FACTS TIME SHARING MONITOR

Robert E. Enos, Eng.

~ A THESIS
In

The Faculty
of

Engineering

Presented in Partial Fulfillment of the Requirements for
the Degree of Master of Engineering at
Sir George Williams University

Montreal, Canada

AUGUST 1972

(® Robert E. Znos 1973

FACTS TIME SHARING MONITOR

ABSTRACT

A Time Sharing Monitor with the capabilit& of controlling
8 Test Consoles from a Centralized Computer has been developed. A
foreground/background philosphy has been designed, with the foreground
being able to operate on 1 to 7 Users, while the background processes
Compilation, Editing or File manipulation. The Monitor is coded using
Digital Eqﬁipmgnt Co. basic Assembler language; on their PDP-9 Computer
with the Priority Structure based on the Automatic Priority Interrupt
.-facility. |

The Monitor features have been verified by software simula-
tions. A prototype manufacturing test system for circuit packs, con-
sisting of two test consoles and three TTY's, is in operation under

Monitor Control.

ACKNOWLEDGEMENTS

The author wishes to thank the following individuals for

‘their invaluable help.

Mr. G.M. Martin of Sir George Williams University, who
consented to act as the author's adviser and provided helpful sug-

gestions on the scope and subject matter of this Thesis.

Mr. A.G. Vuckovic, Eng., formally the author!s Department
Manager at the Northern Electric Company, who gave the author assign-
ments which eVéntually led to this paper. e also provided valuable

guidance.

Mr. F. Benedetti, Eng., of the Northern Electric Company,
who designed the necessary Hardware Modification required by the au-

thor's software.

Mr. R.K.K. Chiu, Eng., and Mr. E. Beneteau, of the Northern
Electric, who are writing the User Software packages that will use the

author's Monitor, for there help in debugging thé-ﬁonitor.

Mr. G. Veilleux, of the Northern Electric Company, who as-

sisted in the Editing of the source programs.

Miss S. Enos who gratiously accepted to type the Thesis.

ii

CONTENTS

ABSTRACT.....uvnenen. C e e eeeeeteeieneeaeeesea e aeeretaaserarsnsnnns i
ACKNOWLEDGEMENTS PP |
ILLUSTRATIONS. ...vvvvunne ceceeeeaes Cveeteesecarrsantaanas B 15 1
1. INTRODUCTION....... e ereeeeaeas K esevenssassnseasencanes S |
2. THE STRUCTURE OF A TIME SHARE MONITOR........eev... tereeserieeseessS
2.1 I/0 CONTROL.......... Cereeaeaeeen et eee e eaeas 6
2.2 SCHEDULER.......0evvenenenenenennns e eeeeeee e7.
2.3 JOB SUPERVISION. v tuusnseennnneeannneerneesssnesnnnseennn .7
2.4 ERROR HANDLING....vusnessennens e rtieeieierenaen eeereieinB
2.5 OPERATCR COMMUNICATION....... e eeeeenees et eebaiereeaeaan 8
2.6 CONTROL OF PROGRAM LIBRARY........ e 9
2.7 ACCOUNTING AND RECORD KEEPING....e0verevenesuonsensnsnsnnns Q
3. STRUCTURE OF THE FACTS SOFTWARE......«eseueeeenasneansnsensssnnnnegn
3.1 MONITOR EXECUTIVE PROGRAM.. .. .sssrasensnaessneessnnneeceesys
3.1.1 Memory Protection Processing.........."‘.,.............._.......12
3.1.2 I/0 INQitiation.eeeeeeeeeeeeenreoneseionsroseeeessaccnsosessld
3.1.3 1/0 Termination......eeeeeceees 19
3.1.4 QUEUES...icvetececncsesssesssnnannsssnanns ceesas ceceenes 22
3.2 MONITOR SCHEDULER............ ST Ceenaaes Ceeeeeeeans 27
3.3. SYSTEM USER PROGRAM LOADERS.,;.,, e eeieeaenens 30
3.4 - MONITOR ERRORS......c00vuse. egaeessanas e eneeneneeaean, 35
4. 1/0 HANDLERS........ et rereeeienenaes Ceerenenens e RV
41 ERROR HANDLING. . .evevveeeeseneeennnn. e 38
4.2 T HANDLERS....................:......;;........... 38
4.2.1 Keyboard HandleT.eeeresneeeneernenneenenneensinennns .40

iii

4.2.1.1 User Initialization Mode.....vevevruenrn... Ceteebeneena. 41

4.2.1.2 Command and Text ModeS........... e riaetierheeeaaes ce.. .46
4.2.2 Print Handler................. Ceeeeeaniies sttt eaaennaas 47
4.3 PAPER TAPE READER HIANDLER....... e -\
4.4 PAPER TAPE PUNGH HANDLER. «u ' eneerernnsrnnnnnnennnnnn., ...53
4.5 DECTAPE HANDLER, .11 vvvveeevennennenas Crestereeneas Cereeene. 55
4.5.1 Open A Dectape File.....eoveveeansns Cerreeeiees . cereendS
4.5.2 -Close A Dectape File......... e - ¥
4.5.3 kéaa From Dectape...... Ceeeaetaieteeaeanaas - 1.
4.5.4 Write Onto Dectape........... Cerrenaaa. cevereeteranenronnss 58
4.5.5 Dectape Hardware llandler....... Ceteensstettirecrosrannnnane 58
4.6 FACTS STATION TRANSMISSION HANDLER.veevevevenenn.....62
4.7 A/D HANDLER....., Cerererearaeiena. Criecessrecetntesennennns 62
4.8 REAL TIME HANDLER...... Ceerecaneeas PP <1
4.8.1 Time Interval Routine.......... e Ce et tentteeaeaea, .67
4.8.2 Real Time Flag Handling............;............70
4.8.2.1 Cléck Service ProcesSing...iirereerseeeneeneesneneeennns .70
4.8.2.2 Facts Station Tiﬁe Flag Processing......... Ceetieeenaeaas 72
DEFINITION OF SYSTEM USER PROGRAMS. .. .evvevvvenn. ceeeaeeas Ceeeens 73
5.1 OP/SYS..... ettt iiatetteaterianereenaa Y £
5.2 TESTRAN COMPILER.viiuuuneuererensonnnnnsecnnns Y &
5.3 EDITOR.ueuvvinievenennnnns. Ceererien. Cererreeeeas Ceieeneeng7
5.4 - BACKGROUND TASK PROGRAM....... Ceveeaan e teeiaren e, 78
FACTS MONITOR USAGE DEMONSTRATION.......... ettt eeriaee et 79
6.1 TEST PROGRAM FOR FACTS 1 STATION...v.vevensrneensnsnsnnnn., 80
6.1.1 Testran Compiler...... S et e e e et et te s e sae e e e anaanne 82
6.2 TEST PROGRAM FOR FACTS 2 STATION. suvuvvueenenenernnnsnnnn.. 83
6.3 OP/SYS PROCESSING..... e eeneteiienrenaeas e, 83

iv

6.4 BACKGROUND USER PROGRAM.......evuerns cearaaes N 85
7. SUMMARY OF CALL PROCEDURES FOR I/0 HANDLER USAGE....euvvevienennns 90
7.1 KEYBOARb HANDLER. «ovvvvnvnnenen R P ERR TR 91
7.2 PRINT HANDLER . st vvrveeenaeeoennosas et eeteecierererareaas 93
7.3 PAPER TAPE READER HANDLER........... et ereeeier e 94
7.4 PAPER TAPE PUNCIl HANDLER.......; 94
7.5 DECTAPE HANDLER. ¢ vt vuvvvnvncononnnannans e eeieee et 95
+7.5.1 ToOpen A File...coiiieiionranananannasss B 1
7.5.2 To ReadAFile..v Ceeersessasees 97
7.5.3 To Write A File..viiieeseononcensncncanns e e e 08
7.5.4 To'CloseAFile.....................;....' e 99
7.6 FACTS STATION TRANSMISSION HANDLER......cevevevnananns veen. 100
7.7 A/D IANDLER..... S eeeseesettessestasencenes eeeeerae e 101
7.8 REAL TIME HANDLER..... Cesesevetreseatttesansansiie e 102
8. CONCLUSTONS 4 e vveeevesnensnnneansananns e e 106
APPENDIX 1 - FACTS TEST STATION....cvevvernannes cevees e eeeaeineanns 107
APPENDIX 2 - 8 BIT AND TRIMMED 6 RIT ASCIT CODES......cevuiviineernnonns 109
APPENDIX 3 -~ DECTAPE DIPECTORY ORGANIZATION....;L,.. e 112‘
APPENDTX 4 - MNEMONIGS FOR /O CALLS. .« wasatuessersnscmssnsess 114
APPINDIX 5 = NMONTTOR ERRORS. . usonesnnceennnsannnnnne e, 116
APPEMDIX 6 - APT PERIPHERAL ASSIGNIENTS......cvenee.s e, 118

BIBLIOGRAPHY . v vvveveennnnns Ceeas Ceeens et ieeeneeesosonsasassnnnns ... 119

FIGURE 1.1
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FLOW CHART
FIGURE 6.1
FIGURE 6.2

FIGURE 6.3

FIGURE 6.4

FIGURE 6.5

3.1
3.2
3.3
3.4
3.5
3.6
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13

I LLUSTRATIONS

CONFIGURATION OF FACTS HARDWARE,............. 4
MEMORY PROTECTION PROCESSING..... e eieeea.. 13
I/0 INITIATOR........0vvvunnnn.. Ceeecneaeas .17
I/0 TERMINATOR........covvnuunnnnn..)
"XSTORQ'" SUB-ROUTINE...... Ceeetieeiina.. ceee.24
"XGETUQ" SUB-ROUTINE......00vvvennn.. ceeneead25
SCHEDULER.......... . 5 |
IRRECOVERABLE ERROR HIANDLING.......00vu......39
TTY KEYBOARD HANDLER......... Ceeertteeanaa. ..43
KEYBOARD COMMAND AND TEXT PROCESSING......... 48
PRINT HANDLER. ..\ 0iuuurenrenennnneennnnnn. .51
PAPER TAPE READER HANDLER.........0eovvunnn.. 54
PAPER TAPE PUNCH HANDLER.oonn'n.56 -

DECTAPE FUNCTION HANDLING.....eev0vevevenn...59
DECTAPE HANDLER. .. .iiivtnnnnnnnnneeennnnsn. ..61

FACTS STATION TRANSMISSION HANDLER...........63

A/DliANDI-ﬁER ooooo $eess 0000 0000000800 000000 Ql.065
REAL TIME HANDLER........... treeieetanias ve..68
TIr'iE INTERVAL ROUTINE.o-.too.c.n‘otv.l.l...ll69

CLOCK SERVICE ROUTINE.....veeeueeennnnnnnsra. 71
TEST CIRCUIT 1....... ceene ceeees Ceeeerseanas 81
TESTRAN TEST PROGRAM FOR FACTS 1............. 81

PARTIAL COMPILATION OUTPUT FOR TEST CIRCUIT 1

®teescvsessssns s eessen Soess000s0s 00 s cec e s 81

TEST CIRCUIT 2..0veeinnnnnnnn. R R R

vi

FIGURE 6.6 OP/SYS OPERATOR COMMUNICATION..................84

FIGURE 6.7 BTP COMMAND STRINGS....cccaere ceeseaes ceeeneess87 .

FIGURE 6.8 BTP OPERATOR COMMUNICATION.......... PPN -1
FLOW CHART 6.1 " BACKGROUND TASK PROGRAM. .. vovevenvnsns veesense B8
FIGURE 7.1 1/0 CALL FORMAT........ Ceereereareees veeessn105
FIGURE 7.2 DECTAPE FILE NAME BUFFER FORMAT........ veeess 105
FIGURE 7.3 FACTS STATION TRANSMISSION FORMATS............105

vii

CHAPTER 1

INTRODUCTION

There are a large number of Computer Systems with varying
degrees of software package sophistication available on the Market.
They include large Business Computers1 (superscript number refers
to bibliography) which can operate in the Batch, Foreground-Background
or the Multiprogramming modes. These systems are designed to optimize
computer processing time, C.P.U. time, and in the latter two cases the
operating system will mix jobs to optimize peripheral utilization. '
The users caﬂfaccess the computer system by either giving their pro-
grams to an operator for processing, or in some cases, can input their

programs via a terminal.

Computer systems specifically designed for Time sharing will
optimize user response via terminals. Time Slicing2 is one technique
used to accomplish this. A Quantum of time is granted to each user on
‘a round robin basis or according to some prio;ity scheme based on pro-
gram size, I1/0 usage, etc. Normally, the actual C.P.U. time and peri-
pheral usage tends to be jnefficient because of thé swgpping over-
head and idle computer processing when an 1/0 operatio# is initiated

by a user during his time slice.

Process control Time Share syétems, as the IBM 1800 Systems,
work in a Foreground-Background configuration. The Foreground is ac-
cessed when a flag is received from the pibcess hardWare, with Idle
time being used for program development 6? processing in the Backgroﬁnd.
The monitor loads the Foreground with one of the rgal time software

packages and the flag is serviced. This system andlsystems‘like the

4 .

RSX PPP-15 , assume that all the Real Time Programs are develoned
prior to the final installation of the total process control., Modi-
fication of these nrograms and new Real Time programs have to he

debugged in an off line environment.

This projéct was to design a Time Sharing System (FACTS
MONITOR) that would permit Real Time process control of up to 8 tests
stations, on a priority basis, while allowing for Fditing, Compilation,
énd DataAtfénsfcr processing. The Author started to design this Mon-
itor in ééptﬁmber of 1070 and the final stages of debupgging were com-

pleted in August of 1972.

The FACTS (Flexible Access Computerized Test Systemn) soft-
ware was developed to pcrmit on line process control of up to seven
test ﬁositions in the Forecround, while mermitting on line Editing,
TESTRAN comniling and Backeround Task processing in the Packground.

A user can Fdit a Test Proéram and Compile in the background and suh-
sequentlyﬁrequest processing in the foreground of the object progranm,
~while up to siﬁ other users are being controlled. Operator response,
. optimization of hardware peripheral usage, and testing specd are the
basic criteria built into the Test Set hardware and the FACTS Monitor
software. Figure 1.1 shows a diagram of the llardware configuration

of the FACTS System.

The Monitor was designed to control the 1/0 and Scheduling
of users for the specific testing of relay, analoguc and digital cir-
cuit modules, but it is applicable to any control process that can

be interfaced to a FACTS type Test Station (refer to Appendix '1").

This Thesis presents the FACTS Time Sharing Monitor and

1/0 Handlers required to control up to eight FACTS TEST STATTONS.

to

Chapter 2, gives an introduction into the peneral philosophv of a
Time Sharing Monitor. Chapter 3, defines the total FACTS software
package and prioritv structure of the Monitor. The Monitor
Executive and Scheduler are described in detail. Chaoter 4

presents the I/0 Handlers, their features and how they are accessed

by the user.

Chapter 5, defines the Svstem User Programs, Op/Sys,

Testran Compiler, Editor, BIP, Background TASK Programs, and how

they relate to the Monitor. Chapter 6, exvoses the verification

testing that wéS~perFormed to demonstrate the features of the Monitor.
It includes a descfiption of the Op/Sys and Background Programs
used to evaluate the Monitor. Chapter 7, summarizes the detail
call procedure for user usage of the I/O Handlers. It also elaborates

on the mnemonics for addressing specific handlers in the present 1/0

" package.

DECJIPE

CHANNEL

<PU WITH
BEK Meary

I/ Bus |

PHFrER TrFE
RENDPEE GND
PoNcH

M EmMORY J
PROTECTO

AND ﬂTPJ'
HARDWHRE

Fhc]s Injegrfe
MENSV LEMENT

AAD CoNTRY b~
DATA TONISTLES

4—!4{5””7&/"‘\
Telégype

CONFIGURATION OF FACTS HARDWARE

Z1 81T 7RANSm(sS/oN BU S
18817 S7p705 By S

FRCjs 7#s7

STRTIeN 4

e

TEET yp&ﬁi

FACTs 7EST

sz 2.

o

TELET YPE 2

UP Jo & #2D/J704 71¢
FHEJS TEST s770M' S

FIGURE 1.1

CHAPTER 2

THE STRUCTURE OF A TIME SHARE MONITOR

Ag Computer Technology evolved through the interaction of
users, programmers, ;nd hardware designers, the structure of a Moni-
tor has been generally defined. The Monitor supervises user program
running and Computer hardware. It resides in a protected area of core

memory and it Monitors all interrupts whether software of hardware ge-

nerated.

Memory protection for the Monitor is accomplished by suitable
hardware that causes an Interrupt if user software tries to access the
Monitor, and in some cases, other user areas of core. The Monitor then
decideé on the legality of the operation. Hardware Interrupts whether
internally generated (indication of Hardware malfunctions) or raised

by peripherals, are processed by the Monitor via an assortment of de-

vice handlers.

