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Abstract

Consensus: A Planning Protocol

for Cooperating Expert Systems

Richard Clark

Planning is an important aspeci of Distributed Problem Solving. Several ap-
proaches have been taken by researchers towards planning. In this thesis, we propose
a distributed planning protocol titled Consensus. Consensus is useful in a situation
where several expert systems cooperate to solve a problem. It is also applicable in
solving ill-structured problems. The set of expert systems that plan using Consensus
is called a Consensus Group. Each expert system in a Consensus Group makes a Pro-
posal. from which the Final Plan is generated. The proposed protocol has a potential
to minimize the cost of planning because negotiation is avoided. It is implemented
and experimentally analyzed. For the purpose of analysis, four metrics were defined
and a proposal genecrator was developed which simulates the expert systems creating
their proposals. As a part of Consensus, three alternative heuristics were examined
to overcome the computational complexity of a backtracking approach for the gen-
eration of the Final Plan. The experimental studies indicate the relative trade-off
between the complexity of planning and the quality of the plan with respect to these

heuristics. The experimental results and conclusions are presented in the thesis.
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Chapter 1

Introduction

“Where shall I begin, please, your Majesty?" he asked. “Begin at the beginning.” the
King said, gravely, “and go on till you come to the end: then stop.” - Lews Carroll,
Alice in Wonderland

Expert systems are computer systems which are intended to solve problems
domains which were exclusively the domain of highly skilled human experts. Expert
system development has been highly successful. with many systems now in commicr-
cial use.

Like many areas of computer science. the use of distributed computer systens
in the artificial intelligence field, or in particular expert systems. offers a numiber
of potential benefits. The low cost of individual computers and the relatively case
of interconnecting them makes the solution of problems by using numerons small
computers attractively inexpensive compared to large mainframe systems. The ge
ographical distribution of some problems makes a distributed approach a natural
one. In other cases, the functional decomposition provided by a distributed approach
can reduce the development effort needed as compared to a monolithic system. The
potential for increased speed of computation is also a factor.

Of course, these benefits can be realiz ed only if the individual computers (in our
case, expert systems) cooperate effectively to solve problems. Having one compute
reverse the decision of another, or attempt to solve the problem in a fashion incoherent

with the rest of the problem solving group of computers could lead to non cooperation



Often. to get the expert svstems to cooperate effectively. the diverse views of how
problem solving should proceed must be resolved. To integrate the different views
of the individual expert systems so that they may cooperate effectively. we have
developed a protocol we call Consensus.

In this chapter we present an overview of distributed problem solving (DPS) and
ill-structured problems. We desctibe the usefulness of solving ill-structured problems,
and show how a blackboard architeciure is well suited to solving them. We define

Distributed Artificial Intlligence.

1.1 Ill-Structured Problems

The type of problems we address in this thesis, and the kind most often solved by
expert systems, are known as ill-structured problems (I1SPs). Many problems solved
in the field of Artificial Intelligence can be categorized as ill-structured. the problems
become well-structured only in the process of being prepared for the problem solvers
[38]. l-structured and well-structured problems (WSPs) lie at opposite ends of
a spectrum, most problems having characteristics of both. with no real boundary
between the two. Simon states that well-structured problems have one or more of

the following chaiacteristics [38):

e There is a definite :riterion for testing any proposed solution. and a mechaniz-

able process for applying the criterion.

e There is at least one problem space in which can be represented the initial
problem state, the goal state. and all other states that may be reached, or

considered, in the course of attempting a solution of the problem.

e For a given state, attainable state changes (legal moves) can be represented in
a problem space. as transitions from that state to the states directly attainable
fromit. But “considerable” moves, whether legal or not, can also be represented

- that 1s, all transitions from one considerable state to another.

[ ]



e Any knowledge that the problem solver can acquire about the problem can he

represented in one or more problem spaces.

e Ifthe actual problem involves acting upon the external world. then the definition
of state changes and of the effects upon the state of applying any operator reflect
with complete accuracy in one or more problem spaces the laws (laws of nature)

that govern the external world.

e All of these conditions hold in the strong sense that the basic processes pos-
tulated require only practicable amounts of computation, and the information
postulated is effectively available to the processes — ic., available with the help

of only practicable amounts of search.

Nii {33], referring to earlier work by Newell, summarizes the characteristics of an
ill-structiired problem as a) poorly defined goals and b) an absence of a predetermined
decision path from the initial state to a goal. She states that even the criteria for
determining whether a solution is acceptable is often not well-defined and the solution
must be passed to human experts who debate the worthiness of the solution. A
characteristic of ill-structured problems not mentioned by her, but which is intportant
in the kind of problems we address. is that it is not possible to predict completely
the result of all actions taken while solving a problem {3].

Numerous methods exist for solving ill-structured problems. There are the well
known weak methods[36]. problem dependent heuristics whick attempt to bypass
the combinatorial explosion which would be caused by an exhaustive search. There
are also rule-based expert systems, neural nets, etc .... Simon argues in [38] that
qualitatively different methods from the ones currently available are not required for
the solution of ill-structured problems. In light of this, the next section presents a
well-known method used in solving a number of ill-structured problems, called the
blackboard model.



1.2 The blackboard model

The blackboard architecture describes the organization of knowledge and data, and
the problem solving behaviour within an expert system([18, ch 1]. A basic description

of the blackboard model is given in[18], from an analogy attributed to Newell:

Metaphorically, we can think of a set of workers, all looking at the same
blackboard: each is able to read everything that is on it, and to judge

when he has something worthwhile to add to it ....
The blackboard model consists of three basic components:

knowledge sources The knowledge an expert systems needs to solve the problem
is partitioned into a set of separate knowledge sources. each cealing with a
particular aspect of the problem in which it specializes. Knowledge sources are

usually represented as procedures. or sets of rules.

blackboard data structure The problem solving state data are kept in this data
structure, which is a database global to all the knowledge sources in the expert
system. Knowledge sources produce changes to the blackboard which lead
incrementally to a solution to the problemi. Communication and interactien
among the knowledge sources take place soleiy through the blackboard. The
objects on the blackboard are hierarchically organized into levels. Information
associated with objects on one level serves as input to a set of knowledge sources

which in turn place new information on the same or other levels.

control The type of control component is not specified in the blackboard architec-
ture, it is determined by the system designer. The control component may be
a part of the knowledge sources, or it may be be a separate module. It decides
which knowledge source will be instantiated, and perhaps also the area of the
blackboard in which it will work. The control component may cooperate with

the knowledge sources to make these decisions.

The blackboard, also called the working memory, is divided into levels repre-

senting an application specific hierarchy. with possibly different data structures or

4



representational methods on each level. The data represented on a blackboard is
uncertain, and consequently a single piece of data could eventually lead to a number
of different interpretations. In the blackboard architecture, these potential interpre-
tations are stored as hypotheses. Some hypotheses are more likely to be correct than
others. This is represented by the knowledge source assigning a confidence factor or
belief value to the interpretation suggested by the hypothesis. As other data and
hypotheses are analyzed by the knowledge sources, these hypotheses may have their
confidence levels raised or lowered.

A blackboard-based expert system offers a more flexible reasoning strategy than a
traditional expert system. A blackboard-based expert system is not limited to using
a single inference engine. Instead, the diverse knowledge in a traditional monolithic
expert systemn can be segmented into knowledge sources where each one specializes
in a particular aspect of the problem, possibly using a separate inference engine
appropriate for it. In a blackboard model, opportunistic reasoning is used to produce
results. Individual knowledge sources can use forward reasoning which proceeds from
a given state to a goal state. backward reasoning to go from a goal stale back to an
initial state. or any other reasoning methods. Blackboard systems use opportumistic
reasoning. which is defined as the system’s ability to choose selectively its best data
and most promising methods at any point during the problem solving process(19].

From the above discussion, it can be seen that blackboard systems are well suited
to the solution of ill-structured problems. The representation of vague or uncertain
data which characterize ill-structured problems is an integral part of the blackboard
architecture. The incremental and opportunistic approach to problem solving activ-
ity, with no a priori determined reasoning path, performs well in a problem solving
environment in which control uncertainty is a fundamental characteristic. In our
work, an ezpert system consists of a number of knowledge sources with local memory.
Shared among the expert systems is a central blackboard through which the expert
systems communicate, subject to the “organization” described in chapter 3.

An example may be appropriate here to help make some of these concepts con

crete. The Hearsay 11 project{20]. the first successful modern blackboard systerns
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Figure 1.1: A simplified view of the Hearsay II blackboard structure

application, used numerous knowledge sources and a multi-level blackboard to per-
form the task of recognizing human speech (please see a simplified version of the
Hearsay blackboard in Figure 1.1). The blackboard data structure was composed
of seven levels, increasing in abstraction from the raw data input level, through the
phoneme and lexical levels. and eventually to the phrasal level. There were eight
difterent knowledge sources in the Hearsay 11 system. Some worked on a single level,
combining the data into larger pieces. Others, like the phoneme hypothesizer, looked
at the syllabic and lexical levels, and moved data lower in the abstraction hierarchy
to constrain hypothesis creation (backward reasoning). Still others, like the word
candidate genecrator, viewed lower levels of the abstraction hierarchy and created hy-
potheses at the lexical level in a data-directed or forward reasoning manner. The
essence of a blackboard system has been demonstrated in this example, namely the
abstiaction hierarchy of the blackboard, and the opportunistic and multiple reasoning

methods used.



1.3 Distributed Problem Solving

Cooperative Distributed Problem Solving (CDPS) and MultiAgent systems are fields
of Distributed Artificial Intelligence (DAI). which is the field where artificial intel-
ligence and distributed processing overlap [15]. CDPS considers how the work of
solving a particular problem can be divided among a number of modules or indi-
vidual expert systems that cooperate at the level of dividing and sharing knowledge
about the problem and the developing solution [2]. This is different from what is
known as “MultiAgent systems” in which multiple autonomous intelligent “agents”
coordinate their behaviour, despite potentially having disparate goals.

There are numerous reasons for the growing interest in DAI [2. pg8]. In some
domains, the knowledge or activity is inherently distributed because of geographic
problem distribution coupled with processing or data bandwidth limitations, a good
example of which is distributed sensing. Sending raw data to a single node for pro-
cessing may exceed that node's bounded rationality - defined as the limited processing,
and control capabilities of a single computer[21]. Sending unprocessed data would
also place heavy demands upon a communication network. The desire for fail-soft
degradation of the system can also be a factor in selecting a distributed solution
most systems can still function despite the loss of one or more participating expert
systems. Another consideration is that the development of intelligent systems may
be facilitated by building them as separate but interacting parts.

Cooperation among the expert systems in a CDPS is necessary because a single

expert system does not have sufficient expertise, resources, and information to solve

the problem completely, and the integration of the results of the individual expert
systems is required[15]. The expert systems must coordinate their goals to avoid
duplicating the work of other expert systems, or working at cross-purposes; this
requires them to interact. The term organization is used to refer to a structure that is
imposed on the expert systems of a CDPS (Cooperative Distributed Problem Solver)
which determines the interactions among them. The interactions between expert
systems involved in CDPS varies greatly among various protocols and has a profound

effect on the functioning of the system because the ability to interact effectively



is a fundamental component of intelligence [15]. We discuss various strategies of
interactions between expert systems in our analysis of DAI work in Chapter 3.
Cooperation and coordination, necessary for CDPS, are not easily achieved. No
single expert systern views the whole problem at any one time, and because of the
bounded rationality of an expert system and limited communication bandwidth, they
are forced to make decisions with incomnplete knowledge. Expert systems may disagree
on what goals to pursue, or when to pursue them. The sub-problems they solve
are usually not independent, so the expert systems should avoid conflicts and where
possible use knowledge from one sub-problem to aid in the solution of another. These

issues must be addressed to have a system that works effectively.

1.4 Overview of this Thesis

In chapter 2, because the concepts of goals and planning are essential to our work,
we give an overview of them relative to distributed problem solving. A literature
survey of related work in the field of distributed artificial intelligence is presented in
chapter 3, and motivation for our protocol is provided. In chapter 4, we then describe
in detail the protocol we have developed, including some of the heuristics used, and
show an example of its use. Chapter 5 analyzes and compares the performance of
several key heuristics which Consensus can use. Chapter 6 provides conclusions and

future work.



Chapter 2

Goals, Goal-Directed Control, and
Planning

Linus : I guess it's wrong always to be worrying about tomorrow. Maybe we shouldd
think only about today.

Charlie Brown : No, that's giving up. I'm still hoping that yeste rday will gct bette r.
- Charles Schulz “Peanuts”

A goal represents either a particular problem state that a problem solver wishes
to reach, or a constraint placed upon the method used to reach the desired state[2:1].
Goals are used to direct the sequence of actions leading to the solution of an ill-
structured problem. This form of control of an expert system is called Goal-dueeted
control. Goal-directed control is an alternative to data-directed control in which the
problem solving process depends entirely upon the current state of the solution that
is being constructed. Goal-directed control is a mechanism by which the problem
solving process used by the expert system is focused onto areas that are determined
to be important, not necessarily relying solely on the current state of the solution
or the immediate effects of instantiating a knowledge source. Thus, goal directed
control allows the expert system to reduce the cost of solving a problem by reducing
the computational effort the expert system devotes to producing partial results that
are never used as part of the final solution to the problem [7]. Plunning is the act

of selecting, before execution, a series of steps that an expert system will perform



to solve a given problem. If the various steps of the plan can not be undone, then
the creation of a plan is more important [36, pg 249]. A strategy for planning in
which the outcome of a step is uncertain, and hence may fail, is important for solving

ill-structured problems {12].

2.1 Goals and Goal-Directed Control

A goal is the data structure used by an expert system to represent the intention to
achieve a particular problem state. The representation used for goals is generally
problem specific, and so no general method to describe goals exists. Usually, the
data structure used to represent goals will contain many fields. We define two kinds
of fields to be used in the Consensus protocol: specifications and attributes (see
Figure 2.1). The specification fields describe the problem state to be reached by
an expert system, as well as the expected quality or belief in the desired results.
Attribute fields of the goal indicate the goal's rating. a unique name, and pointers to
goals with which this goal has relationships. We will present more detailed examples
of the fields used to represent goals for a specific problem in chapter 4 showing an
example of the Consensus protocol.

The satisfaction of a single goal may require the work of several different knowledge
sources or expert systems. To indicate the importance of data in the lower levels of
a blackboard in achieving the original goal, and to permit multiple expert systems
to participate in achieving a single goal, the goal can be decomposed into several
subgoals by the planning component of an expert system. The goal decomposition
requires domain-dependent knowledge. The root goal is referred to as a parent goal
of the new subgoals.

The decomposition of the parent goal into subgoals can be used to distribute the
workload to other expert systems in a CDPS. The decomposition by one expert also
avoids requiring each knowledge source or expert system to possess the capability
to know how it can contribute to the satisfaction of the parent goal. Subgoals each
require the work of fewer knowledge sources, or less time than the original parent

goal. The subgoals may in turn be subgoaled again. creating a goal hierarchy (see

10



Goal

SpeCification
L
(

A

attributes

rating factors

Figure 2.1: Goal fields

Figure 2.2). The satisfaction of the relevant subgoals ensures the satisfaction of the
parent goal.

A rating of a goal is a numerical estimate made by an expert system and assigned
to each field in a subset of the attributes of a goal we call rating factors. Rating factors
are selected by the system designer and are meant to reflect the characteristics of the

goal that the designer believes are important when the expert system must decide

@ @ @ subgoals of g1
@ @ subgoals of g4

Figure 2.2: Goal decomposition through subgoealing
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which goals it should pursue. Corkill {8, pg 174] mentions 2 number of rating factors:
the goal’s irnportance in solving the problem; the estimated cost of achieving the
goal: and the probability of satisfying the goal. He also bases the goal rating on the
rating of the hypothesis that stimulated the creation of the goal, and the rating of
a parent goal. We know that in ill-structured problems, the number of goals which
could be pursued ai any one time is large. Thus, an expert system must select a
subset of these goals to pursue. Generally, a numerical scale is used to represent the
value assigned to each factor, and this is essential for the expert systems to compare
different goals, although other attributes such as goal relationships (described below)
can be used to aid in the selection process.

We have chosen two rating factors for goals in Consensus, called the the Likelihood
of Success and Desirability. Desirability of a goal is an estimate of how useful pursuing
the goal will be to the overall solution of the problem. The desirability of a goal is
represented using a numerical scale ranging from zero to ten. where zero indicates low
desirability and ten indicates a goal will be very important in achieving the overall
solution to the problem. Likelihood of Success is similarly defined as a number
between zero and ten. but it is an expert system’s estimate of how likely the goal
is to be achieved. The notions of Desirability and Likelihood of Success transcend
all domains. Every problem domain is different and will require appropriate factors
from which to determine the Desirability and Likelihood of Success of a goal.

Factors we have identified which indicate the Desirability of a goal are as follows:
the area which the goal covers (for those domains in which the area of a goal is
meaningful) where goals that cover larger areas given a higher rating: the level of
the blackboard on which results will be stored (higher levels are more desirable):
the potential to satisfy the goal with a minimum amount of resource consumption.
and a much more vaguely defined notion of how well the goal actually addresses the
overall problem. One factor which may affect the Likelihood of Success for a goal
is the amount of supporting data that exists to help satisfy the goal. For a specific
goal, as the supporting data which exists on the blackboard increases, so should its

Likelihood of Success.
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Formally, each goal g is described by specifications. a set of attributes A =
{a1,a3,a3,...,a,}, and a vector of rating factors RF = < fi, fo..... fu >. f, C A
Associated with each rating factor is a numeric value. The rating of goal g, is r(RI}).
where r() is a function chosen by the system designer which uses the numeric val-
ues associated with the rating factors. In our case, RF = {Desirability,Likelihood of
Success}. A linear function of the form r() = Y|, w,a, is frequently used to deter-
mine the rating from the rating factors of a goal[22]. Often we simply say “the rating
of g” rather than “the result of applying r() to the vector of numbers associated with
the rating factors of a goal g.”

