Membrane action has long been noted in both full-scale slabs and

(46)

laboratory tests The earliest observations were made by Westergaard

(48)

and Slater in testing a number of full-scale slab panels. The tests

indicated that the ultimate load attained was larger than expected. This



unexpected strength was due to membrane action.

Consider the behavior of a reinforced concrete slab under a
transverse load at mid-span. As the slab deflects under the load, the
concrete on the tension face cracks and the reiniorcement is stretched.
The strains on the tension face will be greater in magnitude than those on
the compression face. The net tensile strain resulting at the slab mid-
span causes the slab to expand, producing outward horizontal
displacements at the slab ends. Restraining the horizoi. 2l displacements
will induce compressive membrane forces in the slab. This compressive
membrane action is called arch action.

The carrying capacitiex of horizontally restrained slabs (slabs
working by arch action) are affected by the magnitude of the vertical
deflections. Large vertical deflections negate the beneficial influences of
arch action. On the other hand, the flexural resistance of horizontally
non-restrained reinforced concrete slabs is independent of vertical
deflection.

In horizontally non-restrained reinforced concrete slabs, the
moment resistance of the slabs is due to a couple of compression force in
the concrete and tension force in the reinforcements, In réinqujged
concrete beams or slabs, if the reinforcement is behaving as a tie,
compressive membrane forces wi'l be developed in the concrete, which

will result in arch action. Usually, the reinforcement does not behave as
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a tie, in all cases. Therefore, the carrying capacities of these beams and
strip slabs are due to their bending moment resistance at mid-span.
However, if these beams and strip slabs are horizontally restrained, their

cariying capacity would be due to the arch action.

6-4 Influence of the Mortar as an Element in the Mesh

As shown in Figure 4-12 and 4-13 in Chapter 4, the tested strip
slabs were horizontally restrained by a 50 mm thick steel plate. A 10 mm
vertical layer of mortar was placed between the ends of the strip slabs
and the steel plate. In the analysis that was presented in Chapter 5 «nd
in the comparison between the experimental and theoretical results that
will be presented in the next chapter, the layer of mortar is assumed to
have negligible effects on the obtained results. Since the layer of mortar
was subjected to compression stresses, this layer would deform. The
deformation of the mortar would result in a horizontal displacement.
The carrying capacity of the strip slabs would be reduced if this
horizontal displacement had any significant value. Since the compression
strength of the mortar is similar to or slightly less than the compression
strength of the concrete (according to experimental results), the
deformation of a layer of mortar that has 10 mm of thickness under

compression stress is negligible.

A finite element analysis was carried out to examine the effect of
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this layer of mortar. The model used in the analysis is shown in Figure
6-10. A mortar layer was placed at the bottom fibers at the end of the
strip slab. Also, a horizental elastic support was placed at the other end
of the mortar layer. The stiffness of the elastic support was 625 kN per

mm, which is the value of the experimental set-up.
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Figure 6-10 The model used to simulate the effect of the mortar

As was mentioned earlier, a very thin layer of mortar has no effect
on the carrying capacity of the strip slab. Greatly increasing the
thickness of the layer of the mortar will slightly affect the carrying
capacity of the strip slab. For example, increasing the thickness of the
mortar layer to 200 mm will result in a carrying capacity of 11.52 kM.
This means that increasing the thickness of the layer of the mortar 20

times results in decreasing the concentrated load by less than 14 percent
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(the concentrated load that was obtained for a similar case in the
preceding section was 13.36 kN). It can be concluded that the presence
of a layer of mortar having a thickness of 10 mm will result in negligible
effect on the carrying capacity of the strip slabs. The program that was
used to perform the analysis for the case of a layer of mortar having a

thickness of 200 mm is given in Appendix B (Section B-7).
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Chapter 7

Comparison of Theoretical

Analysis Results and Experimental Results

A comparison between the theoretical analysis results and the
experimental results will be carried out, as will be shown below, for the
two series of tests. Before comparing between the results of the
theoretical analysis presented in Chapter 5 and the experimental results
presented in Chapter 4, some factors which enhance the carrying capacity
of the tested horizontally restrained strip slabs will be analyzed. These
factors are the presence of reinforcement in each strip slab and the
existence of partial restraints against rotations at the extremities of each

strip slab.

7-1 Factors Affecting the Carrying Capacities of the Tested Slabs

One of the factors that affect the value of the maximum
concentrated loads that were carried by iae tested horizontally restrained
strip slabs was their light amount of tension and compression
reinforcement. This reinforcement enhances the carrying capacity of the

strip slabs.
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For the strip slabs with horizontal restraints, 4 reinforcement bars
with a diameter of 6 mm were used. Two bars were placed at the top
fibers and two bars at the bottom fibers. The vertical distance between
the top and bottom bars was 61 mm, measured from the center of the

bars. The cross sections of these slabs are shown in Figure 7-1.

1—6M —={ 203 mm |=

’ Tﬁl mimn
-l '—;—20 mm

Figure 7-1 Cross section for slabs with horizontal restraints

Tension tests on the 6 mm diameter steel bars indicate that their
yield strength ‘f,’ is 504.4 MPa and 456.24 MPa for the bars of the first
series and the second series respectively (see Chapter 4).

When a non-reinforced horizontally restrained strip slab is on
verge of collapse, it has at midspan a significant depth ‘a’ of the
compression zone. The resisting bending moment of this strip slab is
controlled by the depth ‘a’ of the compression zone and the compression
strength of the concrete. For a horizontally restrained strip slab that has
compression and tension reinforcement where the amount of the
compression reinforcement is equal to the amount of the tension

reinforcement, there is an additional bending moment due to this
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reinforcement. Assuming the tension force that is acting in the tension
reinforcement is equal to the compression force that is acting in the
compression reinforcement and that both forces are corresponding to the
maximum force that can be carried by the reinforcement at its yielding
conditions, this additional bending moment, for the first series, is

calculated as follows:

M, = f,x A, xd,

M, =504.4%56.55x61x10°=1.74 KN.m  .......... (7-1)

And for the second series,

M, = f,x A4, xd,

M, =456.24x56.55x61x10°=1.574 KN.m  ......... (7-2)

Where ‘A,’ is the area steel of two bars of 6 mm in diameter and is
equal to 56.55 mm?, ‘d,’ is the distance between the top and bottom bars
and is equal to 61 mm and ‘f,’ is the yield strength of the steel and
equal to 504.4 MPa and 456.24 MPa for the steel of the first and the
second series respectively.

For simply supported beams subjected to concentrated loads at

midspan, the bending moment ‘M’ at midspan is given as:
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_PxL
4

M

Where L is the span of the beam.
If the bending moment ‘M’ is given, the concentrated load ‘P’ can

be obtained as follows:

_AxXM
L

P

Using the above equation for the simply supported strip slabs of
the first series with spans of 2.4 meters each, the above bending
moments ‘M,’, given by Equation (7-1), can be produced by a
concentrated load ‘P;’ equals to 2.90 kN placed at the center of the strip
slabs. Similarly, for the simply supported strip slabs of the second
series with spans of 2.421 meters each, the above bending moments ‘M,’,
given by Equation (7-2), can be produced by a concentrated load ‘P,’
equal to 2.60 kN placed at the center of the strip slabs. This amount of
additional load ‘P,’ (due to the presence of tension and comprission
reinforcement) and its effects must be added to the load that is calculated
from the analysis presented in Chapter 5.

As has been mentioned in Chapter 4, each series consisted of 6
strip slabs. In the second series of tests, some modifications were
introduced to the supports. For the first series, the strip slabs with

horizontal restraints were supported as shown in Figure 7-Z.



Mortar

t=50 mr‘fl}_ yz—_—él_j \%\
/C——-J . j=30 mm

Figure 7-2 End conditions for slabs with horizontal restraint

(first series)

As shown in Figure 7-2, an end of the horizontally restrained strip
slab, in the first series, is resting on a support 30 mm in width and is
restrained horizontally by a vertical support 50 mm in depth. Normally,
rotations of the end edges over the supports are to be expected due to the
application of the concentrated load at the center of the slab. However,
this arrangement (shown in Figure 7-2) is partially restraining the
rotations of the ends of the strip slabs over the support and is introducing

fixed end bending moment ‘M¢’.

F,
k——\ T Rotation

F

Figure 7-3 Forces restraining rotation at the support
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As shown in Figure 7-3, due to the presence of the horizontal
reaction ‘Ry,’ a vertical friction force ‘F’ was introduced between the
vertical end surface of the slab and the mortar. The end rotation was
partially restrained by a couple of forces 'F’: the vertical friction force
at the extreme end of the strip slab and an equivalent force at the edge of
the support. The value of the friction force ‘F’ due to the presence of the

horizontal reaction ‘R,’ is as follows:
h

FSUXR,  oiviiiieeninieinennns (7-3)

Where u is the friction coefficient.

The value of bending moment ‘M;’ due to the presence of this

couple is calculated as follows:

M, =FXj=uxXR Xj

Where j is shown in Figure 7-3.

The value of the moment ‘M;’ given by the above equation is a
function of the value of the friction force ‘F’ and, in turn, the value of
the friction force is a function of the horizontal reaction ‘R’ and the

coefficient of friction 'n‘. The value of the friction coefficient 'u‘ is a
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function of the smoothness of the texture and the strength of the mortar.
It can be concluded from the above discussion that in the first

series of tests, fixed end bending moments were produced at the

extremities of the strip slabs due to the partial restraints against rotation.
The value of the coefficient of friction 'u* between the mortar and

(749 et al. this coefficient

the steel is unknown. According to Murashev
varies within wide limits.

According to the Canadian Code CSA®" the coefficient of friction
'u‘ for concrete placed against as-rolled structural steel is 0.6. The
coefficient of friction *u* for mortar placed against stee! should be less
thzin the friction coefficient of the concrete because the ccmponents of
the mixture of the mortar do not have coarse aggregates. Therefore, the
texture of the mortar has a lesser degree of roughness than the concrete.

In spite of the above discussion, an assumed maximum value of 0.6
for the coefficient of friction ‘n‘ between the mortar and the steel was
used to establish an upper limit to the friction force ‘F’ as given by
Equation (7-3). Assuming an average horizontal reaction ‘R,’ equal to

270 kN, the maximum friction force ‘F_,,’ at the ends of the strip slabs

can be calculated as follows:

F £ 270 x 0.6 = 162 kN

F = 270 x 0.6 = 162 kN



The actual value of ‘F’ can be equal to or less than 162 kN. Since
its upper limit is equal to 162 kN, then a lower limit value needs to be
established. The average value between the upper and the lower limits
will be used in calculating the fixed end moment ‘M.

Since the surface of the mortar must have a certain degree of
roughness and since the mortar is cementitious mortar which has a
certain adhesion between its surface and the steel, the minimum friction

coefficient cannot be zero. According to Murashev/?

et al., the
adhesion between an ordinary concrete and steel surface varies from 2.5
to 3.9 N/mm®. Since the minimum value of the coefficient of friction
between the mortar and the steel cannot be determined, an average value
of 3.2 N/mm? for the adhesion based on the values given by Murashev
was used.

Although the adhesion value given by Murashev’®

et al. is for
ordinary concrete, this value was used for the mortar because the
adhesion of the concrete as well as the adhesion of the cementitious
mortar is due to the cement content and th: water ratio in the mixture.

The lower limit of the value of ‘F’, which is ‘F,,;," can be calculated as

follows:

F_, =t xbxthe adhesion
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F,. =50x203x3.2x10° =32.5 kN

Where ‘t’ and ‘b’ are the depth and the width of the support which
is providing horizontal restraint and are 50 mm and 203 mm respectively
(‘t’ is shown in Figure 7-2). The value of the adhesion is 3.2 N/mm?.

The average value of ‘F’ can be calculated as follows:

Fe bm_-;-th _ 162-;32.5= 972 kN

The fixed end bending moment ‘M, at the extremities of the
horizontally restrained strip slabs of the first series can be calculated as

follows:

M =Fxj
M,=91.2x003=29 KN.m

Where the value of ‘j’ is shown in Figure 7-3.

The presence of the fixed end bending moment ‘M’ will increase
the carrying capacity of the simply supported horizontally restrained strip
slabs. This additional carrying capacity must be taken into account

during the comparison between the theoretical analysis and the results
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obtained from the experimental tests.

As shown in Figure 7-4, the load ‘P,’ that can produce a fixed end
bending moment equal to 2.9 kN.m can be obtained assuming partial
restraints against rotation at joints ‘b’ and ‘c’. Also, by performing the
analysis that is presented in Chapter 5 on the strip slabs with horizontal
restraints, the exact depth ‘r’ of the structure (or the rise of the

structure) can be calculated.

Figure 7-4 Effects of partial restraints against rotations

This load ‘P,’ and its effects will be added to the maximum
analytical load ‘P.’ which is calculated from the unalysis of Chapter 5
and to the load ‘P,’ which is obtained due to the presence of the tension

and compression reinforcement.



r=40.
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B =13.45 KN

b
L—7L=2400 mm

P/2 P/2
(A) Non reinforced concrete

P 29 KN
Rhl_.. %m
—2400 mm
R/2 R/2

(B) Due to reinforcement

Modeled as a truss with two members

% =6.50 KN
m
ha—... ‘——ha
b c
L————L=2400 mm———!
5/2

(C) Due to partial restraint against rotstion

Modeled as a truss with two members

Figure 7-5 Loads acting on the herizontally restrained strip slabs



7-2 First Series of Tests

The dimensions and properties of the concrete of each strip slab
are presented in Chapter 4. For the strip slab of test S1, the loa¢ and
deflection calculated by the analysis of Chapter 5 are shown in Figure 7-
5-A and presented in Table 7-1. The additional load ‘P;’ due to the
presence of the tension and the compression reinforcement is shown in
Figure 7-5-B. Also, a restraint is provided at joint ‘m’ in Figure 7-5-B
to indicate that there is 2 bending moment due to the presence of thi-
reinforcement at midspan.

The additional load ‘P,’ due to the fixed end bending moment at
the extremities of strip slab S1 is shown in Figure 7-5-C. Also, partial
restraints are provided at joints ‘b’ and ‘c’.

A value of a spring constant ‘k’ equal to 625 kN/mm was used in
the calculation presented in Table 7-1. This value is the actual spring
constant of the set-up used in the experimental program. The structural
scheme of the set-up is presented in Appendix ‘C’ (Section C-1). The
value of the spring constant ‘k’ is obtained by applying horizental loads
(which are actually the horizontal reactions ‘R;’) as shown in Appendix
‘C’ (Section C-1) and calculating the corresponding horizonial
deflections ‘wy,’. Then, knowing these values, a value for the load that

can prod ice a unit deflection was calculated as follows:
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Where the value of this load is the required spring constant ‘k’ (or
the spring stiffness) and is defined as the value of the load that can
deflect the spring support one unit.

The value of the load ‘Pc’, that is shown in Figure 7-5, was
obtained assuming this load is acting alone on the strip slab (the
corresponding value of the horizontal reaction was 199.3 kN). To
maintain compatibility (to take into account the effect of the other loads
‘71’ and ‘P2’ considering that they act on the strip slab simultaneously
with ‘Pc’), the vertical deflections due to loads ‘P1’ and ‘P2’ wer~ used
as an imposed deflection to modify the value of the depth of the

compression zone ‘a’ ¢btained from Equation (5-4).

h_wtw, 104 23.01+3.96

= =38.52 mm
2 2 2

a=

Where ‘w,’ is the deflection due to the load ‘Pc’

‘w,’ is the deflection due to the loads ‘P1’ and ‘P2’ =1.22+2.74

The value of the force ‘F’ (as shown in Figure 5-12) can be

calculated as follows:

=0.85%28.55%38 72X 203X X107 =189.93 kN

cos@ 0.999

F=0.85x f. xaxbx
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The value of the horizontal reaction ‘R;’ is

R, =FXcos0=189.93x0.999 =189.74 kN

The modified rise of the structure ‘r’ is

r=h—(w+w,)—a=104-(23.01+3,96)-38.52=38.52 mm

The modified value of the load ‘Pc’ due to the additional deflection

obtained from loads ‘P1’ and ‘P2’ is

_R,xrx4 189.74x38.52x4
L 2400

Pc =12.18 kN

Table 7-1 Calculated loads, deflections and reactions acting on slab

S1 at failure

Type of Load Deflection Horizontal Vertical
Load kN mm Reaction Reaction
kN kN
Pc 12.18 23.01 189.74 6.09
Pl 2.90 1.22 11.03 1.45
P2 6.50 2.74 24.73 3.25
Total 21.58 26.97 225.5 10.79




Table 7-2 Calculated loads, deflections and

reactions acting on slab S2 at failure
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Type of Load Deflection Horizontal Vertical
Load kN mm Reaction Reaction
kN kN
Pc 14.60 23.73 219.54 7.30
Pl 2.90 1.07 10.43 1.45
P2 6.44 2.38 23.18 3.22
Total 23.94 27.18 253.15 11.97
Table 7-3 Calculated loads, deflections and
reactions acting on slab S3 at failure
Type of Load Deflection Horizontal Vertical
Load KN mm Reaction Reaction
KN kN
Pc 17.06 23.33 238.91 8.53
Pl 2.90 0.93 9.87 1.45
P2 6.45 2.06 21.96 3.22
Total 26.41 26.32 270.74 13.20




Table 7-4 Calculated loads, deflections and

reactions acting on slab S4 at failure
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Type of Load Deflection Horizontal Vertical
Load kN mm Reaction Reaction
kN kN
Pc 19.89 23.16 261.61 9.95
P1 2.90 0.80 9.32 1.45
P2 6.46 1.79 20.76 3.23
Total 29.25 25.75 291.69 14.63

A similar analysis for the tested strip slabs S2, S3 and S4 was

performed and the results are presented in Tables 7-2, 7-3 and 7-4
respectively. All results were calculated considering the actual
compression strength of the concrete and the exact dimensions of the
cross section of each specimen.

