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ABSTRACT

Compile-Time Scheduling of Digital Signal Processing Data Flow Graphs onto

Homogeneous Multiprocessor Systems

Al Shatnawi. Ph.D.

Conacordia Unviersity, 1996

The data flow graph (DFG) has proven to be an efficient model for the class
of problems not involving data-dependent decision-making operations. such as those
in most digital signal processing (DSP) applications. It has the inherent property
of exposing the parallelism in the algorithms as it does not impose unnecessary
constraints other than those imposed by the data precedency among the operations.

This thesis is concerned with finding a compile-time (static) schedule for DFGs
representing DSP algorithms onto multiprocessor systems. It concentrates mainly
on producing a rate-optimal schedule that achieves the minimum iteration period
known as the iteration period bound. The problem of optimizing the 1/O delay is
also considered. Regardless of the optimality criteria used, minimizing the number
of processors is one of the main concerns.

The problem of scheduling consists of two phases: (1) the time scheduling
phase where the tasks of the DFG are scheduled in the time domain such that the
precedency constraints are satisfied and the iteration period bound achieved assum-
ing an infinite number of resources, and (2) the processor assignment phase where

the time schedule is mapped onto a matrix in the time-processor discrete space.

i




A combinatorial theory is developed to produce a rate- and delay-optimal time
schedule for a fully specified DFG. A rate-optimal time schedule is obtained ana-
Ivtically by a cvelic to acyclic transformation through a sequence of eritical-circuit
contractions. It is also shown that it is always possible to achieve both the rate and
the delay optimality simultaneously. and a technique to ensure it is presented. An
algorithm is then presented to map the time-schedule to a processor assignment.
Further. a technique is proposed to reduce the number of processors, which often
results in achieving the processor bound. Several examples are considered to illus-
trate the efliciency of the technique proposed. Finally, it is shown that the overall
order of time complexity is lower than those of the existing techniques for most

applications.
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" ... of knowledge it is only a little that is communicated to you. (O men!)”

Holy Quran, Chapter 17. Verse 85.
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“ .. And say, "O my Lord! advance me in knowledge.”
R

Holy Quran, Chapter 20, Verse 11J.
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Chapter 1
Introduction

For real-time applications which are computationally intensive, patallel processing
solution is unavoidable. since physical constraints will eventually place a limitation
on the performance of a single processor. Furthermore, due to the rapid advances
in VLSI design and technology. and consequent deerease in the chip cost and size.
parallel processing is becoming more attractive. Parallel processing and pipelining
as two approaches utilizing concurrency benefit from the advancement in VLS teel-
nology: however, they lead to more complicated programs. Increased parallelism in
architectures means that algorithm designers have to be more concerned with vee
torizing. pipelining. or finding systolic implementations for their algorithms. Hence,
in order to utilize these sophisticated hardware resources. efficient, software tools are
required. As a matter of fact, the capabilities of the existing software are much lower
than those of the available hardware. In other words, parallel processing systems
which are already designed are under-utilized by the available software. This nnder-
utilization may be attributed to the following two reasons. First, rescarchers have
been focusing the'r attention on designing general purpose architectures by eithes

optimizing for the worst case conditions, or for the most frequent conditions: neither



of these methods necessarily leads to optimizing an entire program for a given task.
Second. the models used to represent the algorithms lack the feature of exposing
their inherent parallelism. Adapting algorithms to parallel implementations is tradi-
tionally performed on a case-by-case basis [1]-[5]. Automated techniques for finding
parallelism in algorithms have not made significant progress. Despite the fact that
parallel processing affords an opportunity to improve computational performance.
it reguires more implementation effort.

The primary goal of parallel machines such as multiprocessors. vector ma-
chines. array processors. cte, is to exploit parallelism of algorithms. Along with
introducing these machines, compilers have been developed to extract parallelism
from programs written in conventional languages. Moreover. some languages such as
Parallel " and C'oncurrent Pascal have been developed to deal with parallel systems.
Rescarchers have realized the need for a radical departure from the conventional pro-
gramming methodologies in order to utilize parallel resources efficiently. The most
successful compilers cither address only the modes of parallelism in pipelined and
superscalar machines or restrict themselves to domain-specific areas such as signal
processing.

A conventional way of representing concurrent tasks of an algorithm is accom-
plished by breaking down the algorithm into subtasks, and this technique is well
known since the invention of the computer. This is achieved by breaking a program
into subroutines; but, this technique is not very suitable for parallel processing im-
plementations in view of the fact that such programs are written with sequential
exccution in mind. However, if the breakdown of the tasks of a program is done as
a consequence of the programming model, we could expect more fficient utilization

of concurrent resources.



1.1 Programming Models

A programming model is a set of program abstractions which provides the user

a transparent view of the computer hardware/software svstem. Parallel program-

ming models are those models which deal with programming of multiprocessors ov

multicomputers [6].

1.1.1 Parallel programming models

In general. parallel programming models can be categorized into the following, five

groups [6]:

Shared-variable model: This model is mainly used in tightly conpled mualtipro-
cessors. It involves handling the issues of cache coherency, memory consisteney.,

atomicity of memory operations. memory access protection, ete.

Message passing model: This model is used in a multicomputer system with
interconnection network where messages hetween processing nodes are rooted.
In this programming model. the program is distributed or duplicated over the

processing nodes.

Data-parallel model: This model is suitable for single instruction multiple data
(SIMD) computers, where onc program is executed on several data sets. It
could also be used in synchronized multiple instruction multiple data (MIMD)

computers, where all processors execute the same program on different data.

Object oriented model: In this model, concurrency is exploited between objects
which use message passing as inter-object communication. Objects, which are
dynamically created and manipulated, are program modules that contain the

working data along with the executable code.



5. Logic and functional programming models: Logic programming are models

suitable for knowledge processing and artificial intelligence.

The programming model of our interest is the functional programming model.
Functional programrming is a model that describes a program by a set of functions.
cach having a set of inputs and outputs. Executing a function may not produce
“side effects”; therefore, there is no notion of storage, assignment and branching.
“Side effect™ refers to the case where a program module writes to a memory location
which may be used by other modules. In other words, a model is free of side effects
if the modules of any program can only communicate through a priori specified
communication paths. By having no side effects, functional programming models
give a better chance for exploiting parallelism. Furthermore, parallelism is enhanced
by the fact that regardless of the order of producing its operands. a function pro-
duces the same results. Data flow and single assignment languages are examples of

functional languages.

1.1.2 The data flow model

The basic premise behind data flow is that a node representing a task can be executed
whenever its inputs are available. Data flow was originally thought of as a new
architectural paradigm rather than a programming model for multiprocessors [7, 8].
Such architectures contain specialized hardware that execute their functions upon
the arrival of operands on their inputs. In data flow architectures, data driven
semantics is obviously implemented at a low level, namely the machine level. In
contrast, data flow as a programming model permits to describe algorithms in such
a way that implementations on a general purpose multiprocessor or a pipelined

architecture becomes relatively simple.



The principal strength of data flow graphs is that they do not over-specify
an algorithm by imposing unnecessary sequencing constraints between operators.
Instead. they specify a partial order, where sequencing constraints are imposed only
by data precedences. Since the representation does not over-constrain the order of
operations, a scheduler has the freedom it needs to adequately exploit deep pipelines,
to maximize the re-use of limited hardware resources, or to exploit parallel processing,
units.

A data flow language as a functional langnage is a model deseribing a set
of functions performing some tasks with inter-relations represented by the flow of
operands. This model of programming is suitable for representation by graphs. A
graph which describes the data flow model is called a data flow graph (DIFFG). A
DFG is a directed graph represented by the pair (V.E). where V is a set of nodes
representing operations and E a set of edges representing communication paths.

Representing the data flow model by a graph stems from the following two

reasons:

1. The concept of data flow is that the availability of operands enables the exe-
cution of a node; therefore. references to operands can be thought of as edges,

which when loaded, fire the corresponding node.

2. Data flow graphs can be easily composed into larger ones. This can be ac-
complished by merging the output edges of one graph with the input edges of

another according to the governing program.

The data items which are assumed to flow among the nodes through the spee-
ified directed edges are called tokens. An edge may be thought of as a FIFO (first in
first out) queue which stores incoming operands and feeds them in sequence to the

corresponding node every time it fires. A scalar node is one that has no input edges



and prevides the same output value every time it is requested by another node. In
this thesis. we will assume that the data flow model has no scalar nodes, instead we
consider the scalar operands as a parameter embedded in the operation of a node
itself. An input node is a queue that stores an input stream. while an output node
15 one whick stores an output stream. The input and output nodes do not have the
notion of firing, but they store the operands on arrival.

The data flow model has been used for many years [9]-[30] and has proved
to be successful in exhibiting the parallelism of the algorithms. It does not impose
nunecessary constraints other than those imposed by the data precedency among
operations of an algorithm; consequently. the maximum concurrency is theoretically
achievable.  Moreover, the data flow model provides the user an opportunity to
break down a program into tasks so that utilizing the resources becomes more fea-
sible. Another appealing characteristic of the DFG model is that it permits several
permissible firing sequences, that is. all firing orders of the actors of a given graph

produces the same result as long as the data precedency is preserved.

General data flow graphs

General DFGs are those which can represent any application on a general purpose
computer system. Before giving details, we define the following terms. A syn-
chronous actor is one, which upon firing, consumes a fixed amount (number) of data
items from each of its input lines, and produces a fixed amount of data items on
cach of its output lines. A typical synchronous actor is depicted in Figure 1.1 where
m and n are, respectively, the number of consumed and produced tokens upon the

firing of the actor a.




(1) m< )n (2)

Figure 1.1: A synchronous actor with one input edge and one output edge.

X1 X X
C
y] }’2

(a) (b)

Figure 1.2: Asynchronous actors (a) select and (b) switch.

In contrast. an asynchronous actor consumes and/or produces a variable num-
ber of data items on at least one of its input or ontput lines based on some data-
dependent control. Asynchronous actors are also called data-dependent decision
making operators, because the behavior of the actor is based on a decision alffeeted
by some input data. Several models of actors have heen adopted in the literatnre
to represent data dependent flow. For the purpose of demonstration we will use the
model adopted in [31]. This model consists of only two asynchronous actors namely
switch and select. The select actor shown in Figure 1.2(a) consumes one input, from
either z; or 3, based on the consumed input from line (', and outputs it on line
y. In other words, (a) it consumes C' and (b) if C' is truc, then it consumes r; and

sets y = x;; otherwise it consumes z2 and sets y = x,. The second asynchionons



actor, swileh, shown in Figure 1.2(b) consumes r and outputs it to either y; or y;
depending on the boolean value consumed at C', that is, y; = z if C'is true; otherwise
Y =T

To illustrate how to use these actors to represent data-dependent flow, we give
the following two examples written in C-like code.

Example I. (Conditional) Input x;
yl=A(x,c)
If (¢)

else

y2=G(y1);

y2=H(y1);
y=y2;

Example 2. (Loop) Input x;
I=1;
while (1 < N)
{

F(x);
I++;
}
G(x);

The conditional example is depicted in Figure 1.3 using data flow representa-
tion. The boolean output C of actor A controls the flow of y; which is consumed
by either actor H or actor GG. Sl, and S2 are, respectively, the control lines of
the switch and the select actors. Both S1 and S2 will get the same boolean value
as (7; therefore, the select actor will select the output of the function (G or H)
corresponding to the input y, of the same instance.

The data flow representation of the loop example is shown in Figure 1.4. The
small diamond node is an initial condition on the edge: it is marked with T to

denote a boolean input initialized by a token of value true. The large diamond

oo



select

y

Figure 1.3: An asynchronous DFG showing a conditional example,



Figure 1.4: An asynchronous DFG showing a loop example.
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actors are comparison actors which output boolean tokens depending on the input
value relative to the indicated condition. Initially the sclect actor will select the
value 1 for I because the consumed control on S1 has the value 1. As long as T is
less than or equal to V. S2 will get a falsc value, and hence function F will consume
the input r and execute. Executing function F, a dummy output is transferred as
a control to the INC actor which then fires. The (I = 1) comparator will always
generate a false value, that is, after the select actor consumes the value 1 for [, it
will keep selecting the updated value of 1. Once S2 gets a true token as [ exceeds
N. the switch will direct the input & to function ¢ which then executes, Sinee [/
does not execute, no dummy control will reach INC and henee the loop action will
halt.

General data flow grapis having data-dependent decision-making operations
may not be scheduled at compile time, since the behavior of the actors is dependent
upon some input data which may not be known at compile time. In this thesis, we
are concerned with the problem of compile time scheduling, and henee, this type of

graph will not be considered.

Synchronous data flow graphs

A graph whose nodes are all synchronous is called a synchronous data flow (SDIF)
graph. In other words, the amount of consumed tokens from each input and pro-
duced token on each output are known at compile time for a node in a SDF graph.
A SDF graph is said to be consistent if in the long run the number of tokens con-
sumed from an edge matches that produced on the same edge. An inconsistent SDI
graph may require infinite resources to execute. Consider the inconsistent data flow

graph shown in Figure 1.5. Upon the firing of actor a, one token will be produced

11




Figure 1.5: An inconsistent SDF graph.

on cach of the edges (1) and (2). Hence, actor ¢ will execute because it requires only
one operand and as a result it will produce two tokens on edge (3). One of them
along with the token on edge (1) will be consumed as actor b firr  'nd one token
will remain on edge(3). Consequently. for every sequence of firing actors «, b and c.
one token will stack on edge (3) which means that the graph can not execute with
finite memory on edge (3). This kind of a graph is inconsistent.