In order to make decisions about which goals to select, the ratings of all goals
must be comparable. that is. if G is the set of all goals, then Vg,, g» € G, 1(g4) £ r(g1)
or 7(gy) < 7(ga)-

The accuracy of an expert system’s estimate of a goal's rating will vary with the
nature of the goal. An expert system will be able to make a better estimate of the
true Likelihood of Success of a given goal if the goal is at a low level in the goal
hierarchy. Goals at a low level in the goal hierarchy are unlikely to be subgoaled
further, or can be solved by a single knowledge source instantiation. Conversely, it
is easier for an expert system to rate the Desirability of an abstract goal (one that
can be subgoaled numerous times) than that of a low-level goal. The Desirability
of a goal is a concept which predicts how useful pursuing a given goal would be in
attaining an over-all solution to the problem.

The creation of a “good” plan (a good plan is explained in the next section)
requires more than simply the ratings of goals, it also requires that the relationships
among the goals are considered. Goal relationships are used to obtain global cohere nee
in a network of cooperating expert systems. Global coherence is defined by Durfee
[10] as “the activities of the nodes should make sense given overall network goals.
Nodes should avoid unnecessarily duplicating the work of others, sitting idle while
others are swamped with work, or transmitting information that will not improve
overall network performance.” In a complex environment, making appropriate control

decisions is a difficult task and goal relationships can be used to guide planning.

13



This approach is explained in [31]. Wilensky also recognizes the importance of goal

relationships [42, p14] :

“My claimis that dealing with interactions should be moved from its
secondary status to the primary framework around which the planner is
designed, and that doing so will result in a substantially different and

more ad vantageous planning control structure”

Several goal relationships were identified and discussed in [31] and are given below.
We have included two goal relationships (repression and temporal) we developed in
addition. We split the goal relationships into three broad categories : beneficial,
neutral, and adverse. The beneficial relationships are those that make it useful to
pursue both goals, such as the cooperation relationship. Adverse relationships are
those like repression, in which pursuing both goals is not possible. Independence is

an example of a neutral relationship.

assistance one goal, gl, is said to assist a second goal, g2, if the satisfaction of gl
implies satisfaction of g2. The assistance relationship identifies those goals that

represent alternative approaches to generating a particular solution.

competition two goals are said to be competing if there is no possible partial so-
lution that will contain both goals. Thus, if both goals are pursued the effort

spent on one of them will eventually be discarded.

cooperation two goals are cooperating when it is possible for the goals to produce

information that may be incorporated into a single result in the future.

independence two goals are independent if they are not competing and it is not
possible for them to be incorporated into a single result at some point in the

future.

repression two goals are said to have a repressive relationship if the acceptance of

onc implies the rejection of the other. The repressive relationship is especially
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useful in situations where resource acquisition conflicts occur. Giving the re-
source temporarily to one expert system implies that other expert systens are

not able to obtain it until it has been relinquished at some later time.

subsumption goal gl subsumes a second goal g2 if the specifications of g2 are

completely encompassed by the specifications of gl. Thus, if gl is solved, g2 is

solved.

temporal goal gl has a temporal relationship with goal g2 if goal g1 should be at-
tempted at a particular time with respect to goal g2. The temporal relationship
is used to indicate those situations in which thereis currently insufficient data
for a goal g2 to be achieved, but the necessary data is expected to be provided
by another goal gl. Thus goal gl should be pursued before attempting p.

Simnilarly, if goal gl fails, then g2 should also fail. even before it is attempted.

Goal-directed control of expert systems is the practice of using goals to define
how the problem solving process should proceed to find a solution to the problem.
In a goal-directed system. the blackboard is augmented to contain a goal blackbond
which mirrors the data blackboard in dimensionality. The goals appearing on this
blackboard represent a request to create a particular problem state on the data black
board. The goals are used to develop into plans by a new component of the system
called the planner. Goal-directed control is effective as a means of ensuring that an
expert system will perform tasks in a coherent manner [7]. Goal-directed control can
be seen as an improvement over early blackboard systems which were considered to
be data driven. Data-directed control will often lead to unfocused activity in a com-
plex domain as only the current state of the blackboard is used to control knowledge
source scheduling. This can lead to the expert system pursuing numerous possible.
but unlikely solution paths (ie., by instantiating knowledge sources that have good
short term results, but poor long termones). In a data directed approach, the sched
uler does not record which information is missing in order to construct a solution to
the problem, it is assumed that any data that is needed will eventually develop due

to normal knowledge source scheduling, which is based strictly on the current state
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of the blackboard. This leads to lower processing times because the attention of the

problem solver is focused onto the long term solution of the problem [7].

2.2 Planning

Despite having an intuitive meaning, the formal definition of a plan is not unanimous
among experts in the Artificial Intelligence field. Hayes-Roth describes a plan as
“a temporally organized pattern of intended action descriptions”™ [41]. This is much
broader than the definition of a plan in the STRIPS environment, described in [27]
as “a sequence of operators”. The information that would be contained in a typical
plan is a list of actions, the order in which the actions are to be carried out, the
objects that are required to perform the action, preconditions and postconditions
associated with an action. and the goal to be achieved. As of yet. there is no general
representation for a plan that allows goal to be described in domain-independent ways.
The representation of a plan is important, because not only is it used to interact
between the expert systems that create a plan and those that execute it, but in
Consensus it is the primary object of communication among expert systems. Linden
[11] proposed that a plan representation is in some ways similar to a programming
language, however the expressiveness of a language for planning is much greater
than that for describing execution. While a programming language is adequate for
describing a set of actions to be performed, it does not contain a method to describe
what or why the actions are to be performed. Describing the what and why of
prescribed actions is an important component of the information communicated by
a plan.

In [11], a planner is defined as a program that controls one or more devices capable
of carrying cut actions in the real world in order to achieve some definite purpose.
We define a planner as a program, or a set of programs that choose a series of actions
for an expert system to follow in order to achieve a goal. The planner will also be
responsible for choosing the goals to be pursued.

There are two types of planners — those that work with complete information,

called strategic planners. and those that decide what to do in situations in which the
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information available to plan is limited. called factical planners. Tactical planners
must also deal with the fact that the results of actions are not always what was
predicted. An example of a well known strategic planner is STRIPS, which generates
plans for the blocks world problem. In this environment, the STRIPS planner has
complete information about the current state of the problem and is certain of the
outcome of each possible action. Strategic planners are not suited to solving ill-
structured problems because of the uncertainty of the information. If a strategic
planner was used in a domain in which the information available is incomplete, it
would have to consider many options, most of which will not be used. A large
number of options is a characteristic of an ill-structured problem, and a combinatorial
explosion is likely to occur. Tactical planning works by focusing the system’s energy
onto “areas of the developing solution™ which appear to be the most promising. thus
avoiding the combinatorial explosion.

To deal with the problem of generating plans in problem domains where the in-
formation available is incomplete and the results of actions are uncertain. researchers
have turned to systems that interleave execution with planning, called incremental
planning [12]. Using incremental planning. it is possible to defer decisions until in
formation required to evaluate the preconditions to some actions is available. When
a system uses incremental planning, it is necessary for the incremental planner to
create a plan, have the expert system attempt to follow the plan, and expand the
plan if it was successfully carried out by the expert system, or repair the plan if it
could not be carried out [41]. In incremental planning, the planner uses goal-directed
reasoning to select long term goals. From these goals, subgoals are created that are
more detailed and refer to actions to be taken in the near future. Hence, we call
them short term goals. A detailed plan is created only for the short term goals so
that the planner does not waste its time creating plans which may not be used if a
plan fails [12]. When the plan is followed successfully, the next detailed short term
goal is performed, if there is one. Otherwise, the planner develops another detailed
sequence. If the plan is not followed successfully, the planner modifies the plan by

introducing additional actions or choosing alternate goals. The planner thus gener-
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Figure 2.3: Incremental planning

ates, monitors. and repairs plans. Figure 2.3 illustrates the steps which occur during
incremental planning.

The tactical planner reduces uncertainty and improves the efficiency of the prob-
lem solving process by ordering the actions taken by the expert system. Reducing
uncertainty and minimizing the number of steps required to solve a problem is im-
portant in domains where the outcome of actions is uncertain.

To create what could loosely be referred to as a “good™ plan, a planner must have
domain-dependent knowledge, and also embody knowledge not specific to a particular
domain, called a planning meta-theme [42, p31}, examples of a planning meta-theme

are as follows:

e don’t waste resources
e achieve as many goals as possible
e maximize the value of the goals achieved

e avoid impossible goals
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o create efficient plans

Evaluating a plan requires that there exists definite, measurable criteria to gauge
its performance. Several criteria that can be used to evaluate resource consumption
are the number of messages required to achieve the plan, the time required to execute
the plan, or some other problem dependent resource. A common technique is to select
a number of resources to measure, and use a weighted linear sum to derive a rating.
The difficulty arises becaise a plan is created before it is executed - all or most
criteria are simply estimates of what will actually occur. Additionally, the weight
given for each criteria is unknown. Usually, the weights are determined experimentally
through an adaptive training process during which the weights are altered each time
the program is run [36, pg 187]. There is no guarantec that they will be applicable
to other problems, or even other examples of the sample problem domain.

The criteria chosen by Durfee [17, pg 151] for rating a plan are as follows: the frac-
tion of the plan completed. because a plan that is almost finished should be allowed
to complete; the number of alternative (competitive) goals in the plan, because by
working on several alternatives the planner delays committing to a particular plan;
the rating of the next goal to be pursued in the plan because the rating is more likely
to be accurate than for goals to be pursued further into the future; and the predicted
result belief of the plan based upon the rating of the goals it contains. Durfee uses a
normalized weighted sum to combine these factors. His experimental results indicate
there is no set of weights which will allow the planner to rate plans optimally in all
situations, even for the single problem domain of DVMT.

Incremental planning is well-suited to the solution of ill-structured problems. In
incremental planning detailed planning is deferred until such time as the uncertainty
about what action is to be performed next is reduced. The incremental planne
reduces planning time because detailed plans for the near future are more likely to
succeed than detailed actions planned long in advance. Incremental planning also
preserves the advantage of a data directed approach, namely its ability to quickly
react to change. In this way, the incremental planning technique meshes well with a

prime characteristic of an ill-structured problem, namely the absence of a predefined
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solution path. The advantages of planning are retained in incremental planning. By
focusing on the long term while planning, it reduces the waste of resources on steps

that might not be incorporated into the solution of the problem.



Chapter 3

Some Approaches to Distributed
Problem Solving

The secret to creativity is knowing how to hide your sources. - Albert Finstein

A number of protocols for coordinating the actions of multiple expert systems
have appeared in the DAl literature. The Contract Net protocol by Smith [39],[10].{9]
was an early attempt at distributed problem solving, but is mainly a task allocation
protocol. The Multistage Negotiation protocol by Conry et al. [6] is demonstrated
by addressing the problem of restoring virtual circuits in a communication network, a
problem we address ourselves in a later chapter. Partial Global Planning [11, 13, 14]
by Durfee and Lesser is the closest to our work, we discuss why it is not entirely
appropriate for the kind of interaction we require among expert systems. Finally,
the framework for cooperation and coordination between expert systems proposed by
Grossner et al. [26, 25] is discussed, as this is the environment in which the Consensus

protocol is used.

3.1 Contract Net

The Contract Net protocol was one of the first protocols developed for distributed
problem solving [39],[40],[9]. It was developed primarily for task allocation in those
problem domains where the tasks are not assigned a priori to the expert systems

in a network. An expert system may determine that it requires assistance with its



task because the task is too large for it to handle in a timely manner, or it lacks
the expertise to solve the task. The expert system then decomposes the task into
sub-tasks that are large enough to offset the cost of distribution, and independent
encugh that a large amount of communication is not required between the subtasks,
which would offset any ga.n achieved by distributing the tasks.

Expert systems using the Contract Net Protocol proceed in the following manner:
While decomposing a task, an expert system (the manager) uses either a broadcast
or a multi-cast message to announce to potential bidders that a contract to perform
the task is available. The contract announcement includes a specification of the task
to be performed, required resources, a contract identifier, an expiration time for the
contract and other information that may be relevant to the task. Expert systems
submit bids for the contract to the manager, the manager selects the winning bidder
and informs it, and the winning bidder becomes the contractor. Thus, establishment
of a contract is by mutual selection. which may be superior to the simple master/slave
arrangement of some earlier and simpler protocols {14].

The Contract Net is concerned primarily with task allocation and load balancing.
neither of which are relevant to the Consensus protocol which is the focus of this
thesis. Regardless, if task decomposition is difficult, or if there is interaction between
subtasks, the Contract Net does not perform well [2] because the Jontract Net does
not svecify how subtasks may communicate. The impact of actions taken by an
expert system on the other expert systems is also not addressed. The protocol does
not require contracts to be binding. leaving the possibility that contracts may remain
unfulfilled. However, the Contract Net protocol is useful, as shown in the Multistage
Negotiation protocol. as a base upon which one may build more advanced protocols.

Used alone, it does not address some of these fundamental problems of DAI.

3.2 Multistage Negotiation

In the Multistage Negotiation(MSN) protocol [6], a set of expert systems is con-
nected by a communications network. When MSN is applied to a problem that has

a geographical distribution. each expert system has assigned to it a unique area of
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responsibility for the solution of the problem. A goal which requires the cooperation
of other expert systems to solve is broadcast by one or more expert systems. The
expert systems which cooperate to solve the problem each create one or more local
plans (known as a plan fragment) which may be a part of a potential solution to
the problem. Negotiations ensue in which the expert systems choose a set of plan
fragments such that the goal is satisfied. and the selection of one plan fragment does
not violate a constraint of any other selected plan fragment. A global plan, which
consists of the set of chosen plan fragments, is the result.

The example domain shown in [6] (please see Figure 4.14) is a set of expert systems
wherein each have responsibility for maintaining virtual circuits in a predefined geo-
graphical area of a long-haul telecommunications network. The telecommunications
network is different from the communications network that links the expert systems.
The expert systems must cooperate to restore virtual circuits in the telecommuni-
cations network which have failed. The routing decisions made by a single expert
system within it's area of responsibility is called a plan fragment. The plan fragment
choices made by one expert system interacts with those of other expert systems be-
cause the routing choices must connect to become a single virtual circuit. Conflicts
occur because of the limited bandwidth of a particular link in the network, requiting
some circuits to use routes other than the optimal one. Sometimes, due to conflicts,
the experts systems are unable to restore the virtual circuits.

The above example can be generalized as follows: The MSN protocol begins by
broadcasting the goal to all expert systems. Each expert system knows if it might
take part in the solution process and if so forms plan fragments for its potential
part in the solution of the goal. Each expert systemn determines the subset of the
expert systems with which its plan fragments may interact by using the Contract
Net protocol. Plan fragments interact because the selection of a plan fragment made
by one expert system limits the choices of another expert system. The individual
expert systems then begin negotiating with the expert systems with whom their plan
fragments will interact, to make a commitment consistent with its own plan fragment

choice. Upon receipt of a message, an expert system can either tentatively cornmit to
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making a plan fragment choice consistent with the choice of the other expert system,
or reject the request. An expert system rejects a request by sending a message to
the requesting expert system indicating a reason for the rejection. The rejection of
a plan fragment, and the reason for its rejection are incorporated into the knowledge
base of the expert systems involved in the negotiation, and lead to a continuation of
the negotiation as the experts systems attempt to converge to a set of plan fragments
acceptable to all of them.

The knowledge base of each expert system includes an AND-OR graph of the goals
to be satisfied, called a “feasibility tree”. The feasibility tree initially contains only
the local alternative plan fragments and conflicts for solving goals. As information
is exchanged, each expert system updates its feasibility tree reflecting the external
constraints. Expert systems initially choose their highest rated plan fragment which
satisfies the constraints in their feasibility tree, but select lower rated alternatives
as external constraints indicating certain plan fragments are not viable options are
imposed.

Termination of the protocol is guaranteed because an expert system is not allowad
to make or withdraw a commitment it has made previously unless changes to its
feasibility trec have occurred. The negotiation terminates when there is no pending
activity and no incoming communications, or if an attempt is made to return to a
previous commitment with no new knowledge from other experts.

MSN has some attractive properties. It is truly distributed in nature. no single
expert system is necessarily aware of the entire global plan. The expert systems pass
only the minimum amount of information to another expert system at one time, ie.,
the occurrence of a single constraint. The expert systems attempt to create plans
using the highest rated plan fragments, although finding the ortimal plan is not
assured because an expert system commits to the individual plan fragments on a
local rating basis.

MSN suffers from a number of problems and/or inefficiencies. Each reply to a
commitment request requires the sending of at least one message. The non-binding

nature of the protocol can cause an expert to back out of a commitment to a particular
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plan fragment. creating a large number of messages to be sent as commitients roll
back. As the number of conflicts between plan fragments increases. a high volume
of message traffic is likely: at least one message is needed to report the conflict, and
another is needed to request commitment to another plan fragment. Additionally, as
the number of experts which must communicate to build the global plan increases.
the number of stages in the creation of the plan increases. Each stage must wait
for the previous one to finish to ensure that the plan is extended in a manner which
is coherent in the global sense, although this isn’t mentioned in the example in [6].
In order for the expert systems to detect the termination of the negotiation, it is
necessary to either use some kind of token passing mechanism leading to increased
overhead, or a binding commitment of resources. An expert system can commence
plan execution after termination has been detected.

