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¥ Dpecision tree is a .fast classifier®’in-. pdttern °
. R

$ a recognition, 'where a large number of clafses can be treated
> -

' = . : k3 'Q’ . (3 s
P and the decision making time can be minimized by a series of
X J )

small 1local decisions, Based, ‘on -~the consideration of

‘entropy .reduction , the éeneral tree cidssiﬁier has been

analyzed. -Theoretical results show that its search time¢ and

[y v

L error, rate are both in the ordér,DjH), and .overlap imn _the

i LR .
order O(H.exp(g)), where H is Shannon's entropy measure‘qf

)

7 ) "thé given problem. - *The results further reveal ‘that the main

. [N
b '

T . \ difficulties in tree.implementation are error accumulation

and serious memory requirement due to:overlap. Some design
Py ==

3

.

- ' principles have been drawn from these behaviors of the

+decision tree. With entropy reduction over overlap ‘as  the (.

*—~\ . objective, a new clustering algorithm : called.ISOETRP, has

~

been developed, Overlap is treated in ISOETRP for the first .

‘ , i
- ) time ' and pracFically solved by the overlap table itself.

’ ) : Experimental results show that this clustering algorithm is
L very powerful in the design of the tree,classifier. Some .

' ' werks. have also been done on feature analysis. The profile

14

L) ' s
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.

‘branch-bound search algorithms

'
~

feature and SVD (SingularJVaiue Decomposition) are comﬁared.

The phase¥eature has been proposed and qnal}zed for paﬁtern

recognition, qIn order to enhance, the 'tree: classifier, some

Y

with fuzzy membership

heuristic’ evaluation have been developed to

\
reduce ‘the.error rate. A new model 9£ decision treé with

function as

élobal traininé has been proposed.

model ov%l the conventional decision tree 1is that error

accumulation hag been supspressed considerably and a very low’

" ~

error ‘rate can be obtained at high speed.

" classifiers have been implémented to recognize 500-3200

Chinese characters.
’ o
]
classifier

The result of the 3200 character
v ' -
is véry‘ encouraging : the recognitioﬁ rate is

99,.93%, the error rétg only ‘0.025%, and the speed 861

The adwantage of the new’

Several tree

samples per“secoud when the program is written in Pascal and

run on-a CYBER-172 computer. Thesé results confirm the
theory developed and désign principles given in this thesis,

as well as the newly proposed decision tree model.
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. . CHAPTER ONE

N

INTRODUCTION:

LARGE CHARACTER SET AND TREE CLASSIFIERS
. . ok

\:, .
1.1, Chinese Script -- A Large Character Set

) - S

-~

‘Character sets:- in most clangﬁages have become fully

phoneticized and aiphabetized after the pictograph;c stage.

[y

Oowing to this reason, every .character set in these languages
is usually small. For example, there -are only 26 'letters in

English , 32 in Russign, 24'in Greek, etc. Chinese secript .

1)

may bq the onl& one, which remains loéographic, among the
popular languages in the world. 1In the long' hispory, the

\ P ’
total number of Chinese characters became larger and larger.

*

There are about 70000 characters in the largest contempoﬁaiy

- .

Chinese.dictionary (Table 1.1 and ref.[1.1]).

In Chinese, ~each character denotes a word or .morpheme -

and correspondg/io a syllable with a tone. |- Characters are

written in 1 to 36 standard strokes which are respected in’

. >

various combinations (Fig.1.1). Traditionally there., are 6

et, but 3 of which

(RS

categories 1in the Chinese character

mainly remain now :

A) Pictograms, e.g. ,

L]

n J*l " (wood or tree),



L

.. \ o Wl v (mountain),

8

n k. n (upward),.

o ~ * "
) m “K * (downward). . L
1 J ‘j_'
B) Ideographic compounds, e.g. . ‘ '
[} L}
" 4ﬁ\." (a man sitting wunder a tree, meanng tm'
, . rest),. ~
mn B v (the sun and the. moon together, meaning-
k]
"A L bright):
[
. { .
i;'. C) Phonetic compounds, which may consist ?r‘z parts, one

being a radical with sjmple morpheme, the other a phoneme to

’

! indicate the_ exact o{ approximate pronunciation of the
.7
character. For example, the character " ﬁga " (mother) has
ther radical 1&: " (woman) and its pronunciation 1is /ma/
* ’ r -

which is derived from its right part # Iy .

]

, . The percentages of these categories are listed in Table

1.1, !} .

I

* Nowadays in China,. about 3060—-6000 cparacters are used

in newspapers., Even pupils hav;_ to learn 300014000
characters in the primarf . school. About T000-~8000
‘character§'are collected in small diot%Pﬁaries. The Chinese

' charaoter'sét-may bé the most difficult script for human to

wri&e and recognize. Since 1956, work on the graphic

" 7 simplification of the characters has been carried out in the

¢

—
\

ST e e e R S oty WEa . e — ——— 1




TABLE 1.1 Chinese Characters as Logographics

o

Periods. Pictograms ’ideographic Phonetic Total No.
Compounds Compounds

Late Shang | 22,597 . 32,307 37.76% 1226
1300 B.C. ,
Eastern Han| "~ _ ~ 80.007 9353
A.D, 1G0 . N '
Northern | 3% 3 S 90.00% 24253’
Song - )
A.D, 1100 |.
Present* ~ ~ '>90.00% 70000
* Egtimation o

, ¥
- ) [} s



< - ‘. .
People's - Republic' of Chi#&, and 2106 frequently used
characters<haveabeen simglified. Some examples are shown in

LY

Fig(1.2, wh;ch are much simpler than péfore. But Chinese

characters are still difficult to recognize both by human

R

~

and bf compWter for thgzgollowing reasons: . .

N

A) The -numbeg of strokes in each character can be very

- ¢ N )
large, e.g. "'the character "fﬁi& " has 36 strokes (pronounced

as /nagA and means snuffle with a cold, or speaking through

° 1

the nose).

B) The nupmber of characters is very large. As stated

above, 3000--6000 characters are often ﬁsed nowadays and

7000--8000 characters are collected in small dictionaries.

\

N A B
q) Many characters 1look -alike,” €e.g. between "‘{éa "
k) L

(weathier) and ﬁ/ﬁéi " (a nobleman or a high officer), there

is only a 'small difference of a short stroke ™ 1 " in the

3 -
. .

middle. 7 ) '

D) There are some character pairs which have exactly the

A

same shape but oFiented in' different directions, e.g.
n T v (four) and " B " (eye), " A n (person) and

" N\. " (enter), " g8 " (from) and " E? " (first rate),

etec.,

G OO BRL e, ademn ae 4 e

N

The Japanese script 1s another example of a large

character set. In Japan, people wuse 50 hiraganas, 50

[}

katakanas (Japanese letters) and about 2000 Kanji's

I
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to put on

B

to mean

uy . 5 s

Fig. 1.1 ﬁxaﬁples of Chinese Characters
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you mouth gountry meal
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move sleep ‘ “trevel money .
!
. Chinese
posture " volume doubt’ - unicorn

Fig. 1.2 Complfx and Simplified Characters
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{Chinese chgracters).

~

To récognize such a 1large set of qﬁara&ters, Bayes' _

classifier 1is practically” impcssiblev, Due to the large
number of decisioﬁ regions present in”. the feature space,
some conventional classifiérs, such as linear or K-NN (the
(] B M . )
K-Nearest Neighbors) [1.2] would be very ine{ficient both in
. L4 “ \ .

time and 3storage, if not totally 4mpoasiblq. Only 2 types
o - N AN

~0f classifiers have been reported-to recoghiize such large

character sets: one is matching échbmp [1.4, 1:5, 1.24], the

\o;he§§is a decision tree originated frdm'this,fhesis, Both

éypgs will be inﬁ%éduced'w in Sections 1.2 and 1.3

respectively. ' . .. .
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1.2. Matching Scheme
¥ \

€hinese character recognition research begén in the mid
60's [t;3] and first success was reported in }pe late 70's
[1.4, 1.5, 1.24]. Most developments in this period‘ were

-

based on the matching schemé, or simjilarity method &eséribed

_below.

Suppose an unknown pattern X is to be classified as a

member of one of the classes in the candidate éet

{ck] k=\1, 2" cory I }o

'
w

The similarity between X and each C | S(X,Cy) is calculated

and the category Cko with the largest S(X,Cy) value among

'
1]

Ck's is assigned to the unknown pattern.

~

/

The simple similarity measure can be defined as

S(X,C) = (X, C) / (X, X)(Cy, c))'/2

k =1, 2, o s ey n (101)'

where (X,X') is the inner product properly defined for the

patterns X and X'.

A very powerful similarity measure, multiple similarity
was ’developed'in {1.6], which is essentially an application

of Karhuhan-Loéve expansion. Let us describe the result in

[1.6] for explanation and later rereren7ing. Suppose the .

1 »
-

&
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o '

unknown pattern X and a candidate f:Ck are given, the latter

h having the sample set {f_ja ¢ D}. D is the index space, and
' [ i

the probability of index a is P(a). The multiple similarity

. between X and f is defined by

CSP(X,E) = [ pepla)(x,e, )2 7 ClxBle_52) da (1.2)

-«

] .
—

. Suppose each p‘étter‘n fo. (or X) is a function in a Banach
* . space R. In picture or optic%ﬂ character recognition (OCR),
these functions are the 1light energy digtributed'qver a
plane region r ¢ R. .The Qernai function of the category f

is'

’ ) X
Kr, r') = p pla) £a(r) fa(r') da (1.3) <
Accofding to Karhunan-Loéve expansion~ ’
’ N N 5
' o - . )
¢ K(ry r') 25 A ,0 ,(r)o 4(r') (1.4)
) 3z1 373 .
- ) {':
. i
Wwhere ) j's and ¢ J's\ére the eigen values and eigen functions qgt

of the following 1ntegrai equation respecﬁively,

.

N ' '

J’Bx(r,r'w(r')dr' =AJ§J(r) . (1.5) BNt
and
A1->—}\22...“-Z}\m20. ' ' \
; By (1.4) the multiple similarity (1.2) can be expressed
’ as
’ ’. : . . .

\
. wou——.. 4§
e A ‘
e N .. - '

- . D i e S .
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'SR SRV L L (1.6)

L»

52 =3
\ (X, £) =3
- J=1

Y

>

1

-_ Often, only a few'terms of the right hand side aée used

to calculate the multiple similarity. 1In simple similarity,

usually only

2 (r) = bla) £, (r) da | (1.7)

is used to express Ck in (1.1). The multiple similarity is
much better than the simple similarity given in (1.1), but

the {nter-relation between the candidatés is not considered
ia‘any cése. When 2 candjdates are close to each other, the
misélaséificatioﬁ rate can be high. An improved version of
(1.6), the compound similarity has been developed [1.4] to
solve this problem; . \

:

In a "puée" matching scheme, formula (1.1) or (1.6) is
computed n times to'ciassify an unknown pattern into one of
n given cangidates, as explained in Fig.1.3. When n is very
large, e.g. | 3000—~6000 or 1larger in 'Chinese character

1

recognition, this becomes very inefficient.

0

in the work reported 1n'[1.5], a two stage classifier
(Fig.T.HS was actually wused to classify aboet 2000
characters. At the first stage, the unknown pattern is
cléssified into one of about 20 groups. At the second
stage, this unknown s fﬁ;ther compared with asout 100

candidate charactera within ths group and then assigned to

\

PR
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a character category. .One can s8ee, the time requirement of .
a best tWo. stage classifier is still in the order 0(n1/2)
AY " 7
usually another group of features other than Qj's is
needed by the classification process at the first stage. To C o _
speed up the classifier, hardware was -actually employed in ;
“ A 3
R e ' . ' ;
[1.5] and’ its previous versions. . : .
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1.3.- «Tree Classifiers

¥

The decision tree olassifier has been widel& used in
various Pattern recognition préblems, such as geoscience and
remote sensing [1.8, 1.9], speech analysis [1.10],
biomedical problems [1.11; 1.12, 1.1§j. Some‘ana}ysis and
design methods are also given in [1.20—23]. In a tree
classifier, the global decision task can be accompiished via
a series of local decisions. - The tree classifier makes use
of qifferént feafqres at different stages. This property
enables it to perform well in the follbwing two main twﬁes

of applications.

]
1). The decision region is complex and usually in a

high dimensional space, but the number of classes 1s

small.

The locél decisiop'region at each level of the tree
classifier 1s a simple.ong in a lower dimensional space.
The global decision region can be approximated very well

by combining these local regions at various levgls.“ The

applications of the tree classifier mentioned earlier

belong to this type}

’

An example decision treew from [1.12], which
differentiates cancer cells from normal cells is shown
in Fig.1.5.. The cells are subdivided into n=4 classes,
and " one feature is used at each internal node of the

tree. Each terminal node belongs to one of the four

12
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classes.

~

, v In the above applications, analysis and design

s presumed.

As reported before, the problems to be consjldered in the

\
methods, usually the binary decision tre

design of a tree are balance factor, overlfap (Chapter 2)
. v

and feature seléction, etc. Since n is\not very large

in the above works, the diffculties encounkered in large

character set problems were not -reflected.

2) The number of tlasses , n, in the glven problem
is very large, e.g. N>3000 in the Chinese character

. » recognition [1.14].

' ¢ A" large number of classes can be handled in the
_ decision tree. Compared to the single stage classifier,

¥
‘classifier makes 1t possible -to reduce the decdision
making time significantly. TFor' example, in a compléte,

balanéed .binary tree. with n terminals), fhe time

li

requirement 1s 0(10g, n) [49,7), while in a single stage

classifier, the time requirement in an n  class problem

is in 0(n). Even in an optimized two stage classifier,

3

the decision making time, 0((n)1/2), is still far larger

than Q(logzn)- \
The application of the decision tree classifier to
Chinese character recognition was proposed by thé'author and
simulated in [1.14, 1.15, 1.16, 1.17, 1.18], where n was
s
-y .

where n classes are separaéed in one step, the tree -

-,

Al
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very large (between 500 and 3200). An example from

o

reference [1.14] 4is shown in Fig.1.6. 1In this work, 64

Walsh transforms of some profile features (see Section 4.2)

t

were used to claséify 3155 noisily printed characters. Th€
tree 1s a general one, i.e. the number‘\of branches 1ssued
from each internal node is not presumed to be 2. Qnly one-

feature was used at each internal node, which 1s indicated
.4

by 1ts identity number in each round circle. Actually only

a simple inequality test is needed in the recognition)ghasp,'

3

3

terminal node is written in a square:frame. Both internal

nodes and terminal nodes have the same structure tybe in the

- compué%r storagey which 1is as fb;lows when using- Pascal

‘ -

8eclaration. . . ’ -
Los g ) ,
TYPE X g
. LNK = “NODE} '
' " NODE = record ’ ' .
. .
N . FN : integer; i .
' ' ) { denoting feature nugber 1in an internal
d i . node orfa character 1.d. in a terminal
’ node }-.
FEA' 3 real; s

{ some constant in an inequality .¥

BELOW': LNKy
1

. °." , { to the first child node of the
¢

internal node, or nil in a terminal Aode

-

‘

resulting in a +very high speed. The character in gach "

l
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NEXT : LNK

+

{ to the next sibling node }

end; . ~

Using this struéture,, the _general tree 1is actually
. ’ " ‘4
mapped to a binary tree ' in memory. The bindry tree

corresponding to Fig.1.6 is shown in Fig.1.7. In this way,
2 . '
the general tree gives more flexibility than 'the binary tree

without taking up more memory space. .
-

In this example, only.one feature’was used at each stage
and the decision region of each character consists of one or
more hyper rectangulars, in the 6u- dimeé;;onal space. A more
sophisticated classifier can be obtained 1if we use more than
one feature 1Iin each 1internal node. A tree example which
makes use of 4 featu;es at each .internal node is shown in
Fig.1.8 [1.15, 1.16, 1.17, 1.18]. For these ‘trees, the
above data structure is modified; FN becomes an array of
integers, which represe§t the feature‘numbers used in this
internal nodej FEA 1is changed to an a;ray of 4 real numbers,

storing the center coordinates of the character subgroup

corresponding to this node (internal or terminal). The

local decision is made by comparing the distances between '

the unknown pattern and these cbnters’ln this U4-~dimensional
séace. In this case, the tree is essentially a plecewise

linear classifier. . )

A
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. see it is

~ 20 . '

From the data structure of the tree classifier, one can

important to use uniform features and

«

very

"descriminants in the classification process. "Otherwise the

[}

would much memory and make the classifier

tree take too

practically impossible in a large character set problem.e.

.

g,
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‘1.4, Main Parts of the Thesis

¥

When the decision tree is applied to pattern recognition

in large character sets to raise the time efficlency, many
< ,
difficulties in the implementation are encountered w‘hich
must be overcome. Usually the storage requirement has a
h'igher order than 0{(n), n being the number of classes in the
given pro%lem, due to overlap in the tz:ee. Owi”ng to error
accunulation in various levels of the tree, the total error
rate-is larger than that produced by .a matchin‘g scheme if no
specia‘l treatment 4is applied. Both f‘eatur-g extraction and
selection in mqtching scheme can be soived by Karhunan-Loéve
expansion tasily (although not fast). While in the decision
P

tree, feature extraction and selection are usually different

from K-L expansion, which is explained in Section 4.1.

.To overcome these difficulties, . the deqision tree 1is
first - analyzed based on entropy reduction, whiech is
described in Chapter 2. Some design principles are then
drawn from the analysis, and solutiens are pr'op:)sed
according to these principles in the ensuing chapters. In
Chapter 3, a new clustering algorithm ISOETRP with new
objectives is proposed, These objectives differ from those
of any traditional clustering analysis. They serve the
dqsign‘ of tree classifiers very well. An interactive
version of ISOETRP has been developed, which solves'tvhe

overlap problem by means of an "“overlap table". It seems to

be very powerful and very effective in practice.

21
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Chapter U4 analyzes why K-L transform does not fit the
tree classifier. -Some analyses about feature extraction
(profile, SVD and phase features) and merit measure are also
included in this Chapter. Chapter 5 4is devoted to the
methods of reducing’the error ra:e of the tree classifier,
where some branch-bound search algorithms, with fuzzy
membership function as the heurjistic evaluation, are
proposed. A new concept of gl‘obal “training 1is pr'oposedl,
which cﬂompensates the error accumulation (or local behavior)
of the tree classifier. After that a new model tree
classifier 1is aptually proposed. Experimental results show \

that it gives a much better performance than the old model “

wit:,h only straight forward search.

In éhapter 6, all simulation experiments on tree
classifiers in both old model and‘ new model are summarized.
The descriptions and recognition results of these trees
justify the analysis of the tree classifier, the d'esign
principles and the ISOETRP clustering algorjithm, and show
that the newly proposed tree classifier mod'el is a good

approach to the large character set problem. '

Conclusions of this thesis are given in Chapter 7.

—
-
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CHAPTER TWO
ANALYSIS OF THE DECISION TREE CLASSIFIER

INTRODUCTION

-

In addition to Bayes decisjion theory, entropy. reduction
has been proved useful in the analysis of tree classifiers.
IF can be shown ‘that the searching time and error 0rate of ,
the decision tree without overlap are both of oider O(H),
where H is Shannon's entropy Qeasuré of the given problem. -
This result can also Dbe ‘extended td ‘the overlap case.
Furthermore, the theoretical result shows that the mpmor&
requirement of the tree classifier with overlap is of order
O(H.exp(H)), or in another form, O(n.log n) where n is, the

number of c¢lasses 1in the given problem.  These theorems

reveal that the main difficulties in implementing large tree

classifier 'are excess memor& requirement caused by overlap

‘and error accumulation. To solve these as well is other
difficulties, some design principles are proposed based on

the above theorems.

-

’ 4 e et b i -
et Y SN R irees vww e v _oa %y e v - N bk & bl




Ry

2.1. Bayes Decision Theory and En%ropy Reduction

Statistical methods have played a major role in pattern
recognition developmegts [2.1-2.3]= Even' in some other
successful'aéproaches such as ‘syntactic methods, statistical
tools may also be useful [2.5, Chap.6]. 1In this section, we
introduce the . fgllowing ?efinitions, notations and
%heoretical resutts (up to eqn. 2.9), which are similar to

those given in [2.4, Chap.2]. ' '

Suppose there are n possible pattern classes

w1,wé,...,mn and an arbitrary pattern belongs to class wy

with a priori probability P

i’
n
§=1Pi=1f Py > 0.
after feature extraction, patterns are expressed as

d-dimensional vectors. When pattern X is known to belong to

class Wy it is assumed to be a random vector taking value

in a d-dimensional feature space R with the multivariate

)

probability densify function D(Elwi), iz1,2,...yn. The
probability of X Dbelonging to class w4 is called a
posteriori probabilityﬂ?(ujlg), which can be computed by

°

Bayes' rule:

P(wjlz) = Pj p(_)£|ullj) / P(K), ‘ //.
N . 321,‘2, oo.,n ) ’ (2-1)
where )
i .

27 .
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p(X) = p(Xlw, )P, (2.2)

=1

[ el e JE=]

iz the unconditional probability, or overall distribution

density of X.
- . ’
Let ((X) be some decision rule, i.e. the class to which

the pattern X 1is assigned. For example, a:wi means the

.