The value of the maximum loads ‘P’ obtained from the theoretical
analysis and the experimental tests for strip slabs horizontally restrained
differ very much from the maximum concentrated load ‘P’ that can be
calculated according to present codes of practice. The cause of this

discrepancy is due to ignoring the effects of the horizontal restraints on

the behavior of the slabs in the codes of practice. According to present
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codes of practice, horizontally restrained flexural members would be
treated as if they were simply supported without horizontal restraints.

A comparison of the theoretical and the experimental results is
presented in Table 7-5. The rises ‘r’ (shown in Figure 7-5) are
calculated according to the analysis presented in Chapter 5 (assuming the
load ‘Pc’ is acting alone on the strip slab). The ratios of the theoretical
faiiure loads ‘P,,.,’ to experimental failure loads °‘P.,’ are also
presented. The maximum variation between theoretical and experimental

loads is about 18%.

Table 7-5 Comparison of theoretical and experimental results for

slabs S1, S2, S3 and S84 (slabs with horizontal restraints)

Test | Dimension | Concrete | Experi- | Theore- | Ratio Of | Experi- | Theore- | Rise
of Cross | Strength | mental tical ‘Piheo mental tical ‘r’
Sections f'c Failure | Failure | Over | Deflec- | Deflec-

Load Load ‘Pexp’ tion tion
h*b ‘chp’ ‘P!heo’ ‘wexp’ ‘wlheo,
No. { mm*mm | MPa kN kN mm mm mm

S1 | 104x203 | 28.55 | 21.97 | 21.58 | 0.982 | 23.36 | 26.97 [40.50

S2 | 107x203 | 31.88 | 28.15 | 23.94 | 0.850 | 30.89 | 27.18 (41.64

S$3 { 112x203 | 32.32 | 23.31 | 26.41 | 1.133 | 29.05 | 26.32 [44.34

S4 | 117x203 | 33.23 | 35.59 | 29.25 | 0.822 | 29.62 | 25.75 |46.94
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A comparison of the theoretical load ‘P.’, that can be carried by
the horizontaily restrained strip slabs calculated according to the analysis
of Chapter 5, and the maximum load ‘P4’ calculated according to the
present codes of practice is presented in Table 7-6. The loads ‘P.,,' and
their corresponding deflections were calculated assuming simply
supported horizontally non-restrained non-reinforced strip slabs. The
loads ‘P.’ and their corresponding deflections were calculated based on
the structural scheme shown in Figurc 7-6 and assuming non-reinforced

concrete strip slabs.

Figure 7-6 Structural scheme to calculate theoretical loads and

deflections (assuming infinitely rigid horizontal supports)

In Figure 7-6, the loads ‘P 4’ were calculated according to the
present codes of practice assuming non-reinforced strip slabs. The
deflections corresponding to the loads ‘P .4’ were calculated using the

beam theory. A sample of the calculation of ‘P.,4’ and its corresponding



147

deflection is presented in Appendix ‘C’ (Section C-2) for strip slab S1.

A comparison of the experimental results and the results obtained
from an analysis according to present codes of practice for the fully
reinforced simply supported horizontally non-restrained strip slabs of the
first geries is presented in Table 7-7. The tension reinforcement of these
is 3-15M (3 bars with diameter of 16 mm each) and the

slabs

compression reinforcement is 2 bars of 6 mm diameter each.

Table 7-6 Comparison of results obtained according to the analysis
presented in Chapter 5 and results obtained according to present

codes of practice for strip slabs S1, S2, S3 and S4

Test Theoretical Load Ratio Of | Deflection | Deflection
Failure Due to ‘Peoa’ /P’ Due to Due to
Load Codes Load Load
‘P’ Peod’ ‘P’ ‘Peod’
No kN kN mm mm
S1 16.69 1.96 0.117 13.79 1.11
S2 20.06 2.19 0.109 13.41 1.07
S3 22.83 2.41 0.106 12.83 1.03
S4 26.17 2.69 0.103 12.29 0.99

The theoretical failure loads ‘Py.,’

presented in Table 7-7 are
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calculated according to the Canadian Code CSA. These capacities were
predicted ignoring horizontal restraint effects. The reduction factors
presented in this code are ignored. A sample of these calculations is
presented in Appendix ‘C’ in Section C-3 (calculations for theoretical
failure load for slab S5).

For the first series of tests, the yield strength ‘f,’ for bars of 16
mm in diameter and 6 mm in diameter was 441.12 MPa and 504.4 MPa
respectively. These values were obtained from experimental tension tests
that were carried out on the steel bars (the results of these tests are
presented in Chapter 4). The cross sections of the fully reinforced
simply supported horizontally non-restrained strip slabs of the first series
are as shown in Figure 7-7. The abuve mentioned values of the yield
strength ‘f,’ and the cross section dimensions shown in Figure 7-7 were

used in calculating the failure loads ‘P’ presented in Table 7-7

—={ 203 mm =

. ;156 mm
T

2-6

3-16M

Figure 7-7 Cross section for simply supported strip slabs

Load deflection curves presented in Chapter 4 show the

experimental results of strip slabs with and without horizontal restraints.
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To compare the experimental results of these two types of slabs
accurately, several variables should be considered such as the concrete

strength f, and the cross-sectional dimensions.

Table 7-7 Comparison of theoretical and experimental results for

slabs S5 and S6 (simply supported, without horizontal restraints)

Test Dimension Concrete | Experimental | Theoretical | Ratio Of
of Cross Strength Failure Failure Prreo’
Sections f, Load Load Over
h * b ‘Pexp’ ‘Pinec’ ‘Pexp’

No mm*mm MPa kN kN

S5 117x203 34.14 36.92 30.34 0.822

S6 113x203 32.58 35.32 23.17 0.798

Table 7-8 shows a comparison of the experimental failure loads of
slab S4 which was horizontally restrained and slab S5 which was fully
reinforced horizontally non-restrained. Beth slabs have similar cross
sectional dimensions and concrete strength. A similar comparison of
slabs S3 and S6 is presented. In Table 7-8, the ‘P.,;,’ and *P.y,,’ are the
experimental failure loads for slabs with horizontal restraints and slabs
The ratio of experimental

without horizontal restraints respectively.

failure loads ‘P.sp;’ t0 ‘Poypa’ is also presented.
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Table 7-8 A comparison of the experimental failure loads for strip

slabs with and without horizontal restraints

Support With Without With Without

Conditions Horizontal | Horizontal Horizontal | Horizontal
Restraints Restraints Restraints Restraints

Test No S4 S5 S3 S6
Dimensions 117x203 117x203 112x203 113x203
f, MPa 33.23 34.14 32.32 32.58
P.xp1 kN 35.59 - 23.31 -
P...; kN - 36.92 - 35.32

Ratio
Pt/ Poroad 0.964 0.660

The concrete strength and the cross sectional dimensions vary for
each slab test. To eliminate the effect of these variables on the
comparison of the failure loads for all the strip slabs of the first series,
the relative strength ‘R’ was considered. This relative strength ‘R’ can
be defined as the maximum relative concentrated load (dimensionless)
that can be carried by a strip slab having cross section area equal to a
unity as well as having a concrete with compression strength equal to a
unity. The relative strength ‘R’ is calculated as follows:

P

exp

R=—0
(hxbx f.)



where:

‘P, is the experimental failure load
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‘h’ and ‘b’ are the depth and width of the cross section

A comparison of the relative strength ‘R’ for all the slab tests of

the first series is presented in Table 7-9.

Table 7-9 Pelative strength of all the strip slabs

of the first series

Test Experimental Relative Horizontal
Failure Strength Restraints
Load R
Pexp”
No kN 1072
S1 21.97 36.45 Restrained
S2 28.15 40.65 Restrained
S3 23.31 31.72 Restrained
S4 35.59 45.09 Restrained
S5 36.92 45.53 Non
S6 35.32 47.26 Non

7-3 Second Series of Tests

In the second series of tests, the two fully reinforced horizontally

non-restrained strip slabs ‘S7° and ‘S8’ were tested first. A comparison
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between the theoretical failure load ‘P,,.,’ according to present codes of
practice and the experimental failure load ‘P’ is presented in Table
7-10. The cross sectionis and the reinforcement of these slabs are shown
in Figure 7-7. The steel yield strength ‘f,’ for bars of 6 mm and 16 mm
in diameter is equal to 456.24 MPa and 370.5 MPa respectively (obtained

from experimental tension tests on the steel bars of the second series).

Table 7-10 Comparison of theoretical and experimental results for

slabs S7 and S8 (simply supported, without horizontal restraints)

Test Dimension | Concrete | Experimental | Theoretical | Ratio Of
of Cross Strength Failure Failuro P’
Sections f, Load Load Over
h *b ‘Pexp’ “Pihoo’ ‘Peyp’

No mm*mm MPa kN kN

S7 113x203 45.65 25.31 27.00 1.067

S8 117x203 - 37.55 28.39 27.40 0.965

The cross sections for the strip slabs with horizontal restraints in

the second series of tests are shown in Figure 7-1. The bending moment

that can be carried by the provided tension and compression

reinforcement is given by Equation (7-2) and equals 1.574 kN.m. The

load ‘P;’ which can produce the above bending moment for a simply
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supported beam with a span of 2.421 meters is 2.60 kN. Similarly to the
analysis presented for the first series, this load and its effects should be

added to the load ‘P.’ calculated according to the analysis presented in

—-‘ =10 mm
B8 X 19 l‘l‘ested slab

L=2421 mm —%\

Figure 7-8 Details of the modified end conditions for second series

Chapter 5.

Modifications to the supports of the test set-up to minimize the
partial restraint against rotations are shown in Figure 7-8. These
modifications reduced the fixed end bending moment at the extremities of
the horizontally restrained strip slabs in the second series to become 33%
of the value of the first series. Therefore, the value of the fixed end
bending moment due to the partial restraint against rotations used in the
second series is 0.97 kN.m. Due to these modifications, the span of the
strip slabs changed to become 2421 mm (as skown in Figure 7-8). The

calculated loads and deflections for the tested strip slabs of the second
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series, numbers 89, S10, S11 and S12, are presented in Tables 7-11,

7-12, 7-13 and 7-14.

Table 7-11 Calculated loads, deflections and

reactions acting on slap S9

Type of Load Deflection Horizontal Vertical
Load kN mm Reaction Reaction
kN kN
Pc 19.41 23.34 257.41 9.70
Pl 2.60 0.76 8.56 1.30
P2 0.15 0.63 7.08 1.07
Total 24.16 24.73 273.05 12.07
Table 7-12 Calculated loads, deflections and
reactions acting on slab S10
Type of Load Deflection Horizontal Vertical
Load kN mm Reaction Reaction
kN kN
Pc 20.53 25.15 284.13 10.27
P1 2.60 0.76 .43 1.30
P2 2.11 0.62 6.84 1.05
Total 25.24 26.48 299.40 12.62




Table 7-13 Calculated loads, deflecticns and

reactions acting on slab S1t
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Type of Load Deflection Horizontal Vertical
Load kN mm Reaction Reaction
kN kN
Pc 18.74 25.28 269.32 9.37
Pl 2.60 0.83 8.73 1.3
P2 2.11 0.68 7.09 1.05
Total 23.45 26.79 285.14 11.72
Table 7-14 Calculated loads, deflections and
reactions acting on slab S12
Type of Load Deflection Horizontal Vertical
Load kN mm Keaction Reaction
kN kN
Pc 16.73 26.32 259.69 8.37
Pl 2.60 0.94 9.10 1.30
P2 2.09 0.76 7.31 1.04
Total 21.42 28.02 276.10 10.71
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A comparison of the results obtained from the theoretical analysis
and the experimental tests of the second series is presented in Table
7-15. Also, the rise ‘r’ for each strip slab is presented. The maximum
variation between the theoretical and experimental failure loads is about

10%.

Table 7-15 Comparison of theoretical and experimental results for

slabs S9, S10, S11 and S12 (slabs with horizontal restraints)

Test | Dimension | Concrete | Experi- | Theore- |Ratio Of | Experi- | Theore- | Rise
of Cross | Strength | mental tical ‘Pineo mental tical ‘r’
Sections f; Failure | Failure | Over | Deflec- | Deflec-

Load Load ‘Peyp’ tion tion
h*b ‘Pexp’ 'Pthoo’ ‘wcxp’ ‘wthco’
No. | mm*mm | MPa kN kN mm mm mm

S6 | 116x203 | 32.69 | 25.73 | 24.16 | J.939 | 29.27 | 24.73 |46.33

S10| 114x203 |, 37.65 | 22.91 [ 25.24 | 1.102 | 28.87 | 26.53 |44.42

S11)111x203 | 37.07 | 23.13 | 23.45 | 1.014 | 27.83 | 26.79 |42.86

S12]106x203 | 38.60 [ 21.91 | 21.42 | 0.978 | 29.04 | 28.02 |39.84

A comparison of the maximum load ‘P_’ that can be carried by the
strip slabs of the second series and the maximum load calculated

according to the present codes of practice is presented in Table 7-16.
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The capacities according to the present codes of practice were predicted
ignoring horizontal restraint effects. The structurai scheme of the

calculated theoretical failure load ‘P.’ is shown in Figure 7-6.

Table 7-16 Comparison of results obtained according to the analysis
presented in Chapter 5 and results obtained according to present

codes of practice for strip slabs number S9, S10, Si1 and S12

Test Theoretical Load Ratio Of | Deflection | Deflection
FFailure Due to ‘P.oa’ /P’ Due to Due to
].oad Codes Load Load
CPC’ 6Pc0d’ ch' ‘Pcod,
No kN kN mm mm
S9 24.88 2.58 0.104 12.61 1.01
S10 27.44 2.68 0.098 12.83 1.03
Sti 25.26 2.52 0.100 13.17 1.06
S12 23.38 2.34 0.100 13.77 1.10

A comparison of the experimental results obtained for strip slabs
with horizontal restraints(S10 and S9) and strip slabs fully reinforced
without horizontal restraints (S7 and S8) is presented in Table 7-17.

Strip slabs S7 and S10 have similar concrete strength and cross sectional
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dimensions. Strip slabs S8 and S9 have the same similarities as S7 and
S$10. The comparison presented in Table 7-17 indicates the effects of the

horizontal restraints on the carrying capacity of the strip slabs.

Table 7-17 Comparison of experimental results for strip

slabs with and without horizontal restraints

Support With Without With Without
Conditions Horizontal | Horizontal Horizontal | Horizontal
Restraints | Restraints Restraints | Restraints
Test No S10 S7 S9 S8
dimensions 114x203 114x203 116x203 117x203
f.  MPa 37.65 45.65 32.69 37.55
Poxp1 KN 23.13 - 25.73 -
P, kN - 25.31 - 28.39
Ratio
Pooni/Peyno 0.914 | 0.906

A comparison of the relative strength ‘R’ for all the slab tests of

the second series is presented in Table 7-18.



Table 7-18 Relative strength of all the

strip slabs of the second series

Test | Experimental | Relative Horizontal
Failure Strength Restraint
Loacd R
Py’
No kN 107
s7 25.31 24.17 Non
S8 28.39 31.83 Non
[ 7S9 25.73 33.43 | Restrained
S10 22.91 26.29 Restrained
S11 23.13 27.69 Restrained
S12 21.91 26.38 Restrained

7-4 Summary

Generally, the theoretical results in comparison with the results of
the experimental tests for the strip slabs with horizontal restraints are
within acceptable limits. Because of the modifications that were
introduced to the supports of the set-up of the second series of tests, the
theoretical results are closer to the experimenial results in the second
series than in the first series. The difference between theoretical results
and results obtained from experimental tests varies from -18% to +13%.