The requiréments that.a Monitor is desinged to optimize are:

1. Efficient Utilization of Hardware.

2. Common Hlandling of I/0 Devices.

3. Easy User Handling of Machine.

4, User and File Protection.

These requirements are satisfied in varying degrees by al}
Monitors, depending on the specific application. To achieve these
characteristics, the following major component of Monitors have been
defined:

1. 1I/0 Control (Interrupt Handling).

2. Job Scheduler and Initiator.

3. Job Supervision (Memory Protection).
4. Error Handling.

5. Operator Communication.

6. Control Program Library.

7. Accounting and Report Keeping.

2.1 - I/0 CONTROL

fhe~1nterrupt feature, input/output contgol hardware and
software, is what permits time sharing in a computer. There are three
main sections in I/O control: the housekeeping functions associated
with processing of an Interrupt, the servicing of the Interrupt by a

suitable handler, and the initializing of an I/0 operation.

When a flag is raised by a peripheral interface, the Compu-
ter Interrupt hardware initiates an Interrupt request in the Computer.
Depending on the previously set condition, and the sophistication of
the hardware, the Intérrupt request will be eventually granted. The
‘contents of active registers, different status registers, etc., will be
saved in order to be able to restore the interrupted program. The type
of Interrupt will be decoded and the proper servicing Handler will be

accessed.

There are three generic groups of Interrupts that require:
handlers. Interrupts that are caused by internal malfunctions of the
Computer, such as parity errors iﬁ memory or power interruption, inter-
nal‘control Interrupts - i.e. memory protect, clock, etc., Interrupts,
and peripheral device Interrupts. The handlers for internal malfunc-

tion flags attempt to keep the Computer up by executing several recovery

procedures, and inform the operator of the faulg. Internal control
Interrupts could be used to trigger the scheduling of users, the re-
questing of an I/0 operation, etc. The peripheral handlers perform
the éction initiated by the flag. The actions include the beginning
of data transfers, the completion of transfers, and therefore the ini-

tialization of releasing the peripheral from this particular user, etc.

The initialization of 1/0 operations is triggered by a user
requesting an I/0 operation via the Monitor. These handlers preprocess

the data to be written, or read and prepare the 1/0 devices to perform

the required operation.

2.2 - SCHEDULER

The Scheduler algorithm determines which user Program will
be run next. The scheduling criteria is based on predetermined priori-
ty levels or calculated priority levels with reférencevto size and type
‘of Program, estimated'run time, availability ofﬁ?mre, and real time
service to the user. Usually, one pafticular péfaméter is optimized
such as service to the user, efficient use of C.P:U; time, or efficient
use of the peripheral devices. These parameters are .not usually compa-
tible, | -

The Scheduler is entered aftér an I/0 operation is initial-

ized or terminated, or when the watchdog “timer causes an Interrupt.

2.3 - JOB .SUPERVISION

The Job Supervision Program monitors the jobs as they are

1
~
v

being processed in core. It keeps track of the time used per job.
If there are errors created by the user program, it will initiate the

necessary operator messages and abort the job if required.

All Interrupts are handled by the Job Supervisibn Program,
When an Interrupt is granted, the active registers are stored and the
service routine is entered. Recovery processing after the Interrupt

is part of the Job Supervision Program.

2.4 - ERROR HANDLING

When an error is detected, usually via an error Interrupt,

a number of actions are possible depending on the failure. In the case
of a peripheral malfunction, the data transfer is attempted several
times, and if the error persists, the peripheral device is '"downed",
the user is aborted, and the operator notified. If there is a memory
failure, the user is gborted, and the memory is exercised with a main-
tenance program and the defective section is "downed", if possible, and
the operator notified. If basic C.P.U. functions are inoperative, re-
covery is only possible with a dual processor arrangment, which are

synchronized and compared logically one to the other.

2.5 - OPERATOR COMMUNICATION

User message to condition peripherals for user progranms,
error diagnostics on downed hardware, etc., are processed via the

operator communication software package. This also permits the operator

to manually initialize the system, abort user programs that are

defective, or take action when deemed necessary.

2.6 - CONTROL OF PROGRAM LIBRARY

The Program Library is accessed when a compilation is
taking place and the user program calls for a subroutine which is
only available on the Program Library. This software initiates the
directory search of the Program Library and transfers the required

subprogram to the user area of core.

2.7 - ACCOUNTING AND RECORD KEEPING

The C.P.U. time accumulated by the user is calculated by
adding the watchdog timer quanta times during which the user is pro-
cessing; In addition, peripheral usage and channel connection times
are alsoadded. The software bills the user and keeps statistical re-

R Y
cords so that the Computer efficiency can be analyzed.

CHAPTER 3

STRUCTURE OF THE FACTS SOFTWARE

The FACTS Monitor is designed to optimize the speed of
controlling ﬁp to 7_Test Sets thle providing user access to do back-
ground processing. There are four System User Programs (SUP) defined
that are accessible via tiie Monitor. The FACTS Operating System
(Op/Sys), which resides in the Foreground, processes compiled user test
programs.'{The test programs appear as data which are operated on to
control Test séts. The Operating System is re-entraht to the extent that
after a request for I/0 is initiated, another user can be processed via
the Operating System. The next Op/Sys user gets service if no background
request is present. If a background request is made, control will be
transferred to it when the Op/Sys user makes an I/0 request, or if all
Op/Sys users are in an I/0 wait condition. When an Op/Sys user I/0 is

complete, it will interrupt the background program and restart processing.

The Testran Compiler has priority in the background. There
-lis one Testran Compiler per Tést.Set. It compiles the Testran Test pro-
grams into ELEMENTAL COMMANDS (EC) which are stored on mass storage and
are the input data to the Operating System. The Editor System User Pro-
gram is next in priority. The Editor permits on line Editing of Testran
Programs. The Background Task System User Program (BTP) has the lowest
priority. It permits on line housekeeping functions such as transferring

files from one device to another.

The priority structure is built around the hardware API(§),
Automatic Priority Interrupt, facility in the PDP-9(7) computer, API has

four priority hardware levels permitting eight devices, with a unique

10

. trap address in memory for each device, per level. In addition
there are four software API levels. The hardware levels are as-
signed as shown in Appendix 6 (levels 0 - 3) and software levels are

assigned as follows:

SOFTWARE
API LEVEL

4. Raised upon entry, from a user program or terminated

~ I/0 operation into the Monitor.

S 'Raised by the completion of an I/0 operation.
6 Raised for user service via the operating system.
7 Raised for user service via the compilers, Editor, or BTP.

The FACTS Monitor processes at the API level four and all
Monitor request must originate from below this level; since Monitor

request from above API level four are not closed out and re-
19

covery would not be possible

"When an I/0 operation, which is processed at API levels 0
to 3 is complete, a request for service at API level 5 is initialized.
‘The processing at API level 5, in turn, requests service at API level

4 to update the status of the hardware handling availability.

Operating System users are queued by the Monitor and are
given processing time on a first come first served basis. This gives
service to the fastest Test Sets more frequently, commensurate with

the speed of testing.

Background processing is granted at API level 7 with prior’ -
ity given to the Testran Compilers. If a compile request is received
by the Monitor via a TTY Keyboard, the particular Testran compiler for

that Test Set is loaded from mass storage and the Testran program is

11

1
.~

compiled. If another background user program is in process,

it will be swapped out of core upon its entry into the Monitor for

an I/0 operation and the Testran Compiler will be subsequently loaded.
After the compilation is complete, and no other compiler request is
waiting, the previou§ background program will be reloaded into core.
The Editor could be swapped out of core either when an I/0 request is
received by the Monitor or when a TTY I1/0 operation via the Editor is
in process. If the BTP is processing and an Editor request is made,

the BTP will be swapped out of core and the Editor will be loaded.

Memory protection and the trapping of illegal Instruction
software was degigned using the Memory Protection Hardware of the
PDP-9 computer. A boundary register and instruction register Monitors
each instruction that is executed and breaks to the Monitor when a

violation occurs,

3.1 - MONITOR EXECUTIVE PROGRAM

The Monitor is entered upon the execution of a CAL5 instruc-

tion and priority is raised to API level 4. The CAL instruction could
be executed as a result of a Memory Protection violation, by a user re-

questing an I/0 or Monitor operation.

3.1.1 - Memory Protection Processing

When the Memory Protection Hardware detects a violation a
CAL Instruction is executed and the Violation Flag is set. Upon entry
into the Monitor the Violation Flag is interrogated, and if set, the

following sequence is processed (refer to flow chart 3.1).

12

MENoRY

PRoJecTioN
VioLaTioN

DianBLE

USER MODBE

Frec uﬂ‘
,Zys]i’x[oﬁl

ReeENRBlE
VSER MjonE

3

IRRECAERABLE : EXRBIE
ERROR — PEOLT =, T
Verk— Fered ;"4" [:’;fb
Flow cHrt] 4./

\/

exf Je
USER

MEMORY PROTECTION PROCESSING FLOW CHART 3,1

If the trapped instruction address is less than 10000,
where the Monitor is resident, the User Mode is disabled and control
returns to the interrupted program. This occurs when a system pro-
gram ﬁser is being loaded or swapped, which is done at API level 6.
If trapping occurs because a user is accessing data in the protected
area of core, the instruction is permitted providing it is a LACS,
XORS, or XCT5 instruction. If trapping occurs by user manipulation of
Auto Index registers 12 to 17 all instructions are permitted. All
other conditions are illegal and the user executing the illegal in-
struction will be aborted. The following irrecoverable error message
will be typedj "ILCAL" followed by the core location where the viola-

tion occurred, in Octal.

3.1.2 - 1/0 Initiator

The format for the instruction for requesting an I/0 ope-

ration is as follows:

PC CAL _ABC
PC + 1 BUFFER - "
The CAL instruction causes a JM$5, Jump‘étore, to absolute
location 20 in core storing the PC + 1 in location ZQFQith bit 0 in-
dicating the state of the 1link, bit 1 indicating the state of the Me-

mory Extension Modes, and bit 2 indicatiﬁg if the User Mode (Memory

Protection) is enabled.

A Specifies the system user program number in bits 5 to 7.
B Specifies the handler nﬁmber in bits 8 to 14.
C Specifies the FACTS station number in bits 15 to 17.

Buffer specifies the address where data ﬁill be retrieved

14

or stored.

Upon entry into the Monitor the CAL data is processed

as shown in Flow Chart 3.2. Legality checks are made on the data in

the CAL instruction.

For the single threaded handlers, if the I/0 re-

quest is legal the CAL data, Buffer address and user return pointer is

stored in "XGENQ'" queue and the device busy status register "XBUSYR"

is interrogated. If it is free the device handler is entered and

the busy régister updated. If busy, the status of the number of users

waiting for that specific device handler is updated in table 'XSTGEN".

The format 6f the Busy Status register "XBUSYR" is:

BIT
0
1

10
11
12
13
14

15

DESCRIPTION

Disk

Dectape

Card Reader

Paper Tape Reader

Paper Tape Punch

Analogue to Digital Converter
Not defined

Not defined

Not defined

Not defined

User TTY 8

‘User TTY 7

User TTY 6
User TTY 5
User TTY 4

User TTY 3

15

BIT DESCRIPTION
16 User TTY 2

17 User TTY 1

The status of the number of users waiting for a device
handler, in "XGENQ" queue, is loaded in table "XSTGEN" as a function
of the handler number. The number of bits in a register of table

#XSTGEN"'represents the number of users waiting.

For the teletype, Keyboard and Print, I/0 request data is
stored in tables in the Teletype handler directly. For the System TTY

there is also an eight entry queue "XSYSTQ" for multiple I/0 calls.

For the multi-threaded handlers, such as the Real Time
Handler, CAL data is accessed by the handler upon entry from the 1/0

Initiator.

The user relinquishes control upon the request for an 1/0
operation except for Transmissions of data to a FACTS Test Station.
In this case control is returned to the user immediately after the

Transmission.

I1f the I/0 request is from the background, and a compilation
is in process, the request is granted. If the user is the Editor and
there has been no compilation request, the I/0 is processed, but if
a compilation request has been registered, the background Swap routine
is entered. If a BTP requests an I/0 operation, and no other background
request has been registered, the 1/0 is processed, but if a background
request has been registered, the background ‘Swap routine is entered.

The Swap routine stores the CAL pointer of the BTP and/or the Editor

program, for user recovery, and sets software flags for the initiation

16 .

ReTrieve

SET Rw]ER
Jo ExiT vip
Rer7

SET PO‘NTHQ

To ExiT viA || 1>
AP16

SE] sWnp
INZIE BTOR FEhfeammn

Seteruler

|

SIORE chl
Posw Jer
Foxk A?z-ml/é&/}f

!

SE] wWyepyor

SToge ché

Fo? BTP or 2HTH IV
—p

ExIT 7o
SctepoleR

I/0 INITIATOR FLOW CHART 3,2 . PAGE 1 of 2

SINGLE

No
THREALED »
Roanprrs
\7 -
‘ ©)
sTore DaJR
IN XGEN @ 7
“
Shove s A
DATH W Q_——_\\?USY >
XZYS ® -
; - V7] 2
% 2 | N\
* \v4 Fron Flew
<Tor& ' T CHART 3:3
Uity SE] Busy PRGE 2
/ [_1 ’Q . ;) g
—'TF“U(B v i
YBUsy &}
\/ . i
Se] Busy
BT IV
S PSR
xBusyR <Jogs A:jUKn)
iBJUfFEK) 4 P&j/f\/f P
>37) I e _,l’; .
37528 ariel 2
- Y4
[~ 70) . — !
f':‘;;-b& R TWIT 122 72 Sloxe Kw«’r/ ;
' THE ' ;é BoFFer
= 4 01, 6A’S M
| ;‘)A"//chl: L rors o vissd
| 'L
..,....__V.,_ -
Tj= 70 e ;
2_ ; Prii) T >-/’A i
} Commr»r!d ,{ }
< FoR 7EYT
ModES
I/0 INITIATOR FIOW CHART 3.2 PAGE 2 of 2

13

of swapping by the Scheduler.

3.1.3 - 1/0 Termination

When an 1/0 handler has completed it's processiﬁg, or
wﬁen a user requesf has been received via the Keyboard Handler, an
API level 5 request is made to initiate a Monitor call to register
the I/0 completion or user request. The I/O handlers which process
at API levél 0 to 3 cannot directly access the Monitor which process

at API level 4, processing at API 5 is used to enter. the Monitor.

Flow charts 3.3 shows the processing of the call to the
Monitor via API level 5. If a user is requesting service of a back-
ground. program, the call data is stored in the "XNEWBQ" queue and a
software indicator is set, for interrogation by the Scheduler. Upon
the completion of a background I/0, the return pointer and FACTS sta-

tion number is stored for user recovery by the Scheduler.

Op/Sys, 1/0 termination request, or user requests for ser-
vice call data is stored in "XOP6FQ" queue which is reference by the

Scheduler on a FIFO basis.

Irrecoverable and Recoverable error print requests are also
processed by the I/0 terminator. For recoverable errors, the return
Pointer to the I/0 handler is stored in "XRECTB" table with reference
to the FACTS Station number and the Print Handler is initialized to |
type the error message. When the user has taken the required corrective
action and typed a TR, the I/O Terminator returns control to the Handler
via the "XRECTB" table. For Irrecoverable errors the call data is

stored in the "XOP6FQ" for all System Program users and an irrecoverable

ENJRy ViF
CaL AT RPIS

SET Poru JER
To 'Exi]'
vip RPTS

SET s]aTvs

BT N

XIRR ST

pLACE CALL SET USER
DATA IN RERUEST

XOP6FR INDICATORS

Loa> USER

RETURN pomTEQ STORE CALL
IN I/o END Drra IN

sTO RE CALL

2BTH N
XOPOF &R

I/0 TERMINATOR FLOVW CHART 3.3 PAGE 1 of 2

CLEAR Bus
BT N
XBUSYR

DRTA FRroM
XsYsqQ

Re[RIEVE ChLL

L

XRECTB

il r®

OF Flow
CHART 3.2

SET Poid Jigs
T PRINT
ERRoK,

I/0 TERMINATOR

MELSAGE

'

FLOY CHART 3.3

SToRE Relurw
POINJER. T —<3—‘_
HANDLER N

Re‘[me VE
HAMDLER
PoNTER FROM
| XRECTD

PAGE 2 of 2

21

status bit is set in "XIRRST". If the user was processing in

the background, the 1/0 complete indicator is also set for the
Scheduler to complete the abort procedure. The Irrecoverable error
prinf out is.processed as if the user was a foreground user and at
its completion, the Irrecoverable status register is cleared. The

bit assignment for the status register "XIRRST" is assigned relative

the FACTS Station Number.

