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+ ABSTRACT
BURST-ERROR-CORRECTING CONVOLUTION:AL CODES-

o 7 Majid Rezayat
H 3 N

- ) n -
In this report ‘basic convolutional codes with rate -%——

(]
and” burst-error-correcting ab111ty given by burst length b < n, are

studied. ~ The structure of block codbs is compared with the structure ‘

-

I of convolutiona] cpdeé to understand their differencés; Required boundsf

" which must be followed by codes 1n order to have burst;errar-correcting

L ®
ability are given " Codes which are easy to 1mp1ement and are good for

use on real world communication channels are-also studied

-

Inter]eaving techniques, a powerful too1 for constructing

convolutional codes which can correct longer burst errors than basic

codes or which have burst and random error correcting ability, are

described. In order to make a [fair comparison of these codes for a

fixed burst-error-correcting abilify, their minimum required guard .

“~

space is considered in the report.,

f—
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" effectiveness of coding is also strongly dependent'j'on communication

- INTRODUCTION

‘ In man/y pigital conlnun1cat10n systems. due to power and”
bandwidth ‘constraints, it is 1mpossible to rely on the improvement of
conventional modems alone. Error correction codes can 1mprove the
performance of these systems by Towering the required signal -to-noise - !

L 4

ratio at the expense of an increase in channel bandwidt‘h
! . et ' -

A common misconception about error correcting codes is that
they can be used to correct all errors of the system. This is certainly
not true. Given a certain amount of signal redundancy one tries to

correct the set of most' probable errors, Although the correction

procedure usually impm\}es the re'l‘la’bﬂdt'yﬁof the system, but by no

means takes care*of all errors. On the posjtive side it should be said
that many codes exist to improve the reliability of the system
drasttcally pmvfded'thnt sufficient redundancy is available. The N - z

channels, : - . Lo ~

Communication systems are designedtconsidering that the
statistics of the chenne1 are stationary, Therefore the noisg 1ntroduced
by the channel has Gaussian type distribution [1]. In the real world
channel, statistics are not stagonary. The error rafe varies over a

range of time and the distribution is complex [2]. ,

N

~




Burst-error-correcting cddes are. being developed tolimp‘rove

the performance and reliability of digital communication systems in

the presence of bufst noise which usually occurs in real communication
AY

channels, 1ike HF radios, troposcatter radios and telephone 1ines.

Burst nofse cayses short-term channel interruptions which are not

Gaussian. Hence they are not considered in thel communications equipment

‘system desfgn. Interference in HF radio chfmn'e"l due to Hgﬁtning, and

microwave radigfsystem blockages due to an afrcraft flying too close..

to an antenna are examples of burst noises. P

The basic idea of coding success is dependent on the matching
of the channel statistics and the code -capabilities. Therefore it is
important to know the statistical properties of the channel in use to

»

make sure it matches the class of code selected.

There are certain reasons for the increasing appl icftions of
coding systems: The rapid growth in satellite communications; the

revolution iﬁ digital integrated circuits; the availability of inexpensive

' computers for system, algorithm, and hardware simulation; the increasing

emphasis on the reliable transmission of digita] data and of digituﬂy
coded analog signals; and most 1mportant }‘wentions of effective decoding
algoritfms [3]. |

In this report, we will | study the well known burst-error-

.correcting convolutional codes introduced by different authors and

-

consider \their advantages and disadvantages over each other, The

’

préséntati is orga'nized as follows: Chapter 2 gives some definitions,

background and analysis of burst error correcting convol utional codes.

L
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E o B correction are described. Chapter 4,considerﬁ codes which have’ability
Y” % to correct burst and random errors simultaneously and have practical
t[ i " use in communication systems. Fina]lly Chapter 5 is the‘summdgy and
L : * conclusions. 33;{‘;"
| ‘ \
] “ )
| s 4 / A .
‘ ) ‘0 . "“" - %
btt QY . v L
t ' ‘
| .
i | | |
- »
| ‘
I
; CL & v .
| e | .
r; ‘ o J
L - | T .

In Chaptef 3, some convolutiopal codes which are good for burst-error-
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CHAPTER 2

SOMETEFINITIONS, BACKGROUND AND ANALYSIS OF
BURST ERROR CORRECTING CONVOLUTIONAL CODES

»

% | ' Wyner and Ash [4] hu*s presented 5 method of convolutional
coge analysis using parity check matr{ces. Rodgers [5] has followed
their method with sﬂme minor changes and assumptions.’ Their work is
summarized in this Chapter since it has some c;ﬁmpn s1m11ar1ty1w1th ",
the construction of the codes describéd'in this report. Also, they give
a general know]e&ge and better understanding of burst-error-correcting

gonvolutioﬁhl codes.

[

: Definitions of key'ﬁords and terms will be stated when needed.’
The structure of block codes is also deScribed on the basis of parity
~check matrices in order to clarify the different'strug;ure existing
/ ! .

between the block codes and the convoﬁutiongl codes.
— .

2.1 Random and' Burst Errors ST
L &

The random-error is defined by the occurrence of errors that

-

. - % \
are uncorrelated; ‘that is, each error occurrence i{s independent of the

/

immediate past history of error patterns in 5 message. \\\\\\\Qy/;;7<
' The burst-error is defined [6], [7] by a clustering effect ' -

<
in a region of the data stream, thus showing a dependence on the past -
history of errors. In this region a minimum of two errors exist. The~

region begins thh an error digit that {s immediately preceded by a

correct digit. A specified error density 8 must exist in the region,

-
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2. 'Real Channels

N

- 5-ur K
—_, - X . . \

where & fs defined as the ratio of error digits to tota\/digits in
the burst region for maximum length h\rst A burst always ends with an
error digit that is 1mediate1y fonowe\; by a correct digit. The
above definition of burst-errpr can be expressed 1n mathematica] form

as follows: ) : . . SR 'r
Let- b be the length of a sequence of digits, w the number

ofrerrors” in the sequence, and b1 the length up to-the ith error.

by =1 means that the first digit is an error, b= b "means that the

last digit is an error, and 1i/b means that the error density

§ = o
up to the ith error is larger than or equa'lﬁ to the specified value By

A burst of length b with w errors yis.a sequence of b digi-ts‘.

“satisfying the following: > |
==
.- 1 ) . b1 = 1 o ! . .
2) bw = b . \

.3} A/byza, for Teizw . Lo

) . o~
and . ' :

N

4) w+1/b

A . v' '

As indicated before,\fx)rst errors occur on real channels.
How hese‘ errors occur is really the channel characteristic r{nani\fest'lr_‘g’
the complicated physical phenomena of propagation. In order to apbl‘y
error \dprrecting codes to t!)e real‘ channel, one has to firs;; knov;* |
tpe'f:haa\nel characteristic and second, be ablé to‘'analyze the effectiveness

i
-~ . i

©
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\ f'of the codesqgith the knonnedge of the channel characteristic.

»

Y general block diagram of a digital transmission system is
{1lustrated in figure 2.1 in order to explain what a channel means to

coding theorist and communication engineers.

For a coding theorist a channel is a “black box containing

.

,moduIator physical channel and demodulator while for a communication

engineer, Eggschannel decomposes into the above three parts.

1
¢

| K ’
In coding theory, the channel most frequently assumed is the

binary symmetric channel (BSC), as shown in figure 2.2a, in which each
transmitted bit has the probability p < 1/2 of being incorrectly N !
received and that this nrobab11ity is 1ndepennent for all received bits ~

(p 1s the probabi]ity of error in the hard denision of demodnlator): ) - ')

This is a poor channel model for most real channels where there will ‘
be periods of h1gh signal strength that the demodulator's decisions "
ba sed on“the above model are relatively unreliable. In this case, the

coding channel 1s actua11y a time varying BSC in which the error

i ot i

T probability p(t) changes with time ¢ . g . \ |
o |

Yohlenberg and Forney [8] have given \useful division of
such real channels under the term "dense-burst” channel, and "diffuse-

rst" channels. | , - . |
- » . . - N i

( . In a dense-burst channel, the time axis divides rather sharply

\ e . - : ]
“1nt6'1nterya1$ of nearly perfect transmissions, say p(t) = 10 6, and

intervals of very poor transmissions, say p(t) = 1/2 .

ik adbi sV AZCE S e st

- | In a diffuse-burst channel, there are intervals of rather
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good transmissioh, say [;(t) = 107 and rather poor transm'lssion, say '

p(t) = 10" -1 with a rather indistinct boundary between reg'lons.

Figure Z—Zfiﬂustrates these two types of real channels.

i

‘ Accord'l ng to Ka‘ﬁenberg and Forney a troposcatter system
using FM modulation of several frequency divisipn'multi‘h exed data
‘chanriels onto the RF carrier is a typical dense-;:éurst channel and an
'HF data speed system with PSK or FSK modulation is a typical diffuse-
burst channel. |

Y
H

[ 52
It is clear that these two classes of real channels will

demand quite different coding systems for their effective use.

2.3 Error ControlyJechniques

-—

Error contrgl coding tecmiques have been developing during
the last two decades that. it has become an essential part of the
d1§1ta1 communication system des1g?1 when an efficient and reliable

data transmission is demanded.

Encoders and decoders are builit for this reasonqusing
different algoritims for detec and/or correcting errors. All of

them have a common basis which is the addition of some extra digits

'(redundant or parity digits) to information digits by the engbder at

the transmit point which in turnp would be extracted by the Qoder at -

" the receive poini:. These extra digits are used for detecting and/or

..

"used for improving the efficiency and reliability of data transmission,

correcting data digits error. -

In general, there are two types of error control techniques

o\

systems, called ARQ and FEC technigues [9]. o N

O NS S s e
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2.3 Automatic-Repeat-Request Technique (ARQ)

The general functi"on of ARQ system is shown in figure 2.3.

Data are delivered from a source to a source encoder.. The source encoder

arranges data in bldcks, buffers the blocks, attaches control and

"synchronization bits, and generally controls the network. Then, the

data blocks are delivered to an encoder i;hai; adds the required extra

A

redundant digits. The encoded block then will be modulated and

fransmitted over the channel.

"At the

g
receive point -the recefved data

will be demodulated and then delivered to the decoder The decoder re-

computes the redundant digits from the received data and compares them

‘with the received redundant digits for each.block. If there are no

!

source decoder and the source encoder will be #nformed by ‘'source decoder E

received. If discrepancies.exist, again the source encodkr.wﬂi be informed

of the situation and the block will be/re-transmitted. Hence, ‘erroneous -

data are delivered to the user when t

presence of errors. This technique i

discrepancies, the data block will be delivered to the,user through the

. through a suitable. feedback channei that the block has bee‘n correct'ly

je decoder fails to'detect the

applicable when the feedback

channel is available and the delay tinLe between transmit and receive

points is negligible.

|

, i :
2.3.2 Forward Error Control Technique (FEC)

/ .

