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ABSTRACT ~

s

[

'CONJUGATE GRADIENT VERsUS o

. C SPARSITY EXPLOITING QﬁASI NEWTON ALGORITHMS'

. ' ’ ' IN UNCONSTRAINED MINIMIZATION T

) i Janin T. Jadotte. ’
. ~ Fl ,
. . . 3
‘ This thesis examines unconstrained minimization pfoblems from the
. * . particular point of view of sparsity. ., We study the two main types of

~

- gradient methods, nameli Conjugate Gradient and Quasi Newton, with empha-
sis on a class of Sparsity Exploiting Quasi Newton algorithms.' This

class has been the subject of sany recent papers.and the resulting algor-

ithms 'represent a significant improvement over the Conjugate Gradient
and the standard Quasi Newton algorithms. We present .some numerical
reéults for a selection'of these algorithms. Fimnally we éompafe the
respective advantages and inconveniepées of using either one of the dif-

4 . - .
- ferent classes of algorithms. , ) ¢
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‘ CHAPTER 1
INTRODUCTION
1.1 Formulation of the Problem

P . .

\

e

The problem we are interested in is to . .

minimize f(x) , x € E" (1.1)
. where f is smooth, i.e. has at least continuous second derivatives.
. Many papers d?aling with this problém have been publisﬁed in the last
' R " few years. Our interest in the subject is based on the conjugate grad-
ient.(CG) methods as introduced by Hestenes and Stiefel [21] for solving
linear systems and adépted to (1.1) by Fletcher and Reeves [ 17!, and on
> the éuasi—Newtom (QN) methods as introduced by Davidon [8] and clarified
by Fletcher and Powell [ 18], Together the two classes of algorithms form
- o ‘ ibe main gradient types of algorithms. They require the coméutationréf

p'thg objective function f and of its first derivafives only, although

: £ may be assumed to have second or higher derivatives.

.
' M r

i ) . Recently McCormick and’' Ritter [ 25] considered the question, of the
relative merits of using each of these classes. Their analysis showed

. that QN methods‘converge faster than CG methods in general. Th# result
confirmed what expe;imentation had already suggested. On the Jther
‘hand, CG algorithms require only ;rder n storage locations to be iﬁple—
mented while their QN counterparts normally require order n? . So, fqr
large 'n , a user may not be able to use QN methods wben sufficient stor- )
age is not available. 1In this case, the usual alternative ié to turn to

. CG algorithms because of their low requiremen} in terms of storage. In

this thesis we will be particularly interested in these large problems,

L
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. ) ’ In the last few years, two possible‘approaches to large problems

v

have been investigated. The first one uses the fact-'that for large n ,

3
"the matrix of second derivatives (the Hessian) is very often sparse. '

1

Assdﬁing the exact sparsity pattern to ‘be known, QN methods have been

4 modified- to take advantage of that fact in“&?ﬁ?r*éo reduce—sgorage re- -
quiremeﬂts. In particular they do not revise the zero elements (or even
known constants) of the Hessién at each iteration, unlike the.standard

.

QN metRods. The resulting algorithms developed by Powell [37],

. .
’ -

Toint [ 473], Shanno |41} and Marwil [24] preserve the relatively fast

convergence of the standard QN algorithms and at the same time do sub-

- stantially reduce the order n¢ storage requirement. Meanwhile, new . .

-
4

CG aigorithms have been deveioped. A new class, the mixed CG an£ QN'
algorithms, uses to advantage some recently stresseé features of the
CG methods [ 27} . The medified CG alporithms preserve the order n : . N
storage requirement of their predeceséoré while improving their conver-
. gence. We will discuss those algorithms elaborated by Powell [ 34},
Shanno [ 40] and Buckley [#6]. ' ’

In light of these developments, we ask ourselves: 1Is the cG
‘class comparable to the QN class for certain functions of large size?
To answer this question, we will first review in Cﬁapter 11 the standard
CG and QN methods. Then, in Chapters III and IV, we will present tbe
ideas upon whi;h the modified QN and CG methods are based as well as
some specific algorithms. Finally, following considerations on the
implementation of both classes, we will compare their relative éffective-
ness on some known test functions.

For th; sake of comparison we select criteria which we feel' is

‘

relevant. They are of two kinds: the first includes standard comparative
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statistics on the performance of an algorithm such as the numﬁer of
iterations and the number o% function evaluations needed to reach the /
minimum, and the execution time whenever possible. The second kind of
criteria refers to the two classes of algorithms as such. They take into
account the specific difficﬁrties in implementing and ﬁsing each class ‘
aé will be discgssed in Chapter V. As to our selection of algorithms to
be tested, it includes those belonging to the modified CG class, the
Sparsity Exploiting QN (SE QN) class and two standard algorithms from
the CG and QN families., This choice,‘with our question in mind, was
partially g?ided by the availability of test results for the algorithms.
)
. Our idea is to compare as far as possible the two classes of met- -
hods, not specific algorithms. 1In doing so, we are aware of .the diffi-
culty of evaiuating algorithms or classes of algorithms. Besides that,
therexﬂre limitations such as the non-uniform implementation of the al-
gorithms, the scarcity of resuits for problems of the size being con-
sidered and the limitation of time. Nevertheless, within those consid-
erations, we will hopefully come up with albrief guideline for users of
ninimization routines which thef may use to help in making a choice of

algorithm. It is understood that a good decision will always depend on

the user's evaluation of the situation.

1.2 Preliminaries

We, will use a standard notation encountered in many publications.
Unless otherwise specified, cépital letters will denote n * n matrices
and lower case letters will indicate column vectors or scalars. The
context should make the distinction cléar in the latter cdse. In the.

same vein, we now set the meaning of some symbols often used in this

thesis.

i N



‘ ' / . . Let Bk represent the approximation to the Hessian H at x
‘ / . . ‘

Similarly H

[}
X
|
>

-] '
approximates ' H at x,_ . We also set s
“ ’ .

k k |3 k+1 k

fk z f(xk) > B = g(xk) 2 Vf(xk) apd Y T Brep T By ¢ Finally the

// ) notation [d

; l,dz,‘--,dk] represents the subspace spanned by the set of

vectors di y 1=1,2,...,k. \

s

i . Throughout this thesis we will consider iterative methods of

approximatiﬁg the solution to (1.1). Thus, given an initial estimate

«
o
xy e g" , they generate a 'sequence of points XpsXgseeo which hopefully
. .
" will converge to a local minimum of f , say x . The k-th iteration
sets
) ‘ xk+1 = xl? + Akdk . (1.2)

where the point X, and the search direction’ dk are_known from the

previous iteration. We find x

C Kl by minimizing ¢(X) , where

p()) = f(xk + kdk) . (1.3)

This particular minimization problem is called a line search. If it is

solved exactly (as is possible for quadratic f ), it is said that it is

— N Pl

an Exact Ljne Search (ELS).

Y

Now, assuming that the sequence of points defined b&.(l.Z)—(1.3)
. AJ
converges, it is of prime importance to know the rate of convergence.

This gives 'a measure of the effectiveness of the algorithm and is as

important as the fact that the algorithm converges.

Definition 1. Assume that an algorithm generates a sequence of points

{xk] convergent to” x* . If for some norm |- ||, there is'an

« € [0,1) and .ko > 0 such that

.
\ ¢ .
o a
. s
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5

x*|| < al[xk - x+| K 2ky

- " - H

ey =

then the algorithm is said to be linearly convergent.

o 4 B

Definition 2. Consider the same sequence of points as in Definition 1.

If for some norm ]I-]I, there is a scalar).a' and nko 2 0 such-that

\

R = allx - S L (1.5)
then the aléorithm is quadratically convergeﬁt.x »
. , o -

Both rates of convergence defined by (1.4) and (1.5) are extreme;
B . t ' .

. - s

\

linear convergence is considered poor and quadratic cgonvergence is

rather an ideal for an algorithm and rare. Most of the known 51gorfthms

exhibit a convergence between the two extremes:. it is called a super-

linear rate of convergence, .

Definition 3., An algorithm is superlinearly convergent 1if there exists

. I}
0 , such that the relation

-1 ” )

a set of o, » where {ak

Py = 20 < alime =l .6

is true. .

&
[

Finallf, in all the occurences where the objéctive fuﬁction f
will be. assumed quadratic'(theré will be many), we will considétfit to
have the form ke . e

' f(x) = q(x) = %XTAx + bTx‘+ c .

E

3 .
'Y 3
o

o !
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. CHAPTER TI . .

5

STANDARD CG AND QN ALGORITHMS N

]

2.1 Standard CG Algorithms ‘
- , . -
' The CG method was first dévelopZd in 1952 by Hestenes and,

Stiefel [21] for the solution of linear systems Ax = C - Their pro-
cedure amounted to an n-step path to the §oluti§h: in 1964, Fletcher -

and Régves [17} adapted the methdd:to the closely related unc?nstrained
‘S minimﬁfation problem (1.1). Indeed, a;;uhing tha; the objective func-

. o tion is quadratic, we can see that sol:ing the necessary conditions»for

a local minimum, g(x) ='Ax # b = 0 , is equivalent to solving g.linear

¥ .
system, . .Furthérmore -their method was developed so as to be applicable

~

to non-quadratic functions. , The original CG algorithm for problem (1.1):

showed gome advantages over QN algorithms and many variants on'its
L 3 .
basic form have ensued in the last few years. The whole CG class

shares the property of requiring only a few n-vectors of storage and
they ;ttain the minimum in at mos£ n steps for f quadratic, The
fogmerffeature makes‘tﬁem particularly va}hable for large problems.

We wii% introduce in this chapter the concept of conjugacy in
relation to the conjugate direction methods. Then the original CG algor-

4

' © dithm will be presented along with some of the basic properties of the

CG class in_the quadratic case. Also we will derive an important gener-
\ .
alization of the original CG algorithm. Finally a discussion of the

application of CG methods to general functions will follow. ) .
o .

>

_Definition. A'set of vectors dk in E

T js said to be conjugate with

»

. I respect to the symmetric positive definite matrix A 1if and only if

~

. o 'd}:Adj =0 for 1i#73 . , - .
‘. ; > ! e ’ Y
. , /( . ' “
X . . /
/ , L N 3

— J ' [ ]
. ) : o 2 s ko s . ‘
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+ Lemma 1. 1f a set of nonzero vectors dk(k=l,...,n) is conjugate with

respect to a symmetric positive ‘definite matrix A , then they are 1lin-

early independent.

Proof: ‘See Luenberger [ 23], for tance. . &

.

The idea of conjugacy/is the Basis for the conjugate direction
methods. Consider the problem of minimizing a quadratic function. As
we have mentioned earlier, it is equivalent ‘to solving a linear system

Ax + b =0 . Then, given an arbitrary point x, and d

1 1"7"dn con-

jugate, the solution, x* say, according to Lemma 1, can be written as '

-a linear combination of them, i.e.

% - = ‘
X x1 aldl + ... 4 undn ‘2.1)

. n ~
or xk = x. + -2 a.d ’ (2.2)

L N
for some set of a; . Assuming that we can congtruct the di's , the

problem of finding x* would reduce to finding theé coefficients ui’.
Usually the directions are not given but defined diteratively. Thus

- . .

finding the solution x* can be interpreteg/6§ an n-step iterative pro-

is determined.

i v
cedure where, &dt each step, a new terT//ﬁidi

s
e

The.conjugate direction methods are_%ased on this interpretation

and accordingly, any quadratic function can be minimized in at most n
éteps. Furthermore, progress toward the minimum value of \f is constant

as this theorem states:

Theorem 1. -(Expanding Subspace Tﬁeorem) Let {di}2=1 be a sequence of
, % : .

conjugafe directions with respect to A . Then for anf il €g" , the

=,

)
~

sequence generated by

.

£

. - . .
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- X =x, +Ad ’ (2.3)

'

has the property that x +1 minimizes the quadratic f on the linear
. h R

varjety X ¥ Bk‘(where Bk = [dl’dz""’dk]) , providing each line

search is exact as in (1.3).°

Proof. The reader is referred to Luenberger [23] for a detailed'proof.ll

The proof is based on the fact that K41 minimizes a function

cover a linear variety only if g(x ) = gk+l' is orthogonal to that

k+1

space, 1i.e. B+l l-Bk . Thus it follows from the theorem that

'ngdi =0 , i<k . (2.4).

Also the theorem shows that if k = n , then Bn is the entire space

n , .
E and hence xn+1 is the overall minimum of f .

The conjugate gradient method is a conjugate direction method

»

where the successive di are defined iteratively and are given by fairly

simple formulae. The current sgirch direction is taken as a linear com-
bination of the current gradient and of the previous search direction

subject to a conjugacy requirement. We give a definition of t%e origi-

nal CG algorithm of Fletcher and Reeves.

Given an arbitrary x., € E" , set d. = -g. . Then for k 217
' 1 1 1 Y
until gk+1 = 0 , iterate on the steps:
. ‘ %k+1 = xkt+ Akdk . . (2.5a)
8,18 ‘ ‘ .
v .
B, = _li%_l_ﬂ , : . (2.5b)
™ B - N \ ~
\ .

(2.5¢)

.- - 3

.
u e

»
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p ) .
‘. where Xk in (2.5a) is determined by a line search.

3

Recently, Polak and Ribi&re [ 32] considered an alternate form of

<

.Bk ‘

except that - . !
T
_ Bre1 (Bran ~ B

k T

14
NS

. Their implementation is similar to that of Fletcher and Reeves "

(2.6)

In fact, both choices of Bk are made tb‘produce conjugate search di-

rections dk and are equivalent for f quadratic, as we will see later.

Now we state and prove the fundamental theorem of CG a{goritﬁms.

-

. Theorem 2. .Consider applying algorithm (2.5) to a quadratic f .

if it does not terminate at X, > we have A ' T
a) lgj.gy,--vhg ) = La Ag,% A" g ) 5

b) [dj,dy,.en,d] = [g).88),..0587 gy

k - 1.