For large graphs, a systematic way of determining the consistency is required.
Lee et al. have proved in [32] that the problem of checking the consistency of a
SDF graph can be reduced to a problem of finding the rank of a matrix, called the
topology matrix, denoted by ¢. In this matrix the rows represent edges while the
columns represent nodes. The matrix entry ((¢, j) represents the number of tokens
produced on edge 7 when node j fires. The entry {(¢, 7) is assigned a negative value if
the tokens are consumed by node j. It has been proved in [32] that if the rank of the
matrix ¢ is equal to (N — 1), where N is the number of nodes, then the SDF graph
correspounding to the topology matrix ¢ is consistent, otherwise it is inconsistent. As

an example, consider the SDF graph shown in Figure 1.6. The topology matrix ¢

12




Figure 1.6: A consistent SDF graph.

for this graph is

a b ¢ d ¢ f

(1 -4 0 0 0 0) cda

I 0 =1 0 0 0] cdge

0 4 0 =2 0 0| cdge
o a0 0 -1 0| cda
"T 0 0 2 -4 0 0] edge
0 0 2 0 =2 0| ecdge

0 0 0 1 0 =1 | edge

\ 0 0 0 0 I =2/ edge

The rank of ¢ is five which is equal to (N = 1); therefore, the graph cotresponding

to ( 1s consistent.

In addition to using the topology matrix to determine the consisteney, it can
be used to determine the relative firing irequency of the nodes. Let ¢ be an N-
dimensional vector representing the relative firing frequency of the nodes in the
SDF graph, then ¢ can be obtained by solving the lincar system g = 0. If ( is
of rank N, then a nontrivial ¢ does not exist. For the example of Figure 1.6, the
smallest integer solution for ¢ is ¢ = [4 14 2 4 2] which means that if node o

executes 4 times, the other nodes b,¢,d, ¢ and f will, respectively, execute onee,

13
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4 timer . twice, 4 times and twice. The graph will return to its initial state after each

iteration specified by the above frequencies

Homogeneous data flow graphs

/i special case of SDF graphs is the homogeneous SDF graph in which every node
consumes one token from each of its input edges and produces une token on each of
its outputs edges. In this thesis, we are interested in this type of graph. A schedule of
a homogencous SDIF graph contains one instance for each node, that is. ¢ is a vector
of ones. Unlike a general SDF graph. a homogeneous SDF can be scheduled for
different optimality criteria. The reason behind the difficulty of optimal scheduling
of a general SDEF graph is that the instances of a node. with frequency other than
unity, may need to be scheduled non-sequentially and on different processors to
achieve the optimality eriteria.

Fortunately, any consistent SDF graph can be transformed into a homogeneous
SDEF graph by replacing each node by ¢, nodes and establishing the edge set based
on the flow of operands among the different instances of each node [33]. We explain
this transformation by an example. Consider the SDF graph shown in Figure 1.7(a).
If the nodes ar ordered as a.b.c and d. then ¢ = [6 3 2 1]. Since actor b requires
two tokens from edge (1), while actor a produces only one token on edge (1), an
instance of b requires the outputs of two instances of a. Using the same reasoning
for the rest of the instances of each node, the resultant homogeneous SDF graph
will be as shown in Figure 1.7(b). In the rest of this thesis we will only consider

homogeneous SDIF graphs. and refer to them, for simplicity, as DFGs.

14



(b)

Figure 1.7: (a)A non-homogeneous SDF graph, and (b) its corresponding homogeneous
SDF graph.
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DFGs representing DSP applications

Regardless of the model used to represent the algorithms, designing a general pur-
pose parallel architecture that efficiently exploits their inherent parallelism is still
a dream. If the domain of applications is not very wide, then utilizing the con-
currency, reducing the hardware cost, and producing efficient software tools will all
become relatively simple. In this thesis, we are interested in the class of digital signal
processing (DSP) applications (filtering, adaptive filtering, decimation and interpo-
lation, computation of autocorrelation, power spectrum estimation, transformations.
etc.) that are computationally intensive, periodic, and involves no data-dependent
decision-making. These characteristics are. as a matter of fact, very common in
DSP algorithms. and hence it is possible to apply deterministic scheduling tech-
nigues at compile time for such applications. A program is said to be periodic if it is
applied to an infinite input stream(s) producing an infinite output stream(s). The
periodic nature of the applications gives another degree of parallelism: parallelism
between iterations (an iteration is defined as the execution of the entire program
to consume one input from each input line and produce one output on each output
line), where operations between successive iterations can be overlapped. When the
program involves no data-dependent decision-making operations, runtime overhead
can be avoided, which meaus that scheduling can be completely accomplished at
compile time. As a result of this automation, the hardware cost is substantially
reduced and the performance improved.

Representing DSP programs by block diagrams is more natural than represent-
ing them by Fortran, although familiarity with Fortran may lead some to oppose
this. The data flow graph, which belongs to the class of block representation lan-

guages, has proven to be an efficient model [32]-[41] for the representation of DSP
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Figure 1.8: A graph showing an edge with an ideal delay of n, and its two end nodes.

applications described above. In this model, a node has an associated positive inte-
ger number that represents the computational delay of its corresponding operation.
The complexity of the operations is referred to as the granularity level. Opera-
tions might be atomic or compound. Atomic (indivisible) operations represent the
basic machine operations like the addition and the multiplication. Compound or
non-atomic operations might be macros. code seginonts, functions, iterations, I
units. digital filters, etc. If all the operations in a data flow model are atomic then
it is a fine grain model; otherwise. it is course grain model.

An edge has an associated nonnegative integer that represents its ideal delay.
An edge with no ideal delay appearing in the graph is assumed to be of zero delay.
If vy and v, are, respectively, the initial and terminal nodes of an edge with 2, ideal
delays (see Figure 1.8), then the firing of node vy at iteration i is dependent upon
the availability of the output of v, at iteration (z — n,).

The DFG considered in this thesis is assumed to be a proper graph, vhat is,
there is a path to every node in the graph from an input node, and there is a path
from every node in the graph to an output node. Throughout the thesis, without
loss of generality, we assume that a DFG has one input node and one output, node,
since it can be easily transformed to become so even if the given graph has more than
one input node or output node. For a graph having more than one input node, an
artificial input with zero computational delay is added to the node set of the graph

and a zero-ideal-delay edge is added from this node to each input node in the given



graph. In a similar manner, a graph having more than one output node is altered.
We further assume that the edges in the DFG model have no communication delays
as though all the nodes are assigned to a single processor. This assumption may
sound too restrictive, but is really not so since the communication delays may be

encapsulated with the computational delays of the nodes.

1.2 Graph Theory Background

In this section certain definitions from graph theory that are needed are now given [42].

A directed graph ¢ = (V. E) is uniquely represented by its node set V/(G)
and its edge set E((). An edge ¢ = (v;.v7) is said to be incident out of its initial
node ;. and incident into its terminal node vy. The initial and terminal nodes of
an edge are said to be its end nodes. An edge is also said to be incident on its end
nodes. Every node has an in-degree and an out-degree. The in-degree of a node is
the number of directed edges incident into it while its out-degree is the number of
directed edges incident out of it. Consider a subgraph G’ = (V', E’) where V' C V',
Then 7 is said to be a node-induced subgraph onto the node set V' if E' C E such
that edge (v,.v,) € E' <=> v,,v, € V. Let us use the operator & to denote any set
operation. The operation G, & G is assumed to be equivalent to the two operations:
V(G & V(Gy), and E(G;) @ E(G,). Hence, the equation Gy & G2 = G3 implies
that V(G)) & V(Gy) = V(G3), and E(G,) @ E(G,) = E(G3).

A path p is a finite alternative sequence of distinct nodes and distinct edges
beginning and ending with nodes. The path length, len[p], of the path p = v; = v,

is defined as the minimum elapsed time between consuming the input operand(s) at



its initial node vy and producing an output at its terminal node vy [43], that is,
len[p] = > d, - T Y. n,. (L.
node v, € V(p) edge ¢, € E(p)
where di'. is the computational delay of node v,, n., the number of ideal delays of
edge ¢,, and T the iteration period. If in an iteration, the firing of the terminal
node of a path p does not depend on the output of its initial node, then len[p) may
be negative. We define len[p[. len]p] and len]p[ as the path lengths of the path p
when the computational delays of its terminal node. initial node, and end nodes,
respectively. are excluded. An elementary path whose initial and terminal nodes are
identical is called a circuit. A DFG which contains at least one cirenit is said to he

a cyclic graph. otherwise it is acyclic.

1.3 Thesis Objective

The primary objective of this thesis is to seek a compile-time static schedule for
completely specified data flow graphs on a parallel system. Since completely spec-
ified programs are very common in DSP applications, the scheduling technique is
mainly concerned with DSP algorithms. The theory developed in this thesis (see
also [44, 45, 46]) is amenable to a general DFG as long as the computational de-
lays of all the nodes are known and there are no data-dependent decision-making
operations.

The thesis is concerned with three different optimality criteria: rate-optimality,
delay-optimality, and processor-optimality. These optimality criteria will be dis-
cussed thoroughly in the next three chapters. In Chapter 2, we first, define the

rate-optimality criterion. and review related work. Then, a theory for finding a
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rate-optimal time schedule, without consideration to processor allocation. is pre-
sented. In Chapter 3, we present a theory and techniques necessary to modify the
schedule developed in Chapter 2 so that delay-optimality is achieved. Chapter 4
deals with the mapping of the time schedule to a processor assignment with an ob-
jective to minimize the number of processors needed. In Chapter 5, performance
analyses of the different algorithms presented in the preceding chapters are carried
out, and a comparison with some related work presented. Chapter 6 concludes the
thesis by highlighting the contributions of this study and making some suggestions

for possible further work.



Chapter 2
Rate-Optimal Time Scheduling

The scheduling problem can be deseribed by the d-tuple (PS. TS, PQ. F' Q). where
PS is the set of processors, T'S the set of tasks constituting a given program. °¢)
the sequence of processers to which the tasks are to be assigned. and F'Q is the
sequence of firing times of the tasks. Further. let TQ[F%] be the ordered sequence
of tasks which are allocated to processor Py. that is, if the task s precedes s; in
TQ[Py]. then processor P will execute the task s, before executing s;. For example,
let PS = {P.P,}. TS = {81.585,83, 84, 85,86, 87 }, PQ = {P. P, Po. P, P, ). Py}
and FQ = {t,. 1. 13. tg. 5. lg. tz}. This implies that the tasks sy, s and sy ave
allocated to the processor Py. and the tasks sy s5, s¢ and sz to the processor Iy,
Further, the task s; fires at the time instant {;, s at {3, an so on. If {; < 1, < {4,
TQ[P] = {s1, 82,84} and if {3 < 15 < 15 < {7, then TQ[P,] = {s3. 85, 86, 87}. Henee,
scheduling can be defined as the process of assigning tasks 1o processors, ordering
their execution and specifying the times when they start execution. Whether Q).
FQ or TQ are determined at compile time or at run time, scheduling can be classified

into the following categories [47, 34}.
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1. Fully dynamie: An operation is assigned to a free processor at run time when
all its operands are ready. that is, both PQ and FQ are determined at run

time.

2. Static Assignment: Operations are assigned to processors at compile time.
The availability of operands determines which operatious to fire. That is, only

P’Q is determined at compile time.

3. Sclf tuned:  The tasks are assigned to the processor at compile time and
their order of firing is also known before hand. The availability of operands
determine whether to proceed with execution or to pause. That is PQ and

T'Q) are determined at compile time but not FQ.

1. Fully static: The allocation of tasks to processors and the exact times of
their execution are specified at compile time. That is. both PQ and FQ are

determined at compile time.

For a periodic algorithm, the scheduling parameters are determined for one
iteration and the complete schedule is constructed by a periodic repetition of a
single iteration schedule. It is to be recalled that a periodic algorithm is applied
to a stream of inputs to produce a stream of outputs by repeating the tasks of the
algorithm on each and every input. In addition to the above scheduling schemes.
periodic programs can be scheduled in a cyclo-static manner. Cyclo-static scheduling
is similar to the fully static one except that in the former the tasks are periodic in
the processor space. That is, a task may be allocated to different processors in
different iterations according to some periodic vector that determines the processor

displacement from iteration to iteration for each task [43, 48, 49, 50].
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In general. for problems where scheduling at compile time is unattainable,
many solutions have been proposed to solve the problem of data dependency at run
time. Not surprisingly, most systems that execute operations in parallel have data-
driven semantic models. As an example, a general purpose super-scalar pipeline
processor uses the reservation-station technique to resolve data dependency among
instructions. A pre-specified number of instructions are decoded without checking
their data dependency and sent to reservation stations. Each instruction in a reserva-
tion station waits for its operands to be ready. An instruction having its operands
ready waits for the appropriate functional unit to be free. The data dependency
among the instructions waiting in the reservation stations is resolved by register re-
naming and/or scoreboarding techniques. More details about these technigues can
be found in [6] and [51]. Obviously. an algorithm which has to be scheduled during
run time (fully or partially) requires more hardware and/or software to dynamically
resolve the issue of data dependency to ensure its correct execution. However, the
overhead due to such dynamic behavior may be avoided for some algorithms if the
scheduling can be completely accomplished at compile time. An algorithm can be

fully scheduled at compile time if it has the following properties.
1. It has no loop for which the number of repetitions is not known before hand.

2. It has no branch instruction whose behavior (branch/proceed) depends on

some value to be determined at run time.
3. It is a pure code, that is, it may not modify itself during run time.

4. Each operator in the algorithm has a fixed number of operands, that is, in an
iteration, the number of consumed inputs as well as the number of produced

outputs are fixed and known at compile time.
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I a fully static schedule, also known as a completely specified static schedule,
a task has two parameters which are specified at compile time: the firing time of
its execution and the processor which will execute it. In this chapter, we focus on
the first parameter, while the second is dealt with in Chapter 4. It is noted that
the terms algorithm and DFG are used interchangeably. A schedule that gives the
firing time instances of the tasks of a given algorithm without information about
processor allocation is referred to as a time schedule. Hence, the principal objective
of this chapter is to obtain a valid time schedule for an algorithm represented by a
DIG.

The data dependency in algorithms represented by DFGs is inherently exposed
by the programming model. Therefore, our task is not to extract the data depen-
deney between actors but instead to schedule them in a way that achieves some
optimality criteria without sacrificing the integrity of precedency among tasks.