As we can see, the communication overhead for MSN is high because a large
number of messages must be sent. For strategic planning. this makes sense because
the high cost of planning is at least offset by guaranteed results. if a solution exists.
For tactical planning. in which the outcome of actions planned for is uncertain, the

high overhead is difficult to justify.

3.3 Partial Global Planning

Partial Global Planning (PGP) is a framework describing how expert systems can
cooperatively interact over a communications network to solve a problem [13]. PGP
describes how to coordinate the actions taken by the expert systems, but it does not
specify the times that expert systems should interact, nor does it specify exactly what
should be communicated between the expert systems. It adheres to the principles
outlined in the Functionally Accurate/Cooperative approach described in [30].
Partial Global Planning has been extensively published in the literature {11, 13,
14], primarily in the context of the Distributed Vehicle Monitoring Testhed (DVM'T)
[30, 7, 8, 12, 10], [18, ch 18], the platform upon which the partial global planning
experiments were performed. In brief, the DVMT simulation testhed is used to

monitor vehicle movements using data obtained from acoustic data sensors. The
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data obtained from the sensors is interpreted by nodes which are connected by a
communications network. Each node contains an expert system and a blackboard
from which the expert system interprets the data from the sensors and attempts to
plot the path of vehicles. The nodes are assigned geographic regions and receive data
only from sensors located in that region.

In Partial Global Planning, the expert systems in the network are assumed to be
semi-autonomous, that is, they act asynchronously, are loosely coupled, operate in
parallel, and have limited communication. The distribution of information among the
nodes is such that the problem solving strategy is ill-suited to a functional decompo-
sition among the nodes. Each node possesses the information necessary to perform
only a portion of each function required to solve the problem because each node can
perform problem solving functions only over the area in which sensors report back to
it. To perform any one problem solving function completely would require a node to
reccive data from all sensors.

Each expert system has local plans constructed from its own knowledge and the
information received from sensors in its area. Each expert system summarizes each of
its local plans, building a node-plan that specifies the goals of the plan. the long-term
order of the planned activities, and an estimate of how long each activity will take.
Since node plans have much less detailed information than local plans, the expert
systems can exchange them with less communication overhead than the local plans.
The node plans contain enough information for an expert system to reason about the
activity of other expert systems.

The expert system scans the node plans to recognize partial global goals, which
is a goal that may encompass the local goals of several expert systems. The expert
system then creates a Partial Global Plan (PGP) that represents the concurrent
activities and intentions of all the expert systems that are working in parallel on
different parts of the same sub-problem. The planner recognizes the relative timing
of the expert systems activities to discover how the activities may be re-ordered to
avoid harmful interactions, such as performing redundant activities, and to promote

helpful interactions. such as sending predictive information to expert systems working



on the same sub-problem as soon as it is available. Partial Global Plans may also
be exchanged when one expert system controls one or more other expert systems,
allowing it to direct their activity. PGP's may also be exchanged between expert
systems to negotiate and converge upon consistent views of the actions required to
solve the problem.

This protocol is well-suited to its intended area of application, namely semi-
autonomous nodes cooperating under real-time constraints. However, the protocol
is not appropriate for non-commutative systems [34] in which the result of actions
can not be undone. In Partial Global Planning, the individual expert systems are
responsible for their own actions, and do not necessarily have consistent views of the
entire problem. The expert systems exchange PGP’s and node plans asynchronously,
giving the possibility that work done by one expert system in its arca of responsibility

may not be what is most globally beneficial.

3.4 Cammarata’s Strategies of Cooperation

The work by Cammarata et al. [3] discusses a number of different strategies for coop-
eration between expert systems in an air traffic control environment. The strategies
are only used to select a single expert system to plan for the group of airplanes.

An expert system is located on each airplane whose function is to perforn collision
avoidance in air traffic control. The most important point in three of the four strate-
gies is that a single expert system on board onc airplane is selected to plan for all of
them. The criteria for the selection of the expert system to do the planning is amount
of information (position. heading, speed) the expert system aboard the airplane has
about the others. The airplane with the most information on hand, or the plane
which is least constrained can be selected to form the plan. Constraints an airplane
can experience are things like low fuel and airplanes in close proximity). Raw data is
sent from each of the airplanes to the single airplane which will be planning for all of
them. In the fourth strategy, the planning is distributed among the expert systems
in the airplanes by assigning an expert system to be responsible for a given area of

the conflict resolution. however no detail is given to this Proposal. [t is noted that
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in highly constrained problems (more airplanes means more constraints), distribut-
ing the planning can lead to high communications costs because the expert systems
have to communicate intimately to avoid potential negative interactions among the
airplanes, ie., a mid-air crash.

There are hard real-time constraints in the problem domain addressed by this
method. A negotiation strategy might be unsuccessful because of the time delays and
numerous messages required by a negotiation. The alternative chosen by these de-
signers, because a large number of airplanes are unlikely to occupy the same airspace
at the same time, is to have a single expert system plan for all of them. This limi-
tation on the number of participants makes the communication of raw data feasible,
and less likely to exceed the bounded rationality of the single expert system that
must create the plan. Many of the problems associated with a distributed solution
are thus avoided. Attempting to scale this protocol to a larger number of expert
systems however would lead to a bottleneck in the single expert svstem planner, as
the designers admit.

The protocol is inadequate for our purposes because it does not conform to our
belief that the plan should be jointly selected by the expert systems. Additionally,
the sending of raw information to a single planner is likely to exceed the bounded
rationality of the expert system which creates the plan for all the expert systems to

follow.

3.5 Behaviour Hierarchies

The planning protocol using Behaviour Hierarchies for coordinating expert systems
[16. 32] is one in which the participants are not known in advance. Each expert
system determines the other expert systems that its plans may potentially interact
with (conflict or heneficial relationships) by first broadcasting abstract “behavioural
information™ and listening for similar broadcasts from other expert systems. Those
expert systems whose plans may interact then exchange increasingly detailed mes-
sages involving only the anticipated area of interaction in the plans. This technique

reduces communication and processing costs because the communications take place
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only between the expert systems which may interact and their arca of potential in
teraction, rather than the entire set of expert systems and complete plans. This is
well-suited to the example domain used in the literature which is a mobile robot sys-
tem where the position of the robots, and hence their potential for plan interaction.
is constantly changing.

The Behaviour Hierarchies approach assumes robots use the same language and
can recognize potential interactions in their planned behaviour. A six dimensional
space of behaviours is described, corresponding to who, what, where, when, why and
how. The purpose of this is to provide more information for an expert system to
reason about another’s behaviour than the exchange of goals which simply indicate
what the robot intends to do, or the exchange plans. which indicates hou the intended
behaviour will be ¢arried out. If the planned behaviour will negatively impact upon
another robot's plan. the robot can either change its plan so that the interaction will
not occur, or it can negotiate at a more detailed level to try to resolve the conflict,
By using abstraction. an expert can potentially reduce search from exponential to
linear complexity. Using hierarchical problem solving. this can be further reduced to
logarithmic complexity [32]. This protocol can be guaranteed to converge wa finite
number of steps. a definite advantage in real time applications.

This protocol is concerned with semi-autonomous expert systems. much like Pa
tial Global Planning in the DVMT example domain. Our work is concerned with

CDPS [29] in which expert systems collectively decide what actions to perform.

3.6 Consensus and Decree Organizational Struc-
ture

The Consensus Protocol described in this thesis is part of a larger. ongoing work iu
distributed problem solving by Grossner and et al. [26, 23]. The portion of that work
relevant to this thesis is the concept of an Organization of expert systems!t. This

section attempts to show the place of the Consensus protocol within the framewaorl,

Hnformation related to the development of human organizations, ard subsequently argamzations
of expert systems. can be found in [26] and [21]
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of an Organization, and the projected overall characteristics of these Organizations.
A detailed discussion of the Consensus protocol alone will be presented in the next
chapter.

A distributed system can be viewed as a particular organization - task decompo-
sition and control regime - resulting from the distribution of a set of tasks over a set
of logically or physically disjoint processing elements [21]. These organizations are
important, because they enable computer systems to exceed the bounded rational-
ily [38] of a single computer. An example of the power of organizational structuring
is that of a colony of ants or bees. Despite the fact that each individual in the group
is “unintelligent™, the coleny does exhibit overall intelligent behaviour [1]. This sug-
gests a possibility for increased performance using multiple expert systems to solve
a problem. However, Fox describes deciding how the task should be decomposed
and the control regime to be used as the major problem with designing istributed
systems [21].

An organization consists of two parts. a coordination structure used for planning.
and an organizational structure used for execution [26]. Consensus and Decree define
a coordination structure, which is a control regime for the distribution of the respon-
sibilities for plan creation among the experts. Grossner defines Consensus and Decree
in [26]. based loosely on the modes of cooperation between expert systems using goal
and data flow discussed by Bendain [1]. The “type B” interaction discussed by Benda
describes expert systems negotiating goals to pursue, and the “type C” interaction
describes an interaction in which one expert system controls another. Methods for
generating more complex organizations based on the modes of interaction discussed

in that paper are mentioned. A few informal definitions will suffice for our purposes:

Planning Group The set of expert systems involved in either the Consensus plan-

ning protocol, or the Decree planning protocol.

Combined Window The area of the blackboard viewed by the expert system(s) in

a Planning Group during the Decree or Consenzus planning protocols.

Decree A planning protocol for a set of experts in which only one of them directs the
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others. The Combined Window during Decree is the window of the directing

expert system.

Consensus A planning protocol for a set of expert systems in which the expert
systems decide jointly, in a distributed manner. on a plan. The Combined
Window during Consensus is the union of the windows of the expert systems

in the planning group.

Experts are restricted to using a Window (part of the blackboard) in order to
comply with the limits placed upon an expert by bounded rationality [26]. The
assignment of a Window to an expert forces the expert to work with incomplete
information. To help cope with this uncertaintv. during Consensus an abstract’on
of the Windows of the experts in the Consensus Planning Group are visible to all

members of the Planning Group.

3.6.1 Creation of Organizations

The coordination structure imposed upon a set of cooperating expert systems can be
represented by a graph consisting of vertices (experts) connected by either a ditected
edge (Decree. the node upon which the edge is incident is the node being decreed
to}. an undirected edge (Consensus). or unconnected (no direct relationship). o
the sake of simplicity. we assume that there is one kind of vertex (ie.. all expert
systems are the same). to eliminate permutations of expert systems heing considered
to be a different coordination structure. which decreases the number of organization«
by n!. Organizations having the same structure are considered cquivalent and were
eliminated. An example of equivalent organizations is shown in Figure3.1 [4].

A few simple properties were devised to define the possible rejationships among,

the nodes in an organization. They are:

s Only one of a single type of edge may exist between any two vertices. An expernt
system can not negotiate which goals to pursue, and dictate to the same expert

system.
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Figure 3.1: Equivalent organizations

e No cycles are permitted in the graph involving decree as an edge. A circular

relationship would mean that an expert system is effectively dictating to itself

o Consensus is transitive. If an expert system A is in a Consensus group with
expert system B, and B is in a Consensus group with C, then eflectively A, B.

and C are mutually choosing goals to pursue.

o Only one Decree edge may be incident upon a vertex. An expert system can
not guarantee being able to respond to the goals imposed upon it by more than

one other expert system.

Given these properties, we wished to derive the coordination structures that could
be created for a given number of expert systems. Although we would have preferred to
theoretically calculate the number of coordination structures possible for any number
of expert systems, this proved to be very difficult, as no clear pattern developed in
their generation. Cousequently, we ch:  to empirically derive the organizations by

writing a program which would generate all organizations for a given number of
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Figure 3.2: Number of Organizations vs. Number of Experts

experts [4].

A graph showing the number of possible coordination structures for a given num-
ber of experts is shown in Figure 3.2. We show the actual number of organizations
generated as the empirical data. and compare it to two exponential functions. As can
be seen from the figure, the number of organizations grows at least exponentially®.
This large number of possible coordination structures for any significant number of
expert systems has a serious implication. Qur contention is that the organization
of expert systems will have a large impact upon their problem solving performance.
The hope of exhaustively testing the performance of all coordination structures of
a given number of expert systems to experimentally determine which pe-formed the
best is futile. Most certainly when the number of possible organizations is combined
with the possible Windows for the expert systems, the possible combinations are
overwhelming.

The algorithm to generate these organizations starts with a list of organizations

2We tried to generate the number of organizations with more than seven vertices, but this
proved unworkable. The processing time on an IBM RISC machine was alrcady several hours for
the generation of organizations of seven vertices, and we couldn’t justify spending a great deal more
time in rewriting the algorithms for a small projected gain in knowledge
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with n experts and outputs a list of all organizations of n+ 1 experts. It obtains the
new list of organizations by augmenting each existing organization in the given list
of organizations with a single additional expert in a Consensus group and in a decree
group. Organizations with duplicate structures are unfortunately created using these
simple rules, and no easy way was found to avoid creating them, so they are created,
compared with other newly created organizations, and then removed. Details of this
program, the data structures and algorithms used, its results, and Common Lisp code

can be found in [4]. This area was not pursued.

3.6.2 Characteristics of Different Organizations

The coordination structure inherently influences the cost associated with cooperative
problem solving [1]. The characteristic of Organizations that use Decree operations
only is that the planning time will be short, but it is expected that there will be
many plan failures because of the limited Window of the decreeing expert system.
In an organization that uses Consensus, the planning time is expected to be longer
than that for organizations using Decree, but there will be fewer plan failures because
the plan is formulated with information from tae Windows of several expert systems.
A well-designed organization will use both Consensus and Decree to provide the
desirable characteristics of both. and solve the problem in a time shorter than each
of the protocols used alone.

It is highly unlikely that any organization will always be the “best” for any prob-
lem. It is equally unlikely that even for a given problem domain, with different
starting conditions, a single organization will always be optimal {13]. However, be-
cause of the characteristics of ill-structured problems, the a priori determination of
the optimal organization for a given problem is an open research question. Dynamic
reconfiguration of an organization is an option, but given the current limitations to
accurately predict the impact of an organization on problem solving behaviour, this

has not yet been adequately explored.
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3.6.3 Analysis

A few fundamental design decisions form the basis around which Consensus and

Decree are built, they are:

1. Each expert knows with which other experts it will interact. and this does not

change throughout the problem solving process.
2. All jointly chosen plans are binding upon the experts.

3. Planning among the membeis of a planning group is a synchronous process.

The environment stated as suitable for Consensuvs and Decree is CDPS [5]. As
discussed above, knowing a priori with whom an expert system may interact is not
possible for some problem types. Static organizations using Consensus and Decree
will not be used in that environment. Mobile autonomous expert systems, such as
that described by Montgomery in [32] would be inappropriate for Consensus and
Decree because in that environment expert systems are continually changing their
relationships with others due to their changes in their geographical location. The
organizational structure of Consensus and Decree would either have to be changed
frequently, or the entire group of robots would have to be put into a Consensus
Group so that they may plan all their actions together. The gain made by using a
combination of Consensus and Decree would not be possible in this context.

Making planning decisions binding is another design decision that somewhat lin-
its the domain of Consensus and Decree. According to Ginsberg [23], cooperation
between experts necessitates that when they jointly choose goals to pursue, they will
avoid those choices which are potentially bad for any of them. A binding protocol
obviously can not guarantee that an expert system will not be required to attempt to
carry out a goal that is potentially bad. In a problem such as DVMT, a binding pro-
tocol is not as suitable as the loosely coupled, semi-autonomous expert systems used.
The expert systems can largely determine their owr activities, and communicate to
increase cooperation possibilities by reordering their local activities, and occasionally

send ‘ng goals to one another. However, if the expectation is that a single expert can
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he wrong in its interpretation of what it should do next, or a locally greedy approach
would not provide the most efficient overall solution, the Consensus Group should be
useful.

Synchronous planning, in which all expert systems plan at the same time, ensures
that all expert systems in a Consensus group have input into the plan that they will
all follow. It eliminates the possibility that one expert may be following one plan
while others are changing it. This is consistent with other design decisions in which

group problem solving is stressed.
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Chapter 4

The Consensus Protocol

Never go to sea with two chronometers; take onc or three. - Anonymous

The Consensus protocol has several properties that make it appropriate for use
in the coordination structures of organizations for CDPS systems. Consensus is a
distributed planning protocol. Consensus is considered to be distributed because each
expert system in the Consensus Group independently uses the information available
to the group to develop its own Joint Plan. Each Joint Plan will differ from the
others because of the different local context of each expert system. Consensus is a
binding protocol. A binding planning-protocol obligates the expert systems to carry
out the plan that is created. This ensures that the expert systems in the Consensns
Group will attempt to carry out the tasks in the Final Plan. The Consensus protocol
will produce a Final Plan in a fixed number of stages. Thus, there is a bound placed
upon the cost of creating the Final Plan.

The Consensus protocol assumes that the capabilities and Window of each expert
system in the Consensus Group have been defined by the organization of the CDPS
system. In addition, each expert system (e) possesses a function Bl (LX) that
rates the credibility of another expert system EXP in its Consensus Group. An
outline of the stages of the Consensus protocol is shown in Figure 4.1. Notice that
the Consensus Group consists of expert systems A, B, and C. Expert systems 1)
and E are part of the CDPS system, but are not part of the Consensus Group.The

Consensus protocol consists of the following steps:
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Stage 1 : Proposals are broadcast to
other members of the
consensus group

Px = Proposal from expert system X

Stage 2 : Joint Plans are broadcast to
other members of the
consensus group

JPx = Joint Plan from expert system X

Stage 3 : Joint Plan ratings are broadcast to
other members of the
consensus group

Rx = Rating of all Joint Plans by
expert system X

Figure 4.1: Stages of the Consensus Protocol

The Proposal Each expert system in the Consensus Group creates a Proposal. A
Proposal contains the goals the expert system determines to be relevant in
choosing the next Final Plan. The Proposal of each expert is then viewed by

each member of the Consensus Group.