3.1.4 - Queues

There are two'types of queues used in the FACTS Monitor::
a table where data are referred by the table name and a multiple of
the FACTS Station number and a Circular List8 to store requests for

single threaded device handlers or user requests for service.

There are two types of circular lists, one to store two

data words, one to store 3 data words.

The first three entries of the Circular List specifies
the last core location of the list, the first data entry , and the
next free data entry. The 3 data entry list, to store eight possible
entries, has 4 + (3 X 8) locations and the two data entry lists con-

sists of 4 + (2 X 8) locations, allowing one free entry for overflow

checking.

The data is stored by the "XSTORQ" sub routine as shown in
Flow Chart 3.4. The call for this sub-routine is followed by the name
‘of the queue, starting core location, prefixed by law(S) for a 2 entry
queue. The data stored for a 3 entry queue, consists of the CAL in-
formation, followed by the return pointer to the user and the buffer

address where the data is to be retrieved or stored. For a 2 entry

22

queue the data stored is the CAL information followed by a pointer.

Upon entry in the "XSTORQ" sub-routine the queue parame-
'ters are refercnced. If the next free data entry is at the last lo-
catién of the queue, and first user to be accessed from the queue is
not in the first data location of the queue, then the data is added
to the queue, otherwise an overflow condition will exist. The first
qata'register is accessed and stored. If the next data entry address
in the queue is equal to the first data file address that can be accessed

from the queue, then an overflow condition will occur.

Before each register of data can be added to the queue, a
check is made so that if the next free location is at the end of
the queue, the next data entry will be at the beginning of the queue.
If a two register data queue is specified in the call, the routine is
EXITED after two entries have been made. After the processing is com-
plete, the parameters of thc queue are stored in the FIRST three loca-

tions. --

. Thé data is retrieved:from the queues by the "XGETUQ" sub-

“routine, as shown in Flow Chart 3.5. The call for this sub-routine is
followed by the name of the queue prefixed by an XCT5 to indicate a two
entry file. If prefixed by a LACS, the scanning of the queue is made
for a match fo the System User Program as specified in the "XRQSYS"
register; otherwise, it masks for the handler number as specified in
UXHARDN'" register. The information in the queue could be retrieved from
any part of the queue, and if it is interstitial between the first and
the last entries in the queue, the queue will be pushed down to fill

the void. There are two or three storage registers following the name

of the queue in the call up for retrieval of the file data. The following

XLI «- DATAL

XLT = xLI +4

\/

¥ LT < DATA2 <

Y

REPoINT XLI
CloctKWIsE

uXSTORQ"

Queve DAfa
OVER Flew

PRINT N\oNiﬁ

EREOR

SUBROUTINE

ALT -DpAR3

!

REPoN] XT
CLocK WIS E

YLT < :Dﬁ]fd ‘_@
XtT = SJAR] < @

&

Rese]
Porn 7' ELS
N RUEVE

\/

LEGEND &

XENDQ = Lps] cove€ Lechjion) oF Q
XFI F1sT DPJR PONJER

XLI NEXT FREE FILE LOCAJIoN
DT = FIE Jo be sfogcd
SpR] = FIRS] cove ZO(p//'p;u o

"

FLOW CHART 3.k

ReJrieve
PoOINTER S

v,
REF- Q PoINTERS]
XENDQ = END.OF &)
X FI - FIRs] DAfn
XLT - FIRST FREE

XTFI = XF1L

v

XToPFI = XFI
NAMELe- XET <

XFI=XeT 42

PXFI = XFI +3

XFI =2XFEt]
NAME2 &« XFL

LEGEND :
)\/ﬂME = CALL PRG:

' START ® STARTING Ponjer oF Q
l 4 i TART f

. .’."
L

"XGETUQ" SUBROUTINE FLOW CHART 3.5 PAGE 1 of 2

XFI =XFI +1
NAME 3« XFI

|

REseT
PornTeRs

IN QUELE

XTMP2=XTopFI q'—‘@

RepoIN T
XTMP3= XENDR XTFI 4 xTOoPFI
CoUNTER ELOCKWISE

XTMP3 = xppz-l

XTM P24 XTMP3 @

RepoinT xTMpP2
CounTiRe e K, |

WXGETUO" SUBROUTINE FLOW CHART 3.5 PAGE 2 of 2

location is an crror return, file not found in queue. If the file
is found in the queue, control returns at the location following

the error return location.

Upon entry in the "XGETUQ" sub-routine, indicators are
set according to the prefix of the queue name and the queue parameters
are accessed. If the queue is empty, the sub-routine exits to the
error return in the call up; otherwise, pointers of the first file
entry are stored and the CAL entry in the file is accessed and masked
either for the handler number, or the System User Program number, as

specified in the sub-routine call. .

If there is a match, the two or threc entries in the file
are accessed and stored in the registers specified in the call. If
there is no match, the next data file is accessed and the process is
repeated. When a match is found, the file is accessed and stored in
the call registers. If the match is noc found in the first file entry,
the remaining files, before accessed file, are .moved dbwn to replace
the reference file. Each file is moved down onéfby one until the top
of the queue is reached. The pointers are incrémepied by 1 and the

process is repeated two or three times depending on the queue.

3.2 - MONITOR SCHEDULER

The Scheduler initiates service: to users processing at API
level 6 § 7. If there is processing at APi:level 6, it is uninterrupted
until this user makes an I/0 request, excépt for I/0. interrupt servicing.
The request is honored by the I/0 Initiator which subsequently calls the Sche-

duler. The Scheduler terminates service at the user API level that is waiting

27

for an I/0 operation § control reverts back to the user processing at
the other API level, if one is ACTIVE at that time. Control is
therefore switched between foreground and background processing
whenever an 1/0 operation is requested. When 5 foreground user I/0
is complete and a baékground user is processing, the background user

will be interrupted to give service to the foreground user.

Each user has a buffer of 256 locations in core for one
page of his program to reside, with an additional 256 location buf-
fer for parameters. The normal processing time for a page is normally .
30 milliseconds, if there is no I/0 calls in the user program. There-
fore, the maximum time a user can process is 30 msce. before an I/0
request is made to load the next page of the user program. Since the
Scheduler assigns processing time on a FIFO basis, under worst condi-
tions (7 users) this user would regain processor control after 6 X 30 msec.

plus the time required for the I/0, which was requested, to be completed.

The programs that are processed in the background require a
maximum of CPU time by design, whereas the foreépound program which con-
trols real time processes is 1/0 bound for the most' part. These 1/0
operations are normally from 1 to 10 msec. in durdtion? and since the
foreground has priority over the background, normally:é foreground
users will each process an I/0 request before one page of the background

userprogram will be completed.

Flow chart 3.6 shows the detailed processing of the Scheduler.
A user requesting background processing sefvice is pléced in the "XNEWBQ"
via the TTY handler through the 1/0 Termiﬂgtor. Software indicators are
set specifying the number of requests for differenp background programs.

In addition, indicators are previously set specifying what background

28

program is in process, whether a Swap is in process, and what pro-

grams have been swapped.

The Scheduler INTERROGATES these soffware flags‘giving
priority to fhe Compilcr, Editér, and BTP, in that order. If no
background program is in process, the user request for background
service is interrogated. If one is active, the call information in

"XNEWBQ"is accessed, via the "XGETUQ" sub-routine, and control goes
to System program loader via a request for service at API level 7.
The "XTRANS" Indigator is forced up during the loading process to
guarantee hon-interruption vhile leading. When loading is complete,
the respective in process indication is set and control goes to the
system prograﬁ, with API 7 being requested via the user entry table
in the keyboard handler, so that the file name that the system pro-

gram will operate on can be accessed.

When the BTP or Editor is active, and a user request for
the ﬁditor or Compilation service is registered,rthe Scheduler will
initiate a Swap of the BTP or Editor via the Swéﬁ'Ogtput program,
when an 1/0 background call is attempted. Upon qoﬁﬁletion, the re-
quested System Program will be loaded and éontrol wili&be transferred
via a request for processing at API 1eve1'7. When this program is com-
plete, and no higher priority program has been requested, the previously
swappéd program will be reloaded and control will be returned at the
location where it had been interrupted. %hé BTP can only be interrupted
when requesting an 1/0. The Editor progran can be interrupted when

requesting an 1/0 or when a Teletype Print-or Keyboard I/0 is in process.
In both cases peripheral interrupts will be handled but control will revert
to the background at their completion. There can be up to 7 Operating System

program users being processed at API level 6. Request for service and 1/0

completion data is stored in "XOP6FQ" queue. The Scheduler interrogates
this queue and if a user is waiting control is transferred via a request
for processing at API level 6. The Operating System user program

is loaded at-cold start and is always resident.

If a '";" is typed at any time, which indicates that the
user wishes interaction with the Op/Sys, this fact is stored in table
"XSEMIR" with reference to the FACTS Test Set station number. This ta-
ble is interrogated by the Scheduler and if a ";" has been registered,
control is returned to thc Op/Sys Semicolon liandler with the normal
return being saved in the table "XSEMIR" for recovery by the user, if

requested.

There is an Activity Table "XTBL1#'" that is interrogated
with .reference to the FACTS number prior to control going to any System
User Program. This table indicated if the user is still active or if
an abort indication has been received by the user via the Keyboard han-
dler. if active, the user gets service, if an abort request is regis-

tered, the user is aborted.

bThe FACTS station 'number which is defined by the TTY that
is requesting service, defines unequiveacally each user. All data in
tables are accessed by the starting core location of the table and
the FACTS station number for each u;er. When control goes to one
of the System User Programs, this number is accessed and all I/0 calls

or internal processing is made with reference to this number.

3.3 - SYSTEM USER PROGRAM LOADERS

After the Monitor is loaded, control goes to the cold

30

<ScHeDULER

ER OR Cem -
plefion

\/
REJRIEVE ReTRIEVE
VSER. VSER
Poid JER, . PoINTER-
s
PLACE Poifie "
IN XPCMD T 4 >
1 Req PPIT
PAGE 1 of b

SCHEDULER FLOW CHART 3.6

ETRIEVE
Fljs‘gz ;F?Tﬁ)- }786‘&?,7' &7
EROM XopéFQ ﬁ/:s Sfﬁ/{"r’
yeer N DICHTE
| RETRIE VE
| Porn JER
To oOp/AYs
hoHDER

RETriEVE sTorE VSER
USE./Q.h pow]’te IN
PoiN]ER XSEMIR TBL

RequisT G | RETRIEVE 9
SERVIEE @4____ HanpLeR
AT PPZT . po,u‘[&'ﬁl

LEVEL 6

SCHEDULER FLOW CHART 3.6 g PAGE 2 of 4

[N PROCE=SS

SET ve
PoINTERS
To =whp
EbiToR

SET Tkans

IN PQ OCkTs --—-|>

INDICNATOR

,Qs;l,e;&u'ﬁ
POIN[ER TO
Swpp EDIfDR

" FERO
/N.D/Cﬁ/'ol? <

&

SCHEDULER

9

FLOW CHART 3.6

ES .‘

ReTrRIEVE

Compiler

lorpt &
PoInTER

ReTRIEVE
Com Pl LER
PoINTER

S

PAGE 3 of L

33

RETRIVE
FOINTER TP

RE chLL
EpIICS

NeTRIEVE
FoiNJER To D
cpLL
EDITER

/s
PK’DC‘;VC,”II’

I8 rives ‘q
AonDED

7

REJNIEVE LL e IE
s

PROGE I SRLECHTIED

D /\v'/.f"i(’ T ZF,

SCHEDULER FLOW CHART 3.6 PAGE L of b
34

start program which clears all flags and enables API. A call loop

is established, which repeatedly calls the Monitor until a user re- :
quest is registered. When the first call is made, the Scheduler

initiates the loadiné of the Op/Sys. The Loader consists of two

dectape handler calls for opening the Op/Sys file and for reading

that file into core. The Op/Sys is then resident in core.

When a request is registered for Op/Sys usage, control
is transferred to the Op/Sys program. When a background user request
is registered, the Scheduler initiates the loading of the required
program. Upon entry into the loader, the compiler in process indica-
tor is set so that the loading will be completed before allowing
interruptions. A file is opened requesting the background program.
Subsequent I/0 calls are made to read the file into corc. When com-
plete, indicators are set to specify what program is in process and
the loader is terminated via the END CAL. The swap loader writes and
reads programson predetermined mass storage locations, one for the

BTP and one for the Editor.

3.4 - MONITOR ERRORS

If an error condition arises because of software bugs in
the Monitor or I/0 landlers, a Monitor Irrecoverable error printout

is generated on the System TTY and processing is Halted.

The format of the messages is "ERRN'" when N is a number from

0 to 50. The definition of the error appears in Appendix 5.

When an error is detected, a Jumpstore instruction is executed

with the reference number N. The Error Handler disables API, converts the

number N into the appropriate ASCII characters, and outputs the
message on the System teletype. When the print is complete, a HLT

jnstruction is executed.

5

30

CHAPTER 4

1/0 HANDLERS

A typiéal call for an I/0 operation is:

5

LAC™ Arg 1
XOR5 Arg 2
XOR Arg 3
DACS .+1
caL®

Arg 4

Arg 1 - specifies

Compiler,
Arg 2 - specifies
Arg 3 - specifies

Arg 4 - specifies

the System Program; either the Op/Sys, the
the Editor or the BTP.

the Handler number.

the FACTS station number.

the Buffer location where data is to be

transferred.

Arguments 1, 2, and 3.are combined with the CAL instruction

‘prior to the CAL be ' ag executed.

For single threaded handlers, i.e. dectape and paper tape

handlers, the CAL data, buffer pointer, and the user return pointer

are accessed from the "XGENQ" queue and stored in the handler via the

"XGETUQ" sub-routine. In multi-threaded handlers, i,e. the TTY and .

Real Time Handlers, the data

is stored in the handler or referenced di-

rectly from the I/0 initiator by the handler at the time of the 1/0 call.

37

4.1 - ERROR HANDLING

There are two types of Error processing in Hardware Han-
dlers: Recoverable Errors, which allow for operator interaction for
recovery, and Irrecoverable Errors which aborts the user. .The hard-
wére handler interrogates flags and if a recoverable error is detected,
a request for recoveréble error print is made via API Level 5 handler.
If an irrecoverable error is detected, the user active indicator in
"XTBLlO"Atdble is changed to an abort request, which is interrogated
by the Scheduiér, and the user system program identifier in "XTBL9"
table is cleared. The error data to be typed is stored in "XIRRPO"
table (in Octal) with reference to the FACTS station number. A re-
quest for an error print via API level 5 handler is subsequently made.

This handler completes the print request via the I/0 terminator.

When a recoverable error option is included in a handler, a
limited number of recoveries are possible, after which, if not success-
ful, an irrecoverable error condition will result. Refer to Flow Chart

4.1,

4.2 - TTY HANDLERS

The TTY handlers can service eight separate TTY's. The TTY's
are interfaced to the PDP-9 computer with separate hardware buffers tied

to the I/0 bus with all flags ORED to one position of API level 3. When

an API interrupt occurs, causing a jump store instruction via trap address

71 to the TTY handlers, a common skip chain interrogates which flag,

Keyboard, or printer caused the interrupt. Register "XTTYNO" is set

1 RRECOYERTHL
£ERROR

LoRD gefivily
TRBIE AJBRLIO
WiH #BoRT
INDICATOR

;

REMEVE VSER

PROGRAM Fo]]
ER FROM
TPBLE XIBLO

)

ReJRIEVE ERRR
D7k To BE B
£ PALD SJPAE
YN TrBLE XIRRAY

AV
lonsinve]

1RPE COVRRHAE
- Ercor CoL

<£T 0P Ronj -
7 PecEss &@

ben] Koo fm&

I

RER. SErRVIC
p7 #pz
AEVEL &

\/

IRRECOVERABLE ERROR HANDLING FIOW CHART L.l

indicating the FACTS station number, according to the position in

the skip chain where the flag was on. If a print flag comes up,

the Print Handler is cntered, if a Keyboard flag cories up, the TTY
buffér is read and the Keyboard llandler is entred. The TTY's are con-
nected in a Full Duplex mode. When a character is typed on the Key-
board, the character is echoed via the Print llandler after processing.

Appendix 2 gives the trimmed ASCII.character definitions used.

4.2.1 - Keyboard landler

The Keyboard Handler processes all characters that are typed
on the TTY Keyboards. There are three modes under which this Handler

accepts typed data. The User Initialization, COMMAND or TEXT MODE.

The User Initialization mode is defined when a user has not
been identified to the Keyboard Handler. This mode can be entered only

by typing one of the six legal Control Characters.

The COMMAND mode is defined to ‘the Keyboard handler by a
Monitor CALL request initiated by a System User Program. This mode
oo
permits up to an eight character command to be typed by the operator

and at it's completion, the first three characters are.transferred to the

user program.

