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ABSTRAET ° . -

Image Processing on a Parallel Cohrp‘uter Architecture

Duraisamy .Sundar:éxjan, Ph. D. .
Concordia University, X987 . °
) S )

[EERY
This investigation is concerned with the design of image processing algorithms and

an architecture for their lmplemen’tatlﬁon. Trb,dftlona:lly, the requirements of an efTicient

Q

ﬁimaée processing have }béen twofold : faster execution time and smaller memory space.

1

Now, with the compelling argument in favour of parallel processing, the algorithms

hd -

must be designed to‘ha.ve, the additional features of reduced data dependency and

decomposability for efficient parallel implementation. Keeping these objectives in miind,

*two new algorithms, one linear and‘the other nonlmear, are designed. An MIMD type
§ ..

of architecture addressing the problems of parallel proceésing and designed to match a

»
I

wide range of ima%e progessing algorithms, is proposed.

A 'design 6r an algorithm’!?or two-diqaensional convolution operation ang its lmple-
mentation on the proposed a,rchitecture is presented In_ the direct implementation of a
convolution function the data values are ﬁrst shifted and then multiplied by the
appropriate coeﬁiclents to obtain the convolution sum In the proposed irrrplementa.tion
a single data value is multiphed by the coeflicients and the resulting products are

e

shifted and added to produce the output. This scheme results in a shorter execution of -
; . . R .

the software implementation, since it takes less time to access the proc(u’c‘t; -values of ‘a

single pixel with a set of coeflicients than to access.the product values of a set of pixels

o

. with the corresponding coeflicients. The proposed scheme’ has a feature o£ reduced

number of addltion operations by making use of the symmetry properties of wlndows as

encountered in many image processing tasks. It is shown that for convolvlng an image

wlth a window in different orientations, the algorithm requlree a smaller number of mul-
tlplicatlons thanain a direct implementation., v . v e Cs N
| e

-

) ' - . 1] .

- i - : e
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As an exgample of a nonllnear image processing operation, design and implementar :

/.'9'
tion of a median filtering algorithm is presented The operations fnvolved in & median

filtering algorithm are dependent(;n the nature of the image data. -In order to achieve a

high parallel implementation efficiency, the data dependency of the algorithm is reduced

in the design of the ailgorithm ftself. In this algorithm, the elements of a window are

3

put into two sets and these sets are updated for each window. The basis of the pro-
. { ) .

posed algorithm is that if ‘the elements of windows, in which the members of individual

roOws are brearranged in an.ascending order, are stored row by row in a one-dimensional

. array, then the results obtained in partitioning of all the rows of the past window,

except one row, can be used to partition and find the median of the current window.
The results of the windows immedxately above and to the left are used to ﬂnd the

median of the current window. This procedure results in a faster e'xecution time. In

addltlon it is shown'that the execution time is independent of the number of bits (gray -

levels) used to represent the data and the algorithr is relatlvely insensitive to noise lev-

-

els in the image.

I
“The proposed parallel architecture for image processing is a bus-oriented ,system

[

consistlng of & master processor a number of slave processors and dual—port in\éhBro-

cessor communication bun‘er memory modules. These memory modules are included to

provlde fast and simultaneous communication between ,adjacent processors.

a parallel architecture : (i) contention for a common resource, (ii) unequal work-load dis-

tribution among the processors, (iii) processors waiting for pa_rtia.l‘ results and data, and

(iv) insufliclent concurrenty Yn ‘the algorithm. Parallel processing schemes attempting to ’

resolve these problems on the proposed architecture are.developed.
“

. The major communication links between the processors of ‘the architecture are the

1

common memory modules which are contented only by t"wo adjacent processoss. This

feature of the architectare along with the a.syncpronous nature of the commomr memory
» ] v - .

There are four ractors that affect the implemen_tation emciencs} of an algorithm on *

‘_«v
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modulgs reduces the contention problem. ‘The contention problem is even further

v - .
red(uced by splitging the common memory space into two regions during the iﬂzor{thm

execution, one for wrltfng and the other for reading the neighborhood data and $artlal

results. The reading area of a common memory module to one processor is t;h wrltlng

\

area for the other processor connected to it. Algorithms are deslgn} in snch 8 way

" that At a speciﬂc time processors access generally different areas of

% .

e 8&)(\6 common

’ [

[

memory module.

i 1

As characteristics of an image may drastically vary from region to region, assigning

J )

continuous regions to pr'ocessors in a parallel computer system leads /«S an uneve'n‘f A
v -t - . ()

work-load distributions-among the processors when executing a d a-dependent algo-;:, . )

rithm. To reduce this problem, a new data partitioning scheme for ptira.liel processinz-is '

proposed. The underlying principle of the data partitldnlng scheme is to force each pro-

cessor, as much a.s. possible, to \:rork in every region.of the ima.g .

” -

(Q ' The number of synchronlzation polnts are reduced by t%«:hronizlng the proce'ssors
after processing a set of windows rather than arter eac indow. This reduces t.‘he
idling time of the processors, since the execublon time is likely to even out over a lﬁgq

number of windows. In addition, the data and partial esults are trahsferred much ear-

lier than whpn t.hey are required.

“
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f{é‘ ' _ INTRODUCTION,
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1.1. GENERAL . \
: ~ ‘ .

In recent years, computer processing of images has been accepted as a necessary

and vital tool in a variety of applications. Digital imaée processing system§ are gapable
' e

of acquiring anc\] pr?cessing’“’images with wider dynamic range than the human eye or
photographic film. A .digital image is a two-dimensional array of numbers. EaZh point '

in the digital image represents the brightness or intensity of the image' at that point

and it is related to the brightness ‘Br intensity ot ‘an area around the point. Each ele-
mént in the digital image is referred to as a picture elemex{t, commonly abbreviated as -~
pixel or pel. Image processing Jconsists of altering an i'mage in ordef to provide it with

desirable 'feat,ures, and to classify it into different oi)jects. Image processing is used in
such'applications as medical diagnosis, industrial~ inspection, weather analysis, and

-~

miperal, undersea and space explorations. One of the reasons for using p.arallei comput-

ers in Image processing is the requirement Tor fast processing of large volume of data.

For gxample, for real-time processing of television pictures with data rate of 25 frames

" N

per second, processing of approximately 60 million pixels per second is required for a \

- O

N

3% 3 neighborhood operation.

«

°

Due to the adyent of faster and cheaper VLSI processing eléements, large-capacity
storage deglces, and improved input scanning and output display techhology, it has

become possible to acquire, process, and display images with increasingly large volume’

of digital data.” Since most of the image processing algorithms are eadily decomposable -

A}

into identlcilfprocesses depending only on pixel values. in*®a small neighborhood, the
. > :

image pi‘ocessing problem is ideally suited Tor parallel procgssing. Hdéwever, there are

L problgms t6 be resolved in efficiently configuring a parauel‘ architecture for specific

. . - N
applications. Some of the problems are partitioning, scheduling, synchronization, and -

4 . [y
-

’ “ -
s -
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inter)frbcessor communication. 'i‘herefore, an image procésslng yst be partitioned

into tasks; each task must be efliciently scheduled; synchronizafion of contrel and data

flow must be performed during execution; and interprocessor communication must be
* ¢ w ’

established with as little contention as possible. In parallel processing of images, the

?

most ‘crucial problém is the selection and efficient use of an ihterprotessor communica-

tion scheme.

’
;o

1.2. IMAGE PROCESSING ALGORITHMS

¥

There are two types of operation’s in image processing — low-level and high-level.
The low-level operations invc;lve enhancement of an image and extraction of fqatures
from it. The high-level operations then evaluate tixe extracted features. For low;lével
operations, such as edge detection, it is. difficult to achieve a high throughput using a
uniprocessor system, sin;:e an output pixel is a function of a set of neighboring pixels in
t'he' input image and the neighborhood size niay typically vary from 3X3 to 15)?“1
Operations required for 'hiogh-level processing, on the otht;r hand, are symbolic manipula-
tions of the features extracted from the image through low-level processing. The Input -
datavrate at this stage is reduced by a factor of 100 to 10,000 from ﬁth‘e raw p’ixel rat_.e.

thereby relaxing the requirement of high throughput [1]. Whereas the low-level opera-

tions are clearly defined and is the same for all segménts of the fmage, the type of

I
-—

- operations performed at high level depends on the evaluated features and may be

different for different segments of the ihaie. The two levels of operations require two -

different types of processing systefng.. Singlé-inscruction multiple-data stream (SIMD)

machines meet the requirements of low-level processtng whereas multiple-instructlon

multiple-data stream (MIMD) machines are better suited for high-level processing [2].

LI

1.3. IMAGE PROCESSING ARCHITECTURES

Broadly speaking, the existing parallel image processing systems can be clgsslﬂed

_ - into i;hree categorlés: (1) array processors,- (if) pipeline processors, and (1)) t.aus-oriented

& - Y -
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multiprocessors. Ungef (3] has suggested the use of a two-dimensional array of process-

ing elements (l{Es) in which each PE does the required. proceseing for it assigned ;;ixels.

" The neighboring pixel valu’es are tetched using an interconnection network. All the pro-

cessors work simultaneously providlng parallehsm Despite the decreasing cost of

hardwa.re components, implementatlon of two-dimenslonal gystems is still cost;ly and the

) perfo{mance Is limited by the interprocessor communication delays [4]. Further, the

communication network becomes very complex if large number of PEs are used. In
order to reduce the complexity, most of the existing systems are built with Poqlea,n ‘pro-

cessors and the interconnection is usually limited to a neighborhood of 3X3 [5],(6]. It is

¥

possible to process gray level images on such machines by operating serially on the bits

of the data. This, however, limits the processing power of the machine .due to the
. K .

requlrerh_ent. of complex software [7]. One-dimensional array of PEs are more efficient,

simpler, and economical for parallel processing of images (4]. Pipeline and bus-oriented

)

'multiprocessorlsyetems belong to this type of machines.

Most of the architectures developed for image processing are optimized for low-.

level processing. However, :@itectures that are ca.pable of executing both low- and

been proposed [8]-(13]. There are three types of such

high-level processing have
machines: (i) systems having individual sections for processing the two levels, (ii) sys-

tems that can be reconfigured into SIMD or MIMD mode of processing, and (iii) s}stems

having only MIMD t&pe of machines. One example of the first type is GOP (8], where /

two independent sections of pipeline and MIMD machines have been combined to bep—’

form low-level and high-level c;perati\oﬁs respectively. Another example of the first t¥pe

s SY MP A.T.I [9] built with two independent levels. The first level consists of multiple

.

SIMDtype sections The second level is or an MIMD type ‘An example of the second

.type is a reconfigurable machine, PASM (pmlcionable- SIMD/MIMﬁ) [10], where the

L}

PEs can work in SIMD and/or MIMD modes. PASM is a special-nurpose, dynamically
s, . ' i

reconﬂzuraﬁle, large-scale multimicroprocessor system. ' Bus-oriented multiprocessor sys-

?
-

-

/
’ e
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tems sgéh as CYBA-M [11] MB [12] and the homogeneous multlprocessor (13} are
exa t)les of the t;hird type of a.rchitecture CYBA-M conslsts of sixteen general-purpope

gicroprocessors each connected to a common memory. The central image-memory

' /‘access is' ?rranged as a flve-stage synchronous plp;line In ZMOB 8 shirt register bus is

/
/

e

used as tl_le communication chatnel between the PEs. The processors are placed along

the bus with an interface 523!: intercepts the data as it is moved along the bus at a hjgh
: ” W e : . L

N . -
speed. All the PEs are general-purpose microprocessors. In the homogeneous multipro-

. N < . @
cessor each processing element can access the memory elements of its two lmmediqﬁte ]

.

neigbors via dynamically created extended b.uses. One of thg parallel implement.a,}lon

problems that has not receiVe\d much attention in the literature is the load balancing

- 1)

among the PEs in a system. This problem Is crucial to the designs of grchitectures and

. v
the algorithms for parallel implementation.

1.4. SCOPE AND ORGANIZATION OF THE THESIS

" In this thesis, an image processing machine with an MIMD type of architecture is

L] ‘e

proposed. It is essentiglly a bus-oriented architecture in which a number of microcom-
puters are connected to a common bus. As a single bus is inadequate for the !nterpro—
cessor communication require.ment of neighborhood oper'é.tions, an asynchronous dual-.
port 'memory is used between processors ro; fast int:zrprocessor c’omml:nicatlon. Th'.e
pro‘posed machine has some distinct features both from the architectural point of view
as :vell as in terms of its im';a»ge processing capability. Specifically, (i) a dual-port
merr;or«y is used gs an interprzcle\ssor cc;mmunication channel between ea?cp neighboring 4

pa.ir of PEs, (ii) an efficient scheme of image partitioning and a.ssignment. to various PEs

is employed, and (iii) an improved synchronlzation scheme is utllized As discussed in

the following chapters, these features provide some advantages ‘in para.llel processing ot

'lmages. A computer architecture consists of four components: (1) hardware, (iy) algo-
rithms, (ili) operating system, and (iv) the programming lﬁnguage. In this thesis, the
problems with respect to the first two aspects as they relate to image processing, are

addressed. ¢

{

+
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Two pe? algorithms, one for two-dimensional convolutjon [14] and the ot%er for
median filtering [15] are described. These algorithms are presented as representatives of
[ ' . 0 b :

linear and nonlinéar neighborhc;-od operations in image processing. Both of these algo-
. ¢ Yo

rithms, while providing fa.éter execution' time in uniprocessor, implementations, have

; been designed to achleve a high parallel impierﬁentatfon efliciency as well.

There are several types of operations used in image - processing. The ‘proposed -

architecture, being an MIMD type, ca e used for any kind of computation, 1e., it can

~ N

support an arbitrarily structured parallelism. However, the predémiqant type of opera- '

]

tions in image. proces;ing‘is nqlgﬁbgrhood operations and hence the architecture must be
tallored to impletent these operatidns efliciently. The neighborhood operations can be

classified as; (i) algorithms with fixed numb;r of ‘operations per window, such as convo-

algorit.hms with:’variable number of operations per window, such as
Al - \
e execution time of -the first t,ype is almost constant while -for thg

lution, and

seco d, It is data ependent and varies from window to )window For the second type

. of algorithm, PEs will iinish processing of their. assigned segmen?s in diﬂerent times

The processing of “an image is complete only when the PE ﬁnishing iast has completed

the processing of it,s segment resmting in a lew parallel implemen\tatlon eﬁ‘lc1ency In

the design and implementation or the pa.r,aliel algorithms presented in this thesis an

attempt is made to minimize this proble‘iﬁ. To achieve a high eﬂ“lciency for all types of

‘ nei&hborh,oqd operations, a new data partitioning‘scheme is proposed. A synchronous

: 3 N
4 ' .
execution is chosen for the parallel implementation of the algorithms. The synchronijza-

tion points have been reducéd by‘synchronizihg the PEs after processing a set of win-

. . . s )
dows rather .than after each window. This will reduce the idling time of PEs, since the

-

- exe'cution time is likely to even out over a large number of windows, In addition, in

" order to reduce the idling time even further, the data and partial results are transferred

much earlier than when they are required.

Y

-
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. S " Chapter-1I describessthe proposed architecture. In Chapter III and IV, two hew

\ —

alg6r,ithms and their serial implementations are p'resent.ed.' In Chapter V, the app;oaéh

. i A °

and scheme of lpa.rallel implemeéntation of image processing algorithms on the proposéd
. [ ,

. "archiﬁectﬂure a:é'discussed. The design and parallel implementation of convolution and

\ fnedian\ﬂlter-ing algorithms, as exam { data-independent-and data-dependent opera-

tions in -image processing, are presented in detail. The parallel implementatgons of the -

£

discrete Fouriet transform and histogram algorithms are also discussed. Chapter VI
. I | L . .
eoncludes Yhe thesis by summarizing the salient features of the proposed architecture,
' kN the algorithms, and® their implementations. N - / -
A ‘ i ‘ ,
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v+ THE PROPOSED ARCHITECTURE
~ . v \' . o . Y

2.1. INTRODUCTION . . - ' ‘

A
- %] -

. A general-purpose image processing’ architecture suitable forsboth low-level and

high-level] processing can be built by choosing ‘an’ MIMD type of architect{lre. An Ml]&D
. . C J N
architecture consists of a number of PEs, each having its own control unit, memories,
~ ! .
. ahd an interconnection network between processors a.nd/or’ memories. As a single ghared

- bus is the simplest, least expensive, and most commonly used interconnection network,
o ’
a-bus-oriented multiprocessor architecture is chosen. In the design of this type of archi-

tecture there are two main problems to be resolved: (i) communication problem —
/ . .
degradation of the PE utilization time caused by the bus qongestlon, and (it) I/O0 prf)b-

lem — inputing and outputting of a large amount of data. In 5e design presented in

;o kYl .
-this chapter, an attempt is made to resolve both these problems.