.pattern X is assigned to class i, i=1,2,...,n. Furtﬂermore
&:wo mea;sii is rejected. Let A(wjlwi) be a measure of loss
incurred when ﬁ({):wJ is made and the true pattern class w
is in fact w,, 1=1, 2, ..., n, j=1,2,...,n. Thé conditional

risk of making decision &(£)=wj is
J v
19X) = I Alwgjug)p(ay (x)
i=1
and the average risk is

q l(X)ax . (2.3)

where {§ is the entire pattern space, and

n .
1(X) =L X(@(X)lwi)p(wiTX) (2.4)
i=1 - - )

3

The decision rule which has the minimum risk 1is Bayes'

L]
decision rule

-
At 4
6 =wy, 1r 110<dx)
! \
N\ for‘j = 1’ 2, eeey N N (205)
The corresponding risk is Bayes risk

Cut e [a%poex - (2.6)

Uiy on FAEPOY UKL TE L MRS AN v . ' . . . o im e e —— a
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N ¢+
where . : . )
1’ '
1" = MIN it. . '
1=1,2,..o’ﬁ a
When the loss function is -
a N '
)\(wilmj) =' 1, i*J’ i=1,2’..n,n, J=1,2’o-l,n,
: ’ o’ 1:3:1,2,-.0,!1
{ﬁ , i Xr, i=0, j=1,2,.¢.,n (2'7)
is the rejection threshold, Ba}eg' decision rule

where A
r

r

becomes

- » :
B (X) = w, if p(w,IX)=p (X)21-4
\
when gy
{ . .
p (X) = MAX plwylx).
J=1,2,|oo’n
, Ir Kr.z 0, Bayes rule becomes simpler and the minimum error
rate 1is , ’ .
* j //'/
» : ,////
E =I9<1-M§x plwyIX))p(X)dX. P 1

{

Let us consider an example in.which each ola;s has a

multivariate normal distribution density

> preom
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ay =M/ 2. -1/2 tp=1
(21) 12,1 expl-(X-p,)" 2] "(X-H,)/2]

where My and Ei are the mean vector and covariance matrix of «
3

=

classi mi respectively, m is the dimension of the feature .
space and t denotes transposition. Let the regions bé

te-1
121,2,.5.,n (2.10)

where a is a threshold which is as large as possible wunder

the following condition :
Qin$2J = ¢, i!J, i=1’2,.o.,n’ j=1,2,...,1’1. 4 (2'11)
. L Supposge the decision rule

&(5) = wi When _X_ € Qi i=1,2,.-o,n

r

s W, otherwise \ (2.12)

- . <

"gives the error rate E, rejection rate R and correct

recognition rate C, then

il

J

n
C > ¢, = f-1 P, . 91 P(Xlwy) dx (2.13)
=1,- . .

It is easy to prove that the integration part ‘

I =) p(xluwg)ax ' (2.14) ‘

q 2 2
i -

depends onLL;uPthe space dimension m and the value of a.

The corresponding formula is deduced in the/ﬁvpendix of this

chapter. By means of this formula, C0 is calculated as the

-~

N .
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function of m and &, and shown in Table 2.1.

’

From Table 2.1, we sSee that, in order to get a high

correct recognition rate, a large value of © is preferred.

-« But this 1is often restricted by the fact that (2.11) no

.longer holds—when a is too large, e.g. O > 10 in practice.
Let us consider Fig. 2.1 to see how this problem is solved
in a tnee classifeir. 1In the d-dimensional space, an' a 1is
selected so that the value of C in (2.13) is big enough,
such that the integnation‘ value I over reg%on Qi in
‘egqn. (2.14) is 'aimost 1. Suppose only 2 features are used
’1n the first stage of the tree, where the projection of the

regions Qis corresponding to ¥ys are shown in Fig.2.1la. The

pattern classes are divided into 2 groups A and B :

{m1,m2,m3,mu} | -

o
!

-

B = {wy,,0;,0,,0,} : (2.15)

In each group, the pattern classes can be divided into
smaller groups using some other features, forming the next
level of the tree. This process continues until only one
class remains in each small group, arriving at the terminal
nodes of the tree. In this way, a %grge number of classes

can be treated and the decision making time can be minimized

by a series of small local decisions.

In any pattern recognition problem, each unknown pattern

is assigned to some pattern class. In other words the

" .
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uncerntainty about the class to which +the wunknown Dbelongs
should 'bg removed 1in the recognition process. This
"~ uncertainty can be measured by means of entropy. This idea

i1s especially wuseful in our decision tree classifier. The

o °

entro;; is 1nitially large at the root node and it decreases
as the unknown pattern goes from an internal node to one of
its descending nodes. This entropy decreases level by level
until the unknown pattern reaches a terminal node where the

entropy vanishes almost completely. We see
AN BZ O ' : (2.16)

which causes an overlap, i.e.. class W), belongs to both
groups} A and B. If there 1s no overlap in the decision
tree,.ihe problem is as. simple as coding the n patterns.
Shannon proved [2.8] that the average code length [ (which
is siﬁilar to the tree aearchiné time to be described later)

i
-

satisfies
- J L2 H (pyyppysesypy)/logDd (2.17)

where Hn is Shannon's entropy defined on the probabilities

F

Pis P2y ooy Ppy

and™ D 1is the riumber of symbols used in coding (which is
‘ .
similar to the maximal number of branches in the decision
. - : Va
tree), and "log" has.a base 2. He also proved that there

A exists an optimal coding yith average code length

"
! L < Hn(p1,p2,...,pn)/logD+1 (2.18)

L w—— . . R N ] ’

,
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In many applications, a binary tree 1is assumed; and
balance (i.e. the child nodes have equal size) and
completeness of the tree (i.e. all terminalmhodes lie at the
same level) are emphasized. These conditions often conflict
with overlap and do not lead to an optimal tree ®tlassifier.
In this and the following sections of this chapter, the tree
classifier in general form is analyzed ‘from the point of
view' that entropy 1is reduced .one level at a time in the
tree. As pointed out in [2.6, 2.7)] and elséwhere, rather
than considering paétern recognition problems from Bayes
point of view, they can be treated in 1light of minimizing
the entropy, which is definedl pﬁoperly With respect to the
given prgblem.

\J '
.

¥

- PR

PP



2.2. Decision Tree without Overlap &

Let us explain the symbols used {in tke various sections

bf this\ chapter? by taking the tree sh%wn in Fig.2.2 as an
; . .

example. It classifies English lettlers from A to T (n=20).

£
TW@ root node is at level 0 which contains all the letters

2% . (a,B,¢,0.0,T (2.19)

There are exactly n terminal nodes Ln this tree, i.e. there
is no overlap. We 1label each terminal node by its

- corresponding letter. The root node\has 3 branches 1, 2 and
i

3. Let 9£1) be the entire set of letters in the terminal
\

nodes in the ith branch (i1=1,2,3), then

i

- 113 (1) o .
@ - Ui=1ni ', | )
A ‘
. Q£1) n 951) =0, 145, (2.20)
‘Suppose each letter has a~priori probability Pj

(j=1,2,...4n), we define P(1) as the probability of 9(1),
i 1

p(1) _

i 7 359(1) P i=1, 2,13 (2.21)
i

In general, for a node at level k which has m, branches, we

use the symbol

(k) _ 5 -
s -fi Jeﬂik) Py i=1, 2, vus, mk. (2.22)

&
to denote tHe probabilitysof the letter set corresponding to
its ith child node. If there is no overlap in a subfree

rooted at’'a node at level k-1, then the probability of this

36
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g o - B e
. root is ' - )
oo m )
. S plk-1) gk Bfk)~ (2.23) °
i=1 o ¢ ’
o . .
i According to Shannon's entropy measure, !
’ 4 .
PR . ‘ . n .
@, . . Hn(y1,§2,...,Pn) = -I P, log Py (2.24) -
. . R ! . i i=1 © .
] where"Pivs”(1=1,2,...,p) are probabilities,
v e ®n . ‘ . y
Vi L Py =1, 0<P;<1, 1=1, 2, ..., n. (2.25)
. i=1 * . -
& . . L ' : f e
v . L . ' ‘ ' .
| . Although there¢ are some more geperal entropy measures
- . t N
o ‘ . .
v with Shannon's as _their ‘special case,, such as Renyi's
) - R -
. ‘ N . entropy of order O, generai{;ad entropy of qegree a , and .
X - R-norm entropy [2.10, 2.11f, Shannon's is preferred because
' " - 1t is the only one which satisfies the strong additivity 4in
, the following. form [2.9,2.10],
s )
gK : Hl(p1q11,-o-,p1q1n1, p2q21,--53p2q2n2,~---,pmqmnm>'
o . m - 0
‘ ‘= Hm(p.‘,pa,.... p‘m)-o-i—“pi-nni (q11’q12"“’q1n1)
[ [
' /
o . ’ (2.26) :
s ' !
m N . .
where 1=I n,, and the probabilities p's’ and q's satisfy
=1 . Y - "
i ) o ‘ \ .
o * s . \
' \
i
m
? z p = 1 v i
i=1 i ) '
\ ~
ni b K
'.z qu = 1,:1:1,2,..‘.,“1- |
' J=1 B " . '-
> b
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As is\ knoﬁn; ‘the searching time 1in a completé binary
décision treejis~16g n units, where n 1s the number of
;ermihall nédes and one unit time is that for an u;known
pattern éo pass one level of the tree [v+.7]. For a general

tree, the result is very similar to (2.17) and (2.18) given

‘by Shannon. For relating the “pattern recognition ﬁroblem
N T 2

with entropy reduction, we giye the resultain the following .

form.

"THEOREM 2.1. ‘Suppose Hj is a positive constant. If there is

no overltap in the tree and the quantity

[N

D .
(k) . _§k1 pik) log pik) > H, (2.27)

for each internal node at ény level k, then the average

+ time for the unknown pattern to reach the terminals from

1

the root satisfies

T < H/Hy unit . . .. (2.28)

where H = H (P,,P,,¢..,P ).

n
PROOF. . '

Note that each internal node with all its

A
descendants 1is actually a'(sub~) decision'tree. Let us

prove (2.28) by induction based on the number of levels

of the decision tree.

3 ~

For a one level decision tree such as the one shown

in Fig.2.3a.

E:>=— sl
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p (1)

i = Pi’ ié1,2;-.o,no

n
Since -I Pi1) log P§1) > H, , o
i=1 , .
. ]
we have directly

n
PH= -2 Py log Py 2 Hg

While tﬁe searching time is one unit, whichxﬁatisfies .
T =1 i H/Ho.

Now suppose eqn. (2.28) holds.for any tree ‘or subtree

with the number of level less than of;equal to K. For' a

L]

" +tree with (K+1) levels as shown in Fig.2.3b, suppose the

entropy of the i-th subtree is hi’ we have

P T IR

1 (1) 1) (1)

$' P (L (p,/Py ') log (P,/P!'’))1/H :
et b gew, R 3t ° /7
) 5 L x ' : o :
. . m ‘ o .
=-2' B B, log Py /Hg ¥
i=1 jeﬂi

, :
' n . . . )
~ a =L P, l0og Py /H : ' Ty
jer 4 T2 73770 ' - :

.

' . . .

. . . i . vob

. w . . ' . .

L

13 Py L &

Y o ‘ .
.

- 4 54 . N
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! This result means that, the time requirement of a

' )

general decision tree is in the order 0(H), or 0(log n) when

r

all P;s have the same. values.

-

v

ks

THEOREM 2.2. Under the assumption of Theorem 2.1, if the

er}or rate produced at each nbde of any level k (1.e%, Y
. ’ e *
the error probability for the unknown pattern to go to a
~
wrong node? is
v
e(k) _<_ eo . L)
for some constant €5y, then the error rate of this
S
decision tree is .
e < e,5.H/H, ' T (2.29)
| . v
"Proof. . :

-

For those unknown patterns going through Ki levels

befoye\reaching the terminal node, the error rate is

¢

!
the eror rate of the tree is then the expectation

e = E(ei) < °0E(Ki) |

\
By Theorem 2.1, (2.29) is obtained. Q.E.D.

I

.
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The dintuition' of this result is as follows. According
to the condition of this theorem, the entropy reduced at

each level is not less than HO’ and the error rate produced

at each level is not greater than €5 Since the total
entropy to be reduced is H, the average number of levels for
the unknown pattern to pass through 1is H/HO, the overall

error rate can be expected to lie within the bound given in

eqn. (2.29). The reason that this bound 1is much larger

than eO is that, whenever an unknown pattern goes to a wrong
branch from any internal node dlong its paih, it will never

come back to the correct terminal. We call this phenomenon

the error accumulation effect. This 1s obviously a serious

problem, especially when H is large, as in the ;ase of large
character set Pecognition. There are two ways to redu;e the
overall er?br rate. The first is to minimize e0 by allowing
overlapl but this will cause some other problem when the
number of classes is very large, as will be analyzed in the
next.section. The second is to improve tﬁe tree search so

as to eliminate the "error accumulation effect", which 13.

proposed in this thesis and described in section 2.4,

%
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2.3." Decision Tree with Overlap

i

Overlap was discussed in refs.[1.9,1.14] and some other
papers. %We can use Fig.2.4a to explain 1t, where the
decision tree classifies i/§roup of Chinese characters. One
can see that both characters ".Egi " and " §§2 " appear in
more than one terminal node, which makes the number of
terminals larger than thq’number of classes. We say that
this decision tree Las 2 éverlaps. On further exaﬁination
of this tree as shown in Fig.2.4b, one can find the reason

for these overlaps, i.e. both " 3§§ " and " é%%~"

go to more
than one child node from the first level to the second level

of the tree producing 2 overlaps at the root node.

For manf practical réasons, ovérlap happens very often
in a decision tree. When the number of classes is very
large, overlap may c;eafe a very serious problem. For
example, in ref.[1.14], the tree classifying 3155 chinesge
Characpers had about 15000 overlaps. Obviously overlap
degrades efficiency in terms of time and storage of the tree

and should therefore be suppressed in 1large character set

problems.

In the analysis in this section the Afollowing

definitions aré used: r
\
DEFINITION 2.1. Suppose in a decision tree with overlap,

the nodes at the second 1level contain LT PPN

1
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Fig. 2.4 Wetlapq in a Decision Tree.
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m
classes respectively, where 21 n, > n. The reduction
. i=1

of entropy at this level is defined as

n 1 B /

r o eypi™) tos (py/p{1)) (2.30)

JeQy .
where P, Pil) and g, have the same meaning as in eqns.
(2.20,2.21) except may be ) .

91 n QJ £ ¢ for some i#j, .

One can verify that when P1=P2=...-=Pn=1/n,

I
AH, = log n -(Z n; log nj)/n. (2.31)
- i=1

DEFINITION 2.2. The value OP is defined as the .number of

overlaps at the node plus 1:
OP = number of overlaps +1 . (2.32)

We add 1 to the right hand side of eqn.(2.32) to account
for the extra memory used for the parent node. For example,
in Fig.2.4b, there are 2 overlaps, and OP = 3. For 0P we

have the following pheorem.

THEOREM 2.3. If the overlaps happening at each node of

level 1 are

where n(l) is the %umber of classes in the, sub-decision

tree rooted at the node, AH(l) as defined in eqn.(2.31)

SRR L PR UFSTRTRENT T TR LI o AT SO S - * Dy re - v - PO . ey % g oo ees mon B e -y
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.for this node, and G, is some constant (minimum Gain),

then the total number of overlaps plus the number of

internal nodes of the tree is

.OP <m.H /G, (2.34)

PROOF. For a one level tree, eqn.(2.34) is trivial since

OP=1 in both egns.(2.33) and (2.34). Suppose (2.34)
holds for any tree or subtree with the number of levels

less than or equal to K, then for a (K+1) level tree,

m
oP = 0P (1)g! 0P,
i=1

where OP, is the OP value of the subtree rooted at the

ith child node. By eqn.(2.33) and the. induction

assumptiop

(1y ., ™M
0P < (n.pHT1D 4+ 1 nyHy)/6g
n . | N >

1]
—
=]
—~
'
[ ]

! (PJ/P£1)) log (Pj/p£1)))

. |
-5 n, I (PJ/Pi’)) log (Pj/p§1°>J/GO
=1 ! jeq,

=T.H / G,

which completes the proof. QED.

When P, :P,=.,,.:P =1/n, we have

H = log n, and

' -

ey
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OP < n log n /G, - (2.35)

If eqn.{(2.33) holds at each node of 1level 1, eqn.(2.35)
shows that OP can be expected to be within the order O0(n log
n). Furhhermore.bne can see it is important to minimize the

value of Gain

6 = (n1) pr(1)y , op(1) ' (2.36)
A Y

at each node of level 1 in the design of the decision tree.
If we modify definition 3.1 as follows, we can get a tiéhter

estimation of OP.

DEFINITION 2.3. Using the notations

n .
H=-f P, logP ' .
J=1 J J {
and
A (1) (1) -
JEQi

the entropy reduction is deflined as

~ m . '
pf = H - §‘1 exp(H, -'H) Hy (2.37)
i /

Similar to definition 2.2, when

» v/ ,
1=P2= oo o'—'Pn"

we have

AH = log n = (I ny log ny) / n.
: i '

£l

e e
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_THEOREM 2.4, 1If

. §

op 1) ¢ pi1) exp( w10, (2.38)

at. each node of level 1, then

OP < H exp(H) /.G, . . (2.39)

-

Proof. Similar to Theorem 2.3, we have

=(1) . ™1 :
0P < [exp(H) AH + T exp(Hi)Hi] / Gg

' . i=1 )

= exp(H) [H - % exb(Hi - H) Hy

. 5 . i
+ z,exp(@i_- H) Hy1/Gg
= H e:‘cp(fl) /. GO' ’
5

QED.
In.general

H < log n-,
and T T - ) i , ’ ‘ i el
B . —— e N, R | ”
exp(H) < n, =
which means (2.39) 1is a tighter form than- (2.34). But by
eqn.(2.38), the quantity to be controlled at each node is °
G = af(2) expnt)ysop(l) . (2. 40)

which is more complex than that given in eqn.(2.36).

B
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For the special case ///

-+~ e
P1=P2=u.co=Pn=1/n’l
\
we arrive at the same result as in (2.35).

Now we are ready to illustrate some results about

searching time and error rate for a decision t;ée with

overlap.

THEOREM 2.5. If at each node of aﬁy level k of the decision
-~ 'm /
Hoo=w(k) oyt /Pi“) B > m, (2.41)
1=1 n
-

e
—

tree,

-
(k.
—_ where H k) and Hik) have the same meaning as H and Hi in

definition 2.3 and H, is a constant, then the average

searching time is

[

T < H/ H (2.42)

. PROOF. Following the proo?.in Theorem 2.1, we have

L] — m —
T=1+3 pj(VT,
i=1 .
0 m1 (1) ——
< 14+ 7 P T
- 1= i i
m1 b
L (Hy + I P§1) Hy) /7 Hg
i= T TR
S I AR R YRR T IS
- i
= H / HO!
4
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.where PI(1) is the probability for an unknown to go to

s - o
" the ith branch, which is not greater than P£1). .
QED.
Similar to Theorem 2.2, it 1is easy to ﬁrove the

o

following :

4 o

THEOREM 2.6. Under-the assumptiop'bf Theorem 2.5., if ‘the

error rate at efch node of level k satisfies,

* » \\

e() ¢ (2.43)

(o}

then the error rate of thé decision tree is given by

e < e..H / Hp. ’ . ‘ (2.44)

4 £ s

]

One can see from the proofs of the above theorenms thaﬁ,

and (2.44)

(2.28), (2.29), (2.34), (2.39), (2.42)

eqns.

give tight estimation, i.e., each equality can be approache& . <L'

in special cases under the conditions iIn the - corresponding

theorems. In fact these restlts show us that, the overlap <

is in the order O(n log n), the error rate and search time

are both 1in 'the order O(log n). They help us to set some

principlés in designing the decision trees,

-4
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" and the équality is reached

2.4, Design Principles ) -

8

Assuyme we have to dédsign a declision tree for'an n-class

@

problen, each class hgving_ a-priori probability P,,
i=1,2,...,n. Also some features have been extracted from a

-

given set of training samples. The average number of child

., nodes of eaclf internal node is called branch factor, B. For

example, for a complete binary tree, B=2.

- . ¢

A) Optimal Value of B..

In many applications, a binary tree is assumed. But B=2

'may not be the optimal cho%ce. Suppose
/P1 =, Pz = o e n = P ‘\'
then the value of Ey in eqn.(2.42) 1is ‘ t
: / Ho = log B . -
‘ - I' o

Ti: B log n/ log B.

»

kTS
]
€

It is easy to show that T is minim

.

and 4, T has the same value, But less internal nodes are '

ized when B=3. .When B=2

.-

used when B=4 than ﬁ:z. Basqd on thse consideratipna

b
b -

. X >
o o

bl

3<B<CH - . ‘ (2.45)

[} ) . ’

e
'

15 preferred, and a binary treq is not the optimal ¢type of

¢

J” . 52
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‘tree in the case. '
Under the above assumption, eqn.(2.44) becomes
e < €, log n/ log B ' (2.46)

which implies that a ©bigger value of B is preferred. A

combination of eqns.(2.45) and (2.46) indicates that .
3<B<KS5 ’ (2.47)

may be the proper rangé of B. 1In the design of the decision
tree, the branch number at %each internal node does not
neéessarily have the same value and egn. (2.47) provides

flexibility.
B) Clustering Objective

In the design of the decision tree, a clustering
-~ 2

algorithm is -needed in a broad sense. Let us discuss what

should be the objectives of clustering.

o

The memory requirement of the decision tree 1is

\
i

M =n + OP ' (2.48)

by Definition 2.2. According to Thedrem 2.3 or 2.4, this

L
could be in the order . R ‘ ,

Mas«n+n logn/ Go Co (2.49)

-

|

If n is very large, n log n will be much larger than n. -

In order to control the memory requirement of the tree, it

{
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is important to increase the value of G,. This is related

»

to feature extraction and selection, which will be discussed

in Chapter 4. The problem in clustering is how to <control

GO for a given group of features. As can be seen from

eqn.(2.38), if the ratio of entropy reduction over the

b
quantity OP 1is maximized at each internal node and each

level, the value of G, is then maximized. Based on this

consideration, the overall objective of clustering should

—

be

MAX Gain = n(1) Au(1) , op(1) (2.50)

at each internal node in the design phase, so that the value

of GO is maximized and the memory requirement is suppréssed.

Meanwhile the depth of the tree, hence also the average

A

- searching time and error rate, are reduced.

L 4

c) Error Rate Control.

When an unknown pattern passes through each level of the

tree, the error rate occurring at each leQel is accumulated.
The error rate .of the entire tree is in the order O(H) or
O0(n log n) by eqn.(2.44), This/is the main disadvantage of
the tree classifier and it b;comes very serious when n 1is
very large. The reason that error accumulates can be
explained as follo(i; In theiséarch of the tree, whenever
an error occurs at a c¢ertain level, the‘unknown pattern will

go to a wrong branch and never come back to 'the right one.

Thih difficulty can be solved by recording some "historical

LY
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ioformation" of the search. Later on, when it is f9uné th;t
the current branch or terminal no&e is not likely to be the
correct one, this "historical" information can be used for
backtragcking along the tree. In this way, the error

accumulation problem may, be solved, which will be discussed

in Chapter 5. ' .

—
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2.5. Conclusion

+

In addition to Bayes' decisicén theory, the entroﬁy

reduction approach has shown to be useful in the analysis of °

a tree classifier. The theorems proved in this chépter show

that its seanching time and error rate are both in the order

0(H) and the memory requirement in the order O(H» exp(H)).