The TEXT mode is defined to the Keyboard Handler by a Monitor
CALL request initiated by a System User.Prégram. An unlimited string of

characters may be typed by the operator.'

When a user has not initialized a System Program request .
"WHAT?" will be echoed on the printer, if a character other than the
legal control characters is typed. If a System Prdgram has been ini-

tialized, but the COMMAND or TEXT mode has not been defined to the

40

Keyboard llandler, any character typed on the Keyboard is ignored.

4.2.1.1 - User Initialization Mode

There are.6 Monitor Commands that are defined in the Key-
board Handler. TF, T, TE, and 1B are System Program call requests
for the Op/Sys, the Compiler, the Editor, and the BTP, respectively.
In additon, there is A for aborting the present user and fR for gi-
ving control back to the I/0 Handler subsequential to a recoverable
error print and operator interaction. Carriage return (CR) is used
for delimiting a command string, and rubout deletes the data being
typed with a Backslash being echoed. When requesting service, the user
types one of the four System Program calls. The Keyboard Handler de-
tects that it is a legal control character; that thié FACTS Test Sta-
tion was previously inactive, and subsequently stores a pointer to
the Keyboard service routine for the System Program in "XTBL9'" table.
The user entry table is loaded with the starting address of the respective
System Program. The Echo routine is entered, wﬂéch sets up the proper
links and accesses the Print Handler to echo thércpntrol characfer typed
on the Keyboard. The Handler is then primed to réééive the File nanie

that the System Program will operate on.

The file name characters are tﬁped and read into the Keyboard
Handler. They are checked for validity .and. are converted if necessary.
The characters are packed in 6 bit trimmed ASCII (refer to Appendix 2)
and stored in the user entry tables, "XTBL30" to "XTBL37", as a function
of the FACTS STATION NUMBER. A maximum of;.eight characters are accepfed.
Each character typed is echoed. Subsequently, thevuser types a carriage

return which delimits the character string and initiates a request for

41

service via the API level 5 call to the Monitor. Since a number of
requests for service can be made simultancously, the status register
"XAPI5C" is updated to indicate which FACTS STATIONS have requested
service and the CALL data is stored in table "XTBL11" as a- function

of the FACTS number. The CALL DATA contains a CALS with the user re-
quest handler number and the FACTS STATION number followed by a pointer
to the user entry table. The activity table "XTBL10" is conditioned to
indicate that this user is now active. If a character is typed before
the legal control character, or if more than eight characters are typed;
"WHAT?" is echoed and the user entry table is cleared, Flow Chart 4.2

thows the processing of a Keyboard request for service,

When a user wishes to terminate processing of a System Pro-
gram a M is typed. The active indication in table JXTBLIO" is changed
to an abort request, to Se completed by the Scheduler, and the System
Program indicator in table "XTBLY" is cleared. TA is echoed on the
printer. If the abort processing is not complete, and a A is typed,
"WHAT?" is echoed. If A is typed at an inactifg FACTS STATION, "WHAT?"

is echoed. S

When a recoverable error printout is fécorqu, the operator
performs the required action. At it's completion, an.TR is typed to
transfer control back to the Hardware Hanéier. A CALL request is con-
structed with the respective FACTS number and the recoverable request
handler number, and this is stored in the"'XTBL11" table. The status
register "XAPISC" is updated to indicatewhichuser is requesting a CALL
to the Monitor via API level 5. The 1/0 ﬁgrminator,will complete the

entry back to the handler that originated the recoverable error print-

out.

42

Vi

R]riEvE T7)
Noi? BER 0D
Asore i XYV

TY PrwT
INJeRROp 1. Go
To FLow cire)

4.

ot SuP

{bp\‘q.’ & od
Taple XT8LG

AV
sfoRe svp
potpfer. N

THhis VSER
ENTRY TnsLE

v

e THE |
conjrot |
C#r?/s’HC/Z—“,Q J

\/

NADRGE R <

VWHAT 7

TYPE <

ZERO

B2/ TITIE R

TR ATELS

SET FEORT
INDICATOR 110

ThRlE XTBLID

TTY KEYBOARD HANDLER FIOW CHART Lo2 PAGE 1 of 3

qgyam apidgel Wil ?
Vid _ X7449 :

G

spec;/:}(SUR
NUMBER FoR
¢nL ExiJ

Go Jo
Fhow c‘//ﬁ‘l;‘;'

.3

Lery 7oyos]

ER W UET

Zevo VET
> 557;bw/ B

£efts

]

wACK|
Load cHiRACK SeHo 7/

EQ WVEL3 L b

CHARACTERS | CHRRACT E K-

Legend
VET =

ThaLe

LsEe. £N7A’j

. ‘ LSER KE RN
Dl 1ps J eI > o KE]Rit ¥ p.@ Vs

Coysjwuc] JHe

pbg cove [rcwon

TTY KEYBOARD HANDLZR FLOJ CHART L.2

Porn ek 10 LET

&)

@D

PAGE 2 of 3

44

Exi]” Fror:
TTY #ti2)ie)
T MoniBéR
4 REF. PonTik

TRALSFER K4f,
PoinTeR To

XLl WITH
Key. To XITYNoO

)

STOR‘E che
DATA AML VE]
PordTeER
SToRE XTYNO

MymBLR 110
Lotptio) Xpezsc]

]

PERQ SeevItE
AT APT LLVEL

Cr oyt ry
RE® /

L£CHO
WHET

Cows/guc]
(nL ok
SLOOVER "/

£clo
AR

5

TTY KEYBOARD HANDIER

FLOW CHART L,2

Eerl

PAGE 3 of 3

4,2.1.2 - Command and Text Modes

When a User Program initiates an I/0 request for Key-
board input, the I/0 initiator loads the user return pointer in
table "XTBL2'" and the user buffer pointer and mode data in table
"XTBL3", as a function of the user FACTS number. A " >" is typed

to indicate to the operator that interaction is requested.

There are two modes defined, the Command and Text input
data request. If the Keyboard is struck prior to a program user re-
quest, the character is ignored. In the Command mode, the Keyboard
handler reads_and echoes one to eight characters typed and stores
them in the user entry table in 6 bit trimmed ASCII. When a carriage
return is typéd, the first oneto three characters of the Command are
transferred to the user buffer location as specified in table "XTBL3".
The user return pointer is accessed from table "XTBL2", a CAL is
constructed and both are stored in "XTBL11.'" The "XAPISC" status word
is updated and a request is made for API level.5 serviée to initialize

return to user control e

S
In the Text mode, the Keyboard Handler reads and echoes the

data being typed, and stores it in the user buffér, asﬁépetified in
"XTBL3", in 6 bit trimmed ASCII.- It is assumed that'fhe buffef size is
255 (decimal) locations. When a carriagé.feturn is typed, a calculation
is made so that a minimum of 24 (decimal) locations remain in the buffer
prior to accepting another line of Text, o that the buffer will have
only complete lines of Text. When there aée less than 24 locations: .
left, a "*""is typed and control is trans%érred hack to the user via

APT 1level 5. After the User Program has précessed this buffer, a Text

1/0 call will. be made.

46

If the user is typing less than a buffer ;ize by
typing "*", following the Carriage Return, contrel will be re-
turned to the User Program. If the user wishes to return to the Com-
mand mode, ''CR*" is typed following the CR line delimiter. The User
Program after receiving control, completes the processing of the
Text and returns with the Command mode enabled. Flow chart 4.3 shows

the processing of User Program request for operator input, via the

Keyboards,

The ECHO sub-routine is entered with a number in the AC
indicating what characters in "XTYPBK" table are to be echoed. Table
"XTBL6" is loaded with this pointer, and a mode bit indicating an
Echo request. Table "XTBLS" is loaded with the return pointer of
the user requesting the Echo. The Print Handler is subsequently

entered.

4.2.2 - Print Handler

When a user initiates an I/0 request for the Print Handler,
the I/0 initiator loads the user return pointer in table "XTBL5", and
the user buffer location and mode data in table "XTBL6". The I/0
initiator conditions the Printer by issuing a non-printing character
via the 1/0 instruction reference from table "XTBL4", as a function
the FACTS station number. The printef flag is subsequently set and

the printing of the data begins.

There are three modes defined in the Print Handler, 6 bit
packed ASCII, unpacked 8 bit ASCII, and Octal print. The delimiter
for 6 bit packed ASCII is a zero character, for unpacked 8 bit ASCII
and octal printing the delimiter is a zeroed register. Upon entry

into the Print Handler, via the print flag, the mode data is referenced

47

XTRLZ AND

TRANSFER J
> bere e FIRET 2 CHER
cREr ‘ peTLes To THL

VCER EDFTES]

CARRFCTER

% ConsJrve]
C/;/ZQ CPpL AND RE-
’ TRIEVE REJORN
PoINER
'—"""""~-l v
Lops uvb e - —

U/)/c‘{- PSP R B
e Flew CHiR T
W UET | . e

Y §

Eclo - Y
EHIRHCTE R ExiT

KEYBOARD COMMAND AMND T2XT PROCESSING " FLOW CHART L.3 PAGE 1 of 2

TEXT
MopE

Ruboul
CH anchli
QEC'D

INFor L LINE
OF TEXT
LEFT

Lopd CR
AND * IN
USER BUFFIR

Loan ¢
IN pezR
EuFreRr

;

LoAD .
CHﬂRnC]'ErL IN
USER Eu FFER]

!

EcHo
CHARMTER_

KEYBOARD COiIAND AND TEXT PROCESSING

Ecflo ¥
AND LFER

FLOW CHART 1,3

)

PAGE 2 of 2

49

and one of the 3 print mode handlers is cntered,

For the 6 bit packed ASCII mode, if a "CR" or "TABR" was
previously typed, an "LF'" or "RQ" is typed unconditionally, as referred
to via table "XTBL50". 1If this is not the case, the next éharacter is
unpacked with reference to the counters referred to in table "XTBL40",
and the user buffer location in table "XTBL6". The character is checked
for possible conversion. If the character is a "TAB" or a ""CR", table
"XTBL50" is updated to subsequently print "RO" or "LF" respectively.

The character is reconstructed into an 8 bit format and printed with re-
ference to thg I/0 instruction in table "XTBL4". The counter in table
"XTBL40" is uﬁdated as characters are unpacked, and the user buffer lo-
cation is modified as data is being printed. When a zero character is
encountered, control returns back to the user prograﬁ via an API 1level

S fequest.

Octal and 8 bit ASCII printing is processed in the same man-
ner. Table "XTBL41" contains the counters to unpack 6 Octal digits per
register. When a zero register is encountered,. control reverts back to

R
the User Program via an API level 5 request. Refer to Flow Chart 4.4,

4.3 - PAPER TAPE READER HANDLER

This handler is single threaded. The user CALL data is re-
ferred to via the "XGENQ" queue and storéé_in the handler. The input
data via paper tape is assumed to be eithé} standard 8 bit ASCII or
ASCII with bit 8 used for polarity. The Eﬁper Reader hardware is set

in motion, in the alphanumeric mode, and the handler exits to the

Scheduler. This processing is done at API level 4:

50

PALKED
Ascll

CHARRACTER
CR kT

UN Pac K
NEXT
CHOERIC 7& &

PE(O//S)R’U(f
IN/b y-y3ya
pscil

PRINT HANDLER

"PRNT
LF or RO

CDN_ep;u[r
CHL BNO AET
TRIEVE USER

POINIER

H?m/"

FIOW CHART L b

Go Jo [
Elow chon]
42

PAGE 1 of 2

51

CHARACTERS
PRINIED

UNPACKING
CoMplefE

UN PACIS

NexT <

CHARNCTER

)

Covsfrue T

PSCIT CcHIRKCT-
ER TROM peJiL
2167

PRINT
L0 RAGTER

\/

PRINT HANDLER

PRINT

YES
—D | Fcr

FIOW CHART L.L

(@

Consprvey
CAL AwD PE-

TRIEVE UsEx
FPor/NTER,

C,"o TO Q}
Flow crue]l
4.2

PAGE 2 of 2

52

>

When a character is detected, the Reader flag is set
which causes an API level 2 request. The handler is entered via
‘the forced Jump Store Instruction in the trap location 50. The
paper tape end flag is interrogated {this flag is used as the de-
limiter for the data being read) and if active control is tiansfer-
red to the user. If this flag is not "up" the character is read
substituted if required and subsequently packed and stored in the user
buffer. When a "CR" is read, a calculation is performed so that a
complete line of data will terminate the buffer, which is assumed to
have 255 (decimal) locations. If the buffer gets filled prior to the
paper tape coﬁpletion, control is transferred to the user to process
the data, and subsequently the paper tape handler will be recalled to

complete the paper tape read. Refer to Flow Chart 4.5.

4.4 - PAPER TAPE PUNCH HANDLER

The Paper Punch llandler is single th%eaded. The CALL data
is referred to from the "XGENQ" queue and storeﬂxiﬁ,the handler. The
data buffer is assumed to be 255 locations of 6'5£t Ppck ASCII. The
Paper Punch is initialized and exits to the Schedulef.“ This processing

is done at API level 4,

When the Punch gets up to speedy a flag is set which cause
én API level 3 interrupt, and forces a Jufip Store execution via the
trapped address. The status of the paper‘iape is interrogated, and
if insufficient paper is present, a recoiérable error request is
made via API level 5. If this condition persists after two recoverable
error printouts. to the operator, an irrecoverable request is made, and

the user is aborted.

lar 7794 zm];;
His e N ::]Iw
D IN XGENQ VD
PTR HANDIER

ReJRIEVE
CRLL DRTA
MWD INITIATE
PT R __

G o
0 Sciffdul:R

FTK Enry ViF

APL TNJERRVFT,

RERD PTR
BN INITINJE
PTK

ZERD

1ARATER,

STDRE
CHARNCTER
IN 6 biT
For mnNT

CD/Y.S77?UC7'
cAL AL KE-
TRIEVE REJIRM

PoNTER

Dy
RES. SERVICE v
LEVEL &

PAPER TAPE READER HAMDLER

LESEND T
PTR = PPHER THPE KEPNDER.

FLOW CHART L.5
54

If there is sufficient paper tape the first character
js accessed via the user buffer pointer and it is unpacked, substi-
‘tuted as required and recontructed into 8 bit ASCII and punched. When
a zero 6 bit ASCII character is detected, control reverts to the User

Program. Refer to Flow Chart 4.6,

4.5 - DECTAPE9 HANDLER

This Handler is single threaded. Data is referred to from
the "XGENQ'" queue and stored in the handler. The FACTS station number
also defines the dectape that will be active. The format of the user

buffer for.the dectape I/0 CALL is:

Pointer 1, NAM /Name of the file
EOO /In 6 bit ASCII
000 /8 characters maximum
Pointer 2, /# of blocks and starting
biock

. \
/Present block
JFirst core location of user

buffer.

There are 6 operations defined in the dectape handler: open 2
file, close a file, read onc block of data, 256 locations, read all the
file, write one block of data, and write 411 the file. Appendix 3 shows

the definition of the dectape directory.

4.5.1 - Open a Dectape File

To open a file, whether for reading or writing, the user spe-

55

Relseve
cnLL 2z
DD 7 w1/ JiifE
P7P

CDNSTKUCT
CAL AND

Reeie ve
YSER POINTER.

R&Q‘
SeRrRYICE
AT APT _ .
LEYEL 5 -

FIP ENJRY ViF?
FPL TNJEARVPT

OF PRPER

PoncH LT
o ek RO

UNPACK, CHAR-
ACTER AN RE-

coNsTeueT Vo
ARSCIT FoemaT

PuncH

PAPER TAPE PUNCH HANDLER

dln@c'(ep.

TRRLCOYER S
EARER. - Cyo

To FLow /AT
%/

coysikye] o
I AND £ErIE VE
PonT Fo r2 KE-_D@

(OVERPBIE ERELH

LEGEMD
PTP = PAPER ThPE PunNcH

FIOW CHART L.6

56

cifies Pointer 1, which has previously been loaded with the file
name. The '"find" routine is accessed which in turn accesses-the
dectape hardware handler to read the first directory block into
the user buffer location as specified in location Pointer 2 + 3.
The FIND routine masks for a match with the directory file.entries
and, if not found, recalls the dectape hardware handler for the
next directory block. This process is répeated until the directory
blocks and the directory file entries are exhausted, or a match

is found;'fIf a match is found, the number of blocks and the first
block numbersﬁére read from the directory, andstored at Pointer 2
location of the user buffer, and the next location is zeroed (the
present block number). If a match is not found, the next free block
is loaded in the user buffer location Pointer 2. Control is then

transferred to the user via API level 5.

