L

Nationai Library
of Canada

Acquisitions and
Bibtiographic Services Branch

395 Wellington Street
Ottawa. Ontano

Bibliotheque nationale
du Canada

Direction des acquisitions el
des services bibhographiques

385, rue Wellington
Onawa (Ontano)

K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
orint especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

YR Dl Ve Ve

W g Navre it tdrens

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assuvrer une qualite
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a [l'aide d’un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

INCORPORATING USE CASE TESTING INTO A
DESIGN TOOL

AFAF TABACH

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

JANUARY 1996
© AFAF TABACH, 1996

Bl e

Acquisitions and

Bibliotheque nationale
du Canada

Cirection des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Weilington Street
Ottawa, Ontano
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author iretains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontarno)

Yoo e bolre et e

s e Notrer r@leven, ¢

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
metire des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la theése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-10903-8

el

(Canada

Abstract

Incorporating Use Case Testing Into a Design Tool

Afaf Tabach

Many methods for object oriented analysis and design have appeared during recent
years and several of them have gained popularity in the software industry. Not sur-
prisingly, a number of design tools have been developed to provide support for these
development methods. Although most of the existing tools provide facilities for de-
scribing and checking static design models, only & small number of them have the

capability of describing and checking dynamic models.

In this thesis, we describe a design tool that checks the dynamic behaviour of a design'
based on use cases. The concept of use case was introduced by Ivar Jacobson; a use
case is a user-initiated, behaviourally-related sequence of transactions that the system
can perform. In Jacobson’s work, a use case is an informal design aid. Our design
tool uses the system design to check the feasibility of use cases automatically. The
tool enables system designers to check both the static and dynamic integrity of their

designs.

i

Acknowledgments

I would like to thank my supervisor Dr. Peter Grogono for his valuable input to this

work and for his continuous guidance and support.
I would like also to thank my husband Ibrahim for his support and encouragement.

Finally, I would like to dedicate this work to my parents with great love and grate-

fulness.

Contents

List of Figures viii
List of Tables X
1 Introduction 1
1.1 Computer aided software engineering tools 2
1.2 The objectiveof thethesis 3
1.3 Outlineofthethesis 5
2 Overview of Object-Oriented Methods 6
2.1 OMT methodology 6
2.2 OOSE/use case drivenapproach 8
23 Boochmethod., 13
2.4 Responsibility-Driven Design 17
2.5 Shlaer and Mellor Method 20

2.6 A brief Comparison Between The Different Methodologies

Concepts of Dynamic Behaviour

3.1 UseCases e
3.2 Timethreads
3.3 StateCharts
3.4 A Practical Applicationof Use Cases

The Original Tool

4.1 Design Notations and Display Forms
4.1.1 The Design of The Tool
4.1.2 ImplementationIssues

The Extended Tool

5.1 The Testing Process
5.2 Designof The Tool
5.2.1 ExampleSystem
5.2.2 Design Model and Representation
5.23 UserInterface
5.24 Datastructure oL
525 Parsers. L. o

vi

23

23

26

29

31

33

33

39

47

17

5.2.6 Major Functional Module

Implementation of The Tool

6.1 The Implementation Language

6.2 Abstract Syntax Tree (AST) L.
6.3 Parsers e e e e e e e e

6.3.1 MultipleParsers. o 0 o oo
6.4 UserInterface L e

6.4.1 The Major functional Module — Use Case Tester

Assessment of The Tool

7.1 Advantagesof The Tool

7.2 Limitationsof The Tool

Conclusion

The Abstract Data Structure

Design Texts

......................

vii

....................

67

67

67

68

71

73

76

80

80

81

83

90

95

List of Figures

10

11

12

13

14

Diffe.ent Models and Phasesof OOSE
Example of a Timethread
The yacc grammar forasystem
The yacc grammar for a systemcont’™d
Textual Form of The Heating System Design
ToolMainWindow,
The Design—Edit Window
The CheckWindow
The UNIX Library Hierarchy
System, class and method C structures from AST
The design model for the recycling machine
Interaction diagram for returning itemsuse case
The yacc grammar of the use case files
The use case “Returning Items”

viii

9

15

16

17

18

19

20

21

22

23

24

25

26

27

28

The yacc grammar of the inleraction files 60

Textual form of interaction diagram “Returning Items” 61
ToolMainWindow L L Lo 61
UseCaseTesting Window 62
The useDialog_popup Window 63
Final output of Returningltems use case testing 64
Error message displayed when consistency check fails 66
C structures of the system, use case and interaction diagram 69
The original grammar rule for method 70

he modified grammar rule for method, 70
An example of the recommended style of comments 71
The Motif widget structure of the ToolMainWindow 76
The Motif widget structure of the UseCaseTesting Window 7

The Motif widgets structure of the UseCaseWindow—Feasibility Check-
ing Output e 17

ix

Chapter 1

Introduction

Since the early days of computing, back in the 1940’s, there has been interest in what

we call now programming.

Programming languages evolved gradually from machine code, in which the language
was highly dependent on the architecture of the computers, to high level languages, in
which the separation between the two becomes clearer and stronger. Consequently,
the availability of tools to help the programmer was very limited. At first, there
were no tools at all. Then assemblers were introduced, and as the programming
languages moved to higher levels, tools like compilers, editors, and debuggers become
available. As applications hecame more complex, software development became more
difficult, and improving the field of programming was not enough anymore. What
was needed is the classic engineering approach: define the problem clearly, and try to

find appropriate tools and techniques to solve it (8].

Since the 1960’s software engineering has made clear progress. However, as the comn-
plexity of the ap-plications continued to increase, the traditional software development
was not enough, and a new software development paradigm started to emerge: Object
Oriented Paradigm.

Since 1980’s the object-oriented approach has been getting more and more popular,

because of its many advantages, such as reusing of software components, modularity
and maintainability. In addition, this paradigm is closer to the real world and offers

more powerful abstraction capabilities than the traditional approach.

Similar to the history of traditional programming, the object oriented technology
started with the emphasis on developing object oriented languages, such as Simula
[16) and Smalltalk [17]. Later, emphasis shifted towards developing object oriented
methods, such as Object Modelling Technique (OMT), Object-Oriented Software En-
gineering (OOSE) and the method of Booch. These object oriented development
methods have introduced many new concepts and techniques to be handled by the
developer. Therefore, software engineers need now more than ever to be equipped

with adequate tools to assist them and to enable them to overcome the complexity

of the development task.

1.1 Computer aided software engineering tools

Computer aided software engineering (CASE) tools became popular in .the 1980’s
along with object-oriented programming. Since 1990, the state of the software tools
industry has evolved significantly. Since expectations from software tools continue
to get higher and higher, tools must continuously improve and broaden in scope.
I'or example, the following are features provided by recent tools, and which were

considered earlier a gap in coverage:

e program understanding and reverse engineering

system level analysis and design

performance assessment and simulation

graphical user interface.

This is in addition to the improvement of traditional areas cove.ed. by tools, such as

cods generation, configuration management, testing and maintenance (7).

Currently, thece is a growing nuinber of tools that support object-oriented methods.

The following are examples from [9).

¢ System architect case tool (from Popkin Software and Systems Inc.) runs under
Microsoft Windows and supports many diagramming techniques, such as ER
(Entity-Relationship), state transition and data flow diagrams. It also supports
diagramming techniques based on Booch’s method. Coad/Yourdon method is

also supported.

o Object-Maker is a meta-CASE tooi (a tool to build case tools). It supports
many conventional and object oriented methods, such as OMT, ADM3, and the

methods of Bonch, Shlaer and Mellor and others. It runs on many platforms.

e Virtual Software Factory (VSF) is also a meta-Case tool which uses Cantor, a
Prolog-like formal description language, to describe methodological and struc-
tural rules. Syntactic check and semantic checks are allowed. Traceability be-
tween analysis, design and coding stages is also supported, helping with reverse

engineering approaches [9).

1.2 The objective of the thesis

The tools mentioned in Section 1.1 and others studied during this research perform
the tasks of code generation, consistency checking, document generation, and sup-
port graphical editors for the different kinds of diagrams used in many development
methods [4].

The type of design checking performed by these tools is mostly consistency check-
ing, in other words, they check the static aspect of the design, while the dynamic

behaviour is not checked.

Therefore, the objective of this thesis is to develop an extension of an existing design
tool, developed by Hanwei Ding [5], which provides facilities for creating, examining,

and modifying an object-oriented design and performs consistency checking on that

design.

This extension includes expressing and adding the feature of checking the dynamic
behaviour of a system by means of use cases. Consequently, the user will be able
to check if a certain behaviour can be realized by an existing design. If not—which
means some cherking rules are violated, such as a method does not exist or a class
cannot call another class— the tool will provide the designer with useful guidelines to
modify the current design in order to realize the tested behaviour. The new feature

also facilitates and provides traceability between requirements and design.

Not many existing tools check the dynamic behaviour of a design; however, the fol-

lowing is a biief account that deals with this problem:.

A study made by M. Hedlund et al. [12] aimed at showing how to use LOTOS
(formal specification language) with the objectory development process, developed
by Jacobson. LOTOS was used as a verification tool for use case designers, which
means checking the completeness and consistency of use case specifications, which is
similar to what we have accomplished. The use case descriptions, (use cases interac-
tion diagrams) were translated into LOTOS templates. Then, those templates were
completed by adding more information about the operation functionality and state
change. Finally, the whole LOTOS specification was collected into one specification
on which the verification is performed. The problem with this method is that it is

done manually, so it is expensive.

Jacobson mentions a tool called Oryse [14], and states that this tool supports the
OOSE/use case driven approach. We have not been able to obtain any further infor-

mation about this tool.

1.3 Outline of the thesis

The rest of this thesis is structured as follows: Chapter 2 provides an overview of
some popular object-oriented development methods including OOSE/use case driven
approach, which is the method used in the new extended tool. Chapter 3 includes a
description of some important concepts of dynamic behaviour and their importance
in the system development. Chapter 4 provides a description of the existing tool,
which is the starting point of the extended tool. Chapter 5 includes the design of the
tool, and Chapter 6 includes the implementation details and problems encountered
during the development of the tool. Chapter 7 provides an assessment of the ‘ool.
Finally, Chapter 8 provides a conclusion of what was achieved and why the work is

important. In addition, pointers for further research are given.

Chapter 2

Overview of Object-Oriented
Methods

As mentioned in Chapter 1, many Object-Oriented methods have emerged in the
recent years. However, many of these methods are still in the paper stage, some
are not very well documented, and some are limited to specific applications. The
following is an overview of some of the most popular methods currently used in

software development.

2.1 OMT methodology

OMT methodology, developed by J. Rumbaugh and his colleagues, supports tLe entire

software life cycle [21]. It consists of three different phases: Analysis, System Design,

and Object Design.

The Analysis phase is responsible for presenting a clean and understandable model
of the real world to describe the problem domain. The output from the analysis phase
is a clear statement of what the system should do, and this provides a basis for the

work on design and implementation.

The next phase is the system design. In this phase the designer try to find the
way to solve the problem identified in the analysis. This is done by identifying the
architecture framework, the topology and the subsystems of the system. It describes
each subsystem, and specifies its interface with the other subsystems, in addition to
various decisions, such as identifying concurrency, handling global resources, choosing

software control implementation, and studying trade-off prioritics.

The third phase is the object design. The object design determines the internal
design of each class, its associations, and its methods. Data structures and algorithms

are also chosen during this phase.

An important advantage of OMT is that the same notation is used during cach of the
three phases. Each phase is described using three models: the object, dynamic, and

functional models.

Object Model: This model captures the static aspects of the system. It identifies
the objects in the system, which mostly represents the real world entities. It
describes their identities, relationships to other objects, attributes, and opera-

tions. The object model is represented graphically using the object diagram.

Dynamic Model: The dynamic model captures a different aspect of the system.
It deals with time, sequence, and control of events. It describes the states that
each object goes into during the execution of the system, determines the events
that each object can receive and the object’s response to them. It also specifies
the possible scenarios that might occur between the system and its users. The

dynamic model is represented graphically using state diagrams and event lraces.

Functional Model: The functional model deals with aspects other than those
captured by the previous two models. So far the object model identified what
are the objects of the system. The dynamic model described the sequence of
operations performed on these objects. Now the functional model will determine

how these operations are performed. It shows the internal computation of the

input values and the resulted output values.
The functional model is represented by many data flow diagrams that show the

input values, the data stores, the cperations they go through, and the resulted

output. values.

The OMT methodology covers the entire life cycle span of the system development
and it puts an emphasis on the higher levels of the system development —analysis
and design— rather than implementation. It also uses notations and terminologies

that are not dependent on any prograrnming language.

2.2 OOSE/use case driven approach

The OOSE/use case driven approach is a method for object-oriented analysis and
design [15]. OOSE is one of the earliest object-oriented methods. It was developed

by Ivar Jacobson, one of the oldest practitioners of software engineering.

OOSE is a powerful method that addresses the full system life cycle. Its emphasis is
on meeting the requirements of the system users, especially when the system is large.