Although the time efficiency of the tree classifier is
satisf@ctory »there are serious problems with both error
rate and memory requirement. To solve these problems, some

=

degign principies have been proposed. Chapters 3, 4 and 5

show the app:}ﬁgtion of these princlples to solve these

problems. In chapter 6, somelsimulation experiments will be

presented with encouraging results, which Justify the
theoretical results as well as the proposed design
principles described in this chapter.

- 1
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- 2.6. Appendix

First, we calculate |,

w

.o fgi p(X| wy) dx _ '

fg, 12 Az T2

expl-(X-p )" £77 (X-p,)/27 ax

)

for i=1,2,...,n.
. {
We can find an orthonormal transformation Ti’
3‘.=T1!*“1 (2.51)

such that the covariance matrix zi'is diagonalized 4in . the

new system

Y 21 = diag (0‘:‘,02’---’Gm)0 ' (2.52)

Inltnis way the integral I becomes

)-1

I = Im (Zﬁ)_m/2(0'1.0'2.-.,.- Gm

i

! exp[-(yflof+ ...+y§/o§)/2] dY ' (2.53)

w, = {Y| y?/0$+..., Y:/o: <a ). (2.54)

Let ‘ ,
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Y, =r 0, sin 91 cos 92
Y3 =r 03 sin 91 sin 92 cos 93

S v !

y =r 0 _, sin 61 sin 62... Sin Gm_z c?s Gm_{
y = r O_ sin 91 sin 92... Sin Gm_1, (2.55)

then

0 < em_1 < T 3, (2.56)

The Jacobean of (2.55) is

o
rB71 s10™7% Ll sin @) , 0, ...0 (2.57)

C
"=~

and (2.53) becomes

8

I=c J$ ™" exp-r?s2) ar Q (2.58)
where -
. ‘ ////
¢ (2/9)1V2/(m-2)1 s odd ‘
m = /%) me ! when m is od -
1/(m=2)11 when m is even (2.59)
A further calculation gives . . .

I = 1-exp(-a2/2)[a®"2/(m=-2)114...402/21141]

s ——— PN
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20(a) - (2/9)1/2 exp(-a2/2) [o®~2/(m-2)11
+ oo.  +03/3114q] m odd
¥la) = (1)71/2 [ oxp(-t2r2) dt. -
?d
“ /, )

m even,

(2.60)

(2.61)

¢
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Introdudction

CHAPTER THREE

ISOETRP — A CLUSTERING ALGORITHM WITH NEW. OBJECTIVES

7

-

. A new clustering algorithm ISOETRP has _been developed.
Sevéﬁ%l new objecfives have been introduced to make ISOEfRP
particularly suitable to hierarchical pattern
classification. These objectives are i oa) minimizing
overlap between pattern class groups,’b) maximizing ent}opy

reduction, and c) keeping balance between these groups. The

overall objective to be optimized is
Gain = Entropy Reduction / {(Overlap +1). N

Balance is controlled by maximizing the Gain. Ah
interactive version of ISOETRP has also heen developed by

means of an overlap table. It has been shown that ISOETRP

gives much better results than other existing algorithms in

optimizing -the above objectives.

62
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3.1. Clustering in free Classifier Design

In each internal node of the tree classifier there are

~certain classes which «can be divided into'gmaller groups,

each of which can be assigned to a c¢hild node. In the
design of the tree, this-process is repeated again and again
until only one class remains at each terminal ;ode. A
clustering algorithm 1s necessary in the whole process.
Since it is applied at the internal nodes thousands of times
in the design of a large tree, rthis algorithm is very

important.

Different from traditional clustering algorithms (like
those presented in refs. (3.4, 3.7, 3.10]), each sample
here 1is a‘pattern class instead of a péttern. Broadly
speaking, a pattern «class is a random variable or vector,
which lies in the d-dimensional feature space with certain
distribution density, as stated in Chapter 2, 1In parametric
approach, this region of the class can.be Q4 in eqn.(2.10);
where g 1s ehosen big enough, e.g. larger than 3.50. 1In
non-parametric approach, this can be considered as some
rggion in the d-dimensional space, which properly covers all

tra ing samples belonging to this «c¢lass. In clustering,

each pattern class may be assigned to 2 or more neighboring

~clusters. Since each class occupies a finite volume in

space, which 1s different from a sample point, overlap may

63
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occur, i.e. two or more clusters may have sSome classes as
their common members. This is illustrated in Fig.3.1, where
’Igtte}s G and R*constitute the overlap b@ ween two clusters.
Overlap was considered as an open problem in [3.10]. This

chapter is devoted to a new clustering algorithm, whieéh

deals with overlap problem and gives a‘practical solution.

In section 3, it will be seen that "overlap" can even help-

the human designer to implement this algorithm.
. .

The concept of entropy reduction in tree classifier has
been proved powerful in the anaiysis presented in Chapter 2.
It will ©play an equall& important role in this clustering

'
algorithm{ especially in the case when the number of classes

is very 1large and there is no easy way to calculate Bayes!

recognition rate at each individual level.

Tree balance 1s also important, whic¢h has been reporteq
in many ,p;pers about decision tree, e.g. [1.9]. If the
tree'is not well balanced, then some subtrees may become
much bigger than the others, which makes the tree depth
larger than that of a balanced oné. But the balance factor
is reflected in entropy reduction quantity, which will be
explained in section 2. This makes it possible tdﬂ take a

consistent treatment in the tree classifier designl

.
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3.2. Cluster Objectives .

] |

1

To stﬁrt with, let us consider two well-known clustaring

'algorithms,‘ISODATA and KMEANS, which aim at minimizing the

B . . "performance index" .[3.6] defined as follows, —
, PIDX = ¥ b odJJ . (3.1)
- J=1 1=1 i ,

where k is the number of clusters, nJ the number of samples‘

within the jth cluster, dJJi the distance between the jth

-

,cluster center and the ith sample in the jth clugter. PIDX
is.totally different from either the entropy or overlap,
whijjch implies that the above 2 clustering algorithms do not

.. serve the tree design . very well. - rf

The objectives of ISOETRP proposed in [3.8] are

described in this section.

A) ENTRP
f | ' "
: Suppose there are n: classes Wyy Wy, T.. Wy in thg

original samples, y ,? p ,,
. -~ A

- <

“Q = {Wj. l 1 = 1, 2, l‘o-n, n } . d (3'2)

each associated with a-pribri probability . Pi,"then the

.
original entropy ocan be expressed as” +

.

_ ‘ -
‘ E, : - L P, logPp "(3.3) -
1 1i=1 i~ 1. tik -

V ! ' &

1 \ ' :
After olustering, they are divided into k smaller groups,
o R . 4

e
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each containing some classes. These ‘smaller groups are

denoted i>y I~
GJ '= {le‘i 1 = 1, 2' 00y nJ '}
J'—' 1’ 2, s e e g k . (3."‘)

with the approximate a-priori probabilities

t

J 1 4 . \
4\ -
J = 1, 2, oco,'ko (3-5)
Note that it is possible that :
. i r
v N\ 7
Gj1 n sz £ ¢ f?r some j4 £ J, )
and . '
e _ 7 )
P.= P, > 1
3=1 J b
. = . .
“due to overlap. -
. R ' "”“
Tfdach new group, th; entropy is . @ )
;\E EJ ( L4 - \\a- | -
= - P, /P,) 1log (P, /P,) T
S8y e N7 AR SRR M R
.~A\ \ . . ] [ ) ' ’
- . J = 1, 2” ve ey k / . (3.6), R .

Since the probability }on an, unknown to be the jth group is
. F - L .

PJ/P, the average entropy can be preoted as !
. 4 .

I3

‘ -k -

E,. e( P, E, )/ P ° ) ;
2 J:“ ‘1 ?J t .
»
» . \ ' ‘ " 4
i/ ’ *J
! ' /T . ' > ‘
“ N "
» \} ‘ ! "‘ &

e e, g BNt 3 T e+
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J
=1

k
= -[Z
J=1

= M0

P log (P /P Y1l/P
J1 31 J

Entropy reduction is defined as

\
i

in thé

A

we have

and

-

ENTRP = E

1 - B
[E gj P P
= log (P, /P4)]/P
je1 121 93 %8 TR0
t
- P, log P
i=1 i 1
spgpig;\caae ¢
Pi ='1/n’ i = 1. 2,~ ss 0y n, !
EJ = nJ~, n, J H 1, 2, co ey k
k
P = (12 nJ) / n
J=1 '
E1 = log n
k o §
E, = (1 n, log n,) 7 ( n,)
2 % ER J IR y=1 3

k
ENTRP = log n - ( L
3

3.7y °

(3.8) N

Ll

)

(3.11)

One can see from bhe,siﬁple'formula that, ﬁpe samaller

ghe new groups are, the larger ENTRP is, meaning that more

4 ,
~ _uncertainty is bdbeing ropoved. -
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B) OVLP

OVLP is defined as the difference

“~

OVLP = n -n (3.12)

=1 J

s ™M K

which means the number of extra nodes created at the current
clustering. The smaller OVLP is, the better the clustering

result is. The best case occurs when

OVLP = O

and

C) BLNC

Balance factor can be defined as the deviatfon of the

-_—

number of classes in the new groups from the average number

of classes
X 2 ,1/2 y
BLNC = ( k.Z (nj—n7k) ) /n . (3.13)
J=1 .

‘

the deviation be;ween nj's is normalized by their average

value n/k. The smaller BLNC is, the more balanced the

clustering result is. The Sest case occlurs when BLNC = o,

1

i.e. 8ll tre ew groups have the same number of classes.

In ISLET P, BLNC is not controlle& directly, the reason

‘.

[y

of which is as follows.
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Often BLNC conflicts with OVLP. Take the example given
in ,Fig.2. One can® see the best result is indicated by line

1, the OVLP of which 1is zero while
BLNC = [2 ((4-6)2+(8-6)2)11/2 /12 = 0.333, (3.14)
which is large. If line 2 is used, BLNC becomes zero but

OVLP = 4

which is much worse than before, as seen in Fig. 3.2.
Usually OVLP is optimized or sub-optimizéd when the
clustering result coincides with the intrinsic structure of
the real data. In other words, OVLP is more important than

BLNC and should be controlled more carefully.

Even if BLNC does not conflict with OVLP, minimizing
BLNC 1is not necessarily the optimal strategy. This is
illustrated in the following 2 cases.,. In the first case

where all Pi's in eqne«(3.3) are not equal, a balanced tree
1s_usua11y not the optimal one. Similar to Shannon's coding‘
theorem [2.8], th; optimal one minimizes ENTRP ,in eqn.(3.8).
In the second case where the Pi's are equal, ENTRP = E, - E,

is wused. As 1is well known, for the given number of groups,

k, the more balanced the SPOUPS(Or ni's) are, the larger the

.value of ENTRP is. If nyi's are not balanced at all, say

N B

some n,; is too large, nj ¥ n, then we hav) ENTRP. ® 0 by
(3.10), which s also far from being mafimized. In both

cases, ENTRP should be” maximized, -leading to the

$
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minimization of BLNC 1n the second case.

d) GAIN

’

/ The above analysis indicates that we have to control
ENTRP and OVLP., The overall objective of  ISOETRP ds

measured by
GAIN = ENTRP / f(OVLP) ‘ (3.15)
where f is a monotonic increasing real functidn.

As has been proved in Theorem 2.3 and eqn.(2.36);, if we

take .

-~

. f(OVLP) = OVLP +1, (3.16)

'

the entropy reduction<imr unit memory can be optimized by
" GAIN in  (3.15). In this way, the performance of the tree
classifigr in terms of memory requirement, searching time

and error rate can be optimized, this has been proved in

Chapter 2. ,
/
. > °
In summary, ISOETRP aims at maximizing the GAIN, 1.e.,
. - \ h
the ratio of ENTRP over (OVLP + 1), where BLNC is considered

by controlling the entropy reduction ENTRP.

o

N
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3.3. Data S

tructure and Procedures

A) Data Stru

The data
matrices.

the region o

The curr
LY
of- type“\\% RS

. written in P

TYPE

CLTS.

CTRS

OLPS

PRSN

RSLT

- wWhere the co

¥
¢
o

—MAX ~— m

LITIENN

cture

describing the pattern classes are stored 1in
Information on c¢lass center, shape and size of
ccupied by each class and so on, is included.

" .
ent clustering result is stored in a record CRNT

LT, the definition of which is as follows when

ascal:

packed array[1..MCLT, 1..MAX] of ,boolean;

-
.array[1..MGLY, 1T)§OF] of real;

= array[0..MCLT, 0..MCLT)] of integer;

= array[1..MCLT] of boolean; -

= record
NCLT : integer;
CLT : CLTS;
CTR : CTRS;

’/f;:P = OLPS;
DEDUCE, BALANCE, GAIN : real
MBS : arra;[1..MAX]'of inEeger

ends '

nstants are,

aximum number of classes in the original group,

72
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//

MCLT — maximum number of clusters,

NOF — number of features used in clustering,

N

and each array or simple variable has the following meaning

CLTS : 1indicating the membership of a class 1in a

cluster,

CTRS : centers of clusters,

-

OLPS : overlap table, which will be described in thé

next section, -

PRSN : indicating the presence of each cluster,

MBS ': indicating to which <cluster a class mainly

belongs, ,

DEDUCE, BALANCE and GAIN : as explained in the above

section.

»

In addi@ion to CRNT, the pwevious 5 best clustering

results are stored in an array RLTS according to the value
[ .

of GAIN. Each entry of this afray has the same record type

\
© 1

as CRNT.

B) Update Procedures “b

- -

I

The procedures in ISOETRP are described aﬁ follows, some

y
I
[

of which are also illustrated in Fig.3.3.






Procedure KMEANS; .

\\ { calculate the center of each cluster }

-

procedure DISTRIBUTE;

{ assign each class to some nearest cluster ( or

clusters in case of overlap ) and then compute the

LY

new centers 1}

begin .

for every class do

Y

1. Calculagg‘ the distance between the class

center and all other cluster centers.

!
4

2. Assign this class as NORMAL to the nearest

cluster, the distance of which is denoted by T;

8

: 3. Assign it as OVERLAP to any other cluster
with diftance TT, if TT < T + o * DEV where DEV
is the deviatio;»of the class in the .direction

- ) < ( tdwérds this cluster center, o is a

P pre-specified value
! : e end; o . .
Procedure PRINCIPAL;S-

i
- o

{ find the principal axis of a cluster }
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begin

1. Calculate the within c¢luster covariance

]
+matrix Aj

end;

overlaps with other élusters }
¢

begin

L

2. Calculate the largest eigen value 11 and the

corresponding eiﬁfn vector of A, V1,

{ This <can be done by the power method, see
[3.5]. Since the .accuracy of these' values 1is
no't very important, a few iterations in the

power method will suffice }

Procedure DIVIDE; ) :

’{ divide a cluster if it 1is big and/or has many

“ ’

Tall PRINCIPAL to calculate its principal axis
‘ ) &

V., and eigen value A

v

Create two new centers { for new clusters }'

1/2
Cy =Co + BAJ/ZV
: | T
1/2 X
C, =co - B A2 v

2 = Cp

[} .

where Co is the 01d center and dropped after the

néqloenters are oreated, B is a constant between
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0.5 and 1.0;

Call DISTRIBUTE followed by- KMEANS for m times {

usually 5 < m < 20 }

end;

Procedure ﬁUMP;

w -+
&& { lump two clusters together 1if they are small
and/or they contain many common classes (overlap) ]
berin -
C=(C1'n1+C2'n2)/(n1+n2)
where C,, C, are old centers, C the new center
and n,, n, numbers of NORMAL classes in the old
clusters
~3
end;
FJ
Procedure CREATE;
{ create a new cluster from a pair of c¢lusters, if
v they are big and cont;Tn manty common classes }
<
begin

end;

i % \

. .
(Calculate the center of these common classes,

which is the center. of the new cluster
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Procedure DROP;

{ drop a cluster if it is small and/or contains many
overlaps } B . @

-

"Procedure RETRIEVE;

{ copy some old results in RLTS to CRNT }

Procedure INITIAL;

centers using time

-

[
{ randomly generates cluster

seeds, and update CRNT } ' }
o
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3.4, Overlap géble and the Interactive Algorithm

4
S

s
The common functions of the procedure listed in-the last

section are to " increase entropy reduction and decrease
overlap. They were included. in the first version of ISOETRP
[(3.8]. Among them, such procedures like KMEANS, LUMP and
DISTRIBUTE are similar to those used .in the algorithms
ISODATA, except that overlap is not consfgered ln the
latter. All these procedures were called according to the
requirement ‘of redQcing entropy and overlap. This program
was employed in the work Feported in [3.]1].' Although it
aias at optmizing G&IN, ENTRP and OVLP, often it takes up a J
lot of‘time to arri;e at a good result. The peasoﬁ is that

no predefined parameters can fit all anut data very well,
] ‘ J

and the 6perator does not see what 1s  happening, to the ~

clusters in a higher dimensional space when the program is

running. ; X
» v ]
A modified version of ISOETRP was developed in [3.9].

The key point is to display the cluster structures and make
interactipn between the operator and machine possible. Mahy
1nﬁe§gctive clusté}ing techniques exist {2.1, 3.2, 3.3],(but
each“‘of them first maps (metric or non-metr105 the
multi-dimensional épace into a 2-D space and then displgy .

the results for further interaction. ™=Thls degenerative

‘mapping distorts the data space considerably, and the true
. ) 4

atrﬁtupe of .the clusters can not be visualized easily.

’

Vg
v
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Furthermore, it often - takes up a ,1q$-of time to find a

"~

AN

suit;blé view of mapping-and displaying the \2-D .dafa. 1 In
. ~ . k]

modified ISOETRP, an overlap tab;g is introduced to describe

-

‘the currnt clustering result in the higher dimensional

Space. This table enables the operator to decide on an

action which will 1ikely bring a better result, N .o~

4
. >
-

> The overlap table is shown in Fig.3.4, where each

~

~

diagonal element gives the number of claésgs\ in the
corresponaing cluster .as a‘ NORMAL member (see Précedure
DISTRIBUTE), and ‘thé off-diagonal elemgnt is the number of
overlap classes between the, corresponﬁ#ng pai}s of clusters.,

The last row contains an overlap numbeﬁ'for eadh clustgr.

-

With the help of this table, one can "see" "the cluster

structure in the current result and visualize.the intrinsic

+

structure of the data. fhen he can select one’ update

procedure to instruct the computer to do so.
' . '
\

--The flow chart of \ISOETRP is shown in'Fig.3.55 By

INITIAL;‘the first result ;B obtained. The overlap table is
displayed repeatedly so that the operator can'take ihe
appropriate action to improve the result. When the operator
f4inds CRNT is still nog satisfacggry after .some
~.lnteraétions, RETRIEV? and INITiAL can‘be.Invokéd. Usually
MEANS ’ and -DISTRIBETE .would hdye gone through ;ITERS"
iterations after each of, these.actions. In this process,

\

whenever a good GAIN is obtained, CRNT is recorded in some

'entrx of RLTS. It terminates after a 3pecified amount of

~
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\
v , ‘' effbrt has been spent without further improvement. - )
L ]
£ . Sample XPud of ISOETRP is shown in Fig.3.6, where each
step is described as follows ' .
.1 ) ". .
The number of calsses is n = U44.  The merit of each

'

"feature was calculated By eqn.’

. # ., n g 5 N
merit = g¢ / (% : Py O ) (3.17) -
1= R . .

~

\ where ¢ is the overall dgviakion 6f the feature, c; the

deviation within the ith class (i=t, 2, ..., n), P, the

* a-priori probability ,of this°® class. 8 features with the’

" ’ L4

largest merit values-were selected., Clustering was made in
RN

the corresponding 8-dimensiénaL space. The first result was

randoq}y generaied as
OVLP = 10, L '
. 13

: ENTRP '=1.2208, . . .
. [ ]

GAIN = 0.1110," Y . .

]

BALANCE = 0.5475.° L

. Accoydrng to the -overlap -table in each iteration, the

. LN

-operater instructed the computer .to do the following astep by
N Step, . . ' . ; ‘ ‘. / ‘r

. - . - .
c 7612 === greate a.new cluster from the overlapped

-

cluster pair 1 and 2, ° . '

[t : . . . .




!

B4 o . -
l( . EERPEEE )
FEATURES , - L .
NO. MERIT_ oL ' S
1 80.54151 . N R
2 92.55690 .’ , o
33 61.31678 . C
; 34 " 62.486%u 0, .
X, 61  107.30967, . . "
‘* 63 , 118.96626 . X B
- 64. % 61.92409 ' : ! ©l
: 95 ' 75.65685 ' . ' '
(1 )C2)(3)(4)Y(5) - -
18 5 1 1 2. 21 - ~ . .
. 5 8 0 a 0 12 - . . "
1 0 5 b 0. 6 . . ’
1 1 0 11 0 a1
2 0 0 0 2 y
9 6 1 2 2 . . - A .
OVLP  ENTRP " GAIN BALANC = ¥ — v
‘10 1.2208 0.1110 0.5475 -
8 1.2489 0.1388 - .

. TO (S)EPARATE, (L)UMP, (G)ENERATE, (D)ISCARD,
(B)ACK}'—TRACK, (IDNITIAL OR S(T)OP ?

2612 . . » ¢
LT D02)003)00C8)C5))(6 ), ‘
16 1 .0 1 -0 2 ‘17
1. 6 -0 0 0 1 T ¢
0 0 5 0 0 0 5
1’ 0 0 11 o .0, 11° N
0 0° 0 0 2. 0 2 ; |
-2t 0 0 0 4 T ! , -
y 2 0 1 b 3

OVLP  ENTRP GAIN ° BALANC

5° . 4978 0.2496 0.5848
. B +~ 1.2u489 0.1388 ’ N
TO (S)EPARATE, (L)UMP, (G)ENERATE, (D)ISCARD,
(B)ACK-TRACK, (I)NITIAL OR_S(T)OP ?