4.5.2 - Close a Dectape File

‘To.close a file the user specifies Pointer 1 for the buf-
fer address in the I/0 CALL. - If the file closing is by a compiler
-user, the first character of the file name is changed to a "T'" to
specify an "object' file. The FIND routine is accessed and the di-
rectory is searched. If a file with the same name is found, it is
deleted. The FIND routine is accessed again until the next free

entry in the directory is found. The file name, the number of blocks,
and the first blockage accessed from the user buffer, and added to the
directory block. The next free dectape block is added to the header

of the directory block, and it is written onto dectape.

57

4.5.3 - Read from Dectape

To read a block of data from dectape the user specifies
Pointer 2 in the I/0 CALL. The number of blocks, the dectgpe number,
and the present blo;k number a}e accessed from the user buffer, and
if all blocks of this file have been read, the present block in the
user -table is cleared, and control retur£s to the Scheduler. If all
blocké have not been read, the hardware handler is entered to read
the specifiéd block into the core location specified in the user buf-

fer. When complete, control is returned to the user via API level 5.

To read a complete file, the dectape hardware handler is

accessed. The complete file is read into the user buffer table.

4.5.4 - Write onto Dectape

To write a block of data onto dectape, the first or next
block number is accessed, the ' block number is incrcmented in the
user table and the dectape hardware handler is accessed to write the

" user data on the specified block.

To write a complete file, the user must specify the number
of blocks in bits locations 0 to 7 of Pointer 2 location in the user
buffer table. The first block and the number of blocks is accessed
from the user table and ihe complete file is written onto dectape.

Refer Flow Chart 4.7.

4.5.5. - Dectape llardware Handler

Upon entry into the Dectape Hardware llandler, the pointer
to the first core location where data is to be transferred, the number

of blocks to transfer, the first block number, the dectape number, and

Has BEEN R
Cb IN XGENG FND
DI HANDIEK 15
Acce SSED

9&7/?/5;/5 CcRrL.
DRTH AND
Sﬁ?,?! Fherm el
E RS

STORE FoF

Blocks PND | 1>

ST‘\RTI NG BlocK
3t USER RUTFER]

sey VP
DRt];»f ~s

To WRiJE

T

The END OF
THE DIRECORY

TRANS 1T R USER
FILE NPmE To

DECTAPE FUNCTION HANDLING

e L1zLe ol
BLOCK N

<Tore NE&XT

vsErR BoifER

AV

ZERO FRESEW

Block Loenlion
W YSLRL
BULFiER

.

(&xur)

CHIPGE Fras
Chipa s e T2 2, 0F

e s Jo
\ 4

(53

sel up
PALA /ué]? Rs

Jo KEHD

!

PecESS

D D 1rr ML K

Flow (o]
48

’DE/.E]Z‘»‘
FILE NanI&E

IN DIKECTD R

FLOW CHART Lio7

59

the direction of transfer, are predefined. Status register "A" of
the dectape is locaded to set in motion and interrupt when a block
number is read. Control then rcturns to the Scheduler. When an in-
terruﬁt occurs an API break at. level 2 causes the dectape handler to

be entered via a Jump Store instruction in the Trap location 43.

If the error flag is active, and it is a selection error,
a recoverable error nrint is requested via API level 5. When the o-
perator has corrected the fault and typed R, the search process is
repeated. If the error is End-of-Tape, the direction of movement
is reversed and loaded into the "A" register. For all other errors,
the process is repeated up to 5 times, and if not successful, an ir-
recoverable error print is requested via API 5, and the user is aborted.
1f the data flag is up, a calculation is performed. ‘If the dectape has
passed the block required, the dectape direction is reversed, and sta-
tus register "A" is loaded to move the number of blocks different from
the required block., If the dectape has not rcached the required blocks,
status register A is set to move the dectape thévrequired number of
blocks to rcach the one required. When the right block is found, the
CHANNEL10 control registers are loaded with the sfa}ting core location,
and the number of words to read or write the requiredféata. When the
transfer is complete status register "A'" is loaded to stop the dectape

and the handler is exited. Refer to Flow Chart 4.8,

Dectape is interfaced to the PBP-9 computer via CHANNEL O.
Register core location 30 is used to storqfthe block number, when dectape
control status register "A" is loaded with:a search command. Core
location 30 is loaded with the buffer pointer, and core location 31
is loaded with the number of characters to be transferred, with status

register "A" indicating a recad or write operation.

NO- OF 2lp:ie
FIRTY KL oew i
RERD opwriITE
TRAMILECRT NA
Bol v F ¥ LeCs
fFeE

SEARcH
B roe REGD
BLock
v,
INITIRTE v.
Ne Y REp2fRITE X ExiT
OPE RATION
VIA CHALHELS
ENT'?.\/ VA

AP Inj:erunT

TRPL COVERABLE
ERROR &o Jb
Flow Cibix] 4]

mm;]nk No

o Plz)f:

Ri_-"[uRN To
CALLING
PRo& R M

CoNsJxucT RERIES
CAL FoeR f————————PD sErYEE 4T
RecovtRNELE PRI LEVEL 5
ERRACR.

EXIT

DECTAPE HANDIER F1OvW CHART L,8

61

4.6 - FACTS STATION TRANSMISSION HANDLER

When a user requests an I/O transmission to a Facts Sta-
tion, control is returned to the user directly after transmission.
The ﬁser buffer points to the word or words to be transmitted. There
are two formats of words transmitted to the Facts Station. A complete
address word, specified by AC5 bit 2 on a 1, and a partial address word
and wordfill combinétion, specified by AC5 bit 2 on a 0, of the respective
first word. AC® bit 0 and 1 indicate whether I0P4> and I0P2° will be

transmistted when the I/0 instruction is executed to transmit the data.

Thg,handler retrieves AC bit P and 1 and modifies the I/0
instruction uged to transmit the data. The Station address is placed
AC bits 0, 1, and 2 of the first word to be transmitted so that only
the properly addressed Station will accept the data.‘ A parity bit
in location AC 17 is calculated for even parity, and the first word
is transmitted. The parity error flag at the FACTS station is intero-
gated and if active the transmission is repeated up to 5 times. If the
parity flag is still up, the user is aborted, aﬁd a parity error print
is initiated. If the parity flag is not up, the next word is transmitted
(if there is one) and control reverts directly baék to;thc User Program,
The status of the station is unconditionally read and‘;tored. Refer to

Flow Chart 4.9.

4.7 - A/D HANDLER

The A/D Handler is single thieaded. It accesses the CALL
data via the "XGENQ" queue. The user buffer pointer specifies the ex-

pected polarity of the voltage to be measured. The handler connects

ReJRIEVE THE

F1Rs] word b

Be Terusmil-

Te D

MoDIFY THE REVILVE THE
T/o wsfrve] WORD TRom
To THE Spieif/dld Va2 R RoFres
Mot B/TS)

J/" V.
INERT 7145% GRHe Ry
FrcTs <]aTio!) L
NO MTB”Z WD 66 FreN iy
fiJe 2t T fy

|
i

Tﬁnzuswz
—{>| THE woRD
To THE TRCS J
T/e BvS

TRRECO Yz prrelé
DA ¢ wxer

I

AEpEA2
Sl o RT S

FACTS STATION TRANSMISSION HANDLER FIOW CHART L.9

the FACTS STATION ANALOGUE LINE to the A/D and set the A/D to read
according to the specified polarity. The Real Time Handler is accessed
with a specified wait request of 5 msec. to let'thc relays stabilize.
The I]O initiator real time handler indicator is set so that the Real
Time Handler will cause a return to the Scheduler, after setting-up

the 5 msec. wait,

When the 5 msec. wait is complete, the Real Time Handler
feturns control to the A/D Handler via "XTTBL2'" pointer previously set
by the A/D time request. The A/D Start Conversion I/0 instruction is
executed. The Real Time landler is accessed for a watchdog time wait
of 5 msce. If the A/D conversion is not complete within 5 msec., a
Monitor Error is printed indicating the A/D is OFF, If the A/D con-
version flag comes up first the wait request is disﬁissed. If the
A/D has a Zero reading, it is set to read the opposite polarity and
the user polarity indicator is complemented. The Real Time llandler is
accessed for an unconditional wait of 5 msec. for the polarity relays

to stabilize.

After the 5 msec. has expired, the Réél:%ime Handler accesses
the A/D Handler and the A/D Start Conversion I/O'fn;t;gction is executed.
A watchdog 5 msec. time is set. When the A/D Finishéd Flag is set,
an API level @ interrupt is requested and 'the A/D Handler is accessed
via the Jump Store in trap address 57. The answer is stored in table
"XTTBL1'" with reference to the FACTS station number. Refer to Flow Chart

4.10.

64

ACCESSED

RE[RIEVE CALL
DAT# AND SPoRe
Paaner]E/@

convEel nfo Jo
THLS Fric]s ST
SET A/pTo READ
po=tJIvE. REfRTo
FLow CHERT 4.9

}

SE] A & matc
WAIT ViR ReAL
TIME HANDLER

REFER To Flow
cnf;rﬁ'rff- 12

sJAR] THE PD

SEJ o- WHREHDOG
Tuner FER 5 nred

CONVERSION ANDY.

T mAY UM

\/

A/D HANDIER

KEND

SToRE A/D
RepDING IV
YSER BUFFER

SE] Pl To_

&)‘b NR(‘;H/i/t
d REFER Jo Flow
CHIRT F:D Fok
T RHOPISS ION

ExiT)

FIOW CHART 4,10

65

4.8 - REAL TIME HANDLER

The Real Time Handler is a multithreaded Handler. There
arc three operators defined in this handler: an unconditional wait,
a tiﬁing of an external operation synchronized to the application of
stimuli, and the time between the operation of two external events.
There are two clocks defined: a hardware time that increments location

7 in core every 100 usec. when enabled, and a software 102.4 msec. timer

derived from the 100 usec. clock.

Upon entry into the Real Time Handler, the call data is stored,
and the return pointer and the user buffer pointer are stored in Tables
"XTTBL1" and "XTTBL2" respectively, with reference to the FACTS number

of the user.

If the user requests an unconditional wait, the time interval
is accessed via the user buffer pointer and the time interval routine
is entered. For external timings, the user buffer address points to the
elemental commands to be transmitted to the FACTS station, followed by

the maximum wait allowed for the external timing.

If the user requests an external timing, the elemental command
is referred to via the user buffer address, and the FACTS station trans-
mission handler is entered. After the transmission is complete, if
the active station is FACTS II, the hardware timing CHANNEL A is enabled;
if the active station is FACTS I, and the specified timing is synchronized
to the stimuli, the return pointer set in Table "XTTBL4" will initiate
the timing of the external event when the FACT station time flag becomes
active. If the active station is FACTS I and the external timing is
between two external events, the pointer set in Table "XTTBLA" causes

the first time flag to be ignored, and the second to initiate the

66

external timing. A watchdog time wait is initialized via the Time
Interval Routine. If this time clapses before the FACTS station
time flag comes up, the user will regain control with an overflow

indication in the answer table "XTTBL1". Refer to Flow Chart 4.11.

4.8.1 - Time Interval Routine

The first user of the Time Interval Routine has the spe-
cified wait stored in table "XTTBLS" in the clock start indicator
"XTIMST" and the 2's complement of the wait in core location 7. The
Real Time Clock is enabled. It will causc an interrupt when location
7 goes to zeré. If the specified timed wait is greater than 128K*,
using the 102.4 msec. counter, 128K is stored in location

7 and "XTIMST'", and the clock is enabled.

If the Time Interval Routine is in process, and the speci-
fied wait is greater than the time interval remaining to be counted
in location 7, the contents of "XTIMST" plus lacation 7 is added to
the specified wait. It is subsequently stored ié.table "XTTBLSf and
the routine is exited. If the specified time is g;éater than 128K,
AC bit 0 on a 1, the calculation is done.in unité'of3102.4 msec.
When the specified wait is less than the time left to;élapse, the
smaller time is set in location 7 and "XTIMST" and table "XTTBLS"
is updated to reflect the elapsed time pfiqr to the new setting of

time to be expanded. Refer to Flow ChartN4712.

Table "XTTBL5" is updated by caiculating the elapsed time.

in .1 msec. and 102.4 msec. increments an&?by subtracting these times

from each active user in the table. If the entry is specified in

128K increments the 102.4 msec. interval is used otherwise the .1 msec.

(*) K indicates 1024 X 100 uscc. time units.

RPT 15
RAlIseb To
LEvEL B

RETRIEVE
DATA AND
STeRE -
pPRREMETERDS

UN CON DT oNnDy

REJRIEVE AND
TRANSM|T woRD
IN USER BUFFER
REFER T Frow
CUiRT 4.9

ngﬂf VE

Tiie INJER AL
FRON USER,
Burrer,

!

Sé‘f &
Fouv/ék’. IN
X1TBL4 FoR
THIS USER

REJRIEVE
SPEC/IFIED
Usew Wf?//"

Pecézs Jime
IWJES YT L
Reuin€ =Flow
SHART .12

ENABLE TiMME
CHANNEL A ON !
Facls sIATioNIL

REFER To Flow
i 4.8

SET Peinfer
IN XTBL4 ThbL

To ReJURN To (B) >

For TS UstR

REAL TIME HAND

L1

B
wWAaATEH DO§

SET o INTER
IN XTTBL4
TARLE To RETUR
To (&) FOrR THis
USEE é————&
A 3s&c.

4

WAIT . REFER |

[To_Tlew cHAET 41y

IER

clenr FLHG
| 69D SET Fev
To Kefory o

FoR THIS USLR

FLOW CHART L,11

!
REQDWHAIT
15 SPECIFIED
IN XTMWT

WARIT
N PROCESS

SToge Specify-

ED wWrIiT IM

WAIT To £Lrks-
; D ED TymeE FIND

FDD SPECIFE

SJoRE /N XTTBLE]

YTBLs "AND
IXTmsT

SToRE 400000,
IN XTIMST

SToRE THE
CcoMpLlEMENT K]
IN loc T

Turn CLocKord
SEJ INDrer Jor
1F CLotK FLAG

]

ERRUPIED Prothe

UPLAJE X8I5S
WilH E21PSED
Time

]

Go 7o
ScHEDULER,

SToRE THE
SpEciFiEn Tim €&

TIME INTERVAL ROUTTINE FLoW

CHART L4012

IN xrmsT |

69

interval is used in the calculation.

4.8.2 - Real Time Flag llandling

When a time flag becomes active, it causes an API level §
interrupt which initiates a Jump Return from the trap address 70 to
the Real Time Handler skip chain. There are threce legal flags de-
fined: the internal clock flag which is raised when location 7 in

core is incremented to zero, and the time flags from the FACTS STATIONS 1

AND 2,

When the clock flag is up, the clock service routine is
entered. Flow Chart 4.13 shows the detail processing of the clock
flag. If a FACTS station time flag is raised, thc time flag routine

is entered.

4.8.2.1 -~ Clock Service Processing

The clock service routine checks each entry in table "XTTBLS"
that is active as specified in table "XTTBL2". Once it has found one
user which has completed the specified wait, it initiates a user reco-
very by loading the return CAL and user pointer in table "XTBLI1". Table
"XTTBL1" is loaded with p if flag 1 is indicated in table "XTTBL2", and

-@ to indicate overflow of flag 2. These indicators are useful only if
the user has specified an external timing. If there are other entries in
table "XTTBLS'" that are not zero, the smallest of these will be used to
set up the new internal counter in core location 7. If more than one
user has completed his specified timed interval, an additional time wait
of 100 usec. will be specified because only one user can exit from the
Real Time llandler at any one time. When all eight entries in table

"XTTBLS" have been examined, the routine will be exited either to the

70

ENJRY ViR BT
Time TuFarveT,

Go vin TaBLE
XTieLd To ferl
TimE FLAG Henbler
Flow CHART 4.1/

UPDRIE TPBLE
XT'BLE To Re-
FLEC] ELepser

Timé

!

SET vp PONTE RS
T hetvly kg
TRELE XWBLY
AND X1 BLS

CLOCK SERVICE ROUTINE

HAS

ONE JSER

Ex1T

i€ ELGpSe

YES

:

EnT v

REQUES

Hﬂ%
H1s USLKD

No
IME Eoséd

“1s
THis, pste

Lotv]ER 1y Bz

T —
APL LEveLS

sTmtE USER s
™ REJuRN FDIMTEIL

ANOTHEN
L RWDLE

AND CRL N
ExiT THBLE

FIOW CHART L,13

71

calling handler or to the user whose timing is complete.

4.8.2.2 - Facts Station Flag Processing

If fhe API interrupt was caused by a FACTS station time
fiag, the return pdinter to the service routine is made via table
"XTTBL4". When the synchronizing time flag is received, the user
specified maximum time wait is accessed and stored in "XTIMNT'' for
processing- by the time interval handler. The return pointer to the
time completiéh routine is loaded in table "XTIBL4",. and the time in-
terval routine is accessed. If the FACTS 2 status is active, timing

CHANNEL B is enabled.