[

»# . The proposed parallel computer architecture is shown in Fig. 2.1. It consists of a
" .

masier processor and a number of slave PEs (say ) connected through & bus. Each PE
’ N

is configured around a 16-bit microcomputer board. - In additien to the common bus,

»

) \, each' pair of adjacent PEs is also connected through a small communication memory

(CM).’ For most low-level operations, the PEs use this cascade connectjon. - For direct

communication between any two PEs,.t\he common g_s i? used.’ Employment of a single
bus Mpe sysu:‘m with a reasonably large numberlof PEs is adequate,'s‘lncé this bus is
used as communication channel only during high-level processing when thé amount of
data (an& hence the communication bandwidth) is very much reduced from the initial

inpus image data. However, additional buses can be employed if the communication

#
a ‘. -

requirement of the sysgem exceeds the bandwidth of a sirgle bus.
. R
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. 2.2. IMAGE INPUT AND OUTPUT _ o y
. . ke "
S e The image input from and output to the inaster processor or I/O dqvlcés are car-
. ) X

ried out through the common bus. Each PE is assigned with N/n columns of the input

SR image where N is the number of columns in the image'.‘ The actual column assiggmént
scheme will be presen&d in Chapter V. ° .
\ -
2.3‘j THE PROCESSING ELEMENTS ‘ : o '

Each PE is based on a 16-bit micrdcomputer (I?B32016 [18]) board. The PEs have

a powerful instruction set and built-in multiprocessing reatures.ﬂEach board contains

© 128K dual-port RAM memory and can be expanded. The comrhon bus shown in Fig.
2.1 is a Multibﬂus [17]". Each board has the necegsary interface for connecting it to the

b

Multibus and also has a hardware floating-point unit attached to it. The use of identical

. ]
PEs and simple interconnections between the PEs provide high reliability, since the sys-
. . -

tem can withstand failures in several PES as it is a relatively easy task to bypass a

) defective PE. The number of PEs used depends upon the speed/cost requirement of a
‘ specific application. Recent microprocessors such as Transputer [18] have been designed
with more features such as built-in random acceés memory and communication links to

‘ comimunicate with the neighbors. However, this memory cannot be used by two PEs
\ . .
simultanéously as is the case in the present design. Also, the Transputer’s €@mmunica--
9
~! N

\ tion links*are serial resulting in a much slower data transfer rate.
. ~

' ) 24 .r/IN TERPROCESSOR COMMUNICATIQN

v

There are two paths tfirough which a PE can pass a message to any other FE.

. & .
. One is the common bus- which is used for communication while the PEs are executing
’ . } high-level operatidbns. The other path is the communication memory bet&een the PEs as

b .

shown in Fig. 2.1. It is this memery that takes care of all the communications required
™ N4 .

AN v ~ .
in executing lo»kv-level operations. The CM consists 'or» asynchronous 1K X8 dual-port
¢ to )

' single-chip RAMS [19]. It has two independent sets of address, data, and control lines.

L]
— s

>

— .

PO %
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Two adjacent PEs can access. different locations in the CM between them simultane-

ously. Contention occurs only when both the PEs try to access the same address loca- *

-

1

tion at the same time. To avoid the contention problem, algorithms are desléned in
such a way that at shy specific instant the PEs access }ﬂerent areas of the same CM.
As shown in Fig. 2.2, a CM is partibigned into twogegions, one for w_rlhing and anot,,he:'.'
for reading the neighborhood data and partial results. The algorithms are deslgped hl g
such a way that tlie re;xding area 6f the Cbl(d to one PE is the writing area for the other
PE connected to it. A PE is connected to two CMs, one CM is used to communlcat‘e
with the riéht neighbor and the other CM is used to communicate with the left neigh-
bor. A specific PE always reads the results from one area and writes the results [nto )
another area of the same CM. For ‘the other PE connbcped to this CM, the read and
write areas in the memory are interchanged. This way, the CM is ava.ilable to' both the
conﬁecting PEs either for simultaneous reading or for simultaneous writing. Although
‘thb merpory is shared, in effect, to each PE it seex\ns to be a part of a fast private. -
memory.% in ordef to ensure proper data communication, a.-PE alwa;ys checks fags -

FLIN and FRIN before reading the data and checks flags FLOUT and FROUT before

writing the data into the CMs. A

2.5. SYNCHRONIZATION :

For low-level op ‘f)mons, the PEs may have to be synchronized to ensure a
o \ i .
sequence of data trans" t between them that will lead to correct results. Fig. 2.3 shows
L “d

o

a flowchart for the synchronization operation. At the bqimﬂ‘ng of an_execution cycle, -
each PE reads results from both the CMs connected to it. A PE ﬂrbt_reads a flag from

one of the memoriqs. If the flag is set, the PE reads regults\x from that memory and resets

\ .
\ the flag. If the flag is not set, the PE waits for it to be set, This operation is also

\ , .
repeated for-reading results from the other memory. After reading the results, the PE

executes the main body of the program producing some results for other PEs. At the

s Y

i

]
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START

READ RIGHT FLAG

. READ RESULTS FROM RIGHT BUFFER,"
RESET RIGH: FLAG

= z

READ LEFT FLAG

NO

N IS FLAG SET? -]

. YES

READ RESULTS FROM LEFT BUFFER,
RESET "KEFT FLAG

}\.

EXECUTE THE BODY OF THE PROGRAM

N .
wége RESULTS TO RIGHT BUFFER,
SET RIGHT FLAG

v

* WRITE RESULTS TO LEFT BUFFER,

-

SET LEFT FLAG

ARE ALL TH
PIXELS
PROCESSED?

Fig. 2.3. Synchronization operation.
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end of a cycle, the PE writes the results to both the CMs and sets the flags so that the
- : r »

-i!i?-

neighboring PE can' read the results in the next cycle. This sequence of reading and"

b *

writing of partial results could be reversed depending on the requirement of the algo-

[y

rithm being implnemwented.
hY

o

2.86. THE MASTER PROOCESSOR

IO devices such, as scanners, image display units, and terminals are connected &.),_.

. /
and controlled by the master processor.“After acceptirg commands !‘rom a user, it ini-

a

tiates the execution[of-the task by t¥e PEs. ' In addition, it provides the program

development e‘nvironment"such as création and editing of files; compilation, linking,

.a .
downloadir,lg. and debugging. %

2.7. THE PROTOTYPE SYSTEM N\ . -

©
-
.

A prototype system has been built ?,nd is used for testing the leﬂ‘iciency of parallel
‘l‘mp}ementation of 'c;lgorlthms. A VA5C 11/780 r_unning OI'I a 4.‘3 BSD Unix opérating sys-
tem is used as the master processorrand two 5832616 microcomputer boards are dsed
as the slave PEs. The NS16032 16;bit'm‘léroproceséorTu‘n'éthns as the central processing
unit. Floating-point support is pro‘vided by the NS16081 unit. The PES are conneczeci to

‘the master processor through tw/g independent serial lines. Both data and control infor-

* mdtion are communicated to and from the master processor through these serial links. '

« The slave PEs are interconnected through the Multibus.

" . .

The program and data flles al\created and edited on the masfer processor using

one of the editors provideq by the Unix operating system. The files are stored in the

L) A

master processor. The cross-support package feside,nt in thé‘master processor, is used to,

N ’ ¢ TS 3 * " - d ’
compile or assenkb\ié NS16032_programs. The object program is then downloaded to the

DB32016 boards (via the serial.link) for execution. A high-level sy'mb'oiic'debugging is

p
o



of a PE.in implementing the algorithms.
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possible by using the symbolic debuggér. The user programs are written in C iangua;e

Pointers, a fea.ture of the C language, are used i'or addressing speclﬂc memory locat.ions

2.8. CONCLUSION ' \ . N

L] o

The architecture described in this chapter is essentially a bus-oriented uyatem

augumented with asynchronous dual-port memorjes betWeen PEs for interprocessor

%

communication. In order to minimize the contention problem the memory space ot

o

‘each common memory module has been partitioned into eglqns With what has

Y

been described 80 far this architecture diﬂ‘ers from other systems in its use of common

A N

memory moduies 2s the main communica.tion link between processors and its slmpiicity ;o

I

Other aspects of the architecture such as data partitioning, synchronization. ‘and theq‘

, contention problem are discussed in Chapter V.. -
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+

. DESIGN AND IMPLEMENTATION OF A TWO-DIMENSIONAL.
CONVOLUTION ALGORITHM ’

- . N
a

3.1. INTRODUCTION & .

Two-dimensional con\volution' is one of the most commonly used alﬁorithms in"

image processiné [1]. Impulse reéponses in imege prosessing have a finite order of RXS
where R and S are usually ir{\ the range of 3 t0 20. As a result direct convolution is pre-
ferred to FFT for such filtering operations [20] T,he choice of & structure for the imple-
mentation of a filter is governed by such factors as the hardware or software complex-

lty, sensitivity, and the required speed. In image processing, sf:e.ed is an-important con-

sideration due to the large amount of data to be processed )

& :

There are two txme-consumlng operaftions involved in ekecnting the two-

dimensional convolution algorit,hm First, as the convolution suﬁmatnon s a sum or pro-

ducts, a large number oi‘ multiplications is required. On small machines where multipli-
!

cat{on operation is slow, multiplication tables h@ye been used to ‘spe_ed up the executfon

of the algorithm. The second time-consuming operation is the a'.c}dress calculation ‘of

2

- operands with two subscripts. There are two ‘approaches to7 reduce ‘the operand access

7z

time. One approach is to set up an access "table. whose entries correspond to the;row

subscript of the two-dimensional data [21]. The other approa.ch iIs to read the data into
' ' " ..
a one-dimensional array [22] and to design an algorithm that carrles out the operations

&

emclently In this chapter, a design and implementation of a two-dimensional convolu-

tlon a.lgorlthm that nses the second approach is presented The algorithm runs faster ,

,Q

e tha.n the algorithm -with the direct implementation using multlplication and access

9
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t'ables'/ While using'g look-up table is a common procedure, this 18 not a necessity for

E

- ., ™

using the proposed algo‘rlthm.' With or without using the look-up table, the proposed

algdrlthrﬂ offers certain’ advantages, as discussed later, over the direct {mplementation~ "
‘ N r

" 3.2. THE PROPOSED ALGORITHM

¢ 0

The convolution g(i,7) of a two-dimensional discrete image i (f=01,.,M-1;j

-

j =—(5-1)/2,..., -1,0,1,..., (§-1)/2) is given by ' '

|

(R-
gi)'= g} fi~p, +-Q)u(p, q) o (3.1)
. p=—(R-1)/2 ¢=~(51)/2 ) . }

. €
The direct software implementation of (3.1) consists of setting up two loops correspond-

_ ing to the subscripts p and g, fetching the operands using the two subscripts, and‘
- .

. . . & ' -
finding the sum of the products. The image and window can also be expressed as two-.
ensional matrices F and W, shown in Figs. 3.1 and 3.2, respectively. The terms of

the convolution ‘function form a matrix, X(4,5), as shown ‘in 'Fig. 3.3. In the direct

implementation of (3.1), all the elements of the matrix ‘X(i,_;) are evaluated and then

- added to find the "va.lue of g(t.), the COIIWOIUHOIII output corresponding to the pixel f{4,5).
_Ip the proposed implementatién, instead’ of multiplying all the pixel values in. a neigh-
_borhooa by the qorreéx;or;aing coeflicients (Fig. 3.3), thé‘products of the pixel valye f1,7)
with all the soeﬁ‘iéients of tﬁe windou" are ;ea& from a loak-up table producing. a matrix
Y(i,5) show; in Fig. 3.4. The difference between the direct and proposed evaluation of

(3.1) is apparent from the matrices X{1,5) and Y(ij). In the first matrix, evh term s
\ \

produced by using two dil}‘érent values whereas in the second matrix, the pixel value is

fixed. ’Therefore, a multiplication look-uf;' table can be used more gﬂ'iclent}y with the

*  proposed ‘method. Assiming the number of gray levels in the image to be G, the pro-

-

ducts of each pixéf@ue with each of the coeflicients in the W array can be computed

= 0,1,...,N~1) and a two-dimensional window u(1,) (J =-(R-1)/2,..;, -1,0,1,}.., (R-1)/2; ~.

/2 (S-1)/2. o T
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and stored in the look-up table pd = {pd(s) =0, L. ..,GRS-1}. It should be neted that

<

&he formatlon of GRS values of the look-ip ta.blq does not require any multipllcat.'ion In

-fact, the table can be rormed only with addition operations. Specifically, the tth entry

in tke table is the sum of (~RS)th entry and ‘the s/?.S] th coeﬂ‘iclent where [_i/R.S]
represents the largest integer less than or equal to the quotient $/RS. When 8 pixel
value is accessed, the product values of this pixel ‘with all the-coeflicients can be

obtained readily from the RS consecutive locations of the look-up table. The address of

the first location is the product of the pixel value with RS. '

o *

Instead of re\ading the function values from the two-dimensional arrays F and W

»
P

and executing (3.1), these values are read column-by-golumnl and row-by-row into one-
dimensional arrays fI and wl, respectively. For each ' pixel, the convolution output Is
.developed through partial result array's calll‘ed pter and prest as defined below.

pter(k) = Eﬂ(t+pr1(RS—-S—pS+mod(k S), k=012,.. RS51
' p=0.1,.;R-1-k/5]

where | k/S] represents the largest integer smaller than or equal to the quotient k/S,
prest(k) = prest(k+1)+-pter(k), =0,12,.,52
\ " prest(S-1) = pter(5-1). '

13

An element in pter, as deflned above, is the sum of a certain number of product values

co;responding toa part of a cblumn in a neighborhood. Since a pixel can be part of RS
neighborhoods for an RXS window, there are RS elements stored in the pter at any

time. . . .

7

Consider a 3X3 window function and :; ;ecbion of an image “as shown in Figs.

3.5(a) and (b), respectively. The convolution output corresponding to the pixel j(t’,])'ls\

produced as follows. When the pixel j(i—l,j—i’) is a}cessed,qpter(s) = fl+-17-1)u(1,1) is
formed. When the pixel f(z,]-l) is accessed, pter(5) = pter(8)+f1,5~1)w(0,1) is formed

When t.he pixe,;‘j(z+1,3—1)is accessed pler(2) = Ptcr(5)+}(i+1,j—-l)w(—l,1.) is formed.

-
-
v

-
-4
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The term pter(1), corresponding to the middle column of the image segment,, contains
the sum of products of the middle row of coefliclents in the W array and the
correspondlng values in the image segment. Similarly, pter(0), corresponding to the last,
column of the lmage segment, contains the sum of the products of the first column of -
the coeflicients and the corresponding data vallues‘ in the last column of the image seg-
ment. The sum of pter(2), pter(1), and pter(0) is the convolution output corresponding
to tl;e pb;el £, Wherx the pixel _Ka'—l-l,j—l) is accessed, prest{(2) = pter(2) is produced.
In the next cycle, prest(1) = presi2)+ ptcr(l) is formed. Finally, when the plxel
fi+1,7+1) is accessed, presf0) = prest(1)+pter(0) is formed and that is the convolu-
tion output corresponding to the pixel ﬂi,])T The algorithm coded ln‘C language Is

presented in Appendix A.

F)

3.3 THE STRUCTURE OF THE ALGORITHM -
‘ A

Equation (3.1) represents the dlﬂ‘erence equation of an FIR filter. Given a difference
equation, a ﬁlt;er can be implementeq wlth different structures [23] A sl:ruct,ure givinga

direct lmplementatlon ot‘ (3.1) is shown ln Fig. 3.6. The structure assumes a8 3 X3 ﬂlter

l

impulse response and samples are computed row by row, Operators z 11, 22, and 22

represent shift down, shift up, shift right, and shift left opérations, respegt.lvely.