1 ?2D6
(1 )C2)03)C4 )3.5) ’
16 1 0 1 5 19 :
+ 6 0" 0 0. T .
, 0 0 .6 0 o ' -6 . .
1 "0 0 A 0 11
5 0. 0 0 5 8
7 1 0 - 1 5

OVL?P ENTR GAIN BALANC ~ .
7. °~1.3680 0.1710 0.4615. .
: & "1.3877 0.1982 ,
. TO (S)EPARATE, (L)UMP, (G)ENERATE, (D)ISCARD,
(B)ACK~TRACK, (I)NITIAL OR S(T)OP % .
2L 15 . , -

Fig. 3,6 ISOETRP run example’
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C1HC2)03)CH )y | %
« 17 3. 1 -0 19, .
) 9 1. 0 v
1. 1 7 -0 8 i
0 0 0o 1 11 ’
7 s .
y y 2 0 .
OVLP °~ ENTRP GAIN BALANC
5 " 1.2258 0.2043 0.3335
5 1.2258, 0.2043

» TO (S)EPARATE, (L)UMP, (G)ENERATE, (D)ISCARD,
. " (B)ACK-TRACK, (I)NITIAL OR S(T)OP ? '
2612 - .
. (1 )02)H0,3)XC4)C5), .
/ 7 2 0 1 0 10 -
2 8 0 1 2 10
0 0 7 0 0 7 .
1 "1 0 ‘fo .0 10 :
. -0 2" 0 0 12 13
3 5 0 2 © 2 o
y OVLP ENTRP GAIN BALANC
R 6 1.4668 0.2095 0.1897 : . .
6. 1.4668 0.2095 ‘ fai”
' TO (S)EPARATE, (L)UMP, (G)ENERATE, (D)ISCARD,
N (BYACK-TRACK, (I)NITIAL OR S(T)OP ? ,
7L12 K b z >
C1)0C2)03.5C4 ), - ‘
12 0 1 0 13 M
0 8 0 .1 8 .
- 1- 0 9 0 9 -
' 0 1. 0 15 16
: 1 1 1 1 ‘
- ovLP ENTRP GAIN BALANC
. 2 1.3119 0.4373 - 0.2784
.2 1.3122 0.4374 . )
TO (S)EPARATE, (L)UMP, (G.DENERATE, (D)ISCARD, - .
o (B)ACK~-TRACK, (II)NITIAL OR S(T)OQP ? )
. - 2G1234 . ) . -
(1 )C2)3)XCH Y(C5)(6)
10 - 0 0, 0 0. .0 10
) 0 3 0 1 0 0 y
0 o T 0 0 0 7 s .t
0 1 0 8 0 0 8 .
0 0 0 0 12 0 12
0 0’ 0 0 ) y y
0 1 0 1 0 0o .
OVLP . ENTRP GAIN . BALANC -
; 1 1.6750  0.8375 0.3906 . [
2 + 1.3122 0.4374

o i

TO (S)YEPARATE, (L)UMP, (G)ENERATE, (D)ISCARD,

" eD2

»

4 . .
LTI RS SRR S 17~ T A -~

(B)ACK-TRACK, (I)NIEIAL OR -S(T)OP ?
4 [} . - L

Fig.. 306 cont'd

B cw o e . PN

-

»
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COoO=ON - -
OO O~NNO N~
o
roooow

’ .
1 0o 1 .0 0 ' ‘
OVLP ENTRP GAIN, BALANC '
~. " 1.5219 , 0.7610 0.3651
1 " 1.5219 " 0.7610 . S
TO (S)EPARATE, (L)UMP, (G)ENERATE, (DJISCARD,
(B)ACK-TRACK, (IINITIAL OR S(T)OP ?

?D5
(1 )23 )C 4) ,
12 0 ] 0 13 | »
0o / 8 0 1 8 ;
1. 0 9 0 9 \ -
0 1 0 15 16 :
1 1 % 1 . .
‘OVLP ENTRP GAIN BALANC
2 1.3119 0.4373 0.2784
PR | 1.5219 0.7610

TO (S)EPARATE, (L)UMP, (G)ENERATE,.(D)iSCARD,
(B)ACK-TRACK, (I)NITIAL OR S(T)OP ? .

7B
(1 )02)(3)XCH)HX5 )
12 L -1 0 0 13
0 7. . 0 0 0 7
T—0 9 g o . g
0 0 0 12 ..0 12 ‘
0 0 0 0 4 4 .
}<fi1 0 1 o 0 ‘ ,
. QVLP ENTRP GAIN BALANC o i
‘“’p 1 1.5219 0.7610 0.3651

1. 1,521%9 .7610 ;
TO (S)EPARATE, (L)UMP, (G)ENERATE, (D)ISEARD,
(B)ACK=TRACK, (I)NITIAL OR S(T)OP ? ~

?T
: L
. g ‘ . — Y .
. Fig. 3.6 cont'd T
. ' -~
ﬂ"ml ‘ .
\ A3
’
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706 ---- discard the 6th cluster,

R

- ’

| ' 7L15 «== 1lump the ‘plustér pair 1 and 5 into one

- «

Y

& “cluster, ‘ - .

I v
‘

?2G12 ---'create a new ione from‘1 and 2{

v . s

?7L12 ==~ lump 1 and 2 into.one, .

’ ' ?G1234 - create two new olusters from pairs 1 and 2,

3and 4, o )

- ?D2 =--- discard the 2nd cluster,

3
’,

?D5 —--- discard the 5th cluster, (

[y

?B1 backtrack the previous result,

The findl result is

OVLP = 1, _ . -

¢

ENTRP = 1.,5219,

GAIN = 0.7610,

+ BALANCE = 0.3651,

gy . Which is much better than the initial result. This
7

’

'demonstrates that the overlap table is very helpful and the

algorithm very effective.

~




3;5. Simulation Results ’ .

[y

Simulation of the first version of ISQETRP was dgne

4

(3.8], where 100 classes-of randomly ‘generated data .were

o -

usqd. Each class 1s assumed to have deviation values

Py = 0.017, Dy = 0.016.
ISOETRP and ot&iizfljg clusteging algorithms, which were
MAXIMIN, KMEANS , ISODAYA (see refs. [3.1, 3.6]), NEAR_E:ST }

NEIGHBOR, FARTHEST NEIGHBOR, GROUP AVéRAGE, CENTROID,
A - 2

MEADIAN, WARD'S and FLEXIBLE (see refs. [3.4, 3.7]), were

tested on these data. A comparidon of their performances {s

iven in Table 3.1. ’ "
g 3 \/ R .

»

From these resulfs we can sée . ¢ entropy reduction by

IéOETRP is generally good; OVLP and GAIN gy ISOCETRP are
better thap those obtained by the other algorithms ‘except
CE&TROID; ISOETRP 1is much better than all other algorithms‘
in-BALANCE. However the first version of ISOETRP was still
not very satisfactory. Althuigh it  has been.applied to
Chiqese character recognitioﬁ in [3.11]), where a reccgiition

rate of 98.5% was obtained, it needs improvement, which led »

‘to the development aof its interactive version.

The interactive version of ISOETRP was compared with
KMEANS and ISOETRP wusing a 4-D data of 806 Chinese
characters., Each: class, op‘character category, contains 10

noisy samples. The vertical and horizontal profiles of each

’

88
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.sample, were obfainep, to which the fast Walsh transfqrm was
applied to obtain 64 numerical features. For a given number
of classes, 4 best features were selected according to
. Fisher's criterion. In the 4-D spaée, each character
category occupies a hyper ellipsoiq cohtatning the 10
samples. When running the KME@NS program, the number of
clusters was predefinea but differegt values were tried to
get the best possible regults based on the GAIN. These
results were then used as the initial states of the ISODATA
algorithm. ‘ When running ISODATA some parameters were

.adjusted in an attempt to obtain a good value of GAIN.

The experience we gained from using the fSOETRP

algorithm can be summarized as follows : /
DIVIDE, DROP, LUMP and CREATE are all effectiv;. A good
strategy is to use DIVIPE and CREATE diternativel§ until
more than enough clusters have been created, then apply
LUMP and DROP alternatively to prune the clusters.
'Usually good results are obtained and stored in RQTS in
this process. 'RETRIEVE and INITIAL are necessary soﬁe

times, and the former is more important than the latter.

A compérison of these 3 algorithms 1s presented in Table-

.

2-6, for cases.n = 50, 100, 200, 400 and 806 respectively,
" where BLANC, ENTRP, GAIN and PIDX have been defined in

Sections 1 and 2. On examination of this table, one can

»
»

see the following results :



“~

, K
" Table 3.2 Comparison of ISOETRP, KMEANS and 1SODATA
» No. of Samples: 50 b
No. of samples | pve | pepe | ovee GAIN PIDX
in Clusters
N = 1

1 [13.13.2,12 0.0400 | 1.3855 ] o '2.7710 84.45
s [13,12,11,7,7 0.2530 | 1.376: | © 3.1527 # | 5906
0 N

12,9,9,7,7,6 0.2366 | 1.7628 | © 3.5296 |[.3.4379 | 52.59 | 56.7
E ;
r [10.9.9.7,706,2 | 0.3466 | 1.3729| o 3.7458 44.95
® |9,9,7,7,7.6,3,2 | 0.3816 | 1.99:1 | © 3.9902 41.82
P
¢ [15.15,13,8 6.2244 | 1.3292 ] 1 0.8861 80. 66
¥ [18.14,13,8,7 0.2623 | 1.5255 | 2 6.6102 63.46
. .

12,9,9,9,8,6 0.2006 | 1.7123] 3 . | 0.4898 ‘| 1.5345 | s$5.37 | 57.9
A
§]10,9,9,7,7,6,2 | 0.3464 | 1.8729 | o 3.7458. 42 .95
$(12,9,8,6,5,5,3,3 | 0.4569 | 1.9407 | 1 1.9407 45.07
1 [13.12,11,7,7 0.2530 7] 1.5764 | © 3.1527 60.79
${14,13,9,9,7 0.2551 | 1.5307 | 2 0.6123 64 .64
6 114.13,12,8,6,4 0.3927 | 1.5332| 7 0.2046 < 1.1088 | 65.62 | 57.7
)
al16,11,8,6,6,5,4 | 0.4311 [ 1.7e21| & 0.3920 49.91

. L 3
1T(13,11,10,7,4,4,2 | 0.5276 | 1.77¢0 | 1 1.1827 47.86
A . .
~
! .
}

5 '
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a) for BLANC and ENTRP, ISOETRF is generally better

than KMEANS and ISODATA. ' ‘o

[} v =
. .
.

. b)'ForHOVLP, ISOETRP is obviously better  than the

other two, -because the operator can see the cluster

]

sfpucﬁure and control the overlaps. "There is no

mechanism to control overlap in the other two (or an&

A
:

other) clustering algorithms.
, =\

¢) for GAIN, ISOETRP is absolutely superior to-. the

" others, since this 1is the overall‘objedtiﬁe of this

&

algorithm. N .

\

d) . KMEANS ‘and ISODATA are good' and popular
clustering algorithms. But they aim at the mianizafion
of PIDX (egn.3.1), whiéh is quite different _froﬁ ~GAIN.
In the table, it c;ﬁ be. seen that ISOETRP‘iQ:not-as good
as KMF{NS.and‘ISOﬁATA‘with respéct to PIPX. Algp ;hg

performance index +alue of ISODATA is tbetter than

-
L]

KMEANS. Howeverathe reverse is true for GAIN. In the

measure PIDX, each sample {is, considered purely as a

. point. While in GAIN, each sample is a class occupyihg

a $samp1e region"‘in the higher ,dimensional space.' GAIN
measu;es the ratio of enfropy reduction- over 'overl&p,
which does not exist among t;e "p&ints". Since iSODATA
énd KMEANS are not conscious of "sample reglons", ’they

»

do not optimize GAIN. . -

A



‘classes we tested,

. - 97
s .
[t s

With respect to computing cost, we notice that ISOETRP

needs more time than KMEANS and ISODATA:to arrive at such

goqq.results. If ISODATA tdkes time T in one run, (excluding

.

_the time used to try . different parameters), then ISOETRP-

takes  -about 3T. The reason is that ISOETRP has much more

a

complex objectives and hence more computations are necessary

N
»

-

takes too much time. For example, in the "case of 806
I;EETBP used 2-3 minutes of the CPU time

'S N . -
(on a Cyber—172‘compu§er)l which represents a worthwhi}e

one-shot ~ investment in the’ design Jphase -of the tree
. ’ - - ' .

classifiier.

. [}

.

in_ order to achieve these objecpiﬁea. Anthy,ﬂndne of them

-

v ——



3.6. Conclusion -

1
- .

A hey~clustering' algorithm ISOETRP with ﬁotally new
objectives has been proposed based on these theoretical
results in Chapter 2, whicﬁ can be directly applied ¢to

design the tree classifier. The success of the entropy

L] -

reductfon concept in this algorithm leads to 1its potentiﬁl
. - . p . ‘ ) ‘
in the pattern recognition field. Overlap, which was once
4 Y
considered as an open problem in clusterding analysis, has

- been treated. It is intéresting that overlap even gives us
some information about .the structure of the éiven data via

the newly prqposéd overlap table. This constitutes the main

reason of the effectiveness and ease of the interactive
version of’-iSOETRP, which shéws better pegformance’ in
optimizing the GAIN than other well-known ¢lustering

algorithms..
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CHA®TER FOUR ) )
) I FEATURE ANALYSIS
. :
INTRODUCTION C:] .
” y . \

Differert from the case ot a matching scheme, features

in a }ébge classifier must be computed once for all levels

- .
3 ’

of “classification. This is the reason that FFT aqr fast

Walsh® transform are more suitable than the Karhunen-Loeve
transform. ‘Glopal features, such as'profiles and mesh, were
used in the tree classifier simulation. Section 2 gives
some analysis and experimengal result% of thé profiles ,of
Chinese characters. Sect;on/3 covers the original work on
phase features, whiFh.were propkse? and analyzed for pattern
rrecognition for the 'fifst time in [1.16]. There are two
feature meas?res, information content measure and Fisher's
criterion, sujitable for feature selection in large class
rd .
problems. To obtain a good understandihg of the
relatioﬁship between these two measures, a tentative
deduction was‘made under some assumption in [4.23], which is

described in Section 4.

. '
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4,1. Orthonormal Transformation in .Feature Extraction
R \

As’ has been seen in Section 1.2, K-L transform is a

2

powerful tool in feature extraction in the matching schenme.
On the other hand, other transf%rms are more suitable for a
tree' classifier.. As int;oducedu in 'Section 1.2, K=-L
transform ne?ds computation of some ¢va in eqn. (1.45,
each of which 1s a matrix with the same éimengionl size of
the original pattern. They vary from pattern class to
pattern class, and have tg be computed for each class
individually. If K-L transform were used, it would have to

be computed at each internal node of the tree in the design

phase, Furthermore much’compﬁtation would be necessary for

-

the unknown pattern to pass through each level of the tree

A
in the recognition phase, which is practically impossible in

a large tree classifier. 1In addition, the information about

. each concrete K-L transform mﬁst be stored in the internal

Lt
node, which would take up much more memory than thée data

structure described 1in Section 1.3, and cause too much
trouble in the tree implementation. The other transforms,
such 'as Haar, Walsh and FFT [4.11]} can be specified once
for all the internal ;odes. Only a "global™ cdmpqtation of
these transforms with addition of "local indexing" (see
Algorithm 5.1 in Chapter 5) are-necessary in both design anq
recognition phases. "~ In this way, the tree needs far less

memory, and is much easier to rgpresent than using the .K-L

. 102 -
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transform. The recognition speed is much faster ﬁhgn the
K-L “case,. This explalns why Harr, Walsh and Fourier
transforms serve the large tree classifier much better than

. the K-L transform. o e,

There are lots of studies in orthonormal transforms and = _

K-L transform 1s considered the optimal one 1in data

-

compression. In [4.172], a compa#ison of K-L, FFT, Walsh and
Harr transform on the raw datg/ and the row data itself was
given. The experiments showed that their performances rank C

in the same order. Nevertheles’s, FFT and Walsh do behave

very well.

‘ " Both FFT and fast Wa}sh tranéforms can be computed much
faster than K-L transform. B;cause of their uniform
formulas, hardware chips are even availablé, which gives a
substantial saving in feature extraéiion cost. 1In addition,
it is well known that fast Walsh transform has the advantage

of lower cost than FFT.

The comparison in [4.12] indicates that FFT seems to be
?etter than Waish transform in data compréssiqn. But for
'binary images, such as binarized character pattérns,“FFT is
not neceassarily Qetter. The reason is that Gibbs phenomenon
'occurs in Fourier expansion when £§e~origina1 function is
not continuous, and this condition holds in our character
maérix. . In fu.211, many results about ,convergence

properties of Walsh transform were given, some of which do

> 35
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"not have correspondenée in Fourier transfoym. But to what

extent these factors affect feature extraction can only be

answered 'byzaexperiments. Such an éxperimént was conducted

in [1.14], where both Fourier and Walsh transforms were’

applied on the projection profiles (see Section 2) of 200

Chinese characters to obtain F1 - FGM and W1\- “6& features

for comparison. Fo - Fey are actually amplitude features

derived from Fourier transforms, as used in [4.1-4.4]. They

y
1

(see Section 4) in Table 4.1. We can see from this table

are 1listed 1in descending order of the feature measure’J

-

that 'Walsh coefficients” are generally begter than , the

_Fourier's. Based on the above consideration, both Walsh

“

transform and Fourier transform were used , in the tree
classifier simulation. The - improvement of PFT feature
extraction is the introduction of phase features with plenty

.

of analysis, which will be given in Section 3.

. o . 4
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4.2. S8.V.D. Analysis and ‘Profiles of Chinese Characters

4

-

» The projection profile as a global feature in Chinese

character recogntion was.first proposed in 1968 (see [4.1])~
—— o .

and implemented in 1972 [(4.2], where Fourier transforms of
vertical and horizontal'p}ofiles were used. Since then Bome
1m£rove$ents yave been made [4.3, 4.47. Prqgile was eveﬁ
used for handwrltten Chinese characters associated with some
other local features [4.20]. It should be pointed out that
the profile of a ~character 1is sensitive io stroke width
variation [4.4], rendgrink it unsuitable for a multifont
character classifier. Nevertheless 'it does have the

advantages of considerable data compression, stabllity 1in

random noilse, and ease in computation. It .was used once in

a tree cla?sifier of 3155 single font Chinese characters -

K

with higﬁ recognition rate [1.14]. Also the profile of
shade and cfossing count were used in multifont _Chinese

¢character recogniton [3.11]. This section covers the

A}

of matrix) analysis’of and experiments on the u-directignal

)

profiles of Chinese characters were made. It was shown that

“

u-direc}ional profiles -contain much informatidn for

recognition, and in some cases they are even good for c¢rude

reconstruction of Chiaese charaoters. b

SVD stands for Singular Value Decomgositioﬁ, which was

‘dalled "general inverse of matrix" when proposed by Moore in

A »

1920 for the first time. It is also known as pseudo~-inverse

|- : /

» A ' 106

b A

original, work [4.5]), where SVD (Singular Value Décompositig/yﬁy/lf

I

or o vt~ g g o]
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where At is the transpose of(\A. The SVD theory, 'says : s
- . . N d *‘.
"
a) P1,anq P, have the same npﬁ-zero eigen values 7/ e 3
) ' . k‘l 2 xz Z s e 00 cnz _AP ? 0 . d (u'1)
.ok 3 * < - . 3
. 4 .
~— - ' . | ’
) N where r is the rank of A, r {( M and =+ < N..
°§g B) If u; 1s an eigen vector of P, torresponding to Ay o
o then "
/ Vet - ’ N
' CVy s OTS A ey (y.2) 'y o
' v
; is the e;lgen _veetorr\ of Paic/opx;esponding to Xi’ (1=1, o
‘;":,‘_;?L, 2' v e 0y t‘) and N . '\.I
!'l\“v' t t \ @ . v . /
a . Yivyoom vy . '
; , : A -
? . . = 613 =0, I 4§ .
) J o : '
},‘ o \] ‘ .1, I = J, i,.J="1,2,:..,r‘ (u-3), ) '
.{‘ 1] s . . ‘ . 9 ) R .
¥ ¢
. S . ‘ €) A has the representation ' - i -
> - ro. o ' . 4
\ ' "" n . ) ’
ﬂ% o, { . 1\
: i . T . . r'«,
LY . N ) ” "{
' ' ) . b ;o
' -‘"’\r. p- . U o, ‘ S e ) L . ! }}
. e . ‘:!““ s 1w B i‘.x"a ‘—"—5“&"«:‘!-’91’4‘“-&‘1‘ - P .,.Q.',:mi'i,ﬂg:\, . { V& xo‘\y (AT

4
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R . ‘ : . \
afiter studied by Penrose and others-in detail [4.8%.  It” is

§

introduced as folloWs (4.6, 4.91].

~ .

? -

- e - - M
. A 4
{7 . X K¢ ) )
¢ . - v
. - A3
.

- ' matrices

2 ' \ . L

.

¢

For any N x M matrix A}*we can define twé_symmetrie
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I

A =

[l o B 3

172 % :
_, Ai u, vy (4.4) .

) Ayis called the singular value of A and (L4.4) is the

’ ) SVD of A. If we denote the matrices U and V by the _

1 : following equations:.

a i
.‘ ) U = (u1, U2, .o oy ul')’

AN
v = (V1, V2, e e sy Vr),‘ / !
. [ i )
then (4.4) has an alternate form L
¢ 41 . r L t .
. A = U diag(k ’ n-n,~A ,.0, ...,0) v (uos)

where diag(...) is 'the diagonal matrix with the

diagonal elements denoted in the brackets. ’

0 . -

j D5 if A is a matrix expression of a picture the .poker of

‘which is defined as,

lall = Trace (ata)

)

then - ' . . ) N\

Nal2 = A - C (4.6) .

[l ne -
1]
—
[

; S If A, {.., Ay are _much Iarger than the other

singular'values, thén

. _ 1/2 t : .
: Ay = o AjT% g vy K , i

. ' EIEN

is a goodN approach to A, 1l.e. information in A 1s

= Mx

' . ) 1compressed in A,. |

3 0
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The last property has been applied to
[4.10] or character representation [4.7].

of k depends on the nature of the picture.

character,

5

(‘ R

image processing

Usually the value,

For =a Chinese

A is a binary matrix containing mainly vertical,

horizontal and diagonal strokes, leading to a small value of

h

k. This can be stated precisely inYthe following theorems.

THEOREM 4.1. If A

has only vertical (8V) and horizontal

(SH) strokes and the total number of strokes is n, then

k 5 n

Proof.

Suppose a SH stroke has width W

shown in Fig.4.1.a,

Py

denoted °by dash 1lines). The ith
represented as a matiix of rank 1,

»

3

t
Ag=uy vy

N -
-
"
~
o
-

.

.

-
-
o
-

N
-

.

.