In this chapter, we will first define the scheduling problem of a DFG on a
multiprocessor and explain the implications of the different scheduling parameters.
Also. more specifications about the DFGs of interest will be given. In Section 2.2,
the rate optimality criterion will be discussed. The theory developed in this work

to time schedule DFGs on multiprocessors will be the subject of Section 2.4.

2.1 The Scheduling Problem

A poor schedule for any system in general, and for a parallel one in particular, may
violate the timing requirements or lead to an inefficient utilization of the resources.
In the scheduling problem, therefore, we seek a schedule that respects the time re-
quirements and at the same time utilizes, optimally or near-optimally, the resources

of a given system. The problem of allocating tasks to processors and specifying at
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compile time their firing times has been proved to be NP hard. that is, a problem
that is not solvable by deterministic algorithms in a polynomial time [52, 53]. For
such a problem, a heuristic solution is necessary.

The scheduling problem consists of a fully specified DFG representing a pe-
riodic algorithm, a set of identical processors and some optimality criteria. In the
literature, a node in a fully specified DFG is assumed to have a single atomic op-
eration. In this thesis, we relax the definition of a fully specified DFG by allowing
nodes of multiple operations as long as the total computational delay of cach such
node is known for the underlyiug architecture. For the solution time to be possible
at compile. the flow graph which describes the problem has to be deterministic and
fully specified. For example, conditionals or decision nodes {(nodes whose outcomes
affect the flow of control) leading to non-deterministic problems may not he solved
until execution time. thus precluding compile-time solutions. The processors are
assumed to be identical to give flexibility for the tasks to run on any processor as
long as their precedence requirements are satisfied. A schedule may be preemptive
or non-preemptive. It is preemptive if the interruption of the tasks is permitted
before being completed: otherwise it is non-preemptive. In general, a preemptive
schedule is more efficient than a non-preemptive one unless the task switehing cost
(in terms of switching vime and memory space) is relatively high [52]. In cases where
task switching is costly, preempting is usually avoided.

The scheduling problem can be considered to consist of two phases, time
scheduling and processor assignment. Time scheduling is concerned with speci-
fying the firing time of each node in a single iteration assuming an infinite numbe
of processors, while processor assignment is a mapping procedure of the nodes in the

time schedule to a processor-time space. In this chapter, we present a new theory



along with an algorithm for finding a rate-optimal time schedule for a completely

specified DFG.

2.2 Rate Optimality

In most real-time applications, the throughput is very critical to be maximized. It
is to be recalled that the throughput, a performance measure, refers to the number
of outputs per time unit. A schedule for a given algorithm is said to be rate-optimal
if and only if it achieves the maximum throughput, equivalently, minimizes the
time between producing successive outputs. The time between successive outputs
is referred to as the iteration period. Hence, a rate-optimal schedule should achieve
the minimum iteration period. which is usually referred to as the iteration bound.
For an acyclic DFG. the iteration bound is determined by the computational delay
of the longest operation. This is so because, if enough computational resources are
available, a pipeline with a number of stages equal to the number of operations
can definitely achieve an iteration period equal to the computational delay of the
longest operation. The minimum iteration period, however, could be less than the
computational delay of the longest operation if more than one processor can share
the execution of that operation.

For a cyclic DFG, the iteration bound is not only constrained by the hardware
resources, but also by the topology of the graph. If the hardware resources are
unlimited, the iteration period bound as constrained by the topology of the given
graph is given by

Ty = D“], (2.1)

= max _—
CE€Ectrcutls [JNC
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where

De = Z di‘:‘

v, €V(C}

and Nc is the total number of delays in the circuit ' [54]. which is given by
Ne = Z Ne,.
e, € E(C)

Although this bound has been given in the literature as an axiom, we like to
provide the reader with some reasoning for this formula. Let A be a node ina cirenit
C'. Obviously. the output token of node A at iteration i (A,) will propagate through
the nodes of (' (changes as per the functions of these nodes) and come hack to A
as an input needed for the computation of the (v + N¢)th iteration. The minimum
time required for nede A to provide its output at the (¢ + Ne)th iteration since
outputting A, is D¢. Therefore, at most N¢- outputs can be produced by node A in
D¢ time units, and hence the above formula.

When there are some unbreakable operations with computational delays greater
than the iteration period, the rate-optimal schedule is not achievable using fully-
static scheduling. This is due to the fact that in fully static scheduling, an oper-
ation is assigned to a single processor and henee, has to be execnted within the
time limit determined by the iteration period. In this case. rate-optimality can be
achieved using cyclo-static scheduling or scheduling via unfolding. Consequently, if

the schedule is required to be fully static, the iteration bound has to be modified as

Ty = max (T(,, max (l,’,) . (2.2)
w € V() !

A circuit C is called critical if its loop bound (D¢ [Ne+) is equal to the iteration
period bound. A non-critical circuit has a spare time called the slack time. The

slack time of a circuit can be thought of as the total time during which none of the
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cireuit operations is executed within one iteration period Tp. and is given by
ST(C') = TeN- — De. (2.3)
It is clear from (2.3) and (1.1) that
ST(C')y = —len]C). (2.4)

If Ty is a non-integer. then unfolding is necessary to achieve the bound. A
DEG is said to be k-unfolded if it has been unfolded k times. and k is called the
unfolding factor. The k-unfolded DFG has an iteration period equal to (kTy). where
1o is the iteratic, petiod of the original DFG [55]. The unfolding factor can be

expe ossed as
_ Ne
~ GCD(Ne.De)'

where GCD denotes the greatest common divisor, and N and D¢ are, respectively.

I8

the ideal and the computational delays of any critical circuit [36]. For the fully-static

schedule 1o exist. the iteration hound is given by (2.2). where Ty is replaced by &75.

2.3 Previous Work

In the literature different techniques have been developed to employ parallelism in

the implementation of algorithms represented by DFGs [54].

. Parallelism in a single iteration (intra-iteration parallelism): In these me-
thods [57]. a given cyclic DFG is first converted to an acyclic one which cor-
responds to the precedence graph of a single iteration. This conversion ran
be carried out by replacing each delay element by an input and an output
node. Scheduling acyclic data flow graphs has been well studied in the litera-

ture [58. 59]. In general, techniques that first convert the cyclic graph to an
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acyclic one prior to scheduling generate non-overlapped schedules, where the
schedule for one iteration is periodically repeated. Since these methods do not
utilize inter-iteration parallelism, they are, in general, incapable of produc-
ing schedulers with maximum throughput or optimal number of processors.
Hence, these methods are not suitable for iterative algorithms in real time

applications in which the throughput is a critical issue.

The parallelism in the resultant acyclic graph can then be explvited to mini-

mize the schedule length by any of the following scheduling methods [54]:

(a) Precedence graph method [60].

(b) Precedence matrix method [61].

(c) Critical path method [39. 62].

(d) The method of Nouta and Simula based on the petri nets [63. 64].

The repetitive nature of the DSP algorithms is totally ignored (not utilized),

if this technique is used for their scheduling.

. Parallelist within a block of iterations [65. 66): Before converting the given

graph to an acyclic one, it is unfolded by some factor 7. This kind of translor-
mation helps capture more parallelism as concurrency can be utilized amoug,
the operations of n iterations. Although these methods do better job than
those from the preceding category, they do net, in general, produce rate-

optimal schodules for high sampling rate in reai-time applications.

This technique is known for implementations of DSP algorithms. Fore exam-
ple, high speed filtering can be accomplished by processing sequences of input

samples instead of one sample. In [67], high speed implementation for finite
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convolution is done using Fourier transform. This method is efficient only if
the transform is applied to filters with high orders. Hence blocking is necessary

for filters with low order.

Blocking will definitely improve the utilization of inter-iteration parallelism.
However, the maximum utilization may not be achieved as the blocking factor
is finite. Hence a virtual infinite unfolding of the graph is required for the

maximum utilization of this kind of parallelism.

3. Pipelining the feed-forward part of the DFG: Pipelining is efficient when the

program consists of repeated processes. The basic principle behind pipelining
is that the computation for the iteration of a given task can be started before
the computations of earlier iterations have been completed. Pipelining can be
viewed as additional delays inserted into the DFG; as a consequence, the 1/0
delay increases. These delays can be added to the feed-forward part of the
network, but obviously may not be added to the circuits of the graph since
they may alter the data dependency between iterations. However, pipelining
the tasks of a circuit in a graph is possible for certain values of iteration period.
This is because a task is not only pipelined with tasks from the same iteration

but also with some tasks from other iterations.

. Periodic parallelism (inter-iteration parallelism): This parallelisi is a result
of utilizing the parallelism between successive iterations in an infinite or a suf-
ficiently long schedule [68, 43, 55, 69]. Schedulers that utilize this parallelism,
which can be either fully-static or cyclo-static, generate overlapped schedules,
where operations from different iterations are overlapped. When maximum

parallelism is utilized, the resulting schedule will be rate optimal for which the

30



iteration period T is equal to the iteration bound Tp. Some of the important

rate-optimal scheduling techniques existing in the literature will be discussed

later in this section.

As a matter of fact, the maximum inter-iteration parallelism can be accom-
plished by using the technique of direct blocking. It has been shown in [55)
that the blocking-factor can be chosen so that the unfolded graph is a perfect-
rate one, which can always be scheduled rate-optimally. Each circuit in a
perfect-rate graph has only one ideal delay unit, say associated with edge .
Hence. the nodes of a circuit can be sequentially scheduled by starting from
the terminal node until reaching the initial node of the edge ¢. Scheduling
the acyclic version of the resulting perfect-rate graph will hence produce a

rate-optimal schedule.

In the following paragraphs. we will discuss some schedulers that produce
rate-optimal schedules. A simple technique to produce a rate- and delay-optimal
schedule for an acyclic graph is the critical path method. In this method, the longest
distance is computed between the input node of the graph and cvery other node.
If the input node is scheduled at time 0, the distance between the input node and
any other node represents its scheduling time. For the longest distance calculations,
the weight assigned to a node is its computational delay, and the weight assigned
to an edge is the negative of the product of its ideal delay and the iteration period.
The basic problem of this technique is the fact that it does not utilize the inherent
flexibility of the nodes to minimize the number of required processors.

The maximum spanning tree (MST) technique proposed in [54] and [70] is
concerned with producing rate-optimal schedules for IIR filter networks. In this

technique, the graph is transformed into an equivalent one by removing the ideal
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delays from the branches of the MST and inserting non-negative shimming delays
such that the resulting delay associated with each link is equal to the tctal delay
of the corresponding fundamental loop in the original DFG. In the resulting DFG,
the integrity of time precedency is preserved among the nodes. Then, the MST is
scheduled according to the precedency constraints represented by the edges, and the
timing constraints represented by the computational and shimming delays. This
algorithm produces a valid rate-optimal time schedule. However, other optimality
criteria are not addressed as well as no processor optimization is taken into consid-
cration, leading, in general, to solutions with non-optimal number of processors.

In [55]. the DFG is first converted to a perfect-rate graph by unfolding it with
an unfolding factor that is equal to the least common multiple of the ideal delays
in all the circuits in the graph. Each circuit in the resulting graph will contain
one unit of ideal delay. Since the computational delay of any circuit will be less
than or equal to the iteration period, as will be shown later, the DFG can always
be scheduled rate-optimally. It can be easily seen that this approach has a serious
problem of increasing the size of a given program. As an example, a DFG for a
Tth-order 1R filter may possibly need to be unfolded by a factor of 420 in order
for it to be converted to a perfect-rate graph. Further, this method does not try to
optimize the number of processors.

The cyclo-static method [43, 48, 49, 50] consists of a depth-first search of cyclo-
static solutions by fixing both the iteration period and the number of processors.
Unlike static solutions, cyclo-static solutions have the property that the tasks as-
signed to a processor vary from iteration to iteration. However, the allocation of the
tasks on the processors is periodic. That is, the tasks allocated to a processor at

iteration n will be the same as those allocated to it at iteration n + n,, where n, is
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the cyclo-scheduling period. The main strength of this method is that no unfolding
is required even when there are some operations with computational delays greater
than the iteration period. This is due to the fact that an operation may be assigned
to more than one processor in consecutive iterations. The basic problem with this
method is that it does not guarantee a schedule, since it is not always possible to
obtain a solution when both the iteration period and the number of processors are
fixed. An example of the cyclo-static solution is the scheduling heuristic proposed in
[43). This heuristic narrows the search for a solution by imposing all constraints on
the required solution: maximum throughput, minimum delay, and minimum num-
ber of processors. The algorithm is expected to output a schedule matrix in the
time-processor space, where columns represent time slots and rows represent pro-
cessors. The resulting matrix not only specifies which tasks are allocated to cach
processor. but also gives the information as to which iteration the occurrence of cach
node belongs. Along with the scheduling matrix, the algorithm generates a cycling,
vector that determines the relative permutation of the processors in successive iter-
ations; hence. the cyclo-static schedule is completely specified. In this heuristic, the
flexibility of all the nodes are first computed by considering the slack times of the
circuits and the delays of the 1/O paths, and next the nodes are scheduled in the
order of increasing flexibility.

The most efficient static scheduling technique developed thus far is the range-
chart technique [68, 71]. In this technique, first, a node is chosen as the reference
node, and the flexibility of every other node is calculated. The flexibility of the nodes
ina DFG is represented in a range chart form, which indicates the range within which
each node can be executed. The node with the minimum range or flexibility is first

chosen to be scheduled, and the range chart updated. The process of choosing a
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node and updating the chart is repeated until all the nodes are scheduled.

It may be noted that the heuristics proposed in the literature handle scheduling
as a single problem. In contrast, we divide the scheduling problem into two phases.
The first phase, time scheduling, is solved analytically using combinatorial concepts.

The second phase is the mapping of the time schedule to a processor assignment.

2.4 Time Scheduling Theory

The scheduling problem addressed in this thesis is concerned with finding a rate-
optimal schedule for a cyclic DFG. In a cyclic DFG, the critical circuits determine
the iteration period bound. If (' is a critical circuit. it is clear from (2.4) that
len[(']=0. since ST(C')=0 from (2.3) and (2.1).