7Y

T
©) dAd =0, i

Then,

(2.7)

(2.8)

(2.9)

Proof. We prove 5), b) and c¢) simultaneously by induction. First they

are true for k = 1 , by default. Now suppose that they are true for -

»

§<k.

"Then co#tsider (2.5a). If we multiply by A and add the column

vector b on both sides, we obtain
Bep = Bt M

~ A
~ . ®

By the induction hypotheses, both gk and Adk belong to [gi,...

* Thus, N

k
€
gk"’l [glyAgln"')A ~gl}

M

N A VA A e g S AR A PR Srarp e WV gy P g e P e TP T R e L o PP

- (2.10)

A

k '

gA gl] .

(2.11)

o

<
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At the same time, we have

s

k-1 :
Brel ¢ [gl,Agl,...,A .gll = [dl,dz,...,dk] ,(2.12)

is linearly independent of d, for .1 <k

since by Theorem 1,  dy

Bpel

providing Blsl #0. " Now (2.10) together with (2.11) and (2.12) imply

th?t -

. S k '
[gl’gZ’.."gk"‘l] - [g.ergls"‘)A gll s (2'13)

which proves, a). * ‘
A -~ v

To prove b), we consider (2.5¢). By (2.13) and the induction
hypothgsis (2.8), the result follows.

Now to prove c) for k+l , we write, using (2.5c)

Ad + 8 d Ad . (2.14)

dk+1 = “gk+1

For i < k , (2.14) is zero since the second term in the right-hand side
vanishes because of the induction hypotﬁesis c¢) and the first is also

zero because of (2.4) and since Adi € [dl’d2""di+ll . For the case

‘

i =k, we need to show\tﬂ!t B in (2.5b) is equivalent to

k

. . , . . |
(gk+lAdk/dkAdk) and it will follow that (2.14) vanlshes. |

\,
« We mention that a) and b) imply that e ; . - \
A | :
' ‘ T( N < : \
\) 8.8 = 0 for i<k. (2.15) , |
. /
Then T N o (2.16)
R k+1%k+1 k+1 "k+1 k . LT
é ’; . - o
= Akgk+lAdk ' (2.17)
since = A(xk+1 - xk) = AkAdk . -Sim{larly

B+l T By

Chaakb gl L e D I TR S P S

thaam Gl Ving 1 4 2 e Sk 1 b E '

N S
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holds. Thus we obtain a new set of search digections d

T T,

_ _ T
= (gk+l gk) dk (2.18)

’using (2:4). ’Finally

T T . Co
8.8y =.AkdkAdk , .(2.19)

a

LY

. ' | ) . ._.
and Bk def ined by the ratio (2.16) over (2.19) makes dk+1Adk =0 . Il

The theorem, in particular c), shows that the algorithm (2.5)
generates successive conjugate search directions. It also follows that

the choice of B (2.6) will do it too, since (2.17) implies that Eoth

k

definitions of B, are equivalent, So both algorithms (2.5), (2.6) will

k
minimize a quadratic function in at most n iterations and in fact, the

sequence of X will be exactly the same. !

One surprising feature of these CG algorithms is that they lose

their finite termination property if the starting search direction is not

\
the steepest descent direction, i,e, if d1 # -gl . In this case, the

rate of convergeice is usually only linear [7]. However they can be mod-
ified so as to recover that property. We will ‘'study two different ways

of doing it, which are referred to as the generalized or pre-corditioned

»

CG algorithm and Beale's method.

The first method uses a transformation of variables,

- ' 1

o z = H *x s (2.20)
H being any positive definite matrix. Then we apply the standard CG
-3

algorithm in the z-coordinates from =z, = H “x

1 The resulting algorithm

1
is a CG algorithm in the new coordinates and hence, finite termination

K which may be

Gt et r
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!

transformed back into the x-coordinates. We will show that the CG algor-

ithm which tﬂen results is equivalent to a modified CG algorithm applied
directly in the x-coordinates. - ' \

We will assume that f 1is quadratic and exact line séarches are

being used. The following ‘relations are important for the proof:

"

, o
Hg(x) SRR 3% 3))

- g(z) -

d(z)

e, - F , (2.22)
) where § and d are respectively the gradient and the search direction

¢

in the z-coordinates. In that new space, the steps (2.5a), (2.5c) -and

(2.6) become

i - .
Zyor = zk + Akdk . (21233)

~

& (8., - B)
¢ k+1 " "k+1 k

o)y
i
-

5 © (2.23b)
BBr '

-~

and dk+l -1 Bkdk ’ L | (2.23c),

using the Polak~Rib£§§?/§orm of Bk . Note that the line searches are

- . - ,
equivalent in both coordinates since 0 .

T4 T 3T ‘ )

Brardic = By Ay = B Yy (2.24)

f 4

Then using the transformations (2.21), (2.22) backwards and assuming an

ELS at each iteration, we obtain the new algorithm in the x-coordinates.

Given % and an arbitrary symmetric positive definité matrix H ,

set d; = -Hg, . Then for 'k 2 1 , iterate according to

i)

I Akdk , . R ' (2.25a).
T ] v‘ [
. gk"‘lH(gk"'l - gk) - » . (2-25b)
7 Bk =' - T , .
‘ . By gy
. [ A
\j 4 ’ G

. - e e ’ ‘ ' Ao
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- o, T s el LAt L Ter g ey SVPRER PR Pl o whaas

A U




P T e B L L O T o R i hatia at hate il Lo S5 23 v P & iy

» Phit

@ - N : ) d. = _Hgk'-‘-l + B d . ’ (2.25(’:)

k k

[}

. k+1

1

\ . J A ’ o . 'l '
Theorém 3. The pre-conditioned CG algorithm (2.25)" with d, = .-Hg, has
—— . . 1 1

\
' . -

the finjite termination property.

’

Proof. ?hat follows by considering (2.21). If §(z) = 0, then g(x) = 0

.
\
1Y

for the corresponding .4 since H is non-singular. And, as we said

earlier, @(zm) =0 for an m'<n 1if f(z},= f(H_ix) is quadratic.
. ~

-~

Hence we have that g(xm) = 0 for the same index in‘ . .

A+

The pre-conditioned CG alg$rithm has some other propertdes similar

-

to those of the standard CG algorithms in the quadratic case. For '

instahce, the gradient vectors are conjugate with respect to the metric ~
H ?

g;l;Hgi =0 for k>i. : (2.26).

But as a CG algorithm and in order to be practical, the matrix H must

v

nSt be.;tored. Moreover.it must be choéennso that the number of ariéh—
metic operations required to é%mpute expressions of the form Hv' stays
within qrder n. Those ideas will ge’exploéted in the definition of the
mixed algorithms studied in Chapter IV. A

Now to introduce Bgafg's method, we will do it, as is ugual, in

the context of applyidg CG algdrithmé to non-quadratic functioms.

Although we have so far examined only the quadratic case, the definmition

of the CG algorithms as stated is applicable to general functions since

the matrix A is not explicit anywhere in them. 'However, we need to

[
N . . ]
make some new considerations.

When applied to éuadratic f , the standard CG algorithms termin-

ate in at most n sfeps, provided‘tﬂgt dl = -8 - If not, it is known [ 7 )

f
g ]

—
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that their convergence is usually only linear, even for a quadratic f

Thus for a general function, although thé quadratic finite termination

«

no Jonger holds, it is certainly necessary to start with the negative

gradient. More can be said. Recall that a general smooth functign, by

Taylor's theorem, is approximately quadratic near the minimum. So, v

assuming that we start outside of the nearly quadratic region Q , we

need a steepest descent step once we reach Q in ogder to obtain gdod

ultimate convergence, This 1is especially clear if we imagine a smooth

function which is precisely quadratic in Q . If we did not do the

steepest descent step, convergence would be linear since we may consider
>

the first point in Q as Xy However if we have a mechanism to even-

tually ensure a steepest descent step in  , finite termination will

occur. The periodic use of the negative gradient direction is called a

!

v restart,, In fact, CGC algorithms using a restart strategy have been

established to be superlinearly convergent every n steps. The problem
is that we do not know when the nearly quadratic region Q has been

reached.

Fletcher and Reeves | 17] suggested a cycle of (n+l) iterations,

.~
3

d for k=0, n+l, Z(n+l), ... (2.27)

k+1 "Bk

dies

g . d otherwise . . (2.28)

desr = "8a1 * By

\
r

The scheme proved to be superior in practice to'applying the algorithms

a

in a continuous fashion. But it has the disadvantage that when restart-

ing the decrease in the value of the function along direction (2.27) is

‘usually less than that along the corresponding d, defineqd by (2.28):

k

Note indeed that, since d and dk, are conjugate, by Theorem 1,

k+1
a line search along (2.28) leads to the least value of f 1in the two-

-]

~
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dimensional affine set that contains and dk_, whereas in (2.27).

"B

-

the minimum is aloﬁg 841 only. So one would like to be afiowed to
restart with dk+l # B4l and still have the finite termination property.

Beale [1] addressed this problem and,proposed a‘method which
achieves the objective. He introduced the three-term recurrence formula
d

d (2.29)

el - Bl TR
where t < k is the index of the last restart direction. Now the re-
start step is defined by (2.28) and the other steps by (2.29). Some
features of Beale's method will be studied later in Chapter IV along with
Powell's restart progedure. Here we just méntion that in the quadratic“
case, the method dévelops conjugate search directions and finds the min-

*

imum of a quadratiec f in at most n iterations.

2,2 Standard QN Algorithms

QN methods are based on Newton's method for solving a system of

non~linear equations, F(x) =0, x € E' and F(x) = [fl(x),...,fn(x)]T .
Newton's method proceeds iteratively, i.e. from an initial estimate X

of the minimum x* , it attempts by successive approximations to improve

il . Starting with k = 1 , it sets
T
XK = X ¥ dk s 5 (2.30)
where t@e equation
' . = - . .
F (xk) dk F(xk) ' (2.31)

determinas dk R

N

F' "being the matrix of the f{irst derivatives of F

(the Jacobian). This algorithm can be easily related to the solution of
. .

the problem (1.1). Indeed we can look at,the system F(x) = 0 as the

BN At U MR TR Gl T ey W AT Sy it S8 P Sal v v WA 2L e e 8 P e e e e e e
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necessary first-order condition to be satisfied by any stationary point
x of a function f , when F = Vf . Then we have that F!(x) = V2E (x)

provided that f 1is at,least C2 . Thus (2.31) can be rewritten

2 . ‘
4 f(x)d = ~VE(x) , | (2.32)

or dk

assuming that the inverse Hessian exists at that point.

Newton's method has been analyZed extensively, It is known to
.converge quadratically under reasonable assumptions (see Ortega and
Rheinbolqt [30}). But that does not go without disadvantéges.

Broyden [3] has listed three Af thein and the most sérious, in his view,

1 ¥
is its failure to converge from a poor initial estimate x Second,

1
each iteration requires the solution of the system of linear equations
(2.32) to get dk . This is quite a costly operation Since it reduires

3

order n° arithmetie operations. Finally, (2.32) assumes computation

.

of the matrix “sz(x) at every iteration. This is not al@ays possible
or in any case, usually easy or convenient. Thus many modifications to
the original Newton algorithm have been developed. The Newton-like

family, as it is called sometimes, uses different techniques to take full

advantage of the computation of the Hessian; they will not be considered

here. Instea? we are concerned with a particular class of variants, the

-

Quasi-Newton (QN) class. There, computation of thé Hessian will rot be

required. Also we will not have to solve systems of linear equations
and a line search will be introduced in the definition of these algor-
ithms to make them stable in the sense of a regular progress toward the
minimum as in Theorem 1. ‘}k now present an introduction to a particular

7

sub-class of QN algorithms; specific members of that family and other

/o .

= -{v2£ (x )] ot (2.33)

DR

v -
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QN algorithms will be considered later_in the chapter.
© 'f N
i’
Given an initial estimgte X, and a positive definite matrix Hl

K

which is an approximation to the inverse Hessian at X set

- i ) dl = —ngl . (2.34)
. Then for k 2 1 , iterate on the steps
/_ .
‘ 1] = X + Akdk . (2. 35a) N o
' T T
HyyH S S - ;
K'k'k k k k T
Hk+ < Hk a T+ bk + Bkakwkwk ‘ (2.35b)

Ber1 ™ HearBre .(Z'BSC)

where sté%‘(2.35a) implies a line search along dk to determine Ak .

In (2.35b), Sk T Fel T %k and Yy = Bpep T 8 as set in the prelim-

inaries; and i : .

‘ . h kT

wk Ay

|

<

l

(2.354d) o \
o

|

T R
where a, = kakyk Fnd bk = 8.y - Finally, the parameter Bk in

(2.35b) (not to be confused with the same notation in 2.5b) defines the
"/ N

§ .
family of updates knowg*dé the Broyden family. For simplicity, we will

1

refer to it as

H . = U( H, B) . fz.as)

k+1 *k+1?

The case By = 1 1is known as the BFGS update and B, = 0 “gives the DFP

,///

update.
Historically, QN methods were ‘developed to préserve, as much as
possible, the fast convergence of their Newton predecessors while remov- )

ing their main disadvantages. For instance the line search implied by

"

et ndd L gh A4 ] N TCAWA Lo
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v ' (2.35a) and absent in Newton's algorithm makes the algorithm more stable

in that the value of the objectiv nction f decreases at.each itera-

tion. The line search can require a substantial amount of computation,

but it is con31dered as the prlce to pay for stabillty. To overcome the -
second disadvantage, QN algorfthms usually approxlmate in some sense,
the inverse Hessian and so do not have to solve lipear systems. Thus

comparing (2.35c) to (2.33), we can identify Hk with the inverse Hessian
t7 )

Y

[sz(xk)]-‘l , but in (2.35b), Hk+1 is given by a simple formula. So,
,/—\\

instead of solving a system of linear eq&ations, we only have a matrix-
vector multiplication. Finally, as we jtét said, the inverse Hessian is

approximated; this avoids the task of computing the matrix sz(xk)
-

This approximation Hk is revised or updated at each iteration as the
definition (2.35b) indicates. We now stress an important property of the
)

update procedure.