OOSE includes three development phases: analysis, construction, and testing.

e The analysis phase provides a complete understanding of the system. The

output from this phase is two models, requirement model and analysis model.

o The construction phase tries to design and implement the requirement specified

in the analysis model.

e The testing process verify the system according to the requirements.

According to Jacobson, system development is model building, thus OOSE tries to

handle the complexity of large systems by working with different models, each of

Model/Phase Analysis | Construction | Testing
Requirement X

Analysis X

Design X
Implementation X

Test X

Figure 1: Different Models and Phases of OOSE

which has a different aspect of the system and belong to one of the three development

phases. These models are shown in Figure 1.

In the requirement model, all the functionality of the system is described. This
is done by using use cases developed in the use case model which is part of the re-
quirement model. A use case model consists of actors and use cases. Actorsrepresent
entities that exist outside and interact with the system. An actor is different than a
user. The actor implies certain behaviour, and the user can perform this behaviour
in addition to many other behaviours, which means that one user can represent many

actors.

Use cases represent what should be performed by the system: they describe its in-
tended usage. Use cases can be defined as a behaviourally related sequence of trans-

actions, performed by the users when they use the system.

The use case is a key concept in this method. It is not just another terminology, it
is a way of thinking about the system development. In addition, the use case has a
main role in achieving one of the most important characteristics of OOSE, which is

traceability.

The analysis model is the first model that focuses on the real structure of the
system. In this model objects are identified. There are three different types of objects:

interface objects, entity objects, and control objects.

e Interface objects represent the interface between the user and the system.

e Entity objects models the information handled by the system and which must

be stored and kept even after a use case is over.

e Control objects are more abstract. When a behaviour does not belong to either
the interface or entity objects, like the process of distributing tasks among
objects, this functionality is allocated to a control object. Often there is a one-
to-one mapping between use cases and control objects. In other words, each

use case is handled by one control object.

The analysis model also includes dividing the system into subsystems by grouping

related objects together. These groups are called subsystems.

In the Design model, use cases are designed. The analysis objects are mapped
into design blocks. The environment constraints are represented by as few objects as
possible. After that the communication between the design blocks are determined,
and represented by interaction diagrams which describes a set of objects and how they
communicate with each other. For each use case there is a corresponding interaction

diagram which describes how the use case is realized by the communicating objects.

The Interaction diegram is a type of diagram used for a long time in the world
of telecommunications and it describes the communication between different blocks.
Each block is represented by a bar which is drawn as a vertical line. Blocks commu-
nicate by sending stimuli to each others. Each stimulus is represented by an arrow

from the sender to the receiver.

Interactions diagrams are similar to {iming diagrams of Booch’s method, which ex-
press global dynamics, and to the event traces in OMT, which describe the the flow

¢f events for one scenario.

Having all the interaction diagrams of one system, the operations belonging to each

block can be identified by extracting its interface from all the interaction diagrams it

10

participates in. This can be done using an automated tool.

In the implementation model, the blocks designed in the design model are trans-
lated into the target programming language. For example if the target language is
an object-oriented language like C++, blocks are translated into classes or files, at-
tributes that are identified in the analysis as well as the inheritance associations are
directly mapped into attribute and inheritance relationship between classes. In ad-
dition, internal or private suprorting classes for the design blocks are identified and

implemented.

The test model aims at verifying the system. There are three levels of testing:

1. Unit testing tests each block separately.

2. Integration testing verifies that all the units are working together properly.
Use cases are very useful tool for integration testing, since it involves interactions

between different blocks.

3. System testing, in which the entire system is tested by performing the end-user

actions on the system.

After discussing the different models and phases of OOSE we can see how use cases
can achieve traceability to a great extent, and how OOSE is indeed use case driven.

This observation can be verified as follows.

The functionality specified in the use cases leads to the identification of objects and
the allocation of functions and roles to these objects in the analysis model. In the
design model, these objects are mapped into design blocks. These blocks communicate
with each others using stimuli. These stimuli are described in the interaction diagram.
Thus for each use case there will be a corresponding interaction diagram that describes
the use case behaviour by specifying the objects that perform this behaviour and the

stimuli sent between them and in what order.

11

It should be noted that the concept of use cases is getting more and more attention
from other methodologies. For instance, Runmbaugh (OMT), and Booch and many
others are trying to incorporate it into their methods [14]. Jacobson mentions that he
is happy that his work is being recognised by other practitioners, but he emphasises
that the use case concept cannot just be added to another object-oriented method.
Use cases are more than a notation or a concept: they are a way of thinking and
understanding the system. Use cases deeply affect the way the developer is going to

design the system. In addition Jacobson provides a list of advantages of use cases:

“ Use cases serve several important purposes. Among other things, use cases are the

basis for:

Defining functional requirements

Deriving objects

e Allocating functionality to objects

Defining object interactions and object interface

Designing the user interface

Performing integration testing

Defining test cases

determining developments increments

e Composing user documentation and manuals

They also help define the system and control development by serving as the vehicle

for:

e Capturing and tracing requirement

¢ Envisioning an application

12

e Communicating with end-users and customers
e Delimiting a system

e Estimating project size and required resources
e defining database-access patterns

e Dimensioning processor capabilities ”

In short he says, “use cases are the dynamics, black bozx vicw of the system, and the

driver of development activities” [14].

Jacobson also says that use cases are not the “magic solution™ for software develop-
ment: many other concepts are as important to get a successful software development

object modelling for example.

One weakness of OOSE is that it assumes that all sequences of actions that might be
performed by the users of the system can be expressed using the interaction diagrams.
However, this can be difficult to achieve with complex systems, since there may be a

large number of possible sequences of transactions.

2.3 Booch method

According to Booch, in order for a system design to be completely captured it should
be studied from different views. In his method [1], he defines six diagrams that

capture the logical and the physical view of the design. These are the:

1. Class diagram
2. Object diagram

3. Module Diagram

13

4, Process diagram
5. Timing diagram

6. Transition state diagram

The first two diagrams describe the logical view of the system which means defining
the main classes and objects of the system and their semantics. The third and fourth
diagrams describe how the classes and objects are distributed in the physical imple-
mentation of the system. And the last two diagrams describe the dynamics of the

system. Each one of these diagrams is described briefly as follows:

Class diagram: This diagram captures the existence and the relationships, between

the classes of the system. There are four main notations used in aclass d “ram.

e (lasses are represented by the shape of amorphous blob or “cloud”. Its
borders are dashed lines to indicate that operations are performed on in-

stance of that class.

e Class relationships are represented by different types of lines drawn be-
tween classes. Each type represent one kind of relationship. These rela-
tionships are, uses, instantiates, inherits, metaclass and undefined (which
indicates the existence of some relation between two classes but the type

of this relation is not precise yet).

e Class utility represents one or more free subprograms. It is represented
by an icon that is very similar to the class icon but distinguished by a
shadow around the borders. Uses and instantiates are the most frequent

relationships used between class utilities.

e Class category: Sometimes a system has so many classes that they can not
be put all together in one class diagram. Thus, it is logically divided into

different chunks, which are called class categories.

14

Each class can also be described by a class template. A class template is a
textual form used to describe the class, its visibility, cardinality, its hierarchy,

its operations, and many other things. A class utility also has a template.

State diagram : This diagram captures or dew i:bes the dynamic behaviour of each
instance class of the system. For each class, the state diagram describes the
different states the class goes through, and the events that cause the transition

from one state to another. There are two notations used in the state diagram:

e State: FEach single state is represented by a circle, which contains the

state’s name.

e State transition: This is the only type of rclationship between different
states. It is represented by a directed line from one state to another or to
itself. A state transition diagram has a template which list the different

events it receives, its documentation and the aclion.

Object diagram: This diagram shows the object structure of thesystem-—the objects
existence and their relationships. An object diagram describes the dynamic se-
mantics of the operations, since it shows what objects are created and destroyed
during a snapshot of execution, unlike the class diagram that shows the static
relationships between classes. However, those two diagrams are strongly re-
lated, since an object represent one or more instance of a class, and the two

diagrams should have consistency in the use of methods and operations.
Usually, one system is described by more than one object diagram. There are

two important concepts in an object diagram:

® objects are represented by an icon very similar to the class icon but with
solid lir.es. The object icon can contain the object name, in addition to

some properties like concurrency and persistence.

e Objects relationships are drawn between objects with no arrow to indicate

the possibility of bidirectional messages.

15

An object also has a template which includes the object name, its class and its

persistence property.

Timing diagram: This diagram is used to express what cannot be expressed by
the object diagram alone. It describes the flow of control, and the sequence
of events. Timing diagrams have two axis, one for the time and one for the

objects. One object diagram may have zero to many timing diagrams.

Module diagram: This diagram is used to document the physical design. Module
diagrams show the allocation of classes and objects to modules in the physical
design of a system. Module arch’tecture can be expressed by one or more
module diagram. Module diagrams consist of modules which are represented

by different types of icons.

Process diagram: This diagram describes the process architecture, by sharing the
allocation of processes to different processors, describing the use of different

devices and processes and showing their connection.

All these diagrams constitutes only the notation of the method and not the process.
The process pioposed by Booch is incremental and iterative. It is neither top-down

nor bottom-up, but “ Round-trip Gestalt design”.

In every iteration, the steps of the design method are applied on a low level of ab-
straction until the design and implementation of the whole system are complete. The

following are the steps of the process:

1. Identification of objects and classes.

o

Assigning the meaning of each class and object, which includes updating the

class and object diagrams.

3. Identifying the relationships among classes and objects which means a possible

completion and refinement of object and class diagrams.

16

4. This step is concerned with the representation of the objects and classes, which
are already identified. It also includes the allocation of classes and objects to
moedules including the refinement of most of the templates, the module dia-

grams, and the process diagrams if needed.

The fourth step may not be the last one. As mentioned earlier, this is an iterative
process, thus if necessary, another iteration will take place but on a lower level of

abstraction.

The difference between Booch’s method and OMT is that, unlike OMT, Booch puts
more emphasis on design and less emphasis on analysis. However, it must be noted

that the two methodologies have recently been combined.

Some of Booch’s method advantages are prototyping, and the continuous refinement

of object model, due to the different iterations during the system development.

2.4 Responsibility-Driven Design

The responsibility-driven approach is a design method proposed by Wirfs-Brock [23].
Some terminology used in the design process should be explained in order to under-

stand the process.

o Abstract classes are different from concrete classes because they arc not iden-
tified to produce instances of themselves, but to capture a common behaviour

that can be inherited by other classes.

e Class responsibility contains all the operations that each class is responsible for

performing and the data that it should store and know about.

o Collaborations are a list of communicating objects; each collaboration includes

the names of one object calling another object.

17

o Clients and servers are specific roles that can be played by objects. An object

is a client if it is calling another object and the server is the object being called

to perform certain operations.

o Contract is included in the server object and it is a list of the only operations

that the client object is allowed to request from the server objects.

The design process of the responsibility-driven approach includes the following steps.

1. Finding classes. The method gives many guidelines to find candidate classes.
For example, identify all the noun phrases from the requirement specifications,

model physical entities and known interfaces, and many others.

After identifying and refining the classes, the method suggests recording these
classes by using index cards. Each class has a card and on each card there is
a short description of the class. This is followed by identifying abstract classes

and superclasses,

2. Identifying the responsibility of each class of objects. The responsibility
of a class includes the knowledge that it should naintain and the operations
that it should perform. Again, the method suggests many guidelines to identify
responsibilities. For example, extract verbs from requirement specifications and
associate it with responsibilities vsing common sense, perform a walk-through
of the system by inquiring different scenarios of the system, which is similar to
the use case concept, and what are the necessary actions required to meet these

scenarios, etc.. Then record responsibilities of each class on the index cards

created in the first step.

3. Identifying collaborations between classes. This may be identified by
checking the responsibilities of each class for dependencies. If a class is respon-
sible for an action but does not have all the necessary information to perform

it, this implies that it needs to collaborate with another class.

18

4. This step is concerned with analysing tae design created so far to benefit the
most from object-oriented technology. This is done by examining the structure

of the inheritance hierarchy which can be achieved by using many tools:

o Hierarchy graph: It represents graphically the inheritance relationship be-

tween classes.

e Venn Diagram: This diagram considers classes as sets of responsibilities
and it draws those sets in such a way that common responsibilities can be

factored out.

o Contracts: after the examining class hierarchy and factoring responsibili-
ties, the contract of each object can be specified, which is a good way to
state explicitly a group of responsibilities offered by one class. One class
can have many contracts. Subsequently, each class card is modified to re-

flect the final design and to include the contracts and their responsibilities.

5. Identifying subsystems by grouping together the classes that collaborate
closely together to perform a part of the whole system functionality. A sub-
system has a contract which is the collection of all the responsibilities of the
subsystem classes and which are requested from the outside of the subsystem.

Each subsystem has a subsystem card similar to the class card.

6. Identifying protocols. After refining the classes and the subsystems, con-
tracts can be formalised into protocols, which are the set of the signatures of

methods in the contract.

Wirfs-Brock’s approach is useful and effective for small systems but, because of its

manual and informal nature, probably unsuitable for large systems.