We will first show that any cyclic, fully specified DFG can be converted through
a sequence of transformations to an acyclic one. Then we will use one of the known
algorithms to schedule the resulting acyclic graph as a starting step in scheduling
the whole graph. The transformation is accomplished by contracting each circuit in

the graph to a single node.

Lemma 1 The time schedule of the nodes of a critical circuit is uniquely specified

if and only if one of its nodes is time-scheduled.

Proof:

Necessity: Obvious.
Sufficiency: Assume that vy € V(') is a node in the critical circuit C with a
fixed time schedule. For any node v, € V(C), assume that its earliest firing time is

EFT(r.) and its latest firing time LFT(r,). Without loss of generality, assume that
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Figure 2.1: A critical circuit.

vg is fired at time zero.
Assume p; is the directed path (vg = v.) C ' and py the directed path (v = vg) C

C as shown in Figure 2.1. Since (' is critical,

len[pi| +lenlpe[ = 0. (2.5)

The precedence constraints require that
FT(vo) + len[p[ £ EFT(v.) (2.6)

and

LFT(v.)+ len[p| < FT(m) (2.7)
where FT (1) = 0 is the firing time of vy. Adding (2.6) to (2.7) gives
LFT(v.) + len[py[ +len[p2[ < EFT(v,)
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Using (2.5). this inequality reduces to
LFT(v.) S EFT(v)
However, LFT'(v.) < EFT(v.) is not feasible. Therefore,
LFT(v.) = EFT (v,),
and hence the proof. m

Lemma2 Let v, ¢ V(C) and v. € V(') be connected nodes. If the scheduling tim«
of v, is fired relative to the scheduling time of ve, then it is also fired rele iive to all

other nodes in O,

Proof:

Since the scheduling of v, is fixed relative to the scheduling of v, we can establish
that

FT[v,)— FT[v] = By. (2.8)

where B, is a constant. Further, as per Lemma 1, the scheduling time of v, is fixed

relative to all other nodes in C; her-e
FTlv) ~ FT[v.] = B,. (2.9)

where B, is also a constant and v, is any node in C. Summing up (2.8) and (2.9),
we get

FT[v,] — F[ve] = By + B, = Constant,

and hence the proof. m

Theorem 1 In a DFG. any critical circuit can be contracted to one of its nodes

without altering the scheduling problem.
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Proof:

Assume that the critical circuit (' is contracted into oue of its nodes vy. According
to Lemma 1. the rest of the nodes in (' have fixed scheduling times as long as vy
does; therefore, if the node vy is scheduled correctly, the rest of the nodes in 7 will
automatically get scheduled according to their displacement relative to vy. Hence
removing such nodes will not affect the scheduling problem as far the scheduling of
the circuit nodes is concerned.
Let v, be any other node not in C". If v, is not connected to (', then it can be
scheduled independently of vy, If it is connected to some node in (', then according
to Lemma 2. the scheduling time of v, relative to this node can be represented hy
its scheduling time relative to vg. Therefore, the circuit nodes other than vy arve not
necessary to be present in the DFG as far as the scheduling of the rest of the nodes
in the DF'G is concerned, and hence the theorem. m

So far. we have shown that a critical circuit can be replaced by a single node
and yet the scheduling problem is not altered. This kind of a replacement will he
referred to as critical circuit contraction, or simply circuit contraction. ln order to
contract a circuit to a single node, it is required to make up for the data dependency
between the circuit nodes which will be removed due to the circuit contraction and
the other graph nodes. According to Theorem | this is always possible. Let the
circuit C' be a critical circuit to be contracted to a node vy. The data dependency
between a node v; not in C and any node v, in € due to the existence of some path
between v, and v., can be compensated for by introducing a path to (form) v, from
(to) vy having the same length. One way of introducing such path is by introducing
pseudo nodes whose assigned delays compensate for the missing subpaths due to

the circuit contraction. Using the above method of compensating for the missing
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subpaths by introducing pseudo nodes, we now give an algorithm for the contraction
of a critical circuit (" in a given graph G to form a new graph G'. The single node

to which the circuit €' is contracted will be referred to as a “supernode”.

Contraction Algorithm:

1. Let GG’ be the node-induced subgraph on its node set V(G") = [V(G) - V(C)]U

{vo}, where vg € V(C) is the node to which the circuit C is to be contracted.

2. For each node v. € [V((') = {vp}] with an out-degree greater than one, perform

the following operations.
(a) Create a pseudo node v! with a computational delay equal to len)p]. where
pis the directed path in €' from node vp to node ve.ie,p = (v = v.) C (.
(b) Set V(G'y= V(G U {vl}.

{c) Move the tail of each edge ¢ € E((G), incident out of the node v, to some
node not in C, to be incident out of the node v.. (The terminal node of

the edge and the ideal delay associated with it remain unchanged.) Set

E(G") = E(G') U {e).

(d) Set E(G'") = E(G")U {(vo,v.)}, where (vo,v.) is a delay-free edge.

3. For each node v, € [V(C) — {v}] with an in-degree greater than one, perform

the following operations.

(a) Create a pseudo node v/ with a computational delay equal to len[p[, where

pis the directed path in C from node v, to node vy, i.e, p = (v, = vy) C C.

(b) Set V(G") = V(G') U {v").
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(c) Move the head of each edge ¢ € E((G). incident into v, from some node not
in C, to be incident into {+/'}. (The initial node of the edge and the ideal

delay associated with it remain unchanged.) Set E(G') = E(("YU {c}.

(d) Set E(G') = E(G") U {(vZ.v0)}, where (v”,1q) is a delay-free edge.

We will now study the effect of applying the Contraction Algorithm to contract
a critical circuit on the slack times of other circuits and the lengths of the 170 paths.
In fact. we are going 1o show that neither the slack time of a circuit, nor the length
of an 1/0 path is eflected by contracting a critical circuit to a single node using,
the Contraction Algorithm. Recall that, as per (2.4), the slack time of a circuit is
nothing but the negative of its path length. Hence, to show that neither the slack
time of a circuit nor the length of an I/O path is altered by the contraction of a
critical circuit. it is enough to show that the length of any path in the graph does not
change due to such contraction. It is to be noted that a path mav change its node
and edge sets due to a circuit contraction. Therefore, when we say that the length
of the path does not change, we relate the original path with the corresponding path
in the graph after contraction. Let G’ be the graph that results after contracting
a critical circuit C' from G. For every path p € G whose end nodes are not in (7,
there is a corresponding path p' € G’ such that len[p] = len{p']. As a matter of fact
the path p' is not necessarily elementary, that is, it may contain a circuit as will he

shown soon.

Definition 1 A path p§ is said to be a hop-path with respect to a circuit O if and
only if it has no common edges with C, and its node set is disjoint from the node
set of C except for its initial and terminal nodes, that is, E(pf) N E((') = &, and

V(SN V(C) = {v1,vr}, where vy and vy are the initial and terminal nodes of P, .
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Lemma 3 Let ' be a graph resulting after contracting circuit C from a given graph
G, and lef pf be a hop-path with respect to C. G' will contain a circuit of the form
o, V4, (P, = {v1,v1}), v, vo, where v} and v are the pseudo nodes generated by the
Contraction Algorithm as the nodes v; and vy are removed, and vg is the supernode
to which the circuit C has been contracted. Further, this circuit is the path in G’

corresponding to pf .

Proof:

Let pf be a hop-path with respect to a circuit C. As seen from Figure 2.2(a), p{
can he expressed as pf = v, psg.vr. Contracting the circuit C' (see Figure 2.2(b))
will result in the pseudo node v} with a delay-free edge coming from vy and an edge
going to the initial node of p,. It will also result in a pseudo node v and an edge
incoming from the terminal node of py and an edge going to the node vg. py along
with these four edges constitute the circuit vo, v). (p — {v1,vr}), V%, vo. and hence
the first part of the lemma. The second part of the lemma is obvious as the node
vy is replaced by the pseudo node v} and an incoming edge from vo. and the node

r7 by the pscudo node v and an outgoing edge to vy. m

Theorem 2 Let G’ be the graph resulting after contracting a circuit C from the
given graph G, and p an elementary path in G. If p§{ C p, where p§ is a hop-path

with respect to C', then there would be no elementary path in G' corresponding to p.

Proof:

Let p’ in G' be the path corresponding to the path p in G. Since p{ C p, p;lc cy,
where p, is the path corresponding to p§ in G'. The path p;f, by Lemma 3, is a

circuit. Therefore, p' contains a circuit and hence the proof. m
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Figure 2.2: (a) A subgraph before and (b) after the contraction of the shown cireuit.
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Corollary 1 A ewrcuit Cy that contains a hop-path with respect to a circuit C in G
may nol have a corvesponding circuit e the graph G’ resulting after contracting the

cireud O,

The above theorem showed that some paths have no corresponding paths in
the resulting graph after contracting a cirenit. The following theorem, however, will
show that a path which does not meet the criterion in the above theorem, will have
a corresponding elementary path in the graph resulting after a circuit contraction

with exactly the same path length.

Theorem 3 L« vy and vy be any two nodes such that vi.v; € G — C. where G s
the DIFG before contracting the circurt C. Then for each path po = (17 = v9) C G
such that py docs not contain a hop-path with respect to C, there is a corresponding
path pl, = (v, = v,) C G" with the same path length, that 1s. len[po] = len(pgl. where

(" the graph resulting after the contraction.

Proof:

Take any path py whose initial node is v; and terminal node v,. If pg has no common
subpath with (', then the proof is evident as py will remain unchanged in G’. Assume
that py has some common subpaths with C. If there are multiple such disjoint paths.
then the path pg will contain at least one hop-path, and hence its corresponding
path in G’ is not elementary as stated by Theorem 2. If there is only one common
subpath, say p. assume that its initial node is v, and terminal node v,. Without
loss of generality, we may assume that vy is an immediate precedent to v, and v, is
- immediate successor to vy, that is, (v1,v,), (v-,v2) € E(G). It is enough to show
that the length of the path pf = v;, (vi, v}, v), (vV, vo), vo. (vo, vy), vy, (v, v2), 02 in

the graph after contracting circuit (' to node vg is the same as the iength of the
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path po = v1.(v1.v,) p. (v v2) v i1 the graph before the contraction, where v} and
v/ are pseudo nodes resulting as per ‘he Con. raction Algorithm. The lengths lenjpy|

and len)py| are given by
lenlpol= T(u, .0y + Lenp] 4 Tiap i)
and
lenlppl = Twwn + o + Mg 4
t Muear) + 4y + T(agan)

where Ty ) = =1 00T -
But %y, ) = Py ay) a0d Wt iy) = Murg)- Moreover, Ti(y,0)) = W) = 0. There-
fore.

Len)po[= Tigey vy + i + i+ diy + M)
Case 1 (vo € p): Let p; and p, be. respectively, the paths v, = vg and vy —
(see Figure 2.3). According to the C'ontraction Algorithm, the pseudo node o] has

a computational delay equal to len[p([. and the psecudo node v has a computational

delay equal to len]p_]. hence
len)pgl = Ty o) + len(m| + 5 + len]pe! + Ty ) (2.10)

Using len[p[ + d5, + len]pz] = len{p}, (2.10) becomes

len]pg| = Ty, ) + lenlpl + Ty = Len]pol.

Case 2 (vo € p): Let p, and p; be, respectively. the paths vy = v, and v — vy

(see (Figure 2.4)). According to the Contraction Algorithm, the pseudo node o
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Figure 2.3: (a) A subgraph before and (b) after the contraction of the shown circuit.
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Figure 2.4: (a) A subgraph before and (b) after the contraction of the shown cireuit.



has a computational delay equal to len[p] + len]p,[, and the pseudo node v} has a

computational delay equal to len]p;[+len[p]. Hence,

lenlpo[ = Ty, 0) + len[p] + len]py[ + d,

+ len]pi[ + len[p] + (09 (2.11)

Using lenp] + len]py[ + len]pa[ + S, = 0, (2.11) becomes

Len ] = ) + Len(p] + Tepun) = lerdpel.
Hence. whether vy € p or not, len{pj]=len[po]. m

Corollary 2 Let Cy be a circuit in . and C§ its corresponding circuit in G', the

graph resulting after contracting a critical circuit C. If Cy contains no hop-path with

respeet to O then ST(C) = ST(Co).

Proof:

A circuit is nothing but a closed path and hence the proof is obvious as per the
above theorem. m

So far, we have shown that a path which has a common subpath with a circuit
(" to be contracted, will definitely have a corresponding path having the same path
length. Further, a path which has more than one subpath common with C' (equiva-
lently, it has a hop-path) will have no corresponding path in G’, the graph resulting
after the contraction. Hence, a path in G either has a corresponding path in G’ or
has no corresponding path at all. Let C; be a circuit other than C, the circuit to be
contracted. As per Corollary 1, if C, contains a hop-path with respect to (', then
C: will have no corresponding circuit in G’. Therefore, we have to study the effect

of the disappearance of some circuits due to circuit contraction on the scheduling
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problem. The scheduling problem will only be altered if the flexibility of a node
due to the slack times of the existing circuits is higher than the flexibility that nade
would have if some other circuits have not disappeared. The following theorem will

show that this case will never happen.

Theorem 4 Let GG' be a graph resulting after coniracting cireuit C' from a given
graph G. and C; be any other circuit. In G’ there is a civeuit €, contamning the

node set V' (C,) — V(C) such that ST(C,) < ST(C,).

Proof:

If C.NC = &, the proof is evident and 'y = ;.
fC.NnC # 9.

Case 1: (', does not contain a hop-path with respeet to the eivenit (' Let
Cy = pUpe, such that p. N C = p., and V(p)N V(") = {v;, 00}, where
v; and vr are respectively the initial and terminal nodes of the path p.
The path length len]p[ will not be affected by the contraction of cirenit
C, and len[pl] = len]p.] as per Theorem 3, where pl is the path in (/'
corresponding to p.. Therefore. ST(CL) = —(len|p[+len{pl]) = ST(C,),

where (! is the circuit in G’ co. “=sponding to C;. Hence, (7, = (7],

Case 2: C, contains some hop-paths with respecet to the cireuit C': Let
Cr = pU (Uisyp) U (Ul )

where p is a path such that pNC = {v;,v7}, p, a path in C (p,NC = p,),
and p§ a hop-path with respect to the circuit C' different from p. Further,

let p,° be the path in ' having the same end nodes as those of Ph.» and
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Figure 2.5: An illustration of the definitions used in the proof of Theorem 4.

