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: ’ ABSTRACT \\\

Ground-state Baryons in a consistent Quark model
_ with the
Coulomb plus linear potential
e )

' . Bao N. Tran

A

‘The method of using- a harmonic oscillator basis to
examine a specifié type. of poéential and the quadratic
approxim;tion method are Jevaluated. Masses 6f the
groun&-state baryons afe calculated usiqg.the above methods
and the hypothesis that the potential between quarks is the
sum of a Coulomb and a linear potential. Mixings caused by
hyperfine interacfions and the anharmonic potential are also

taken ipto account. The results are in good agreement with

. experiment.
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' INTRODUCTION

.

At one time the world seemed to consist of very few

elementary particles. ‘The proton, the neutron, the

electron,the neutrino, and the photon. However,thid aspect

turned out to be deceptiwve. There d@{e several indications
that the situation is more involved.
4

The observed interaétion between protons ana neutrons-
the nuclear force-did not appear to be as simple and

fundamental as the electromagnetic forces between charges.

Being repulsive at short range and attractive at! longer

range " and being dependent on, the spin and the symmetry of
the quantum ,state of the partners ,it resembles the chemical
force between the atoms. The chemical force derives from

electric forces between the constituents of the atoms. The

analogy with the cheﬁical force suggests the possibility

that the nuclear force also 1s a relatively complicated
manifestation of some more fundamental forces acting within

the nucleéon and connected with its internal structure.

The idea of the internal structure of the nucleon



"elementary"particle:the Quark.

& ..

A\ / \
became more evident wheh Fermi 533 his collaborators found a
short-lived efcited state of the proton ana the néutron,the

so-called 4 par¥icle. The nucleon appears to be excitable

into different quaqtum states. It therefore could no longer

be considered as

structure. Indeed there is good evidence that the nucleons

elementary;it has to have some internal

and mesons are composite particlessmade of a new kind of

I~

!

The }dea .0of the quark was' 1introduced 'in‘ 1964
independently by Murray Gell-Mann and George Zweig1in an
effort to summarize and systematize the great proliferation
of nuclear particles that were being produced by
accelerators on the high-energy frontier of the 1950s.
Regularitie€s were perceived in fhe masses éf these particles
as well as in the characteristics of their creation,their
interaction,and 'their decays. Gell-Mann and 2Zweig-showed
that these regularities could be accounted for in. terms of
the simple motions and interactions of just three.different
kinds of fractionally chargedl spin-1/2 quarks. The,
discoveries of new particles led to the introduction of new
quarks to describe them.” Until now we have a family of six
different kinds of gquark which can givé"&s/a fé{rly clear

look intoé the changing picture of high energy physics. '

)
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: Chapter-Is QUARK -

1.1 The internal quantum numbers of quarks

High energy scattering expetiments reveal a richness in
the spectrum of the strongly interacting particles. This
gives rige‘to a new branch of spectroscopy known as Hadron
spectroscopy. The hadron spectroscopy shows a strikiné
similarity to the spectra in atomic physics. The hadrons
with half-integer spin are usually \called baryons,while
those with integer spin are called mesons. Baryons consist
of three qua’rks and mesons contain one quark and one
antiquark. ?hisrimplies that guarks must be fermions with
spin 1/2. An odd number of them give half integer spin,an
even number give integral spin. To every quark there 1is,of

course,an anti-quark.?*

Because three guarks make up a baryon,one can ascribe a

baryon number B=1/3 to a quark;then we get B=l for baryons
and B=0 for mesons.
. It is Aécessary to ascribe to quark 1isospin and all
addititive quantum numbers such as strangeness s,charm
c,beauty b,t quantum number and any similar new quantum
numbers of hadrons which may still be discovered. Until now
we have six types (or flavérs) of quarks: |

a) Two types of ordinary quarks  called u§ and down

o e . ————



sfmboliz;d by letters u an? d. |
_ b) Strange quarks referred to with letterhéfq

c) Charm quarks referred to with letter c. .

d) Bottom (or beauty) and top quarks called b-quarks

and t-quarks. Quarks and their quamtum numbers are

o
described in table 1.

>

a

In order to obtain the isospin  of hadrons, one
. considers Ehe. two types u,d of the ordinary gquarks as part
of an‘isospin doublet ( I=1/2 );u refers to the spin up with
13 =+1/2,d to the spin down with I3=-l/2. The other,}lavors
ate assumed to be isospin singlets,I=0. This means that all
isospin properties .must come from the ordinary quark types
u,d conta;ned in hadrons.s-quark,c—-quark,b-quark,t-quark ase
the carriers of s,c,b,t quantum numbers respectively.

The generalized Gell-Mann-Nishijima - relation relates

the electric charge to these quantum numbers:
Q/& = I+ (Bts+ct+b+t)/2 : (1.1)
One can define the 'hypercharge by: °

s+B-(c-b+t)/3 (1.2)

<5
i

Insert in (l1.1) we arrive at

-

Q/e = Ia+Y/2+2c/3+b/3+2t/3 (1.3)




-t b

=s5=b=t=0.,

+1/2,-1/2,c

For up and down quarks 84:>3,I3

then from (1.1l) we get

Table 1
Quantum numbersof the six quarks and the six antiquarks
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The charges of s-,c-,b-,t-quarksare also determined by

A : .
7}.1[ with I3 =p,B=l/3 and c=l,s=-%,b=—l,t=b respectivély.

This way we arrive at the guantum numb‘s given in table 1.

»
.

It is surprising to encounter fractional charges.’But

any combination of three quarks or of quarks and antiquarks

4

with those fractional charges yield hadrons having values of
. ') O\ .

electric charge. !

1.2 Color ' '

“The low-lying baryon staEes are symmetric with respect

to the interchange of quark flavor and spin indices.

»

Consider,for example ,the yz++ and - particles. For J3=3/2
sﬁate,it isééasily seeg‘ that the spin- wave function is
symmetric;, and the flavors of three quarks are the same.

Thus the combined épin-flavor‘wave function
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are obviously symmetric. Furthermore, s++ and (- are . the
lowest mass sgétes: and consequently correspond to the
three~-quark ground state which has total angular momentum
L=0 and symmetric. This means the total spin,flavor and
space wave functioq_is also symmetric ‘with respect to the
‘interchange of ghé guarks. ;'But if quarks are spin-1/2
objects they must ogey Fermi-Dirac ét;tistics and their
%otal wave function must be antisymmetric. ,One way out of
this , dilemma is the in;réduption of new quantum numbers.

Todayfthe hidden quantum numbérs wirich distinguisb thé
thfee quark multiplets are uspally called the -tﬁree
colors:red,blue and gféen. Each q@ark can‘take on any vélue
of these three. The baryons wave functioﬂ are required to

be antisymmetric in calor and then the Pauli principle is

saved. w : N °

The three coiors of quarks form the color group SU(3).

w

For - the system of three quarks,one can : construct a

'

singlet,two. octets and a decuplet.

