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ABSTRACT

Comnbination of Multiple Classifiers for the Recognition
of Totally Unconstrained Handwritten Numerals
Yea-Shuan Huang. Ph.D.

Concordia University, 1991

Due to different writing styles and various kinds of noise, the recognition of hand-
written numerals is an extremely challenging problem. Recently, a new approach
has emerged to tackle this problem by the use of multiple classifiers. This method
is called “Combination of Multiple Experts™ (CMLE). It combines individual classifi
cation decisions tc derive the final decisions. This thesis focusses on methodologies
which lead to efficient and effective decision combination schemes.

In general, the output information supplied by various classifiers can be divided
into two levels: (1) The abstract level: a classifier only outputs a unique class; and
(2) The measurement level: a classifier assigns a measurement value to each class
to indicate how closely a certain class corresponds to the input pattern. Because
of the different nature of the two levels of output information (one is discrete and
finite, and the other one is continuous and infinite), intrinsically there are two kinds
of combination approaches: abstract-level CME and mecasurement-level CMUE.

For abstract-level CME, a novel combination model is proposed, i.¢. the Behavior-

Knowledge Space (BKS) method. Many advantageous properties have been derived

i



from this method: most importantly. in theory the BKS method is able to produce
the highest recognition accuracy for the combination of abstract-level classifiers. For
measurement -level CME. individnal classifiers can be regarded as feature extractors.
A neural network approach based on a multi-layer perceptron is proposed to perform
the combination function, because the multi-layer perceptron has heen shown to be
effective in solving varions pattern recognition problems. Strategies on improving
muiti-layer perceptrons are presented.

Since the basic components of a multi-classifier system are the classifiers, it is
essential to construct classifiers with high recognition accuracy. In this research. two
directions are taken to pursue this goal. The first is to apply the concept of CME
to design new classifiers hy using subsets of a large set of features. The second is
to improve the recognition accuracy of the commonly-used nearest neighbor c.assi-
fier by finding better representative prototypes. Obviously, the new classifier design
techniques and the improvement of existing classifiers will further strengthen CME.

The efficiency of the proposed methods has been demonstrated in a series of
experiments with a large data base of handwritten numerals. The results indicate
that a multi-classifier recognition system outperforms the individuval classifiers, and
is able to achieve a very high recognition performance. It appears, therefore, that
CMLE is a promising avenue to develop human-compatible and highly reliable OCR

machines,
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Chapter 1

Introduction

Handwriting recognition by computer has been a subject of intense rescarch for many
years. This is driven by the strong desire of the researchers to take up the challenge
of developing algorithms comparable to human performance, and by the numerous
possible applications in data processing. To date, manv character recognition systems
have been developed, but more work is still required before human performance can
be matched in a meaningful way. Recently, a promising direction was suggested that,
instead of a single classifier, a number of classifiers can be used in parallel to tackle the
recognition problem. This has the advantage that diflerent. features and classification
procedures can be used simultaneously to complement one another resulting in an
enhancement of their strengths and a reduction of their weaknesses. Two key tasks

are involved in this approach, (1) to choose the appropriate features or classification



procedures whichi can be used in a multiple-classifier system, and (2) to design the
method of combining decisions which can effectively take advantage of the strengths
of individual classifiers and avoid their weaknesses. This thesis focuses mainly on
rescarch in the second task.

Broadly speaking, this thesis contains three parts. The first part begins with
an introduction of a conventional character recognition system, followed by a brief
review of hoth charicter features and classification procedures, and a description
of the motivations of a new recognition trend with multiple classifiers. The basic
terminology related to this research and the formal specification of the combination
of multiple classifiers are also described.

The second part begins by introducing the previous research work on combina-
tion procedures, their advantages and disadvantages, and then our research effort in
proposing several new combination procedures. Interestingly, with a different view-
point ot the roles of individual classifiers, the combination problem turns out to be a
generic pattern recognition problem. This realization enables us to utilize the existing
pattern classification techniques to explore various techniques of combining multiple
classifiers. Finally, with three classifiers and a large numeral data base, a thorough
comparison of different combination procedures is performed and described.

Since a combination problem is intrinsically a pattern recognition problem, the

techniques of combining multiple classifiers in fact can be treated as new pattern

o



classification techniques. With this in mind, the last part of this thesis first describes
our research in applying combination techniques to pattern classification. I'wo ¢las-
sifier design techniques are introduced: rccognition by parts and recognition by pair
classificrs. With an another consideration that because the basic component of CME
is a classific., and CME turns out to be a generic pattern classification problem,
it is essentially important to improve the performance of the existing classification
functions. In this part, we also describe our effort on the research to derive optimal

prototypes for the nearest neighbor classification.

1.1 Basic Operations in Character Recogn‘tion Systems

Figure 1 shows the block diagram of a typical optical character secognition (OCR)
system. Basically it performs three functions: preprocessing, featurc crtraction, and

pattern classification.

1.1.1 Preprocessing

Preprocessing plays an important role in a pattern recognition system. In pen-
eral, il consists of binarization, segmentation, noise removal, and normalizalion or
skeletonization. An input character is scanned and digitized by an optical scanner to
produce a gray-level digital image. Through binarization, the image is converted into
a binary-level one (each pixel is either black or white) by using a threshold optimal

to the processed image. The segmentation process specifies which arcas of an image



FEATURE PATTERN

INPUT —=} PREPROCESSING |- —— OQUTPUT
EXTRACTION CLASSIFICATION

Figure 1: A conventional pattern r~~ognition system.

contain isolated characters for recognition. The purpose of noise removal is to pro-
duce a better quality image by climinating the tiny parts which do not belong to the
image of a character or connecting the broken parts of character strokes. Normal-
ization or skeletonization transforms each pattern into an image with a fixed size or
a single-pixel stroke-width of image. which will enhance both feature extraction and

pattern classification.

1.1.2 Feature Extraction

Till now. 1t is still not clear how humans are able to recognize characters effortlessly
even when tuey are written carelessly and sloppily. But it has been observed in
rescarch {1, 2] that when humans look at an unfamiliar scene or image, or when they
are reading characters, their eyes tend to seek out “high information content” points,
and their visual attention shifts from feature to feature as they acquaint themselves
with the pattern. Then a direct problem emerges: “What are features?”. According
to Nadler and LEric [3]). “Features are functions of the measurements performed on a

class of objects which enable that class to be distinguished from other classes”. Since




features are important to character recognition and no one really knows exactly which
features huinans use to recognize characters, feature extraction has always been the
most attractive and challenging OCR rescarch topic. Rescarchers continue to search
for more efficient and effective features for the recognition of characters. In peneral,
good character features are characterized by small feature variances within the same
character class. and large feature variances among different character classes. In other
words, effective features should be both stable and distinctive.

Many character features have been developed. Broadly speaking, they are derived

from two main feature detection schemes [4]:

1. Global analysis, and

2. Structural analysis.

A. Global Analysis

In general, there are three methodologies commonly used in global analysis, namely
distribution of pircls, transformation, and physical measurcments. Usnally, features
extracted from such analysis are represented by feature vectors.

1) Distribution of pixels

Conventionally, a character image is represented by a two-dimensional binary
matrix where pizrel is the basic element. With specific but non-random arrangements
of pixels, characters are deliberately constructed in different shapes. Heuristically,

various measurements of pixel distributions could be used as features for classification.

Tt




Usually, these measurements are size-dependent; therefore they must be normalized
into fixed dimensions before matching them against the reference patterns. Many
pixel-distribution features have been developed. For example, Shimura [5] normalized
a character image into a mesh with binary elements. Using Hamming distance, it is
casy to measure the similarity between an input mesh and the references. Instead
of using all clements in a mesh, Bledsoe and Browing [6] chose a subset of them
for compurison. Kwon ¢f al. (7] described a feature which counts the number of
times that a line crosses from a white pixel to a black pixel of the entire character
image along the direction of the line. The crossing feature is a special aspect of
characteristic loci originally designed by Glucksman [8] for the recognition of multi-
font, printed alphabets. Projections of pixel distribution with respect to horizontal
and vertical directions offer another type of features.

2) Transformation

It is well known that frequency information is very important in one-dimensional
signal processing. Many transformation functions have been developed to extract
frequency related features, such as Fourier transform [9] or Hadamard transform [10].
Since a character image is a two-dimensional signal, it is believed that frequency in-
formation is also important for character classification. Besides frequency features,
spatial and spectrum features can also be extracted by various transformation tech-

niques such as Walsh transform [11. 12] or Kahunen-Loeve transform {13]. As a
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matter of fact, a transformation operation can be performed not only on the original
image but also on different measurement data. In general, various transformations
are useful because of two reasons: a) features can be expressed in forms other than
the original measurements. as Fourier transform can convert the spatial image into a
series of coefficient expansions in the frequency domain; b) features can be expressed
by other orthogonal axes which have more discrimination power for pattern classifi-
cation, e.g. K-L transform can rotate the axes of feature space to become orthogonal
to each other, constituting a “decorrelation”. Another advantage of transformation
is that the featurc dimension can be compressed significantly, so that only stable but
distinctive features remain.

3) Physical Measurements

The width and height of a character image are also important features. Related to
them, information such as aspect ratio and area covered by black and white elements
can be computed. Such measurements are useful in distinguishing pairs of ambiguous
characters. For example, Duda [14] and Suen [15] used some physical measurements
to distiuguish confusing pairs of characters {8, B}, and {U, V}, respectively.
B. Structural Analysis

Three methodologies have been used in structural analysis, namely linc segments
and edges, outline of character, and center-line of character. All three methodologies

produce a line representation of the character.
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1) Edge and Line Segments

A charact. > can be regarded as a picture or a graph. When a character is regarded
as a picture, it is important to extract the edge information because edges contain
the richest information of the picture. This can be justified by recalling that in most
image processing texthooks, example pictures are easily perceptible by only showing
their edge pixels. On the other hand, when a character is regarded as a graph, it is
convenicnt to use line segments to represent the graph. In general, edges are detected
by moving a mask window across the entire image. Many masks have been designed
for edge detection such as Robert operator [16], Sobel operator {17] and Laplacian
operator {9]. The result of such detection methods is a list of edges. In order to
describe a graph, a further step of linking or grouping the edges into piecewise line
segments is necessary. Once the edges and line segments have been constructed, other
geometrical and topological features can be deduced as well, such as concavities, loops
and T-joints.

2) Contour

It is well known that the contour carries valuable information about two-dimensional
image patterns. Therefore, contcur features are often used in character recognition.
Contour can be extracted by tracing the character boundary in a clockwise or counter-

clockwise direction. After the contour of the character has been found, information



on length, orientation and position of all contour points is obtained. Many other fea-
tures can also be deduced from the contour. such as end points, lengths or inclination
of line segments, and concavitics and convexities.

3) Centre Line

It is believed that the width of character strokes is not critical to human recog-
nization of characters. Seemingly, the different stroke widths of characters are mainly
a design consideration, the purpose of which is to display characters aesthetically to
human perception. Therefore, for recognition, a character may be represented by a
single-pixel stroke-width image. In general. we refer to the single-pixel stroke-width
image of a character as the centre line of this character. By using the centre line, a
character can be described by a line-segment graph, which again can be theoretically
recognized by the parsing procedure in formal language. Therefore, centre hine ex-
traction also attracts much attention in OCR rescarch. Terminologically, the process
to produce the centre line of a pattern is called “thinning” or “skeletonization™ [18].
After thinning, a character is expressed by the centre line (or skeleton) of the image
with a single-pixel stroke width. A derived skeleton may be encoded by the famous
chain-code algorithm, from which a large number of descriptive features can be gen-
erated, e.g., the area enclosed in a closed chain code, first and second moments about,

the horizontal and vertical axes, and the distance between two points on the skeleton.




1.1.3 Pattern Classification

For a recognition systemn. the ultimate objective is to achieve a high recognition
accuracy. Therefore, besides searching for distinctive features. research into efficient
and cffective classification techniques is essential. Terminologically, various kinds of

classification methodologies can also be grouped into two categories:
1. Statistics-based classification, and
2. Syntactics-based classification.

In general. the classification models of the two categories are often designed by
human programmers with heuristics concerning either the shapes of the distributions
of character features o1 possible character variations. This constrains both the ca-
pability and flexibility of applying one classification function to different data sets.
Recently, neural networks have resurfaced and attracted great attention in many re-
scarch fields, such as biology, psychology, pattern recognition, artificial intelligence,
and control theory. Due to their network-like structure, parallel computation, and
automatic learning ability, neural networks seemingly can be discussed as the third
category of classification methodologies.

For any specific application problem, various classification procedures could be
developed; usually each one has a different degree of success, but quite probably none

of them is totally perfect. or even not as good as expected for practical applications.
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A. Statistics-based classification

Statistical pattern recognition is a well-defined discipline, solidly grounded in
mathematical statistics. with an extensive literature. In this approach, features de-
scribing a pattern are treated only »< variables without considering their “mean-
ing", and they are expressed in an ordered array called a “feature vector™. In brief,
statistics-based classification is metric and quantitative. Such an arrangement en-
ables statistics-based classification to support computational analysis of interesting
and useful characteristics such as error rates, convergence of learning algorithms,
etc. The most commonly-used statistics-based classification techniques are nearest
neighbor, Bayesian, Perceptron and polynomial diserimination rule s.

It is well known in pattern recognition that without the complete knowledge of
the class probability densities for the entire pattern or feature space, the nearest
neighbor rule {19] is generally regarded as the best classification rule, with an asymp-
totic error rate less than twice the Bayes rate [19], the smallest possible incorrect,
classification 1ate in the current feature space. According to the nearest neighbor
rule, a pattern is assigned to the class of the nearest prototype selected from training
samples. Although the nearest neighbor rule is simple and powerful, its implemen-
tation is computationally expensive in terms of storase space and computation time,

if the number of prototypes is large. Many attempts have been made in the past to

11




alleviate the computational hurden of nearest neighbor classifiers. In general, tradi-
tional research on nearest-neighbor classifiers can be divided into two categories: fast
nearest-neighbor searching [20, 21] and prototype optimization [22, 23].

From the statistical point of view, for pattern classification, a pattern should be
assigned to the class having the largest a posteriori probability. In this way, the
classification error is referred to as the Bayes error. The Bayesian decision rule
is designed to achicve classification with the Bayes error. In general, the Bayesian
decision rule uses Bayes’ theorem to estimate a posleriori probability in terms of
class a priori and class conditional probabilities. Independence between features [24]
is often assumed, so that joint probabiliiy can be decomposed into several independent
onies. For the sake of simplicity, the a priori probability of different classes are assumed
equal, and can be eliminated from the computation. Some attempt [25, 26] has been
made to estimate the class conditional probability density function of features, such
as kernel Regression Estimator and Parzen Window Estimator.

Rosenblatt [27] suggested a general approach to the automatic learning of dis-
criminants for pattern classification, the Perceptron rule. The concept of this rule is
rather simple and rational. By using measurement features, linear hyperplanes which
divide the feature space into different class regions are constructed. If a pattern
is not correctly classified into its true class according to the hyperplanes, then tlhe

normal vectors of the hyperplanes are changed in the direction tending to make the



pattern classified correctly. In general, the Perceptron rule functions well for linear
cases; however, it is incapable of achieving good classification results for nonlinear
problems. Therefore, the polynomial discriminant rule has been proposed to serve
nonlinear classification. This classification rule makes use of not only the first order
but also higher order features. With higher order features, nonlinear hyperplanes
such as Hyperbolic Paraboloids can be constructed to divide a feature space. But,
because of the polynomial combination of features, the number of features increases
rapidly. Accordingly, quadratic discriminants are the most commonly used. To re-
duce the feature dimension, Schiirmann [28] has developed an algorithin which offers
a systematic procedure to select the hest feature subsets.

In general, by means of statisiical properties (such as means and variances of
features), statistics-based classification is highly resistant to noise, but structural
variation of characters will degrade its performance considerably.

B. Syntactics-Based Classification

Syntactics-based classification is based on concepts from formal language theory
[29, 30, 31]; grammars at all levels in the Chomsky hierarchy are used to describe
character models. In general, a pattern is decomposed into sub-patterns of pre-defined
primitives. These primitives are interpreted as symbols in some grammars, a set of
syntactic rules for generating sentences from the given symbols. For characters, the

primitives contain horizontal, vertical and slant strokes, loops, curves, T-joints, end
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points, and so on. With a grammar, pattern classification has the same physical
meaning a< parsing a sentence and deciding whether it is recognizable or not. If
the grammar is simple, the parsing procedure can be designed to become a tree-
like structure such as a decision tree; otherwise, some inference engine may need to
be applied, just as in Al. For syntactics-based classification, the most challenging
problem is llow to construct the grammars or decision trees automatically. Research
effort can be seen in [32, 33).

Dynamic Programming (DP) is another syntactics-based classification method.
DP deals with two strings and computes the distance between them by finding an
oplimal assignment or correspondence between the elements of one string and those
of the other. When computing the distance, DP allows substitution, insertion and
dcletion of elements so that the two strings can have different lengths and different
order of elements. Another advantage of P is that it can derive both the optimal
assignment and the resulting distance between two strings at the same time. Recently,
Yamada [34)] has been active in vsing DP for both character and map recognition

Basically, syntactics-based classification performs robustly against structural vari-
ation, but is sensitive to noise (such as the breaking of strokes, and the closing and

opening of loops).
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C. Neural-Network-Based Classification

Neural network models have many different names, such as connectionist models,
parallel distributed processing models, and neuromorphic systems [35]. Originally,
they were inspired by man’s understanding of the brain; but with a broadened scope,
they are not necessarily conformed strictly to that understanding. In gencral, a
pattern classification approach is called a neural network if it contains three basic

components:
¢ a set of computation neurons (or nodes):

e a regular structure ({opology and infcrconncetion) among computational neu-

rons;

e an automatic learning rule (often derived from the optimization of the pre-

defined cost functions).

Simply speaking, neural networks automatically adapt themselves to the required
processing capacity, using large numbers of simple processing clements operating in
parallel.

Neural networks provide a great degree of robustness or fanlt tolerance because
they make use of many processing units, each with primarily local connections. Dam-
age to a few nodes or links thus will not cause a significant degencration in the overall

performance. In general, neural network models are non-parametric and make weak
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assurnptions, so that they may be applied without much trouble from one data set
to another. Among various neural net models, multi-layer perceptrons with back-
propagation error correction are most commonly used in pattern recognition appli-
cations. The back-propagation learning rule can modify the initial interconnection
weights in the direction of reducing the classification error. Other well-known and rep-
resentative neural network models include Adaline and Madaline [36], Bidirectional
Associative Memory (BAM) [37], the Hopfield model [38], the Boltzmann machine
[39], Simulated Annealing [40], Counterpropagation [41], Self-Organizing Map [42],
Adaptive Resonance Theory (ART) [43], Neocognitron [44], Radial Basis Function

(RBF) [45], and so on.

1.2 The Demand for Multiple Experts

In the early days of pattern recognition, a lot of research was focused on charac-
ter recognition. One reason was that characters were handy to deal with, and were
regarded as a problem which could be solved easily. However, when the research ad-
vanced from printed into handwritten character recognition, a great deal of challenge
in solving this problem surfaced, such as unconstraired shape variations, different
writing styies, different kinds of noise which may break the strokes in the characters
or change their topolugy, and so on. Even so, many researchers still continue to de-

velop and implement algorithms for recognizing totally unconstrained handwritten

16



characters, expecting that an OCR machine with a high recognition 1ate and a zero
substitution rate can be achieved. However, because the problem is intrinsically too
complicated. it is impossible to predict when and how a satisfactory solution may

appear.

1.2.1 Teamwork — A Human Approach to Resolve Difficult Problems

Since difficulties have seriously and continuously impeded the successful develop-
ment of practical OCR machines, it is natural and uscful to consider the approaches
that humans may adopt to tackle a complicated problem. In a human society (e.g. a
company), when there is a job which is considered to he very diflicult, then instead
of assigning one person to take care of it, we tend to assign it to a team of several
people. Experience tells us that when each member of this team can work together
effectively, then usually a better solution can be found. No wonder that there are so
many sayings in different languages recommending the advantage of team work, such
as “two hcads are better than one”. All of them describe a simple belief that group

decision is better than any individual’s.

1.2.2 Basic Requirements for Teamwork

However, belief in teamwork is not always valid unless three basic requirements

are satisfied: first, there must exist several qualified individuals who are suitable to



serve this job; secondly, the individuals are willing to work together and have a suc-
cessful channel to communicate with each other; and thirdly, there exists an efficient
and cffective mechanism to resolve the potential conflicts among the individuals, and
o aggregate their various opinions into a final consensus. For example, suppose the
job is to create a new gencration of apple which can be cultivated under warm tem-
peratures (about 30° C). It will be impossible to organize a successful team if no one
has the biology or genetics background. Furthermore, even when there are qualified
candidates, if they are not willing to cooperate as a team (which happens to human
experts), or they speak different languages (such as one speaks only English, and the
ther one only French) without translation, a useful solution is not achievable. Finally,
it is obvious that even if the first two conditions are satisfied, a sound and valuable
solution can only be found when there exists a good decision mechanism which can
aggregate individual's opinions by strengthening their expertise and avoiding their

weaknesses.

1.3 Combination of Multiple Classifiers in OCR

Based on the above discussion, the concept of teamwork can also be applied to
the recognition of unconstrained handwritten characters. Pioneered by Suen [46], a
new direction in the OCR research field has emerged, viz “Combination of Multiple

Experts (CME)™. For cli racter recognition, a classifier is called an “ezrpert” when it




has attained an expert-like performance in recognizing characters. Here, we use the
term “expert” to emphasize that the combined classificrs should not behave poorly.
This requirement indeed corresponds to the first condition of a successful team in the
above discussion. Theoretically, CME for character recognition is based on the idea
that classifiers with differcnt methodologics or different features are often complemen-
tary to each other; hence, the combination of different and complementary classificrs
may reduce errors considerably and achicve a higher performance accuracy, just as
the decision of a panel of human experts is usually superior to that of a single in-
dividual. Many such approaches have now ' =en developed, and have alrcady shown
encouraging results [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], which reveal that

CME is a promising avenue to achieve the expected goal mentioned above.

1.3.0.1 Hardware Concerns in CME

However, CME is not achieved without paying a price. In fact, cosf is the most
serious constraint for using multiple classifiers. It means that not only a longer com-
putation time will be spent to recognize a pattern, but also bigger computer hardware
is required to support it. Fortunately, looking at the history of computer hardware
development, computer hardware and design technologies have steadily and continu-
ously made very rapid advances, such as the introduction of high-speed CPU proces-
sors, large memory capacities of RAM, sub-micro VLSI design, parallel architectures,

and so on. This indicates that our ability to design a powerful yet low-cost piece of
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hardware with a large memory and high computing speed has improved. As a result,
the cost constraint is no longer unsolvable, and can finally be overcome. Accordingly,
we may spend most of our effort on software aspects for achieving a high recognition

rate, without hardware considerations imposing much of a constraint.

1.4 Different Architectures of CME

A conventional recognition system consists of only a single classifier; the output of
the classifier is the same as the system output. However, several classifiers are involved
in a multi-classifier recognition system; their outputs will be further processed in order
to derive the final decisions. In general, there are three kinds of CME architectures,
which differ in how and when the classification outputs of individual classifiers are
processed.

A. Integrated CME

Integrated CME means that each classifier takes charge of a sub-task of recogni-
tion; the overall recognition will be accomplished by cooperation among all classifiers
involved. Ior instance, one classifier may be designed specifically to recognize loops,
and another for horizontal or vertical lines. Some classifiers may even be good at
recognizing a certain character. During recognition, individual classifiers will be dy-

namically triggered to function whenever they can provide useful information to the



overall recognition. With this architecture. it is important to have eflicient coor-
dinating systems, which can interactively supervise and control all recognition and
information between the whole system and individual classificrs. For example, Black-
boar . scem [58, 59] is a commonly-used architecture.
B. Sequential CME

Sequential CME means that there are different process priorities for individual
classifiers. The classifier with a higher priority will be triggered earlier than the one
with a low priority. Each classifier functions as a sifter, which reduces the range of
possible candidates for the input pattern. Ideally, the last classifier should produce
one and only one candidate, which is the character most similar to the input pattern.
Figure 2 shows the block diagram of this architecture, which contains A" classifiers
€1, *++, €k, + -+, and ex. Ohviously, except for the hirst classifier ¢, classifier ¢ will
begin to process only when classifier e4; has finished its recognition, and the output
of classifier ex then becomes the final system output. Multistage [60] and Multilevel
[61] recognition are two commonly-used methods in sequential CME.
C. Parallel CME

Parallel CME means that all classifiers have the same process priority. Therefore,
combination will take place only after all classifiers have finished their recognition
processes. Figure 3 shows the block diagram of parallel CME. Obviously, the outputs

of individual classifiers become the input of a combination module (call it I7), whose
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Figure 2: Block diagram of sequential CME.
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Figure 3: Block diagram of parallel CME.

outpit, then forms the final decision of the system. Thus, the goal of CME research
is to ascertain that the combination module F will produce the best recognition
performance.

Integrated CME may involve dynamic control and uncertainty management which
are quite challenging. But, because most of the existing character classification pro-
cedures perform complete recognition process, it is unsuitable to combine them by
using the structure of integrated CME. As for sequential and parallel CME, Shridhar

et al. [62] have performed a series of experiments and made comparisons between

[
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them. They gave two conclusions: (1) For sequential CME, applying the classifier
with lower error rate first, and higher ones later. is better than applying them in the
reverse order; and (2) paralle]l CME usually ackieves less error than the corresponding,
sequential CME. It is easy to realize that sequential CME has a built-in drawback,
error accumulation, which does not appear in parallel CME. As a result, parallel
CME can outperform sequential CME. Concerning the availability of classifiers and
the recognition accuracy of CME, this thesis focuses mainly on parallel CMI; in the
remaining discussion of this thesis CME stands for parallel CME.

A similar approach to CME is to collect a set of distinctive features, and de-
velop a single but powerful classifier using all of them. However, there are several
disadvantages which make us believe that CME is better than this approach. First,
distinctive features may be represented in very diversified forme, c.g., they may be
continuous variables, binary values, discrete labels, structure primitives, and so on.
Second, different features may have different physical meanings and different scales,
e.g., some feature represents “length™ or “size”, and another “type of primutives” or
“relalion among primitives”. Third, the dimension of the collected distinctive fea-
tures in general tends to be large. Due to the undesired phenomenon - the curse of
dimensionality [63], a classifier designed by a large number of features often performs

well on the training data set, but poorly on the unseen testing data set. Fourth,
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there are no clear guidelines to design such a classifier. In other words, the com-
plexity of designing such a classifier is too high to be practically realized. However,
the research for designing a highly discriminant classifiers is still a very important
topic because classifiers are the basic components of CME. Any improvement of the

individual classifiers can finally benefit the recognition performance of CME.

1.5 Abstract-Level and Measurement-Level CME

Since the outputs of classifiers are the basic information which will be fed to
the combination module E. it is therefore important to analyze what kinds of output
information various classifiers can support. It is believed that different kinds of output
may tieed different combination functions to fully and best explore their expertise.
From our observation. the information output by various classifiers can be divided

into two levels!:

(1) The abstract level: a classifier outputs only an unique class label, or a subset of

class labels when it cannot decide on the identity of a confusing pattern.

(2) The measurement level: a classifier assigns each class label a measurement value

to indicate the possibility that the input pattern belongs to the class.

'Some researchers [54] consider that classifiers supply three levels of information, 1.e. the abstract,
rank, and measurement levels. Because rank-level information is derived from measurement-level
information, without loss of generzlity the authors consider that it is appropriate to divide the
output information into two leveix only.
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Obviously, the measurement level contains richer information than the abstract level.
In fact. abstract-level information can be easily derived from measurement-level in-
formation through an information reduction or abstraction process. Classificrs pro-
ducing information at the abstract or measurement levels are called abstract-level
or measurcment-level classifiers. The combination of abstract-level or measurement -
level classifiers is called abstract-level or measurement-level CME. In general, if the
combinea classifiers are measurement-level classifiers, measurement-level CME will
produce a better recognition accuracy than abstract-level CME. Bat, it is by no
reans true that abstract-level CME is not important. In fact, some classifiers, such
as various kinds of decision trees, can only produce abstract-level information. Since
every classifier is able to offer abstract-level information but not every classifier can
offer measurement-level CME, abstract-level CME indeed has the broader applicabil-

ity.

1.6 Research Related to CME

Because of the generality and effectiveness of the notion, ideas similar to CME can
be found in many other fields, such as social choice in election systems [64, 65, 66],
consensus of decisions [67, 68], sensor fusion [69], disease diagnosis of medical systems
[70, 71, 72], and so on. Many methods have already been implemented from previous

studies, €.g. majority voting {46, 55, Borda count [73, 74|, the evidential theory of



Dempster-Shafer [71, 75, 76], the certainiy factor model of MYCIN [77], probability
of Bayesian [54, 78] or Prospector [79], and fuzzy logic [80]. However, although these
methods are designed from different points of view, almost all of them have one
feature in common, that is they require an assumption of either total independence
or maximal dependence in the behavior of the considered experts. Both assumptions
actually constrain the practicality of these methods, because they are seldom true
in real applications. Not surprisingly, in applying them to character recognition,
the performance of the recognition system may deteriorate considerably when these

assumptions are not satisfied.

1.7 Objectives and Organization of This Thesis

I appears that the study of the combination problem is now only at its pre-
liminary stage. For character recognition, although several approaches have been
developed, more effort should be devoted to theoretical issues such as, “Is it possible
to prove that a CME function achieves the optimal recognition performance?”, or “Is
it possible to derive advantageous properties from a CME function theoretically?”
The primary goal of this research is to obtain effective combination approaches for a
multivle classifier system that takes advantage of the individual strengths of abstract-
level or measurement-level classifiers. Due to the two different levels of information

supported by various classifiers, we believe that at least two CME functions should
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be developed, one for abstract-level classifiers and the other for measurement-level
classifiers. Besides focusing on recognition accuracy, other CME related issues are

addiussed as well, such as

o What are the advantages and disadvantages of these functions?

e Can the disadvantages of the functions be alleviated, and how?

o When several classifiers are available, how can a subset of classifiers be selected
to produce the Lighest recognition accuracy among all subscts containing the

same number of classifiers?

o Is it ttue that combining more classifiers can always produce an equal or even

better recognition performance?

o Given the required performance for recognition accuracy and error limitation of
an application, how can a combination proc:dure adapt its performance to the

required one automatically?

o If CME can achieve better performance than individual clas ifiers, it seems
to be reasonable to assume that ¢.en better performance can be achieved by
combining hoth different CME approaches and the original individual classifiers.
This new combination scheme is called consccutive CME. Then, is it true that

consecutive CME will always produce bhetter recognition accuracy?
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In this thesis, we first make a simple review of the existing CME methods, then
propose our combination methods, and describe the comparisons of the experimental
results of different combination functions. In total, this thesis contains nine chapters.
Chapter 2 lists and explains the basic terminology used in both character recog-
nition and CME, so that the readers can understand the term. more easily when
they are mentioned in the later discussion. Formal definitions of abstract-level and
measurement-level CME are also specified in this chapter.

Chapter 3 reviews the existing and representative classifier combining functions
of abstract-level and measurement-level CME, respectively. For abstract-level CME,
this contains the majority voting principle, Bayesian combination approach, evidence
aggregation by Dempster-Shafer theory, and associative switch. For measurement-
level CME, it contains Borda count, rank reordering with set intersection and union,
Dempster-Shafer approach, and polynomial classifiers. These approaches reveal that
CME can be studied from different methodologies and different points of view.

In Chapter 4, a novel approach for abstract-level CME is proposed, the “Behavior-
Knowledge Space Method” (the BKS method). First, we define a behavior knowledge
space. Then we argue that a behavior knowledge space can concurrently record
the abstract-level classification decisions of individual classifiers to an input pat-
tern. Because of concurrent recording, this method does not require the classifier-

independence assumption, which is common in other CME methods. With this
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method, several CME related issues are discussed theoretically, such as “Does it per-
form better than other CME methods?”, “Can consecutive CME improve its recog-
nition performance?”, “Is it true that combining more classifiers will always produce
an equal or even better recognition performance?”, and “What are the intrinsic con-
straints in this method, and how can they be avoided?™ Then, an extension to
combine multiple classifiers which produce more than one abstract-level classification
decision is discussed. Finally, after the combination stage, a possible direction to
improve recognition performance is pointed out.

In Chapter 5, three approaches for measurement-level CME are proposed. The
first one is the Linear Confidence Aggregation method (LCA), which first transforms
measurement values supported by individual classifiers into probability-based confi-
dences, then all confidences are summed up lincarly. The second approach is the
Bayesian Confidence Aggregation method (BCA). Instead of aggregating confidence
linearly as LCA, BCA makes use of Bayes’ theorem, so that it aggregates confidences
by multiplication. The third approach is motivated by a new understanding of CMIS
as intrinsically a pattern recognition probleni. A_cordingly, neural network techniques
can be applied to CME. In this approach, due to different possible physical meanings
and scales, measurement values are transformed into a new form of “likeness” hefore
being fed to neural networks. The transformation of measurement values enables

this approach to satisfy the second requirement for successful teamwork. In the Jast
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part of this chapter, three strategies to improve the performance of the network are
proposed, which are (raining by boundary patterns, training by purtition, and weight
reduclion.