When the next time flag is received from the FACTS station,
the real time completion routine is entered via table "XTTBL4". The
elapsed time is calculated by adding the contents of "XTIMST" to lo-
cation'7, subtracting this from the.time specified in table "XTTBLS"
and adding thé»complement to the time specified by the user referenced
via table "XTTBL2". This is stored in table "XTIBL1" for user access,

The time handler is exited via an API level 5 request,

CHAPTER §

DEFINITION OF SYSTEM USER PROGRAMS

The SUP, SYSTEM USER PROGRAMS, which consist of fore-
ground Op/Sys, the background testran compiler, the Editor, and
the BTP, are initially entered via the Monitor, by a Jump Store in-
struction in the user cntry tables**, with the reference address
pointing to the User Program file name. This file name is transferred
by the SUP to the user buffer area for future reference to access the
file on mass storage. The user is uniquely identified by FACTS sta-
tion number** which is defined by the TTY Keyboard being used by the
operator. When the Scheduler transfers control to the user, this num-
ber can be referred to by the SUP for I/0 calls, data retrieval from
the handlers, and internal processing.

The Test Programs used to control the FACTS STATION are -
coded in a pseudo english language called TESTRANI% It consists of
commands such as: Connect, Release, PS1 Set, (Power Supply #1 Set),

Read Instruction - Scan, Adread, Operator Messages, etc. These mnemonics
are followed by a stimulus field, a measurement value field, and an ac-
cess point field, which defines how the unit under test is interfaced

to the FACTS test consoles. The Testran Compiler translates these
instructions in to ELEMENTAL COMMANDS and stores them on dectape. The
format of EC's are shown in Figure 5.1. EC's which appear as DATA are
loaded 1 dectape block at a time, and are operated on by Op/Sys to control
the test consoles. Each user has a total of 512 (decimal} locations in

core where variable data are stored.

(**) Refer to Keyboard Handler.

5.1 - OP/SYS

The Op/Sys is a re-entrant program which operates on the user

test programs in ELEMENTAL COMMAND format. When a user requests service

via the Monitof, enter into the Op/Sys at absolute location 10000 (octal)

the specified file name is accessed from the user entry table, and is

stored in the user buffer 512 (decimal) locations.

The file is subsequently opened on dectape with reference to
the "XFATNO" register which contains the FACTS station number. The
Op/Sys initiates the typing of "FACTS N'" where N is the FACTS station -
number, by an.I/O CALL to the Print Handler. Upon completion, the
Monitor will transfer control back to the Op/Sys. A Keyboard I/0 call
will then be éenerated to permit the user to type in a command or pro-

cessing mode instruction.

The basic commands defined in the Op/Sys are: "Start" for
the user to initialize the testing process and "Continue" to allow the
operator to force continuance of the Test Program after a manual test

operation or measurement error print out.
[}

There are three test modes that can be, 1n1t1allzed by the
operator which will control the measurement prlntout “all data, reject

data only, or no data printout.

When the ''Start" command is fyped, the first block (256 lo-
cations) of the test program is read from.§ectape into the user buffer.
This contains: the parameters required to program the specific test
console that is to be controlled. These paramcters which are re51dent

throughout the processing of the user program will be accessed by the

Op/Sys via the FACTS station number while processiﬁg EC's.

74

1
~

The next user program page is read into the user buffer.
The first EC is accessed, and the function bits are decoded in order

to reference the routine that will process the data bits,

There are 4 kinds of functional routines in the Op/Sys for

processing elcmental commands:

a) Connect or relase control points.

b) Connect stimuli to one or more access points.

c) Set up measurements for voltage, resistance, capacitance,
the presence of a ground or an open circuit, interval ti-
ming and unconditional waits.

d) Operator communications to indicate the details for a

manual operation.

When the handling of the first EC has been completed, the next
is accessed and the process is repeated until the user test program page
is exhausted., At it's completion, the Op/Sys initiates an 1/0 read re- :
quest from dectape for the next test program page, and these EC's are
subsequently processed. When the "END" EC in the user program is en-
countered, the command mode is re-enabled via a call to the Keyboard
Handler, after the FACTS N has been typed, and the test program is ready

to be rerun,

5.2 - TESTRAN COMPILER

There are up to seven Testran Compiler used within the FACTS
time shrare system. Each Compiler contains the parameters that are
peculiar to every FACTS test station programming. The Compiler translates

mnemonic language statements written in Testran into ELEMENTAL COMMANDS

which permits the Op/Sys to control widely different test consoles

in a universal manner.

When a user requests service via the Monitor, the Scheduler
loads the Testran Compiler as a function of the FACTS station number.
When the loading is complete, the Compiler is accessed via the user
entry table by a Jump Store instruction, with the reference address
pointing to the test source program file name. The Compiler transfers
the file name to the user buffer, and initiates an I/0 to open the file
via the dectape handler. The first page of the source program is sub-

sequently read, and the compilation process begins.

The first object block generated, consists of the program
identification, and the parameters specific to the particular FACTS
station to be programmed. Following this, the source program state-
ments are decoded and stored as elemental commands. When one block
of data has been generated (255 decimal locations) a dectape write
I/0 request is generated. When the transfer is complete, the process
is continued until an END statement is read in the source program. The
last program block is written onto dectape and an END call is made to

the Monitor. This terminates the compilation.

The Compilers verify Syntax and logic combinations of
commands with the data in the other fields of a source program statement.
If an error is detected, the source line is printed with an error code.
The compilation process resumes in a diagnostic mode which identifies the
remaining error in the source program without transferring object data
to mass storage. The hardware interconnections, by which the unit under
test is interfaced with the test console, are specified in the source

test program,

76

The Compiler verifies that the test program's speci-
ficd combinations of stimuli, connected through the hardware cross
connecting matrix to the unit under test, arc within the limitations

of thie FACTS test station.

5.3 - EDITOR

| ..nThe Testran LEditor performs normal edit functions such

as insefti;é;.changing,appending, and deleting source program state-
ments in a Testran laguage program. In addition, i£ formats the

source program in terms of 60 lines per page, and references source

program data by line and page number.

When a user requests Editor proéeSSing via the Monitor, the
Scheduler initiates the loading of the Edit SUP. Subsequent to
loading, the Editor is entered by a Jump store instruction in the
Moni tor vié the user entry table. The referenée address points to the
user source proéram file name. The file name is transferred to the
user buffer, and the file is bPENED via an I/0 call to the dectape handler

by the Editor.

When control returns to the Editor, a Command** I/0 request is

made via the Keyboard Handler for user interaction. Commands typed by
the user are decoded and the source file is manipulated. If Text has to
be entered by the user, the Editor will initiate an 1/0 Text** request

via the Keyboard landler,

When the editing process is complete, the operator is permitted

to rename the source file if the previous one is to be kept. The file

(**) - Refer to Keyboard Handler.

77

is subsequently closed via a uscer command, and the updated file is

copied from the scratch file to the user dectape.

5.4 - BACKGROUND TASK PROGRAM

The BTP permits a user to transfer files from one peripheral
device to another. When the user requests a BTP function via the Moni-
tor, the‘Séheduler will load the BTP, A Jump Store instruction, exe-
cuted in the ﬁbnitor via the user entry table, accesses thec BTP with
the reference address pointing to the file name if applicable. Trans-
fers of data between non-file oriented peripherals are also legal. If
a file name is presentit is transferred to the user buffer for future
reference. A Text I/0 request is made via thc Keyboard Handler. The
user types the pertinent instruction string defining the peripherals,
the direction of transfer, the format of the input and output, image,
and packed ASCII or unpacked ASCII. This data is decoded and the
transfer is initiated. When complete, an 1/0 END request is initiated

‘which terminates the BTP processing.

78

CHAPTER 6

FACTS MONITOR FEATURE TESTING

The'Hardwgre configuration (refer to Figure 1.1) that

was used for comprchensive testing of the FACTS Monitor consisted of:

1) PDP-9 Computer with SK memory.
2) APT Option KFQOOA,
©73) Memory Protection Option KX0N9A,
aj“.Two Dectape Transports and Controller.
5) TACTS Interface Eauipped to handle two FACTS Stations.
6) An A/D Convertor.
7) Two FACTS Stations numher 1 and 2,

8) 4 Teletypes.

The Monitor verification consisted of processing User Programs
that exercised the Monitor features such as the Priority Structure,
Swapping of ﬁrograms, I/0 handling the paner tane, Dectape, and TIY's,
as well as the special feature required by the FACTS Test Sets such as

| Timing, A/D handling, etc.
The following jobs were run:

1) Processing Test programs on the FACTS 1 and FACTS 2 Test
Stations, while a source program was being listed from the paper tape
reader, on the FACTS 3 TTY hy a BTP. The testing nrograms included‘
control functions on the Test consoles, the mcasurcment of voltage

and time intervals on the units under test.

2) The Op/Sys on the FACTS 1 Test Set was aborted and an

Edit function was rcquested. This caused the BTP, which was nrocessing

79

on FACTS 3, to he swanned out of core and the Fditor to be
subsequently loaded. Suspention of typing occurred on the FACTS 3
TTY. The Fditor was rcauested to outnput a lser Program on the ’

FACTS 1 TTY from Dectape.

3) The Editor program if not cormplete, was aborted which
caused the BTP to he reloaded into core. The program listing on

the FACTS 3 TTY resumcd when the loading was compnlete.

For the Monitor Testing the dectapes used were generated
OFF line using the FACTS Dectrive11 program, An OFF line compilation
of two Testran Programs was loaded onto the dectape including

serveral source User Progranms.

6.1 - TEST PPOGRAM FOR FACTS 1 STATION

There were two distinct modules selected to test the fea-
tures of the FACTS *onitor. The circuit nack that was tested on the
FACTS 1 Test Station is shown schematically on Figure 6.1,

The tests consisted of: \

1) Measuring that the make contacts are onen, using the
A/D converter.

2) Measuring that the hreak contacts are made using the
A/D converter.
3) Measuring that the onerate.time of the relay is less

than 50 milliseconds.

The detail 'l"est‘.rrm]2 program t& do the tests are showm in

Fipure 6.2

80

PINS PINS
14
17 MAKE CONTACT X
‘ 1
FRELAYl BREAK CONTACTT 0
16 _
8
X '
4
TEST CIRCUIT 1 FIGURE 6.1
STATEMENT
NUMBER "+ FACTS 1 DUMMY TSI ISSUE 1
1 PS1SET -24
2 CON PS1 A17
3 CON GND Al
4 SCAN-T OPEN A4 Al4
5 SCAN-C GND A9
6 TIME-T 50MS MAX. GND
7 A16 Al4
8 END
TESTRAN TEST PROGRAM FOR FACTS 1 FIGURE 6.2
WORD NUMBER
1 055070
2 075200
3 360202
4 055240
PARTIAL COMPILATION OUTPUT FOR TEST CIRCUIT 1 FICURE 6.3

81

The statcments of the Testran program in Figurc 6.2 have the

following interpretation:

1) Presct Power supply nurber 1 to -24 volts.

2) éonncct Power supply number 1 to nin 17 of lﬁﬂﬁ

3) Conncct Ground potential to pin 1 of VUT.

4) Scan for an open circuit éondition at pin 4 and 14 of WWT.

5) Scan for continuity to a Ground potential at pin 9 of UUT.
"55) Measurc the oncrate time of the relay by synchronizing

to the application of a Cround potential at nin 16 and

monitoring when pin 14 measures 2 Ground potential.

6.1.1 - Testran Compiler

In order to get this source program into the format required
for the operating system to process, it must be compiled. The Compiler
for the FACTS 1 Test Set is programmed with all the hardvare features of
the FACTS 1 Test System. The Testran program was compiled and stored on
dectape OFF iinc. An example of the compiler output is shown in Figure

The octal words in Figpure 6.3, which are called Clerental Com-
mands, represent the Compiler output for the statement numhers 1 and 2
of the test program as shown in Figure 6.2. %ord 1 of Figure 6.3,
which is a C.A.W.***, causes the power supply 1 programming hits at the
FACTS Station 1 to be cleared. Words 2 and 3, which are a P.A W ***
W.F.*** combination,programs power supply 1 to -24 volts. Word 4, C.A.W.,

enables power supply 1.

In addition to the test program, the Compiler storcd the nane
of the program and required narameters for the operating system to pro-

gram the FACTS 1 Test System on dectapc.

(***) - Refer to Fieure 7.3 for definitions.

6.2 - TEST PROGRAM TOR FACTS 2

The circuit pack that was tested on the FACTS 2 Test Sta--

tion is shown schematically in Figure 6.4.
The Tests consisted of:

1) Reading a voltage using the A/D converter.
2) Measuring the oncrate time of the reed relay synchronized

to the application of a ground potential at pin 22.

The detail Testran program to do these tests arc shown in Fi-
gurc 6.5. The interpretation of these Testran statements are
similar to those of Figure 6.2. Statcment 7 means: read the A/D

for a voltage between 13.2 and 10.8 volts at pins 17, 26, and 27.

6.3 - OP/SYS PROCESSING

After the Monitor was loaded, the Op/Sys was loaded hy
the Monitor. In order to access the On/Sys the.eperator typed tF

.]
followed by the file name of the test program to be nrocessed.

The Monitor transferrcd controi to thé Opﬁﬁys which nrinted
"IK or DT (Disk or Nectape file) followed by a cowménd request which
printed "»" on the user TTY. The operafp} responds with DK if the
file in on DISK or DT if the file is oﬁ'DECTAPE. After tyning "DT"
the FIPST Block of the user test program’as read from dectape and
the test program title was printed ”FACTSJJ PUMMY TSi“ followed by .

.,

a command request '>'. "

If the title was incorrect, the user typed #A to abort the

job and the process was repcated with the correct file name. If the

83

Ul

23 O—_D"' I—M] 2
36 msec %,
22 ¢ one sHo
‘ J MulTiviB RATOR —ol
ped L LTS Loy
: 2 e
TEST CIRCUIT 2 FIGURE 6.4
1 FACTS 2 DUMMY TSI ISSUE 1
2 PSISET +12V
5 PS2SET +5.12V
4 CON PS1 Al7 A26 A27
5 CON PS2 Al6 A28
6 CON GND Al A23
7 AD READ 10.8V 13.2V A17 A26 A27
8 TIME-T 30MS 42MS GND
A22 AL2
9 END
TESTRAN TEST PROGRAM FOR FACTS 2 FIGURE 6.5
AF TPF 11
DK OR DT DT
FACTS 1 DUMMY TS1 ISSUC 1
Y
ol
D)
OP/SYS OPERATOR COMMUNICATION FIGURE 6.6

84

Title was corrcct, the operator typed "Y' for Yes and the On/Sys then

requested a cormand.

Several comrands arc legal at this time:
"AD” for renuesting an all data printout.
“ST" for initializing the step mode.

»g" for starting the testing Process.

After tyning “AD" the On/Sys responded with """ to request
the next_;p&mand. Ry typing 'S the On/Sys loaded the second dectape
hlock of gﬁb'tcst progran and overlayed the TIRST Block. After loading
was completed, the Op/Sys started processing the tcét program.

Fipure 6.6 sumrarizes the cormunication of the onerator
with the FACTS Monitor at the FACTS 1 TTY. Underlined characters

are typcd by the operator.

6.4 - BACKGROUND USER PROGRAM

The BTP that was designed for testing the Monitor features
had thrce transfer modes defined. Transfer of data between: Punched
paper tape to a TTY, Punched paner tape to a dectape, and dectane to a
TTY (refer to Figure 6.7). The format for requesting a transfer at
a TACTS Test Station was: The operator tyned $B delimited by a car-
riape return (). This initiated a request on the lonitor to load the
RTP. When the BTP was loaded, the Monitor jnitiated the BTP via the
Scheduler. The BTP réqucsted a TEXT input and printed "' to indicate
this to the operator. The operator typed one of three lepal transfer

commands as shown in Figure 6.7.

»N
Jr

The BTP internreted the command string and set up the pro-
per I/0 call links to perform the reauired transfer. Refer to Flow

Chart 6.1 for the detailed process of the BTP.

If the format type or an undefined transfer was requested,

"WHAT?"" was printed and the Text huffer was cleared.

An example of a request for printing an ASCII paper tapc on

a TIY is shown in Figure 6.8, linderlined characters are typed by the

operator.

86

T ~--PR~-TY - *

T -- PR - DT - FILENAME - *
T -- DT - FILENAME - TY - *
The minus indicate a space

* is the delimiter for TEXT MODE

BTP COMMAND STRINGS

FIGURE 6.7

A8 2

T -=PR - TY - *

PRINTING WILL COMMENCE

BTP OPERATOR COMMUNICATION

.