As shown in Table 7-19, the average variation between the calculated
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theoretical failure loads ‘P,,.,’ and the obtained experimental failure
loads ‘P.,’ is -2.2%. The average variation between the calculated
theoretical deflections ‘wy.,’ and the obtained experimental deflections
‘Wexp' 15 -6.2%.

A summary of results of all strip slabs with horizontal restraints is
presented in Table 7-19. A summary of the results of all simply
supported fully reinforced horizontally non-restrained strip slabs is
presented in Table 7-20. A sample of the calculations of the actual
reinforcement ratio ‘p,.,’, the maximum reinforcement ratio ‘p,,.’ and
the minimum reinforcement ratio ‘p,;,” in Table 7-20 is presented in
Appendix ‘C’ in Section C-4 (calculations for the reinforcement ratios
for slab SS5).

Load deflection curves presenting a comparison of the experimental
results of the fully reinforced horizontally non-restrained strip slabs and
the experimental results of horizontally restrained strip slabs are shown
in Chapter 4.

Table 7-21 shows the relative strength ‘R’ of all the strip slabs, as
well as, the maximum, minimum and actual reinforcement ratios for each
strip slab, calculated according to the Canadian Code CSA. Despite the
great difference in the reinforcement ratios of horizontally restrained
slabs (minimum ratio) and horizontally non-restrained slabs (maximum

ratio), the values of relative strength shown in Table 7-21 do not, on
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average, vary too much for both cases. The average relative strength
values are similar for the slabs of the first group (S1 through S4) and for
the slabs of the second group (S5 through S8), where the slabs of the
first group are horizontally restrained and the slabs of the second group
are horizontally non-restrained. For the horizontally restrained slabs of
the third group (£9 through S12) the average relavive strength value is
smaller, because the fixed end moment was minimized due to the
modifications introduced to the supports.

Table 7-22 shows a comparison of the maximum load that can be
carried by each strip slab (calculated according to the present code of
practice, assuming all the strip slabs are simply supported horizontally
non-restrained) and the experimental failure load. The amount of
reinforcement in the tested strip slabs were considered in calculating the

maximum loads according to the present code of practice.
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Table 7-22 Comparison of results obtained according to present

codes of practice and experimental results for all the strip slabs

Test | Experimental | Calculated* Ratio of .lorizontal
No | Failure Load | Failure Load | Py ./ P,,, | Restraint
‘Pexp’ ‘Peod”
kN kN

S1 21.97 2.41 0.110 Restrained
S2 28.15 2.56 0.091 Restrained
S3 23.31 2.80 0.120 Restrained
S4 35.59 3.04 0.085 Restrained
S5 36.92 30.34 0.821 Non

S6 35.32 28.17 0.798 Non

S7 25.31 27.00 1.067 Non

S8 28.39 27.40 5.965 Non
S9 25.73 2.70 0.105 Restrained
S10 22.91 2.62 0.114 Restrained
S11 23.13 2.49 0.108 Restrained
S$12 21.91 2.28 0.104 Restrained

*P.,a Was calculated as for simply supported horizontally non-restrained
beam (these capacities were predicted ignoring horizontal restraint

effects).
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Analysis of Square Slabs

Subjected to Central Concentrated Loads

8-1 Introduction

In Chapter 5, a plastic analysis method for horizontally restrained
concrete strip slabs was developed. Strip slabs simulate beams and one
way siabs. In this chapter, the developed plastic analysis method will be
extended to analyze two way horizontally restrained concrete slabs
subjected to concentrated loads. The simplest form of two way slabs
subjected to concentrated loads is a square slab subjected to a central
concentrater! load.

In this chapter, for horizontally restrained square slab with given
dimensions and given concrete strength, the value of the ma>imum
central concentrated load ‘P’ that can be carried by the slab, the
maximum deflection *‘w’ at the center of the slab and the value of the
horizontal reactions at the boundaries will be established using the
developed plastic method.

When applying a central concentrated load to a horizontally
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restrained square slab, the slab cracks. When the collapse of the slab is
impending, the cracks divide the slab into segments. The segments of
the cracked slab share in carrying the central concentrated load. To
extend the developed plastic method presented in Chapter 5 to analyze

square slabs, the pattern of cracks due to central concentrated loads

needs to be examined.

8-2 Pattern of Cracks

Y
L ]
—
t
P
L ———e ——
Yield line
1
| X

Figure 8-1 The pattern of cracks for a slab on the verge of collapse due

to a central concentrated load ‘P’

According to the yield line theory, the pattern of the cracks of a

simply supported square slab on the verge of collapse due to a central
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concentrated load ‘P’ is as shown in Figure 8-1. The slab cracks
diagonally due to the failure load ‘P’. The diagonal cracks are along the
diagonal yield lines and they divide the slab into four segments.

Since the yield line theory ignores the effect of horizontal
restraints, the cracks that are shown in Figure 8-1 occur to simply

supported horizontally non-restrained square slabs. However, Kwang and

(38) (79)

Morley "', also, Taylor and Hayet tested horizontally restrained
reinforced concrete square slabs subjected to central concentrated loads
and the pattern of cracks of the tested slabs was identical to the pattern

shown in Figure 8-1.

8-3 Assumed Horizuontal Reaction Acting on a Segment of

a Square Slab

As shown in Figure 8-1, the load ‘P’ is distributed in two
perpendicular directions ‘X’ and ‘Y’. Half the load ‘P’ is carried by the
two segments in ‘Y’ direction and the other half carried by the two
segments in ‘X’ direction. When the slab is on the verge of collapse, the
segments of the cracked slab form a mechanism system. In this
mechanism system, the forces that are acting on each segment need to be
determined to be able to establish the values of the maximum load ‘P’,
the maximum deflection ‘w’ and the horizontal reactions ‘R;’.

To determine the forces that are acting on each segment, the
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problem shown in Figure 8-1 can be simplified by assuming that each two
segments of the cracked slab facing each other are carrying half the load
‘P’ as shown in Figure 8-2. Also, assume the stresses that are acting on
the diagonal yield lines in comparison with the stress that acting on the

tip of the segment are negligible. The validity of these assumptions will

be evaluated.

05 P

=
> =
o]

=

\‘Yield line

05 P

Il

—{ o

b 5 —

Sec. a—a

Figure 8-2 The two segments of a square slab carrying half the applied

central concentrated load

The problem shown in Figure 8-2 reduces the original three
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dimensional problem to a two dimensional problem. This problem is
similar to problems that are dealt with in Chapter 5. The difference
between this problem and the problems of Chapter 5 is that the segments
of this problem have variable cross-sections.

When the slab is on the verge of coliapse, the system shown in
Figure 8-2 will be divided into two segments. The stresses and the
reactions that are acting on one segment will be examined. One segment
will be isolated to examine the distribution of the horizontal reaction that

is acting on it as it is shown in Figure 8-3.

Horizontal Reaction

Tip _of the segment

q —= ‘ L

Figure 8-3 The assumed stress and reaction acting on a segment of a

square slab

The horizontal stresses that are acting on the tip of one segment

are due to the formation of a compression zone at the cross section of the
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tip. The horizontal stresses of the compression zone are assumed to be
uniformly distributed (according to the beam theory). The distribution
of the horizontal reaction that is acting on the boundary of the segment
as shown in Figure 8-3 is unknown.

To obtain the distribution of the horizontal reaction due to the
horizontal restraint, a finite element analysis using program Adina is
carried out on the segment shown in Figure 8-3. The command program
to perform this analysis is presented in Appendix D Section D-1. The
dimensions and the finite element mesh of this segment are shown in
Figure 8-4. The dimensions of the cross section of the tip of this
segment are 160 mm in width and 100 mm in depth.

Since the shape of the distribution of the reaction forces on the
boundary of the segment needs to be obtained and since the value of the
compression stress ‘q’ that is acting on the tip of the segmeut is
unknown, therefore, an assumed maximum value for the compression
stress ‘q’ will be used.

The maximum value for the compression stress ‘q’ will be used
because the horizontal reaction that will be obtained from the analysis of
the segment shown in Figure 8-3 will be compared to the horizontal
reaction that will be obtained from analyzing a complete square slab
subjected to a central concentrated load. If the value of the horizontal

reaction that will be obtained from analyzing the segment shown in
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Figure 8-4 is less than that of the horizontal reaction that will be
obtained from analyzing a complete square slab, then, the importance of
the stresses that are acting on the diagonal yield lines will be concluded.
Assuming that the depth of the compression zone ‘a’ at the tip of
the segment shown in Figure 8-3 is half the thickness of the slab ‘h’
(assuming a=0.5h) where ‘h’ is 100 mm. The value of the stress that is
acting on this compression zone is equal to 0.85f, . Taking f, equal to

30 MPa, then, the stress of the compression zcne is equal to 25.5 MPa.
i j

1120 mm

- yaNs
Sec. a-a | 15 elements |

2400 mm
8 !

Figure 8-4 The mesh of a segment of a slab analyzed by the finite

element method

Since only the distribution of the reaction at the base of the

segment is needed, then, for the finite element analysis, the stress that is
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acting on the compression zone will be redistributed over the entire area
of the tip. Since the area of the assumed compression zone is half the
area of the tip, then, the value of the compression stress ‘q" that was
used in the analysis is equal to 12.75 MPa. The compression force ‘F’

that is acting on the tip of the segment is calculated as follows:

F = q:<axwidth of the tip

F=0.85x f. x0.5x100x160=204Xx10° N=204 kN ..... (8-1)

30000 ; . ;
® Finite elsment

25000 amme N

20000 }?j R
15000 / \

106000

Reaction Forca at the locations of nodes
{Newtons)

5000 V4 C

o

400 800 1200 1800 2000 2400
Length mm

Figure 8-5 The distribution of the horizontal reaction obtained from
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finite element analysis

The results of the finite element analysis for the segment shown in
Figure 8-4 are obtained. The distribution of the horizontal reaction
forces at the locations of the nodes is plotted against the width of the

base of the segment and is presented in Figure 8-5.

8-4 Mathematical Formulation for the Reaction Acting

n the Segment

To mathematically formulate the shape of the distribution of the
reaction that is presented in Figure 8-5, considering the segment shown
in Figure 8-6, and assume that the support of this segment can take only
reaction perpendicular to the plane defined by the line o-n.

A strip taken from the segment shown in Figure 8-6 will be
isolated to analyze the in plane stresses acting on it. Since we are
interested in evaluating the reaction ‘R,’, then only the stresses acting in
the direction of the reaction ‘R,’ will be considered. Summing the
stresses acting in the direction of the reaction ‘R,’ can lead to the

following equation:
dq
(q+axdx)xBxH, — gXBxH, = R xdxxB

Eliminating the depth of the segment ‘B’ and the shear stress ‘q’
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from both sides of the above equationlwill lead to Equation (8-2), which
defines the value of reaction stress ‘R,’ at a given horizontal distance

‘x’, as shown below.

i

je—0

il B
Sec. a—a
L1 ‘L2 L1
L
Loa
69 dx
Q\ /Q+ 5x

R dx
Figure 8-6 Mathematical formulation for the stresses acting on a strip

taken from a segment of a slab
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In the above equation, the reaction ‘R,’ is a function of ‘H,’ and
‘dq/0x’. The value of ‘H,’ changes linearly from zero at point ‘o’ to
maximum at point ‘m’. Also, the value ‘0q/0x’ changes linearly from
point ‘o’ to point ‘m’ (because there is not any external load applied
within this interval). Since the value of ‘H,’ is zero at point ‘o’, the
value of ‘R’ is also 2ero at point ‘o’. In addition, since the values of
‘H,” and ‘0q/Jdx’ change iinearly from point ‘o’ to point ‘m’, then, the
value of ‘R,” will be maximum at point ‘m’ which leads to a distribution
shape of the reaction as shown in Figure 8-7.

Since the volume of the segment shown in Figure 8-6 will be

needed, this volume can be calculated as follows:

LIxH

V=2x XB + L2XHXB

V=HxB (L1+ L2)

As shown in Figure 8-7, the value of the reaction stress ‘R,’ at any
horizontal distance ‘x’ is proportional to ‘H,’ (see Figure 8-6). Also as
shown in the same figure, the shape of the distribution of the reaction is
a mirror image of the physical shape of the segment. Consequently, the

value of ‘R," at any distance ‘x’ can be calculated as follows (the value



of ‘F’ is given in Equation 8-1):

R =

X

H

X

<im

F
R.= HxB(L1+L2) H,

Multiplying the left side of the above equation by L/L:

F L
R=mxsairiz %71
Rearranging the above equation,
F H L

R=5xT "B *TirL2

W

----------------------------------------

Reaction R per mm?

) B

177

Figure 8-7 Reaction distribution on one segment due to the stress ‘q’
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Equation (8-3) represents the value of the reaction distribution ‘R,’
(at any distance ‘x') as a function of ‘H,”. A comparison between the
results obtained from finite element analysis (see Figure 8-5) and the
results obtained from Equation (8-3) are presented in Figure 8-8. The
results that are obtained from the finite element analysis are reaction
forces at the locations of the nodes. To compare between the results
obtained from finite element analysis and those obtained from an analysis
based on Equation (8-3), the reaction forces at the locations of the nodes
are calculated based on the results that are obtained from Equation (8-3)

and are presented by the curve called ‘Present study’ in Figure 8-8.

30000

@ Finite eloment
4 Pregent study

25000 }ﬁ/ﬁ: ﬂ%q
20000 Va A\
A

16000
s N

10000 / \

) N
5000 /E/ \\
rd T
. N

Reaction Force at the locatlons of nodes
{Newtons)

*
400 800 1200 1600 2000 2400

Length mm

Figure 8-8 A comparison between horizontal rcactions obtained by using

finite element analysis and by an analysis based on Equation (8-3)
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In Figure 8-8, the ordinates of the curve obtained from Equation
(8-3) are calcu;ated by multiplying the values of ‘R,’ by the depth of the
segment ‘B’ which is equal to 100 mm and by the width of the element
which is 160 mm. The ordinates of this curve (curve shown as ‘Present
study’) are the reaction forces at the location of the nodes. Taking that
into account, the width of the elements at line o-n is 160 mm (see
Figures 8-4 and 8-6).

From mechanics of materials, the equation that presents the stress
‘c' due to the application of the force ‘F’ on a given cross section area

‘A’ is defined as follows:

BxL

Equation (8-3) is iround to be similar to the above equation with

H
the exception of the additional term (-}—fx ). This term modifies

Li+ L2
the value of the stress that is acting on the base of the segment to take

into account the shape of the segment.

8-5 Finite Element Analysis of a Horizontally Restrain
In the preceding section, the shape of the distribution of the

horizontal reaction was presented for the case where two segments facing



180

each other (see Figure 8-2) are assumed to carry half the central
concentrated load that is applied on the square slab. The other half is
carried in the perpendicular direction. For the case studied in the
preceding section, the stresses that are acting on the diagonal yield lines
are assumed to be negligible in comparison with the stress acting on the
tip of the segment. To ecxamine the validity of these assumptions, a
complete square siab was analyzed and the shape of the horizontal
reaction distribution was obtained and will be compared to the reaction
shown in Figure 8-5.

A finite element analysis, using program Adina, was performed on
a square slab subjected to a central concentrated load to record the
stresses and the reactions that are acting on the segments of the slab and
also to record the maximum central concentrated load that can be carried
by this slab and the maximum deflection.

The dimensions of the analyzed slab are 2400 mm in length, 2400
mm in width and 100 mm in depth. The length and the width were each
divided into 15 elements, each element having a length and width of 160
mm and 160 mm respectively. The depth of the slab was divided to
accommeodate 3 layers of elements, each layer having a depth of 33.33
mm. Figure 8-9 shows the mesh of the slab. The command program to
perform the analysis of this slab is presented in Appendix D Section D-2.

The boundary conditions for the square slab is shown in Figure
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8-9. The perimetric surface of the bottom layer of elements was
considered to be restrained against displacements in the horizontal and
vertical directions. When the boundaries are restrained at the perimetric
surface of the bottom layer of elements, partial rotations are permitted at
the edges of the slab which present a better modeling for a slab with

horizontally restrained boundaries.

15 elements
I 2400 mm I

15 elements
—l 2400 mm
A

> =]

P Layer 1
—Layer 2
1 —~Layer 3 _L
3 elements 100 mm
77 3 S T
Layer 4
| 15 elements |

2400 mm

Figure 8-9 A square slab analyzed by the finite element method
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As can be seen in Figure 8-9, the depth of the slab is
accommodating three layers of elements and four layers of nodes. The
layers of nodes are numbered in ascending order. The top layer of nodes
(where the load is applied) is called layer 1 and the bottom layer of
nodes is called layer 4.