39363=16806886 10

\ .
Out of gquark and anti-quark.we have

>

€



colops Baryons with three quafks with different colors and
medons with” color-anticolor pairs. This leads to the
//:infinement post@late which states:A11 hadrons and all
physiéél observables (current,egergy-ﬁomentum tensor etc.)
are éolor singlets. Thislis also an explanation why free
~qua}ks have never been observed experimentally.

Another strong support for the rexistence of color
quantum numbers is the measurement of R-the 'ratio of the
. cross section for an electron-positron pair to annihilate to

hadrons,summed over all cdnfigurations,to thee cross section
to annihilate to a pair of muons. The former process is
. described by the diagram shown in figure 1.1. The
annihilation of the electron-positron system yields a

virtual photon,which in turn creat®s a quark-antiquark pair.

This process is quite analogous 'to electron -

hadrons

S ‘ . A
.~ " Figure 1,1 Electron-positron annihilate to hadrons
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Figure 1.2 Electron-positron annihilate into a

muon pair

| positron annihilation into a muon pair.(Figure 1.2). Mudns

o

like electrons are pointlike members of the other family of
Fermions known as Léptons,that is,particles that do not
experience the strong nuclear forces at all. The muons are

charged and,of course,interact through the well-tested and’

. well-understood electromagnetic forces. If the quarks are

pointlike their contribution should exhibit the same energy

‘dependence as found in pair production of pointlike muons

and the ratio of cross sections should measure  the sum of
the squares of the quark charges as well as approximately

enerqgy independent. So we have

k)

G (e + e - —> hadrons)

- 2 )
R = ‘ —zc/e2 . (1.4)
qQ's

Sle + e ~ ~—> Wu)
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Figure 1.3 shows the measured ratio,in which,there are

three regions where R is appioximately constant. Below the

-~

charm threshhold ,i.é below E 3.5 Gev only the first three

quark flavorsiu,d and s, appear. Thus we have

o
> ! v .
8E¢ S ¥ oYry - /
oo |
I ,
6t
44 '
|I —_— sl~c urd+s+ceb
2 LY
urd+s _No color __
0 —————— - - —— s v - [ > o w ovhi w wn wm wn wnhi o e on wn add wn » w w wo d - -
0 10 20 30 40

Annihilation energy (Gev)

Figure 1.3_ Experimental measurement of R.

X

x
i

2 2 2 .
n((Q,/e) + (Qu/e) + (Qg/e) ]

nl(2/3)2+ (-1/3)%+ (-1/38 = 20/3 (1.5)

Where n is the nﬁmber of colors. The experimental
[}
value R ~ 2- 2.5 for energy between 2 and 3.8 Gev is in good .
agreement with eq.q{1.5) for three colors (n=3).

»

- 10 - \




6thefwise,without colors,there would be a discrepancy of a
factor of three. This result thus represents a triumph for
the hypothesis of color triplets of quarks.

Another place where colors can be seen indirectly is

any transition of a single meson to a nonhadronic

state.(Figure 1.4). One examplé is the two-phpton decay of

neutral mesons. In general,the rate of decay depends on the
relative momentum dependence of the gqq wave function. For

the pion we have:

: ) 2 2
) m «\ /n 2 .
(< = 2F ) = (—)(;)= 7.87(n/3) eV (1.6)

32P \7 ;

#here F = 0.96 m is the pion decay constant and .n is
the number of colors. For n=3,(1.6) 1is in excellent

agreement with experimental value.
AN

P+ —= 2V ) =7.95+ .55 eV _(1.7)

]
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Fig 1.4 Quark diagram .for

meson to a nonhadronic state
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CHAPTER II

Forces between gquarks or quark-antiquark

2.1 Introduction

The photons,which are vector quanta of QED,are
themselves electricaily neutral. This is characteristic, of
an abelian gauge theory. A non-abelian gauge theéry
represents the generalization‘of QED to the theory.of strong
interactions in which a triplet of colored quarks interact
through an octet of colored gluons. Gluons which are vector
quanta of this theory known &s quantum chromodynamics,or
QCD:themselves carry the charge. The color quantum number
plays the same role in QCD as does the electric charge in

2
QED. The Lagrangian density for QCD is:

>

1 . . ' g - .
Zé; - - _ gl ipv - . M 2o M
aco T T T EL T T 0% A Tl Ry

- My Spdua)d (2.1)
Where a Yablep bp -
o bl ik , : . “
:}w = BP’A\) buAP + gf AMAka ’ R
d,, 3re the quark fields with color indices X ={L12ﬁ3} v

and flavor a

A' are an octet of vector mesons (gluons)

m. is the mass of quark a

° S - 13 -




g is the bare coupling
i ,
.N/2 are the Gell-Mann generators of SU(3) which

satisfy the following commutation relations

4

ek hk/z

TN
[AN/2, N/2)

N7z, a2 = sl e ‘é"jk)\l‘/z

¥

-~

k

Where f1“<qdij are structure constants of SU(3).

The major difference between QED and QCD is that
because of QCD's non-abelian nature gluons also couple to
themselves. As first pointed oQt by t'Hooftsand later shown
by Gross and Wilczek and by Politzer4this leads to the
property of "ésymptotic fredom". That is,at large momentum

‘\ transfgr ogl;t shor; distance the coupling becomes small and
‘quarks inside hadrons behave as weakly bound particles. On

] 5
the other hand,at large distances lattice gauge theory and

!

: 6
the string model lead one to expect a linear confining

potential
\ $

\

\

Pl

\ ) V'conf (r) = ar

A e s b e o = T e = e

\ -
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From these properties, one can assume that the
potential between quarks or quark and antiquark ' is | a
combination of a Coulomb - ané a l~ine§ar potential. This
chapter is devoted to calculate the energy spect‘ra for a
potential which 1is a combination of a Coulomb and a linear

potential by using harmonic oscillator wave functions. For

simplicity,we solve the vne-particle problem. Which |

includes two-particle systems such as mesons,where the mass

m will play the role of a reduced mass.

]

2.2 General problem

The method employs the Hamiltonian of the form

!