;,?: is the path in (" whose initial node is the terminal node of pf' and
its terminal node is the initial node of pfl. Also. let p. be the path in
(" whose initial and terminal nodes are v; and vr, and p7 the path in C
whose initial node is v7. and terminal node v;. (Figure 2.5 illustrate the
above path definitions). Let us refer to the circuit in G’ consisting of the
path p (excluding it initial and terminal nodes), the pseudo nodes due to
the removal of v; and v7, and the supernode due to the contraction of '
as (';. As per Corollary 2, C. will have the same slack time as that of

the circuit pU ..
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len[Cy) = lenpl+ Y len(p [+ Y e n[pf;.[ (2.12)
1=1 1=1

Since p§ together with p{ constitute a circuit.,
3 1

l(n[pf;[-}-l(‘n[;ﬂg 0 (2.13)
However,
1(71[;);‘(;[%-1(7)[;6?[: len[C'] =0 (2.11)
From (2.13) and (2.11)
len(pf, (< e n[p;‘(,'[ (2.15)

substituting (2.15) in (2.12)

e

len[C)) < /(71[})[+ZI( nip|+ Zl(n[p;fl'[ (2.16)
1=1 =1

The path B composed of all the paths in (2.16) exchuding p begins at oy
and ends at v;. As all these paths are in ('. p. in general, may trace
C several times. Since len|('] = 0, regardless of the number of times p

traces C, len[f|= len[p[. Therefore, (2.16) becomes

len[C1) < lenlplHen[l= Len()) (217)
which can be rewritten as

ST[C,) =2 ST(Y] (2.18)
Thus, ', = C, and hence, the theorem.
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It is clear from Theorems 1 and 3 that the contraction of a critical circuit
nsing the Contraction Algorithm neither affects the scheduling problem, nor alters
the other parameters such as the length of an 1/O path or the slack time of any
remaining circuit. Further, as per Theorem 4, the flexibility of a node may not get
increased due to the depletion of some circuits as a result of contracting a critical
circuit.

Using the Contraction Algorithm we can contract all critical circuits in the
given DFG: however, this is not enough to convert the DFG into an acyclic one. A
DFG in general may have non-critical circuits. To contract the non-critical circuits
existing in the DFG, we have developed a technique. The critical circuits are first
contracted; then. one at a time, the non-critical circuits are converted to critical ones.
and contracted. The process of choosing a circuit. converting it to a critical one.
and contracting it is repeated until the remaining graph is acyclic. This technique

will be treated in the following subsections.

2.4.1 Converting a non-critical circuit to a critical one

A non-critical circuit has a positive slack time. or equivalently, a negative length.
Therefore, to convert a non-critical circuit to a critical one, a delay equal to the
slack time of that circuit should be induced to its nodes and/or edges. This delay i>
referred to as the shimming delay. The length of the circuit after introducing this
shimming delay becomes zero, since its length to start with is the negative of its slack
time. The shimming delay may be either added to the computational delay of the
nodes or to the ideal delay of the edges. In general, it is more advantageous to add
the shimming delay to the computational delay of the nodes. The shimming delay

associated with a node can be considered as its scheduling flexibility upon mapping
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the time schedule to a processor assignment. On the other hand. the shimming
delay added to the edges will not contribute to the scheduling flexibility. Hence, as
a rule, we should not assign shimming delay to the edges unless we are forced to do
so. As a matter of fact, in some cases, as will be shown later, it is unavoidable to

add some shimming delay to the edges.

2.4.2 Contracting a circuit after its conversion to a

critical one

Once all the critical circuits in the given DFG G have been contracted. it is clear
from Corollary 2 that the non-critical circuits of the resulting graph (i will have the
same slack times as their corresponding non-critical circuits in (7.

An important point of consideration is the basis on which a non-critical circuit
is chosen for contraction at each step once all the critical circuits have been con-
tracted. The circuit with the lowest slack time among the circuits in this graph ¢/
is first chosen for conversion to a critical circuit, followed by contraction using the
Contraction Algorithm. The main reason for choosing the circuit with the Jowest
slack time is that this choice, as v+ be shown in Theorem 5 below, will never lead
to an incomputable graph (a graph with a circuit having a negative slack time).
As long as the circuit chosen for conversion is based on the above criterion, any
distribution of the shimming delay over the nodes (excluding supernodes) and/or
edges of this circuit is a feasible one, given that the total added shimming delay is
equal to the slack time of the circuit. This procedure is repeated until the resulting

graph becomes acyclic.

Theorem 5 Let C be a circuil having the lowest slack timue ST((7) among the cir-

cuits of a computable DFG G, having no critical circuits. Any distribution of the
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shimming delay, equal to ST(C'), over the nodes and edges of C' will make C critical
and at the same time will not resull in a negative slack time for any of the other

circuits in the resulling graph.

Proof:

Since GG is computable and has no critical circuits, ST(C,) > 0 for every C, C G.
Assume that (', is any circuit in G other than C. If C; has no common nodes or
edges with (' then the proof is evident. If C, has some common nodes and edges
with C, let the total shimming delay added to these common nodes and edges be

d*. The slack time of the circuit corresponding to C» in the resulting graph will be
‘S'T1wu'(('1') = STold(Cr) - ds’ (219)

where ST,4(Cr) and ST, (C,) are, respectively, the slack times of the circuit C;
hefore and after the distribution of the shimming delay equal to ST(C). thus ren-
dering C to become critical. However, d* < ST(C), but ST(C) < ST(C;) by
assumption. Therefore, d* < ST((';). Hence, from (2.19). ST, (Cz) > 0. m

One might ask whether it is possible that the optimal schedule is not achiev-
able if the circuits are contracted in the order mentioned above, but possible for
some other order. We will now show that for any choice of the sequence of circuit
contractions, all valid combinations of the distribution of the shimming delays are
possible. Hence, all sequences are equivalent and thus will not affect the generality
of the procedure. However, the choice of the sequence of contraction that has been

made is only for the sake of simplicity of implementation.

Lemma 4 Adding a shimming delay to a pseudo node Q) is equivalent to adding this

delay to each and every edge incident into @), or to each and every edge incident out

of it.



The proof of this lemma is obvious as the pseudo nodes are not considered for
scheduling, and any redistribution of the delay associated with a pseudo-node over
the node itself, and/or all the edges incident into it and/or all the edges incident

out of it, is a basic permissible retiming operation [72].

Theorem 6 Let W = {d® ,d? d: . d¢

wr oy dyde do sy d2 L} be any combination among
all the possible combinations for distributing the shimming delays over the nodes
and edges of G provided that the circuits are contracted in the order C,,,C,,,....C,.
where N is the number of nodes, M the number of edges and k the number of
ctreuits in G. If the circuits in the original DFG G are contracted in any other

order Cy.Cy.....C. all combinations {W?} are also possible.

Proof:

Let G° be the graph obtained by adding the shimming delays specified by W to the
nodes and edges of the given DFG (. Without loss of generality, as per Lemma 4,
it is assumed that no shimming delay is added to a pseudo node. It is obvious that
all the circuits in G° are critical. The following procedure will guarantee that the

distribution W is achievable if the circuits are contracted in the order 7y, (', ..., (.
(a) Set j=k.
(b) Remove the shimming delays from all the nodes in C, which are not in

any circuit C;,(: = 1,2,...,57 — 1). Obviously all the circuits ,,(7 =

1,2,...,j — 1) are still critical after this step.
(c) Set j=j-1 and go to step b if j>0, otherwise STOP.
We get the same distribution of shimming delays by contracting the circuits in the

order Cy, Cy,...,C} and replacing the shimming delays specified by W in an order

which is reverse to that of their removal as per the above procedure. m
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The conversion of a non-critical circuit to a critical one involves associating
shimming delays to the nodes and/or edges of that circuit such that the total added
shimming delay is equal to the slack time of that circuit. As to which nodes are
chosen and as to how much shimming delay is associated to each is a complicated
process and, in general, may be done in many different ways. However, we present
the following simple algorithm to accomplish this task. The idea behind this al-
gorithm is that the nodes with higher computational delays should be given more

flexibility in scheduling.

Conversion Algorithm.

1. Let, in a non-critical circuit ', Q be the sequence of nodes in decreasing
order of their computational delays. Remove from {1 all the supernodes. Let
1=1,2.--. N\ be the index set of Q.

2. Set 1= 1.

3. Set df = [SC) ]

[

4. Set ST(C) = ST(C)~d;,, Q2=Q~{v},andi =i+ 1.

-t

If ST(C) # 0 Goto step 3.

6. For all nodes v; € Q, set d] = 0.

2.4.3 The scheduling algorithm

As mentioned earlier, a graph can be transformed into an acyclic one through a
sequence of circuit contractions. Any of the known algorithms can then be used to
schedule the resulting acyclic graph. Finally, the circuits are scheduled in an order

that is reverse to that of their contraction. A circuit can be scheduled by simply
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starting from the supernode (which is already scheduled) to which the circuit was
contracted, and scheduling the rest of the circuit nodes by tracing them sequentially

in the direction of the edges. This technique is formalized in the following algorithm.

Scheduling Algorithm:

1. [Initialization: Let S=®, where S is the set of all supernodes. Set i=1.
2. Cyclic to acyclic conversion: Repeat the following until (7 is acyclic.

(a) Choose the circuit (; with the lowest slack time. If ST((",) = 0. go to
step (b). Otherwise. convert (', to a critical circuit using the Conversion

Algorithm.

(b) Contract the critical circuit (', to one of its nodes, say s,, as per the

Contraction Algorithm.

(c) Set S =S U {s,}, G =G, and i=i+1, where (/ is the graph resulting

after the contraction carried out in step b.

3. Scheduling the acyclic graph: Schedule the acyclic graph (i according to the

precedency constraints using, for example, the critical path method[59, 62].

4. Scheduling the circuits: Repeat the following until all the circuits are sched-

uled, or equivalently until i=0.
(a) Set i=i-1.

(b) Schedule the circuit C, starting from the already scheduled supernode s,.
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Figure 2.6: (a) A DFG segment after some circuit contractions, and (b) the corresponding
time schedule.

The pseudo nodes are not considered for scheduling. However. their computa-
tional delays are considered for the relative scheduling times of the DFG nodes. The
shimming delay added to an edge imposes a further delay between the firing times
of its end nodes. To illustrate this, consider the example depicted in Figure 2.6(a).
[he node v, (i=1,2) has a computational delay equal to dj and a shimming de-
lay equal to d; . The edge connecting v; to the pseudo node (rectangular in the
figure) ha. an ideal delay equal to mT and a shimming delay equal to d5. The
pseudo node itself has a computational delay dP. The corresponding time schedule
is shown in Figure 2.6(b). Assume that v, fires at time 0, then the firing time of v,
is df, +d; —mT +d; + d?. The shaded portion of the time specified for scheduling
v, represents the shimming delay added to it. Therefore v, can be scheduled to fire
at any time between 0 and d; for a period of d; . The actual firing time can be

determined when the processor schedule is being formed.
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As stated in the Scheduling Algorithm, the first otep in scheduling after the
contraction of all the circuits of the given graph is scheduling the acyclic graph. The

critical path method used for this scheduling is presented in the next section.

2.5 The Critical Path Method

The critical path (CP) technique has been used as a tool for list scheduling. In
list scheduling [47. 73], the tasks in a given acyclic DG are ordered in a such way
that when they are executed in that order. each task finds all its operands ready
for execution. Further. since for a DFC there are several permissible orders, the list
should be ordered such that the total execution time is minimal,

Basically. the (P method assigns weights to the nodes. A node is assigned a
weight that is equal to the longest path from the root to that node, where a root
is a node having no input edges. To start with, a root is assigned a weight of zero.
Then. recursively. each node is assigned a weight when all is precedent nodes have
been as igned weights. The weight of a non-root node as computed with respeet
to a precedent node is the sum of the weight of the precedent node, the delay of
the precedent node itself, and the delay of the corresponding edge connecting the
two nodes. The weight assigned to a node is the maximal among all such weights.,
i.e., by considering all precedent nodes. The nodes of the longest I/O path, which
begins with the root and ends with the leaf (a node having no outgoing edges), can
be determined by traversing the path backwards, that is, starting fromn the leaf to
the node that gave rise to its label and so on, until reaching; the root. Without loss
of generality, as stated in Chapter 1, ve assume that the DFG has only one root
and only one leaf.

The techniques, which have been employed to schedule cyclic DFGs nsing the
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CP method, convert the given DFG into an acyclic one by replacing each delay edge
by an input node and an output node. Hence the resultant acyclic DFG has no delay
edges. On the other hand, our methiod for such a conversion results in an acyclic
DEFG that may have delay edges. Therefore, the weights assigned to the nodes, w!s.
are computed as follows

! 0, if v, is a root

w, =

l max%epr,d(v,)(wj +d,, + d(v,,)). otherwise
where pred(v,) is the set of precedent nodes of node v,, dy, = d:) + df}J. div, ) =
At vy = 10,0 and g, ) is the ideal delay of edge (v, v,). Using the CP method
deseribed above for the scheduling of an acyclic graph. the weight assigned to a node
represents its scheduiing time.

If the CP method is used. with the weights as defined above. the acvclic DFG
will be scheduled delay-optimally. It is to be noted that scheduling the resulting
acyclic DIFG delay-optimally docs not guarantee, in general, a delay optimal schedule
for the given graph. as will be shown in the next chapter. A formal statement of

the C'P method used in our implementation is presented below.