Based on 46,451 handwritten samples of ITRI's numeral database, a series of
experiments have been performed to compare the performances of different CME
functions. These experiments are divided into two groups for abstract-level and
measurement-level CME. Chapter 6 specifies the design methodologies of these experi-
ments, their experimental results, and some observations drawn from the experiments.

Since CME is in fact a pattern recognition problem, the design techniques of
CME can surely be applied to the design of classifiers. In Chapter 7, two new clas-
sifier design approaches using the same type of features and the same classification
methodology are introduced: recognition by parls and recognition by pair clussifiers.
Simply speaking, recognition by parts is to construct several classifiers, each of which
does the complete recognition task by using only partial information of the overall
character features, then a combination model aggregates the classification results of
the classifiers together to produce the overall recognition result. Recognition by pair
classifiers is to use pair classifiers, each of which is constructed only based on the fea-
tures of one pair of classes, then a combination model will aggregate the classification

results of all pair classifiers. As a result, the final recognition decision is produced.
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Because the basic component of a multiple-classifier system is a classifier and CME
turns out to be a generic pattern recognition problem, it is esseatial to improve the
recognition efficiency of classifiers. Chapter 8 describes our effort on the rescarch to
derive the optimized prototypes for the nearest neighbor classifier. We proposed a
new method using a four-layer network with a novel error function. The derived pro-
totype update rule exhibits a deterministic-annealing property, and we have shown
that the famous LVQ2 [81] algorithm can be regarded as a special case of this ap
proach. Through experiments with different data sets, it manifects that this method
outperforms the other two prototype optimization methods, .. Yan’s method [82)
and LVQ2.

Finally, "hapter 9 concludes this study of CME by summarizing our research

results and pointing out future research directions.
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Chapter 2

Terminology and Problem

Formulation

2.1 Introduction

'This chapter serves two purposes: (1) to illustrate the basic terminologies which
are closely related to the CME study, and (2) to make a clear and formal specification

of CME. Both of them are intended to make this thesis more understandable.

2.2 Basic Terminology

A class is a set of samples which are grouped together to serve a common purpose.
The criteria {or grouping a class may be based on feature similarity or the abstract

identity of patterns. For example, in a supermarket, according to their size, eggs are
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classified into three classes: small. medium. and large. For another example, numerals
are divided into 10 classes, one for each digit. Among the samples of the same numeral
class, some may have a dramatically different shape from others; however, they still
belong to the same class, because they have the same abstract identity of the class.
A class label is a code assigned to the corresponding class, which enabies an casy
referential representation to the class.

A classifier is a function which maps a pattern from its feature or image space
into an abstract-level or measurement-level space. When a pattern is mapped into
an abstract-level space, usually only one class label will be the classification decision;
however, when it is mapped into a measurement-level space, corresponding 1o eacl)
class there is a measurement value which indicates the degree of the pattern belonging
to the class. For recognition, a mapping is considered to be successful if the first choice
of class label made by a classifier is the same as that made by an educated human
being. The ground-truth class label denotes the class to which a pattern genuinely
belongs.

Recognition performance involves the indices for specifying the correctness of the
classification of a classifier, generally represented by four items: the recognition,
substitution and rejection rates, and reliability. The recognition rate is the ratio of the
total number of correctly recognized samples to the total number of testing samples;

the substitution rate is the ratio of the total number of incorrectly recognized samples
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to the total number of samples. Interchangeably, the substitution rate is called the
error rate. When a classifier makes a decisive classification of a pattern, we say that
the classifier recognizes the pattern. In some cases, a classifier may not be able to
recognize a pattern if it does not have enough confidence to make an absolute decision.
This happens when the quality of the image is poor or the pattern has several similar
references in different classes. When a classifier does not recognize a pattern decisively,
we say that the classifier rejects the pattern. Accordingly, the rejection rate is the ratio
of the total number of rejected samples to the total number of samples. Reliability
stands for the probability that the classification decision is correct when a classifier
makes a decisive recognition. Therefore, reliability is defined as the ratio of the total
number of correctly recognized samples to the total number of both correctly and
incorrectly recognized samples. Usually, the recognition, substitution, and rejection
rales are expressed by percentages, but reliability is a real value which ranges from
0.0 to 1.0. Obviously, the summation of the recognition, substitution and rejection
rates is equal to 100%. Expressed by arithematic forms, the four performance indices

are

No. of samples correctly recognized

* 100%

Recognition rate =
& Total No. of samples

No. of samples incorrectly recognized

Total No. of samples * 100%

Substitution rate =

No. of samples not recognized

Total No. of samples * 100%,

Rejection rate =
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and,

Reliability = No. of samples correctly recognized

No. of samples correctly recognized 4+ No. of samples incorrectly recognized’

A decision equation represents the criterion based on which a classifier recognizes
or rejects a pattern. Generally. the criterion is expressed in terms of belief values,
which indicate the degree that a pattern belongs to each class. Here, belief value is
a general form which may be expressed by distance, similarity, confidence and so on.
For the purpose of rejecting ambiguous patterns, a decision equation often consists
of a threshold parameter. Several design schemes [54] for decision equations are
commonly used in practice: the first-choice may be simply selected as the classification
decision; or if the difference in belief between the first-two-choices is larger than a
given threshold, then the first-choice will serve the classification decision, otherwise
the pattern is rejected with no recognition.

A confusion matrix (CM) is a two-dimensional table which shows how many sam-
ples genuinely bel-nging to one class are recognized as a certain clasz. Bach classifier
maintains its own confusion matrix with discrete values for both the horizontal and
vertical axes. For an M-class recognition problem, the columns of a CM stands for
the ground-truth class labels of patterns, thercfore it contains M values of the M class
labels; each row stands for the class label to which a pattern is recognized, therefore

it contains M + 1 possible classification decisions {1,---, M + 1}. In the following
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CM example with M pattern classes,

R] RQ ce RJ T RM R)W-H
CV
1 | " Nz o+ Ny o0 UM NYM41)
CV
2 ( Na Na2 +++ Mgy =t Moy NAM41)
C": nt_,
Cym | np1 maz o0 Magy c00 AMM MARM+41)

C’, and R, mea.i that the ground-truth class label of a pattern is ¢ and the recognized
class label is j. n,, represents the number of patterns which belong to class C; but
arc recognizcd as R,. It is very convenient to derive statistical data from a confusion
matrix, such as

the total number of samples belonging to class ¢ = Zﬁ*{l n.,,

the total number of samples recognized as class j = Zfil n,,

the total number of samples belonging to class 7 and correctly recognized = n,,,
and,

PreC |e(r)=R)= 77«:/2{%:1 My

where ¢(x) stands for the decision of a classifier with respect to a given pattern z.
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2.3 Problem Formulation

As described in Chapter 1, two kinds of CME exist: abstract- and measurement.-
leve]l CME. They are different because they combine two different levels of output
information supported by abstract-level and measurement-level classifiers. To formu-
late the two kinds of CME, their common elements will be described first, then the
distinguishing parts will be specified, respectively.

Let S be a pattern space which consists of M sets S = C, U .- U (', ecach (),
i € A= {1,---, M} representing a set of specified patterns called a class (¢.g. M = 10
for numeral recognition). €, stands for an expert or classifier k where k = 1,---, K,

and K is the total number of classifiers. # denotes an input pattern.

2.3.1 Formulation of Abstract-Level CME

ex(r) = jr means that expert k assigns the input r to class j;, where ji €
AU{M + 1}. When j; € A, it means that expert k accepts and recognizes x (cither
correctly or incorrectly); otherwise expert & rejects z. To simplify the notation, ex(ir)
is replaced by e(k). Then, the research goal of abstract-level CME becomes, “When I
classifiers give their individual classification decisions ¢(1}),- - -,¢( /) about the identity
of z, what is the combination function E(e(1),:--,e(K)) which will produce the final

classification decisions effectively?” In fact, this problem can be illustrated more
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clearly as

alr) = j

, e2(r) = ja ) ‘
given Y — L(r) =7

en(T) = Jja J

where [5(xr) is a combination function of the multiple classifiers which gives r one
definitive class label j € AU {M + 1}. Expectantly, the accuracy of decision j is

higher than that of decision ji, Vir € {1,---, N }.

2.3.2 Formulation of Measurement-Level CME

cx(r) = {mi(r)| Vi (1 £i< M)} means that expert & assigns the input r to each
class 7 with a measurement value mj(r). With a similar realization as in abstract-
level CME, mi(r) is expressed as mj to simplify the notation. Thus, this problem

can be formulated as

.
ei(r) = ml-. omM
. — 1 I
_ (r) = my,-,m; " .
given f —_ E(J’) =j
ex(r) = mbk,---,m¥ J

where E(x) is the combination function which gives x one definitive class j € A U

{M +1}.



Chapter 3

Previous Studies on CME

3.1 Introduction

Motivated by different points of view, many CMI approaches have been explored.
As a result, several combination methods for both abstract-level and measurement-
level CME have been developed from previous studies. Although they have shown
very promising recognition performance, each of them more or less enduves its own
built-in constraints. such as lacking learning ability, requiring that elassifiers behave
independently of each other, and so on. Their effectiveness may be considerably re-
duced when some constraints are not fulfilled in practical applications. In this chap-
ter, the methods of abstract-level and measurement-level CME will be introduced,

respectively. Advantages and disadvantages of them will also be discussed.
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3.2 Methnds of Abstract-Level CME

Four representative methods of previous studies on CME wiil be described in this
section: majority vote [46, 51, 52, 55], Bayesian principle [54, 78], evidence aggregation
of Dempster-Shafer (D-S) theorem {71, 72, 75, 76], and associative switch [83].

Simply speaking, voting is a common democratic approach based on “the opinion
of the majority wins™. It treats classifiers equally, without considering their differ-
ences in performance. Therefore, it has no learning ability, and will not improve its
performance even when more and more data are accumulated. The Bayesian ap-
proach uses the Bayesian formula to integrate classifiers’ decisions; usually it requires
an independence assumption in order to tackle the computation of the joint proba-
bility. The D-S formula, which has frequently been applied to deal with uncertainty
management and incomplete reasoning, can aggregate committed, uncommitted and
ignorant beliefs. It allows one to attribute belief to subsets, as well as to individual
clements of the hypothesis set. An advantage of this approach is its ability to model
the narrowing of the hypothesis set with accumulation of evidence. Both Bayesian
and D-§ approaches make use of probability to describe the different qualities of clas-
sifiers’ decisions. However, in the Bayesian approach, the sum of P(C) and P(~ C)
is equal to one where P(C) represents the probability that C is true; this is not
necessarily true for the D-S approach. Associative switch is motivated from an idea

which is quite different from the other three methods. Instead of making use of the
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classification decisions of all X' classifiers, associative switch only chooses a single
classifier’s decision as the final decision. The key task of this method is to find a
mechanism which can predict which classifier will produce the correct identity of the
current input pattern efliciently and effectively.

The following three sub-sections (3.2.1 to 3.2.4) will briefly introduce these three
methods. In sub-section 3.2.5, several interesting conclusions and further rescarch

topics drawn by Xu et al. [54] will be mentioned.

3.2.1 Majority Vote

This method exists commonly in real-life activities such as various clections, com-
munity decisions and court verdict. It means “the opinion of the majority wins”, i.e.
the opinion which gets the largest number of votes wins. For counting votes, v, (i) is
defined as the individual voting function, with a value 1 when expert b votes « for
class 7, otherwise 0; BEL(7) is defined as the global voting function which counts the
total number of experts who vote z for class i. Formally, the two symbols can be

expressed as

vr(z) = the individual voting function,
1 , when ex(z)=17and i € A,

0 , otherwise;

and,
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BEL(i) = the global voting function,
= Tho vald).

The main advantages of this method are its easy implementation, fast computa-
tion, small memory requirement, and no demand for learning. The major disadvan-
tage is that classifiers are treated with equal weight, without considering the different
qualities of their behavior. It is not capable of learning, and is not able to improve

its performance as more data are processed.

3.2.2 Combination by Bayesian Formula

Different from the voting method, the Baysian method accepts error-embedded be-
havior of individnal classifiers by combining their conditional probabilities. The con-
ditional probability is expressed as P(x € C, | ¢, = j), which means the probability
that input x belongs to class i when classifier t assigns = to class j. P(z € C; | ex = 7)
can be derived from the confusion matrix of classifier &, which records the classifica-
tion behavior on training samples by classifier k.

In general, when each classifier gives its classification decision to an input pattern
x, the belief value that x belongs to class ¢ is computed from a belief function given
by

BEL(i)= BEL(zr € C, | e1(x),-+ -, ex:()). (1)



If each classifier k offers its decision as ji, then BEL(7) can be expressed by a condi-

tional probability as
BEL(1)= P(z € C, | es(2) = jyu- -y (&) = i, ENY) (2)

where 7 € A and ENK denotes the classification cavironment generated from combin-
ing the A" classifiers. The purpose of EN! is to identify under which environment the
conditional probability is computed. In fact, it explicitly specifies that the conditional
probability should be computed from the knowledge space which is constructed by
exactly the K classifiers. With the assumption that classifiers are independent of each
other, by using the Bayes formula, Equation (2) can be decomposed and simplified
as

BEL(i) = n I, P(x € C,|ex(r) = ji, ENS) (3)

where 7 is a normalization coefficient which makes ™M, BEL(i) = 1, and LN} is the
classification environment generated from the classifier & alone, which is indeed the

confusion matrix of classifier k.

3.2.3 Evidential Aggregation by Dempster-Shafer Theorem

The Bayesian approach assumes that the commitment of beliel to a hypothesis
implies commitment of the remaining belief to its negation, 7 . the assumption that
beliefin A is equivalent to P(A) so that the resulting beliefin NOT A is 1—/’(A). This

assumption is not always valid, because evidence partially in favor of & hypothesis
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is not construed as evidence partially against the same hypothesis. In fact, human
experts often give their opinions conservatively, meaning that when an expert offers
his support to et A with a certain belief mn, the remaining unassigned belief 1 - m may
just be reserved for the universal set containing all single elements of decision, and not
necessarily for the negation for A as would be assumed in the Bayesian model. To serve
this and other purposes, Dempster and Shafer proposed a mathematical theory, called
the Dempster-Shafer theory [76], to aggregate evidence. This theory not only avoids
the above Bayesian assumption, but also allows one to attribute belief to subsets, as
well as to individual elements of the hypothesis set. One other important property of
this model is its ability to narrow the hypothesis set with accumulation of evidence.
In other words, the hypothesis set originally contains all individual elements: as more
pieces of evidence are collected, the number of the possible individual elements will
be reduced. Due 1o these distinguishing properties, Dempster-Shafer theory has been
broadly applied in uncertain reasoning to represent and manipulate incomplete and
imperfect knowledge.

In the Dempster-Shafer theorem, ® = {1,2,---, M} denotes an exhaustive and
mutually exclusive universal set. O is called the frame of discernment. A function
m :2° —[0,1] is called a basic probability assignment (bpa) if it satisfies m(@) = 0
and 3" 4cem(A) = 1. The quantity m(A) represents our exact belief in the propo-

sition represented by set A. Let there are i evidences, and my, -, my denote the
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corresponding K" bpas respectively: cach bpa represents an evidence. The Dempster-
Shafer rule defines a new bpa m = m; & .- & my, by aggregating these N evidences

my, -+, my from the following forinula:

m(A) = mi@ma®---DHmy(A)

= Kz‘\'ln...n‘\'l\z‘,t Il‘l;lﬂl,(,\’,)

and

71 = 1= Ty nenx, =g 1S (X))

z,\'ln...n,\’l\ £ Hﬁ:l 711,( .\', )

where A, X1, -+, X C O and log « is called the weight of conflict, which specifies a
conflict index among the I evidences.

Finally, the belief function that input = belongs to subset A is

Bel(A) = Z m(B).
BCA

Since the goal is to find which class gets the largest belief value, only the belief values

of single-element subsets necd to be computed, and the class with the largest belief

value is selected as the final decision.

3.2.4 Associative Switch

One different point of view about CME is that for a pattern r, instead of combining
the classification decisions of all classifiers together, the decision of only one classifier
is chosen as the final decision. The chosen classifier is expected to have the best

classification decision to recognize r among all classifiers. Motivated by this idea, a



method called associative switch for combining multiple classifiers is proposed by Xu
el al. [83]. As shown in Fig. 4, the switch consists of: (1) a number of knobs which
gate the output channels of individual classifiers, and (2) a multi-layer perceptron
neural net trained by a backpropagation-like technique. When an unlabeled pattern is
input to cach individual classifier. it also enters a neural net for associatively recalling
a code which controls the knobs to decide whether the output of each classifier should
pass through as the final result. The array consists of A" knobs swy,k = 1,---, K,
with cach swy installed on the output channel of classifier e, to decide whether or not
it is selected as the expert for the present input (i.e., to let its output pass through).
So, the output of each knob is given by
' Jk  if o > oy

e =
® |, otherwise;

where o4 1s a predefined threshold, and o4 i. the kth output of the associative con-
troller. When j; = ®, it means that the decision of expert k is not selected. Since
the purpose of the associative controller is to recall which classifier has produced the
best decision in vhe coatext that the input pattern is z, therefore it could be irn-
plemented by any existing neural net of heteroassociative inemory type [42]. Each
training sample contains the information: K classification decisions of A" individua:
classifiers, and the classifiers which make the right decisions. The idea is to have a
good mapping from the current A classification decisions of individual classifiers to

the best classifier which has the highest probability to make the right classification
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decision. Obviously, the input codes to the controller net are the classification result
ex(),k = 1,--+-, K. Accordingly, the key task is the design of the desired outpus
codes of, 1 < k < K, to train the controller net on a training data set. Once the
desired output codes are obtained, the training procedure is just a supervised learning
process which will train the controller net automatically. Assume () represents the
ground-true class label of pattern x. Xu el al. give a simple way to produce the

desired output code according to three different cases:

Case 1. If j. # I(x) forall k=1,---, K (i.c., there is no individual classific. giving

the right classification), then let of(2) =0,k = 1,---, K.

Case 2. If there is only one k such that j, = I(x) (i.c., there is only one individual

classifier giving the right result), then for b =1, | K, let

1, for jp = I(xr),

0 , otherwise.

Case 3. When there are more than one individual classifier giving the right classifica-
tion result (i.e., there is a subset Sk C {1,---, K} for cach &' € S, 5,0 = I(r)).
In this case, we arbitrarily or randomly choose one k' among Sy and for

j=1,-, K&, let

1, for g = I(x),
oi(z) =

0 , otherwise.
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Figure 4: The basic model of associative switch for combining multiple
classifiers.

The idea to use a gating network to choose the most suitable single classifier for the

current input patiern also appeared in other articles, such as [84] and [85)].
3.2.5 Comparison of the Abstract-Level CME Methods
Xu et al. [54] performed two experiments with different sizes of learning samples

on the above three methods (voting. Bayesian, and Dempster-Shafer), and drew four

conclusions:
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o

They

o

. If the confusion matrices of individual classifiers are well learned, then the

Bayesian method performs best; otherwise, it will degenerate rapidly.

The Dempster-Shafer method is very robust in every situation.

. Both the Dempster-Shafer method and the voting method behave well, and the

Dempster-Shafer method is better than the voting method.

The combination of multiple experts can make high quality decisions.

also pointed out the issues which call for further research, viz.

. The methods described are based on the assumption that individual classifiers

are independent of each other. How can one generalize these methods or develop

a new approach to combine dependent classifiers?

Given a set of classifiers, how many classifiers, and which of them can perform
efficiently?
Can the performance of the combination of multiple classifiers be analyzed

theoretically instead of experimentally?

Can a method adapt itself to a required performance?

Although the associative switch approach presents a novel concept to combine multi-

ple classifiers, its performance. in general, is not. better than the other three methods.

Interested readers can compare references [54] and [83] o justify this statement. The
p J y
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main reason is that the output information of all classifiers is not fully utilized, be-
causc it only takes one classifier’s result as the final result. As a matter of fact, this is
a kind of loosc cooperation among the classifiers. This observation enables us to argue
that for the multiple-classifier systems all classification results should be aggregated
together in order to achieve the best recognition performance, which is called strong
cooperation among individual classifiers.

In fact, collecting data for handwritten numeral recognition is much easier than
that for many other applications such as Chinese character recognition or medical
diagnosis. As a result, it is possible to collect a numeral data set with huge samples
to generate representative confusion matrices. This reveals that for the application
of handwritten numeral recognition the derived probabilities of classifiers should be

utilized as much as possible.

3.3 Methods of Measurement-Level CME

Four methods of measurement-level CME will be introduced in this sub-section:
Borda Count [73. 74, 86], Set Union or Intersection [86], Dempster-Shafer [48, 87],

and Polynomial Classifier [88].
3.3.1 Borda Count

When all classifiers give their support to the individual classes with different

preferences, one simple and useful way is to group these opinions together by using
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the Borda count function to compute the overall ranking of classes. The Borda count
function is a group consensus function well-known in the field of multi-person decision
making. In fact, it is a generalization of the majority vote. For any pa.iicular class i,
the Borda count is the sum of the number of classes ranked below i by every classifier.
For example, assume A = 10 and set {1,7,9} is output by a classifier, and class | is
the first choice of decision, 7 the second and 9 the third; then the Borda count of class
1is 9, of class 7 is 8, of class 9 is 7, and 0 for the remaining classes. If a candidate
subset is selected from the sct of allowable classes in computing this count, only the
classes in this subset will be considered. The definition of this method is given as
follows:

For any class 7 in a candidate subset U, let Bi(i) be the number of classes in U7
which are ranked below class 1. By(7) is zero if 7 € U. The Borda count for class ¢
is B_count(i) = P, By(7). The final ranking is given by arranging the class labels
included in the union so that their Borda counts are in descending order. Obviously,
this count is dependent on the agreement among the classifiers, and it satisfies our
intuition that if class 7 is ranked near the top by more classifiers, its Borda count

tends to be larger.

3.3.2 The Intersection and Union Approaches

Heuristically, the purpose of accumulating more classification information is to

have a better ability to reduce the size of a candidate class set in which cach element,



(i.c. a class) has a high probability of pertaining to the input pattern. Naturally.
different set-reduction operations can be applied to serve this end by reducing the
number of classes in the candidate class set without losing the true class. The criteria
for success are therefore twofold: The size of the result set should be minimized, and
the probability of the inclusion of the true class should be maximized.

Let us refer to the classes ranked near the top as the neighborhood of the true class.
The objective here is {o produce a neighborhood that contains the true class. Ho [86]
has developed two kinds of set operation to serve this purpose: set inicrsection and
scl union. In both operations, two stages are performed: first, a candidate set of
classes is produced; second, a group consensus function is then applied to re-rank the
classes in the candidate set.

In the first approach, a large neighborhood is obtained from each classifier, and
the intersection of these neighborhoods is then output as a set of candidates. Hence
a class will be output if and only if it is in all the neighborhoods. In other words, a
decision is made if it is confirmed by all classifiers. In the second approach, a small
neighborhood is obtained from each classifier. The union of these neighborhoods is
output as a set of candidates. A class is output as a candidate only if it is in at least
one of the neighborhoods.

The candidate classes contained in the set derived by either the unior or the in-

tersection approaches should be further processed to obtain their final ranking. Many
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methods can be applied to re-rank their orders, such as the highest rank method, the
Borda count method. or logistic regression which uses a logistic funetion to predict

the importance of the rank orders of each classifier’s opinion with respect to classes.

3.3.3 Dempster-Shafer Approach

Mandler and Schiiermann [48] realized that it is important to utilize all measurenient.-
level information when dealing with CME. However, they noticed that there exist two
problems in using measurement-level information. The first is how to reflect the de-
gree of correctness when a classifier gives a measurement value to a class, and the
second is how to aggregate all information together on the basis of the degree of cor-
rectness. With these two purposes. they proposr ¥ a procedure to combine multiple
classifiers on measurement level. This procedure consists of three steps: first, each
measurement value is transformed into a reasonable confidence-like value, responsible
only for one class; second, the Dempster-Shafer theory of evidence is used to combine
the basic probability assignments to form the evidence function of a single classi-
fier; third, the basic probability assignment of the different classifiers are combined

according to the same theory.

3.3.4 Polynomial Classifier

Franke [89] uses a polynomial classifier to derive the final decision. As well as the

first-order items of the classifiers’ output, their higher-order items are also input to
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the polynomial classifier. Suppose f(z) denotes all the input features (including both
the first-order and higher-order! items), A is the transformation matrix between f(z)
and the output y, where y = A7 f(z), and d(z) is the desired classification output.
Then the problem becomes “What is the best A (denoted as A*) which can produce
the minimum error between d(z) and y(z) for all learning samples?” Let C(A) Le an
error function which is defined as
C(A) = E[ld(z)—y()|’]
= E[ld(x) - AT f(z)]}.

Therefore,

C(A") = minC(A)
= min E[jd(z) ~ ATf(2)[?]

In fact, by using the simple mathematics of linear algebra, A* can be obtained as

A* = B{f(2) ()"} E[f()d(x)"].

3.3.5 Comparison of the Measurement-Level CME Methods

The advantage of the Borda count is its simplicity: its easy implementation, fast
computation, small required memory, and no demand for learning. Its major disad-
vantages are twofold: first it assumes additive independence among the contribution

of individual classifiers; and it treats individual classifiers equally, without considering

'For an n * 1 feature vector f = [z;,---,7,], a family of features can be constructed as
{wf‘._.ly. [y € {r1,---.xzn}}. When p = 1, it is the first-order feature, and when p > 2, it is
higher-order features.
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their different recognition accuracy, which may not be preferable when certain clas-
sifiers are known a priori to perform better or worse than others. Consequently, the
second disadvantage results in another undesired result that the Borda count function
lacks learning ability, and will not improve its performance even when it is exposed
to more and more data.

Although the purpose of class set reduction is to minimize the size of the candidate
class set, if it cannot guarantee that one and only one class is contained in the result
class set, it may not be applicable to some classification problems with only a small
number of classes, such as numeral recognition. In general, the operation of set
intersection is beneficial only when all classifiers have the correct class labels in a
reasonable range of neighborhood, so that thresholds on neighborhood sizes can be
selected in such a way that the candidate set can be small, while the true class
is not missed. The union operation is preferred for combining a set of a highly
specialized classifiers, because the strength of cach classifier can be preserved, while
its weakness can be compensated by other classifiers. However, it is difficult, if not
impossible, to find such specialized classifiers in practice. Another disadvantage of
the two methods is that only rank information is used to derive the final classification
decision; no doubt, valuable measurement information is lost in the combination
process. Consequently, both methods are unable to achieve the best recognition

performance.
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Mandler understood that it is import.:nt to utilize all measurement-level informa-
tion when dealing with CME by first transforming measurement values into confidence
values. But he uses a Dempster-Shafer formula to aggregate confidence values, which
inherently has an independence assumption. Franke realized that all the classification
outputs from every classifier should be input at the same time in order to derive the
transformation matrix A. The weakness of his method is that the output of individual
classifiers is used as the direct input of a polynomial classifier, without normalization.
Due to the various scales and mecanings of measurement values from individual clas-
sifiers, it is very difficult, or even impossible, for the polynomial classifier to derive a

generalized weight matrix (A*) which can be good for diversified cases.
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Chapter 4

A New Model for Abstract-Level

CME

4.1 Introduction

A thorough analysis of the reason why most abstract-level CME methods (such as
voting, Bayesian, and Dempster-Shafer) require the independence assumption reveals
that either each classifier is treated equally, or the probability is derived from the
confusion matrix of a single classifier in isolation. To eliminate this assumption, the
probability should be derived from a knowledge space which is able to record the be-
havior of all classifiers on each sample concurrently [90]. Based on this realization, we
developed a novel CME method [91, 90, 92, 93. 94, 95, 96}, which derives its decision

from a so-called Behavior-Knowledge Space (BKS). Basically, this method operates



in two stages: (1) the knowledge-modelling stage, which extracts knowledge from
the former classifiers’ decisions and constructs a K-dimensional behavior-knowledge
space; and (2) the decision-making stage, which combines classification decisions gen-
erated from individual classifiers for each test sample, enters into a specific cell of the
constructed space, and makes a final decision by a rule which utilizes the knowledge
of the cell. Excitingly, it has been shown that the BKS method possesses many ad-
vantageous propertics ~uch as (1) adaptive learning, (2) automatic threshold finding,
(3) theoretical performance analysis of the combination of partial classifiers, (4) the
optimal solution for abstract-leve] CME from the theoretical point of view, (5) better
or equal performance with additional combined classifiers, and (6) no assumption that
classifiers are independent of each other, so there is no degradation when dependence
cxists among classifiers.

Before discussing this method, one simple example is given in Section 4.2 to illus-
trate the basic concept. Section 4.3 makes a formal specification of a behavior knowl-
edge space. Then Section 4.4 describes the construction of a BKS in the knowledge-
modelling stage, followed by Section 4.5 which specifies the decision-making strategy
in the testing process. Consecutively, three important theorems derived from the BKS
method are thoroughly investigated in Section 4.6: optimality, semi-monotonicity,
and function dependence. Optimality means that theoretically the BKS meth: d is

capable of producing the highest recognition rate; semi-monotonicity specifies that the



BKS method can produce a better or equal recognition performance with additional
combined classifiers; and function dependence investigates whether the involvenment
of a new classifier will affect the recognition performance of the combination process
if the decisicn of the new classifier is totally dependent on other classifiers. Then,
Section 4.7 describes several advantageous properties of the BKS method, which ac-
count for the superiority of this method. But, two inherent problems of the BKS
method may degrade considerably its practicability to practical applications. They
are discussed in Section 4.8, and several solutions are proposed in this section as well.
Finally, some extended discussion related to the BKS method is deseribed in Section

4.9.

4.2 An Example to Illustrate the Basic Concept of the BKS

Method

Suppose there are two persons (A and B) who are asked to answer yes or no to 400
questions. A and B do not know how many questions should be answered yes and how
many should be answered no. Let there be 200 questions whose correct, answers are
yes, (“yes-questions”); the remaining 200 are 1o, (“no-questions”). Suppose, after
receiving answers to all 400 questions, Table 1 is the accumulated result, of which
there are four situations in total: (1) A:yes and B:yrs, (2) A:yes and Bino, (3) A:no

and B:yes, (4) Ainoand B:no. Each situation contains a two-clement pair (a,b) which
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denotes two numbers of occurrence that match the answers of both A and B — a is
the number of yes-questions and U is the number of no-questions. For example, when
A says yes and B says no, the corresponding element 1s (40,10). This means that 40
of them are yes-questions and 10 of the. » are no-questions, i.e. a total of 50 questions
received both yes from A and no from B. Therefore, for a new question, given that A
answers yes and B answers no, if one wants to decide whether it is a yes-question or
a no-question, then the best decision should be yes because based on past experience
the probability of ycs-questions is 80% and that of no-question is 20%.

Based on the above concept, it takes two steps to make a final decision. Step 1
seleets one of the four situations according to the answers of A and B, and step 2
chooses which of the two kinds of questions has the bighest probability as the final
decision in the selected sitvation. Therefore, final decisions for these four situations
are (1) yes, when A says yes end B says yes; (2) yes, when A says yes and B says
no: (3) yes. when A says no and B says yes; and (4) no, when A says no and B says
no.

Since Table 1 registers the knowledge described from the behaviors of A and B,
it is called the behavior-knowledge space of A and B. The next section presents a

formal discussion of a behavior knowledge space and its data representation.
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A\D yes no
yes (90,10) ] (40.10)
no | (60,20 (10,160)

Table 1: Accumulated results of A and B

4.3 Behavior Knowiedge Space

A BKS is a i -dimensional array of cells, where cach dimension corresponds to the
classification decision of one classifiecr and has M + 1 possible decision values chosen
from the set {1,2,---, M 4+ 1}. For classifier k, the set consisting of all its possible
classification decisions is called the kth possiblc decision set. For an inpul pattern, if
the decision of a classifier belongs to the set {1,---, M}, it means that the classifier
recognizes this pattern (either correctly or incorrectly}; otherwise, the classifier rejects
this pattern. The intersection of the classification decisions of individual classifiers
occupies one cell of the BKS. In total, there arc (M + 1)} cells in a K -dimensional
BKS; each cell accumulates the number of incoming samples for cach respective class.
Table 2 gives an example of a two-dimensional BKS, where cell (i, 7) is the cell where
er(z) = i and ex(z) = j. Each cell of a 3KS contains three kinds of data: (1) the
total number of incoming samples, (2) the number of incoming samples from each
class, and (3) the best representative class. The learned samples distributed to one

cell/class are called the incoming samples of that cell/class.