We first consider the case of a quadratic function, f(x) = q(x)

that we have V2f(x) = A . Recalling that S ?k and
Y T Bra1 T gk , it is then deduced that
Aék v ‘ ,‘ (2.37)
or' Aflyk =8 - (2.38)
y

‘ .’These relations are important in thatlthey give us information abqut the .
Hessian or its inver;e by evaluating the gradient éﬁy}wo points.

F?r generai functions whe%e fhe Hessia‘ and its in;erse are no
longer constant, clearly equations (2.37) and (2.38) do not hold. gut to

the extent that a general function can be locally approximated by a

quadratic, the same considerations as in the quadratic case apply. In

B - -

¢
[
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. ‘ (2.38), Am1 may be replaced by an.approximation to.the true inverse

Hessian H-1 , an approximation which will hopefully reflect the change
-~
,/

- N 3

in gradient from X, to X141 ° Thus any approximation to rﬁi} is

A -

I3

+

often required to satisfy a relation similar to (2.38), nameiy

Hen¥ic = Sg (2.39)
J

Thf;‘equation‘is known as the QN or the Secant edquation., In it, H

.

k+1

simulates property (2.38) of A—1 ;3 in this sense, it approximates the

inverse Hessian. X ;

I N Note that the QN equation does not determine Hk+l uniquely. So
more constraints are usually imposed on the matrix. Assuming that Hk
S was a good approximation to H Hk+1 shdﬁld retain| as much as pos-
sible the desirable properties of Hk . In other words, Hk+l is up-
] - V/ I .'.
dated from Hk and it is done in such a way that the information gathered
5 ) at the last iteration, e.g. the value of i1, is taken into account..

Let us consider the matrix updating problem in a more general
framework which will lead us back fo the Broyden update class (2.35b).
We are concerned with various ways o \Ezfjving at an update formula. For

instance, Broyden [2] suggested defining

k

5 T ) !

g Hk+l = Hk tauz o, l {2.40)
where the scalar ay, and the vectors u and Zk .are chosen so that
Hk+l satisfies the QN equation. More generally, we write -

Hk+l = Hk + Ek (2.41)
where E  is the correction or ubdafé matrix. It éﬁh be determined as

~

°

o

t\b
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\ . ’ ) .
a rank-1 matrix as in (2.40), or a rank-2 matrix as in (2.35b) or as a
minimum norm matrix as will be diquésed later. Thus, ‘the update mdtrix e
in (2.40) is of rank ome but is, in general, non symmetric. Often the

update matrix is required to be symmetric and to satisfy the QN equatiqn;

\ ‘ . ‘then it is' of rank two, in general. The minimum norm approach is some— o
\ what different. There, given Hk ,» a formula for Ek = Hk+i'— Hk ?s
\\ \ * derived- so that lﬁklllis minimum. for some norm and so that Hk+l " satis-,
. N

fies (2.39). But it turns cut that most of the minimum norm matrices are
of rank one or of rank two. In this thesis, we will examine separatély

the minimum norm approach which:?roves'effective in undertaking problems

[

: -  with specific requirements, such as sparsity in .the Hessian of the objec-
.+ tive function. . >
i The rank-1 and rank-2 algorithms are closely related in many ways.

For instance, it 'is shown in Huang [ 22] that both kinds of algorithms‘cah

: be obtained from a method of developihg algorithms so that they satisfy
" . v .

certain requirements, like the finite termination’property in the quad-

v

ratic case, Thug rank-1 and rank-2 algorithms are members of a broad »

e

class due to Huang. Alterpately, most of the well-known rank—z algor- -

' ithms may be derived from the appropriate rank-1 algorithm using a

symmetrization technique suggested by Powell [ 33] and developed by . .
o ‘ Dennis [9 ]. o / C ]

3

For minimization problems where the Hessian'is usually symmetric, o j

all rank-1 algorithms but-one have the undesirable feature of generating
/‘Y

non-symmetric updates. The unique $ymmetric rank-1 hpdate is derived-

by considering an update of the form

€

4

. T .
kal = Hk + a2 I . (2.42)

)

e g
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subject to the QN equation. It follows -that
f . ‘ . *

Hy -s)My =-s)

K’k k' k7K k N
. H o= W 4 3 . (2.63) N
~L L H ‘ . .

s )Tyr
15 S NN i
. .

The resulting algorithm, the symmetric single rank (SSR), has been stu-

died Byumény authors, for'example, Dixon [ 13] and showed good promise.

It had some desirable properties such as finite termination, since

-
3

-1 S
Hn+1 = A when f, is quadratic, and it performed well without exact

line searches. But usually the updates H gﬁre not positive definite

G

k+1
and the search directions (2.35¢) did not define descent directionsZ"To -

circumvent this numerical difficulty, some updating strategies were sug-
~ .

gested. Although the modified versions indeed improved the perforthance

of @pe original SSR, even better Tesults are obtained by some’ rank-2
algorithms., We will discuss possible reasons for that;° . .
Iy e ! ’ 3.
We study the family of rank-2 algorithms (2.34)-(2.35) for many

reasons. One of its members, the BFGS algorithm, is considered currently’

as the most éffective for the solution of (1.1). The same BFGS has some

specific properties which are be{ng used in mixed CG and QN algorithms ’
and also it perforﬁs well after appropriate modifications for sparse pro-

blems. First we examine the properties of the whole Broyden family.

’ Broyden's fémily of algsritims is that subclass of the Huang class

defined by (2.34)-(2.35) wher&t:eacorrection matrix to Hk is symmetric, ‘
» . \ +

of rank two and satisfies the QN/ equation., It can be seen from (2.35b)
v . ) . L
that Hk+1 is symmetric provided that Hk is, Thus, i) if H1 is chosen

i

symmetric, then every Hk(k 2 1) 1in the sequence of updates generated by

_ the Broyden family of updates is‘syhmétrij;/)S}mila;ly (although not so

-
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obviously), it can be pro&ed that H as given by (2.35b), preserves

ktl

positive definiteness. Indeed, if _Hk is positive definite, if ELS are

~
carried out and if Bk 2 0 , then Hk+l is al%? positive definite-(see
Powell [ 36] ). Even the assumption of ELS can be relaxed; ahe line

search is required to be accurate enough for Hk+l to be positive def-
inite. Hence, ii) ig Hl is chosen positive definite, line searches

are exact or sufficiently accurate and, Bk non-negative for all k ,

1

" then every Hk(k > 1) 1is positive definite in the sequences 7f‘up&ates

generated by (2.35b). .
An immediate consequence of ii) is that all search directions ~

(2.35¢c) are downhill diré&tions as

T ° T :
da1Biel = “BraiPieBhar < 0Lt (2.46)

This insures, at least in theory;ﬂfkat the algorithm considered is

stable. Finally, as an dmportant property of the Broyden family, we

prove that they have the finite termination property for f quadratic.

.

‘Theorem 4. kssume that f(x) = q(x) and ELS are used at ‘each iteration.

Consider applying the family of algorithms (2.34)-(2.35) to f with Hy

. ‘

positive definite and Bk =20 fof all k=21 . Then there exists an

integer 1 < m <o + 1 such that 'xm =x*; if m=mn + 1, then

N
. C .

-1

= A . .
Hn+l . . -
Proof. The proof will be done by induction; we will assume that we are
. ‘
at an iteration number m - 1 . We will prove that

[T
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N\ - . )
- Ay T - .
sAs, =0 1<3<ic< - 2.45
‘1 j -J m ) ‘ ( )
- and ' Hy, =s, 1<j<m . . (2.46)

, " A A J-
. ! .
Relation (2.45) indicates that the search directions are conjugate with

respect tp A since S, = X - X T Akdk . "By therconjugacy of the

.
“ L

vectors di , the minimum will be attai?ed in at most n iterationms,
i.e. for some 1 <m<nf§l, we will have x = x* by Theorem 2.

First we state a relation which we need in the proof. Thus,
3

\

Hk+lA?k = Hk+lyk = sy . (2.47)

which is true by (2.37) and the QN equation. . ’
Now the start the proof, (2.45) and (2.46) are true for m = 1 ,
. .
by default. Assuming now that they are true for m = p , we prove that

they hold for m = p + 1 ., Using the definition of 8; » i.e.

2
3

v

s, = X - X, we can write
i i:ﬁ i?

8, A*p +b=b+ A(xk+1 Sl T Spep et Sp—l) ,

+-A(sk+l + Sk+2”+ ee. ¥ sp~1

= 8.1 > o | (2.48)

By the induction hypothesis (2.45) and the Expanding Subspace Theorem,

-

¢ TN ' . » :

- = W < - . . . .
S8, =0 o lsk<p-1 (2.49) ‘

T T %

Then v 'skAHpgp = skgp =0 , . (2.50) :
using (2.47). Relation (2.50) can be written < i

/ ~
. sEAap =0 for 1£k<p-1 f/ . (2.51)

which proves (2.45) for m=p + 1 .

- ¥

).' * l ‘ \\j}

Finally, assuming ELS and using update formula (2'35b)'f£¢ have
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Hp+1Ask = A5k k<p (2.52)
=s , l<k<p | (2.53)

by induction. , T : Qé
. 1 + \ -
Nowfby taking i = n + 1 in (2.46) implies that Hn+ AA = A,

where A = (sl,sz,...,sn) is-a 'n x n non-singular matrix. Thus, we

v,

'obtain 4
Eo=a" . N )
n+l *

In practice, algorithms frequently depart’ from the theoretically Lo {
b

expected behaviour. For instance, Hk <;:Zf3.35b) may be positive def-

inite in theory and yet yiH may be practically zero if Hk is

'k

.

nearly singular because of round-off errors. Then Hk+l is no lonper et

}!f\\\\ compqtabfe'and the algorithm needs a strategy to go on. For that and
other reasons, there exist manyvimplementations of the same algorithm
usiné different techniques to circumvent numerdical difficulties. One
important factoy in implementing an algorithm is the line search uéed;
Although the proofs of theorems usually assume exact line searches, ik
is well known thgt in practice most implementations do not perform gxact_

n ' . A

line searches. Instead they use various strategies to compute Ak H ¥

for example, given Xy and dk , the ?ext point x + Akdk N?ay be

acceptable whenever it gives an acceptable reduction in the function N ’
value. . X o
! . .
Considering Broyden's family of algorithms, Dixon [ 12] proved

that the whole family generates an identical sequence of points X,

provided that théy are started with the same X1 . dﬁat ELS are used and !

4 . -
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v

Bk‘é o] for‘all k in (2.35b). Thus, Dixon's result suggested that the.

f .
kind of' line search used fwust play a great role in the reported differ-

ences among members of Broyden's family. This has been borne out in [ 13].
In this report, Dixon tested three.members of the family with various

implementations of line searches. Those members were the BFGS, the DFP
. ey

.

and the SSR. From his nuyerical results, ﬁe concluded the superiority
of the BFGS, over the other two. And he pértially attribute's the effec—
tiveness of the BFGS to not heing as sensitive to inexact searches as is
the DF?, for instance. Other experiments have been conducted that have
reinforced these Viéws, aé for exampfe in Shanno and Phua [ 42] .

We conclude this introduction to the standard CG and QN methods

~ by mentioning the relationship between the two classes. Firét, many well—

'
known algorithms of both classes belong to the same Huang class that has
the property of converging in at most n iterations for f quadratic.

Moreover it is also well knowﬁ,that the two classes distinguish each v
!

Ether by their storage réquirementé. However we will study, in Chapter IV,

o

\
a mixed class of algorithms which combine the CG properties such as the

O - .

order n storage requirement to the QN features of using a matrix sat-
isfying the QN equation (2.39). Some members of the new class also have

the finite termination property, as we will see.

N .

i e
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CHAPTER III

-»

DERIVING SPARSE ANALOGUES OF FULL UPDATES °

~

.

3.1 -Introduction‘ /

We mentionea in Chapter II that an alternate way of looking at the
update problem is theiminimum norm approach. Invthis chapter we will
examine this approach along with its application-to sparse probléms. The
idea was fiést introduced by Greenstadt [ 20] for the minimization prob-
lem (1.1) and it can be used to derive mo§t of the well—éﬁown rank-1 and
rank-2 updates such as the BFGS, the DFP and the SSR. It also provides
a geometrical interpretation of the update p;ocedure and leads to new
methods for solving sﬁarse problems. o

) ,

Thus we will study the concept of m;nimum norm update first in the
non-sparse or full'case. In particula;, the BFGS and the DFP update will
be derived through this approach as an eﬁamplé. Then we will present the
basic ideas of row updating as well as a technique of symmetrization of
rank~1 updates first suggested by Fowell:[23] and generdlized by Dennis [9].

Finally we will see how norm minimization and symmetrization are applied

to the derivation of sparje updates. 1In that matter we will examine
, : I

Toint's derivation of his sparse algorithm and a new method to generate

a sparse analogue to any given symmetric variable metric update due to

Shanno [41].

T
°

3.2 Norm Minimization and Symmetrization in Non-sparse Problems

The general form of the update probleﬁ 18 convenient'here, i.e.
given H , the current approximate inverse H¢ssiad, find H* = H + E

"\/ﬁﬁere' E 1is the update matrix. E is chosen so that H* satisfies the
QN equation, H*y = s . Since the ¢hoice is not unique, Greenstadt
< ¢

9

|

it )
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reasoned that from all the solutions, H* should be the closest to H ,
1 - .

in some sense. This prevents too large an increase in H , thus enhan-
1 + )

cing the stability of the algorithm. He formulated the problem in terms

of a minimum norm problem:

min|| E || = min]|| H* - H|| (3.1)
subject to ) '
Ey = s - Hy , ‘ (3.2a)
E=E . ) (3.2b)

N

Relation (3.2a) is equivalent to the QN eqﬁat;on: The most commonly used

norm to define (3.1) is certainly the Frobenius norm where

2 n n T .
Cradlg = 21 'ZlAﬁj = Tr(aA") . : (3.3)
J:

.