% »
This system can be depicted
from figure 2.3, The decoder is then

attempts to determine the location of

-

i

|

|

by removing the feedback channel ~
a mo’:re comph’cated device. It

the errors from the pattern of

) -—*gr__
discrepancies between the received and re-ca'lcu'l ated redundant digits

-~




s data are delivered to the user when tje~decoder fails to-detect the

- ‘° ‘ =10 -

o

% ‘ 2.3.1 Automatic-Repeat-Request Technique (ARQ)

The gener'ala funct'fon of ARQ system is shown in figure 2.3.
Data are del .ivered from a source to a source encoder.. The source encoder
arranges data in bl cks, buffers the blocks, attaches control and
°synchronizatfon bits, and generally controls the network Then, the ‘ ?
data blocks are delivered to an encoder t;hat; adds the required extra
redundant digits. The encoded b'lock'then" will be modul ated and
transmitted over the channel. °At the receive point the r?eceived data -~
will be demodulated and then delivered to the decoder The decoder re-
coatpute’s the redundant digits from the received data and compares them‘

‘) ‘with the rece'lved redundant digits for each.block. If there are no
discrepancies, the data block will be delivered to the, user through the
source decoder and the source encoder will be tnformed by 'source decoder \‘

. through a suitable. feedback chagﬁnel that the block has be?”n correct]y

- received. If discrepancies.exist, again the sourceenéodf:r. will be informed

of the situation and the block wﬂl“be,/lre-transmitted. Hence,'ei'roneous '

N

presence of errors. This technique i aplecame when the feedback
channel is available and the delay tinLe betfween transmit and receive

points is negligible. y | ’

2.3.2 Forwar‘d{ Error Controjl Tech‘que (FEC)

|

% : : ..
This system can be depicted| by rFmoving the feedback channel

from figure 2.3. The decoder is then|a more complicated device. It

attempts to determine the location of| the errors from the pattern of
¢ . . N . . _.“_;\._%
" discrepancies between the received and re-calculated redundant digit\s

-
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-

and then correct them. Hence, erroneous data will be delivered. to the

user whén the decoder cannot detect and correct errors.

-

' There are two types of FEC codes, called block codes and
convolutional or recurrent codes. For block codes there is no wano\ry' ,

«
' Y

between code blocks. For conventional codes ;l}teré is memory for each
A ¥ !

L] . -

enco’\ed bit. These codes are exgla‘lned in detail later. -
. . \

The' FEC coding technique will have a potential use in digital
’ .

data transmissions through satellite. Es‘pecia'ng,\when a geo- .

stationary satellite is used that there will be a large time delay,
about 240 ms [10], from one ground station to anotﬁer.

The co’gs which we have considered in this, report are-all pf -
FEC type. . : . '

\24.4 c1as$‘fﬁcatibn of .Burst-Error-Correcting Convolutional Codes.

“—

Burskt error correcting~codes in general may be classified as
' i ‘;f ' \ . .\ r
follows: . . .

a) Codes which can correct burst errors. ' .

. —
b) Codes which can correct burst and random errors

4

»

!

7. both together.

_ Codes which are good for burst and random error cc;érection are usually
_ constructed from codes good for random error correction by using an inter-.

‘Jeaving technique [11]. The principle behind this technique is to break.

up the burst error bits so that only'one, or ."at‘most a few bits can be

+ affected by a single burst of errors. Then the errors affecting each

interleaved code are treated as if they were randdm, independent errdrs.
. , ‘ )

x . . N . .
J ) : '
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. These codes are explained in detail later.

. 2.5 Block Codes Structure

- J |

Burst error correctiﬁg convolutional codes . in general are

labeHed‘as type B] or type B, codes [4]. ®
. ) A 1Y :

2.4.1 Type 81 Codes v

; v,
These convolutional codes are able to correct all burst of ’

Tength not greater than "b" digits of ar?y "n* coﬁsecutive’digi_ts provided
. ,

that "g" digits error free space which is known as guard space is available

at each side of the burst. "n" is known as cbnjstra-int length of con-

volutional codes and will become clearer later.
B " '
2.4.2 Type B, Codes
Lo ;
a2 These.codes are capable of correcting all 'burst of 'Iength0~

"b* digits of any "n" ?n,'secutive digits provided that "g" blocks error
free space is-available at each side of the burst with the ddditional
restriction on the burst that it be confined to "r" consecutive no-b'lt

biocks‘, that is . b gf "o digits. Type 82 codes have been ana]yzed

to a considerably greater exteént than type B.I codes.

In bTocli codes to each . ko information digits at a time,

no-k(; parity digits are added by using a proper algorithm. These parity

check digits qoo nbt depend on other previous or future ko information

digits. The code is known as (no, ko) code and code rate or efficiency

k X
is defined .as R = Fo_ . Let X be a g-row column vector which represents

(V] ;
transmitted sequence of information and.parity digits ané H be an) mxq

. . ~ .
binary parity check matrix. Any sgquence of code words comprising X

::‘ ) N , . @ .
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T 7R
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must  satisfy the parity ¢ heck equation.

Al

(The most recent transmitted

" bit 1s assumed to be the bottom row of X).-

|

- bits, then we only need that each block of n,

\. -
HXfO(mod'Q) _ (2.1).
1 - ,‘ ) L]
. . ’ " ~
‘For a binary block code, the above equation has the form
—~ . .
' . ' --’-.. )
R i T Tl
"HX = |0 ;Hzio;o-%----xw : S (2.2)
R B e I
' Q@ Hyy 0 ’
ot S Bt S
" KRR A
where \ ‘ / )
= = = = H? i )
! Hjp 2 Hyp = Hyg = &, = H'
. " _’
Each sub-matrix H' has ko  rows and LA columns. Each block of

n_ bits of X satisfy disjoint parity check equations. Hence each
0 —

n_-bit block can be encoded and decoded with n ledge of future or
0 \
past blocks of X . If )(‘j is a column vector of n_

transmitted bits,

)(j (§=1,...) satisfy the equation:

W, =0 - = ‘ R C(2.3)

« J ¢ ‘ . :
» , N L

i

In block codes, matrix H' is normally defined as the parity check

matrix. - o T ’

If the first koi bits of each block cede (or sub-block for

convolutional codes) are unchanged data bits and the last ny-k, bits are
o~ '

P

4

transmjtted

¢

b TAr e ke e wm A et mamt
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must’ satisfy the parity c‘hec‘l; equation.

1

(The most recent transmitted

" bit 1s assumed to be the bottom row of X). .

2

\ ]
HXéO.(mod ?2)

Al

*

.4

LI

(2.1).

?

. T ~
“For a binary block code, the above equation has the form

where

Each sub-matrix H' has no-ko rows and n

B ] \ 1 S
( Hyp ! 01 0 Ok
. ’ ’f-----h----:--l---ceu---:----
HX = | 0 | Hyy 0 ; 0-2%-
e

P e

LN '/
Hiyp = Hpp = Hy3 = &. = H'

cmum mond

|

=

(2.2) .

columns. Each block of

0
n, bits of 'X\sa’t‘}sﬂdjgpiﬁ\parity check equations. Hence each
no-bit block can be encoded and decoded withn ledge of future or

past blocks of X . If X; 1s a column vector of n, tranmjm\

. bits, then we only need .th,at each block of Ny transmitted bits,

X

oy

e

H'X, =0
J

i (§=1,...) satisfy the equation:

(2.3)

~

In block codes, matrix H' is normally defined as the parity check

matrix.

i

If the ftrst k . bits of ‘each block code (or sub-block for

gl

convolutional codes) are unchanged data bits and the last n,-k, bits are

1

AT

0

R

- ~

. e
4
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_parity bits then the code .1s\ca11ed a systematic encoded code. A

transmitted stream of code bits 1s shown in figure 2.4.

4

2.6 Convolutional Cqdes Structure ~ o

An (mno, mko) convolutional code is defined by a set of

parity chéck- equations of the following form. Let 'B a sem1-1nf1n1te .

matrix with o co!umns and an infinite niﬁi:er of rows] B wﬂ—1 be
restricted to having only P0 finite number of nonzero” rows confined b
to the first N rows Of matrix B . Let B, be a matrix formed from,
B shifting all of the rows of B~ down i places. Then the parity
check matrix H ' of the code is: |

.V

)
. H = [B, By, By, By - ] | . (2.4) -

G 3
Ty 1

where i =“no~-k0 is a fixgd'positive 1nfcéger. Matrix ‘H » @S a-function

of the matrix B, is schemﬁt'icaﬂy shown in figure 2.5 (B.o in this

f;igure is:a sub-matrix formed from the.first N rows of mat}-ix B) .

We notice that the parity equations are not disjoint as with block

'cgd@s. The code wordg are the sem/i-infin'lte sequences defined by the -
\)\\\ .
column vector, X such that HX = 0 (mod 2). KR T —

-

“ . 2.6.1 Convolutional Encoding

_ The name convolutional encoding arises because the output of the i
/ encoder may be regarded as the convolution of the input streams of ‘

data digits and the response function of the encoder.

Most of the useful convolution codes either take blocks of
\ N .

i
i
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stands &or ith information digit in block §.(i=1,2, ..., k) ! (

.stands for kth parity digit in block _J (kskoﬂ, ceey no)
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single digits into the encoder at a time and produce one or more check
digits or také in blocks of.severa1 digits an& produce one check aigit
each time. This means that code rates are 1/2, 1/3, 1/4, ... or 1/2,

2/3, 3/4 ... Codes with rates equal to 1/2 or greater are known as high

rate codes’anq codes with rates smaller thaﬁ‘l/z are known as low rate codes.

“With consideration on k , n, and B it is possible to find,
matrix H for convolutional encoding and construct codes with different

rates and degrees of usefulness. : ' | -

There are two kinds of encoders for convolutional cédes 0121,
one s the k-stage -encoder which gécepts data in serial form an& another.
one is the (n-k)-stage encoder which accepts the k0 data bits at a time
og ko paralliel leads and emits 'no-ko parity bits on parallel leads.
k-stage encoders require k=mko shift register stages for implementation
and (n-k)-stage encoders require v shift register stages where

v 3_(m-1)(no-ko) and m = %—, (N 1is the number of rows in matrix

Bo and { = "o'ko) . It may be noted that for (n-k)-stage encoders _
the required shift register stages are not equal to n-k stages. As -
an example encodg}s for (12,9) code ;re illustrated in figure 2.6. In
figure 2.7, a three Stage encoder and related data digits (input) and
encoded data sequences (output) are shown knowing that information bits
are shifted in one at a t*me. We shall pursue'this example to develop

various rEp}e§entation of convolutional codes and their properties.
‘

It is traditional and instructive to exhibit a convolutional
code by means of a’ tree diagram as shown in figure 2.8. At each junét1on,

in the tree, the upper path shows what happens if the next information

r X

il s Nkl st
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single digits into the encoder ;t a time and produce one or more check
digits or také in blocks of~severa1 digits an& produce one check ﬁigit
each time. This means that code rates are 1/2, 1/3, 1/4, ... or 1/2,
2/3, 3/4 ... Codes with rates equal to 1/2 or greater are known as high

rate codes,anq codes with rates smaller thaﬁ‘l/Z are known as low rate codes;

"With consideration on ky» N, and B it is possible to find
matrix H for convolutfonal encoding and construct codes with different

rates and degrees of usefulness. - | -

There are two kinds of encoders for convolutional c&des I]Z],
one is the k-stage -encoder which gécepts data in serial form and another
one is the (n-k)-stage encoder which accepts the ko data bits at a time
oa ko paraliel Teads and emits "o'ko parity bits on parallel leads.
k-stage encoders require k=mko shift register stages for implementation
and (n-k)-stage encoders require v shift register stages where
v (m-l)(no-ko) and m = %—, (N is the number of rows in matrix
Bo and 1 = no'ko) . It may be noted that for (n-k)-stage encoders _
the required shift register stages are not equal to n-k stages. As '
an example encoders for (12,9) code ;re i1lustrated in figure 2.6. In
figure 2.7, a three Stage encoder and related data digits (input) and
encoded data sequences (output) are shown knowing that informatfon bits
are shifted in one at a t%me. We shall pursue-this example to develop

various rep}e§entation of convolutional codes and their properties.