H

The structure of the proposed conuolutlon algorithm is depicted in Fig. 3.7. The - ,
° ' - - °
. difference between this structure and that of Fig. 3.6 is the order in which the data

$

’ ‘.
values are shifted and multiplied. In the direct structure, the data values Qriﬂrst.
shifted and then multiplied by the appropriate coefficients to obtain the convol

lon
sum. In contrast, a single data value is multlplled by the coeﬂlclents and the produc

are shifted and added to produce the output in the proposed structure. In software

1

simulation of the two strugtures, the executlon time of the proposed structure is found.

to bgp shorter. This is due to the fact that it takes less time. to access the/ product

L] 2

values of a single pixel wlth a set of coeﬂ‘lclent.s than to access ‘the product values of a

L3

set of pixels with a set of coefficients. g . @

A
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3.4. TEST RESULTS

- " -

The direct and the proposed implementations were used to convolve a ° '

256 X258 image with windéw functions of different sizeg on the VAX 11/780 computer.

-The execution times for the varipus cases are shown in' Table 3.1. The second and third i °

columns show the execution timé in seconds of the direct implementatioa of (3.1)

without and with the use of multiplication and access tables, respectively. The fourth

©

t ‘f) — J
column shows the execution time of the proposed implementation using multiplication

tables and one-q§meqsipnal indexing. For images with_ﬂoating-point values, formlpg a .
multiplication table “will be pract.ically imposs[ble. In that case, the only saving possible -

in execution time is due to the reduction in the operand ’access time by using either the_
atcess table or one-dimensional indexing. Table 3.2 shows the execution t;lmes of the

! oo
algorithm for the floating-point case ohtained by executing the direct and ,proposed

algorithms. .
3

\
3.5. DISCUSSION AND SUMMARY

In this chapter, an implementatién Tor the two-dimensional convolution algorithm

> am.

has been presented and its performance ¢ompared witly the direct implementation. As . _" )

shown in Table 3.1, the proposed algorithm runs faster by about 30% than the direct °

.

implementation using multiplication and access tables. The reduction in execution time

"is due to the fact that the propt;sed a.igorithm is designed' in such ﬁ way that less time

is spent in “accessing the required .values from tt\xae multiplicatibn table in each cycle.

This is due to the fact that the product values of a single pixel value with all the o

14 h)

cc;eﬂ‘iciénts are used in each cycle and these val\ies can be and are stored in consecutive_

locations.‘\Hence,aonly the entry point,iii the multiplication table is t,oobe calculated in

v

each cycle. In the’ direct method the products of RS differént sets of pixel and.

v A

®

N — a -
coeflicients are required in each cycle and, thergfore, the locations of .these valuesk in tpe —~

multiplication table have o be found individually..

& « . ¢

.
T L

- ) ' ‘ ' "‘".

- &
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TABLE 3.1

EXECUTION TIME IN SECONDS OF THE CONVOLUTION ALGORITHM

6

FOR A 256 X256 IMAGE WITH 256 GRAY LEVELS

_ Execution Time for
- Direct Implementation . Proposed Implementation

Window Without With With Multiplication Table

Size Multiplication Multiplication and One-dimensional

- and Access Tables and Access Tables Indexing

3%3 16.3 11.4 8.4(26.3%)*

5X5 41.0 27.5 19.5(29.1%)

TX7 78.9 50.7 35 7(29. 8%)

*The numbers in parentheses show the percentage savings In executlon time offjthe pro-

posed algorithm compared with the d'fbct ijpplementation with multiplication and
LY

access tables.

AR

(

ST

TABLE 3.2

-

EXECUTION TIME &N SECONDS OF THE CONVOLUTION ALGORITHM
FOR A 256256 IMAGE WITH FLOATING-POINT VALUES

ol Execution Time for
Window | Direct Implementation Proposed Implementation with
size wEh Access Tables One-Dimensional Indexing
3X3 14.3 13.8 .
, . 5XS5 36.0 . " 34.9
. e TX7 87.4 85.6
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For the floating-point case, it is not possible to use multlpllcatlop table and as seen
from Table 3.2, the execution time of the direct and the proposed methods are abott

the same. This is due to the fact that In this case the operand access time is the same

-

for- both the direct and the proposed implementatiéns. The proposed implementa.tlc;n.

!

irrespective of integer or floating-point representation of data, has an advantage: the

computations can be carried out in place with less additional memory space as com-

v

pared to the diré’ct implementation. ) N N.EY

Generally, the windows used in image processing are symmetri¢. The proposed
algorithm can make use of this property to reduce even furthe;' the number of opera-
tions and thus tpe execution time. In this case, the. number of additions required for the

proposed algorithm beecomes less in comparison with (RS-1) additions required in the &

direct implement\ation. Conﬁider a symmetric highpass filter ‘with its coeﬂilclent's

specified as ' ' ' % o
1 -2 . 11 “
Wo=]-2 5 -2 - w
.o ba -2 1 ¢ .

For a given set of pixels, partial results need to be developed corresponding to the ele-
ments of the middle column of the window and only one o the other two columns.
Obviously, th; saving in the number of opera.tiohs would be proportionatgly more for

larger windows.

’
’

3, -

. ® )
In the case of algorithms such as edge detection, the image is convolved with

different -windows for the detection of an" edge pixe! in different directions. The

—

coefficients of all the windows are the same with the difference being the position of the
coeflicients in the window. In the proposed method, ome set of multi;)llcatlons is ade~

quate to find the Ebnyolution outputs corresponding to a pixel fof all orientations of &

. window. F‘vor example, in finding the gradient in four different directions, considerable

a

sdving in execution time is achieved because only RS multiplications are fequired com-

pared to 4RS multiplications for the direct implementagjon. _ )
™ R \ . . 3

. , .
t -
)
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A look-up table can also be used for images with large numper of gray levels. As

the data precjsion increases, a corréspondingly larger me'mor'y is required. However,

-

with the decreasing cost of memories coupled with the increased addressing capability of

proEe?sB}q (with as many as 32 address llpes), the approach is feasible for high precision

° . ) e
lmages. Despite the additional memory requirement, the execution time remains invari-

ant with increasing precision. This is in contrast; with bitzdependent algorithms where

both the required memory capacity and the the executic;n time increase with thé preci- -
. - 3

sion of the image data. \




~

‘T

il

CHAPTER IV

L}

DESIGN AND IMPLEMENTA TION OF A MEDIAN ,
- FILTERING ALGORITHM . ‘

. - e
4.1. INTRODUCTION

Median filtering is used in image processing to remove noise spikes [24]-{26]. The
median of an odd number of m elements p(1),1 = 1,2,...,m, is the [(m+1)/2]th largest ele-
ment in thé set. 'In image processing applications of niedlan ﬂltérlng, a window is
.moved from one row to the next along the columns of the image (it could also be ‘from
one column to the next ‘along the rows) ar;d the median o; the pixels cBntained wlcthln
the window at each po;itiox; is ‘computed.' Fiﬁdmgr\t;e elements of a new window
requirés the replacement of :. number of elements in the previousﬂ wind;)w equal to the
number of columns in the window. The médian obtaingd through this process is called

the running median. Since .the direct approach of sorting a given set of numbers and

ﬂnding the median is a time-consuming o‘peratlon ra.ster &lgorit.hms have been devlsed

4

[27}- {34] The ‘method suggested in [27] and (28] to ﬂnd the median of a set of numbers '

is to run an iterative procedure that reduces the magnltude of the problem art.er each

iterat,ion by eliminating some numbers in the set t,hat, cannot be the median However,

in finding the running median, gt would be desirable to make: use or the results obtalned

in computing the median of the previous window to process the current window. Algo-
y P .
rit.hms discussed in [29] and [30] are based on the blnary remesentamn of the data for

fi ing the median and they are eflicient for array processors. However, the implementa-

tion of these algorithms on general-purpose computers will not b‘_e ‘suitable, since __Fost of

t'hp high-level languages, such as FORTRAN and PASCAL, do not provide bit manipu-

" lation facility. . : | S .

d’
x
-

\ < g I S PR
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Huang [31] has suggested a running median filtering algorithm ba.sed on using an

updated histogram of pixel-values in a window. A histogram of the pixels in the nrst

-

wlndow is set up an<\i it is updatgd as tp‘é window moves from one position to another
u'ntil‘the enq of the colu_mn. This operation is repeated for each column in the image.
The median of a window is found by adjusting the median of the previlous window
using the updated histogram. The hfstogram algorithm provides a fast execution tir;;e
for images with stgall number of gray levels. For large number of gray' levels in the
image, however, th’e.number of steps required to adjust the old median to the new one

becomes large resulting in a considerably increased execution time. The worst-case exe-
= o

cution time for this algorithm increases 9xponentia.lly witlr the number of bits used to

rezpresent the data .values. In [32], a table is set up -for the window elements with a

prescribed word-length. This table provides for each number in the ~given range, the fre-
quency of elements in the window greater than or equal to that numberf. Using thiso
table, a search is made hto find thé median. The number of comparisons for finding the

median is constant while the number of values in the‘ table to be updated s data depen-

dent. The performance of this algorithm is also dependent-on the number of bits used

\10 represent the data values. For one-dinensional median filtering, an algorithm that is

suitable for VLSI implementation has been described in [33]. This algomhm is based on '
storing an ordered list of input data and updating the list as a new data value arrives. .
The new input value is compared, iz parallel, 'with all the values in the ordered list to
find the position where\ it can be insertkd in the list. While thivslapproach can be imple-
mented efficiently in hardware, it would not be suitable for fast software implemer;bar

tion. In [34], a parallel ;nqdian filtering algorithm designed for use on byte-wide archi-

_ tecture array processors has beerr presented. In This algorithm, after shifting the neigh-

borhood dafa. a binary search 4"3 made in the neighborhood consisting of K elements for

an element that is greater than or equal to (K-1) elements of the set. This algorithm,

bhowever, is bit-dependent and is efficient for only large windows.
. 9 ’
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" In this chapter, a new median filtering algorithm is proposed. Instead of using an -

s’
[]

histogram and updating it as in [31] the elements of a window are put into two sets and

these sets are updated for each window. The hasis of the proposed algorithm is that if

the efements of windows in which the members of indhﬁdual TOws are prearranged ln
\
an ascending order, are stored row by row in an one—dimenslonal array, then the reau!t.s/k‘

obtal ed in partitioning of all the rows of the past window, except one row, can be used

topartition and find the median of the current window. The "resnl'ts of the windows
i&tely above and to the left are used to find the median of the current window.

[~
This procedure to find median results in a faster execution time. Further, the execut,lon‘

\ . ,
time is independent of the number of bits (gray levels) used to ra?es‘ent the data and it
is fblatlvely j}sensitlve to the noise level in the image. The invariance of the execution
Vi
time for ‘a given window size as the data word-length is increased is particularly useful

in ;/iew of the fact thattmode,rn high-prébision scanners have led to the processing of

images of 10-, 12-, and 14-bit precision [35].

') - o g .
4.2, THE PROPOSED ALGORITHM ) L

A}

6Gi{en an Mdelgital image )(a,]) (f = 0,1,..,.M-1; j = 0,1,...,N-1), a;xd an BXS
(R<MS’<N) window within the image, the median-filtering operatio:ﬂon the image °
consists of taking a set of RS pixels at each point (1,5) and replacing the pixel value f{s,)
by the [(RS1—1)/2]tk}. largest value of t\ile set. The window, W(i,3) co;respondln-g tg\th\e
pixel f{1,7) expressed ii] a two-dimensional format, is shown ip Fig. 4.1. Following the
common practice iﬁ fmage processing, the window (ilmernsions If and S are assumed to
be odc.i. With minor modiﬂcationé, the proposed a!gorit,hm can easily be adapted to the
case where.R and S are even. In th;a algorithm to-be presented, the median of a window
is {ound from'an ordered set of row vectors of the “;in&owd (the algorithm can also be,

implemented uéing column vectors). A row vec’tor-fS formed from“the sorted elements

corresponding to each row of the window. Let us defilne a row vector W(i,5.k)

\ N
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‘ (lé =-(R-1)/2,~(R-1)/2-+1,... ,(R-1)/2) corresponding to the pixel f{i,j), such that it con-

sists .of the pixels of the kth row of the window W(i,;) arra.nged in ascending order.
For example V(i,j, 2) consist of the pixel values fi+2,7~(5-1)/2), j(|+2,1—(S—1)/2-;1)

j(z+2,1—1),j(:+2,1). f42,7+1),.. 42,5+ (S—l)/2—-1) and ﬂa+2,]+($—-l)/2) arranged in

ascending order. The a.pproach of the algorithm is now presented with one of its objecs

. Ay
tives being to minimize the difference between the maximum and minimum number of’

¢

comparisons required to find the median for diﬂ'esent windows. As to be discussed in

Section 5.6, this feature of the algorithm would be particularly useful for its-parallel

. . -

implementation.

! The median corresponding to the pixel fi-1, 9 is the median of a set of pixels in
W(l— ,j) The median corresponding to ,&w) is the gxedia,n of RS elements in the neigh-
borhood of fl1,7); that is, in W(¢,5). This set of numbers can be obtained from the set of
vectors of W(i-1,5) just by deleting the vector V(i-1,5,~(R-1)/2) apd adding the row
vector W(i,5,(R-1)/2). This new vector is form;zd from the vector ’V(z',j—l,(R—l)ﬁ) by
deleting the pixel fi+(R-1)/2,7~(S+1)/2) and inserting the pixel _Ki+(R7\-‘1)/2,j;i-(S—1)/2).
Therefore, ﬂnding the row vectors corresponding to a new pixel, except for the first
pixel in each column of tne image, ‘consists or deleting and inserting gbly one pixe'l from
a past vector. Finding the median corresponding to the pixel -1, lnvolves the parti-
tioning of the set of pixels in W(+1,j) into two subssts: Subset 1 cpntains (RS+1)/2 ele-

ments a'rri'd Subset 2 has one less, that aré greater than or equal to the laréest element in

.

Subset 1. ‘

The~ formation of the vectors V(i,j,k) from the vectors V(i-1,5.k) (k
=—(R—-1)/2‘,A(R—1)/2+1,...,(R—l)/é), updating of Subsets 1 and 2 , and finally finding’

/
the median corresponding to f4, 7) involves the following steps.

1. Discard the vector V(i-l,j,—(R—l)-/2). This results in reducing the number of
elemem eithér in one or both of the subsets. In tﬁe extreme case one subset

may loose all S elements.
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2. Form the vector V(i.7(R-1)/2) by deleting the pixel ](a'+(R—1)/§,j—(S+l)/2)-

and inserting the pixel fi+(R-1)/2,74+(5-1)/2) in an appropriate position of the

3

ve;:tor V(i5-1,(R-1)/2).

3. The gub‘seﬂts 1 Yand 2 of step 1 are updated by appropriately adding the ele-

ments rrorfl the vector “’(i,j,(R—l)/2) ;aitixer in one of the subsets dr in both.

This is done by includ!ng all the elements less _Qha:n or equal to(the median

correspo;xding to fli-1,7) into Subset 1 and by making the remaining ;alements, .
. -

which are greater thamn or equal to this median to be the part of Subset 2.

.

At this stage, it wouid be worthwhile to xriention the following extreme cases. If S
elements of the vector Wi-1,5,—(R-1)/2) \were in Subset 1'then after the deletion of this
vector, Subset 1 ;vo-uld have (RS+1)/2-S elements. yow if all the el;:m;htls in the new
vector V(ij,(R-1)/2) go to Subset 2, t.h'en the-number of elements in Subset 1 decreasés
to (RS+1)/2-S. bn tffe other hand, if all the S elements of V(i-1,7,~(R-1)/2) were not
in Subset 1, then after the deletion of this vector, Subset 1 still has (RS+1)/2 elements.

