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Abstract
Computational Analysis of Fission Penetrability
Through Double-Humped Barriers by Exact and JWKB Methods

Mario D’Amico

After the discovery of the double-humped potential
barrier, researchers have derived a host of expressions for
the probability of tunnelling through such a barrier. It is
generally believed that the penetrabilities obtained by using
the various methods do not differ sufficiently to have
significant effects on the analysis of experimental data on
fission. However, some have expressed doubts concerning the
use of the usual JWKB method and have offered improved
approximate and Exact methods for developing penetrability
expressions. This thesis is devoted to the quantitative
comparison of penetrabilities from these expressions, and to
the investigation of effects various methods will have on
spontaneous and isomeric fission half-lives.

Results from the penetrability expressicons are compared
in relation to the pure vibrational state energy levels, level
heights, resonance widths, and the probability of penetrating

the full barrier from its ground-state deformations.
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INTRODUCTION

Prompted by the discovery of neutrons from experiments
performed by Rutherford, Chadwick, Irene and Frederic Joliot-
curie; Fermi[1934]! and co-workers initiated experiments
involving irradiation of Uranium by neutrons. These
experiments led Fermi to believe that it might be possible to
extend the periodic table to higher atomic numbers by neutron
induced processes, producing heavier elements called
"transuranium elements". It was believed at this point that
only heavier elements could be produced by such processes.
Later investigation by Hahn and Strassman[1938]2, as well as
Curie and Savitch[l938]3 produced a number of unexpeccted
results which finally led Hans and Strassman to discover that
elements of smaller atomic mass and charge could also be
produced from Uranium.

Within a few weeks after this discovery, Meitner and
Frisch[1939]% proposed a model of nuclear fission in terms of
a liquid-drop of the nucleus. They called the process
"fission", drawing analogy from the division of biological
cells . On the basis of a fluid sphere, dividing into two
smaller droplets due to deformation caused by an external
disturbance, they postulated that for heavy nuclei, the mutual
repulsion of the electrical charges balance surface tension

forces so delicately that only a small amount of external




energy 1is required to cause breakup of the nucleus into
approximately symmetric fragments. Bohr and Wheeler[1939]° did
the pioneering work of giving a detailed gqualitative
description of what is known today as the Liquid Drop Model
(LDM) in Nuclear Physics.

The LDM with its many successes , however, is not
adequate in predicting the nuclear properties associated with
the shell structure of the nucleus. To explain spin and parity
of nuclei with odd number of neutrons and protons, a single
particle model (SPM) is used based on the assumption that each
nucleon moves in a potential resulting from the interaction of
that nucleon with all the remaining ones. Calculations based
on this model were performed by Mottelson , Nillson[l956]6 and
Bes and Szymanski[1961]7 . By assuming a deformation dependent
potential, Nillson calculated single particle energy as a
function of nuclear deformation, but his model failed to
explain properties for large deformation and high energies.

The problem in the SPM at high energies was resolved by
Strutinsky[1967]8 who proposed a method in which shell effect
was considered as small deviation from a uniform single
particle energy level distribution, and was treated as a
correction to the LDM energy. The combination of the LDM
potential energy and shell correction energy led to a double-
humped potential barrier shape like the one shown in Fig. 1
whereas, the LDM only predicts the existence of a single-

humped potential barrier( dotted line ). Moreover, the well



established "thorium anomaly" was theoretically resolved by
Mdller and Nix® when they introduced a mass asymmetric
deformation in their caiculation of fission barrier and found
that for some nuclei (N~143) , the outer barrier was split
into two saddle points separated by a third minimum, resulting
in a triple-humped barrier.

The Strutinsky barrier was immediately successful in
explaining isomeric fission and observed intermediate
structure in induced fission cross sections for nuclei in the
actinide region of the periodic table. A study of these
nuclear processes requires the knowledge of the transmission
through the double humped-barrier, which in turn requires a
mathematical description of the barrier. A solution to the
problem of mathematically describing the shape of the double-
humped barrier was proposed by Wong and Banglo. They
approximated the barrier with respect to the nuclear ground
state, by smoothly joining three parabolic segments. In this
approximation, the potential energy of a nucleus with respect
to nuclear deformation, reguires six parameters; three
energies corresponding to the heights of the two peaks and the
depth of the well; and three frequencies corresponding to the
amount of curvature.

Various forms of Exact and JWKB methods have been
employed in deriving expressions for the probability of
tunnelling through a double-humped potential. The JWKB methods

vary in their use of connection formulas, and their
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approximation method. Bohm[1951]!, Merzbacher[1970]12, and
Kemble[1937]!3, obtained the JWKB solutions by using the
asymptotic approximation and Dbi-directional connection
formulas at the turning points. This approach has been
severely criticized by Frémanl4. Instead, he uses a convergent
series expansion method to arrive at the JWBK solutions to the
Schrodinger equation. The JWKB solutions based on Froéman’s
formalism are exact solutions and yield uni-directional
connection formulas.

Unlike the asymptotic form of the JWKB method which
vields simple closed form solutions for the penetrability, the
Exact methods require the more complicated Weber Cylinder
Parabolic Functions. In most of the known published works,
Weber’s functions have been approximated by using their known
series expansion, by interpolating from existing tables in a
limited range of parameters, or by using Taylor’s expansion.
In the present work, the Weber’s functions are evaluated to a
higheyr degree of accuracy through modern numerical techniques
by using Airy and Hypergeometric functions. High precision is
required in evaluating the Weber functions because of small
fission widths at low energies. An alternative is to use
Lorenzian curve fitting at resonance.

It is the purpose of the present work to offer a
mathematical and a detailed numerical analysis of the various
expressions available for the penetrability through a two-

humped potential barrier. Four characteristics of the energy



versus probability graph are studied for varied barrier
parameters, namely: pure vibrational state energy levels,
level heights, level widths, and the penetrability through the
full barrier from ground state energy. These results will be
used to investigate the effects the differences will have on
predictions of spontaneous and isomeric fission half-lives.
Chapters 1 and 2 “focus on the development leading to the
present-day double-humped barrier. Chapters 3 to 5 describe
various mathematical expressions for penetrability through
double and triple-humped barriers. Two methods, JWKB and exact
are analyzed. Froman’s F matrix formalism is al. o discussed.
Ignatyuk[1969]1% was the first to apply the asymptotic JWKB
equations to the double-humped barrier. His results have been
slightly expanded by Bhandari[1974-1980]°"18 for double-humped
potentials. Cramer and Nix[1970]!° were the first to give
exact expressions. As well, Sharma and Lebeouf[1972-1975]20'22
have expressions which take into account non zero reflection
imposed by Cramer and Nix, and allowance for the initial state
of the nucleus. In addition, Sharma and Leboeuf have used
Froman’s F matrix to obtain a JWKB penetrability expression.
Chapter 6, describes the physical mechanism of the
spontaneous and isomeric fission as relating to the Strutinsky
barrier. Chapter 7, deals with the numerical techniques used,
such as the methods for obtaining values for the Weber
functions. Finally, in chapter 8, a detailed numerical

analysis is pertormed for the various penetrability




expressions and the effects of their use in predicting
Spontaneous and Isomeric fission half-lives is studied.

The characteristics of the penetrability are derived by
varying the six barrier parameters. The maximum and minimum
values of the Dbarrier parameters are obtained from
experimental data for actinide nuclei. Since many works have
been published in which the experimental barrier parameters
have been adjusted to agree with isomeric and spontaneous
fission half-lives, we hope to investigate whether the above
methods vary sufficiently to have an effect on these
predictions. Also, Cramer and Nix have remarked that the
energy level shifts between the exact and JWKB increase as the

deformation energy increases. We wish to study whether this is

generally true.
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FIG. 1. The Double-Humped potential barrier as a result of the superposition of the Liquid Drop
energy and the Shell-Correction Taken from S.Bjornholm and J.E. Lynn 1980.



CHAPTER 1

Nuclear Models and Fission

1.1 Collective Cooxrdinates

In most nuclear models, it is convenient to use a macroscopic
approach in which collective, rather than single-particle,
degrees of freedom are used. Swiatecki and Bjornholm?® have
pointed out that three degrees of freedom is the barest
minimum required to reveal the essential features of nuclear
dynamics. The three degrees of freedom commonly used are
nuclear stretching(c), necking(h), and mass—asymmetry. These
variables are related, though vaguely, to the Legendre
Polynomials. Stretching and necking coordinates (Fig. 2) are
useful in the study of the excitation mechanism of the fission
process, which involves a particle moving in a deformed time-
dependent potential. These variables are also used in
Strutinsky’s Shell Correction Method.

Collective coordinates are primary tools for modelling
four important nuclear collective motions (Fig. 3) : vibration
or compression, rotation, photonuclear resonance, and nuclear
fission. Photonuclear resonance occurs when a photon
approaches a nucleus resulting in the accumulation of protons
in an area of the nucleus. This results in the formation of
necking and stretching of the nucleus, and hence resonance. On

the other hand, fission is the separation of a nucleus into



©
%

Y 13 16 19 22

FIG. 2. Nuclear shapes corresponding to Stretch and Neck coordinates. Taken from S Bjornholm
and J E Lynn 1980
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usually two asymmetric fragments.

The LDM model was developed primarily to explain the
stability of a nuclear drop with respect to distortion of the
nucleus. Therefore, stretching and necking coordinates are not
used in the LDM. Instead, the LDM and SPM use the Legendre

Polynomials or Spherical Harmonics in the radius, R(®), as,

R(B) =R[1+a +&,P,(cosB) +a,P, (cosb) +........ ] (1.10)

R(0) =R[1+P +B,Y,,(cosB) +B,Y,,(cosB) +.. ... ... (1.11)

The deformation parameters a and B are related by

_ 4T 1/2_ a4 \1/2
&,=4a; “2_.1_:1_) _BA(ZA+1) {1.12)

The potential energy of a deformed nucleus is derived in terms
of nuclear deformation perameters. Fission mass asymmetry is
explained by including odd a terms (Fig. 4) and even a terms

are used to explain symmetric fission (Fig. 5).