L]

It is traditional and instructive to exhibit a convolutional
code by means of a’ tree diagram as shown in figure 2.8, At each junétion‘

in the tree, the upper path shows what happens if the next information

#
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bit isa "zero",?e Tower path displays the results of a “one". In

~ shown as solid 1ines and code branches produced by a "one" input bit

“)( - | - 22 -

s S : L
this manner all fe 32 pdssible outputs for the first 5 nputs are
tracéﬂ. The labelling on the graph 1ndilca'tes ‘the output symbols

(00,. ol, ... etc.) and tﬁe contents of the first k-1 shift regkister
stages (a=00, b=01, Adtc.). The contenis of the first k-1 stages
are_known as the states, since subsequent symbols depend only on the
state plus- future input 1nformatioq .bits. Obviously, there are Zk ] ¢
states when 'I'nformation bits are shifted ir one at a. time. For the above

’

example we have 2371 = 4 states.

From the tree: diagram we notice that after the first three
branches, the st?ucture becomes repetitive. In fact, we readily recognize
t?at beyond -the third branch, the t':ode symbols on ‘branches .orig1nat1ng
from ‘the two nodes labelled "a" are identical; similarly for all
the 1dgnt1§a11y Tabe'lled pairs of nodes. This 1eads to ’redrawing the
tree diagram as.illustrated in figure 2.9 By join"ing the identical
labelled nodes together. This has been called a €rellis ddiagram [13],
since a trellis is a tree-like structure with remerging brénches. We

»

should make note that code branches produced by a "zero" input bit are

are shown dashed. The trellis structure is uked in Viterbi-decoding

scheme [14] of convolutional codes.

According to the r‘epétitive structure of-the trellis diagram,
it is also poss‘i;tﬂe to represent the code by the state diagram of
figure 2.10. The states of the state diagram are labelled as the nodes
of the trellis diagfam. For the given example the nodés represent .

the previous two bits while the present bit is indicated by the .

/ . ) P

4

A3
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FIG. 2.10 Stéte;Diagrm Representation for Encodergof Fig. 2,7
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“transition branch; for'exaniple, if the encoder contains 101,‘1":713'1: is

"“divided into sub-blocks of length LN and the first no-‘l bits of each

’ schematically in figure 2.11. We notice that each parity bit is used in

represented in the diagram by the Ltransition from state C=10 to .state

b=01 and the correspondi ng branch

indicates the code symbol outputs /
"00". The state diagram is a wery compact form of the encodeD

For the purpose of analysis, it is assumed the vector X is R

sub-block are data bits and the nith bit is.a parity bit (systematic

code}). The first parity bit must satisfy the top equ'htidn of HX=0 .

1

Ii is clear that there is a unique solution because there is one equation

b4 i

Snd one unknown: In order to make .the solution easier and fas’ter,
Ro@ers £s] minimized 1|:he required number of storage registers at both
the encoder and decoder by makmg) a;nother assumption about the n;atrlix
B, that is, choosing the Tast i columns and top i rows of B as an

Al
»

‘identity matrix and remaining rows 61‘ the Tast i columns as zero,
n_-1
The H matrix for- this' code of rat$ ° . (n =2,3,...) is shown )
o N 0 [
only one parity equation. The first parity bit is a function of the
n,-1" data bits in the first sub-block of X . The second parity bit

~ 1s a function of the n -1 data bits in the first sub-block. of X and

o
y‘\

,L

e

I s &
\

the no-l data bits in the second sub-block of .X as“shown by the
second row of H . The Nth parity bit is a function of the n, -1 data -
b'lts in the Nth sub-block and the (N-lQ(n -1) data bits of the N-1 -
sub/blocks, preceding the Nth sub-block - (N s aga//n the number of the

(¢4

0
for sub-block Q greater than. N(G-N) is a function of only the data

o]

'last row of matrix” B_ with usual nonzero entries). The ;;grity bit

-
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8" is called the syngromé and 15 a semi-infinite éo]umn vector which

bits in the N-l sub—b‘locks preceding sub-block — Q plus the data g

b1ts in the ch sub-block .  Therefore, the encoder nFeds only to store,
at most, the data bits of the N-1 p{-ec‘ed'ln'g sub-blocks.~, These bits.
plus 'the present no-l data bits are suffiéient to calc;}te th;e
parity Bit for the present §ub-blo¢gk. The number n = %‘-no bits

spanned by the encoder is called the constraint length of i:he encoder.

2.6.2 Convolutional Decoding’

Let us suppose the transmitted code word is vector X and
the.receWed code word is vector Y. If tpe communication channel is
free of any noise disturbances we should have X=Y, but usually noise

exists so we have
Y=X+e (mod2) | - (2.5)

where e is a semi-infin{te column vector represeﬁting"errors due to

noige. Now, if we re-encode the received code-word exact'ly as we did at the
trankmit point s the result will. be o
w“@ . s {' [+

= H(X+e) = He = § | T (2.6)

‘

is the sum of colums of H corresponding to the bits 1n ervor. Its

calculation is the basis for decoding.

l-;oHo,wiqg Wyner and Ash [4], it is assumed that n received

" bits are decoded at one time. However, decoding cannot wait until the

e
{

o r————
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entire syndrome is c:omputed, as this could inv&lve'in infinite time

. delay. Therefore, the following assumption 1s made for decoding: -

" to decode the first U bits:; only the first* N bits of the syndrome

are uﬁe;i when N is, again\, the number of\ the last row of ‘sub-matrix
B0 . The sééond §et of n‘; "received bits are decoded on the basis of
the first N+ bits of the syndrome, etc. The first N bits of S
ave determined by the first N rows of H .. Matrix. Hy 1s defined

as the first N rows and f"irst -’:—no columns of H . SN and eN

are the ‘correspondi ng syndrome patterns and “errof patterns of: dimension

~

N
N and Tnowrespective .Jhen

SN = HN - ey . . (2.7)

» ’
"
. 28
LS

& .

Matrix Hy is shown schematically in figure 2.12 (i is agysumed to be -

one). S

L . 7 o

* Now we want to examine how Sy 1s formed when a’ burst error

of length ri(‘) or less occurs (most codes studied in this report are

type' B1 or type _B2 with burs't error correcting ability of b :<_no
, ;

calied bésic codes . Interleaving ﬁFe?e basic codes will provide codes

" which can correct burst errors of length greater than n—o) . For each

syndrome bit calculated, Ny bits are received at the decoder. The
error vector, ey » 352 function of time, typically appears as shown

in figure 2.13. Each e_-, (p=1,2 ... no) can be either,a’ "one" or

] p ~
a "“zero".
. I O

s

The burst error patterns are the odd ntmbers from 1 .to 2 °

-
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arightmost "o columns of l-lN . The next §
\QDIumn from c\:oquns Nno-OZn0 to Nno-n

.'cpwmns from the last n_ columns of HN » etc.” Finally, the syndrome

--30 -

weitten 1o binary (1, 11, 101, 1001, ... ). "It is clear that ok a
.1" -2 B
burst of length n_ there are 2 O . burst patterns of length n,

1

n_-1 .
and 22  burst patterns of length n, or less. For type ‘B, codes
‘ n -1 S
. (V]
the burst patterns of length L or less are n°2

.
1

The syndrome SN » as a function-of time, 1s the combin;tion‘

of n, or less columns of HN (maximum burst length is equal to n
oL

_digits). The first possible nonzerd™ Sy s a combination of the

includes at least one - )
plus pbssib]y one to no-l

0

(]
includes at least one column from the first Ny columns and ﬁossibly

1 to n°-1 columns from c?fumns no-ﬂ to 2n°-l . This last syndrome
is referred to as the desiredr syndrome and is used to correct erroneous
bits. The previous syndromes are referred to as undesired syndromes o ‘ X

and must be distinct from the desired syndromes (all syndromes which

include at least one column of thé first "o columns of HN are
desired syndromes')_. In gene‘&l..a].]__,undesir‘_'ed syndromes for all bursts . ‘

of length n_ orless must differ from alledesired syndromes for bursts

0
of length .n, or less. Also, all desired syndromes must be' distinct

in order to uniquely decode and correct erroneous bits:

The first n, columns of Hy are called black "O" . 3
Columns no+1 through Zno are called blogk "1" , etc. When the -
syndrome, SN‘, contains at least one column from block "0" , the

error. is called a block “%0" byrst. Block "0" bursts are important

Because the decoder must make an immediate decision as to which bits are

e ~
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to be corrected (otherwise, the received error bits will leave the

"décoder without any correction). If the turst is not a block iy

turst, the decoder is not to correct(an_y bits. Block "0'-l burst are

used e'xtensjvelx in burst correction decoder schemes [15].. Any récgived
error pattern, ey s wﬁ'l eventually produce a -block "O" bﬁrst. When
this happens, the decoder must correct all errors which cause columns

of block "0" to be in SN '. One thing of immrﬁnce to note is the
r:equirement of minimum "g" error free digits on either side of each no-bit
burst errors knbwn as guard space. This guarantees that-each syndrome vector
will be related to the correspondir;g-n -bit burst errors. Otherwise,

the decoder makes a number of erroneous decisions which are called

error propagation Error propagation i a funct1on of}\both the code

and decoder. . For a decoder which resets syndromes to zero after each

)
i
.

~ 1
data bit correction there is no serious problem of error propagation.
: . .
2.7 Necessary and Sufficient -Conditions on HN 1"or Burst Error Correction

4

¥ With the following assumptions, and the theorem due to Wyner

‘ N
and Ash [4], we can find necessary and sufficient|conditions on Hg .
. M \‘

_ Assumptions: . I

- |
*1) The parity check matrix H 1is of the form -

H = [8, By Byy «v. ] /f//.,

T

where B is a semi-infinite matrix with. " colur’ﬁg's and ‘Bhi 1s formed

from B by shiftif\g the rows of sub-matwix B down hi places.