The abbreviation Tr 1is for trace. In his paper, Greenstadt used a

weigﬁted Frobenius norm defined by

, 2 | 2.,
e HP = | pER ;= Tr (WEWED) . . " (Beh)

-

Here P 1is a symmetric non-singular matrix and W = PTP 1is positive

t

¥

.definite.

To solve (3.1)-(3.2), setting r = s - Hy , he defined the

. Lagrangian function

S

6(E, 1, Q) = STr(WEWE') + AT (Ey~r) IEI 121 5. (E,.~E..)
,Q) = 5Tr + y-xr) + (E,-E..) ,
/ 2 =1 §=1 W13 3
- %Tr(WEWET) « Te| (By-0)AY] + Te[ R(E-EV)] .. (3.5)

ﬁy minimizing ¢ with resﬁect to E , he then obtainéé‘the rank-2
} < . . .
solution
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: /1 T T T T 1, T T T]
E = —— sy M+ Mys™ - Hyy M - Myy H - —ir—{y s-y My] Myy MI (3.6)
y My ©y My
- ¢ .
™ where M =W ' . One possible choice for M , suggested by Goldfarb [19],

3

is H* and that amounts to weighing E in ¢3.4) by (B*)é , whe B*
\
is the uqdate of the current approximate Hessian. This specific weight

can beijustified theoretically [ 11} . 1In fgét, replacing M by H* in

(3.6) giveé the famous BFGS formula which has been derived independentlf

by Broyden [ 4 ], Fletcher [ 6] and Shanno [ 39] using different approaches.
! - Another member of\the family (3.6) is the DFP update. It is a degenerate

member since M has to be replaced by the non-positive definite matrix

1
2 T v
H - Xﬁgx -5%— to obtain the DFP formula. We will see later how a
s'y] sy

broader family of updates than (3.6) can be generated by the Symmetriza-
tion technique.
Lifgus now look at the geometrical interpretation of the updating
'
wrocedure.' We said earlier that there are many symmetric solutions to
the prob%em of finding .H* = H + E such that H*y = s . Since H*
simulates the inverse Hessian, it seeﬁs reasonable to restrict it to the
set of matrices satisfying some specific property of the true inverse
‘ ' Hessian. In our ex;mple above, H* must obey the QN equation and be
symmetric. Thus one considers the set of matrices E satisfy; g (3.2);
k . this is easily ;een to form an affine set, say 4 . 'Then thefminimum
norm problem (3.1), i.e. find the closest H* to H which.is in 4 ,
’

1Y
amounts to projecting H orthaogonally onto 4 . Dennis and Schnabel [ 11]

have been able to derive many well-known updates in this way, i.e.

-
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: H* = P‘é_(u) St (3.7)
or B = P‘g,(B) (3.8)

where Pg is the projection operator onto the affine set 4 with respect

to the norm inducéd.by the matrix G . They have also generated sparse
updates in a similar way. But before going to the sparse case, we will
examine the symmetrization technique of:Dennié [91. The technique is
interesting in that it may be used to generate a broad class of fuli up~
daEes, as we will see. It is also readily applied to sparse updating.
Consider the general form of a rank-1 update for the in&erse
Hessian. It is éiven by solving the uypdate problem: find H* = H + uzT

subject only to the condition that H*y = s ; here u and z are

arbitrary. , The solution can be seen to:be

H = H + —E—TY—Z— L (3.9)
2y ' '

for any 2z . Although the update (3.9) leads to good numerical results
in solving systems of non-linear ;quations, it has the drawback of not

being symmetric in general, a usual requirement in minimization problems.

ot

So Dennis constructed

g

‘ T T .
H* = H + (s-Hy)z” + z(i—ﬂy) -~ BzzT , ' (3.10)

. z'y
where the last two 'terms in the right-hand side of (3.10) make it sym-

metric, assuming that H is symmetric. Then 6 1is chosen so that

8

ﬁ*y = s . To find this value, we post-multiply both sides of (3.10) by

y and use the condition on H* . Thus,

4




} \
-
- M

/f “ of D . The two sets of equalities are referred to as the row and the

(

r
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where Di* and D,y are respectively the

. . 30
. 2(s-tiy) Ty T : -
s = Hy + (s-Hy) + ~—~—f1——z - Bzz'y ' (3.11)
N VA y N
. ]
T . .
and 8 = iﬁ%ﬂzl—l : (3.12)
2 '
(z7y)
Then, (3.10) becomes : ’ l ‘.
T . T T T
% = H s (s?ﬂy)z + z(s-Hy) _ (s-Hy)'y _ zz . (3.13)

T T T
z'y z'y z'y

After

1]
nipulation, we can see that the update terms in (3.13) and

(3.6) are identiical provided that there exists apositive definite M = wl

-

such thdt My . However such an M exists if and only if zTy >0,
ennis's family of updates (3.13) for H is larger than
Greengtadt's (3.6). Note that the symmetrization technique is applicable
to the rank-1 update for B . We will apply it in the same way in the
sparse case later in this chapter. But to make the transition to the

sparse case easy, we state some basic results of linear algebra.

is the column vector

. Tl
A
First, we have that Z zizi = I where zi

i=1
with 1 as its i-th entry and 0 elsewhere,and I isthe n x n didentity

.
matrix. Then if D dis an arbitrary n X n matrix, we can rewrite it as

E. . E . .
D= ) 2.2D= ] &0D (3.14) .
B = el -
n n . ' ’
' or ) pe sl - ) D*_z? , ) (3.15)
=1 Y og=p MY

I

i=th row and the i-th column
¢

column forms of D .

\
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. 3.3 History of Sparsity Exploiting QN Updates ) Lo

The topic of sparse updating problems was first initiated by

Schubert [ 38] for the solution of non-linear equations F(x) = 0 by

QN‘methods, where we recall that F(x) = [fl(x),...,fn(x)]T and x € E" .

’

His motivation was that, especially for large problems, the expression for

some fj frequently happens to be free of some other variables. Explicitly,

i <

if fj(x)'would have the form xkxg, for example, then it would follow that

ij(x)

X,
i

=0 for i# 3, 1 # k. Thus the Jacobian could have many zero -

entries in known locations. Schubert's idea was to reflect any sparsity
present in the rows or columns of the Jacobian in its approximation. The
4observed convergence of the modified QN methods should be faster than
that of the standard QN methods since the appro§imate Jacobian takes into
account specific features of the true Jacobian. .
The technique developed by Schubert may be applied to QN methods
for the minimization problem (1.1). In this case, the Jacobian of F
corresponds to the Hessian B of the objective function f , as we e%—
plained in introducing the standard QN methods. But, unlike those, the
modified QN methods to be discussed now will directly approximate the
sparse Hessian since, in general, sparsity is not-preserved by the inver-

sion of a matrix. Now, assuming the zero pattern of the Hessian to be \ -

known, the initial approximate Hessian Bl is set to follow the same N |

sparsity pattern, Thus its entries are set equal to zero whenever the -

3 i«

corresponding element of the true Hessian is known; the other entries

are arbitrary, but usually non-zero. Schubert's technique amounts to not

]

updating the zero entries of Bk(k > 1) throughout the iterations.
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Based on that idea, the Sparsity Exploiting QN algorithms reduce the

4

order n?

storage locations requirement of the standard QN algorithms.
Such updates can be“generated through the symmetrization technique and

the minimum norm d4pproach.

»

3.4 Norm Minimjzation and Symmetrization in Sparse Problems

°

In our ﬁotation, while considering both methods, we will let §
be a symmetric matrix each of whose entries is 0 or 1; it will represent
the sparsity pattern-ef the Hessian. We also define S as the set of |
all matrices having the sparsity patt;rn of S, Thus for the rest'of

the chapter we will assume the current approximate Hessian B to be in

!

s .
Consider "Broyden's rank-1-.update for B ; it‘is the analogue of
.(3.9) for B, ‘ - :
T .
Bt =gy B2 “(3.16)
z's -

The second term in the right-hand side of (3.16)' is the update matrix E -

which we want to be in § , i.e. we want ' '

Eij = whenever Sij-= 0. . . (?.17)

For that, define a vector/ 2z(i) = Diz where Di 1s a diagonal matrix

v

o

and (Di)jj = Sij . The matrix D, is in fact reflecting the sparseness .

of the i-th row of B in 2z(i) , and for any v , v~z(i)T has its j-th

columm equal to O if ‘Si = 0, for then (Di) =0 and z(i)j =0,

J 13

where z(i)j is the j—tH element of the vector z(i) . It is then easily

verified that the update

L

.

T ‘ ,
B = B + L‘L‘E?—)—Z%l)—- [ (3.18)
z(i)'s ’




2

. - s ’ .
_satisfies the sparsity requirement (3.17) and the QN.equation for B* ,

iJe. B*s = y . Although.the algorithms using this update have been suc-
o £ . i}

1

cessful in solving sparse non-linear eguations, as in (3.9), 1t agdin
has the major drawback of Bei&é'generally non-symmetric.
Recently, Shanno [ 41] adapted the symmetrization fechdiqug of

' Dennis to génerate a family of ggarse updates. Starting with (3.18), . '

v e

the sparse analogue to the general full rank-1 updéte, he rewrote it in

row form s ) ' L.

n (ii(y-ss)

B* = B + 111————,1,—‘ . zfi)T s * (3.];9) )
i=1 z(i) s ) g .
& ° g .
' ’ ' ‘ o T .
=B+ J a2 Ce . (3.20a)
=1 ~ * . ) - :
: ’ - §
. : , L'i(y—Bs) v ..
* -y _ where | oy =-——z—1f—- . . (3.20b)
. z(1)'s

A ~

. Since (3.20) is not symmetric for general z(i) , he considered

: i T T,
‘ L BY =B+ J.y (Riz(1) +z(DR) .. (3.21)
A £ .
The choice of the scalars Yy to providé symmetry-but yet to satisfy the

- QN equation in (3.21) is tdtal%y analogous to the choiée of & 1in (3.10). "
Shanno pointed out that the new update is in S since the z(i) reflect

‘the sparseness of B , bec;use of the dgfinition‘bf z (1) éné since B

is symmetric. Tﬁe yi's are determined by, solving B*s =y , i.e.

9

.

ne~p

Yiélizii)Ts + z(i)%is) = y - Bg' - ) ‘(3.225

i=1

. ! i ?
R ,}{ . L ‘
N .

: : )
b e S —————. ot ot it e e w e [ b v e e bk e o,
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In matrix form, (3.22) becdmgs ) . .
z 4L L s
Sy =y - Bs , . -{3.23a)
' n - n
vhere §=F s ar + § alsz(el . (3.23b)
3 i i i i —r .,
(i=1 i=1
' -~ - : f
Here the matrix S can be seen to be in §

-~ he d

In short, the symmetrization technique allows one, at least

\’

4 A .
‘theoreéically, to derive a sparse update from any given full rank-1 up-

©

date. We will discuss later in the chapter the advantages and inconver;—- ,

iences of the tec¢hnique. Now we examine how Toint dériyed a.sparse up-’
date using the minimpm norm approach.

Toint's formulation of the updating problem is similar t'd' .

Greenstadt's but since the Hessian is approximated, the minimum norm

"matrix is in terms of B , unlike in (3.1). Thus he solved the problem: °

-

min|| £ || = min|| B* - B || ' \ (3.24a)
s:iject to , . . ’ E
- ! . ~ ’ . . A
- ‘. ‘ Es =y ~Bs , \ S (3.24D)
£ - B, C e (3.260)
Ve : e ’ . .
‘ - EE S . .o (3.244)

For the time being, we assume with Toint that the diagonal elements of

~
B are not zeroes, i’e. for any 1 , f is at least quadratic in its.

.

i-th variable. The solution to (3.24) is found by minimizing a Lagran-~

-
~

gian fupction similar, to (3.‘5) with.? additional term z EijEij .

1,3

=0, to take
3

where the sum is over the set of (4,j)) such that 5
into account *tt.\e‘ sparsity condition. Toint then deduced a simple update
formula for E ,” T 8

s, ¥
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1 v ‘ . ‘
) Eij‘= Yis(i)j + yjs(j)i . ‘ (3.25)
, The vector vy ie given by the system °
Qv =y - Bs S (3.26a)
s 4 3 n P 2 " . '
where‘ Qii/7/?(i)js(3)i ¥ kZl[s(l)k] 61j , (3.26b)
P

g

and Gij is thé Kronecker delta. He went on by noting that Q€ S

. prévided that the diagonal elements of £ are updated. Indeed the def-

inition Sf s(i) and D,

i ,‘i.e. s(i) = Dis implies that we have

s(i)j = 0 whenever Sij = 0 , and the second term of (3.26b) refers only

to diagonal elements of - Q . Also the solution to (3.26) is well defined

since Q has Beed proved in [43] to be positive definite if none of the

. vectors s(i) 1is identically zero. .

Toint's update is a member of the famiiy of sparse updates defined

by '(3.23) where z(i) = s(i) for all i . Indeed it can be seen that

the matrices Q and § are identical if =z(1) = s(i) . Thus, as in the

non—spafgé case, theesyﬁmetriéation technique.genérates a broader class

of updétes than norm minimization. Note that, unlike the matrix Q , 5

may be §ingular and the solution to the system (3.2@) is then undefined.
. On the other hand,CShahno [41] noted that a scaling of z(i) .may prave

i = : ' = S .
useful, i.e. again z(i) Diz but now (Di)jj aij 1] where the

choice of the scaling'factors aij is made to render § both symmetric
o, and &ositive definite under some conditions. However, it is not clear in
- Kl
which' cases this scheme may be applied and what the cost would-be.
» '

Now, the sparse algorithms resulting from both methods, especially

‘e Toint's, ghare the feature that they reduce the update gfoblem to that of

B
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" using a sparse algorithm.

¢ -
solving a sparse system, for which there exist good computer packages.