1.2 The Liquid Drop Model

Bohr and Wheeler?, using the analogy of a 1liquid drop,
calculated the nuclear potential energy as the sum of surface
energy and electrostatic energy in terms of nuclear
deformation. The electrostatic energy is simply due to the
coulomb effects of protons. The surface tension energy arises

due to the nuclear binding forces. The total energy of a drop

10



FIG. 4. Nuclear shapes corresponding to varied «, and fixed even a terms of the Legendre
Polynomials Taken from R. Vandenbosch and R. Huizenga 1973

FiG. 5. Nuclear shapes corresponding to the a, and a, terms of the Legendre Polynomials Taken
from R Vandenbosch and R. Huizenga 1973
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is then obtained under certain assumptions. It is assumed that
the drop is an incompressible fluid of volume (4m/3) rlA
a uniformly distributed charge Ze, and possessing surface
tension 0. The energy of symmetric distortion from spherical

shape to the forth order of even ¢ is given by,

sEg, =
amr 0A?/3[205/5+11603/105+101a3/35 +2a§a4/35+a§](1'20)

-3(ze)?/5r A% [al/5+6403/105+58a5/35+8asa,/35+5a;/27]

It is obvious that for a liquid drop a point is reached when
the surface is no longer able to contain the electrostatic
energy. At this point the drop will easily break up. The point
of instability of the nuclear drop can be obtained from

Eq.(1.20) as the limiting value of (22/a)

(Z2/A) 1 1mieing=10 (47/3) rj0/ 2 (1.21)
which can be written as
10r
(Z%/A) 1imitlng=14MeV( 38") (1.22)
2

(Zz/A)limiting from Eq.(1.22) gives a value which is 17% higher
than (Z2/A) for U238 (35.56). Thus we can conclude that nuclei
such as Uranium and Thorium 1lie close to the 1limit of
stability. These results can also be used to calculate the
energy at the point of scission by minimizing Eq. (1.20) with

respect to ¢, to obtain,

12



@, =~ (243/594) a? (1.23)

Let x=(22/8)/ (2%/A) 1initings then

E,=(4nr_ ) OA?/2[98(1-x)3/135-11368 (1-x)*/34425+...](1.24)

The energy in Eq. (1.20) of a nuclear droplet involves even ¢
terms, 1limiting fission to symmetric shapes only. For
asymmetric fission, it is necessary to include odd a terms.
Cohen and Swiatecki[1963]24 investigated saddle point
configurations for small odd deformations to study asymmetric
mass division. They concluded that division of the nucleus,
was energetically more favourable to symmetric division, which
was physically unternable. Investigations continued without
success, and no asymmetric equilibrium configuration with
energy lower than symmetrical configurations were found.

The above failure, coupled with others prompted
refinements to the LDM, including, some type of single
particle effects, nonuniform charge distribution,

compressibility, and a curvature dependent surface tension.

13
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The LDM is successful in relating mass to nuclear
stability. It predicts a spherical shape in the ground state
of the nucleus. The LDM also predicts a one peaked fission
barrier. The probability of penetrating such a barrier is of

exponential nature.

1.3 The Shell structure of the Nucleus

The LDM inadequately predicts those effects which are
associated with the shell structure of the nucleus. On the
other hand, the single particle model 1is successful in
explaining shell gaps and spin and parity of nuclei with an
odd number of r.eutrons or protons and nuclear magic numbers (
2,8,20,28,50,82,126 for neutrons and protons). In this model,
it is assumed that each nucleon moves in an average potential
approximately representing the interaction of one nucleon with
the rest.

Investigations of static and dynamic properties of nuclei
indicate periodicities in the properties of nuclei. It was
first suggested by G. Gamow[1934]25 and W. Elasser[1934]26 that
these properties may be due to a shell structure similar to
the atomic shell structure.

Magic number effects are the strongest evidence in favour
of shell structure. An element possessing a magic number of

nucleons has more stable isotopes than its neighbour.

15



Similarly, an element possessing a magic number of neutrons
has more stable isotones than its neighbour. Neutron cross
sections are very low at magic numbers, indicating that shells
are closed and do not absorb the incoming neutron. For the
same reason, elements having only one valency neutron are good

spontaneous neutron emitters.

1.4 Nillson Model

Nillson and collaborators[1955]%7, used a deformed harmonic
oscillato:r potential with P, (cos@) and P,(cos®) terms included
to account for the spheroidal and the neck-constriction
degrees of freedom in describing the shape. The Hamiltonian

used is

H=_2f2l_;+%wgr2[1—2pyzo(e)1—c1.s—D12 (1.40)

The appropriate coordinates of the system are represented by
three Euler angles ©;, a deformation parameter £, and the

particle coordinates r’'_ relative to the nuclear symmetry axiz

p
7z . The spin-orbit coupling is represented by the term -Cl's,
with C beinqg constant within an oscillator shell.

Using the above hamiltonian , Nillson derived,

(,)‘(B )=wo‘1[1+(%n) ~1/2B0)2(1_2(%ﬂ) -l/zpa) ] -1/3 (1.41)

(% (o
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The energy map as a function of distortions is illustrated in
Fig. 8. At large a, values, the energy started to rise

rapidly.
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CHAPTER 2

Strutinsky’s Shell Correction Approach

At large deformations, the single particle model failed to
give reasonable deformation energies. Strutinsky[1967]8
proposed a method requiring both the SFM and the LDM. 1In
Strutinsky'’s approach , the total energy of the nucleus is the
sum of the LDM contribution and a correction derived from
single particle effects. The method assumes the total energy
of the nucleus to be dominated by the smoothly varying LDM
energy. The single particle contribution is derived from, the
normal nonuniform SPM energy , and a modified uniform single

particle energy distribution.
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2.1 8trutinsky’s Method

Strutinsky considered the total potential energy of a nucleus

to be,

E=ELDM+E (6U+6P) (2.10)

p.n
Neutron and proton corrections were treated separately. The
terms in the sum are correction terms. The first correction
term, 86U, is due to the difference between two methods of
calculating single particle energies; one with nonuniform
spacings and degeneracies, the other as a uniform

distribution. The shell correction is therefore given by,

du=U-0 (2.11)

The nonuniform energy, U ,is simply the sum of the energies of

n; particles occupying a level with energy E;.

U=y 2E,n; (2.12)
v

The uaiform energy, {f, uses a function ( g(E) ) obtained by
taking weighted average of nonuniform energies using a

weighting function schene.

A
c7=2ng(E) dE (2.13)
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The second correction term, 8P ,1s the contribution from
pairing correlation calculated by the BCS approximation?8.

Both the sum of the single particle correction, and the
sum of the ©pairing correlation contribution, produce
oscillating energies as a function of deformation. However,
these contributions are out of phase. As well, the pairing
energy 1s much 1lower than the single particle energy.
Therefore, the pairing effect serves to decrease the amount of
modulation by the single particle correction alone.

Equation (2.10), a function with respect to deformation,
is dependent on the SPM and requires an assumption to be made
in the choice of the average single particle potential. The
shell correction approach has been used by many, differing
only in the choice of average potential. Strutinsky’s own
calculations[1967]8 employed a deformed Wood -Saxon potential.
Calculations have also been carried out using the Yukawa and
Harmonic Oscillator Potential by Moller and Nix[1974]°. These

methods are widely discussed in many papers.Z28-30

2.2 Results of calculations

Strutinsky’s method was very successful in predicting the
nuclear binding energies. When applied to the actinide nuclei,
Strutinsky discovered a secondary well or dip in the
potential energy. A study of the potential energy as a

function of deformation lead to a double-humped barrier as a
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result of an oscillating shell correction superimposed on the
liquid drop saddle point energy region.

Shell correction varies with the changing proton and
neutron number, while the LDM energy varies with changing
fissility parameter. The sum of both the differences gives
rise to variation in double-humped barriers from nucleus to

nucleus.

2.3 Double-Humped Barrier

Calculations carried out by Moller and Nixg, using the
modified harmonic oscillator shell model potential for
spontaneously fissioning isomers, reveal secondary minima in
the range 2-3 MeV for Th, U, Pu, Cm, Cf, and Fn.
Experimental data on spontaneous fission isomer half-
lives and excitation cross-sections and intermediate structure
in fission cross-sections indicate that the inner barrier is
higher than the outer barrier. Early calculations in which the
nuclear shape was assumed axially and reflection symmetric,
showed the opposite. This discrepancy was removed
qualitatively by Moller and Nix demonstrating that reflection
asymmetry in the nuclear shape gave potential energy minima at
elongations corresponding to the outer barrier. The method
used included, adding third and fifth Legendre Polynomials,
(azP3cos0) and (agPscos®) to the deformation shapes. Fig. 9

shows parametric values of the first barrier, the second
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minimum, and outer barrier for various nuclei.
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To simplify penetrability calculations, the double-humped
barrier is generally constructed by connecting segments of
parabolas. After the work of Wong and Bang[l969}1°, Cramer and
Nix[1970]19 developed an expression for the double-humped
potential barrier in terms of three energies E;,E,,E; , three
oscillator frequencies hw,, hw,, hw, (Fig. 10) , and the
connection points (a,b). The Strutinsky barrier also includes
the first well, as shown in Fig. 11, where Sharma and

Lebeouf’s convention of parameters is used.
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CHAPTER 3

JWKB

The JWKB apprcximation method provides a connection between
classical and quantum mechanics, and is accredited to among
others, B.S Jeffreys [1923]°!, Wentzel, Kramers [1926])3, and
Brillouin. In the usual JWKB approximation, the solution of
the Schrdédinger equation 1is expressed in terms of an
asymptotic series from which the first order JWKB solutions
are obtained. There are different mathematical variations of
this leading to the same result. In 1965, Froman!? published
a book in which he points out that the former works on this
subject were unclear, and lacked mathematical rigour. He
strongly criticises the methods used in developing connection
formulas, and their bidirectional nature.
In barrier penetration problems, the wave function

Y (x) 1in various regions, diverges on both sides of a
classical turning point (Fig. 12). It is thercfore essential
to describe a method by which one can smoothly join two wave
functions in both regions, removing this discontinuity. The
connection formulas make use of a direction denoted by

(w»,—-,—) ,describing the replacement of one term by another.

For example, in the connection formula,
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Acos (f(r))+Bg(r)—=(A+B)exp (f(r)) (3.00)

the wavefunction on the left hand side connects smoothly with
the function on the right at the turning point. Frdman pointed
out that the bidirectional connection formulas developed by
Bohm and others omit certain terms which would otherwise
reveal their unidirectional nature. In Eg. (3.00), if A and B
are known, one can get the term (A+B). On the other hand,
there is no way of knowing A and B individually from the sunm
(A4B). Clearly, 1f B=0 in Eg. (3.00), the connection formula

becomes bidirectional
Acos (f(r))=Aexp(f(r)) (3.01)

But this is not true in general

FIG. 12. JWKB approximation wave functions for the first three states for states in a potential well,
Taken from D Rapp . H Rinehan
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3.1 The JWKB Asymptotic Approximation

It was suggested by B.S. Jeffreys3! in 1961 that the JWKB
method be called the asymptotic approximation because of the
exclusive use of the asymptotic expansions in the development
of the JWKB equations. This method is widely used to explain
fission phenomena involving barrier penetration. Some of the
authors who made notable contributions are David Bohmlﬂ
Kemblel3, Morse and Feshbach33, and D.S. Onley34. This method

involves solving the Schrdédinger equation

d* Q(x) \* . _
dxztlﬂ( 3 ) Y=0 Ael (3.10)
by expanding {(x) as
x oo
P (%) =exp%fdxzyl (x)A! (3.11)
x, 40
Reinserting ¢ (x) into Eq. (3.10) and putting 2:°!- =0
yields
Vo=t 10(X) (3.12)
d i
E‘ij_l'—'“‘ YVi-u 1=1,2,3%, ... (3.13)

This equation is in general not convergent, but asymptotic.
Retaining the first three terms in the exponent, gives the

second order JWKB solution.
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P.q
{2y i le) @ 3.14
g (x) (A) expu}[(l«»zeo)kdx (3.14)
The first order JWKB-approximation is
(3.15)

P (x) =(—%)-llzexp ti){—%dx

The connection formulas developed using the first order JWKB
solution can be found in publications by R.E Langer3®, E.C
Kemblel3 and D. Bohmll. The bidirectional formula connecting

the classically allowed region to the forbidden one is

(3.16)

a
—l—exp(-fkl—cfh—}—(]# 2_cos
X

f, dx_ T
[%5-3

and a similar formula to connect the classically forbidden

region to the allowed one is given by,

X a
1 .| dx |, 1 dx (3.17)
s.Ln( sz el exp fle]
2 a 1 X
k,=/2m{V=E) k,=/2m(E-V) (3.18)
3.2 Froman’s JWKB Equations
Froman started . h the one-dimensional time-independent

Schrodinger equation Eq. (3.20).