H=m + pP¥2m + v, (2.2)

where V is sum of coulomb and linear

.V(r) = -a/r + br L (2.3)

where. a,b are constants. Following Gromes and

Stamatescu7we rewrite the potential

- 1% -

¢ e 4 owen

Yo



o

A

V(r) = (1/2)Ke2 + [V(r) - (1/2)Kr2)]

= Vb(r) + U(r) , (2.4)

Then the Hamiltonian)becomes

H=m+p2/2m+ 1/2Ke2 + U(r)

7/
The contribution of the harmomic-oscillator potential

to the energy of each state is given by

—
. Eo= (n + 3/2)w
2 - 4
Where w =K/m - - —

The anharmonic part of the potential U(r) is treated as
perturbation of the harmonic-oscillator potential. Finally

the energy of ‘each state is given by-

E =m#+(n + 3/2)w + <U(r) > - (2.5)

The ha;monic—oscillator wave functions for n=0 ‘- to n=6
; . i . T

' L -6 - Ty

¢
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/
are given as follows: 1 ‘
3
p/?. a2 ~
200 = T£ exp(-1/2 B ) (2.6)
5 .
Z
y) ,32
b= /) i—— ¢ exp(-1/28%1)Y  (8,4) (2.7)
lim ”f‘ 1m
3
A 2 2 2 2
=(2/3)% '83 (3/2 —,5': ) exp(-1/2pc ) (2.8)
200 174 ’
. !
L A%
X P ’ 22
¥ =(16/15)2 1 2 exp(-1/2 81 ) Y_ (0,$) (2.9)
22m K 2m
5
4 F] :
7 =(16/15)2 '6, r (5/2 - ‘Bzrz)'exp(—l/z Perz) Y (e79)
3lm 12 im .
- (2.10)
L 87 4 22
il =(32/105)2 ——-r exp(—l/zpr ) Y (9,P)
33m 14 ; 3m
. (2.11)
4 3i N )
z 22 4 2.
=(2/15)3—(15/4 - 5@ + &Y exp(-1/2 £1%)
qI40‘0 ; ‘ 4 P P ‘BZ
( , (2.12)
0 3 . - 4 ﬁ\%
' ‘ . ‘ - 2 22 2
- ( .. =(32/105)2 t(7/2 - agr ) exp(-1/28Br ) Y. (0,9)
. . N W42§n H% ‘ P Pz 2m ?
| a v \ ' (2.13)
. 1
uv’ -4 ‘E . .
y =(64/945)i-—-—f9. r‘eXP(-l/Z,Bzrz) T (8.9)
; 44m nq -4m
¥ L C >
(2.14)

Y e . by
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S1lm 1114 ‘
Y (°r¢) \\ ¢ (2.15)
1m &
-9
1 B2 ' ‘ 22
Y =(64/945)%F ‘B, (9/2 - g'r®) rlexp(-1/2p'c%)
S3m 1174
T (9.¢) (2.16)
im
‘2.3 -
4
¥  =(128/10395)% p' rsexp(-l/Zﬁzrz) Y (8,d)
S5m 1a Sm
(2.17)
=(35/15)% p; (1 - 2p2r2+ 12/15 p," r?- 8/105 péc‘)
600 114 .
. exp(-1/2 g°r?) (2.18)
2
. ] 2
0] = (42/5)% 15‘ (L - 4/7p2r2,+4/63pdr4) ra
62m_ 113
exp(-l/ngrz)Y (e,9) {2.19)
2m
_121 L
A
=(128/10395)f—'i- (11/2 - pzra) r4exp(-l/2'62r2)
64m )
o (e (2.20)
-im
‘s
. ‘ 1 g2 € 2.2
¥ - v=(256/135135)2"‘1— r exp(-l/ZFt ) Y (e,9)
. 66m : 113 6m
(2.21)
‘\
Where . =
“ o4

L)

B

Km

- 18 -

2
¢
-(16/105)% '5,, (35/4 -7p2:@+ Br)r exp(—l/2F2r2)
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The energies are calculated for m=0.5 and is determined

by the variational method. The results shown in tables

2.1-2.4. are compared with correct values produced by an
17 ' .

exact method. The result 1is fairly good when the linear

&

part becomes larger.
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o0

" Energy levels of U(r) = r_
+~q-—----7--~--+--—--——-~h-—-~+ ------------- o —— f -------- ;_
State Correct value Calculéted } differgnce
¢ )
1S 2.8381 2.8448 0.2
1p 3.8613f 3.8678 0.2
28 4.5879 4.5753 0.3
1D 4.7482 4.7544 0.1
T 2P 5.3845 5.3798 0.1+
1F 5.5569
3s 6.0206 5.9979 0’ 4
2D £.1297 -;.1297 o;o '
1G 6.3001
3P 6.7076 6.6928 0.2
D’ 7..3689 7.3602 " 0.1
4s 7.2867 7.2565 . 0.4
4P 7.9057 7.8834 - 0.3
4D b 8.5097 8.4929 0.2
o e e e o o e e e o o e e e e o e Frm e, —————————— e et ot e o <=+
‘ . - -
) - A
- 20 - -

Table 2.1
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.

Energy levels of U{r) =
ot S Fomm———————————— e —— ———— +
State ‘Correct value Calchlqted % difference
"Rl S 46.902 47.164 0.6
1P 70.516 70.698 0.3
2§ 85.839 85.558 0.3
1 ' ‘
1D 90.215 90.372 0.2
[ oY .
2p 103.81 103.73 0.08
1F A, 107.98
' 3 117.23 117.70 0.4
2D o, 120.25 120.27 0.0
.16 124.20 .
. 3P 132.59 132.28 0.2
3D - ©147.12 146.95 0.1,
48 144.82 144.11 0.5
. 4P 158.59 158.10 0.3
4D 171.83 171.47 0.2
P ——————— +——-—~--L ------ e ———————— e e e +
)
! TR Y ¥
) Aw) '
- 21 - ’ .
) .

- Table 2,2 E ’
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Table 2.3 :
Energy levels of U(r) = -1/r +r
e bmmm e o +;—;---7‘- —————— +
State Correct wvalue Calculated k! differénbe
e | e | e .
18 1.8979 1.9506 2.8
1P 3.3256 3.3439 0.6 ‘
25 3.9751 '3.9674 0.2 : ’
1D 14.3506 4.3625 03 ‘
2P . 4.9619 . 4.9640 0.04
1F: X ©5.2362 |
18 5,5329 " 5.5050 0.5 | .
2D 5:7930 15,7985 6.1 !
1G ” 6.0251 . |
P 6.3476 6.3350 | 10.2‘
] 7.0716 7.0663 0.1
48 6.8701 6.8292 0.6
4P 7.5869 7.5636 0.3
4D ‘?’ 8.2406 8.2253 0.2
b —————— S o ————————— b ——— +
k - 22 - : :
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' Table 2.4
Energy levels of U(r).= -1/r + 0.0lr

1

ot —————— T T —— e R +
- State Correct value| Calculated % difference
1s 0.27897 0.31686 13.6
1p 0.51740 0.52381 1.2
25 0.53472 | ° 0.53651 . 0.3
10 0.60247 0.60500 0.4
2P 0.62571 0.62912, 0.5
: 1F 0.66127
35 0.64191 _6.63921 0.4 _ .
‘2D | 0.68358 /0. 68580 0.3 /ff*
1G 0.70722 .
3P 0.70487 0.70595 02
’ 3D 0.75135 0.75248 . 0.2
o 4s 0.72029 0.71575 0.60
ap 0.77129 0.77092 0.05
o - 0.81134 0.81151 0.0
tmm————— —————— e ——————— o ————— d— ————— e -
,.
Q iy '
| .
’ - 23 - :
‘ 4\
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CHAPTER III
Quadratic approximation method in

a consistent gquark model

>

3.1 Introduction -

In theoretical calculations of the masses of mesons and
baryons, the quadratic approximation method has been widely
used in various papers. The purpose of this chapter 1is to
evaluate this methbd. Threé terms a(t), b(t), c({t) are
"introduced in (3.3). These terms are determined by using