Joint Plan Construction A Common Planning Structure (CPS) is created by each
expert system using the Proposals. The CPS contains all the goals from the
different Proposals created by the experts in the Consensus Group, wherein
goals that have the same specification are merged into a single goal. Each
expert system then prunes the CPS it has created to produce its Joint Plan.

The Joint Plans are then viewed by each member of the Consensus Group.

The Election An election is held to select among the Joint Plans created by the

expert systems in the Consensus Group. The Joint Plan selected will become
the Final Plan.
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Figure 4.2: A Sample Proposal
4.1 The Proposal

A Proposal (see Figure 4.2) is a set of goals which are partially ordered by temporal
precedence. An expert system uses goals to abstract the information in its Window
to convey the information to other expert systems. By presenting the other expert
systems in its Consensus Group with an abstraction of the information in its window.
the expert system is less likely to exceed the bounded rationality of the expert systems
to which it sends its Proposal. The goals in a Proposal are in hierarchies formedd
using the subgoal relationship. Logical Lists are used to connect the goals in the
hierarchies to their subgoals. In this context, the Logical List is called the subgoal
list. In Figure 4.2, the list immediately below goal gl is the subgoal list of gl. The
hierarchies in a Proposal are also connected by a Logical List. Goal relationships [31]
other than the subgoal relationship are indicated by labelled links between the goals
in the Proposal.

A Logical List is a labelled list of elements. The elements contained in a Logical

List are either goals or Logical Lists. A Logical List may have one of the following
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CPS Element Rating

ANDList minimum rating of its elements
XORList maximum rating of its elements
ORList maximum rating of its elements
Goal assigned hy expert system

Table 4.1: Summary of Ratings of CPS Elements

labels:

AND All elements on the list form an Atomic Unit. An Atomic Unit is indivisible.
Thus, the expert systems must choose all or none of the elements in the Atomic

Unit to be included into their Joint Plans.

OR Any elements on the list may be chosen by the expert systems for inclusion in

their Joint Plans.

XOR Ouly one of the elements on the list is chosen for inclusion in the Joint Plan.

An ANDList is used to indicate that the achievement of some goals is useful only
in the presence of other goals also being achieved - if one goal is not included in
the Joint Plan. it isn't worth pursuing the other goals. For example, if we wanted
to plan to wash something. we can set out three goals - find a tub. get some water.
and get some soap. If one of those goals will not be pursued, it isn’t worth pursuing
any of them. Precedence relationships can not be used to indicate this dependency
because that would unnecessarily serialize the intended actions. Goal ratings are not
powerful enough to ensure the selection of goals as a unit. because ratings are given
on an individual basis. Other than an ANDList, the only way to ensure that a set
of goals are selected as a unit would be for the expert .ystem to rate all the goals
very highly; but this may not be true, nor what the expert system wanted to express.
The current plan creation technique (described in detail later in this chapter) allows
for the elimination of goals with some goal relationships between them, it does not
allow for goals with certain relationships to be included in the plan. It works more by
negative influences rather than positive ones. Thus, the use of the ANDList provides
a reasonable way for the expert system to indicate that selection of a set of goals

should occur.
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The XORList allows an expert system which is creating a Proposal to indicate

.that a choice is to be made in selecting goals which represent alternate options for

inclusion in the Joint Plan. If the choice is simply between two goals. an expert
system would normally use a goal relationship (as discussed in Chapter 2) to indicate
that only one should be chosen. However, when a choice between sets of goals must be
made, the XORList provides a simple solution. The expert system includes different
options in a Proposal because by doing so it can defer decisions about which option
to select until a later point when it has received more information, ic., the Proposals
from the other expert systems, which improves its decision making capabilities.

The OR list is used for those situations when selecting all or one of a group of
goals may not be appropriate. The use of the OR list allows the expert system which
will be choosing goals for the Joint Plan maximum flexibility. Examples of the use
of AND/XOR/ORLists will be shown in the examples section later in this chapter
where consensus is demonstrated.

The goals and Logical Lists in a Proposal are rated (see Table 41.1). Logical Lists
have a rating derived from the ratings of their elements. The rating of an XORList
is the maximum rating of any of its elements which are eligible for inclusion in the
Joint Plan. This is because only one of its elements may be selected for inclusion
in the Joint Plan, and the highest rated element will be chosen. The rating of an
ANDList is the minimum rating of any of its elements, because all elements depend
on each other for their satisfaction. Using the minimum rating of the elementsof the
ANDList for its rating reflects this. Each goal in the Proposal is given a rating by the
expert system that created the Proposal. Asdiscussed in chapter two, the rating for a
goal is determined using two values, Likelihood of Success (L.S) and Deswrability (D).
The Likelihood of Success of a goal is an estimate of whether the goal can be achieved
given the current state of the solution to the problem heing solved. The Desirability
of a goal is an estimate of how important the goal is to the overall solution of the
problem. We define both LS and D range in value between zero and ten. The Itesk
of Failure (R) of a goal is defined as

{IO-LS ifLS <9

1 otherwise

Risk =

4]



The rating of a goal G is given by r() = Desirability /Risk. The ratings of all Logical
Lists ultimately depends only on the ratings of goals.

Each expert system creates its Proposal independently, the specific component
of the expert system which does this is called the planner. The planner determines
its view of the current state of the solution to the problem being solved from the
information available in its window. Using the state of the solution and its knowledge
base of goals that can be pursued for solving the problem, each expert system decides
which goals should be included in its Proposal. The Proposals must include goals
which will convey important information, because Proposals are the only means the
expert systems use for communication while planning. The role of the Proposal is
not simply to generate goals that are highly rated, but to convey information to other
expert systems. An expert system can propose a goal with a poor rating, because

knowing that a goal is poorly rated by an expert system is also important.

4.2 Joint Plan

A Joint Plan is a partially ordered set of goals where the goals are members of
ANDLists (see Figure 4.3). The goals in a Joint Plan are in hierarchies formed using
the subgoal relationship. Logical Lists labelled as AND are used to connect the goals
in the hierarchy to their subgoals. The hierarchies in a Joint Plan are connected by
an ANDList. All the goals are on ANDLists because the Joint Plan is binding.

We define a set of goal relationships GR = (ry.ra, 13, ...1,), corresponding to those
described in Chapter 2. Using these goal relationships, we can define a plan type P

as allowing a subset of those goal relationships. The plan types we define are such

that P1 c P2C...C GR.

Coherent Joint Plan only independent, temporal, and cooperative goal relation-

ships are allowed

Competitive Joint Plan only independent, temporal, cooperative, and competi-

tive goal relationships are allowed

Conflict Free Joint Plan only repressive relationships are disallowed
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Figure 4.3: Example Joint Plan

As illustrated in Figure 4.4, the plan types are successively less demanding in
the goal relationships allowed in the plan. We refer to any goal relationship not
allowed in a given plan type as an adverse goal relationship. Ina Colierent Joint
Plan. only beneficial and neutral goal relationships (see Chapter 2) are allowed. In
the Competitive Joint Plan, bencficial goal relationships are allowed. but competitive
relationships (which may lead to performing unneeded woth) are allowed. Finally . the
Conflict-Free Joint Plan allows all goal relationships except those which are explicitly
forbidden due to some constraint on the availability of a resource (ie.. repression).
Proposals have no restrictions on the type of goal relationship allowed in them.

Each of the plan types is expected to express a unique behaviour. The coherent
plan does not permit any work (ie., knowledge source instantiations) which will pos
sibly lead to duplication or potentially wasted effort. It assumes that decisions as
to “which course of action should be taken” can he made using the current state of
information on the blackboard. Of course, if that assumption is not valid, and in an
ill-structured problem that is likely, there could very well be wasted effort hecanse a
solution path that looked promising could fail. A competitive plan allows compet
itive relationships which may help differentiate between different courses of ac tion.
Competitive goals can be pursued until one avenue of action is clearly superior. hut

also lead to performing some unnceded work. Another way of looking at this is that
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Figure 4.4: Joint Plan Types

the work is really needed, it was necessary to produce more information to make a
decision as to the solution path to be followed. Conflict-free plans are plans in the
more traditional sense of merely ensuring that the constraints of the problem are not
violated. The conflict-free plan can be viewed as a “control” against which we can
judge the effectiveness of the other plan types.

Once the Proposals are received. the goals they contain are rated by the expert
svstem that received them. This rating is in addition to the rating the goals were
as""ned by the expert system that created them. Each expert system will rate
cach goal based upon the information visible in its window and its knowledge base.
The rating assigned to each goal is combined with the goal's original ratings in the
Proposals from which it was extracted. This rerating of goals occurs during the

construction of the Common Planning Structure. discussed next.

4.2.1 CPS Creation

Uising the Proposals created by the expert systems in its Consensus Group, each
expert system will create the Common Plunning Structure (CPS) as an intermediate
step in producing a Joint Plan. The CPS contains all the hierarchies of goals found

in the Proposals. When two or more expert systems have proposed equivalent goals.

44



the goals and their subgoals are merged. Goals are equivalent if they have the same
specifications. Merging involves goal rerating. updating goal relationship fields so
that resulting goal of merged goals has the sum of the relationships in the eamivalent
goals, and the merging of the subgoal lists of the equivalent goals. The creation of
the CPS follows the algorithm shown in Figure 4.5.

The makeCPS procedure is initially called for each top-level goal in the hierarchies
in the Proposals received by an expert system. The makeCPS() looks in the other
hierarchies for goals equivalent to the one it has received as a parameter. If it finds
equivalent goals. it combines them into a single goal and combines their rating and
assigns it to the single goal. All those goals are marked so they are not scen by the
makeCPS procedure again. The rating of the equivalent goals is combined by an
expert system using a static. weighted belief systern. Each expert system represents
its belief in another expert system by using a number between 0 and 1. If it is
desired that an expert system have the same belief in the ratings done by another
expert system. it is required that its belief in that expert system is 1. and its belief
in its own ratings is one. For example, if an expert system gave a goal a rating of 9,
and another expert system gave the same goal a rating of 7, given equal beliefs of 1,
the new rating would be 8. This is applied to each of the rating factors in a goal. ‘To
facilitate the understanding of how goals and Logical Lists are combined, please refer
to the Figure 4.6. In the figure. for simplicity, goals with the same specification are
given the same name. although in practice the names of the goals are unique. A few
of the ways that the subgoal lists of equivalent goals arec merged is shown. In Figure
4.6(a). there are two goals which are equivalent (gl), with ANDList subgoal lists.
Because the goals on each ANDList are also equivalent, no new solution strategy is
present, and the result of the goal merge is the same structure of one of the inputs.

In part (b) of the figure, the two top-level goals are equivalent, they both have
ANDLists as subgoal lists, but the subgoals are not equivalent. In this case there
are two distinct methods for solution of gl, and so an XORList is inserted into the
hierarchy so that only one method will be selected.

Part (c) of the figure shows how equivalent goals whose subgoal lists are XORLiots



procedurz makeCPS (Goal G)
begin

if (the set of goals (E) equivalent to G is not empty){
merge goals in E with G creating goal N;
place N on CPS;

if (none of E or G have subgoals)
return;

if (all subgoals of E and G are on ANDLists)
remove all but one ANDList from groups of equivalent ANDLists;

if (there is greater than one ANDList left) {
create a new XORList;
place remaining ANDLists on the XORList
make the XORList a subgoal link of N

}

else
place the ANDList as a subgoal list of N

else if (there are subgoals of E or G on ORLists) {

create a new ORList
place non-rgyuivalent members of ORLists on new ORList

place ANDLists not equivalent to member of new ORList onto it
place XORLists not equivalent to member of new ORList onto it

}

else {// there are subgoals on AND and XORLists

create a new XORList
place non-equivalent elements of G or E’s XORList onto new XORList

place non-equivalent ANDLists onto new XORList

}
for each subgoal (g) of N
makeCPS(g) ;
¥/1if
else {

place G on CPS
for each subgoal (g) of G
makeCPS(g);

end.

Figure 1.5: Qutline of Algorithm for creating a Common Planning Structure
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are merged. The goals g2 and g3 are alternatives to solving gl, and g2 and gd are also
alternatives. The result is simply an XORList connecting gl with all non-equivalent
alternatives on the list.

Part (d) of the figure shows how equivalent goals are merged when one has an
ORList as a subgoal link. There are several alternatives for solution of gl, and so

these alternatives are placed on an XORList.

4.2.2 Joint Plan Creation from the CPS

The next step in the creation of the Joint Plan is called pruning. Pruning is when each
expert system selects a path in the CPS from the top-level goal in each hierarchy to
the leaf goal(s) such that the elements along the selected path make the Joint Plan.
The elements of the CPS are chosen such that if an ANDList is chosen, all of its
elements are chosen. and if an XORList is chosen, only one of its elements is chosen.
In the absence of goal relationships, the subgoals are chosen from the ANDLists and
XORLists to maximize the ratings of the individual lists. This procedure is applied
recursively until goals at the lowest level of each hierarchy are chosen. We call this set
of goals, Logical Lists, and the links between them from the top of the goal hicrarchy
to the bottom the principal path in the hierarchy (see Figure 4.7).

When pruning the CPS, the expert system will use the goal relationships that
exist among the goals in the CPS and the rating assigned to each goal to determine
which portions of the CPS are to be included in the Joint Plan. Goals with adverse
goal relationships between them can not co-exist in the Joint Plan. The procedure for
pruning the CPS starts by examining the top goal of each hierarchy in the CPS. If the
rating of the top-level goal is high enough to meet the rating threshold of the expert
system, the top-level goal is chosen. The subgoals of the goals chosen to remain
in the CPS are then selected to remain in the CPS according to the selection rules
for the label of the Logical List on which they are found. If an XORList is chosen,
the highest rated element from it is chosen. In the most straight-forward case, if a
subgoal being chosen has an adverse relationship with another goal, the other goal

is marked ineligible for inclusion in a Joint plan, and the selection of goals from the
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Figure 4.6: Combining Logical lists when creating CPS
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CPS to create the Joint Plan continues.

A few observations have led us to the belief that an alternate strategy to the
straightforward process presented in the above two paragraphs is needed. We observe
that the selection of goals in the CPS from among those in adverse relationships are
not independent because of the AND/XORLists present. Figure 4.8 illustrates this
problem. If a goal in the hierarchy we are currently selecting goals from has an
adverse goal relationship with a goal in another hierarchy, the goal in the other
hierarchy must be marked ineligible for inclusion in the Joint Plan. This can cause
the other hierarchy to lose a highly rated goal, and when the selection process occmns
on that hierarchy, the choice of a poorly rated goal may have to be made. We refer to
this as the “rating loss problem”. If there was another choice in the current hierarchy
which had almost the same rating, it would be preferable to choose that path instead.
In the figure shown, it would be preferable to select the goal rated 8 rather than the
one with a rating of 9. If the one rated 9 was wuosen, then the goal rated 8 wonld not
be eligible for inclusion in the Joint Plan. The goal rated 4 would either be chosen,

or the whole hierarchy it is a part of would be ineligible for inclusion in the Joint
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Figure 4.8: Simplified example of goal rating loss

Plan. It is clear that the order in which we choose goals for the Joint Plan can have
a significant impact upon the goals chosen for inclusion in the Joint Plan.

The second observation is that under some conditions, whole hierarchies can be
made ineligible for inclusion in the Joint Plan if goal relationships eliminate certain
goals (called the “hierarchy loss problem™). For example, if a goal that is on an
ANDList that is the subgoal list of a top level goal is eliminated, the whole hierarchy
is not eligible for inclusion in the Joint Plan. We would prefer that as many goals as

reasonably possible are attempted at one time, so as to minimize planning costs [42].

Heuristics for Joint Plan Creation from the CPS

The goal of pruning is to maximize the rating of the Joint Plan that will be created.
Because of the goal relationships, the only guarantee of an optimal rating for the
Joint Plan would be to exhaustively test all possible Joint Plans (ie., full backtrack-
ing) that could be created from the CPS. The resulting large computational cost
can not be justified in a tactical planner, where the outcome of planned actions is
uncertain. Instead, we don’t attempt to achieve optimality. We have developed two

alternate heuristics to attempt to maximize the Joint Plan rating while keeping the



computational cost within reasonable limits. These heuristics principally change the
ordering in which an expert system chooses hierarchies from the CPS to create a Joint
Plan. We compare the performance of these heuristics in an experiment described in
chapter 5.

The first heuristic is called the high-low heuristic. In this heuristic, the expert
system begins selecting goals (ie., pruning) from the highest valued hierarchies on
the CPS first, and then progresses toward lower rated ones, hence the name. The
value of the hierarchy is measured by adding the rating of the top level goal to the
rating of each Logical List along the principal path. The rationale for this heuristic
is that if the highest valued hierarchy is pruned first, it is not likely to lose its highly
rated goals due to goal relationships. In this way, we attempt to create a highly rated
Joint Plan by ensuring that highly valued hierarchies are preserved, at the expense
of possibly losing lower valued hierarchies. It is thought that the ratings retained
by choosing goals for the Joint Plan from the highest rated hicrarchies first shoui
outweigh the ratings loss of the low rated hierarchies.