The first 1 rows of H.are assumed ta be Hnear]y independent.

e
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2) The first block of nov digits of received data’, called
zeroth block, is decoded on the basfs.of the wfirst N digits of t‘h'e
sydrome,. where N s a fixed ;Jositive integer (chosen so that "{"
d'fvides N) . In general, the first "h" blocks are decoded on the

basis of the first N+(h=1)1 digits of the syndrome (h=1,2 ...) .
a ~

. 3) The matrix HN consists of the first N rows and
(-';—)n0 columns of H . Alternately —~

N IR
~ y (.T) -1 ,1

Cuat 2 BN Y
Hy = (B, T8, T8, .o T 8] (2.8)

A

where B consists of the first N rows of B . Matrix T is

shown in figure 2.14" (in figure 2.12, the matrix \th isa special
case of the above assumption wﬁere i 1s. supposed to be one, and the
las{: N-1 digits of co]qmn LS of sub-matrix B‘J are §upposed to be'

zero).
‘ )
Theorem 1: The matrix HN defines a type. I' burst error correcting

code (r = B'l’ 82) with n = (2—)"0 , the number of columns in HN s

if and only if the following condition is satisfied.
Let Z, = Z cf) , Z, = J €(j) be type T correctable
1 : 2
' feF . Jed

11near compinations of columns of Hy, ; then Z, =Z, implies that

FAK =JnK (where K . ={1,2, ..., n.} and "n""denotes set
s M ", n ()

intersection). In other words, correctable error patterns wh'lc‘h
disagree in the ‘;eroth block cannot yield the same truncated syndrome,

SN.
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.%)no. Suppose & Z‘2 and FA K #JNK . Say FnK
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“a type T correctal\)le error including d1gits‘ in the zeroth block (i.e.,

‘their effect on, S ), and proceed.to decode block "1" as we did

_ highly desirable to minimize the req‘njired guard space of a code for a

-

2 a) Necessity - Assume we have constructed a type T code with

{ ] 0 4]
=
is not empty. Then Z‘ 1s the truncated syndrome SN corresponding to

those digits which belong to F/n K, ). since 2, =7, and FnK *
"o "o
Jn Kn , Z] is also the truncated syndrome corresponding to a type T
(]
correctable error, but with a different set of errors in the zeroth
“

block. Thus, by 1doking at SN , we cannot decode block "0" . This
contradicts assumpti rk\?:’ atove. Conlyguently; F N K"o =JN K"o if-

b) Sufficiency - Assume we have an Hy which satisfies the ‘ ;
condition. If a type T correctable error occurs inc]uciing errors in |
block "0" , then by hypothesis we can detérmine the errors in Block
"0" by looking at S, (1.e:, the hypothesis says that any S ng C(f)
has a unique F 0K ) Thus by examining S, we can determine exactly
which digits in b]ock 0" are in error; subtract the columns of H
corresbpndmg to those errors ('1n block "0") from S (thus negating
block "0" , etc.

Rémark: = 7 C(f) distype T correctable tf and only if F corresponﬁs

feF ,
to a burst of length less than or equal to b , E

2.8 Bounds on Burst-Error-Correcting Convolutional Codes

On a channel on which burst errors accur frequently, it is. "




'?Lxed burst-error correcting ability "b" , since channel errors during
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*

9

this period may cause incorrect decoding. - -

With the definitions given for type B.‘ "and type B2 codes,

we easily recognize that for any (n,k) conv?lutionaN required
guard space is g = n-1 digits-if the code is of type B1-, an¥ g = E— -1

o
blocks if the code is of type. B2 .

Minimization of "‘gf" implies finding the minimum poss1b1e‘1 value
< N : e
of n=g,n, fora fixed block length (n ) , redundancy (i = n,ky) .

and burst length (b) .

- 2.8.1 MWyner and Ash Bound

Myner and Ash [4] have found a lower bound on N for tye

B, codes. This tound is given as:

” LY ~
N>2b - (r-1)i . . L (2.9)
, ;:Consequenﬂy
~ ' .{ =
2n b '
nz :_’ - (r=T)n, o - (2:210)

-y

~

Codes satisfying. (2.10) with equality are.cang optimal codes. The

proof of (2.10) is given 'in Appendix A.

2.8/2 Gallager Bound

8 The Gallager [16] bound is more general than the Wyner and
Ash'bound and states.that in order to have a burst error correcting \

capability “b" for any type of coding (block, convolution or other)
i |

£
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it is necessary to have *
1+4R .. ’ . .
: Shiry fexb. ReO . an

where R 1is the code rate.

r

3

Massey [11] has obtained similar results and concludes
that- ' ) b

g/bg.f% o S (222)

A

: : A
Massey refers to his result as a bound on “almost all" burst-correction

and to Gallager's bound as a bound on “cpmp’lete“'b;zrst—correction.
‘The above results were not published formally since the authors had

been attributing it to each other. The proof of Gallager's bound s

1

given in Appendix B.

2.9 Historical Notes and References -
SN _ ) R
Elias [17] 1in 1955 was ‘the first to propose convolutional

codes for correction of random errors. Hageibarger [18] 1n 1959 vas
the first to apply convolﬁtﬁmal codes to burst-error correction. He

S also gave a simple decoder for inplementing them. Kilmer [19], [20]

" 4in 1960 wor-ked on both burst and random error correcting codes and
laid the foundations for the basic work of Wyner and Ash [4] Wyner
and Ash in 1963 obtained a bound on m‘mimum guard space between error
bursts and grovided a precise mathematica.] framework for—,aliebraic

convolutional codes. Beﬂekamp [20] in 19§4'consir{u_cted a very useful
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class of turst-error-correcting codes Preparata [21] d'ld similar

work )*ndependent]y of Berlekamp. Massey [15] in 1965 succeeded in-
finding a simple decoder for the Berlekamp-Preparata cades. These
codes are known as Berlékamp- Preparata-Hassey codes (BPM Codes).

Massey and Kohlenberg [23], [24], [8] in‘1964 introduced t\ﬂ diffuse

“code, which 1s good for both burst and random error correction

Ga'Hager [25], [16] in 1965 discovered-a code which is again good for

both burst and random error correction. He als'o gave a bound for burst-

. error-‘correcting cades which {s general and applicable .to all kinds of

codes. In 1968, Iwadare [26] discovered two new classes of codes; one
having a shorter guar}/space than the BPM code. Hsu [27] in 1970
introduced a type B1 code wﬂ;ch requires shorter guard space and fewer
shift register stages for implenentation‘than Ivadare codes. Sullivan [28]
in 1970 genqahzed Gallager's sc heme., Freguson [29] in 1970 proposed ‘

a 'E rate diffuse code with respect to the Massey-Kohlenbarg Code. In
1972, Mandé1 baum [30]-d1 scovered some optimal type |§1 convo1ut1ona1‘
-codes . Rod'ge::rs [5] in 1977 invented a class of codes which requir:es a
guard space less than the best equivalent ‘non-interleaved Iwadare and

Hsu codes He also found somg.optmal type B, convo'lutwna'l codes.

\’

A
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-BURST ERROR CORRECTING CONVOLUTIONAL CODES.

3

In this Chapter we will study the well-known burst-error

S TR e

correcting convo1utfona1 codes which have the capability of correcting'

burst errors followed by "g" error free digits (guard space) for each

- burst occurrance (i.e. no error is allowed in guard space).

3.1 Hagelbarger Codes -

~
which has type B] burst error correcting capability. We follow

Hagel'barger's exampYé-for a high redundant code (one parity digit for

every data digf\d which can correct sequences of errors up to b =6
s -

The Hagelbarger code [18], [31] ‘is a (mn° . m(no-T)) codé

'digits in length when there arg,ét Teast g = 19 correct digits between

the error-bursts. Figure 3.1 shows a block diagram of the encoder.

The parity-digitlgeneratpr is a modulo 2 adder (exclusive OR gate) for

digits in positions "1" and "4" of the shift register and the
mqltip]exer at the output end of encoder transmits this parity digit
before the data digit in position "7" is'shifted into the channel.

.EvenQLfgﬁg digit is subject to a parity check twice during its passage

through the shift registgL. When the digits are transmitted over tgez‘

channel the separation between any data ‘digit and a parity digit|related

to it is greater than 6 digits; hence, burst-errors of length

. .
6 or less digits canfot cause any pair of such digits to be in epror

of the shift register have "0" digiqs at the beginning of enqoding).

.

N . < ]
A ' €

together. Table 3.1 shows sequences of the encoding process$ (a11‘st3§es
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SEQUENCES OF THE HAGELBARGER ENCODING PRPCESS
oY v
# ¢ . : ,‘ 'I L'
Time  Data Digit.  Shift Register  Parity Digit = Encoded Data .
' Content Stream
* . - ' .
0 - ojoogho . - .-
] o | noomooo\\'\‘w
o b e |
3 1 .. 1100000 : l\m m)
' 0 dnoooaﬁ\,& !noo b
. . . M s
.5 1 , 1011000 | 0o Moo |
6 ‘0o obioo - 1 000001 0100
7 1 omoie . 1. 01000001 0100
8 . 0 _ aoont 1 * 1101000001 0100
¥ ) + + - +
. : 3
* Parity digits related to the first data digit l
" First data digit in encoded data stream. . SR




) I i
The pr?neiple used in decoding reqeived digits is to examine \

the two parity digits covering a data g?gtt siﬁuItaneogsly. That is,

the: received e:icoded stream will -be sWitched e'i:ther to the data shift ©

register gr'to the parity‘cﬁeck shift registersin appropriate sequences

and the data digits will be re-encoded 1n order to constitute new parity

‘ digits for comparison with the previous related parity digits. Figure 3.2

111ustrates the decoder for 6- digit burst error correction

e
Considering table 3.1 and figure 3.2 we notice tha7/:hen the

_ first data digit is in_the fourth, stage of data shift register, the
first parity digit related to this data digit is in the tenth stage of

parity shift register. The second parity digit related to this data
digit is in the seventh stage of parity shift register. Stages 4 to 7
of the data shift register resemble encoding of the first data digit’ ’

"exactTy,as when this data digit was in the first stagefof data shift

pegister of the encoder (first paéity digit, Fig. 3.1fl ‘Stages 1 to-
4 of the data shift register of thé decoder resemble encoding of the
first data digit exactly as when this data was 1%:the fourth stage of

\ B
shift register of the encoder {second parity digit, Fig: 3.1).;

Now if the outputs of both parity checks ' R and S are "1",
we conclude that the data digit in the fourth stage of data shift
register of decoder is in error. At this 'point the AND gate will
operate, allowing corrected data to be sent out and to begstored in the
fifth stage of data shift register. ‘Thislis clear-becabse when the
data digit in the fourth stage of shift register is in error, the digits.

in the first\stage, the seventh stage and the tenth stage of parity
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B sh1ft register cannot be in :rro;' sincé they are at least 6 digits apart
jrom the digit in the %ourth stage of d]nta shift Fegister. The d'lgit
" in the‘seventh stage of data shift register is always a correct digit.