Further, if all the S elements in the vector V{1,7,(R-1)/2) go to Subset 1, Qen “the

nuinber of elements in Subset 1 increases to°(RS+1)/2+S. N ‘ -

4. Final partioningolthe set of vectors corresponding to H"(z',j), that is, updating /
. of.the two é;n? ets and t;{:e;efore, finding th& median corresponding to f1,) is -
done as follows: (i) If the number of elements in Subset 1 is one more than i;1 Y
* Subset 2, ﬂx'lal partitioning has already geen achieved. 'Then, the new medign

is the largest element in Subset 1 along its\border. If the number of ele-

ments in Subset 1 is less than (RS+1)/2, the smallesy element of Su \% 2

L~

L

along the borfier is pushed into Subsét 1 and thus the border is extended to
. the right. 'i‘fis process is repeated urflt;i" the number of elefnents in Subset 1 -
becom& equal to (RS41)/2. The last element brought into Subset 1 is the new ‘
b— *  median. (ii) ¥ the number of elements in Subset 1 is more than\@S+l)/2 ,

. . ) ;
then the laggest element of Subset 1 along the border is pushed to Subset 5\
. ~
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and thus the border is extended to the:left. This process is repeated until the -
, number of él‘ements, in Subset 1 becomes équal to (RS+1)/2. The largest ele-

ment in Subset 1 along the border is the new median. ’

=, . N
In view of the two extreme cases mentioned above, determining the median of the

new ‘wlndow involves the finding of the S smallest or largest elements along the border

in one su%éet and pushing them into the other. It should be noted that only the deter- -

»

mination of the inedian of tlie first window for each column of the image would require
the finding of the (RS+1)/2 number of smallest elements. Even in the case of the first
windows, the number of elements to be moved from one subset to the other Is made less

than (RS+1)/2 by first pushing all the elements that are less than the median of the
< ' '
past first window into Subset 1.

Y N

From the above the discussion, it is clear that there are three major steps in the
implementation of the algorithm: (i) deleting and inserting of an element in forming a
new row vector, (i), finding the position of the partitioning of the new row vector, and

(lii) moving the elements from one subset to the other. These operations are repeated

for each window. A direct,implementation of these operations results in a large execu-/—\

tion time. The proposed algorithm coded in C language Is presented‘fn Appendix B.

‘As seen from Appendix B and the explanation of the next section,“a careful implementa-
4 [y
tion of the algorithm is éssentia.l to achieve a fast execution timé.
*» - )

. . ¥ . .
Ezxample 4.1 ) A

*

' Consider the image shown in l}"ig. 4.2(a). Assuming a window size of 5X 5, the ele-

. . <
- ments in the window corresponding to the pixel {3,3) is shown enclosed in a box. The

+
AP

elements in ths window are sorted and partitioned in to two subsets as shown in Fig.
“ . ) ~ 7'
+ 4.2(b) with Subset 1 having 13 smallest elements of the, window and the remaining 12

elements belonging to Subset 2. The 13th largest element (23) of Subset 1 is the rqedtan

o

corresponding to the pixel £3,3). The median corresponding to the pixel £4,3) of Fig.
4.2(a) with its window W(4,3) sbvvn in Fig. 4.3(s), is found using the following 'stepo.

. . N », N ( “ .
~ " C7
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Fig. 4.3. (a) Elements in the wlndow corresponding to the pixel ﬂ4 3) of Example 4.1.
' - (b) Partitioning 'of the window In (a) after Step 3. (c) Final partitioning of the
window in (b) after elements 24, 25, and 28 are transferred from Subset 2t0.
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. Discard the vector V(3,3-2) = {14,23,23,24,26} corresponding to the window

W(3,3) (Fig. 4.2(b)). Due to this gpera.tion,'the number of elements in Subset 1

red’uces to 10 (l.e., elements 14, 23, and 23 are removed) and that in Subset 2

>

also decreases to 10 (i.e., elements 24 and 26 are removed).

. The elements of V(4,3,2) are found by deleting the element 21 and inserting

the e;ément 37 from the vector V(4,2,2) = {21,30,3§“,45,53} giving V(4,3,2) =

{30,32,37,45,53}. A

. The Subsets 1 and 2 of step 1 are updated by adding in them the elements

from the new vector V(4,3,2) obtained in step 2. The elements whose valyes '
are less than the past medlan (23), corresponding to the pixel f3,3) are pushed
into Subset 1 while the remaining elements are made to be part of Subset 2.

v

After this operation, Subset 1 has 10 elements and Subset 2 has 15 elements,

as%wn in Fig. 4.3(b).

N

. Since the number of elements in Subset 1 is 10, the three smallest elements of

Subset 2 must be pushed into Subset 1, thus extending the border between the
subsets t.o the right. This can be déne by repeating the operation of finding
the smallest element in Subset 2-and pushing it to Subset 1. As presented in
the next Section and in Appendix B, in order to be more efficient, this is

accomplished as follows. The two smallest elements along the border in Subset

°
“

2 are found “to be 24 (in the 4th row) and 26 (in the 1st row). The second

smallest element (28) along the border may or may not be the second smallest

~

in Subset 2. Hence, the ‘next number in the row vector (the 4th row) where the
the smallest element was found, is comp'a.red with the second smallest element
(26) along the border. Since the element 25 is smaller than 26, the element 25

<

Is the second smallest element in Subset 2. After exhausting the elements of

the 4th row, the elernent 26 becomes the third smallest number in Subset 2

and is pushed into Subset 1. At this point, Subset 1 has 13 elements which are

¢

"
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less than or equal to the smallest number in Subset 2 as shown in Fig. 4.3(c).
The largest element (26) in Subset 1 which is the largest element along the
final border and also the last element moved.to Subset 1, is the median

corresponding to the pixel f(4,3). ' \\

4.3. TEST RESULTS AND DISCUSéION e

A

~

The proposed and the histogram algorithms were coded in C languageand tested

. . /
with six different and.arbitrarily chosen 256256 images on VAX 11/7@6 computer.

The images were corrupted by adding Gaussian noise to have & slgnal-tb[nolse ratio of
about 13. Table 4.1 shows the average execution times for seven window sizes and

/
images with 128, 256,"and 512 gray levels. For each of the threegray levels; the pro-

/
posed algorithm runs faster than the histogram algorithm. As the number of gray levels

in the image increasés,_hhe_djﬂeneme in_execnnipp time between the two algorithms _

7

widens in favour of the proposed algorithm.. This is due to'the fact that, in the histo-

gram afgorlthm, the smaller the number of gray levels in the image the lesser is the

P

{
number of comparisons required to adjust an old median to a new value. The percen-*

v

tage run-time gain, PG, of the proposed algorithm over the histogram algorithm is

defined as - ‘ -

- , ' T,., - T .
PG — hist prop % 100

S

y . Thist
where Tl;ist and T prop are the execution times of the histogram and of the broposed

‘

algorithms, resp?ctively. The percentage run-time gain of the proposed algorithm s

presented in Table 41.” Unljke the histogram algorithm, in. the proposed method the
P 4’ .

number of compariéon:; required remains invariant as the number of gray levels changes.
This factor makes the proposed algorithm ideally siited for median fllitering in image

' processing appll'can.tions over a wide range of gray levels in.cl,udlnz floating-point values.

®, *

~

Y
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TABLE 4.1
AVERAGE EXECUTION TIME IN SEC

- L

S OF THE PROPOSEB(P) AND THE.

HISTOGRAM(H) ALGORITHMS AND THE RUN-TIME GAIN FOR SIX

. DIFFERENT 256X 256 IMAGES WITH 128, 2548, AND 512 GRAY LEVELS

i

Window 128eGray Levels 256 Gray Levels 512 Gray Levels L
size . P H Galin P H Gain P .- H Gain
3X3 7 12,6, 152 ;7.1% 12.6% 16.3 22.7% -12.9 197 34.5%
. s | 5X5 16.3 214 23.8% 16.7 21.9 23.8% 16.7 24.8 32.7%
7X7 20.1 25.6 21.5%. 19.9 26.5 24.9% 20.7 ¢0.8 32.8%
X9 25.2 32.5 22.5% .25.5 33.8 24.1% 25.6 36.1 29.1%
11X11 29.5 39.4 25.1% 20.8 39.5 24.6% 30.2 418 27.4%
1313 34.9 45.8 23.8% 354 46.7 24.2% 35.5 o 48.2 26.4%
156X 15 41.4 JO.D 18.7% 41.2 51.7 20.3% 41.8 54.3 23.0%
s » f , .
,‘ a
@ ’ N
* N < o
)]
, 8 \ N '
5 . % “'
., <
- \ . ( ' . ‘.
) . ‘ N
Fl "\ g ) ' ° 3
-~ hY ) \ .Q : . - d
- . {‘; o . (}
i N o \ . / ' . ) R
P e .
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In the proposed algorithm, there are basically thr optrations that are repeated i'n

each cycle. The first operation is to update the bottofimost row in a window. This

\ 1
operation consists of deleting one element from a set of S elements and inserting one

new element. This operation, using agequential search, requires at the most S com-
parisons. Thg second operation is to search for the position of the element in the bot.-',

tommost row vector that is greater than or equal to the ol'd median. This operation also
k4

needs at the most :S' comparisons. In the proposed algorithm, the search for the element
to be deleted is not started fi'om the first position of the vector but at a position where
the deletion oceurred in the bottommost vector of- the past window. As i typical

images, the pixel values in adjacent columns or rows seldom vary aprupt,ly, the number

¥

of comparisofis required by starting with the previous pbsltion of the deletion, is found
to be very small. Similarly, only a few comparisons are required to search for the posi-

tion of an element in the bottommost row whose value is-greater than or equal to the
e

past mgdian by starting the search at the partitioning position of the adjacent row.

(-]
1 .

At this point, the elements in-.each row vector of the window are in ascending
- ' ) LY i} '
a /order. The objective is finally to have the (RS+1)/2 elements in Subset 1 and (RS-1)/2

b eléments in Subset 2 and then to find the largestcelement in subset 1. In‘vlew of the ear-

lier operations, the number of' elements in the two subsets may not be in that propor-
tion. Therefore the third operation is to find the la.rgest (if it is Subset 1 ) or the smal-

e lest ( if.it is Subset 2) in the subset which has more number of elements and push {t to

N L

~ the other subset, thereby redefining t,he border between the two subsets;:?Thls operation
consists of ﬂndfng the srﬁa,llest or the lar&ést’ of a set of R numbers along the border.

The operation is repeated at the most S times. As presented in Appendix B, In order to

implement this thérd operation the ‘t,wo largest or the two sma]lesb numbers along the

border are found in each cycle. There are two reasons for finding two numbers in one

cycle instead of only one. Fijrst, the average number of comparisons required to find

two numbers in the same cycle s less than that In two consecutive cycles. Second, there
' L

N ? . Ll ° \
” . ‘
v -



Y

'

£

- 41 -
» P

is a possibility that one can find in the subset the third largest or smaltest element, the

. ~
- ~

fourth etc., with \;ery little additional effort. For example, if the largest element of Sub-

t

set 1 along the borderis found in row vector 1 and the second largest:. in row vector 2,

then all the numbers in vector 1 that are greater than or equal to this second largest

a

number are, in order, the second largest element, the third largest element etc., in Sub-

v

set 1. It may turn out that the two largest elements along the border are the two larg- =

est elements in the subset. In’ this case only the prst. advantage is realized. To find t.l';eJ

'ﬂrst, element, (K-1) comparisons are requireg. 'i‘o find t'he second elexﬂent, R comparis-
ons are required. This process is repeated at the most (S+1)/2 times. The last time, the
second largest glefnent is not found and the number of comparisons required is reduced

by one. Therefore, for the third operation the nurpber of comparisons required, in the g
worst case, is —1+'(2R—1)(S+1)/2. The tﬁml x;umt;er of comparisons required for the
proposed algorithm, in the worst case, is S+S5-1+(2R-1)(S#1)/2. The third operation¥

%

minimizes the variation between the required minimum and maximum numb‘ of com-

parisons for finding the. median of _diﬂ'erent windows of a given size. The features

-

__described above contribute to a fast e;(ecution of the algorithm,

T G - '
The actual and the worst-case number of comparisons required for the proposed

algorithm and the number of comparisons required in the worst case for the histogram -

¢

algorithm are given in Table 4.2. Although on the averaée, the actual number of com-

:
‘

parisons made per window is considerably'le.ss than in the worst case, it is'a function of

N
K]

the worst-case number. Hence, the execution time of the algorithms will also be a func-

' tion or the worst case number of comparisoné. For larger windows, the number of com-

parlsons required in the proposed algorithm becomes hlgh and the eﬂ'iciency decreases

But the decrease is relattvely small for the window slzes commonly uséd in image pro-

A

cessing app}cations. .

R o . .
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TABLE 4.2 J ,
ACTUAL AND WORST-CASE NUMBER OF COMPARISONS
PER WINDOW IN THE PROPOSED AND THE

o HISTOGRAM ALGORITHMS
Proposed Algorithm | Histogram Algorithm
‘ L ’ Gray Levels
C Window \ ' 128 . 256 512 .
Sizeé Actual Worst-case Worst-case
. 3X3 10.6° 17 133 261 517 \
\ §X5 17.4 38 137 285 521 '
{ 7X7 24.4 .85 141 ° 280 525
’ OX9 31.2 102 145 273 - 520
11X11 38.3_ 147 149 277 633
13X13 46.0 200 ]_,‘153 281 537
, +1 16X15 -56.2 261 B 157 .285 541
. ,
+ ’ ll
. 1
3 N )
" \ J — !
. 4
#
‘ S
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Another feature of this algorithm is that the execution time is relatively unchanged -
for incx;casing noise levels in tfxe image. The presence of noise in the image makes the
difference between the m’edigns‘of adjacent windows la.:ge. This large difference in the
medians does not affect the execution timé of the proposed algorithm to the extent it
does t.ine execution ti{nq of the histogram algorithm. This is due to the fact that in the

histogram method the search for the current mediah tarts from the previous median' .
3 . .

and therefore, the number of comparisons and the,,execlition time increase in proportion

with thybruptness of the intensity chaﬁges.' Table 4.3 shows the execution time of the

twb algorithms for a 256 X 256 image with different noise levels.

1

'4.4. SUMMARY » .

3

A fast al}brlthm- for two—_dime;xsional median filtering has been presented and its
Qpe:‘or'mance compared. The main d/m‘erence between this algorithm and the t}jlstogram
algorithin is that while both the algorithms use the results obtained from the past win-
dow, the proposed algorithm updatés two subs'ets of a window insteaq of a;l histograr_n

.80 that the execution time is bit-independent. Tll'le proposed algorithm, in finding the

‘ median of a window, makes use of the results obtained from the two previous windows

"— one immediately above and the other to the left of the current window. The advan-
tage of the algorithm is a fast execution time in comparison with other algorithms. In -
addition, the algorithm execution time is independent of data,word-length and also it is .

relatively insensitive to the noise levels in the image. The algorithm can be easily

adapted. for multiprocessing as explained in the next chapter. ~

~e
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’

TABLE 4.3

THE EXECUTION /TIME IN SECONDS OF THE PROPOSED AND THE
HISTOGRAM ALGORITHMS FOR DIFFERENT NOISE LEVELS IN AN

4

IMAGE WITH 256 GRAY LEVELS

Signal to Noise Ratlo
« | Window | . .12 ‘ . 8 4 :
Size Proposed , Histogram ' Proposed Histogram _Proposed Histogram
1 3X3 '.13.0 16.4 13.2 17.2, 13.2 183
15X5 | wil7.4 21.6 174 22% 17.5 22.5
7X7 21.0 26.9 21.1 273 21.2 271.7 »
' . . ' .
v . P - .
i
¢ 7 :
) . e ¥
[ - i
L .
\ 3
* 6
' ' - B [




CHAPTER V . '

.

IMAGE PROCESSING ON THE PROPOSED
PARALLEL ARCHITECTURE -

5.1. INTRODUCTION

As stated in Chapter I, image processing operations fall under two classes: (i) low-
level op‘qratior{s, and (if) high-level operations. A charg,cteriétic of low-level ope:rations is
that the.inpﬁt data, in ge;leral, is in the forr‘n of large two-dimensional arrays. At this
stage, ha'ndl‘ing of a large/amount of data forms a major: part:, of the overall processing

time of a specific application. Hence, a: parallel architecture must be highly optimized to

N do the low-level operations efficiently. In addition, it must also have the ability to pro-
cess high-level operations. The low-lcael operations can be classified as [2] : (i) point
operations, (ii) neighborkood operations, (iit) twc”dimensiona} discrete transfarms, and

(iv) im\age‘ statistics. In this chapter, the implementitions of these operations on the
4 .

proposed architgcture are discussed. Data partitioning is an important consideration in

-

parallel processing. In Section 5.2,‘13: new data partitioning scheme, specifically suited‘to

. the type,of architecture discussed in Chapter II, is proposed. °

3

]
6.2. DATA PARTITIONING

’ -

e 1 ’
In parallel implementation of an algorithm the input data must be partitioned

]
- between the PEs in the system. Regardless of the way the image is partitioned between
the PEs, the processing time of the compfete image is the processing time of the PE

that takes the longest time to complete its assigned segment. In a given cycle, the pro-

/ &

cessing time of different PEs could be different if the algorithm execution time is data

dependent. It could also vary from cycle to cycle for the game proceséor. For example

in median filtering, the processing time of a specific segment could be considerably
longer than that of other segments. This variation i&‘ execution time from one se~gmem.

to the other can only be reduced by designing the algorithm such that, for different
T } -~

-45- "



A - 46 -
& ' . e L

windows, the variation in the number of comparisons required to evaluate the medians

s small. Despite this variation in processing time, a high efficiency can be achleved by

assigning the i'nput data to the PEs as uniformly as possible from the point of view of
2

-

algorithm execut,ion(j time.