The second hierarchy ordering heuristic is called the compromise heuristic. 'The

heuristic consists of three parts:
1. hierarchy ordering
2. ANDList sorting
3. hierarchy preservation through limited backtracking

The hierarchy ordering is based on a metric we have developed called the com-
promise value which measures the sensitivity of a hierarchy (in terms of the rating
loss by choosing an alternate goal) to the loss of a single goal through an adverse
relationship. The structure (ie., shape, number of XORLists, number of elements on
XORLists is small ...) and goal ratings in a hierarchy make some hierarchies more
sensitive than others to being forced into selection of a lower rated goal if a goal
relationship makes one of the goals along its principal path ineligible for inclusion in

the Joint Plan. If there are few XORLists, or the branching factor of the XORLists is



small, the hierarchy would be more sensitive to the loss of a single goal. If the prin-
cipal path has a goal that can not be selected due to an adverse goal relationship,
the path leading from the next highest rated goal in the hierarchy must be chosen,
known as the compromise path. The compromise value of a hierarchy is defined as
the compromise value of the highest level logical list in the hierarchy. The higher
the value, the more sensitive a hierarchy is to losing a highly rated goal due to a
goal relationship. An infinite value implies that no compromise is possible while still
satisfying the top level goal in the hierarchy. A brief example of compromise value
would be an XORList with three goals as elements of it. If the first goal is rated 9.
the second 7, and the third 6, the compromice value would be 2. The compromise
value reflects the decrease in value that the XORList would have if the highest rated
choice were not available due to it having a goal relationship with a goal that was
chosen earlier.

A more realistic example of the computation of the compromise value can be seen
in Figure 4.9. The computation of the compromise value of a hierarchy proceeds in a
top-down manner. The top level goal requests the compromise value from its subgoal
link list. The XORList X! computes the ratings of its three elements, which are 7,
5 and 6, in left to right order. The highest rated subtree (the principal path) is on
the left hand side of X1. If an adverse goal relationship lowered the ratings of the
principal path below that of the second highest rated path (compromise path) on the
right hand side, the compromise path would be chosen during Joint Plan creation.
The difference in rating between the principal path and the compromise path is the
compromise value. If however a goal in the principal path was eliminated due to an
adverse goal relationship, but the rating of the principal path was still higher than
the compromise path, the compromise value would be (principal path rating — the
new path rating).

In the example shown (Figure 4.9), the top level XORList X1 asks its highest
rated subtree for its compromise value. The ANDList Al must compute this from its
elements, so it requests the compromise value from its two elements X2 and X3. Goal

g2 has no adverse goal relationships. so it returns a compromise vaiue of 0. However,
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g3 has an adverse goal relationship, so it returns a compromise value of infinity (can
not be selected if eliminated). The XORList X2 would select g2 with rating 6 if
g3 was eliminated, so the compromise value of X2 is 1. In a similar way, X3 has
a compromise value of 6. Al, which computes its rating as the minimum rating of
its elements, computes its potential rating as the lesser of (7-1) & 8, and 7 & (8-6).
The lesser value is 2. The original rating of Al was 7, its potential rating if a single
goal (in this case g6) is eliminated is 2, so it returns a compromise value of 5. This
value is returned to X1. X1 determines that in the worst case for a single goal to be
eliminate " along the principal path it would choose another element {the compromise
path) and the difference in X1’s rating would be (7-6)=1, so its compromise value is
1. Notice that the compromise value was only computed using about one third of the
hierarchy’s elements. In general, for any XORList, the compromise value need only
be computed for the highest rated element.

In an effort to alleviate the rating loss problem described above, the selection of
top-level goals of hierarchies is done in the order of the hierarchy with the largest
compromise value first. After the goals from that hierarchy have been selected, the
compromise values of the remaining hierarchies are computed and then re-ordered
again. The goal selection is done on the hicrarchy with the largest compromise value.
and so on until all hierarchies have had goals selected from them. if possible. The
reason hierarchies with high compromise values are selected from first is so they
will not encounter the compromise situations described earlier, which means that
compromises made would be smaller.

A hierarchy has the maximum possible compromise value when the elimination
of a single goal means that the whole hierarchy is made ineligible for inclusion in the
Joint Plan. When multiple hierarchies had the highest possible compromise value,
an earlicr version of the compromise heuristic simply selected the first hierarchy seen
with maximum compromise value from which to select. Thus, the order of arrival of
the hierarchies at an expert system partly determined the order of the goal selection
process was called upon them. A pilot study showed that this was often not an

optimal solution, some hierarchies were made ineligible to be selected from when
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Figure 4.10: Sorted ANDLists vs. non-sorted ANDLists

other orderings of the hierarchies showed that more hicrarchies could he used. In
those situations, we felt the compromise heuristic could be improved. We observed
that when multiple hierarchies have the maximum compromise value, the number of
constraints (goal relationships) is likely high. To break the tic amoug the hierarchies,
the hierarchy least likely to impact upon the other hierarchies was selected first. This
selection was made by simply counting the number of goal relationships along the
principal path of the hierarchy.

As a further addition to the compromise heuristic, the clements of each ANDList
on the principal path are sorted by compromise value as the compromise value is
computed. Doing this prevents the situation shown in Figure 4.10, where a goal
relationship within a hierarchy can decrease the ratings loss due to a goal relationship.

A final component of the compromise heuristic is also used to prevent an entire
hierarchy being made ineligible (the hierarchy loss problem). When a goal A is about
to make another goal B ineligible for inclusion in a Joint Plan, goal A sends goal
B the compromise value that would occur in A’s hierarchy if B refuses to be made

ineligible. Goal B then determines whether it will be made ineligible by comparing the
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Figure 4.11: Creating a Joint Plan from the CPS

compromise value transmitted to the compromise that would occur in B's hierarchy.
If goal B is already ineligible, it is made ineligible again and no compromise needs
to be made in goal A’s hierarchy. If goal B is eligible, the compromise value which
would be made in its hierarchy must be determined from elements in the CPS higher
than goal B in the hierarchy. The element above goal B in the hierarchy may also not
be able to calculate the compromise that would occur. Eventually, if this message
passes all the way to the top of the hierarchy, the cost is weighed against losing a
hierarchy from the Joint Plan. We elaborate through an example using Figure 4.11
to describe how a Joint Plan is created from a CPS.
A program trace of the Joint Plan creation

We use the compromise heuristic in this trace, because it is the more complicated

of the two hierarchy ordering heuristics described. A few simplifying assumptions.
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such as not showing goal ratings, were made so as not to overly complicate the figure.
They will be discussed as they are encountered.

The select () routine is the main routine used in creating the Joint Plan. select ()
is called on the top-level goal in a hierarchy, and it is called on successively lower
elements in the hierarchy according to the selection rules for XORLists and ANDLists
until either goals with no subgoal lists have been selected. or select () can not choose
a goal. select() may fail due to goal relationships among the goals. The select()
routine has two parameters: the first is the compromise value, which is the rating
loss local to that area of the hierarchy that will occur if select() fails. The second is
the plan type (either coherent, competitive, or conflict-free), and 1s used at each goal
to determine what kind of relationships must be resolved during Joint Plan creation.
This second parameter is not important to the discussion here, and will not be men-
tioned again. Similarly, the maintenance of counters in the various elements of the
CPS as routines are called will not be mentioned. An example would probably best
explain the procedure. In Figure 4.11. the goals and Logical Lists have been specially
labelled for this discussion. To make the figure less cluttered, the return values for
the function calls have not been indicated.

At point (a), the select () routine is called on the top level goal. which has no
goal relationships. This goal is considered selected for the Joint Plan if select()
called upon its subgoal list succeeds. The compromise value sent at this point is the
maximum value, because if select () does not succeed at this goal, the hierarchy will
not be selected. The top level goal then calls select on its subgoal list at point (h).
The ANDList select() routine, requiring all of its elements to be selected for it to
succeed, calls select () first on the XORList at point (c). XORList select() only
requires one element to be selected from it for it to succeed, so it calls select() on
its highest rated element which is the goal at point (d) (I have defined this element as
the highest rated element, although ratings were left out of the figure for clarity). The
compromise value sent in the select () routine has been changed by the XORList to
the difference in ratings between the two goals on this XORList. This goal has no goil

relationships, has no subgoal list, and so it returns SUCCESS. The XORList at point

57



(c), now returns SUCCESS as well, and the ANDList at point (b) calls select() on
its other element. the one at point (e). The compromise value sent is the maximum
value again. The goal at (e) has no goal relationships, but because it has a subgoal
list it must call select() on it. select() is called on the XORList at (f), it calls
select () on its highest rated element at (g,. The ¢ romise value passed is equal
to the difference in rating of the two elements on the XORList. The goal at (1) has
an adverse goal relationship with a goal not in our picture, the other goal is made
incligible, and so select() succeeds on the goal at (i). select() from (i) returns
SUCCESS to the ANDLIst at (g), and select() is called on the goal at (j).

The goal at (j) has an adverse relationship with the goal at (n). The routine
mark .ineligible() is cailed on the goal at (n). with the compromise value parameter
the same as was passed in the select () routine. At the goal at (n) the consequences
of it being marked ineligible are unknown. this can only be determined higher in the
hierarchy. The goal at (n) calls the routine child_ineligible0K?() on the elements
immediately higher than it in the hierarchy. passing them the compromise value it
was sent. Both of these elements must agree that it can be marked ineligible before
that can occur. If one of them returns FAILURE. the goal returns FAILURE to
mark_ineligible(). Note that one of these elements is in the second hierarchy. the
other parent is in the third hierarchy.

In the third hierarchy at point (p). the ANDList there knows both of its elements
must be selected and it can not lose one and still succeed in the future. However.
there may be another point higher in the hierarchy where a compromise can be
made. It calls child_ineligibleOK? () on the XORList at (q). The XORList has
two elements, either one of which may be selected. One element can be lost and it
could still potenticlly succeed if select () was called on it. The XORList compares
the compromise value sent in child.ineligible0K?() to the compromise it would
have to make by choosing the lower 1ated of its two elements. In this case. the
compromise at the XORList is smaller. so the XORList returns SUCCESS from
child._ineligibleOK?(). This value returns through the ANDList at (p), and ends
up at (n).



In the second hierarchy, where the other parent is, child.1neligible0OK?() is
called on the ANDList at (o). Because no XORLists are between point (o) and the
goal at the top of the hierarchy. child.ineligibleDK? () is called on cach clement
above the ANDList at (o) until child_ineligible0K?() is called on the goal at
the top of the hierarchy at (r). Because the goal is at the top of the hierarchy, if
child_ineligibleOK? () is called upon it, then if SUCCESS is returned it means
that this hierarchy can not be selected in the future (because an element necessary
for select () on its subgoal list to succeed will be ineligible for inclusion in the Joint
Plan). The goal compares the compromise value sent in child.ineligableOK?() to
the value of its hierarchy. If the hierarchy has a rating less than the compromise
value passed. it returns SUCCESS, otherwise it returns FAILURE. The details of the
computation of the value of a hierarchy are not discussed here. but in this case the
hierarchy is rated higher (again. ratings not shown, we define it that way) than the
compromise value. and FAILURE is returnea. This FAILURE result goes down the
hierarchy back to point (n). where FAILURE is returned as the result of the goal
at (j) calling mark_ineligible() on the goal at (n). The figure corresponds to the
state of the function calls at this point.

The goal at (j) can not be selected. and it returns FAILURL as a result of the
select () call on it from the ANDList at (g). An ANDList must have all its elements
selected, and because one has failed. unselect () is called on the goal at (i) that was
previously selected. Goal relationships that were previously resolved in favow of the
goal at (i) are reversed. If there was a subgoal list on the goal at (i). unselect()
would be called on that subgoal list as well.

The select () routine returns FAILURE from the ANDList at (g) to the XORList
at (). Because the XORList was not able to select() its highest rated element.
there is only one element left, and the compromise value it was passed was the
maximum value, it calls select () on the other element. This time, hecause it is the
only element left, the compromise value it passes is the same one it received, namely.
maximum compromise. In this case, select() is called on the ANDList at (k), it

calls select () on the goals at (1) and (m). they succeed. and SUCCESS is eventually
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Figure 4.12: select() fails gracefully in an overconstrained problem

returned all the way up the hierarchy to eventually reach the goal at (a). The top
level goal. having reccived the result SUCCESS to its select() call on its subgoal
list, is included in the Joint Plan, along with any other goal on which select()
was called and succeeded. provided unselect () was not called on the element after
select ().
End of Program Trace

The set of routines written for select () to operate have been written so that
select() will fail on a top level goal only if there are goal relationships within the
hierarchy that can not be resolved without making the hierarchy ineligible, ie., the
problem is over-constrained !. That select () will succeed otherwise is guaranteed

by making the compromise value sent in select () from the vop level goal equal to the

"The problem is over-constrained in the sense that nothing short of retracting all previous goal
relationship resolutions involved in the given hierarchy could potentially prevent the hierarchy from
being made ineligible We have stated previously that a full backtracking-type algorithm is very
costly, for little potential benefit.
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Figure 4.13: Joint Plan

highest possible compromise value, which is greater than the maximum rating for any
hierarchy. A simple case where select() fails is shown in Figure 4.12. The goals at
(a) and (b) have been marked ineligible by previous runs of select () on other hicrar-
chies (not shown). selact () is called on the top level goal, it in turn calls select ()
on the ANDList, which calls select () on the left hand XORList. The goal on that
XORList calls mark_ineligible() on the goal at (d), and child_1neligibleDK?()
moves up the hierarchy until it reaches the top level goal. In this situation, the top
level goal recognizes that the problem is over-constrained because select() is still
active and the compromise value passed in child_ineligible0K?() is a maximum.
so it returns FAILURE.

The goals that remain in the CPS after the completion of the pruning operation
are grouped into epochs (see Figure 4.13). We definc epochs using the chains of
precedence constraints among the goals in the CPS: the goals in the CPS that have
no precedence constraints are in epoch 1; goals that have precedence constraints with
only the goals in epoch 1 are in epoch 2. In general, a goal is in epoch w4+ 1 if from
among those goals that precede it, the maximum epoch is n.

Epochs partition the set of goals in the CPS based upon the sequence in which

they would be attempted if they are included in the Joint Plan. Epoch 2 containing
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n goals will have a rating given by:

RE = GIAXTRI KD

j=1,...,n

The rating of each epoch is affected by its index in the sequence of epochs. The
risk associated with each epoch is adjusted to reflect the fact that the success of the
epoch is dependent upon the preceding epochs. The prediction made by an expert
system for the likelihood of success of the goals in an epoch must be decreased as its
position in the sequence of epochs increases. K, is the adjustment factor applied to
the risk of epoch, As K, increases, the rating of epoch; (RE,) decreases.

The value for K is defined recursively, we use

1\’1=1
. Riske;,
Ky =1+ =52

) Risk, -Risk. ., . -
l\l — (] _ ( 3 P.-llo s Pl—'2)> I\l_] for 7 = 3.4’0”.

where Risk.p, is the maximum risk of the goals in epoch 1.

K, is set to one because there are no previous epochs. K3 is larger than A; to
reflect our belief that the second epoch should be devalued compared to that of the
first epoch, since it depends upon it. From A3 onward, we use the differential of the
maximum risk of the last two epochs to have K vary with the slope of the maximum
risk differential. i, depends on the maximum Risk of an epoch because as previous
epochs become more risky, the likelihood of continuing to the next epoch diminishes.
hence we do not wish to weigh the epochs uniformly.

The length of the Joint Plan is decided by using the rating of each epoch. First
epoch 1 is included in the Joint Plan. Subsequent epochs in the sequence of epochs
are included in the Joint Plan only if their ratings are greater than or equal to the

rating of the previous epoch. The rating assigned to the Joint Plan with n epochs 1s

NHjp &
RATE;p = X’-H_C—;s- ZRE,

where NH;p is the number of goal hierarchies in the Joint Plan and N H¢ps is the

number of hierarchies in the CPS. The multiplication factor NH,;p/NHcps decreases
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the rating of those Joint Plans that have fewer goal hierarchies. This is meant to

reflect our belief that a Joint Plan should try to achieve as many goals as possible.

4.3 Election

Each expert system calculates RATE;p for each of the Joint Plans created by the
members of its Consensus Group. Then an election is held to determine which Joint
Plan is to become the Final Plan. Election techniques can be optimized for differ-
ent purposes; for example, the techniques reported in [35) minimize the number of
messages exchanged between the expert systems during the election process. The
Consensus protocol will use a simple election technique reported in [35] in which all
expert systems rate all the Joint Plans and broadcast thesc ratings to all the other
expert systems in the Consensus group. A cumulative rating for cach Joint Plan is
taken and the Joint Plan with the highest cumulative rating is selected as the Final
Plan. Because the expert systems all use the same technique to select the Final Plan,
they do not need to further cornmunicate to know which Joint Plan has been selected
as the Final Plan because they will all pick the sameone. In the caseof a tie between
the cumulative ratings for two or more Joint Plans. as a convention, the Joint Plan
created by the expert system with the lowest identifier is chosen.

In general, an election based on simple majority does not guarantee that the
best option is choser:, but we believe such an election is adequate in the context
of Consensus. In Consensus, an election is held on the set of Joint Plans and not
on Proposals. Each Joint Plan has been created by each expert systern using the
information in its own window, and the information supplied to it in the Proposals
created by the other expert systems. The Joint Plans are constructed using the
information supplied by all the expert systems in the Consensus Group; and thus,
Joint Plans reflect compromises proposed by the expert systems. In the context of
Consensus, how often an election based on simple majority rule produces sub-optimal

choices is left as future work.
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Figure 4.14: Virtual Circuit Routing

44 Example of Consensus

In this section, we demonstrate the use of the Consensus protocol when a CDPS is
used to solve the problem of constructing virtual circuits in a telecommunications
network. A simpler varia ion of this problem is described by Conry et al. [6]. The
communications network shown in Figure 4.14 is partitioned into four geographical
regions: A, B, C, and D. Each region consists of several switching sites called nodes.
and is controlled by an expert system.