Indeed, the bulk of the computation required during a single iteration

o

. o
amounts ‘to solving two sparse systems of linear equations, First, to up-

“date B , the vector y is determined by solving (3.26). Second, the

search direction is found by the stbP A
B*d = -g ' (3.27)

the equivalent step to (2.§5c) whe?e the approkimate inverse Hessian was
available. The érucial point ig that both matrices Q(or §) and B*
ﬂave the same sparsity pattern, as we noted'earlier, so the same package
can be used to solve both systems. ' ) ‘ +

"In Toiﬁt's algaorithm, Q and B* have exactly the same sparsity
pattern provided that the diagonal elements of .B~ are updated, as he
a;suhed. This restriction is not reélly needed, agaghanno [41] pofinted
out provided that Q' is still sparse. !br instanc;,if we know that so
diagonal elements of the true Hessian are known constants, we naéLraIly do
not wish to update those entries once they are properly set in Bl . We
will therefore treat them as zeroes while updating. Explicitly, if (Bi)ii

is constant, we will set 54 = 0 and require £ to be in the-new set of

sparse patrices S . But Qii will' not be zefo because of the term

s

“s(i)H2 . Hﬁwever, Q will still have the same spa;sity pattern as B
and the system k3.26) will be sparse. The case where the known constant
is an off-diagonal element is treated similarly and‘in this case, Q can
only have fewer zeroes than the sparse -B ..

The question of the amount of computation requiéed in a sparse
algorithm compared to that in a standard QN algorithm will be discussed

in Chapter V. A}so,considerations&ill be given to the relative co'st of

’ ©

.t
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3.5 Shanno's Sparse Update

In light of the known effectiveness of the BFGS algorithm, it would.

Y B

be desirable to have a sparse version of it using'one of the approaches of

s a

the last section. On the other hand, Shanno [41l] found that the BFGS up-
date for B is not a member of the symmetrization class. :Since this

class contains the norm minimization class of updates for B , as was the

\

case for H', he cdeluded that the latter class can not be used to gen-—

erate' the BFGS update.for B . That has.the consequence that, for sphrse ‘
problems, the class of uﬁdates derived by consideriqg the weighted norm
case of (3.24) with the sa@e constraints will not contain a sparse ver—
sion of the‘BFGS'ﬁpdafet Alternately, Shanno generéte such an analogue
by a technique similar to (3.21). However he noted that/the algoritﬁm
proves un;table and performs poorly: Hencq?;a sparse version.of the BFGS
had to be found another Jéy, which is part of(what.Shanno [41]‘an§

Toint [45] have done.

Consider Toint's method; the update B* can.be seen as -

B* = P¥(B)' . ' . (3.28)

wherg V is the affine set of matrices which are sparse, éymmétric and
satisfy the QN equation, and 1 is the identify matrix (unweighted case).
.The new method is a two-stage procedure that will reduce to (3.28) if ,

there is no sparsity constraint. First, a standard symmetric QN update

of the form B* = B * % is considered. Then its sparse analogue is

derived as ’ .

. B = é¥(3*) i " (3.29)

" Although the update (3.29), at least at first sighf, looké more compli-
cated than (3.28), it does not require more computation as we will see.
i ' -» N . L

'
1

.
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The update has been obtained independently by Toint [ 45] and. Shanno [ 41] ;.
A |
the latter gave numerical results for the sparse BFGS3 However, the

presentati%n he gave 1s general and applies to any symmetric QN update.
Given B , Shanno first updated it using any symmetric QN update,

i.e. B* =B } D . In general, the update D does not satisfy the ‘ - '

3 -

sparsity requirement, D & .S aqﬁ hence, B* will not preserve the

sparsity pattern of B . So he considered modifying th#s update B* to

”

. Bk = Bx + £ R (3.30)

where E 1is the solution to the unweighted minimum norm problem: a8

A 3

. - min| £ ]| = min) 8% - B - (3.31a)

subject to

-~

- ) ' s =0 , (3.31b)
- E=8 . (3.31c})
B*+ E€ES ., . (3.314)

The three constraints are to satisfy the QN equation for B* , the sparse~

4

ness and the symmetry of B* , The solution is again found by minimizing

a Lagrangian function

6 (E,u,0,A) = %Tr(EET) - Tr(BspT) - T Q(E-E)] - Tr[A(B¥+E)], (3.32)

_ where Aij £0 if Sij = 0 otherwise.. After finding £ , Shanno rewrote
- (3.30) as
o
~ —— n T T b 1
‘ Bx = B* + § u (.s(1) + s(i)L)) . (3.33)
) 1741 . i

.

'Here ‘Eij = ng whenever Sij =1, and 0 otherwise; the vectors s(i)

are defined as previously. The ui's repregent the elements of the

- o e
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A

vector u and are determined by solving the system s =0. Thus,

o

tn ‘T T - ! e
ui(lis(i)' + s(i)li)s = 2Bkg (3.34)

)

' i=1

[4
- » 3 ' §¥ '
where, unlike B* , B* =B* if S, =0 , and otherwise.
, i3 ij ij ;

Looking at (3:34) and the equivalent of (3.27) (for ﬁ*., the

computation again involves mainly the solution of two sparse systems. In

particular, Shanno no;gﬁﬂtﬁét (3.34) always has a well-defined soiution,

1

» as the coefficient matrix of p 1s the same as its equivalent in Toint's

algorithm and so is positive definite. Moreo#%r,°in‘terms of the full

1

matrix B* , equation (3.33) indicates that its entries corresponding to

}

. non-zero entries of B* are updated. Mpre important, only those elements

need to be computed and stored. The other entries of B* must be com-
A : ; .
puted but are not stored, as (3.34) shows that only the vector w = 2B#*s

has to be stored. Thus Shanno's method uses no more storage than Toint's

“

 algorithm.

Analytically, the method has the interesting feature that both up-

date matrices B* and 8* satisfy the QN equation, as implied by (3.31b).

Shanno obser;ed: "As s 1is the ,direction In which we have obtained
information abo;t‘the'function: this means that . B* énd' f* retain f;;
saﬁé information along this direction". "At the ;ame time, B* has in-
corpérat;d the information about the sparsenéss of the Hessian.

Finally note that the class of updatés generated by (3.33)-(3.34)
has the feature that B* can not be guaranteed to be ﬁositive definite,
in geéefa;. Consiéering the imﬁortance of positi&e‘definifeness in the
standard QN algorithms, Toint proved a theofeh about the existence of

such pogitive definite updates B* ., The theorem can be stated this way:

- ?

™%
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Theorem 5. (Toint [ 45]). Assuming some mild condition on the sparse
matrix B and that yTs >0 , then if B* is any matrix satisfying the
QN equation, symmetry and the sparsity conditions of .B , there exists a
T > 0 such that for all o > G , the matrix B*'= B* + oF satisfies.the
same conditions and is positive, definite for a given E . .

This 'is just an existence theorem but it would be interesting to
see its consequences on the sparse update of B corresponding ta the
SSR., In this case, B* would be found by making B sparse and symme-
trizing it as in (3.23). Then-'a positive definite B* should be generaged
as tﬂe theorem in&icates. The non;sparse symﬁetric single rank (SSR) is
appealing b;cause‘of its siﬁplicity, although rank-2 updates were pre-
ferred for non-sparse problems ag they usually generate positive definite
B* , unlike the SSR. But for sparse problems and in partjcular in rela-
tion to Toint's theorem, we note that the intermediate B* is not re-

‘
quired to be positive definite. Thus, the choice of the SSR‘update is
pogsible, even though itlis not positive definite. DMoreover the existence
of a B sgch that the system B*d = -g is well defined and guaranteed
under mild conditions. But the cost of such an algorithm in terms of

. 4
computation required is still to be assessed.

P

; Toint 42lso voiced the opinion thdt sparse analogues to full updates 4
5

such as the Self Scaling Variable Metric (SSVM) should be tried. Those

numerical results would give a better idea of/the performancexof the class

of updates defined by (3.33)-(3.34) and tell whether there is a member

performing substantially better than the others.




~will be presented; it was' inspired by Perry's work {31} .
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CHAPTER 1V /

MODIFIED CG ALGORITHMS '

4.1 Introduction

The standafd CG‘algorithms, as we have seen in Chapter II, have
the important property that they do not require storage of any matrices,
unlike the standard QN algofithms. Only order n locations of stofage
are needed for their implementation. This is of crucial importance for

2 i

large n since then n“ is far larger than n . But their observed

rate of convergence is slower than that of their QN counterparts and in
general, more iterations are required by the CG algorithms 'to attaiﬁ a
comparable accuracy in approximating the minimum. In order to partially
overcome this di'sadvantage, many improvéd‘CG algorithms have been re-~
cently devised with the common feature gf not storing matrices. In‘this ;
chapter we wil}\loqk Ever threé 6f them, The first is based on Beale's
method which we introduced in Chapter II and which we will now examine
further. Wé will then s;e how Powell's con;iderafions on the problem of

restarting an algorithm, based on Beale's method, have led to an effective

algorithm known as the Powell restart algofithm. The second algorithm

belongs to a class which combines CG and QN properties and which exploits
a special relationghip between the BFES\gnd the CG algorithms discovered
by Nazareth [ 27 and Buckley.[ 5]. A particular mixed algorithm due to

< -
Buckley [ 6] will be examined! Finally a CG algorithm due to Shanno [40]

5

-
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4.2 Pomgll's Restaft Alporithm

- First we recall how Beale had come to his three-term recurrence
(5.29). If we apply, for instance, the Fletcher-Reeves algorithm to a
general fuﬂction, we mentioned in Chapter II that it is necessary to re-
start witﬁ ghe steepest descent direction in order to obtain n-step
superlinear convergence., The str;tegy was justified by the fact that a
general function is approximately.quadratic near the minimum. So re-
starting with‘the’steéﬁest descent direction at a point inside the nearly ;
quadratic region Q ‘would ensure ra good ultimate convergence. On the
g other hand we do not know when { has been reached. Fletcher and Reevés'
procedure made such restarts every n or n+l iterations. This has two
main disadvantages. First, the times of the restarts are set in advance
and are the same for any fuqctiog. But it may Be convenient and worth-
while to restart after fewer than n iterations, especially if n is
large. We will‘see how Powell treated this problgm in his algorithm.
Mecondly, as we mentioned in Chapter I1I, whg? restarting with the steep~
k ‘ ' est desceﬁt direction, the decéease in the function value is usually less
than it would have been along the usual éearch direction (2.28). Thus
progress is, at least temporarily, retarded when a restart is done.

Now Beale's method can be~séen as the answer £o>t$e following
question: if dt is aA arbitrary downhill restarting direction, if f

is quadratic and if dk(k>t) hgs to be a linear combination of 8, and

q 2
of the previously calculated dt’ dt+l’ dt+2{ ceny dk~l , what linear

N ”

" combination will make dt’ d mutually conjugate? The solution

£el? tt
is found by using the Gram-Schmidt orthogonalization process. Thus,

assume that for k > t ,

s .
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d = "‘g + a, d ’ . \ (l‘cl)
k kLRSS E ‘

. where the coefficients ajk are to be chosen to make diAdi = 0 for -

ist, t+1, ..., k-1 . (Recall that A is the constant Hessian of the

quadratic f .) This 4mplies that
T k-1
. g Ad, + jztajkdj

TAdi =0 . o %.2)

-
-

But assuming inductively that thée dj's are mutually conjugate for
t'< j S k-1, (4.2) reduces to

g ~gAd, + a, diAd = 0

K 1k%17% ’ “-3
T
. Ad
i, P _ (4.4)
ik dTAd .
i1
Now recalling that for f quadratic, Ad1 - Xi A(xi+1 xi)
: =.lL(g - g,) , we can rewrite (4.4) as | |
A il T Byl ’ )
. T,
‘ 8. (B — 8
_ CkPi+l i
. L (4.5)

CT
d; (8,1 ~ 8
» where the Hessian does not appear explicitly. Beale noted that (4.5) can

be further reduced because of the orthogonality of the successive gra-

dient vectors, i.e.
T : '
88y = 0 for k>i , ‘ - (4.6)

Thus =0 for 1= t+1, t+2, ..., k-2 and for k > t , (4.1) becomes

84k

d

K= "8 + Bkdk-l + kat R R (4.7a)

i e B

BEREr soper. - A P IR T o TR el e UL LS e
R ) . ) huhlhiiniaia .




- and

tpe general case it may not be., In that. event the sequence

44

g (g - g 1) '
where - Bk = Tk k kel (4.7b)
-1y ~ By 1)

T .
) 8 (8, = 8r_7) .
Yo =T . ‘ (4.7¢)
d (g ., - 8)
kt+l t \
For k=t +1 Vi is set equal to zero and we obtain the usual CG

direction "(2.5c).
McGuire and Wolfe [ 26] implemented an .algorithm based on Beale's
findings. This algorithm is the same as Fletcher and Reeves'; except

that they restart with (2.28) as the new search direction after a fixed

3
.

number' 'of iterations, say t . Otherwise, the dk's are defined by the

three-term recurrence (4.7). The authors noted two undesirable features

of the method. First, because dk+l(k2 t) 1is conjugate to dt » Wwe have

that all the points lie in the manifold

Xee1? Fre2?

U= (x : djAGx - %) = 0} | (4.8)
since using (2.5a) recursively with p 2 2, e v
p~-1
xt+p =%, + jglkt+jdt+j (4.9)

While in the quadratic case, it is known that the minimum is in L , in

Xee1r Xes2r 00
may converge to a point other than the minimum, Secendly, unlike the

Fletcher-Reeves or Polak-Ribiére algorithm where all d, were dbwnhill;

k

it may happen that the search direction (4.7) is not. To overcome that

.

difficulty, McGuire and Wolfe decided to take the negative of those cal-=

culated uphill directions where they occur. This strategy did not 'seem to '

E]
. *
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work and in general, their algorithm showed poor results.
b Recently, Powell [34] developed an automatic restart‘'procedure
where the frequercy of ‘the restarts depends on the objective function.