A



N (2) 3 5 - 10 17
I (1.1)  (L2) - (Lj) --- (L10) {1,10)
. : : : .:. : : .
| (l’J)
10 |(01) (10,2) - (10§) --- (10,10) (10,11)
1l (11,1) (11,2) - (11j) --- (11,10) (11,11)

Table 2: 2-D behavior-knowledge space.

Symbols related to a BKS are:

BKS
(1)

BKS(c(1),-++,e(H))

'”((I)--((I\)(”l)

a K-dimensional behavior-knowledge space,

the decision of classifier 1 (e(7) € AU {A + 1}),

a cell of BKS, where classifier 1 gives its decision as
¢(1). -- -, and classifier A" gives its decision as e¢(X),
the number of incoming samples belonging to class

m in BKS(e(1), - -, e(K)),

T.(1). «(xy = the total number of incoming samples in BKS(e(1),- - -, e( X)),
M
= 71,(1)...f(1\')(77?), (4)
m=1
R )..(xy = the best representative class of BKS(e(1),- -+, e{/)),
= {1 ()e(n)(J) = Maricm<arne).e()(m)}. (5)



For each cell, only one class should be regarded as the best representadive class. If
two or more classes contain the largest incoming samples, then the first of them is

chosen arbitrarily as the best representative class.

4.4 The Knowledge-Modelling Stage

The objective of the knowledge-modelling stage is to construct a behavior knowl-
edge space based on the classification decisions of the involved classifiers for all train-
ing samples.

Suppose there is a learning set L with n samples, i.c. L = {r(,22,-+-,2,}, and r,
is the zth sample of L (1 < ¢ < n). For onc sample x, let I(7) be its ground-truth class
label and €1(7),---,ex (7) be the decisions of the I involved classifiers, respectively.

Then, the following algorithm can compute the values of all parameters in a BKS:

step 1: Allocate memory to a A'-dimensional BKS, and for cach cell, initialize the

number of the incoming sample of each class to ne 0y
step 2: Set 7 =
step 3: ne ()ees (n(1(7)) 1= Ny (1) (9 (L (2)) + 1
step 4: 7 :=17 + 1;if 7 is not larger than n, then go to step 3;

step 5: For each cell BKS(e(1), -+, e(k), - e(K)), where 1 < b < K and (k) =
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AU{M +1}, do

To(1)el k) = L=y Re(1)e(i) (),

Roiyeeti) = {71 Me(t)e(i)(J) = MaT1cmeme()e(r) (M)}

4.5 The Decision-Making Stage

This stage shows how the BKS method derives the final classification decision from
a constructed BKS. Fur a pattern z, let e(1),---, and e(X') represent the classifica-
tion results of K classifiers, respectively. Then, according to the given information
¢(1),---, and ¢(/'), we can find a special cell BKS(e(1),::-,e(K)) from the BKS.
Because this cell plays an important role in deriving the final classification decision,
let us first make a formal definition of it:

Definivion 1: For the current input pattern x, the cell which is the interseclion
of all the K classifiers’ decisions is called the Focal Cell (FC).

Therefore, the cell BKS(e(1),---,¢(K)) is the corresponding FC of a pattern z
when ey(a) = ¢(1),--+, and ex(z) = e(/). Then, the final decision of = will be

derived from the F'C’ by the following decision rule

Re(])---r(l\') . when Te(l)-~-e(]\') >0

E(xr)=¢ and Te) eBen) i) sy, (6)
Te(1y (1) =M

L M+1 , otherwise.
where A (0 < A < 1) is a threshold which controls the reliability of the final classifica-

tion decision. In fact, in our implementation, to recognize an unlabeled pattern, the
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ratio of the difference in number of incoming samples of the most and second mosi

representative classes and the total number of incoming samples of the corresponding

FC is equal to or larger than a specified threshold A; otherwise, this pattern is re-
- .

jected. However, to simplify the notation, Equation (6) will be used in the following

theorem proving and property discussion.

4.6 Optimality, Semi-Monotonicity and Function Depen-

. dence of the BKS Method

If individual classifiers’ behavior of training data is the same as that of testing
data, then many valuable properties can be derived from this method. For example,
theoretically the BKS method can produce the highest recognition rate for a given set
of classifiers. This property is called the oplimality of the BKS method. Also, the BKS
method will increase its recognition performance as more classifiers are combined,
which is called the semi-monotonicity of the BKS method. When one classifier’s
behavior is dependent upon others, it will not affect recognition performance, which
is the function dependence of the BKS method. Again, it should be specifically pointed
out that the following discussion is based on the assumption that the knowledge of
classifier behavior derived from the constructed BKS is unbiased and genuine. In
other words, these good properties are discussed from the theoretical point of view

which is based on statistics derived from the data.
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4.6.1 Optimality of the BKS Method

Since a few abstract-level combination modules have been developed already, it is
natural to ask “Can the BKS method perform better than other combination mod-
ules?” In this sub-section, a theorem is proven which specifies that for a set of
abstract-level classifiers, the BKS method is the combination function which is capa-
ble of producing the highest recognition rate. This theorem ensures the superiority
of this method.

Theorem 1: Given K abstract-level classifiers, theoretically the BK'S method can
produce the highest recognition rate.

This theorem can be proven in two ways.

Proofl:

Let BEL(7) be the probability that pattern z comes from class : when the K
individual classifiers output their classification decisions. For abstract-level CME,

when each classifier ¢4 gives its decision e(k), then BEL(7) becomes
BEL(i)= P(z € C\|er(x) = j1,- -, en(x) = jx, ENF)

where P(.) is the probability function and EN® denotes a knowledge space which
describes that each classifier has at most M +1 discrete decisions and also which stores
the behavior of the K clasrifiers. As a matter of fact, the corresponding BKS of the K
classifiers can serve ENN. Accordingly, the situation under {e;(z) = j;, - -,ex(z) =
jr and EN®} is actually the same as that of the current FC, i.e. BKS(jy,- - yIK)-
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Therefore, the belief function becomes

BEL(#) = P(r€ C| BKS(y, -, jw)).
Making use of the knowledge of FC, we get

BEL(Z) —_ nJl""'Jl\ (1)

Tor v,
According to the Bayes decision rule, a pattern should be assigned to the class having
the largest a posteriori probability, so that the classification errov is minimal. This
implies that the class with the largest belief value should be chosen as the final
decision. In fact, the chosen class is the class with the most numerous incoming

samples. Therefore, the decision rule becomes

4

j » when Ty vy > 0 and

E(‘T) = 9 'Ilc(])...e(]\‘)(j) = maX,ep ne(]) ..,(1\)(1'),

k M+1 | otherwise.

The above decision rule is identical to that of the BKS method with A = 0 (sce
Equation (6)). Therefore, this concludes the proof that from the theoretical point of
view, the BKS method can achieve the highest recognition rate for the combination

of abstract-level classifiers. O
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Proof2:

In fact, for a pattern z the decisions of /' individual classifiers can construct a
K-dimensional feature vector. Since the decision of each classifier is discrete and has
a finite number of values, the I-dimensional featur: space also has a finite number
of discrete feature values. Then, the a posteriori probability that the input pattern

belongs to class i given a feature vector [e(1), - -+, e(K')] becomes

) n—;ﬂl‘-—ﬂ—;ﬂ , if Te(l),...,e(]\') > 0;
P(reCle(l), -, e(K),ENY) = e et
undefined , otherwise.

where n,(1),....(x)(7) denotes the total number of occurrences that a sample belongs
to class 7 at the feature point (1), -, e(1)K), T,(1),....e(n) denotes the total number
of occurrences at the feature point (¢(1),-+-,¢(K)), and EN" denotes a discrete and
finite A-dimensional feaure space which is constructed by combining the K abstract-
level classifier decisions. According to the Bayes decision rule, if a pattern is assigned
to the class having the largest a posteriori probability, then we can obtain the best
recognition performance with the highest recognition rate (i.e. the minimun recogni-
tion error). This implies that the class with the largest number of occurrences should

be chosen as the final decision. Therefore, for the minimum recognition error the
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decision rule becomes

J , when T,(1)..c(n) > 0 and

E(r) = 4 Ne(1)me(W)(J) = MaX,ep Me(1)ee(h)1)3

\ M +1 , otherwise.

The above decision rule is identical to that of the BKS method with A = 0 (see
Equation (6)). Therefore, this concludes the proof that from the theoretical point of
view, the BKS method can achieve the highest recognition rate for the combination

of abstract-level classifiers. O

4.6.2 Semi-Monotonicity of the BKS Method

Since the BKS method will produce the best recognition result for combining
multiple classifiers, then there arises a question, “Will the combination of more clas-
sifiers always produces an equal or even better decision?” In other words, will the
combination of &' 4+ 1 classifiers have an equal or even better result than that of K
classifiers? Theoretically, if a method E is the globally optimal CME method for any
k abstract-level classifiers and there is one more classifier involved, then the recog-
nition performance of the K + 1 classifiers should be equal to or even better than
that of the K classifiers, because the worst. case is that the (K + 1)th classifier is just
not used for the combination at all However, from a different point of view, it seems
to be contradictory to our intuition. In human society, if one person is not qualified

for a specific task or has a bad reputation with regard to his/her working attitude,
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it is proper not to include this person in a team, because he/she may impede the
progress of the team. Fortunately, this impediment will not happen from the theo-
retical point of view when adopting the BKS method. The following gives a formal
proof to confirin the validity of the semi-monotonicity property.

Thenrem 2: Usimg the BKS method, theoretically the combination of K + 1
clussifiers will produce an equal or even beller resull than that of K classifiers.

Proof: This can be proven by induction.

Step I: When K = 0 (which means that there is no classifier), then each class gets
the same possibility 37 of having the input pattern. When one needs to decide which
class this pattern belongs to, no matter which class is chosen, the average recognition
rate will be 4 and the average substitution rate is A% If one classifier is included,
then there exist M + 1 cells in the corresponding BKS, 7.e. BKS(1),---, BKS(¢), -+,
and BKS(M +1). For any cell BRS(7), 1 <7 < M +1, suppose its best representative
class is K,, then

R, = {] | n(j) = 771a1‘15m5M"1("’)}-

Obviously,

n{(R) 2 n,(m), Ym € A.

Therefore,

Mxn(R) 2 Z n(m).

1<m<M
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Then,
n,(K,)

Elgmgm n,(m)

1
2 e

The above equation specifies that the recognition rate for cach cell BRS(7), 1 <7 €
M 41, is equal to or larger than -Al—, Accordingly, the final recognition rate produced
by this classifier is also cqual to or larger than 57. This shows that “The statement
is true when K = 0".

Step 2: Suppose the statement is true when i = n (n is a positive integer). Then
each cell in the corresponding BKS is in the form BKS(e(1),:--,¢(X)). When an-
other classifier is added, then each cell of the corresponding BKS becomes BRS(e(1),
e, e(K)e(K +1)) . In fact, each cell BKS(c(1),- -+, e(h)) is further decomposed
into M + 1 cells, i.e. BKS(e(1),---,¢(N),1), -+« BKS(e(1),- -, ¢(K),7), -+-, and
BKS(c(i-, -+, e(A), M + 1). We call cell BKS(c(1),:-+,¢(/)) the parent of cells
BKS(e(1),--,e(l),7), wherei € {1,---, M + 1}.

Let Re(1).(k) stand for the best representative class of cell BKS(¢(1),---,¢(K))
and Re(1)..e(i) stand for the best representative class of cell BKS(c(1), -, e(K),7);
then

Re(l)---e(l\’): ={J |7?e(1)...e(1\'),(j) = 77WT157;15M“«{1)---z-(I\)x(”')}-

Obviously,

ne(”...c(;\),(Rc(])...c(}\'),) > 71((1)...((;\').(171), Vm € A. (7)
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Because K, (y)..cw) € A, therefore
(1) oK) (Be1)ee(Wp) 2 Ne()e(h o (Re(r)e(k))-

The above equation means that for cell BKS(¢(1),- -+, ¢(K),7), the number of incom-
ing samples for its best representative class is always equal to or larger than that for

any class, which surely includes the best representative class of BKS(e(1),-- -, e(K)).
Therefore,
Yo etk (Reyeny) 2 D Heqa)ee(w ) (Reqrye(m))-
11SM+1 1<1SM 41
T'he right part of the above equation is indeed equal to ne(1)...e(w)(Fe1)e(r)), 50 it
hecomes

S ey p(Reyeiy) 2 Ne(r)e(i) (Be(rye(i))-
1< <M 41

Dividing the above equation by Te(1)..e(h), then we obtain

L1 <isM 1 Me()oe (K (Betr)e(wn) o Mer)er) (Ren)-ei))
Te(1)e(iv) - Te(1)e(i)

.

Since the summation of the incoming samples for cells BKS(e(1),:--,e(K),1), -+,
and BKS(¢(1),---, ('), M + 1) is the same as the number of the incoming samples
Te1)eqny OF coll BES(e(1), -+, e(K)), 2.6 Torye(i) = Zoad? Teqa)e(r):, then we get

Zl<(<A1+1 nr(l)---e(l\'):(lze(])-»e(}\'):) > 7ﬂlf*(])---e(l\')(E{e(l)---e(l\')) (8)
S Te1).e (i - Te1)-e(k)

Equation (8) shows that the average recognition rate of all children cells is equal to or

greater than that of their parent cell. Since the recognition rate of each cell is equal
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to or smaller than the average recognition rate of its children cells. it becomes clear
that the recognition rate of the n + 1 cassifiers is equal to or larger than that of the
n classifiers. This shows that “the above statement is true when N = n (1 is any
positive integer)”.

Step 3: Therefore, by induction, we can state that “the recognition rate of A + |
classifiers is equal to or larger than that of A™ classifiers for any A", This concludes
the proof. O.

We may ask in what situations the performance of A +1 classifiers will equal that
of I classifiers. Obviously. the answer comes from Equation (7) when only the equal

relation is kept. i.c.

Me(1) .8(1\'),(126(1)...((1\'),) = 71((1)...((1\\,(R,“)...,(l\)) Vi € {1,"-,/” + ]}. (9)

Interestingly enough, two cases have been shown to satisfy Equation (9):

(1) the (K + 1)th classifier has a totally random behavior; and

(2) the behavior of the (A" +1)th classifier depends on those of the other K classifiers,

e e(N +1)= f(e(1),---,e(l)), where [ represents a function.

For example, suppose there are 90 incoming samples in BKS(< (1), -, ('), 80 sam-
ples belonging to class 4 and 10 to class 5. Obviously, R(¢<(1),---,¢(/)) is 4. In
case 1, there will be 9 samples in cach BKS{c(1),- -+, c(K),2) for all 7 € {1,--- M};

among them. 8 aud 1 samples belong to classes 4 and 5, respectively, Therefore,
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Equation (9) is true. In case 2. only one possible value will be generated from the
(A + 1)th classifier when ¢(1). -« and (A} are given. Suppose this value is 15 then
all incoming samples in cell BRS(e (1), ¢(N)) will become the incoming samples
of cell BKS{c(1).-+-,¢(A).]). and no samples will enter cell BRS(¢ (1), ¢ (K).1)
foralli# T and 7€ {1.--- M + 1}. Undoubtedly. Equation (9) is true in this case

as well.

4.6.3 Function Dependence of the BKS Method

The above discussion reveals an interesting observation: if the classification deci-
sions of a classifier a1. totally dependent upon those of other classifiers, then from the
BKS point of view, this classifier offers no improvement to the recognition accuracy
of combination at all. This phenomenon will be deseribed in Theorem 3.

Theorem 3: Given N +1 abstract-level classificrs, if the bohavior of the (K +1)th
classifier is totally dependent upon the resulls of the other K classificrs, then adding
the (IV + 1)th classifier will not timprove the recogmition accuracy.

Proof:

Suppose classifier (K + 1) behaves totally dependent on the other A classifiers,
this means that the decisions of classifier (K + 1) can be described exactly by the

decisions of the other A" classifiers through a function f. Therefore, whenever the

decisions of the other A" classifiers are given, the decisions of classifier (K + 1) will
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be generated definitely. This dependence can be expressed as
(KN +1)=T(c(1),---,e(K)).

It is ecasy to verify that all incoming samples of BKS(e(1),---.e(#)) will also be
the incoming samples of BKS(e(1),-++,¢(I),e(K + 1)), and there are no incoming
samples which enter BKS(e(1),-+-,¢(K),7) if ¢ # ¢(K 4 1). The1fore, using the
decision rule of Equation (6), obviously the recognition performance of the K + 1

classifiers is the same as that of the A classifiers. O.

4.7 Other Advantageous Properties

This section describes four other advantageous properties of the BKS method,
namely adaptive learning, automatic threshold finding, theoretical performance anal-

ysis, and no assumption that classifiers arc independent of each other.

4.7.1 Adaptive learning

Learning is an important function of any recognition system. This function can
gradually improve the system’s performance by continuously accumu'ating more input
data. Adaptive learning means that the algorithm can learn and adapt its knowledge
to the real behavior of the given (particular) application. The learning ability can be
implemented as follows:

Suppose [ is the ground-truth class label of the input pattern «, and e(1), - -, e(K)
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represent the classification decisions of the K classifiers to 1 then the learning algo-

rithm of the BKS method will be:

1. nc(])...f(}\')(]) = 12.(1)..,(]\')(1) 41,

2. Tc(l)-ue(l\') = (1) - e(K) + 1,

N

3. Retyeer) = {U10c01) ey (J) = maricmarreqy. ny(m)}.

4.7.2 Automatic Threshold Finding

Since the performance of ar. OCR system usually is not perfeet (ie. 100% recog-
nition and 0% substitution rates), different performances are required for different
applications. For example, the substitution rate should be very close to 0% in mone-
tary applications, but shgiit errors are tolerable for address reading, such as one error
per 1000 pieces of mail. Therefore, it is important that a system can automatically
adapt itself to its required performance. The goal here is to find a threshold Py for
Equation (6) which assures that the system will perform at its required level. Let
C(P,) be defined as an error function which is the weighted sum of three values, cach

of which is the square of the distance between required and derived rates, that is

C'(P) = error function

= a*(DC = CP+A*(D.S ~ S)24 v+ (DR = R)?
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where « is the weight for the recognition rate,
4 is the weight for the substitution rate.
v is the weight for the rejection rate,
C is the required recognition rate.
S is the required substitution rate,
R is the required rejection rate,
D_C is the derived recognition rate,
1D.S is the derived substitution rate, and
D_R 15 the derived rejection rate.

In general, a 4+ 4+~ = 1.0. The values of a, 3,4, C, § and R should be supplied
for a specific application, and considered as system requirements. Of course, the sum
of C, § and R is equal to 1.0. The values of D_C, D_S and D_R can be derived from
the BKS by Equation (6) with threshold F;; their sum is 1.0 as well. To compute

D_Ct, DS and D_R, four new variables are defined below:

N = the total number of incoming samples in the whole BKS,

M M
Y 2 Teayeew:

e(1)=1 e(K)=1

Deg1y..eqry = the proportion that cell BKS(e(1),- -, e(/')) to the whole BKS,

Ter) e(h)

- ’

N

-1
-1



Py «ny = the probability of the best tepresentative elass in BRS( (1)L - (),

neny e (o) c(ny)

Ty e

and.
Py . ony- ) = the acceptance index function,
_ Ioowhen Py oy = D
0 . otherwise.
For a cell BRS(c(1).---. ¢ (N)). there are two exclusive situations between P4y, n)
and Fy:

(1) Pepryee(wy < Ioall the samples in this cell are rejected: thereflore, its in
fluence on both D_C" and D.5 is 0. and on DR is Dy ). In this situation,
S(Py «my-P2) =0.

(2) Pegyeqny 2 Proall samples in this cell are accepted; Ty oy * Doty «qn)
samples are correctly recognized and T, (1) n) # (1 — L1y wqny) samples are mis-
recognized. Therefore. its influence on D_C'is D,y ny * Pty on), on DS is
De(rye(ny * (1 = Peqry. «(ry)- and on D_R is 0. In this sitvation, f( Py ny. 1) = 1.

In fact, the two situations can be combined into one more general form: for a cell
BKS(e(1) - e(K)), its influence on D_C is D,y ny * Poyy ony * S(P0y iy P,
on DS is Dey.ony ¥ (1 = Peppyeery) * J(Pnye ey Pr)y and on DR is Doy o) #

(1 = f(P1yen)- P2)). Therefore, summing up the influences of each cell in the BKS
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' Al 41 M+
I)“( :27“—::[‘..2:([\]:] ])l(l) F(l\)*l)l(l) l(l\)*.f(l)‘(l) ((l\)-,)f)‘

: Al 41 M+l
DS = Z.(1+):1" Z,“f)za I)e(n cny (= Py vmy) e .f{])f(l) f(l\)-])t)-

DR= Z}‘(,ﬁ)i] "‘Z;‘(’/T;:, Doy vy + (1= f(Fyy ey PO

After substituting the derived values of D_C'. DS and D_R into Equation (10).
the error function C'(F) becomes
vy k M )
ctry= o (SN NS Doy * Py ooy 2 SRy eanys 1) = CJ
A i
+ A Z L S Dy iy (U= Loy o) S(Peayei)- Pe) = SPP

+ a2 [ o Dy oy # U= TPy anyo P)) = R
(10)

where Iy is the only variable which is unknown. Obviously. the smaller the value of
C'( 1) is. the closer the derived performance will be to the desired one. Therefore, the
best Iy (denoted by PP7) is the one which minimizes the value of the error function,
e, C(P*) = minocp, <) C(F). There are several optimization algorithms which are
capable of finding P*, c.g. simulated annealing [97] and random optimization [98]. In
short, whenever a.3,7.C.S. and R are known, the best threshold P* can be found
automatically by using Equation (10).

Although. Equation (10) can derive the best threshold for the required perfor-
mance, I7* may not be the real best threshold from the viewpoint of an OCR system.
This can be clearly illustrated by an example. Suppose o = 8 = 4 = 1. C = 98%,
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S = 1% and R = 1% then the following two cases will produce the same value of

error functions;
case 1: D_.C =99%. DS = 0% and DR = 140
case 2: D.C =97T%. DS =2% and DR = 1%.

The error value of the two cases is (*(F)) = ‘1‘( '+ = =; Since the higher recognition
rate and the lower substitution rate are preferred in an OCR system, the result of
case 1 is indeed much better than that of case 2. This indicates that a situation
where either D_(" is larger than (" or D_S is smaller than 5 should not only have no
increment., but also should reduce the error function. Also. the rejection rate can he

derived when both the recognition and substitution rates are known, r.c¢.

rejection rate = 100% — recognition rate — substitution rate.

Based on the consideration of the above two points. a probable modified error funetion
becomes

C(P) = ar g (C.DC) + A+ ga(S,DS) (11)
where

(D¢ - C)* . whenC > DC,
a(C. D) =

—(D.C = C)* , otherwise;

and



(DS — 8)2 . when § <D.S,
$(8.DS) =
-(D.S - §)* |, otherwise.

Sometimes one does not know exactly the appropriate values for a and 8. How-
ever, C is usually required to be much larger than §. Many applications require high
refiability and cannot endure substitution rates over 0.1%, otherwise it becomes too
risky to use such OCR systems. For these applications, 3 should be very large. In
general, the lower S is, the larger /3 should be. Accordingly, an intuitive suggestion for
o and /s to set them to the reciprocal of the square of their individual corresponding
desired rates, that is a = & and 3 = ;.
4.7.3 Theoretical Performance Analysis of the Combination of a Partial Set of

Classifiers

Theoretically, combining more classifiers will probably produce a better recog-
nition performance as stated in Theorem 2. However, more powerful hardware is
required to enhance the speed as well. In reality. the performance and the cost of
the supporting hardware should be considered at the same time, 7.e. the trade-off
between the number of classifiers and the cost of the supporting hardware. Therefore,
how to compute the performance of a variable number of classifiers and how to find
the subset of classifiers which can perform best are very important topics.

Suppose n classifiers have been selected from the original K classifiers (n < K).

Then. the main operation to solve this problem is to constitute a new n-dimensional
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BRKS of the n selected classifiers from the A'-dimensional BKS, where the correspond-
ing performance of the n classifiers can be derived. In the following discussion. let
(1) ¢ = {f1 000+ in} tepresent the index-sequence set of the n classifiers, whete 4,
denotes the iith classifier, --., ¥, denotes the 2,th classifier, and ¢ C {1.--- K}
(2) g represent the complementary set of the index-sequence set g over {1,2,--- K},

. §={j1, o dn-n} =1{J1J €¢.J € {1.---,N}}; (3) BKS, and BKS,, denote a
K -dimensional and an n-dimensional behavior-knowledge space respectively; and (4)
I be a funtion which has a K-dimensional input domain and an n-dimensional out-
put range. For example, suppose the first and the third classifiers have been chosen
among four classifiers (K = 1), then ¢ = {1.3} and § = {2,4}. Then the mapping

can be formally expressed as
h : BKSpy — BKS,,

where h forms a cell BKS,(e(71),- -+, ¢(7,)) by merging (denoted by operator ) all

the cells with the same decision values of the corresponding dimensions {iy,---,1,}

of BKS,-. That is

BKS,(e(i1),-+-.c(in)) = U BRSk(c(1),,e¢()), -+, (K))

uep and (e(z)e{1,M+1})

' )
where {J produces "c(:.)~-e(;,,)("‘) and ],(”)._,L(,") as
M4l M+l M+l

1 v-
ne(n)-~~e(m)(7n)= Z Z 2 Tl,(”‘..,(;\')(n))

e{n)=1 e(g)=1 (sn —n)=1
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and
M+1 AM+1 A+l

Ty = 2 0 0 o 9 Tety. i)

()=t (ax)=1 (1K -n)=1

where 1 <m < M, jp€qGana l k< K —n.

Accordingly, the best represent tive class for BKS, (¢(71), -+, ¢(7,)) is

I{((”), () = {.} ' "r(tl)---((t")(j) = nla‘TISmSAlnc(u)~--e(1n)(rn)}‘

Among I classifiers, there are a total of C(K,n) = ,(,\ S different combinations
of n classifiers. Let ¢" = {¢],---,2]} correspond to the rth combination; then the

performance index of ¢7 is defined as

Af+1 M+1 !
Zb(t;)—'] “'Ze(t") 1776(1') (2, (Re(z")--e(x;))

PER(¢) = _
+1 M4l '
L=t 2e(ir)=1 Le(i])e(ur)

(12)

In fact, PIZRR(q") is the recognition rate of the combination of classifiers ¢7,-- -, ],

with no rejection. Let ¢° correspond to the sth combination which produces the

highest performance index; then

PER(¢')= max PER(q"). (13)

1<r<C(R,n)

Obviously. the n classifiers belonging to ¢* will have the best performance among any
n classifiers, and should be selected to derive the final decision.

In practice, if combining 3 classifiers has already satisfied the performance require-
ment for the current application, then it is not necessary to add any other classifier to

improve the system performance. Based on this realization, the following algorithm
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can deduce the best combination with the minimal number of classifiers to satisfy
the required performance, by using the properties discussed in sub-sections 1.7.2 and
4.7.3 together. For a more general purpose, let 5 denote an error-tolerance threshold,
indicating the maximum acceptable error between derived and required performances.
Given a set of classifiers. the following algorithm has the ability to seleet the minimum
number of classifiers which are capable of deriving the final recognition decision with

an average error less than 1.

step 1: Input the values of a. 3, 4, C, S, R and ;

step 2: Set n = 1:

step 3: Compute the performance indices of all combinations of 22 out of I\ classitiers

by Equation (12);
step 4: Compute the best combination (¢°) by Equation (13);

step 5: Compute the error funciion C'(F) of set ¢° and its corresponding threshold

value P* by Equation (11);

step 6: IFF C(P") is smaller than 7, THEN the solution has been found and it stops;

step 7: IF n is equal to K (the total number of classifiers), THEN it stops with a

FAILURE output, ELSE n =n + 1;

step 8: Go to step 3.
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When the algorithm stops with a FAILURE signal. it means that the requested
system performance is unable to achieve even when all the i classifiers are combined;
otherwise, n indicates the number of classifiers which should be combined and ¢°

indicates the index-sequence set of the corresponding classifiers.

4.7.4 No Requirement of Classifier Independence

Methods such as voting, Bayesian, and Dempster-Shafer assume that the behavior
of individual classifiers is independent of each other. In practice, their performances
may degrade considerably if this assumption is not satisfied. However, the BKS
method will not suffer from this drawback, because it does not assume that classi-
fiers are independent of each other. This argument will become clearer through the
following discussion.

Suppose there are I + 1 classifiers, and the behavior of the (K + 1)th classifier
totally depends on those of the other I classifiers. From Theorem 3, we know that
all incoming samples of BKS(¢(1),---,e(l\')) also enter BKS(e(1),---, e(R), f(e(1),
<+ +¢(N))), where f is a function mapping e(1),:--, and e¢(k’) to e(A + 1), that is
(N 4+ 1) = f(e(1),-+-,e(N)). Therefore, the recognition performance of combining
the N + 1 classifiers is the same as that of combining the other A" classifiers.

Although, from the theoretical point of view, the dependence between classifiers
does not degrade the recognition ac~uracy, it does require extra memory to produce

many redundant cells (a cell with no incoming samples is called a redundant cell).

(v 5]
(1)



Broadly speaking. the number of redundant cells is proportional to the degree of de
pendence among classifiers. This means that the higher dependence exhibited among

classifiers, the larger the number of redundant cells will be.

4.8 Problems and Proposed Solutior .

The above has described the BRS method and its advantageous properties. So
far, this method seems to be perfect, without drawbacks. In fact, there are (wo
issues which could seriously affect its practicality: (1) whether the BRKS method can
perform eflectively when there are not enough learning samples, and (2) according
to the nature of the A'-dimensional BKS. its required memory is exponential, and
will become intolerably high when I is large. In this section, useful solutions are
proposed to address these two issues, so that the practicality of this method can be
ensured. These solutions also show the flexibility in manaeng the knowledge of a

BKS.

4.8.1 Not enough learning samples

The efficiency of the KBS method depends on the representativeness of a BKS to
the real classifiers’ behavior. Therefore, if the learning samples are nol mmmerous or
representative enough to make the BKS fully represent the classifiers’ behavior, then
the KBS method cannot maintain the optimality of Theorem 1. Differing bebavior be

tween training and testing samples is indeed the most serious problem hefore the BKS
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method can be reliably applied to real applications. However, this problem can be
solved by incorporating the BKS method with anothe: abstract-level CME method
A (c.g. voting, Bayesian, or Dempster-Shafer). Heuristically. the method produc-
ing the best recognition performance among all other abstract-level CME methods
should be chosen as method A. Accordingly. whenever there is useful information
(.. To1y «ny > 0) in the corresponding focal cell (FC), then the final decision will
be computed by the BKS method (Equation (6)); otherwise, the decision should be

~omputed by the chosen method A. The final decision can be made as follows:

", ef IV (R, e \') B
Royery =2 7‘-"“’} E((:\,)) UL > a and Teqq).er) 2 0

E(r) =1 E@)of A ,Tu1)eqn) = 0;

i 0 .otherwise.

In fact, if too few samples (c.g. less than 3) are accumulated in a cell, then the
behavior representativeness of this cell will not be sufficient enough to make a reli-
able decision. To teduce the risk of making decisions in such a situation, a number
threshold 3 should be set in order to make more reliable decisions. Therefore, the

decision rule is modified to

3

M) ep)(Ren) en)) . .
]‘)((l)~ (K)o . Ter) e”]\.) . 2 a and Te(1)~--e(l\) 2 ﬂv
E(ry= E(r)of A .maxy > Xand T, (1y.en) < B
0 ,otherwise.
\

where 515 a number threshold which determines whether the current FC should make

a definite decision or not, A is a reliability threshold for method A, and max,4 stands
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for the largest belief value to a certain class derived from method A.

4.5.2 Exponential memory requirement

Exponential memory requirement is a crucial constraint of the BKS method. In
the case of numeral recognition with four classifiers, the total number of cells is
11% = 14641. Since each cell contains the number of incoming samples for cach digit
the BKS needs at least 14641 * 10 integers to store the information. The size of the
BKS will increase rapidly if more classifiers are to be combined. Therefore, it is very
important to find solutions which can reduce the exponential memory requirement.
Three sclutions have been proposed and are described below.

Solution 1: Dynamic class allocation

Originally. each cell allocates a certain amount of memory to cach class to connt
the individual incoming samples. However, cach class does not always have incoming
samples. Thus, it should be more reasonable 1o allocate memory to a class in a cell
only when necessary. This means that instead of allocating memory to M classes
in each cell, if some classes do not have any incoming sample, no memory will he
allocated to them.

Solution 2: Dynamic cell allocation

A K-classifier BKS is a K'-dimensional space. Usually, it is an extremely sparse

space when It is large, i.c. many cells do not have any incoming sample. With the

same concept of Solution I, it should only allocate memory to the necessary cells.
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This means that instead of allocating memory to all cells, if some cells do not have
any incoming samples, no memory will be allocated to them.