Each expert system knows only about the nodes in its region and about the nodes
which have a direct connection to the nodes in its region. Problem-solving requires
finding a path through the network for each virtual circuit that is requested, with
the condition that a maximum of two virtual circuits may use any given link. We
augmented the problem as stated in Conry et al. to include the notion that there
is no guarantee that the goal ‘allocate a link for a virtual circuit’ will succeed. We
use three levels of goals corresponding to different levels of abstraction. We use a
“virtual circuit” level, an “abstract” level corresponding to connecting two nodes
with possibly some restrictions on the links which can be used, and a “concrete” level
in which the link to use is specified. An expert system is unaware of the details of
the routing through another expert systern’s area of responsibility, so it may propose

goals that are abstract, and left for another expert system to satisfy. These abstract
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goals simply specify the endp-ints that must be connected without det ailing how this
is to be done. except for perhaps some restrictions on links that may be used. These
restrictions are used to ensure that an abstract goal is not subgoaled into concrete
goals which specify a virtual circuit that backtracks over a link in the network which
has already been allocated to the virtual circuit.

In our example, the Consensus is signalled because two virtual circuits have failed,
due to a break in link 13 between Bl and B2. Virtual circuit 1 must connect node
Al to B2, and virtual circuit 2 must connect node B1 to D2.

The Proposals created by the expert systems for ‘repairing’ the virtual circuits
are shown in Figure 4.15, and the goals are explained in Table 4.2.

In the Proposal produced by expert system A, the goal at the top of the first
hierarchy (gl) has the specification ‘restore virtual circuit 1°. Expert system A pro-
poses three ways of restoring virtual circuit one, and so this goal has an XORList
as a subgoal link. Each of the ways of restoring virtual circuit 1 is on an ANDList
connected to the XORList. The reason each is on an ANDList is because it would
not make sense to restore part of a virtual circuit using one routing, and restoring
another part using another routing. The overall routing of the virtual circuit must be
coordinated through multiple parts of the network so that those links going through
multiple regions of the network connect together to form a continuous path. The
subgoals of the left hand ANDList are abstract goals which specify that to satisfy
the root goal of restoring vinwual circuit 1 (which goes from node A1 to node B2),
a connection should be made between nodes Al and Cl1 (g2), and nodes Cl and B2
(g3). Because g2 lies within expert system A’s area of responsibility, expert system
A can subgoal it. It specifies that to establish a connection between nodes Al and
C1, a connection between Al and A3 over link 2 (g4) and a connection between A2
and C1 over link 12 (g5) can be made. The requirement that g3 not use link 2 or
link 12 is made so that an attempt is not made to reuse links alrcady allocated to
this virtual circuit. The second method of restoring virtual circuit 1 is to connect
nodes A1 and D2 (g6) and D2 to B2 (g7). The third method is to connect nodes Al
to Bl (g8) and nodes B1 to B2 (g9). g8 can be subgoaled to g4 and gl). Note that
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at this point in time, expert system A is proposing connecting nodes Bl and B2, it
is unaware that the link connecting those two nodes has failed.

The top level goal (gl1) in the second hierarchy in expert A’s Proposal is to
restore virtual circuit 2, which connects node Bl to D2. A single way to restore the
virtual circuit is in the Proposal, so there is no XORList subgoal link on gl1. gl is
subgoaled into goal g12 which connects nodes Bl and A2 through link 1, and goal
gl3 which is an abstract goal to connect nodes A2 and D2. There are two ways of
subgoaling g13, so there is a subgoal link from g13 to an XORList. On the XORList
are two ANDLists. The left hand side ANDList has goal which connect nodes A2 and
Al through link 2 (gl4), and connect nodes Al and D2 through link 3 (g15). The
other ANDList contains goals to connect nodes A2 and C1 through link 12 (gl6),
and an abstract goal to connect nodes C1 and D2 (without using links 1 or 12).

The Proposals produced by the other expert systems are different from A's Pro-
posal. While the top goals of each Proposal are the same, the Proposals differ in
the routes specified for restoring virtual circuit 1 and 2. Expert system C proposes
routing virtual circuit 1 through its region because it has unused capacity available
on its links. Expert system D proposes routing virtual circuit 1 through node D2
One interesting thing to note is that expert system B has a goal in its Proposal (gl19)
to connect nodes Bl and B2, and it has rated the LS of g19 very low because the link
connecting those two nodes has failed. By including g19 in its Proposal and rating
it poorly. expert system B indicates to the other expert systems in its Consensus
Group that there is a problem with the Bl to B2 link. The CPS created by cach of
the experts is shown in Figure 4.16.

In constructing the CPS, the expert systems have merged the top goals of cach
of the Proposals because they have the same specification. Other goals have been
merged as well, such as g5 and g38, which both specified connecting A2 and (1
through link 12. g2 and g35 both abstractly specified connecting Al and Cl1. By
merging these goals into g2, g2's subgoal link becomes an XORList onto which the
two ANDLists are placed.

The subgoals of the top goals which specify ‘restore circuit 1 and restore circuit 27
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Figure 4.17: Joint Plans

were also present in all of the Proposals, and have been merged as well. The vatious
alternatives for restoring virtual circuit 1 that are in the Proposals of the expert
systems have been placed on an XOR list. The alternatives for restoring virtual
circuit 2 have be-n treated in the same manner.

The expert systems will prune the CPS to create their Joint Plans as shown
in Figure 4.17. Expert system A in pruning the CPS (sce Figure 4.16) examined
the options for restoring virtual circuit 1. The subgoals for restoring cirenit 1 were
attached to the XORList beneath goal 1. Expert system A sees the left-most ANDList
as the highest rated, and so chooses goal g3 and goal g2. This corresponds to restoring

virtual circuit 1 through expert system A and C’s regions. and then connecting a node
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in expert C's region to B2. g2 is further subgoaled with an XORList subgoal link,
so expert system A must continue. It chooses the ANDList on the right hand side of
the XORList which contains goals g4 and g5. Goal g4 is the connection of nodes Al
and A2 through link 2. Because this link has an existing circuit present, there is a
resource conflict between the allocation of that link for restoring virtual circuit 1 and
the allocation of the same link for restoring virtual circuit 2. Consequently, expert
system A can not plan to allocate that link for virtual circuit 2. Expert system A,
having completed its plans for restoring virtual circuit 1, now begins choosing a plan
for restoring virtual circuit 2 by choosing goal gl! at the top of the other hierarchy
in the CPS.

After choosing gl1, expert system A chooses the XORList which in turn leads to
choosing the ANDList containing goals g32 and g33. This routes the virtual circuit
from Bl to A2 over link 1, and then routing from A2 to D2 respectively. Goal g33
is further subgoaled through an XORList. The left hand ANDList of that XORList
is chosen, leading to goals gb4. g55. g56. and g57 being chosen. Thus, the circuit is
routed from A2, the endpoint of g32. to Cl. then from C1 to C3. and finally from C3
to D2, the endpoint of the virtual circuit.

The Joint Plans created by the other expert systems will have differences because
of the different local context of each expert system. Expert B creates a Joint Plan
which routes virtual circuit 1 from Al through D2 to C3. and then to B2. Virtual
circuit 2 is potentially routed from Bl to A2, then A2 to Al, and then to D2. Expert
system (' creates a Joint Plan which routes virtual circuit 1 from Al to C1, and then
using link 11 to go from C1 to B2. For virtual circuit 2, expert system C has chosen
the same path as expert system B. Finally, expert system D has chosen a path for
virtual circuit 1 from Al to D2 over link 3, and then abstractly from D2 to B?. For
virtual circuit 2, it chooses a path from Bl to Al, and then from Al to D2. Each
of the experts systems now broadcasts its Joint Plan to the other members of the
Consensus group. and an election to select the Final Plan is held.

This example illustrates several features of the Consensus protocol. The resource

conflicts are explicitly represented allowing for their resolution when the Joint Plans
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are created, and equivalent goals are merged. An expert system can propose one
method for solving a problem but choose a method proposed by another expert in its

Consensus Group when creating its Joint Plan.

4.5 Analysis

The primary strength of the Consensus protocol is the ability to rapidly propose and
choose, in a distributed manner, a plan for all the experts to follow. All experts have
input on both the goals which are proposed for the Joint Plan, and the selection of
the Final Plan. The Consensus protocol produces a plan for all experts to follow in a
fixed number of stages, as cpposed to a negotiation type strategy employed by other
protocols {13, 6]. Although negotiation can potentially produce a better plan. its cost
can be higher. In the context of incremental planning and ill-structured problems
in which the outcome of actions is uncertain. a high cost of planning may not be
justified.

The various plan types defined (ie.. coherent, competitive. conflict-free) allow a
static selection of the characteristics of the Final Plan that may prove useful. The
plan types allow a trade-off between planning time and plan quality. However, we
don’t believe that any one plan type will necessarily prove to be consistently faster,
nor execute faster than any other. The coherent plan type will result in the most
number of adverse relationships, and so planning will take longer. This may be offset
by an increased “quality” of Final Plan. On the other hand. the conflict-free Final
Plan should take less time for Consensus to create because fewer goal relationships
will be considered adverse, but a poorer quality of Final Plan may be produced. T his
is best determined by experimental verification.

The static beliefs that one expert system has of another are a simplification that
may adversely impact the quality of the result of the Consensus Protocol. It seeins
clear to me that if a problem is divided into areas of responsibility for cach expert
system, the knowledge that one expert system has of another should be minimized
in order to remain within the expert system’s bounded rationality. A preferable

method of taking into account other expert system’s ratings would be to allow an
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expert svstem to express a confidence in its rating. That way, the ratings given by an
expert system in areas which it knows little about would not impact significantly on
the overall rating. The ratings are important, because most of the major decisions
in creating a plan come from them. It is the only way to express that one goal is
preferable to another.

The technique used to develop a Joint Plan responds in some ways to beneficial
goal relationships as well as adverse ones. Wilensky’s [42] belief was that plan cre-
ation should come about as a result of beneficial relationships between geals, and in
this respect Consensus achieved limited success with the use of ANDLists. However,
ANDLists are used only for goals in the same Proposal. Unfortunately, other benefi-
cial goal relationships are not used. Adverse goal relationships, where only one of a
set 0. goals were handled both by using goal relationships, and in collectivities using
XORLists. My impression however is that no domain-independent protocol will ever
handle relationships perfectly.

A potential weakness of the Consensus protocol is that eaperts are unable, during
an election. to vote on pieces of the plan. It is possible that several experts view a
part of a plan as undesirable despite secing the overall plan as of the highest ranking.
This will result in selecting the “best”™ of the proposed plans. but one that is less
than optimal. We don’t know how often this situation will present itself. A simple
solution would be not to include that part of the Final Plan which is not highly rated
by all expert systems in the Consensus Group. However, this could lead to problems
if the part of the Final Plan that was not accepted by all the expert systems was
large with respect to the rest of the Final Plan.

‘The Consensus protocol. because it performs in a finite number of stages, can be
scaled fairly well. Neglecting the reduced number of messages sent in the election
stage, because of the techniques discussed for reducing the messages in an election.
the message complexity is simply n{n — 1) + n(n = 1) + n(n — 1) = O(n?), accurate
to some constant depending on message size. Each of these factors is due to one
stage of the protocol. where each of n expert systems sends a message to (n — 1)

other expert systems. If broadcast facilities are available in the network. the message

-~1
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complexity reduces to O(n). Regardless of the scalability of the Consensus protocol.
it is unlikely that a Consensus group would be large. because the organization of
a large number of expert systems would be reconfigured into numerous Consensus
groups. One disadvantage of the message sending in the Consensus protocol is that

it occurs in bursts, resulting in non-uniform loading of the communication network.
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name | connect | type | for using | name | connect | type | for using
gl | A1,B2| VC | cktl gd2 | A1.C3 | ABS | cktl
g2 | A1L,Cl| ABS | cktl gd3 | C3.B2 | ABS | cktl -8
g3 | CL,B2| ABS | cktl | ~112,-12]| g44 | A1,D2 | ABS | cktl
gd | ALLA2| CON § cktl 2] g45 | D2.C3 | CON | cktl 8
gh 1 A2,C1| CON | cktl 112 g46 C3,B2 | CON | cktl I7
gh | A1,D2 | CON | cktl 13| gd7 C3.C1 | ABS | cktl -l[8
g7 | D2,B2 | ABS | cktl =13 g48 | C1,B2 | COL" | cktl 111
g8 | Al1,B1 | ABS | cktl gd9 | C3,C2 | CON | cktl 19
g9 | B1L,B2| ABS | cktl | =I1,-02|| g50 ; C2,C1 | CON | cktl 110
gl0 | A2.BI1 | CON | cktl [1{ gb1 | B1,D2| VC | ckt2
gll | B1.D2| VC | ckt2 gd2 | B1,A2 | ABS | ckt2
gl2! B1,A2 | CON | ckt2 [1y g53 { A2,D2| ABS | ckt2
gld . A2,D2 | ABS | ckt2 -It|| g54 | C1,C3 | ABS | ckt2
gld | A2.Al | CON | ckt2 12 g55 1 C3.D2 | CON | ckt2 8
gls | A1.D2 | CON | ckt2 31 gdt | C1.C2 | CON | ckt2 110
gl | A2.C1 | CON | ckt2 {12f| g57 | C2,C3 | CON | ckt2 19
glt | C1.D2| ABS | ckt2 | ={1,-{12]] g58 | C3,D2 | ABS | ckt2 | =I9.-/10
glR | Al.B2| VC | cktl g59 | C3,B2 | CON | ckt2 7
g!9| B2.B1 | ABS | cktl g60 | B2.D2 | ABS | ckt2 -I7
g20 | B1.A1 | ABS | cktl gbl | Al1.B2| VC { cktl
g2l | B1.A2 | CON | cktl 11 g62 | B2.D2| ABS | cktl
g22 | ALA2|CON | cktl 12, g63 | D2,A1| ABS | cktl -l6
g23 | B2.C1 | CON | cktl {11|| g64 | B2.D1 | CON { cktl 16
g21 | Cl.A1 | ABS | ckti -{11{ g65 | D1,D2 | ABS | cktl =[G
g25 | B2.DI [ CON | cktl 16|| g66 [ D1,D3 | CON | cktl 15
g26 | DI.A1 | ABS | cktl -I6) g67 | D3,D2 | CON | cktl 4
g27v | B1I.D2] V(O | ckt2 g6l | D2,A1 | CON | cktl 13
g2R | B1.C3 | ABS | ckt2 g69 | D2.C3 | CON | cktl 8
g25 | C3.D2| ABS | ckt2 j =I7.-113]} g70 C3,A1 | ABS | cktl =18, =16
g30 | BL.B2 [ CON | ckt2 13|} gr1 | BLD2| VC | ckt2
g3l | B2.C3 | CON | ckt2 I7) g72 | B1.D1| ABS | ckt2
g32 | BL1.A2 | CON | ckt2 [1)| gv3 | B1,B2 | ABS | ckt2
g33 | A2.D2| CON | ckt2 -l grd4 | B2.D1 | CON | ckt2 16
g3l | AlLB2| VC | cktl gid5 | D1.D2 | ABS | ckt2 =16
g35 | AL.Cl | ABS | cktl g76 | D1,D3 | CON | ckt2 15
gd6 | Cl.B2| ABS | cktl -112§ g77 | D3.D2 | CON | ckt2 14
g37 | AlLA2 | ABS | cktl -I12)| g78 | D2,A1 | CON | ckt2 13
g3’ 1 A2.C1 | CON | cktl 112) g79 | Al,B1 | ABS | ckt2 -3
gd9 | C1.B2| CON | cktl {11} g80 | D2,C3 | CON | ckt2 8
gi0 | CL.C3 | ABS | cktl | =I7. 112} g81 | C3.B1 | ABS | ckt2 -[8

| gl €382 CON | ckul 7

Table 4.2: Goal Specifications




Chapter 5

Hierarchy Ordering Heuristics
Experiment

They said thercfore unto him, What sign shewest thou then, that we may sce, and

believe thee? what dost thou work? John 6:30-51

The Consensus protocol consists of several stages: Proposals are exchanged by
the expert systems in a Consensus Group. a Common Planning Structure (CPS)
is created from the Proposals. the CPS is pruned to create Joint Plans, and then
an election is held to select the Final Plan. When the expert systems are pruning
the CPS, they are attempting to create Joint Plans that have the highest rating.
While pruning the CPS, the expert systems must also resolve the conflicts that exist
among the goals contained in the CPS. These conflicts are indicated by various goal
relationships.

In Chapter 4. three alternative approaches were discussed for pruning the C'PS:
the full backtracking approach, and the two hierarchy ordering heuristics, namely
High-Low and Compromise. It was believed that the full backtracking approach,
while being the simplest and most exhaustive, would become intractable if there
were many goal relationships in a CPS. The ordering heuristics were designed o
produce better Joint Plans without incurring the high computational cost of the full
backtracking approach.

The heuristics place an ordering upon the sequence in which goal relationship-
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are resolved and avoid the computational expense incurred with the backtracking
approach. However, there is a cost for computing the ordering. The ordering heuris-
tics will produce Joint Plans that are not as good as those that would be produced
using the full backtracking approach. The assumption is that the ordering heuris-
tics increase the quality of the Joint Plans produced when compared to the Joint
Plans produced by resolving the goal relationships simply in the order they appear
in the CPS. In addition, it has been assumed that the Compromise heuristic would
preserve more hierarchies from the CPS while creating Joint Plans (and ultimately
Final Plans), than the other heuristics.

In addition to the assumptions previously stated, it is believed that as the num-
ber of goal relationships in the CPS increases, the gap between the performance of
the ordering heuristics and the effectiveness of resolving the goal relationships in the
order in which they appear in the CPS will increase. Of course, the structure of the
Proposals will also be a factor in the performance of the heuristics. The experiment
described in this section will measure the effectiveness of the ordering heuristics as
the number of goal relationships in the CPS increases using a set of randomly gen-
erated Proposals. The Proposals are generated randomly using a set of parameters
describing the characteristics of their structure (a more complete description of the
parameters for the generation of Proposals is provided later in this section).