19

2.5 Shlaer and Mellor Method

Shlaer and Mellor’s object analysis method was first introduced in 1988 [22]. But
at that time, the method was not regarded as object-oriented for many reasons. For
example, there was a complete absence ot the inheritance concept. However, in 1991
Shlaer and Mellor introduced a new version of their method where they introduced
inheritance (entity subtyping) and the idea of modelling the entities life cycle with
STDs (state transition diagrams) [9] .

Shlaer and Mellor claim that their method is mainly for the analysis phase of system
development. The first step in this method is developing an information model. The
idea of the information model is to focus on the real world by abstracting what
is in the problem domain, and organising this information into a formal structure.
This information is abstracted in the form of objects, their attributes, and their

relationships. The method provides some guidelines for identifying this information.

Different relationships between objects are described using entity-relaticnship (ER)

notation.

The information model describes only the static aspect of the system. In order to
describe its dynamic behaviour, the method uses state transition diagrams to describe

the life cycle of each object in the information model.

State transition diagrams (STDs) consist of stales, events, and actions. Transition
from one state to another is triggered by an event and in each state an action is per-
formed. Furthermore, the actions described in the state model, are further explained

as processes in the data flow diagrams.

Finally, in order to summarise the whole dynamics of the system, an object commu-
nication model (OCM) is introduced to show the source and target of each event.
Each state will be represented by an oval box, and the events which they exchange

are represented as arrows [20].

20

According to Shlaer and Mellor, there is more than one right software development
process. Consequently, whatever process is used, the information model developed
will affect and influence all the stages of development. There arec many key rules that
affect the semantics of the different models developed using this method [20]. These

rules include:

1. The method assumes objects work concurrently and execute in syncronization.

2. Objects communicate by events. An object responds to an event according to
its current state and usually an event causes a state transition and an execntion

of an action.
3. An object can execute only one action at a time.

4. One object can receive many events/requests simultaneously, and because of
the previous rule, it can only respond to one event at a time. Thus, the method
introduces a monitor object that handles the multiple requests, and serves one

of them according to some rules embodied in the object.

5. When an event causes the execution of one action, this action can cause the

execution of other actions. This is called triggering a thread of control.

6. Sometimes a state action requires the knowledge of some data attributes of other
objects. In order not to violate the concept of data encapsulation of object, there

is an accessor object, which handles the requests of accessing internal data.

7. Not all the objects handled by one method are supposed to be active. Some
objects are passive, i.e. they do not have a lifecycle, such as objects which

abstract data information.

8. The method is applicable mainly to real time applications with great consider-

ation for the time factor.

21

2.6 A brief Comparison Between The Different
Methodologies

By looking at this overview, it becomes obvious that the leading development method-
ologies have many similar concepts and techniques. And it becomes clearer why these

methods are merging and reaching a consensus [14].

An example of this, is the recent merging of three of the most popular object-oriented

methods, OMT, the method of Booch, and OOSE .

This implies that the object-oriented approach is maturing. And one of the object-
oriented concepts that is having a great consensus from many methods is the use case

concept.

This converging between the methodologies is very encouraging, and it might elimi-
nate the overlapping work, and encourage instead the exchange of important knowl-
edge and experiences of many practitioners, in order to elaborate deeper on more ad-

vanced and complicated issues facing the development of object-oriented techniques.

Chapter 3

Concepts of Dynamic Behaviour

Whatever method is used to develop a system, it is very important to be able to de-
scribe the way in which it will behave, especially for testing purposes {19]. The soft-
ware development methods mentioned in Chapter 2 describe the usage and behaviour
of a system in different ways. Each method has different concepts, for example, OMT

uses scenarios, OOA uses threads of execution, and OOSE uses use cases.

The following sections contain descriptions and analysis of these concepts, in addition

to an introduction to our work and how it is influenced by them.

3.1 Use Cases

Use cases were introduced by Jacobson [15]. They offer advantages in all stages of
software development from requirements definition to integration testing. Use cases
have been widely accepted and have been incorporated into several object oriented

design methodologies.

Use cases have two principal roles. First, they focus on the clients’ requirements and

the actions of end users. Second, they have a major influence on building the different

23

object models of the system, thus providing Traceability [19).

Use cases are used by many groups of users, from outside and inside the system
[13].

Users from outside the system are :

o End users of the system, who need to verify that the use cases really specify all

their needs from the system.

User-interface analysts, who need to specify user-interface support of each use

case.

Technical writers, who need to write the user’s manual at an early stage.

Function managers and project leaders, who need to supervise the system at

different levels.

Users from inside the system are:

e Designers of the object model, who need to harmonise the design and resolve

conflicts among use case instances in the analysis and design phases.

o Testers, who need use cases for use case testing.

A workshop held during OOPSLA’92 [19], software designers compared their experi-

ences with use cases and interaction diagrams.

D. Bennet focuses on the behaviour allocation in use cases. He analyses the be-
haviour allocation decisions made in the use case model. One of his techniques to
evaluate the behaviour allocation is to collect the interfaces of each object and show
it on separate diagrams, which enables the designer to study and evaluate the cohe-

siveness and consistency of each object.

24

Betz et al. discuss the use of interaction diagrams for use cases. They believe that
interaction diagrams enhance the understanding of object-oriented systems; however,

they have many drawbacks :

e Loops and conditions are hard to show.
e Messages to self are hard to show.

e Anything that isn't a message is hard to show. In addition, creation and con-

struction methods don’t have convenient receivers.

o Return values are also problematic. If they are shown as tokens under a message,
they will be appearing too early. On the other hand, if they are not shown, it

will be difficult to discuss subsequent messages.

In addition, Betz et al. found that the act of developing an interaction diagram was
more valuable than the interaction diagram itself. Morcover, they found that, once
interaction diagrams had been completed, it was difficult to maintain consistency

between the interaction diagrams and the code.

Stephan Wallin, discusses the usage of use cases within the design of large real-
time applications. He believes that use cases or similar concepts are necessary for a
' complete understanding of the system, and that documentation of the ohjects alone
is not enough. He also believes that dividing a large system into layers facilitates
its understanding. Each layer is assigned to a different group of the development
organisation, thus there will be more than one person responsible for cach use case.
Consequently, Wallin believes that it is very important for behaviour description to

express use cases at the level of subsystems rather than at the level of classes.

A major problem encountered by Wallin was to decide the level of granularity of
events that should be used in the description of use cases. Moreover, they found that
it is not feasible to use interaction diagrams to describe all of the events of a system.

Instead, they decided that an interaction diagram should be used only when it adds

25

clarification to the problem and when the communication between objects is very

complicated.

As a conclusion to his study, Wallin found both advantages and disadvantages with

use cases. The disadvantages are :

e Interaction diagrams cannot cover all sequences.

o There is a risk that the system becomes functionally structured instead of object

structured.

e Some behaviours, such as screen updating, must be deduced from the require-

ments.

The advantages of use cases include:

o The system will meet the user’s requirements.

o Use case testing can limit the extent of an object model

It is clear from the forgoing discussion that the use cases have both advantages and
disadvantages. Since use cases have been widely accepted by the software develop-
ment industry, however, we can safely assume that their strengths outweigh their

weaknesses.

3.2 Timethreads

Timethreads are a new design concept introduced by R.J.A. Buhr [3] to help in captur-
ing the overall behaviour of a system design. Timethreads are represented by a curve

traversing the system components. Triggered by certain stimulus, the timethread

26

Traveller [

Airpont \

AirplnncT
'(axi Company

, |
k‘sl’a'cher l

Figure 2: Example of a Timethread

starts at one component and continues through the system until the response action

to the stimulus is terminated.

Timethreads describe the causality flow of the system. Buhr claims that causality flow
is a higher abstraction than date flow and control flow. It describes the “big picture”
of the system behaviour, from the starting point to the end point, without getting
into the details. This is very useful for large systems where control is distributed over

different objects.

Figure 2 shows an example of a timethread. This example is taken from [3]. The
timethread describes the causality flow scenario of a traveller how calls a taxi company

to send him a taxi to take him to the airport in order to catch his airplane.

Usually, in order for the developer to express the overall behaviour of the system, he
has to understand the behaviour of each of the individual components. This is not
very practical, especially when the designer is still in the early stages of reasoning

about the behaviour of the system.

27

Timethreads overcome this problem by allowing the designer to decide which com-

ponents will realize the functionality without knowing how they are going to do it.

Buhr claims that timethreads are not just for design understanding and design anal-
ysis, but also for design discovery. Timethreads not only document the different
scenarios of the system, but they help the designer in identifying the components of

the system and in allocating their behaviour.

One of the main advantages of timethreads is informality. This feature gives the
designer less restrictions in expressing the behaviour of the system. However, they

cannot be considered as complete specifications, and as a result, they cannot be used

for code generation.

To give a clear idea of how timethreads are represented, here are some basic timethreads

notations:

e Thestart of a timethread begins with a filled circle and ends with a line segment

across the timethread curve.

e Between the start and the end points, there is a continuous curve which repre-

sents the timethread body.

e When the curve cuts across one component, this implies that those components

have a certain responsibility and functionality in responding to the cause of the

timethread.

e The component that touches the start circle is the one responsible for accepting

the stimulus and starting the timethread.

Finally, there are many hidden things in the timethread which are not shown by the
notations, such as data flow, states, and other details which are pushed to a lower
level of abstraction. Only a very high level of abstraction is shown to provide an

optimum, understandable and clear picture of the system behaviour.

28

3.3 State Charts

State charts, developed by David Harel [11], provide a graphical descriptions of the

behaviour of large reactive systems.

Unlike transformational systems, reactive systems are event driven. The description
of their behaviour requires a listing of all the possible stimuli and events the system
can have. State charts were developed to provide a solution to such problem by

describing the behaviour of large reactive systems in a clear, realistic, yet formal way.

The development of state charts is based on improving and modifying the finite state
machine (FSM) and its state diagrams to better suit large and complex systems.
Many developers of such system have avoided the use of 'SM and their state diagrams

because FSMs have a number of drawbacks:

1. State diagrams do not allow the representation of either depth, modularity, or

hierarchy concepts.

2. State diagrams are uneconomical when it comes to transitions. If an event
causes the same transition to many states, the same transition has to be shown

attached to each of these states.

3. It is not feasible to describe concurrent systems with state diagrams. A the
number of possible events of a concurrent system grows linearly, the number
of states grows exponentially. Representing a large system be a state diagram

becomes impossible.

Therefore, Harel developed a state chart language as an extension to state diagrams
with many features that offer solutions to the drawbacks listed above. Harel describes
state charts as follows :

“State charts = State diagrams + depth + orthogonality + broadcast communication

» [11].

29

Depth is provided by allowing states to be included in other states, thus showing
the hierarchy and the modularity, which solves the first problem. In addition,
this feature allows common transitions to be shared between the states, which

solves the second problem.

Orthogonality is achieved by allowing one state to have an AND decomposition. For
example, one state A can be decomposed into two sets of states B and C which
are called orthogonal components. Entering state A implies being in states B
and C simultaneously. Such decomposition can factor out common states and

reduce their number which solves the third problem.

Broadcasl communication allows an external event to cause a transition, not only in

one state, but in all orthogonal components to which it is relevant.

These are the basic features of state charts. Additional features include “not-sure”
transitions and states. The “not-sure” states means that there is identified state
triggered by an identified transition but the resulting state is not identified yet, then

it is allowed to call this state “not-sure”.

In conclusion, state charts are important because theyv describe the behaviour of the
system in terms of its interactions with the “outside”. It should be noted, however,
that this description does not describe the activities inside the system following each

transition from one state to another, but enlv describes the flow of control.

State charts are important because they form a visual formalism that describes
computer-related systems and their behaviour. Visual because it can be analysed and

comprehended by humans and Formal because it can be interpreted by computers.

30

3.4 A Practical Application of Use Cases

The work described in this thesis is based on an existing desigr: tool for object-oriented

development [5]. The objectives defined for the original ton were:

¢ Provide automated assistance for the object-oriented program development,

with a strong emphasis on the design phase.

o Help the designer of object-oriented programs to maintain the system, by keep-

ing all the development phases consistent during the system evolution.

o Facilitate the work of the designer, by making his/her job easier and quicker

through many automated design functions.
TLe tool provides the following facilities:

¢ Read, write, modify, and display the design.

View the design in different display forms.

Perform consistency and completeness checking of the design.

Generate high-quality printable reports, documenting the design.

The tool is organised around the object model. It considers the system as a collection

of objects and the design is represented as a collection of class interfaces.

The consistency and completeness checking performed by the tool validate the static
design of the system. Furthermore, the functional model can be deduced from the
object model by examining the description of the methods in each class. However, the
dynamic model cannot be extracted from the object model. Thus, a natural extension
to this tool is to provide it with support for dynamic modelling. Therefore, the

objective of this thesis is to modify the existing tool by providing it with the ability to

31

express, represent and test the dynamic behaviour of the system by means

of use cases.

The new tool supports the OOSE/use case driven approach development method and

it provides the following features:

e Read, write, and display use cases.
o Read, write and display interaction diagrams in a specified textual form.

o Test use cases, by checking if the existing design can execute the sequence of

behaviour specified by the tested use case.
o Generate a printable report containing the output of the use case test.

o Provide traceability between design and requirements, by providing useful in-

formation to modify the existing design upon its failure in a use case test.