However, when the cells are dynamically allocated, it is necessary to have an
efficient mechanism to reorganize these allocated but scattered cells. Obviously, the
mechanism must have two basic abilities: (1) to insert or delete a cell, and (2) to
search for any cell. In Solution 3, we will see that it is necessary to maintain the
additional comprehension of being able to delete a cell. For the purpose of searching
cells, a cell should be represented by a unique index value. As a result, the index
value for a cell BKS(¢(1),---,¢(X')) can be expressed as

index(BRS(e(1)---e(K)) = Shc(k)* (M 4+ 1)1,
= (1) 4+e(2)* (M +1)+--+e(A)x(M+1)F1,
With the indices of cells, several tree construction algorithms (such as AVL trees [99]
or Bt trees [100]) are appropriate for organizing the scattered cells, if they satisfy the

following two requirements:

1. The algorithm constructs a balanced tree which takes about the same amount

of time to search any leal index;
2. It can easily insert or delete a leaf index.

Solution 3: Condensed editing technique
This solution is motivated by the concept “kecp only the necessary knowledge

in BKS™. This means that whenever a decision made by the BKS method is the
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same as that made by another CME method which requires less memory, then the
corresponding cell of the BKS will be deleted from the constructed tree, because
the same decision can be derived from the other CME method. Intuitively, the
method chosen in Section 4.8.1 could also be chosen here. Suppose method A is the
chosen method and E(z|ei(x). -+, cx(x), END) stands for a combination function
when N classifiers give their decisions as e((r),-- -, and ey (&) respectively; then the

constructed index tree can be pruned by the following rule:

IF E(x|ey(a), -, ex(a), EN¥) of the BKS method
= E(x|ey(x)e--+,er (), EN™) of method A,
THEN delete the node with index (¢(1),---,e(/)) from the constructed tree.
After performing the condensed editing technique. the decision rule supported by

both the BKS method and method A becomes

IF index(e(1),---,e(A)) exists in the constructed tree,

{
Ne1) eae)ecty e(ny) >
Tecty ey -

Re1).e(r) >
THEN E(z) = 4

M+1 , otherwise;

\

J , il (Bel(3) = max,epBel(i)) > X
ELSE E(z) =
M 41 , otherwise;

where o and A are thresholds with 0 < a,A < 1, and Bel(:) is the belief value
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computed by method A

4.9 Further Discussion

4.9.1 Will the BKS Method Benefit from Consecutive CME?

A5 deseribed hefore, consecutive CME is based on the hypothesis that since CME
may achieve higher classification accuracy than individual classifiers, by further com-
bining the results of different CME approaches even higher classification accuracy may
he achieved. Heuristically, this hypothesis seems to be gnite reasonable. However,
from the theoretical point of view, because the BKS method has already achieved the
rlobally optimal classification accuracy for a given set of classifiers, it is intrinsically
impossible for another CME method to obtain a higher classification accuracy than
the BKS methed for the same set of classifiers. Obviously. there is a conflict between
human heuristic and theoretical understanding: this conflict may be clarified through
the following discussion.

Suppese there are K classifiers ¢;.---, e, and n abstract-level CME methods
whose combination modules are 4;,---. and A,. respectively. Let O, be the output
of A, i€ {l,---.n}. Then,

Ox = A,(G],' e 361\')~

This means that O, is functionally dependent upon ¢y, ---, and €. Therefore, when

the decisions of the K classifiers are given. then A, can only produce one unique
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result. From Theorem 3. it is casy to verify that the recognition accuracy of com
bining €1.--+, ¢ is the same as that of combining both ¢+, and A, A,
Accordingly. the combination result of the A classifiers will equal that by using both

the A" classifiers and the n CME modules.

4.9.2 More Training Samples and Different Initialization

The success of the BKS method depends on the representativeness of the hehav-
ior of training samples with respect to that of testing samiples. One commonly-used
approach to increase the representativeness is to enlarge the number of training sam
ples. Naturally, a leave-one-out estimation [13] might be adopted to test recognition
performance: all samples but one arc learned and the unlearned one s fested. The
same operation is repeated until every sample in the data set has been left out and
tested. In general, the leave-one-out estimation can produce the most unbiased recog-
nition performance for a given set of training samples. However, for the BKS method,
when applying the leave-one-out estimation. a low substitution rate may be difficult
to achieve. This can be explained clearly by the following example: suppose one cell
BKS(4.9) has 4 incoming samples; among them, three belong to digit 47, and one
(name it B) to digit “97. Obviously. the leave-one-out estimation always makes one
error, no matter what value threshold a may be. This is because when B is the one
left out, the BKS method will decide with total confidence that each sample in this

cell is digit “4".




This phenomenon can be overcome by two schemes. The first is simply to collect
more training samples: obviously, if there are moie samples to make those irregular
cases repeatable, then the substitution rate should be more sensitive to a and more
casily reduced. For example. suppose the number of incoming samples of this cell is
doubled, so that 6 incoming samples belong to digit “4”, and 2 incoming samples to
digit “9”. If the threshold a is higher than £, then all 8 samples of this cell will not be
recognized but reject ~d. However, this approach is not pertinent to some applications,
because it may be too difficult or expensive to collect more samples for them. The
second scheme is to initialize the number of incoming samples of each class in each
cell to 1. instead of 0. Using the same example above (i.c. 3 samples belong to digit
“4" and 1 sample to digit “97). if the sample belonging to digit “9” is left out, then
nyo{d) =34+ 1 =4 and n404(9) = 1. Accordingly, if the threshold a is larger than %,

then this sample will be rejected. Experiments have shown the effectiveness of these

two schemes.

4.9.3 Extension of Ambiguous Classification Decisions
For an unlabeled pattern r, suppose there are two classifiers, and classifier 1 (¢;)
cannot make a single choice but decides that r may be from either class A or class

B. and classifier 2 (¢;) gives its classification decision to class (" decisively. In other

words. ¢ = {AV B} and ¢; = C. Therefore. the belief that r belongs to class 7 will
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be expressed as

BEL(i) = P(r € C,| ¢, = {AV B} «2 = C. EN?),

If there is an element corresponding to the decision {4V B} in the possible decision
set of the first classifier. then the above probability can be computed from a two-
dimensional BKS directly. Therefore, the decision rule of Equation (6) can be applied
to derive the final decision as well, because theoretically ambiguous decisions can be
combined by using the BKS method without difficulty. However, in practice, there
are three aspects which make the above scheme hard to implement. First, for a
given classifier. we cannot guarantee that all ambiguous decisions of unseen samples
will appear in training samples. In other words, some ambiguous decisions may not
appear in training samples. but only in testing samples. So it is impossible to encode
all ambiguous decisions into the corresponding possible decision set.  Secondly, to
include all ambiguous decisions in a BKS, much inore computer memory is required
to maintain a BKS. which is already a serious problem to the BKS method. Thirdly,
many training samples are required in order to make several repetitions of the rare
ambiguous classification decisions. Accordingly, another scheme is proposed to serve
this end: in the knowledge-modelling stage, for each classifier only a subset A of all
ambiguous classification decisions is considered in its possible decision set. Among
the training samples, each element of subset A appears more frequently than the

other ambiguous decisions not in the subset. In other words, on'y the most frequent
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ambiguous decisions are encoded in the corresponding possible decision set. Then, by
using training sainples and the possible decision sets of all classifiers, a correspond‘se
BKS is then constructed. In the decision-making stage, if the decisions made by all
classifiers can be found in their corresponding possible decision set, then Equation
(6) can serve to derive the final classification decision directly; otherwise a different
decision-making approach will be applied. A possible approach for decision making
is proposed below.

Before specifying this approach, the al. e example is used to illustrate the basic
concept of this approach: there are two classifiers, e; and e,, and for an input pattern

r, e = {AV B} and ¢; = C. Accordingly, BEL(7) becomes
BEL(i) = PxeC,|er=74v B}, eo=C,EN?)

= Px€Ci|ey={AVB}Aey=CAEN?

_ P@ECAe={AVB}Nes=C|EN?) (14)
B P(ey={AVB}Ae;=C|EN?)

Let D and N represent the numerator and denominator of the above equation respec-
tively. To tackle the expression e; = {A V B}, we decompose it into the expression
¢1 = AV ep = B, since any pattern can only genuinely belong to one class. With this
decomposition, then

D = Plr€Chey={AVB}Aey=C|EN?

= PreC,A(ci=AVe =B)Ae;=C | EN?)

= P(r€Chei=ANe;=C)V(r€ CiNex=BAey=C)| EN?)
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and

N = P(f] ={AVB}/\(‘2=(‘|EAR)

= Pller=ANe= C)v (c1=DBAcy=0() l EN2)

In probability theory,
PIXVY)=PX)+ PY)- P(XAY)

where X and Y are two hypotheses. When X and Y are almost exclusive, then the
value of P(X AY') is very small, and can be omitted. If this condition is satisfied,

then

P(X VY)= P(X)+ P(Y).

In character recognition. only few cases produce results with both ¢; = A A ¢, =
and e, = B A €2 = (C at the same time. Therefore, it seems to be safe to say that

these two results are approximately exclusive. So,
D=PxecCAhci=ANeg=C|EN* )4+ P(x € Ciher=AAey=C | EN?).
Similarly,
N=Plex=ANe;=C|EN?)4+ Pley = BA ey =C | EN?Y). (15)

Since P(X AY) = P(X | Y)P(Y), the first item of D becomes

PlreCinee=ANea=C|EN?)

=PlaeC lei=ANea=CAENY*«Pley = ANey=C

EN?),
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and the second item of I becomes
PlreCCAhey=B A, =C|EN?)
=P(reCi|la=BA,=CAEN*)*P(c; = BAey; =C | EN?).

Therefore, D becomes

D = PaeCla=ANa=CANEN)+P(c;=ANe=C| EN?
+P(reC lex=BAc;=CANEN*)*P(e; = BAey=C | EN?). (16)

Using Fqguations (15) and (16), Equation (14) becomes

])(.l‘GC,lC}‘—‘A/\L’2=C/\E.N2)*P(€1=A/\€2=ClEN2)

BELG) = Pl,=AMNc;=C | EN?) + Ple; = BAes = C | EN?)
PlaeCile;=BAe;=CANEN?)*P(e;=BAey;=C | EN?)
Plci=AAc;=C|EN?) + Plc; = Bheg = C | EN?)
= wrPre€Cley=ANeg=CAEN?) +
wyx P(r € Cy ey =BAey=CAEN?) (17)
where
_ Pley = ANe; =C | EN?)
“ T Plaa=AANc;=C|ENY)+ Ple;= Bhes = C | EN?)’
Ples = BAeg=C| EN?)
W

Pley=AANc;=C|EN?)+ Pley= BAey=C | EN?)’

it is worthwhile to note that wy 4w, = 1. Indeed, w; and w; serve the weight
parameters which indicate the possibilities that the input pattern comes from units
BRS(A, (") and BKS(B.C), respectively.
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For another example, ¢, = {AV B} and e, = {(" vV D}. By using the above

derivation procedure. it is easy to derive the following equation,

BEL(7) = wy *P(reCler=ANc, =CAEN?

+wy*xPlr e ]y =BAey =CAEN?
+wz*xPr €Cley=ANe, = DAEN?Y

+wy« Plr € Coley = BAcy =DAIEN?

where

wy = Pley=Ane,=C" | EN?)

1= Play=AAey=C' | EN2)+P(ey=BAea=C | EN?)4P(ey =An=D | FN2)4+P(e1=BAe=D | EN2)?
Wo = Pley=BAe;=C | EN?)

2 7 Play=Aner=C | EN)4+P(ey=BAe;=C | EN)+P(ei=AA=0 | EN2) 4 P(ey=Ba,=D | ENY)?
W = Pley=Anea=D | EN?)

3 7 Pla=AAe=C | END)+P(e; =BAe=C | EN})4+P(ey=Ara=D | EN?)4+P(ey=BAc, =D | IsN?)?
Wa = Pley=BAe=D | EN?)

' = PO =ArG=C TENDEPl=Bro=C | EN+P(, =ArG=D | ENDTP(, =BA, =D [ EN?)

Therefore. when there are I\ classifiers and each classifier & produces classification
decisions ex = {Jjk1+* ", Jrr }. Where classes jip,-+, jar, are those classes that ey
highly recommends and 4, is the total number of class labels supported by ey, then

the aggregated belief BEL(r) become

ll II\'
BELG) = Yo+ o wyp s Pla € Gl ey = iy = i BN,
=i 1h =1

where

. Pley =i, en = ji* | ENY)

. =
PRy 1 Iy, ) — il Y ANV S
P S S bty Pler = i or = 3 | ENK)

After the belief values for all classes are computed, then various decision rules can be

applied to derive the final decision.
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4.9.4 An Advantageous Tool For Further Refinement

Shridhar ¢f al. '62] argued that sequential CME, in general, does not perform
as well as parallel CME. However, the concept of sequential CME can be applied to
improve the performance of a recognition system after parallel CME. For an input
pattern x, after the recognition of individual classifiers and the parallel CME process,
if o 1s highly likely to pertain to more than one class, then it is not appropriate to
make a decisive classification decision in this situation. A most common solution is
simply to reject this pattern; but another possible solution is to design a corresponding
refiniieg algorithm A, which further analyzes the distinctive aspects among the images
of different classes appearing in this cell. As a result, algorithm A will produce the
final classification decision. However, In general this job is very expensive to carry
out. Fortunately, with the help of a BKS, algorithm A can probably be implemented
much more casily and systematically. Basically, each cell requires one algorithm to
distinguish its confusion classes. There are three reasons why a BKS can benefit from
the development of algorithm A: (1) A cell can not only count how many incoming
samples, but also which samples enter this cell, therefore with an image displaying
program, these samples can be visualized so that the difference among them can
be observed explicitly; (2) For a specific cell, usually only one, two or three classes
have non-zero numbers of incoming samples; therefore, the complexity of algorithm

A is intrinsically reduced; and (3) In general, the samples of a class in the same cell
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tend to have specific shapes: this phenomenon again has the potential to simplify t he
development of algorithm A. An experiment has been performed to justify the above
claims. With three classifiers and 22,021 numeral patterns, a three-dimensional B S
is constructed. It contains 11° = 1331 cells, and Table 3 lists the the number of
cells with respect to the number of different classes which have non-zero incoming
samples appearing in a cell. When ¢, = 3, ¢, = 2, and ¢ 4 =2, there are 100 samples
in cell BKS(3,2,2). Figure b shows all their corresponding images  Obviously, it is
much easier to design an algorithm to distinguish two classes than an algorithm for
all classes. However, although the cells of a BKS enable us to develop algorithin A
faster, it may be impractical or too expensive to design a correspc ding, algorithm for
each cell. Broadly speaking. there are two kinds of cells which do no: really affect the
overall recognition performance. The first kind includes cells whichi contain a very
small number of incoming samples, such as only 1, 2 or 3 incoming samples. The
second is the cells which have many incoming samples, but most of which helong to
a single class. Therefore, one alternative is to design algorithms only for those cells

having niany incoming samples, and most of which do not helong to a single class. For

. . - y (1)t 2,0t )T e 2 )ei s .

example. with the requirement that 7, (1), (z)e(3) > 20 and ‘f;.::’)((:)‘(" () 0.6,
e(1)el2)el )

then 14 cells need to design such further discrimination algorithms. In total, there

are 792 samples in these cells. Among them, by the BKS method with no rejection,

there are 277 incorrectly recognized samples. Therefore with 14 proper algorithins,
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classes | 1 2 3 4 15161718
n 868 1263 1137(4216{1(0(0}O0

=

Table 3: The distribution of the number of classes versus the number of cells
per class with three classifiers and 22,024 numeral samples, where classes
denotes the number of classes having non-z..0 incoming samples. and n the
number of cells having non-zero incoming samples.

these 277 samples may be recovered correctly; that is 1.26% of the testing samples, a

significant improvement in the overall recognition rate.
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Figure 5: Display of the incoming samples in cell BKS(3,2,2).
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Chapter 5

Methods for Measurement-Level

CME

5.1 Introduction

According to two diflerent views of the roles that individual classifiers play in a
multi-classifier system, there are different approaches to the research of measurement-
level CMIS. The first is to view individual classifiers as classifiers, and the second
is to view them as feature ertractors. Accordingly, the research of the first view
focuses on how to transform measurement values into reliability-like values, and then
how to aggregate the transformed values together [101]. Based on the second point
of view, CME becomes a generic pattern recognition problem; therefore, the basic

rescarch goal is (o develop classification methods which can produce high recognition
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performance from the measurement values supported by individual classifiers.

I this chapter, three methods will be proposed; two are designed from the first
point of view, and the third is from the second point of view. Section 5.2 introduces
the two methods based on the first viewpeoint, the Linear and Bayesian Confidence
Aggregation methods (LCA and BCA). Section 5.3 introduces a neural-network based
approach with a multi-layer perceptron to combine measurement values of all classi-
fiers, which is designed from the second point of view; the important topics of this
n.ethod are the data transformation function, network architecture, and net learn-
ing algorithrn. Finally, in Section 5.1, three strategies are proposed to improve the

performance of multi-layer perceptrons, in both recognition speed and accuracy.

5.2 Two Confidence Aggregation Methods: LCA and BCA

Two methods to combine measurement-level classifiers are proposed in this sec-
tion, Linear and Bayesian Confidence Aggregation methods. Both consist of three
steps: first, measurement values offered by individual classifiers are transformed into
probability-based confidence values between [0-1]; second, a confidence aggregation
function then computes the overall confidence value with respect to cach class; and
third, based on the accumulated overall confidence values, the final classification de-

cision is derived by a decision rule. Broadly speaking, LCA aggregates individual
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confidence values in a linear form, and BCA in a Bayesian-based form. Both meth-
ods use similar data transformation functions and decision rules, described in Section
5.2.1 and Section 5.2.2, respectively. Finally, a brief discussion about these two meth-

ods is given in Section 5.2.3, which points out their intrinsic weaknesses.

5.2.1 The Linear Confidence Aggregation Method

Let BEL(7) denote the aggregated score for class ¢, which indicates the likelihood

that a pattern comes from class 7, and E be an aggregating function. Then

BEL(i) = the aggreyated belief for z being in C;,
= E(i,e(x),- -, ex(z)),

= B, {ml.-- mM}, o {mk, - mM ). (18)

Suppose mj only influences BEL(7). In other words, a measurement value to class ¢

will not influence other classes except class 7. Then Equation (18) becomes
BEL(?) = E(r,m},- -+ ,mj, - ,my). (19)

The commonly-used and simplest model of function E is to perform a weighted and

linear summation, such as
) y — ‘e i PEERY -
BEL({)=wy xmi+ - +wprxmj+ -+ wy xmi; (20)

where wy is the weight of classifier k (1 < k < K'). Usually, these weights are adjusted

only in the design phase, and remain fixed during operation. The weights are chosen
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by the system designers according to their experience or, sometimes, by statistical
measurements. Due to the potential nonlincarity among data, a constant weight in
fact cannot serve its role well. Instead. it should be a function in which the value is
computed with respect to the measurement value m}. Based on this understanding,

a modified aggregation function becomes
BEL(1) = ty(my) 4 -+ ti(my) + - - + {1, () (21)

where 1, denotes the function of classifier & which transforms a measurement value
into a rcliability-like confidence value. Since this approach sums up all confidence
values linearly, it is called the Linear Confidence Accumulation method (LCA).

In fact, functions f;.--- {5 of Equation (21) could be expressed by a general
function CF. Obviously. C'F contains three parameters: the index of classifier &,

label of class i , and measurement value mj. Thercfore, Equation (21) becomes

BEL() = CF(Li,m})+-+ CF(K,i,m)

W
= Y CF(k.i,m}). (22)

k=1
The purpose of C'I'(k,7,m} ) is to compute the reliability or probability that a pat-
tern r belongs to class i when classifier k& gives measurement, value mt to this class.
Heuristically, CF'(k,7,m}) can be expressed and computed by a ronditional proba
bility as
CF(k,i,m})= Plz € C, | m}, EN]). (23)
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The rest of this sub-section describes the procedure for computing the value of
CF'(k,2.nd) from training samples.

Suppose there are N training samples, each  of which contains both I(x) and
frni [V, k (1 i< Mand 1 <k < KR}, where I(z) is the ground-truth class label
of «, and i is the measurement value with respect to class 7 produced by classifier

k. Accordingly, CI°(k,i.m}) can be expressed by a conditional probability as

C'F(kid.my) = P(reC, | mi.EN})

= P(i=1I(x)|nil,EN}). (24)

Let Iy he the probability function of classifier k; Equation (24) becomes

[
3]
~—

CF(kaomy) = P = I(x) | my). (

Using the property of a conditional probability. C'F(k.i.m}) can be further derived
as

Pe(i = 1(x),m})
P(m})
Pe(i = I(z),m})
P(i = I(x).m}) + Pe(7 # I(x),m})
Ry(m})
Ry () + Si(m)
Ri(m})

= Tilmy) (26)

CEF(kaomy) =

where Ri(mi) + Si(mi) = Tim). Ri(mi).Si(m}) and Ti(m}) are respectively
the total number of samples of which ¢ is the ground-truth class label I(r), the total
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number of samples of which 7 is not the ground-truth class label, and the total number
of samples of which classifier & supports class ¢ when given a measurement value mj.

Since mj}, is a real number. Equation (26) cannot be computed directly in a digital
computer. Therefore. m} will first be quantized into one of the predefined levels
{1.--+, Li}. where Li is the total number of discrete levels for classifier k. Let 7y
be the quantization function of classifier & which quantizes mj into level s; then
Ri(s).S5(s) and Tj(s) can be computed by ALGORITHM 1. Here, R (s) is the total
number of samples where 7 is the ground-truth class label (), when classifier &
supports class 7 with a measurement value in level s. Similarly, Sps) and T¢(s) have
their new definitions with respect to the quantized level so Accordingly, C'FF(k, 1, s)
becomes

i
CFkoas) = . (27)

——
.
~—

1

s
>~
ey

r
-~
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{ initialization }
FOR k:=1to i do
FOR 7 :=1to M do
FORs:=1to L, do
Ri(s):= Si(s):=0;
{ calculate the values of R}(s), S}(s) and Ti(s)}
FOR &k :=1to IV do
BEGIN
FOR n :=1to N do
FORi:=1to M do
BEGIN
s := r(m}(r,)); {quantization of m}(z,)}
IF i = I(zn)
THEN Ri(s) := Ri(s) + 1;
ELSE Si(s):= Si(s)+ 1;
END
FOR 7 := 110 M do
FOR s:= 1to L do
Ti(s) := Ry(s) + Si(s);

END

ALGORITHM 1: the computation of Rj(s), Si(s) and Ti(s) from an N-size learning set.
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If there are a sufficient number of learning samples (¢.g. 5000 samples / digit), then
the derived Ri(s).Si(s) and T}(s) may be representative and meaningful; otherwise
these values are unreliable for practical use. To overcome this problem, three solutions
have been proposed: (1) toenlarge the learning set. (2) to use a small number (instead
of a large number) of levels, and (3) to derive confidence values not dependent upon
class label. but dependent only upon each classifier. The first solution, in general,
gets the best result, but it also requires the heaviest workload. As a miatter of fact,
for some applications it is impossible to collect more training samples. The second
and third solutions can be implemented easily, but they will make C1°(k,i,m}) less
sensitive to either measurement value mj, or individual class label 7. When the third

solution is adopted, C F(k,i,m}) is computed as

Toat Hils)

CF(k,i,s) = 2=tk ST

(28)

Obviously, with the above Equation (28), C' F'(k,?,s) is insensitive to class label 1.
Accordingly, this insensitivity causes a loss in discrimination ability. As a result, the
second solution hecomes the most reasonable one to apply. But, with a small numiber
of discrete levels, the effectiveness of the measurement values is intrinsically reduced
as well. This phenomenon is seen in Figure 6, which shows a stair-like confidence
distribution where each quantization level corresponds to a range of measurement,
values. Mathematical models have been found useful to represent the confidence

distributions so that this drawback can be overcome. For example, the confidence
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distribution of Figure 6 becomes a smooth curve when a sigmoidal function is used
to approx‘-nate the original distribution shown in Figure 7. In general, a sigmoidal
function Gy which serves as the mathematical model of classifier £ can be expressed
as

1

Gily)=1- (29)

I+ ely":k_akl .
In Equation (29), the parameter a; serves as a threshold or a bias. The effect of a
positive ay is to shift the function to the right along the horizontal axis, and the effect
of by is to modify the shape of the sigmoidal. A low value of b; tends to give the
sigmoidal a sharp rise, whereas a high value results in a more gently varying function.
With a least-mean-square-error estimation to minimize E{[G(m}) — CF(k,z,m})]?},
aj, and by can be derived from training samples.

In suminary, the transformation from measurement values to confidence values

can be carried out in five steps using the following procedure:

1. Divide the range of the measurement values supported by each classifier into a

set of broad discrete intervals;
2. Compute Itj(s), Si(s) and T}{(s) by ALGORITHM 1 from the training data set;
3. Compute CF(k,1,s) by Equation (27);

4. Find a mathematical function G; (such as a sigmodial model) which can best fit

the distribution CF(k,7,s), und alapt its parameters by minimizing E{(Gk(m})—
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Figure 6: An example of stair-like confidence distribution, where symbols

“x” indicate the middle positions of stairs.

CF(k,i,m})}, where E denu.es the expectation value;

5. For each input, compute the confidence value C'I'(k,7,m}) by function Gi(m})

(t.e. CF(k,i,m}) = G(m})).

5.2.2 The Bayesian Confidence Aggregation Method

In general, a linear summation of individual confidence values cannot reflect the
true overall beliefs if the corresponding applications require nonlinear aggregation of

confidence values. Unfortunately, in practice, the relation of individual confidence
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values of most applications are not linear. Therefore, a new function to generate the
overall beliefs nonlinearly is implemented and discussed in this section. Since this
function is derived by using both the Bayesian formula and the probability-based
confidence values, it is called the Bayesian Confidence Aggregation Method (BCA).
So far, BCA can only take into consideration the nicasurement value of the first-choice
class supported by individual classifiers.

Let ex = (jk,m}*) indicate that the first choice of classifier & to an input .« is

class ji with a measurement mi*. Then BEL(i) can be expressed by a conditional

probability as
BEL(i) = P(x € C\|cy = (ji,m]"), - vexe = (jn m¥), ENYY. (30)

By the Bayesian Formula, Equation (30) becomes

Ples = (), vex = (i, ) & € Gy ENK) + Pla € 4| ENY)
Pley = (j1,m7'), - 5 = (Jr,mi® ) | ENIY '

BEL(i) =

Suppose classifiers ¢;,- -, ) are independent of each other; then we have

BEL(i) = Hb:lp(ek = (jk"m-}ck) |:I‘ € C"lvENI})])(:I. € II’/'N") (31)
A Plex = (ji,m¥*) | EN}) ‘

where EN} denotes the classification environment generated from classifier & alone.
Let ¢ denote the class label supported by classifier k, and ¢}* denote the measurement

value supported by classifier k. Suppose ¢§ and ¢ are also independent of each other
P F k k )

i.e. the recognized class label has no correlation to its corresponding measurement,
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value; then

x€C,EN})

Pley = (jr,mi*) |z € CLENY) = P(¢§ = ji|x € Co, EN})#P(¢ = m¥r
(32)
and

Pler = (ge.mP) | ENL) = Pley = ji | ENY) * P(ef = m¥ | EN}). (33)

By using the Bayesian formula, we obtain

P(z € C\ | e} = ji, ENi) * P(ef = jix | EN})
P(z € C,|EN})

(¢ = ji|lv € CLEN]) = (34)

and

. (€ CLlf = mit, EN}) » P(ef = ml* | EN})
PG =mit e € CoEN) = = Pz € C,|EN}) '

(35)
Applying Equations (32), (33), (34) and (35) to Equation (31), it becomes
T Pl € Gl = gk, EN)) £ Plr € Gl e = mi, EN}) .
BEL(i) = =1 ok Ik .| €x ) o LAV TRy
" H{}=1P2(T€C',IEN,}) *P(re C,|EN")
(36)

In Equation (36). P(x € C,|¢5 = ji, EN}) can be computed from the confusion
matrix of classifier k; P(r € C,|ENY) is equal to P(x € C,|EN}) for all k €
{1,--- '}, and its value is the ratio of the number of samples in class ¢ to the
total number of samples in the learning data set. P(x € C;|ef = mi*, EN}) can
be computed by a procedure similar to that used to calculate P(z € C,|m}, EN}).
However, there is a slight difference between them, because P(x € C,|mi, EN})
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represents the probability that a pattern r belongs to class i when classifier & gives
measurement value mj to this very class, but P(x € ', | ¢} = mt, EN}) represents
the probability that a pattern & belongs to class ¢ when classifier & gives measurement
value m} to class ji. In other words, for P(r € C,|ef! = m*, EN}). a measurement
value to class ji will have a certain influence on the probability that pattern @ belongs
to class j even when 7 # ji. and it can be computed similarly. as described in
ALGORITHM 1.

Accordingly, BEL(i) of Equation (36) is computable. Usually, cach class in the
learning set has the same number of samples: then the denominator of Equation (36)

is immaterial, and can be deleted. In general, the summation of BEL(7) for all class

labels is set to one, thus we obtain
BELG) =gl Pz € C, | ¢§ = ji, ENJ) * P(x € C, |} = mit EN]) (37)
where 7 is the normalization coefficient which makes M, BEL(/) = 1.

5.2.3 Intrinsic Weakness of LCA and BCA

It is easy to verify that a few assumptions are required during the derivation
of LCA and BCA. Among them, some are required by both methods, and some

particularly by only one of them. These assumptions include:

o Classifiers behave independently of each other;

o A measurement value for class 7 has influence only on the belief of the ver ; class 1;
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e Confidence values are aggregated together linearly;
e Mecasurement values are independent of class labels.

Furthermore, BCA can be applied only when each classifier supports the measurement
value of its first-choice class, These requirements and constraints considerably reduce
the effectiveness of the two confidence aggregation methods. The reason that both
methods require the listed assumptions is that all operations to simplify the original
equations are designed heuristically; as a result, they contain many built-in constraints
or assumptions. In order to avoid these assumptions, in a combination function,
the inter-relation between measurement values and class labels should be derived
automatically from the measurement data of training samples, instead of making
intuitive assumptions from human heuristics. This consideration has motivated us to

propose the third method for measurement-level CME.

5.3 A Novel Approach Based on Neural-Network

In a multi-expert recognition system, individual classifiers function not only as
character classifiers but also as feature extractors [102, 57). When they function as
feature extractors, their outputs become features for later classification. From this
point. of view, measurement-level CME becomes a pattern recognition problem, and
the combination function E indeed turns out to be a generic classification function.

Figure 8 shows the block diagram of this new consideration. With this understanding,
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not surprisingly, neural networks can surely be applied to serve the funetion of k.
whose input consists of the transformed measurement values and output consists of
M indication values, each of which indicates the likelihood that the input belongs
to rtain class. Intrinsically, neural networks are suitable for measurement-level
CME, because they contain four well-known valuable characteristics: (1) they behave
as collective systems; (2) they can infer subtle, unknown relationships from data:
(3) they can generalize, meaning that they can respond correctly to patterns that are
similar to the original training data; and (4) they are nonlinear, that is, they can solve
some complex problems more accurately than linear techniques do. Amazingly, these
characteristics have overcome all the constraints existing in LCA or BCA because
they do not have any independence assumption among feature values. As a matter
of fact, the four characteristics indeed specifly exactly the desired behavior of CMIS.
However, Ho et al. [86] argued that it is inappropriate to use measurement. val.
ues for measurement-level CME, because measurement values of correctly recognized
samples usually overlap significantly with those of the wrongly recognized ones. Qur
observation also confirms this phenomenon. In fact, Ho’s argument is only partially
valid; our experiments [103, 104, 105, 106] have shown that through an effective
data transformation function, original measurement values can be transformed into
insignificantly overlapped ones. In the following two sub-sections, two issues are dis-

cussed: (1) What kinds of difficulties will a data transformation function encounter,
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Figure 8: A new look for measurement-level CME.

and how can they be overcome? and (2) What objective should a data transformation

function achieve? Then we present a family of useful data transformation functions.

5.3.3 Difficulties and Objectives of Data Transformation

In general, there are two incompatible physical meanings in measurement values
supplied by various classifiers. The first is that the smaller the measurement is, the
more probable that the corresponding class has the pattern. The second, on the con-
trary, is that the larger the measurement is, the more probable that the corresponding
class has the pattern. For example, distance measurements belong to the first kind,
and similarily and confidencc measurements belong to the second. It is worthwhile to

mention that even if the outputs of two classifiers have the same meaning, they may
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be in quite differ 'nt scales; €.g. one may range from 0.0 to 1.0, the other from 100 to
10000. Because of the possibility of different meanings and scales, data transforma-

tion or normalization becomes essential before measurement data can be combined

effectively.