.
-

s
-

and

‘1

-

(4.1)

and 1length L as-*

(which may be broken somewhere as

stroke can be

(4.8)

» L]

Oy seay 0) with W 1's

vz (0, eevy 0, 1, vuuy 1, O, wu., 0) with L 1's

A character with only SH and SV is then expressed as the

sum of some matrices of rank 1,

t
A ui vy

=1

>
]
Lol e ke

i =1

Bl e B =]

’the rank of wh;ch, r, 18 certainly not

Toewdaow ™ XIRL. LA ST 2 L 2,

1

larger than n.

s

. kv o
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a) Stroke definition

LY

b)) A 45% Stroke and its Aab

Fig. 4.1 Strokes

'




J— o &

’ ‘ ' 111
This proves (4.7).
QED.

~Thi§ result guarantees that if a character has only S;
ahd SV strokes, then the power of the matrix is condensed
within 6n1y a few terms of the SVD. Many Chinese characters
mainly conéain SH and SV strokes. For paralell strokes,
whieh i1is usually ‘the case, tgp rank qflA will be much
smaller than the -number of strokes. Fig.u4.2 shows such
examples, whére the ranﬁ rlis much smaller than the number

of strokes, n.

»

For dfagonal strokes, we «can prove the | following
' theorem: T . : . | r
. s : - kY ’ ’
THEOREM &4.,2. . ' \ ) . o
~ ' /) o

v on

“MIf A has only diagonal strokes (1.e. in 450 5}'1350;

denoted by S45 and S135 resbeckively), then the 1largest

* '

;;ngulaF value

where W is the width of the strokes.,

Proof. : )
. : N

v

4

Let us use induction.on the ndmber of strokes, n.
' |

‘» |
When ‘n = 1, consider Fig.4.1, where the’mdtrix #Ab

is représgnted in b), W being the width of the stroke iin
;o F
f
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) ’ '
. ‘ ] .
' C - |
' - = {3
—1] |
A1 »
L L3
. « n=z b, r g2 . *no= 16, r = 5
. Fig. 4.2 Examples of Pattern Matrix Rank
0 )‘ . .
. /A\ A\l
N\
, /‘( R !
- ) 3 \‘
‘ -/ N A
+ // \ '
' \
, 7 A
Al / \ *
< N
. \ B )
N\ s .
[N i \\ 7/
| \ A
s Y ~ P
: N . 7/
\‘; \\ 1/
| ~ "
\ // &
| - N
‘ . ' : : ,
i . “ | ‘
. . Rig. 4.3 4-view SVD of a Chinese Characte}‘
\ ' CoL. . .
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450 direction (S45)." For any eigen value Ai of AAt,

-

[}

suppose uij'is the element of the cobresponding veigen

LY .
vector Uy whiech has the largest absolute value among

.

other elements. Weé construct a matrix Ui’ .
v, = aabu, = A : " (4.10)
i - i 7 171 o
the elements of which are denoted by Ui 5 “The
’ y

following is a straight forward deductién,

oo 10yl A (4.11)

1 14yl
‘L .; i * .
W Iui,Jl + (W‘-A‘)('u'i"’_"l + lui,d-’-‘ll)

/
+ s e + 1 ("u“."j_w‘;_1l + lui,J+w-1l). a

- IA.

.S (W + 24W-1)'+ ces o+ 4+ 2) Iuijl
i
= w2 luy 41 : L, (Ha12)
which implies .
272 <, W, for a = 1. (4.13)

Now suppose eqn.(4.9) 1is true for n=m and let us

prove it for the case n=m+1. Matrix A can be expressed -

3

as the sum of 2 matrices .
< .

A=A« A . (4. 14)

where A contains m strokes and A, a sihgle stroke, ail

of which are in diagonal directions. We can assume o

b = ataea]/2, AR, L, a8
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ll ‘/ Y‘
S Al’z < Wy 11, 2, oty 1, (4.15)
. 172 ,1/2 ' 2, .t
A =S diag(u]’/?, “2/ y eeey u;; y 1t -
" u;ii mi, J = 1, 2, ..., T, . (4.16)

;e where U, V, S and T 'are matrices with columns or rows as
] B
the corresponding eigen vectors. For any vector u of

_norm 1, we have
o

A, ull < we. K N o ka1
Y . [
in fact,
. 1/2 1/2 1/2 t
HA1 ull = v diag(x1 Az Ar )y viull

g X

by eqn. (4.15). Let

then
flvil < 1,
and we have

latag(A}/2, AJ/2, .., {8y vl cow
. ' "1

7/

by (4.13), and (4.17) 1is proved.

3
A *

Similarly we can prove

»

A% ui < W
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HA, -l <m W
L an <m W (4.19)

from which, 1t is easy to show that, for any vector of

norqﬂh

+

t £ ot
NAR™ ull = H(Am + A1)(Am + A1) ull -

-~

t ot
< WA A; &

ull + lla 1

1 ull

a

ull + Ay % ull

.
+ "Am A n

1

.

+ WS + mWW + WmW

(¥

¢ mew2

= (m+‘l)2 w2
QED.

Considering the result of this theotem, it 14 _very
interesting to noté that the length does not appear in
eqn.(4.9). If a SH or SV stroke 1is 1long, then the
corresponding ;i;en values will be‘largg, while for S45 and

. S135 strokes, the eigen values do not exéeed a bound (nW)g,
which is independent of L. The reason is that the power 1is
spread across many eigen values and none of them will exceed
the bound given in (4.9). This can be explained as follows.

'“‘ If a single SUi5 stroke of length L=50 and width W=3 1is put

in a 64x64 matrix, then the number of black points is N=150,

v .

'

— " and : :
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by (4.9), which implies the number of significant eigen

values is not less than

2 = °
N/We = 17 .
which means the information of the S45 stroke is spread over

at deast 17 terms. For a double SUi5 pattern, this value 1is

about 8, stilt large.

.

To summarizé, Theorems 4.1 and 4.2 tell us that the
power of SH and SV are mainly contained in the first few
terms of the SVD, and the power~of>SHS and- S135 Strokés is
spread over many terms. The first few terms do not contain
much information of S5 and S135 strokes. Due to these
results, the UY-view~SVD, which is depicted 1in Fig.u.3t
should be better- than the original SVD (we call it Z%View

.
SVD). In Fig.4.3¢ the character "-1§F " ois reco;ded\ in

matrices A and B, and we have by eqn.(4.4) ':

r

1- 1/2 t
A=z ) u, v ’

1=1 i i1 ‘ .
B = 22 u1/2 X yt (4.20)

j=1 J J 73

where P, and r, are the ranks of A and B respectively. The

power of SH and'SV strokes are mainly contained in the first.

k, terms of the SVD of A, by Theorem 4.1. while in the SVD

of. B, this power 18 spread over many terms by Theorem 4,2,

Similarly, the power of S45 and S135 strokes is mainly

contained in the first k, terms in the SVD of B, but spread

v

.}
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over -iiany terms of the SVD of A. If we use

k k .
1 1/2 t 2 1/2 t )
C =73 )y u, v, + & u X,y (4.21)
. 1=z1 1 i1 Jj=1 3 ) 33
~then k + k terms will be enough to contain most

information of the character,

Eqn. " (4.21) has been applied to reconstruct some

‘

Chinese characters in the following 'steps : 4
1) Get matrix A.

2) Get matrix B by rotating A through 450 and apply séme

filling and smoothing operations,

3) Calculate the SVD of A and B respectively. The first
few singular values of the character "[f%? " are shown in
Table U4.2. One sees from the table that, the first few

terms of each SVD contain much power, and the first term is

especially larger than all the others.

4) Reconstruct the character using formula (4.21) with

(kgy ko) = (1, 0), (0, 1), (1, 1), vuey (5, 5)

respectively, the results of which are shown in Fig.4.4. It

is seen from these figures that : even when (k1’ ko) = (1,

1), the reconstruction is satisfactory, which is better than

(ky, k) = (2, 0) or (0, 2). When (kq, kp) = (2, 2) or (5,

»
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Table 4.2. The largest singular values

(matrix dimension 50X50) B

» No A B
1 217.31  267.96
2 62.96 43.11
3 39.53 31.54
y 30.06 21.20
5 28-11 A 21016
6 17.10 13.74
7 10.82 11.01
8 10.36 9.70
. "
Table 4.3. COS 8, 8 between profiles
and eigen vectors
characters
v 0.982 0.997 0.992 0.992
H 0.989 0.998 0.997 Q.997
y5 0.997 | 0.985 | 0.996 | 0.999
135 0.995 0.995 0.996 0.991
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Ref. [4.7] gives a result about the relation between

profiles and the SVD, which can be summarized as fgliows H

-
'

PROPOSITION.

——

In egn.(4.4), if A1 is nuch larger than the rest, then
'u1 and v, will almost completely coincide with 2 profiles in

the vertical and horizontal directions reépecpively.

Some experiments have been dbne.on Chinese qharacteés to

verify this proposition. In our experiment, 2 diagonal

_cfﬁfgégjﬁfions were included. “The results'are shown in Table
4,3, where the U-profiles coinéide with u, and v, very well.

Since the 4 eigen vectors contain much information, or power

)

of the character, the U-profiles  should contain much -
information of the character. A further. experiment of
‘eharactqr reconstructiJ: using Ud-profiles was _conducted on
character " JE| v, v ] v, and » éﬁ] ", (Fig.4.5). It is
clear 1n these re;hlts that u-pfbfiles:rgally contain much
information ‘for crude reconstruction of Chinese characters.

h .
From this we can conclude that U-view profiles should be

' ’ L]
"useful in Chinese character recognition if ‘ve‘use them

properly.
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4.3. Phase Featﬁres ‘ ’ > <

. FFT has been widely used in the field of pattern
recognition. In refs. [4.2, 4.4, 4,14], some analysis and

experiments on feature extraction ' from Chinese characters

\

have been reported."’ibwever only the magnitude featuges'

have been used :

1
-

yey1/2 (4.22)

- ML, §) 5 (Im(F )2, Re (F

N

where Fij is the‘Fourier transform of the image matrix, Im

hnd Re are the imaginary and real parts respectively. The

. 9N ..
image matrix may be the* character 'matri® or some  other
A - v

o -~
-

pattern.

It is known these nagnitude features remain stable even

.
.

when the character is shifted, which i1s the reason people
N ,

N, ‘used magnitude onl&. Phase features 'were proposed for

(]

\ . .
\\fhinese character recognition in [1.16] for the first time

AN

LA ith a detailed analysis, and weée appliéd to design a tree'

clagsifier for 1000 Chinese characters.

Phase features are defined as

*

1 . B
-

) . eij = Arctan[Im(FiJ')/Re(Fid)], if Re(FiJ) >0
Arctan[Im(FiJ)/ne(piJ)J + ﬂ’ otherwise

(4.23)
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The consideration of using phase features is twofold, -

a) Information content of the magnitude Bﬁatureé

alone may not be enough for  the recognition of thousands of

Chinese characters.

b) Some character pairs have exactly the same
magnitude features, but they differ in the phase features.

They can not be distinguished by Fourier transforms without

o )

phase features. Let us take " Eﬁ ." and " EE " as an

example,‘where pattern matrices are denoted , 0y Awm and

Ay . We have
e N N

\ -~

Ag (x,y) = Am (8-x,8-y)

x=0,...7 and y=0,...,7,

-

Fa (u,v)

. = I ei(ux+vy)21l/8 AQ (x,y)
X, ¥ '

= [Z e-i(u(e-x)+v(8—y))éﬂ/e
X,Y

A (8~%,8-y)] e~i(8u+8'v“) .2%/8

-

-F-'-da (u,v) ei(u+v).2”

u=0,..0,7 and v=0,..,,7. (4.24) .

[
\

The only difference 13 the phase part. Similar sltuation\"
¢ oocurs between " AN mand m N, e Eﬂ mand " IO n, and

5 s0 on. .
P

S

.
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Some experiménts were conducted using 20, 50, 106 and
200 characters respectively :to test this conjecture. The
magnitude features.aAQ'phase features were computed and the
results are shown in Table 4.4, where one can see that phase
features réally contain much information. Specifically when
the character group is small, this information is relatively
imp;rtant. " This was Justified in the design of the tree

classifiers [1.16], where magnitude features were mostly

used at upper levels and phase features at lower levels.

However, in order to wuse pHase features in Chinese
character recognition, we have to overcome the following

problems.

A) To make phase features stable under position shifting

noise. This can be accomplished by finding the mean genter

(m_, m,)
X? y’? . /
\
m_ = i A
* T,y 0 Y |
m = DX J A (4.25)
y X,y i3

and shifting the charadacter such that its center is righp at
the matrix center. Becéuse the center has a relatively

stable position in the character, the shifting noise can be

mostly eliminated.

B) To define the distance between two points along a
‘phase feature axis. This is not trivial since the usual

difference of two phases can not serve as a metric. As 1is

°
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TABLE4 .4 Average J measures of featureé

N

"No. of Magnitude Phase
Categories Features Featureg'
20 176.7 171.5
50 1145.5 47.2
100 127.8 48.6
200 123.2 38.7

- TABLE4.,5 Average Deviations of '
Phase Features (200 Categories)
By 2 Methods '

Z
o

(1)

(2

No.

(1) (2)

‘I No.

(1)

{2)

0.1001

0.1001

11

0.1370 | 0.1374

21

0.0860

0.0885

0.0639

0.0639

12

0.1268 | 0.1268

22

0.0657

0.0657

0.0310

0.0310

13

0.1156 | 0.1180

23

0.0257

0.0257

0.1298

0.1306

14

0.0757 1 0.0757

24

0.0499

0.0499

0.1147

0.1153

15

0.0437 | 0,0437

25

0.0723

0.0723

0.1014

0.1044

16

0.0666 | 0.0666

26

0.1038

0.1038

0.0704

0.0704

17

0.0896 | 0.0919

27

0.1181

0.1187

0.0980

0.1000

18

0.11G4 | 0.1105

28

0.0975

0.0975

V]imluljolulisjwlin]~-

0.0990

0.1053

19

0.1307 | 0.1322

29

0.0690

0.0705

[
o

0.1159

0.1160

20

0.1060 | 0.1060

30

0.0424

0.0424

N\
Note:  No.

¢ )

.

is the feature number

Algorithm Mean - Deviation-1
(2). Algorithm Mean - Deviation-2

ivkpadh IEMPOV R BT A Yt AN b v 1 e Auwiy My b

¥

[
R e -

R T S




126 ) - .

+
known, phase 1is a variable with periods of Zk“, k=1, 2,

»

eves The problem is which k we should ase. In digital
. »5 X

signal processing,”'this problem was solved by Oppenheim in

1965 ([4.15)) and 1later improved by others _ ([4.1%]).

Unfortunatély their methods can not be used in our case for

man§ reasons. Even the definition of sum and difference of

'two phase values have to be changed. The difference between

two phase values is calculated aloné a unit circle instead
of the Cartesian axis, as illustrated in Fig.6. One can see
points x and y are near to each otheq along the. circle but
far apart from eaéh other along the Cartesian axis. Under

this consideration, the following definition is used .:
) .

d = - -
x’y Ix yl) if Ix Y‘~__<_1[

2% - Ix - yl, otherwise | (u.26)

where x, y are supposed to be in (-T, V],

C) To define the mean value and deviation of a group of
phase - points, so that the statistical’ techniques are

applicable to phase features. -

/ : .
DEFINITION 4.2. The mass center of mass points'm1, Moy oiey

m, at x4, Xpy ...y X, along the unit circle 1is.such a

point x, that minimizes the Value of

D=E 2 .. .
= () (k.27

and the corresponding value of D is the deviation.
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¥v . ]
It is easy to showithat this mass center exists. The

problem is how/to calculate it. Considgr Elg.4.7, where x

is the mass center of x cee, X, If we shift the

10 X2 n

starting point of the circle to some point in the interval
' Y

(xi_1, xi], then x can be calculated using' the traditional

formula

Lt imx sl ,  (4.28)

We can calculate the value of x in (4.28) with the starting

point at Xq0 X0 eeey X alternatively, or equivalently

shifting xi to xi=xi+2ﬂ consecutively for i=142y4¢.yn=-1.

The mass center must be one of these values thus obtained,

which minimizes D in eqn.(4.27).

Suppose' the 1ith center candidate 1is xi, and (see

Fig.4.7)

itV = xl v 2Tm, /I g (4.29)
1/ m

which means the next candidate ‘can be foudd by addin%'

to xl. After the point x, is shifted to x;=x1+2ﬂ,

Zﬂmi/ﬁmj
the new value of D in eqn.(4.27) is

i+1 _ ¢ g
D = m, (d_ i+1 )
g 3 Xy

my (dyd+? X, * oy (dyd+?, xi)

341

= z mj (xi+1 - xJ)’Z

A

')2 - (x1+1 - X

+ mi[(x1+1 - X, 1)2]
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. I o2 2,5,
p m (d_1 J) + (21m1) /J my '

. v
sol-2xt* e x4 (xe21)2 - X2,

1
- ol , (21mi)2/zm —2%m, (2xitTiox. _29)  (4.30)
q. N J e J i 1

Eqns.(4.29) and (4.30) 1lead us to the following

algorithm : - N

ALGORITHM 4.4. Mean-Deviation-1.

L 4

Input : real numbers Xg9 Xpgy  eeey X in (-7, ¥] in

ascending order, pgsitive real numbers Myy My ey

m
n°* ‘!

Output : mass center x and deviation D as in Definition

—_—
”

u'z'

hY « I I | .
1TS imixi /imi ‘

. 2) T ¢ I )2

m, (d
§ i Sx1

3) D ¥ maxint

4) For T ¢ 1 to n-1 do

;/////////; « s . 2F mi/imj;

TET . (272 T ' s
3 \

- 21 m, (25 - 2xy =~ 2§)3

° 1f T < D then do
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‘) end
end; - C. ‘ .

5) Ousput the final values of x and D.
/

end;

¢

With the above algorithm, x can be <calculated as 1in

Definition 4.2, which minimizes the value of D in

eqn.(4.27). D is actually the deviation of ﬁhe points «x's,

if  each my/Imy is understood as the corresponding

J
probability.

&

D) To estimate the distribution of a character class in

—_—

the feature‘space, given the sample patterns.

F

" Normal distribution 1s often assﬁned in the numerical
feature space. Although this is not always true, it usually
works well, There are two reasons for people to use thi;
assumption. One is the convenience in the computation  of
ﬁormal distribution. The other is that normal distribution
is the least biased by the researcher, if the mean 'vector
and the covarlance matprix provide . the only given

information. This was proved in the J. Kampe de Feriet

Theorem (1963, Chapter 16, [4.13]) : ,



¢

The normal distribution maximizes entropy under givén

v U

mathematical expectation and covariance matrix.

The phase features differ from other numerical features

v

in thate the value of each phase feature lies within the

- range of (C“, %1, whieh can not have normal distribution.

Nevertheless, the way 1in which the J. Kampe . de Féiet

Thedrem was proved can be Similarly used to prove our

.

following theorem :

THEOREM 4.3.  Suppose . = (-9, 93], and k is the set of
Lebesgue measurable subsets of , the density P(x)

"defines a probability measure V. If P(x) maximizes the

4

entropy
H(P) = -Ijﬂ P(x) 1n P(x) dx (h.31)

!

under the condition

Ef = I?ﬂ xP(x) dx

"
. o

Er? = [ x20(x) dx = 02, .

-~

then P(x) has the following form
‘ ‘ 2 .
P = (B/1)1/2e=Bx" (| 20 ((2B)V/2¢)) (4.32)

where ¢ is the normal distribution integration fun;}ion

-

: 2
®(x) = JL (20)"1/2 o=t/2 gt for. x>0, .

[}

Proof. / .
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then we have
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¥

We use the Lagrange multipliers @ and B
Bg 2 J'ﬂ -Q pxz
H(P) - @ -BOS = J g p(x) 1n (e ZF* /p(x)) dx
Using
In x < x-1,
we have

2
H(P) - 0 - ﬁxz < ft“ e'a'ﬁx dx -1

P |

The equality holds if and only if

2
px) = e *-Px

N . ;
Since

‘ Y
Meopix) ax = 1,

we have

2
R N AR TET SR JTE SRILE SRR PALCH

‘ 2
p(x) = (B/9)V/2e=Bx" (4 | 20((28)172 1)),

QED.

If 02 <« 1y which 1is often thd case for a good Tfeature,

B » 1, ¢((28)1/2 1) = o,

L]
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and p(%) 1is approximately

Fig.4.8. This supports us to

when the phase feature satisfie

¢

062 << 1.

#

If all points are of equal ma

simplified to become

ALGORITHM 4.2. Mean-Deviation-

1) « 03 D « 03

# 2) For 1« 1 to N do

T

D"D+xi.ﬂxi
I

Ay

end;
3)_ M 4 M/n;
D4 D/n - MH#M,

end;

When 02 << 1, this method gives/ very

An experiment was conducted

using 30 phase features ext

classes, each with 10 sf&mples.

normal in &%, 7], as shown in

assume normal distribution

\ a
§ 1

1

Ls, then Algorithm 4.1 can be

accurate results.
with Algorithms 4.1 and 4,2
racted from 200 character

Thé average deviation values

produced by these methods are shown in Table 4.5, Therr one

.o

[

J s e ol £
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Fig. 4.8 Distribution p(x) and Nomm
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can see when D < 0.075, both methods give the same results,
" ‘ ] , .
when D > 0.105, Algorithm 4.2 gives slightly larger values
A 3 * H ' i ’
. than .Algorithm 4.1. ~ .
" . ', © 3
F‘or- the application of phase features, see Chapter 6. .
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set of classes W, W,, ., , W,

BN

4.4, Information Content Feature Measure and F;sher'§~;

Criterion

o

7
t

Many feature measutres have been studied for feature
selection; e.g. . see surveys [4.17, .18, 4.19, u4.25]. oOf

' .
particular importance to multiple pattern class problems are
. ’ ‘
those based on information content and scatter ratio, of

»

.which Fisher}s criterion'?s a special case.