Thus, R and S are both "1* because of their common connect‘ion to

- the fourth stage of data shift register| which contains error data digit.

Yy - In the case in which either S or R is "1" we conclude that either
one 01"‘ the parity digits or al;other 1nf6rmat10n digit in tﬁe first stage
°cf data shift register is in error. We dc not have any interest in .
correcting ejfher parity digits. If the data digit is in error, it will
be corrected<¢ \

N\
\\

en it leaves the fourth stage of the data shift register.
This decoder corrects data digits which are confined to six or less error-

_burst of the encoded data stream when at least 19 error free digits are
available around each burst. Table 3.2 shows typical valuestof burst
Tength, data shift register length, parity shift register length and

4

) . =
- ‘-, guard space length of this type of Hagelbarger code.

In ge‘;leral, Hagelbarger has encoded che' data digits so that
_there is one parity digit in each n_-bit block. Since the block must
~ * have at 'Ieast one data digit the shortest block length is Ny = 2
" (this value is used in the example above). The data digits are 10éded
into thefdata digit positions in the order in which they are received
The parity digit is determined by a parity relatfon applied once for
each b1ock. This parity relation extends over a selected set of the
[ digits in m consecutive b'iocks. Figure 3.3 shows a portion of the
| encoded data from the above example. The data and parity digits are
indicated by D's ar‘\d‘ C's ; the blocks are marked off with commas

TTm=- ——..and the parf»‘ty relation is'shown by lines having «'s over ‘the‘dw'gits

-

—7
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" TYPICAL VALUES FOR

HIGH REDUNDANT HAGELBARGER

“CODES -

Burst Le’ngth Data Shift Register |[Parity Shift Regi ster% Guard Space
_ Length Length Length
2K ?K+1 3K+ 6K+1
. p :
4 5 7 13
6 7 10 19
8. o v 3 25
10 o 16 31
. | .
‘ 9
. '
. ‘“"V‘ ‘

- -

o
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F1G. 3.3 Portion of Encoded Data Using Hagelbarger Encoder
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in a given parity group. fNoté that m for this example is seven; that is,
‘any one of the parity groups extends over seven blocks. .Every parity
g@p has three digits in it, two data and one parity; thus, each data

digit is in two par¥ty groups and each parity digit is in only one

parity group, C \

We will denote whict! digits enter into“the parity relation.
by n, binary words of m #ligits each. We call these the parity words
aﬁd label them Pl’ PZ’ ceey Pno . Considerk m coqsecutive blocks. .
We form P] by observing the first positipn of each block; 1f the
digit is in this parity group we write "1" , otherwise we write
"o . P2 depends on the second positions of these m blocks, and so
on. In figure 3.3 we have'§>hown one parity group by theA arrow and
" written the parity words so that the digits £311 ‘under the corr.espondinQ ‘

blocks. Thus, P, has "1"'s 1in the- first and fourth blocks and P?_

T
has a "1" only in the seventh block  (the numbering of digifs and

blocks here and in figure 3.3 is fromqjeft to right). With this notation,

there is a simple correspondence between the "1"'s in the parity words

~

and the connections to the stages of shift register of the encoder and

decoder. .
. " -

At the decoder we have a circuit for checking the parity

relatio

imposed by the encoder. This c1\rQuit‘gives an output once’
for each Hlock recei\;ed. If the parity check fails, the output is*a
"1"; otherpise, it isa "O0" ., When a burst of error; does occur, the
check cirgiit will give a pattern of "1"'s and "0"'s. This pattern

J . .
which i1s kgown as syndrome will be used to identify the burst. It is
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of numbering should be such that increasing numbers represent digits
. < .

~,

obvious that syndromes are those binary words having "“1"'s on both _

ends ‘godd numbers). The first problem is to choose the parity re]atiqqn.

in such a fash!on that each burst of length "b" or less has a distinct
syndrome. A further problem is to choose the parity such that, given

a dis‘:inct syndrome, the correction of the burst é&ich caused it is easily
mechanized. Thagis, we want a systematic scheme for correcting a burst,
given the corresponding ;yndrome which 1s much bétter than having a

ta‘b‘le of all possibh: ;syndromes with corresponding bursts. The proced.ure

for calculating the syndrome corresponding ):o a given burst {s mentioned

below in which digits with subscript are digits in error v

N bc, DC, DC3’ chs D"C%9 Doc: Dc’ oc, ...... : : .
0 .
PD ,1. 001 00O ‘
PL 00000 0 1 ' .
1 ‘ |
Gy e 00100 0T

. PPl - 1001000 _ ) -
% co0o0o0g001 o/ \

. , )
Syhdr;omei oY 1T 1YY o001 00

We number ‘the blocks, starting with "0 for the first bdlock
containing an error, and continue ‘the numbering far enough to include '

all blocks having errors in the burst under consideration (the direction
\ ‘\_ .

- 4
\ ‘
.
»
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received at later times). Then we write the parity word for the-error

, & :
in block number Under this we write the parity words for any - -

npu N
Now we write the parity words for the other

other errors in this b'l‘ock.

errors, shifting eacn e (in the direction of increasing time) the

—. number of places equal tS the block number in which the error occurs.

.

’

The syndrome is the sum modulo two of.these parity words. Note that

ll‘] I

there 1s never, more than a single in any column.
- ‘ °

By spreading out-the parity words with "0"'s so as to avoid
‘ 1nteract10ns between ermrs in a burst, Hagelbarger has introduced a ' J
.new code caHed lower redundancy code. For this code the. redundancy
can be made as low as is desired while maintaining a relatively simplg/

" -
.

correcting mechanism. Again,ifor this code we have one parity digit

in each. n_-bit block. :
! ° ! - » \ * \\

Suppose we desire a code with a redundancy of one-quarter good

., for bursts of length four or less. We choose the following parity words v

(the digits are spaced to emphasize the method of forming ami the choice

of parity words will become cléar later).

[ ;. ‘ -

. p, 111 000 000 0 /‘
— pg 000 101 0d0 0 ,
;. LN
e 000 000 110 0 ‘ ‘
P, 000 000 000 ‘

Note that placing the code\loo to the extreme right allows us to

shorten the parity words by dropping the last two co1umns, all of which

L

o

- N
[ S “‘ ?*@M&e’y “Mﬁw I»J
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_were "2"f . In assigning the parity wards, the groups,of "1"'s

should be! ranged to go from the upper left to the lower rfgr;t‘ as shown
above. " Tha is, the order of the gro;xps of ""'s in the parity m;'ds
should agree with the order of the digits in the block°s’tn‘ucture. If
this is not done, then extra' columns of "0™'s must be inserted in the
array of périty words, which means the addition of more shift registér

stages in the encoder and decoder. The difficulty is shown as- follows:

i

If the path words are - . - . /

PA T11 000 -00 9 0 \

P 000 101 000 o0 . s
and the burst {s ‘ T : . \

. | 2 ‘
e ABITD AB Ll b \ )

e 2 <

‘then the syndrome will be e

0001010000 . DT

¢ -

Syndrome : 1110101  whichis acceptable, but 1f we. chopse:
'parjty words such as
P, 000111 000 0

P, 1.01 000 000 O

B ~

i ' . -
Pp 1110000000 , - Q > o
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and have the same burst a¥above, then the syndrome will be

A

/ 1
, Py

P 000 111 oo% 0

10 100 000 O

/

3 Syndrome: 10 011 which is not good.

' . (the burst-..A1 BCDA Bo..i.s not allowed ﬁnf:e the above code is for ‘
tursts of length four or less). If we want to make a code for the same '
redunc[ancy good'for bursts of 1éngth of eight or Tess, we form the .parity
words by inserting "O"'s between each of the digits of the above code.
Thus we will have o ' ' 2

10101 000000 000000 0O

AL ‘
Py 0000C 010001 000000 00
P, 00000 000000 010100 00
P, 0000 000000 000000 071

‘ A
The related encoder and decoder for this code are illustrated in

figure 3.4. Note‘the correspondence between the parity words and the
shift régisters. The top register comes from PA‘ ,» the second" from Pg
and so on. This s,ysi:em can correct error burs'ts of up to eight digits in ‘
‘ iength when at least 91 clear digits are available on either side of each burst.
. ‘.The input q1gits are switched /sequentiaﬂy to three data shift registers
of-a19 stages eaqh. Parity digits are generated on positi‘ons 1, 3 and 5

of the first register, 7 and 11 of the second register, and 13 and 15 ~N

U u ! <
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of the third register. The pafr‘ity digits and the data digits are re-
'multiplexed into-a time sequence before being transmitted over the
channel. Buffers are used to store digits temporarily to allow all the

shift registers to be stepped together,

‘ the decoder, the data gi gits are routed into three registers’

" corresponding to the‘ones they occupied at the encoder. The parity v

v

R

digits are sent intd a separate register (synchronizat'lbn must be maintained =
so that thg digits enter into proper registers). The parity relationships
are checked and,‘if a check fails, a "1" is put into the syndrome

\regi ster which 1’L‘stepped at the same rate as S‘he other registers. There
is no delay in feeding digits to this register. Thus the digit in position
R .at any time depends on the bar‘i,ty which is being carried out at this

ttme.

=

>~

\ ’Suppose an error digit enters into the first data r;egister.
Accordingly, the parity checks fail when this digit Jeaves positions 1,
J and 5 and cause “1".‘5 to be sent into the syndrome register. When

| the error data leaves position 5, the output of positions R,S and T
.of the syndrome will all be "1"'s, At this moment the AND gate will
-

operate and thgoerror digit will be corrected. Errors in the second

data register cause R and T to be “I"'s and S to be 0" .

The error data will be corrected when it leaves position 11 of the

second data shift register. Errors in the third data r]egisjcer cause R

(RN

and S to be "1"'s” and T to be "O) . The error ?iata will be‘\
\

corrected when it leaves position 17 of the third data shift register. .

Notice that the correction for this case will be carrie& out when the °

N 1’ R Co

”
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error data leaves positioni]? and not position }5. 'I;he reason for this
is that after each correctf&;\ the syndrome ﬂwﬂ}_l‘be reset to zero through
the reset' circuit. This cir:iyit activates when a "1" Teaves position -
T of the syn;:lrome. If the Z:S\rrecf“i‘on is to be carried out when the .'

error data leaves position 15, then the reset circui® will not operate

and we will have error propagation. In general, a prgcedure for making

a code of redundancy 1/n0 is as follows: .