The objective of data transformation is to convert the output of individual clas-
sifiers into a new form having the same meaning and scale. We call this new form
“likelihood’ measurement, which means that the possibility of a class having a pattern
is proportional to the likelihood value, which ranges from 0.0 to 1.0. Let us consider

first how to transform data into the same scale, and then into the same meaning.
5.3.2 Methods of Data Transformation

Suppose tj, is the transformed value of mj, through a transformation function 7'.

In our opinion, an effective T should have the following desired properties:

1. The preference rank order will not be changed through data transformation,
i.e. measurement values and their corresponding transformed values should

have the same preference rank orders;
2. The range of the transformed values is 0.0 to 1.0, i.c. 0 < ¢} < 1.0;
3. The larger t} is, the more likely the corresponding class 7 has the pattern;

4. The summation of all likelihoods produced from each classifier has a constant

value. In convention, this constant is set to 1.0, i.c. Zf‘i, ty, = 1.0, where
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5. The data transformation function should be applicable to as many cases of
measurements as possible. Ordinarily, from measurement values, one class will
be specificallv preferred to the other classes (¢.g., the smallest distance of one
sample is 2.0, and at the same time all other distances of this sample are greater
than 20.0). In Figure 9, those samples located in the kernel area of each class
belong to this situation. However, there may also exist some cases in which no

single class is especially preferred. This may happen in two situations:

5a. The smallest distance is quite close to some other distances. Usually am-
biguous patterns fall into this situation. For instance, the smallest mea-
surcment value is 3.5, and the others in ascending order are 3.7, 4.3, 15.3,

24.4, -,

5b. All mecasurement values (including the smallest one) are very large. This
situation may occur when a classifier uses a Mahalanobis' - like distance cal-
culation, and the class with the smallest distance happens to have a small
feature variance. One example of such measurement values is {1436.2,
1466.4, 1498.9, 1640.1, ---}; here, again th.se values are listed in ascend-

ing order.

'Mahalanobis distance is measured by equation (r — m)* 3"~ !(x — m), where z is the feature
vector of a pattern, m the mean feature vector of a class, and ) is the covariance matrix of the
class
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Situations 5a and 5b can be understood more easily through an example with a
graphical illustration. For simplicity. in this example, suppose (1) there are only
three classes, and their distributions are displayed in Figure 9; (2) the pattern space
S can be divided into three kinds of areas: kernel, normal, and ambiguous areas; (3)
there is a kernel area in each class, in which samples are not only densely populated,
but also recognized easily and correctly; (4) the ambiguous area indicates the area in
which the true identities of samples are hard to determine; and (5) normal area is the
space which is neither a kernel ror an ambiguous area, in which although samples
are sparsely populated. they can still be correctly recognized. In Figure 9, point A
belongs to the situation of 5a. and point B belongs to that of 5b.

Considering all the desired properties of a transformation function, it is obvi-
ous that the conditional probability of Equation (24) is not suitable to apply here.

For example, this equation cannot guaranteec that preference rank orders are pre-

A

served; also the statement 3=,

ci(m}) = 1.0 is not always true. Furthermore, for the
patterns belonging to situation 5b, this equation is unable to compute meaningful
confidence values. Therefore, a new transformation function should be developed; in
fact, through our study, a family of data transformation functions has been proposed

to serve this end. For the sake of clarity, the transformation functions for the first

and second kinds of measurements will be described separately.
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First, we propose the transformation function T for the first kind of measurement:

T:m) —t,

and
1
(my)r
f = —k—
k S,
and
Mo
Sk = —,
L Gy

where 7 is a real value and r > 0. The larger the value of r is, the larger the likelihood
value of the first-choice class will be. When the value of r approaches infinitely large,
the likelihood of the first-choice class becomes 1, and the likelihood of other classes
become 0.

It is easy to verify that this proposed function can satisfy all of the above desired
properties. For example, the summation of ¢} over ¢ € {1,.--, M} for classificr k
equals 1.0, i.e. M #. = 1.0. For the second kind of measurement, obviously the
above T is not appropriate. However, since the reciprocal of the second kind of
measurement is compatible with the first kind, function T can still be applied to the

second kind, if measurement values have been inverted already. Therefore, for the

second kind of measurement, the transformation function T' becomes

T:mp — 1
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where
o (";'k)' :
and
Sk = f‘il (mi)".

Accordingly, both kinds of measurements can assume one form, with the same
meaning (the larger the better) and scale ([0.0 - 1.0}). The value of r will be decided

from experiments so that the best recognition performance can be produced.

5.3.3 A Multi-layer Perceptron

Since the ground-truth class of each learning pattern is known already, it is a su-
pervised learning process. Accordingly, a multi-layer perceptron (MLP) with the Gen-
eralized Ddta Rule (GDR) becomes a good choice to serve the combination function
I/, because it has been used successiully in various pattern recognition applications
with good recognition results.

As a matter of fact, the radial-basis function (RBF) network is another suitable
alternative for function E. Figure 10 shows the basic structure of the RBF network,
which is a three-layer network containing only one hidden layer. Each hidden node
is a processing unit which performs a radial-basis function B. The most popular and
widely used radial-basis function is the Gaussian function B(d) = ea:p(—-z-:-), which
depends on the distance d = ||z — ¢|| (where || - || denotes a vector norm) between

the input vector r and the center ¢, and p is a bandwidth parameter. Geometrically,
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Figure 10: A basic structure ot the RBI network.
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a Gaussian function has a peak at the center ¢, and decreases monotonically as the
distance d from the center increases. Each output node simply performs a linear
weighted summation of all basis functions of the hidden layer. Therefore, the trans-
formation from the input space to the hidden-unit space is nonlinear, whereas the
transformation from the hidden-unit space to the output space is linear. In an RBF
network the centers and bandwidths of radial-basis functions are usually fixed (i.e.
they will not be changed during the learning process) and only the connection weights
hetween the hidden and output layers will be updated. Therefore, the learning pro-
cess of the RBF network s to adjust the connection weights between the hidden and
output layers with a delta rule so that the nelwork can obtain its best classifica-
tion for a given training data set. In the literature [107, 108], the RBF network has
been reported to possess desirable properties on network training, generalization and
garbage rejection. However, to pursue this research, MLP is chosen to integrate the
transformed measurement values simply because it is easier to implement?.

Often, MLP is called the Back-Propagation (BP) network since during net train-
ing, the error caused by the difference between the desired output vector and the
output layer’s response to an input vector propagates back through connections be-

tween layers and adjusts appropriate connection weights so as to minimize the error.

?To implement an RBF, three pa-ameters should be decided beforehand: (1) the number of
centers, (2) the locations of centers, and (3) the bandwidths of Gaussian functions.



This learning ability by propagating error backward enables the net to learn the map-
ping between input vectors and desired output vectors automatically. Therefore, for
recognition, when the input vector of an unlabeled pattern is presented to the input
layer, the output layer then tends to match with the desired output vector. The sig-
nificant contribution of the back-propagation algorithm is that it can form arbitrarily
complex decision regions in the input space by only using a three-layer perceptron
(35]. The decision region of a certain class may contain several sub-regions, which
need not be connected. After decision regions are constructed, the mput pattern
is classified into the class whose decision region is sufficiently close to this pattern.
Mapping from input vectors to class decision regions enables BP to achieve great
success in sos "ing various problems. For completeness, the following will deseribe (1)
the system aichitecture of a MLP, and (2) the generalized delta learning algorithm

(GDR).

5.3.4 Network Architecture

Figure 11 shows a three-layer network with one input layer, one hidden layer and
one output layer, where the transformed measurement values are fed to the input,
layer and O4,..., and Op are the output values from the output layer. In general,
an N-layer network (N > 2) has one input layer, one output layer and N — 2 hidden
layers. The nodes of the input layer are called input nodes, those of hidden layers

hidden nodes, and those of the output layer output nodes. Except for the input.
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nodes. the net input to each node is the sum of the weighted outputs of the nodes
in the prior layer. and the output of this node is the value that the weighted sum
passes through a nonlinear activation function f. Usually, the activation function is

a sigmoidal function defined as

1
1+ exp-(#+0)

f(r) (38)

where # is a bias. The eflect of a positive 8 is to shift the activation function to the
left along the horizontal axis. Obviously, the value of the activation functio.. j varies
from 0.0 to 1.0. For CME, the number of input layer nodes equals that of the total
transformed measurement values, and the number of output layer nodes equals the

total number of Al classes.

5.3.5 The Generalized Delta Rule

The Generalized Delta Rule (GDR) is an iterative gradient algorithmn designed to
minimize the mean square error between the actual and desired outputs of a MLP.
Through a set of learning samples, it can find the best weights w,, automatically,
enabling this network to exhibit optimal classification ability. Since the error is prop-
agated from the last layer (i.e. the output layer) backward to the first layer (i.e. the
input layer), the weight updating algorithm is called the Back-Propagation Algorithm
(BPA) as well. Suppose there is an N-layer perceptron, V)" denotes the jth node of

the rth layer, and w], denotes the connection weight between the 1th node of the rih
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layer and the jth node of the (r — 1)th layer. Then, the back-propagation training

algorithm is implemented as follows:

Step 1: Initialize all weights and offsets with small random values.

Step 2: Present an input vector I and a desired output vector O. Apply I to the

input layer (r = 0) so that V° = I.

Step 3: For other layers, namely r = 1,---, N, perform forward computation:

Vi= Qo wl v
3
where ], represents the connection weight from Vil to Vr.
Step 4: Compute the errors for the output layer:

67 = VR = V(1 ~ V)0, - V)

Step 5: Compute the back-propagation errors for preceding layers N — 1,.--,1:

6;—] — ‘Cr-l(l _ V]r—l)zwrjar

Step 6: Adjust all weights:

wi (1 +1) = w] (1) + 96V~ + aAw], (1)

(39)

where 7 is the learning rate, a is a constant momentum coefficient and Aw], (t) =

‘
tJ
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wy, (1) — wy,(f — 1). The third term of Equation (39) is used to specify that the



change in ], at the (¢ + 1)th iteration should be somewhat similar to the
change undertaken at the fth iteration. In this way some inertia is built in, and
momentum in the rate of change is conserved to some degree. Thresholds are

adjusted in a way similar to weights.
Step 7: Repeat by going to step 2.

The algorithm continues until the iteration number is larger than a pre-sp cified
threshold number, or the overall error (which is the mean square difference between
the desired and the actual output vectors for all training patterns) is reduced to an

acceptable level.

5.3.6 The Decision Rule

After weight training, for the recognition of a testing sample x, the values of the

output layer will generally fall into one of the three situations described below:

1. z is classified: only one output node is active, which represents the recognized

class of x;

o

. The net is confused about the class of z: more than one output node is active;

3. The net fails to make a decision as to the class of z: none of the output nodes

s active.
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Considering these three situations. the final decision rule is defined as

i J , if O, = Maz, and (Max, — Maz,) > a;
o(r) = (40)
M +1 , otherwise.
where o is a threshold, Maz) = maz,er0,, and Mar; = mar,gp—(;;0,. When «a is

Jarge, only samples of situation 1 will be recognized decisively, and samples of the

other two situations will be rejected.

5.4 Improvement Strategies for Multi-Layer Perceptrons

It is well known that training time and generalization ability are two main concerns
velated to ncural networks. In our system, three strategies [103, 104] have been
proposed to improve system performance in both speed and recognition accuracy. In
general, these strategies are useful in dealing with over-training and a long-period of

computation time for netwerk training.

5.4.1 Training by Boundary Samples

The major problem of MLP is that generally it requires a long period for weight
training (¢.g. two whole days using a SUN-4 workstation at 55 MIPs). Originally, in
the training stage, every sample will be used to back-propagate its error to update
weights. This means that whether or not a sample is well classified, the same amount
of time will be spent on it to update weights. In fact, this is not an efficient approach

to weight training. because only the samples on the boundaries or wrongly recognized
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are really useful for weight updating. Accordingly. this strategy modifies the learning
process for each sample as (1) it computes the outputs of the network forward, and (2)
it updates weights backward with GDR if this sample is wrongly or hardly recognized:
otherwise this sample has no cffect on changing weights at all. Experiments have
shown that this strategy can bring about a 5-fold speed-up, and at the same time it

is capable of maintaining the recognition accuracy.

5.4.2 Training by Partition

Intuitively, if the entire set of training samples is divided into several partitions,
and each partition can have its own appropriate ~ombination approach, then a better
recognition should be achievable. For example, for one partition, by using MLP the
distribution of this partition can be better described if the corresponding weights
are derived from this partition alone. Therefore, cach partition will have a higher
recognition rate than it would if weights were generated from the whole set of train-
ing samples. Accordingly, CME with partition will produce higher accuracy than
without partition. From the implementation point of view, it is important that the
selecting criteria for partition must be easily realized. One method to do this is by
measuring the quality of the processed images. which can be estimated from the de-
cisions of individual classifiers. Heuristically, if one pattern is easily i\ cognizable by
classifiers, then this pattern has a high probability to be a regular and good-quality

writing pattern. On the contrary, if one is difficult to recognize, then it tends to
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reflect ponr-quality writing. For example, in an experiment, we divided the training
set (19,353 samples) into two subsets (A and B). Set A contains 10.411 good pat-
terns, while Set B contains 8 42 poor patterns. A pattern is considered to be of good
quality only when all three classifiers successfully recognize it, and for each classificr
the difference between the largest and second largest transformed values is greater
than 0.15; otherwise, this pattern is considered to be of poor quality. Because the
entire patiern space is partitioned into two subsets, correspondingly there are two
multi-layer perceptrons as well, one for each subset. Due to a smaller number of
training samples. cach perceptron can be trained fairly quickly. For tesuug. an unla-
heled pattern is first distinguished into one of two subsets (good- or poor-quality) by
the same criterion used for partitioning the training set, and then is recognized by its
corresponding net. Among the total testing set, 11,159 and 10,865 samples are con-
sidered as good- and poor-quality samples, respectively. The experiment shows that
except for 4 samples, all good-quality samples are correctly recognized (i.e. 99.96%
recognition accuracy), and the average recognition rate of poor-quality samples is
91.36%. Accordingly, the average recognition rate of the total testing set is 97.20%.
For comparison, the average recognition rate of the testing set by a single multi-layer
perceptron trained by the entire learning set is 97.05%. Interestingly, a majority
voting algorithm also produce a 99.96% recognition accuracy to the good-quality

samples. Therefore, to further speed up the recognition process, voting will serve
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the CME for the good-quality subset. and for the poor-quality subset the multi-laver

perceptron will be used.
5.4.3 Weight Reduction

Equation (38) shows that f{X,W.0) = m:'wxm- Thus, the derivative of f

with respect to X' becomes
%:W*f*(l—f). (41)

This equation shows that the derivative of f with respect to X is influenced by three
parameters: W, f, and 1 — f. Heuristically, if there is a way to keep the recognition
rate of the training set the same, it is desired that the value of this derivative be
small, since the activation function is more stable for slight perturbations of input
X. Because both f and 1 — f contain parameter W, the reduction of the norm of
W seems to be the most effective factor for stabilizing -‘,—L\L In general, there ar two
ways to reduce the norm of W. The first is applied during the weight training stage,
by adding a certain amount of penalty with respect to the norm of W to the total
error function [109, 110]. The second is applied after the weight training process, by
reducing the norm of W if the recognition rate of the reduced W is not lower than
the original one. In this experiment, we adopt the second approach, which contains

the following steps:
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Step 1: use (iR to derive W and R, the average recognition rate of the training

samples;

Step 2: reduce the norm of weights by a certain ratio A (0 < A < 1), i.e.
W = A+ W:
Step 3: compute the recognition rate R with respect to W' for the whole training set;
Step 4: IF K >= R,
THEN
W :=W,
R:= R, and
GOTO Step 2,

ELSE stop.

After the algorithm stops, W is the final weight matrix. In practical applications,

the weight reduction can be implemented by the following three levels:
i. The net level: all weights in the net are reduced by the same A,

2. The layer level: the weights of the same layer are reduced by the same A, but

the weights of the other layers are kept constant.

3. The connection level: a single weight is reduced by A and at the same time all

the other weights are kept constant.
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As a matter of fact, in our implementation, weight reduction at the connection level
can not only reduce but also enlarge individual weights. In other words, weights are
updated in both directions: either reduction or enlargement. However, reduction will
be tried first. Interestingly, GDR updates all weights during each iteration; but at
the connection level of weight reduction, weights are changed in different iterations.
Accordingly, these three levels of weight reduction complement GDR, providing MLP

with a more powerful learning capability and producing a higher accuracy.
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Chapter 6

Experiments

6.1 Introduction

In Chapters 3, 4, and 5, we have introduced many combination approaches, includ-
ing our own. For abstract-level classifiers, although the BKS method has been proven
to be the best combination function from the statistical point of view, we are curi-
ous whether it can produce the highest recognition accuracy for the practical cases as
well. For mcasurement-level classifiers, we also want to know what degree of accuracy
our combination models can achieve, and whether our models can outperform other
measurement-level combination functions. Section 6.2 describes the data used in this
experiment. Section 6.3 describes the experiments performed for abstract-level CME,

and Section 6.4 the experiments for measurement-level CME. Both experiments are
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performed on ITRI’s! numeral database, which consists of 46,451 samples.

6.2 Description of the Experimental Data

The data used for this experiment come from ITRI's numeral data base, which
contains 46,451 samples collected from more than 1,000 persons. Each person wrote
a complete set of numerals (7.e. 0,1,---,9) about 5 times; no writing constraint was
imposed for each numeral except a bounding box. Because of the large number of
participants, this data base a};proximately retlects the daily writing styles of numerals
in Taiwan. Figure 12 shows some samples of this database. The whole data collection
was divided into 10 sets. Each set contains various numbers of samples for different
numerals. The first set (5,074 sarnples) was used for training individual classifiers,
and the other 9 sets (41,377 samples) for testing their performances. Table 4 lists
the total number of samples, and the total number of samples of each class for every
individual set. Three classifiers (called e, €2 2nd e3) developed by CENPARMI? and
ITRI OCR research teams were chosen as three experts in the following experiments.
The first uses gradient features [111], the secoad loci features [112], and the third
peripheral features [113]. For one pattern, each classifier produces 10 measurement
values; therefore, there are in total 30 measurement values for each pattern. Table 5

shows the respective classification performances of the three classifiers on the testing

1ITRI is a government-sponsored research institute in Taiwan.
2CENPARMI is Centre for Pattern Recognition and Machine Intelligence at Concordia University.
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Figure 12: 80 samples from ITRI's numeral database.

sets, where Rec., Sub., and Rel. denote the recognition and substitution rates and

the reliability, respectively.

6.3 Experiments on Abstract-Level CME

There are four purposes for performing these experiments: (1) to investigate

and compare the performance of the BKS method with other three abstract-level
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total

set 0
set 1
set 2
set 3
set 4
set 5
set 6
set 7
set 8
set 9

554
520
488
504
488
430
363
451
354
451

597
572
575
636
570
572
511
575
515
550

613
562
o84
569
590
600
505
562
526
548

985
946
945
574
519
529
467
491
484
502

452
427
418
435
422
463
421
397
420
413

456
444
439
468
422
410
381
407
386
412

452
436
420
103
409
399
373
391
395
406

421
418
403
421
413
307
349
376
380
393

452
443
415
486
422
404
364
390
368
397

5074
4816
4768
H004
4735
4611
4185
4476
4248
4504

Table 4: Total number of samples and total number of samples of
each class in each set of the ITRI's numeral database.

Rec.

Sub.

Rel.

€1
€2
€2

90.37 9.63
90.93 6.07 0.9093
92.14

7.86

0.9037

0.9214

Table 5: Recognition performances of individual classifiers using
41,377 testing samples (sets 1 - 9).
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CME methods, voting, Bayesian and Dempster-Shafer; (2) to ascertain that the KXS
method will not degencrate its performance even when there is strong dependence
among vlassifiers; (3) to examine the validity of the semi-monotonicity property by
using the BKS method; and (4) to see whether consecutive CME can really improve
the final classification performauce or not. The following experiments will reveal the
differences among the four CME methods, based on the same experimental environ-
ment (i.e. the same classifiers and the same learning and testing data). For this
experiment, only the first-choice class label supported by each classifier is taken into

consideration, so that abstract-label information may be produced.

6.3.1 Experiments with Re-Substitution Estimation

The goal of this experiment is to compare the performances of all four CME
methods in the context that fully representacive learning samples are provided so that
the classifiers have the same classification behavior on both training and testing data.
To simulate this situation, all 41,377 samples (sets 1-9) were used for both Jearning
and testing; it is a re-substitution estimation [13]. Tables 6(a ~ d) show the results
produced by the voting, Bayesian, Dempster-Shafer, and BKS methods with different
thresholds, respectively In these tables, a is ¢ threshold value which controls tie
reliability of decision making; the greater that « is, the more reliable that decision is
made. Figure 13 shows the recognition performances of the four combination functions

in graph representation. Obviously, the BKS method performs best; its recognition

143



rate can achieve 96.21% with no error. This shows from the statistical point of view
that the optimality of the BKS method is guarante~d, and CME can considerably
improve recognition performance (with no rejection, the best recognition rate among
the three individual classifiers is 92.14%). However, in practice, it is improper to
include training samples for testing. Therefore, the high performance of the BKS
method is not practic l; it may come from over-adaptaticn of the BKS, because all
learning samples are also used for testing. The next experiment was perfor—ied to
investigate the real classification results of the four CME methods with ' same

experimental data.

6.3.2 Experiments with Leave-One-Out Estimation
"\

This experiment adopted a leave-one-out estimation {13], so that an unbiased
comparison can be performed. With leave-onc-out estimation, all samples but one
are learned, and then the unlearned one is tested; the same operation is repeated
until every sample in the data set has been left ot and tested. Experimentally,
the leave-one-out estimation has been found to be approximately unbiased for any
data distribution. However, usually it suffers from extremely excessive computation,
as it computes the distribution for each repeated run. Fortunately, the Bayesian,
Dempster-Shafer, and BKS methods all store their information in matrices, thus only
a small portion of those matrices should be updated in each run. Therefore, all four

methods can be efficiently implemented for this estimation. Fer example, suppose in
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a Rec. Sub.  Rej. Rel.
0.000 | 93.92 6.08 0.00 0.9392
0.333 | 93.92 6.08 0.00 0.9392
0.667 { 93.24 4.03 2.73 0.9586
1.000 | 8B2.09 0.77 17.14 0.9908

(a) The voting method

@ Rec. Sub. Rej. Rel.
0.000 | 94.13 5.87 0.00 0.9413
0.100 [ 93.24 4.03 2.73 0.9586
0.750 1 93.24 4.03 2.73 0.9586
0.800 | 90.50 3.20 6.30 0.9659
0.850 | 87.04 2.18 10.77 0.9755
0.900 | 82.09 0.77 17.14 0.9908
0.990 | 82.09 0.77 17.14 0.9908

(¢) The Dempster-Shafer method

o Rec. Sub. Rej. Rel.
0.000 | 95.17 4.83 0.00 0.9517
0.300 | 94.62 4.42 0.96 0.9554
0.500 | 94.23 3.81 1.95 0.9611
0.700 | 93.55 3.03 3.42 0.9686
0.900 | 92.27 240 5.33 0.9747
0.990 | 86.89 1.16 11.95 0.9868
0.999 | 83.08 0.80 16.12 0.9905

(b) The Bayesian method

« Rec. Sub. Re;j. Rel.
0.000 | 96.21 3.79 0.00 0.9621
0.100 | 95.63 3.12 1.26 0.9685
0.300 ; 94.92 261 2.46 0.9732
0.400 | 94.06 2.13 3.80 0.9778
0.500 | 93.18 1.76 5.05 0.9814
0.800 | 90.46 1.09 8.45 0.9881
0.950 | 85.15 0.78 14.07 0.9909

(d) The BKS method

Table 6: Results for 41,377 samples using a re-substitution estimation to
combine the three classifiers (eq, €2 and e3).

145




[{=]
B =N
T

Recognition Rate
(o] o (0] [{o]
£ [=2] (o) o
T T T T

[0
N
¥

80

Substitution Rate

Figure 13: Graphic representation of the recognition performances of four
CME methods by using a re-substitution estimation, where “1)-S” repre-
sents “Dempster-Shafer”.

146




total there are N samples (i.c. x1,-+-,zn) and J(z) stands for the ground-truth class

label of pattern z; then the BKS method can be executed according to the following

procedure:

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

use all training samples to construct a BKS;

set 1 = 0

remove the information of z; from the constructed BKS and compute the most
representative class label with respect to the current FC of z;. Three operations

are performed in this step:

& Ny (ry)een (o) (T(T9)) 1= Ny (o) ese () (T (20)) = 15

b, Tei(r)men () 7= Tey(z)eveptz) — 1

c¢. compute B¢, (), (x,) according to Equation (5);

with e;(a,), -+, ex(r,) and I(r,), according to Equation (6), make the classi-

fication decision E(x,), then check whether the decision equals /(z;) or not;

add the information of x; into the constructed BKS; two operations are per-

formed in this step:

Ney(r)ese (2) (L (T1)) 1= Ny (m)ese (e (T (22)) + 15
Terryen (@) = Teya)oerc(z) + 15

=1+ 1;

IF i > N THEN Go to Step 3;

ELSE stop.
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With a leave-one-out estimation, Table 7 and Figure 14 show the tabular and
graphical representation of the corresponding recognition performances. Although
the BKS method produces the highest recognition rate when the rejection rate is low,
it performs poorly when the rejection rate is high. This phenomenon results from no
repetition of rare or irregular cases, as illustrated in Section 4.7. To overcome this
situation, two approaches have been already proposed and discussed in Section 4.7.
The first is simply to collect more training samples. It is obvious that if there are more
samples to make the irregular cases repeatable, then the substitution rate should be
more sensitive to the threshold a and more easily reduced. The second is to initialize
the number of incoming samples of each cell to 1 instead of 0. To verify the first
approach, a simulation is performed by presenting the 41,377 samples twice. Table 8
lists the corresponding recognition performance, which indeed shows an improvement,
of the recognition perforinance for the area with high rejection rates. With the second
approach, the classification is performed and its result is listed in Table 9. To have
a clear visual comparison, Figure 15 shows the recognition performance of all four
combination methods, but now the BKS method is modified by the second approach.
From this figure, it is easy to observe that the BKS method with the second approach
produces the best result in almost every situation among the four measurement-level
combination methods. Only when the substitution rate is low, seemingly it performs

equally with the Bayesian method. Since the second approach can be implemented
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(¢) The Dempster-Shafer method

a Rec. Sub. Rej. Rel.
: : 0.000 | 95.14 4.86 0.00 0.9514
| Rec. Sub. Rej _Rel 0.500 | 94.19 3.82 1.98 0.9610
0.000 | 93.92 6.08 0.00 0.9392 -
v | o 0.700 | 93.54 3.05 3.41 0.9684
0.353 | 93.92 6.08 0.00 0.9392
! 0.900 | 92.25 2.49 5.25 0.9737
0.667 | 93.24 4.03 2.73 0.9586
1000 | 82.00 ©0.77 17.14 0.9908 0.950 | 90.65 1.97 7.38 0.9787
. — . - - 0.980 | 88.63 1.34 10.02 0.9851
) 0.999 | 83.08 0.80 16.12 0.9905
(a) The voting method
(b) The Bayesian method
« Rec. Sub.  Rej. Rel. a Rec. Sub. Rej. Rel.
0.000 | 94.13 5.87 0.00 0.9413 0.000 | 95.31 4.36 0.33 0.9563
0.100 | 93.24 4.03 2.73 0.9586 0.100 | 95.03 3.3 1.58 0.9655
0.400 { 93.24 4.03 2.73 0.9586 0.300 | 94.39 3.02 2.60 0.9690
0.700 | 93.24 4.03 2.73 0.9586 0.500 | 92.65 2.14 5.21 0.9775
0.800 | 90.50 3.20 6.30 0.9659 0.700 | 90.84 1.60 7.57 0.9827
0.850 | 87.04 2.18 10.77 0.9755 0.950 | 84.82 1.15 14.03 0.9866
0.900 | 82.09 0.77 17.14 0.9908 0.980 | 66.54 0.77 32.69 0.9886

(d) The BKS method

Table 7: Results for 41,377 samples using a leave-one-out estimation to
combine the three classifiers (e, €2 and e3).

without extra cost and the resulting performance is actually better than the original
BKS method, it is adopted in the following experiments. This means that whenever
the BKS method is mentioned in later discussion, it is the BKE method modified by
the second approach. Also, the following experiments are based on the leave-one-out

cstimation.
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Figure 14: Graphic representation of the performances of four CME meth-
ods by using a leave-one-out estimation, where “D-S” represents “Dempster-
Shafer”.



a Rec. Sub. Rej. Rel.
0.000 { 95.77 4.23 0.00 0.9577
0.100 1 95.57 3.33 1.10 0.9663
0.300 [ 94.76 2.85 2.38 0.9708
0.400 | 93.98 2.24 3.78 0.9767
0.500 1 93.02 1.82 5.16 0.9808
0.700 | 91.17 1.32 7.51 0.9857
0.900 | 88.34 0.94 10.72 0.9894
0.950 { 85.15 0.80 14.05 0.9907

Table 8: Recognition results of repeating sets 1 to 9 twice by using the BKS
method and a leave-one-out estimation to combine the three classifiers (e, e2
and ¢3).

a Rec. Sub. Rej. Rel.
0.000 { 95.31 4.36 0.33 0.9563
0.050 | 95.03 3.47 1.50 0.9648
0.200 | 94.08 2.72 3.20 0.9719
0.300 | 92.97 2.28 4.76 0.9761
0.400 |1 91.60 1.83 6.56 0.9804
0.500 1 90.42 1.44 8.14 0.9844
0.600 | 89.01 1.11 9.88 0.9876
0.950 | 82.09 0.77 17.14 0.9908

Table 9: Results for 41,377 samples using the BK'S method and a leave-one-
out estimation to combine the three classifiers (eq, €2 and e3), where in each
cell, the number of incoming samples of each class is initially set to 1.
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Figure 15: Graphic representation of the performances of four CMIi meth-
ods by using a leave-one-out estimation, where BKS stands for the modified
BKS method, which initializes the number of incoming samples of each class
in each cell to 1 instead of 0.



Interestingly, all four performance curves are close together in the lower-left cor-
ner, and intersect near the point with 82.09% recognition and 0.77% substitution.
This special performance indeed is the performance of the voting method with a
threshold o = 1.0. Therefore, we know that even when all three classifiers give their
decisions to the same class label, still there are 0.77% of the tested samples which are
misrecognized. This observation enables us to state that if the required recognition
rate is higher than 82.09% and the required substitution rate is lower than 0.77%,
then it is impossible to achieve this goal by using only the abstract-level information

of these three classifiers.

6.3.3 The Combination of Dependent Classifiers

The goal of this experiment is to compare the results of the four combination
methods in the context of strong dependence among classifiers. To simulate such
strongly dependent classifiers, e; was used twice (named e; and e'l) to combine with
¢y and ¢3. Therefore, there are, in total, four classifiers (e'l, €1, €2, and e3). By aleave-
one-oul estimation, Table 10 and Figure 16 show the results of these four methods
in tabular and graphic forms, respectively. Again, we can easily verify that (1) the
BKS method maintains the best performance among them, and (2) the performance
of the BKS method in Table 10(d) is exactly the same as that shown in Table 9. As
for the voting. Bayesian and Dempster-Shafer methods, the degraded performances

in Tables 10(a), 10(b) and 10(c) show that they were affected significantly due to the
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undesirable dependence among classifiers.

6.3.4 The Semi-Monotonicity Experiment

The purpose of this experiment is to investigate the validity of the semi-monotonicity
property of the BKS method, that is whether equal or even better recognition per-
formance can be achieved by combining more classifiers. Since there are only three
classifiers available, we will check whether the CME performance of the three clas-
sifiers is better than that of any two classifiers, and whether the CME performance
of any two classifiers is better than that of any single one. Suppose MAX(n) and
MIN(n) stand for the highest and lowest performances that the BKS method can
achieve with n classifiers. To verify the semi-monotonicity property of the three clas-
sifiers, the hypotheses that MIN(3) < MAX(2) and MIN(2) < MAX(!) must be true.
Table 11 lists the performances of all the possible combinations. It shows MAX(1)
= 92.14%, MAX(2) = 94.34% , MIN(2) = ©4.08% , and MIN(3) = 95.31%, therefore
MIN(3)=95.31% > MAX(2)=94.34% and MIN(2)=94.08% > MAX(1)=92.14%. This

concludes that the semi-monotonicity property is preserved in this experiment.