I. Initialization: Set Indeg(v,) to be the in-degree of of the node v, in the given
graph (7. Set t,(vg) = 0. where t4(vg) is the scheduling time of the root of the
graph, and set t,(v,) = —oo for all other nodes. Push on the stack S all edges

incident out of the node .
2. If S = ¢, halt: otherwise pop an edge ¢, = (v;,vr) out of S.
3. Set t5(vr) = max(ls(vr).ts(vr) + dy; — ne,T), and decrement [ndeg(v;) by 1.
A1 Indeg(ey) = 0, push on S all edges outgoing from the node vr.

5. Go to step 2.
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Figure 2.7: (a) A second-order IR filter, and (b) its DIFG representation.

2.6 Examples

Example 1: Second-order IIR filter

The scheduling procedure described in this thesis is now illustrated for the DIFG
of the second-order IIR filter shown in Figure 2.7(a), which is redrawn in DFG
representation in Figure 2.7(b). Let 'y and (7. respectively, denote the eircuits

a-d-a and a-c-b-a. Then,

) D(] [)(2 _ (3 4) )
To = max( Nm max 5 3.



Fipure 2.8: The graph after contracting the circuit a-d-a to node d.

The slack time of the circuit C'; is ToNe, — D¢, = 2. Contracting the critical
circnit 'y to the node d will result in the DFG shown in Figure 2.8. where the
rectangular nodes are the pseudo nodes created as per the Contraction Algorithm.
The delay assigred to @y is equal to fen]d.a] which is equal to the computational

delay of node a. 1. The delay assigned to (), is equal to lenfa. d[ which is equal to

the computational delay of node a minus the delay of the edge (a. d). that is.

lenfa.d[= d; -

ll(ﬂ.,g)T: -1 x3=-=2

To convert the circuit corresponding to (7, to a critical one. as per the (‘on-
version Algorithm, a shimming delay of 1 is 1dded to each of the nodes b and c.
(‘ontracting the circuit ¢-b-Q,-d-Q-c, corresponding to (', to node b results in the
acyclic graph shown in Figure 2.9 The time schedule of the acyclic graph involves
the scheduling of the nodes b, h, g, e and f. The critical path method is used to

schedule the resulting acyclic graph for iteration n as detailed below.

l. Node b is scheduled at time ¢ (any reference time) and given a flexibility of

I: hence. it occupies two cells in the time schedule.

2. At this step, all precedents of Q3 are scheduled. The scheduling time of Q5 is
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Figure 2.9: The graph after contracting the circuit ¢-b-Q,-d-Q-¢ (a-c-b-a in the original
DFQG) to node b.

r + 2 as it follows node b in scheduling. However, Q4 is a pseudo node and

does not need to be scheduled.

3. Virtually. 3 is scheduled at time r + 2: therefore, the instance of node
belonging to iteration (n+ 1) should be scheduled at timear + 3. Hencel node
¢ at iteration n can be scheduled at time « (& 4+ 3 = T). In the same manner,

node f is scheduled at time r —3 (r + 3 = 2T').

4. Scheduling the nodes ¢ and Q4 enables the scheduling of node ho As node ¢
is scheduled at time r for two time units and node @y at 4 2 for unit thme

delay. node h is scheduled at time r 4 3.

5. The precedents of node g are the nodes h and f; hence, the carliest scheduling

time of node gis r + 4

Scheduling the circuit contracted last which is b, (02, d, @y, ¢ relative the sehed
uled supernode b will result in the sequence of scheduling times ., r+2,r 042, 0 -3,
Hence node d is scheduled at time x and node ¢ at time (r — 3).

Scheduling the circuit (b,d,b) will result in scheduling node a right after node

d, that is, starting at time r + 2. The scheduling times of all the nodes are shown
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Scheduling Time
Node
x=3
b X 3
e X 3
f x-3 0
h X+3 6
g x+4 7
d X 3
c x-3 0
a X+2 5

Table 2.1: The scheduling times of the nodes of the 1R filter

in Table 2.1, and the time schedule is shov 1 in Figure 2.10. where the shaded cells
represent the flexibility of the indicated nodes as given by the shimming delays

assigned to them.

O 1]2
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—
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Figure 2.10: A time schedule for the second-order IIR filter.
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Figure 2.11: A DFG of the fifth-order elliptic filter considered in Example 2.
Example 2: A fifth-order wave digital filter

Consider the DFG of a fifth-order elliptic wave filter shown in Figure 2,11, which
has been considered in [68]. It is assumed that an addition requires one time unit
and a multiplication (marked by * in figures) requires two time units. ‘This DIFG

contains 43 elementary circuits, two of them are critical, namely,

Cy = (111722018016, 108, 7.9, 1301401512, 1), and

Cy= (3,42, 11, 17,22, 18, 16,10.8,7,6,5,3).

The iteration period bound is found to be 16.

According to the Scheduling Algorithm. the critical circuits are to be con-
tracted first. Contracting C'; to node 22 results in the DFG shown in Figure 2.12,
where the rectangular nodes are the pseudo nodes created as per the Coutraction Al-
gorithm. The circuit (3,4.2, 1,22, ¢4,6,5,3) which corresponds to (' in the original
DFG is now contracted. The DFG obtained after contracting this cireuit is shown in
Figure 2.13. Although there were 43 circuits to start with, only five of them needed to
be contracted to convert the original DFG into an acyclic graph. The non-critical cir-

cuit with the lowest slack time is ('3 = (22,21,23. 25,26, 27,24, 30,31. 32,29, 2%,22),
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Figure 2.12: The DFG of the wave filter after contracting the circuit (.

Figure 2.13: The DFG of the wave filter after contracting the circuit C,.
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Figure 2.14: The DFG of the wave filter after contracting the circuit (.

Circuit | Slack time prior | Shimming delay
to contraction distribution
Cy 0 -
C, 0 -
Cs 1 1 (node 21)
Ca 2 1 (node 33)
1 (node 341)
Cs 9 5 (node 19)
4 (node 20)

Table 2.2: Distribution of shimming delays for the wave filter DFG (T=16).

having a slack time of unity. The Conversion Algorithm proposed in this thesis will
assign a shimming delay of unity to node 21 because it has the lowest index among
the nodes of the highest computational delay. Contracting C'3 to node 22, after it
being converted to a critical circuit, results in the DFG shown in Figure 2.14. The
above steps along with the remaining steps of circuit contraction are summarized in
Tables 2.2 and 2.3.

Using the critical path method, the resulting acyclic graph (Figure 2.16) is now
scheduled. Since there is only one node (node 22) in this graph, it can he scheduled
at any place on the time scale. Starting from the scheduled node 22, nodes 20 and
19 are next scheduled upon scheduling circuit C5. Scheduling circuit C'y will result
in scheduling the nodes 34,33, and 35. Proceeding in this fashion by scheduling

the circuits in an order reverse to that of their contraction, the time schedule is
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Circuit Node sequence in the original Node sequence prior | Ref. figure
DFG to contraction
() 11,17,22,18,16,10,8,7,9,13,14,15,12,11 Unchanged Fig 2.11
), 3,4,2,11,17,22, 18,16, 10,8,7,6,5, 3 3,4.2,q1,22,¢4,6,5,3 2.12
(5 | 22,21,23,25, 26,27, 24,30, 31, 32,29, 28,22 Unchanged Fig 2.13
(' 22,21,23, 25,26, 27,34, 33, 35,28, 22 22,q7,34,33,35,95,22 | Fig 2.14
(s 17,22,18,16,19,20,17 22,¢5,19,20,¢3,22 Fig 2.15

Table 2.3: The contracted circuits in the DFG of the wave filter and their versions prior
to contraction.

Figure 2.15: The DFG of the wave filter after contracting the circuit C'y.

3 13

D

Figure 2.16: The DFG of the wave filter after contracting the circuit (.
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Figure 2.17: A time schedule for the wave filter (T'=16).

completed as shown in ¢igure 2.17. The shaded cells in this schedule represent the

shimming delays added to the different nodes.

2.7 Summary

In this chapter, we have presented a new methodology for obtaining a time schedule
at compile time for data flow graphs representing iterative DSP algorithms. This
methodology is applicable if the given algorithm has no data-dependent decision
making operations. The resulting time schedule contains the firing time as well as
the scheduling flexibility of each task in the given algorithm. The time schedule is
used as an input to the processor assignment algorithm which will be introduced in
Chapter 4.

Unlike most heuristics developed to handle the scheduling problem, the pro-
posed algorithm guarantees a solution in view of the theoretical justification pre-
sented in this chapter.

We have shown that any cyclic, fully specified DI'G can be converted to an
acyclic one through a sequence of transformations. "his conversion is accomplished
by contracting each circuit in the graph to a supernode using the proposed Contrae-

tion Algorithm. Then, the resulting acyclic graph is scheduled by using the eritical
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path method. These steps needed to produce the time schedule are presented for-
mally in the Scheduling Algorithm.

The theory developed in this chapter for scheduling incorporates. for the first
time, the flexibility of the nodes within the time schedule. This feature, as will be
scen in Chapter 4, makes the task of fine tuning the processor assignment relatively
simple. Hence, for most cases, our processor assignment is optimal.

To illustrate the theory developed in this chapter we have applied it to two

DSE applications, the second one being a widely used benchmark problem.




Chapter 3
Delay Optimal Schedule

The previous chapter dealt with the question of scheduling an algorithm given by
a DFG such that the throughput is maximized. In most DSP applications, this
is equivalent to maximizing the sampling rate of the input signal. In this chap-
ter. we will address the question of optimizing the input/output delay. For exam-
ple. consider a single input single output program for which the input stream is
2y X r3. g0 oLy, and the output stream is yy, Yo, Yas Yao -« Yno 1t being, the -
ber of input samples. The main goal of Chapter 2 was to produce a time schedule
that minimizes the time between producing y, and producing y,4y. (Note that due
to the periodic nature of programs, the time between producing any two conseentive
outputs is fixed). In this chapter, however, we will present a technique that pre-
serves the optimality criterion used in the previous chapter while at the same time
optimizes for the input/output delay. This is equivalent to minimizing the time
between consumiag r, and producing y,.

In a DFG, the minimum input/output delay is the length of the longest path
between the input node and the output node. This path is referred to as the eritical

I/O path. Further, a scheduler that achieves an input/output delay equal to the
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length of the critical 1/O path, is referred to as a delay-optimal schedule. In other
words, a schedule is delay-optimal if and only if it achieves the delay bound Lo,
the minimum delay between consuming an input sample and producing the output

sample belonging to the same iteration, as given by

Lo= max len|pl.
p€l/0O path

Reeall that

lenfpl= Y. d = T Z Ne, -

u € V(p) o € E(p)
where J, is the computational delay of node vy, n,, the number of ideal delays of

edge ¢, and T the iteration period.

3.1 Rate- and Delay-Optimal Schadule

In order to achieve the delay optimality, the distribution of the shimnming delays
should not bring the length an 1/0 path to be greater than the delay bound.

The henristic described in [43] searches for a schedule that is rate- and delay-
optimal at the same time. On the other hand it has been shown in [68] that the
schedule might not exist if both the iteration period and the number of processors
are fixed, which ncans that the processor- and rate-optimality may not, in general,
be achieved at the same time. Although several researchers have provided scheduling
techniques that ensure del y and rate optimality at the same time, none has given
a rigorous proof as to whether they can always be achieved simultaneously. We will
now establish that the delay-optimality is achievabie for any value of T, thus making

it possible to attain both rate- and delay-optimality at the same time.

Theorem 7 A DFG can always be scheluled delay-optimally for an iteration period

To. the iteration bound.
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Proof:

Proving this theorem is equivalent to establishing that *he introduction of the shim-
ming delays needed t convert non-critical circuits to critical circuits can always be
carried out without making the length of any I/0 path greater than the delay bound
Lo.

Assume that (" is a non-critical civenit with a slack tiine ST((") = ~{n[C] > 0,
and that every edge in C is contained in some [/O path. Let {p, } be the set of all
such 1/0 paths. Let S be the total amount of shimming cel-v that has 1o be added
to the edges of (" in order to make every edge of (" belong 1o at least one critical
I/0 path. without at the same tim » making the length of any path in {p.} to exceed

the delay bound. This can always be done. as is shown hv the following procedure,
1. Initialize £ = E(C).
2. Repeat steps 3 and 4 until £’ = .

3. Choose any edge ¢ € E'. Let {p.} be the set of all 1/O pachs such that
€ € E(pe). Let pl € {p} be a path of maximal length. If p/ is non-critical,

make it critical by adding to edge ¢, a shimming delay equal to Ly = len[p'].
4. Set E' = E' - E(p.).

If S > ST(C). then the shimming d<lay can Wways be distributed in such a way
that C becomes critical without making the length of any of the paths {p } exceed
the delay bound We will now show by contradiction, that .5 ¢ S7'((").

Let S < ST(C'). Let ST(C) be the slack time of the cirenit € after the

distribution of the total shimming delay S over the edges of (/L as per the procedue
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Figure 3.1: An illustration used in the proof of Theorem 7.
deseribed above. Then we have,
AS'T,((') = AS‘T(C) - 15' > 0-

It is clear that cach edge ¢, = (v,.v,41), § = 1...., i, of the circuit C is contained
in at least one critical 1/0 path. where A is the total number of edges in the circuit
('. Figure 3.1 shows a critical path for each of the edges €,. Let pJI stand for the
path from the input node v; to the node v, € E(C), while pJO for the path from
node v,4; to the output node vo. Further, let the path p., = (v,, ¢;,v,41). It should
be observed that the critical 1/0 aths associated with the edges {e,} need not all
be distinet.

Cousider the critical [/O path ;JJ’ U pe, U p? and the path p} Up?_l. Then we

have the inequality,
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l(n[pJ'[ + lenfp, [ + lrn[pjo] > I(*n[pjl[ + Irn[pjo_l]. (3.1)

Adding (3.1) for j = 1,2...}, and recognizing that p§ = p%.. we get

N
S len[p,[ > 0.
=1

Since
K
> lealp,, [ = len[C] = =ST'(C),
1=1

we have

ST'(C) <0.