The summation of the vertical reaction forces at the locations of
the nodes at the boundary of one side of the slab is presented as shown in
Figure 8-10. The value of the vertical coordinate that are shown in
Figure 8-10 represent the downward reaction with negative numbers and

the upward reaction is presented with positive numbers.

6000
¢ Layer 3+4

5000 /,,/* /PN*\\\

4000 pd A

/]
3000 7/ N\

2000

—
/‘/

1000 ,/
0 / \

nodes (in Newtons)

. \
1000 [ \
-2000 [ A\

f ]

Vertical reaction forces st the iocations of *he

-3000

0 400 800 1200 1600 2000 2400
Length mm

Figure 8-10 The vertical reactions at one side of the square slab
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In Figure 8-11, the compression horizontal reaction forces at the
bottom fibers of the slab at its boundaries are presented. This horizontal

reaction is acting at the bottom layer of nodes.

80000

AT a Adina

70000 Val \

A

[ ]

£

5

=

o

=

s

2T o000 { N

7 X

3T 40000 / \

s, 7 \

=S 30000

E / \

e 20000 / \

= / \

|5 10000 |2 L\

T / \

X 0 ‘V \h
0 400 800 1200 1600 2000 2400

Length mm

Figure 8-11 The shape of the horizontal reaction distribution at the

boundaries of the slab

A comparison between the values of the horizontal reaction
distribution presented in Figure 8-5 and the values of the horizontal

reaction distribution presented in Figure 8-11 shows that the values of
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the two curves are different. The curve shown in Figure 8-11 has higher
reaction values than the curve presented in Figure 8-5. The curve
presented in Figure 8-5 was due to the force acting on the tip of the
segment only, ignoring the forces acting on the diagonal lines. From
this comparison, it may be concluded that the forces that are acting on
the diagonal yield lines for slabs with horizontally restrained boundaries
are important.

The comparison between the two curves proves that the
assumptions presented earlier are not valid for square slabs with
horizontally resiiained boundaries. These assumptions are that the
horizontal reaction is equal to the in-plane force that acts on the tip of
the szgment and that the forces that act on the diagonal lines of the
segment are negligible,

It may be conclude from the above comparison that the four
segments of the cracked square slab are dependent on each other in
carrying the applied central concentrated load. In addition, the forces
that act on the diagonal yield lines are of great importance and can not
be ignored.

The forces that are acting on the diagonal yield lines are obtained
from the finite element analysis performed on the square slab that is
shown in Figure 8-9. Before preseniing ihe vaiues of these forces, their

directions need to be demonstrated. The directions of the forces that are



acting on the diagonal yield lines are presented in Figure 8-12.

The values of the forces that are acting on the diagonal lines at the
locations of the nodes in a direction perpendicular to the base of the
segment (corresponding to Figure 8-12-A) are presented in Figure 8-13.
The values of the forces presented in Figure 8-13 are obtained from the
finite element analysis at each layer of nodes as explained earlier. The
length of the diagonal line is presented by the horizontal coordinate. In
the following graphs and for the vertical coordinates, the negative sign
represents a tension force and the numbers having positive values

represent compression forces.

-1 160 mm
1 ;)_J' mm
le——2400 mm — (B)
(4)
1584\
(9] (D)

Figure 8-12 Directions of forces that are acting on the diagonal lines
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As can be seen in Figure 8-13, the curve called ‘Layer 1+2’
represents the compression forces that are acting at the top surface of the
slab and it shows higher compression forces in the vicinity of the
concentrated load. The curve called ‘Layer 344’ represents the tension
forces that are acting at the bottom surface of the slab and it shows

higher values in the vicinity of the load.

. 30000
0} R s Layer 1
s s Layer 2
® 25000 / o Laysr 3
=
- / X — o Layer 4
= 20000 —= - ¢ Layer 142
s A/ = Layer 3+4
2 15000 v
- i /
= / ,/
- 10000 v -
2 /// F——af—
=
2 5000 ﬁ/ =
2 ;'/_-—-c/
° 0 - — A
= ———F—— \6‘/
3 - x%ﬂ
3 -1
w -10000
0 400 800 1200 1600

Diagonal Length mm

Figure 8-13 Forces acting on the diagonal lines in a direction

perpendicular to the base of the segment

Similar values for the forces that are acting on the diagonal lines

and acting in a direction parallel to the base of the segment are presented
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in Figure 8-14. The direction of these forces corresponds to the direction
that is shown in Figure 8-12-B.

The values of the forces presented in Figure 8-14 are used in
combination with the values presented in Figure 8-13 to obtain the values

of the forces presented in Fagure 8-15 and Figure 8-16.

20000

3 s Layer 1
.; s Layer 2
- o Layer 3
: 15000  Layor 4
's 10000 3
o
=
: // \\
s 5000 y
§ 0 \ >8\//,r/>‘& )
o _,/‘\
z ‘ S U v
£ o A
S -5000 \ / - \\vjk‘
- \ / e
(2]
& -10000
0 400 800 1200 1600

Diagonal Length mm

Figure 8-14 Forces acting on the diagonal lines in a direction parallel

to the base of the segment

The forces that are acting in a directions perpendicular and parallel
to the diagonal lines (corresponding to Figure 8-12-C and Figure 8-12-D
respectively) are calculated from the results that are presented in Figure

8-13 and Figure 8-14. The forces perpendicular and parallel to the
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diagonal lines are presented in Figure 8-15 and Figure 8-16 respectively.
Since the results that are shown in Figure 8-13 and Figure 8-14 are the
forces in directions ‘X' and ‘Y’ acting on the nodes, their components at
45° (in directions perpendicular and parallel to the diagonal lines of the

segment) can be calculated.

25000

@ Layer 1
£ o Layer 2
20000 =" | o Layer 9
/Kr ¢ Layor 4
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16000 ,/ 4///;]3 4 Layers 3+4
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-10000
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Figure 8-15 Forces perpendicular to the diagonal lines

As shown in Figure 8-15, the summation of the fore~s acting on
layer 1 and layer 2 is represented by the curve called ‘Layer 1+2°.
Also, the summation of the forces acting on layer 3 and layer 4 is

represented by the curve called ‘Layer 3+4°. The forces perpeadicular
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to the diagonal yield lines at the top fibers of the slab and represented by
the curve called ‘Layer 1+2’ are mainly compression forces. The forces
that are acting at the bottom fibers of the slab and represented by the

curve called ‘Layer 3+4’ are mainly tension forces.

20000 /‘Q o Layer 1
& Layer 2
15000 J// o Layer 3
/ / ¢ Layer 4

= Layer 142

10000 / / 4 Layesr 3+4

~ %//

5000 / \ N

=N T

P 4 i s =

Forces at the locations of the nodes (in Newtons)

-10000

0 400 800 1200 1600
Diagenal Langth mm

Figure 8-16 Forces parallel to the diagonal lines

As shown in Figure 8-16, the summation of the forces acting on
layer 1 and layer 2 is represented by the curve called ‘Layer 1+2’.
Aiso, the summation of the forces acting on layer 3 and layer 4 is
represented by the curve called ‘Layer 3+4’. The curve called ‘Layer
142’ has higher values in the vicinity of the concentrated load.

The forces that are represented by the curves called ‘Layer 1+2° in
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Figure 8-15 and Figure 8-16 are drawn to scale and presented in Figure

8-17 and Figure 8-18 respectively.

—=—=— 160 mm

1120 mm

N \vd

le—— L = 2400 mm —

Figure 8-17 Forces perpendicular to the diagonal lines

— |=—160 mm

1120 mm
/ N\

le—— L = 2400 mm —

Figure 8-18 Forces parallel to the diagonal lines

As can be seen in Figure 8-17 and 7-18, the diagonal lines of a

segment of a square slab are subjected to biaxial forces. In other words,
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these diagonal lines are subjected to biaxial stresses. The failure stress
envelope for biaxial stress of concrete is given by Pillai and Kirk"™

based on studies by Kupfer et al.®®

and Tasuji et al.“® and indicates the
biaxial compression strength of concrete is .25 fc'. Since the segments
(of square slabs subjected to central concentrated loads) are subjected to
biaxial stresses, the value of 1 25 f, will bs used in the analysis that will

be presented in the following sections instead of the value of the uniaxial

compression strength of the concrete f. .

8-6 Finite Elements Analysis of a Square Slap with Fixed Boundaries

1 ' g

3 elements

H T

15 c¢lements J
2400 mm

AN
[
o]
o
:

Figure 8-19 A slab with fixed boundaries

A square slab with fixed boundaries subjected to a central
concentrated load was also analyzed by program Adina. The boundaries
of the slau are shown in Figure 8-19. The mesh of the slab is identical
to the mesh of the slab shown in Figure 8-9. The command program to

run program Adina for this slab is presented in Appendix D Section D-3.
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The purpose of analyzing such a slab is to know whether
horizontally restrained square slabs behave similarly to square slabs with
fixed boundaries. The forces acting on the diagonal lines on a segment
of this slab were obtained from the finite element output and are
presented in Appendix D Section D-3. The curves of the forces acting on
the diagonal lines of a segment of the slab that are shown in Appendix D
are similar to the curves of the square slab horizontally restrained which
are presented in Figure 8-13 through Figure 8-16. In addition, both
slabs have similar carrying capacity and maximum deflection. These
results indicate that horizontally restrained square slabs and square slabs
with fixed boundaries have similar behavior.

When a square slab with fixed boundaries subjected to a
concentrated load is on the verge of collapse, a perimetric crack
penetrates at the top surface of the slab in the vicinity of the boundary
and transfers the boundaries shown in Figure 8-19 to boundaries similar
to the case shown in Figure 8-9. The output of the finite element

analysis indicates the existence of such a perimetric crack.

8-7 Tentative Solution for Horizontally Restrained Square Slabs

ntral ncentrated Loads

As can be seen from the results of the finite element analysis, the

problem of a square slab subjected to a central concentrated load is
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complex. However, considering a tentative solution that deals with the
slab as a structural system composed of four members (or segments)
seems possible and may provide acceptable results for such a complicated

problem.
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Figure 8-21 The forces that are acting on the diagonal lines of the

square slab obtained from summing the forces of layer 1 and 2

For a horizontally restrained square slab, the horizontal reaction
(the in-plane reaction) on one side of the boundary of the slab (or on a

segment of the slab) is due to the in-plane forces that act on the tip and
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on the diagonal lines of the segment in a direction opposite to the
direction of the horizontal reaction (see Figure 8-12-A). The curve
called ‘Layer 142’ in Figure 8-13 is isolated and is presented as shown
in Figure 8-21. This curve represents the forces that are acting on the
diagonal lines of a segment of the slab in a direction perpendicular to the
base of the segment. The curve presented in Figure 8-21 is drawn to
scale and is presented as shown in T gure 8-22.

Now, assume the forces that are acting on the diagonal lines of a
segment as shown in Figure 8-2. can be replaced by uniformly
distributed forces having the same value as the forces shewn in Figure
8-22. These uniformly distributed forces are assumed to be acting on the

tip of the segment as shown in Figure 8-23.

—t—t=— 160 mm

1120 mm

4 N
I-—L=2400mm——|

Figure 8-22 Forces acting on the diagonal lines of the square slab
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In other words, the actual forces that are acting on the diagonal
lines of the squarc slab as shown in Figure 8-22 are replaced by
unitormly distributed stress acting on the tip of the segment as shown in

Figure 8-23.

b=600mm

.

1120 mmi

|

le— L = 2400 mm —=

Figure 8-23 Uniformly distributed forces acting on the tip of the segment

To be able to use the analysis presented in Chapter 5, an average
width ‘b,’ for each segment will be considered. As shown in Figure
8-24, the average width ‘b,” will be taken at line ‘o-p’ and will be equal
to ‘L/2’. In other words, the segment shown in Figure 8-24 will be
replaced by the segment shown in Figure 8-25. Also, the uniformly
distributed stress that acts on the tip of the original segment as shown in

Figure 8-23 is considered to be acting on the new segment as shown ip

Figure 8-25.
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Figure 8-25 Simulation of the original segment of the slab by a segment

to be used in the analysis



197

0.5 P

‘l 2400 mm

=

p

FEP. |

L=2400 mra

05 P

|

Sec.a~a

bl

05 P

l
/\o -~ Ry
e

L=2400 mm 1

Ry o
r.

Rv RV

Figure 8-26 The system used in the analysis

To calculate the load that can be carried by the system shown in
Figure 8-26, the analysis presented in Chapter 5 will be used. The
maximum load that can be carried by this system is half the maximum
load that can be carried by the square slab. A summary of the steps of

the analysis presented in Chapter § is given below.
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F=085%125X f, xaxbx
cos O

Where ‘b’ is a. shown in Figure 8-23 and Figure 8-25 and the
compression depth “a’ is assumed to be equal to half the thickness of the
slab ‘h’ for the first trial. For concrete subjected to biaxial stress, the
compression strength is taken as 1.25 fc'.

R, =F cosf
r=h—-a-w
The deflection ‘w’ is assumed to be equal to 1 mm for the first

trial.
P 0.5P=R,,><rxi
L

Where ‘L’ is 2400 mm and is shown in Figure 8-26. The

deflection ‘w’ can be calculated by using the virtual work method.

R,,,,=0.5x—L—
2r

Where ‘b,’ is as shown in Figure 8-24 and Figure 8-25.
£=0.00003y+0.0071y* —0.01434 " + 0.00939y*

L
2cos 0

s=€ X

w=2XEF Xs
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Using the following equation to check whether the value of ‘a’ is

corresponding to the maximum load.

The above steps need to be repeated until convergence is reached.
The results obtained using the above procedure are presented in Table
8-1. In Tabie 8-1, the deflection that is presented is the maximum
deflection at the center of the siab. The load *0.5P' is half the load that
can be carried by the square slab. The total maximum load ‘P’ that can

be carried by the square slab is 141.17 kN.

Table 8-1 Results of the solution presented by the present study

Trial| Assumed Obtained |Applied| Assumed | Obtained | Horizontal
No. | Compression | Compression [ Load | Deflection | Deflection | Reaction
Depth ‘a’ Depth ‘a’ | ‘0.5P’ ‘w’ ‘w’ ‘Ry,’
mm min kN mm mm kN
1 50 46.93 78.09 1.00 6.14 956.25
2 46.93 47.09 70.13 6.14 5.83 896.63
3 47.09 47.08 70.60 5.83 5.84 899.63
4 47.08 47.08 70.59 5.84 5.84 899.54
5 47.08 47.08 70.59 5.84 5.84 899.54
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Figure 8-27 The segments of the slab carrying the concentrated load
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According to the above analysis, the maximum load ‘P’ that can be
carried by the square slab is actually carried by four segments as shown
in Figure 8-27. These segments are replacing the original slab. The
average width ‘b,’ of each segment is ‘L/2’ as shown in Figure 8-24 and
Figure 8-25. The load that act on the tip of each segment is acting on a
width ‘b’ equal to ‘L/4’ as shown in Figure 8-25.

To validate the accuracy of the above tentative solution, the results
of this solution need to be tested against future expecrimental results.
Therefore, a future experimental program to test horizontally restrained
non-reinforced concrete square slabs subjected to central concentrated

loads is highly recommended.

8-8 Comparison Between Results Obtained From Finite Element

Analysis and Results Obtained From Present Stud
As was mentioned in Chapter S, running program Adina for models
having eight node brick elements results in higher carrying capacity and
smaller deflection. Therefore, the slab shown in Figure 8-9 was
reanalyzed by program Adina using 20 node brick elements. Using 20
node brick elements in the analysis usually consumes great time and
storage capacity of the computer. Therefore, taking advantage of the

symmetry of the slab, only, a quarter of the slab was analyzed as shown

in Figure 8-28.
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Figure 8-28 Mesh of the slab analyzed using 20 node brick elements

For the analyzed quarter slab, on the axes of symmetry there are
six degrees of freedom for each node, three degrees of freedom

representing displacements in ‘X’, ‘Y’ and °‘Z’ directions and three
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degrees of freedom representing rotations also in ‘X’, ‘Y’ and *‘Z’
directions. For each node along the axes of symmetry two degrees of
freedom representing displacements are assumed to be non-restrained, the
displacements in a direction perpendicular to the plane of the slab and in
a direction parallel to each axis of symmetry. The command program to
run program ADINA for this slab is presented in Appendix D Section
D-4.

The results of the finite element analysis are compared to the
results of the tentative solution presented in the preceding section. The

comparison is shown in Table 8-2.