. Information content 1s expressed by Shannon'saentropy
. L, v
B ]
B(Q/X) = E{-g : P(W IX) log P(Y IX)} . (4.33)

or mutual information

1@IX) = H®) - B@x) (4.34)

|

' where‘# i's the feature or feature vector concerned, 1 the

n

' X

The 3 scatter rapib, as an exténsion of Fisher's
}
criterion, is defined as

Jy; = log (det (B + W)/det W) (“355)

where B 13 the average between-class covariance matrix
[ 3
_F w ‘ t
. i=1 .
and W the average within-class covariance matrix
s -

W ='g-1 P(W, E{(X - My) ﬂx - Mi)t @)

136 : .
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. : z

Mi is the mean vector of <class mi‘ and Mo that of all

samples. P(Y,) is the a-priori probability of class wi.
It is well known that

3
ln x X -

R
—

(4.38)

Qor

R

ln x % x - 14 (x - 1872 (4,39)

» -
These approximations have, been applied to information

content measure, by which +the average quadratic entropy
measure H2 and thé average conditional cubic entropy measure

HB have been proposed [4.17] :

o]
|

E i T N
5 = E{i=1 PCYIX) [1 & p(® 1000} - (hobo)
‘ , /
3 1- E{E [P(@, 13 (4.41)
i=1 ) .
. . !

==
1

' It is not intended to deduce any new measure in this
’_ s

section. Instead, {4.38) and (4.39) will be used to deduce

some‘relationship between the two important measures given

'

by eqns.(4.34) and (4.35) for one dimensional feature, under

the following conditions [4.23].

-

Assume m is large, and the density p(xl“i) is normal

p(XIwi{ = (21)'1{2 07! exp{-(x -,Fi}? 6;2

i / 2},

[ ]
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i = 1.’ 2, ey me.

!

By substituting them into (4.33), we can obtain the

following result :

B Ix) = ? , Pi({n 2172 410 0y)

F ¥ \
+ P - P, '1n P, + H (4.42)
. 121 1 121 T 1 L
where ﬂ> ‘
Hy, = J p(x) 1n p(x) dx (4.43)

In order to <calculate H1, we approximate the'densitw
function using the Hermite polynomial expansion. Under very

general conditions, we have

p(x) = (27)71/2 071 exp [-(x - ¥)2 ¢=2/2]

j z ,
c.V,(x - W) (4. 44)
1=1 33

where
po= [ x p(x) dx .
02 . f x2 p(x) dx - n2

- /

and each WJ (§ =1, 2, 3) being a Hermite polynomiad® Up to

the 4th moment, we have [4.24, pp.188-189, and 1,2},
p(x) * (29)=1/2 6=1 oxp{-(x - W)2 0-2 / 2)

o

{1 +m, 0-3 [((x - M)/9)3 - 3(x - H)/0]

.



b s+

s (my O L3y (xR0t -

6((x < W) 7 0)2 , 373,

e LI o

f

. (4.45)
_ (. .
'A
{ Here e
1 mj = f .(x - u)J p(x) d‘x ’ J = 1’ 2, ¢ e 0
, )
N gsing
/ _ B ' , .
. p(x) = pixiw, )Py ) 5
i=1 ‘ L]
4 N - 4
we bbtain ,
™ ?' N
. Mooz Py “r
\!\5\\1=1
L - L3
02\E P, [92 4 (M, - W2
=1 ‘
g my = §-1 P, [305 (Hy = W) & (M - ¥y 3]
¥ m 2 y » :
my = - P, [34; + 607 (M, - H) (1‘i - HN
« let us use the following abbreviations
a = m3~0-13 / 31 ' (4.46)
N A S TR . (4.47)
It is known that when p(x) is normal,
. \
a = O, P = 0'
If p(x) is not far from normai, then @ and P are small and
(4.43) becomes ‘
|
t N »
]

Y (-
B N L T

TP s PR R,
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H = I emy-172 exp(-y2 / 2) qQ(y) dy (4.48)
where ) . i *
d(y) = g%y8/2 % ’(;2/2 - B%/6 - Bs2)yb Y
+(2182 + 302 4+ 4 4 ga - ‘?(1n ant)y2 - lnt Byy"
- (-188% + 9a2/2 - 15B/2 4 38(1n 21)
+ 68 in F :172)y2
‘+ (98%/2 4+ 532 In C - 1n ('_S)‘
+ terms of y to o&h order ‘
; o(0? 4+ 82).

Notice

5

[ ] exploy2/2) y2n ay 2 (29)1/2 (2n-1)11
and . ; . :
. L

J exp(-y%/a) y?“*‘ dy = 0

(4.48) becomes . >

Hy ® 302 + 1282 - (1n 27)/2 = 1n 0 -1/2  (4.49)

By egns.(4.34), (4.42) and (4.49),Iwe have

I®1fx) , o
=% 5 1 (9/9)) - 3 o® - 1282 (4.50) '
1=1 1 1’ \ 4 )
\ L . - ] :
s JQ;.K’ \ - 4 .'«_ . L e - T O ” ‘-‘;.“a...»u—]
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If we use (4.38) instead of - (4.39), the following’  Q

* approximation is obtained in exactly the same way((M.SO) was

deduced : '

. : |

I = I,(9x) c
. . .
= 3 Pi/f; (6701) - 6a° - 21482, (4.51)
. i=1
Just like
X - xé/2 <1n {1 + x) ¢ x

we have approximately N

I, <IKIq. - (4,52)
'

In one dimensional case, J2 has the ‘following form

J, = 1n (6% 7 p Picif) (4.53)
.i=1

Comparing eqns.(4.52) and (4.53), one finds

a) J, ,is similar to the major part of I with the

2

difference that the average by Pi's is inside 1logarithm 1in

J while outs;de in I.

2’
b) The minor part of. I, which J2 does not have, is

of order o0(8%4i2), which is very small when the distribution

\
is nearly normal.

e) I and J, do not differ much from each other.

They both reflect the ratio of two factors, one being a
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function of the between class variance, the other the within
class variance. Whethér using I or JZ’ it is the same that
. !
1 4

the larger is the ratio, the better the feature's

performance is considered to be. . -

To test the above assertions, some experiments were

conducted. -

\ —

\

!
1) Test of Ndérmal Distribution assumptioa\\
\‘

P(x) was assumed normal or nearly normal in the
deduction of eqn.(4.52), by which a2 and 62 can be
considered small. Tests were made for each of the Walsh
tran§f6rms of the projection profiles of Chinese characters
(see section 6.2), when the number of classes enlarged in

the following manner
7, 27, 61, 108, 169, 243, 331, 432, 546 and 675.

The values of a2 and 52 were found to be much smaller than 1
in these experiments. The average values of g2 and 3? of
the 64 features for each number of classes are shown in

Table 4.6. These results reveal the following :

The more classes are considered, the smaller az and 32

are. Even for small number of classes, az and BZ are much

"smaller than 1. This fact confirms that the overall

distribution, p(x) is approximately normal, and ~ the

’

deduction process to eqn.(4.52) is reliable for the large

character set.
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Tab. 4.6 Average Values of @2 and B%

143

N<;. of 0.2 82
Classes®
7 0.010368 0.001368
27 0.005305 0.001043
1 e 0.003009 0.000548
108 0.002243 0.000506
169 0.001975 0.000482
J 243 0.001844 0.000473
331 0.001889 ~ 0.000449
432 0.001291 0.000438
547 0.001060 0.000432
675 0.0009 70 0.000364

-

peprpue S Sl
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In addition, the histogram of the best feature of 1000
characters was plotted as shown in Fig.4.9, By examining
this figure, one can see that when the number of classes |{is

large, the distribution is practicdlly normal.
. 1

2) Comparison of I and JZ'

To compare I with JZ’ the following approximation is

used

1\- i P, 1n (070)) - jo? - 1662\ (4.54)

121 1
For 432 classes, the calculated values of measures I and J2
are presented in Table 4.,7. The features in this table have
been arranged in descending order of measure 1I. For each

i

feature, I and J2 are also plotted in the feature-measure
plane as shown in Fig.4.10, where we see : I and J, do not

differ much, especially for several best features. They

give nearly the same order of feaures.

For 243 classes, the distribution histogram of each
feature is shown in Fig.l4.11, where the features are
arranged also 1in descending order of measure 1. The
histggrams of the best and the worst features of 3155
characters are also shown 1in Fig.4.12. From these
histograms, we can sSee that the approximation (4.54) of I
really reflects separablility, or- 1nfor$ation of each

feature.

3) Recognition test
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Table4.7 Four measures of 64 features - 432 classes in descending
order of I..

0
F 10 Jo J1 2 F 10 Jo J1 g2
W2 2.990 2.99% 2.94 2.901 W27 2.181 .2.181 2.073 1.949
W1 2.983 2.987 2.939 2.895 W32 2.180 2.195 2.088 1.980
W10 © 2.907 2.910 2.855 2.802 WL0 2.164 2.191 2.089 1.984
W6 2.880 2.89% 2.836 2.735 W33 2.163 2.165 2.069 1.966
‘W5 2.820 2.824 2.767 .2.715 W2) 5.16Z 2.167 2.074 1.975
CWIH o 2.730 2.741 2,683 2.62% WSh 2.133 2.170 2.087 2.004
W22  2.669 2.67% 2.590 2.508 W36 2.130 2.227 2.124 2.017
W18 2.620 2.649 2.570 2.893 Wh6 2.119 2.192 2,104 2.01k
W26  2.600 2.651 2.563 2.466 WMG 2.112 2.115 2.028 1.945
W9 2.526 2.549 2.897 2.459 W4k 2.103 2.12% 2.029 1.927
W12  2.513 2.51h 2.425 2.330 W37 2.098 2.107 2.016 1.912
W17 2.506 2.51z 2.430 2.347 WUB 2.076 2.08% 1.992 1.897
W16 2.485 2,185 2.399 2.311 W31 2.069 2.069 1.961 1.846
W30  2.822 2.47z 2.360 2.25L W39 2.065 2.065 1.970 1.869
W25 2.373 2.379 2.293 2.203 W50 2.053 2.101 2.025 1.947
W7 2.362 2.380 2.310 2.229 W58 2.020 2.095 2.013 1.931
W13  2.360 2.360 2.300 2.233 Wu3. 2.013 2.016 1.915 1.806
Wl 2.330 2.330 2.245 2.160 W4l 1.999 2.001 1.887 1.76M
W15  2.322 2.350 2.275 2.'93 W45 1.986 1.991 1.896 1.786
W21 2.315 2.325 2.206 2.161 WAT 1.924 1.962 1.870 1.771
W20 2.31hF 2.317 2.221 2.119 W52 1.892 1.903 1.820 1.738
W8 2.312 2.343 2.264 . 2.190 W57 1.878 1.900 1.806 1.711
Wzl  2.299 '2.307 2.208 2.101 W51 1.864 1.300 1.800 1.694
W38 2.296 2.299 2.206 2.107 W53 1.863 1.877 1.791 1.905
W34 2.294 2.302 2.194 2.080 Wb2 1.79% 1.813 1.732 1.655
W11 2.272 2.288 2.216 2.128 W56 1.773 1.795 1.707 1.618
W28 2.259 2.275 2.161 2.050 *W59 1.685 1.686 1.600° 1.509
W19 2.255 2.270 2.187 2.006 W55 1.646 1.737 1.6H0 1.537

W23 2.220 2.252 2.163 2.062 W61 1.562 1.576 1.502 "1.421
W3 2,219 2,239 2.166 2.069 W6D 1.472 1,591 1.517 1,445
W§2  2.195 2.273 2.181 2.088 W63 "1.292 1,295 1.215 1.136
W35 ©.3.183 2.184 2.088 1.987 W64 1.125 1,154 1,085 1.018
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In the design of the decision tree with one feature used

in each internal node, the feature selection is simply to
find the best feature. Both (4.53) for J, and (L4.54) for I

are applicable. Twossuch trees for 206 classes eacL using

k)

J2 or I were designeg and.the recognition rates were tested
using independent testing samples. The results are
presented in Table 4.8, where J2 and I show nearly the sanme

performanée in overlap and recognition rate.

A
At the first giance, the Shannon's information content

‘measure giveﬁ in (4.33) and the scatter ratio or Fisher's
criterion in (4.35) look so different. But in a multi-class
problem like .the Chinese character set, the above
experiments show that they behave in a very similar manner.
Undér a . reasonable assumption thag each claQs has a normal
distribution and the overall distribution is nearly normal,

[

formula (4,52) for I was deduced, which looks very similar

f/éo J2 in (4.53). All these experiments and deduction reveal

~

ihat J2 and I count essentially the discriminating power of

features in 'a very similar way when the number of classes is
¥ ; wd /‘\
very larqe.

(‘('\

-

In the main line of tree analysis in this thesis,

[

entropy reduction is emphasjized, which has a close relétion
with information content measure. While this measure is

complex fo'gpmpute, yet when we design a large tree, feature

delection need be done hundreds or even thousands of times,.

- we need a simpler one. J2 serves this purpose very well,

/
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Table!4,8.. Decision Trees Using I and J
0 2
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description I . J
' 0 . 2
internals: " 160 ' 150 : ’ B
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and still 'keeps the same style as information content -

measure. Due to this reasod, in Chapter 6, most. experiments

are assoclated with feature selection hy JZ'
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CHAPTER FIVE

.

fA NEW TREE MODEL WITH IMPROVED SEARCH ALGORITHM

-

INTRODUCTION ' ;

’

Is has been pdinted out in Chapter 2 that the tree
claisifier with conventional search suffers from error
accumulation. lIn this chapter new search algorithms are
proposed which employ fuzzy logic as search heuristic and
terminal/Similarity for decision making; An extension of
the similarity measure is introduced fo'enhance the search

algorithm. Based on the above consideration, a new decision

tree model is proposed, which solves the error accumulation

problem.

156
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- 5.1. Straight Forward Search and Error Accumulation

-

Let us consider a generél tree which has been mapped

"( .
into a binary tree in the mempry (Section 1.3). Suppose 1
features are used in each internal node and a distance or
dissimilarity measure is used as the descriminant. To
illustrate this, an example is given in Fig.5.1, where 1 = 4
and the Euclidean distance is used.
Using the data structure introduced in Section 1.3, the

conventional search method can be summarized as follows :
ALGORITHM 5.1. Straight-Forward-Search.

) Input : the unknown pat&ern described by its feature

. 4

. vector F[1.,n]'
: ' The tree is supposed to be in the memory.

Qutput the character class i.d., to which the unknown

13 assumed.

1) Take the root of the tree as the current internal

~

node.

2) Get feature number 11y 155 ooey i, from FN in the

current node.

, i ¢
3) Let ?( - (Fi y Fi [] e vy Fi ) .

1 2 1
) 3
4) Find the number of child no@es, k, and the k childrepn

" M»’ A gy g -, <
-
wv
-3
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? +
o

B,, Bysy +-+» By (by pointer manipulation). Find the
corresponding C,, C,, +++,C, (the FEA field in these
child nodes) Fespectively located in the

l-dimensional subspace.

é .« -
5) Compute the normalized distance between X and CJ H
T t -2 . -2 *
dj - (X - CJ) diag(si1’ “o ey Sil)’ (x - CJ)’
J o= 1,2, «e.y k , (5.1)

[

where Si is the standard deviation of the 1Jth
j ‘.

teature.

-

6) Select a child node with the smallest value of dj‘

- ©7) If this node is a terminal, then the unknodn ¢pattern
is recognized. OQOutput the 1i.d. indicated in “the

terminal node, terminate the process.

Otherwise this node is taken as the current internal
node and the above procedure is repeated from step

2.

- ) END

This algorithm was used in the simulation experiments

described in [1,14, 1.15]. There are two shortcomings . in

N

this algorithm :

RIS

M\
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1) No~ rejection is made. .Any ‘misrecognitibd
introduces an error. It is well known that error is

. much wprse than rejection, since the Jlatter may'be
remedied by post-processing, while nothing can help if

an error occurs in a real process.

)

2) In the search process, the error éommitted at any

, P
internal node can not be recovered and the +¢otal error
rate is the accumulation of error rates at all levels of
the tree. As shown in Chapter 2, the error rate of the

decision tree is in the order of H = logn, based on the

assumption tpe straight forward search is actually used.
For Chinese character recognition, the tree has many
% levels and error accumulation may not be permitted. Two

sophisticated search algorithms will be presented in the

following sections to solve this problenm.
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5.2. Fuzzy Logic Search
" 4

Fuzzy decision tree search was first proposed ang
analyzed  in [5.2], where the BBB algorithm
(Branch-Bound-Back, also  see [5.3]) was given with
satisfactory analysis‘and experiment. We introduce a new
concept which is similar to those proposed in [5.2]. But in
Chinese character recognition, both straight forward search
and fuzzy logic search are. necessary for ﬁhe sake of speed
and‘recognition rate. The t'ree 1s the same as before. We
;ather call it a decision tree "with fuzzy logic search".

'

The search algorithm also belongs to the branch-bound

family, with, the width first strategy.

Fuzzy set theory was first introduced by Zadeh in 1965

[5.4] and developed in these two decades. Rather than

."probability", fuzziness is considered a concept of

.

tpossibility". The mathematical definitions of these  two
uncertainties are different and the latter 1s not a proper
description of things like M"error probabllity". Instéad,
fuzziness 13 used as a heuristic evaluation in the tree

search and it has been found to work well, as wirﬁ be seen

'

in the next Chapter.

Consider the unknown pattern X shown in Fig.5.1, which
is going to reach one of the child nodes. The only pleces

of information avallable are the values of dJ's in

-

161
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s

F

eqn.(5.1).. We have to find out to what degree X 1iké1y

~

-

belongs to BJ, using the .information given by the dJ's.

Suppose we havé

< d L ]
Ik

d < d < v
Jq Jo

- Fa

. , .
Let Y be the set of all unknown patterns. We can define the
. 2

follow{gg fuzzy subsets
i
-~ ‘ ¢ R

Fy = fY “J(X)“/ X, J =1, 2, «uu, k (5.2)

whére the membership functions are given below :

°

=
u

€.dj1 /(dj1 +dj)\’ , . | o
— !

~

3= 1, 2, ...,kbut’3£31 (5.3)

Es

4

where € is a constant selected as ,

0<€ <1,
4 ’

o

When k = 2,.the relation between u1—u2 and d,-d, is drawn in
Fig.5.2, where Wwe can see afat the bigger u1 is, the nearer

1s X to C, and the more likely X belongs to By. In this way

*

the "possibility"” of "X belonging to'group J" 1s described

by fuzzy subset FJ“

>

Let us consider Fig.5.3, 7here 'the unknown has reached
-~

F2 and G4, G,, G3,are the membership functions of the child”

nodes. G1, G, and'G3 can be defined in the §£me‘manner as

“

v .
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in eqn.(5.3) by means of the distance between X and each new

centroid. Each “J représents the degree of likelihood that

B belongs to FJ' while each Ai represents the degree of

likelihood ‘that X belongs té G, under the condition that X

i
has been ynown to Dbelong to F2. Then the membershib
function for an unknown X to belong t°,61 is
MVG = uz 11’ I = 1, 2, 3( (siu)

i
\

In this: way (We 6 are using the multiplying rple of

conjungtions [5.5] :

A .
F <and> G = fx Hetx) Poxy 7 x| (5.5)
I‘J - ' /

There {is another definition of c¢onjunction,; called

minimum rule,

-~

-

A } . '
F <and> G = Ix He(x) A Ho(x) 7 x (5.6)

N
'

' . -«
The reason that we did not use this minimum rule is that
(30l

it does not revord enough information of the'"ﬂastg in the
search. For example, if . - .

TR Mo, ‘
IR R

then . & F . ‘
'uF <and> G L /2 ﬁy'the minimum rule
¢

. "

- . g . - R
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Obviously the former contradicts our intuition. Some
experiments were conducted and their results supported the
multiplyiﬁg rule as the psychological process of conjunction

[5.6], which coincides with our selection.
A
Now we are ready to state our search algorithm. In the
decision tree, in addition to the data structure in Section

1.3, each node contains an MV field to store the membership

[3 <y A

value of the unknown. A link list of potential nodes, LP,
1 ® The 3 ¢
-1s kept. The‘input 1is an ’unknown pattern. The output
%ncludes recognition or rejection. The latter was not
included in the straight forward search. In the new
aléorithm, the straight forward- search is used first. At
the termina} which has been reached, if the dist;nce between
the unkﬂown pattern and the center of the character ciass
indicated in the terminal is small enough, then decision 1is
made, otherwise the fuzzy 1logic search is invoked. This

algorithm was developed in [1,.,16], which is presented below.

ALGORITHM 5,2, Fuzzy-Logic-Search~1.

-

1) Find out a terminal node by the straight forward

search.

2) If the distance (or dissimilarity) betwpen the
unknown pattern and £he known class 1is smallgr than
an established thpeshold, then output the
recognhition result and terminate the process,

otherwise go to step 3.

-

ol

1«

\
N
.

RN
bA
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3) Initialize the list LP with only the root node in it.

The value of MV in the root node 1is set to 1.

4) If LP is empty then output rejection and terminate

the process, otherwise gé to step 5.

5) Take off the first node from LP. If it is a terminal

node then output recognition result and terminate

the process, otherwise go to st?p 6.
6) For each of its child nodes, ca}culgte the Mvi value
MY, = Mv ¥,
where M, 15 as given in eqn.(5.3).

7) put all child nodes with MV, > 6 (a given lower

bound) in the LP 1ist and sort LP in ‘descending

order of MV values. Go to step U.

END

-

/ S&ep 1" is the stralight forward search, as in algorithnm

'5.1. It takes O(log n) time. Since the recognition rate of

a decision tree is not low (98% or even %igher based on our
expePie ce), most ugﬁnown patterns, are already recognized
propérl‘ in ¢this step. If the terminal node found in this
step is a'wrong one,'in most casep, the dissimilarity will
be 1large and the fuzzy logic search is invoked to begin at

step 2. Steps U~-T7 form a loop. The time taken depends on

»
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how, many new Shild nodes are put in the -LP 1list each time
step 7 is executed. Because the tree 1is designed wusing
ISOETRP, overlap 1s —controlled and the probability for a
sample to.be in the interval (a, b) 1in Fig.5.2 1is wvery
small. Very often only one child node has a high vaige of}
MV, or sometimes two child nodes have.MV25 and the others
<6. Thus the fuzzy logic sgaréh actually does not access
many terminals, much 1less than n {(n 1is the number of
terminal nodes accessed 1in the worst case, when §=0). In
this way, this algorithm is very fast on the average,
although it could take more time than the straight forward

search for a small percentage of unknowns. R

It is important to analyze the admissibility of a search

-

algorithm, which can be defined as follows [5.1] for our

case

DEFINITION 5.1. The algorithm 1s said to be admissible if

it always finds the terminal node with the largest 'MV

value, if MV>§.

It is easy to show that Algorithm 5.1 is admissible,

whiéh is written in the following Theorem :

THEOREM 5.1. Algorithm 5.2 is admissible in the sense of

e Y
Definition 5.-1. )

Proof.