Take the first n, gdd binary numbers and let ‘L be the
number of digits in the largest OY\F- Then form each of these numbers
to a,L-digit word by addinq "0"'s to the right end. As well as a,‘ ’
squaﬁe array with n, rows and n, columns is'formedf The entries
in this array are L-digit words that will be plraced along the main
diagonal with the word having a single h"]’" going in the lower rigﬁt
corner, The order of the other words on the diagpnal is arﬁitra,ry: Al
remaining words will be filled with "0"'s . frhe(qew array will be a '
'.'ox"o (L) array. We also strike out the last L-l’ coTumns fr'om the
right so as to have a n;x[(no-l JL+1] array. The rows of this’ array
are the parity words of the desired code. This code corrects all bu'rsts
of length n, or less. In order to make this code good for bursts of
1en9th Kno o'r\less, K-1 "0"'s are addad'-&letween"eaciv"adjac.ent; pair 01"
digits of the.,above parity words. If the odd binary numbers are hot, .
increased to L digits as above then for some allowable bursts the
f-esult(i‘ng syndromes would be incorrectly interpreted by the decoder.

The above method is regular enough to enable us to find formulas for

the shift register stages and guard space,

l‘
% . ' - ~
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Defin'lt‘lu'ns:~ - L e 8

, no,“ b, K, L(no) are polstt*l‘ve integers. The block length

-

is Ny with one parity digit; hence the’rédur‘ldancvy,is 'l/no This

Eode can ’:be used against burst of léngth "b" or less, where 'b=Kn°

. L‘(nd)_ is the suraﬂest integer such that:. " ' B
T\ L(I{Q) i‘_'l + 'Iogzno ‘ " - | ‘ :
~ .. ‘\\ . \' e
/‘ Thus “
- A ' - . R
n, 12’3‘.4 S'GJ 8_9~'|0,\ ¥

L(no.)]2'3 344 44055

" The, ancoder will have n~’-l

(—-)(n -1 )L(n') +1,

shift regi sters; eéch/of Tength

This is true because Leach parity word has - n L(n ) -

L(n ) + 1 digits in origina1 form. When adding K- zero digits

between each pair of origina] parity word, the new parity word will

. o
+ noL(no)-L(no )+1

b

K = =—— .
(]
Since%there are "o -1 shift reg1sters in’ .

have: .

/ %‘ (K-1 )AL ng )-L () )41

'\ : . Tey o . \ . ’
or \K(no-I )L(no) +1 digifs. When substitut1ng for K the:

"“the above fprmu'la is 'fbund

the éncoder, the tota1 ‘amount of shift register stagesﬁis'

-

) ) | Lo .
i:("o'],)% L(no) + no-l , \ I

A IO A
+., .The decoder has b(n -1 )L(no) + 2n +\(Z-)L(n )b stages.

= o s -A ]

- A
B - . . 7
f . .
. ' N v . [
» ) - -
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This 1s obyious since the decoder is compriseg; the following

circuits: - - %

1) A circuit similar to the encoder tut with a difference

‘of (n -1)(k-1) stages of shift register less than the related encoder.

¥ .
This y equal to “ oo

(ﬁo;] )2(2;)1‘("0) +:n0-‘1-(r‘19-'1)(.1\(-1) stages. .

B .

, 2) A par-ity check register w1th the number of. shift register

-

stages equal to a parity word

(no)(no-I?,L(no)+1 . . R

3) A syndrome register having the number of shift register o
stages equal to. o '
(Liny)-1) (K-1) + L(n)

- ~

or L(ﬁ)K-K+1 < . .

By sunming the quantities indicated in 1 2 and 3 above, the formula

N

for calcu1at1ng the decoder s shift regi ster stages js found. The

required guard spacy is = = _
3 | ‘\ U |
4 ) . “‘
"obL,("o) + no-b-‘lg E X
/ . ‘ “ ) m -

Again this 1s clear since it is requ’lred that ° ' '
n[-—L(n)(n-l)H] e e ~
.‘, ' “( ) . ’ i

-
.

e
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~86-. .

or u(no)(jno-n + n;,.

" error free digits enter the decoder to refill all the ;ta‘ges of shift
reg\isters except the syndrome register. Also, an extra n [L(n YK-K+1-1]
or bL(n )-b error-free digits must enter the decoder to refﬂ'l the
syndronte regi ster The addition of these two required error-free

. digits minus one will give the requir.ed guard space as indicated above.

-

Table 3.3f‘;§hov\ts some typical values of burst length, data’

©

shift register length, parity shift register 1ength and guard space
. length of low‘ef;fedunoancy Hagelb_arger codes. /‘

3.2 Beﬂekamp;Preparata-Massey (BPI!) Code

The basic BPM code [21] [22] [15] [‘12] [32] isa °
- ]
(er (n ), Zn (n -1)) convo]utional code with rate ﬁ = -n—— ¢ It has
o |
: type Bz burst error correcting abﬂity when g = 2n2 - n, error free

‘ d1g1ts are avai1ab1e on either side of the burst (in general, for type 82
codes. the burst er'rbrs mUSt be confmed to "r" consecutive blocks of
L —b1t each, for basic codes of this type . (r=1) burst' errors are
| \_‘1‘ ' !confined to .one blocl;) The parity check matrix of this code is of the
-~ form: ‘ A ) . ' . o .

S - —y - N o . N
{ f 2 DBge By By e By S By ) (3.1)
N v . B . 0 ~ N
"' N N - ] . ' .t - .
where ~ B1 is "i" down-shifted truncated ,\Versionfof Bo . Since’ this
. ' [ ’ . '
p BN 1s a type B2 code, b=n0 bit errors cannot be confined to two

consecutive blocks, such as’ the "0"th block and the first b'locl(. ‘An

n- tup]e ‘error pattern which.has errors of . ("1"' in the !'0"‘t'h
- 4 ! ' ‘

.“‘uﬂ
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" TYPICAL VALUES FOR LOW REDUNDANT HAGELBARGER CODES

&

Z.

|

) |
D(\L\Sh'lft RTg'lster Stages
|

Guard

4§

Block Length | Code Rate | Burst Lengt
, C. Space
_ n;” R b T‘Encode Decoder 9,
\ &
2 1/2- \ 2 e é 7
, 4 12 -yl s
' 6 16 19
\ ., 8 . 20 25
; ® o 24 31
3 2/3 3 2 | 26
. 6 v 42 7 50
. “ 60 74
2 3/4 g i3 “ . a7
8 78 91
5 " a5 5 89 ~ 99
‘ 10 \ysz, PRL 194
- 4 ‘ L
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“"block and "{“th block can be shown as

T. [EI\OO . EI 00 ... 0]

vhere E fO " From prev1ous scussit;n if B can be chosen such
that S = HyE 7‘ 0 Tor a]Lchoices of E,70 » E; and 1, then the
code has the capability of correcting (\b ng- digit burst-errors.
For thi'!‘"to happen we must have:

{8

+]

s
B | E,

A4

Now consider two cases:

Case 1: When . n <1< 2n-1, the ubper right quadrant of [BoBi]

the a'l.l-zero matrix of order L Choosing the upper half of B0 as
any‘ nansingular matrix guarantees that Eq. 3.5 holds (11'Z «the_upper'
part of matrix Bo is singular, it is. stﬂ'l possible for \s'ome of E
error patterns to follow Eq. 3&?1: there is no guarantee that this °
w111 happen. This can be clarifidd by supposing that the upper part

’

100 1 ‘ ’
of Bo' is§ 000 and Eo is ol - For this case S$#0 but

001 ' A1

L4

for E0 as g the upper part of Sz0 and lower part of §
4 »
0 . |
Al . - .

depends on the lower part of @0 and E1) . To simplify the decoding,
the upper part of matrix B is chosen to be the identity matrix of

v .‘ . ',
order n, , degoted I"o . ' Q N
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Case 2; When T < {sn-1,thd equation 3.2 holds provided that the

matrices ] 8 BZJ' vens [BO,B“ ]] are simu)taneously nonsingular.

[

E'Iementary row operations can transform [B 81] to the form:

Iy X I ' ' '
- » QL
[B,B] = NS - (3.3)

_’ . ' }(
and‘so [B 81] is nonsingular if and only.if the n- by -n, matrix

Y1 is nonsingu]ar

7

Bertekamp [21] has initially chosén the lower half &f B,

as
s r 9. ’ ,

0. ... 000 : ~

0 ooal’ v ‘ '
e o.ce| (- )
. 0 CO0FED

l |

0 LLO0JIHG '/y

. : |

oL e L

v

in whic.h blank spaces in the matrix are zer;&‘s} Thejetters r:epresent
Binary varfables that will be specified t6' make Eq. 3.2 hold. Matrix
ﬂ can be constructed \n terms of thesé binary variables. As an example
for n =3 we follow the Ber1ekamp(method and find Y1 and Y, relating

z:o [B B] and [B B,] -respectively. We have: { . ' &




" column 3 with column 5, column 2 with column+4).

) F s
/ where Y1 =

&

[

multiplying row 2 by -¢ and adding the resalt to row 6) we will find

A

/ .

p-

-
100
010
001
0o0b
00A
Xl

\ \

o

. [8,8,] =

R

L 4

100

010
001
000
0.0A

oCcB
L

SN -
. //ﬁdﬁ 000 Fr
e 01 100 "o
[% 1=]001 010 z ——n
. 000 001
000 0OAO O
, 000 CBA
~ b -~ b
001 .
0AD For'[BoBZJ we have
CBA
- | 1
100 000
_ 010 000
' [8032]" 001 ‘100
000.0171 0|
{00A 001
Loc'a, 000

000]
100
010
001

000
00A

I
Thé result is:

Now we apply elementary transformation to matr'iMLBoB]] Qle .chalﬁe

/

Z. Applying elementayy transformation (changing co'lumn 3 n\ch column 4,

o™

il R e e bt S I
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{100 000
Q10 000
007 100
000 010
, | 000 AO1
000 BOO

n

o |

)
o

W
N

d

L

- . - { .
. ) . j ' N\
It is possible to choose the binary variables A, B and C in such™_

. a way as to make both matrices Y, and Y, nonsingular. Choose the

%e1éments A, B and C successively in alphabetical ordgr in such a
) .

Yway as to make §11 the square submgtrices,\whose upper right corner

coincides with the upper right corner of Y] and Y2 » nonsingulacg.

From matrix Y.I we conclude that submatrix [2 i] is nonsingular when

»

A=1. Matrix Y2 will pe nonsingular whén B=1 (Ahhas already been

replaced 'with "1"). Matrix ¥y s nonsingular wheh . C=]1 (A *and B

have already been replaced with "1"'s).

< '
In general the matrix BO for BPM cod‘—;s;specified f?rraII

i
values of n_ as follows:

o _ ’ . A -
- ’ 0 o ’ |
1 : N .
| B = ] | (3.4)
~
1 ~
/ 0.- 1
u’ . O . .
0 .0 1 1 ; h
L - *




- 62 -

Note that nith this choice for matrix 50 the BPM codes are systenatic,
but the parity digit in each block is transmitted before the data digits
of the.block.‘ The usual encpding and ;syndrome calculating circutts must
be modifjed to take this difference into account.’ As an example a 5 stage

encoder for (18,12) BPM code is i]]ustrated in figure 3.5.

. The basic BPM codes can be decoded as follows. Suppose that

- a burst has occurred in the "0"th block Since the upper half ofsthe

.