30



é¥3w+05(5>w=0 (3.20)

Here , 2z is a complex variable and Q2%(z) is an analytic
function single valued in a certain region of the complex z
plane. This equation is transformed by introducing new

variables (w,¢) defined by
P=[g(z)] 1@ (2) (3.21)

w(z) =fzq(£>da (3.22)

Eq. (3.20) can be rewritten as

dz
@+(1+e)@=0 (3.21)
dw*®
ezQ"?‘ —q V2 d"(ng) (3.24)
Q- dw:

3.21 The Function £ (z)

If we put ¢=0 in Eq. (3.24), the exact solutions to Eq.

(3.23) are gp=ei¥,e"iv , and the resulting wave function is ,

uszp[.[ E)dE (3.210)

If we choose g?(z) equal to 0% (z) , the resulting

function g(z) is not equal to zero but is small. In this case
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Eg. 3.210 will give the usual form of the asymptotic JWKB

approximation Eq. (3.15).

3.22 The Function g(z)

The solutions to Eq. (3.23), when g=0 ,have been studied by
Charles E. Hecht and Joseph E. Mayer [1957]36, where they give
a solution that can be derived to any degree of accuracy
specified. They also demonstrate the limit at which the usual
asymptotic JWKB solutions are derived. The =zeroth order

solution is given as,

1/2

dviz[_gz(x) ) foq("‘)d"

dx | q__1 (3.220)
l 4vé
This equation has asymptotic solutions,
v () =c+fQ(x)dx classicalregion (3.221)
-1 .
v (x) —Eexp{—zf—o(x) dx] non classical (3.222)

Hecht and Mayer derived the JWKB solutions
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dvl 172 . .
W(x)=—5{— sin(v,) (3.223)

which lead to the usual JWKB solutions,

-1 : R
w(x)-Q(x)51an(x)dA (3.224)
=1 (i) A
Y (x —_Q(X)exp f Q(x)dx (3.225)

In his method, Hecht finds dq(x) 1in the first order

approximation to be,

q(l)(x)z:o?(x)[l_i (Qz)”___S_ [(QZ)H];’_
4
(3.226)

E=fQ(x)dx+%- classical

qn) (X)7=Q’(X‘)

1_1 (O/>’/+_5_ [Q’//],_16O~/Q+24OC 40‘ A,
4 Q0 16 of

(3.227)

sz—Q(x) dx+1 non classicdal

A JWKB approximation based on the choice of g(x) is useful

when Q(x) has a singular behaviour in the neighbourhood of the
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breakdown of the usual JWKB approximation. Requiring ¢ to be
small in the singular region, leads to the function gq(x)
differing from Q(x) in the neighbourhocod of the singularity.
The function g(x) is approximated everywhere else by Q(x).
Froman has studied the cases of Barrier Transmission and Bound

states, and has found that for parabolic barriers the exact

solutions require Q(x) equal to g(x).

3.23 F Matrix

Froman developed an exact solution to Eg. (3.23) by expressing

¢ in the form

p=a, (w)exp (iw) +a, (w)exp{-iw) (3.230)

from which he obtains
diw(pﬂalexp(iw) -ia,exp(-iw) (3.231)
By imposing a condition which allows a;(w) and a,(w) in
Eg.(3.231) to be treated as constants,
al

92 o ('w)+da7- (-iw) =0 (3.232)
= &Xp (1 T exp (-1w) = .

he gets a new form of Eq. (3.23) in terms of two first order

differential equations
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d 1. e
E-'afgle[aﬁazexp(—élw)] (3.233)
d._.__1. e
E’az———z—n[agale)\p(alw)] (3.234)

These two equations can be replaced by one equation in matrix

form

d —. —
-—d—wa—M(w)a(w) (3.235)

Integration of this equation yields

a(w) =F(w, w,)a(w,) (3.236)

which is a general solution to Eq. (3.235). Using this result,

Froman derives a general solution to Eq. (3.20) as,

Y(x)=C(2)Flz, z,)a(z,) (3.237)

All the F-matrices are defined in Appendix B.

Using these results, and the estimates of the function i
known as the F matrix, Frodman derived the unidirectional
connection formulas (3.238), (3.239), and (3.2310), which can
only be used if the classical turning points of the applicable
region are well separated and there is at most one fturning
point between regions. The unidirectional connection formulas

from Froman’s F-matrix formulation are given as,

from allowed - to forbidden
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(3.238)

Aq"/“exp(ﬂw[*—}) +BgY%exp (-i(lw|+_g)—-(A+B) lg| Y%exp (|w])

lg|~2/2cos (|w

+~,'—%)—‘sinylql'”zexp(lwl) (3.239)
and from forbidden - to allowed

'ql—l/zexp(_lwl) -.2!g|'1/2cos ( ]w]—-%) (3.2310)
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CHAPTER 4

Penetrability Calculations using JWKB

4.1 Asymptotic JWBK Approximation

Ignatyuk?!®

was the first to derive an expression for the

penetrability through a double-humped barrier using the

asymptotic form of the JWKB method. The penetrability is

defined as ,

2

q’transv trans
wlnCV inc

P(E) =

Ignatyuk’s derivation can be represented by

following notations (Bhandaril®),

X,

a,l(x,)= 1 exprk(x)dx
\ X

X
exp if]%(x) dx
X, /

1/2
k(x) =[2 ) (E-V(x) )12

(4.

using

(4.

(4.

(4.

10)

the

11)

12)

13)



1/2
k(%) =(%) (V(x) -E) 172 (4.14)

¢y

v1=71%dx,v2=fkdx,v3=?kdx (4.15)
t. t, ty

The turning points are denoted as t;; u is the effective mass
of the nuclei obtained from semiempirical results; and V(x) is
the double-humped potential. With Egs. (4.11) to (4.15), the
connection formulas in Egs. (3.16) and (3.17) can be rewritten

as

(allowed - to forbidden)

a,—*e'““(f,-*-%if_) (4.17)
a_—-e”“(f*-—éif-) (4.18)
(forbidden - to allowed)
f,-—% (eit/dig +e in/ig ) (4.19)
f=(e Mg +eit/ig ) (4.110)

It can be shown from these equations that the fellowing

relations are satisfied,

a,(x)=e" a (x,.) (4.111)

£ (x))=e™ " -f(x,_,) (4.112)

1-1
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From Fig. 13, in region V it is assumed that we have only a
transmitted wave. The wavefunction in this region can be

written as

¥, (e) =a, (¢) (4.113)

Region V is a classically allowed region. The wavefunction in
region IV , a classically forbidden region, can be obtaining
by connecting it at turning point t, with ¢ (¢) by using Eq.

(4.17) . Therefore,

qyn.(e)=e‘i"/“‘(f,(t4)+—;—if_(t4)) (4.114)

Substituting from Eg. (4.112) gives,

Yle) = ivi(e"f (¢,) +—;-ie"”f. (£,)) (4.115)

Similarly, the wavefunction in region III is

(4.116)

iv?(_]; —v,_ev,)a (tz) +e-iv,(ev,+%

.
e Yya._ (t,
2 . )a, )

Y, (e)=1e
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FIG. 13. Regions used in the JWKB asymptotic approximation for Ignatyuk’s results
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and in region IXI

(4.117)
{ieiv: (_i;e’va_evx) elﬂ/’4+e‘j": (e"w_i_'e "x) e‘*”‘"]t’_ ( t'l)
‘l’ I(g): -1 v - / ' i '
I +H—ie V(e J_’___i_e Vi) e—ln,4+%ex\;(%—_e-v|_e\\)em Q]f.(t,l)
and finally in region I
(4.118)

[i(e””—i— e™) (%e‘"‘-e"") e"‘+(%e"”-o"‘) (e"w%c"")c ""}a‘ (t,)
Y, le) =

+[(_}e-zv)_ev,) (_i__e-v;_ev,) 6‘”“(8\"*%97“) (&'v"%t‘-v‘)e‘“’]d (rl)

The incident part of Y,(¢) is the term involving a_(t;). In
region V we have only a transmitted wave. Using Eq. (4.10) and
noting that k(trans)=k(inc), the penetrability is

(1.119)

P (B) d——— 1 1
(2e™-e®) (e e e (eMige ™) (e

ety e
4

1,

|
The transmission coefficient for barrier B alone from Y,

is

Lo (4.120)
4

Similarly, for barrier A we have
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1 2
P,=
eV + Lo (4.121)
4 T
From Eg. (4.120) and (4.121)
(e”f’+%e'v’)=|1/P,31”2 (4.122)
(e”*+%e’“‘)=|1/P,l,|1/2 (4.123)

P(E) can be expressed in terms of P, and Pg (Bhandharils’ls),

(4.124)
pP,P
P(E) = 17212 > A2 1/2712e 4 2
[1+[(1-P,) (1-Pp) ]1*/2]%cos?v,+[1-[(1-P,) (1-Pp) 1*/?]1“sin?v,
Using the approximations fu—e'z“,£%~e'2“ , gives us

Ignatyuk's15 expression,

64P,P,
P(E) = — — (4.125)
[ (P,Py+16)7Cc0OS*v,+16 (P,+Pp) *sin’v,]
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4.2 Penetrability From Froman’s F Matrix Formalism

When the classical turning points are well separated, the
unidirectional connection formulas (3.238), (3.239), and
(3.2310) are valid. Using these formulas, Lebeouf<® obtained
the wave functions for regions I and V (Egs. (4.20) and

(4.21)) .

¥,=-Ag *<exp| i flq(zhiz+§- (4.20)

{(4.21)

ty

t: s
¢I=4Aq‘”zexp.fg(z)dz exp‘fq(z)dz cos(vz)cos.[q(z)(tn-%
Ly L, r.