The next section describes the design of the experiment, and what we hoped to
learn from it. Following that. we present an experimental evaluation of the assump-
tions made about the effectiveness of the ordering heuristics, including a statistical

analysis of the data. In the last section, we discuss the results of the experiment.

5.1 Experimental Design

The experiment is designed to investigate the cost and benefits obtained by using the
ordering heuristics as compared to a random ordering for resolving goal relationships
in the CPS. YFor this experiment, the number of goal relationships is set at five differ-
ent levels. The experiment is conducted by randomly producing ten sets of sample

Proposals accordii. * 10 a set of parameters describing their structure. The generated

76



Proposals are initially devoid of any goal relationships except for precedence con-
straints. The Proposals in each set are then augmented with goal relationships. Each
set of Proposals is augmented five times producing Proposals with the same basic
structure, but with a different number of goal relationships. The goal relationships
are added randomly, but certain constraints are applied that eliminate the creation
of goal relationships which are not meaningful (explained later). The fifty sets of
Proposals are then processed twice as per the two ordering heuristics and finally
resolving the goal relationships in a random ordering.

In this experiment, each randomly generated Proposal set is used to produce five
Proposal sets that differ only in the goal relationships that they contain. Thus, the
Proposal sets generated for this experiment are seen as having been drawn randomly
from a population of Proposals defined by a specific set of parameters describing thei
structure. The Proposal sets have had two conditions applied to them during the
experiment: the ordering heuristic used, and the level of goal relationships that was
added. The design of this experiment is such that each randomly generated Proposal
set is measured fifteen times as the different conditions of the experiment are applied
to it. Thus, the data produced by this experiment is analysed using a Multivariate
analysis of variance in order to determine if using different ordering heuristics and
levels of goal relationships produces an eflect. The goal of the experiment is to

determine the following:

e Does the number of goal relationships in the Proposal set have an

effect upon the benefit obtained when pruning the CPS?

o What is the overall trend in the benefit obtained as the number of

goal relationships increase?

e Does the ordering heuristic used have an cffect on the benefit ob-

tained when pruning the CPS?

o Is there a difference in the benefit obtained using the random or-
dering as compared to the High-Low heuristic and the Compromise

heuristic?
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Is there a difference in the benefit obtained using the High-Low

heuristic as compared to the Compromise heuristic?

Is the effect of the number of goal relationships on the benefit ob-

tained different in the three ordering strategies?

Is the effect of the number of goal relationships on the benefit ob-
tained different for the random strategy as compared to the Com-

promise and the High-Low heuristic.

Is the effect of the number of goal relationships on the benefit ob-
tained different for the Compromise heuristic as compared to the

High-Low heuristic.

What is the trend for the benefit obtained when using each ordering

strategy as the number of goal relationships increase.

Does the number of goal relationships in the Proposal set have an

effect upon the cost of pruning the CPS?

What is the overall trend in the cost of pruning the CPS as the

number of goal relationships increase?

Does the ordering heuristic used have an effect on the cost of pruning
the CPS?
Is there a difference in the cost of pruning the CPS using the random
ordering as compared to the High-Low heuristic and the Compromise
heuristic?
Is there a difference in the cost of pruning the CPS using the High-

Low heuristic as compared to the Compromise heuristic?

Is the effect of the number of goal relationships different on the cost

of pruning the CPS in the three ordering strategies?

Is the effect of the number of goal relationships on the cost of prun-
ing the CPS different for the random strategy as compared to the

Compromise and the High-Low heuristic.
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o Is the effect of the number of goal relationships on the cost of pruning
the CPS different for the Compromise heuristic as compared to the

High-Low heuristic.

o What is the trend for the cost of pruning the CPS when using each

ordering strategy as the number of goal relationships increase.

In order to investigate the effectiveness of the ordering heuristics, the costs as-
sociated with using them as well as the benefits obtained must be quantified. The

measures used in this experiment are as follows:

Number of nodes visited in the CPS when pruning: A measure of

the computation required for pruning the CPS.
Final Plan Rating: A measure of the quality of a Final Plan.

Total Compromise: Total Compromise is a measure of the value of the
compromises that a given expert had to make when pruning the CPS.
This measure is the sum of the compromise values associated with
the Logical Lists where an alternative to the principle path had to
be chosen when the CPS was pruned. In the case that the resolving
of a goal relationship requires that a hierarchy is to be excluded from
the Joint Plan the compromise value is taken as the valuc assigned
for the hierarchy. The Total Compromise is also an indicator of the
benefits obtained by the ordering heuristic. A smaller value for the
Total Compromise that occurred when the CPS was pruned would

indicate that more highly rated goals were retained in the Joint Plan.

Number of Hierarchies Preserved This metric is an indicator of the
benefit obtained by using a particular ordering strategy as it indi-
cates how successful the expert system was in including hierarchies

in its Joint Plan.

The Proposal sets for this experiment are produced by a proposal generator that

has been constructed for experimental research with the Consensus protocol. “The
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proposal generator constructs Proposal sets where the structure of the Proposals is
controlled by a set of parameters. The parameters input to the proposal generator

are as follows:

NUMEXPERTS Number of expert systems in the Consensus group.
NUMHIERARCH Number of hierarchies in the Proposal set.

ANDPROB, XORPROB, and GOALPROB The probability that
the next object to be added to a Proposal is an ANDList, an XORList,

or a Goal. These three probabilities must sum to one.

BRANCHFACT The typical number of subgoals attached to an XORList
or an ANDList. This value is supplied as an upper and lower bound.
The proposal generator will randomly assign a number of subgoals

to a Logical List within these bounds.

RATE Upper and lower bounds for both the likelthood of success and

desirability rating assigned to the goals in the Proposals.

DEPTH The maximum number of subgoal levels in the Proposals. This

metric does not count Logical Lists.

MERGEFACTOR The ratio of equivalent goals to unique goals to be

included in the Proposal set.
NUMSTAGES The number of epochs to be included in the Proposals.
STAGERATIOS The ratio of goals that will be in each stage.

MAXLEVEL The maximum number of levels permitted in a Proposal.
This metric includes Logical Lists. It is used to prevent Proposals

from attaining a depth which would become unwieldy.

REL_LEVELS The number of goal relationships in the Proposal set.
This parameter can be a list indicating that Proposal Sets are to
be generated with the same structure except for the goal relation-
ships they contain. This level corresponds to the number of goal

relationships in the Proposal / number of unique goals x 100.
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The setting used for these parameters when generating the ten Proposal sets for
this experiment are shown in Table 5.1. We selected NUMEXPERTS equal to four be-
cause it was thought that this provided a suitable number of expert systems for which
to hold a Consensus. NUMHIERARCH was chosen to assure that a fair number of
hierarchies were derived froin each expert system. The probability of AND/XOR Lists
and goals was chosen to reflect our beliefs in their likelihood. Certainly, Proposals
without XOK! ists would not provide meaningful input to Consensus. The mean of
ratings were chosen to have a uniform dispersion between 3 and 8. The number was
then used as a mean to a normal distribution generator with » ~tandard deviaticn of
1. This would ensure almost complete coverage of the rating range between 0 and 10.
The branching factor was limited to a randomly chosen number between 2 and 3 be-
cause larger numbers created Proposals of enormous size. The DEPTH corresponds
to the number of blackboard levels at which a goal can reside. A number randomly
chosen between 3 and 5 seemed reasonable. The MERGEFACTOR, NUMSTAGLS,
STAGERATIOS were all set to what seemed to be “reasonable™ levels so that the
behaviour expected in the ordering heuristics could occur. MAXLEVEL was set to
4 to constrain the size of Proposals. Finally, the relationship levels were set so that
they went from a small number (10%). all the way up to 50%. These goal relationship
levels refer to the ratio of the number of goal relationships to the number of unique
(ie.. a goal that will appear in the CPS) goals in the Proposal. At the 50% level, on
the average, every unique goal had a relationship (one relationship means two goals
involved).

When the proposal generator creates Proposal sets, the rating that would be
assigned to each goal by each expert system in the Consensus Group is in fact assigned
by the proposal generator. At present, the proposal generator randomly assigns an
initial rating for each goal using a uniform distribution. Using this initial rating as
the mean for a normal distribution the rating of each expert system in the Consensus
Group for the goal is generated by the proposal generator.

When the proposal generator adds goal relationships to the Proposal sets, it checks

to ensure that the goal relationships are meaningful. The following relationships are
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Parameter Value
NUMEXPERTS 4
NUMHIERARCH 12
ANDPROB 0.1
XORPROB 0.2
GOALPROB 0.7

RATF 3 8 3 8
BRANCHFACT RND 23

DEPTH RND 35
MERGEFACTOR 50
NUMSTAGES 3
STAGERATIOS || 0.3 0.2 0.1
MAXLEVEL 4 ]
REL_LEVELS 10 20 30 40 50

Table 5.1: Parameters for the Proposal Generator

not permitted by the proposal generator, because the Proposal produced would be

meaningless:

o A relationship between goals at different levels in the Proposals. Goals at
different levels in the Proposal are a different levels of abstraction and in the

sense of a goal relationship they are not comparable.

e A relationship between *wo goals that have the same specification. This rela-

tionship would be indicating that a goal is in conflict with itself.

o A relationship between two goals on an ANDList. This relationship would
effectively mean the set of goals on the ANDList proposed by an expert sys-
tem cannot be achieved. The expert system would be expected to detect this

situation when creating its Proposal.

If a Proposal were to be created by the planner of an expert system with such a

relationship this would be considered an error.

5.2 Experimental Results

The means and standard deviations for the Total Compromise for the three strategies

are shown as a function of the number of goal relationships is shown in Figure 5.1.
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10 15.98(16.96) | 12.25(13.68) 17.42(19.60)
20 23.99(22.06) | 18.93(21.76) 16.15(11.35)
30 33.17(22.45) | 25 03(19.71) 30.52(28.14)
40 41.37(18.28) | 36 64(18.25) 35.27(16.73)
50 56.24(16.88) | 47.54(20.42) 44.01(21.23)

Figure 5.1: Means and Standard Deviations for Total Compromise

The Total Compromise increases as the number of goal relationships in the Proposals
increases for both ordering heuristics as well as the random strategy. The Compromise
heuristic outperformed the Random strategy in four of the five goal relationship levels
used in the experiment, while the High-Low heuristic was better than the random
strategy in all five levels. However, the Compromise heuristic did not cousistently
outperform the High-Low heuristic.

The means and standard deviations of the number of hierarchies preserved using
each strategy on the Proposal sets with an increasing number of goal relationships
is shown in Figure 5.2. The number of hierarchies preserved decrease as the number
of goal relationships in the Proposals increase for both ordering heuristics as well as
the random strategy. The Compromise heuristic outperformed the Random strategy
in four out of the five goal relationship levels tested, and the High-Low heuristic

was better than the random strategy only for Proposals with 10% goal relationships.
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Percent Relabonships
Goal Rel. | RANDOM | HIGH-LOW | COMPROMISE
10 10.10(0.74) | 10.20(0.79) 10.30(0.68)
20 10.00(0.67) 9.70(0.68) 9.90(0.57)
30 9.50(1.08) 9.50(1.18) 9.80(0.92)
40) 9.20(0.79) 9 20(0.92) 9.60(0.84)
50 8.50(1.18) 8.30(1.34) 9.00(1.49)

Figure 5.2: Means and Standard Deviations for Numnber of Hierarchies Preserved

Compromise outperformed the High-Low heuristic at all goal relationship levels.

The means and standard deviations of the Final Plan rating obtained using each
strategy on the Proposal sets with an increasing number of goal relationships is shown
in Figure 5.3. The overall trend is downward for both ordering heuristics as well as
the random strategy as the number of goal relationships in the Proposals increase.
There is a peak that occurred between 30% and 40% goal relationships. The Com-
promise heuristic outperformed the Random strategy only at 40% goal relationships.
and the High-Low heuristic was better than the random strategy at 10% and 40%.
Compromise outperformed the High-Low heuristic only at 40% and 50% goal rela-
tionships.

The means and standard deviations for the number of nodes visited using each
strategy on the Proposal sets with an increasing number of goal relationships is shown

in Figure 5.4. The trend for the High-Low heuristic as well as the Random strategy is

o
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Figure 5.4: Means and Standard Deviations for Number of Nodes Visited

upwards, while the trend for the Compromise heuristic is downwards as the number of
goal relationships in the Proposals increase. The Compromise heutistic is mote costly
than the High-Low heuristic and random strategy at all levels of goal relationships.
The High-Low heuristic is more costly in three of five levels.

The results of the analysis of variance performed for Total Compromise is shown
in Table 5.2 and Table 5.3. The Multivariate test for the overall effect of strategy
used to prune the CPS was significant at a = 0.006° (Table 5.2). The individual
contrasts performed indicated that the difference between the Compromise and the

High-Low heuristic was not significant, but the High-Low and Compromise heuristic

produce a different effect than the random strategy with «a 0.001" (‘Fable 5.2)

The Multivariate test for the overall effect of the number of goal relationships was

0.001¢ (Table 5.2). The individual contrasts indicate that a

significant with o

significant linear trend is present in the Total Compromise as the number of goal
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Multivariate Tests of Significance for Strategy
Source of Vanation || df F Sig of F
Between Group 2 1059 0.096°
Within Group 8

Individual Contrasts for Strategy

Source of Variation || Sum of Squares df Mean Squares F Sig. of F
CP vs HL Between Group 899 1 899 013 0.725
Within Group 616.07 9 68.45
(CP+HL) vs RN | Between Group 111088 1 1110.87 23.44 0.001°
Within Group 42654 9 47.39
Multivariate Tests of Significance for Goal Relationships
Source of Variation I df F Sig. of F
Between Group 4 23.04 0001¢
Within Group 6
Individual Contrasts for Goal Relationships
Source of Vanation || Sum of Squares df Mean Squares F Sig.of F
LIN Between Group 22271.15 1 22271.15 77.89 0.09
Within Group 2573.16 9 285.91
QUAD | Between Group 32759 1 32759 043 0.529
Within Group 6869.99 9 763 33
CUB | Between Group 13.21 1 1321 .03 0 863
Within Group 375117 9 416.80
FOUR | Between Group 6295 1 62.95 0.091 0.769
Within Group 6190580 9 688.42

Multivanate ‘lests of Significance for Strategy vs Goal Relationship

Source of Variation || df F Sig of F
Between Group § 1.24 0.52
Within Group 2

Table 5.2: Analysis of Variance Total Compromise

relationships in the Proposals increase with a = 0.0¢ (Table 5.2). The Multivariate

and individual contrasts testing the trend for total compromise with each heuristic

and the random strategy individually indicates a significant linear trend present in

all three cases (Table 5.3).

The results of the analysis of variance performed for the Number of Hierarchies

preserved is shown in Table 5.4 and Table 5.5. The Multivariate test for the overall

effect of strategy used to prune the CPS was not statistically significant. The Multi-

variate test for the overall effect of the number of goal relationships was significant

with a = 0.011° (Table 5.4). The individual contrasts indicate that a significant
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Multivariate Tests of Significance for Random Strategy
Source of Variation || df F Sig of F
Between Group 4 2798 0.001
Within Group 6
Individual Contrasts for Random Strategy
Source of Variation || Sum of Squares df Mean Squares FoSig of ¥
LIN Between Group 957991 1 9579.90 62 86 0.0
Within Group 13715 9 152.39
QUAD | Between Group 115.92 1 11592 036 0.561
Within Group 2862.21 4 31802
CUB | Between Group 3026 1 3025 0.14 0715
Within Group 1014.15 9 212.68
FOUR | Between Group 13.69 1 13.69 006 0 811
Within Group | 202179 9 224 64
Multivariate Tests of Significance for High-Low Strategy
Source of Variation || df F Sig. of I’
Between Group 4 27.9% 0 001
Within Group 6
Individual Contrasts for High-Low Strategy
Source of Variation || Sum of Squares df  Mean Squares F'oSig of F
LIN Between Group 779760 1 779760 99 86 U
Within Group 7027 9 TR OR
QUAD | Between Group 138.96 1 13896 054 0479
Within Group 229656 9 255 17
CUB | Between Group 0.02 1 0.02 0 0 w4
Within Group 1631.08 9 181.24
FOUR | Between Group 2170 1 2170 0099 0.759
Within Group 185493 9 217 21
Multivariate Tests of Significance for COMPROMISE Strategy
Source of Variation || df F Sig. of F
Between Group 4 6.03 0.027
Within Group 6
Individual Contrasts for COMPROMISE Strategy
Source of Variation |} Sum of Squares df Mean Squares F'oSig of ¥
LIN Between Group 522758 1 522758 2164 0 001
Within Group 217427 9 241.58
QUAD | Between Group 773 1 7735 0.32 0.586
Within Group 218133 9 242.37
CUB | Between Group 13582 1 13582  1.11 0319
Within Group 1096.80 9 121.87
FOUR [ Between Group 216.11 1 216.11  0.61 0 450
Within Group 320457 9 356.06

Table 5.3: Analysis of Variance Total Compromise Within Each Strategy
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Multivanate Tests of Sigmificance for Strategy
Source of Variation | df  F Sig of F

Between Group 2 4.06 0 061

Within Group )

Multivartate Tests of Significance for GGoal Relationships

Source of Vanation || df F Sig of F

Between Group 4 8173 0.011¢°

Within Group 6

Individual Centrasts for Goal Relationships

Source of Variation {| Sum of Squares df Mean Squares F  Sig. of F

LIN | Between Group 41.81 1 41.81 31.75 0.0°
Within Group 11.85 9 1.32

QUAD § Between Group 1.37 1 137 085 0.380
Within Group 1448 9 1.61

QUB | Between Group 085 1 08 1.03 0.337
Within Group 748 9 0.83

FOUR | Between Group 07 1 .07 0.03 0 857
Within Group 17949 9 1.99

Multivariate Tests of Signmificance for Strategy vs Goal Relationships

Source of Variation || df  F Sig of F

Between Group 8 1.0 0.590

Within Group 2

Table 5.4: Analysis of Variance Number of Hierarchies Preserved

lincar trend is present in the number of hierarchies preserved as the number of goal
relationships in the Proposals increase with @ = 0.0° (Table 5.4). The Multivari-
ate and individual contrasts testing the trend for number of hierarchies preserved
with each heuristic and the random strategy individually indicates a significant lin-
ear trend present in the High-Low heuristic and the random strategy, but not in the
Compromise Strategy (Table 5.5).