Let the number of columns in the imi;,ge be N and the number of PEs in the sys-
tem n. Assume that /N is an integral rﬁultiple of n. Therefore, each PE is assigned N/n
cdlumns of the image. In the proposed data assignment scheme, PEJ- 0 = 012..,n1)
is‘initially allotted with the column.whose humber is given by Cj (0) = (N/n);. The

other columns assigned to and processed by PE]- are then given by the recurrence rela-

tion R

¢ . ; 9

Cj‘(k) = pN+[C'j(k——1)-((N/n)—l)], k= 1,2,...,(N//n)-—1 (6.1)

where p has a value of 1 for k = j41 and it is zero otherwise. The column assignment

A

to the PEs, as described above, allows the transfer of partial results of the previous °

cycle from the left adjacent neighbor. As an example, ng. 5.1 shows the scheme of
data assignment of an image with 16 columns assighed to 4 PEs. It also depicts the

@

sequence in which the columns are processed and the transfer of partial results between
J .

the PEs at the beginning of each column cycle. X
. { -

Broadly speaking, partitioning of images in parallel processing can be classified into
two types. In one class, an image is partitioned into equal square segments [36] or into
segments comprising consecutive rows or columns [37] requiring overlapped storage for X
N, ~
neighborhood operations. In the other class, the rows or the columns of an image are
assignea to PEs according to some predefined mapping scheme as described‘}n (8] or in
the proposed scheme. The square partitioning has the advantage of minimum overlap-

ping between the segments [36]. In Huang’s algorithm (31] or in #fie proposed median

. .
filtering algorithm of Chapter 1V, the results of previous windows are used to process

. ' L4 '
the current window. Therefore, the processing of the first windows takes much longer N

’ !

%

r



. o N Fad
- 47 -
o
kS
N » \’ A
v
. . 3
, PE number 01 2 3 12 3 0 2 3 0 1 3 01 2

Columncyclenumber 06 1 2 3 0 1 2 3 0 i 2 3 0 1 2 3

) Column number 01 2 3 45 6 7 8 910 11 12 13 14 15
Partial result transfer . .
at the beginning of : L . Pr
- eycle number ‘ o .

. 0 o — b — N - N —
o) ' , ‘

1 — — - - —
2 — = T

Fig. 51 Data partitioning and their assignment to PEs, transfer of. pa"rtial results
between PEs. and the processing sequence ror N=16and n= 4.
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time than the subsequent windows. As the square partitionjng results in a larger
number of first windows compa'red' to other partitioning schemes, the processing time of

the first windows becomes a larger proportion of the overall processing 'ttme of a seg-

1 , . ’

ment. In the scheme of [38], the image has to be reformatted for executing algorithms

such as FFT where a complete row or column is used in processing.

v
5

In,%he second class of data partitioning, neighborhood values and- partial resulﬁs‘
are passed to othet PEs during algorithm executfon. Irrespective of the number of PEs

in the system, the first windows are processed for each column or row only once. In the

»

proposgd method, however, the past results from two directions can be used. That s,
the results from windows immediately above and left adjacent. can be used in processing
the current wlndow. This approé.ch zilthough possible in the first type ér partitioning

scheme, cannot be used in the partitioning of [9]. This-is because of the way the data is

1

- assigned to dlﬁ‘erent PEs in [9], the pa.rtxal results from the left neighboring PE are still’

being formed when they are required.

’

The proposed data partitioning schSme provides an eﬂ‘icleni: parallel implementa-
tion of algorithms. In order ta illustrate this, assume that there are two PEs in the sys-

tem and N columns in the image Ea.ch PE works on one half of the image. ‘Let us

‘e

further assume that the processing time, {, of each column in the first half of the image

FS

is twice the time of processing orta column in the second half. The processing of the

Lo

image is complete only ‘when both halves of the image have been 'processed,’ i.e., after

“‘A '

' tN/2 time units using‘ the partitioning of [37]). Using the proposed data partitioning
)

scheme the processing of the fmage is complete In 3tN/8 time units. A ur{iprocessor

will process the lmage in 3tN/4 time units. Thus, it is apparent that the proposed data

assignment. scherfie is more efTicient for parallel implenfentatior@of data-dependent algo- .

. rithms. q o

1]



-49 -

5.3. POINT OPERATIONS

" ~N

« Polnt operations can be performed on each pixelcof the image without the

. knowledge of neighboring pixels. These operations can -be efficiently performed with any

type of image partitioning strategy, since no communication between the PEs is
f 4 .

’

required.

6.4. NEIGHBORHOOD OPERATIONS

Y

In neighborhood operations, the output corresponding to a pixel depends not only -

on the pixel but also on neighboring pixels. For,this type of operations, simultaneous

exchange of data and partial resuits between neighboring PEs is required. The CM, the
e .
Ebmmpnicat.lon link in the proposed archltectu;g, is used to provide a buffer for the

1
data to be transferred. The neighborhood operations‘cqn be ﬁut into two categories: (i)

operations that require almost fixed amount of processing time for each window, such as

-
A

codvolution, and. (ii) operations that require varying execution time for each window,

¢

such as median flltering. The former type of operations can be done sy@nously wltl;

good efliciency while the latter type of operat‘ions requires additional effort to a.chipye a

14
5

high efliciency.

In both types of neighborhood operations, the‘processing of windows in the current

column is divided into two parts. In the first part, that is executed first} partial results _

using data values and past partial results are produced. In the second part, output pixel

values are computed. In the begi‘nnln; of the exécution of the second part, the rt_:sulcs of
the ﬂrst;i part are passed on to neight.)o'ring PEs at the earliest possjble tim:a when the
appropriate CMs are {eady to receive them. This division oi‘ processing of a column
cycle ;ﬂows the receiving PE to continue with the next cycle, without any-[dling, if it

ha,g already combleted its current cyclé: Also, the data assignment scheme descxl',ibed

la.bove makes this approach to yield a high efliciency, particularly for data-dependent
algorithms. The se'quence of operations in the proposed implementation of all types.of

' ieighborhood algorithms are the same and can be outllnéd as follows. IR

"\
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ILFor a column-to be processed, carry out the initialization process (for example,

array initialization), if necessary.
J —_——

2. Process a window of the current column. At the end of pi‘ocessing. check the

~

flags whether partial results and data are ready to be read in or written out.
If the flags are set, carry out the read or write operation. Repeat the opera-

tions for the next window of the column.

——

3. If inputing or outputting of partial results and data is not=complete, idle until

the values are available and then read or write the partial results and data.

4. Update and write the partial results to be used by the neighboring PE in the

next cycle. Find the output correspopdlng to the pixels in the current column.

5. Go tostep 1. A b

The steps described abp\'/e reduce the idling time ;)f the PEs by using the execution
time of a colum;i cycle (the period of processing a complete column) as a buffer. This
way, the difference between the execution times of two columns processed by a PE can
differ by as mugh as the execution time of the column taking the longest time. "Yet,, it is
highly probable that t;he PEs can still proceed‘with the proc;:ssing of the next cycle
immediately after completing the current cyclé. In this study, this kind of synchroniim—
tion is feferreg'to as soft synchronizat{on. The desggn and parallel implementation of
two neighborhood algorithms, convolution and median  filtering .,algorithms.' wl}l be

4
described in Sections 5.5 and 5.6., -, - v

[

5.5. THE PARALLEL IMPLEMENTATION OF THE TWO-DIMENSIONAL

. CONVOLUTION ALGORITHM ‘ ~

In this section, a parallel implementatiqn of the convolution algorithm described in
Chapter 1I is presentéd. The PEs are assigned thé segments of the input image, accord-
ing to (5.1). The evaluation of convolution function given by (3.1) consists of finding

‘ the sum of products of the coeflicients and the corresponding data values in a neighbor-

i
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hood. In a multlprocessor_fnvironment, in order to find ttie convolution output ‘¢(1,7), in
éenerail, a single PE evaluates all the elements of the matrix X(+) and adds them up.
In the proposed implementation, a PE accesses only one pixel value fli,7) at a time and
the products of that value with all tlhe.coeﬂicients of the window are ‘read from a look-
l{p table producing a matrix Y(i,7) shown in Fig. 3.4. For exomple, for a 5X5’neighborv
hood, all@he 25 products of a single pixel value with the 25 different coefficients of the’
window are read from the look-up table by a PE for each neighborhood. A% will be
shown la.;er, only so of these product values are used by tl;at PE in proglucing convo-
lution outputs. Tho rest of the product values are added to partial results and passed
on'to other ].:’.ES using CMs t;etweeﬁ the PEs. The con;'olution output for each pixel isJ

14

produced in a pipelined fashion.
'y'h

5.56.1. The Approach of the Implementation .

-

s
‘The number of .PEs, n, in the system tan vary from 2 to N. A‘column cycle is

defined in such a way that during the ith column cycle the pixels of'the ith column’ol‘
the columns assigned to a Pé a.ro processed by it. During this period, a PE computes
the elements of the matrix Y(ij5) (Figa ;3.4), does the partial additions, transfers
appropriate partial sums to the neighboring Pf:s, and comp@s the convolution output

,
of all. the pixels of a column. All the PEs are soft synchronized at thi€ end of each cycle.

X

'I‘he values of all the columns of the two-dimensional MxNarray F assigned to a
PE are, loaded ‘into the PE as a one-dimensional - array 1 = {fis), i =
0,1,2,...,(MN/n)—<1}. he values of the two-dimeénsional RX S array W are read row-by-
row into a one-dimensional array wl = {wi(s), i = 0, RS—I} The convolution
output is stored in the conoutl earray. For each pixel, the convolution output is

developed through partfil result: arrays called ptor and prest as defined in Chapter III.

Consider an example of a 3X3 window function and a section of an image as
shown in Figs. 5. 2(a) and (b), respectively The convolution output corresponding to the

pixel f{1,7), the sum of all the terms shown in Fig. 5.2(c), is produced as folfou~ \Vhen

£

1

o
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Fig. 5.2. (a) A 3X3 window. (b) A section of an image. (c) The array X(,7). ’,
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‘;2

o A “A

image has been ahsigned to PEk -according to (5.1), where k is,a modulo n number),
—

pter(s) == j(:—l J—I)w(l 1j is formed. When gh'e pixel j(z]-—l) is a.ccessed by PE,. pter(5)

“ . . " . i oo . '
the {)ixel fii-1,7-1) is accessed by PEk,(it is assumed that the {7-1)th column of the

= ptcr(J) + fij-1)w(0,1) is formed. When the pix&\l fi+1,5-1) is accessed by 'PEk.

pter(z) = pler(5) + }(H-l,_;—l)w( 11) is formed. The term pter(1) of PEX:+1"

+

corresponding to the mldd!e column of the image, contains the sum of the products of

the middle row of coefficients in the W array and the correspondmg pixel values in the

d

image array. Similarly, pter(0) of PEk+2, correspondlng to the last &mn, contains the

Qum of ‘the producbs ‘of the first column of the coemcients and the corresponding data
s, /

values in t.hé last column of Fig. 5.2(b). The sum of pter(2) ptcr(l)A and’ pter(o) i‘r%m-

* .

. PEk, PEk+1' and PEk+2‘ respect,ively,s forms the convoiuﬁ\on output corresponding

the pixel f(:,]) When the pixel j(t 1,7-1) is-accessed, prest(25 ,pter(z) is\produced“and

passed on to PEk_*_1 In the next cycle when*PEk+1 acgesses the pixel fi+1,7), prest(1)

4

prcst(2)+ptcr(l) is produced and passed on, tq PEk " »In. the last’ cycle, PEI: 12
forms presi(0)'= prest(1)+pter(0) which 1s thg convolutiontu

pixel'ﬂz,_y). It should be noted thet-the PE- holdmg the last coiumn of pixel va.iues in

. N Ve L4 ﬁ
the window (i.e., PEIc+2) forms the final convolutign output although the center pixel

Riy of the window is assigned to PEy . " v

J

o

~ ‘h
During a given column cycle; each PE carries out the same set of opera.tions The

parallel implementation of the algorlthm is nwesented in . pseudocode form, by

>

e .

deséribin,g she operations performed by a PE. It is assumed that the image columns

i

have been loaded in individual PEs according to (5 19 AR °
o ' ? 0 . & ’

THE VARIABLES e C. '
‘ N i ) ) ¢ . e

M = Number of rows in tpe image : . Co
N == Number of tolumns in the image - . ‘ i '

R = Number of rows in the window » \

. - ’ : s ’
. . R
‘ - . P
“ AR "

tput correspoiiding to the

[ ’

Ve
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o

N
. ducts corresponding to a part of the column in a winrdow

. @
S = Number of columns in the window

»
[ .

countl, count?, céunt& anAd countq are loop counters

d = Number of gray leev.els in the image -~ ‘
'pd = GRS-element producvt table . - &
.1"= MN-element input image array \ ST ) )
w1‘;° RS-element coefficient array [ >
-conoutl = MN-element output image array | ) “ g \ .

poz:nter == Points to the prouducc values in the look-up table

v 4

pter = R(S-1)-element partial values array in which each element is the sum of pro-

.

s

-

-pptér == MS-elemént partial values array in which each element is\the sum of products

cor‘responding to a full column in a window
. . : -

P - . ¢ -
prest = MS-elément partial result ‘z:rray in which each element is the spm of one or
- Y 3

7. Call procedure PARTIAL~to ‘updﬂté and creaté newwpartial results:

- the pter valwes using the past values of pfer and the product values of

‘o T PR ~\ )

.

©

more elements in ppler . . » y
':oﬂ'sct = The sum of the'“linear di;placement between the storage locations of ‘two
correspoﬂkung pé,rtial resu‘lts of t.wo consecu.tive w‘windows . .
indez =. Index of thé currén'}.‘pixel in f1 B ' . 1 ~ .
PROCEDURE MAIN ° v SN
1. In‘ivtialize all prestkvalues to zero and reset FLIN. g #
2. Call Procedurf TABLE to set 1:p t}xe muljt,;iplicat.ion table. «
:; For countl from 0%to N-1 | " _ - N * . ‘
4. Initialize all-pter v!aflues, offzet, and indq to zero. . o
5. For count? from O to M-1'. ~ . L : Y
. 6. If flag FLIN“ is reset, read thﬂe‘pa.st. prest 'valu.es from the left CM. ’Set, ’
. . . vy -
v FLIN. - . ‘ - f 2

‘
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pixels in the current column with the ‘poeﬂ‘iqierits.

8. GO to step 5. ]
. N B @Fthe values of prest and find the ofxt.pdc corresponding to the pixels °

»* 4

in the current coluhnim by calling the procedure PRES. .

- Y, »

10. Keep* checking the flag_ FROU’I: until it is set. Write the past values of
prest to the rlgﬁt C@/I Reset FROUT. ' !

11 Go to step 3.

3

- { At this point, all the columns have been proc9§sgd: Since the initial values of partial
results that fofm the output for the first S—l.qolumns have been assumed to be zero,
these outputs have to be updated. The required partial results for'a PE are stored in

L]

the.second left neighboring PE. Hence, the partial results are sinifted through a PE
before the output updating cycle be:gi;lé. } o -
12. Keep checking thé ﬂ‘ag FLIN until it is reset and then read the values of prest.
Set FLIN. | | |

13. %(gep checking the flag FROUT until it is set.and then write the values of
) 4 N
prest. Reset FROUT. Initialize sndez to zero. :
* m ‘ 3 .' -
A Xy .
14. For count! from 0 to S-2 v

15.. Keep éhecking the flag FLIN, until it'is reset and then read the values of

presi. Ses FLINy . Ce,

¢ v

16. Call procedure UPDATE.

-

. ¥ ’ ’ .
© 17. Keep checking the flag FROUT until it is set and then write the values of
prest. Reset FROUT. .,

- *END PROCEDURE MAIN ‘ , e
S . )

PROCEDURE TABLE

\

‘ { In this procedure, a look—up table containing the g‘goducts of each gray level with

“ " each of the RS coefficients is computed ‘and stored in the pd array: }

[

a
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~#

Fér count! from O to RS-1 L | :
indez ~ countl
sum «— 0
For count? from 0 to G-1
o a pdlindez] +— sum
indez — indez + RS T .
' ‘sum — sum + wl{countl]

- END PROCEDURE TABLE _ o

PROCEDURE PARTIAL - el

{ In this procedure, the past values of pler are updated and new values of pler are

-

created. } \
pointer «— RSff[indez] ' : . _ {
. : .
‘For count8 from 0 to S-1 * v
\ 1 s

For count{ from count$ to (R-1)S-1 byS5
' d’ptef.'[countﬂ — pter[co;mt.{ + 8§+ pd[éounb{ + potnter|
’ ‘ptcr[counw + (R-3)S] «~ pd(count$ + (R-1)S + pointer] ‘
ppfer[codnt.9‘+bﬁsbt] «pler|count$)
.oﬂ"setﬁ- offset +:S' -
indez +— indez + 1

\
END PROCEDURE PARTIAL A oS

PROCEDURE PRES

{ In-this procedure, the values of prest are created or updated using the values of ppler.’ -

The outputs corresponding tG the pixels in the current column are computed. }

. -indez + indez - M .