In the next three chapters, we describe the original tool and the extensions that we

have added to it.

Chapter 4

The Original Tool

In this chapter, we describe the design tool constructed by Hanwei Ding [5]. This

tool provided a starting point for our tool, which we describe in Chapter 5 and 6.

The tool is intended to be used for creating, modifying and checking an Object-
Oriented design. Its objectives and facilities are listed in Section 3.4. This section
includes a description of its design structure and some important implementation

1ssues.

4.1 Design Notations and Display Forms

The design notation used in this tool is not based on a particular design methodology;
however, it is biased towards the Responsibility-driven design method developed
by Wirfs-Brock [5]. The design is built around the object model. Each system
design consists of a list of class descriptions. A class can be described at different
levelsof detail. The minimal description of a class includes just its name, while the full
description includes, in addition to its name, its superclasses, subclasses, variables,

and methods.

33

The tool assumes the following properties of a design:

e The design consists of a number of classes. Each class contains a number of

methods.

o Classes have two types of relations: uses which is a client/server relation and

inherits which is a superclass/subclass relation.

¢ In a client/server relation, the client class uses one or more methods provided

by the server class.

e Cycles are allowed in the uses relation. For instance, if class A uses class B, B

may use A.

e I[n the inherifs relation, the subclass provides all the methods inherited from its

in addition to a number of its own methods.
e Cycles are not allowed in the inherits relation.
e There are three types of method:

1. Constructor, which creates a new object of its class.
2. Observer, which returns an attribute of the current object.

3. Mutator, which modifies an attribute of the current object.

e A class is called mutable if at least one of its methods is a mutator, otherwise

it is called immutable.

The tool provides two forms of design display: The textual and the tabular forms.

The Textual Form is the input form and the main and default display form used
in the tool. The textual form is represented by a concrete grammar which contains
many syntax rules that the textual form has to follow. This grammar enables the
parser, provided by the tool, to scan, parse, and collect all the data provided by the

design. Those syntax rules are:

34

The keywords of the design are: system, class, inherits, uses, var, method,

and end. Keywords must be written in lower-case characters.
Each system design has a name list of classes containing at least one class.

Each class has a name, an optional list of superclasses, an optional list of sub-

classes, and an optional list of variables.

Each class contains zero or more methods. Each method has a name and an
optional list of arguments which follows the method name and is enclosed in
parentheses. Each argument has the form of (name) : (type) . It also has an

optional return type separated from the arguments list by a colon.

Each method has an optional list of used methods which begins with the key-
word uses followed by a (name) :: (type) pair. The name indicates the method

being used and the type indicates the class that provides the method.

13 »

Comments in the design begin with two dashes “-- " and continue to the end
of the line. Consecutive lines of comments are considered as one comment.

Comments are allowed after the system, class, variable, and method names.

To provide a clearer idea of the textual form we provide the yacc grammar for a

system in Figures 3 and 4. Figure 5 is an example of a design in textual form. It is

a design for a prograrn that simulates a heating system. For details see [5, pages 24
~ 28 and 30 - 32].

The tabular form is the second type of display forms provided by the tool. Tables

are displayed upon request from the users. They are considered as a useful tool to

describe the system. They are efficiently processed by computers and they enable the

user to have a clear, quick, and understandable view of the system design.

There are two types of tables. Each one provide a different levei of detail about the

design:

35

SYSTEM IDENTIFIER
opt_comment
class_list

CLASS IDENTIFIER
opt_comment
opt_inherits
opt_class_use
opt_var
opt_method

END IDENTIFIER

class_list
: class
| class_list class

.
.

opt_inherits
/* nothing */
| INHERITS name_list

name_list
: IDENTIFIER
| name_list opt_comma IDENTIFIER

.
’

opt_class_use
/* nothing */
| USES name_list

.
’

var
VAR IDENTIFIER
COLON IDENTIFIER
opt_comment

.
.

opt_var
/* nothing */
| var_list
var_list

var
| wvar_list var

I3

opt_method
/* nothing */
| method_list

.
’

method_list
: method
| method_list method

.
’

Figure 3: The yacc grammar for a system
36

method
+ METHOD IDENTIFIER
opt_para_list
opt_type
comment_list
opt_uses

-
’

opt_para_list /* argument list +*/
/* nothing */
| LBRACE para_list RBRACE

»
.

para
IDENTIFIER
COLON
IDENTIFIER

para_list
para
| para_list opt_comma para

.

opt_type
: /* nothing */
| COLON IDENTIFIER

opt_uses
/* nothing */
| uses_list

.

uses_list
uses
| uses_list uses

’

uses
USES IDENTIFIER
DOUBLECOLON IDENTIFIER

’

opt_comma
/* nothing */
| COMMA

’

opt_comment
/* nothing */
| comment_list

comment_list
COMMENT /*
| comment_list COMMENT /* multiple line comment #/

Figure 4: The yacc grammar for a system cont’d

37

system HeatingSystem
-- an 00 design for a domestic heating system

class View

-- An instance of a view class can display chaging values of

-- several floating-point variables. This class, View, is

-- abstract: it defines the minimal protocol for a class that

-- provides views. A view has several channels, each corresponding
-- to a particular variable, channels are initialized and updated
-- independently in any sequence. The display is updated as a unit.
method init (channel:Int value: Float)

-- initialize the given channel with the given value.

method set-val (channel:Int value: Float)

-- Update the given channel with the given value.

method set-title (channel: Int title:String)

-~ Provide the given channel with the given title.

method calibrate (value:Float str-value:String)

-- A calibration point is used to label the axis of graph or to

-- perform a similar service for another display mode. this method
-~ uses the given value to position the calibration mark

-- and writes the string at that position.

method update

-- Update the display of all channels.

method message (txt:String)

-- Display a message other than channel data

method close

-- Null method to close display. Descendant classes which require
-- a closing action should redefine this method.

end View

Figure 5: Textual Form of The Heating System Design

38

System-level tables contain design information about the whole system. This
includes the list of its classes. Fach class has an entry which contains the
class name, the list of its superclasses (inherits list), list of its subclasses (uses
list), and its description. In addition, the system name and its description are

displayed next to the table.

Class-level tables contain information about one class. This includes the list of
its methods. Each method has an entry, which contains the method name, its
return type, parameters, used method and description. In addition the name of

the class and its description is displayed next to the table.

4.1.1 The Design of The Tool

This section contains the design structure of the tool: the representation of data, the
way it is handled and processed; and the major functions provided by the tool. The

design has four major parts:

1. The Data Structure, which is an abstract syntax tree (AST)
2. Parser module
3. User-interface

4. Major Functional modules

The abstract syntax tree (AST) is the central data structure of the tool. Sincethe
design is a list of classes description, the AST is designed to hold an arbitrary
number of classes. Each class may have an arbitrary number of variables of

methods.

AST is the center of communication between all the parts of the tool. It is
generated by the parser using the input file and all of the functional modules of

the tool use it to perform their actions and generate their outputs.

39

TooltainWindow RN |

Welcome To Our Tool !

Figure 6: ToolMainWindow
The parser module consists of three parts:

e The scanner, which scans the input and generate tokens for the syntax

checker.
e The parser which checks the syntax of the input file.

o The constructor which is a module for obtaining the data and constructing

the AST.

User-interface module: the user-interface of the tool is user-friendly, and its
design follows many important principles, such as ease of use, consistency, and

simplicity. The user-interface consists of different windows:

o The ToolMainWindow is the first window displayed upon invoking the
tool. It has a message part to welcome the user to the tool, and a selection
area where each one of the tool main actions is represented by a push
button : Design, View, Check, and Qutput, where Qutput means generating
a high-quality printable document about the design. In addition, there is
a push-button for help and another one to quit the tool. This window is

shown in Figure 6.

40

DesignWindow--Edit]

Quit File Edit Search (Qption Help

Search Pattern: |I Replace Pattern:

System Read From File :

I

figure 7: The Design—Edit Window

¢ The Design Window pops up upon choosing the Design button from the

ToolMainWindow. This window has two active push buttons: Edit and
Quit, and two inactive buttons: Queryand Help. The Edit button invokes
DesignWindow—Edit. This window provides the user with text editing
facilities. It hassix pull down menus: Quit, File, Edit, Search, Option
and Help. Each pull down menu has different actions that the user can
invoke. The file menu has two options save and open which allow the
user to open an existing or a new file for a system, edit it and saveit. This

window is shown in Figure 7.

The ViewWindow pops up upon invoking the push button View in the
ToolMainWindow. This window has two active push buttons: Quit and
Table. The Table button invokes the ViewWindow—Table. This win-
dow has three pull down menus: Quit, TableView, and Options. The
Options menu has one option for clearing the screen. The TableView

menu has two options: System and Class. The system option displays a

4]

[XI Checktindow

3
You can CHECK the consistency of youwr XX
design by selecting & systen from the XX
file list, g

M N BB

..........................

Filter
| /e togtct/or o/ eabactvd |

nlrectcrmL Files
s ad/tabach/,
‘mnt/logicl/grad/tabach/. . demo.11b
‘nnt/loglicl/grad/tabach/test expl,d
explt.d
expl2,d
expl3.d
expld.d
gane.d

= 4
Selection
| — |

[T (] (] []

Figure 8: The CheckWindow

system-level table and the class option provides a class-level table. Both

tables are discussed in Section 4.1.

The CheckWindow pops up upon invoking the push button Check in the
ToolMainWindow. This window has a file selection part where the users
can select the system to be checked. It also has three active push buttons:
Quit, ChangeDir, and Check.

The Check button invokes a module for consistency checking. The system
selected is checked and if its consistency check is successful, a message will
be displayed to inform the users. Otherwise, another window will pop up
containing information about the errors reported by the consistency check.

Figure 8 shows the CheckWindow appearance.

The Print Window pops up upon invoking the push button Quiput in the
ToolMainWindow. This window has a file selection area where the users
can select a system to generate its output. The output is a high-quality

printable document containing the design of the system selected.

42

e The HelpWindow pops up upon invoking the push button Help in the
ToolMainWindow. This window provides help for the user by providing
information about the tool and the different options in the ToolMain Win-

dow.

The Major Functional modules of the tool are: the Text Editor, the Viewer,
the Checker, and the Printer.

The Text Editor module provides the basic facilities to edit a file, and save it.

Files of the system design have an extension ‘.d’.

The Viewer module provides the tabular display form explained in Section 4.1.
It provides two levels of tables the system-level and the class level. It uses AST

to get information about the classes and meshods to be displayed in the table.

The Checker module checks the consistency and completeness of the design.
Consistency and completeness means that every class and method used in the
design is defined in the system or in the standard library which has the same
name of the system but with an extension ‘.lib’. The checker uses the AST
which is generated by the parser using the the input file selected by the wuser,

to perform the consistency check.

The Printer module converts the design file into IATiX code to gencrate a high

quality readable document.

4.1.2 Implementation Issues

Some of the implementation details about the existing tool are described in this
section, because they are crucial to all parts of the existing tool and they affect our
extension to the tool. In particular, the implementation of the AST and the parser

are discussed, in addition to the implementation language.

Implementation Language and environment

43

C is the implementation language of the tool and Motif is the toolkit used for building

the user-interface.

Motif is a collection of user-interface objects called widgets [2]. The Motif widget set
includes objects that the user expect to find in a graphical user interface, such as

pull-down menus, dialog boxes, and scroll bars.

Motif is a part of .. UINX library hierarchy which has four layers as shown in Figure 9.

Xm.h

intrinsics.h

X1lib.h

stdio.h, math.h, ...

Figure 9: The UNIX Library Hierarchy

stdio.h and math.h. are the Unix libraries; XLib.h is the X library; intrinsics.h is the
X toolkit library, and Xm.h is the Motif library. On top of UNIX sits the X window
system, which is accessed through XLib.k. On top of X sits the X toolkit accessed
through intrinsics.h. And finally, comes Motif which is accessed through Xm.h.

Advantages of Motif include:

o Motif facilitates the job of the programmer enormously, because using X win-
dows directly to create windows and draw in them can be a very cumbersome
job. Instead, Motif provides a set of preconstructed ser-interface objects which

can be placed on the screen by an application program.

o Motif provides consistency in the user-interface appearance.

Abstract Syntax Tree

44

The Abstract Syntax Tree (AST) is the central data structure of the tool. Although
AST is generated by the parser, it is not a parse tree. It is made up of a list of data

structures representing classes.

e The system is represented by a defined structure with the fields: the system

name and its description, and a pointer to a list of classes.

e Each class is represented by a defined structure with the fields: the class name
and its description, a pointer to the list of the inherited classes, a pointer to the
list of used classes, a pointer to the list of variables, and a pointer to the list of

class methods.

e Each method is represented by a defined structure with the fields: the method
name and its description, its return type, a list of arguments (name) : (type)
pair, a list of uses (method) :: {class) pair and a pointer to the next method

definition.