-

some values of low-level energies and then will be used to

.

calculate the energies of higher levels. The calculation is

expanded ‘to five terms a(t), b(t), c(t), d(t), e(t) in

(3.4). In (3.5),4(t) gnd e{t) are calculated fro;n\k ait),
b(t), c(t)hby using the Gaussian quadrature formula instead
of employing more values 6f energies as in (3.4). The
values calculated are compared with those from'chapter II.
3.2 Meson Hamiltonian ‘

We will restrict ourselves to the case of mesons
(two-body system) with m,= m,= m. The model employs the

2
‘hamiltonian of the form’

2 v
= + +
H 2m + P/4m + (V thp H (3.1)

SO)-

-M
>

...24_

-
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Where m is the mads of the quark;for inst;nce,the c

/
quark $>\W system and the b quark for Y system,and also.
‘ !

(84

1|3(5.7)(5,T)

s 8x 3 —_—
—('s';.‘sz)a(r) + - |———=— - 55, (3.2a) .

Hhyp =
2m2 3 ? r2
50 = Hsong) 7 Hso(ho) - ( (3.2b)
- 3
Heo (1g) ( &g /D) T3 (3.2¢)
2 . N —’\
Heo(ho) - = —(k/m° ) L.3 . (3.2d)

- el edm

— : s
Where r, P, L, S are the interquark distance, momentum,

; : - X
angular momentum and spin respectively, S, .\

(—.ﬂu)‘are the
spin and color vectors )of quérk (antiquark), &, is the

quark-gluon fine strucdture constant. Finally

vV = 1/2 Kr2+ U(r) i . (3.2e)

Where U(r) is some&unknown potential which ihcorporate5\7~f
attractive potential at short range (a coulomb-type piece
derived from QCD) and deviations from the

harmonic-oscillator inferaction at large distances.

r
S

%&.ﬂ

*In application to the baryons,the spin-orbit force is
& .

=~ 25 = o




neglected from the beginning. This 1is based "on the
calculation by Isgur and Karl8 which indicates "that
spin-orbit forces,if present at all,are ét a level much
;educed over naive expectation", Isgur and Karl8 suggest
that this result is due in part to a cancellatioﬁ between
that part of the spin-orbit interaction arising from
one-gluon exchange (3.2c) and that arising from the harmonic
‘potential (3.2d). This suggestion is considered 1in detail
by Schnitzegp He suggests also that the spin-orbit term is
negligible for baryons, weakly attractive fér ordinary
mesons, and strongly attractive for charmonium.

s Y |

3.3 Quadratic approximation calculation of energy up to
D-state
The contribution of harmonic-oscillator potential to

f
the energy of the state is given by

Eg= (n + 3/2)w (3.3)

where

w? = ak/m ; BNER)

Calculation of the anharmonic part of the potential has
: . 9 . —_
been discussed by Kalman,Hall and Misra . Following this

.

work we set

- 26 -
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3 .
Y - L L - I 2 2 |
a(t) = ——g— dr U(r) exp(-tp r ) {3.5a)
T2 R v
5 % . '
t 3 2, 2 2
b({t) = f—;—ﬁ—/d r U(ryr éxp(—tp T ) {3.5b)
T
- . (
t2 3 .
c(t) = J—B—s—/ dr U(r)r‘lexp(-tpz rz) {3.5¢)
TR .
and we construct the quadratic appréx}mation
. . 2 .
a(t) = A + Bt + Ct (3..66)
\
Then from (3.5a),(3.5b),(3.5c) we have
) - . ,
b(t) = (3A + Bt -Ct°)/2 (3.6b)
c(t) = (15A + 3Bt -Ct?)/4 ! (3.6¢)
- /\/“
— e [
The value of A, B, C are obtained from a, b.and ¢ by ™~ /‘
- 27 -
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£

setting t=1 in éds(3.§). Then from (2.6),(2.7),(2.8),(2.9)
we get - the total energy excluding mixing,hyperfine and

spin~orbit effécts as

2m + 3/2w + a(t) i C(3.7)

, E (P) = 2m + 5/2w + 2/3b(t) . (3.8)

Co
. B (8')=2m + 7/2w + 3/2a(t) -2b(t) +2/3c(t).

(3.9)

- E (D) = 2m + 7/2w + 4/15¢(t) . (3.10)

In addition to mixing caused. by the hyperfine

interaction, the anharmonic potential U itself has an off
. Suey, * ) ' B .
diagonal contribution ‘ o '

U = <sjuls'> = <s'|ujs> ‘7

A i/f2 g .
=(3/2) a(t) = (2/3) b(t) : (3.11)

(
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The calculation is carried by ‘uéing values of E (S),
E (P) and E (S') of two systems. From theée six * values, - a

system of six equations is constfucted toL finﬁ m,t,w

+A,B,C. We set t=1 for one system apd m' is détermined‘by

“~

4

‘The results are then used to calculate E (D) and E' (D)

for two syﬁtems. The result shown in tables 3.1 to 3 4 o o

f . . © §
v <

3.4 Quartic approximation calculation of ‘energy up +to
3 . > @ 4 '

(’ 19
G~state
Apart from (3 5a),(3.5b) and (3. Sc) we set
99/2 .
_ Bt 3 L 2.2, ° .
d(t) = d%r U(r)r exp(-tg°r%) K (3.13a)
13/2 ’ ) ‘
My . n
gt 3 ‘8 22 K
e(t) = y d r U(r)r exp(~tg°®) « (3.13b)
2
T

“
Y . LA

o

© and constructing quartic appfoximation about t=1 .