From these wave functions the penetrability obtained is

P,P
P(E) =—21— (4.22)
4cos?v,

t'&
v2=fq(z)dz (4.23)



Py,=exp(-2v,), Pg=exp(-2v,) (4.24)

When the classical turning points are close together, Lebeouf
uses Froman’s F matrix formalism to obtain solutions for the
wave functions in regions III and V. From ¥, ¥, the other
wave functions Y, ¥;,.¥;, are obtained with the help of the
unidirectional connection formulas (3.238), (3.239), and

(3.2310). He obtained the following penetrability equation,

P(E) = fals 4.25
(2-Pp) +4cos (v,) sin(v,) (1-Py)*/? (4.25)

pee™, pp (4.26)

Eq. (4.25) requires that the classical turning points be close

together. This occurs near the top of the barrier.
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CHAPTER 5

Exact Methods

A more successful approach to barrier tunnelling calculations
is that of penetrability through a two-peaked barrier using
exact solutions. This technique, initiated by Wong and
Bang[1969]1°, has been employed more systematically by Cramer

and Nix[1970]!° and Sharma and Lebeouf[1975)20-22,

5.1 Cramer and Nix Double-Humped Penetrability

Cramer and Nix calculated the exact penetrability through a
two-peaked fission barrier consisting of two parabolic peaks
connected smoothly with a third parabola forming the
intermediate well (Eg. (5.11)). Such a double-humped barrier

can be described in terms of six parameters; peak maximum

energies E1 and E3 , well depth energy E2 and frequencies
hw,,bw,,hw, (Fig. 10). For an incident wave of unit
amplitude, the amplitude of the transmitted wave is
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determined by smoothly matching the wave functions and their
derivatives at the points where the parabolas are joined. The
penetrabiiity is then obtained from the amplitude of the
transmitted wave.

To find the wave functions in different regions, we solve the
Schrédinger’s equation

—‘l'iw(e) +2R1E-v(e) 1y (€) =0
de“ :h" (5.10)

The potential energy and each region (I,II,III) considered are

shown in Fig. 14. The potential energy is defined as

V(£)=Eli-%p.(of(e—el)2 ,1=1,2,3 (5.11)

Ve) =0 €=0 (5.12)

The solution to the Schrodinger equation are of the form

Y, =AY (=) +Bg (~) €sa (5.13a)
Y, =Co,+Dm,  asesb (5.13Db)
Y=y, () bse (5.13c)

In region I, wave packet phase velocities move left and right.
In region II, the functions are chosen with a mixture of waves
travelling in both directions, since C and D are not contained

in the final expression explicitly. Substituting,
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u(e) =/2hw, (e-€;) (Vi/h) (5.14a)

v(e) =/2hw, (e-€;) (Vi/h) (5.14b)
w(e) =/2hw, (e~€,) (Vi/h) (5.14c)

Eg. (5.10) can be transformed into the well known Weber’s

differential equations,
d?y/du2+0%u2-a)y=0 (5.15a)
d?y/dVZ—«%»ﬂ+a)y=o (5.15b)

Whose solutions are the Weber Cylinder Parabolic functions

given by,
y,(=)=E"(a,, -u) (5.16a)
¢, (=) =E(a,,-u) (5.16b)
¥, (=) =E(a,, w) (5.16C)
6,=U(a,, v) (5.164)
n,=V(a,, v) (5.16e)

The wave functions in the various regions are therefore,

¥ =AE"(a,, -u) +BE(a,, -u) (5.17a)
Y, =CU(a,, v)+DV(a,, v) (5.17b)
Vi r=TE(ay, w) (5.17¢)

Requiring these wave functions and their derivatives to be

continuous at connecting points a and b, the transmission
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coefficient as the ratio of the transmitted amplitude T to the

incident amplitude A can be shown to be (see Appendix A),

(5.18)
T viu'wlE (a,, -u),E(a,, -u) I W[U(a,, v}, V(a,, v)]
A E (a,, -u) -V, (a,, v) -U, (@, V) 0
(-u) (v) (v)
~u’E," ey, -u) vV, (e, v) VU, (g, V) 0
0 Vpyla,, v) Upla,, v) -E (o, w)
0 vivy (e, v) vui (a,, v) -wEM (a,, w)

And the probability of tunnelling through the barrier is ,

P=(w,/w, ) YYT/ A"

The deformation parameters at energy maxima

Wronskians, and «; are given by,

_ 2E, h}

€=, | ——||—

(ho ) ] Vi
ZE-E) | (vo 3 4]
a=e + 1 % 1+ W, 2 _}‘_
N (o)) ?* | ho, Vi

""_—"'h_ﬂ' 1, 2]- 3¢

€,=a+ 2 (El_b?) 1+ W, ¢ j_
\ (}‘(”2)‘ I hwl J \/lI
[ T 'h 2 “Tl' 1
bee, + Z(EE-E?) 1+( w, e[ n
N (hoy)® | hw, VR
2(E,-E )u hoo 2| E 3y
€3=b+ 3 2 1+( @, - ._}_’_
\ (}’("3)4 Jis M‘)Z \/ﬁ

(5.19)

and minima,

.110a)
(5.110Db)
(5.110c)
(5.

1104)

(5.110€)

(5.111)



W[U(az,—v),V(az,v)]aI% (5.112)

_(E,-B)

a,=— i=1,2,3

1

5.2 Triple-Humped Barrier Penetrability

Using the ingredient in the work of Cramer and Nix, Sharma and
Lebeoufl? extended the calculations to triple-humped barriers.
Triple-humped barriers had been suggested by Mdller and Nix®
to explain anomalies in Thorium experimental data.

In a three-humped barrier, the solutions of the Schrédinger

equations in the five regions are (Fig. 15),

¥, =AE(a,, -X;), (5.22)
¢,=BU(a,,x,) +CV(e,, Xx,), (5.23)
@,=DW(0y, X,) +FW(a,, —X;) , (5.24)
¢,=GU(e,,x,) +HV(a,,X,) , (5.25)
@, =TE(a;, X5), (5.26)
with
a,=(E,-E) /hw, i=1,2,3,4.,5 (5.27)
x,=(2pw;/h) 12 (e-¢,) i=1,2,3,4,5 (5.28)

the penetrability is given by,
P=(w,/w0,) YT/ AP (5.29)
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where

I
A
and

I= Xllxz/xjglx_;hlr [E‘(all —Xl) IE(all -XI)]
wr(U(a,,x,), Vie,, x,) 1 Wr (W(a,, x;) W(a,, ~x;) ]
wr{U(e,, x;) Vie,, x,)]

The determinant D is ,

(5.210)

(5.211)

6 t \
Py
=
(<]
=
> 47
o
LLd
<
*Qc::
o 2t
Q.
| ] If 1V
0k A . .
0 05 10 15

Deformation (g)

FiG. 15. Regions used by Sharma and Lebeouf in Triple-Humped calculations
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o

5.3 Enhanced Double~-Humped Methods

The Cramer and Nix expression obtained in section 5.1 assumes
zero reflection in region III (Eg. 5.13c). Leboeuf and Sharma
have discarded this assumption to extend the exact double-
humped penetrability expressions to include reflection in
region III. The actual Strutinsky barrier includes a first
well. All methods mentioned so far assume the nuclei to be
initially in its ground state. Leboeuf and Sharma also
developed an expression for the penetrability with the

inclusion of the first well.

5.31 Sharp Drop Approximation

Sharma and Lebeouf?® have included reflection in the third
region of Fig. 14 by redefining the barrier regions (Fig. 16).
This involves the addition of an extra region to the Cramer
and Nix barrier region III by approximating the left part of
the third parabola by a step. This method called "The Sharp

Drop Approximation" yield four wavefunctions,

Y, =AE" (a,, -u) +BE(a,, -u) 0<e<a (5.310)
Y, =ClUlea., V) ~DV(a., V) azezh (5.311)
Y =FW(a,, w) ~GW(a,, -w) Eoeze, (5.312)
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FIG. 16. Regions used by Sharma and Leboeuf in the Sharp Drop Approximation method
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Y ,=Texp (1Xke) €2€, (5.313)

The method is similar to that of the previous section. Leboeuf

derives the penetrability to be

T2

2 (5.314)

(| E 1/2
P(E)—(?ZZ)
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5.32 Initial Nuclear State

Another improvement explored by Lebeouf and SharmaZ! involves
the original Strutinsky’s barrier which includes a primary
well (Fig. 17). All the methods already mentioned assume that
the nuclide is in its ground state. As well, this method does
not limit the outgoing wavefunction to zero reflection. It is
of interest therzfore, to investigate the effects of initial
nuclear state on penetrability calculations. We hence have

five wave functions.

Y, =AV{(-a, ix ) +BU(~a , -1X,) (5.320)
Y, ,=BW(a,, x, ) +DW(a_, -Xx ) (5.321)
¥, =FU(a,, x,) +GV(a,, X,) (5.322)
Vo = HW (e, , x,) ~KW(e,, -x,) (5.323)

Y,=Texp [1(2pE/H) M/ 4e] (5.324)
P(E)=(E/hw ) VED (5.329)
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1 : T|*
= ; ; -y 5.326
|W,[V(-a1,1x1).V'(-al,lxl)]llA ( )
It can be shown that
(5.327)
w U(-o,,1ix,), V(-a,, ix)]F
I I[ 1 ' J) 1 1)” =\,/—(2/TC)SGC(7tal)F(al+i)
W, TV(-e,, ix), V' (-0, ix)]] 2

The determinant T/A is given in Eq. (5.328)
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FIG. 17. Regions used by Sharma and Leboeuf for the Initial Nuclear State method.
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CHAPTER 6

Fission

According to IDM , a point of instability between coulomb and
surface effects is reached for elements close to the limiting
value of (Z2%/a)=14aMeV(10r,/3e,) . The probability of
tunnelling through a barrier of a given width exhibit an
exponential. The main successes of Strutinsky’s barrier lies
in explaining the experimentally observed resonance and
intermediate structure in fission cross sections as well as

isomeric fission.

6.1 Spontaneous Fission

It has been shown by Nix and Walker[1969]37 that the

spontaneous fission half life can be written as

1
w5 f= (1n2)[2 % G.10
( ( wb)P(Eo) ( :
where P(E;) is the penetrability at energy E, and 2Zn/w, ig

the time
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CONSEQUENCES OF DOUBLE -HUMPED BARRIER

v
- \\ STRUCTURE I FISS'ON CROSS SECTIONS
L \\ —_——— e — | ———— —_—— e — -
S \
\ = SPECTRQSCOPY OF EXCITED STATES

SHAPE ISCMERIC y DECAY

SHAPE ISOMERIC FiSSION

DEFORMATION \

FIG. 18. Schematic demonstrating the model for Isomeric fission and gamma decay competition
Taken from HJ Specht
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required for a single assault on the barrier. If we take an

estimate of the frequency . 1lMeV/h, Eq. (6.10) becomes

156210728 [P(E) ] yr (6.11)

In the asymptotic JWKB approximation , P(E;) is given by Eq.