6.3.5 Experiment on Consecutive CME

As mentioned before, consecutive CME regards combination functions as classi-

fiers. Accordingly, consecutive CME combines not only individual classifiers but also



n Ree. Sub.  Rej. Rel.
0.000 | 92,02 7.98 0.00 0.9202
0.250 | 92.02 7.98 0.00 0.9202
0.500 | 8934 4.20  6.37 09542
0.7500 | 8829 2.6. 9.10 09712
1.000 | 82.09 0.77 17.14 0.9908

(a) The voting method

n Rec. Sub.  Rej. Rel.
0.000 | 91.29 5.71 0.00 0.9429
0.200 | 89.34 4.29 6.37 0.9542
0.400 | 89.31 4.29 6.37 09542
0.600 | 89.31 4.290 637 0.9542
0.800 | 88.29 2.61 9.10 09712
0.900 | 88.29 2.61 9.10 09712
0.950 | 88.29 2.61 9.10 0.9712
0.980 | 85.55 1.78 12.66 0.9796

(¢) The Dempster-Shafer method

a Rec. Sub. Rej. Rel.
0.000 | 94.65 5.35 0.00 0.9465
0200 | 9441 5.16 0.44 0.9482
0.600 | 9344 4.36 2.20 0.9554
0.800 | 92.37 3.60 4.02 0.9625
0.900 | 90.77 3.13 6.10 0.9666
0.950 | 9042 2.56 7.02 0.9725
0990 | 88.80 1.73 9.47 0.9809
0.999 | 85.62 1.11 13.26 0.9872

(b) The Bayesian method

a Rec. Sub. Rej. Rel.
0.000 | 9531 4.36 0.33 0.9563
0.050 | 95.03 3.47 1.50 0.9648
0.200 | 94.08 2.72 3.20 0.9719
0.300 | 92.97 2.28 4.76 0.9761
0.400 | 91.60 1.83 6.56 0.9804
0.500 | 90.42 1.44 8.14 0.9844
0.600 | 89.01 1.11 9.88 0.9876
0.950 | 82.09 0.77 17.14 0.9908

(d) The BKS method

Table 10: Recognition results for 41,377 samples by combining the four
classificrs (¢;. ¢;.¢2 and ¢3).




94+

Recognition Rate
o © © «©
(o)) (e o N
T T T T

Q
=Y
T

80

Substitution Rate

Figure 16: Graphic representation of the performances of four CMI meth-

1 ? -
ods: €,,€e1,¢; and eg; here, ¢; and ¢; have exactly the same recognition
behavior.



classifiers | Rec. Sub. Rej. Rel.

€ 90.37  9.63 0.00 0.9037
€ 90.93 9.07 0.00 0.9093
€3 92.14 7.86 0.00 0.9214

G+ 94.08 5.92 0.00 0.9408
14y 94 5.82 0.00 0.9418
€243 94.34 5.64 0.01 0.9434
(1+e2+4+¢349531 436 033 0.9563

Table 11: Recognition performances of different number of classifiers using

the BKS method on 41,377 testing samples.
different combination functions. and expects to achieve even better classification per-
{ormance than the CME from only individual classifiers. In this experiment, besides
the three individual classifiers, two combination functions based on the voting prin-
ciple and the Bayesian formula are taken as (wo new classifiers as well. This means
that in total H classifiers are used in this experiment. With the four CME methods,
Tabl 12 lists the performances of these 5 classifiers with different thresholds. Figure
17 shows the corresponding recognition performances by using CME and consecutive
CME for all four methods, respectively; the dotted line stands for the performance
of the original CME. and the solid line the performance of consecutive CME. It is
easy to observe that consecutive CMI does not improve the recognition performance
as expected. The BKS method produces almost the same performance in the two
experiments, but surprisingly the Bavesian co abination function even produces less

eflicient recognition resuits.



a Rec. Sub. Rej. Rel.
0.200 | 93.74 4.26 2.00 0.9565
0.400 | 93.73 4.03  2.23 0.9587
0.600 | 82.00 0.77 17.14 0.9908
0.800 { 82.09 0.77 17.14 0.9908
1.000 H 82.09 0.77 17.14 0.9908

(a) The voting method

a Rec. Sub. Rej. Rel.
0.000 | 95.14 4.86 0.00 0.9514
0.400 | 95.00 4.81 0.19 0.9518
0.800 | 94.98 4.79 0.23 0.9520
0.850 | 94.23 4.40 1.37 0.9554
0.900 | 93.19 3.73 3.08 0.9G15
0.950 | 92.66 3.45 3.89 0.9641
0.990 | 90.58 2.98 6.45 0.9682 |

(c) The Dempster-Shafer method

o Ree. Sub.  Rej. Rel.
0.000 | 95.13 .87 0.00 09513
0.500 [ 95.11  1.8O 0.09 0.9520
0.800 { 95.00 4.70 0.30 0.9528
0.900 | 91.81 459 0.60 0.9538
0.995 | 94.03 413 1.85  0.9580
0.999 | 93.36 343 3.21 0.9615
1.000 | 91.00  2.61 6.39 0.9721

(b) The Bayesian method

0 Ree. Sub.  Rej. Rel.
0.000 | 95.32 435  0.33 0.9564
0.100 | 94.69  3.06  2.26  0.9HK8K
0.300 | 92.97 228 4.76 0.9761
0.500 1 90.42 144 R.14 0.9844
0.700 | 87.87 1.04 11.09 0.98R3
0.900 | 82.74 082 16.43  0.9901
0.950 | 82.09 0.77 17.14 09908

(d) The BKS method

Table 12: Recognition performances of consecutive CMFE by 5 classifiers:
€1, €2+ €3, voting, and Bayesian on 41,377 samples.
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Figure 17: Recognition performance of consecutive CME, where for each
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(‘M1 and solid lines for the performances of consecutive CME.
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6.3.6 Analysis of Experimenial Results

Through the above experiments. several observations can be drawn:

(1) All four CME methods perform much better than any individual classifier. This
shows that by CME a recognition system with high recognition and low substi-

tution rates is achievable.

(2) The BKS method modified by the second approach (i.e., initializing the value
of incoming samples of cach class in cach cell as 1 instead of 0) shows very
promising recognition performance. In almost every situation, it outperforms

the other three CME methods.

(3) The voting and Dempster-Shafer inethods obtained similar performances in these
experiments. This is mainly due to three conditions: first, no classifiers reject
samples; second. the recognition rate of a classifier k is used for the correspond-
ing bpa (basic probability assignment) as shown in [54] when this classifier offers
its decision ji; and third, all the three involved classifiers have similar perfor-
mances (about 90% - 92% recognition rate). It was found that whenever these
three conditions are satisfied, then the Dempster-Shafer method will become a

voting-like method.

(4) All tnethods converge their performance curves near the point with a recognition

rate of 82.09% and a substitution rate of 0.77%. This shows that whenever
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all classifiers produce the same abstract-level classification outprt, there is no
difference in the final output derived from different abstract-level CME meth-
ods. This also indicates whether the involved classifiers are able to achieve the
required performance (c.g. in this case it is impossible to achieve a system
performance with a required recognition rate of higher than 82.09%, and at the

same Lime a substitution rate of less than 0.77%).

(5) The BKS method will not degenerate its performance even when the combined
classifiers are strongly inter-dependent. However. the voting, Bayesian, and
Dempster-Shafer methods may display quite biased performance because of de-

pendence among classifiers.

(6) Heuristically, consecutive CME can improve recognition accuracy; however, it
may also degenerate recognition accrracy. As for the BKS method, consecutive

CME will not affects the overall recognition accuracy at all.

6.4 Experiments on Measurement-Level CME

IFive measurement-level combination approaches are involved in this experiment,
namely Bodar Count, polynomial classificr, LCA, multi-layer perceptronand k-nearest-
neighbor decision rule. In abstract-level-CME experiments, a leave-one-out estima-

tion is adopted. However, it is too expensive to use the same estimation strategy
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to perform the experiment for measurement-level CMLE, because the knowledge de-
rived from measurement values usually cannot be stored explicitly in matrix forms.
Therefore, the 9 sets of testing numerals (11,377 samples) are further divided into
two portions in this experiment for measurement-level CMIS One is used for CME
training, and the other for CME testing. Also, set 1 is used as a validation set, to
prevent the over-training of CME. In the following experiments, sets 1-1 (19,353 sam-
ples) were chosen for training, and sets 5-9 (22,021 samples) for testing. Table 13
lists the classification accuracy of the three classifiers on the testing data set (22,024
samples).

The experiments serve two purposes: (1) to investigate the effectiveness of the
proposed data transformation function 7% and (2} to compare the CME performance
of a multi-layer perceptron with those of other measurement-level CMIE approaches.
In the following discussion, if a multi-layer perceptron adopts the proposed three
improvement strategies discussed in Section 5.4, it is called a modificd multi-layer
perceptron; otherwise it is the original multi-layer perceptron or simply the multi-

layer perceptron.
6.4.1 Experiment for Data Transformation
To investigate the effectiveness of the proposed data transformation function 7T,

two other data transformation functions (M1 and M2) were implemented, and their

transformed data were trained and tested hy a three-layer pereeptron (with 30 input
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Rec. Sub. Rel.
¢ | 89.77 10.23 | 0.8977
c2 | 90.50  9.50 | 0.9050
ez | 91.68  8.32 | 0.9168

Table 13: Recognition performances of individual classifiers using 22,024
testing samples (sets 5 - 9).
nodes, 20 hidden nodes, and 10 output nodes). It is believed that the best data
transformation function is the one with the best recognition accuracy. These data
transformation functions are: (suppose mj} belongs to the first kind of measurement)

T: the proposed method

(mr

and

1

(my)

M
Si=3
1=1
M1: dumsion by the second preferred value -
. my
b, = A (42)

where A is the second smallest value among all measurements produced by classifier
k on cach sample. This function is adopted in [48].
M2: division by statistical properties -

mj — ug (43)

t, =
k o
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. _ 1 M 2 _ 1M 2
where i = 37 2,2, mj and of = 37 15, (m) — uk)?.

Besides the three kinds of transformed measurements (M1, M2, and the proposed
T'), the original measurements are also taken into consideration in our experiments,
so that the effect of data transformation can be revealed. However, there is a variable
r in the proposed data transformation function 7. In this experiment, » will be
set as 1, 2 and 3, respectively. Table 14 lists the recognition results with respect
to different data transformation functions and different values of ». It shows that
a three-layer perceptron (1) without data transformation is unable to converge and
perform well (16.96% recognition rate), (2) with improper data transformation (such
as M1 and M2), it is still unable to achicve a good recognition result, and (3) with the
proposed data transformation T. it can achieve highly itnproved performance (such
as 96.20%, 97.05%, or 96.83% for the recognition rate). This experiment fully reflects
not only the importance of data transformation for CMI, but also the effectiveness
of the proposed data transformation function. Since the highest recognition accuracy
(97.05% recognition rate) is achieved when r = 2, the value of 7 will be set equal to

2 in the following experiments.
6.4.2 Experiment for Various CME Approaches
In addition to the original and modificd multi-layer perceptrons (hoth have the

same network topology with 30 input, 20 hidden, and 10 output nodes), four other

CME approaches were developed for comparing the combination efficiency on the
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Rec. Sub. Rel.
ORI |16.96 83.04 | 0.1696
M1 | 55.67 44.33 | 0.5567
M2 68.34 31.66 | 0.6834

PRO-1]96.20 3.80 | ¢ 9620

PRO-2 1 97.05 2.95|0.9705

PRO-3 |1 96.83 3.17 | 0.9683

Table 14: Recognition performances of different data transformation ap-
proaches with no rejection, where ORI stands for the original measurement
values and PRO-n stands for the data processed by the proposed data trans-
formation function T in Sec. 5.3.3, with » = n and n € {1,2,3}.

same transformed data (by using the proposed data transformation function T with
» = 2). They are (1) Bodar Count [73], (2) polynomial classification [89], (3) Lin-
car Clonfidence Aggregation [101], and (4) the k-Nearest Neighbor Decision Rule
(k-NNR). Although there is no previous experiment based on 4-NNR for CME, it is
used in this experiment because CME has been considered as a pattern recognition
problem, and A-NNR is one of the most commonly used pattern recognition func-
tions. Simply speaking, A-NNR assigns an input pattern z to the class which has
the most votes among the k nearest neighbors of z. In general, the larger the value
of k is, the better the recognition accuracy will be. However, the computation time
will become too long for practical use. In this experiment, the value of % is 9. With
no rejection, Table 15 lists their recognition results on the testing data set. The

last row of Table 15 is the performance of ez alone, the best performance among the
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three individual classifiers to show the improvement obtained by CME. Obviously,
this experiment shows that all six methods have achieved much better performance
than any individual classifier; among them, the modified multi-layer perceptron has
the best recognition accuracy (97.66%). Amazingly, in this experiment both the orig-
inal multi-layer perceptron and the polynomial classifier obtain the same recognition
accuracy (97.05%). Although the polynomial classifier has a recognition accuracy
comparable to the original multi-layer perceptron, it generally takes more time to
recognize a pattern. For example, in this experiment there are, in total, 465 inputs
for the polynomial classifier, which contain 30 first-order and 435 second-order input
features. To recognize an unseen pattern, it will take 4650 operations of both mul-
tiplication and addition. But the original multi-layer perceptron will take only 930
(i.e. 31 %20 + 21 * 10) operations of multiplication and addition. Therefore, con-
cerning both speed and recognition accuracy, the modified nlti-layer perceptrons
indeed outperform other CME approaches. With threshold a of 0.05, Table 16 lists
the confusion matrix of the modified three-layer perceptron, and Figure 18 shows
a graphic representation of the different recognition performances with respect to

different thresholds.

6.4.3 Analysis of Experimental Results

Some observations can be drawn from the above experiments in Sections 6.4.1 and

6.4.2:
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CME Approach Rec. Sub. Rel.
Bodar 94.36  5.64 | 0.9436
LCA 94.86 5.14 | 0.9486
9-NNR 96.54 3.46 | 0.9654
Poly 97.05 2.95 | 0.9705
Multi-Layer Perceptron { 97.05 2.95 | 0.9705
Modified MLP 97.66 2.34 | 0.9766

{ es [92.15 7.85 [ 0.9215 |

Table 15: Recognition performances of different CME approaches, where
Poly stands for the polynomial classifier and Modified MLP for the multi-
layer perceptron modified by the three strategies mentioned in sub-section

H.4.

0 I 2 3 4 b) 6 7 8 9 | reject
012025 0 ] 0 2 2 S 0 4 2 4
! 0 2709 1 2 i 2 1 1 0 1 5
2 2 5 2612 32 6 4 11 13 4 1] 21
3 0 4 29 2404 J T 1 8 3 3| 11
4 8 1 1 0 2060 6 8 8 2 6| 14
5 0 1 0 1 1969 10 2 J 0 7
6 12 1 0 0 0 5 1933 0 6 0 [
0 0 3 12 26 0 1 0 2073 0 511 20
8 7 0 6 2 2 4 4 0 1810 14 6
9 2 3 0 9 20 1 0 19 15 18471 11

Table 16: C'onfusion Matrix on the ITRI's numeral database, where the
columns represent the recognized class labels and the rows represent the

ground-truth class labels.
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Figure 18: Graphic representation of the recognition performances of the
modified three-layer perceptron.
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(1) Data transformation plays a very important role in CME. For example, in our ex-
periments, with a three-layer perceptron. only 16.96% of testing samples based
on the original measurement values can be correctly recognized, bul by using
the proposed data transformation function a 97.66% recognition rate can be

achieved.

(2) In CME, individual classifiers can be regarded as “classifiers” or “feature extrac-
tors”, and from the viewpoint of classifier, some combination approaches are
developed, such as the Bodar Count and LCA. From the viewpoint of feature
extractor, generic pattern classification functions can be applied as combina-
tion functions, such as polynomial classifier, &-NNR. and multi-layer percep-
tron. From Table 15, obviously, the combination functions derived from the
viewpoint of feature extractor generally produce better recognition performance

than those from the viewpoint of classifier.

(3) When testing samples are not used for training, the best recognition accuracy for
abstract-level CME is less than 96% (see Table 9). and that for measurement-
level CME is higher than 97% (see Table 15). This reveals that measurement-

level information i1s quite important for measurement-leve]l CME.
1

(4) The three improvement strategies discussed in Section 5.4 for multi-layer percep-

trous are responsible for inereasing the recognition rate from 97.05% to 97.66%.
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This enables us to conclude that multi-layer perceptrons are the most appro

proate combination function for measurement-level CMIE.

170



Chapter 7

New Classifiers Based on CME

Techniques

7.1 Introduction

So far, CME combines classifiers using different features or classification method-
ologies. In fact, the concept of CME can also be applied to design new classifiers
by combining scveral classifiers, each of which makes use of subsets of a large set,
of features with a same classification function. For example, high-dimensional fea-
ture vectors can be divided into several vectors with lower dimensions, each of which
is then used as an input to design its own classifier. In this way several classifiers
can be constructed, and accordingly CME techniques are required to integrate the

classification results of all these classifiers. The main reason for avoiding the use
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of a single classifier witii high-dimensional feature vectors is that high-dimensional
feature vectors do not only increase computation complexity, but also produce imple-
mentation and accuracy problems [51]. Often, this phenomenon is called “the curse
of dimensionality” [63]. For another example, an M-class recognition problem can
he converted into A’—%’il two-class recognition sub-problems. The objective of each
recognition sub-problem is to have a high discrimination performance o. its paired
classes. Naturally, it requires the construction of a classifier for each pair of classes,
called pair classifiers. Once this is done, CME techniques can then be applied to com-
bine together the classification outputs of pair classifiers. In this chapter, we describe
two experiments using CME methodologies to design the classifiers.

Section 7.2 describes the first experiment, “Recognition by Parts”. Basically, it
contains three steps. First, gradient features are extracted from each character 1m-
age to form a feature vector. Second, a feature vector is divided into six sub-feature
vectors. Lach sub-feature vector indeed corresponds to the gradient features of a
partial image, and will be used to construct a corresponding classifier which gener-
ates the measurement-level output information. Third, a three-layer perceptron is
applied to aggregate the measurement-level output information of the six constructed
classifiers, and it produces the final classification decision. Section 7.3 describes the
second experiment, “Recognition by Pair Classifiers”. First, an image algebraic fea-

ture extraction method is applied to each pair of classes to extract image features.



Then. a nearest neighbor classifier with a small number of prototypes is designed for
each pair of classes, based on the algebraic features of training samples. Finally, a

multi-layer perceptron is used to combine the measurement valuew of paired classes.

7.2 Recognition by Parts

Suen et al. [114, 115] have conducted several experiments to compare human and
machine recognition capability by observing only subparts of the whole character im-
age. This approach offers a better understanding into the relevant parts of characters
for recognition. However, these exper'ments are performed without combination. ['he
objective of this experiment is to further explore the concept of recognition by parts,
and to design a new type of classifiers with the CME technique. Gradient features
and statistics-based classificaticn function are used in this experiment. A similar idea

can be seen in the experiment performed by Franke [89].

7.2.1 Gradient Feature Extraction

It has been shown that gradient features which represent the magnitudes of char-
acter strokes in different directions are effective in character recognition [116]. Four

directions are used in this experiment: 0°,45°,90°, and 135

Accordingly, four gra-
dient operators (Go, G45, Ggo. and G3s) are constructed to compute gradient, features

in the four directions respectively. Each gradient operator is represented by a 3 # 3
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mask €/ as

Pa i P32

Ps | Po | M

Pe | P7 | P8

where p,. i = 1.--+,8, is a component of the mask in real number. In our experiment,

the coeflicients of the four gradient operators are designed to be

1 v2 11 V2it| oo

Gy = 0 0 0 GlSa =11 0 -1
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—
<
!
[y
=
p—
o

Let (1) Aj. which stands for the jth image of class ¢, be a matrix in R™"; (2)

A3 (pyg) be the value of pixel (p, q) of A}; and (3) B)o(p.q), B} 45(p,9)s B; a0(P> ), and
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B-’,.ms(p%q) he the four corresponding gradient features of AL p.q)i then

4

13_;.0(1)' q) = -"l,(l"(l) - iy
Blasp.q) = Ap.g) G

j (1)
B}.{)()(P- q) = Ap.q) - U

{ B;.IBS(]L q) = “lx,(l'- q) - G,

Here. = is a convolution operator with the following operation

Ap.g)oG= Al(pgy*po + Ap+ L)+ p + Ap-lig+ Dep,
+- AY(pog—1)*p3 + Ap-lg=1)+py + AYp=1.9)* ps
+ Alp-Llg+1)xps + Apg+ 1) «ps + Ap+ g+ yepa

7.2.2 Normalization of Gradient Features

Let A” denote a linear operator! which normalizes an arbitrary size of image into
a standard p * ¢ matrix. By using the same normalization operator with respect to
the corresponding image, each gradient matrix is then normalized into a standard
p * ¢ matrix as well. Suppose Q) o(7,9), Q" 45(1,5), Q) 6(7, 8), Q% | 45(r. 5) ave the fon
gradient features of component (r, s) of the normalized image of Al and this compo-

nent (r,s) covers the pixels from the a th to a;th rows and the bith to bth columns

1Usually. a nonlinear normalization produces hetter normahization result than a linear one.
But, a linear normalization 1s used here mainly because of the simplicity of 1ts mathematic
treatment




of the original image: then

(
_ 1 7 ~h f
(Jll.”(r‘ .S) T (na—ay41)(hy=hy +1) .rzqu Zyzzﬁ, |B;_O(‘T*y)|‘
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5 N
(J,L{)U(r' H) = (ny— u]-f-l)(b —-b141) ZT ay 'U?':bl |]};,QU(‘T’y”‘
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(2,.135(7‘5) T day—ay+1){by=by +1) Zr:al y=b }BJ 13' I I/)|
In our experiment. both p and ¢ are set to be 8.
7.2.3 Construction of Subpart Classifiers
Instead of using 8 * 8 1 = 256 dimensions of features to construct a single

classifier, the 256-dimension gradient features are further divided into six parts as
shown tn Figure 19, where the shaded areas in cach standard matrix are not used
for recognition. and the corresponding complete image is shown in Figure 20. The
6 parts are [1:3, 1:8], [4:5, 1:8]. [6:8. 1:8], [1:8, 1:3], [1:8. 4:5], and [1:8, 6:8], where
[y : @a. by 2 by) denotes the subpart contents {from the ayth to asth rows and the &
to byth colummns of a standard 8 x & matrix.

Based on training samples, each subpart constitutes a classifier by calculating the
distances between the gradient features of this subpart of an input pattern and the
corresponding average gradient features of this subpart of each class. Consequently,
there are in total six classifiers. Suppose mi(r,s). mis(r, s),mb(r, s) and mi.(r, s)

are the four average gradient values of the component (a,b) of the 8 x 8 standard
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Figure 19: 6 parts of 8 * 8 gradient features.

Figure 20: The complete image of numeral 6.



matix, respectively: then

my = }:Q;or 8

2]__

R
My, s) = A_,ZQ;,45(T»3)~
1 =l

Mgy(T N Z Q, gol T

i] 1

mMy45(1, ) ZQ1135

l ]= =1

where N, is the total number of the training patterns of class 7.
Let Ro(r, ), Ras(r. ), Rao(r, 8) and Ry35(r, s) be the four normalized gradient val-
ues of component (r,s) of an arbitrary image . To subpart [a) : @z, b : by], the

distance d*(ay, az. by.by) between the input pattern and class 7 is calculated by

d'(aycaz, by by) = Y02 Zs b ( = (H)(Rg( s) —my(r,s))? +

v4,('r 5y (Ras(r ) = mys(ry8))? +
o (ry (Rao(rs 8) = migo(ry8))* +
ey (Rass(ry s) = migg(r,5))? ),
where vhir, 8), vis(7. 8). vt 7, ) and vis5{r, s) are the variances of Q) o(r, s), @) 45(, 5),
() aolr.s) and QF yaq(r s) for all j < N, respectively, i.¢e.,
1 &

volr,8) = N Z( Lolrss) — mi(r,s))?,

t =1

N,

|
vys(r.8) = -/\_’Z( 345( 8) — mis(7. 3))2
! =i
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7.2.4 Results of Combining the Classifiers

Because each classifier produces measurement-level information, every pattera
has 60 (i.e. 6 x 10) dimensions of output information, which are fed to a three
layer perceptron. The number of hidden nodes is 20, so the perceptron is a 60-20-10
node architecture. The data used in the experiment come from the I'TREs numeral
database. With the proposed data transformation function described in Section 5.3.2,
the 60 dimensions of the transformed output features on Sets 1-1 are used as training

data. In the testing stage, the following operations are performed on each sample:

1. Calculate the gradient features of the original image by Equation (44);

o

Normalize the gradient features by Equatien (45);

3. With the normalized gradient features and the six constructed subpart classi

fiers, calculate the measurement-level outputs by Isquation (46);

4. Input all the measurement outpucs to the trained perceptron, and derive the

final classification decision.

Sets 5-9 are used for testing and Table 17 lists the recognition results of the six classi-

fiers on them respectively. With the three-layer perceptron, the final recognition rate
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part | Rec.  Sub.

1 163.37 36.63

2 66.49 33.51
73.70  26.30
70.46  29.54
72.66 27.34
71.28 28.72

(=T L

Table 17: Recognition performances of six individual sub-part classifiers
with no rejection.

is 96.03% with no rejection. Table 18 shows the corresponding recognition distribu-
tion with respect to different thresholds. For comparison, the original 256 (8 * 8 * 4)
gradient features per sample are also used to train a three-layer perceptron with 256,
30 and 10 nodes for the input, hidden and output layers respectively. Table 19 dis-
plays its recognition results. Although the size of the 60-20-10 net is much smaller
than that of the 265-30-10 net, recognitior by parts with 6 classifiers achieves bet-
fer recognition performance than recognition by a single classifier using the original

high-dimension gradient features.

7.3 Recognition by Pair Classifiers

i the following, a method based on algebraic feature extraction and classifier
combining techniques is proposed to classiy the images of M classes. First, an

algebraic feature extraction method [117] is applied to Af(Af —1)/2 pairs of classes to
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A | Ree. Sub.  Rej. Rel.
0.0 196.03 3.97 0.00 | 0.9603
0.2 9413 235 3.52 ({09757
0.3 19137 1.23  T.41 | 0.9868
0.6 { 86.90 0.65 12.41 1 0.9921
0.9 { 80.74  0.36  18.90 [ 0.9955

Table 18: Recognition performances of combining six sub-part classifiers.
!

A | Rec. Sub. Rej. Rel.
0.019526 4.74 0.00 | 0.9526
0.1 19434 348 2.18 ] 0.96441
0.3]193.80 310 3.10 { 0.9680
0.5 19233 231 5.35]0.9755
0.7 19051 1.79  7.70 | 0.9801
0.8 ] 81.57 1.17 17.27 | 0.9859

Table 19: Recognition performances by a trained 256-30-10 perceptron
which uses the 256-dimension gradient features as input.
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extract the image features. Then, a nearest neighbor classifier with a small number
of prototypes is designed for each pair of classes, based on the extracted algebraic
features of training samples. Finally, a ncural network is trained to combine the
measurement values of an input image with respect to each of the M(AM —1)/2

classifiers. More details are described in our research work [118, 119].

7.3.1 Extraction of Algebraic Features from Character Images

Algebraic feature extraction for image recognition has attracted much attention
in recent years. In many pattern recognition applications, such as humnan face recog-
nition [120]. cheracter recognition [121, 122], efc., the objects to be recognized are
usually described by normalized images. In such cases, algebraic feature extraction
methods have been proven to be very useful. Algebraic features are extracted from
various algebraic matrix transforms or decompositions. The main characteristic of
algebraic features is that they represent the intrinsic attributions of an image. In a
recent paper [117], the idea of using optimal discriminant criteria to extract algebraic
features of images was proposed, and an algebraic fcature extraction technique was
developed based on a generalized Fisher optimal criterion. In the following, a brief
review of the method is presented first.

Let a training image be denoted by A}, where ¢ = 1,2,---, M indicates the image
class. M is the total number of classes, i = 1,2,---, N,, and N, the total number of

training images in the ith class (. A} is a matrix in R™*". The idea of the method
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is to find a discriminant projection vector v in B, so that *he set of vectors Al
1= 1,2,--- K, has the minimum within-class and marimum be twee n-class scatte rs.
Suppose the mean images of the ith class of training images and of the A classes are

represented by 1" and A, respectively, and defined by the formulae:

: |
= =) A (17
K\,J;l
and,
) I
A=Y raA (18)
1=1

where P, i = 1.2..... M. is a priori probability of the ith class. Then, the generalized
between-class scatter matrix Dy, within-class scatter matrix 1),.. and Fishet eriterion

I

function J(x) can be calculated by Equations (19 - 51):

M
Dy =Y P(A = A) (A = A) (49)
1=1
hYj N, "
ZP Y Z (A = AYT(A =AY (50))
1=1 =1
and.
r' Dy
J(x 51
)= D (51)

where r is a vector in R".
Suppuse 7 (2 < r < n) and U={w,}7_, are the number and the set of the optimal
discriminant projection vectors, respectively. Then, cach vector of I7 can he caleulated

step by step using the following procedure:
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(1) uy is the unit vector maximizing the generalized Fisher criterion function J(z)

in K",

(2) The #th optimal discriminant projection vector u, (2 < ¢ < r) is determined by
solving the following problem:

max (J(r))

11;11,:0, 7=1..,1—1

|U1| =1
Details about the physical meaning of the generalized Fisher criterion function, the
optimal projection vectors, and the algorithm of solving u, can be found in [117].

After the set I7={u,}’_, of optimal discriminant projection vectors has been deter-

mined, based on the above method and training image samples, the algebraic features

¥1,....}; of an input image can be extracted by the formula:

Yi=Au, i=1,---,7. (52)

7.3.2 Calculation of the Prototypes of Pair-Class

For cach pair of classes i and j (7 < j), their corresponding prototypes can be

calculated according to the following steps:

(1) Calculate the optimal discriminant projection vecters uf”), 1 €1 <7, based on

the traimng samples of classes 7/ and j;



(2) Calculate the algebraic features of all training samples by projecting them onto

the optimal discriminant projection vectors according to the formula:
)'}(”) = Au}'ﬂ, [=1,---,r (53)
where A is an image sample belonging to class 7 or class J;

(3) For each image sample, constitute a feature vector N9 from its algebraic fea-

tures Y(”), I=1.---,r, as follows:
!
X0 = (X, X,, ..., X)) (51)

where XT =¥, 1=1,-...m;

(4) For the feature vector sets, calculate the prototypes 1{(,”). ln’(;”,' . ~,I?§,’J) of class
7 and the prototypes R;’_ﬂ}, R;,'ﬁ},---,R-(;_Q of class j, where p is a given inte
ger. Several methods such as k-means method [13] or neural network-based
prototype optimization methods [23, 123, 124] can be used to calculate the pro-
totypes. Based on the prototypes, a nearest neighbor classifier can be built for

the pair classes 7 and j. Only a small positive integer p is required to calculate

the distance measurement values.

7.3.3 Calculation of Distance Measurement Values of Images

For an arbitrary image sample A of M classes, its distance measurement values can
be calculated based on the prototypes and the above calculated optimal discriminant,

projection vectors, using the following procedure:
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(1) Calculate the algebraic features corresponding to the optimal discriminant pro-
jection vectors of each pair of classes ¢ and j by Equation (53} and then con-

stitute the feature vector X% by Equation (54).

(2) Calculate the first & minimum distances d*), d3)..... d") between the fea-
ture vector X7 and the prototypes R\'?, RUD ... RUGD and the first k min-

p p 1 2 P
imum distances "7, 4., dg'__JA) between X (/) and the prototypes Rg_ﬁ,),

7=11 71~2

R;ff&,' ' ‘,1?(2'.’,,), respectively;

(3) Constitute a new feature vector X, from the distance measurement values of

image A related to each pair of classes:
- 12 12 12 12 AM-1)M M=1YMW\T
X = (‘Ig-l)v T »d;—l.)-d(Z-l)’ T vdg-—k)' o ’dg\(l—-l ) )’ e sdsl(l—k ) )) (55)
The dimensionality of X, is 2 x &k M(M —1)/2.

».4 Data Classification and Experimental Result

The feature vectors of distance measurement values will be used as features for
image classification. Again, a three-layer perceptron with the Generalized Delta Rule
is used to serve the classification task.