This contradicts the assumption that S < S7(C"). hence the theorem. m

As per the above the theorem, a DFG can always be scheduled rate and delay-
optimally at the same time. However, it is not clear from the theorem how we can
achieve delay optimality. Recall that rate-optimality is achieved in view of the fact
that the iteration bound is used to compute the delays of the different edges. These
delays are used for scheduling the different nodes of the DFG. The question as how

to obtain the delay optimality is treated in the next section.

3.2 Obtaining Delay Optimality

The technique employed by Gelabert and Baruwell [43] to ensure the delay opti-
mality is to enumerate all /O paths and keep track of their lengths as the node<
are scheduled. However, this technique is cumbersome, since every time a node is
scheduled, each 1/O path containing that node has to be altered in terms of the
H

flexibility of its nodes. "urther, enumerating all 1/O paths, in the worst case, has

an exponential complexity.
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We will now present a simple technique to ensure the delay optimality. which
is achieved if and only if the output node is scheduled to finish execution exactly
after Lo time units of the scheduling time of the input node. In other words. a
schedule is delay-optimal if and only if all the nodes on the critical path are scheduled
without any flexibility. As shown in Chapter 2, the nodes of a critical circuit have
no flexibility in being time scheduled. Therefore, if all the nodes lying on the critical
path belong to a critical circuit, then their scheduling times are fixed, and hence,
the schedule of the DFG is automatically delay-optimal provided that it has already
been scheduled rate-optimally. However, the case when all the nodes of the critical
1/0 path are in a critical circuit is a special case and an effort has to he made tc
ensire delay-optimality in the general case. If it is possible to alter the graph such
that a critical circuit is introduced to contain all the nodes of the critical /O path
without affecting the data dependency among the nodes. then we can always achieve
delay optimality by introducing suvch a circuit.

Before we address this question of introducing such a critical circuit. let us
consider the following scheduling concept. Understanding this concept will help in
proposing a method of introducing such a circuit. Let z and y be two nodes such
that there is a path p,, from r to y whose length len[p,,[ is greater than or equal
to the length of any other path from r to y. If r is scheduled at time 0, then node
y should be schedvled at a time greater than or equal to len[p,,[ to preserve the
integrity of the data dependency. Assume now that node y is scheduled at time
len{pry[. Let us now introduce a new path from node y to node z, say p,., such
that r and y retain their scheduling times. Fixing the scheduling of node y at 1ime

len[pyy| will restrict node  to be scheduled at time 0 or earlier, but we require z to



be scheduled at time 0; hence,

ts(r) = ts(y) + len[py:[= 0,

where t,(z) is the scheduling time of node r. Therefore,

len|pys[= —len[pryl. (3.2)

Subtracting the computational delay of node y from both sides of (3.2), we get

len)pye|= —len(pyy). (3.3)

Hence. we can add a path from node y to node r whose length is —len{p,y] without
affecting the scheduling of the nodes r and y. The only implication of introducing
such a path is that node y is scheduled exactly at time lenfp,, |, provided that node
r has been scheduled at time 0.

This leads us to the conclusion that we can achieve the delay optimality by
mtroducing a path from the output node to the input node whose length is equal to
the negative of the delay bound. (This path will be referreid 1o as a delay-optimality

path). By substituting the input node / for r and the output node O for y, we pet.
lenlpoi|= = Lo. (3.1)

Introducing the path po; results in a new circuit that consists of this path and
the critical [/O path. Let us refer to this circuit as a delay-optimality circuit and

denote it by (4. The slack time of this circuit is
ST(Cq) = —len[Cq] = —=(len[pro] + len]poi() (3.5)

where pjo and po; are respectively the critical 1/0 path and the delay-optimality

path. Substituting (3.4) in (3.5) yields
ST(Cq) =0, (3.6)
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and hence ;s a critical circuit. As a matter of fact. for every 1/O path, there
will be a new circuit consisting of that path and the delay-optimality path. Let
Pio be any 1/0 path (not necessarily critical), then the slack time of the circuit C;

consisting of this path and the delay-optimality path is

ST(Cy) = —(len[pjo) + len)Poil)
> —(len[pso] + len]poil)

>0

Therefore, introducing a delay-optimality path will not result in a non-computable
circuit.

One possible representation of the delay-optimality path is the one that con-
sists of a pseudo node v} of a computational delay of — Lo, a zero-delay edge from the
output node to v}. and a zero-delay edge from v} to the input node. As explained
carlier, adding such a path will increase the number of circuits in the graph by the
number of 1/0 paths, and hence increase the time complexity of the circuit finding
algorithm.

This problem of increased complexity resulting from ensuring delay-optimality.

can be reduced, substantially in most applications, using the following approach.

1. Compute Ty by finding the circuits in the given graph .

2. Compute Ly (for example, by using, Bell-Ford algorithm [42]).

3. Add the delav optimality path and contract the delay-optimal circuit.
4. Find the circuits of the resulting graph.

5. Perform the Scheduling Algorithm.
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It should be noted that in most DSP applications. it may not be necessary to
compute Ty to find L. and thus step 1 is not needed. In such cases, Ty is computed
in step 4. This is due to the fact that in most applications, there is a dependency
between the output at an iteration and the input for the same iteration. That is,
there is at least one path from the input node to the output node which contains no
ideal-delays. The length of an ideal-delay-free path is not a function of the iteration
period. In most cases the critical I/O path 's one of these ideal-delay-frec paths,
and can be determined without a knowledge of the iteration period. Further, even if
To is needed in order to compute Ly, it may not be necessary tc find all the cireuits

in the given graph, (see, for example [74, 75)).

3.3 Effect of Delay-Optimality on Node Flexibility

As mentioned previously, even though it is more helpful to add the shimmiug delays
to the nodes rather than the edges, it may not always be possible. For example, a
non-critical circuit in which each of its nodes belongs to some critical 1/O path, may
not receive any shimming delay on its nodes. The shimming delay of such a circuit
should be distributed on the edges which do not belong to any critical I/0 path. A
non-critical circuit whose each and every node and edge belongs to a critical 1/0
path, may not exist as per Theorem 7. As an example of a case where the shimming
delay has to be assigned to an edge is depicted in Figure 3.2. The circuit. ABFA
is critical with a loop-bound of 5, while the circuit BCDEB is non-critical with a
slack time of unity. The only critical 1/O path is ABCDEG with a path length of 7.
The shimming delay, equal to the slack time, has to be added on the edge (E,B);
otherwise, the length of the critical 1/0 path will increase by unity. Henee, ensuring
delay optimality is sometimes at the expense of the flexibility that can be assigned

to the nodes of the DFG, if the delay-optimality was not required.
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Figure 3.2: A DFG in which the nodes of the non-critical circuit are all contained in a
critical path.

3.4 Example

A fourth-order lattice filter

C'onsider the fourth-order all-pole lattice filter shown in Figure 3.3, considered
in [68]. It is assuined as in [68] that an additon requires one time-unit and a multipli-
cation five time-units. The critical path of this graph is (1,2,3,4,5,6,7,8.9,10,11,
12,13) which has a length of 28. To convert the DFG to a delay-optimal graph (a
graph whose schedule is delay optimal regardless of the scheduling procedure used),
we add a pseudo node v with a computational delay of —28 and two delay-free
edges incidents on it, one coming from the output node and one going to the in-
put node. The graph after introducing this delay-optimality path (dashed in the

figure) is depicted in Figure 3.4. Adding this path will create the critical circuit
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Figure 3.3: A DFG of a fourth-order all-pole lattice filter considere! in Example 2.
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Figure 3.4: The DFG of a fourth-order all-pole lattice filter after introducing the delay-
optimality path.
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Figure 3.5: The DFG of the lattice filter after contracting the delay.optimality critical
circuit.

(1.2.3,4.56,6,7.8.9.10. 11,12, v}, 1). The DFG resulting due to the contraction of
this circuit to node 7, is shown in Figure 3.5. This DFG can now be analyzed
for circuit extraction and consequently for finding the iveration period. The itera-
tion period is found to be 14. The rontraction steps of the remaining circuits are
illustrated in Figures 3.6, 3.7, and 3.8.

Although the graph in Figure 3.8 has two circuits, no further contraction
is needed since the graph has only one node. node 7 can n w be scheduled at any
reference time, which is chosen to be 14. Scheduling the last contracted circuit which
is (7, @5, 15) will add node 15 to the time schedule. Since len[p = 7 — 15]= 13, node
15 is scheduled at time 27 (14+13). Upon the scheduling of the circuit (7, Q4, 14,Q@-),
node 14 is time scheduled. node 14 has to be scheduled 5 time units after the end
of the scheduling time of node 7, which is time 20. Similarly, scheduling ‘" @ circuit
(7,Q3.13,Q1) will add node 13 to the time schedule at tire 13. Finally, the delay-
optimality circuit is scheduled which will add the rest of the nodes to the time
schedule. These nodes are scheduled consecutively with node  as a reference, the

supernode to which the delay-optimality circuit was contracted.
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Figure 3.6: The DFG of the lattice filter after contracting the circuit 7,04, 13.Q, corre-
sponding to the circuit 1,2,3,4,5, 13 in the original DFG.
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Figure 3.7: The DFG of the lattice filter after contracting the circuit 7,Q4, 14, (0, corre-
sponding to the circuit 4,5,6,7,8,11in the original DFG.
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Figure 3.8: The DFG of the lattice filter after contracting the circuit 6,Qs, 15 correspond-
ing to the circuit 7,8,9,10,11,15in the original DFG.
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Figure 3.9: A time schedule for the lattice filter DFG.

The time schedule for the the DFG of this example is shown in Figures 3.9.
Obviously this time schedule is delay-optimal as the input node (node 1) is scheduled
at time 0 and the output node (node 12) is scheduled at time 27, making the total

delay equal to 28, which is equal to the delay bound.

3.5 Summary

In this chapter, we have proposed a technique to transform a given graph to a delay-
optimal graph. This new graph has the characteristic that when it is scheduled
rate-optimally, the resulting schedule is delay-optimal as well. To carry out this
transformation, we have first proved that it is always possible to achieve both rate

and delay optimality at the same time. Then, we have proposed a simple (in tesms of
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implementation and complexity) method to achieve delay optimality. This technique
is based on the fact that the nodes of a critical circuit have no flexibility in scheduling.
Thus, modifying the graph so that each node/edge on the critical 1/0 path belongs
to some critical circuit, will ensure delay-cptimality. The simplest way to make
every such node/edge to belong to a critical circuit is to int.~duce a single circuit
that contains the entire critical 1/O path.

Finally, to illustrate the algorithm presented in this chapter, we have applied it

to the case of scheduling a 'attice filter, which is a well-known benchmark problem.
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Chapter 4
Processor Assignment

I <cheduling on a multiprocessor systeny. the goal s to obtam a code for each
processot in the system such that the tash of the given algorithm s achieved  The
fitst <tep in achieving this 2oal is 1o distiibute the different tasks of o given program
on the processors of the given system. As mentioned i Chapter 20 scheduiimg
may helong to one of the five categories. namely. fully dyvnamic. static assignment.
self tin ed. fullv <tatic. and evelo-static. Given a time schedule as obtaied from
the Scheduline Algorithn. presented in Chapter 2. a processor assignment can he
implemented for any of the last three catepories. lu this thesis. however, we are
interested in finding a fully static processor allocation scheme.

In static scheduling. the tasks of a given program are assigned to the processors
at compile time. Hence. there is 1o overhead due to run-time allocation of tasks on
the processors. Furthermore. the data dependency is also resolved at compile timme,
tus ensuring the availability of the operands necessary to compute the operations.
In our case, the availability of operands is guaranteed by the correctness of the time
schedule, Having produced the time schedule, the scheduling problen is reduced

to assigning the tasks in the time schedule to the processors in such a way that
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the tine specthed by the time schedule s preserved. Farthermore, the number of

processors neceded 1o assaign all the tashs should be snmnmized

4.1 Processor Optimality

L practice. the number of processors in a given system is fixed and hence the notion
of mintmizing processors in not clear. Howevero in view of the svnchronization
overthead hetween processors, il a tash can be <«cheduled n])!imd”) Ol 11 Processors,
then using more than 1o processors willoin general. degrade the overall performanee
Fartheroin svstems where multiprogramiming is possible. the extra processors may
he used 1o perforin other tashs For special-purpose architectnres, mimmizie the
number of processors may he done at the desien time. The minimum number of
processors is computed for different applications, and the design of the processing
unit 1s done accordingly. T eases where the minimum number of processors reguired
to schedule a certain DFG s greater than the nnmber of processor< in a given system.
other optimality eritena. rate-optimality in particular. need 1o he sacrificed. A< to
how we can achieve a compromise hetween the number of processors needed and
satisfving certain other optimality criteria is examined later in this section,

Given a time schedule that achieves an iteration period of T and an 1/0 delay of
Ly for a given DFG (7, we want to find the minimum number of processors needed to
execute the program represented by (G. The minimum number or processors needed
is referred to as the processor bound (F,). and the assignment achieving this bound
is referred to as the processor optimal assignment.