) .
offset +=0 ¢ - . o N

3
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For countf from O to M-1

For count® from offset to offset + S-2
prest{count8] « prest{count8d + 1] + ;;pter[co‘unty]
prestloffset + S-1] « ppter|S-1+pffsel

< conoutl(indez] — prest{offsel] |

offset «— offset +SR . : ' .
" indez «— indez + 1 : ,
END PROCEDURE PRES 4 N N

PROCEDURE UPDATE oy

,.

{ In this procedure, the values of prcsl are shifted. The outputs corresponding to the .

| e

]
pixels in the current column are updat;ed. }

-~
H

offset = 0
For count2 from 0 to M-1 .. ,
For count® from offset to offset + S§-2 - count! . : 6

. presticountS] «— prest{count$ -+ 1]

conoui![z‘ndcz} + conoutI{indez] + prest{offset}

offset — offset +S
index « sndex + 1

END PROCEDURE UPDATE |

" ’ N

5.5.3. Test Results .

v

5

The percentage efficiency of the parallel implementation of an algorithm is defined

as 100T /(n T ) where T is the executlon time when the algorithm ls implemented in

¢

parallel using n PEs and T is the time taken when only one PE is used. The efficiency
of the parallel implementation of an algorithm would be 100% only if there were no
overheads such as daja communlcation between PEs, synchronization, and other addi-

[}

tional operations requlred due to the para.llel implementation of the algorithm
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. S

The prgposed—comluﬁen—a}gorg&hm,—eeded—»in—(%!ahgﬁagﬁ—was%mplementedlseﬂ-

ally and in parallel and tested on a single PE and on the 2-PE Prototype of the parallel
archltecture respectlvely The 1-PE and 2-PE execution time a.nd emclency for a

256 X256 image and for vanous window sizes are presented in Table 5.1. The serla.l and
parallel execution time of the algorithm ‘are shown, respectively, in the second and the
third columns of the table. The .efficiency of the parallel lmplemenbatlon as deflned

' 4
above, is presented in the fourt,h column and it varies from 93 0% for a 3 X3 wlndow}
L]
(

04.3% for a 15X 15,window. Flg 5.3(a) shows a 256)(256 input image Fig. 5.3

displays the edge output using a 3X3 Sobel operator in four dlrectlons, obtained by

implementing the proposed algorithm on the 2-PE prototype a‘rcﬁipecture.

5.86. THE PARALLEL IMPLEMENTATION OF THE MEDIAN FILTERING

o
ALGORITHM ’

In this section, the prgoblems related to thg parallel implementation of the median
filtering algqrit.tim presente‘d&in Chapter IV ;,req addressed. Since the execut.kzn time of
th€ median filtering algorithm is data dependent, in order to a’chieve a high efficiency of
the parallel implementation, an attempt is‘made»ir_l the design of the fflgorlthm to nar-

&

row down the’difference between the minimum and the maximum processin‘g times of

¢

different windows. A synchronous execution is chosen for the paraillel cimplementation.‘~

However, the idling time of processors wamng.ror da.t,a:or partial results from neighbor-

~

‘ing PEs is minimized by reducing the number of synchroﬁizing points. This is achieved
4 f

B

___ by synchronizing the processors after processing a set of windows instead of each win-

dow. Further, at each synchronization péint a hard synchronization is avoided by let-

’ting the processors continue, as long as possible, with the execution of the next cycle.
1] -~

The data partitioning scheme of this thesi:s makes it possible to use the partial results of

past windows from two directions.

-
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TABLE 5.1

EXECUTION TIME IN SECONDS AND THE EFFICIENCY OF

THE CONVOLUTION ALGORITHM FOR A 256 X 256 IMAGE

WITH 256 GRAY LEVELS,

Window .

Execution Time | Efficiency
s ' size 1PE. 2PE . .
3X3 21.4  11.5 93.0%
5X5 52.3 28.1 93.1%
TX7 97.0 51.9 . 93.5%
9X9 165.6 88.4 93.7%
11X11 | 2350 125.1 | 93.9%
| 13X13 | 3225 1714 94.1%
*| 15X15 | 424.2  224.9 94.3%
-] 4 .

o

.
g
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‘Fig. 6.3. (a) A 256X 256 input image. (b)

(a)

¢

s

An edge output of the image in (a) by imple-

menting the proposed convolution algorithm on the .2-P'E prototype architec-

’ R

ture.

el

LN 1
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5.6.1. The Approach of the Implementation

. - ~
Y

In a parallel processing' enzj’ro‘nment, all PEs carry out the same set of operations.

To start with, each PE writes to and reads from\hle CMs a number bf pixel values in

1

-

windows (for example, the pixel values from M windows) corresponding to the pixels in
the first cojumn of the image segment assigned to it. The PEs begin processing these
wlnd.ows. Each PE, for the first timg, sorts the neighbérhood pixels {n all the row vec-
tors of its first column. As these row yectors are to bg used in the next column cycle by

tfxe right neighboring PE, a PE at the beginning of-each window cy¥cle checks whether

the CM is free, i.e., whether the neighboring PE has already( read the previously stored

data. If the CM is free, the PE writes the row vectors so that the right neighboring PE

3 -

‘can start the next column cycle immediately after finishing the processing of the win-
dows of the curreni column. This process avoids hard synchronization and hence,
reduces the idling time of PEs. The hard synchronization is the process of idling of PEs
at the points in their current column cycle when they have completed the processing of
thelr respective set of windows and then all the PEs resuming the next cycle by starting
the prf)cesslng of the next set of windows in the next column at the time after the PE
taking the longest time has finished the processingnin the current column cycle. Fig...5.4
lllustrates an example of a hard synchronization Being employed. It is obvious that
different PEs get idle at different points in their current qycle. However, it would be
possible.to resume the next cycle (i.e., the (3+1)st cycle) only after PEI’ which takes

the longest time, has completed the processing-of its current set of windows m the sth

-

cycle. )

.

- In the proposed-implementation, a soft synchronization is'employed as shown in '

Fig. 5.5 and explained below.
Initialization : Each PE writes to and reads from the neighboring PEs the required pixel

‘values and sorts all the row vectors in all the winddws of its first column.

:



- Fig: 5.4-

Cyclg i

.Cycle {+1

-and dottedline shows the idling period of @ PE.

. A scheme of soft sinchronization and illustration of various operations per-
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. PEyg PE, PE,

v
m
“«

S T S—

Illustration of hard syvnchronlzat;ion. Solid line shows the busy period of a PE
\

-

-

PE, PE, PEy ' PE, : '
< , Initialization

A (Column 0) |A (Column4) |[A (Column 8) *A (column 12)

A

C c l , ;
|
| , | ! !o
* D l D . | *
: s D :
. : .. .
. . * b4
€ e sE :E
1A’ (Column 13) § iA"(CoI : ) s - . .
umn 5)- 3,
A (Column ’) . iA (Column 9)

formed by a PE in a given column cycle for N==16and n=4. .

[}

o
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A Starting point of cycle 0.

a

A to B : Check the FRdUT and FLOUT flags to write in the CMs, the vectors |
and the delete and the insert elements. If the flags are not reset, pro-
_cess one window and check again. zi‘he pixels in the current colu“mn are
needed by the neighboring PEs processing the (5-1)/2th left adjacent
’ “column and the neighboring PE processing the (S+1)/2th right adja-

cent column, since they are the insert and delete elements, respectively,

for these PEs.

B : Writing to CMs is completed. Set the flags.

AN B'to C : Processing of the remaining windows of the columns cohcinues.

C: Processing of all the windows in a column is complete. . -
C to D : Keep checking FRIN and FLIN flags urg\til they are set (idling period).

D ; . ags FRIN and FLIN are found set.

D to E : Reading from the CMs is completed. Reset the flags.”
E to A' :Updating of all the vectors is carried ,out fo_f‘ the next column cycle.
Doing this §ignals the end of the current cycle for a PE and the begin-

ning of the next cyclé., '

Unlike hard sync'hro,nization, a PE can start its next cycle at pofnt A’ without
* ‘e,
waiting for the other PEs to complete their current cycle, since the required vectors are
present in K%e private memory of the PE. It must be mentioned that a PE may have'to

idle itself for) a longer period of time (segment, CD in Fig. 5.5) if due t,o the nature of

3

data, the difference inn the processing times of calumn j by PE and column (_1+1) by

R

PE’- +1 is large for some consecutive vaiues of j. This situation, however, is likely to

-occur very infrequently in the processing of (ypical images, . six\xce the windows

corresponding to neighboring columns are not, in general, significantly different. In a

nutshell, in order to reduce the idling times of the PEs, a two-stage buﬂerigg has been

I
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employed: (i) synchronizing the PEs lesé frequently, i.e., after the processing of a set of
windows rather than after each window and (ii) by a,voiding hard synchronization after
_ processing the set of windows. The parallel implementation of the algorithm is now

presented using pseudo codes, incorporating all the points discussed above. :

: /
5.6.2 The Algorithm

Assume that the image colmns have been assigned to the PEs accordiﬁg to (5.1).
it

PROCEDURE MAIN,

»

- 1. Each'PE writes the é})p?&ﬁﬁ&[&iid m t:he CMs to form windows corres’poﬁdlng
to all the pixe'ls in ‘the first column. Set the ﬂaés FLOUT and FROUT. o

2. Check the FLIN and FRIN flags for the availability of data n the CM. Read in
the dath and reset t«h}é flags. Sort the pixels and form all tfue row vectors in a;ll

windows of the filst column. -

N

[N

3. For all the columns to be processed
4. Call FIND MIN to find the (RS+1)/2th largest element of t‘he first wir;dow.
5. For all the windows in a column i . . |
8. If flags FLOUT and FROUT are reset, write the vectors and h;sen
and delete elements only once during the processing of the column and
set the flags. ) |
‘ 7. Find the partitioning posjtion of the new' row with regpect to the olci
median, '

- 8. Find the number of elements to be moved from one subset to another.

If the movement is from Subset 1 to Subset 2

call FIND MAX . L
“else ' ,'
. call Fnsﬁ; MIN '
9. gotostep 5., -

-

Il. Keep checking the flags FLIN and FRIN until they are set. Read in the

"

3
!
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vectors and insert and delete elements and reset the flags. Update ‘the vectols
by calling the procedure INSERT DELETE.

12. Gotostep 3. ) .

1

END PROCEDURE MAIN

) : ~
PROCEDURE FIND MAX"

{ In this proéedure, count largest elements are found in Subset 1 and pushed into Sul;-,
set 2} : -
ir caynt_‘ > 0do

find the two largest numbers along the border

B v

decrement count ®

k]

update the border corresponding to the l'argest; element

t

if count = 0 . ‘

, return

¢

while the néxt number is greater than or equal to the second largest element*

» .

update the border o

decrement count : .
.6

medign + number -

if count = 0O

» . B N

return

N

B

. e;ld while ,
} «

{After all the elements in the row corresponding to the largest element along the

’

border has been exhausted, the second largeét element along the border is the next
3 ' ) a )
largest element in the set.}

medion +~ the second largest number

update tlie border




o -
decrement count « . ‘ & .
. end | ) , -
END PROCEDURE FIND MAX e i o .

»

<

PROCEDURE FIND MIN

{In this procedure, count smallest elements are foupd in Subset 2 and pushed into Sub-

set 1. This procedure is similar to FIND MAX.} E

L K - .
ENB PROCEDURE FIND MIN f

. \ o g
- PROCEDURE INSERT DELETE .

<

{In this procedure, the delete element is removed and the insert element is put into the
N corresponding previous vector to form a new vector. } ) q&

f orLeaop row vector , - N

’ —

find the deléting position in the vector:

o -

discard tle delete element
find the inserting posi\t]on

put the inger't, element at t.he‘a,ppr,opriat‘e place

v
i

end °

E%JD PROCEDURE, INSERT DELETE &
. .o o
5.6.3. Test Results and Discussion St

The proposed median filtering algorithm, coded in C language, ‘was implemented
serially and in paraliél an% tested on a single PE and on the 2-PE prototype of -the

p;rallel architecture, respectively. 'The 1-PE and 2-PE average execution times and

a

efficiency for six different 256X256 images_anfd for various window sizes are presented in

o N

Table 5.2. The serjal and parallel execution time of the alg?:rlthm are shown, respec-

,th//ely, in the second and the third columns of the table. The efliciency of the parallel (,

-~

fmplementation, as defined In Section 5.5.3, is presented in the fourth column and it
- .

varies from 76.8% for a 3 X3 window to 7.4.3%, for a 15X15 window. Figs. 6.6(a) and

¢

1)
-
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(b), respectively, show an input image and the output image after the application of a
. ) .

5X 56 median flitering by implementing the proposed algorithm on the ‘prototype archl-
tecture. ) ' 3
The execution times of the proposed'algorithm implemented by using the data par-

titioning scheme of Section 5.2 and the consecutive row or column-wls_e partitioning (37]

/ ’ .
are now compared. Table 5.3 shows the hypothetical execution times of three different

‘sets of 16 columns, assuming that each .image has 16 columns'which are to be processed

. method ‘and the time required to qverlap the border area o}‘ the segment in the second

scheme have been ignored. Table 5.4 shows the execution time taken by each PE to

process itg“aséigned column for the two data assignment schemes. For lgxa.ge 1, the pro-

A

posed implementation using the proposed scheme finishes the execution in 26 seconds

- »
whereas the scheme of [37] requires 32 seconds of execution time. For Image 2 the execu-

r

‘tlon times are the same for both the cases. For Image 3 the execution time using the

- Ve
.proposed scheme is 32 seconds as compared to 2\0 seconds required by the other scheme.

While for Image 1, ‘the implementation using tly proposed data assignment scheme pro-
N ! _ .

vides a faster execution time compared to the other scheme, the result is opposite for
, " .
Image 3. However, it should be noted that Image 1 is typical of practical images

vt;hereas Image 3 is not. In pra,ct;ce two adjacent windows in an imagg would be quite

simﬂar and hence the ixecutxon time will also be very close as shown in Table 5. 3'for
4 ) 4 4 !

Images 1 and 2. Due t;o“the presence of nonse in an image, the execution tlme of adjar

~
'

cent wlndows can diﬁ'er by a large amount, ‘but this is true for some pixels in a column,

~

not for all the plxels Therefore the lmplementamon using the proposed data partition-
S T

- ing scheme is likely to provide a faster execution time. . ' ) }

. | e ,
5.6.4. Conclusion : .

" by 4.PEs. The time required for interprocessor data movement with the proposed.

3

A fast parallel implementation of the median algorithm has been presented. Since

3

the median ﬂlterini operatfon’s are data dependen%, the major problem to overcome in

3 &
o

"

ﬁ\ A N Y
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TABLE 5.3
TIME (HYPOTHETICAL) TO EXECUTE A COLUMN OF AN IMAGE

'Ima.ge : t Column Number ., ‘
' 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
1 5 § 5 5 6 68 6.6--7 7— 7-7.8 '8 _ 8 8|
2 '|/5 6 7 8 7 6.5 6 7 8 7 6 5 8..7 8
3 8 4 4- 4 '4 4 ; 8 4 4 8 4 4 8 4 41
l - -

LY
TABLE 5.4
TIME TAKEN BY PES TO PROCESS THEIR ASSIGNED SEGMENTS USING THE
PROPOSED(P) AND CONSECUTIVE C®LUMN(C) PARTIT]ONING SCHEMES.