The input patterns are first size-normalized to 16 x 16 pixels. Then, six optimal
discriminant projection vectors per pair of classes are calculated (i.e. r = 6), and

20 prototypes per class corresponding to the set of algebraic features of each pair of
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classes, are derived by a A-means algorithm. The feature vectors of distance mea-
surement values of training and testing samples are extracted based on these optimal
discriminant projection vectors and prototypes, according to the method described
in Section 3. Since the number of classes is 10, there are totally 45 pairs of classes. &
is taken as 1 in this experiment; therefore. the dimensionality of the feature vectors
of distance measurement values is 90. The 4,000 feature vectors are used to train a
three-layer perceptron with 90 input nodes, 90 hidden nodes and 10 output nodes
by the standard back propagation algorithm. After training, the net is used as the
classifier to recognize the feature vectors of the testing set. For Scts 5-9 of the I'T'RI's
numeral database, the highest recognition rate achieved is 96.55%, with no rejection.
More dectailed results with rejection are given in Table 20. Compare with the results
obtained from recognition by parts, the combination of pair classifiers produces a
higher recognition accuracy. This indicates that the extracted algebraic features are
effective in describing the distinguishing information between paired classes. How-
ever, the dimension of feature produced by pair classifiers is proportional to O(M?),
but that by recognition by parts is only O(M). Therefore, it is impractical to apply
pair classifiers directly to problems with a large number M, c¢.g. Chinese character
recognition. In fact, even when M is not very large such as alphanumerical recogni-

tion which contains 62 classes (i.e. 26 upper-case and 26 little-case alphabets, and
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A | Rec. Sub. Rej. Rel.
0.0]96.55 3.45 0.00 | 0.9655
0.1]95.52 2.00 2.48]0.9795
0.2]194.96 1.60 3.44 | 0.9834
0.3[94.21 1.15 4.64}0.9879
0.4193.18 0.94 5.880.9900
0.5]91.95 0.70 7.35}0.9924
0.6 {90.31 0.50 9.19 | 0.9946
0.7 ] 87.54 0.31 12.15 ] 0.9965

Table 20: Recognition performances of “Recognition-by-Pair-Classifiers”.

10 munerals), there are 1891 (61  31) pair classes. Because of the curse of dimen-
sionality, it will require a very large number of training samples to achieve a good
recognition performance; otherwise even when a trained perceptron performs well on

training samples, it may perform poorly on unseen patterns.



Chapter 8

Prototype Optimization

As stated in Chapter 5, measurement-level CME turns out to be a generie pattern
classification problem. Thercfore, various pattern classification methods can be ap-
plied to combine the decisions of classifiers. Then, it is iimportant for us to further
improve the performance of pattern classification processes which can benefit CMJS
in two aspects. First, it will dirtectly produce a better CME performance. Second,
it can be used to construct better classifiers. In a multi-classfier recognition system,
any improvement of the individual classifiers will correspondingly improve the per-
formance of CME. In this thesis, we also made an effort to improve the effectiveness

of the commonly-used nearest neighbor classification by deriving optimal prototypes.
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8.1 Introduction

Nearest neighbor rule is well known due to its simplicity and high discriminant
capability. It has been widely used especially in the cases of incomplete knowledge
of the class probability densities for the entire pattern space. However, the imple-
mentation of a nearest neighbor classifier is computationally expensive in terms of
storage space and computing time if the number of prototypes is large. Many at-
tempts [21. 20, 125, 126, 127, 128, 129] in the past have been made to alleviate
the computational burden of nearest neighbor classifiers. Generally speaking, tradi-
tional research on nearest-neighbor classifiers can be divided into two categories: fast
nearest-ncighbor scarching and protfotypc optimization. In the first category, research
works [21, 125, 126. 127] were focused on the use of fast algorithms to search for
the nearest neighbor. For the second category, efforts [20, 23, 42, 128, 129, 81, 82]
have been devoted to prototype optimization. i.e. to reduce the number of training
samples as reference models on condition that the classification performance with a
reduced set is at least as good as with a complete set. Our work presented in this
chapter belongs to the above second category.

Recently, neural network methodology was extended to optimize the prototypes
of nearest-neighbor classifiers [23, 42, 81, 82]. In [42, 81], Learning Vector Quantiza-
tion(LV'Q) neural network was used as clustering method to optimize prototypes of

nearest neighbor classifiers. In Yan' work [23. 82]. a set of prototypes are first selected
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from the training samples to build a nearest neighbor classifier. The classifier is then
mapped to a three-layer network of which each hidden node represents a prototype
and the weights of connections between a hidden node and the input nodes are ini-
tially set to be equal to the feature values of the corresponding prototypes. Based on
a gradient descent algorithm, the three-layer network is adaptively trained to mini-
mize a defined error function and to derive optimized prototypes. After the training,
process, the three-layer network is mapped back to a nearest neighbor classifier with
new and optimized prototypes.

The new method of optimizing prototypes for nearest neighbor classifiers proposed
here is based on Yan’s method [23. 82]. In Yan's method. the criteria for updating
prototypes and for using the trained prototypes to build a nearest neighbor classi-
fier are in fact inconsistent, which will be explicitly explained in Section 8.2, This
drawback is eliminated in our newly modified model. In this new method, a novel
network architecture and error function are designed to achieve consistent criteria for
upda.ing prototypes and for using the trained prototypes to build a nearest neighbor
classifier. The relationship between the present method and LVQ?2 is also revealed
from a theoretical base. In Section 8.2, a brief review of Yan’s method is introduced.
The new prototype optimization method is then deseribed in Section 8.3, Section 8.4
discusses the relation between LVQ2 and the present method. Finally, a comparison

of the new method, Yan's method and LNV Q2 are provided in Section 8.5, which shows
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that the present method is consistently superior to the other two.

8.2 Yan’s Prototype Optimization Method

Yan [82] used a three-layer network to produce prototypes for a nearest neighbor
classifier. This net consists of input, hidden, and output layers. The total number
of input nodes is N, which is equal to the dimension of the input features; and the
total number of output nodes is i, which is equal to the total number of classes. In
the hidden layer, cach node corresponds to a pr- otype. In the output layer, node k
contains the classification information of class k. Suppose there are J hidden nodes
in total, r, = [r;1.752, -+ -.7,n]7 is the prototype represented by hidden nade 7, and

@ 1s an input vector; then the input to hidden node j is

u, = da,r,)

= (r-7y)° +o 4 (ay =) (56)
The output of the hidden node is

Y, = 1+ elw)

The output of output node k is

1
1 + C_(ZJESA Aly;+21e5k “121’])’

(58)

L=

where S; is the index set in which each index corresponds to a hidden node that

represents a prototype belonging to class k, A4, is the connection weight from output
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node k to cach node of Si. and Ay is the connection weight from output node & to
c>ch hidden node not belonging to Sj.

The error function F is defined as

lvl*—'

k
Z |lzko — 24]? (59)

where 2o and =i are the desired and actual values of output node k. According to
the generalized delta rule, r;, is updated with the following increment
K
Ar.u = a Z(:ko_:k (l '—'~k [Z Al’/] "1/] 711 + Z /‘2'/_/ =Y, ( 7'_71)1
k=1 JES), JES
(60)
where @ is the learning rate. Although a in the original formula proposed by Yan is a
constant, it is well known that in clustering analysis a variable learning rate in general
will produce bette: clustering results than a constant learning rate. Therefore, a in
our experiments has been exiended to a(n), and Equation (61) is used to replace
Equation (60):
K
Ary, = a(n) Z (zro—2k)zk (1=21)%[ D Ay 2=y, Nai=r,)+ Y Asyy (23, )0 =751))
k=1 J€Sk €5,
(61)
where a(n) is monotonically decreased verse time, that is Vo 0 < a(n + 1) < o(n),
and n is the iteration number of the whole training data set. After training, the

trained net is mapped back to a nearest neighbor classifier. For recog..ition, an input

sample r is assigned to the class of prototype for which u, is the minimum,

193




General speaking, the idea to use neural networks for optimizing pattern pro-
totypes is innovative. But, from the above description we know that during the
training process the prototypes are updated to reduce the global error E in which z
(1 <k < K) is computed from the distances between the input training sample and
all the prototypes. However, when the trained net is mapped back to a nearest neigh-
bor classifier, an input sample is assigned to the class of which the distance between
a prototype and the input sample is minimum. In fact, the criteria for prototype up-
dating (i.c. training) and for classification are inconsistent. From the point of view of
a trained ncural network, an input sample will be classified as class ky if |zx,0 — 2, | is
the minimum value of |zxo — 2] (1 < & £ K'). But, from the view point of a nearest
neighbor classifier, the sample will be classified as class k; if the distance between
a prototype of class k; and the input sample is minimum (i.e. u;, = mimeq.0w
and j € Si,). There is no guarantee that ky equals k; is always true. In practice,
this inconsistency may considerably degrade the recognition accuracy of this method,

which has been confirmed by our experiments.

8.3 A Novel Prototype Optimization Method

According to the above discussion. a new prototype optimization method 123, 124)
is proposed, which improves on Yan's in two aspects: network architecture and the

definition of error function.
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8.3.1 Network Architecture and Node’s Function

The new model contains a four-layer network as shown in Figure 21. These four
layers are called the input, first- and second-hidden. and out put layers, respectively.
The number of nodes in the first three layers are the same as those used in Yan's
model which are represecmied by N, J and K respectively, and there is only one
node in the output layer. In our method, we use the nodes of the first-hidden layer to
represent the prototypes of classes. Assume that the nodesin each layer are named to
relate to that layer, e.g. the first-hidden nodes are the nodes of the first-hidden layer.
Between the input and first-hid'den layers, each first-hidden node is fully connected to
the input nodes. However. between the first- and second-hidden layers, each second-
hidden node k only connects to those first-hidden nodes which contain the prototypes
of class k. The output node connects to all second-hidden nodes. Except the weights
between the first-hidden and input layers. all connection weights of the network are
equal to 1.

In order to design an appropriate error function. the ontput functions of the first-
and second-hidden nodes are also changed accordingly ‘The newly defined node and
error functions lead to the derivation of a simple but effective prototype update rule,
which is described in Section 8.3.3. Instead of using a sigmoid function, cach first-

hidden node j uses one half of the input value as its output:

1
v = 5 d*(x, 7))



] 9 .
=3 (21 =7y 4+ {an — 1'JA')2]- (62,

where 7, 0s the weight ve-tor of prototype j. The output of a second-hidden node k
is

s .
where Sy is the index set in which each index corresponds to a first-hidden node that
represents a proloty pe belonging to class k. Equation (63) specifies that a second-
hidden node k registers the index of the first-hidden node which belongs to class
k and possesses the minimum value among the set {y,| j € Si}, and to pass this
value to the output node. The output node simply registers the index of the second-
hidden node A, which has the minimum value among theset {z(|k € {1---K}}, i.e.

A= min{.‘zl ke

8.3.2 Error Function

Another major difference between the proposed method and Yan’s is that a new
error function is defined. Although the original error function in Equation (59) is
commonly used to search the least-mean-square-error .;olution, this error function, in
fact, does not directly correspond to the classification error by a nearest neighbor

classifier'. Based on the node functions defined in Section 8.3.1, a new error function

' A nearest neighbor classifier increases the error by one whenever it makes a wrong classification,
otherwise there is no 'ncrement of error at all.
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Ee strongly correlated to the error of a nearest neighbor classifier is proposed as

Iy~

Eyw =1 — (7408 (64)

where Al is the index of the class having the minimum distance to the input pattern
x, T is the ground-truth class label of x. A(n) is the bandundth parameter, sometimes
called the width of the receptive field of the sigmoid function, whichi governs the size
of the active area of the sigmoid function, and 0 < A(n + 1) < A(n) for all n in
integer set. It is clear that according to definition zp is always equal to or smaller
than z7. When zp; equals to =7, it means that the trained network has made a
correct classification. According to Equation (64), no increment of error will occur
due to the current classification. When zay is smaller than zp, it indic. s that the
current pattern is mis-classified. Equation (61) then presents a certain increment of
error. Heio, A(n) functions like a “temperature parameter in the simulated annealing
process [40], starting at a high value and going down. Interestingly, when A(n)

approaches 0, E,.,, becon.es a binary function as

Evew = 0,if zar = 27 (i.c. correct classification),
and

Erew = 1,0 2a1 # 20 (L. wrong classification).
This indicates that the newly defined error function directly corresponds to the clas-
sification error by the nearest neighbor classifier, especially when the temperature is
low.
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Figure 21: Diagram of the modified network.
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8.3.3 The Prototype Update Rule

According to the generalized delta rule, r,, can be updated as follows:

(‘)E'I](H’ (.r
ar,, (65)

Ary,, = —a(n)

where a(n) is a monotonically-decreasing learning rate. Since K, is expressed by

output zas and z7, by using the chain rule. item 2Esew hecomes

Oryy
Ky P
nfu n('u “ \ .
. (66)
()7], E-; 9z ’Jr

From Equation (61). we obtain

’
z -z

IMZE:T
——m x¢ Am when zp # 27 and & = A,
dEn(’u' ]

- iyg-ip . -
PP ) A X C Aln} when sy #F zpand b =T (67)

z

0 , otherwise.
\

The calculation of -‘—ri can also be expressed by the chain rule of two partial deriva-

Fal

tives, that is

Ozx B dz dy,

or,, Ay, or,,’ (68)

Interestingly, the first derivative becomes

9z 1, when y, = maxies, yi;
o (69)
’ 0 , otherwise;

and the second derivative is

ayf _
;)_T_'_; - (-Tz r]x)- (70)




Therefore, putting Equations (65 - 70) together, we obtain

r z -2

—n(n)e” 2™ (x, — r,,) , when zp # zr and y, = maxes,, ¥i;
Ary=19q 5(n) A (2, — ;) , when zp # 27 and y, = maxies, ¥i; (71)

0 , otherwise;

where n(n) = ‘—;%% To ensure the convergence of the prototype optimization process,

Vd

5y(1) should be a monotonically decreasing function.

8.3.4 Geometry Interpretation of the Prototype Update Rule

Equation (71) shows that: (1) if the network makes a correct classification (i.e.
zp = z7), then no prototype will be updated; (2) if the network makes a wrong
classification (i.c. zp < z7), two prototypes will be updated to reduce error (one
is moved toward the current sample and the other is moved away from it); and (3)
incremental weight Ar,, is influenced mostly by two items? z; — r,, and e"‘(-";' .
Undoubtedly, the first item satisfies our intuition that when the distance between z,
and r,, is large, then Ar,, should be large as well. The second item ¢ 4" describes
that within a complete iteration of the overall training data, a larger update takes
place when zjp and 21 are close, and a smaller update when zps is much smaller than
zpr. In other words, if a network has made a wrong classification (i.e. zp # 27) on

the identity of « pattern and it is far from making it right (i.e. zp < 27), then

little is learned from this pattern. On the contrary, when the network is very close to

?For the sake of simplicity, the influence of 5(n) is not discussed here.
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make the correct classification (i.e. zy = z7). then a large amount of learning, will
be required.

It is easy to verify that the class corresponding to the smallest value of 2z is
the same as the one corresponding to the smallest u,. This reveals that the present
method and the nearest neighbor classifier actually have the same recognition per-
formance. and enables us to classify an input pattern by using the nearest neighbor
classifier with the prototypes produced by this method. In fact, consistency between
the training and recognition stages is the primary reason that this modified model

can outperform Yan's,

8.4 Relation Between LVQ2 and The Present Method

Learning Vector Quantization (LVQ) is a famous clustering method used for near-
est neighbor classification. In this section, the relationship between LVQ-based pro-
totype optimization methods and the present one is revealed. Due to our focus on
supervised learning process, LVQ2 is the one used for comparison. When the Fu-
clidean distance metric is used in LVQ?2 for distance measurement, with the same
notation and definition used in Section 8.3.1, LVQ2 can be expressed as follows: for

a pattern r,

(1) When zar = z7, then no prototypes are updated;



2) When zpy # 27, pattern r is misclassified, then two steps will be performed:
p p p

Reinforced Learning:  Ar, = a(n) * (z, — ry,), when y, = max,es, ;3

Anti-reinforced Learning: Arp, = —a(n) * (z, = rm,), when yn, = max,es,, y;.

Comparing the prototype update rule of LVQ2 with that of the present method (see
Equation (71)), if A(n) is set to be a fixed large value (such as A(n) = 10000.0)
and n(n) equals a(n), then the two update rules become the same. This realization
manifests that LVQ?2 is a special case of the present method.

It is well known that although LVQ-based clustering methods are capable of reduc-
ing their corresponding error functions, they are liable to converge on local minima
rather than global minima. This may result in quite different performances with
respect to different prototype initializations. Two approaches are generally adopted
to alleviate this problem. The first is to minimize an error function by using the
global error optimization techniques, such as genetic algorithms [130, 131] or simu-
lated annealing processes [40, 132, 133]. The second is to define an error function
which changes with time. Hypothetically, a local minimum of an error function is

unlikely to be a local minimum of another error function. Therefore, by continuously

changing an error function, local minima may be avoided. In fact, the present method
intrinsically takes both approaches into consideration. First, the present error func-

tion [y is not fixed because it changes continuously according to parameter A(n).
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Second. the present error function E,., consists of a so called “deterministic annecal-
ing” property [132]. which incorporates a certain degree of randonmess taovement
and is deterministically optimized at cach temperature sequentially, starting from a

high temperature and going down.

8.5 Experiments

A series of experiments have been conducted 1o compare the proposed. LVQ?2 and
Yan’s r ethods. All the results show that the proposed method is superior to the other
two. In the following. three experiments with two different data sets are deseribed.
The first and second experiments were performed on an artificial three-class data.
and (he third on a large collection of handwritten numeral data.

Since all prototype optimization methods still contain nndefined parameters, they
should be defined first. For the results presented, A; and A, used in Yan’s method

are set to | and -1 respectively, and a(n) and 5(n) are

a(0) = 0.01  for LVQ2;
an+1) = 0.995+a(n) , with
a(0) = 0.01  for Yan’s method;
and
nn+1) = 0.995 x7(n) , with (0) = 0.1,

The given initial values of ~{J) and 7(0) arc derived from the following Experiment |

so that the best classification results of the three prototype optimization methods are
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obtained, respectively. However, it should be mentioned that the proposed method
always obtains the best classification results during our experiments when a(0) =
7(0). As for A(n). it is expected to become small when n is large. However, since
A(n) stands for the receptive field where prototype update could take place. it should
be correlated to the appropriateness of the corresponding prototypes, that is if the
current prototypes are suitably located. A(n) will be small, otherwise A(n) will be

large. To achieve both purposes. A(n) is designed as

A(n) = B(n)*V(n) (72)
An) =0.995* F(n—-1)

and
J I

Vin) = et S5 |2 = 1, 1P

Totalno puciour

where 3(0) = 1. Totalno is the total number of training samples, J is the total
number of prototypes, I, corresponds to the prototype j of class k and stands for
the number of those samples of class &, each of which has the minimum distance to
prototype j among all prototypes of class k, and ] is the feature vector of the ith
sample belonging to prototype j. Heuristically, if the current prototypes are good,
then V' (n) tends to be small. The purpose to have g(n) in A(n) is to ensure that A(oc)
becomes zero. For the sake of simplicity. different classes are assumed to possess the

same number of prototypes in the following experiments.



Experiment 1: Prototype Initialization by k-means Algorithm

This experiment was performed on an artificial data set as shown in Figure 22,
which contains three classes of 2-I) planar points. There are 525 samples in total. The
samples of the first, second, and third classes are represented by symbols *+', 0", and
“.", respectively. Using 2-D patterns enables a visual inspection of prototype movement
and the corresponding classification boundary, so that the intrinsic characteristies ol
the three methods can be observed. The objective of this experiment is to compare
the three prototype optimization methods in the context that initial prototypes are
carefully selected, i.c. constructed by the k-means algorithm.

For a general comparison, four different quantities of prototypes per class are
used. For a given number m. ecach approach will fitst find m prototypes for cach
class. and then compute the total number of correctly classified samples according to
these m prototypes by the nearest neighbor classifier. Table 21 lists the performances
for m € {2,3.4,5}. which shows clearly that the present method produces the hest
performance. LVQ?2 the second and Yan's method the third. Figure 23 displays the

positions of the final prototypes derived by the three methods and the elassification

boundaries constructed by these prototypes, when i equals 3.
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Figure 22: Distribution of samples of three classes.
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Approach m | Correct No. | Error No.
Yan 2 454 Tl
LvQ2 2 488 37
Present Method | © 495 30
Yan 3 475 50
LVQ2 3 494 31
Present Method | 3 505 20
Yan 4 478 47
LVQ2 4 501 24
Present Method | 4 511 14
Yan 5 480 45
LvVQ2 5 508 17
Present Method | 5 517 8

Table 21: Recognition performances by three prototype optimization meth-
ods, where m stands for the number of prototypes for cach class, Correct,
No. for the number of correctly classified samples, and Error No. for the
number of wrongly classified samples.
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Figure 23: Prototypes and classification boundary constructed by the three
prototype optimization methods. (NPO stauds for the present method, and
symbol * indicates the optimized prototype locations)
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Experiment 2: Random Prototype Initialization

This experiment uses the same data as that used in Experiment 1, and the number
of prototypes for each class is set to be 3. Instead of carefully selecting the initial
prototypes, two random initializations arc adopted here. The first is to select the first
three encountered samples in each class set as the corresponding initial prototypes,
and the second is to set all the three initial prototypes at the same point, the center
of each class. The two initializations are shown in Figure 24. After training, Table
22 lists their classification results. Obviously, for both initializations, the present
method performs much better than the other two, and it achieves almost the same
classification performance as it has achieved in Experiment 1 for the same number of
prototypes. This indicates that the present method is likely capable of constructing

reasonable prototypes for arbitrary prototype initializations®

. The reason why the
present method can avoid being trapped at local minima is because of the intrinsic
annealing property of its stochastic-like error function. This will become clear after
showing two figures: Figures 25 and 27. Figure 25 displays the prototype movement
in each iteration of the present method with the second prototype initialization. It
shows that the optimized prototypes of each class diverges from the center of the

corresponding class and gradually converges at their individual optimal locations. It

is not easy to see that there are three converged locations for the first class because

3However, to confirm the hypothesis that the present method will not converge at local minima
in general cases indeed needs many more experiments and the support from theoretic work.
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Initialization 1 Initialization 2
Approach Correct No.  Error No. | Correct No. Error No.
Yan 361 164 389 136
LvQ2 417 108 476 49
Present Method 502 23 504 21

Table 22: Classification performances by the three prototype optimization
approaches, where Correct No. stands for the number of correctly recog-
nized samples, Error No. for the number of wrongly recognized samples,
and each class contains three prototypes.

two of them are close to each other. The final prototypes and their corresponding
classification boundary are shown in Figure 26, where the nine optimized prototypes
can be seen clearly. Figure 27 shows the distribution of E,.. and the classification
error by the nearest neighbor classifier, where r-axis is the number of iterations, y-
axis is the magnitude of error, the dotted line shows the distribution of E..., and
the solid line gives a distribution of the classification error by the nearest neighbor
classifier. As illustrated in Section 3, E,., gradually approaches the classification
crror by the nearest neighbor classifier as n increases or A(n) decreases, and finally
they will converge at the same value. Interestingly, this distribution of E.., seems

to show a stochastically decreasing error, starting at a large value and going down.
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Figure 24: Display of two random initial prototypes, where symbol # in-
dicates the locations of the initial prototypes. (a) random initialization 1:
the first three encountered samples in cach class set, are selected to be the
corresponding initial prototypes, and (b) random initialization 2:
three initial prototypes are set at the same point, the center of cach class,
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Figure 25: The trace of prototype movement derived by the present method
with initialization of the second random prototypes.
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Figure 26: Optimized prototype and boundary positions derived by the
present method with initialization of the second random prototypes.

213



90 1 I T T T

error

10t -
0 1 1 [l 1 —l
0 50 100 150 200 250 300

number of iteration

Figure 27: Distribution of E,., and the classification error by the nearest
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magnitude of error. The distribution of Ey.,, is indicated by the dotted line,
and the solid line shows the distribution of the classification error by the
nearest neighbor classifier.
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Experiment 3: Prototype Optimization on Handwritten Numeral Data
The purpose of this experiment is to investigate the performance of the prototype
optimization method on real data, and the generalization of the optimized prototypes
to unseen .. .erns. The data performed in this experiment conzist of the ITRI’s nu-
meral data base. Sets 1-4 (19,353 samples) were used for prototypes training, and Sets
5-9 (22,024 samples) for performance testing. Table 23 lists the recognition accuracy
of the three classifiers on the testing data set (22,024 samples). For cach individual
classifier, it classifies each sample and produces I, i.e. the total number of classes,
measurement valucs, each of which stands for the degree that this sample belongs to
one particular class; then the measurement values produced by all individual classi-
fiers on each sample are constituted into a feature vector. As a result, cach sample
contains one feature vector, which represents the location of this sample in the cor-
responding feature space. With the three prototype optimization methods and five
prototypes for each class, Table 24 shows the classification accuracy on the training
and testing data sets respectively. For both the training and testing data, the present
method again obtains the best recognition result, however LVQ2 shows a compatible

performance in this experiment.
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Rec.  Sub. Rel.
c; | 89.77 10.23 | 0.8977
e2 | 90.50  9.50 | 0.9050
es | 91.68 8.32 ] 0.9168

‘able 23: Recognition performances of individual classifiers using 22,024
testing samples.

Learning Testing
Rec. Sub. | Rec. Sub.
Yan 90.34 9.66 | 88.70 11.30
LVQ2 08.52 1.48 | 96.61 3.39
present method | 98.83 1.17 | 96.91 3.09

Table 24: Classification performances of three prototype optimization meth-

ods on 22,024 testing numeral patterns by using the recognition output of
the three individual classifiers.
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Chapter 9

Conclusion

9.1 Summary

The following statements appeared in Kanal® [134]:

“It is now recognized that the key to the patiern recognition problem
does not lie wholly in learning machines, statistical approaches, formal
linguistic approaches, or in any other particular solution which has been
vigorously advocated by one or another group during the last one and half
decades as the solution to the pattern recognition problem. No single modcl
exists for all pattern recognition problems and no single technique is ap-
plicable to all problems. Rather whal we have in pattern recognilion is a

bag of tools and a bag of problems.”

1Prof. Kanal is the recipient of the 1992 King-Sun Fu Award.
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Later in the same paper he mentioned:

“What is incumbent on us is to attempl to understand the capabili-
ties and applicability of the vwarious tools and erploit the complementary

advantages of the different paradigms.”

Indeed, Kanal tried to argue that the research addressed to the problem of combin-
ing multiple classifiers may provide new insight into pattern recognition. Previously,
the main efforts focused on the design of one good classifier, so that a desired classi-
fication rate could be obtained. Now there is a different focus. Instead of designing
one high-performance classifier (which is extremely difficult), we can build a number
of different and complementary ones. Each classifier itself may not have a superb per-
formance; however, the appropriate combination of these individual classifiers may
produce a highly reliable performance [51].

In fact, the idea of CME is not new: in human society, when people encounter a
complicated problem, they tend to assign a group of experts to solve it. This is because
experience has shown that group decision in general is better than any individual’s.
However, there are three basic requirements for constituting a successful group: (1)
there exist several individuals or experts who are qualified to deal with the problem;
(2) the chosen experts are both able and willing to cooperate with each other; and (3)
there exists an efficient and effective decision-making mechanism, which can resolve

the potential conflicts in the group and achieve the final consensus. Interestingly,
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majority voling seems to be the most commonly used method to derive a consensus
in human communities. Although voting is fair in the sense that cach mdividual has
an equal right to make his or her decision, it will not be the best approach for making
the right decision if some individuals have shown themselves capable of making more
correct decisions than others.

For character recognition, to date, a large number of character features and clas-
sification functions have been developed. Therefore, the first requirement of suc-
cessful teamwork, the availability of expert-like classifiers, is satisfied. In general,
the output information that various classifiers supply can be divided into two lev-
els: (1) The absi-act level: a classifier only outputs a unique class label, or a subset
of class labels when it cannot decide on the identities of some confusing patterns;
and (2) The measurement level: a classifier assigns each class label a measurement
value, to indicate the degree of possibility that the corresponding class pertains to
the input pattern. Classifiers producing information at the abstract or measurement
levels are called abstract-level or measurement-level classifiers. The combination of
abstract-level or measurement-level classifiers is called abstract-level or measurement-
level CME. Because abstract- and measurement-level CME make use of different, levels
of information, they naturally require different combination functions to derive the

best classification decision.
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For abstract-level CME, a novel combin«iion model is proposed in this research,
the Behavior-Knowledge Space method (the BKS method). This method operates
in two stages: (1) the knowledge-modelling stage, which extracts knowledge from
the former classifiers’ decisions and constructs a K'-dimensional behavior-knowledge
space; and (2) the decision-making stage, which is carried out for each test sam-
ple, and which combines decisions generated from individual classifiers, and selects a
specific cell of the constructed space to make a final decision by a rule utilizing the
knowledge of the cell. It has been shown that the BKS method possesses many ad-
vantageous properties, such as (1) adaptive learning, (2) automatic threshold finding,
(3) theoretical performance analysis of the cornbination of partial classifiers, (4) the
CME method to achieve the highest recognition accuracy for a given set of abstract-
level classifier from the statistical point of view, (5) semi-monotonicity improvement
in recognition accuracy with respect to the increment of number of combined clas-
sifiers, and (6) no assumption that classifiers are independent of each other and no
degradation when dependence exists among classifiers. However, the BKS method
indeed has two intrinsic problems which may considerably constrain its effectiveness:
not enough learning samples, and exponential memory requirzments. Fortunately,
with the help of another abstract-level combination function, the first problem can
be eflectively resolved. Also, three solutions have heen proposed for the second prob-

lem: (1) dynamic class allocation, (2) dynamic cell allocation, and (3) condensed



editing technique. With three classifiers, experiments on I'TRI's numeral database
have shown that the BKS method outperforms the other three abstract-level combi-
nation mouels: voting, Bayesian, and Dempster-Shafer. The good performance of the
BKS method has also been reported in different resources such as {135, 136]. This
reveals that this method is practical to many OCR applications.

For measurement-level CME, since classifiers may produce measurement values
with different physical meanings and scales, before combining the measurement val-
ues they should be transforraed into a new data form with the same meaning (such as
the larger the better) and the same scale (such as [0.0 - 1.0]). As a matter of fact, the
data transformation process is to ensure that the second requirement of a successful
group can be satisfied. Three combination approaches have been proposed in this
thesis: LCA, BCA and neural network models. The first two approaches (LCA and
BCA) transform a measurement value into a reliability-like expression in terms of con-
ditional probability. Then the transformed measurement values are either summed
up in a linear way, or multiplied together through the Bayesian formula. Implicitly,
both approaches require a few assumptions of the characteristics or the di. tributions
among measurement values or classifiers which £’ ~nificantly reduce their effectiveness
in real applications. Looking at the CME problem from a different, point of view, for a
multiple-classifier system, individual classifiers can be regarded as feature extractors

as well. With this new understanding, neural network approaches become applicable
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to serve the CME combination functions. Intrinsically, neural networks are suitable
for measurement-level CME because they posses four well-known valuable charac-
teristics: (1) they behave as collective sysiems; (2) they can infer subtle, unknown
relationships from data; (3) they can generalize, meaning that they can respond cor-
rectly to patterns that are similar to the original training data; and {4) they are
nonlincar, that is, they can solve some complex problems more accurately than lin-
ear techniques do. Amazingly, these characteristics have overcome all the constraints
presented in either LCA or BCA. As a matter of fact, the four characteristics specify
exactly the desired functions of CME. Since CME is a supervised learning problem,
the multi-layer perceptron with back-propagation error correction is adopted to com-
bine all measurement values, because it has been used successfully in various pattern
recognition applications with good recognition results. In this thesis, a family of data
transformation functions are proposed which are capable of being applied to most
kinds of measurement values. To further improve both speed and generalization of
a multi-layer perceptron, three strategies have been proposed: training by boundary
samples, training by partitions, and weight reduction. With three classifiers, experi-
ments on ITRI's numeral database show that by using a three-layer perceptron, the
recognition rate can be improved up to 97.66% with no rejection (for the same testing

samples, the best recognition rate of the three classifiers is 91.68%).



Essentially, CME deals with classifiers that use different types of features and
different classification techniques; however, CME can become a new classifier design
technique as well. In this thesis, two classification procedures based on CME are pro-
posed: recognition by parts and recognition by pair classifiers. Both of them first use
the same types of features and classification functions to construct several classifiers,
and then use CME techniques to combine the measurement-level output information
of all constructed classifiers together. Simply speaking, recognition by parts divides
high-dimensional feature vertors into several lower-dimension feature vectors, cach
of which represents the features of a sub-part of image and is used to construct a
so-called sub-part classifiers. This is because high-dimensional feature vectors do not
only increase computational complexity but also produce implementation and accu-
racy problems. Recognition by pair classifiers implements one classifier for cach pair
of classes. Therefore, for an M-class recognition problemn there are M.:(zﬂﬂl pair clas-
sifiers, each of which has a high discrimination capability for recognizing a pair of
classes. Naturally, CME techniques are required to integrate all classification deci-
sions of sub-part or pair classifiers. Experiments hav~ shown promising recognition
performance by using these two classification procedures.