. &

" i ' - " L
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Assume T is the terminal node with the largest value

of MV among all the terminals of the tree. If

MVT25

then all ascendants of T, including the root node, have
their MV values larger than or equal to §. Assuming

they are

with T, being the root node and T; the parent node of.

Tye1» 12 0, 1, ..., k=1, and T = T.

When the search starts at step 3, T, 4s 4in LP.

Obviously, if any T1 is taken off from LP at step 5,:
then Ti+1 must Be put into LP at step 7 whenever i < k,

since their MV > S.

In this way the algorithm can not terminate before
'Tk is reached. If it terminates at step 5, Tk = T \1is
found since it has the largest MV value among terminal-s

.\ and it 1s’in ryoht of any other terminals by sorting at v

step 7. QED.

If we take 6:0, -then Theorem 5.1 says that, the
algorithm always finds the terminals with the largest MV
value among all terminals. But if this MV value is too
small, it is not worthwhile to make decision. It is better

to set & above 0 in a proper manner and rejection 1s made

@&
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when there is no terminal node with MVZG. Accordingly the
number of internal nodes put in LP can be controlled by

adjusting §. This 1is useful |in handling searching tinme.

When & - o0, it takes the longest timg; which is often not

Hortﬁ the trouble.

“

Y/
4
oy e
;
o
£



5.3. Improvement of the Fuzzy Logic Search

There is still room in the above algorithm for further
improvement. Firstly, the ;embership‘value defined in (5.3)
is subjective. It is, in fact, used as heuristic evaluation
of the nodes. Whether it works well or not depends on how

well it reflects the likelihood of the unknown belonging’ to

the corresponding subset.

If each class occupies an ellipsoidal region as assumed

in eqn.(2.10),

oo x-cpbIy (x - <al,

1=z1, 2, ..., k

with a probability approaching one, then the center of the"
pdssiple class to which the unknown pattern g belongs lies

in the region

T .twclic-ntI;lE-x0cial (D"
w

with a probabllity approaching one, where ) 1s a constant
Q

for adjustment. This is depicted in Fig.5.4, wﬁére C1 and

02 are group centers. It is seeﬁ that, 1f

d% - d% <Aa,|&

¢
-

where d1 and d1 are the distances between X and C1 and 02

respectively, then there is the poassibility that X belongs

170
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to a class in group C,, although it is nearer to C, and most
likely it belongs to group C1. Based on this consideration,

eqn.(5.3) is modified as

'

O 42 =42 )/(a) v 0 ] (5.8)
R P PP
TR 2,2 -
3 = 0v [0.5-(d] dj1)/(xa)]
/ 3= 1,2, o, kbut 344, (5.9)

-

where d., d,, ceey d, are computed by eqn.(5.1) and ordered

$ .
as *

Equations (5.8) and (5.9) were used as a heyristic 1n'g
simulation experiment in Chapter 6, which showed better

performance -than eqn.(5.3).

)

The second improvement is the decigion making at step 5.

In algorithm 5.2, only the terminal node with the largest MV

’

‘value is examined. But “If there are several terminals,

which have approximately equal MV values, it is not
worthwhile making a decision in this way. Even in the case
a certain terminal may have an ﬁV value much larger than all

the others, 3% is actually not a sophisticated consideration

,ﬁo make . decision because MV value is nothing but a

heuristic evaluation. No relation between MV and error rate

is guaranteed. We should distinguish between the functions

of MV value and of similarity (or dissimilarity, '~ or

4
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distance). The latter may have some relation with the error
rate 1in a concrete probabilistic model, while the former is
used only to guide the search. A possible-improvqment is to
introduce ; similarity 1measure in decision making and

-7
&
examine all terminals with MV values above S. For .this

purpose, the sort procedur%\in step 7 in Algorithm 5.2 is no

longer necessary.

hl

The third improvement is the Introduction of extended

similarity.

Recall st;; 2 of Algorithm 5.2, where dissimilarity was
used at terminals. This dissimilarity 1s specially designed
for the terminals under the same pargnt node. It 1is only
good in distinguishing the "terminal siblings of the same
parent", But 1in the fuzzy 1logic search, tﬁe pattern
reaching one of these terminals with a membership value MV_?_6
(Fig.5.5.b) may belong to some c%ass other than these
siblings and the above similarity 41is not good 1in making
either decision or rejection. We need a new dissimilarity
(or similarity) measure for decision making which is
suitable ¢to the fuzzy logic search. This measure.should be
defined for each terminal and consider all pattern classes
whose patterns "possibly" réach this terminal with MV above
some level. This can be solved in the following way. These
classes are first collected for this terminal. Select a
group of features which have the besat discriminating péwer

among all the possible choices. The dissimilarity (or’
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similarity) for this terminal can then be defined according
to this group of features. In collecting these possible

classes, the fuzzy logic search is again useful.

The conventional decision tree is characterized by a

series of local decision makings. In collecting all

apssible classes, the tree classifier is examined globally.
The newly defined dissimilarity (or similarity) solves
decision making problems globally. We call this process

global training, which is decribed in the following

algorithm.
ALGORITHM 5.3. Global-Training.
Input : Training patterns.

Output : Decision tree with extended similarity.
~y

' 1) ISOETRP, which is called recursively and executed
,interactively to design a decision tree using the

given training patterns.

2) Fuzzy logic search, which searches all terminals with

MV>§ for each training paitern.

3) Collect the i.d.'s of all training patterns for each

terminal node, which reach this terminal in step 2

with MV>5.

.

4) Select a sub-feature-space for each terminal such

\ -
that the pattern class indicated in this terminal is

- 5
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mostly dissimilar to the o%her train patterns (or

classes) collected in step 3.

Y

5) For each terminal, set up an extended node to write_

the information of this <class and this subspace,

which at least includes :

feature numbers in this subspace,

™~

N

class center of this terminal in this subspace. - \5\
~

- 6) Output the modified tree. .

.

END
i K
This algorithm is aciually implemented in many programs.

‘ The above gives only its outline.

By the above three improvements, the decision tree
becomes more perfect than before and it needs the following

search algorithm in the recognition ph%se.
ALGORITHM 5.4. Fuzzy-Logic-Search-2,
1). Find out a terminal node by straight forward search.

2) If the ‘-extended diséimilarity between the unknown

7 pattern and the indicated class is smaller than some . —
P )

threshold, then output the recognition result and /

' terminate the process, otherwiée‘go to step 3.

~ ' ' TN :
) . \

43) Initialize the potential list LP with only the lroot

|
5
- . - ., R
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nodg in 'it, the MV value being 1. Initialize the
; : .
terminal list LT as empty. ,
. . ?
o ' S
4) If LP-1is not empty, then go to step 5
else if LT is empty then output recognition result * ;
. and terminate . N i
else ’ - ;
begin . .
N o i ‘
‘ . . . .. .
For each tepminal in LT do oo g
calculate the extended dissimilarity between
X and the indicated class; .
" . ) .
- . ‘ \\1 T, - },
: 7 Select the class with least dissimilarity; . "y
. If this dissimilarity is small enough,
- then output the recognition result
» ' %. . ! t
else output rejection; ’ ) '
3
e . {
v terminate . - ' :
‘ T ’ ‘ . . r L :
'@ . end; . ' C ' \ '
. ) ' , . \ H
C . . e
5) Take off the first node from LP, for each of its . «l
! ' - ~ ! [
child nodes, ocalculate the MV, yalue '
N o . ‘ '
»w ., u ! R ' . ", ,
Mv‘l’i = MV 1 ) o . ‘ ‘1_ “\
" B
) ¥ ‘ : ’
1. ' '
’ !

. R .
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'using eqns.(5.8) and (5.9);\‘§\

6) PU? all 'Child nodes with .MV1>6 in LP 1ist (fsr'

.

internal no&es) or LT 1ist (for terminal nodes).
\ ) M
BN ' -

- Go to step 4.

’

~

-~

END ) o~
.\‘ 1 -

¢ ~
s

As explained earlier the search guiding function “of MV
and decision making function of extended siqilarit&.are well
distiﬁguiehed in this algorithm}. In additioﬁ; the fuzzy
membership function is —given ;as 1n\eqns.(5.8) and (5.9),
which is more related to the inférmatioh‘ about ‘the\'regioh

¢

b . .
occupied by the pattern class than that given in eqn.(5.3).

L]

An experiment on - Algorithm 5.3 and Algorithm 5.4 was
™

. . 4
conducted with very eneouraging results.. It is stated in_

_in both design phase and

dhapter 6, where most principle
recognition phase prbposed in Chapier 2 are Justified. :
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5.4, Conclusion : ga’Improved Model of Treé Classifier t

*

-

] A decision tree is understood as in Seﬁtion 1.3 biﬁp thg

P

‘"straight forward searcﬁfin the recognition phase. 1Its main
Ml

'adyantage‘ is the high' speed of recognition. Its ofain

problems are overlap and error accumulatiqgn. , The former ts

. 4
solved in Chapter 3 by ISOETRP. To solve bhe‘laﬁ%gr, some

M ¢

,improvements are given in this chapter, after -which the’

-

decision tree is no longer understood ads before. The.design

phaée of the‘old decision tree is compieted by clusteting as
in Fig 5.6. ‘The newAtree needs one more stage in the design
phase, .which is the globgl\iraining as depicted in Fig.5.7.
This corresponds -to .steps' 2-; in Algoritﬁm 5.3. The.
reéogniﬁion phase of the new tree classifier is Elso

.different from that of the old tree. This i's Algorithm 5.4,

as shown in Fig.5.8. ‘

»

figs.5.6 and 5.8 shbw us the new model decision tree,
\

which no longer suffers from the error accumulation problen.

——
S

‘The following pfints about the new model-constitute tHe main

improvements : |

1) To overcome the error accumulation, some search technique -

other than straight for@ard one 1is necessary. While the

latter only finds one candidate, the former qQould rind

g

a group of classes which are similar to the uhknown in

' one way or another. The -ofd model uses only local
- 7 A

idformation at each level of the treg. The essential

’ - " R
* - ~ ’
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improvement ,in the new model 'is to-record "historical"
information,and-not lose the way by only one 1local
S ~

mistake. ‘ . .
. .

. A\ b -
The fuzzy membership value under the multiplying rule is

" k] -
an ent7ty for recording this historical information.

There should exist other ways, whenever a proper’

. -,
heuristic evaluation 1s . provided, which guides the

search., A good choice of.the fuzzy membership function

is t4 make -it closely related to the occupied fegion of
. . R’

the pattern class? | , ‘ .

N “

t R * »o

3) To switeh from recognition to rejection, é; from straight

4)

N

specified dissimilarity or. ’similarity measure is -

P
necessary in each ferminal node. In lpoking for it, .we
sﬁ&uld keep in mind that a déc%sion tree+is different
from an 6rdinar§ classifier. For each termilnal node,
%heﬁe is. a group of reachable classes. The similé;ity
or dissimilar;ty mgasure should be Eefined -among this
group aiming :at” examining £he’céndidate class ip this

. P ;

terminal. This reachable ‘elass group can be found by

’fuzzy logic search, as in Klgorithm 5.3.

The goﬁplexity of the new model is well justified, -not
. N # . ) -
only because the error rate has been suppressed, but

also it provides, the kind of flexibility which can not

be found in the old model. By adjusting A in eqn.(5.T7),

r
{

f

A;g;;érd ‘search to Tfuzzy logic search—whatever, a2

fo

LR

|
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‘éach ‘regiomSI g whicﬁ is assumed to be occupied by

-o%ﬁgs i is qctually .chgnged. 'qually' the \cluaﬁering

.part takes much more time than the -training part
B ‘ - v

(Figs.5.6 and 5.7), ‘and the above ad.'Jus\tment is not easy

to achieve in the o0ld model. By adjusting & in the

search alghrithm, the speed-error rate tradeoff 1is

A
possible. By adjusting thg dissimilarity threshold, the

error-re jection trade off is possible. Furthermore, the

€ value in eqns. (5.8) and (5.9) can also be adJjusted,
so that " the fuzzy heuristic fits the pat'tern

v

distributions well. All these flexibilities are out of

. . . 5
reach in the old decision tree model.

-
) e
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CHAPTER SIX

[y

EXPERIMENTS ON COMPUTER RECOGNITION

' ~ OF CHINESE CHARACTERS ,

?

/
"

INTRODUCTION

- '
Several thousand .Chinese characters were used as the set

-

of pattern classes in the simulation experihenfs 6n tree

classifiers. In_the aécend}nk 5rder‘bf merit, the design

techniques wused are histogram method, ISPETRP, interactive

ISOETRP and global training (Algorithm 5}3). The design

'princibles based on the analysis in Chapter 2 were applied.

classifier

tree is proved to be an

The new model of

by the corresponding experiment. In

important development

simulating -the new model tree classifier, 3200 character

classes were used, 99.§3$ recognition rate was achieved, and

the _error rate was only 0,025%, at a speed  of 861

sampleﬁ/sec., when running the programs written 1n\Pascal on

a CYBER-172 computer.,
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6.1. General Descriptions

The Chihese character set is suitablé for the simulation
experiments oh what have been obtained in the previous
chapters. The raw data weré obtained by scanning thousands

of printed characters and storing them.o; magnetic tapes as

.0-1 matrices. Accbrding to qef. ({1..19]), the frequency of

occurrence of the 3072 mqsf commonly uséd characters

indicates that they ' account for more . than 99. 7% of

contemporary Chinese. The number of character categories in

each’ experiment varied from 200 to 3200.——All éimulationg
3

were written in a high level language, Pascal, and performed

on a Cyber-172 computer at Concordia University.

1
’

l) Noise Models

A\

For simulation purpose, a noise model has to be used to
generate. noise samples either for cIaésifier'training or
testing. The model is not intended for industrial use, but
the noise in the sample should not be too easy to'eliminate,
so that the classifier can be- tested to see if it «can

recognize noisy characters.

Two noise models were analyzed in work [1.14]. The
first is a white noise model. Suppose A is the 0-1 matrix
corresponding ,to a character. ' Let us set another matrix B

in such a way, that

v . 186
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B(i,3) Random for each (i,j), (6.1)

/-\.
pe—
-

which is uniformly distributed in the %nterval [0,1). Noise

»

is added to different points (1,j) of A such that

§ A(i, j) is changed either from O to i,

or from 1 to 0 (6.2)

where (i,3j) 1is determined by a 0-1 noise matrix N.. The.

! ' value of the elements of N are determined by matrix B :

[

- N(1,J) = 1, 1f B(1,)) < g ‘ » T

0, otherwise (6.3)

. where g is a predefined threshold reflecting the noilse

level. Examples of noisy characters generated in this model

v

are shown in Fig. 6,1b.

9
\

It .is easy to compute the expected value (EN) and

L 4
2

variance (DN) and : correlation function (R) of the noise
. ' V.

- matrix N @

EN(I,J)

a .
; DNCI,d) = g(1-g)

R(i,J) - “(1—“)’if (1,J-) = (0'-0)

0, otherwise ) ’ (6.4)

Most noise points in this model are 1solated from each

L3
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N

other, as seen in Fig. 6.1b, hence they can, be éasi}4{

removéd by simple preprocessink techniquea. ‘ . ///

3
14

The second model was proposed in [1.14], which is

N(1,3) = 1, if £ <4

0, othervise

, - -
o

t = gB(L,3)+B(1=1,1)+B(1+1,3)4B(1=1,5-+B(1,5-1)

°

+B(£+1,3-11;3(1-1,J+1)+B(1,J+1)+ (141,34+1)

\ (6.5)

and ] > 1 is a suitfable constant. E

»

n. (6.5) means that if
point ' (i, J) 18’ a notise pointb_tpen all its neighbors are

also likely to be noise goints, fhis corresponds to the

real noﬂse sithation produced by the printing process.

The correlation of-this rand#m fileld, N, can be computed

as follows. Let points‘}a-1, 3%1), (4, 34=1), «»e, (i1,

J+1) be denogfd by 1, 2, ...y /9, as shown in Fig.2, then we

have
1

and ) , \

E(N;) = P{Ng = 1} . LT
¢ . Lo -

T
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or

Hence

%

E(N) = o° 7 (918)

P{t < g} ' .

>

’

.o ‘i (U7 pu u./g . ;
L jg dt {1 §u1 [ 02 du, te 107 B dgg

fg’tBA(Bls)‘qt e

U =By o+ B, + By-+ (B-1)Bg

-

i

"V =B+ Byq # Byp + (B-1)Bg

.
L}

E(NSNB)

'3(0,1)

- Bu -+ B7+ °B6 .+ B\g +B5 + BB .

P{(Ng=1) A (Ng=1)}

]

P{(U+WIKg g (W+V)<q)

1~

‘ t +u-1
f% dt ft—a du\ju dv

od 7 (81(g-12)

R(~1,0) = R(0,~1) = R(1,0)
E(NgNg) - ENgENg

027 (81(g-12) = (497(91g))2

-

(6.7)
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This corrgﬂglion\ function R(i,i) is depicted in.

- ¢
'
'
)
¢

,Fig. 6.3.

» ’ .
The noise. level, as well as the correlation function can
7

! be contraIi;d by adjusting the parameters and B 'By,

2

calculation, we have , -

» &

3R(0,1)75g = 22 9/(81(g-1?) -
B_] a B

-2 .
—= (%7(915))2

> B
- _ "9 3,4
= -2 [R(0,1)/g + o°/(81g(g-1)")]
" <o, : ° (6.9)

which means that, the larger B is, the smaller the

correlation * R(0,1) is. " When B —r « (a. varies

correspéndingiy), this model becomes a white noise model.
' qQ - .

Model (6.5) 1is a non-white noise model, which was

\

used in all the simulations described in this chapter, for

generating training as well as testing samples. Examples of

noisily generated characters under this model are shown in
: ' N

Fig. 6.1a. We can see, noise points fend to lump together.
- . ¢

o

A simple iow bass filter Qill not be able to elimlnate noise

L)

produced by this. model.

2) Positioning Method

\

It is important to locate the character in the matrix so

that its centér has a stable position wunder noise. ‘The

N
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L3 . . L .
: positioning method should suppress the noise effect on
- &
" features such as Walsh transforms and phase features.
/ following prelents some pogitiohing methods on profiles
X(i), i: 1, 2, o000y N
" as shdwn in Fig. 6.4, We defiine the symmetnric center of the
profile as. a point S, such thgt : '
: o i X(4) + (s-[s1) x(Is]) .
AN <[s} .-,
oo = 3 X(1) + ([5+1]1-8) X([s)) “(6.10)
i>[s] , - .
where [S] is the integer part of S.
" We can also define the mass center as
™
‘M= IX(1)./ % X(4) Lo (6.11)
1 3] i- . .
[ . ! A\
S and M are real numbers. When S -is used, the profile
, 4
tranlated to a new position
) X'(1) = (5-[8]) X(i+[S+1]-N/2)
@ ‘ . f
- I
+([S+1]-8) X(L + [S5]1-N/2). j (6.12)
- 4 S
M is used in a similar way. In addition we can define
M. = Round(M) . ' o,
o S, = Round(8) . :
- .
and .similarly, (6.12) becomes >

-
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X' (1) = X(i-S_-N/2).

Positioning methods by assigning S, M, 'S_or M_ as the

r

center of the profiles were compared using‘ about 100

-digitized noisy characters. Performagce measures of the

Walsh €}ansforms for the U cases are ,shown in Table 6.1,

where ' one sees that S and y are better than Sr and Mr' and M

[y

is slightly better than S.

3) Feature Selection . .

.
.

Suppose some feature evaluation crtterion is chosen and

d' features are selected out of the set of d features, theh

there are (g,) candidate' subsets. It has been proved that

-

.the search for the opéimal subset in the general case has to’

-

be exhaustive [6.3, 6.4]. The“branch;bound algorithm has

been reported in [6.5] to reduce the amount of|enumepation.

But still too much time is needed, which makes |the seeking
of the optimal subset impractical. Many suboptimal search
methods have been invented, as given in a survey [6.6]. But
in our treé classifier for thousands of cha} éQers, feature
selection must be done for each internal / node, 'totally
hundreds or even thousands of times. ' In the“design process,

4 \

we needan efficient method. .

A tree classifier is different from a stage classi-
¢

fier in that the former only makes local /decisions at each

level, Since the recognition rate depends on all the levels

J
!

% /

N -

-

of decisions, many features are actually used in the whole '
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TABLE 6,1 )
G [\ A N N )
s - Performance of the Features Using 4 \Centraliszing Me thods
" The 3 Best Opes  ~ ; o
’ 1 2 3  |AVERAGE
" ~ '
S 6.38 5.38 5.06 | 3.45 .
. \
G 7.63 7.35 5.81 3.59
o~ 5 6.75 5.19 4.88 2,65 '
‘ c."| 7.m 5.69 5.25 2.71
-, ‘
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process. The feagures whieh have been used in higher‘}evels

of the tree usually become less informative than those—

- ¥
unused before. By our experience a good feature will usually

be used sooner or later in the whole design process, even a

’

‘simple selection method is used.

Such transforms as fast Walsh, FFT were used in all the

simulations. In.this wa}, the features obt;ined reflect th%
global érqperty of the character. They are not sensiﬁiv; to
noise [6.7]. It vhas also ‘'been pointed out [4.121 that,
after- orthonormal transformation, the features become less

related than’ those of the raw pattern. Under this

"

condition, we can use the simple method in which individual

best feature% are selected. This method selects d' best
. , .

features out of d features, and only d times of feature
“~

measuring are necessary, which 1is practical in the large

o

tree design. Although this approach may not- be optimal, it

worksk well in the design of the ¢tree classifier when

orthonormal transforms are used.
. . 1 o
The feature evaluation criterion ,used is the . scatter

L
ratio, or Fisher's ceriterion given in eqn. (H4.35). ,

4) Programs

Owing to the huge data size, qulite a lot of programs

were used in a sImmle experiment. But the following

programs are usually the important ones common to all the

L4

‘7

sifiulations :

—— A
t— . — . . 4
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¢

i ' -~FEATURE EXTRACTION :

.Noise pattern generating. N
4 . - :
Profile, mesh or other local feature creation.

. , - FFT, Walsh or other orthonormal transforms.

. : L }

)
-~ TREE DESIGN : :

} N .
Feature selection.

1

Histogram method or ISOETRP clusteridg.

of

Tree created is stored in a digk file.
- \ 1

] .-
-

- «~GLOBAL TRAINING of the TREE

- O S TP

Find all te}minals each pattern can reéch.

¥ 3

e

-

Collect reachable patterns for eqch terminal.