P
Cy L .

AY

e

. Eq. 3.6 represents n

- t N «
matrix BD wWas chosen to be the'identity matrix, the first n bits

Of the syndrome are identical to the error pattern that was added to the

L 4

"O“th block. The only additional information required to decode a block

s to check whether‘the burst occurred in the "0"th block or elsewhere.

If the burst occurred in the "0"th b]ock, the second half of the

syndrome must be: ’ o
. ~ . \ b ‘
e \ {
v = . . ) .
S TBpE . : (3.5)

/ . ) \
where ~E6 denotes the burst B 02 - denotes thé lower half of the
matrix Bo and S2 is the-second half of the syndrome. In other words,

since the first half of the syndrome AS] is identical to E , if . '
oo C

. Sy + BypS; = 0 . (3.6)

the burst occurred in the "0"th block; otherwise it occurred elsewhere.
o linear equations involving the'syndrome dfgfts.’
A single muitip\e—input modulo -2 adder is all that is required to implement
each e atio;rN‘One n -1nput OR gate is sufficient to determiné whether

or/not all of the equations are satisfied. "~ As an example consider the
| '




v

.

%

e N

)



M Kl
) .
A Y .
\ - 64 - NN
. \ - .
.
B

£
l (18,12} - BPM code' with the assumption that the burst occurred fn the

-

¥ 'wonth “block. The related 1inear equations with respect to Eq, 3.6

-~

- ares; ¢

W | ‘ p
- Ts,, 1 [o o o] [s,]
‘ 21 ; N :
\
_ Sy [ ¥ |0 01 S12 =0 s (3.7).
) Spq L.o 11 S
Solving (3.7), we find:
Spy =04 S, =S5 and S,g = Sy, + S, (3.8)

23

1

12

where sij represents the jth-digit of the ith half of the syndrome.

The decoder for this code is shown in figure 3.6. "It functions

as foHows\. The syndrome is calculated as usual and stored in the G-Stage'
. .syr:di‘rome register. If the re]ai:;;nships in Eq. 3.8 hold, the output of
.t‘he inverter isa "1", otherwise it is a "or . If‘i‘t is a : "1" and’
if all the. errors affecting the digits in the decoder are confined to-é
single 3-b'lt/b1ock, these errors occurred in the "0"th -block. Then ) -
. proper AND gates }n‘lﬂ operate and the correction will be carried out.
~l-ir'-i'ors in.the other blocks having the proper guard space will be
corrected as "0"th block .' After each‘correcﬁon the relating s_yndromg,

will be set to zero; consequently, errors cannot propagate.

~ X

3.3 Iwadare Codes

The ‘basic Iwadare code [26], “[32], [33], is a (mno, m(no-'-l)/'
s . > n_-1 ’
* conyolutional code with rate R = —%—-— and has type 'B] burst-errqgr
' P o ' "

a

-
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- L Inverter
ﬁ- Xavh

. FIG 3.6 Decode.r for (18, 12) BPM Code ‘\
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correcting

r avaiTable cq\mther side of the burst (a burst can be any combination of error

abil 1t)§,;

d
<
bn0
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when g=mn-1

error free digits are

/
digits in one or two consecutive blocks when they are confined to Mo~

bit errors). ~ The general parity-check matrix of this code is of the form

where B i

i

basic code

is i ='Eg-ko

i=1,

HN = [Bo B'l 821

”~

down-shifted truncated version of Bo

Iwada?-e has found two different B0

matrices.

ingly they are named firs,t p]ass and s;ec;:nd class Iwadare codes.

-

\ :
* as below:

Fo}‘ the first class code, the Bo

000:, ........... OOO'I J
000- ---+-- - 0010
.00Q: e ens 0000
Y N
000. Pave o 0 o oo .; 0" 00 c:’
010+ - =+ -- 0000
000-- -+ -xx - 0000
B, = | 100 0000 1!_
000- - : - --0000
. . :‘ . ' =]
o N e
D0Q-- - -~ - -- 0000 |
000-¢------- 0010 ]
: bl
: (=]
: - N R
001 0---~ - - 0000
0] 0 “ers e .‘..0000
! ]’oo.. eede. .-0000

(3.9)

.For

Accord-

/

matrix and m: are given

e RTINS L N
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m = 2(2n0-1 )-1

¢

i *The rule for constructing matrix Bo of Eq. 3.19 ts as follows:

1) The jth columns ‘(j=1',“2-, cees no—l) "have only two

-

nogzero entries at the (2n -2j)th row and the (4u0-2-j)th row. .

2) The, noth column has only one nonzero entry at t‘?ve
' * L S
first row.

For the second class code, the Bommatrix and m are as ’.

»
I3

follows: -

. o "o . ‘
O-e-ecrueeee 0007 1 ;
9.3.....,.....9000

..
)
.

--0000
..0010

0010
- 0100
.- 0000,




LK (n -1) .
———?—-— + (Zn -1 ) -
N

: )
Vi . 5 . 3

. The v:u'lve for constructing matr‘d\x B" of Eq. 3.12 1s given’ below: =
l) The jth co1umns (J='I 323 vees N -1) have only nc;nzem '}
A (n -J)(n i), | R?r -j)(n -3+1)
entries atethe n, * —]th ° rou and n, + ]
¢S 4 (noed)th row. / S, B L
. ‘ 4 ' i [ oo i C, .
n -*'2) The 'nof,h column has only 5une ’nonzero gntry at the first
R .\mw,./*} b 1 ge .:/ ‘\ t
-~ - ‘When we knqw the m;trix Bo » We can easﬂy construct an | - -
' (n-k) stage encoder for encoding data d,Lgits . We mn netice later 4
2 that the connection of the shi\f‘t r&gisters is determ'inedﬂ:y the position /
/of nonzer6 entries in each column .of B 7F1gur,e 3.7 illustrates: the ‘
encoders for both Iwadare code§ when nb=3 . The IBO- matrices are also .
shown below: b - .
‘ . 601] . - ~ Je%] N
o Clorol 4 % . Jooo ; ~ »
g " c"o of . = |oage] | . y
' ‘B = 0.0 0 4 (First class), B, = 01 01 (second class) -
: 2 jooo % Jroo0] - . .
" looo| b " looof| 0 ) -
oL ’ & )
0] 0} - - ‘ 100 /
L‘ 0 0‘ ; ~, o ._'—.1 . o , ' w o -
L »> i :

o 7
- The mcedure%or decoding the Ivadare codes d'lffers R

Mdl-mnliy from all ucoding tecrnimes discusscd previously That is,, «
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Dat

©oin : )
Vs
g w . »
i s ® ‘ -— i ‘ - : . 7 —
. e . \"’. . <
[] ) da . \ | - R
- | . | N /{NA
) & - ¥ U parity digft © -,
‘ - 45 o T
- R t .,
. . i " ‘*L — ou ) o
\'r « . , (a) . . . L4
' "‘ o l , , P ) 7 @
4' . v i o ¢ \ . ) ‘ , \ .
. ] ’ "~ . e v i - -
—— . » »( % % » :( ‘ . N L
L Al ) N ) .
. 1 N ”W ’ “"'v\ . .
. e - ‘ ’ ‘t /L"‘ . ’ ,
7 )
o 4 ' . ’ »
1o N ‘ Y“< S Data,digits - ' -
/ : * b -, - . .
M | . . . ,Aout , o ;
N y
L , . . - " .
Ty
’ ) M N Acos  } - ”“,":‘J
. ¢ ‘\' . s
r \ s ; .
| (] . N .
. 4 L] o - .
. @ i eyt ‘ . \a .
: . iy ;Djk' _— E . Parity digit )
Ll out

WIWT S TR IR T 4
.

-

% " ‘a. ‘ Q&*’ b,
¢ ;
. T ) 7
co / T . Data digits

a digits

out

\

" F16. 3.1

W EESREAE L
. ; 3 o N . .

a) for (27,18} first chss,code';\\ .
b). 1o (24,16) secdtid cliss code .~ =

v 14

‘ N ¥
Iwadare Encoders;

. , o
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AN n, -1 steps.

| R

- 70i- 0
. S . . ¢ "\ Ry
the n -1 data digits in each block are decoded at different times.
In part1cu1ar the (n -1)th digit is decoded after Ny +2 blocks are

[

" received, the (n,-2)th digit after n +2%3 blocks ... the first digit

after 'n +2+3+t... +n blocks. Thus, decoding is accomplished in
\ ‘

’ J . N .
The decoders are composed of (no-l)(m-l) stage encoders
. LY .
Las well as a decoding algorithm circuit." Again,-we consider n,=3

and explain: the prmciple of decoding for first class of Iwadare code
| 12

Suppose tm%rmrs are in the "0"th "block of encoded data digits;

b

that is ' ' a S
. W T . T T N s
} ET=el eg eg 00 ..>-0 - > . (3.14) 3

-

The syidrome sequence which comes into the decoding al geritt_m according

’

to (3.14) <" . oy ?

‘.( ‘( ’ ‘ “ . /’Et 14 N , LN
A T 320 sl BT
Voo s g0 ool el . \ AL

'Notice\ that err&rs‘on ‘data“ digits, ‘eg and el'*-,mar‘eﬂr’ebeated

R2.

A tw;‘t‘:"e'“in' ST . When the second e, gomes’ mto the circu4t as shom in

5figure 3 8a the paj:tern (e XXXXX e ) where )g" is either uou

ﬂ uyw sat1sfies the 1rxuu“t to the AND gate number 2. 7 ﬁy.ls the output

.- ’
AND gate covvnts the second error data digit and at the. same ) < '

is fed back to the syndhome for syndrome resetting. One"ti? unit
A .
satisfies

g fater el comes 1nto the circuit and the pattern (e] XXXX e)

’the AND gate number 'l which in turn iorrects the first error data digit'™ K

‘g= . Y .
. ; , .
- 7 - .
‘ .‘ R 4 . i .
' N L . 2

. ’ [N X :
¥, ..\/"v‘ ' B . “ o \_/ b “ %‘ L .'”\~;‘,.‘
o . . i et , ,

>

¥
. ~-

»

»This is fpowed by 1mned1ate sxndrome resetting, thus decading 1is completed
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and

The pattern (el XXXX el) appears just one digit shifted after the - .

operation.

The second error data digif will be cornacte

T, .32 v ng o1
s« e3¢ 00 e} 00 F0e]

<

\ei\oo e e,..eko e 00

S:.r:

A 3

' +
*“ N

. ™ ‘
“in the "0"th bletk, the syndrome sequence will be
# 1 " '

and.the first en;gﬁdnta by’the pattern ( Xe ) .

ﬂ]ustrated in figure 3. 8

-and decoder shift register stages, code rates and 'block 1erbgt.hsc9\re given

e typica1 values for guard space encoder

ra

»

/

by the pattem

(3.37) -

RS

(338) -

(e"’ ez)

K
Decoders for the first and secand class Ivadare codes are

For the second class ofwlu_adar_e code , 1f_ ‘the burst occurs

»

in tab'leﬁ 4 for first c]a’f’s codes and in table 3.5 for seaond c'lass

2 Ivadare codes.

3.4 . Hsu Code

,.-—...—.——.-_ﬂ

b

" The! basic Hsu code [Zﬁ fs a (mpo.