°

C

pp— D e et b, o e d e 4
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A
. Y, - 3 4 3
= . ¢ a(t) = A +Bt + Ct + Dt + Et : (3.14)
\;oﬂ-—;ﬁz ‘ v ‘( e g : . - ‘ -
. From (3.5a),(3.5b),(3.5c),(3.13a),(3.13b) we get ..
% ; R
; 2. 3 4 , : ‘ ’
b(t) = (3A +Bt -Ct -3Dt . -5Et )/2 : (3.15)
J“ . ) “, e 2 3 4 ¥ )
. c(t) = (15A + 3Bt - Ct + 3Dt + 15Et )/4 . {3.16)
. 2 3 4 :
d(t) = (lOSA‘+158t -3Ct + 3Dt - 15Et )/8 (3.17)
2 3 4
e(t) = (945A + 105Bt -15Ct +9Dt - 1SEt )/16 . {3.18)
L}
\ Besides (3.7) to (3.10), the total enerqy excluding
ﬁixing,hygs:fipe and spin-orbit effect is then ]
N
\
I , E (P') = 2m + 9/2w + 5/3b(t) - 4/3c(t) + 4/15d(t)

(3.19)




f
E (F) = 2m +:9/2w + 8/105d(t) _ . - . ' (3.20)
W E (S''y= 2m + 11/2wg¢ 15/8a(t) - Sb(t) + 13/3c(t)
Co —a/3d(t) + 2/15e(t) . (3.21)
. "E (D') = 2m * 11/2w + l4/15c(t) — 8/15d(t) * 8/105e(t) - .-
(3.22)
" E (G).= 2m + 11/2w + 16/945&(t) Lt (3.23)
"and the mixings by the anharmonic potential U itself
are given by: - : .
. <sluls''> = <s''|uls> B o
/2 ” % "2
= (15/8) a(t) = (10/3) b(t) + (2/15) c(t) .. . |
;, : (3.24),
i | :
° : - 31. - ,




&

o Wﬂ‘
<GS'IU|'S“Z‘ = <S“|UIS'> L ) “ L, .
- ‘ " __;;?Aj;,iifﬂzh
<= (45/16) a(t) =~ (45/4) b(t)
( 1 R 5 T
©+ {169/45) c{t) - (4/45) d(t)- o (3.25)
. /) . B . 4 ‘;,“‘,"4:'
<plulp'> = <P |UlP> AT
S u:"/z ’ 04/2'“ ) S METERERS
= (10/9) b{t) - (8/45) c(;) . © {3.26)
ZDlQlD'; =“<D'-|U]b‘§- ’ T o
u:u "‘L 4/; :’ . R ;‘/a .
) =“='(1l§/450) c(t) = (32/1575) d(t)
. (3.27)

The»caléulation is then carried out byuusing E(S),E(P);

lg(S') and E(S'') of two systems. The eight quantities to be.

‘determined are m,t,w,A,B,C,D,E. The energy states

E(P'),E(D),E(D') are then calculated from these values. TQF

AN

‘results are shown in tables 3.5 to 3.8;the ,values used for\\

. the. calculation are underlined. :
-
¢ ¥ i, <
Z ‘ - 32, -
¢ i ‘,, \
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3.5 Gaussian quadrature formula
There is one way to obtain d(t), e(t) directly Ffrom alt),

b(t),c(t).From

a(t) = =rmmmm——m ,qsr U(r) exp(-tirhr (3.28)

a(t)y,b(t),c(t),d(t),e(t) v

1t

a ) (n=1,2,3,4,5)

The equations can be rewritten as follow: °

fdx x2U(px) exp(-xz) ={/1 a(t)/4 (3.29)
e

4 2
]dx x U(px) exp(-x") =+v/7 b(t)/4 (3.30)

6 ‘ 2 .
fo x U(pX) exp(-x") =+ c(t)/4 (3.31)

8 2 . ; e D
fdx x U{px) exp(-x ) =+vn d(t)/{l T (3.32) ¢
‘/dx me(px) exp(-xz) =1 e(t)/4 . (3.33)

ORI SOV U S DD S — . e 8 ik & B SN
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e
where
‘ n .
.
; x =gt “r ' {3.34)
4 [
_l . .«
N . 1/ .
p = (pt 2) ¢3.35)
i L 12
From numerical analysis we have
, ® ) 3 ‘ .
\
dx y(x) exp(-x“)= L A y(x,) © 13.36)
o ‘ﬂ.‘ - -
N @ith  y(x) is evéﬁ/ function and &, x, have known
/ numerical values.
writing
\
Ui = U(xip) i=1,2,3 : ' (3.37)
and 4 . * L
i .
",{
S g () =Vn a(t)/4, uylt) = V= b(t)ﬂ (3.38)

A

4 - 34 -
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Equations (3.29)-(3.33) have the form . |

-

| 2n - . ‘
SA X, U=xO(t) n=1,2,3,4,5 . (3.39)
! . S

i ¢ ‘
B

when kpowing a(t),b(t),c(t) or «,(t) n=1;2,3 the first
three equations can be used‘to determine U . Then d(;L,ekt)
can be opga;ned frog these values. K

The calculation is carried ouk following thi;‘ method
and the restlts are displayed in Eabies,3.9-3.12lin the dame
pa%tern_as was useéh%q the~prevfous part. The. underlined

o4%
are values used for the calculation

3.6 Conclusion .

The result when the & (t) are calculated directly froml
the values of the energy stateé is fairly gqood. Again,it
becomes mucHM better when the potential is déminated by gﬁe‘
l¥near part. The result when d(t) and e(t) are calcdlated
from a(t),b(t),c(t) is not as. good as the direét

'carnulation. The reason may lie at.the difference between
the .approximation property of én(t) and the perfect solution
for a system of equations. Nevertheless,the method still

A Y

.can give us some predictions which can serve as guidance for

later calculations. . ”
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Table 3.1, ‘ b

§

Calculation for c€ and bb systems'' which irfcorporat;.e the
potential of the form U(r) = -K/r + r/afwhere K = 0.52,a =

2.34 Gev

and m =1.84 GeV,m, =5.17 GeV |

L ST T
Energy(Gev) ICalculated(Gevf % difference

—— s g s e { a —— ——  —— o - any | . o ——— . — T

—— o — — > - | —— ——— > vt oty i s s | > . o — i —— o ——

O
~
a8
+ ———— e e
e
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? T ' 1D

1P

28

1D
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Table 3 2
Calculation, for two systems of’ masses . m=1

- - —— - —— —

36.90
56.44

68.44

47.40,
71.40
. 86.34

90.72

-'37 -
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with the potential U(r) = —1/r + lOOr

4 e e e

nd m=0. 5
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SRR * calculdtion for two systems of masses m=l and m-O 5 . -

) ) o © with the potential U(r) -1/r + r ., : o o
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1P
25

1D

Table 3.4
Calculation for two systems of ‘masses m=l1 and m=0.5
with the potential U(r) = -1/r + 0.01lr
\
o —————————— T T Frm— e ——— +
| I |
% Energy Calculated 1 % difference %
B B | mm oo |
I | I
L l |
| | ! |
i 1.51 | { l
r A } |
1-92‘ ‘
F 4 T
1.93
2.03 2.16 j 6.4
I y
0.78
! | |
% 1.02 I | |
{ 1.03
} 1.10 1.17 6.4
)
et ik ittt e ——— R it +
@ v
, -39 - )