His algorithm puts to advantage the difficulties reported by McGuire and

Wolfe. For instance he claimed that a suitable time to restart is when
the ratio gigk_lln gé[[z ‘is much different from zero. This criterion
is equivalent to a restart when the successive gk's have lost enough

‘orthogonality. Since it is known that the CG algorithm applied to a
8 {

- quadratic function develops orthogonal gk's , the failure to pass the

test would indicate that the algorithm is going through a non-quadratic

region. In this case, a restart will not cause any harm to the algorithm.

L

Another test is applied to verify whether the search directions are down-

hill. 1If they are not, Powell's algorithm restarts with (2.28). Explic-

itly, he described his algorithm this way. ' : ‘
Given "xl , set d1 = -8 and let k =t =1 ; then begin the
iterations. If k 2 2 , test the inequality
T NETE |
: ]gk—lgkl 2 0'2” gk ” ¢ B (4-10)

If it holds, set t = k - 1 and restart with (2.5c). We also restart by
U ~

se{ting t=k~-1 4if (k - t) 2 n .because, in this case, n mutually

conjugate search directions will have been used when £ is quadratic,

For k = 2, the search .direction is defined by (4.7) except that Y =‘0

is sufficiently downhill
\

when k=t+ 1. If k> t+ 1, check if dk
'i;e. if the inequalities
. . ) . 0 2 T - 2
i ' lﬂZHngll <d.g < 0.8]| By I (4.11)
i
i \
i
}
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are satisfied. If not, let t = k - 1 and redefine d

K by letting

S Y S G 1in (4.7). Thus dk is conveniéntly defined for all values of

kl' Finally it is assumed that /xk+l is found along dk after an exact

line search. The iterations finish if H gk+1|l or lfk+ll is‘suffi—

&
ciently small. Otherwise another iteration is done with k increased by

one,
As we will see in the next chapter, Powell's reétart algorithm
outperforms a standard CG algorithm, The cost of that’, Powell qpted, is £
AN
only an extra 2 vectors of storage and is small compared to the advantages.“>
This restart procedure is now used in other algorithms, including the

Shanno CG algorithm to be studied in section 4 of this chapter.

1 . !

4.3 Mixed CG and QN Algorithms

We first point out the relationship existing between' the BFGS and

"the generalized CG algorithm (2.25), as developed by Nazareth [27]. Con-

sider applying any member of Broyden's class of algorithms (2.34)-(2.35)
and the generalized CG algorithm to a quadratic function. Assume that

the initial approximate inverse Hessian Hl is the same as H in (2.25)

ana that ELS are used at each iteration in bqth cases. Then it is knowm

that both algorithms éenerate conjugate search directions; as we will
CG il !

denote by dk and dj , respectively, the k-th direction generated by the ;

CG algorithm and by the member of the Broyden class given by the value 8

K

If we start them at the same point X5 5 obviously we have 4
8 . §
dl = dl = —Hgl R (4.12)

and X, will be the same for both algorithms if the 1line search is exact

. e AAT 8 e e
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“ ‘ce " | ' ) |
along d; = dj° = a . By the definitions of dg (2.25c), of df . !

. : (2.35¢) and using the ELS assumption; we have that both search directions '

£ t

belong to the‘subspace spanned b; Hgl and ng . Thus the subspace

c6 B, . . ' . ce
[dl, d2 R d2] is contained in the plane [Hgl, Hg2] .- But d1 aqd d2 'y

8 Therefore, the

are conjugate by construction; sp are d, and d2 . R

1
. o é R
CG B ! : )
vectors d2 ,and d2 must be linearly dependent. As previously, Xq

will be the same in both methods if the line search'is unambiguously
defined. ;

The same arguments can be used to show that in general, dic and ‘

di are a multhiple of each other for all k=21 and that all the points X, S

are identical. The relation between search directions is even stronger

¢

fpr_ohe specific member of Broyden's class. Indeed, Nazareth proved that

t

the magnitudes of the search directions are also equal in the BFGS case,

[N
13
.
[,

CG _ 1 ' ' P
dy .dk (4.13) :
~ ' for all k 2 1 , where di is generated by the BFGS algorithm (i.e. . ‘ ;
Bk = 1). In fact, Buékley ['5] established an even more general result,

as we will see.
For a general function, a result someéwhat similar to (4.13) has

been proved by Nazareth. In his proof, he used a theorem due to

B

Powell [ 35] which we will quote. First, let Hk

denote the matrix up-’

k-1 using the B-member of the Broyden class (2.35@).

dated from a given H

. Al
S

The notation H! then corresponds to a BFGS ﬁpdated,pf Hk-l , 1.e. ' . Y

: k
! ' '
: - : e g
¢ o Hk . U'(Xk, Hk_l, 1) . " PRI 5 N
Foe
v e
' -
v - n - »
i o o T
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' o ,1 = - B .—j—-i_i 1 . N
’ . . dj+l ngj*l + ; dj \ ’ (4.15)
. s ' %jyj ‘

A
Theorem 6. (Po&gl)). 1f Broydgn}s class of algorithms is used to mini- .
mize anifferentiable function f(x) 2 if each iteration calculates A

¢ ~ *

h]

I

in (2.35a) by an ELS and if this Aj is unambiguously defined, then the

séquence of points x, ‘and theq sequence of matrices
w

§ defined by

Hy
(2.36) are indépen{snt of the parameter values Bj(j = 1,2,...) , provided
;o . i

) .

i\ . ) T
thaF no iteration sets Bj equal to (,l/gj+1?jgj+1

with ' - .
’ al = -l - (4.14)
41~ TUg+1Bq41 - : Tk

' Using the hypothesis of an ELS at that, iternation, i.e. g§+lsj =0, i

‘. .

(4.145 is rewritten. -
T B

since,; according to the theorem, the index B = B, fﬁ%ﬁthe previouélﬁp-

. ]

dates Hj can have any value (with the one exception).l '

"The similarity between (4.15) and (2.25¢) indicates that the BFGS

can he‘seen as a CG algorithm where the metric H , instead of being kept

3

| . ! .
. ‘fixed, is updated at each itération by a member of the Broyden class.
- . ' S o

o
-

L This interpretation motivates a new class of mixed CG and QN algorithms. *

@ o %
But before presenting a member of that class, we put forward the main

- \ ¢

. features of the whole family. : 1 o L

Consider applying the preconditioned CG algorithm to a quadratic

f with the cénstaqt inverse Hessian of f as-the metric H . It is then
4 ‘ ' P :

N . +seen that we obtain a special case of the original Newton method and

-

1
.
e
:

So, assume, that we are at the j—tﬁ iteration of ‘the BFGS algorithm, -

| 13
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- - N v, Y
’ given an arbitrary initfal approximation % it ‘takes exactly one iter-
R . \
A

ation to reach the min'qgm. For a general function where the Hessian is

}
not known and depends on x , it then seems reasonable to choose H as :

an approximation ©f the true inverse Hessian in the sense that H should - y
. - i
\
satisfy fﬂe QN equatior. Thus, udeful information is brought into'the
algorithm and the hope is that it will improve the observed convergence

compared to that of the standard CG algorithms. At the same/}ime, as a

CG algorithm, -no storage of a matrix should be required. ‘Heéce, assuming

’

the metric variable, a strategy to save storage is needed.
Recently, Buckley ({ 5], [ 6]) exploited similar ideas to develop

a mixed algorithm which iterates on the CG steps (2.25) with intefﬁit~

/ )
This cor-

tent changes ‘to the metric according to a certain criterion.
responds to a need to change the cyrrent metric H if the decrease in

the“%unction’valué along the step (2.25c) is not considered satisfactory.
Thus the algorithm adjusts itself to the local behaviour of the objectiQé

function. As we will see later, the new metric H* corresponding to a

QN update of the curreat H will be defined by storing only certain

o vectors. Since the number of those updates will not be fixed in advance,

thg number of storage locations required to run’the algorithm is variable,
“~

but 6? order n " More precisely,:the implementation will usually re-
' quire at least 7 or 8 vectors of length n . This may be more than the
‘7 n~vectors of the Powell restart ngorithm, but it is far less than the
arder 52 storage locations of the standard QN algorithﬁs. Also,
Buckley [ 5] proved a theorem which strongly suggests updating by the BFGS
formula instéad of any other member of the Broyden class. The result Qill

be stated after a brief description of the new algorithm.

noe >

e v 2
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Consider applying a modified version of the generalized CG

algorithm (2.25) where the metric H is intermittently changed. &ff

\ A e
35' and Hk be respectively the sequence of po#hts and search directions

-
-

so generated, Starting with a positive definite Hl (usually, Hl = 1)

and an initial poaint §i~, we keep this metric until the t-th iteration,

4

say, and we update it to H.,, by the BFGS formula at x ., » (Thus, in
our notation, Hi x Hl for 1= 2,3,...,t.) Then set

v dt+l N -Ht+ +1 ' (4.16)
The matrix Ht+1 is recorded by storing Fhe Vectors s = X .4 = X, and

g )

=N g,y - 8)

¢ The CG steps are resumed with the metric " H

th t+l
and the same procedure is repeated in the next iterations with the current
metric periodically uﬁdated. For convenience we will denote by H the

current metric and by H* its update.
Now, toystress an important feature of Buckley's algorithm, we
consider again the hypothetical example of a general function which is
exactly quadratic in a region Q around the minimum.' In order to obtain
finite termjination property once it enters Q , the algorithm would need
to take a £estart.step similar to (4.16) and then to keep this metric
throughout the mext n iterations (see Theorem 3). On the othér hand,
we do not know when Q is éntered and éhe ;estarts are done intermit-
tently.;}So it may happen that more than one restart is accomplished
within Q within n steps. Then it 1s important to know what the

effect of such restarts will be the termination of the algorithm. To

know.that, Buckley considere? alstandjrd CG algorithm and let = and

. . ‘
dk be respectively.the sequence of points and -search directions obtained

b vt be———— — =

‘
[P

(PP




‘quadratic case, he then proved

" rewrote the Broyden class (2.355) at x

- moy b -
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'

in that case, from x, = X Comparing this algorithm to‘his in the

1 1

|
Theorem 7. (Buckley). Suppose X,

T - "o
gk-lﬂgk-l = (4.17a)

and , ng = for § 2k, "o (4.17b)

.

where gj = g(xj) and xk+1, xktZ’ ... are f&e po;nts which 'would be ¢

reached erB\/xk(= Eﬁ by hypothesis) by the standard CG algorithm.

-

I

Then, , ‘ i ‘
§k+l.= dk+1 . (4.1§a)
T T . :

gkﬂ*gk = 8,8 . : (4.13b)

-<<. and H*gj =’gj for 3 > k . . (4.18c)

AY
The reader is referred to Buckley [ 5] for a detailed proof. How-

ever we mention that applied inductively, the theorem shows that the two

algorithms generate identical sequences o? points from the beginning to .
'. v l‘

the end. That means that the change to the metric along the QN step (4.16)

does not prevent the mixed algorithm from terminating in n steps or

less, in the quadratic case or in case of the quadratic region discugsed
. M N\

" earlier, Finmally, an important point of the paper is that this property

is specific to the BFGS update formula. For any other member of the

class (2.35b), finite-teQmination will be lost (or at least delaygd) if

the restart is made before the n-th iteration.
The new algorithm presents some other interesting features. First,

as a CG algorithm, it does not need to store any matrix. To do-so, Buckley

<

j"’l as

o
e s at——-
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oS,
S ?ii 1-8, |F b, + B.a, Ein T
. H. = H, - .t . - .
A1 = "j]l:.sa T TR | G
Sl i 3 |
where nj = ijj and Bj, aj, bj are defined as previously. For
65 =1, we obtain the BﬁGS update we are interested in. Thus for each

P

update, 2n + 2 locations are required to store the two vectors and two

*
-

scalars. From (4.19), it can then be seen that Hj;l does not have to

be stored as a matrix provided that Hl was not stored in matrix form

{ .
(as for Hl = TI) 4nd that the expressions Ser Nps 3 and bt were

recorded for t < j , where "t is the index corresponding to an update

- .o

05 the metric. Since those are done only intermittently, this strategy

s%ould save a lot of storage, especially when the number of updates is
t

-

t+l ?

.

much less than n . Moreover, note that at x only the vector

7

= -H is rieeded. In the standard QN algorithms, this compu-

dt+1 t+lgt+l

2

tation requires, in general, order =n“ operations. In this algorithm,

is stored, d can clearly be

because of the way in which H e+l

t+l
evaluated from (4.19) in order ﬁ operatf®ns. This last feature makes
the mixed algorithm comparable to a standard CG algorithm in terms of the
number of operations required per itefatioﬁ.

Since the algorithm has bgsn devised_to run under limited storage,.
one must decide what aétion should be taken wﬁen the storgge available
haslgeen exhausted. Buckley opted for resettiné the curreﬂt metric to

s the identity matrix. His main argyment concerns the pbsitive‘definiteness
J

of the H.'s , an important propérty of the methéd. Indeed, suppose that,

i
LA at some stage of the algorithm, the allocated storage .limit is reached and
. ) , >
N 2
. !
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we need to regord new vectors defining a QN update. Then some old vectors
have to be deleted and this has for,éffect to make the next QN update al-
most always ﬁon—positive q§finite.' If this is not detected, the next
search direction may be do;nhill: an undesirable feature for an algorithm.

The simple strategy of resetting Ht to I avoids potential numefical

difficulties which may ensue; Buckley noted that his strategy produced
good results.
To end this section; we mention some important details related to

the implementation of the mixed algoritﬁm. First, it generates a sequence

of positive definite matrices H 41 ? assuming that s? >0 as it is

| 3-1%3

for an exact line search. Moreovg; Buckley showed that all of the search

directions d

341 defined by (2.16) or (2.25¢c) are downhill if the line

searches are e%act or suffici%ntly accurate, Finally he devised a test
similar to (4.10) in the Powell restart algorithm, which indicates the
need to update the current metri¢ H and restart by (4.16). In particu-
lar, if
T
g, _H
Bl o , (4.20)
TH . .
& gk

the algorithm is restarted at X, This criterion makes use of the fact
that, in the quadratic case, ’giﬂgj =0 for 3 # k. It then c6fresponds

to a sufficient loss of orthogonality of the successive gradients to allow

‘a restart.