The definition of the system, class, and method structures are given in Figure 10

Parser

As mentioned in Section 4.1.1, the parser module consists of three parts: the scanner
for generating tokens; a parser which uses the tokens to check the syntax of the input
according to some grammar rules; and a constructor which obtain the data returned

by the parser and construct the AST.

The scanner is responsible for the lexical analysis. Lexical analysis means dividing
an input stream into meaningful units [18]. The scanner converts the input streams

into tokens and passes them to the parser module.

Lez is a tool for building lexical analysers or lexers. Lez takes a set of descriptions

of possible tokens which is called lex specifications and prod-.ces a C routine called

45

typedef struct TMethod {

TLabel label;
TTOPair typeOrig;
TNTPairDict *paraList;
TNTPairDict *usesList;
struct TMethod *next;

} TMethod;

typedef struct TClass {

TLabel label;
TInherits *jinherits;
TStringDict *usesList;
TVar *yvarList;
TMethod *methodList;
struct TClass *next;

} TClass;

typedef struct TSystem {

TLabel label;
TClass *classList;
TUsecase *usecaseList;
struct TSystem #*next;

} TSystem;

Figure 10: System, class and method C structures from AST

lexer. A lexer takes an arbitrary input and tokenizes it. The scanner in this tool use

a hand-coded lexer written in c, instead of using Lex.

The parser takes the tokens generated by the scanner and checks if the relationship

among these tokens follow certain syntax rules.

The parser is generated by yacc [18]. yacc is a tool provided by UNIX. It takes
a grammar specified by the user of yacc and writes a parser that recognises valid

“sentences” in that grammar and invokes corresponding actions.

The parser uses the scanner by calling it repeatedly until the input stream is ex-

hausted.

The constructor is the set of actions invoked when the parser find a set of tokens

that matches one of the syntax rules.

This will conclude our description of the existing tool.

46

Chapter 5

The Extended Tool

The extended tool differs from the original tool in several ways, of which the most
important is that it can test the behaviour of the design by means of use cases. 'The
tool tests a use case by checking if the design of the system is capable of providing the
sequence of transactions specified by the use case. This chapter includes a description
of the testing process and the design. The implementation of the tool is discussed in

Chapter 6.

5.1 The Testing Process

Before describing the testing process, we outline a set of criteria for the tool.

e The tool should support the OOSE method—the analysis and design of the
system should be done using the OOSE method.

o According to the OOSE method, discussed in Section 2.2, each use case in
the analysis phase has a corresponding interaction diagram in the construction
phase. Therefore, the tool should be able to accept, process and store use cases

and interaction diagrains.

47

o The textual form of the design, explained in Section 4.1, remains unchanged
and it is used in the tool. The only modification is making the comment after
the method declaration mandatory. The significance of this condition will be

explained later in this chapter.
The steps of the test process are:

e When a use case is tested by the tool, the tool traverses the corresponding
interaction diagram. An interaction diagram describes a use case as a sequence
of operations calls. Upon reading each operation call in the interaction diagram,

the tool extracts its corresponding comment.

e When the interaction diagram is exhausted, the tool will have a sequence of
comments in a format similar to the use case. This sequence is called the

generaled use case.

o The tool displays the generated use case next to the original use case being

tested.

o The user reads both use cases and compare their contents to see if they provide
the same sequence of transactions. Note that the comparison cannot be done
automatically because both the use cases and the method comments consist of

informal text.

5.2 Design of The Tool

The tool accepts three types of docaments as its input. These documents are parsed
by the parser which obtains the information in the documents and stores it in the
data structure (AST). The user interface of the tool allows the user to select a

design and test the feasibility of its use cases. The tool uses the data stored in the

48

AST to obtain the use cases and the interaction diagrams of the selected design and

to perform the testing algorithms.

Accordingly, the tool design has five main parts: The system design forms and
documents which represent the input of the tool, the user interface, the data
structure, the parsers, and the major functional module. In this section the
design of these parts will be discussed while important details about their implemen-
tations are discussed in section 5.3. But first a description of an example system that

will serve as a running example throughout the rest of the thesis is j:rovided.

5.2.1 Example System

The example considered in this paper is a recycling machine system taken from [15].
This specific application is chosen because it can have many use cases, which is

essential to demonstrate and test the new developed features of the tool.

The system is developed using OOSE/se case driven approach. We do not provide
a detailed deccription of the system development process here, however, because Ja-
cobson has described it in [15]. We discuss the various models of the system will be

briefly, and we present a block design for two classes of the system.

Description of The System

The machine allows the users to return three kinds of items: bottles, cans and crates.
The machine has to check the type of each returned item and it can be accessed

simultaneously by many users.

After depositing an item, the user presses the return button to obtain a receipt which
contains what the user has deposited, the total value of each returned item, and the

total sum paid to him.

49

The other user of the machine is the operator who can perform the following tasks:

1. Obtain a report about the total amount of items returned;

2. Change the settings of the machine.

When something goes wrong the operator is notified by a special alarm.

Requirement Model

Building the requirement model consists of three activities: building the use case

model, defining the interface of the system, and identifying the problem domain

objects.

Building the use case model includes specifying the actors and use cases of the
system using the description of the system.

Actors:
There are two actors in this application, Customer and Operator.
Use cases:
The functionality of the system is identified by specifying the use cases per-
formed by the actors. In this system there are four possible use cases :
1. Returning items;
2. Item stuck (extends the first use case);
3. Generate daily report;
4. Change item.

The first two use cases are performed by the Customer while the other two are

performed by the Operator.

50

The following is the Returning Items use case:

“When the customer deposits an item, it is measured by the system. The mea-
surements are used to determine what kind of can, boltle or crate has been
deposited. If accepted the customer total is incremented, as is the daily total for
that specific item type. If the item is not accepted, ‘NOT VALID’ is highlighted
on the panel. When the customer presses the receipt button, the printer prints
the date, The customer total is calculated and the following information printed

on the receipt for each item type:

name

number returned
deposit value
total for this type

Finally, the sum that the customer should receive is printed on the receipt. ”

The interface of the system: The Customer interfaces are: the Customer panel

(including buttons, holes, and alarm devices) and the receipt layout .

The Problem domain objects represent real entities in the application environ-
ment. they facilitate the description of the use cases since they represent a
common terminology understood by the users and by the system. Some of the

problem domain objects are: Returnable item, receipt, bottle, and can.

Analysis Model

After defining the functionality and interfaces of the system, the next step in OOSE
method is to create the structure of the system and to distribute the different func-

tionalities specified by the uses cases among the analysis objects.

There are three types of analysis objects: interface objects, entity objects, ai.d control

objects, each of which represents a different aspect of the system.

The interface objects of the recycling machine are:

51

o Customer panel, which manages the sensors in the deposit slots, receipt and

start buttons.

e Receipt printer, which prints the information on a paper roll. When the paper

roll is almost finished, it informs the operator through the alarm device.

o Operator panel, which is the operator’s interface to the system where he/she

can access the infermation inside the system and generate daily reports.

e Alarm device, which Controls a signal device and has a reset button for the

alarm.
The entity objects are

e Can, Botile, and Crate, which store the size of the entity. Each one has different

size attributes.

e Deposit item, which is an abstract entity object inherited by can, bottle and

crate object. It holds the deposit value of the item, name, and day total.

o Receipt basis, which keeps track of all the items deposited by the customer.

The control objects, which are usually identified by assigning one control object
for each use case such that in each use case the functionality that is not handled
by either an interface or an entity object is assigned to the control object. In the

recycling machine system these objects are:

o Deposit item receiver, which handles the coupling of interface and entity objects

in the returning items use case.

o Report generator, which controls the report generation in generate daily report

use case.

52

Alarmist Alarm device

/ —— \

Cuslor:lcr Deposit item Report Openator
pane receiver generator panel
Receipt basis Deposit item
7
. '
)
]
)
! -
]
’)
’ [l
1
Can Bottle Crate

Figure 11: The design model for the recycling machine

o Alarmist!, which controls the alarm device in item stuck use case.

The Design Model

Since the implementation environment for the recycling machine is made simple,
defining the design objects, which are called blocks, is a direct mapping from the

analysis objects. The design model is shown in Figure 11.

The next step is to design the use cases described in the previous models. This is done
by showing how the different blocks communicate and how each use case is realized

by these communicating blocks.

The interaction diagram of Returning Items use case is shown in Figure 12.

1This word is used in [15] to stand for an object that controls an alarm device

53

System border Customer Deopsit item Receipt Deposit Receipt
panel receiver basis stem printer
: start
¥
: activate
: I
' new item
' exists()
: inserutem(item] .
! -————I incr
b ™
: r
+
1
:‘————E—NCCi L — rintRecei
' P 2 print(Logo, date) [‘J
1 oy
E printOn(ostream) []
! getName r
' getValue
] b
1
! T print(STREAM) F]
' delete 1 =1
5 delete
' I
1
1

Figure 12: Interaction diagram for returning items use case

54

Block design

Designing a block starts by identif:ing its interface. This may be done by going
through all the use cases that the block participates in. Therefore, after designing
the use case Returning items, it becomes possible to do the block design for the receipt

basis object since it participates in this use case only.

Class ReceiptBasis;
Operations;
create;

insertItem(Depositltem);

printOn(stream);
delete;
Attributes:
itemList: listOf ReturnedItem;
sum: ECU;
end Class

The block design for another object the deposit item can also be shown. This object
participates in two other Use cases besides returning items, these are generate daily
report and change item. Although these last two use cases are not shown here, the

interface operations of deposit item object are getTotal and change Value.

Class Depositltem;
Operations;
exists();
incr;
getName;
getValue;
getTotal;

changeValue;

55

Attributes;
total : ECU;
value : ECU;
name : String;

endClass

The complete design text of the recycling machine system is given in Appendix B.

5.2.2 Design Model and Representation

The current tool supports the OOSE as a system development method. Accordingly,

the design model used by the tool consis‘s of three separate documents:

1. The system design document, which consists of a list of classes. This design
document is used in the existing tool as described in [5, pages 22 and 23] and

is represented by a file called the system file.

to

Use cases design document, which consists of a list of use cases. Each use
case includes a text which describes a related sequence of transactions. This

document is represented by a separate file called the use case file.

3. Interaction diagrams design document, which includes a list of interaction di-
agrams. Each interaction diagram should correspond to one use case. The
interaction diagrams describe how use cases are realized by means of operation
calls between the system classes. This document is represented by a separate

file called the interaction diagram file.

Use cases and interaction diagrams are represented by a textual form and follow

some syntax rules.

56

The use case files have the following syntax:

e The file can have an unlimited number of use cases.
e Each use case has a name and a body.

e The body of a use case consists of a numbered sequence of sentences, which are

syntax-free text.

Figure 13 shows the yacc grammar of the use case files.

Based on this syntax, the use case “Returning Items” described in the Example

system, will be written as shown in Figure 14.

The interaction diagram files have the following syntax:

e Each interaction diagram has a name, and a body.

e The body of an interaction diagram consists of a numbered sequence of expres-

sions with fixed syntax. There are three types of expressions:

1. One class can call another class using a method name.

2. One class can send a signal to the interface of the systemn using a signal

name.

3. The interface of the system can send a signal to onc class—-usually a user-

event— using a signal name

Figure 15 shows the yacc grammar of the interaction diagram files.

Based on this syntax, the interaction diagram “Returning Items” shown in Figure 12

is translated into the textual form shown in Figure 16.

37

usecase_list
usecase | usecase_list usecase ;

usecase
USECASE IDENTIFIER {
settingUsecaseName($2);

opt_comment {
addComm(aUSECASE) ;

}
bodytext_list
END IDENTIFIER (
addUsecaseToSys () ;
}

.
’

bodytext_1list
BODYTEXT {
settingUsecaseBody($1);

}
| bodytext_list BODYTEXT ({
concatUsecaseBody($2);
}

opt_comment
/* nothing */
| comment_list

.
’

comment_list
UCOMMENT { /* one-line comment */
settingComm($1);

| comment_list UCOMMENT { /* multiple line comment */
concatComm($2);

}

Figure 13: The yacc grammar of the use case files

58

usecase Returningltems

1- After the customer returns the deposit item, it is measured by the
> system to determine what kind of can, bottle or crate has been deposited.

2- If the item is accepted , the customer total of the item type is
> incremented.

3- The daily total for that item is incremented.
4- If the item is not accepted, ’'Not valid’ is highligted on ithe panel.

5- When the customer presses the receipt button, the printer prints the

date, the customer total is calulated, and the following info are printed
on the receipt for each item type : name, number returned, deposit value,
and total for this type. Finally the amount that the customer should receive
is also printed.

vVvvVvy

end ReturningItems

Figure 14: The use case “Returning Items”

5.2.3 User-Iinterface

The user-interface is built to be compatible with the interface of the existing tool.

The major windows of the tool are:

ToolMainWindow

The ToolMainWindow is a modified version of the ToolMainWindow in the original
tool discussed in Section 4.1.1. It is the first window displayed upon running the tool.
This window has five main options: Design, View, Check, Output and Use Case
Testing. The first four options are discussed earlier in Section 4.1.1. The Use Case
Testing is the new option provided by the tool. The ToolMainWindow is shown in
Figure 17.