The results of the analysis of variance performed for the Final Plan rating is
shown in Table 5.6. The Multivariate test for the overall effect of strategy used to
prune the CPS was not significant. The Multivariate test for the overall effect of
the number of goal relationships in the Proposals on the Final Plan rating was not
statistically significant. The Multivariate test for the trend in the Final Plan rating

as the number of goal relationships on the Proposals increases for each heuristic was
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Multivariate Tests of Significance for Random Strategy

Source of Varnation {| df F Sig of ¥

Between Group 4 100 0.008

Within Group 6

Individual Contrasts for Random Strategy

Source of Variation || Sum of Squares df Mean Squares FSig of ¥

LIN Between Group 16.0 1 16.0  34.28 00
Within Group 42 9 0.47

QUAD | Between Group 0.71 1 071 15 025
Within Group 428 9 047

CUB | Between Group 00 1 0.0
Within Group 38 9 0.42 00 10

FOUR | Between Group 020 1 0.20 31 0 542
Within Group 599 9 067

Multivanate Tests of Significance for HIGH-LOW Strategy

Source of Variation | df F Sig. of F

Between Group 4 561 0.032

Within Group 6

Individual Contrasts for HIGH-LOW Strategy

Source of Variation || Sum of Squares df Mean Squares FoSig of F

LIN Between Group 1849 1 1849 2764 0 001
Within Group 6.01 9 067

QUAD | Between Group 057 1 057  0.58 0 464
Within Group 892 9 0 99

CUB | Between Group 081 1 0 81 1.97 0193
Within Group 3690 9 041

FOUR | Between Group 0.00 1 000 000 0 964
Within Group 590 9 0.66

Maultivariate Tests of Sigmificance for COMPROMISE Strategy

Source of Variation || df F Sig of F

Between Group 4 3.7 0.073

Within Group 6

Table 5.5: Analysis of Variance Number of Hierarchies Preserved within Each Strat
egy
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Multivariate Tests of Significance for Strategy
Source of Variation {{ df T Sig of F

Between Group 2 012 0.892
Within Group 8
Multivariate Tests of Significance for Goal Relationship
Source of Variation || df F Sig. of F
Between Group 4 3.59 0.080
Within Group 6
Multivariate Tests of Significance for Strategy vs Goal Relationship
Source of Vanation | df F Sig. of F
Between Group 8 0.27 0.928
Within Group 2
Multivariate Tests of Significance for Random Strategy
Source of Variation {| df F Sig. of F
Between Group 4 1.69 0.268
Within Group 6
Multivariate Tests of Significance for High-Low Strategy
Source of Variation || df F Sig of F
Between Group 4 311 0.104
Within Croup 6

Multivanate Tests of Significance for COMPROMISE strategy
Source of Vanation || df F Sig. of F

Between Group 4 13 0.368

Within Group 6

Table 5.6: Analysis of Variance Final Plan Rating

not statistically significant.

The results of the analysis of variance performed for the Number of Nodes visited
is shown in Table 5.7 and Table 5.8. The Multivariate test for the overall effect
of strategy used to prune the CPS was significant at a = 0.0° (Table 5.7). The
individual contrasts performed indicated that the difference between the Compromise
and the High-Low heuristic was significant at @ = 0.0° (Table 5.7), and the High-Low
and Compromise heuristic produce a different effect than the random strategy with
a = 0.0° (Table 5.7). The Multivariate test for the overall effect of the number of goal

relationships was not significant. The Multivariate and individual contrasts testing
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Multivariate Tests of Significance for Strategy
Source of Vanation || df F Sig of ¥

Between Group 2 189.87 0.0¢
Within Group 8
Individual Contrasts for Strategy
Source of Variation || Sum of Squares  df Mean Squares PSS of I
CP vs HL Between Group 3613692996 1 36136920.96  391.50 0ot

Within Group 83072264 9 02302 51

(CP + HL) vs RN | Between Group 12068898.61 1 12068808 61 416.01 0o
Withir: Group 261097.05 9 29010.78

Multivanate Tests of Significance for Goal Relationships

Source of Variation || df F Sig. of F

Between Group 4 1.30 0.367

Within Group 6

Multivariate Tests of Significance for Strategy vs Goal Relationships

Source of Variation {| df F Sig. of ¥

Between Group 8 088 0.634

Within Group 2

Table 5.7: Analysis of Variance Number of Nodes Visited within Each Strategy

the trend for the number of nodes visited with each heuristic and the random strategy
individually indicates a significant linear trend present in the High-Low heuristic and

the random stiategy (Table 5.8).

5.3 Discussion of Results

Discussion of Total Compromise Metric

The assumptions made about the benefits obtained by using the hicrarchy ordering,
hevristics are statistically supported by the Total Compromise metric. The Com
promise and High-Low heuristic performed better than the random strategy. The
performance of the Compromise heuristic and the High-Low heuristic are close. The
value of the compromises that must be made by the hierarchy ordering heuristies
or the random strategy tend to increase lincarly with the number of goal relation
ships. An interesting observation is that the Compromise heuristic performs at a

level roughly equivalent to the high-low heuristic, but chooses hicrarchy orderings
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Multivanate Tests of Sigmificance for Random Strategy

Source of Variation || df F Sig. of F
Between Group 4 41.14 0.0
Within Group 6 |
Individual Contrasts for Random Strategy ]
Source of Vanation || Sum of Squares df Mean Squares F Sig. of F
LIN Between Group 73170.25 73170.25 84.03 0.0
Within Group 7836.45 870.72
QUAD | Between Group 4469.15 4469.15 5.1 0.050
Within Group 7889.06 876.56
| CUB™ | Between Group 72.25 72.25 0.08 0.783
Within Group 8061 05 895.67
FOUR | Between Group 1431.43 143143 0.65 0.441
Within Group 19789.96 2198.88
Multivariate Tests of Significance for HIGH-LOW Strategy
Source of Vanation || df F Sig. of F
Between Group 4 1513 0.003
Within Group 6
[ Individual Contrasts for HIGH-LOW Strategy ]
Source of Vaniation || Sum of Squares df Mean Squares F Sig. of F
LIN Between Group 73116.16 73116.16 71.09 0.0 |
Within Group 9256 84 1028.54
QUAD | Between Group 4412.83 4412.83  2.55 0.145
Within Group 15575.86 1730.65
CUB | Between Group 7.84 7.84 0.0 0.94i
Within Group 12015.16 1335.02 0
FOUR | Between Group 7755.57 7755.57 3.22 0.106
Within Group 21657.31 2406.37

Multivaniate Tests of Significance for Compromise Strategy
Source of Variation [ df F Sig. of F
Between Group 4 196 0.220

Within Group 6

Table 5.8: Analysis of Variance Number of Nodes Visited within Each Strategy
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independent of the hierarchy's actual rating.

In the current implementation. the compromise at a given NORList is compared
to the value of another hierarchy when mark_ineligible() is called. Thus, multi-
ple compromises in the same hierarchy do not impact upon the Joint Plan creation
(ie., the path select() takes), only the immediate impact of the current possible
compromise is used. We conjecture that it may prove better to keep a running total
of the compromises made at the XORLists as select() moves down the hierarchy.
Once the Total Compromise for a given hicrarchy has exceeded some bound, it may
be preferable to backtrack and attempt to run select() down a different path in
the hierarchy. The exact bound would best be determined by further experimenta
tion, but may be related to the value of the hierarchy. A pilot study examined a
modification to the XORList: :select () routine so that XORL1st: :select () wonld
backtrack if the compromise it would make was greater than the compromise that
was passed to it from a parent. The results of the modification did not indicate a

significant improvement to the heuristic.

Discussion of Hierarchies Preserved Metric

The assumptions made about the benefits obtained by using the hierarchy ordering
heuristics are somewhat apparent in the number of hierarchies preserved. While ex-
amining the raw data. it is found that the Compromise heuristic is a step in the right
direction. The superiority of the Compromise heuristic in preserving hicrarchies was
not confirmed at a 95% confidence level, but we could confirm it at a 0 93 confi
dence level. For the High-Low heuristic and Random strategy, a linearly decreasing
trend was observed in the number of hierarchies preserved as the number of goal
relationships increased. However the same trend was not evident in the Compromise
heuristic.

A detailed analysis of the execution flow of Consensus with respect to the results
of this metric showed that the Compromise heuristic successfully retained as many
hierarchies as the other metrics (or better) in every instance except one. As stated in

chapter 4. the Compromise heuristic used the tie breaking mechanism of counting the
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number of goal relationships along the principal path in the hierarchy for hierarchies
with the maximum compromise. This tie-breaking heuristic seems to be a reasonable
one, but it does not always result in the best solution because a single goal can knock
out several other hierarchies. More important than just counting the relationships
is the “position” of the relationship, resulting in its actual potential to knock out
another hierarchy. To actually use the position of the goal to determine hierarchy
ordering would require following the relationship to the other hierarchy. This would
be complicated and was not pursued. However, the heuristic should (on the average)
be better than a simple random selection. In the cases when it failed, it was partly
because all experts made the same choices. These same choices were made because
the number of goal relationships seen by all experts is the same. This results in
the same, possibly erroneous, choices in a few cases. Other techniques, although
individually inferior to the heuristic used, occasionally worked better with multiple
experts because of the diversity of opinion. The Final plan was selected from a more
diverse group of Joint Plans, and this would help to weed out bad Joint Plans. Note
that this did not occur often. There were only a couple of cases where the other
hicrarchies retained more hierarchies, and in those specific cases this lack of diversity
of opinion was found to be the cause of Consensus failing to select a Final Plan with

more hierarchies.

Discussion of Final Plan Rating metric

The assumptions made about the benefits obtained by using the hierarchy ordering
heuristics are not evident in the Final Plan rating. While the raw data indicated that
the ordering heuristics performed slightly better than the random strategy in some
cases there was no statistical confirmation of this effect. The raw data also seemed
to indicate a decrease in the Final Plan rating as the number of goal relationships
increased, but again this effect was not confirmed. It would seem that the bene-
fits obtained as measured by the Total Compromise and the number of hierarchies
preserved did not translate into Final Plans with better overall ratings.

In all experiments, the appropriateness of the metrics chosen should be carefully

95



examined. The Final Plan Rating metric is unlike the other metrics used. in that it is
a derived quantity. It is a formula created by the system designer, based upon other
criteria or metrics, to produce a number expected to reflect the “worth” of the Final
Plan. Finding appropriate metrics upon which to base the Final Plan rating is an
experimental process, but realistically. no set of metrics and weights will be snitable
for all problems [17].

Another reason for the lack of differentiation between the Final Plan ratings for
the various hierarchy ordering techniques may be in the way ratings were assigned to
the goals. In an effort to reduce experimenter bias, the proposal generator program
randomly assigned rating to the goals, something that an expert system is unlikely
to do. The distribution of ratings among goals in a Proposal is not scen as directly

related to the work in this thesis, and so will be pursued in future work.

Discussion of Num.er of Nodes Visited metric

The assumptions made about the relative cost of the Compromise heuristic compare
to the Random and High-Low were apparent in the results of number of nodes vis
ited metric. The Compromise heuristic was clearly more computationally expensive
than the other two heuristics. This can be attributed to the overhead for both the
computation of the compromise value. and the determination if a hierarchy wounld be
eliminated by the resolution of a goal relationship.

The general trend for the compromise heuristic in this cost metric was to de-
crease a+ the number of goal relationships increased. This can be attributed to two
effects: The declining number of hierarchies as the number of goal relationships in
creased. and the larger number of XORLists made ineligible allowed the resolution of
goal relationships at a lower level in the hierarchy. The general trend for the other
two heuristics was to increase the number of nodes visited as the number of goal
relationships increased. This can solely be attributed to the number of times the
routine to mark another goal ineligible was called, as neither of these heuristies used
backtracking.

The original assumptions that were made concerning the benefits of using the hi-
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erarchy ordering heuristics are supported by the Total Compromise metric, somewhat
apparent in the number of hierarchies preserved, but not evident in the Final Plan
rating. As expected, the cost of the Compromise heuristic is greater than the cost
of either the High-Low heuristic or the random strategy. However. the cost of the
High-Low strategy was close to the cost associated with the random strategy. The
trends observed as the number of goal relationships increase, indicate that the num-
ber of highly rated elements in the CPS that are discarded when using the hierarchy
ordering heuristics or the random Strategy tend to increase linearly with the number
of goal relationships. However, the Compromise heuristic proved to be more robust
at preserving hierarchies as the number of goal relationships increased.

Thus, the High-Low heuristic presents a low cost alternative to the Compromise
heuristic when preserving hierarchies is not a critical issue.

Our goal in this research is to study “real-world” problems and determine the
important factors, metrics, and heuristics in distributed problem solving systems.
We defined the metrics first and then applied them to the simulated problems of the
real world. There seems to be no definitive way of coming up with these metrics.
and defining them would be an iterative and learning process. It is likely that these

metrics will change as we discover more from further experiments.
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Chapter 6

Conclusions

If I had it to do over again, I would rather have learned to play the puano.

- Carol DeKoven, after her Master of Computer Science thesis defonse

6.1 Conclusions

To cooperate successfully. expert systems must exchange information to plan thei
actions. In this thesis, we have proposed a protocol called Consensus, which is suitable
for distributed planning. A number of heuristics have been used to tackle this complex
problem. In a step-by-step manner, the Consensus protocol produces a plan which
the cooperating expert systems will follow. The protocol is considered distributed
because the input of all the expert systems is used to constract a plan, and they
jointly select it.

A prototype implementation of the Consensus protocol consisting of about 4000
lines of C++ code was created, and it provides a basis upon which future CDPS
experiments can be performed. A parameterizable Proposal generator, consisting, of
about 2000 lines of C+++ code, was used to provide input to the Consensus program.
Using the implementation of Consensus we developed, and the input provided by the
proposal generator, an experimental analysis was carried out to study the performance
of the planning protocol.

For the experimental analysis, we have proposed four metries: the Number of
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Nodes Visited in the Common Planning Structure which indicates the computational

complexity; the Number of Goal Hierarchies in the Final Plan, which is an indirect
measure of the quality of the plan; Total Compromise value which is a measure of
the inability to make the best choice because of interrelationships among goals; and
the rating of the Final Plan.

The three heuristics presented in the thesis, namely Compromise, High-Low, and
Random, have been studied with respect to the above metrics and detailed results
are presented in chapter 5. The compromise heuristic performed best in 4 out of
5 goal relationship levels with regard to the preservation of goal hierarchies in the
plan, although statistical significance at only the 93% confidence levr! was achieved.
The High-Low heuristic performed similar te the Compromise heuristic with respect
to the Total Compromise metric. However. the computational cost as reflected by
the Number of Nodes Visited metric was much greater for ithe Compromise heuris-
tic. Thus. if the number of goal hierarchies preserved is important. the compromise
heuristic should be used. otherwise. the high-low heuristic provides a lower cost al-
ternative. The overall conclusion is that the consensus protocol is a viable protocol
for distributed planning.

The experiment revealed a counter-example to the common belief that reaching
an acceptable solution is easy if all expert systems agree on the solution. We showed
that inferior techniques, if diverse among the expert systems, may provide results
comparable to an individually superior technique. After completing this thesis. in
the last couple of weeks. we have found that an observation similar to the above

effect was made by another researcher [28].

6.2 Future Work

The size and scope of the Consensus protocol were such that it was impossible to
implement every idea. The nature of this work was experimental. leading to iterative
refinement of the program. It is hoped that this will continue in the future, with the
possible implementation of the following refinements:

The ratings of goals is currently static - the ratings are assigned by expert systems,
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and merged by the CPS creation routines. Instead. a syvstem whereby the ratings of
goals are updated as the pruning of the CPS progresses would be a useful addition,
albeit at a greater computational cost. A technique whereby the desirability of goals
moves down the hierarchy. and the likelihood of success moves up the hierarchy is
envisioned. A static version of this has already been implemented to provide goal
ratings in the proposal generator.

Static beliefs are currently used between the expert systems. Two methods would
be acceptable replacements for it: In the first, an expert system would send its own
belief in its rating along with the rating, in essence a confidence factor similar to
that used by Shortliffe in MYCIN {37]. A second alternative would have each expert
system familiar with the areas of expertise of other expert systems in its Consensus
group, and weight the goal ratings it receives from it accordingly. The rating would
thus depend both on the goal and the expert whereas the current system depends
only on the expert. Either of these techniques would allow us to relax the constraint
that all experts in a Consensus group are able to rate arbitrary goals.

Consensus assumes that an expert system knows which information to send in a
Proposal. The information that should be in a Proposal should be further investy-
gated. but this is bevond the scope of the current work.

While creating a Joint Plan, Consensus does not look at the epoch in which a goal
to be chosen appears. The current Joint Plan rating formula makes it advauntageous

to sel~ct goals in the earliest possible epoch.
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