Image | PE, PE ]| PE, PE, | -
. c.%lc Plc ®|c %
T {1 |20 26|24 2828 28|32 28] -
T ].'2 |26 24|24 26|28 28 |2 26[ .
3 120 32f{2 20 [2 16]}2 167

o
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its design and parallel implementation has been to’ minimize the variation in execution

time, for different-windows anq \a{so of the various PEs as well. A solution to this prob-

A\ .

-—

- -

le;n has been achieved by an eflicient algorithm desigr{ and an effective use of data par-

titloning. .Specifically, the data partitioning scheme has allowed the use .of the past

o ~

'\ . . results from two neighboring windows, a soft synchronization has reduced the idling
| time of PEs, ahd the comparison scheme has minimiged the data dependency of the
- median- flltering operation. In effect, the proposed implementation tends to retain the

D advantages of synchronous and asynchronous modes of execution while minimizing the
¢ °

( i disadvantages of both the methods. Although the impilementation has been described

on a specific architecture with reference to the median ﬂltefiné'algorighm, the approach

]

is general enough to be adapted for implementation of other data-dependent algorithms

{ on any parallel architecture with simultaneous neighborhood communication facility.

i >

5.7. IMPLEMENTATION OF /,THE TWO-DIMENSIONAL *DISCRETE FOURIER

]

TRANSFORM

* Different transforms are used in image processing. However, the implementation

>

scheme, in general, is the same for all, since the difference between the transforms is

only in the coeflicient matrix. ‘Computation of the two-dimensjonal discrete Fourier
‘ . , ’ ~ & -
. transform of an image, by row-column decomposition, cgnsists of two steps: computa-

. tion of a row (column)-wise one-dimensional transform followed by a column (row)-wise

| computation. In parallel processing, the PEs are loaded with certéin number of complete

! 1 columns or rows of an image. After finding the transformn by using an FFT elgorithm
.in one diréction, say column-wise, the image matrix is transposed in order to to iind the
-—-row-wise-transform —FEirst, each. PE_finds the column-wise_one-dimensional transform

-

' for the columns of pixels it holds. For transposition of‘the partially (column-wise)
¢ ‘ . . ‘
C . transformed image, the CM betWeen the PEs are used. For simpl'i'city: it is assumed

L that the number of rows in the image is also equal to /V, the number, f)f columns. The

.

PEs will be transferring (N/n)(N/n)(n-1) values d'urin;i‘the first cyclé of data transfe‘r,

(w"' l‘ .
. P . N oy .
. ¥ &> _,," - ’
. : - . - -
- , R

“ -
- - r}
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< e

(N/n)(N/n)(n-3) values in-the second cycle, (N/n)(N/n)(n~5) values in the third cs'/cle,

and so on. Assuming n to be even, there will be a total of n/2 cycles.of data transfer.
\ Al ]

As tﬁé transfers occur simultaneously, the total time for transposing the matrix is

(N/n)\(N/n)(n—l-i—n-a +n-54..+1)T = NZT/'.': where T is the time required to

;

transfer one value. A transfer is the,task of reading and writing one value. Thus, for a
giveﬁ N, the number of transfers remains independent of the number of PEs in the sysz

[ 1’

tem. After transposing, a row-wise transform results in the transform of the image.
. 3

Ezample 5.1 . -

>

- ©
s .

Mo ‘Q

+ As an example, assume that there are.4 PEs in the system and that the size of the

»

image is 4X4. Each PE is allotted one column of the image. The PEé'carry out

colum?-wise one-dimensional transform. Assume that the results are as shown in Fig.

| . \

5.7(a)..f As there are 4 PEs, there-will be 2 cycles to transpose thelimage. In-the first
. _ ) /

cycle, Leach PE sends 3 values to adjacent neighbors and receives 3 valiies. For example,

PE0 transfers the values 21 andtal to PE1 and the value 41 to PE3 and, recpives the

valueé 14 and 24 from PE3, and the value 12 from, PEI' as shown in Fig. 5.7(b). In the
. T k :
second cycle,-each PE sends one value and also receives one value. .PE0 sends the value
. Y

24 to, PEl and receives the value 13 from PE&. At the end of the second cycle, the

transposition qf tfxe image is complete as shown in Fig. 5.7(c).

¢,

The execution time for finding the two-dimensional discrete Fourier transform of a
128x128 image .on a single PE and on the 2-PE prototype architecture are 163.7 and

84.5 seéonds, respectively. This results in a parallel implementation efficiency of 96.9%.

5.8.. IMPLEMENTATION OF THE HISTOGRAM ALGORITHM

The parallel implementation oi‘, the histogram algorithm is presented as a represen-

? @

tative of image statistics ;lgorithms, since it is the most widely used algorithm ‘belpng-‘
ing to this class. It' is assumed that the number of gray levels in the image is G. All

the PEs find the histogram of their image segments simultafeously. This is followed by

. 4

!
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-

#1/2 cycles of data transfer in which n/2 and (n/2)-1'transfers take place to the right

and left néighbors, respectively, for merg.ing the partial histogra.nis. During the jth
‘cycle (] == 0,1,...,(n/2)-1), PE‘- (§ =0, 1,...,, n-1) passes the ;umber of pixels in each of
the [1+((n/2)+j+i+1) mod njth G/n levels to the left adjacent PE and the number of
pixels in each of the [14+((n/2)-j+i) mod njth G/n levels to the right adjacent PE.

v
1

When a value of a histogram level is received b}" a PE, it is added with the correspond-
)
“ing value of its partlal hlstogram Thus, for (n/2)-1 cycles, 2G/n transfers take place in
each cyele in both directlons and in the last cycle G/n transfers in one direction. only,
resultmg in a total transfers of G(n—l)/n Obviously, for large number of PEs in the
system, the number of transfers approaches the number of levels, G. This way the —
values'are propagz;ted and at the end of n/2 cycles, PE‘. will hold the merged histogram
‘values for (i+1)st_G’/n levels. Each PE may need the histogram of the whole image in
order to proceed with operations such as histogram equalization, segmentation by thres-
holding, etc. This is achieved in another n/2 cycles of data transfers that are similar to
the merging of partial histograms except that when a PE - receives at value from its
nelghbor it only stores the value without performing ‘any addition operations and then
passes it to the nelghbonng PE. In the jth cycle, PE transfers the number of pixels in

4
each of the [14+(i+j) mod n]th G/n levels to the left adjacent PE and the number of

. pixels in each of the [1+(n+i—’j) mod zJth G/n levels to the right adjacent PE.

Ezample 5.2

As an illustration, assume that there are 4 PEs in the system and number of gray—
leyels inl the image is 8. There will be .two cycles to merge the partial histograms and.
the data mov;ement is as follows: v .
Cycle I : s ‘
PE0 sends thc; number of pixels with levels 4 and 5 to PE1 a.\nd the number of pixels

with levels 8 and 7 to PE3."
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PE1 sends the number of pixels with levels 8 and 7 to !'-‘I:‘;,2 and the numberh{_&iice_l?‘ .

. with levels 0 and'1 to PE,. , ) ’
N .";:"‘.:""
PE2 sends the number of pixels with levels. 0 and 1 to PE3 and the number of pixels

with levels 2 and 3 to PE,.

L]

PE3 sends the number of pixels with levels 2 and.3 to PEO and the number of pixels

with Jevels 4 and 5 to PE2. “ ' ' .

Cycle II , &
v ¢ .

PE0 sends the number of pixels with levels 2 and 3 to PEI' '

PE1 sends the number of pixels with levels 4 and 5 to PE2.

PE,, sends the number of pixels with levels 6 dnd 7 to PE,.
PE3 sends the number of pixels with leveis 0 and 1 to PEO.
At the end l)r the'two cycl'esh,\PEo, PEI, PEZ’ 'and PE3 will have the number of pixels in
the whole image with gray levels of 0 and 1, 2 and 3, 4 and 5, and 8 and 7, respectively.
Another two cycles of data transfer are required for each PE to have the complete his-

togram of the image.

The execution time for finding the histogram of a 256x256 image on a single PE

and on the 2-PE prototype architecture areé 3.33 and 1.77 seconds, respectively. This
Y

b

¥

results in a parallel implergntati()n efliciency of 94.1%.

\

- 5.9. UiNCLUSION
There are four factors that aflect the implementation efficiency of an algorithm on

a parallel h\chnecture : (i) contention for a common resource, (ii) unequal work-load dis-

tribution am \ g the_ processors,.(iii) processors waiting for partial results and data, and
[}

.
M <

g (iv) insufficient\ concurrency in the algorithm. In this chapter, parallel processing

schemes attempting to resolve these problems on the proposed architecture }lave been

e * proposed. R
\_‘

In the proposed architecture, the major communication links bétween processors

are the' common memory modules. This common resource is contented only by two
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)

processors. This feature along with the asynchronous nature of the com‘mon memory
modules reduces the contention problem. The contention problem is even further .

reduced by splitting the common memory space into two regions during the algorithm

execution, one for writing 4nd the other for reading the neighborfxood data and partial

\ " results. ! '

As characteristiés of an image may drastically vary from region to reglon assigning
- contimmus regions to processors in a parallel computer syst.em leads to uneven work-
load distributions among processors when executing a data-dependent algorithm. To'

reduce this problem, a new data partitioning scheme for parallel processlnﬁ has been -

proposed. The underlying principle of the data partitioning scheme is the involvement

>

of each processor, as much as possible, in the processing of every region of the image.

The synchronization points have been reduced by synchronizing the processors

o after processing a set of windows instead of each. window. This reduces the idling time
N ) ’ '
of the processors, since the execution time is likely to even out over a large number of

windows. In addition, the data and partial results are transferred much earlier than

<

when theéy are required.

¢

%

‘%
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\ CmTER VI

CONCLUSION

°

6.1. SUMMARY
In this thesis, the design of some image processing algbrithms along %lth a mul-
v : » A q?/
tiprocessqr architecture for their implementations has been /pf@osed. The parallel

architecture is essentially ;a bus-oriented multiprocessor architecture with the inclusion
4

of common memories for fast interprocessor comniunication. It has been found that the

use of a dual-port common memory for interprocessor communication gives good perfor-
. . 1
mance for most image processing algorithms. Truly asynchronous dual-port memories

are one of the recent VLSI products and are simpler than implementing an interconnec- '

Y
tion network in a multiprocessor system. ISir\)ce, the low-level operations constitute a

. major part of all the different types of operations required in image processing, the

»

architecture has been optimized for low-level processing while retaining its ability to
process high-level processing as:well. The salient features of the proposed' architecture
are its slmpllcity', usage of oﬂ-the-shelr components, flexibility, efficiency, and expanda-

bility.

With modern high precision scanners and processors, it is essential that in additiop

t,c: providing a fast execution time, the number of operations in image processing algo-
rithms are infiependent"of the word-length. In the design of data-dependent parallel
algor?thms it is, also important that the. difference in execution times of different win-
dows are minimized. Another desirable feature would be the capabi'lity of storing the

input and output data in the same memory spice. The algorithms described in _this

thesis has succeeded, to a large extent, jn achieving these objectives. \

r

The main feature of the convolution algorithm is to multiply each pixel value with

"all the coeflicients And forming the output by adding the partial results produced at

different cycles rather than multiplying all the window coeflicients by the corresponding:

Q -
.
1 A
i -T7 - .
LI 1 1
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pixels in the same cycle. This scheme compounded with the use of multiplication table _
reduces the processing time. This appro'ach is also é'a.pable of making use of the pro-
perty, that large number of windows ‘used in image processing are symmetric, to Feduce ~:'
the number of addition operations required per window. Further, the numﬁer of multj- '
plications required is considerably r'eduéed for convolving an image with the same win-

dow in different orientations as in the case of edge detection. e—

Most of the median.filtering algorithms described in the literature use some pro-
;)erties that depend on the numBer‘of bits\‘used‘to represent the pixels and, therefore,
the éxecution time increases with increasing w0rd-]e'n§th. The main features of the pro-
posed median flitering algorithm are (i) its{ word-léngth independence with respect Kto—»:;, ’, "QJ

execution time and memory space, (ii) shorter execution time by using.the past results

from two neighboring winddw‘s, and (iii) its low sensitivity to noise levels in the image.

There are four strategies that have' keen applied for the parallel implementation of
the a:lgorithms: (i) minimization of the data dependency of the algorithm execution
time, (ii} an efficient data partitioning scheme, (iii) 2 red'uctlon of the number of syn- -
chronizing points, and (iv) elimination or reduction of t,he‘ idling t;lmer ét synchr‘onlz‘ing
points. The data partitioning scheme makes‘if, possible to use past ;'esults from gwo, 7
| neighboring wi"ndows for synchronous operation resulting in a réduced numb;r of opera-
tions for each new window. The idling time is reduced by x'naklng'each PE to complete
the evaluation of partial results required bygother PEs and by itsell before they are {
“actually required and then move:to carry out \c;f._her operations. In summary, the imple- \
mentation strategies tend' to eliminate the drawbacks of a synchronous execution and
pr.ovide an efliciency better than -in the cas-e' of asynchronous execution. ;flchoug‘n the
parallel implementatic;n strategies have been developed for the algorithms discussed in
this thesis, they can be adopted for implementations of other algorithms on parallel
architectures capable of providing simultaneous communication among neighboring PEs.

‘

5
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B % .
- 6.2. SCOPE FOR FUTURE INVESTIGATION ~ R

General-purpose microprocessors havé beemr used in the design of the pr;)totype
architecture to study the efficiency of the paralle] implementations of the algorithms. .

The PEs can be built vo(lth bit-slice microprocessors to provide high speed of execution

and an 'instruct,lon set that is more suitable to image processing requirements. A more

eﬂ‘ecti\”ve study of the architecture can be made with a larger number of processors, sa.y

18 or 32, The \proposed architecture uses a single l;us. For applications where bus

.. congestion becomes a problem, a study can be -made for the design of an efficient multi-

ple bus architecture. A new operating system and a new language can be developed for

the architecture.

*

. In thjs thesis, two algorithms with bit-independent execution time have beén

‘presented. As the use of high precision scanners and processors is becomingq more com-

mon, faster bit-indgpendent algorithms need to be developed. In addition, the new algo-_
rithms should be décomposa,ble, to achieve an efficient parallel implementation. The

probiems of implementing high-level algorithms on the proposed architecture can also

<

" be studied. °

- - - Y e

Looklnq into the future, new mathematical tools that are better sﬁited to image
p;ocesslpg, need to be developed. Mathematical morpholqogy [38,39], a recently intro-
duced tool, is presently under investiga;ion for its suitability to image processing. R?si-
due [40) and distributed arl't.hmeti; '[41-43) tecl;njques have™ been applied for :ra.ster |
implementation of multidimensional filters and image processing algorithms. A more
comprehensive study can be made as t.? the applicability of these techniques.to MIMD
type of image processing architectures. One way to design a parallel image procegsing
system 'is to model it similar to the human brain. Thg most significant computing
characteristics of the brain are ihe concurrent.. and widely distributed data processing,

. . !
functionak modularity, massive parallelism, and a capacity for self-organization [44].

1

i
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Current research activities“in neural networks are directed towards adogting some of

these characteristics in the design of paral?el architectures.

The qomputer'architectures, parallel programming linguages, and the design of

algorithms and’ their implementatjons are relatfsely ney and challenging areas wiich are

L3
open for extensive research. "
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APPENDIX A .
THE TWO-DIMENSIONAL CONVOLUTION ALGORITHM

This appendix presents the proposed convolution algorithm as a function called
CONVOL, coded in C language. This function may bé called l‘gog\l another function

. which incorporates the reading and, w'riting of the image. The only parameters required

4

by the function are the sizes of image and window. These values must be assigned to

the appropriate constants in the constant tleﬂr_lit,ion part of the ptogram.

-

THE VARIABLES .

ix = * MN-element input array

jout = *+ MN-element output array

pter ==, RS-element partial terms array
\ . ,
prest = . MS-element partial result array .
. , Wy
row = points to the current row "

column = pointsgo the current column

pointer = points to the location of product values corresponding to ‘a pixel

»

pd = ~ NGRS-element product table array */

— » -

/* Constant Definitions */

-

#define M 256 /# number of rows in the image =*/ ’
#define N 256 /* number of columns in the irtiage */

#define R.5 /+*number of rows in the window #/

-

#define $.5 /x nth;be;'bf columns in the window #/ .