UseCaseTesting Window

When the user chooses the use case testing option from the ToolMainWindow the
UseCaseTesting window pops up. This window contains the list of system files from

which the user can choose to perform the use case testing. This window is shown

39

interactiondiagram :
INTDIAGRAM IDENTIFIER {

settingIdName($2);
}

opt_comment {
addComm(alD);
}

steplist
END IDENTIFIER ({
addIdToUsecase():
}

steplist :
step | steplist step

’

step
SEQUENCE CLASS IDENTIFIER
CALLS CLASS IDENTIFIER
METHOD IDENTIFIER (
addStep($1, $3i $6, $8);

SEQUENCE SYSTEM CALLS CLASS IDENTIFIER
SIGMAL IDENTIFIER {
addSignal(Sl/ $5, $7);
)

SEQUENCE CLASS IDENTIFIER CALLS SYSTEM
SIGNAL IDENTIFIER { }

-~

opt_comment :
/* nothing */
| comment_list
comment_list
IDGCOMMENT { /* one-line comment */

settingComm($1);
1

|
comment_list IDGCOMMENT { /* multiple line comment */

concatComm($2);
)

Figure 15: The yacc grammar of the interaction files

60

interactiondiagram Returningltems

1- system calls class CustomerPanel signal start

2- class CustomerPanel calls class DepositItemReceiver method create

3- class CustomerPanel calls system signal activate
4- system calls class CustomerPanel signal newItem

5- class CustomerPanel calls class DepositItemReceiver method item

6- class DepositItemReceiver calls class DepositItem method exists

7- class DepositItemReceiver calls class ReceiptBasis method insertItem
8- class ReceiptBasis calls class DepositItem method incr

9- system
10- class
11- class
12- class
13- class
14- class
15- class
16- class

17- class

calls class CustomerPanel signal receipt

CustomerPanel calls class DepositItemReceiver method printReceipt
DepositItemReceiver calls class ReceiptPrinter method print
DepositltemReceiver calls class ReceiptBasis method printOn
ReceiptBasis calls class Depositltem method getName

ReceiptBasis calls class DepositItem method getValue
DepositItemReceiver calls class ReceiptPrinter method printStr
DepositItemReceiver calls class ReceiptBasis method delete
CustomerPanel calls class DepositlItemReceiver method delete

end ReturningItems

Figure 16: Textual form of interaction diagram “Returning Items”

ToolMainWindow

Welcome To Our Tool !

Design

Vieuw

Check

Output

Use Case Testing

Figure 17: ToolMainWindow

1

D UseCaseTesting Window

é

Please select a systen to CHECK its
USE CASES feasibility

RNNNNNN
RRNNNNN

X AXX XXX A XIOALXX XX XXX N XK XEL XX XXX XAAXXKXL

Filter
| /nnt/logicl /grad/tabach/o]

Directories Files

, expl,.d
‘nnt/logici/grad/tabach/. . expli.d
‘nnt/logicl/grad/tabach/test expl2,d
expl3.d
expld.d
gane.d

recycle.lib
[< s 3 KN
Selection

I /mnt/1ogicl/grad/tabach/recycle.d I

[][] [] (e]

Figure 18: UseCaseTesting Window
in Figure 18.
useDialog_popup Window

This window pops up after selecting a file from the UseCaseTesting window. This
window has the list of use cases of the system. The user can select one use case to be

tested. This window is shown in Figure 19.
UseCaseWindow—Feasibility Checking Output

After selecting one use case from the useDialog_popup window, the use case is .ested
by the tool, if the test is successful, the UseCase Window—~- Feasibility Checking Output

will appear.

62

ISR
useDialog_popup P]
Use cases of RecyclingMachine
GenerateDailyReport
Selection I
ReturningItensg
Cancel Check Help
m

Figure 19: The useDialog.popup Window

1. The first part contains the original text of the use case being tested.

2. The second part contains the new generated nse case which is a sequence of

comments separated by blank lines.

Both texts can be scrolled and the entire output can be printed on an output file.
This window is shown in Figure 20 showing the test output of the Returning Items

use case.

5.2.4 Data structure
The abstract syntax tree (AST) used in the original tool is extended to hold the

data of the use cases and interaction diagrams available in the use case file and the

interaction diagram files.

63

[E UseCaseWindow--Feasibility Checking Oulput

FINAL OUTPUT of use case feasibility checking!

Use Case Returningltens:

1- After the custoner returns the deposit iten, it
> systen to deternine what kind of can, bottle or
2~ If the iten is accepted , the custoner total of
> increnented,

3- The daily total for that itemn is increnented.
4- If the iten is not accepted, ’Hot valid’ is hig
5= Hhen the custoner presses the receipt button, t
> date, the custoner total is calulated, and the
> on the receipt for each iten type : nane, nunbe
> and total for this type. Finaly the anount that
> is also printed.

élIC::::::::::::::::::::::::::::Illllllllllllllllﬂi

Feasibility checking Qutput of Use Case ReturningI

-= fictivate the sensors when the user presses the
-= Get ready to accept a new iten.
== Handle a new inserted deposit iten,

Check the new inserted itemn ,its validation ,an
-=- related to it.

== Check if the inserted iten is acceptable/valid.
== the “ invalid * button on the panel.,

EII::::::::::::::::::::::::::::lllllllllllllllll

oK [: Print

................

Figure 20: Final output of Returningltems use case testing

64

5.2.5 Parsers

There are two new parsers modules developed in the extended tool. One for the use
case file and the other is for the interaction diagram file. Each parser module has a
scanner for lexical analysis, a parser, and a constructor which is a set of actions
to construct the AST. The tool uses the parser developed in the original tool to parse
the system file. The three parsers obtain data from three different files and store it

into one AST.

5.2.6 Major Functional Module

There is one main functional module in the tool, the Use Case Tester. This module

is responsible for the important function of the tool—testing use cases.

When the user selects a system file, which has an extension ¢.d’, The module searches
for its corresponding use case file, and interaction diagram file, which both have the
same name as the system file but different extensions. The extensions of use case files

and interaction diagram files are ‘.use’ and ‘.id’, respectively.

The files are then parsed and the AST is constructed. Next, the list of all the use
cases of the current system are displayed and the user can select one of them. When
a use case is selected, the module searches for its corresponding interaction diagram

from the AST, and starts to execute the testing process explained in Section 5.1.

The followings are the validation checks performed in this module:

o Each file with the extension ‘.d’ selected for use case testing should have a

corresponding ‘.use’ and ‘.id’ files.
e The three fle, the ¢.d’, ‘.use’, and ‘.id’, should be parsed successfully.
o The Consistency check provided by the original tool should be passed hefore

65

infoDialog_popup |

§ Please check the system for consistency before continuing with the use case testing

1

Figure 21: Error message displayed when consistency check fails
continuing with use case testing. This message is shown in Figure 21.
o Use cases in the use case file should not be multiply defined.

o Each use case in the use case file should have a corresponding interaction dia-

gram in the inleraction diagram file.

o The syntax of one of interaction diagram expressions looks as follows:
P.S. The keywords are in bold and the names are in italic.
class Cl calls class C2 method M1

tue following checks should be done:

~ C1 should be defined in the system file
~ (2 should be defined in the system file

— Ml should be defined in the system file and included in C2. If Ml is
not defined, the error message displayed includes the name of the class it

should be included in. In this case it is class C2.

— C2 should be defined in the uses list of C1, in the system file.

66

Chapter 6

Implementation of The Tool

6.1 The Implementation Language

C is the implementation language of the tool. It was chosen because the original tool,
which is the starting point of our tool, is implemented in C. Moreover, the interfaces
to Motif, which is used to build the user interface of the tool, are specified as C

prototypes. The tool runs under Unix and X windows.

6.2 Abstract Syntax Tree (AST)

The system is represented by a set of classes, a 'l can have a set of use cases. Fach
use case can point to one interaction diagram, and each interaction diagram can point
to a number of classes connected in a way to show the operations calls between them.
The C structure representing the system is modified and four new C structures are

added to the AST in order to represent this information.

o The system is represented by a defined structure which is modified from the

original structure to hold a list of use cases. The structure has the following

67

fields: system name and its description, a pointer to a list of classes, a pointer

to a list of use cases, and a pointer to the next system.

e Fach use case is represented by a defined structure with the following fields: the

use case name and its description, the text of the use case, and a pointer to its

interaction diagram.

e Each interaction diagram is represented by a defined structure with the following
fields: the interaction diagram and its description, and a pointer to a C structure

called [dNode.

o [dNode structure representsone class in the interaction diagram which is calling
other classes and it has the following fields: its name, a pointer to a C structure

called RefNode, and a pointer to the next class initiating an operation call.

e The C structure RefNode represents a list of classes which receive an operation
call from The IdNode class and have the following fields: The class name, the

method name used in the call, and its sequence in the interaction diagram.

Figure 22 shows part of the AST containing the C structures listed above

6.2 Parsers

There are three parser modules, one for the system files ¢.d’, one for the use case files
‘.use’, and one for the interaction diagram files ‘.id’>. Each module contains three

programs, the lexer, the parser and the constructor.

The lexer is a hand-written program coded in C. The parser uses yacc, and the
constructor contains all the functions called by the parsers to insert data into the

AST.

The parser module for the system design files ¢.d’is the same one used in the original

tool except for one modification in in its yacc grammar rules—the comment after the

68

typedef struct RefNode {

TString classname;
TString methodname ;
TString count ;
struct RefNode *next;

} RefNode;

typedef struct IdNode {

TString clname;
RefNode *reflist;
struct IdNode *next;

} IdNode;

typedef struct TId {
TLabel idlabel;

IdNode *idiagram;
}] TIQ;
/* New structure added to represent the different */
/* use cases of the system */
typedef struct TUsecase {
TLabel label;
TString usetext;
TId *id;

struct TUsecase *next;
} TUsecase;

typedef struct TSystem {

TLabel label ;
TClass *classList;
TUsecase *usecaselist;
struct TSystem *next;

} TSystem;

Figure 22: C structures of the system, use case and interaction diagram

69

method

METHOD IDENTIFIER {
settingMethodName($2) ;

opt_vara_list

opt_type

opt_comment {
addComm(aMETHOD) ;

}

opt_uses {
addMethodToClass ();
)

Figure 23: The original grammar rule for method

method

grammar rule, respectively.

METHOD IDENTIFIER {

settingMethodName (5$2) ;
}

opt_para_list

opt_type

comment_list {
addComm (aMETHOD) ;

}

opt_uses {
addMethodToClass ();

}

Figure 24: The modified grammar rule for method

method is made mandatory. Figures 23 and 24 show the original and the modified

The comment after each method is made mandatory because when the program tra-
verse an interaction diagram, it reads the comment of each method contained in the
diagram. Later it uses all this list of comments to write the generated use case de-
scribed in Section 5.1. Therefore, if a method in the interaction diagram does not
have a comment, it means that the generited use case is not complete. Consequently,

the result from the use case testing will not be correct.

70

method exists
-- Check 1if the inserted item is acceptable/valid. If not, highlight
== the " invalid " button on the panel.

method incr
-- Increment the total of the deposit item type.

method getName
-- Get the name of the deposit item.

method getvalue
-- Get the deposit value of the deposit item.

method getTotal
-- Get the daily tctal for a deposit item type.

method changevValue
-- Change the deposit value of an item.

Figure 25: An example of the recommended style of comments

Even though the comment is syntax-free, it is recommended to use an imperative
mode which makes the comment looks like a request from the system. The better the
user writes his comments, the better the output will be. Figure 25shows an example
of the recommended style of comments. This example is taken from the system file

of the recycling machine system.

6.3.1 Multiple Parsers

{Une problern encountered during the implementation of the tool is the use of multiple

parsers in the same application.

The parser generated by yacc calls the lexer yylez()—which is the main function in

the lexer—whenever it needs a token from the iuput.

yacc takes the grammar provided by the user and creates a file called y.tab.c, which

is the C language parser. yacc also creates the file y.tah.h by defining the token

71

names in the parscr as C preprocessors names in y.tab.h [18].

In our case, we needed to use three separate parsers. But yacc does not make this
casy because every parser it generates has the same entry point yyparse() and calls
the same lexer yylez() which uses the same token value yylval. In addition, most
versions of yace, including the one we are using (sun release 4.1), put the parse table
and the parser stack in global variables with names like yyact and yyv. If we translate
the three grammars, compile, and link the resulting files(renaming at least two of

them into something other than y.tab.c) we still got a long list of multiply defined

symbols.

One solution to this problem is to change the names that yacc uses for its functions
and variables. An easy way to do this is to 1+ ¢ the command-line switch -p to
change the prefix used on the names in the parser generated by yacc. For examplc

the conmimand line:
yacc -p nn graminar.y

produces a parser using grammar.y with the entry point nnparse() instead of yy-

parse(), which calls the lexer nnles() instead of yylez() and uses the valve nnlval, and

variable nachar, and so on.

Another command-line switch -b is used to change the prefix of the files generated

by yacc. For example:
yacc -p nn -b pref grammar.y
This produces pref.tab.c and pref.tab.h files instead of y.tab.c and y.tab.h.