(4.120).
1 .
P(E,) s}
© e're Lo (6.12)
For a single-humped barrier
az
vo=[kix) dx (6.13)
a‘
For a double-humped barrier
V., EV HV o+ (6.14)

Since the ground state energy E_ is always lower than E,
(well), a resonance structure is not expected in the ground

state fission half-1lives.
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6.2 Isomeric Fission

Polikanov et al [1962]38, reported the discovery of a nuclide

exhibhiting an unusually short spontaneous fission half-1life

242 yhose

( 1,,,~0.02sec ). The nuclide was identified as Anm
spontaneous fission life time was actually 5 X 10llyr. It was
expected that such a relatively short half-life would decay
preferably by gamma emission. In 1962 Polikanov hypothesized
that the spontaneously fissioning isomer might be a ground
state in the second well. The short spontaneous fission
lifetime is then attributed to the fact that the barrier is
narrower and only approximately one half as high for the
isomer as for the ground state. Since the nuclide has

available different means of decay such as gamma, beta and

alpha emission, the total half-life is given by,

1
£

1
=T 4 +

R T T RS 6.20
T, ¢ ( )

ol

-3
e
a
L-‘GH
-
el

It is expected that beta and alpha decay modes will be
sufficiently 1long, and that they can be neglected in Eq.
(6.20) . Gamma emission from an isomeric state can in certain
circumstances compete favourably with spontaneous fission. The

half-life for gamma emission is
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(6.21)

In Eg. (6.21), TY is the half-life for gamma decay from a
state of Energy E; in the first well, know experimentally to
be 10714 sec = 107215 yr., The partial spontaneous fission
half-l1ife from state E; depends on the penetrability through

barrier B. Using Eq. (6.10)

t3=1n(2) (2n/w,) [P,(E)) ]! sec (6.22)

The total isomeric half 1life is therefore

[ P(E) | BE) e, !

e (6.23)
10 1In(2)VZn

T.(E,)

1 1

The energy values at resonances can be approximated by the

well-known results of a harmonic well extended to infinity, as

E,,=E2+(n+-;—)?nw2 (6.24)

The parameters E, and %o, can hence be determined
approximately by knowing the ground state isomeric energy and

the isomeric spontaneous fission half life.

o o L _PalEL) ¥ In2 (2m) (6.25)
‘lT 10-14.0 Py (E,)

1

65



1 P(E)In(2)2r]
| T. Pp(E;)10724-0 |

(6.26)

Bjornholm and Lynn3°? have listed a set of barrier parameters

for the first and second barriers (TABLE I). The barrier

parameters for the well can be deduced using Egs. (6.25) and

(6.26).
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TABLE |. Experimental Values for double-humped barrier parameters for nuclei of the actinide
region (Ac®-Lr'*) . Taken from S Bjornholm and J E Lynn 1980

El E3 }\wl }\(l)‘
Raz228 8.0 0.5 8.5 0.5
Ac226 6.0 0.6 7.7 *0.3
Th227 5.9 0.3 6.6 0.3
Th234 6.1 0.2 6.5 0.3 1.0 0.75
U236 5.6 *#0.2 5.5 0.2 1.04 0.60
U238 5.70%0.2 5.7 0.2 1.04 0.60
Np237 5.7 *0.2 5.4 *0.2 0.80 0.52
Pu235 5.8 5.1 #0.4 0.80 0.52
Puz237 5.90 5.20 0.80 0.52
Pu238 5.5 #0.2 5.0 %£0.2 1.04 0.60
Puz239 6.2 0.2 5.5 #0.2 0.80 0.52
Pu240 5.6 0.2 5.1 *0.2 1.04 0.60
Puz41l 6.1 *0.2 5.4 %0.2 0.80 0.52
Puz42 5.6 *0.2 5.1 *0.2 1.04 0.60
Pu243 5.9 0.2 5.2 *0.2 0.80 0.52
Pu244 5.4 *0.2 5.0 *0.2 1.04 0.60
Pu245 5.6 *0.2 5.0 %0.2 0.80 0.52
Am239 6.2 *0.3 5.6 0.80 0.52
Am240 6.5 *0.2 5.2 %0.3 0.65 0.45
Am241 6.0 0.2 5.1 %0.3 0.80 0.52
Am242 6.5 0.2 5.4 *0.3 0.65 0.45
Am243 5.9 %0.2 5.4 *0.3 0.80 0.52
Am244 6.3 *0.2 5.4 $0.3 0.65 0.45
Amz245 5.9 *0.2 5.2 %0.3 0.80 0.52
Cm241 6.3 *0.3 4.3 *0.5 0.80 0.52
Cm242 5.8 *0.4 4.0 *0.5 1.04 0.60
Cm243 6.4 *0.3 4.3 0.80 0.52
Cm244 5.8 0.2 4.3 *0.3 1.04 0.60
Cm245 6.2 0.2 5.0 0.80 0.52
Cm250 5.3 3.9 1.04 0.60
Bk250 6.1 4.1 0.65 0.45
Cf253 5.4 3.6 0.8 0.52
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CHAPTER 7

Computational Considerations

The numerical analysis for the host of penetrability
expressions requires the knowledge of V,,V,,Vy for the JWKB
methods, and the Weber Functions U(a,x), V(a,x), W(a,x), and
E(a,x) and their derivatives, for the exact methods. As well,
it is important to 1limit the investigation of these
expressions to physically tenable limits. These limits are

obtained from TABLE I.

7.1 JWKB Variables v,

The problem of solving the asymptotic JWKB method numerically
is reduced to finding expressions for Vv,,v,;,V, in their
corresponding regions. To simplify matters, the potential
energy and consequently Q(x) are rewritten using the following

relations.
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V(x) =E11% Ho(x-x,)"

BR=0.540A %W MeV

p/=pn/H=0.5404%"3

n2ag_ |E7E)

B (ho,)?

Asp'ho,

v=(x-x,), dv=dx

The function Q(x) is therefore,

02 (X)-—-%?u [E;(Eli—;pwf (X—Xl)z)]
. 2

2 _ 21 . L2 _ P
Q (x)——;)? [ £|E E’l|+—2-pw1 (x-x,07)]

0% () = (wheo e ZEEL L]

u/[}lﬁ)l] =
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(7.

(7.
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11)
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15)

16)
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18)
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The final expression is,

0% (x) =A?[1a?sv?] (7.111)

Q(x) =A/tasv? (7.112)

When integrating in the three regions, four different possible

integration schemes are found.

Case 1

Region a

/// Region 1 \\

For region i, the integral is,

tl'.

fc(x) dx=ﬁfWde=fAde (7.113)

t,



2o

(vyaz-v2+azsin*«l»
a

For region ii,

tl'_

fQ(x)dx=fJ§:VT§de=.[A vi-a“dx

ty

=2 (Wi azea lnlv-/v-al)
&

Case 1II

Region i
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For region i, the integral is,

t

fQ(x) dx=fmdx= ]:.A\/V'"'—azdx (7.117)

Cy

=§(v\/—\;z_——a—2_+a21nlv—\/vz-a2]) (7.118)

For region 1ii,

fQ(x) dx=f\/ﬂmdx=txfl,4\/?—7dx (7.119)
£,

=‘—§(v\/a2—V2+a2sin‘1(—§)) (7.120)

Denoting Egs. (7.114) and (7.120) as I,(x,x,,1) and Egs.
(7.116) and (7.118) as I,(x,,X,,1I) , then the total integral
from one connecting point to the next in crossing frcm one

parabola to an adjacent one is,

v,=L(c,,, t,,1-1)+I,(c,,C,,,1)+I,(¢t,,,,C,, I+1)

(7.121)
where(t;<C,.;, A ¢t,,,>c;)
=L, (C, . t,, 1-1)+1, (t,.,, €,y 1)
(7.122)
where (t,<C,_, AN ¢,,,sc))
=11(C1,t‘l,i)*'l':(ti.l,cl:i"’l)
(7.123)

where(t>C,., AN t,,.>c)

“1+1 2
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(7.124)

The first two terms of the integral Ii(x,,x., 1) are the
limits of integration. The third term 1 denotes the region ot
integration. The turning point are indicated by the symbol t,

and the connecting points a and b as ¢, and c;5 respectively.

7.2 Weber Functions

The exact methods of Cramer and Nix, and Sharma and lLeboeuf,
require the Weber Cylindrical Parabolic Functions for
computational results. The general ecquations for Weber
functions?© U, V, W, and E and their derivatives are given as

series expansions.

(7.20)
coﬂn(%*w%dWF(iﬂnéa) sh%n( *'idWF(;— )
Ula, x) = - — ¥ -‘_'__al_ﬁ- Tl Ly
(=2a+—) _od gy
ﬁZ ¢ 4 \/\T‘:/' . +
(7.21)
1 .,in{r(H'*d;,I‘fl-,l,a) coolne e gt o)
Vig, x)=— S [ L —— 4 -y . 5
I‘(‘}‘_a) Lotlged : Il ty
2 n2 ! Jma ‘



Wia. ax) - /C0SATEA) m)-”_]"(.]_'+%ia)

i 3 ia)y2) (7.22)
2V T

v, ¥21 (%+

o

Ela, x) =k Y*w(a,x) +ikY*wW(a, -x)
(7.23)

k=\/_1_+_e—2"—5—e"a (7.24)

The terms y, and y, are series expansions of the confluent

hypergecometric functions F;.

1
ce d'" 1.1 1,1.,.° (7.25
’ = Fo(=-=ya; =; =yx -25)
yi=e : 1(4 pYaigigy )
4 v 3 1 31
’.,= 4 F — = al_;__
ypxe TaRg e gy
y=1 for U,V (7.26)

When the variable a is negative, the function U(a,x) has an
oscillatory region -2vial« x<2a on one side to positive

infinity and negative infinity on the other side. When a is
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positive, there are no oscillatory regions, only exponential
regions which extend from negative infinity to positive
infinity. In contrast, the function W(a,x) has an expcnential
region for xj<2/a separating two oscillatory region
which extend to positive and negative infinity. When (a) is
negative, the solutions are oscillatory throughout.

The values of U(a,x) and V(a,x) have been evaluated with
the use of confluent hypergeometric functions for real
arguments and for small to moderate a and x. The values have
been checked against tables of Confluent Hypergeometric
Functions4l., For large a or x, U(a,x) 1s expressed as an
expansion of Airy functions?? (appendix C). When either a or
X is negative or x<2/a, we use the confluent hypergeometric
function defined as H(m,a,x)=e *F(m+1 -ia,2m+.2;21x)
using computational methods described by Lowan and
Horenstein?3. Everywhere else, W(a,x) 1s resolved using
Olver’s Airy expansion method. Computational algorithms for
Bessel, Airy, Hypergeometric, and Gamma functions are taken
from "Methods and Programs for Mathematical Functions", by
Stephen L. Moshier?4. Fig. 19 demonstrates the function W(a, »)
in the positive a and x quadrant.