#deﬂneq 256 /* num§er of gray levels in‘the image «/ ' /

#defiie RMS RsS - .

. ] .o o . : ".-,
L. -8s- . o e
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¢ N “

#define WGS MsS
_#fdefine SM1 S-1 ] : o
#tdefine RMIMS (R-1)+S | "
int out/M*N] ‘ -
corlz\{oL() ‘ ‘ .
{ ' ' : L
extern‘int ix[Mx*N], coef[RMS];
' .int row, column, x1, y1, sum, indqx, offset, pointer;
int pter[RMS), prest[WS], pd[NG*RMS); -
/+ In the following s‘egment, a product table, pd is set up. The products corresponding

to a gray level with each of the coefTicients is s‘tored consecutively in the pd array /-

R

for(x1 = 0; x1 < RMS; x1++) { ‘ . .
index = x1; | ' %-
sum = O; ‘ 4
for(y1l =.0; vyl < G; yl+-;-) { , '
pd|index] - sum;’ ° . IR \,‘1 ‘ ‘
index += RMS; '
sum += coef[x1}; .
) , . R
/* processlngTs: doné column tm:éﬁar; */ - , T, B ——
fof‘(colu.mn = 0,index = 0; column < N colum'n++)’.{ 4 ' ,
: ~ " < S

/# For each column the elements in the pter array are jnitialized to zero */

.

for (x1 =0; x1 < RMS; _x1++) ' T " o .
% pterfxl] =.0; ' . : . ;
. ‘for(row ==0 offset=0; row <’ M; 'row+-|£, offset +== S’ ind'gx++) { - -
- pointer = R.MS * ix[iridex];' ., - -

[
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./* updating pters */ . L
for(xl = 0; x1 < S} x1++) { o
s ’ — e ’, .

- o ff-"‘(yl = x1i'y1 < RMIMS; y1 4= 8) ,
* pter{yl] = pter(yl + S] + pd[y1 + pSinter};

[N

. pter(xl + RMIMS} = pd(x1 + RMIMS + pointer); .

. } ) e
e - gt

°

/* updating prests */ ’ . B ) .
) for(x1l == offset; x1 < offset + SM1; x1++) /
prest(x1] = ‘prest(x1 + 1] + pter[xI - offset];

.

. Drestloffset + SM1] = pter[SM1};

,out(index] = prest|offset]; , _

SIS | . L

} C
‘\n'
’
s
‘ -
7/
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‘ .+ APPENDIXB - L.

! "THE MEDIAN FILTERING ALGORITHM
‘ . N

” The proposed ~ median filtering’ algorithm is 'p'r,ésen‘ted as a _furction  called
FAST_MEDL;\N,' coded in 'C language. This i‘unction may be called from another func-

tion which incorporates the reading and writing of the image. The oculy parameters
14 - * - .
required by the function dre the siz¢s of image and window. These values must be

»
L]

’ - . A Y ) . qA -
assigned to the appropriate constants in th‘e"consmnt definitiop part of the program.
. fo 4

Function FAST_MEDIAN calls other functions named SORT, FIND_MIN, FIND_MAX,

- e v
and INSERT_DELETE. ' G L,
THE VARIABLES . ST S
ix = MxN input array | | . ‘ j n - ¥ - _‘ Y
lc:)u.t,f = (M—R+1)x(N:S-Fl) ou'éput array . . . . ~< - '
"méﬂian = the median of t.‘he p;as(-wjndow e | y; '_ - :

fmed;an = the rr;edlan of the ﬂ;s£ ‘Mndow in the brevious,rowﬂ : . L

Lt p . . .

‘. T row = points to the currer;t: i'o»‘v T o o ‘
column: = points .t.o the éurrent c'olu~mn~ a } o ) .
n(;wcbl =: the colpznn number assigped to the right,mo‘é'b coh-_i,rr':n ofea windoy ‘ — ' - s
position = position where the old medil‘gm pa.rt.ltions, the rightmost cél;m; -
. r -~ N * . .

count == ‘number of pixels.to be moved from one subset to the oth;er‘so that Subset 1 . )

has (RS+1)/2 number of elements

.
« »

pointer = points to phe cojumn of the window in whigfx the/n'ledian was found

- " ' i . - . b

.colve¢ =+ 1-dimensional ‘;'\I(R+2)-element array represenyation of an (R+%xN 2
. . ! B
Vo dimensional image segment in which sentihel values have been inserted in

the beginning and at the of each column :

. . .
.
e - N .
/’ .
. . 4 5 - .
‘ - - 88 - t - .
3 \ ¢
’ ’
. .
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." border = -1-dimensional arrdy’of<S. elements pfding the partitioning poeition of .each °

»

colurpn vector of the wihdow. Thé'elements at the bogders belong to Sub-

. ‘. - . .
’ . \ ~ i

se_t,2,, T - . i L Co
e . ‘
/* Constant Deﬁﬂit‘ioné */
3 h
' ‘\.
* #define M 256 /* number of rows in the image */ .
#deﬁrie N 256, /* nurﬁber of tolfmns in tfxe image */ l A
‘ #deﬂnb RS /* number of .rows lqﬁj.he wlndow -u/
#deﬂne S 5 /+ numper of columns in the Wmdow */ _ *
" #define RP2 (R+2) - . ' ) > ’ T
. . R Rald . : 7 .
#tdefine RM1BY?2 ((R-1)/2) e ' : -
[ f+define RP1BY2 ((R+1)/2) * o ,
- #define SMIBY2 ((S-1)/2) > * . - .
#defing SPIBY2 (S+1)/2)" 0 - . 0 e
) s ! - * % L *
 #deflfc RSPIBY2 ((R*S+1)/2) S I Lo 2L
#deﬁne RPQMULS (RPQ*S) ' / Y '
. x
Fdefine MMRMIB"Y‘;{(M-‘-RMIBYZ) . C S )
define NMSM1BYZ (N-SM1BY2) . o o
#tdefine POSITION (S*RP2+RP1BY2) " 3 )
NN .,.- . “ ] o o .
' \ f-’:- A ) 'd ' v ‘ '.” .‘. B

int colvee[N * RP2],-border(S], median, count; ‘
it polnter, row, JcutM= R + 1][N - S+ 1);.

FAST.MEDIAN() . - ' L - R
< e T . . L . S
{. o ‘ ' (J | L '

: 'e\x.t,‘er'gi ing, ix[MJ(NJ; o
- " ot comr'nn,, position, néwcbl,,quec,lian; | - v
R ) K . ] | . Y
) [ A ¢~
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ts

u

" row to be processed. */.

SQRT(\Y;

« L]

.

i

" fmedian = O;

count == Q;

for (column = 0, position = 1; column < S; column+++, position += RP2) {

[ 2

3

-90-

- .border[column] = poﬁit;ion;‘

2

v
/* initialization with terminal values, «a‘ssignment, and sorting of “co]umris in the first
o

/

£ - . for (row = RMIBY2; row < MMRMIBYZ; row++) {

while (colvec[border[cdlixmn]]”< fmedian) {

* border[column]++;

. co;mt-H-;
Yo

i
b

.
} +
.

\

»

. count —== RSPlBYz;

count—++;
FIND_MAX();

border[pointer]++;

3

else

’

 FIND_MIN();

RN

¢

position. = POSITION;

oy

» ¢

newcol = 0; '

i
'
!
i
r‘.

| s,

, &
T . %’if(count>.=q){, -

*

PR

—36ut.[rqw,-— ijY2][6] = fmedian = median;

“

4

0

¢

” .

©

3

' . /x1In the following segment the median of the first window of each row is found. x/
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e -
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) f

N ‘9 _o1- T

for (column = SP1BY?2; column < NMSMI1BY2; column++) {

/* the number of eleme’a{,s to be moved between subsets is found */

.

-
~

count = position — border(newcol] - RP2ZMULS;
» AN

i)
<

/+ the border position in the new co]uqmn is found such that the eleﬁ\ent at the border

e

is greater thaor equal to the past median and the count is, minimum */
. ‘*
' if (colvec|position] > median || (tolve¢[position] === mediah && count

L Y -

/* searching upwards for the border position #/
“ L]

while (colvec|position ~ 1] >== median) { 7j
if (colvec|position — 1] == median && count <= 0)
- break; ‘ ' o »

' . po'sition——;
. -~ /

> count~—; , .
} v 9 _
) } - o ) < °
else {J i
/* searching downwards for border position */ ’ . .
count+-;-

2

while (Colvec(++position] <== median) { )
' N I .
if (colvec|position] == median. £& count >=0) .
- .8 A . \l y :

break:

count+-+; ot

s
. - ©

;- :

%
gt
L]

.

%



Yy .
bordér[név@\= p&sition; N

_if (count 5 0 || (count === 0 && pointer == newcol)) { ,

A\l

/* Border adjustment by moving the elements from Subset I to Subset 2 sirte the past |

. Mmedian is the largest number in Subset,1, the first one moved to Subset 2 is the p

median */
oT— !

if (colvec[--border[pointer]] == median)
else {

N
border|[pointer|++;

count-++-;

}
FIND_MAX(); ' ' .
order|pointer]++; '
} . | S Q

else L

A Y . . )

’L* Border adjustment by moving the e]emen\ts from Sub§"et 2 to Subset 1 */
FIND_'_MIN(); ~ a ¢ "

3

jout[row - RM1BY?2][column - SM1BY2] = median;
position = border[newcol+-] + RP2;
if (newcol == ) s ) , - .

newcol = 0O;
—~ ‘1 ' . > ° -
‘ - A *

’ }.o.
if (row <°WRMleg_—~l)

INSERT_DELETE(); ’ s

*

\ | - - Q,,./‘

3
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* /* In this function, the oterminal elements of each column are assigned values, The’

» -
value at one end is smaller than the smallest pixel value in the image and at the other

end the value is larger than the largest pixel‘value—in the {mage. The pixels in the
columns of the windows corresponding to the pixels in the (R + 1}/2th row hi the Imaée
are stored in the.colvec array and sorted. =/ /
SORT(). ;
v J | -

P ]

int i, i1, i2, index, temp; . ’ v

/* initialize the terminal values of each column %/ .

'

¢

for(i=0',i1==S+l;i<N*RP2;i+=RP2,i1+=RP2){

colvec(i] = ( - 2); ( - v
colveclil} == 800; . . '
- : g e @
bos & s
. « I \
/* insert and sort the pixels in the colvec array x/ ' ) \)\
- N Ly

_ for (i = ¢ index = 1; 1 < l\f;_i++; index += RP2) { .

< P

colveé[irxd.ex]-= ix[o)li;, < .
for (il = index + 1;11 < index + S; i1++) { .

v temp = ix[il'-aindex][i];. c\

i2 = il"‘ 1; 1 3 [

- while (temp < colvec[i.zl) . .
ay her . §

colvecliz + 1] = colvec[i2——];

colvec[+-+i2] = temp; -

I
. N
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/% In this function, count number of smallest elements is moveqd from from Subset 2 to

Subset 1

The variables:

I s

median2 =the second smallest element along the border in Subset 2

pointder2 =points to the column of median2 */
« N
P

1

IND_MIN() ’ ,

¥
{

-

hY
int median2, pointer2, iQ’ temp;
. N ' N

N
-

while (count < 0) { ®

/* find the two smallest elments in Subset 2 along the border

v
if (colvec|border[0]] < colvec|border(1]]) {
p“binter = Q; d
pointer2 = 1I; T - .
} o - % ' L. R
else { - . ’
t _ /
pointer =1; . .
poinger2 = 0; ? .
P ' -
b v
. \ ’ R
median = colvec[border|pointer)); . :
‘median2 = colvec|border|pointer2}};
for (i3 = 2; 13 < S; 13++) { .
- : & @
? . ¢



bw =

temp == clmec[border{‘is]];
if (temp < m'edianQ’) {
. if (temp < median)‘{
pointer2 = pointer;
median2 = median;

°

+ median = temp;
) “pointer = i3; ,
8
else {
median2 = temp;

pointer2 = {3;

N

if (+-+count == 0) {~
_ . border|pointer}++;
return;

Y _ . a

1

. /* find the second, third, etc., smallest element in the colymn pSinted by pointer until

Ql no more elements are left or the count is quél to zero. */

while (colvec|+--border(pointer]] €= median2) {

/ .
Cif (++count ==0) { ™

median = colvec{bordeér|pointer]-+-];
. : A ’
. R return;,

%

o
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s : [

-

/% the second smallest element along the border is the next smallest in Subset 2 */

median = median2;

pointer = pointer2;

)

border|pointer}+-+;

count++;
L
—_— } ~
' ) ﬂ‘e i R 9
~' \ ) . N
- Vs ’ N \‘ . Al
/+ In this function, which is similar to function FIND_MIN, count number of largest
elements in Subset 1 are found and moved to Subset 2 */ -
\ : ) v
FIND_MAX() ?
L} '
v { .
-, /' ., o® )
e ° int median2, pointer2, i3, temp;
. A
while (count > 0f {
L T "
it (colvec[border{0] - 1] > colveciborder[l] -1){
" pointer = 0; . .
pointer2 = 1; . !
. . )
else { ; 'Y ’
pointer = 1; ' C.
2 " pointer2 = 0;_
1) ‘
. o . .
’ median == colvec[border|pointer] ~ 1]; . o
7 . median2 = colvec[borQer[pointeré] -X); -
: for(B=B<sB+O{ , L
. . Nt \ ; ~ : -
» = '
:’ A -
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temp = colvec[oorder(i3) ~ 1, © A

if (temp+*> median2) {
if (temp > median) {
P}

poin ter2 = pointer;

T o
* median2 = median;
median = temp;
2
: 4 : ' pointer = i3;
}
else {
median2 = temp; ®
pointer2 = i3;
) 4
. ﬁ. » . ‘f
- } a _
. 5 ]
if (——oount == 0) {
border(pointer]-—; e
v . * ' . S
' , " return;
! to N ' . I - ’ - ' .
while (colvec(—-border(pointer] — 1] >= median2) {
\ .  if (-—count == 0) { ‘
- R L
) median = colveg|-—border(pointer}];
. R .
. return; - S ' .
. "} . a I ' ‘\ . ' < ] . .
SR \ r median = medjan2; _ . .
. . Iy
- pointer = pointer2; - e
e - 7 . \ . . o




Mo

v ' ‘dé : N i . .
b¢#der|pointer]—;
i

count—; T . . . .

, |
} / . .
1

. . ) . ’
/* In this function, the columns of the windows corresponding to the the next row to be
. , \ L} ’ I\
processed are found by updating the columns corresponding to the present row of the

-
. v

image. ) ° )

The va.ria.bles; P ‘ . /

- e
,'(d

delete. = the element to be deleted in a column
delpos = the position occupied by, the element delete

insert = the element to be inserted .

. e [ A0 . ! . .
inspos = the position where the element insert is to be inserted */ ‘ ,

’ . . . \ N
L3

. il
‘£
i . s B
e

INSERT_DELETE()

. int éqlumn, delpos, inspos, insert, delete;

o

. . L4 ’ ‘ .
- for (column = 0, delpos = RP1BY2; column < N; column++, delpos += RP2) {
. . » t;‘ -,

del'et;e = ix[row - RM1BY2}[cSlumn};, - B : - -

. ". insert == Px[row:-f- RP1BY2|(column); o . ,' \ ‘ b

Af (delete !== insert) { ’ , o . _l

if (colvec(delpos] > delete) ’ N \
hd ‘ e ’ ! * - ‘ . A ) : K

[ seai‘chlng up.yqards for deleting pasition:s/ k t oy ’ s }

while (éolvec[—-Ldelpos] t= ‘d'elete) ’ -



K S else
-

/* searching downwards for deleting position * / .

;- while (colvec|delpos] 1= delete)‘

delpos++;

inspos == delpos;

»

k4

if (colvec|+-+inspos] < insert) {

. /: searching downwards for inserting position */

“do {

N

A

- colvec|inspos — 1] = colvec|inspos]
. } while (colvec[++inspos] < insert);

colvec[-—~inspos] = insert;

. .

- ’ w
- - } ‘ Lo
. .

P

. ) else {
’ -
. /#* searching upwards for inserting position */
. . ’ ] o \ - -
- . .
- inspos—;

while (colvec[~-inspos] > insert)

celvec(inspos +‘i]\= colvec{inspos|;

-

colvec[+inspos] = insert;

. . .
} Y - , .
,
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