Within the class of mixed algorithms, the concept of intermittent

—-

updates is particular'to Buckley's algorithm. This is unlike another

°

-

mixed algorithm due to Nazareth,. which updates the metric at egch iteration.

i oy A as o
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better than the standard CG élgorithms under inexact line searches. More-

p .

v e o s e

No extensive comparison.of the two algorithms is known to the author.

i
9 .

However, ;hé whole class is expected to represent .a significant impéove—’
a 1]

mept over the standard CG ‘algorithms without performing as well as the

——

best standard QN algorithms. ' Numerical results for Buckley's algorithm

are shown in Chapter V. ‘ - : . ‘ D

\;'

4.4 Shanno's CG Algérithﬁ

This' CG algorithm was developed by Shanno [40] so as folperform

-~

over, assuming exact line searches (ELS), it reduces to the usual algo-

rithm. Shanno's algorithm was inspired by Perry's work [31], but com-

c

bines many- concepts. It also uses .the restart procedure of Powell.

3

Starting with the standard CG algorithm, Perry noted that in (2.5c),

was chosen so as to make d

the parémeter Bk K

and dkll conjugate

e

assuming ELS. Since in general, line searches are not exact, Perry re- ™

laxed this requirement and rewrote (2,5c¢)° in’an equivalent form, but-with

-

no ELS assumption. Thus, he obtained

T

ST R LS RS .
Yk : .
| . :

But the projection matrix multiplying ‘gk;l is not .of full rank; so

I

(4.21) is modified to ' .
! s yT s ol
- Kk °Kkk

dsy = L - T_ T | Skl (4.22)
Kk SiKk

= -Qk+1gk”'1 [ y- 0(4.23) J
h ]
-~

e |
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‘Other reasons support his’' choice of the new term in (4.22). First, the

<

55 i

matrix Qk+l satisfies a relation similar to the QN equation, namely

Qk+1¥k =85 - (4.24)

Also, (4.22) reduces to (4.21) if an ELS is carried out at this iteration

T
since then Skgg+1 =

Perry's experiments with his algorithm show that it performs only
slightly better than thgnétan?hrd CG algorithms under inexdct searches..

To somewhat justify the relatively peoor performance of the new algorithm

using (4.23), Shanno noted that the matrix

Qk+l 1s not symmetric or

positive definite and hence, (4.23) maanot define a downhill direction.

RO eas ee -

Also the similarity with the QN equation is not perfect. So Shanno

symmetriied Qk+l by adding an appropriate term. Thus,

v

T T
8, ¥ y. 8 8, s .
ek Y%k Sk
I~ - ) (4.25)
)k Y%k Yk

3

ST+y yy' SST
e S0 S04 " " P4 56 ¥ B (4.26)
kel T |" T '
yk k 1%, Tk

e s

)

This new fortg of the projection matrix Qk+1 has a special

relationship with J'é BFGS update formula, as_ Shanno pointed out. ‘Indeed
| ) .

the BFGS formula (2.35) can be written as

‘ J Hky‘sT + 8 yTH yTH y, |s s o
_ k'k k'k k k'k"kl kk
oM = B - T M N O (4.27)
| . ' Y e 4
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It is then easily seen that (4.26) is equivalént to (4;27)‘w1th Hk =TI,

In fact, a similar dual relationship (4.26)-(4.27).can be exhibited for

’

any member of the Broyden class of updates. Thus a CG algorithm corres-
ponds to a QN algorithm where the approximate inverse Hessian is reset to

the identity matrix at each iteration and no storage is used to develop a

better approximation to the inverse Hesslan. TFor that reason, this CG

-:

algorithm is referred to as a memorylesstFGS algorithm,

Note that the €G algorithm implied by (4.25), namely p

;e
=

dk+1 Ql"€+13k+1 (4.28)

reduces again to (4.21) assuming ELS. Also it does not require storage

of the matrix Q§+1 since i

P T )T . T oo
T | PR 0t b T U 15 ) e <2 NP
o kel T 7Bl T T Tk .

: T |k
Kk “Kx s_kyk_l "4

Thus no additional information beyopﬁ that required by the standard CG:

13

is needed to compute ‘dk+1 . ‘ 'r

. Ho&eyer it can be rightiy afgued that the identitytmatrix-is not
likely to have any relation with fhe true Hessian. In other words, un-~
like the QN methods, CG methods (4.29) do not build up a sequepce'of
approximations to the inverse Hessian. . In that respect, this may accohnt
for the supériority of the Qﬂ'methods.established by McCormick and
Ritter [25]. 1In an attempt to partial;y make up for this undesirable ’

“

feature of the CG methods, Shanno devised an algorithm based omn the.

above ideas thdt also takes advantage of his computational experience with

the scaled QN algorithms. ‘

;@
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The idea of scaling was originally developed in a series of papers
by Oren and Luenbergef’[ZS] and Oren and Spedicato [29]. Considering

Broyden's class of algorithms, it was proposed in [28] to modify the

update formula to

Hey YTH . 5 s

“ B = ____l_c__k_l{_‘ T kk

e © T PR MM T T T (4.30) ;
. NIk Sk

’ i where rk‘ is the scaling factor. Basically it was chosen so as to im—

prove the stepwise convergence of the algorithm. For example, using a
quadratic f , Luen?ﬁrger [23] showed how a bad eigenvalue structure of
the Hessian can be harmful. to the stepwise convergence of the DFP algo-

rithm and how that can be improved by scaling H as in (4.30). Oren

k+1

>

and Spedicato {29] determined r, by minimizing the condition number of -

k

in (4.30) and

' H;1Hk+l and obtained a relation between the parameter Bk

T

XU

k y

b(ec - brk)
S . (4.31)
-1y (ac - b?) | ’

S

By

et i

wvhere a = yiﬂkyk , b =«s£yk as in (4.19) gnd c = szﬂksk . We will

be particularly interested in the case Bk = 1 , the BFGS casé; in this
. ‘case, we have i i
STy .
r,o= ik (4.32)
k TH , , -
Yk

To the questioﬁ of how often to scale, Shanno and Phua [42] noted

: that, according to their experience, it seems to be harmful to scale at

every iteration. This is because the scaling factor introduces

P ot w7

truncation error in the approximation of the inverse Hessian. _ However

) et e il o e s < h e e e e e - . e rtrrm )
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‘tion (4.29). That amounts to substituting I for H

C , ' . 58

o

. -

they found that scaling at the initial step was critical, espec&ally for
large problems, in order to eliminate the error which results from using
the identity matrix togesiimate tﬁe-inverse Hessian. But, as we have
seen, that>is exaCtly what the CG algorithm jin the form (4.29) is doing.
So it seems natural to always scale the éG algorithm using 'rela-. .
K in (4.3Q); in

the BFGS case, B, = 1- and r

k

K is givén by (4.32). Thus, Shanno defined

a modified CG sequence with Hk =1 and

dk+l - —Hkllgk+1 s (4.33)
T ST T
- o N T4 B s 75 R 2o | Y
= TTBrel kT T e T
4 st
‘ + r - ._Eg—l<.ﬂ
kT Y .
Kk
- After reduction, he obtained
" gl T T
d = - 10 S Py L | - N1Brr1 s 4 KPk+1 )
k+l T Sksl < oI T k T Ve o .
Ve Wk Nk Y Vi

‘ 5

This corresponds to the scaling by r, of the memoryless BFGS (4.26) and

k
(4.28). Unfortunately, Shanno found that this CG algorithm did not produce
as QPOd resulté as the one just-defined by (4.28) but scaled in a way

suggested by Fletcher [15], {i.e.

d = M d . (4.35)
k+1 T T k+l )

’ Bis1%K+1

.
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The reason might be that applying (4.34)'to a ‘general function and not

assuming ELS, this sequence of dk does not include a step similar to a
restart.

Considering the good performance of the Powell restart procedure,
Shanno then examined the three-term recurrence (4.7) on which it is based.
This was done in particular view of the dual CG-QN relationship studied®

in (4.26)=(4.27). Thus (4.7) is rewritten as

- T T
. dy dy
_ Kk _tTki .
dk+1 = - |I - ;T__ ';T—— Bisl s (4.36)
Kr
e
| ‘ = -Pk+1gk+1, (4.37)
where t 1s the index of the-last restart and the matrix Pk+1 uses
. information from two prior points X, and X, . In Beale's method, we

recall that the information gathered at x, was critical and must be re-

~

tained. And, at the same time, the storage requirement for the CG must’

stay within order n locations. So Shanno defined for k > t o
=3 T ; ST T s ST s sT *
I P A TS S SR o T A M 3 4.38)
t T ‘ ST T t sTy ' *
t 't g St t't ‘

The information at x_ is retained through this matrix which corresponds

to 'a scaled BFGS update of Ht‘= I.

is defined

Now the approximate inverse Hessian at the point xk+l
as the BFGS update of ﬁt . .Thus,
’ ) ! N ’E
Te - T T~ ¢ T,
P S o i 20 S S PR i 34 1 B .39) . u
. Hk‘f\l t . T o T ST * * . -
, Wk C 8k ) Bk -
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N o

Then the search direction at X0l is found by setting
der1 = Mea18ian
h T T4 o7 T4 ,
- e S PR U P4 Y54 B S 0 R e T | '
t8k+1 T tYk T | T T . T k -
. KWk %Kk 0 24 S 8 -
(4.40a) ..
+ where the vectors ﬁtgk+l and thk are given by
ST 8T ST T .
g _ Bt I L0 W X t8erl YieBra1 (4.40b)
t8k+1 T T Bkl T T T Ve |© T T |°t :
oYYy Yede 't Yede
sty sty Sy, VLY ' r
& ottt t’k t'k Ttk )
thk =S YT T Vet ZST T 15 c * j4.40c?'
Ye¥y Yedt e Yt

I

This ‘definition of the dk amounts to considering a projection matrix

N
N

similar ta (4.21), but based on the three-term recurrence. This matrix,
in view of the dual CG-QN relationship, is scaled in the way initiated by

* Oren and Luenberger and then updated.

*y

Note that no matrix needs to be stored to compute dk+1 . Indeed

b

looking at (4.40), the vectors (4.40b3 and (4.40c) fully define the search
direction (4.40a). As to the number of storage locations needed, '‘compared .

to Beale's method, Shanno's CG algorithm requires no extra vectors of

storage. The vectors needed are '

xk*’l’ xk' gk*’l’ gki,c

dk’ dt“ agd Ve »

Shanno noted that at the time of an update, the information in X is no

K . Once (4.40c) and
’ T T : /
scalars suc§ as SV ) and ykls:yk have been computed, gy is no longer

i [

longer required, sp that (4.40c) may.be stored in x

"

r . 8

;
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required, so (4.40b) can be explicitly computed and stored in By

Two other properties of the algorithm are worth mentioning. First,

as the updates (4.38) and (4.39) use QN update formulae, the condition -
3

T -
Sk > Q is sufficient to ensure that the search directions (4.40) define
B P

§

\\ downhill directions. Second, for f quadratic with ELS, the algorithm *

using (4.40) reduces to Beale's method defined by (4.35).
To end this section, we indicate how Shanno iﬁplemented his algo=-
rithm. Given x,, set d; = -g /| g, || . For k 22, the algorithm is

’

T ? :
.restarted whenever lgk-lgk, 2 O.Z{ngH or every n iterations, as in

Powell's algorithm. The restarting directions are defined by (4.34), the
: -
memoryless BFGS update scaled by (4.32). The other steps use (4.40) and

are also scaled by

% \

s

. ) a = Eifﬁi!;;;jiil d . (4.41) ‘ .
¥ o ' k+l T 4 k+tl ° ’ !
. ‘ T Bke1%kel _ : |

following Fletcher's suggestion. ‘ .
. ' o |
* To justify the double scaling, Shanno appeals to his computational

5 ¥

experience. His experiments showed, as we mentioned earlier, that an

-
2 ' v I

algorithm 'scaled as in:(4:41) sometimes performs better than the one using : i

L]

the scaled memoryleéé BFGSZ( His algorithm, as it uses the Powell restart.
procedure, selects automatically the appropriate scaling at any time and s

takes advantage of both ways of scaliﬁg.
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CHAPTER V

" NUMERICAL RESULTS

~
~ .

¢ ’ ' ’-

[}

i

¢ %

Ve 5.1 Source of Numeggﬁal Results

5 ’

‘ We will be considering seven routines developed to solve the problém
(1.1).. First, for purpoée’of hist?riéal réfergnce, wé hgve included imple-~
mentaEions of 6bth ;ne standarq Q&‘(BF@S) and one standard CGP(Fletcher-
, Reevea)'algorithmu' The QN r&htipe, yhich we dub QNS, has been'cgded by
Shanno while thé‘CG routine, VAO8, is from the Harwell library. Aiso,

one modified CG routine, Powell's restart VAl4, originates from the same

* ' 1library. Three other.routines examined are Toint's and Shanno's SE QN"‘

’algorithms; known, respectively, as PSB and SBFGS and Shanno's Cce algo—

rithm fbr~ipexac£‘line'searches CGILS. Shanno ([40] and [ 41} ) implemented

z

all three. . Finally the mixed alg;rithm CGQNA has been coded by Buckley
@el). A C

Note that fPr tEe,figures given, all' the ;lgorithms except those
codea‘by Shanno terminate when the 2-norm of the current gradient is less
. than 1078 . g!énno-used the infinity norm instead, with an accuracy og

10-,5 .. Our experience indicates that the results would not vary signifi- .
. M - .

cantly from one termination criterion to the other. '

N

. - . 1 _‘ ’
. As to the test functions, they are quite commoii and we refer the
v ' -

regdét to [40], [ 42] and [ 44] for a detailed description.llNevertheless,

&

s P

r

we mentioh the meanifg oftthe breviated function names we will use:

s

EROSEN 1is the famous Rosenbrock function extended to more than- 2 -

- R ' , . '

. dimensions in an obvious way, c N
. o ..