Unfortunately, this solution did not work with the currently available version of yacc
because it is relatively old and does not provide the ‘-p® and ‘-b’ switches. Therefore,

yacc was replaced by bison which worked properly.

-1
8]

bison is a yacc-compatible parser generator. The yace grammar works with bison
without any modification. Like yacc. bison converts a gramuiar into a C parser which

recognises valid “sentences” based on that grammar |6].

The following commands wer~ used in the make file to change the default prefix of

all the syr._bols generated by bison:
bison -d -p u ¢ uparse.n

where ‘uparse.n’ is the file containing the grammar for the ‘.use’ files. The same

command was used for the parser of the interaction diagram files ‘iparse.n’.

The main function in the lexer of the use cesc files is named uselex(). ‘The same thing

was done for the ‘.id’ files.

The default prefix of the files generated by bison are not ‘y.tab.c’ and ‘y.tab.h’. In-
stead, they are ‘filename.tab.c’ and ‘filename.tab.h’ where ‘filename’ is the name of
the file containing the yacc/bison grammar. Since there are three different files con-
taining the three different giani:nars, the prefix of the gencrated files didn’t need
special handling. For example the C parser file generated by the above comnand line

is unarse.n.tab.c.

6.4 User Interface

The user interface is built using Motif. Motif is briefly described in Section 4.1.2.
Motif facilitates greatly the work of the programmer in building the user interface
by providing preconstructed user intcrface objects- widgets. The user can use any

widgets in his application program to get the user interface objects needed.

This section includes a brief description of the major Motif widgets used in the tool

implementation. However before proceeding, two important terms related to the

73

Motif widgets should be pointed out:

Resources: Every widget has a set of associated resources. Resources are similar
to variables but they are accessed in a more complicated way. The widget’s

resources control its appearance and behaviour.

Callbacks are a way to handle user-events on the widgets. In other words, when a
certain widget allows the user to manipulate it on the screen, the widget needs
a way to inform the program about the user’s input. This is done by using

callback i nctions.

A callback function is a C function that performs certain action. The function is
registered as a callback function for a specific widget by using ‘Xtaddcallback’
. When the widget receives a user event, it cails its registered callback function

to perform the action requested by the user.

Top level shell
This is the first widget created in a Motif program. It is the main application window
that provides the standard window appearance: the title bar, the maximise and

minimise buttons, the resize area, and so on.

Form widgets
The Form widget is a manager widget. A manager widget handles the placement of
many different widgets in a single window. A form widget holds many widgets and

provides them with automatic resizing and reposition.

RowColumn Widgets

The RowColumn widget is a manager widget similar to the form widget. The differ-
ence between the two widgets is that in the form widget the user has to specify the
placement of the child widgets by attaching them to the Form widget, while in the
RowColumn widget the child widgets are arranged automatically which is especially

useful when the number of child widgets is large.

74

Paned Window Widgets

The paned window holds other widgets and passes to them some of its resources.
This window allows the user to resize different panes of a window using a draggable
control called a sash. The programmers usually puts the manager widgets, such as
Form and RowColumn, inside the paned window then, puts multiple widgets in

these manager widgets as described above.

Frame Widgets

The Frame widget is a very simple widget. It puts a frame around its child widget if

it lacks one, such as the label widget and toggle button.

Label Widgets

The label widget can display strings of characters. It is usually used to display help

information, labels, greeting messages, and so on.

Push Buttonr Widgets

The Push button widget allows the user to issue a command by clicking on it. The

Push button has a label and it inherits all the resources of the Label widget.

File Selection Box

The file selection box allows the users to select a file form a list of files in the current
directory. It is a very powerful widget because it provides a number of resources that
contains important information, such as the current directory and its list of files, the

filter string, the types of files to he displayed, and many others.

Text/Scrolled Text Widgets

The text widget is very powerful and more complicated than the other widgets. It
allows the users to enier characters and display them on the screen. The user can

delete characters using the backspace.

The scrolled text widget is a variation from it. It adds a scroll bar to the window and

allows the user to scroll the text in all directions.

75

oplevel shell

Paned Window

Frame Label |

—] Button
Form Button |—{ Button
RowColurun Frame Form Button
—_— Button
Form Button
| Button

Figure 26: The Motif widget structure of the ToolMainWindow

Figure 26, 27, and 28 show the Motif widgets structure of the major windows of

the tool’s user interface.

6.4.1 The Major functional Module — Use Case Tester

This module consists of many important functions that perform the use case testing.

useCaseCb Function

useCseCb is a callback function invoked when the users select the use case testing
option from the ToolMain Window. Since this function must consider many possibili-

ties, we describe its actions by means of pseudocode:

Create the UseCaseTesting window (shown in Figure 18) where only the files with
extension ‘.d’ are displayed in the files list;

Obtain the ‘file name’ and validate it;

76

Shell

Label

Paned Window

| File selection box

Figure 27: The Motif widget structure of the UseCase'Testing Window

Shell
Label
Paned Window Scrolled text
Scrolled Text
Button]
RowColumn POREE—

— - -

R Button]

Figure 28: The Motif widgets structure of the UseCaseWindow Feasibility Checking
Output

77

If ‘Not Valid’ Then
Return;
Else
Call the system parser to parse ‘filename.d’;
If parse fail Then
Display an error message and return;
Else
Call use case parser to parse ‘filename.use’;
If parse fail Then
Display an error message and return;
Eise
Call the inleraction diagram parser to parse ‘filename.id’;
If parse fail Then
Display an error message and return;
Else
Check if there exists a library file ‘filename.lib’;
If exist Then
call the system parser to parse it;
Call for consistency Checking (provided by the original tool);
If Consistency check fails Then
Display the error message shown in figure 21;
Else
Display thc useDialog_popup Window (shown in Figure 19) and create the use cases

selection list by reading the use case list of the current system from the AST;

checkuseCb function

This is a callback function invoked when the users select a use case to test it. Since
this function must consider many possibilities, we describe its acticns by means of

pseudocode:

78

Search for use case in the AST;
If (not found) Then
Display an error message and return;
If use case does not have an interaction diagram Then
Display an error message and return;
Else
Start Traversing the interaction diagram;
While (not the end of interaction diagram) Do
If classi is undefined Then
Display an error message and return;
If class2 is undefined Then
Display an error message and return;
If method is undefined in class? Then
Display an error message containing the name of class2 and return;
If class?2 is not defined in the uses list of class! Then
Display an error message: “ class! cannot call class? ”;
Else
Reaa the comment of the method and store it;
End While
Display all the comments stored while traversing the interaction diagram on the output screes

Display the text of the use case on the output screen;

In addition to these major functions, there are other important key functions that
are not described hLere, such as the functions which obtain the data from the use case

files and the interaction diagram files and construct the AST.

79

Chapter 7

Assessment of The Tool

This chapter includes an assessment of the extended tool, developed during this
project—Why the tool is useful, what kind of help it provides for the designers,

and what are the limitations.

7.1 Advantages of The Tool

The extended tool has many good properties and useful features:

e Jacobson introduced use cases in the OOSE method in [15] as an informal text
representing a behaviourally related sequence of transactions which drive the
systemn development and help the designer in testing the design. The extended
tool incorporates this infornial concept of use cases into a design tool and
provides semi-automatic use case testing for the design and the resulting
behaviour of the system. We do not know of any other tools, either by Jacobson

or others, that provide automatic use case testing.

o The tool can automatically check if a use case is feasible by generating the

possible sequencr of events that wiil happen upon executing the use case using

80

the current design. The tool however, canuot automatically determine if the
output sequence of events is correct. The designer has to compare manually the
text of the original use case and the output sequence of events (which is called

the new generated use case) and decide if they provide the same behaviour.

o In case there is a gap between the design and the requirements, the extended
tool will likely detect the error and provide a useful feedback to help the designer

in identifying the missing classes, methods, and operation calls.

e The tool provides the designer with an early feedback—at the design stage -
instead of waiting until the implementation stage to know if the system meets

the users requirements.

o The tool enables the maintainers to use the tool when there are modifications
in thc requirements, so they can change the design, then change the code ac-
cordingly. This helps in keeping the requirements, design, and code consistent

during the system evolution.
e The tool is reliable and robust due to the numerous validation checks.

o The extended tool provides the feature of testing the dynamic behaviour of
the system in addition to the feature of testing the static model of the design,
provided by the original tool. As a result, the extended is more than just
a design tool which provides facilities for creating a design and gencrating a
printable design documents. It helps the designer to generate a higher quality

design and improves the speed of the system development.

o Although the tool provides many important features, its user interface is very

simple and clear which makes its use intuitive and pleasant.

7.2 Limitations of The Tool

The tool has some limitations and drawbacks:

81

e The tool supports only one software development method, the OOSE method.
Therefore the designer cannot develop a system using OMT for example, then
test its design directly using the tool. However, since all the development meth-
ods are getting closer an have many similar concepts, it will not be difficult
to transfer a design developed in another development method into the OOSE
method, especially, since the use case concept is gaining more popularity among
the other development methods, such as OMT, Responsibility-driven approach,

Booch’s method, and so on.

o There is a small overhead work required initially from the designer to transform
the interaction diagrams from their graphical form to the textual form specified

by the tool and to write a meaningful comment for each method irn the design.

¢ Currently, the tool runs only under Unix operating systems.

Finally, we are confident that the tool is both usable and useful. We have used it to
validate both designs from Jacobson’s book [15] and designs prepared by indepencent

testers.

82

Chapter 8

Conclusion

In this thesis, we describe an extension to an existing design tool. 'The existing
tool provides assistance for the designers and maintainers of a system by supporting
automation in capturing and altering the design. Its important features are: editing,

viewing, checking, and generating a printable report of a design.

The extended tool, developed during this project, adds to the original tool a new
feature which is use case testing. The purpose of this feature is to test the behaviour

of the system at the design stage.

The extended tool enables the designer to check the dynamic behaviour of the design
by checking if a certain behaviour, extracted from the requirements and represented

by the use case, is feasible using the existing design.

This test process is not corapletely automated by the tool. The tool will automatically
generate a sequence of events based on the existing design and the input, which is
the use case to be tested and its interaction diagram. However, it the responsibility
of the designer to compare the generated sequence of cvents with the use case and

decide if they provide the same behaviour.

83

The use case testing fcature, helps in verifying whether the design meets the re-
quircments. If not, it helps in identifying the necessary changes to meet the new

requirements.

This feature, makes the design more reliable and more flexible which is one of the
main objective of developing the first version of the tool. “ The design must be “light
weight” - casy to change... ” [10]. In addition, this enables the developers of tue
system to save a lot of cffort and time by getting an early feedback at the design

stage and before writing the code.

A detailed description of the extended tool, including its functionality. the testing
process, the design formats, and the important design and implementation details
are given in this thesis. One of the implementation issues discussed is the problem
of using multiple parsers in the same application. This problem is described in detail

and a solution is presented.
A review of the original tool, including its functionality and design is also provided.

An overview of the existing and most popular software development methods is given,
including a discussion about their differences, commonalities, advantages and disad-

vantages.

Currently, the extended tool runs under Unix and X Windows environment, and has

the following capabilities:

Edit a design

View a design

Check the consistency of a design

Generate a printable report of a design

o Perform use case testing on a design

84

Many possible features can be incorporated into the design tool. One important

suggestion for future work is:

e Incorporate the feature of behaviour allocation in use cases into the design
tool. This idea is proposed by D. Bennet [19] and described in Section 3.1, For
each use case, the designer collects the interface of cach object participating in
the use case (the incoming and outgoing messages), studies all the interfaces and
evaluates their cohesivencss and consistency. For example, if an object sends
most of its messages to one receiver, the designer can join the two objects. The
process of collecting all the objccts interfaces can be automated by the tool as

well as checking their cohesiveness and consistency.

In the conclusion of her thesis, Ding [5] made the following suggestions, whicl, we

endorse:

e “Some new functions can be added to the tool to enlarge the tool’s function-
ality. This may include the ability to provide graphical display (diagram) for
the system design and the classes of the system; the ability to respond to the
user’s queries. Some typical queries are: which classes uses service C:S7 Which
services does class C use?, etc..” Using the existing AST, implementing those

queries is straightforward.

e “ The tool could be extended with generators for various target langnages. For
example, it could generate class specifications in C++ or Eiffel, leaving only

the bodies of the methods to be completed by the implementors.”

¢ “ An experiment could be corducted to compare this tool with other tools.”

In addition to the above suggestions, Ding suggested a future version of the tool that,
can take into account the dynamic model of the system, which is partly what we have

achieved in this thesis.

85

Finally, the project significance is that it benefits from the importance of use case
concept introduced by Jacobson [15]. This concept has many advantages in capturing
the requirements, driving the system development, providing traceability, assisting
integration testing, and many other advantages which are listed in Section 3.1. The
project resulted in incorporating this concept into a design tool which provides an

automatic testing of the behaviour of a design by means of use cases.

Most existing tool provide only consistency checking of the static model of the
design. What is new about our tool is that, in addition, it tests the dynamic be-

haviour of the design.