Table 8-2 Comparison of results obtained from finite element

analysis and results obtained from present study (tentative solution)

Finite element Analysis {from Ratio of
analysis the present study | (B)/(A)
(A) (B)

Load ‘P’ kN 140.00 141.17 1.008
Deflection ‘w’ mm 5.79 5.84 1.009
Horizontal reaction

‘Ry’ kN 879.01 899.54 1.023
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ummar nclusions and Recommendations

9-1 Summary

A study dealing with the influence of the horizontal restraints on
the behaviour of concrete slabs subjected to central concentrated loads is
presented. As a part of this study, an experimental laboratory program
was carried out to examine the behaviour of horizontally restrained strip
slabs subjected to central concentrated loads. The reinforcement ratio of
these strip slabs was similar to the minimum reinforcement ratio required
by the Canadian code. The purpose of this reinforcement is to prevent a
sudden collapse at the moment of failure of the strip slabs.

Additional comparable tests were carried out on strip slabs that
were simply supported and horizontally non-restrained with maximum
reinforcement ratio corresponding to the reinforcement ratio at the

balanced condition®?.

The purpose of testing these simply supported
slabs is to compare their carrying capacities with the carrying capacities
of the horizontally restrained strip slabs. The results of the experimental

program are presented in Chapter 4.

In addition, an analytical study based on the plastic theory was
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carried out to analyze the horizontally restrained strip slabs having full
and partial horizontal restraints. As a result, a plastic analysis method
was developed for these strip slabs. Also, non-linear finite element
analysis for the horizontally restrained strip slabs was carried out. The
finite element program ADINA® was used to perform the required
analysis. The analytical study, its results and the results of the finite
element analysis are presented in Chapter 5.

A comparison of the results obtained from the experimental tests
and those obtained from the analytical study is presented in Chapter 6.
A comparison of the results of the experimental tests for the horizontally
restrained strip slabs and the experimental results of the simply
supported strip slabs without horizontal restraints is also included in
Chapter 6.

An analytical study and finite element analysis were carried out on
horizontally restrained square slabs subjected to central concentrated
loads. These are presented in Chapter 7. A comparison between the
results obtained from the finite <!ement analysis and those obtained from

the analytical study are also included in Chapter 7.

9-2 Conclusion
As a result of the experimental program, analytical study and finite

element analysis, the following conclusions can be made:
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a) The horizontal reactions of horizontally restrained slabs can be
obtained by using the elastic theory.

b) Experimental tests prove that the horizontal restraints increase
significantly the flexural carrying capacities of the tested strip
slabs (or beams).

c) The carrying capacities of horizontally restrained strip slabs
with reinforcement ratio similar to the minimum ratio required
by the Camadian code are almost equivalent to the carrying
capacities of simply supported strip slabs without horizontal
restraints having maximum reinforcement ratio (which indicates
that the enhanced carrying capacity due to the horizontal
restraint can be replaced with equivalent amount by using
additional flexural reinforcement).

d) In some cases for horizontally restrained slabs, the flexural
reinforcement might not be required. Experimental tests prove
that horizontal restraints can reduce or eliminate the flexural
reinforcement.

e) At failure load, the segments of the strip slabs or beams are
working as members in a mechanism system forming an arch
action. These members are connected to each other and to the

boundaries by plastic hinges.
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f) The proposed method of plastic analysis proves to be accurate

and efficient in predicting the maximum concentrated load that
can be carried by strip slabs or beams, also in predicting the

value of the maximum deflection associated with this load.

g) The proposed method can take into account the effects of full

h)

)

and partial horizontal restraints on the carrying capacities of
the strip slabs or beams.

The segments of a cracked horizontally restrained square slab
subjected to a central concentrated load are dependent on each
other in carrying the applied conceatrated load.

The proposed plastic analysis method can be extended to
analyze horizontally restrained square slabs subjected to central
concentrated loads.

Using the proposed plastic analysis method instead of the finite
element analysis can save time and does not need sophisticated

computer facilities.

k) The influence of horizontal restraints can be advantageously

1)

used in many structural applications. Most of the concrete
slabs are, to some degree, horizontally restrained either by
beams or adjacent slabs.

By considering the influence of horizontal restraints on a wide

range of applications of reinforced concrete slabs, a significant
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amount of reinforcement can be saved without reducing the
carrying capacities of the slabs.

m)This reduced amount of steel has the additional benefit of
enhancing the durability of concrete structures against the

effect of steel corrosion.

9-3 Recemmendations For Further Research

Some types of horizontally restrained slabs are designed without
taking advantage of their horizontal restraints. The shortage of
information on the subject of the influence of horizontal restraints on the
behavior of slabs or the fact that the subject is not yet widely known are
reasons for ignoring the effects of horizontal restraints. To provide
adequate information on this subject, further research studies and
experimental programs are 1 ommended. Some of the recommended

research programs are as follows:

a) To validate the accuracy of the proposed plastic method for
horizontally restrained non-reinforced square slabs subjected to
central concentrated loads, the results of this method need to
be tested against resuits to be obtained from future
experimental programs.

b) For horizontally restrained slabs, the problem of shear needs to
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be addressed both analytically and experimentally.

c) Additional research investigations are required to examine
horizontally restrained two-way slabs with different length to
width ratios.

d) Exi)erimental and analytical research are required to examiine
horizontally restrained slabs subjected to different patterns of

loading such as uniformly distributed loads.
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A-1

Appendix A

slab test, are presented as follow:

Test No. S1
Load kN. Deflection min.
0.000000 0.000
1.143193 0.405
2.237456 1.120
4.448222 2.110
6.672333 3.585
9.007650 4.065
11.120555 5.580
13.344666 7.340
15.568777 9.435
17.792888 12.095
20.016999 15.745
21.974217 23.360
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The values of the appiied loads versus the deflections, for each




Test No. S3
Load Deflection
kN mm.

0.0000 0.0000
1.1121 0.2500
2.2241 0.6000
4.4482 2.4719
6.6723 3.7640
8.8964 5.5618
11.1206 7.1348
13.3447 9.0449
15.5688 11.2921
17.7929 13.8764
20.0170 17.2472
22.2411 22.4719
23.3075 29.0500
16.0136 35.7865
15.1240 39.2135
13.3447 43.1461
6.6723 48.6517
5.3379 49.5506
4.0034 53.9888
3.3362 58.6517
2.6689 61.1236
2.4465 62.5281
2.2241 68.7640
2.2241 73.3708
2.6245 81.8539
2.5800 90.2247
2.4020 95.8427
2.5800 100.8989
2.5800 105.5056
2.4910 109.3258
2.4465 114.8876
2.4465 122.3596

Test No. S2
Load Deflection
kN mm.
0.000000000 0.0000
1.112055500 0.4600
2.224111000 0.9000
4.448222000 2.1250
8.896444000 4.7500
12.010199400 6.7350
13.344666000 7.6600
15.568777000 9.2000
17.792888000 11.1500
20.016999000 13.1250
22.241110000 15.3250
24.465221000 18.3350
26.689332000 22.7450
28.148348816 30.8917
8.006799600 33.7580
7.428530740 35.6688
6.183028580 36.9427
5.426830840 39.4904
5.026490860 40.7643
4.421532668 43.9490
3.914435360 45.8599
3.336166500 49.0446
3.291684280 52.8662
3.202719840 56.0510
2.935826520 57.3248
3.069273180 61.1465
3.069273180 65.6051
3.158237620 67.5159
3.247202060 71.3376
3.336166500 76.4331
3.113755400 82.1656
3.113755400 89.8089
3.113755400 89.1720
3.113755400 101.2739

3.113755400

107.6433
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(cont’d)

Test No. S4
Load Deflection
kN mm.
0.000 0.000
1.112 0.385
2.224 0.705
4.448 1.538
6.672 2.308
8.896 3.590
11.121 4.615
13.345 5.705
15.569 6.859
17.793 8.077
20.017 9.359
22.241 10.897
24 .465 12.756
26.689 14.615
28.913 17.051
31.138 19.615
33.362 23.269
35.586 29.615
25.800 30.449
25.577 30.577
25.355 31.090
25.444 32.372
25.132 32.949
24.688 33.526
24.376 34.167
23.798 35.128
23.353 35.192
22.908 35.256
22.241 35.513
22.686 36.795
16.014 38.718
15.569 39.615
14.234 41.859
13.789 42.500
11.565 43.141
10.231 45.128
8.896 46.474
6.672 48.526

Load Deflection
kN mm.
5.783 49.423
4.893 50.449
4.893 52.949
4.893 53.462
4.671 56.154
4.448 57.051
4.315 58.974
4.226 59.423
3.003 61.795
2.420 61.859
3.336 64.551
3.470 66.859
3.559 68.910
3.710 71.859
3.79% 74.359
3.866 76.923
3.848 79.872
3.768 81.667
3.817 83.910
3.830 87.564
4.408 90.449
3.870 94.103
3.750 96.795
3.923 99.359
3.839 101.987
3.977 104.872
3.914 106.410
3.914 108.397
3.981 111.282
4.003 112.308
4.030 115.256
4.035 116.923
4.048 120.192
3.825 124,167
3.888 127.179
3.879 132.179
4.030 132.179
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Test No. S5

(cont'd)

Load Deflection
kN mm.
22.686 68.580
21.796 69.630
18.683 70.617
17.348 71.605
16.458 72.531
15.791 73.457
15.257 74.383
14.857 75.247
14.679 76.235
14.412 77.222
13.878 78.272

Load Deflection
kN mm.
0.000 0.000
1.112 0.556
2.224 1.173
4.448 2.593
6.672 4,012
8.896 5.679
11.121 7.407
13.345 9.074
15.569 10,988
17.793 12.654
20.017 14.506
22.241 16.173
24.465 17.778
26.689 19.753
28.913 21.420
31.138 23.333
33.362 25.494
35.586 27.593
36.920 34.691
36.475 45.000
32.027 51.605
27.134 53.580
27.134 55.617
26.245 57.531
26.245 58.519
25.800 59.506
25.800 60.494
25.355 61.543
24.465 62.531
24.465 63.580
24.020 64.568
23.576 65.556
23.576 66.605
23.131 67.593
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(cont’d)

Load Deflection
kN mm.
21.2800 72.222
14.3900 78.272
11.8500 84.753
10.3500 89.630
9.8200 96.235
8.4800 104.506
7.5800 111.296
7.3400 117.160
7.0100 124.012
6.8500 131.914
6.4900 138.827

Test No. S6
Load Deflection
kN mm.

0.0000 0.000
1.1100 0.679
2.2200 1.605
4.4500 3.086
6.6700 4,691
8.9000 6.481
11.1200 8.457
13.3400 10.185
15.5700 12.654
17.7900 14.136
20.0200 16.173
22.2400 18.025
24.4700 20.926
26.6900 22.284
28.9100 24.136
31.1400 26.
33.3600 29.259
35.3200 41.049
34.6200 42.716
34.4500 43,765
34.0600 44,753
34.2600 45.741
34.1600 46.790
32.4200 47.716
32.1500 48.765
32.6200 49.815
32.4100 50.802
32.2700 51.852
31.5600 52.840
32.1800 53.827
31.8800 54.877
31.8400 55.864
31.9500 56.852
31.8700 60.000
30.6900 64.691
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Test No. S8
Load Deflection
kN mm.
0.0000 0.0000
1.1121 0.5625
2.2241 1.3125
3.3362 1.8750
4.4482 2.9375
6.6723 5.1563
8.8964 6.7500
11.1206 8.8125
13.3447 11.0000
15.5688 12.6875
17.7929 14.5625
20.0170 16.1250
22.2411 18.0000
24.4652 20.1875
26.6893 22.5000
28.1483 29.0000
28.3886 32.7500

Test No. S7
Load Deflection
kN mm.

0.0000 0.000
1.1120 0.375
2.2240 0.937
4.4480 2.250
6.6720 4.375
8.8960 6.812
11.1210 9.063
13.3450 11.250
15.5690 13.812
17.7930 15.812
20.0170 17.875
22.2410 20.563
24.4650 26.188
25.2880 28.770
25.3150 32.812
24.9010 38.250
24.8660 44125
24.2290 47.937
24.5190 51.875
23.6960 57.625
23.6250 61.313
22.9840 66.688
22.3480 71.000
21.9830 75.313
21.9790 80.063
21.3600 86.250
20.6180 01.688
17.8460 97.313
16.1470 102.688
14.7190 107.563
13.3980 113.375
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Test No. S10

Load Deflection
kN mmi.
0.000000000 0.000000
1.112055500 0.440252
2.224111000 0.817610
4.003399800 1.572327
4.448222000 1.761006
6.672333000 3.584906
8.896444000 5.283019
11.120555000 | 6.981132
13.344666000 | 8.930818
15.568777000 | 11.383648
17.792888000 | 13.899371
20.016999000 | 17.421384
22.241110000 | 22.515723
22.908343300 | 28.867925
20.973366730 | 33.018868
20.532962752 | 36.100629
19.327524590 | 39.308176
17.792888000 | 42.201258
5.435727284 | 47.358491
5.008697972 | 51.383648
4.092364240 | 55.283019
3.140444732 | 58.616352
1.975010568 | 62.452830
2.246352110 | 90.566038
2.424280990 | 92.830189
2.482107876 | 95.974843
2.513245430 | 98.616352
2.562175872 | 101.383648

Test No. S9
Load Deflection

kN mm.
0.00000000 0.000
1.11205550 0.485
2.22411100 0.970
3.33616650 1.455
4.44822200 2.545
6.67233300 3.818
8.89644400 5.152
11.12055500 6.848
13.34466600 8.485
15.56877700 10.485
17.79288800 12.424
20.01699900 14.970
22.24111000 17.879
24.46522100 22.485
25.73296427 29.273
23.48661216 33.394
21.20467427 37.818
17.79288800 41.515
3.78098870 46.667
3.34506294 49.697
2.50434899 53.091
1.61915281 55.576
1.24550216 68.848
2.22411100 79.455
2.46431499 81.636
2.52214187 84.606
2.61110631 88.121
2.65558853 90.788
2.70451898 93.515
2.70451898 96.667
2.72231186 99.091
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Test No. S11

Load Deflection
kN mm.
| _0.000000000 0.0000
1.112055500 0.5660
2.224111000 1.0063
3.336166500 1.5094
4.448222000 2.2013
6.672333000 4.2138
8.896444000 5.7862
11.120555000 7.5472
13.344666000 9.5597
15.568777000 11.7296
17.792888000 14.5283
20.016999000 17.3585
22.241110000 22.6730
23.130754400 27.8302
22.423487102 31.1950
21.395947820 35.2830
19.990309668 39.7484
3.669783150 44.0252
2 660036756 48.4906
1.080917946 65.8491
' 1.948321236 90.7547
2.077319674 97.6730
2.095112562 100.3145

Test No. S12
Load Deflection
kN mm.

0.00000 0.000
1.11206 0.539
2.22411 0.958
3.33617 1.317
4.44822 2.635
6.67233 4,251
8.89644 6.168
11.12056 7.904
13.34467 10.299
15.56878 12.515
17.79289 15.569
20.01700 19.880
21.90749 29.042
20.13710 30.719
18.64695 33.353
15.07947 36.048
12.97991 39.162
7.02374 42.156
5.68928 45.389
4.79074 47.605
4.04343 50.180
2.60666 54.491
2.19297 96.347
2.09956 100.060
2.17073 101.557
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A-2 The results of all concrete and mortar compression tests (three tests

for each slab) are presented as follow:

Compression tests for concrete

Test No First test ‘Ib’ Second test ‘Ib’ Third test ‘Ib’
S1 29150 30100 28550
S2 34150 31650 32250
S3 35700 30900 32800
S4 3”400 32750 31050
S5 33100 36150 35750
S6 32550 28800 38850
S7 46700 44500 49200
S8 40150 33500 41850
S9 28700 32500 39350
S10 39500 36000 40250
St1 30500 38150 45350
S$12 33200 48250 37250
Compression tests for mortar
Test No First test ‘Ib’ Second test ‘1b’ Third test ‘Ib’
S1 27100 23850 24850
S2 34550 26850 35800
S3 37000 36500 35500
S4 35000 28750 34250
S9 35350 27200 39300
S10 - - -
S11 23150 25000 29050
S12 23100 36200 42150
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A-3 The load-deflection curve, for each slab test, is presented, in
Figure A-1 through Figure A-12, as follows:
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Figure A-1 Load-deflection curve for test S1 (restrained boundaries)
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Figure A-2 Load-deflection curve for test S2 (restrained boundaries)
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Figure A-5 Load-deflection curve for test S5 (simply supported
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Figure A-7 Load-deflection curve for test S7 (simply supported
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Figure A-10 Load-deflection curve for test S10 (restrained boundaries)
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Figure A-11 Load-deflection curve for test S11 (restrained boundaries)
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A-4 The graphs of the stress-strain curves that are obtained from the

steel tests are shown as follows:
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Figure A-13 Load-deformation test no.l for bar 6M (first series)
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Figure A-14 Load-deformation test no.2 for bar 6M (first series)
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Figure A-15 Load-deformation test no.3 for bar 6M (first series)
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Figure A-16 Load-deformation test no.l for bar 6M (second series)
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Figure A-17 Load-deformation test no.2 for bar 6M (second seriesj
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Figure A-18 Load-deformation test no.3 for bar 6M (second series)
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Figure A-20 Load-deformation test no.2 for bar 10M (first series)
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Figure A-22 Load-deformation test no.l for bar 10M (second series)
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Figure A-23 Load-deformation test no.2 for bar 10M (second series)
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Figure A-24 Load-deformation test no.3 for bar 10M (second series)
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Figure A-26 Load-deformation test no.2 for bar 15M (first series)
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Figure A-27 Load-deformation test no 3 for bar 15M (first series)
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Figure A-28 Load-deformation test no.l for bar 15M (second series)
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Figure A-29 Load-deformation test no.2 for bar 15M (second series)

241




12,000
-
11,000
:
16,000 -
7
4
A 9,000
i -
' .
s 8,000
¥ -
C -
{ 7,000
“wn
a
v z
s 3
5ot 4000
M 4
~ 52
ot S
.o 5,000
L 1
i
: 4,000
. 3,000
]
¢
X
3
2,000
.
b T
gg i 1,000 -
180 '
L { 2 y 4 s 6 7 8 9 10

TLONGATION-COMPREIION
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B-1 Program °‘ss2.in’
The following command program Adina is for modeling the strip

slab of 2400 mm span. Eight-node elements are used.