' "FIGURE 6.8

87

"ENJRY From
NMoNITOR

INMAaLiz&E
POINTER IN
DIz puick
IRELE

RERLEST
TEXT MopE

I

COMMAND
SJRING 1S KEFD
RY KEYRONKD
HoarDLER

S¥ET Poinjer
Jo Kend PAPER

THBLE

THPE 1N a/spmz/,

BACKGROUND TASK PROGRAM

TYPE

WHAT

ReJRIEVE FiIlé
MomE AND

SroRE N IT
Cnie JRELE

FLOW CHART 6,1

PAGE 1 of 2

S8

5&7 2nel /,1']:

ER 1N DisprTcH
TRELE Jo Fin]
Cr/ld

REJRi=VE Fite
- \Mpme BND.
SPRE IN D7
ChiL FRELE

5

Sz_c/ 2nd /1»///]-'
ER yy Drsprfe
THBLE To Wi TE

ON DE-CRPE Jesens
. € J

- = A{)lCC/

DP?—’N —HE DT = DECJAPE
FILE en T = TRANSFER
Dtc/ﬂp_é' PR = PIPER THPE READER

TY = Tece)yp&
GoJo Dis—
CATeH THBLE

BACKGRCUND TASK PROGRAM FLOW CHART 6.1 PAGE 2 of 2

89

SUMMARY OF CALL PROCEDURES FOR I/0 HANDLER USAGE

In order to access 2 handler, from a User Program via the
Monitor, a CAL5 instruction must be executed with the format as shown
in Figure 7.1.

i Mnemonics have been defined to permit the user to construct
the particular CAL instruction required. Appendix 4 defines all the
mnemonics ;ith«their respective bit assignments, that can be used to
perform specific 1/0 opcrations. The CAL5 is constrﬁcted by a string

of instructions as shown in CHAPTER 4.

Arg. 1 - There are four User Programs defined with the fol-
lowing Mnemonics.

XOPSYS - for the Operating System User

XTRSYS - for the Compiler User

:XEDSYS - for the Editor User

XBKSYS - for the Background Task Program User
Arg. 2 and Arg. 3 - will be defined in the specific 1/0

ltandler CALLS that follow.

Arg. 4 - There are threce FACTS station numbers depending
on the User Program being executed.
XFATNO - for the Operating System User
XFACTR - for the Compiler Uscr
- for the Editor of BTP User

XFACBK

Immediately proceeding the CAL instruction, there is a pointer
to the user buffer where data will be transferred. This will be the

case in all I/0 requests via a CAL instruction. For reference, this

90

pointer is

called Arg. 5,

The User Program looses control aftcr the CAL instruction is

cxecuted. Thercfore, all parameters previously calculated must be saved

in the user

buffer prior to the CALL. Once the I1/0 operation is com-

pleted, control . returns to the user at the core location, following

the user bu

defined,

ffer pointer. The arguments Arg. 1, Arg. 4, and Arg. S as

are used in the contruction of the I/0 CALLS for specific

handlers that follow,

7.1 - KEYBOARD HANDLER

There are two modes for accessing data from a TTY Keyboard,

the COMMAND

mode and TEXT mode. The command mode is used to access

one to three characters from a Keyboard. In this mode, the handler

permits up to 8 characters to be typed. When the delimiter CR is re-

ceived the first 3 characters are transferrred to the user buffer

location, as épeéified after the CAL5 instruction. If morc than 8

characters

is cleared.

are typed, "WHAT?" is-printed and the command buffer

The format for requesting the Keyboard command mode is:

LAC - Arg. 1 /System User Program
XOR - XRDCOM /Read Keyboard Command Mode
XOR - Arg. 4 /Facts Station Number
DAC - .+1 |
~ CAL ~ /Modified
Arg. 5 /User Buffer Location

When the CAL instruction is exccuted, the Monitor will

91

print " >" to indicate to the operator that a command is requested.

A rubout typed will clear the command buffer and a"\"

will be echoed.

The format for requésting the Keyboard Text Mode is:

LAC - Arg. 1 /System User Program

XOR - XRPTTY /Read Keyboard Text Mode

XOR - Arg. 4 /Facts Station Number
';DAQ - 4

CAL' /Modified

Arg. S /User Buffer Location

When the CAL instruction is executed, the Monitor will

print "<" to indicate to the operator that the Text mode is initialized.

A rubout typed will clear the Text buffer and a " \"-will be

echoed.

"Up to 750 decimal characters can be typed. The handler will

ensure that a complete line of text will terminate the buffer.

A " is used as a delimiter. When the operator types
. When the buffer is full,
et control returns to the User Program 1
the handler will force a "*" to be echoed and control will revert to
the User Program. By typing "CR CR*'" the User Program will recognize

this as a request for the command to be initialized after the Text

buffer is processed.

7.2 - PRINT [IANDLER

There are two modes for printing data on a TTY. Printing

from a 6 bit packed ASCII buffer or Octal printing.

The format for requesting the printing of a buffer in 6

bit ASCII is:

LAC - Arg. 1
XOR - XPPTTY
XOR - Arg. 4
DAC - .+1
CAL

Aré. 5

/System User Program
/Print for 6 Bit Packed ASCII

/Facts Station Number

/Modificd

/User Buffer Location

The buffer must be delimited by a zero character (00 octal)

with the characters left adjusted.

A "LF" and '"Rubout" will be imserted

after a '"CR" and "TAB" is specified, respectively. The detail character

assignment for 6 bit ASCII is shown in Appendix 2 .

The format for requesting an Octal printing of a user buffer

is:

LAC - Arg. 1
XOR - XPOTTY
XOK - Arg. 4
DAC - .+1
CAL

Arg. 5

N

\
/System.User Program

/Print Octal”

_/Facts Station Number

 /Modified

' /User Buffer Location

The buffer must be delimited by'a zero register. There are

24 Octal characters printed per line.

93

7.3 - PAPER TAPLE READER HANDLER

The paper tape rcader handler will accept standard ASCII paper
tape and it will pack 3 characters per register in 6 bit format as de- .

fined in Appendix 2.

The format for requesting a paper tape to be read is:

LAC - Arg. 1 /System User Program
XOR - XRDPT /Read Paper Tape & Pack
XOR -~ Arg. 4 /Facts Station Number
DAC - .+1

CAL ' /Modified

Arg. 5 /User Buffer Location

The handler will ensure that a complete line of Text ter-
minates the user buffer. When the buffer is full, control is trans-
ferred to the user. When the end of the tape is detected Octal 77 is
inserted as.the last character in the buffer. This character can be

used as a delimiter to the paper tape reading operation.

7.4 - PAPER TAPE PUNCH JIANDLER

The paper tape punch handler will perforate paper tape

in standard ASCII code from a 6 bit pack ASCII user buffer.

The format for requesting paper tape punching is:

LAC - Arg. 1 /System User Program
XOR - XWTPT /Punch Paper Tape

XOR - Arg. 4 /Facts Station Number
DAC - .+1

CAL /Modified

94

Arg. S /First Location of User Buffer

The buffer must be delimited by a #f§ octal character. If
insufficient paper is available, a recoverable message "RERG'" will be
printed on the user TTY. After adding paper tape to the punch hardware,

the operator must type R for the punching operation to resume.

There is provision for recovering twice from an out of paper
tape condition during one I/0 punching operation. An irrecoverable error

will occur .if a third out of paper tape condition occurs.

7.5 - DECTAPE IIANDLER

The magnetic tape mass storage is a directory oriented
Dectape5 whose format is 512 blocks of 256 18 bit words. The directory

consists of 5 blocks having a format as shown in Appendix 3.

The first word of the partially filled directory block
contains the next free block number. A directéry entry consists of
a file name in 6 bit ASCII occupying 3, 18 bit words have up to 8
- characters with the unused cﬁaracters being cleared. The following 18
bit word contains the number of blocks occupied by the file in bits 0

to 7 with the starting block in bits 8 to 17.

There arc six functions defined in the Dectape llandler for
accessing and manipulating files on dectape. They include opening or

closing a file, read or writing a file in block or complete file mode.

The dectape transport number must be dialed to correspond
to the FACTS station. The transport must be switched to "REMOTE'" mode
in order to bhe accessed. The WRITE mode switch must be enabled for

WRITING OR CLOSING files. If any of these conditions are violated,

a rccoverable error printout "RER3" will occur on the user TTY. After
the conditions are corrected, the operator types M for processing to

resume. There is provision for recovering 5 times from selections er-
rors. An irrecoverable error will occur if a sixth selection error

occurs.

7.5.1.- To Onen a File

In order to read or write a file, it is first required to
find wHéf@ it is located on the dectape or obtain the first free

block respecti?ely.

The format for opening a file is:

LAC - Arg. 1 /System User Program
XOR - XOPDT /Open File on Dectape
. XOR - Arg. 4 /Facts Station Number
DAC - .+1
CAL /Modified
Arg..é /Location of File Name

In this case "Arg. 6'" is the pointer to the file name and

as FIRST user buffer location, as shown in Figure 7.2.

After the handler is accessed, via the '"CAL" instruction, the
FIRST directory block is loaded into core starting at the FIRST location
of the user buffer "Arg. 5'. The directory block is searched for a match
and if one is found, the number of blocks and the starting block number
is loaded in the "Arg. 7" core location. If no match is found, the next

directory block is read and the search is repeated.

If no match is found in the directory, then the next free di-

rectory block number is loaded into gore location "Arg. 7'.

96

7.5.2 - To Read a File

After the file has been opened, bits 0 to 7 of Arg. 7 ,
refer to Figure 7.2, must be non zero. If these bits are zero, the

file was not found and therefore an error message must be originated.

There are two modes for reading a file from dectape, the

Block mode and the Continuous mode.

In the block mode, one block of dectape is recad into the
user buffer, starting at location Arg. 5, refer to Figure 7.2, and

control is returned to the User Program.

The format for reading dectape in the Block mode is:

LAC - Arg. 1 /System User Program

XOR - XRDDTB JRead Dectape in Block Mode
XOR - Arg. 4 /Facts Station Number

DAC - 7+1

CAL /Modified

Arg. 7 /Pointer to No. of Blocks

/And the First Block No.

Arg. 7, refer to Figure 7.2, points td'tﬁe;pumber of blocks
and the FIRST block. Arg. 8 points to the present blgck read, which
is zeroed at the start. As blocks are read from the dectape, the
contents of Arg. 8 are incremented; when the difference between the con-
tents of Arg. 8 and the starting block number is equal to the number of

blocks as stored in Arg. 7, the file has b§cn read and Arg. 8 is cleared.

The format for reading a complete file, starting at location

Arg. 5, refer to Figure 7.2, is:

97

LAC - Arg. 1
XOR - XRDDTA
XOR - Arg. 4
DAC - .+1
CAL

Arg., 7

7.5.3 - To Write a File

/System User Program
/Read all File from Dectape

/Facts Station Number

/Modified
/Pointer to No. of Blocks

/And Starting Block Number

After the File has been opened, bits 0 to 7 of Arg. 7, re-

fer to Figure 7.3 must be zero. If these bits are non-zero, this file

name is on the dircctory. These bits must be zeroed before a request

for writing a file is initiated.

file will be deleted.

When the file is closed, the previous

A message to the operator could be initiated by the User

Program to give him the option of defining a different name.

There are two modes for writing a file onto a dectape, the

Block mode and the Continuous mode.

In the Block mode, one block of

dectape is written from the user buffer starting at location Arg, 5,

refer to Figure 7.3, and control is returned to the User Program.

The format for writing on dectape in the Block mode is:

LAC - Arg. 1

XOR - XWTDTB

XOR - Arg. 4
DAC - .+1
CAL

/System User Program
/Read Directory in Block Mode

/Facts Station Number

/Modified

98

Arg. 7 /Pointer to No. of Blocks

And the First Block No.

Arg. 7, refer to Figure 7.2, points to the FIRST Block
where the file is to be stored. As Blocks of DATA are written, the
number of blocks used are stored in bits 0 to 7 of Arg. 7 and the

present block written is stored in Arg. 8.

To write in the Continuous mode, bits 0 to 7 of Arg. 7
must be updated with the number of blocks of data required to transfer.

The format for writing in the Continuous mode is:

XOR - Arg. 1 /System User Program
XOR - XWTDTA /Nrite on Dectape Continuous
Mode
- XOR -~ Arg. 4 /Facts Station Number
DAC - .+1
CAL /Modified
Arg. 7 fPointer to No. of Blocks

/And the First Block No.

7.5.4 - To Close a File

After a file is WRITTEN it must be closed in order to up-

date th- directory with the new file ﬁame‘ The format for closing a

file is:
ILAC - Arg. 1 /System User Program
XOR - SCLDT ~ /Close Dectape File
XOR - Arg. 4 /Facts Station Number
DAC - +1
- CAL | /Modi fied
Arg. 6 /Pointer to file name

99

The directory is searched and if the file name, as
specified in Pointer Arg. 6, refer to Figure 7.2, is found, the
previous file directory entry is deleted. The file name in Arg. 6
and the number of blocks and the first block of the file is stored
at the end of the di*ectory and the next free block is loaded in the

first entry of the directory block.

If the System User Program is the Compiler, the first cha-
racter of the file name is changed to a "T" prior to closing the file.

This will identify the compiled programs in the directory.

7.6 - FACTS STATION TRANSMISSION HANDLER

There are two transmission formats defined in the FACTS
Station Transmission Handler, the complete address word (CAW) and
the partial address word (PAW), wordfill (WF) combination as shown

in Figure 7.3.

The handler masks bits 0 and 1 of tﬁg CAW and the PAW re-
questing I0P4 and IOP2 and inserts them into the input/output iﬁstruc-
tion. The FACTS station number is inserted into-Bifs_O, 1 and 2 of
the CAW and PAW. Even parity is generated and placedr{nto bit 17,

The CAW or PAW is then transmitted to the:FACTS BUSS via the modified

I/0 instruction.

If a CAW is transmitted, control returns directly to the
User Program. If a PAW is transmitted, thé WF is accessed, Parity is

generated, followed by the transmission of,.the WF to the FACTS BUS

Control is then directly transferred to the.User Program.

 The format for transmitting a CAW or PAW, WF combination is:

100

XOR - Arg. 1 /Opcrating'System Uscr Program

XOR - XTRFST /Transmit to Facts Station
XOR - Arg. 4 /Facts Station Number

DAC - .+1

CAL : ' /Modified

Arg. 5

Arg. 5 points to either the CAW or PAW, WF combination.

7.7 - A/D HANDLER

The A/D Handler programs the A/D to read the DC voltage
that appears at it's input. It assumes a positive polarity and if
a zero buffer is read, the polarity is switched to read a negative

voltage.

The format for reading the A/D is:

LAC - Arg. 1 /System User Program

XOR - XRDAD /Read A/D

XOR - Arg. 4 /Facts Station Number
DAC - .+1

CAL /Modified

Arg. 5 . _ /Ansver will be stored in

/Location Arg. S

The answer is stored in location "Arg. 5". Bit 17 of Arg. 5
js on a @# or a 1 to indicate if the voltage measured was positive or
negative respectively. The 12 most significant bits represents the

answer with a weighted value of 2.44 milivolts per increment.

101

7.8 - REAL TIME HANDLER

The Real Time Handler can process 8 users simultancously.
There are two clocks defined in the handler. One operating in incre- 4

ments of 100 microseconds, the other in 102.4 milliseconds.

The range of measurement is 1 msec. to 13 second:increments,
with a resolution of 100 microseconds and 13 scconds to 3 hours with a

resolution of 102.4 milliseconds.

- .There are three modes defined for the measurement of Real
Time. They>are the Unconditional wait, the Measurcment of the time between
the application of the stimulus and the external event, and between two

external events.

The format for requesting an Unconditional wait is:

LAC - Arg. 1 /System User Program

XOR - XWAIT /Unconditional Wait

XOR - Arg. 4 /Facts Station Number
:DAC - .+1

CAL | . /Modified

Arg. 5 | /Pointer to time parameter

Arg. 5 will contain the time parameter in units of 100 micro-
seconds, indicated by bit @ on alﬂ, or in units of 102.4 milliseconds, in- .

dicated by bit f on a 1.

After the time has elapsed, the uscr will exit from the Real
Time landler, but could stay up to an additional 30 milliseconds in a

queue before regaining control, if the system is fully loaded.

In the measurcment of time intervals of external events, the

accuracy requirement dictates that the Real Time Handler initiate the

102

timing. This is required to synchronize the start of the external timing

with the 100 microsecond clock.

The format for requesting the timing of an external event

synchronized to the application of a stimulus is:

LAC - Afg. 1 /System User Program
XOR - XTTOC " /Timing Synchronized to Stimulus
XOR - Arg. 4 /Facts Station Number
. DAC - ,+1
CAL: /Modified
Arg. § /Pointer to Parameters

The first parameter, referred via pointer Arg. 5, is the word

that is transmitted by the handler to the Facts station to apply the
stimulus. When the stimulus is applied, a flag is set at the FACTS

station which causes an interrupt at which time the handler starts the

clock.