86

Bibliography

]

2]

[3]

(1]

(6]

[8]

[9]

Grady Booch. Object Oriented Design With Applications. Benjamin/Cummings,
1991.

Marshall Brain. Motif Programmming: The esssentials....and More. Digital

Press, 1991,

R.J.A. Buhr and R. S. Casselman. Designing with timethreads. Technical report,
Carleton University, September 1993.

Terry Chr:ch and Philip Mathewa. An evaluation of object and case tools:the
Newbridge experience. In Hausi A. Muller and Ronald J. Norman, editors, Pro-
ceedings of the Seventh International Conference on Computer-Aided Software

Engineering, pages 4-9, July 1995.

Hanwei Ding. A design tool for object oriented development. Master’s thesis,

Department of Computer Science, Concordia University, November 1994.

Charles Donnely and Richard Stallman. Bison. Free Software Foundation, De-

cember 1992,

Gene Forte. Tools fair: out of the lab, onto the shell. IEEE Software, pages
70-79, May 1992.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software

Engineering. Prentice Hall, 1991.
Tan Graham. Object Oriented Methods. Addison-Wesley, 1994.

87

[10]

[11]

[12]

[13]

(14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

Peter Grogono. Designing for change. In CASCON 9, November 1994, Invited

workshop presentation.

David Harel. On visual formalisms. Commun.cations of the ACM, 31(5):511 530,

May 1988.

M. Hedlund. A representation of object behavior in LOTOS. tn QOPSLA 92,
pages 125-126, October 1992.

Ivar Jacobson. Formalizing use-case modeling. Journal of Object-Oriented Pro-

gramming, pages 10-14, March 1995.

Ivar Jacobson and Magnus Christerson. A growing consensus on use cases. Jour-

nal of Object-Oriented Programming, March 1995.

Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard.

Object-Oriented Software Engineering. Addison Wesley, 1992,

Bjorn Kirkerud. Object-oriented programming with SIMULA. Addison-Wesley,
1989.

Wilf R. Lalonde and Jhon R. Pugh. Inside Smalltalk. Prentice Hall, 1990,

John R. Levine, Tony Mason, and Doug Brown. lex & yace. O'Reilly & Asso-
ciates, Inc, 1995.

Fredrick Lindstrom. Experiences of use case and similar concepts. In OOP-

SLA’92, pages 123-130. Acm Press, October 1992.

Libero Nigro. A real time architecture based on Shlacr-Melior object, lifecycles.

Journal of Object-Oriented Programmine. page 20, March 1995.

James Rumbaugh, Michael Blaha, Willian Premerlani, Frederick Kddy, and

William Lorensen. Object-Oriented Modeling and Design. Prentice Hall, 1991,

Sally Shlaer and Stephen J. Mellor. Object-Oriented Systems Analysis: Modehing
the World in Data. Prentice Hall, 1988.

88

-

[23] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-
Oriented Software. Prentice Hall, 1990.

89

Appendix A

The Abstract Data Structure

#ifndef TOOLSTRUCT_H
#define TOOLSTRUCT_H

#include <stdlib.h>
#include <stdio.h>

#include <strings.h>
#define NIL NULL

#define TRUE 1
#define FALSE 0

#define NOFILENAME 0
#define CANNOTOPEN 1
#define PARSEFAIL 2
#define PARSESUCCEED 3

90

typedef char* TStraing;

/* data structure used for holding multi~line string in display */
typedef struct TMultiStr {
char *str;
int len;

} TMultaiStr;

typedef enum
{ aSYSTEM, aCLASS, aUSECASE, aID, aMETHOD, aVAR, aUSES, anINHERITS } TAtt

typedef struct TLabel {
TString name;
TString comment;

} TLabel;

typedef struct TStringDict {
TString name;
struct TStringDict *next;

} TStringDict;

typedef struct TNTPairDict {
TString name;
TStraing type;
struct TNTPairDict *next;

} TNTPairDict;

typedef struct TTOPair {
TString type;
TString origin;

} TTOPair;

91

typedef struct TVar {
TLabel label;
TTOPair typelrig;
struct TVar *next;

} TVar;

typedef struct TMethod {
TLabel label;
TTOPair typeOrag;
TNTPairDict *paralist;
TNTPairDict *useslList;
struct TMethod *next;
} TMethod;

struct TClass;

typedef struct TInherits {
TString name;
struct TClass *inhNodePtr;
struct TInherits *next;

} TInherits;

typedef struct TClass {
TLabel label;
TInherits *inherits;
TStringDict *usesList;
TVar *varList;
TMethod *methodList;
struct TClass *next;

} TClass;

/* Three NEW structures added to the old version */
/* of the tool to represent the interaction diagrams */

typedef struct RefNode {

TStraing classname;
TStraing methodname;
TStraing count;

struct RefNode *next;

} RefNode;

typedef struct IdNode {
TString clname;
RefNode *reflist;
struct IdNode *next;

} IdNode;

typedef struct TId {
TLabel idlabel;
IdNode *idiagram;

} Tid;

/* New structure added to represent the different */

/* use cases of the system */

typedef struct TUsecase {

TLabel label;
TString usetext;
TId *1d;

struct TUsecase *next;

} TUsecase;

93

typedef struct TSystem {

TLabel label;
TClass *classlist;
TUsecase *usecaselist;

struct TSystem *next;

} TSystem;

#tendif

94

Appendix B

Design Texts

This appendix includes the design files for two example systems which were used to

test the tool. For each example thre are three design files: the system design, the

use case and the interaction diagram files.
The Recycling Machine Example:

The system design file ‘recycle.d’:

system RecyclingMachine

-~ The system controls a recycling machine for returnable bottles, crates

-- and cans.
class ReceiptBasis

inherits StdErrors Program

uses Depositltem

method create

-- Initialize the calculation of the of the information to be printed.

95

method insertItem (DepositItem : String)

-~ Increment the daily total of the deposit item type
method printOn(Stream : Buffer)

-~ Put together the information about all the items inserted by the customer

-- and store it in the stream.

method delete

-~ Delete the customer of receipt basis to get ready for the next customer.
end ReceiptBasis

class DepositItem

var total : ECU

var value : ECU

var name : String

method exists

-- Check if the inserted item is acceptable/valid. If not, highlight

-- the " invalid " button on the panel.

method incr

-~ Increment the total of the deposit item type.

method getName

-- Get the name of the deposit item.

method getValue
-~ Get the deposit value of the deposit item.

96

method getTotal
-~ Get the daily total for a deposit item type.

method changeValue

-=- Change the deposit value of an item.

method delete
-- Delete the total of the deposit item type

end DepositItem

class CustomerPanel

uses DepositItemReceiver

method start

-- Activate the sensors when the user presses the start button.

method newItem

-- Handle a new inserted deposit item.

method receipt

- - The receipt button is pressed, start issuing a receipt.
end CustomerPanel

class DepositItemReceiver

uses DepositItem ReceiptBasis ReceiptPrinter

method create

-- Get ready to accept a new item.

97

method item

~-- Check the new inserted item ,its validation ,and update the information

-- related to it.

method printReceipt

-- Print all inforamtion related to the transcations done by one customer.

method delete

-- Delete all the information about the transcation done by last customer

end DepositItemReceiver

class ReceiptPrinter

method print(logo: String, date: Date)
-- Print the logo, date on the paper roll. If paper roll 1s empty, set

~- the alarm device.

method printStr(stream: Buffer)

-- Print the stream on the paper roll.

end ReceiptPrinter

class ReportGenerator

uses DepositItem ReceiptPrinter

method generate

-- Prepare a printout for the daily total of all deposit items returned
-- during the day, by getting the total of each item, then adding it up

-- and put it all on the print stream.

98

method delete

-- Delete the daily total to prepare for a new daily report.
end ReportGenerator

class OperatorPanel

uses ReportGenerator

method printReport

-- Fandle the print button on the operator panel when it is pressed.

end OperatorPanel

The use case file ‘recycle.use’:

usecase ReturningItems

1- After the customer returns the deposit item, it is measured by the

> system to determine what kind of can, bottle or crate has been deposited.

2- If the item is accepted , the customer total of the item type is

> incremented.

3- The daily total for that item is incremented.

4- If the item is not accepted, ’Not valid’ is highlited on the panel.
5- When the customer presses the receipt button, the printer prints the

> date, the customer total is calulated. and the fuilowing info are printed

> on the receipt for each item type : name, number returned, deposit value,

99

> and total for this type. Finaly the amount that the customer should receive

> 1is also printed.

end Returningltems

usecase GenerateDailyReport

1- The operator asks for a daily report which includes the total values of

> all the items returned during the day, in addition to the sum of all these

> total, by pressing on the print button on the operator panel.

2~ The daily total of an item type updated when the customer returns an

> item of its type, is printed on the report

3~ Then all the totals are added up and also printed on the report.

4- The total numbers are reset to start a new daily report, next day.

end GenerateDailyReport

The interaction diagram file ‘recycle.id’:

interactiondiagram ReturningItems

1- system calls class CustomerPanel signal start

2- class CustomerPanel calls class DepositItemReceiver method create
3- class CustomerPanel calls system signal activate

4- system calls class CustomerPanel signal newltem

5- class CustomerPanel calls class DepositItemReceiver method item
6- class DepositItemReceiver calls class DepositItem method exists

7- class DepositltemReceiver calls class ReceiptBasis method insertlItem

100

8-
9-

10-
11-
12-
13-
14-
15-
16~
17~

end

int

end

class ReceiptBasis calls class Depositltem method incr

system calls class CustomerPanel signal receipt

class CustomerPanel calls class DepositItemReceiver method printReceipt
class DepositItemReceiver calls class ReceiptPrinter method print

class DepositItemReceiver calls class ReceiptBasis method printOn

class ReceiptBasis calls class DepositItem method getName

class ReceiptBasis calls class DepositItem method getValue

class DepositItemReceiver calls class ReceiptPrinter method printStr
class DepositItemRece’ver calls class ReceiptBasis method delete

class CustomerPanel calls class DepositItemReceiver method delete

Returningltems

eractiondiagram CenerateDailyReport

syster calls class OperatorPanel signal printRepori

class OperatorPanel calls system signal activate

class OperatorPanel calls class ReportGenerator method generate
class ReportGenerator calls class ReceiptPrinter method print
class ReportGenerator calls class DepositItem method getName
class ReportGenerator calls class DepositItem method getTotal
class ReportGenerator calls class ReceiptPrinter method printStr
class ReportGenerator calls class DepositItem method delete

class OperatorPanel calls class ReportGenerator method delete

GenerateDailyReport

The Game example

The system design file ‘game.d’:

101

system GamePlayer

class UserInterface
uses Analyser Controller
method DoPlay
~-- Establish conditions for making a move.
method DoAnalyse
-~ Request an analysis of the current situation.
method Display
~-- Display the given data on the screen.

end UserInterface

class Controller
uses Game ScoreBoard
method Play
-- Request execution of a move.
~- Request display of updated scores.

end Controller

class Game
uses Environment ScoreBoard
method Move
-- Obtain current status from environment.
~- Execute the move.
== Inform scorer of scores and penalties.
-~ Update environment status.
method Show
-- Issue a report of the status of the game.

end Game

class ScoreBoard

102

uses UserInterface
method Update
—-- Alter scores to reflect last move.
method Show
—-- Issue report of scores for the players.

end ScoreBoard

class Environment
method Status
-~ Compute the current status of the playing environment.
method Update
-- Update the environment to reflect the last move.
method Show
-- Issue report of the status of the environment.

end Environment

class Analyser
uses Game Environment ReportGenerator
method Analyse
-~ Request a report of the game status.
-= Request a report of the environment status.
~— Evaluate the current situation.
-— Issue a report of the current situation.

end Analyser

class ReportGenerator
uses UserInterface
method Generate
~-- Format data and issue a comprehensive report.

end ReportGenerator

103

The use case file ‘game.use’:

usecase Analyse

1- The player initiates an analysis.

2- The controller passes the analysis request to the analyser.
3- The analyser obtains game information.

4- The analyser obtains environment information.

5- The analyser request a report.

6- The report generator sends a report to the user.

end Analyse

usecase PlayMove

1- The player initiates a move.

2- The controller passes the move request to the game simulator.

3- The game simulator requests the current status of the environment.
4- The game simulator executes the move.

5- The game simulator computes scores and penalties.

6- The controller displays the updated scores.

end PlayMove

the interaction diagram File ‘game.id”:

interactiondiagram Analyse

104

1- system calls class UserInterface signal DoAnalyse

2- class UserInterface calls class Analyser method Analyse
3- class Analyser calls class Game method Show

4~ class Analyser calls class Environment method Show

5- class Analyser calls class ReportGenerator method Generate

6- class ReportGenerator calls class UserInterface method Display

end Analyse
interactiondiagram PlayMove

1- system calls class UserInterface signal DoPlay

2- class UserInterface calls class Controller method Play
3~ class Controller calls class Game method Move
4- class Game calls class Environment method Status
5- class Game calls class ScoreBoard method Update
6- class Game calls class Environment method Update
7- class Controller calls class ScoreBoard method Show

8- class ScoreBoard calls class UserInterface method Display

end PlayMove

105