Numerical results reveal that the Weber functions cannot
be generally evaluated by series method. As well,
interpolation methods yield precise resonance energy valueg

but svffer in probability magnitude. TABLE II demonstrates the

need for high precision when evaluating resonance peak maximum



due to very small peak widths. Instead, Cramer and Nix!°® have

used a Lorenzian curve fitting method.
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.39651359400000

|
i

TABLE M. lterations required to obtain the maximum penetrability at resonance
(E -239651359675713 and P, =4 51380e-002) Demonstrates the need for precision.
Energy Penetrability Energy Penetrability
2.39600000000000 4.40779e-021 2.39651359500000 3.80336e-010
2.39610000000000 6.81007e-021 2.39651359600000 2.04844e-009
2.39620000000000 1.18687e-~020 2.39651359610000 2.71931e-009
2.39630000000000 2.56330e-020 2.39651359620000 2.78306e-009
2.39640000000000 9.08024e-020 2.39651359630000 5.61916e-009
2.39641000000000 1.09200e-019 2.39651359640000 9.20638e-009
2.39642000000000 1.33806e-019 2.39651359650000 1.77590e-008
2.39643000000000 1.67765e-019 2.39651359660000 4.75519e-008
2.39644000000000 2.16495e-019 2.39651359670000 3.59570e-007
2.39645000000000 2.89988e-019 2.39651359671000 5.28275e-007
2.39646000000000 4.08373e-019 2.39651359672000 8.50970e-007
2.39647000000000 6.17319e-019 2.39651359673000 1.59332e-006
2.39648000000000 1.03970e-018 2.39651359674000 3.99335e-006
2.39649000000000 2.10805e-018 2.39651359675000 2.29738e-005
2.39650000000000 6.35038e~-018 2.39651359675100 3.10510e-005
2.39650100000000 7.39880e-018 2.39651359675200 4.42765e~005
2.39650200000000 B.72999%e-018 2.39651359675300 6.81662e-005
2.39650300000000 1.04556e-017 2.39651359675400 1.18248e-004
2.39650400000000 1.27484e~-017 2.39651359675500 2.53276e-004
2.39650500000000 1.58870e~-017 2.39651359675600 8.75231e-004
2.39650600000000 2.03453e-017 2.39651359675610 1.04620e-003
2.39650700000000 2.69816e~-017 2.39651359675620 1.27216e~-003
2.39650800000000 3.74856e~017 2.39651359675630 1.57847e-003
2.39650900000000 5.55703e-017 2.39651359675640 2.00898e-003
2.39651000000000 9.07678e~017 2.39651359675650 2.63832e-003
2.39651100000000 1.74141e~-016 2.39651359675660 3.60474e~003
2.39651200000000 4.60568e-016 2.39651359675670 5.19137e-003
2.39651300000000 3.29750e-015 2.39651359675680 8.00070e-003
2.39651310000000 4.75874e-015 2.39651359675690 1.34550e-002
2.39651320000000 7.45988e-015 2.39651359675700 2.46101e~002
2.39651330000000 1.33346e-014 2.39651359675701 2.62104e-002
2.39651340000000 3.03334e-014 2.39651359675702 2.79133e~-002
2.39651350000000 1.25435e-013 2.39651359675703 2.96686e-002
2.39651351000000 1.56017e-013 2.39651359675704 3.14951e-002
2.39651352000000 1.99318e-013 2.39651359675705 3.33742e~-002
2.39651353000000 2.63505e-013 2.39651359675706 3.52367e-002
2.39651354000000 3.64538e-013 2.39651359675707 3.70881e-002
2.39651355000000 5.37141e-013 2.39651359675708 3.88758e~-002
2.39651356000000 8.69162e-013 2.39651359675709 4.05651e-002
2.39651357000000 1.64023e-012 2.39651359675710 4.20779e-002
2.39651358000000 4.18200e~012 2.39651359675711 4.33589e-002
2.39651359000000 2.57192e-011 2.39651359675712 4.43740e-002
2.39651359100000 3.54299%e-011 2.39651359675713 4.50930e-~002
2.39651359200000 5.18909e-011 2.39651359675714 4.54499e-002
2.39651359300000 8.31894e-011 2.39651359675713 4.50930e~002
2 1.54477e-010 2.39651359675713 4.51380e-002

|
|
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7.3 Barrier Parameters

The range of barrier parameters for nuclei in the actinide
region of the periodic table is obtained from TABLE I in
Chapter 6. For the actinide region , the values of the barraier

parameters are found to be in the range detailed below.

DATA I
236<A>245 A, 00.=240

5.40<E<6.50  E;  =5.95

1.50¢E,<2.40  E,  =1.95

4.00<E;<5.70 By a4 85
0.50<hw,<1.05 ho, =0.78
0.70<hw, <1.00 hw;avmw:O.Bb
0.45¢hw,<0.60  hw, =0.53

avelrage

The Initial Nuclear State calculations require reasonable
values for E; and hw, . Nix and Walker have remarked
that the values of the energy minimum of the first well can be
expected to lie approximately 0.5 MeV below the ground state.
Hence, we take E; = -0.5 MeV. The barrier frequency is taken
to be 1.0 MeV on the same basis.

To study the predictions of resonance peak energies, each

one of the above six parameters are varied from its expected
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actinide minimum to its expected maximum, while keeping the

rest fixed at their average values.
Two other sets of data are used to study the behaviour

above and below the maximum and minimum values, for asymmetric

and symmetric barrier shapes.

DATA II(asymmetric)
E,=6.00,E,=2.00,E,=5.00,hw,=1.30, h0,=2.00, h,=0.48 (MeV)

E,=4.5-6.0,E,=1.5-3.0,E,=4.5-6.0,
hw,=0.5-1.6, hw,=1.30-3.5,hw,=0.3-1.4 (MeV)

DATA III(symmetric)

E,=6.00,E,=2.00,E,=6.00,h0,=1.00,%,=0.5, he,=1.00 (MeV)

hw,=0.30-3.50 (MeV)

As well , it can be shown from Egs. (5.18), (5.315), and
(5.327), that the effective mass parameter pu/ cancels out of
each probability equation. Therefore, the penetrability is
independent of the choice of effective mass. We hence are not
required to vary the atomic number. For DATA III, only hw,

is varied in order to maintain barrier symmetry.

80



CHAPTER 8

Resuits of Calculations

Energy levels or resonance peaks are demonstrated by abrupt
peaks in the probability versus energy curve. The isomeric
energy 1is the bocund semi-stable ground state in the
intermediate well. In contrast, spontaneous fission requires
tunnelling through the complete barrier from it’s ground
state. The various methods mentioned, will deviate with
respect to energy level values and maximum penetrabilities at
resonance. This will have implications in predictions of
isomeric and spontaneous fission half-lives. Bjornholm has
accumulated tables of data from various authors. Each of the
six parameters will be varied from it’s expected minimum to
expected maximum.

Abbreviations to the methods will be used as follows:
JWKB, for Ignatyuk’s expression; NIX, for Cramer and Nix
method; FRO, for Lebeouf’s use of unidirectional conniection
formulas; INS, for the Initial Nuclear State method; and SDA

for the Sharp Drop Methnd. Energy levels are denoted as L,.
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8.1 Pure Vibrational Energy Levels

To demonstrate the characteristic probability graph, Figs. 20
to 26 are plots of the penetrability versus energy, with

parameters taken from Sharma and Lebeouf[1975]21.
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The sharp spikes are resonance peaks characterized by a
maximum peak height and a peak width. The probability of
tunnelling through the barrier increases with increasing

incident enerqy.
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The same number of energy levels are present for all methods,

with similar level spacing and energy values.
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The INS produces more peaks. Remarkably, all the levels
present in the JWKB, NIX, and SDA are present in the INS,

along with additional ones.
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Figs. 20 to 26 demonstrate the general agreement among all
methods with respect to resonance energy levels. The major
difference among methods is the penetrability values at a
specific energy. The JWKB and NIX results are very close with
respect to penetrability values and resonance levels. From
TABLES III, IV and V, for low incident energies, all exact
methods reproduce the same peak energies. The peaks deviate
slightly at high resonance levels. The maximum difference was
found to be of the order of 1.5keV for Data I, 1.7keV for Data
ITI, and OkeV for Data III. Therefore, one may conclude that
for the actinide region and for heavier nuclei, all exact
methods reproduce the isomeric energies exactly, and predict
other energy 1levels with hardly any deviation. This is
surprising in view of the fact that rather wide differences
exist in the development of exact penetrability expressions.
No noticeable difference has been found between JWKB and FRO
for all energy 1levels using DATA I. Hence, like the exact
methods, the JWKB approximation reproduces identical isomeric
energies. We notice from TABLE II that the JWKB and FRO
isomeric energy levels change only with changes in E, and
hw, . However, for the Exact methods, the first energy level
increases along with an increase in any of the barrier
parameters. Therefore, the Exact and JWKB methods will become
further apart at higher values of E,;, E;, hw,, and hw,
The JWKB results at low energies follow very well the

spacing 1trule for an harmonic-oscillator potential well
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extended to infinity. Cramer and Nix have remarked that the
perturbation required to transform an intermediate parabolic
well into a two-peaked barrier is negative. This is reflectea
at all peaxs for the exact methods and begins to reveal itself
for the JWKB , at higher vibrational states.

The figures 27 to 39 show the variations of the exact
method from the JWKB. For the actinide region (Data I), the
first energy level is the least deviated, with shifts usually
under 10keV. Data II exhibit the opposite effects; level 1
shifts are wider than L2 and L3, and are for the most part
above 50 keV; even reaching 80keV for low E; values. L, can
differ as much as 150FeV for the symmetric barriers of Data
III. Particularly striking is the fact that peak shifts cross
over one another. This is especially evident with changing

hw, for all data sets.

The greatest difference between the Exact and JWKB
isomeric half-lives of DATA I have been found to be 10%. Yet,
it is possible to adjust Hw, or E, in order to bring the
JWKB and NIX results into agreemenc. Decreasing hw, by 0.2
MeV will increase the isomeric half-live by approximately 55%.
Isomeric half-lives range from 0.02ns to 0.1lms.
Experimentally, the half-lives may differ by as high as 48%

( ex. Am?4l (1.5%0.6)x107° sec).
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TABLE 1ll. Energy vatues for the first energy level (L1) in the intermediate well for vaned barner
parameters of Data |.