— s -

- ——— - o >




Table 3.5
Calculation for c€ and bb systems which incorporate the

potential of the form U(r) = -k/r + r/a where k=0.52,a=2.34
Gev'and m.=1.84 Gev,m_=5.17 Gev y
tommmm————————— b ——————— b —————— +—-—-' -------- —-_—
I I ﬂ | I
State } Energy(Gev)I}Calculated(Gev % difference{
—————————————— D D B e
& | | | I
| m=1.84 | I | I
| : | | - |
| 1S I 3.67 I | I
I o | I
| 1P | 4.12 : {. =
' 2s 4.24 } } }
1D 4.38 % 4.65 I 6.2 If}
{ 2P’ ' 4.50 ; 4.56 } 1.3 1
' { s 4.60 } ! {
I 2D | 1.70 | 4.84 I 3.0 |
| i | .
R e L T e | et o | ~=mmm oo |
| I I
| m=5.17 I | [
I I I I
| 1S } 9.74 I }
' hY i '
| 1P ! 10.43 %‘ ‘
‘ !
| 2S } 10.49 | ’ {
|
I 1D | 10.69 } 10.70 { © 0.1
| I
lo 2P } 10.76 I 10.67 }‘ 0.8
| ) - )
I 3s % ‘10.82 % }
O 2D ‘ 10.94 % 10.90 ; 0.4
"
e —————— b b bmmm——————————— +
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|
} State Energy Calculated % difference
] ________________________________________________________
!
| m=1
| l
.{ 1S { 36.90 |
f 1P 56.44
28 68.44
'{ 1D 72.36 72.96 0.8
2P 83.10 82.96 0.2
3s 93.61
| 2D E 96.32 | 98.19 1.9
______________ i o e e b e | e o e e o e | e o e e e o e
| I
| m=0.5 l I
| | |
: 1S g 47.40
| 12 | 71.02
.l |
: 2S. 86. 34
I 1D [ 90.74 | 91.31 0.6
! 2P 104.31 102.07 2.1
3s - 118.23
2D 120.75 | 118.35 2.0
tor et e e torm e e -4
:
3
° - 41 - Ca!

Table 3.6
Calculation for two systems of masses m=1 and m=0.5
with the potential U(r) = -1/r + 100r
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Table 3.7
Calculation for two systems of masses m=1 and m=0.5
with the potential U{r) = -l/r + r

\
o e e et T et +-———- m——————e- +
State Energy Calculated " % difference
______________ RS I T R
| m=1
| s 2.58 |
T S |
25 4.45
1D | 4.86 5.10 4.9
2P . 5.34 5.26 1.7
s | s
| 2D | 6.04 6.07 0-.5
m=0.5
l : !
, 18 I 2.40 I
1p % 3.83 |
28 . | : 4,48
1D 4.85 4.91 1.2
2P 5.46 5.39 . 1.3
3s ; 6.03
2D ' 6.29 6.28 . 0.2
o e e e e pom e +
L !
,
x
- - 42 -
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with the potential U(r)

Fmmmm b +
Staée Energy {
____________________________ |
I
o
3 15 | 1.51 i
R
28 d 1.93
1D | 2.03
2P 2.04
s 2.05
2D l 2.10
......... PR O S,
| l
m=0.5 | |
s 1o
e Le
s | Lo
l 1D } 1.10 |
| 2P } 1.13
38 } 1.14 }
20 % 1.18 {
e cemenae S :
AN
5
..4'3_

" Table 3.8 o
Calculation for two systems of masses m=1 and m=0.5

e e R s . b 42

= -1/r + 0.01lr

______________ +..L__._...U__..__...___+ °
Calculated i difference
2.06 1.5 ‘
2.00 2.0
2.09 | 0.5
[ |
______________ f e
|
I |
|
|
1 ,
| |
|
l
| I
1.33 20.9
1.18 4.4
,(?.
“ . ]
f*’
1.31 11 ;
e ———————— formm———————————— +
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: Table 3.9

Calculation for ¢¢ and bb systems” which incorporate the
potential of the form U(r) = -k/r + r/a where k=0.52,a=2.34
Gev'and m =1.84 Gev,m =5.17 Gev

¥

+-—--—---———-7—+—----—-—-—-—-—-‘4-——--—-—--—---44- —————————— ————
| | ‘ | | ) |
}' State } Energy(Gev) {Calculated(Gev? %t difference }
e et e e L I | mmmem e e .
' | ! |
2=1.84 | i |
| : i f
1S 3.67 ! , { |
1p 4,12 { { '
28 | 4.24 } !‘ |
1D 1 4.38 } 4.43 } 1.1 |
2p ‘ 4.50 } 4.69 { 4.2
| 3 ! 4.60 { 4.80 ! 4.3 '
i 2D | 4.70 | 4.99 l 6.2
| | | 1 ' |
B f=m e e | ——mm e e e T |
! | | ! l
| m=5.17 ! | | I
| | I i |
} 1s {“ 9.74 !. } %
I 1p I 10,43 i i \ .
| | - | | |
E 28 { 10.49 { { . !
| 1D ; 10.69 : 10.87 = 1.7 }
| X
} 2P | 10.76 ; 11.18 } 3.9 2
: l ‘ ) .
% 3s 1 10.82 } 10.95 } 1.2 i
| 2D 1 - 10.94 I 11.46 l 4.8 |
| | : i | |
Frmmmm e ————— D et fomm— e —————— e e +
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Calculation for two.sys

Table 3.10 .
tems of masses m=1 and m=0.5

with the potential U(r) = -1/r.+ 100r’

fomm e e prmm e ————— e fmmm—————————
"I State Energy Calculated
| —————————————————— M e = - I —————— ————— e ——

|\

} m=1 .

i 18 36.90

| 1P - 56.44

I PR

{ 28 68,44 )

} -"1D 72,36 '72.85

} .. 2P 83.10 87.97

{ 38 93.61 | 99.30

| 2D } 96.32 ~104.0°

| ‘ |-

i R et jmmmmm s mm oo

l | I

l'm=0.5 | l

I | , i R

: 18 . l 47.40 } :

| I 8- } 71,02

| .

I 2s: } 86.34 *

l .

: - 1D { 90.74 1 90,31

| 2P | 104.3 | 139.9

' . ‘ I LR Y

| 3s | 118.2 ! 113.4

| | o

l . 2D '4 120.7 1‘ 123.5

|

e ———— pomm e ——— T T pp——

0
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Table 3.11

‘Calculation for two systems of masses m=1 and m=0.5

-l/r +r

~with the potential U(r)

e e e e e e e e e e e e e e e e e
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2
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o0 | t
| t
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1 1
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Table 3.12
Calculation for two systems of masses m=1l and m=0.5
with the potential U(r) = -1/r + 0.01lr

>

t

—————————————— et e S

b — e ——— +
l |
State { Energy Calculated % difference
e e e 20 e e o e l _‘..__..____-___- e ————— | -—— i e
I /
. m=1 { ’
! -3 } 1.51
1P I 1.92
- ‘ 25 | 1.93
T 1D | 2.03 2.17 6.9 l
‘ 2P 2.04 2.33 14 |
‘ 3s 2.05 ( 2.09 2.0
u 2D % 2.10 2.44 16
oo
* R it B [ S, | == 2
o l l
| m=0.5 | | I
{ | I |
1s | 0.78
4 b E—
! 1P l 1.02 | ) |
| q
. 28 I 1.03
1D 1.1 1.16 5.4
i : s ‘
2P | 1.13 | 1.27 12
‘ ] . vt .
| 3S © 1.14 | 1.28 12 i
[ : "
I 2D ©1.18 . 1.41 19
b ———————— Fmm—————————— Fm—mgmm oo fmr e ——————— +
W
Q "]
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" CHAPTER IV

Masses of the Ground-state Baryons

4.1 Introduction R
In this chaptg;,the masses of the ground=state, baryons
‘are_calculated by using the hyﬁothesis that the potential,
between quarks 1is a combination of. a Coulomb and aulinéar
potential. The model employs an harmonic-oscillator ebasis.
Hyperfine interaction and the mixing caused by the 4
anharmonic potential are also taken into account. -

B W

4,2 The Isgur-Karl model

?