The second parameter specifies the maximum time wait before
causing a time overflow. The answer is stored in table "XTTBL1'" with
‘reference to the FACTS station number. If the timing start flag does
not occur at the FACTS station, before a 3 second interval default wait,
than zero (#) would be stored in "XTTBL1". If the stop flag does not
occur, before the specified maximum wait expires, than all ones (1's)
would be stored in "XTIBL1", If the start and stop flag do occur,
before the specified times are exhausted, the answer that is stored
in "XTTBL1" is the difference between the elapsed or measured time

and the maximum specified time wait.

The processing of the measurement of time between ‘two ex-

ternal events is indentical to the processing of a time measurement

103

between the application of a stimulus and an external event from the

user point of view. There are several differences in the handler due to

the hardware.

The format for requesting the timing of the internal between

two external events is:

LAC - Arg. 1 /System User Program

XOR - XTCTC /Timing Synchronized to First
Event

XOR - Arg. 4 /Facts Station Number

DAC - /+1

CAL /Modified

Arg. 5 /Pointer to parameters

104

[01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17
T.J (U R WD R weng—"
CAL INSTRUCTION

ARG. 1: *
USER PROGRAM NUMBER

ARG. 2:
HANDLER MODE DATA

ARG. 3
HANDLER NUMBER

ARG. 4 |
FACTS STATION NUMBER

1/0 CALL FORMAT FIGURE 7.1
Arg. 6 - F 1L /File Name in 6 Bit
ENA /ASCII
ME
Arg. 7 - ¢
Arg. 8 - ¢
Arg. 5 /First Location of User Buffer
DECTAPE FILE NAME BUFFER FORMAT FIGURE 7.2

01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17

E A
CAW jr a L !
10P4

10P2 DATA g i
8 PARITY BIT
PAW
1op4-2 Zf L | 1jr
10p2 DATA g-
1 PARITY BIT
WF
¢ DATA 1| —% T
PARITY BIT
FACTS STATION TRANSMISSION FORMATS FIGURE 7.3

105

CHAPTER 8

The comprehensive Testing Program as defined in Chapter 6
was performed by the Author in August 1972, The results showed
that the Monitor features such as proper queulng of user requests
and I/0 requests,. prioritv of the Compiler over the Editor and in
turn over the BTP, swapping of the lower priority program, priority
of the forezround over the backeround, 1/0 handling of - the paper
tape reader - Dectapes - TTY's - timing measurement - A/D-measurement
—~ FACTS Test Set Control - etc., functioned according to the

requirements that the Author designed into the Time sharing sof tware.

In addition, the features of aborting a job, the
recoverable error printout initiated by a device handler and subsequent
recovery by typing R, and the irrecoverable error printout initiated

by a device handler were verified.

-In'order'to service more than two FACTS Test Stations
an addition 8K of core memory would be reduired and either one
addltlonal Dectape Transport per test ‘station or a Disk would be

required to store the Test Programs.

106

APPENDIX 1

FACTS TEST STATION

A FACTS Test Station is shown below.
It consists of a 21 bit data collector which accepts data that
are generated on the 21 bit bus . If the address bits correspond to the
addreés of the Test Station the other 18 bits are processed, as is the case
with a CAwf, Parity is verified and if correct, one of the cells in the

memory is switched. If a PAW*, WF* combination is accepted up to 16

cells are programmed.

The STATUS data reflects the conditions present at the FACTS

station. These may include the status of instrumentation, power supplies,

etc.

The'generality of the FACTS station stems from the facts that
whatever can be controlled by thc semiconductor memory can be programmed.

In the case of the FACTS 1 and 2 Test Stations, groups of memory cells

were assigned to control instruments, relay matrices , and stimuli.
These control bits were used as parameters in the Testran compilers.
By following the rules defined in using the Testran language, the

compiler inserts the corresponding parameters required to reflect

what the Testran Test program specifies.

(*) Refer to Figurc 7.3

107

21 bit bus

1024 Cell

Semiconductor

" Memory

Expandible to

4096 cells

I

Control of

1) Instrumentation
2) Relay matrices

3) Stimuli

21 bit DATA Collector

Status\

18 bit _status bus

108

their corresponding symbols. Certain symbol definitions had to be

changed in the case of the 6-bit code to include all required sym-

APPENDIX 2

8-BIT AND TRIMMED 6-BIT ASCII CODES

The 8-bit code and resulting 6-bit code are shown with

bols within the 64-symbol set.

8-BIT CODE

(TELETYPE INPUT/OUTPUT)H

SYMBOL CODE (OCTAL)
A 301
B 302
C 303
D 304
E 305
F 306
G 307
H 310
I 311
J 312
K 313
L 314
M 315
N 316
0 317
P 320
Q 321

6-BIT CODE
(CHARACTER STORAGE)

CODE (OCTAL) SYMBOL

01
02
03
04

05
06
07
10
11
12
13
14
15
16
17
20

21

A

B

19

8-BIT CODE 6-BIT CODE

(TELETYPE INPUT/OUTPUT) (CHARACTER STORAGE)
SYMBOL ~ CODE (OCTAL) CODE (OCTAL) SYMBOL .
R 322 22 R

S 323 o 23 S

T 324 24 T

U 325 25 U

v 326 26 v

W 327 27 W

X 330 30 X

Y s 331 31 Y

z | 332 | 32 z
0 ' 260 60 0

1 261 61 1

2 262 62 2

3 263 63 3

4 264 64 4

5 265 65 5

6 266 66'.é 6

7 267 e L7

8 270 720 - 8

9 271 7 9

' 241 L a :

" 242 S a2 "

243 L 43 ¥

$ 244 S 44 . $

5 245 . a5 5

§ | 246 46 - LINE FEED

110

(TELETYPE INPUT/OUTPUT)

SYMBOL

8-BIT CODE

CODE (OCTAL)

[

— /r—‘l

SPACE

247
250
251
252
253
254
255
256
257
272
273
274
275
276
277
300
333
334
335
336
337

240

6-BIT CODE

(CHARACTER STORAGE)

CODE (OCTAL) SYMBOL .
47 CARRIAGE RETURN
50 (

51)

52 *

53 +

54 ,

55 -

56 .

57 /

72

73 ;

74 <

75 =

75 ’

77 RUB-OUT
00 END-OF-FIELD
33 TAB

34 \

35 FORM FEED
56 t

37 -

40 SPACE

111

APPENDIX 3

DECTAPE DIRECTORY ORGANIZATION

The Dectape Directory Organization is identical to that used
for the SG-1 Dectrive progrém. The first 5 blocks of dectape are
reserved for the Directory. ‘The format of the Directory appears
below:

Word @ contains the next free block number on the dectape. A file
directory entry word 1, 2, and 3, consists of a file name in 6-bit ASCII
with eight characters maximum followed by at least one zero character
and Word 4, wﬁich contains the number of blocks occupied by the file

with the starting block number.

There are 315 decimal directory entries per dectape. If a directory

block is full word ¢ will contain 777777 Octal.

112

BITS
Word Number

'OOO\IO‘\MAMN’-‘*Q.

0123456780910 11 12 13 14 15 16 17

[NEXT FREE BLOCK NUMBER

| CIIAR. 1 CHAR, 2 CHAR. 3
CHIAR. 4 CHAR. 5 CHAR. 6
| CHAR. 7 CUAR. 8 ZERO_CIIAR.
NO. OF BLOCKS | STARTING BLOCK NUMBER
CHAR. 1 CUAR, 2 ClIAR. 3
CIAR. 4 CHAR, 5 UIAR. 6
CHAR. 7 CHAR. 8 ZI:RO CHAR.

|NO. OF BLOCKS

| STARTING BLOCK NUMBER

CHAR, 1 |

CHAR, 2

[

CHAR, 3

per block.

A total of 63 decim

al directory entries

113

1/0 Calls.

XCALLP
XOPDK1
XCLDK1
XOPDK 2
XCLDK2
XRRDKB
XWTDKB
XRRDDKA
XWTDKA
XOPDT
XCLDT
XRDDTB
" XRDDTA
XWTDTB
XWTDTA
XRDCRD
XRDPT
XWTPT
XADVRD
XADSRD
XRPTTY

XRDCOM

APPENDIX 4

MNEMONICS FOR 1/0 CALLS

The'following list defines the mnemonics that are used for

10 /CAL LOOP
20 JOPEN FILE DISK DIRECTORY 1
11020 /CLOSE FILE DISK DIRECTORY 1
220 JOPEN FILE DISK DIRECTORY 2
1220 /CLOSE FILE DISK DIRECTORY 2
420 /READ FROM DISK 1 BLOCK
1420 /WRITE ON DISK 1 BLOCK
620 /READ FROM DISK ALL PROGRAM
1620 /WRITE ON DISK ALL PROGRAM
30 /OPEN FILE DECTAPE REF. XFACTN
1030 /CLOSE FILE DECTAPE REF. XFACTN
230 /READ FROM DECTAPE REF. XFACTN 1 BLOCK
430 | /READ FROM DECTAPE ALL PROGRAM

1230 /WRITE ON DECTAPE REF. XFACTN 1 BLOCK

1430 JWRITE FROM DECTAPE ALL PROGRAM

40 /READ CARD READER 1 CARD

50 /READ FROM PTR UNTIL DEL OR FULL BUFFER
60 /WRITE ON, PTR UNTIL BUFF EMPTY

70 /READ A TO D VOLTAGE

270 /READ A TO D SCAN VOLTAGE FACTS 1

320 /READ AND PACK FROM TTY (6 BIT ASCII)
520 /READ COMMAND

114

XPPTTY
XPDTTY

XPOTTY

XWAIT

XTSTOC
XTCTOC
XTRFST

XEND

XUSRET
XUSREC
XOPSYS
XTRSYS
XEDSYS
XBKSYS

XLDSYS

he divided into two parts.
and 10, and the hardw

14. There can therefore be 16 devices

per device.

720

/SPARE READ TTY

1120 /PRINT FROM PACKED 6 BIT ASCII ON TTY
1320 /PRINT FROM UNPACKED BUFFER ON TTY
1520 /PRINT OCTAL
1720 /SPARE PRINT TTY
130 /TTME 1 UNCONDITIONAL WAIT
330 /TIME 2 TERMINATION TO CONTACT
1330 /TIME 3 CONTACT TO CONTACT

‘€14Q’ /TRANSMIT TO FACTS STATION
150 /END OF PROGRAM - RELEASE API
160 /SPARE
170 /USER KEYBOARD REQUEST FOR SERVICE
1170 /USER RECOVERY FROM HARDWARE FAULT
0 /OPERATION SYSTEM USER
2000 /TRANSLATOR SYSTEM USER
4000 /EDITOR USER

6000 /BACK TASK PROGRAM USER
16000 /LOAD OR WRITE BACK PROGRAM
The format

of the Handler numbers as specified above can
The mode data represented by bits 8, 9,
are number represented by bits 11, 12, 13, and

addressed with 8 functions

115

APPENDIX 5

MONITOR ERRORS

These error diagnostics are required to fully debug the Monitor.
Once the system is fully operational, the error messages will be

replaced by irrccoverable user messSages.

The following lists the Monitor error messages as presently

defined.

ERROR NUMBER SOFTIARE ROUTINE

PRINTED ON WHERE ERROR

SYSTEM TTY OCCURED DESCRIPTION OF ERROR

ERR # XCALID UNDEFINED SYSTEM USER PROGRAM

ERR 1 XCALHD API LEVEL 4 NOT ACTIVE

ERR 2 A SCALIID OP/SYS CAL BUT API 6 NOT ACTIVE

ERR 3 XCALHD CAL BUT NO ACTIVE SOFTWARE API LEVELS
ERR 4 XSEVCL TRANS CAL'D BUT NOT IN PROGRESS

ERR 5 XEDPRO EDIT CAL'D BUT NOT IN PROGRESS

ERR 6 : XSEVCL API 7 ACTIVE BUT NO SYSTEM USER

ERR 7 | XTTYIN ' UNDEFINED TTY

ERR 10 XABUSE CAL FROM BACKGROUND

ERR 11 XGOHND UNDEFINED HANDLER

ERR 12 XUTTY ILLEGAL BUSY TTY

ERR 13 XSHIFT MORE THAN 17 SHIFTS - ILLEGAL

ERR 14 XSTORQ OVERFLOW

ERR 15 XTIMU ILLEGAL HANDLER

ERR 16 XCKSTX UNIDENTIFIED ACTIVITY

ERR 17 XUSERE IND NOT SET BUT RECOVERY REQUESTED
ERR 20 XGETSP EDIT IN PROCESS BUT NOT 1/0 OF EDITOR

116

ERR

ERR

ERR 2

ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR
ERR

ERR

26
27
30
31

32

34
35
36

37

XGETSP
XGETSP

XBKFIL

- XABORT

XPINH
XCAIND
XPTEND
XDECOD
XAPIRT
XREADA
XNOTI
XNOT1
XRETIM
XTFLG
XSETF1

XDTHA2

BACK NOT IN PROCESS YET REQ SWAP

BACK IN PROCESS BUT NOT I/0 OF BACK
FILE NOT FOUND QUEUE

ACTIVE USER, BUT ZERO SYSTEM PR POINTEPR
COUNT ERROR, MODE BITS

ZERO CAL

SYSTEM PROGRAM NOT IDENTIFIED IN XTBL9Y
UNDEFINED DECTAPE FUNCTION

DT API INTERRUPT‘BUT NO FLAG

OF BLOCKS NOT SPECIFIED DT

UNDEFINED TIME FUNCTION

UNDEFINED FACTS NUMBER

UNDEFINED FACTS TIME FLAG

ACTIVE BUT NO RETURN ADDRESS

A/D IS OFF

WRONG BUFFER LOC. DECTAPE

117

APPENDIX 6

The Peripheral assignments to the API hardware are as follows:

(HANNEL : .
NUMBER TRAP PRIORITY
OCTAL ADDRESS DEVICE . LEVEIL
-0 - 40 Software channel # 4

1 5 | Software channel 1 5

2 a2 Software channel 2 . 6

3 43 Software channel 3 7

4 44 Dectape (TCD2) 1

7 47 Disk 1

10 50 Papcer tape Reader 2

11 51 Clock Overflow %

12 52 Power Fail 1]

17 - 57 A/D #

30 .70 FACTS.time flag 1)

31 71 FACTS TTY's 3

32 72 FACTS push buttons 3

118

10.

11,

12.

BIBLIOGRAPHY

Rosen, F., Robert, "Supervisory and Monitor Systems',

Computer Surveys, Volume 1, #1, March 1969.

Gruenberger, Fred, "The Transition to On-Line Computing",

Thomas Book Company, London.

“I.B.M. 1800 Data Acquisition and Control System Functional

“Characteristics", File #1800-01, Form A26-5918-4.

Digital Equipment Corporation 'PDP15 RSX'", #15-GRQA-D.
Digital Equipment Corporation "PDP-9 Uscr landbook", #75,

Chapter 7.

Digital Equipment Corporation "Automatic Priority Interrupt”

Option KFO9A, #DEC-09-15AA.

Digital Equipment Corporation '"PDP-9 User Handbook", #75,

Chapter 1.

Maurer, W.D., "Programming - An Introduction to Computer Lan-

guages and Techniques", Holder Day Inc., 1968.

Digital Equipment Corporation "PDP-9 User llandbook", #75,

Chapter 5.

Digital Equipment Corporation "PDP-9 User llandbook", #75,

Chapter 14,

Northern Electric Company "FACTS Dectape User Manual",

#K412-2, September 1971,

Northern Electric Company "Testran Users Manual', #K412-3,

December 1971,

119

13,

14.

15.

16.

17.

18,

19.

20.

Martin, James, "Programming Real Time Computer Systcms'",
Prentice-llall, 196S.
Martin, James, "Design of Real Time Computer Systems", *

Prentice-llall, 1967.

Scherr, Lee, Allen, "An Analysis of Time Shared Computer

Systems'", Research Monograph #36, The M.I.T. Press, 1967.

Wilbes, M.V., "Times Sharing Computer Systems'', Amcrican

Elsevier Publishing Company 1968.

Wegner, Peter, "Programming Languages, Information Structures

and Machine Organization", McGraw-Hill.

Laner, George, "A Real Time Multiuser Foreground, Singleuser
Background System for the PDP-9 Computer", Science Centre,
North American Rockwell Corporation, Paper given at spring

DECUS Meeting 1970,

Digital Equipment Corporation, "Advanced Software System Mo-

nitors", #DEC-9A-MADO-D, Chapter 7.

Digital Equipment Corporation, "PDP-10 Time Sharing Handbook",

Code AKW, 1970.

120