JWKB FRO NIX INS SDA

5.40 2.3750 2.3750 2.3725 2.3725 2.3725
5.60 2.3750 2.3750 2.3725 2.3725 2.3725
5.80 2.3750 2.3750 2.3726 2.3726 2.3726 on
6.00 2.3750 2.3750 2.3726 2.3726 2.3726
6.20 2.3750 2.3750 2.3726 2.3726 2.3726
6.40 2.3750 2.3750 2.3726 2.3726 2.3726
1.60 2.0250 2.025 2.0233 2.0233 2.0233
1.70 2.1250 2.1250 2.1231 2.1231 2.1231
1.80 2.2250 2.2250 2.2229 2.2229 2.2229
1.90 2.3250 2.3250 2.3227 2.3227 2.3227
2.00 2.4250 2.4250 2.4225 2.4225 2.4225 F,
2.10 2.5250 2.5250 2.5222 2.5222 2.5222
2.20 2.6250 2.6250 2.6219 2.6219 2.6219
2.30 2.7250 2.7250 2.7215 2.7215 2.7215
2.40 2.8250 2.8250 2.8211 2.8211 2.8211
2.50 2.9250 2.9250 2.9206 2.9206 2.9206
4.00 2.3750 2.3750 2.3690 2.3590 2.3690
4.40 2.3750 2.3750 2.3712 2.3712 2.3712
4.80 2.3750 2.3750 2.3725 2.3725 2.3725 Iy
5.20 2.3750 2.3750 2.3733 2.3733 2.3733
5.60 2.3750 2.3750 2.3738 2.3738 2.3738
0.50 2.3750 2.3750 2.3717  2.3717 2.3717
0.60 2.3750 2.3750 2.3723 2.3723 2.3723
0.70 2.3750 2.3750 2.3725 2.3725 2.3725 hw,
0.80 2.3750 2.3750 2.3726 2.3726 2.3726
0.90 2.3750 2.3750 2.3727 2.3727 2.3727
1.00 2.3750 2.3750 2.3727 2.3727 2.3727
0.60 2.2500 2.2500 2.2499 2.2499 2.2499
0.80 2.3500 2.3500 2.3485 2.3485 2.3485 hw,
1.00 2.4500 2.4500 2.4423 2.4423 2.4423
0.45 2.3750 2.3750 2.3708 2.3708 2.3708
0.50 2.3750 2.3750 2.3721 2.3721 2.3721
0.55 2.3750 2.3750 2.3729 2.3729 2.3729 hw ,
0.60 2.3750 2.3750 2.3734 2.3734 2.3734
0.65 2.3750 2.3750 2.3738 2.3738 2.3738
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TABLE V. Energy values for the secand energy level (L2) in the intermediate well for barrier
parameters of Data |

JWKB FRO NIX INS sDA

5.40 3.2150 3,2150 3.1990 3.1990 3.1990
5.60 3.2150 3.2150 3.1997 3.1997 3.1997
5.80 3.2150 3.2150 3.2002 3.2002 3.2002 E;
6.00 3.2150 3.2150 3.2006 3.2006 3.2006
6.20 3.2150 3.2150 3.2009 3.2009 3.2009
6.40 3.2150 3.2150 3.2011 3.2011 3.2011
1.60 2.8701 2.8701 2.8573 2.8573 2.8573
1.70 2.9688 2.9689 2.9556 2.9556 2.9556
1.80 3.0675 3.0675 3.0537 3.0537 3.0537
1.90 3.1659 3.1659 3.1516 3.1516 3.1516
2.00 3.2640 3.2640 3.2493 3.2493 3.2493 E,
2.10 3.3618 3.3618 3.3467 3.3467 3.3467
2.20 3.4593 3.4593 3.4438 3.4438 3.4438
2.30 3.5564 3.5564 3.5405 3.5405 3.5405
2.40 3.6531 3.6531 3.6369 3.6369 3.6369
2.50 3.7493 3.7493 3.7328 3.7328 3.7328
4.00 3.1841 3.1841 3.1693 3.1693 3.1693
4.40 3.2031 3.2031 3.1879 3.1879 3.1879
4.80 3.2140 3.2140 3.1994 3.1994 3.1994 E;4
5.20 3.2201 3.2201 3.2068 3.2068 3.2068
5.60 3.2233 3.2233 3.2117 3.2117 3.2117
0.50 3.2137 3.2137 3.1920 3.1920 3.1920
0.60 3.2150 3.2150 3.1973 3.1973 3.1973
0.70 3.2150 2.2150 3.1996 3.1996 3.1996
0.80 3.2150 3.2150 3.2006 3.2006 3.2006 hw,
0.90 3.2150 3.2150 3.2012 3.2012 3.2012
1.00 3.2150 3.2150 3.2014 3.2014 3.2014
0.60 2.8500 2.8500 2.8488 2.8488 2.8488
0.80 3.1463 3.1463 3.1342 3.1342 3.1342 hw,
1.00 3.3997 3.3997 3.3810 3.3810 3.3810
0.45 3.1991 3.1991 3.1860 3.1860 3.1860
0.50 3.2103 3.2103 3.1960 3.1960 3.1960
0.55 3.2175 3.2175 3.2030 3.2030 3.2030 hw,
0.60 3.2217 3.2217 3.2079 3.2079 3.2079
0.65 3.2239 3.2239 3.2114 3.2114 3.2114
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TABLE V. Energy values for the third energy level (L3) in the intermediate well for varied barrier
parameters cof Data !

JWKB FRO NIX INS 5bA

5.40 3.9624 3.9624 3.9478 3.9481 3.9481
5.60 3.9644 3.9644 3.9509 3.9512 3.9512
5.80 3.9655 3.9655 3.9533 3.9536 3.9536 E,
6.00 3.9662 3.9662 3.9551 3.9554 3.9554
6.20 3.9664 3.9664 3.9565 3.9569 3.9569
6.40 3.9664 3.9664 3.9577 3.9580 3.9580
1.50 3.5527 3.5527 3.5420 3.5420 3.5420
1.60 3.6458 3.6458 3.6350 3.6351 3.6351
1.70 3.7383 3.7383 3.7273 3.7274 3.7274
1.80 3.8300 3.8300 3.8189 3.8191 3.8191
1.90 3.9209 3.9209 3.9097 3.9099 3.9099 E,
2.00 4.0109 4.0109 3.9994 3.9999 3.9999
2.10 4.0999 4.0999 4.0881 4.0890 4.0890
2.20 4.1877 4.1877 4.1756 4.1770 4.1770
2.30 4.2742 4.2742 4.2616 4.2636 4.2640
2.50 4.4423 4.4423 4.4282 4.4350 4.4350
4.00 3.8310 3.8310 3.8161 3.8460 3.8457
4.40 3.9108 3.9108 3.9001 3.9043 3.9043
4.80 3.9611 3.9611 3.9499 3.9503 3.9503 E,
5.20 3.9952 3.9952 3.9823 3.9823 3.9823
5.60 4.0192 4.0192 4.0044 4.0044 4.0044
0.50 3.9327 3.9327 3.9222 3.9225 3.9225
0.60 3.9547 3.9547 3.9416 3.9419 3.9419
0.7¢C 3.9637 3.9637 3.9508 3.9511 3.9511
0.80 3.9663 3.9663 3.9554 3.9557 3.9557 hw,
0.90 3.9664 3.9664 3.9578 3.9581 3.9581
1.00 3.9664 3.9664 3.9591 3.9595 3.9595
0.60 3.4487 3.4487 3.4416 3.4416 3.4416
0.80 3.8782 3.8782 3.8676 3.8678 3.8678 hw,
1.00 4.1790 4.1790 4.1653 4.1667 4.1667
0.45 3.9123 3.9123 3.9044 3.9045 3.9045
0.50 3.9482 3.9482 3.9384 3.9386 3.9386
0.55 3.9766 3.9766 3.9641 3.9646 3.9646 hw,
0.60 3.9989 3.9989 3.9844 3.9844 3.9844
0.65 4.0165 4.0165 3.9984 3.9997 3.9997
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8.2 Penetrability Peak Maximum

Numerically, the determination of P.ax at resonance can be
found by 1iteration whereas, Cramer and Nix have used a
Lorenzian curve fitting method. The peak values for FRO are
not considered since they are undetermined at resonance. The
behaviour of maximum peak heights with changing barrier

parameters are shown in Figs. 40 to 45.
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The SDA and INS are more sensitive to changes in the barrier
parameters and can vary by a factor of 10712, The smallest
effects are felt by the JWKB and NIX, with a factor of 1073,
Hence, the inclusion of reflection in the third barrier region
of the double-humped barrier has the effect of sensitizing the
maximum penetrability value at resonance with respect to
barrier parameter fluctuations. The effect flattens out for
hw, and E, and are sharpest for hw,, ho, . For all
methods, the penetrability variations are parabolic in nature,
exhibiting one or two maxima. The JWKB graph for E; reveals
two maxima. This is also present in the NIX graph for E,.
The JWKB and NIX are notably very close in behaviour,
with much higher peak maxima than SDA and INS. Although the
INS probabilities are less than the SDA, and though the SDA
are less than NIX and JWKB, the penetrabilities for SDA can

sharply increase with fluctuations in hw, (Fig. 40), even

surpassing both NIX and JWKB.
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8.3 Level Widths
Figs. 46 to 49 illustrate the resonance widths for Figs. 20 to
23. Resonance widths found for DATA I using JWKB, NIX, SDA,
and INS reveal a consistent behaviour among methods. The
resonance widths at half maximum (RWHM) increase for all
barrier parameters except the barrier heights E; and E,. For
DATA I, the RWHMs for L; range from 1071° to 107!7 for the JWKB
and NIX methods and from 107® to 10710 for the SDA and INS. For
the highest bound state levels, for all methods, the RWHM is
found to be in the tenth kevVs.

NIX and JWKB are generally in agreement. The SDA and INS
have greater widths at lower energy, in the order of 10°
times. At high energies all methods are approximately in

agreement.
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8.4 Full-Barrier Penetrability from Ground State Enerqy

Equation 6.12 is the JWKB expression for tunnelling the
complete double-humped barrier. For the exact methods, the
spontaneous half-life is determined by calculating the
penetrability from the ground-state deformation energy E_=0.
Equations 5.34 and 5.311 have the incident energy in the
numerator. Consequently, they cannot be used to obtain the
ground state energy, since they yield zero probabilities for
non zero denominators. Fig. 50. is a plot of the full-barrier
penetrability for SDA and INS. The penetrability approaches
zero as the energy goes to zero.

Calculations of spontaneous fission based on DATA I
reveal that an increase of 0.2 MeV in barrier height will
decrease the penetrability by a factor of 5 to 10 times. Since
E, and E; can vary upto 0.4MeV for U?3® (TABLE 1I), it is
possible to bring the JWKB and NIX values to agreement. This
is true for any actinide nuclei. TABLE VI lists values for the
spontaneous fission probability for JWKB and N1X. The values
differ at least by a factor of 0.9 and at most by 184.1 for
U236 whose experimental half-life is approximately 2x10%6
years. Yet, by choosing E;=5.73 and E;=5.63 for JWKB and
E;=5.53 and E;3=5.43 for NIX, the penetrability become
3.593x107%% and 7.109x107%* consecutively. Therefore, the
spontaneous fission half-life obtained by the JWKB has changes

from being 184 times greater to 5 times.
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TABLE VI. Comparison of JWKB and NIX values for the probability of spontaneous fission from it's

ground state energy E=0.