LROSEN is a non-convex version of EROSEN; . D o

1

‘-) NONDIA stands for a\ron—diagonal variant of the sam%fEROSEN;

» ’ ' - " ot

)
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‘TRIDIA ‘fs a tridiagonal quadratic function;
 OREN stands for the Oren power function;
'MANCINO stands for thé Maneino function. T e

This choice of algorithms'and test functions was made on ‘two main
» s

-

grounds. First, two of the functions are well-known sparse ones (TRIDIA,

¢

CROSEN). Second, all the function codes and all the algorithms except

the two SE“QN'onqs\Vere accessible for us from a private library. - Thus,

" we could obtain most of the results -shown in the tables by running the

) five algorithms on the University computer. Note that some figures are

missing for PSB and SBFGS; in thése casés, neither the routines,were~

k]

available ‘in .the library nor the figures published to our knowledge.

N '

Z.Z Comparison of the Algérithms - -

LY

The comparison of minimization routimes is a rather complex sub-

t

jecl, and the art/is yet'to be fully developed. There are many'apprdachgs
‘to the subject and the one we are going to follow; although not the most
sophisticated, is quite standard and convenient for our purposes. It

mainly tests the efficiency of the routines on a selection of test func-

tions. The measure of efficiency consists in Table I of the number of
iterations (ITER) and the number of\funcxion evaluations (IFN) needed. by

the routine to reach an acceptable ébproximatidn to the minimum of a test .
A ' T »

function. If this routine fails to de so, we indicated it by the letter

.

F . Moreover we included in Table II the tiﬁe (in seconds) spent in

. / S ’

evaluating the objectivg/function (FSEC) and the total CPU time (MSEC),
, w L S & .

»

" whemever available. In those cases, we managed to obtain MSEC figures

\

which do not include the print times. t , re -

o -

Within this framework, an extensive comparison study would require

a broad variety of test problems arising frém different fields with, for
. v " \ . .
. . . , .
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instancé, various degrees of non-linearity. Also it is usual to test the

-

robustness of routines by considering the results obtained by the routines

when started at different points with the same test fuhction. A number of /

"other factors could have been considered and their effect on the perfor-

mance ofkthe\routlne studied. However, this.thesis is more limited in

séope and' generally, for a given tést function, all the algorithms are’
started at a common point. Moreover, the specific factor relevént to us

is é£é high dimensional sp%{se case of problem (1.1). This guided our
choice of problems, ;hich consisted of test functions of moder;tg dimen-
éion, some of them being sparsei In that respect, we have already'men-
tioned the lack of reéuits for mehium and large size problems. Indeed,. N
1oqﬁing at thé tables, the’ largest value of n‘ is 50. Therefore, sincé

1

we are particularly interested in higher dimensions, we will have to

extrapolate on the basis of the available figures. However, we will sup+’

o “t

port these extrapolations with known theoretical and numerical ‘results.
But first, we discuss our selection of algorithms and the procedure for

“
~ A\d

comparing theﬁ., , . ?

b The seven algorithms can be divided into four classes. The séandard
CG routine VA0S, forms class 1 while class 2 includes the three modified t
CG routines. The standard QN and the two SE QN routiqes constitute
‘respectively classésp3 and 4. We will comﬁare the perforeaﬁce of those
classes and in barticplar, we will stress -the comparison of thé'SE QN

class and Fhe modified CG class.’ Thal shouldegive us a picture of the
progres; madg in tﬁe design of élgorithms to solye (l.l): when n 1is

large and/oxr the Hegsian is sparse. The 'analysis will consider:*hesides‘

‘the figures shown in Tables I and II, other details relevant to the imple- |

men;aﬁion and use of an algorithﬁ or éf a specific -class of algorithms. oo
. ) )
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In general, CG algorithms are the simplest to.use and also the
least ﬂemgnding in terms of internal work. In particular, the housekeep-
ing for linear algebra {s at fts minimum; the h;mber of operations per.
iteration is of order n only. This is one of their advantages as com-
pared to the QN algorithms, where order n2 operations per iteration are
usually requirei;ﬂnggktﬁe other hand, it is dsually observed t?at the
stanﬁard CG algorithms‘take more function evaluations than their QN

1a critical factor when the functions are

-

counterparts. This may become

expensive to evaluate. ' .

Comparingwclasses 1, 2 and 3, it is seen frém Table 1 éhat on most
of the test functions, the modified CG and the standard QN routines out-
perform the standard CG routine. This is as expeqted. It is knownL
indeed [ 25] that the QN algorithms are superior to the CG algorithms, in
general. Also, Powell [ 34] put ffrward evidence why his restart algorithm
performs better than 'a standard €G algorithm. Both analysis are confirmed
Ey our figures. Thus, ITER and IFN a?e almost steaiil& less for classes 2
and 3 than for class 1. On the other hand, lookihg at the time column; in
Table II, the comparison cleafly favors thé~CG‘routines in general, espe-
cially when the functicn evaluation time FSEC is-a small fraction of the

4 . ' ‘
£0t31 time MSEC. O;herwise, as for the MANCINO function, the signifi-

% .
¢
cantly smaller number of fuﬁttioqjﬁgaluations of QNS becomes important,

Then MSEC drastically changes the picture in favor of class 3. Finally;‘

-

note that CGILS performs consistently better than the other members of

N

class 2. .
:
A common feature of the routines of classes 1, 2 and 3 is that they

do not require any specific task from the user besides the subprogram to

+

evaluate the objective function and its gradient. More is needed in the

s

i o

[




before running a SE QN algorithm, the user must provide the relevant

4

)

B e

\

' . o
case of the SE QN class. To take advantage of the sparseness of the

. +

Hessian B, it was assumed that the sparsity pattern was known. Thus, §
|

)

information defining the zero pattern of B . This may be a time-con- S

suming job and is not necessarily easy. However, for large n , that i
/

effort should be compensated for by .the improvement in performance over a

‘standard QN algorithm. In fact, for very large n , solving (1.1) may Be

impossible without exploiting the sparseness of the Hessian. . -
Now, examining the QN classes 3 and 4, there is a clear indication

.thataboth SE QN algorithms are better than-the standard QN routine. In
pérticular, the‘numb;r of'fuhction evaluations for PSB and SBFGS are al-
emost always less than the corresponding figuées for QNS. Moreover, the
inte;qal ;ork needed by the SE QN algorithms is usually of order nZ?
operations per iteration, dependiné on the sparsity'pattern) i.e.iit is ) o
the same as that réquired by the 'standard QN algorithms. fhe;efore, in
Fhis case; the statistics FSEC and‘MSEC shos}d still ge expected to
favour class 4. Unfortunately, the timé figures for the SE Qﬁ class are
not available to confirm that.. Furthérmore, the or&er n? storage
&ocations requirement of the standard QN algorithﬁs makes them not prac-
gicél or not usable for large n . Then, tﬁe.alternative must be betwéen
the SE QN class and the modified .CG class éf algorithms,

That leads us to the comparison of class 2 versus clasé 4,
SpecifiFally, we consider CGILS and SBFGS which may be c;psidered as " N

representatives of each of their classes. Agéin'it is apparent that in

general, the SE QN routine requires fewer function evaluations than the

modified: CG routine. Despite that, for problems of moderate dimensions

or reasonably simple functions, Ehe total time MSEC should slightl& favor

1

»

N | : o )
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the CG representative méinly because it generaily reqhires.}esé.internéi
t

work than a SE QN algorithm. On the otherihand, when n,.is,largg or
FSEC dominates wi;hin MSEC, thé modified CG élass should not sustainvthe
éomparison. The MANCINO function is‘an examble; . in this case, SgFGé is’
expected to do at least as well as the stanﬁard.QNS, which in turﬁ out-
performs class 2 as far as the time factor is concerned. Again we do not
have the FSEC and MSEC figures, or the IFN column to support our argument.

!
In summary, it 1s clear that for 1arge n , the ultimate choice is

. between the modified CG and the SE QN classes. And although the compari-

?

son of the two classes favors the latter, the modified CG algoyithms can

be competitive 1n some circumstances, particularly when the objective
3 . : ,, :

¢
Y

function is not too expensive to evaluate.
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"NONDIA
N n= 10
n = 20
n = 30
’ CROSEN
E‘ n=10
5 n= 25
% EROSEN
) , 'mn=25
: ' n-= 10
i -
B TRIDIA
: n = 10
n =20
n.= 30
! OREN
n = 20
n = 50
A
i MANCINO
" n=10
¢ n = 20
i 'n" = 30
{
t
) {
!

)

CLASS 1
VAOS8
ITER IFN
33 78
32 75
30 72
48" | 100
49 | 100
F 100
" 86 95
39 79
50 | 100
49 | 100 -
23 68
38 97
6 15
7 22
8 25

o

VAl4
ITER IFN
21 | 63
22 | 70
F | 43
50 | 96
54 1100
. F 20
23 | 68
33 | 65
55| 99
58 1100
20 | 54
311 76
"9l 13

8| 18
13| 21

—— ey

. :","‘

TABLE 1
CLASS 2
CGQNA | C6ILS
ITER IFN [[TER IFN
30] 95 | 23| s5
25| 82 | 23] 53
291 93 | 17] 40
2
so0li00 | 36| 75
48(100 | 49]100
Fl% | rlioo
261 76+ | 21] 54
34| 66 | 25| s1
56| 99 | 42| 85
56100 | s0l100,
L]
34] 91 | 15} 31
38] 90 | 34| 69
7016 | 5| 11
10] 22 | 6] 13
12) 24 9l 18
N

W R PRIy T Btor TRl

e . -

—

A

CLASS 3
QNS

JITER IFN
33 | 46
32 | 43
30 | 41
37 39
52 56
35 71
.30 | 43
20 21
32 33
40 41,
CF | 100
F |100
5 7

7 8

7 8

CLASS 4
PSB SBFGS
ITER IFN {ITER IFN|,
31 | 38 31 | 42
36 | 46 33 | 42
74 1 76 37| 46
22 1 31 20 | 27
25 | 39 23 | 36
14 1 17 13 ] 1§
231 26 4§ 17 | 21
32 | 40 | 26 | 33
A

68




TABLE 1T
b -
CLASS 1 P CLASS 2
VA0S VAl4 CGQNA
NONDIA | MSEC , FSEC MSEC ~FSEC | MSEC, FSEC
n =10 .28 .09 .35 .07 67, .11
n = 20 .43 .17 .65 .15 1.17 .20
n = 30 .54 .23 .57 .14 1.74 .30
CROSEN '
n=10 .40 .15 .62 .14 .97 .16
n =25 .79 .36 1.36 37 2.01 .37
‘ < J

EROSEN
n=>5 .18 .06 .08 .01 .23 .06
n = 10 .30 .10 .36 .08 .51 . , 08"
TRIDIA
n = 10" .29 .09 421 .07 .60 .08
n = 20 .59 .22 141.08 L2110 1,50 .20
n = 30 .81 .32 1.50 321 2.26 .33
OREN
n = 20 .32 .08 .50 .06{ .99 | .09,
i = 50 .88 .26 1.15 .21 1.30 .23
MANCINO ] o
n =10 5.00 4.96 4,411 4.33] 5.38 5.24
n = 20 56.8 56.7 | 46.39} 46.22] 55.75 | 55.43
n =301} 218.5 | 218.4 | 175.81 175.5] 205.2 | 204.5

1

i .

1

“"“—25“%‘ ok AT ot BT - —y

B
o s oot hy i 3

CGILS

MSEC FéEC
.27 .06
47 .11
.49 .13
.46 A1
1.41 .36
.24 .07
.26 .06
.31 .06
.95 .18
1,61 .32
.26 .04
26.22 .27
3.73 3.69
32.92 | 32.82
152,8 1152.7

69
CLASS 3
QNS
FSEC MSEC
- .60] .05
1.65 | .09
3.06 | .13
64| .05
3.89 | .20
{
.36 | Loal
61| .05
.33 .02
1.59° .07
4,00 .13
4,91 .12
1.06 | .16
2.34 | 2.27
20.49 |20.19]
68.14 | 67.54

st e e —— .
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CHAPTER VI

CONCLUSION e . ,

. In this thesis, we have surveyedwthe two main types of gradiént
me thods for the solution of (1.1): -the CG and the QN methods. Although

_they both solve the same problém, there was a clear division in the sort

N

of situations in which they were used. Basically, the QN'aléBrithms,

despite their known efféctiveness, were preferred only when n was small

~enough $o that their-order n?

~

'mét by the wuser., Otherwise, the standard CG algorithms were used in spite

storage locations requirement could be

of their poorer performance.

2

Recently, the gap between the two st;ndard methods has béen some-

what filled by the development of the modified CG and thé Sparsity Exploit-
. ¢

' ing‘QN‘aigorithms. Both classes require only order - n storage lo;ations

+in order‘to be implemented. Moreover, as we have seen in Chapters III

and IV, the first class improves the convergence of the standard CG

[

-a¥gorithms andfthe second class performs at least as well as the standard

5

QN algorithms.

o

l Naw, when °n .ié large so tﬁat:bdth modified CG and SE QN algorithms
can be used, a uéer'may have to chogse between the two classes. Then,
based on our discussion of Chapter V, the-modified CG class should be -
preferred to the SE QN class if the problem is of medium size and the
functions not too expensive to evaluate. Their performance mig%tvbe

«
inferior, but their simplicity makes them preferable, provided that the

function evaluation cost is not excessive. On the other hand, if the
.

. functions are expensive to evaluate and computer time is a prime factor,

'

there is no doubt that the SE QN algorithm should be favored. This is

Y

-
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particularly true when ﬁ. becomes very large or when the routine has to

be run often. Then, the effort to set up the sparsity code is expected

¥

to be returned.

. These brief recommendations obviously do not cover all the possi-

L}

Y
o

bilities. In a real-life situation, a user will have to deal with other:

N L »
factors. . Nevertheless, a compromise will likely have to take account of

the cost factor. This .thesls should ﬁrovide users with valuable.informa-

tion upén which they may base their choice.
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