The model employs a Hamiltonian of the form

o

L

3
H=§ W+ By ot Hyo : | (4.1) s

where m; 1is the quark mass,and

2&5 871'3__' — — . . : .‘ ‘ -
H = 2 —s(ry ){Sy. Sj) +
hyp _{ 1 [ J
i’<j 3mimJ "3
L35Gy v e a
rﬁ rd

t

where &g is the quark-gluon fine structure constant,

' -
ry



1 . o

— : ) : s T - .
. Tjj is the separation between a pair of.,quarks and S; is the

. . th -
spin of i quark

-

| P2 ‘ ( 11)2 )
Y x H0‘=Z:--—'— + Viryg ) - —-f---'- . : (4.3a)
' ' 2mp T ZISmi
/ Virp = qu/rﬁ + ary - (4.3b)’

Following Gromes and Stamatescu7we_rewrite (4.3b) as:

2 2
(1/2)Kq' + [V(ru ) - (1/2)KrU )

|

. » e '
AN No spin-orbit terms .are included for the reason

mentioned .in the previous chapter.

[N \

. Consider tHe U=0 and‘HByp =0 limit.- In terms of the
4 ' . .

Jacobi relative coordinates,
i - 1 — ety
Py R | . (4.5)
- v . 4 ) *“I
. —A’\ | 1 — -'-.' - ’
\ [ + .
¢ 'Vb (rt\ 521%39, (4.6)

', the Hamiltonian becomes the sum of two indepen&ént harmonic
oscillatorg with the sgﬁe spring copstant K:

-

Vd(l'")‘!; U(rl_l) (4.4) \

/
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AN
Nl

¢
)

o2 & L2002
H' = Pp/2mp + By/2my + 3/2K(°p + A ) (4.7)

L] ")'
\

The contribution of this hamiltonian to the total

\ energy of the ground state (N=Q) i{s then

N
.

‘* By = 3(wp + wp)/2 | (j/é)

¥
where ‘/
2 2 .
wy = 3K/m, ) (4.9a)
and .
- [ 2
w2 = 3K/m. i Co (4.9b)
-N W N .

mp and m, are the reduced masses of , the P and A
oscillators,respectively. Now in the approximation m ~m, at
least two of the quafk masses are. equal. We will employ the

convention that in all cases the quarks comprising the()

- 50 - . .
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oscillator have the same mass. Hence

(4.10a)

3m1m3/(2m1 T Mq) . (1.10b)

4

The particles which we are going to discuss here are ,

of the following strangeness sectdrs

1 elements
my o= m,,s = 0,-1 . (4.11la) ~

My = Mg,S ==-2,-3 ) (1.11b)

®
’ . My = My,S = 0,-2 . (4.12a)
.(
- 1

My = Mg ,S ==1,-3 , . (4.12b)
s=-1 1\, £ particles;

s=0 Sector includes N, y particles;

s=-2 and s=-3 are corresponding-.to = and ¢ particles

respectively.

-'.51-

e

e s vt ey e

< o ye———————."



5
t

Applying egs.(4.99-(4.12) to (4.8),we see Ehat for the

ground state in'case\§=0 w=w\=wand Ej = 3w. For the

~ground  state of the other strangeness sectors using the

notation x = mu/ms we get

v/

A .
372w {1+ (¢2x +#1)/3] "} ,s=-1 (4.13a)
i . y .
Eo = <ﬂ 3/2w {x + [(2 + x/3)] *} ,s=-2 (4.13b)
\\
4
3wx 2 . . /1 3=-3 {4.13c)
. A
Tor N =1 ( negative parity ) baryons, the P and A

oscillators can be separately excited. Thus in the s=-1,-2

sectors the degeneracy 1s lifted. The exact energies of the

first excited states are:

J

M
]

. « Eg = W, ' , 5= 0 (4.14a)

1}

‘ o 1/, ’ .
w(5/2 + 3/2[(2x + 1)/31°} , s=-1 (4.14b)



Y.

o T 2
: E:= W{3/2 +5/2((2x + 1)/3]) } , s=-1 (4.14c)
P - 1y
Bg = w{5/2x + 3/20(2 + x)(3]7}, s=-2 (4.144)
A ‘ - 2 ) ‘
By = w{3/2x + 5/20(2 + x)/3]-}, 's=-2, (4.14e)
1 .
S ¥ dwxt, ‘ , 5=-3 - (4.14£)
o

The. splitting in energy in the s=-1 sector,eqgs.{4.14b)

and (4.l4c),contributes to making thef\g heavier than g in
:eversﬁl of the situatio; in the ground state. In
,acco;dance with egs. E4.l4d) and (4.1l4e) a similar
splitting occurs in the s=-2 sector. Similar equations can

.be given, for the energies corresponding to the N=2

{pcsitive-parity) baryons.

The eigenfunctions of the Hamiltonian (4.7) are given

"by:
’4’::5 ¢,::exm-l'/2’0<; ,Dz— 1/2 o<i A) (4.15)
¢M - ("2—;(2—0(2/-‘2—;:-/2( N- iO‘.AZ) (4.16)
00 3 T2 2 :
- 53 -




—_ A o (43.17)
00 V3 n¥2 /O
) 2 v 0(7/20(3 3 -2
FP 2 7fp A2 ‘ '
= f—)  —— - —Xp) (4.18)
‘4)00 3 M2 P 2 P /
2 7”5
- 3/ AR S it
22 V2 T2
54 5/ \ ~ ‘ :
PA  Xp. X\ A
= (4.20)
22 %2 P+ .
-y
7/2 3/3
- PP l dP dA \
2 L2 . . (4.21)
¢>22 V2 12 P+ Pe. E
5/2 5/2 . . .
SPA e N N L A 122
b-l T % (Fv 3 (DB N ’ - (4.22)
Qhere

(D,, = ‘01 + iFZ {4.23a)

Ny = N+ i, (4.23b)
and
. ~
4
O(f, = 3K1InP, | ‘ {(4.24a)
B
.uh = 3Km)\ ' (4.24b)