JWKB
P(Eq)

NIX
P(Ep)

factor

am239
am240
am241
am242
am243
am244
am245
cm241
cm242
cm243
cm244
cm245
np237
pu235
puz237
pu238
puz239
pu240
puz24il
puz242
puz243
puz44
pu245
uz23é

uz23s

5.63830e-050
8.03831e~-062
5.04382e-048
9.93554e-064
4.10219e-048
8.03830e-062
6.49145e-049
4.23776e~047
3.57330e-034
8.29216e-047
6.26389e-035
1.68263e-046
4.50908e-048
3.11895e-047
3.88037e-048
1.04944e-038
7.54927e-051
5.20853e-039
1.94807e-049
5.72149e-039
1.58329e-046
1.44761e-038
1.65485e-045
1.79184e-042
2.55560e-042

2.43910e-050
9.09188e~-062
.39576e-048
70831e-064
.64321e~048
.09188e-062
.95747e-049
.35302e-048
.01141e-035
69867e~-048
.44015e-036
.71778e-047
.66010e-048
.16327e~047
.44853e-048
.53093e-039
.63203e-051
.78488e-040
.57101e-050
.21737e-039
.59680e-047
.88970e-039
.19973e-045
.7313%9e-045
.73409e-043
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8.5 Effect on Spontaneous and Isomeric Fission Half-Life

Equations 6.22 and 6.23 relate isomeric fission to the
probability of penetrating the individual barrier of a double-
humped barrier. It is well known that exact and JWKB
expressions for the penetrability through a one-peaked barrier
yield very good tunnelling values for both methods. Therefore,
since only the isomeric energy is required from the JWKB, NIX,
INS, and SDA methods and since they are very close in the
actinide region, all methods will predict Isomeric half-lives
very closely, with approximately 10% difference. Even though,
it is possible to adjust the barrier parameters slightly,
bringing the Exact and JWKB into agreement. Isomeric fission
half-lives will exhibit greatest deviations for symmetric
barriers with high values of ?“w, .

Experimentally, barrier parameters may deviate from $0.2
to +0.6 MeV. The differences in method used, in general, vary
less for a particular set of data than differences due to
changes in barrier parameters in the range *0.2to 10.6. This
along with the sensitive nature on the SDA make it possible to
adjust barrier parameters in favour of a particular method, as
was done by Bhandhari®®, in his use of TABLE I. The same holds
for spontaneous fission. It is relatively easy to adjust
barrier parameters within its allowed tolerance, in favour of
one method over another. Simply increasing the value of E; for

U236 py 0.2 MeV will change the spontaneous fission half-live

from 2x101® yrs to 1x1017 yrs.

124




Conclusion

It is apparent that significant differences exist among
the various exact and approximate penetrability expressions.
However, the magnitude of numerical deviations among various
methods are in general less than experimental error. This
fact, coupled with the simplified assumption of the double-
humped barrier as smoothly 3joined parabolas, makes it
difficult to determine which method gives the best results
when evaluating spontaneous and isomeric fission half-1lives.

The isomeric energy does not differ among exact methods.
The same is true for the asymptotic JWKB method and Lebeouf’s
use of the uni-directional connection formulas. As a result,
isomeric half-lives differ only between Exact and JWKB
methods. For the actinide nuclei, the greatest difference is
found to be 10%. Yet, it 1is possible to adjust barrier
parameters within O to 0.4MeV to obtain 0% difference, whereas
experimental error can be as high as 48%. Nix’s remark that
the energy shifts increase at higher enerc‘es 1is only true
away from resonances. At resonances, his observation is only
valid for low bHw, values.

The exact methods of Sharma and Lebeouf yield
penetrability expressions with smaller resonance widths at low

energies, than the asymptotic JWKB and NIX expressions. At
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higher energies the widths are comparable. Both the Nix and
JWKB maximum penetrabilities at resonances are much higher and
less sensitive to barrier fluctuations than Sharma ard
Lebeouf’s exact methods. These results do rnot effect
calculations of spontaneous and isomeric half-lives,
therefore, it is 1left for future work to investigate what
effect these differences will have on the various types of
nuclear reaction cross-sections.

Spontaneous fission half ‘lives can differ by factors of
upto 184 times for the actinide nuclei. However, once again,
it is possible to adjust the barrier parameters, within its
allowed experimental error, and obtain a 0% difference between
the JWKB and NIX methods. Therefore, there does not appear to
be any obvious advantages in using one penetrability
expression over another for evaluating spontancous and

isomeric fission half-lives.
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APPENDIX A

Requiring wave functions (5.17a-c) and their derivatives to

be continuous at connecting points a and b gives

AE, (a,,-u) +BE,(a;, -u) =CU,(a,, v) +DV, (a,, V) (A.1)

Al-u'E; "N ey, ~u) ] +B[-u'ES ™ (0, -u) ] =

(A.2)

ClvusY (ay, v) 1 +D (v VY (a,, v) ]
CU (@,, V) +DV (&, , v) =TE, (&, w) (A.3)
cv'Us” (ay, v +DVVEY (@, v) =Tw/ESY (o, w) (A.4)

dividing by A gives

;g(Ea(al.W))-g(Va(az,V))——g(Ua(az,V))~O=E’;(al,-u) (A.5)
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—§<-u'E;'“’ (@, -uw) —g (v'ViV (a,, v)) -

. ‘ (2.6)
'%(V,U; ) (azf V))'0=‘U/Ea(dl,—u)
D & T
O—Z (Vb(azr V) ) _‘Z (Ua(azl v)) "E (Eb(a:” w) ) =0 (A.7)

o-ij(v’vgv’ (¢, v)) —g (VUi (a,, v)) —lA"(w'Eg"’ (e,, w)) =0 (A.8)

using Cramer’s Rule

det (4,)
T_det(4) (A.9)
A det (A4)
(A.10)
E,(a,, -u) -V, (a,, v) ~U, (a,, V) E,(e,, u)
det(A3)=-u’E;'"’(a1,-u) vV ey, vy vIUR Y ey, v) —ulE Y (), -u)
Vb(azlv) Ub(azyv) 6]
0 vivi (e, v) vIULY (a,,v) 0
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(A.11)

ry,! N _ (-w) _ _ _ o (-u) _
det(A3)=u V[(Ea (al' U) Ea (al' U)) (Ea(all U)Ea (“1' U))]

[(U, (0, v) Vi (g, v)) = (Vpla,, v) UL (e, v)) ]

this can be rewritten using Wronskians

det (A,) =u/v'W(E' (a,, -u) E(a,, ~u) IW[U(e,, V), V(a,, V)] (A.12)

Eg{a,,-u) “Va(a,,v) =Uy(a,, v) 0
~wESY (g, -u)y vV (ay,v) vUM ey, v) 0
det(a)4 ° : o . (A.13)
0 V(x,, v) Ugla,, v) B, (ay, w)
| 0 vl (ay,v) vUS (e, v) W ESY (0, w)
Finally,
T vu'WlE' (a,, -u),E(a,, ~u) I W[U(a,, v) , Vie,, v)]
A E,(a,,-u) -v,(a,, v) -U,la,, v) 0
~vESFY (o, ) vV (@, v) VU (a,, v) o} (A.14)
Vpla,, v) Upla,, v) “Epla,, w)
0 vyt (a,,v) VUL (e, v) -wES (a,,w)
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APPENDIX B

T (w) =[al(w)} (B.1)
a, (w)
ﬁ(W):%l( 12.’ e‘-“’) 5.2)
—g2iw -1
Tz <[ 9(2) M 2exp(iw(z))
¢2) (q(z)‘uzexp(—juqz))) (B.3)

Connecting two points on opposite sides of an Overdense

Potential

F(z,z,)= (‘[}+O(u)]§“ I+0(p) (B.4)
[i+O(p)1e?k 1+0(p)
X\l
k=fq(z)dz (B.5)
x|
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Connecting two points on opposite sides of an Overdense

Potential

-e2k 1% (1 +e ~2k1/2)

(B.6)
1% (l+e—2k1/2e2k) 1

f(z,zo)=
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APPENDIX C

Egqs. C.1-C.4 are expressions for the Weber Function W(a,x) and

its derivative in terms of Airy Functions. The expressions

involve solving for coefficients. This is a lengthy process

and will only be done for the aboves mentioned weber function.

Other functions U,V and their derivatives can be expressed in

a similar way (see Olver?3).

_E(uyc(e(p),0) Dy (g, ()

Wia, x)= B(u)

Wla, -x)=E(p) Cc(t(w) , D, (p,)B(R)

~A(p)D, (B, Q)
W’ ' = 2
(%) B(p) C(t(p), Q)
W/(a,—x)zA(p')Da(l-"/C)B(ll)

cit(pw), )

The functions a,B,C,D,, and E are ,

A(p) =~| -g—pz”l (1)
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(C.1)

(C.2)

(C.2)

(C.4)

(C.9)



lau2
B(p)=/Ze* (€.6)
c 1/4
,C) = (C.7)
clEp, O (tz_l)
= Bl{ —n4/3 ® b ()
5=0 K B s=0 KB
o o« d
Dz(u.C)=-Bl(-u3“C)Z-lsCsii) HEMIEISD P EEr (C) (C-9)
5:0 ) §=0 Il
o a,({) -pé3g) ¢ b, (3)
Dy(r, Q) =4, (-p¥) Y -1° -15—=—-(C.10)
(ke " g ps ua“ sEo ués
- d
D(p,{)=-A4, (- u”‘C)E EERCLALLE (C) +A[ (-3 Y —as A= ;(C (C.11)
pés 570
E(p) =/mplA1(p) (C.12)

The arguments of the above functions are given as,
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X

p=yea, t=

174 f 23
l(u)=2 1 16127
pt/e 1152pf 398131204°

The first two coefficients for a,, bg,cy,dg are,

a,=m,M,
a,=myM,+m {3/ M +m { "M,
by=¢ Y4 (~nyM, -0, {32 M,)

b= /% (-ngM,-n,{3/*M -n, (M, -0, {1M,)
Co=GH 4 (~-myR, ~m G 2/ R,)

e, =("% (-mRy-m, {7 Ry ~m,( P R,)
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(C.13a,b)

(C.14)

(C.15)

(C.16a)

(C.16b)

(C.17a)

(C.17b)

(C.18a)

(C.18b)




d,=n,R, (C.19a)

d,=nyR,+n {3/%R +n,{ R, (C.19b)

The above coefficients require additional coefficients given

as follows,

n0=1,n1=—f§ , = 4368058 ) 1y = 68653058553 (C.20a,b,c)
my=1,m= —418-,m2=— 4465058'[”3:_—626232—:55—2 (C.21la,b,cc)
M,=1 ,AQ=24(itiSBN (C.22a,b)
M?=—9t‘+249t2+145 (c.22¢)

1152 (¢t2-1)3

_ ) 7 _ 5. 3
M,= 4042t°+1818B9£°-28287 t°-151995£°-259290¢ (C.22d)

414720 (t2-1)°9/2
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k)
Ry=1 ,R,= t :6t ‘
24 (t<-1)3 ¢

(C.23a,Db)

4 _ Z_
o= 1564-32762-143

A C.23c
‘ 1152 (t=*-1)3 ( )

_ ~4042t°+18189t7-36387£5+238425¢°4259290¢
414720 (t2-1)9/2

Ry (C.23d)

The function A; and B; are Airy Functions.
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