ADINA-IN INPUT FILE

PROGRAM §S2 IS AN PLASTIC ANALSIS OF OF ONE WAY CONCRETE STRIP SLAB

* # * »

FILEUNITS LIST=6 LOG=6 ECHO=6
LIST FILEUNITS

CONTROL PLOTUNIT=CM,
PLOTSAVE=YES

LIST CONTROL

DATABASE CREATE 7

HEADING ' SS2 IS AN PLASTIC ANALSIS OF ONE WAY CONCRETE STRIP SLAB '
LIST HEADING

MASTER IDOF=000111 NSTEP=2 REACTIONS=YES
LIST MASTER

ANALYSIS TYPE=STATIC
LIST ANALYSIS

ITERATION METHOD=FULL-NEWTON LINE-SEARCH=YES
LIST ITERATION

TOLERANCES PRINT=1 ITEMAX=35
LIST TOLERANCES

PRINTOUT VOLUME=MAXIMUM CA=NO IPDA=4 PRINT=NO IPRIC=0,
IPRIT=0 IVC=0 IAC=1 ST=NO

TIMESTEP
1

e 00 h O O\
Pt Pt Pt st et



* 2 & 5 % * »

PORTHOLE FORMATTED=YES FILE=60

TIMEFUNCTION 1

0. 0
2 025
8 0625
16 10
21 11
29 118
30 1.184
36 13
COORDINATES
ENTRIES NODE X Y Y4
1 0 0 .100
2 200 0 .100
3 200 2400 .100
4 0 2400 .100
5 0 0 0
6 200 0 0
7 200 2400 0
8 0 2400 0

EGROUP 1 THREEDSOLID DISPL=SMALL STRAINS=SMALL MATERIAL=1
GVOLUME 1 2 3 4 56 7822538

MATERIAL N=1 TYPE=CONCRETE,

E0=28E+9 NU=0.20 SIGMAT=3E+6 SIGMAC=-30E+6 EPSC=-0.002,
SIGMAU=-20E6 EPSU=-0.003 BETA=.75 DENSITY=2400

C1=0.0 C2=0.0 XSI=0.0 STIFAC=0.0 OPTION=INPUT

SP11=0 SP12=0.25 SP13=0.5 SP14=0.75 SP15=1.0 SP16=1.25
SP311=1.0 SP321=1.4 SP331=18,

SP341=2.2 SP351=2.5 SP361=28 SP312=1.25 SP322=17,
SP332=2.1 SP342=2.55 SP352=2.95 SP362=3.3 SP313=1.25,
SP323=1.6 SP333=2.0 SP343=24 SP353=2.8 SP363=3.15

LOADS ELEMENT
25 3 IE6 1E6 1E6 I1E6 1
26 3 1IE6 1E6 1E6 1E6 1

FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/12 6 §
FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/4 3 7 8

ADINA
LIST ADINA

END
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B-2 Program ‘ss2 r.in' to reduce the difficulty of convergence

Program ‘ss2_r.in’ is a recommended command program by the
designer of Adina, to help reducing the difficulty of convergence. This
command program is to be run to reduce the difficulty of convergence for

program ‘ss2.in’.

*

ADINA-IN INPUT FILE

FILEUNITS LIST=6 LOG=6 ECHO=6
LIST FILEUNITS

CONTROL PLOTUNIT=CM,
PLOTSAVE=YES
LIST CONTROL

DATABASE CREATE 7

HEADING ' §S2 IS AN PLASTIC ANALSIS OF ONE WAY CONCRETE STRIP SLAB'
LIST HEADING

MASTER IDOF=000111 MODEX'=2 TSTART=30 NSTEP=23 DT=0.25,
REACTIONS=YES
LIST MASTER

ANALYSIS TYPE=STATIC
LIST ANALYSIS

ITERATION METHOD=BFGS
EQUILIBRIUM 23 23 1

ITERATION METHOD=FULL-NEWTON LINE-SEARCH=YES
LIST ITERATION
AUTOMATIC-ATS 10

TOLERANCES PRINT=2 ITEMAX=35
LIST TOLERANCES

PRINTNODES 1 8 1

ESAVE101

NSAVE 101

PRINTOUT VOLUME=MINIMUM CA=NO IPDA=4 PRINT=NO IPRIC=0,
IPRIT=0 IVC=0 IAC=1 ST=NO

»

TIMESTEP
6 1

»



* & & & 2 8

* # & & & & »

51

s e 00 LA OO

PORTHOLE FORMATTED=NO FILE=60

TIMEFUNCTION 1
0. 0
2 025
8 0625
16 1.0
21 11
29 1.18
30 1184
36 13

COORDINATES
ENTRIES NODE X Y Z
0 0 100

2 200 0 .100
3 .200 2.400 .100
4 0 2400 .100
5 c 0 0
6 200 0 0
7 200 2400 0O
8 0 2400 0

EGROUP 1 THREEDSOLID DISPL=SMALL STRAINS=SMALL MATERIAL~]

GVOLUME 1 2 34 56 78 22538

MATERIAL N=1 TYPE=CONCRETE,

E0=28E+9 NU=0.20 SIGMAT=3E+6 SIGMAC=-30E+6 EPSC=-0.002,

SIGMAU=-20E6 EPSU=-0.003 BETA=.75 DENSITY=2400,
XSI=1. OPTION=SANDIA

C1=0.0 C2=0.0 XSI=0.0 STIFAC=0.0 OPTION=INPUT
SP11=0 SP12=0.25 SP13=0.5 SP14=0.75 SP15=1.0 SP16=1.25
SP311=1.0 SP321=14 SP331=1.8,

SP341=2.2 SP351=2.5 SP361=2.8 SP312=1.25 S§P322=1.7,
SP332=2.1 SP342=2.55 SP352=2.95 SP362=3.3 SP313=1.25,
SP323=1.6 SP333=2.0 SP343=2.4 SP353=2.8 SP363=3.15

LOADS ELEMENT
25 3 1E6 1E6 1E6 1E6 1
26 3 1E6 1E6 1E6 IE6 1

FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/1 2 6 5
FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/4 3 7 8

ADINA

END
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B-3 Program ‘'ssd4.in’
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The following command program Adina is for modeling the strip

slab of 2400 mm span. Twenty-node elements are used.

* % ¥ &

ADINA-IN INPUT FILE
SS4 IS AN PLASTIC ANALSIS OF CONCRETE STRIP SLAB

FILEUNITS LIST=7 LOG=7 ECHO=7
LIST FILEUNITS

CONTROL PLOTUNIT=CM,
PLOTSAVE=YES

LIST CONTROL

DATABASE CREATE

HEADWG ' SS4 IS AN PLASTIC ANALSIS OF CONCRETE STRIP SLAB'
LIST HEADING

MASTER IDOF=000111 NSTEP=2 REACTIONS=YES
LIST MASTER

ANALYSIS TYPE=STATIC
LIST ANALYSIS

ITERATION METHOD=FULL-NEWTON LINE-SEARCH=YES
LIST ITERATION

AUTOMATIC-ATS 10

TOLERANCES PRINT=1 ITEMAX=35
LIST TOLERANCES

PRINTOUT VOLUME=MAXIMUM CA=NO IPDA=4 PRINT=NO I[PRIC=0,
IPRIT=0 IVC=0 IAC=1 ST=NO

TIMESTEP
1

O\ = e OO LA 0O O
R N



248

PORTHOLE FORMATTED=YES FILE=60

TIMEFUNCTION 1

0 0
2 025
8 00625
16 1.0
21 1.1
29 11i8
30 1184
31 1.1852
37 13
.
COORDINATES
ENTRIES NODE X Y Z
1 0 0 .100
2 .200 0 .100
. 3 .200 2.400 .100
4 0 2.400 .100
9 0 0 0
10 .200 0 0
11 .200 2400 0
12 0 2400 0

EGROUP 1 THREEDSOLID DISPL=SMALL STRAINS=SMALL MATERIAL=]
GVOLUME 1 23 4 9 1011 121 25 2 20 NCOI=ALL

MATERIAL N=1 TYPE=CONCRETE,

E0=28E+9 NU=020 SIGMAT=3E+6 SIGMAC=30E+6 EPSC=-0.002,
SIGMAU=-20E6 EPSU=-0.003 BETA=.75 DENSITY=2400

C1=0.0 C2=0.0 XSI=0.0 STIFAC=0.0 OPTION=INPUT

SP11=0 SP12=0.25 SP13=0.5 SP14=0.75 SP15=1.0 SP16=1.25
SP311=1.0 SP32l=14 SP331=1.8, )

SP341=22 SP351=2.5 SP3vl=2.8 SP312=1.25 SP322=17,
SP332=2.1 SP342=2.55 SP352=2.95 SP362=3.3 SP313=125,
SP323=1.6 SP333=2.0 SP343=2.4 SP353=2.8 SP363=3.15

* & % % % * &

LOADS ELEMENT
13 3 IE6 1E6 1E6 1E6 1

FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/1 2 109
FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/3 4 1211

ADINA

END
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B-4 Program ‘sSms150.in’

The following command pregram Adina is for modeling a

horizontally restrained strip slab with area steel equal to 150 mm? (as

given in Section 6-2-1). Nine-node elements are used.

*

* ®* *

ADINA-IN INPUT FILE

FILEUNITS LIST=7 LOG=7 ECHO=7
LIST FILEUNITS

CONTROL PLOTUNIT=CM,
PLOTSAVE=YES

LIST CGNTROL

DATABASE CREATE

HEADING ' S5MS150 PLASTIC ANALYSIS OF CONCRETE STRIP SLAB'
LIST HEADING

MASTER IDOF=100111 NSTEP=2 REACTIONS=YES
LIST MASTER

ANALYSIS TYPE=STATIC
LIST ANALYSIS

KINEMATICS DISP=LARGE

ITERATION METHOD=FULL-NEWTON LINE-SEARCH=YES
LIST ITERATION

AUTOMATIC-ATS 10

TOLERANCES PRINT=1 ITEMAX=35
LIST TOLERANCES

PRINTNODES 1 12 1

PRINTOUT VOLUME=MAXIMUM CA=NO IPDA=4 PRINT=NQO I[PRIC=0,
IPRIT=0 IVC=0 IAC=1 ST=NO

TIMESTEP
1

- 00 Lh OO ON
p—



1 1
6 1

PORTHOLE FORMATTED=YES FILE=60

TIMEFUNCTION 1

0. 0

2 025

8 0625

16 10

21 11

29 118

30 1.184

21 11852

37 13

COORDINATES
ENTRIES NODE y z

1 0 0.100
2 0 0.050
3 0 0.035
4 0 0.020
5 0 0.010
6 0 0.000
7 1.200 0.100
8 1.200 0.050
9 1.200 0.035

10 1.200 0.020
11 1.200 0.010
12 1.200 0.000

EGROUP 1 TRUSS MATERIAL=1
GLINE 4 10EL=6 NODES=3 NCOIN=ALL

EDATA

ENTRIES EL. AREA  PRINT SAVE
1 150E-6 NO YES
STEP1 TO
6 150E-6 NO YES

MATERIAL 1 PLASTIC E=200000E6 YIELD=400E6 DENSITY=7850 ET=2000E6

EGROUP 2 TWODSOLID STRESS2 DISPL=LARG MATERIAL=2

GSURFACE 1 2 8 7 1 6 9 NCOI=ALL
GSURFACE 2 4 108 1 6 9 NCOI=ALL
GSURFACE 4 6 12 10 1 6 9 NCOI=ALL
EDATA

ENTRIES EL PRINT SAVE THICK
1 NO YES 0.200
STEP 1 TO
13 NO YES 0.200



* % % # & % % B

MATERIAL N=2 TYPE=CONCRETE,

E0=28E+9 NU=0.20 SIGMAT=3E+6 SIGMAC=-30E+6 EPSC=-0.002,
SIGMAU=-20E6 EPSU=-0.003 BETA=.75 DENSITY=2400

C1=0.0 C2=0.0 XSI=0 7 STIFAC=0.0 OPTION=INPUT

SP11=0 SP!2=0.25 SP13=0.5 SP14=0.75 SP15=1.0 SP16=1.25
SP311=1.0 SP32i=1.4 SP331<1.8,

SP341=2.2 SP351=2.5 SP361=2.8 SP312=1.25 SP322=117,
SP332=2.1 SP342=2.55 SP352=2.95 SP362=3.3 SP313=125,
SP323=1.6 SP333=2.0 SP343=2.4 SP353=2.s SP363=3.15

LOADS CONCENTRATED . .
7 3 -9600

FIXBOUNDRIES DIRECTIONS=13456 TYPE=NODES/4

FIXBOUNDRIES DIRECTIONS=12456 TYPE=LINES/7 8§
FIXBOUNDRIES DIRECTIONS=12456 TYPE=LINES/8 10
FIXBOUNDRIES DIRECTIONS=12456 TYPE=LINES/10 12
FIXBOUNDRIES DIRECTIONS=12456 TYPE=LINES/2 4
FIXBOUNDRIES DIRECTIONS=12456 TYPE=LINES/4 6

ADINA

END
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B-5 Program ‘'simd2.in’
The following command program Adina is for modeling a
horizontally restrained strip slab with a span equai to 1.6 m and a shear

span to depth ratio equal to 8 (as given in Section 6-2-2). Nine-node

elements are used.

ADINA-IN INPUT FILE

FILEUNITS LIST=7 LOG=7 CZCHO=7
LIST FILEUNITS

CONTROL PLOTUNIT=CM,
PLOTSAVE=YES )
LIST CONTROL

DATABASE CREATE

HEADING 'S5MD2 PLASTIC ANALYSIS OF CONCRETE STRIP SLAB'
LISTHF ~D '3

MASTER IDOF=100111 NSTEP=2 REACTIONS=YES
LIST MASTER

ANALYSIS TYPE=STATIC
LIST ANALYSIS

KINEMATICS DISP=LARGE

ITERATION METHOD=FULL-NEWTON LINE-SEARCH=YES
LIST ITERATION

AUTOMATIC-ATS 10

TOLERANCES PRINT=1 ITEMAX=35
LIST TOLERANCES

PRINTNODES 1 12 1

TIMESTEP

-V - ]
— s
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1 1
1 1
6 1
23 1
60 1
1201

PORTHOLE FORMATTED=YES FILE=60

TIMEFUNCTION 1

0. 0.