Since the basic component of a multiple-classifier system is a classifier and CME
turns out to be a generic pattern recognition problem, it is essential to improve the

recognition efficiency of classifiers. In this thesis, we also made the effort to derive
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the optimized prototypes for the nearest neighbor classifier. It is well known that
the nearest neighbor classifier is one of the most commonly-used classifiers due to
its simplicity and discriminant capability. However, the nearest neighbor classifier
intrinsically possesses two built-in disadvantages: (1) Outlying samples? will affect
its recognition accuracy considerably, and (2) It is computationally expensive when
the number of training samples is fairly large. A way to solve the problems is by
prototype optimization. Using a few but well optimized prototypes of which the
number is considerably smaller than the total number of training samples, it is pos-
sible to achieve an even better perforinance in both speed and accuracy than usirg
all the training samples. In Chapter 8, a novel approach for protctype optimization
is proposed based on a neural network technique. A new network architecture is
designed for optimizing prototypes and a new error function is proposed for training
the network. Promising results indicate that the proposed error function can truly
correspond to the classification error by a nearest neighbor classifier. There are two
main characteristics of the present method: (1) consistent criteria, for updating the
weights of the network which correspond to the prototypes to be optimized, and for
using the trained prototypes to build a nearest neighbor classifier; (2) the derived
protolype update rule possesses a deterministic annealing property, hence the min-

imization the proposed error function can likely avoid convergence at local minima.

2Qutlying samples of one class are the samples which are far away from most samples of this
class. Usually, they are rare and irregular.
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One important conclusion is that LVQ2 can be considered as a special case of the
proposed method. The experimental results for the comparison of new method, Yan's

method and LVQ2 show that the present method is superior to the other two.

9.2 Future Directions

The combination of multiple classifiers, in fact, is not only useful to the recognition
of handwritten numerals, but also to various application areas of pattern recognition
(e.g., fingerprint recognition, face recognition, and medical diagnosis). Although sev-
eral combination models have been proposed, many new problems have been brought

out for further study as well, and listed below as challenging open problems:

1. For abstract-ievel classifiers, from the statistical point of view the BKS method
can produce the best recognition accuracy. For measurement-level classifiers,
neural networks have been shown capable to combine their classification re-
sults together effectively. But, for an application with both abstract-level and
measurement-level classifiers, it is natural to ask: what are the effective combi-
nation functions? If enough representative training samples are available, one
possible solution is first to combine all measurement-level classifiers with a ntu-
ral network, and regard the neural network as an abstract-level classifier by

only outputting the class label of its first choice with an information reduction



-

3.

process; then all abstract-level classifiers including the neural network are com-
bined by using the BKS method. The main reason to adopt this combination
scheme is that the BKS method contains the semi-monotonicity property, which
ascertains that the recognition performance of the BKS method is equal to or
better than any abstract-level classifier, including the neural network. However,

more rescarch effort and experiments need to be performed on this issue.

. All advantageous properties of the BKS method exist from the statistical point

of view. This means that a large enough and representative learning data set
should be provided. If only a few samples are collected, or samples are collected
randoinly and carelessly, the desired propertis= of this method cannot be guar-
anteed. Therefore, for practical applications, the key issue to successfully apply
this method is to construct a representative training data base. This indicates
that more attention should be paid to the data collection step, which is often
ignored in the current research domain. Fenrich and Hull [137) have presented

the concerns in the creation of an image database.

Although measurement-level classifiers usually supply positive measurement
values. it is not ruled out that some classifiers may supply negative measurement
values (¢.g. distance through logarithmic functions). This brings out one ques-
tion: when there are both positive and negative measurement values, how and

what are the appropriate data transformation functions which can transform
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them into the same likeness form?

. Training by partition has shown its effectiveness through our experiments. How-
ever, are there other criteria which can better, or even best.. partition the pattern
space S?7 If so, what are they? In general, such criteria may include features in

the input patterns as well as characteristics of classifier outputs.

. In Chapter 1, we mentioned that there are two key tasks in CME research, and
till now we have only focused on the second task, the combination models. In
fact, the first task is also important for achieving high recognition and reliabil-
ity systems. Accordingly, much effort should be spent on how to systematically
construct or select the features and classification methodologies which can com-
pensate for one another and get the best combination result. Some rescarch on

this topic has been directed by Kleinberg [138, 139).

. Since the proposed error function in Equation (64) is closely related to the real
error of classification, it in fact can be applied to various classification problems
based on the minimization of an error function. Currently we are applying the
new error function on multi-layer perceptrons and radial-basis function neural

networks.

N
N
-1




Due to the promising results obtained from various experiments, we believe that
CMFE is one of the key technologies for developing practical systems of pattern recog-
nition which are capable of matching human performance. We are eager to see that

more and more research effort is devoted to this fascinating topic.



References

[1] D. Noton. “A Theory of Visual Pattern Perception,” IEEE Transactions on Systewms

Science and Cybernetics, SSC-6, No. 4, pp. 349-357, 1970.

[2] D. Noton and L. Stark. “Eye Movements and Visual Perception,” Scientific Amenri-

can, Vol. 224, No. 6, pp. 34-43, 1971.

[3] M. Nadler and E.P. Smith. Pattern Recognition Engineering, John Wiley & Sons,

New York, 1993.

[4] C.Y. Suen. “Distinctive Features in Automatic Recognition of Handprinted Charac-

ters,” Signal Processing, Vol. 4, pp. 193-207, 1982,

[5] M. Shimura. “Multicategory Learning Classifiers for Character Reading,” 1IEL

Trans. Syst., Man, Cybern., Vol. 3, pp. 74-85, 1973.

[6] W.W. Bledsoe and I. Browning. “Pattern Reccgnition and Reading by Machine,”

Proc. EJCC, pp. 225-232. 1959.

229




[7) S.K. Kwon and D.C. Lai. “Recognition Experiments with Handprinted Numerals,”

Proc. Workshop on Pattern Recognition and Artificial Invelligence, pp. 74-83, 1976.

[8] B.A. Glucksman. “Classification of Mixed-Font Alphabetics by Characteristic Loci,”

Dig. 1st Ann. IEEE Comput. Conf., pp. 138-141, Sept., 1991.

[9] R.C. Gonzalez and P. Wintz. Digital Image Processing, 2nd ed., Addison-Wesley,

Reading, Ma, 1987.
[10] W.K. Pratt. Digital Image Processing, 2nd ed., Wiley, New York, 1991.

[11] H.C. Andrews. “Multi-Dimensional Rotations in Feature Selection,” IEEE Trans.

Comput., Vol. 20, pp.1045-1051,1971.

[12] ).S. Huang and M.L. Chung. “Separating Similar Complex Chinese Characters by

Walsh Transform,” Pattern recognition, Vol. 4, No. 4, pp.425-428, 1987.

[13] P.A. Devijver and J. Kittler. Pattern Recognition — A Statistical Approach, London:

Prentice-Hall, 1982

[14] R.O. Duda. “Elements of Pattern Recognition,” in: J.M. Mendal and K.S. Fu, eds.,
Adaptive Learning and pattern Recognition Systems, Academic Press, New York,

1970.

230



[15]

[16]

[17]

(18]

[19]

[21]

C.Y. Suen and R.J. Shillman. “Low Lrror Rate Optical Character Recognition of
Unconstrained Handprinted Letters Based on a Model of Human Perception,” I1ELF

Trans. Syst., Man, Cybern., Vol. 7, pp. 491-495, 1977.

L.G. Roberts. “Machine Perception of Three-Dimensional Solids,” in Optical and
Electro-Optical Information Processing, (J.T. Tippet, cd.), MIT Press, Cambridge,

Mass, 1965.

M. Nadler. “A Note on the Coefficients of Compass Mask Coeflicients,” Computer

Vision, Graphics, and Image Processing, Vol. 51, pp. 96-101, 1990.

L. Lam, S.W. Lee, and C.Y. Suen. “Thinuning Methodologics - A Comprehensive
Survey,” IEEE Trans. Fatt. Anal. Machine Intell., Vol. 14, No. 9, pp. 869- 885,

1992.

T.M. Cover and P.E. Hart. “Nearest Neighbor Pattern Classification,” IEEE Trans.

Inform. Theory, Vol. 13, pp. 21-27, 1967.

P.E. Hart. “The Condensed Nearest Neighbor Rule,” IEEFE Trans. Inform. Theory,

Vol. 14, pp. 515-516, 1968.

M.L. Mico, J. Oncina, and E. Vidal. “A New Version Of The Nearest-Neighbour Ap-
proximating And Eliminating Search Algorithm (AESA) With Linear Preprocessing
Time And Memory Requirements,” Pattern Recognition Letters, Vol. 4 No. 3, pp.
9-18, 1994.

231




22] C.L. Chang. “Finding Prototypes For Nearest Neighbor Classifiers,” IEEE Trans.
g g

Comput., Vol. 23, pp. 1179-1184, 1974,

[23] H. Yan. “Prototype Optimization “or Nearest Neighbor Classifiers Using A Two-

layer Perceptron,” Pattern Recognition, Vol. 26, No. 2, pp. 317-324, 1993.

[24] D.S. Lee, SW. Lam, and S.N, Srihari. “A Structural Approach to Recognize Hand-
Printed and Degraded Machine-Printed Characters,” Pre-Proceedings of the IAPR
Syntactical avd Structural Paticrn Recognition Workshop, pp. 256-272, Murray Hill,

y

NJ, June, 1990.

(25] K. Fukunaga. Introduction to Statistical Pattern Recognition, Academic Press, New
York, 1972.

[26] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis, Addison-
Wesley, New York, 1973.

[27] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and The Theory of Brain

Mechanisms, Spartan, New York, 1962.

[28] J. Schiirmann and W. Doster. “A Decision Theoretic Approach to Hierarchical Clas-

sifier Design,” Pattern Recognition, Vol. 17, No. 3, pp. 359-369, 1984.

[29] N. Chomsky. “Three Models for the Description of Language,” Transactions on

Information Theory, IT-2, No. 3, pp. 113-124, 1956.

o
w
o



[30] N. Chomsky. “On Certain Formal Propertics of Grammars," Information: and ('on-

trol, Vol. 2, No. 2. pp. 137-167, 1959.

[31] N. Chomsky. “Formal Properties of Grammars,” in: Hand*ook of Mathematical Psy-

chology, Vol. 2, New York, Wiley, pp. 323-418, 1963.

[32) K.S. Fu and T.L. Booth. “Grammatical Inference: Introduction and Survey,” 1EEE
Trans. Systems Man Cybernet., Pt 1, SMC-5, No. 1, pp. 95-111, 1975; Pt 11, No. 4,

pp. 409-423, 1975.

[33] K.S. Fu. Syntactic Pattern Recognition and Applications, Prentice-Hall, Englewood

Cliffs, NJ, 1982.

[34] H. Yamada. “Contour DP Matching Method and Its Applications to Hand-Printed

Chinese Character Recognition,” Proc. 7 th IJCPR, pp. 389-392, 1984,

[35] R.P. Lippmann. “An Introduction to Computing with Neural Nets,” Il ASSP

Magazine, pp. 4-22, April 1987.

[36] B. Widrow and R. Winter. “Neural Nets for Adaptive Filtering and Adaptive Pattern

Recognition,” Computer, Vol. 21, No. 3, pp. 25-39, March 1988.

[37] Bart Kosko. “Bidirectional Associative Memorics,” IEEE Trans. Syst., Man, Cy-

bern., Vol. SMC-18, No. 1, pp. 49-60, 1988.

233




[38] J.J. Hopfield and N.W. Tank. “Computing with Neural Circuits: A Model,” Science,

Vol. 233, pp. 625-633, August 1987.

[39) D.H. Ackley, G.E. Hinton, and T.J. Sejnowski. “A Learning Algorithm for Boltz-

mann Machines,” Cognitive Science, Vol. 9, pp. 147-169, 1985.

[10] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. “Optimization by Simulation Anneal-

ing,” Scienee, Vol. 220, pp. 671-680, 1983.

[41] R. Hecht-Nielsen. “Counterpropagation Networks,” Applied Optics, Vol. 26, No. 23,

pp. 4979-4984, 1987.

[42] T. Kohonen. Self-Organization and Associative Memory, volume 8 of Springer Series

in Information Sciences, Springer-Verlag. New York, 1988.

[13] G.A. Carpenter and S. Grossberg. “The Art of Adaptive Pattern Recognition by a

Self-Organizing Neural Network,” Computer, Vol. 21, No. 3, pp. 77-88, March 1988.

[44] K. Fukushima, S. Miyake, and T. Ito. “Neocognitron: A Neural Network Model for a
Mechanism of Visual Pattern Recognition,” IEEE Trans. Syst., Man, Cybern., Vol.

SMC-13, No. 5, pp. 826-834, 1983.

[45] T. Poggio and F. Girosi. “Regularization Algorithms for Learning That Are Equiv-

alent to Multilayer Networks.” Science, Vol. 247, pp. 978-982, 1990.



[46] C.Y. Suen, C. Nadal, R. Legault, T.A. Mai. and L. Lam. “Computer Recognition of

[47]

[49]

[50)

[51]

Unconstrained Handwritten Numerals,” Proc. IEEE, Vol. 80, No. 7, pp. 1162 1180,

1992.

B. Duerr, W. Haettich, H. Tropf, and G. Winkler. “A C mbination of Statistical and
Syntactical Pattern Recognition Applied to Classification of Unconstrained Hand-

written Numerals,” Pattern Recognition, Vol. 12, pp. 189-199, 1980.

E. Mandler and J. Schiirmann. “Combining The Classification Results of Indepen-
dent Classifiers Based on the Dempster-Shafer Theory of Lvidence,” in Pattern
Recognition and Artificial Intelligence, Gelsema and Kanal, IXds. Amsterdam: Else-

vier Science, North-Holland, pp. 381-393, 1988.

X. Ling and W.G. Rudd. “Combining Opinions from Several Experts,” Applied Ar-

tificial Intelligence, Vol. 3, pp. 439-452, Hemisphere Publishing Corporation, 198Y.

J.J. Hull, A. Commike, and T.K. Ho. “Multiple Algorithms for Handwritten Charac-
ter Recognition,” Proc. International Workshop on Frontiers in Handwritlen Recog-

nition, pp. 117-129, 1990, Montréal, Canada.

C. Nadal, R. Legault, and C.Y. Suen. “Complementary Algorithms for the Recogni-
tion of Totally Unconstrained Handwritten Numerals,” Proc. International Confer-
ence on Pattern Recognition, Vol. 1, pp. 443-449, 1990, Atlantic City, New Jersey,

USA.

235




[52] C.Y. Suen, C. Nadal, T.A. Mai, R. Legault, and L. Lam. “Recognition of Totally
Unconstrained Handwritten Numerals Based on the Concept of Multiple Experts,”

Proc. International Workshop on Frontiers in Handwritien Recognition, pp. 131-143,

1990, Montréal, Canada.

(53] J.D. Tubbs and W.O. Alltop. “Measures of Confidence Associated with Combining
Classification Results,” IEEFE Trans. Systems Man Cybernet., Vol. 21, No. 3, pp.

690-692, 1991.

[54] L. Xu, A. Krzyzak, and C.Y. Suen. “Methods of Combining Multiple Classificrs and
Their Application to Handwritten Numeral Recognition,” JEEE Trans. on Systems,

Man and Cybernetics, Vol. SMC-22, No. 3, pp. 418-435, 1992.

[55] C.Y. Suen, R. Legault, C. Nadal, M. Cheriet, and L. Lam. “Building a New Gen-
eration of Handwriting Recognition Systems,” Pattern Recognition Letters, Vol. 14,

No. 4, pp. 303-315, 1993.

[56] D.S. Lee and S.N. Srihari. “Handprinted Digit Recognition: A Comparison of Algo-
rithms,” Pre-Proc. International Workshop on Frontiers in Handwriting Recognition,

pp. 153-162, Buffalo, New York, USA, 1993.

[57) F.F. Soulie, E. Vinnet, and B. Lamy. “Multi-Modular Neural Network Architectures:
Applications in Optical Character and Human Face Recognition,” Int. Journal of

Pattern Recognition and Artificial Intelligence, Vol. 5, No. 4, pp. 721-755, 1993.

236



[58] H.P. Nii. “Blackboard Systems,” Al Magazine, 7(2,3): 38-53, §2-106. 1986.

[59] R. Dodhiawala, V. Jagannathan, and L.S. Baum. Blackboard Architectures and

Applications, Academic Press, Boston, 1989.

[60] L. Lam and C.Y. Suen. “Structural Classification and Relaxation Matching of To-
tally Unconstrained Handwritten Zip-Code Numerals,” Pattern Recognition, Vol. 21,

No. 1, pp. 19-31, 1988.

[61] C.L. Kuan and S.N. Srihari. “A Stroke-Based Approach to Handwritten Numeral

Recognition,” Proc. US Postal Service Adv. Techn. Conf., pp. 1033-1041, 1988,

[62] F.Kimuraand M. Shridhar. “Handwritten Numerical Recognition Based on Multiple

Algorithms,” Pattern Recognition, Vol. 24, No. 10, pp. 969-933, 1991.

[63] R.E. Bellman. Dynamic Programming, Princeton University Press, Princeton, NJ,

1957.

[64] D. Black. The Theory of Committees and Elections, Cambridge University Press,

London, 1958.
[65] K.J. Arrow. Social Choice and Individual Values, Wilcy, New York, 1963.

[66] P.C. Fishburn. The Theory of Social Choice, Princeton University Press, Princeton,

1973.

237



(67)

[68]

[69]

[70]

[71]

[72]

(73]

H. Eimhorn. “Expert Judgment: Some Necessary Conditions and an Example,”

Journal of Applicd Psychology, Vol. 59, No. 5, pp. 562-571, 1974.

D.E. O’Leary and K.V. Pincus. Models of Consensus for Validation of Expert Sys-
tem, School of Business, University of Southern California, Los Angeles, CA 90089-

1421, February, 1992.

A.A. Mongi and C.G. Ralph. Data fusion in Robotics and Machine Intelligence,

Academic Press, Boston, 1992.

M.D. McLeish and M. Cecile. “Enhancing Medical Expert Systems with Knowledge
Obtained from Statistical Data,” Annals of Mathematics and Artificial Intelligence,

Vol. 2, pp. 261-276. 1990.

M.D. McLeish, P. Yao, and T. Stirtzinger. “A Study on the Use of Belief Functions
for Medical Expert Systems.” Journal of Applied Statistics, Vol. 18, No. 1, pp. 155-

174, 1991.

N.D. Clarke, M.D. McLeish, and T.J. Vyn. “Using Certainty Factors and Possibil-
ity Theory Methods in a Tillage Selection Expert System,” Erpert Systems with

Applications, Vol. 4, pp. 53-62, 1992.

J.C. Borda. “Mémoire sur les élections au scrutin,” Hist. Acad. Royale Sci, 1781.

o
o]
oo



[74] F.S. Roberts. Discrete Mathematical Models with Applications to Social, Biological,

and Environmental Problems. Prentice-Hall, Englewood Cliffs, NJ, 1976.

[75] G. Shafer and R. Logan. “Implementing Dempster’s Rule for Hierarchical Evidence,”

Artificial Intelligence, Vol. 33, pp. 271-298, 1957.

[76] G. Shafer. A Mathematical Theory of Evidence, Princeton University Press, Prince-

ton, 1976.

[77] B.G. Buchanan and LE.H. Shortlifle. Rule-Based Expert Systems  The MY CIN Fx-
periments of the Stanford Heuristic Programming Project, Addison-Wesley, Read-

ing, MA, 1984,

(78] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In

ference, Morgan Kaufmann Publishers, Inc., San Mateo, California, 1988,

[79] R.O. Duda, P.E. Hart, N.J. Nilsson, R. Reboh, J.J. Slocum, and G. Sutherland.
Development of a Computer-Based Consultant for Mineral Exploration, SI21 Annual

Report, SRI Projects 5821 and 6415, SRI International, Menlo Park, CA, 1977,

[80] L.A. Zadeh. “The Role of Fuzzy Logic in the Managem~nt of Uncertainty in Fxpert

Systems,” Fuzzy Set and Systems, Vol. 11, pp. 199 227, 1983.

(81] T. Kohonen. “The Self-Organizing Map,” Proc. of the 1IFEL, Vol. 78, pp. 1468 1480,

1990.

239



[82] H. Yan. “Handwritten Digit Recognition Using as Optimized Nearest Neighbor Clas-

[83]

(84]

[86)

[87]

sifier,” Pattern Recognition Letters, Vol. 15, No. 2, pp. 207-211, 1994.

L. Xu, A. Krzyzak, and C.Y. Suen. “Associative Switch for Combining Multiple

Classifiers,” Journal of Artificial Neural Networks, Vol. 1, No. 1, pp. 77-100, 1994.

S.J. Nowlan and G.E. Hinton. “Evaluation of Adaptive Mixtures of Competing Ex-
perts,” In D.S. Touretzky, R. Lippman, (eds.) Advances in Neural Information Pro-

cessing System 3. Morgan Kaufmann, San Mateo, CA., 1991.

R.A. Jacobs, M.J. Jordan, S.J. Nowlan, and G.E. Hinton. “Adaptive Mixtures of

Local Experts,” Neural Computation. pp. 79- 87, Vol. 3, 1991.

T.K. Ho. A Theory of Multiple Classifier Systems and Its Application to Visual
Word Recognition, Doctoral Dissertation, Department of Computer Science, State

University ¢ “ New York at Buffalo, 1992.

J. Franke and E. Mandler. “A Comparison of Two Approaches for Combining the
Votes of Cooperating Classifiers,” Proc. 11th International Conference on Pattern

Recognition, Volume 2, pp. 611-614, 1992.

J Franke. “On the Functior .| Classifier,” Proc. Ist int. Conf. on Document Analysis

and Recognition, St. Malo, pp. 481-489, 1991.



[89] J. Franke. “Statistical Combination of Multiple Classifiers Adapted on Image Parts,”
1st European Conference dedicated to Postal Technologic s, JET POSTE 93, Nantes,

pp. 566-572, 1993.

[90] Y.S. Huang and C.Y. Suen. “The Recognition of Unconstrained Handwritten Nu-
merals on a Multi-Classifier Space,” submitted to IEEE Trans. on Systems, Man

and Cybernetics, 1994.

[91) Y.S. Huang and C.Y. Suen. “The Behavior-Knowledge Space Method for the Con,-
bination of Multiple Classifiers,” Proc. IEEE Confercnce on Computer Vision and

Pattern Recognition, pp. 347--352, New York, 1993.

[92]) C.Y. Suen and Y.5. Huang. “Multi-Expert Systems for Pattern Recognition,” Proc.
2nd Pacific Rim International Conference on Artificial Intelligence, pp. 15--20, 1992,

Seoul, Korea.

[93] Y.S. Huang and C.Y. Suen. ‘Recognition of Handwritten Numerals by Combining
Multiple Experts,” Proc. Sixth International Conference on Handwriting and Draw-

ing, pp. 86-88, Paris, 1993.

[94] Y.S. Huang and C.Y. Suen. “An Optimal Method of Combining Multiple Experts for
Handwritten Numerical Recognition,” Pre-Proc. International Workshop on Fron-

tiers in Handwriting Recognition, pp. 11-20, Buffalo, New York, USA, 1993.

241




[95] Y.S. Huang and C.Y. Suen. “A Knowledge Model with Decision Making for Com-
bination of Multiple Classifiers,” the Fourth International Conference on Cognitive

and Computcr Seience for Organization, pp. 194-202, Montreal, Canada, 1993.

[96] Y.S. Huang and C.Y. Suen. “A Method of Combining Multiple Experts for the
Recognition of Unconstrained Handwritten Numerals,” IEEE Trans. on Pattern

Recognition and Artificial Intelligence, accepted for publication.

(97] R.L. Klein and R.C. Dubes. “Experiments in Projection and Clustering by Simulated

Annealing,” Paitern Recognition, Vol. 22, No. 2, pp. 213-220, 1989.

[98] N. Baba. “A New Approach for Finding the Global Minimum Error Function of

Neural Networks,” Neural Networks, Vol. 2, pp. 367-373, 1989.

[99] P.L. Karlton, S.H. Fuller, R.E. Scroggs, and E.B. Koehler. “Performance of Height-

Balanced Tree,” CACM, Vol. 19, No. 1, pp. 23-28, 1976.

[100] B. Salzberg. File Structures - an Analytical Approach, Prentice Hall, Englewood

Cliffs, N.J., 1988.

[101] Y.S. Huang and C.Y. Suen. “Combination of Multiple Classifiers with Measurement
Values.” Proc. 2nd Int. Conf. on Document Analysis and Recognition, pp. 598-601,

Tsukuba, Japan, 1993.

o
e
o



(102)

I..K. Hansen and P. Salamon. “Neural Network Ensembles.” IEEE Trans. P t. Anal.

Machine Intell., Vol. 12, No.10, pp. 993-1001, 1990.

[103] Y.S. Huang, K. Liu, and C.Y. Suen. “The Combination of Multiple Classifiers by

[104]

[105]

' [106]

[107]

[108]

A Neural Network Approach,” International Journal of Pattern Recognition and

Artificial Intelligence, accepted for publication.

Y.S. Huang, K. Liu, and C.Y. Suen. “A Neural Network Approach for Multi-
Classifier Recognition Systems,” The Fourth International Workshop on Frontiers

in Handwritten Recognition, accepted for publication, 1994.

Y.S. Huang and C.Y. Suen. “A Method of Combining Multiple Classifiers - A Neural
Network Approach,” Pattern Recognilion and Neural Nelwork of 12th International

Conf. on Pattern Recognition, pp. 473-475, 1994.

L. Lam, Y.S. Huang, and C.Y. Suen. “Combination of Multiple Classifier Decisions
for Optical Character Recognition,” in C.II. Chen, L.F. Pau and P.S.P. Wang, (eds)

Optical Character Recognition and Documenl Image Analysis, under preparation.

D.S. Broomhead and D. Lowe. “Multivariable Functional Interpolation and Adaptive

Networks,” Complex Systems, Vol. 2, pp. 321-355, 1988.

T.J. Moody and C.J. Darken. “Faster Learning in Networks of Locally Tuned Pro-

cessing Units,” Neural Computation, Vol. 1, pp. 151-160, 1989.



[109]

[110]

[111]

[112]

[113]

[114]

[115]

G.E. Hinton. “Connectionist Learning Procedures,” Artificial Intelligence, Vol. 40,

pp. 185-234, 1989.

A.S. Weigend, D.E. Rumelhart, and B.A. Huberman. “Generalization be Weight-
Elimination Applied to Currency Exchange Rate Prediction,” Proc. Int. Joint. Conf.

on Neural Networks, Vol. 1, PP. 837-841, Seattle, 1991.

L.T. Tu, W.W. Lin, Y.K. Chan, and 1.S. Shyu. “A PC Based Handwritten Chinese
Character Recognition System,” Pre-Proc. International Workshop on Frontiers in

Handwriting Recognition, pp. 349-354, Buflalo, New York, USA, 1993.

R.W. Weeks. “Rotating Raster Character Recognition System,” AIEE Trans. Com-

municalions and Electronics, Vol. 80, pp. 353-359, 1961.

K.l1. Macda, Y. Kurosawa, H. Asada, K. Sakai, and S. Watanabe. “Handprinted
Kanji Recognition by Pattern Matching Method,” Proc. 6th ICPR, pp. 789-792,

1982.

C.Y. Suen, J. Guo, and Z.C. Li. “Computer and Human Recognition of Handprinted
Characters by Parts,” Proc. of 2nd Int. Workshop on Frontier in Handwriting Recog-

nition, pp. 161-174, Chateau de Bonas, 1991.

C.Y. Suen. J. Guo, and Z.C. Li. “Analysis and Recognition of Alphanumeric Hand-
prints by Parts,” Proc. of 11th Int. Conf. on Pattern Recognition, pp. 338-341,

Hague, 1992.



[116] G. Srikantan. “Gradient Representation for Handwritten Character Recognition,”

Pre-Proc. International Workshop on Frontiers in Handwriting Recognition, pp. 318-

323, Buffalo, New York, USA, 1993.

[117] K. Liu, Y.Q. Chang, and J.Y. Yang. “Algebraic Feature Extraction For Iimage Recog-
nition Based On An Optimal Discriminant Criterion,” Pattcrn Recognition, Vol. 26,

pp. 903-911, 1993.

[118] K. Liu, Y.S. Huang, and C.Y. Suen. “Image Classification by Classifier Combining
Technique,” SPIE, Neural and Stochastic Methods in Image and Signal Processing

II1, Vol. 2304, pp. 210-217.

[119] K. Liu, Y.S. Huang, and et al. C.Y. Suen. “The Discriminant Performance of the Al-
gebraic Feature of Handwritten Character Images,” Pattern Recognition and Neural

Network of 12th International Conf. on Pattern Recognition, pp. 426- 4128, 1994.

[120] K. Liy, Y.J. Liu, F. Jallut, Y.Q. Cheng, and J.Y. Yang. “Automatic Recognition Of
Human Face Images,” ADVANCES IN MODELLING AND ANALYSIS (B), Vol.

28, pp. 51-57, 1993.

[121] S.W. Lee, J. S. Park, and Y.Y. Tang. “Performance Evaluation of Nonlincar Shape
Normalization Methods for the Recognition of Large-Set Handwritten Characters,”
Proc. Second International Conference on Document Analysis and Recognition, pp.

402-407, Tsukuba, Japan, 1993.

245



(122} K. Liu, Y.S. Huang, and C.Y. Suen. “Optimal Matrix Transform for the Extraction
of Algebraic Features from Images,” International Journal of Pattern Recognition

and Artificial Intelligence, Submitted on April 14, 1994,

[123] Y.S. Huang, K. Liu, and C.Y. Suen. “A New Method of Optimizing Prototypes
for Nearest Neighbor Classifiers Using a M-lti-Layer Network,” Pattern Recognition

Letlers, accepted for publication.

[124] Y.S. Huang, K. Liu, and C.Y. Suen. “A New Prototype Optimization Method Based

on Multi-Layer Network,” Patiern Recognition, submitted on July 20, 1994.

[125] K. Fukunaga and P.M. Narendra. “. A Branch And Bound Algorithm for Computing

K-nearest. Neighbors,” IEEE Trans. Comput., Vol. 24, pp. 750-753, 1975.

[126] T.P. Yunck. * A Technique to Identify Nearest Neighbors,” IEEE Trans. Systems

Man Cybernet., Vol. 6, pp. 678-683, 1976.

127] E. Vidal. “An Algorithm for Finding Nearest Neighbours in (approximately) Con-
g y

stant Average Time,” Pattern Recognition Letters, Vol. 4, No. 3, pp. 145-157, 1986.

[128] C.L. Chang. “Finding Prototypes for Nearest Neighbor Classifiers,” IEEE Trans.

Comput., Vol. 23, pp. 1179-1184, 1974.



[129] G.L. Ritter, H.B. Woodruff S.R. Lowry, and T.L. Isenhour. “An Algorithm For A
Selective Nearest Neighbor Decision Rule.” IEEL Trans. Inforn:. Theory, Vol. 21,

pp. 665-669, 1975.

(130] D. White and G. Hanson. “Optimizing Neural Networks Using Faster, More Accurate

Genetic Search,” Proc. 3rd Conf. on Genetic Algor., pp. 391-396, Arlington, 1989,

[131] D. Goldberg. Genetic Algorithm in Search, Optimization and Machine Learning,

Addison-Wesley, Reading, Mass., 1989.

[132] K. Rose, E. Gurewitz, and G. Fox. “A deterministic Annealing Approach to Clus-

tering,” Pattern Recogtion Letters, Vol. 11, No. 9, pp. 589 5941, 1990. .

[133] G. Qiu. M.R. Varley. and T.J. Terrell. “Improved Clustering Using Deterministic
Annealing With a Gradient Descent Technique,” Pattern Recognition Lelters, Vol.

15, No. 6, pp. 607-610, 1994.

[134] L.N. Kanal. “On Pattern, Categories, and Alternative Realities,” Pattern Recogni-

tion Letters, Vol. 14, No. 3, pp. 241-255, 1993.

[135] J. Paik, S. Jung, and Y. Lee. “Multiple Combined Recognition System For Au-
tomatic Processing of Credit Card Slip Applications,” Proc. Scecond Inlernational

Conference on Documen! Analysis and Recognilion, pp. H20- 523, Tsukuba, Japan,
I

1993.

247




[136] T. Matsui, T. Noumi, 1. Yamashita, T. Wakahara, and Y. Yoshimuro. “State of
the Art of Handwritten Numeral Recognition in Japan - The Results of the First
IPTP Character Recognition Competition,” Proc. Second International Conference

on Document Analysis and Recognition, pp. 391-396, Tsukuba, Japan, 1993.

[137] R. Fenrich and J. Hull. “Concerns in Creation of Image databases,” Pre-Proc. Inter-
national Workshop on Frontiers in Handwriting Recognition, pp. 112-121, Buffalo,

New York, USA, 1993.

[138) E.M. Kleinberg. “Stochastic Discrimination,” Annals of Mathematics and Artificial

Intclligence, Vol. 1, pp. 207-239, 1990.

(139] E.M. Kleinberg and T.K. Ho. “Pattern Recognition by Stochastic Modeling,” Pre-
Proc. International Workshop on Frontiers in Handwriting Recognition, pp. 175-183,

Buffalo, New York, USA, 1993.