Select sub-feature-space for eaech terminal.,,

s
.

Modify the tree with extended similarity measure.

~=TESTING: ' ~

Tree ‘recreation in memory (from disk file).

|
Straight forward search.

' . >

Fuzzy logig searches.

{
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6.2. Design with Histograms

The decision tree dealing with 3155 characters was

‘ : . o
simulated inr July, 1981 [1.14]. The features used are the

1
o
“

Walsh coefficients éxtracted_ from two profiles of a

9

|
. character projected onto the X-Y orthogonal axes (Fig. 6.5).

N .

X(1) = g a(4,31)
. 3 J Ve

Y(3) = L A(i,])
i .

-
-

where A(i,3) is ~the 0-1 matrix corresponding to the

character pattern.

- .

’

-Each class is considered to have a multivagiate. normal
distribution’ in the feature space. The;e féatqres are
assumed to be independent. Thé varianceé of the featyres
wvere estimated. by machine generated noisy%famples, 10 for
each ciass. The pattern c}qss is assumed to‘ o?cupy the

region ‘ : Y

‘

(b ~"a o,y + a0)

v

along each feature axis, p being the méan_value and ¢ the

variance. o was chosen as 3.25 (see Table 2.1).,

Only one feature is used 1ﬁ each&internéi node of the
tree and the discriminant 1is simpiy an inehuality.
Histograms were used 1in the design. The program is a

# - . N
recursive one. At  first there is only one internal node

» | 199
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For this unprocessed node, the following are done ¢

L e SN ) MO M s et s aan s e e ) "
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N

(root) in the memory, which contains all 3155 characters.

1) Select the single best feature. .

2) 'Print the histogram of ;/the charactef classes along

this feature axis. /

3) The operator selects severalipoints (cut) to divide
the axls into segments such that‘pattern classes are

separated into smaller groups, each corresponding to

.

a segment. The overlap 1s determined according to ¢

= 3.25. The principle of "cut" point selection i
: J

overlap betwpen the new groups. o
4) Each smaller group is assigned to a child node.

5) For each child node with more than one pattern class

in it, repeat the above steps.

6) The process continues until all nodes with more than

one class have been -processed.

7) The result is a decislon tree in the memory, which is

then written to a disk file.

This tree contains about 15000 overlaps. On the

B e

to try 2--6 segments and meanwhile contrbl/ihe/

!
!
L]
i
i
{
i
i

average, the terminal nodes sit ‘4t level 10, but the height

of the tree is 20.
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) Testing s§pplés were prepared 1in the bséme way as
training samples, but independent to the 1latter. 9345
testing patterns‘ werei usedl (3 -for each class), «The
*recognition rate is 99.5%. The speed is about 50 characters

~
per CPU second when the recognition experiment was carried
out on the CYBER 172. computer. Some examples of correctly
recognized and misrecognized' characters are .shown in
Figs.6.6 and 6.7 respectively,zwhére Wwe can see even ve}y
noisy characters were - correctly recogﬁized by this
classifier. Notice that some others with ‘tge same noise
level were misrecognized which could be rec¢ognized if we had
p

used more than one feature in each interndl node, or 1if we

had used a better search method, such és fuzzy logic search.

The exberipent is the first in the series of simulations
for the Ehesis. The main shortcomings of this. tree are :
serious overlap, yhich uses up too much hemory. Speed is
not safisfactory. There ~is no rejection option 1in the

recognition result, and some of the misrecognized characters

._Shown in Fig. 6.7 might have been rejected, which would be

preferred.
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~ ' Fig. 6.6 An Example of Histogram for Interactive Design

Fig. 6.7a Examples of Correctly Recognized'Characters

(With Reference to Clean Patterns)

Fig. 6.7b Examples of Mis-—fecognized Characters.

. (With Reference tg Clean Patterns)
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6.3. Design with ISOETRP -

— ' ' i -
A tree classifying 500 charaétérs in multifont was

simulated in July, 1982 [3.11]. g

Four different fonts were generated from a single font
of <characters. The variance of stroke width among these
fonts is evident as seen in Fig. 6.8. In addition to random

noise and shift moise, rotation noise was added.
A )

The .features wused are crossing counts and shades, as

\Qlustrated in Fig. 6.9. Crossing counts are prepared as

“ .
follows. The right and 1lower edges of each stroke are

extracted, resulting in two patterns. Both the right edge

pattern and 1lower edé%\iattern are projected in horizontal
and vertical directions tc produce U4 curves. To prepare

shade features, U4 side patterns of the character are

extracted, they are the black areas each occupying‘ 20% of

the total black area. These s}de patterns are then
projected in corréépopding difections ﬁFig. 6.9) to produce
the other 4 curves. These 8 curves are divided into 4
groups, each of which containing one shade and one crossing
count in .the same direction.'D Fourier transformation ﬁ?é
appliéd to these curves to ogigin 4 groups of numerical
features, \éach of which contains 15 (amplitud35 Fourier

coefficients, 8 from the shade curve and 7 from the crossimng

count' curve, where the 1nteération coefficlent of the

203
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crossing count curve 1s not counted in the 15. In addition,

3 more features

points, the integration of vertical and horizontal <crossing

count curves. In this way.N groups of%ﬁumerical features

are formed corresponding to 4 different directions.

" Intuitively, they are independent of each other, which makes

chosen from
r 4

each of the 4 groups. ' These 4 features together with the 3

o

additional features form a candidate group, from which 4

best, features are selected. The feature ordering measure

for feature selection is as follows,
o n .
J =g/ (3 o’i/n) (6.13)

i , .

31
where oy is the variance of the corresponding feature among
thé ith pattern class, and d.tge varianee over all pattern
classes. Table 1.2 shows this measure of the features under

various noise conditions or distortions, where we.can see

both the crossing counts and shades remain stable in random
noise: Furthermore., the : crogssing count feature is more

stable than the shade feature when the character samplés are

.tilted.

In ref.[1.14), the experiment showed that, when the

noise is random, the distribution of. each simple font is

much 1like Gaussian. In the oase of multi-font, the

’

distribution of each pattern class can be considered as

»

. 1
‘. p(x) = & P py(x) , » (6.14)
: k=

1

are extracted : the total number of black

~

2

;3
]
!
!
{
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where P, and pp(x) are the a-priori probability and
dis?ribution density, of the k-th font respectively.
Moreover, distpibutions under stroke width varilation or
rotation of the patterns are intrinsic rather than random.
In this case eqn. (6.&4) is also applicable with the
modification that k = 1, ?, +eey 1 for Aiffsrgnt fonts as
well as the possible intrinsic distortions as explained in
Fig. 6.10. If the feature is good, then the local maxima in
the distribution of the same pattern‘classes tend to be

close to each other, otherwise they are far apart.

‘

The uninteractive‘version of ISOETRP was employed in the
tree design. The input data contain the information of each
pattern class, such as the center of this class and the
diameter of the region it covers’ in the feature space.,
Initially all classes are considered as in a single clu;ter.

»

The output data consist of several clusters, each;\of which

containing a number of classes. In the next iterations, this-

output will serve as input and ISOETRP will be applied ¢to
the data of each cluster individually. After a numbér of

iterations (or the number of levels) the tree is created as
¢

a file in the secondary memory.

2000 training samples, U for each class, were used to

design the tree. 2000 independent samples were used to test

. the tree. This tree of 500 characters in 4 fonts has about .

2000 overlaps. The recognition rate 1is ‘1001 for the

T Taire o
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Tab. 6.2 Feature Performance.Meagure

. under Various Noise Conditions
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Fig. 6.10 Multi-font distribution model for one character.
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\‘\\Azfrage Separability
o 31 (Total) 31 (Crossing 31 (Shade)

Corditions , Count)

After thickuess variation 7.780 7.723 6.267
ryvqking by rondom noise 5.710” "1 5.590 5.534 ,)

1° rotation L, 4,546 4.930 o2’
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.training sample set, and\98.5% for the independent testing

sample set. The recognition speed 1is 50, charécters)sec,

when run on a Cyber 172 computer.

* This experiment shows that, multifont character

recognition by tree classifier are possible, althoygh the

,

data are more difficult to handle than those in the single.

font problem. The samples were generated by software, which

may ' not reflect the real case.’ For example, after rotation,

.‘filling and smoothing were then applied uto the patterns

résulting ig a lot of‘édditional distortion. It is possible
ISOETRP in its uninteractive form does not work very weil
for some level or internal nodes of the tree, which degrades

-

the tree classifier performance. Anyhow it makes higher

.dimensional clustering possible.'in the tree classifier

ot :p !

design.
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6.4. 1Interactive ISOETRP and Fuzzy Logic Search

Two experiments were conducted wusing 200 and 1000 :
2 BhAEN

*

frequently used Chinese charac%ers respectively on the Cyber

°

e,

172 computer at Concordia University. Nolsy samples were

»,

generated, 20 for ' each pattern class, 1.e. 10 training

samples and 10 other testing samples. N\

Eaéh\sample pattern is put in an 8X8 mesh, and the black

[ S S

area in eac% small region is calculated, which is cglled,the
mesh feature (Fig. 6.11). . 2~D FFT wap/;pplied to the mesh
features. 1In order‘ to save computing time, a'paiﬁ‘of v
samples were computed at the same time. ‘Let A1 and A, be B

the character metrices, then FFT was applied to the complex
{ .

.
¢

matrix
B=1A1+A2 ' r{
B ¢« FFT(B)

where 1 1s the imaginary unit. After FFT, the features of

h1 and A, were separated using the following formula

B

=
3]

(nt- 1) mod n . ‘ ;

(n = 3) mod n n

a

<
"

Fy(dy 4) = Re(B(4, J)) +eRe(B(u, v))

Fo(1, §) = Im(B(4, )% + Im(B(u, v)) g

1
Fo(u, v) = In(B(4, 1)) - In(B(u, v)) -
* 210 ]
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™~ . TABLEE, 3 Decision Trees
v No. of 200 1000
: , Categories
. . No. of 84 477
? internal nodes
. No. of . 205 1205
1 - terminals - ; '
P o : Overlap 5 ‘ 205
, Terminals 17 158 |30 | _40 477 |630] 58
. - and their 3‘| 4‘-5 4| 5| 6I7
é levels ! i
l Average level " 4,112 5.586
of terminals C
. Branch factor [ 3.65 3.56
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Folu,” v) = Re(B(u, v)) - Re(B(4, J)) (6.15)
where F, is the feature of A,, and F, of A,. Then magnitude .

and phase features were computed as in Section 4.3,

-

After the data had been prepared, +the interactive

version of ISOETRP was used to design the tree classifier.

One tree for 200 classes and the other fgr 1000 classes
were designed. They are shown in. Table 6.3, On the
average, the terminal nodes in these two trees sit between

levels 4 and 5. The branch factors are 3.65 and 3.56

- respectively, which were computed by

-

B = exp((1ln n)/LC) (6.16)
" i

»

where n is the number of terminal nodes and L the average

level of them. This coincides with eqn. (2.45), one of the

design principles.

In teéting the tree, both the straight forward search
(Algorithm 5.1), and fuzzy 1logic search (Algorithm 5.2),
were applied and the results are shown.iniTable 6.N.ﬂ From

these results, the following can be seen :

1) The average number of terminal nodes accessed by the
testing patperns in these two.trees range; from 16.685
to 22.326, ‘;hich, is véry close to the value of B . L.
This justifies that the time required for each unknown

in a tree classifier is 0(log n) since

P
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' L = log n / log B
where B is nearly a constant.

2) The error rate produced by straight f9rward search is not
high, which guaranteeé that the fuzzy 1logié¢ search 1is
neceésary only for a few samples and will not take up
much-+time. As shown, the recognition speed in fuzzy

logic search 1is only slightly slower than that in the

straight forward search.

3) The recognition rate has been improved considerably by
the fuzzy logic search, which actually searches only a

few more terminal nodes than the straight forward search

for a test sample.

4) The overall speed is high considering that these trees
‘'were implemented in a high level 1language environment.

A high speed has been achieved for two reasons :

A) The number of nodes accessed by each sample is.

0(log n), much less than that in a matching scheme.

B) In each node, either. an internal or a terminal, a
much Bsmaller number of features (4 in this tree) are
used than that 1n a matching scheme. In the latter case

(see Section 1.2), each eigen vector contains 64

! compohents as features.

e e R R

i
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These experiments Show that_ the tree classifier has
become a viable approach to the recognition of a large
character set, such as Chinese characters, after the

development of ISOETRP clustering algorithm and the fuzzy

logie search.
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6.5. Tree Classifier after Global Training

Three experiments were conducted using 64, 450 and 3200
2
charactérs respectively. Noisy samples were generated : 15

for each pattern class, 10 being training samples, and 5

testing samples.

Each sample pattern was first put in a 8X8 mesh. 2-D -

fast Walsh transform was then applied to the mesh features,

resulting in 64 features for each pattern.

After data preparation, ISOETRP was used in the same way
as“ described in the last section to design the tree
classifiers, to which the global training algorithm
(Algorithm 5.3.) was applied, The descriptions of the
resulting trees are shown in Table 6.5, Their branch
factors, calculated by eqn. (6.16), are in the range

~

required in egn. (2.45), Notice that in each tree, the
number of extended terminals is less than the number of
terminals. The reason is-as follows. When applyiﬁg step 2
of Algorithm 5.3, some t%{minal nodes are reached by -only
one pattern class, which is Jjust the correct one. In this
case, these terminals do not need extensions. The‘time tised
to recreate each tree in the memory is written.  in the same
table for reference. The number of internal or terminal
nodes sitting at different levels are shown in Table 6.5.

The average levels of the trees are 3.0, 4,132 and 5.415

respectively. It 1is very interesting to note that they

~

216

B N N E W P 73

B

1




. W T e o

e -

‘\

217

TABLE 6,5Tree Descriptionm

64 450 3200
No. Classes -
internal terminal | internal terminal internal terminal
1l S 0 6 0 7 0
L 2 18 0 29 0 39 0
E 3 64 115 0 222 0
\Y 4 23 418 848 ‘43
E 5 65 638 2320
L 6 2 1746
7 4
No. Interna}s 23 173 ) 1756
No. Terminals 64 483 4113
Overlaps 0 - 33 - 913
Average Level 3.0 4.132 S 5. 415
for Terminals ; : ' )
Branch Factor 4.0 4,462 4.650
No. extended :
terminals v 48 272 2173
Recreation
time (sec.) 0.153 1,096 10,171 ‘
'——\s
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.nearly form an a};thmaﬁic §gries while the corresponding

-

numbers of classes, being 64, 450 and 3200 respectively,

Y

 constitute a ! gecmetrical’ series. This ’jug!gfies the

’

A

<

theoretical analjsis "of the tree classifier pnesentéd in

Chapter 2.°

The results:of both the straight forward search and the
fuzzy 1lpepgic search as descﬁibé¢ tn Algorithm 5.4 using

5

independent testing samples are shown in’ Table 6.6.

training was made, ‘ Fig. 6.12 shows . examples of some

characters, which were ﬁlsrecognized~in the straight forward:

search, but re-recognizéd ‘in the new model tree.  Some

tegting samples under varfdous noigke levels were input to the
ot ' ,

“trees and the results are shown in Fig. 6.13. From these
.. W ) ) ) :
figures we can make the following conclusions :

‘ N . %
1) The recognition rate obtained from the straight forward

search, although generally high, decreases when the

o
1

\
accumulation. This effect is constderably ‘reduced by

¢

3 o
the fuzzy logilc sedrch, as indicated in:  Table 6,.6. ™ When
»

> s

the tree is -treated as a new model with sophistication,

the error accumulation .'effect can nearly be overcome.,

Although the rejection rate is not zero, it is as lgw as

-

» 0.044%, Furthermore, with the rejectidﬁ option available'

in the new model, the error rate 1is as low.as 0.025% for

" the tree for 3200 characters. Some misrecognized

‘
.
.
. }/// -
.
.
. N

Eépecially,\x5g9~comparison of trees with and without. global.

number of classes increases. This 1s due to error
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, _ TABIE 6.6 RECOGNITION RESULTS *
: 3200 befbre 3200 after
Number of Classes . 64 : 410 global trainingd global training §
Error Rate =, 0 'T0V3T - 1,47 ) :
i
Recognition 1007 99,77 98.67 o
1 . !
Rate . ‘ . H
Speed 1758/sec. ° 1318/sec.~\\2_:58/sec. g
. : ~ !
" | Backtracking 0 . 0.004 0.0134 0.0146 :
rate ! g
Error Rate 1 - 0 0 0.09375% 0.01875% g
" " | Error Rate 2 0 0 0.51875% 0.006257% f
s : !
II| Error Rate o 0 0.1125% 0.025%
Rejection Rate .0 0.09% 0.006257 0.044%7 v
{- Recognition Rate| 1007 99.917% 99.887 99.9372 - '
Speed * | 1730/sec. | 1216/sec. 873/sec. 861/sec. l
{
. Straight forward search : ' ?
. ) 4 }
uzzy logiec search ) | ‘
. . :
Error rate 1 : error in step 2) of Algérithm 5.4,
‘ ‘ " Error rate 2 : error in step 4) of Algof-ithm 5.4, ¢

Rkt coght 4 v T me——Y |Y KA -
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Fig. 6.12 XY Each X.is misclassified as Y in the conventional
) ' Ssgarch, but re-recognized in the new model tree
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character samples are shown in Fig. 6.14. For example

e

) A .
the character " ;éc_'" was classified as " ég " in the

i

7/ ‘\

first search, and the ?fiﬁli/ﬁf/ the 'second search is
"ijk ", which is still a mistake. Character " ;2&" is
neither similiar to " %11:7 ", nor to ")l;j_'\ " from human's
; \
sense and understanding. The reason 1s that the
features used in the tree <classifier simulation were
numerical ones, instead of structural features. But
still, by globally training the tree eclassifier and
ad?ing the fuz2y logic search, the error rate can be
suppressed to an acceptable le;el. In this new model,
it 1is possible to re-recognize thosé misclassified
patterns as in Fig. 6.14, which will be explaing? in
part 3). In the o0ld model tree, there 1s an-obvious
tendency that the error rate increases rapidly when the
num?er of classes 1increases, as seen in Table 6.6.
While in the new model, this error rate is maintained\at
a very low level, which indicates that it is possible to

apply a tree classifier to‘ recognize even more

characters. -

The recognition speeds are very high, considering the
experiments were run in a high level language

environment, The backtracking rate in Table 6.6 is the

rate of samples which needs the fuzzy logic search. This

figure 1is not high, because most samples were correctly

recognized in the first phase of ‘the search. Due to

v ._.Am»_mm;ss.m
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. this reason, even with the additional fuzzy 1logic

search,. the speed still remains very high. . }

I ¢ 3
3) The recognition rates by the fuzzy logic search for both #
, trees with and witheout global training are very high.

But it is obvious from the tables that the recognition “
rate has been improved further by global trdining, which
justifiQp the new treé model. Besides, the new model
gives a 1lot of flexibility, as analyzed in Chapter 5.

Thg trade-off between time and speed, and tha% bettween
error rate and rejection rate can be made in the new
model, by adjusting some parameters when globally
training the tree classifier (see Section 5.5). For
example we can decrease the value of g 1in global
training (Algorithm 5.3.), or adjust ) in egn. 5.7, so
that more 1.d.'s can be collected in step 3) of
Algorithm 5.3. In this way dissimilarity Dbetween

" ;éé " and " jli."bcan be meﬁsured in the extended
terminals after global training. Still we can adjust some .

L}

threshold in the fuzzy-logic-search (Algorithm 5.4.) to
find more g@gandidate 'terminals, so tha the above
patterns can be re-recognhized. But all these remedies
neea more time in the global training, as well as in the

fuzzy-logic-search for all the patterns input to the

tree. What we need in practice is a trade-off between

=

l',
B
?
M
-3
%
¢
;

. efficiency and rec¢ognition rate.
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The results ﬁn Sections 6.2 through 6.5 show the

S R

progress in the tree classifier research. The last few
experiments on the new model tree show that the decision

tree in a large character set has been greatly improved.
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CHAPTER SEVEN

CONCLUSION

&he decision tree -has both prospecé and diffigulty in
large’ character'set recognition. The works covered in this
thesis aim at overcoming the difficulties and /make it
possible to design a tree «classifier with satisfactory

performance in large character set recognition.

Based on entropy reduction, some analysis has been made,

which is a new treatment and brings about some new results
on tree classifiers. The (straight forward) search time and
error rates have been shown both in the order 0(H), and the
memory requirement in the order O(H exp(H)), where H is
Shannon's entropy measure of the given problem. These
results reveal that the main difficulties in the tree
approach to 1large character set problems are error rate

accumulation and extra memory requirement due to overlap.

Under the guidance of these theoretical results, " some

design principles have been 1implemented, which include

branch factor selection, entropy reductlion, overlap control

and the elimination of error accumulation effect.

A new clustering algorithm ISOETRP aiming at maximizing

the Gain, defined as the ratio of entropy reduction over

overlap, has been developed. With the .help of the newly

proposed overlap table technique, an interactive version of

ISOETRP has been developed and achieved its objectives,
L
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wh%oh has been found to. be very effective and very powerful

in tree classifier design. Overlap was considered an open

L VAU

problem in clustering. In ISOETR%, this préblem has been

solved interactively by the overlap table.

To solve the error accunulation problenm, thq

branch-bound search with. fuzzy membership function as the

.

heuristic evaluation was proposed. In addition, the

P XY

algorithm of tree <classifier global +training has been

developed. The main characteristic of a tree classifier is
that the final recognition of a pattern is derived from many.
local declisions, which has the advantage in time efficiency,
but;thg diggdvéntage of having a ‘"narrow view". After

—

global training, the tree has many extended terminals where

additional information can be stored to compensate for the
localness problem in branch-bound search. 1In this way, the (

decision tree becomes a new model. The advantage of global !

training has a further benefit, i.e. the parameters can be P

}
¢
3
b4
‘
1
1
£
j
z§
i
L/

adjusted easily, since 1t does not take much computing time.
EY

Some related works on 'feature extraction and feature
merit measurement have been included in this thesis. The

phase feature was proposed and analyzed for recognition

purpose, which enhanced the Fourler transforms in character

recognition.

Many simulation experiments have been conducted to

A verify the above 1ideas, deductions and algorithms. The

-
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'
number of charactgr classes in thege pxperidénts ranges from
64 to 3200. The final results are very encouraging, which
convince people that the decision tree approach qss a great

potential in large character set recognition.
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