2 025

8 0.625

16 1.0

21 11

29 118

30 1.184

31 1.1852

37 13

60 2.0

120 4.0

240 20

COORDINATES

ENTRIES NODE y z
1 0 0.100
2 0 0.050
3 0 0.035
4 l 0.020
5 0 0.010
6 0 0.000
7 0.800 0.100
8 0.800 0.050
9 0.800 0.035
10 0.800 0.020
11 0.800 0.010
12 0.800 0.000

EGROUP 1 TRUSS MATERIAL~]
GLINE 4 10 EL=4 NODES=3 NCOIN=ALL

EDATA

ENTRIES EL AREA PRINT SAVE
1 10E-6 NO YES
STEP1 TO
4 10E<6 NO YES

MATERIAL ! PLASTIC E=200000E6 YIELD=400E6 DENSITY=7850 ET=2000E6

EGROUP 2 TWODSOLID STRESS2 DISPL=LARG MATERIAL=2



* # & % ¥ & & =

GSURFACE 1 2 8 7 1 4 9 NCOI=ALL
GSURFACE 2 4 108 1 4 9 NCOI=ALL
GSURFACE 4 6 12 10 1 4 9 NCOI=ALL
EDATA
ENTRIES EL PRINT SAVE THICK
1 NO YES 0.200
STEP 1 TO
12 NO YES 0200

MATERIAL N=2 TYPE=CONCRETE,

E0=28E+9 NU=0.20 SIGMAT=3E+6 SIGMAC=-30E+6 EPSC=-0.002,
SIGMAU=-20E6 EPSU=-0.003 BETA=.75 DENSITY=2400

C1=0.0 C2=0.0 XSI=0.0 STIFAC=0.0 OPTION=INPUT

SP11=0 SP12=0.25 SP13=0.5 SP14=0.75 8P15=1.0 SP16=1.25
SP31i=1.0 SP321=14 SP331=138,

SP341=2.2 SP351=2.5 SP36]1=2.8 SP312=1.25 SP322=1.7,
SP332=2.1 SP342=2.55 SP352=2.95 SP362=3.3 SP313=1.25,

SP323=1.6 SP333=2.0 SP343=2.4 SP353=2.8 SP363=3.15

LOADS CONCENTRATED

7 3 -9600

FIXBOUNDRIES
FIXBOUNDRIES
FIXBOUNDRIES
FIXBOUNDRIES
FIXBOUNDRIES
FIXBOUNDRIES
FIXBOUNDRIES
FIXBOUNDRIES
FIXBOUNDRILS

ADINA
LIST ADINA

END

DIRECTIONS=13456
DIRECTIONS=13456
DIRECTIONS=12456
DIRECTIONS=12456
DIRECTIONS=12456
DIRECTIONS=12456
DIRECTIONS=12456
DIRECTIONS=12456
DIRECTIONS=12456

TYPE=NODES/6
TYPE=NODES/4
TYPE=LINES/7 8
TYPE=LINES/8 10
TYPE=LINES/10 12
TYPE=LINES/1 2
TYPE=LINES2 4
TYPE=LINES/4 6
TYPE=NODES/12
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B-6 Program ‘sSmr6.in’

The following command program Adina is for

255

modeling a

horizontally restrained strip slab with an elastic support stiffness of

approximately 180 kN per mm (as given in Section 6-2-3).

elements are used.

* »

ADINA-IN INPUT FILE

FILEUNITS LIST=7 LOG=7 ECHO=7
LIST FILEUNITS

CONTROL PLOTUNIT=CM,
PLOTSAVE=YES

LIST CONTROL

DATABASE CREATE

HEADING ' SSMR6 PLASTIC ANALYSIS OF CONCRETE STRIP SLAB'
LIST HEADING

MASTER IDOF=100111 NSTEP=2 REACTIONS=YT'§
LIST MASTER

ANALYSIS TYPE=STATIC
LIST ANALYSIS

KINEMATICS DISP=LARGE

ITERATION METHOD=FULL-NEWTON LINE-SEARCH=YES
LIST ITERATION

AUTOMATIC-ATS 10

TOLERANCES PRINT=1 ITEMAX=35
LIST TOLERANCES

PRINTNODES 1 12 1

TIMESTEP
1

00 Lh O O\
[l o d

p—

Nine-node



"

1 1
6 1

PORTHOLE FORMATTED=YES FILE=60

TIMEFUNCTION 1

0. 0.

2 025

8 0.625

16 10

21 11

29 1.18

30 1.184

31 1.1852

37 13

COORDINATES

ENTRIES NODE y z
1 0 0.100
2 0 0.050
3 0 0.035
4 0 0.020
5 0 0.010
6 0 0.000
7 1200 0.100
8 1.200 0.050
9 1.200 0.035
10 1.200 0.020
11 1.200 0.010
12 1.200 0.000

EGROUP 1 TRUSS MATERIAL=]
GLINE 4 10 EL=6 NODES=3 NCOIN=ALL

EDATA

ENTRIES ELL AREA  PRINT SAVE
1 10E-6 NO YES
STEP1TO
6 I10E-6 NO YES

MATERIAL 1 2LASTIC E=200000E6 YIELD=400E6 DENSITY=7850 ET=2000E6
EGROUP 2 TWODSOLID STRESS2 DISPL=LARG MATERIAL=2

GSURFACE 1 2 8 7 1 6 9 NCOI=ALL
GSURFACE 2 4 108 1 6 9 NCOI=ALL
GSURFACE 4 6 12 10 1 6 9 NCOI=ALL

EDATA
ENTRIES EL PRINT SAVE THICK
1 NO YES 0.200
STEP 1 TO
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18 NO YES 0.200

MATERIAL N=2 TYPE=CONCRETE,

E0=28E+9 NU=0.20 SIGMAT=3E+6 SIGMAC=-30E+6 EPSC=-0.002,
SIGMAU=-20E6 EPSU=-0.003 BETA=.75 DENSITY=2400

C1=0.0 C2=0.0 XSI=0.0 STIFAC=0.0 OPTION=INPUT

SP11=0 SP12=0.25 SP13=0.5 SP14=0.75 SP15=1.0 SP16=1.25
SP311=1.0 SP321=1.4 SP331=138,

SP341=2.2 SP351=2.5 SP361=2.8 SP312=1.25 SP322=1.7,
SP332=2.1 SP342=2.55 SP352=295 SP362=3.3 SP313=1.25,
SP323=1.6 SP333=2.0 SP343=2.4 SP353=2.8 SP363=3.15

EGROUP 3 SPRING

PROPERTYSET N=1 K=40.97E6
PROPERTYSET N=2 K=65.43E6
PROPERTYSET N=3 K=72.17E6

ENODES
11 2
2 2 2
3 3 2
4 4 2
55 2
6 6 2
EDATA
ENTRIES EL PROPERTYSET PRINT SAVE
1 1 YES  YES
2 1 YES YES
3 1 YES  YES
4 1 YES  YES
5 2 YES  YES
6 3 YES  YES
LOADS CONCENTRATED
7 3 -9600

FIXBOUNDRIES DIRECTIONS=13456 TYPE=NODES/4
FIXBOUNDRIES DIRECTIONS=12456 TYPE=LINES/7 8
FIXBOUNDRIES DIRECTIONS=12456 TYPE=LINES/8 10
FIXBOUNDRIES DIRECTIONS=12456 TYPE=LINES/10 12

ADINA

END
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B-7 Program ‘sSmml.in’

The following command program Adina is for modeling a strip slab

horizontally restrained by a layer of mortar 200 mm thick (as given in

Section 6-4). Nine-node elements are used.

ADINA-IN INPUT FILE

FILEUNITS LIST=7 LOG=7 ECHO=7
LIST FILEUNITS

CONTROL PLOTUNIT=CM,
PLOTSAVE=YES

LIST CONTROL

DATABASE CREATE

HEADING ' SSMM1 PLASTIC ANALYSIS OF CONCRETE STRIP SLAB *
LIST HEADING

MASTER IDOF=100111 NSTEP=2 REACTIONS=YES
LIST MASTER

ANALYSIS TYPE=STATIC
LIST ANALYSIS

KINEMATICS DISP=LARGE

ITERATION METHOD=FULL-NEWTON LINE-SEARCH=YES
LIST ITERATION

AUTOMATIC-ATS 10

TOLERANCES PRINT=1 ITEMAX=35
LIST TOLERANCES

PRINTNODES 1 12 1

TIMESTEP

N = ome OO0 W OO O
L



PORTHOLE FORMATTED=YES FILE=60

TIMEFUNCTION 1

0. 0

2 025

8 0625

16 1.0

21 1.1

29 118

30 1.184

31 1.1852

37 13

COORDINATES

ENTRIES NODE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

EGROUP 2 TWODSOLID STRESS2 DISPL=LARG MATERIAL~2

GSURFACE 1 2 8 71 6
GSURFACE 2 4 108 1 6
GSURFACE 4 6 12101 6
EDATA

CODOO Ow

1.200
1.200
1.200
1.200
1.200
1.200
-0.200
-0.200
<0.200
-0.200
-0.200
-0.200

rA

0.100
0.050
0.035
0.020
0.010
0.000
0.100
0.050
0.035
0.020
0.010
0.000
0.050
0.020
0.000
0.050
0.010
C

9 NCOI=ALL
9 NCOI=ALL
9 NCOI=ALL

ENTRIES EL PRINT SAVE THICK
1 NO YES 0.200

STEP 1 TO
183 NO YES 0.200

MATERIAL N=2 TYPE=CONCRETE,

E0=28E+9 NU=0.20 SIGMAT=3E+6 SIGMAC=-30E+6 EPSC=-0.002,
SIGMAU=-20E6 EPSU=-0.003 BETA=.75 DENSITY=2400

C1=0.0 C2=0.0 XSI=0.0 STIFAC=0.0 OPTION=INPUT

SP11=0 SP12=0.25 SP13=0.5 SP14=0.75 SP15=1.0 SP16=1.%

Sr311=1.0 SP321=1.4 SP331=13,
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SP341=2.2 SP351=2.5 SP361=2.8 SP312=1.25 SP322=17,
SP332=2.1 SP342=2.55 SP352=2.95 SP362=33 SP313=1.25,
SP323=1.6 SP333=2.0 SP343=2.4 SP353=2.8 SP363=3.15

EGROUP 3 SPRING
PROPERTYSET N=1 K=143.4E6
PROPERTYSET N=2 K=229E6
PROPERTYSET N=3 K=252.6E6

ENODES
11 2
2.2 2
33 2
14 14 2
17 17 2
15 15 2
EDATA
ENTRIES EL FROPERTYSET PRINT SAVE
1 1 NO YES
2 1 NO YES
3 1 NO YES
14 1 NO YES
17 2 NO YES
15 3 NO YES

EGROUP 4 TWODSOLID STRESS2DISPL=LARG MATERIAL=4

GSURFACE 13 2 4 14 1 1 9 NCOI=ALL
GSURFACE 14 4 6 15 1 1 9 NCOI=ALL

EDATA
ENTRIES EL PRINT SAVE THICK
I NO YES 0.200
STEP | TO
2 NO YES 0.200

MATERIAL N=4 TYPE=CONCRETE,
E0=32E+9 NU=0.20 SIGMAT=3E+6 SIGMAC=-28E+6 EPSC=-0.002,
SIGMAU=-20E6 EPSU=-0.003 BETA=75 DENSITY=2400

LOADS CONCENTRATED
7 3 -9600

FIXBOUNDRIES DIRECTIONS=13456 TYPE=NODES/4
FIXBOUNDRIES DIRECTIONS=12456 TYPE=LINES/7 8
FIXBOUNDRIES DIRECTIONS=12456 TYPE=LINES/8 10
FIXBOUNDRIES DIRECTIONS=12456 TYPE=LINES/10 12

ADINA

END
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Appendix C

C-1 The structural scheme of the set-up

All the members of the test set-up that are shown in Figure C-1 are

steel members unless indicated otherwise.

A=81346 mm
A=232156 mu{ I=215E6 mm*
1=4993E6 mm
— Ry, A=7840 mm' Ry, —" T 51
[ ———
I=107E8 mm ._183
A=268800 mm®
I=5161E6 mm* 803
Concrete
234 — | 2450 | 234

Figure C-1 The structure scheme of the set-up

C-2 The calculation of the load ‘P..a’_and the deflection f

The cross sectional dimensions of slab S1 are 104 mm in depth and
203 mm in width. The concrete compression strength is 28.55 MPa.
The span of the slab is 2400 mm. The maximum load ‘P.,,’ that can be
carried by the strip slab S1 is calculated according to the present codes
of practice, assuming a non-reinforced concrete strip slab, as will be
shown below. The rupture strength of the concrete 'f,” is given as

follows:
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f.= 0.64f =0.6428.55 =3.21 MPa

b | foom=1s

*E ‘Z%L:T‘ 73

fr

Figure C-2 The internal forces at the cross section of S1 at midspan

As shown in Figure C-2, the internal resultant forces in the

concrete forming the internal resisting couple are C and T and the lever
. . 2h
arm of this couple is 30 where

C=T=—;-x3.21x%4—x203= 16,942.38 N

The internal moment of resi~tance is calculated as follows:

M:Cx%ﬁ:16,942.38><2’“°4

=1,174,671.68 N.mm

*

The external bending moment and the load ‘P.,4’ are given as

follows:

Where L is the span length = 2400 mm

_4xM _4x1174,671.68
L 2400

10° =196 kN

i.e. P,

The corresponding deflection ‘w’ is given as follows:
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1 _ P xI
W= — X
48 ExI

Where E is the modulus of elasticity of the concrete and given as
E=50004f =5000+28.55= 26,716.1 MPu
and I is the moment of inertia of the cross section of the strip slab and is
given as

_bxnk

I =19,028,949.3 mm*

] 1 1,960.0 x 2400’
1.e. w=—X
48" 26,716.1x19,028,949.3

= L11 mm

C-3 Calculations of ‘P;.,” theoretical failure load for slab S5

The theoretical failure load ‘P,,.’ is calculated according to the
Canadian Code CSA for the fully reinforced horizontally non-restrained
strip slab S5. The reduction factors presented in the code are ignored.
The cross sectional dimensions of the slab are 117 mm in depth and 203
mm in width. The compression strength of the concrete is 34.14 MPa.
The span of the slab is 2400 mm. The yield strengths of the tension and
compression reinforcement are 441.12 MPa and 504.40 MPa
respectively. The reinforcement of this strip slab is shown in Figure 6-7

in Chapter 6. The calculation of ‘P,.,’ is as given below.
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Figure C-3 The internal forces at the cross section of §5 at midspan

Referring to Figure C-3, the value of ‘A,,’ is given as follows:

A, = A, X(f,=035£))  eeriiiiienann (C-1)
J,
A, =—5-6'—5-§-x(504.4o— 0.85x34.14) = 60 mm?
441.12

Where:

A, is the area of tension reinforcement which has a tension
force equivalent to the compression force in the compression
reinforcement

A, is the compression area steel

y is the yield strength of the tensicn reinforcement

f, is the yield strength of the compression reinforcement

The area of the tension reinforcement ‘A,,’ which has a tension

force equivalent to the compressive force in the concrete can be

calculated as follows:

A,, = 600—60.942 = 539,058 mm*
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Where ‘A,’ is the total area of the tension steel

The depth of the compression zone ‘a’, as shown in Figure C-3, is

given as follows:

A, xf,
=——"t C-3
4 0.85% f.xb (€3
_539.058x44112

= 40,366 mm?

47 0.85%34.14% 203

Where ‘b’ is the width of the cross section = 203 mm
The value of ‘c’ which is the distance from the extremity of the
campression fibers to the neutral axis, as shown in Figure C-3, is given

as follows:

c=-9—=4—0'-16—6-=49.407 mm
B, 03817

Where ‘B,’ is taken as 0.85 for concrete strength f. up to and
including 30 MPa and beyond this it is reduced continuously at a rate of
0.08 for each additional 10 MPa of strength, but with a minimum valu=

for ‘B,” of 0.65 which is calculated as follows:

B, = 0.85 — -()i—:))§(34.24—30)=0.817

Since the depth of the neutral axis c=a/f,, from the strain diagram
in Figure C-3, the strain in the compression reinforcement can now be

computed to confirm whether that steel has yielded.
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. 0.003
€="2=d) i, (C-4)
e =209 49 407-36) = 0.000814
49.407

Where d is the distance from the center of the cc.mpression

reinforcement to the top of the cross section as shown in Figure C-3.

E. 200,000.0

Where €, and ey' are the actual strain of the compression
reinforcement and the strain of the reinforcement at the yielding point
respectively. E, is the modulus of elasticity of the steel.

The actual stress in the compression reinforcement is calculated as
follows:

fi=€,XE, it (C-5)
f,'=0.000814x200,000.0= 162.818 MPa

Equation (C-1) will become

A . :
A,,:-}:-x(j;-o.ssm

_ 56.55
144112

X(162.818 — 0.85x34.14)= 17.153 mm’

Substituting in Equation (C-2), (C-3), (C-4) and (C-5)
A, =600-17.153=528.847 mm?