4.3 Anharmonic oscillator terms’

. 13 .
Following Isqur and Karl ,we write

— p— _— e et smoman, | o} 4 smore o s sttt b mm i —




®
agfr = lZ/U(x/a) 2% dx , n=1,2,3 , (4.25)
' 0

1/2 A
v =(wm,/2) /// (4.26)

Where m,” is the mass of u quark. In terms of anrthe
"~ contributions in the 'ifirst-order perturbation of the
Coulomb,linear and simple harmonic oscillator terms

contained in the anharmonic potential
U(rq } = -u(ru +aru + brn . (4.27)

are given by:

[ -<sag /e > [ 2, ‘
i <:aru > ] =M 2a2 (4.28)
1 . P
3 : .
\ <;brﬁ > ] \ 4a3
where JJ:J
. joo-11 2
6M = ~15 27 -6
4 -8 2
\
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Note that the result of this calculation is independent

of w. Using values of the parameters obtained by Isgqur and

Karl ,namely m,=350 Mev,w=250 Mev,a{=—650 Mev,a

== M
2 405 ev
and a3=—908 Mev,we find that .
Y
-<Log/ru > = =1287 MeV
3
<Saru > = 1421 MeV
(4.29)
2 .
<£brq > = =784 MeV

<X l/2Krﬁ > = 375 MeV

,
‘ 2
Thus the harmonic oscillator term l/ZKru and the
harmonic cscillator contribution contained within the
annarmonic potential U(r) do not cancel.
A major triumph of the model of Isgur and Karl 1is the

. . : . ' 5
correct prediction in sign and magnitude of A~E-(1830)

Z%% {1765) relative to the ground state. However,if these

and

parameters obtained in their fit to the positive-parity

baryons, are applied to the problem of negative-parity

5, 5 . LY
baryons,the mass difference between A% and z? will Dbe

reduced from 50 to 15 Mev;this is no longer consistent with

14 :
experiment. Kalman and Hall noted that the resolution of
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this difficulty is the method of calculation 'of the
non-harmonic part of the potential. Isqur and Karl“zobtain
the value of the contribution of this term in the SU(3)
limit (mg=m,). Kalman,Hall and Misra9 instead q;neralize
eqs.(4.25) and (4.26) to the case of three -body problem,in

which the mass difference is iincated by the coefficient

Z,Wrlting

.

<]

o
2n 2 ' ;
a (e)yyr = lZ]{U[x/n(t)]x exp(-x )dx (4.30)
' 0
n=1,2,3
~ 1/2 _ 1/2 -
(k) = (wm,t/2) , b= 4[1 + 3(mP/mA) ] {4.31)
14

Xalman and Hall show that, in such a coﬁsistent model,
the mass difference between A~é;_and Z-g: is restored to a
7alue in agreement with experiment.

As noted by Isgur and Karfs, mixing between the ground.
state and the first excited positive- parity baryons (caused
by hyperfine interaction) 1is’ quite important. In thisg
chapter,the element of the mixing matrix corresponding to
the first excited-parig§ baryons are calculated based on
eqs.(4.30) and (4.31). Kalman and Mukerjfein their fit to-

the ¥ and Y spectrum note that in addition to mixing caused

- 57 -



by hyperfine interaction,the anharmonic potential U also has
an off- diagonal contribution. Similar contributions to the
mixing matrix are also included here. If we now force the
exact capcellation of_the harmonic oscillator terms,that is
we explicitly take the anharmonic term to have the form
given by (4.3b) and (4.14),then‘the ay(t) n=1,2,3 defined by
2gs.(4.30) and (4.31) can be approximately evaluated in term
of Xq,w and one free parameter a. This is done following

9

Kalman,Hall and Misra , by constructing quadratic

approximations about t=1 for a,(t) , n=1,2,3

at

.

a,(t) = A + Bt + Ct [,—* ‘ (4.32)
' 2

az(t) ~ (3A+ Bt - Ct )/2. (4.33)

az(t) > (15A + 3Bt -Ct* )/4 (4.34)

where A,B,C are evaluated from the values of an =a, (1)

n=1,2,3 given by following equations

a, =D - 3w/2-E, ' (4.35)



-

2D - 15w/4 - E (4.36)

az =
a, = 6D.- 105u/8 - 2E - - ) (4.37)
’ ‘where
4/2 '
D = 6vV2a/(mywn) (4.38)
and
. — e ‘/2 *
E = [40(s(muw/2n)] — (4.39)

LN

The parameters to be determined are My x=mu}ms, Xg, @
and w. This calculation has been done earlier by Kalman and
is‘recalculated here by using different vglues of w's for
different bands.  Besides, an érbitraiy constant‘is included
in the potential. The best fitting of Fhe masseg occurs at
m, =904 Mev, x=0.74,%%s=0.39, a=0.48 Gevz, w=1.2 and 3 Geév
for N=0 and N=2$respec£ively; the value: of the arbitrary
constant used is -4.97 Gev. The masses of the ground-state
baryons calculated are shown in table 4.1. The highest
deviatién from experimental values is 2.6% and it is much
beﬁter fhan the earlier calculation using a single value of
W for every band. '"The above numerical results of ®s and a

1
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show that the Coulomb and the linear part of the potential
have the same sizes. In this case, from chapter II and III
we see that the errors when using ‘the harmonic-oscillator
basis are 1less than 1% except forbthe first one is 2.8%
(Tabie 2.3); and the errors caused by the quadratic
approximation method are 1% and 1.9% (Table 3.3). This is

consistent with the error here for baryons.

The method of using an harmonic-oscillator basis to

examine the potential between quarks or gquark and antiqguark:

and the'quadratic approximation method have been used by

13,15 9,16
Isgur and Karl and Kalman

in their calculations for
mesons and baryons; but the accuracy of these methods has
never been tested. Chapter II and III of this thesis serve
as a test of these methods and we can see that they work

well provided that the Coulomb part is not too big compared

to the linear one.

"The quark model which employs an attractive potential
at short range (a Coulomb-type piece derived from QCD) and
deviations from the harmonic-oscillator potential at large
distances has been working well for mesons but the situation
is still not <clear for baryons. The agreement between
experimental values and calculation for baryons here enables
us to conclude that the interquark potential may‘be closely

approximated by a Coulomb plus a linear potential.
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Calculation of the ma

fmm i ——————— e mmc e mm—m e

'

"Table 4.1 r
sses of the ground-state baryons

B L T TR ————
. Particle Experiment Calculation
| 0 (MeV) {MeV)
T ,“"""u""" T
N 939 960
!
H
N i A
| . | I
A 1236 | 1235
I . |
A\ 1116 1114
| 1 | .
T - 1193 1162
2
| |
I 3 |
| yo- | 1385 | 1385
i 2 |
| |
- 1 | * I .
| = - l 1318 | 1288 *
| 2 | l
b I |
; 3 [ - ‘
| - - | 1533 | 1559
| 2 | !
o I |
l 3 0 | 1672 i 1690
I | : |
e, ——— tm——————— - e to—mm—rmr———m -
h -
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