In a single processor system. the itetation period is obviously equal to the
total computational delay of the graph ;. That is. an iteration may not start unless

all the computations belonging to the previous iteration have been completed. Let
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the total computational delay of the araph (7 be D Then. iu a single processo
system the tteration [y equals 1)

an}m\(‘ Weare n*qnin-«l to hind the processor bound. when the iteration pvliml
171~ a given fixed quantity, In 17 time units, £ processors can petform at most .
total computation of TP, Henceo for a given total computational delov 1, at least
De; /T processors are needed: Do, /T is not necessarily an integet quantity, wheteas
the number of processors has to be an integer. Hence, the processor bonnd can he
expressed as

Py=1[DiT]. (11

For an acvelic DEFGL T s usually an imput pavameter which s constrained
by the hardware resources available for computation, whereas for a exclic DEFG it
i~ the iteration period bonnd T, unless T is tequired ta be preater for a specibie
application,

The processor bound is not alwavs achievable as the precedency constraim s
might limit the maximum parallelism. Since Py conid be greater than D, /7T the
average processor officiency may be less than 100500 1 De, /7T is o non integer guan
tity. then a 100% processor-efficiency mav not be achieved, hecanse the algotith
with such a bonnd can not he implemented on less number of processars for the
same value of the iteration bound. The maximum computational delay that can be
achieved by Fy processors in T units of time is /47 however, the actual compu
tation performed is D, Hence, the maximum average processor efficiency can he

expressed as

De;
nT

De;
[De;]TT
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For example af De,o= 9 tune units and [0 = 2 time units, then [ = 5 henee
TR 1V

I in & given sysiem the nuber of processors is less than the processor bound.
then there 1s no choice bt 1o sactifice the rate-optimalitv, that <. 77 has to be
greater than Ty Let £ be the number of processors such that 7 < The

mintnum iteration period for this system is
[‘ = ;—[)(,,ill)ﬁ‘ 2 "[)(,,/[)n-l - ‘In

Fhe DEFG model presented in this thesis does not take into acconnt comm-
nication delavs for transferring data between the processors, as if all the processors
are on o single chip. The assumption that all the processors are on a single chip
I~ a teasonable one e view of the \illl})lt‘ node u;u‘ldllull\ imvolved in DSP applu -
tions, thus allowing the implementation of multiple processors o a single chip. The
~chedubing theory developed in this thesic is valid on a parallel system under the

follew ing assumptions,
I Al procescors are identieal.
2. cach processor can uniformly commumicate with all other processors.

3. the aceess time of an operand from the memory of another processor is equal

to the access time of an operand from a local memory. and

1. pracessors are dedicated to the scheduled program. i.e. they are uninterrupt-

ible.

Since in our scheduling theory. no preference is assigned hetween processors
and an operation has a fixed computational delay regardless of the processor exe-

cuting, it the processors are assumed to be identical. This is clear from the time

-
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schedule. which provides all the timing information without any conaderation to
the processor assignment. Each processor should uniformly commmcate with ol
the other processors, so that the transfer of data between processors can take place
in a fixed time, regardless of the spatial relations among the processors Becanse
of the nature of real time applications. processors should not be mternupted. For
cf-line applications. a processor may be interrupted. but in this case, all processors
have to be halted until the interrupt is handled. Then. all processors should resume
processing simultancously. This is important. because the synchronization amone
the processors and the data-dependencey resolntion have 1o be maintained by the
relative fiting times of the different operations that could he munnine on ditlerent

Processors.,

4.2 Processor Assignment Algorithm

Given the time schedule, produced by the Scheduling Algorithm. it is vequired to fined
the best possible fully static processor assignment. Let us represent the processor
schedule by a processor assignment matrix PAM of order (£ - 1), where P2 is the
number of processors needed to assign the tasks associated with the nodes, and [
is the iteration period. In the PAM. the tasks associated with row ¢ are those which
are to be allocated to processor P, while the tasks associated with column j are
those to be executed at time y of each iteration by the different processors, It is
to be noted that the PAM represents one iteration of program execution. Henee,
a schedule for a periodic program is a periodic extension of the PAM i the time
space. that is, repeating the PAM matrix horizontallv.

As we are interested in periodic programs. it is adequate to find o single

iteration schedule. which we shall refer 1o as the PAM. Despite the fact that 4 PAM
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tepresents a single iterarion. e operations in this matiis conld belong to different
Hetations For example let 1 aad 12 he two operations in a PANML It s possaible that
Vi the PAN belones toateration i while operation 3 belones toateration ». where
e and 1oare twoateration mdices that could be ditferent. Therefore, along with the
operation referenceca PAM <hould contain information about the iteration index for
cach and everv operation The iteration index will be represented by a superseript,
that 1<, a superseript of an operation i the PAM represents the ateration index of
hat uperation

I he operations in a time schedule belone to a single iteration. That is the
time displacements between the different operations represent the data dependency
amone these operations to produce an outpnt for an imput belonging to the same
etation  In general, the time schedule covers a time span greater than the iteraticn
period. amd henee the PAM wounld contain operations belonging to different itera-
tions  The number of colnmns of the PAM corresponding to a time schedule should
he equal to 1.

The haste operation of constructing the PAM from a given time scheduleis to
<Inft cach operation by a multiple (positive or negative) of T time units such that all
operations it in T conseentive colnmns. For example. let & be an operation starting,
at the time vunit T + n of the time schedule. where m and n are integers and
0~ n < 7. Inthe PAM, operation r should start at location n with a superscript of
—m . provided the current iteration is assumed to be iteration 0. If the computational
delay of a node reguires that its allocation extends beyvond the last column of the
PAM. the excess part of the operation should circularly wrap to the first column of
the PANL For example. let & be an operation with a computational delay of 3 whose

starting time in the time schedule is at time (77 — 1). Further. let the PAM be the
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mattin resulting after shifting o)l operations i the time schedude such that they it
i between time O and time (7 = 1) Then, node rwall occupy a o - Dith time skot
with a superseript A and the first and second time slots with a supersanpt & - 1,
whete A is the indes of a teference iteration

Althongh ~shifting all operations 1o fit 1o F-column matein will prodoce
valid PAM. the above techinique does not take processor minmization into avconnt,
that is. minimizing the number of rows in the PAM. To attempt 1o minimize the

number of processors. we first make the following observations.

1 The nodes shonld be scheduled 1nan mereasing order of their lexibehity hecanse
at catly stages of seheduling, the PAM has more vacant time dots<, and hienee

a node with a small scheduling flexvibility can he scheduled rather eashy

2. Nodes with hieher computational delay < are more aitical i schednbing than
those with Tower computational delass. Henceo nodes having the same flex

bility are scheduled in a decreasiug order of then computational delavs,

3. A comvenient place for scheduling a node is the hest fit place.a place in whicy

no node with greater computational delay may fit.

I. Producing gaps in the schedule should be avoided as much as possibles (A pap
is an entry or a sequence of entries in the PANM in which no unscheduled node

may fit).

Using the basic operation of mapping a time schedule 1o a processor assign
ment, and taking note of the above observations. we now establish the following,

processor assignment algorithm.
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Processor Assignment Algorithm:

I

6.

Let V67 = {epoeaccey ) be the node set of the aiven DFG (0 anch that

d oy and )2 if dy = forall o= 1N where d i the

IS
shunming, delay assigned to e and J) s the computational delay. Compute
the processor honnd Py using (1.1) and inttialize the PANM to an empty matris
of order 14, - T Let (). v, be a hoolean fupction giving a fruc value of
and onlv if node ¢, can be assigned to 10w of the PANM. Let the boolean
function Toght() e be frucif node v, can be assiened 1o row . sav between

PANCp ) and PAM y). such that PANM e = 1) and PAM .y + 1 are

occupied, otherwise Toghtt ) vy) = fulse
Fori=1 tao N, repeat the fu”()willu.

Sceatch for a tow j such that, [ght(yor)) = truc, I there exists such a tow.

go to step Yy

Let S = {r.} be the set of all tows in the PAM such that o)) = true. If

~ = potostep N,

Let 87 = S0 Remove fiom S every r, that satisfies the following relation: if
node v, s allocated to row r, = E(r, o) = false for k =4+ 1N, If

S = then set 87 = S and go to 7.

Let 8" = &0 Remove from S8” every r, that satisfies the following relation:
if node v, is allocated to row r, = r, will contain a gap (a contiguous time
slot in a row that can not accommodate any node v for A =+ 1......N). If

S = ¢, then set 87 = N,
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T Letrow 3 N be therow which has the nmmimal number of emipty cells Go

o step Y
N, Create a new row 2 oin the PAN,
9. \llocate node ¢, to vow 5 in the PANM.

Thus far. the flexibility assigned to the nodes s due to then existence e non
critical cirenits. I the delay optimality s not reguited, then the non drenit nodes
will also have scheduling flexibility, In fact, cach <such node will have a schednhue
flexibilitv of €7 — 1yo the maninmum fexibility possible, Thiss due to the tact tha
adding positive delavs 1o the feed-forward part of a DFG mav not affect the mtegnty
of the data «](‘l)(‘lltl(‘ll(}. To nse the \('}H'dlllillu Hesibihiy of the non-arennt nodes,

we propose the following cinstering technigue,

4.3 The Clustering Technique

In this section. we present a procedure to utilize the flesibihity of aovadic nodes and
that of the selative scheduling of the nodes belonping 1o disjoint cirenits. Before
presenting this procedure. we give the following preliminaries. Let 5, be the sub
PAM that conrains the schedule of the eluster of nodes which have heen collapsed
to the node r, using the Contraction Algorithm.  Further, let us represent the
scheduling time of such a cluster by the seheduling time of the node ¢, Tt is noted
that each of the acyelic nodes in the given DFG represents a separate chuster The
clustering technique aims at finding a time shift for each of the dusters, in order to
reduce the number of processors used. Let us refer to the time shift applied to a
clusdter relative to its location in the original PANM as its offset. It i dlear that not

all entries of a submatrix corresponding to a cluster are necessarily occnpied
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Let as assume that the node <ot in the resulting acvche graph 7, w4, =

{ry roe covho ordered e a o way such that the total computational delav of the

nodes in = s not less than that of 5000 0= 1207 = 1 This procedare mvolves

assigning adeqguate Hexibility to a given custer snch that 1t can be shifted by am

atnount for the sake of processor minnmization. Due to the periodic nature of the

task allocation. a shift greater than (7= 1) will result 1 an unnecessary increase in

the 170 delav Hence, each dlnster is assigned a flexibility of (7= 1), To find the

tie schedule from the given acvdic DEGLa breadth fust search is applied to the

acvche graph to preserve the integnity of the data dependency. The following is an

algonithin ta accomplish this task

Clustering Algorithm:

]

-

iy the scheduling time of ~) to he the seheduline time of L and place + in
the PANL e assign a shift of 010 5,0 whete 5y is the cluster containine the

input node.

Let 3 he the set of nodes {o} such that s a node in ¢/, and allits immediate

precedents in (4, have been mapped to the PANML I 3 = &, halt.
For every node ¢ € 4, set

tsiv] = max (] + dy = npeaT).
[ ] u'Eprui[:]( [ J ( )

where ,[e] is the scheduling time of node v d, = 4, + d the total delay
of node . ng, 4y the ideal delay of the edge (w.r), and pred|r] the set of all

immediate precedents of .

thoose 4 node ¢, € 3 whose corresponding cluster has the maximal total

computational delay.
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3 Iy all the ditferent posable shifts for s) from 0 to (77 - 1o and choose the one
that minimizes the number of tows that have alicady been used i the PAM
H mote ihan one such <hift give the same nuamber of tows, use the one that
tesults ina minimm number of oceupied time slots in the last of the tows

alteady used, and place 5, in the PAM using, this shift
b Let 3= 04— {n}.

(1o 1o step 2.

[t s to be noted that the Clustering Mgorithm may no be applicable il the
~chedule is required 1o he delay optimal. The technique which s used to guarantee
the delay optimality introduces an additional path (delay-optimality patly from the
ontpnt node to the inpnt nodes This will 1esalt in cach node of the graph to he
contained 1 some cirenrt, simee, by definition, there is a path from the input node
to every node i the graph and a path from every node to the ontput node A a
result. when this graph is reduced 1o an acydie graph by a series ol contractions,
it will result in a single node. The delay flexibility of the nodes: whiche are not
contained in any cireuit in the original DFGL s exploited duning the conversion ol
the non-critical circutt comtaining these nodes. These eircnits, as mentioned carlier.
tesult from introducing the path por. As to how the flexibility of such nodes s

exploited is answered in the followimg theorem

Theorem 8 Let p, be the longest 170 path passing through an acyelee vode v an (4,
anplyimg that the marunun delay fleribdity of vos Lo = leufp ). Wha the deday-
optimahity path poy 1s mdroduced. the ciremlt consisting of p, and poyyowdl be the

coreutt of munonum slack fone among all the cocuds condaming v The slack i

aclf cquals Ly — lendp, ]
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Proof:

Faac b 17O path contammng e resalts i a areuit containing o when pogs mtrodnced
Stnee p,oas the path with the maximum path length among all such paths, the cirei
(", consisting of pooand poy has the masimum path length among all the cireunits

contaming . However, ST{C] = —{en|[C]. and hence, the first part of the theorem

ST = —lenl] = =(lenip) + lenlpog]). R

I sing (3.1). the above equation becomes
ST = Lo = lendp ). (1.3

and hencel the second part of the theotem. =

The masinmm Hesibility of @ exelie node is equal to the slack time of the
cromt with the fowest stack time among all the cireuits containing that node. T hus.
by Theorem 8, the flexibility of an acvelic node can be completely utilized even after

mtroducing the delay -optimality path.

Schedule Refining Technique

In general. the choice as to how the shimming delayvs are distributed affects the tinal
processor schedule. In order to reduce the number of processors. we propuose the
[ollowing approach. Once the PAM is obtained using the Scheduling Algorithm and
the Processor Assignment Algorithm, the processor bound is checked. If the number
of tows in the PAM is equal to the processor bound. then the PAM is the output:
otherwise. the columns whose entries exceed the processor bound are identified. Let
the number of entries in such a column be R. Then the (R — Fy) nodes. which

had the highest flexibility to start with among the nodes scheduled in that column.
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Fignre 1.1 A time schedule for the second-order 1R hiter

are chosen for shiftine. The whole scheduling procedure wovepeated by mcreasime
by unity, if possible. the shimming delay associated with every such node. Nt this
stage, the remaming slack time is redistithuted using the Conversion Algonthm
If thete extsts a cobnmn e which uo node had any flesibibity ongmalis, then the
processor bound i moditied 10 be equal 1o the number of entries i that colimn
If this procedure is tepeated a pre-specified number of times without aclievine the
processor bound. then the processis stopped. and the best PANM obtained this
i« the output. This techmigue of modifying the disttibution of the shimmine delays
to reduce the mumber of processors will be referred toas the Schedule Refimne

Technigue.

4.4 Examples

Example 1: Second-order IIR filter

For the DFG of the second-order filter shown in Fignre 2,70 a time schiedule was
obtained in Chapter 2 as shown in Figure 2.10. For convemence, this time schedule
i» presente