_ 528.847x 44112

a= = 43.645 mm?
0.85%34.14 x 203




=a_B65 s mm
B~ 0817
e =2:903 53 421-36)=0.000978
53.421

f; =0.000978 x200,000.0 = 195.664 MPa
The bending moment ‘M,’ due to the compression reinforcement
and its corresponding tension reinforcement is calculated as follows:
M, =A4,(f,-0.85f)d-d)
M, =17.153 (195.664 — 0.85x34.14 }(92-36)x10°=0.16 AN.m

Where d is shown in Figure C-3

The bending moment ‘M,’ due to the Whitney compression zone of
the concrete and its corresponding tension reinforcement is calculated as

follows:
a
M, =4, xfy(d-'z‘)

43,645

M, =582.847>441.12 (92— )107°=18.043 kN.m

The total resisting moment at midspan is calculated as follows:
M=M+M,
M=0.16+18.043=18.203 AN.m
The value of the bending moment ‘M’ for a simply supported strip
beam subjected to the load ‘P,,.,' at its midspan, can be calculated as

follows:
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M= PlheoXL
4
i.e.P, = M;" = 18""202"4 =30.34 AN

C-4 Calculations for reinforcement ratios for slab S5

Referring to Figure C-3, the maximum value of ‘c’ is given as:

600
cmlx = d
600+ f,

Substituting in the above equation,

600

Copay = ————X%X92=53.0198 mm
600+44L12

The total internal compressive force ‘C’ due to the Whitney
compression zone of the concrete and the compression reinforcement is
calculated as follows:

C=A(f, —0.85f)+(0.85x f. xbx B, xc,,,)

C=56.55(195.664 —0.85x34.14)+(0.85% 34.14x203x 0.817 X53.0198) = 264,599.187 N

Where 4., f., b, B, and £ are given in the above Section C-3.

The maximum area steel A, , is calculated as follows:

=—=""—=599.835 mm*

The maximum reinforcement ratio ‘p,,,* is calculated as follows:

=0.0032118

"™ bxd 203x92
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The actual reinforcement ratio ‘p,.,* is calculated as follows:

A 600

L= =0.0032127
bxd 203x92

Pus =

The minimum reinforcement ratio ‘p,,;,' is calculated as follows:

poa == 14 6003174

f, 44112
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Appendix D

D-1 Program ‘wall.in’

The following command program Adina is for modeling the

segment of the slab shown i Figure 7-4. Eight-node elements are used.

# # # * * X »

#

wall.in

ADINA-IN INPUT FILE

SLB1 PLASTIC ANALYSIS OF TWO WAY WALL
FILEUNITS LIST=7 LOG=7 ECHO=7

LIST FILEUNITS

CONTROL PLOTUNIT=CM,

PLOTSAVE=YES

LIST CONTROJ,

DATABASE CREATE

HEADING ' SLB1 PLASTIC ANALYSIS OF TWO WAY WALL'
LIST HEADING

MASTER IDOF=000111 NSTEP=2 REACTIONS=YES
LIST MASTER

ANALYSIS TYPE=STATIC
LIST ANALYSIS

ITERATION METHOD=FULL-NEWTON LINE-SEARCH=YES
LIST ITERATION

AUTOMATIC-ATS 10

TOLERANCES PRINT=1 ITEMAX=35
LIST TOLERANCES

PRINTNODES 1 4 1
ESAVE 101
NSAVE 101

PRINTOUT VOLUME=MIN CA=NO IPDA=4 PRINT=NO IPRIC=0,
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IPRIT=0 IVC=0 1AC=1 ST=NO

TIMESTEP
4 1

PORTHOLE FORMATTED=YES FILE=60

TIMEFUNCTION 1
0. 0
2 025
6 05

COORDINATES
ENTRIES NODE X Y V4

1 112 0 1.12
2 128 O 1.12
3 1.28 0.1 112
4 2 01 112
5 0 0 0
6 24 0 0
7 24 01 0
8 0 0.1 0

EGROUP 1 THREEDSOLID DISPL=SMALL STRAINS=SMALL MATERIAL=1
GVOLUME 1 2 3 45 6 78 15178
MATERIAL N=1 TYPE=CONCRETE,

E0=28E+9 NU=0.20 SIGMAT=3E+6 SIGMAC=-30E+6 EPSC=-0.002,
SIGMAU=-20E6 EPSU=-0.003 BETA=.75 DENSITY=2400

LOADS ELEMENT

1 3 255E6 25.5E6 25.5E6 25.5E6 1
2 3 255E6 25.5E6 25.5E6 25.5E6 1
3 3 255E6 25.5E6 25.5E6 25.5E6 1
4 3 255E6 25.5E6 25.5E6 25.5E6 1
5 3 255E6 25.5E6 25.5E6 25.5E6 1
6 3 255E6 25.5E6 25.5E6 25.5E6 1
7 3 255E6 25.5E6 25.5E6 25.5E6 1
8 3 25.5E6 25.5E6 25.5E6 25.5E6 1
9 3 255E6 25.5E6 25.5E6 25.5E6 1
10 3 25.5E6 25.5E6 25.5E6 25.5E6 1}
I} 3 25.5E6 25.5E6 25.5E6 25.5E6 1
12 3 255E6 25.5E6 25.5E6 25.5E6 1
13 3 255E6 25.5E6 25.5E6 25.5E6 1
14 3 25.5E6 25.5E6 25.5E6 25.5E6 1
15 3 25.5E6 25.5E6 25.5E6 25.5E6 1

FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/5 6 7 8
ADINA

END
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D-2 Program ‘sib2.in’
The following command program Adina is for modeling the slab

shown in Figure 7-9. Eirht-node elements are used.

SLB2.IN

ADINA-IN INPUT FILE

R % B W

SLB2 IS PLASTIC ANALYSIS PROGRAM FOR TWO WAY SI AB

* 4

FILEUNITS LIST=7 LOG=7 ECHO=7
LIST FILEUNITS

CONTROL PLOTUNIT=CM,
PLOTSAVE=YES

LIST CONTROL

DATABASE CREATE

HEADING ' SLB2 IS PLASTIC ANALYSIS PROGRAM FOR TWO WAY SLAB'
LIST HEADING

MASTER IDOF=000111 NSTEP=2 REACTIONS=YES
LIST MASTER

ANALYSIS TYPE=STATIC
LIST ANALYSIS

ITERATION METHOD=FULL-NEWTON LINE-SEARCH=YES
LIST ITERATION

AUTOMATIC-ATS 10

TOLERANCES PRINT=1 ITEMAX=35
LIST TOLERANCES

PRINTNODES 640 670 1
PRINTOUT VOLUME=MIN CA=NO IPDA=4 PRINT=NO IPRIC=0,
IPRIT=0 IVC=0 IAC=1 ST=NO

TIMESTEP

bt pme g s ON
[



13 1
PORTHOLE FORMATTED=YES FILE=60

TIMEFUNCTION 1
0. o0
2 025
8 0.625
9 0.6485
10 0.6719
11 0.6777
12 0.6799
25 10

COORDIMNATES

ENTRIES NODE X Y Z
0 0 .100

2400 0 106

2.400 2.400 .100

0 2.400 .100

0 0 0

2400 0O 0

2400 2400 0

0 2400 O

0 0 03333333333
2400 0O 03333333333
2400 2.400 .03333333333
0 2.400 03333333313

VNN === a

EGROUP | THREEDSOLID DISPL=SMALL STRAINS=SMALL MATERIAL~I,
RESULTS=FORCES

EDATA
ENTRIES EL PRINT
15
14
238
42
56
70
84
98

el

240 Y
239 Y
253 Y
267 Y
281 Y
295 Y
309 Y
33 Y

465 Y
464 Y

273
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478 Y
492 Y
506 Y
520 Y
534 Y
548 Y

GVOLUME 1

234
GVOLUME 5 6 7 8

o W

6 78 151528
101112 15151 8

MATERIAL N=1 TYPE=CONCRETE,
E0=28E+9 NU=0.20 SIGMAT=3E+6 SIGMAC=-30E+6 EPSC=-0.002,
SIGMAU=-20E6 EPSU=-0.003 BETA=75 DENSITY=2400

LOADS ELEMENT

113 3 10E6 10E6 10E6 10E6 1

FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/956 10
FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/1067 11
FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/ 1178 12
FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/ 12859

ADINA

END

D-3 Program ‘sibl.in’

The following command program Adina is for modeling the slab
shown in Figure D-1 and Figure 7-19. Eight-node elements are used.
The summation of the vertical reaction forces at the locations of the
nodes at the boundary of one side of the slab is obtained from the finite
element output and the distribution of the reaction is presented as shown
in Figure D-2. The vertical coordinate that is shown in Figure D-2
represents the downward reaction with negative numbers and the upward

reaction is represented with positive numbers.
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The values of the forces that are acting on the diagonal !lines, at
each layer, at the locations of the nodes in a direction perpendicular to
the base of the segment (corresponding to Figure 7-12-A) are presented
in Figure D-3.

Similar values for the forces that are acting on the diagonal lines
in a direction parallel to the base of the segment are presented in Figure
D-4. This direction corresponds to the direction that is shown in Figure
7-12-B.

The values of the forces presented in Figure D-4 are used in
combination with the values presented in Figure D-3 to obtain the values

of the forces presented in Figure D-5 and Figure D-6.

SLBLIN
ADINA-IN INPUT FILE
SLB1 IS PLASTIC ANALSIS PROGRAM FOR TWO WAY SLAB

»
L4
-
"
-
»
»

FILEUNITS LIST=7 LOG=7 ECHO=7
LIST FILEUNITS

CONTROL PLOTUNIT=CM,
PLOTSAVE=YES

LIST CONTROL

DATABASE CREATE

HEADING * SLBI IS PLASTIC ANALYSIS PROGRAM FOR TWO WAY SLAB'
LIST HEADING

MASTER IDOF=000111 NSTEP=2 REACTIONS=YES
LIST MASTER

ANALYSIS TYPE=STATIC
LIST ANALYSIS

ITERATION METHOD=FULL-NEWTON LINE-SEARCH=YES




LIST ITERATION

AUTOMATIC-ATS 10

TOLERANCES PRINT-=1 ITEMAX=35

LIST TOLERANCES

PRINTNODES 650 655 1

PRINTOUT VOLUME=MIN CA=NO IPDA=4 PRINT=NO IPRIC=0,
IPRIT=0 IVC=0 IAC=1 ST=NO

TIMESTEP
6 1
1 1
1 1
1 1
14 1

PORTHOLE FORMATTED=YES FILE=60

TIMEFUNCTION 1

0. 0
2 025
8 0.625
9 0.6719
10 0.6777
11 0.6799
25 10
COORDINATES
ENTRIES NODE X
1 0
2 2.400
3 2.400
4 0
5 0
6 2.400
7 2.400
8 0

EGROUP 1 THREEDSOLID
RESULTS=FORCES

EDATA
ENTRIES EL PIUNT
15
14
28
42
56
70

ol

Y Z
0 .100
0 100
2400 .100
2400 (100
0 0
0 0
2400 O
2400 O

DISPL=SMAILL STRAINS=SMALL MATERIAL=1,
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GVOLUME t 2 3 456 78 151538

MATERIAL N=]1 TYPE=CONCRETE,
E0=28c+9 NU=0.20 SIGMAT=3E+6 SIGMAC=-30E+6 EPSC=-0.002,
SIGMAU=-20E6 EPSU=-0.003 BETA=.75 DENSITY=2400

LOADS ELEMENT
113 3 10E6 10E6 10E6 10E6 1

FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/1 2 6 5
FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/4 3 7 8
FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/1 4 8 5
FIXBOUNDRIES DIRECTIONS=123456 TYPE=SURFACES/2 3 7 6

ADINA

END
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15 elements

[ 2400 mm

1

15 elements

{ 1 2400 mm
A A
P
3 elements 1 100 mm
| 15 elements J
2400 mm

Figure D-1 A square slab with fixed boundaries analyzed by the finite

element method
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Figure D-2 The distribution of the vertical reaction at one side of the

slab
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Figure D-3 Forces acting on the diagonal lines in a direction

perpendicular to the base of the segment
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Figure D-4 Forces acting on the diagonal lines in a direction parallel to

the base of the segment
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Figure D-5 Forces perpendicular to the diagonal lines



D-4 Program ‘SIb7.in’

Forces at the locations of the nodes (in Newtons)

20000 o
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Figure D-6 Forces parallel to the diagonal lines
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The following command program Adina is for modeling the slab

shown in Figure 7-19. Twenty-node elements are used.

* & & ## » B & &

SLB7.IN

ADINA-IN INPUT FILE

SLBI1 IS PLASTIC ANALYSIS PROGRAM FOR TWO WAY SLAB

CONTROL MODE=I PLOTUNIT=CM PLOTSAVE=YES

LIST CONTROL



* # * & #

* #
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FILEUNITS LIST=7 LOG=7 ECHO=7
LIST FILEUNITS

CONTROL PLOTUNIT=CM,
PLOTSAVE=YES

LIST CONTROL

DATABASE CREATE

HEADING ' SLB1 IS PLASTIC ANALYSIS PROGRAM FOR TWO WAY SLAB'
LIST HEADING

MASTER IDOF=000111 NSTEP=2 REACTIONS=YES MTOT=10000
LIST MASTER

ANALYSIS TYPE=STATIC
LIST ANALYSIS

ITERATION METHOD=FULL-NEWTON LINE-SEARCH=YES
LIST ITERATION

AUTOMATIC-ATS 10

TOLERANCES PRINT=1 ITEMAX=35
LIST TOLERANCES

PRINTNODES 1 27 1
ESAVE 101
NSAVE 101

PRINTOUT VOLUME=MIN CA=NO IPDA=4 PRINT=NO IPRIC=0,
IPRIT=0 IVC=0 IAC=1 ST=NO

PRINTSTEPS FIRST1=LAST]I

TIMESTEP
1

p— bt e e ON
Pt et ik s

3 1
PORTHOLE FORMATTED=YES FILE=60

TIMEFUNCTION 1
0. o
2 025
8 0.625
9 0.6485
10 0.6719



I 0.6777

12 0.6799

25 10

COORDINATES

ENTRIES NODE
1 0
2 .080
3 1.200
4 1.200
5 1.200
6 .080
7 0
8 0
9 .080
10 0
11 .080
12 1.200
13 1.200
14 1.200
15 .080
16 0
17 0
18 .080
19 0
yQ\ .080
21 1.200
22 1.200
23 1.200
24 .080
25 0
26 0
27 .080

EGROUP | THREEDSOLID DISPL=SMALL STRAINS=SMALL MATERIAL=],

RESULTS=STRESS

GVOLUME 1 2 9 8 19 20 27 26 1
8 967 17 18 1516 17
17 18 15 16 26 27 24 25 1
234911 12131871
11 12 13 18 20 21 22 27 7

7

“

GVOLUME
GVOLUME
GVOLUME
GVOLUME
GVOLUME
GVOLUME

MATERIAL

E0=28E+9 NU=0.20 SIGMAT=3E+6 SIGMAC=-30E+6 EPSC=-0.002,
SIGMAU=-20E6 EPSU=-0.003 BETA=.75 DENSITY=2400

9456

cCooM

.080
1.200
1.200
1.200
.080
.080

.080

1.200
1.200
1.200
.080
.080
0

0

0
.080
1.200
1.200
1.200
080
.080

18 13 1415 7
18 13 14 15 27 22 23 24

Y Z

.100

.100

.100

100

.100

100

.100

100

100
03333333333
.03333333333
03333333333
03333333333
103333333333
.03333333333
.03333333333
03333333333
03333333333
0

0
0
0
0
0
0
0
0

N=1 TYPE=CONCRETE,

LOADS ELEMENT

1 3 I0E6

FIXBOUNDRIES DIRECTIONS=1456
FIXBOUNDRIES DIRECTIONS=1456 TYPE=SURFACES/8 7 16 17

10E6 10E6

10E6 1

TYPE=SURFACES/1 8 26 19
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FIXBOUNDRIES
FIXBOUNDRIES
FIXBOUNDRIES
FIXBOUNDRIES
FIXBOUNDRIES
FIXBOUNDRIES
FIXBOUNDRIES
FIXBOUNDRIES

ADINA

END

DIRECTIONS=1456 TYPE=SURFACES/ 1716 25 26
DIRECTIONS=2456 TYPE=SURFACES/1 2 20 19
DIRECTIONS=2456 TYPE=SURFACES/2 3 12 1]
DIRECTIONS=2456 TYPE=SURFACES/ 111221 20
DIRECTIONS=123456 TYPE=SURFACES/ 16 1524 25
DIRECTIONS=123456 TYPE=SURFACES/ 1514 23 24
DIRECTIONS=123456 TYPE=SURFACES/ 121322 21
DIRECTIONS=123456 . YPE=SURFACES/ 13 14 23 22
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