’

o

no—b g

o

-

g

code vrith rate e,R‘ = ~—--- M&fype B‘

<
b.sn

burst.

- &

-

v

burst error x,orrecti n’a bil 1ty.

m(n «1 ) ) convmutiona]

-

o

pattern  (eZ7NXXX e 4 ) and W1l be decoded as before without any erroneous”

when g = mn -1 er-r'or free digits arecavaﬂabﬁe on either side of the

l;‘or this code m = 3:; end matrix BO

~

%

is g'lverr as follows:
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. TABLE 3.4 a N\

: .' | : L . . ' o
: TYPICAL VALUES. FOR THE FIRST C!.'ASS IWADARE' CODE
; - °. S0 T T v ~
? ‘1 X , -yt -
, Block Length . Code Rite Shift Register Stages ; Guard, Space, ‘
. ) / *
i ' n. C R = g
! N Encoder - . Decoder
! ! * . | * )
i ~ ¥ E . : o

. S ,

N : N
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‘ 2 S R V7 2 B 7 \ g :

3 | 2/3 -8 2 26
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TYPICAL VALUES FOR THE SECOND CLASS IWADARE CODE
- - o .
Block Length .Code Rate Shift Register Stages Guard Space
: ,n(; R - [ ‘ g
R énco der .Decoder )
* 4 *\\
E D — :
[ ﬂ .
2. V7 3 4 -, 1
,, % .
3 2@ 7., 16 K 23 A
* ' . bt . ,J‘lﬁ) °
4 .3/ J 12 39 51
5 A a/5 18 76 %
~‘ .. 4
4 3' . B
* . no + 3no - Zno - 2 !
g = 3 {
’ W 2 +3n -4 ‘ ‘ o
E = o_- 0 y ¢
- . - 2 . :
4 . he "
' ng + ,2n'(2)‘ - Sno +“ —_ - . }
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The parfty check matrix, HN ,» for this code is the same as
Eq. (3.9) wh1ch was-given before Again, when we kngw matrix B!Maﬁd

i e can easﬂy cons truct matrix H, and encode t ta digits As

N
- an examp’fe we construct matrix B, for N, = 3 and ﬂlustrate the
. £

, appropriate encojﬁng c1rcu1t for (27, 18) Hsn-cﬁa/.\ The ‘encoder is
show in figure 3.9.
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C S . |
.The decod;ing pr:ocedure is similar to the Iwadare method, so
it will not be mentiondd {n detail agatn. Rather, we will just consider
o , ‘ .
the syndrome pattern and decoder circuit for n, = 3. ’
\ | V If the error ‘s in the "0°th block, we have:
. . . a 4 \{&? N
T . (o) 22 o3 : ‘
) E' = (e,e; e 00 ... 0) L .. (3.20)
) Thus the syndrome will be:
s} . ) ) i !
T,.03.215.30.2,.]
\ S (eo emeoOeo Dgologé 00 ... 0) B (3.21)
: < y Notice that each error digit e; , 1 <i<3, 1is fepéate;i twice and
- ¥
. , . . !
can be detected according to table 3.6, where X . is arbitrary. ‘
g g

]

A w:@f‘ﬁ; SpIAE I3 ny
PAR R e 1 "y mm‘vuwﬂv—.'—ot"ﬂﬂr‘ .

| - SYNDROME PATTERN OF HSU CODE
oo . -
! » i )
; *rror Digit Y~ Syndrome Pattern Gate Signal
: : e e XXXXX € | qy =] :
/ . . 0 ' : 6"‘9' g )
) ' / 2 2 2 ) .
. \
- 4
. ' - 3 3 3 : .
. : e e XXX e - . : a ]
. . }\ . ‘. 0 l |._4_.Q.‘ q3 — o
3 I ’ "
’ From table 3.6 it is clear that for each ez » 1 <1 <3, adifferent

‘syndrome_pattern: ) \ N




ey vy — ———

\ ‘ - 78 - )
; . - - B .
(ed xxx  ...xeld ' | /
T R | . A ‘
é: \ "~ exists. Therefore 1f e; =1, then e; can be detected, "If e.: ’ ‘
. -occurs 1p§tead of e; » the same syndrou_te patt&rn for e.: . exists,

(% -~

ice.,:

(e XXX .
N - 1——-1; f o - .
‘ Y
. except that it occurs one unit of time later.. If e; is detected, 3

i ‘ gate sigmﬂ'., qy» Is generated triggering the error correctian and . - ‘ )
§ ‘ o | ‘,Eyndnme-resetting.' Only one gate signal should be generated each time. '
i _ Therefore, an 1nh1bit1ng ru'le is provided to enfore hat if qi ,

| then g = 0 for al j>1 . Figure 3.10 shows tt(&, ecoder for ‘(27, 18)

, . A}
by - +Hsu code. . .

‘ . (\ . Co:npdring this code with the first class of Iwadare &ide [26],

o= ) one notices that for the same burst, error coérect'lng ab111ty, *b\i n, s

. and block length, n  , when n, 5 Hsu code has advantages over
e

! Iwadare code, tha.t is, it requires less guard space and fewer shift register
' .stages. " Table 3.7 shows tﬁis comparison in%which § -SH *stands for the
di fference *n the pota] number of encoder and decoder shi ft register z

€

es and gI-gH stands for the differente in guard space. Subscripts

\

“I¥ and "H" fer to”Iwdare and Hsu, respectwely

oA

3.5 Rodgers Code L y

The basic Rodgers code [5] is a (m,, m(n 71)) ' convo{utional
\ n_-1 . 5
B] burst-error correcting abi*l 1ty,

O
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. COMPARISON BETWEEN HSU AND IWADARE CODES,
S-Sy “AND 66y VS. BLOCK LENGTH ng .. s

* *

M S-Sy 919y
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20 336 340
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f

b < o when 9= g --2n -1 error free digits are av;'l'lable on either
R 3

. side of the burst. The matrix for this code is given below.

o Y e
. A fﬁW‘W“m«-w-

h—-——no—-——q
00 ---5{0001]7]
00.-.-....0010,
00---.... 0 Qg

- Iv
PR o 3

"~

...0000
0000
0000
0010
0000]

£1401 00

[
.

‘-0 0-0/0
0 070 0
0600

0000

b {z- ")z ————ey | p—— oy
- = .Z-oue

8- .
s ‘ >

For this code m = 3n,-2 and ‘i=l .
The matmx B s co structed as: fohows'
N / o . ' ~
The top ny rows-are the mfrror hnage of the identity matrix
of order "o : Row n, 4 is a.repeat of row n, - The next
' Z(n =2) rbws dre fomed in sets of 2 rows each, the top rows of each'
set are to the power of 2_' fr:om 2'l to 2 °—2 wr1tten =In binary form.

=3

The lowér row of é'ach set is the all-zero row. The bottom row of B,

. \
As an example, when "o = 2 the hatrix B




This code was found: by Berlekamp [21] and is known as @ minfmum constraint =

length code (n = 2,‘5)‘_ Appendix C 11éts the B - matrices of codes : .« .
with minimum constraint length. . @ - 7, ’

3

" Now let us congider Ny = 3 and f1nd the B matrix.. We
will then {1lustrate the)edcoder for (21, 14) Rodgers code accordingly.

The ®ncoder is ‘shown in figu\_re 3.1,

. - -
2 S .

-

. .
" . N . 3
- "\ o’
L R . . .
1 A , . .
\ ' ' ’
* N ° . N .

jhe decoder circuit is based on the analysis“vnentioned in
ChaptZr/

L

2. That 'is, desired syndromes which are distinct from each _ T
other are chosen and undesired syndromes are rejected Then each disti'nct'
desiredﬁsyn)ome pattern 15 used to correct the re‘lated error digit. K :\
This will be done for-the error dig1ts in the _"0"th b'lock simultaneousw
each time. - The effect of the "O"th b\ock prro‘rs on the syndrome will
be remogd after each correc 1on fin or;,der to prevent error propagation.

The, errors in the other blocks wiH be corrected as "0"th block provided o
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ttnt“the'requ'if"ed guard space,around each burst is available.

‘The simplest way. to under;'.t‘andﬁRodgers' decoding circuit

is by folloiwng an example, agafb, for (21, 14) Rodgers code. Tpe code ’
. -n_-1 )
, s of the type B] so we have n02 0

"th

is is eqdaT to 12 .

NG

desired ‘syndromes. For n =3

The syndrome's for different error patterns are

given below (di‘ta digits are represented as d;. where 1 is the ith

data digit and j .is the jth block. p; 1s the parity digit in the jth

L3
(7 7 w »w. w wv o w 7
— e S D O N O O P W N -y

wK

S

e

=[1111100]

)

=[0111100]

[0011 00 0]

(11001 00]

[11061000]

n

[1too1100]

o

pshorian

[1011000]

[01 0010 O0]

[too0oo00'00]):

/
(6101 000]

"

NS

0] cowheh Py d}

- when Po -

~

» 2 N
when d ,.d0 and Po

when d and ,dg are

(

when anq Po

-
ON O~ O~ O ~ 0O —

are

when d_.  is'in error

!
/

when d is in error

is in error

when d2 and p; are
1

and d]

when d

o

when, d

oON ON O
A\ J
<
(=}

and d, are

1
1
1
and d1

when Po are

and df

2

- .
51" (101 0 0‘1 0] when p, and dj are

w

Now we group those syndromes that have dl indicated as an

errc;r in all of them. Thus we will have:

1

Slock\and, comes after the data digits of each block). We have:

are all in error
both in error

both in error

3

both in error
are all ‘in error
bo.th 1r.1 error
boi:h in errc;r”
are all in error

™

both in error



~ Notice that rows 3 and 4 of these .;c.yndro;'nes are all "IMs and rows 6
and 7 are LH,: "o" "si . When there is a. "M in row 2, thené is also '
a "1" “in row 5 -and if/there is.a "‘0"‘ in roéu 2, there is also a "0"

in row 5. Mith this information we can design the ré,quired logic circuit

-

I

for detecting the error in dl . This is shown in figure 3.12a.

Now grouping those syndromes 'in‘which: dg is-in error in all’

of them, we obtain } .’
‘ %Y : >
¢ S 52 3% S5 % S, ! \
B T R |
7.0 0 1 1. 0 ‘
P 3 ,
0 I D D D R B : ~
'\---..‘.?.. > we s@mr P m» mrvueve revaver wif (
. 1.1 0 06 0 O k
1 1 0 0 1 1
RIS I L ! ‘
T I R R ’b'i\*'b"g ) .
ig"0 0 "0 0 o0
. , ) |

-
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Ll \‘
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S - | -8 - R .
B . . . . . \ } . 3w “‘“\_

Ty i ) o2

¢ ~Notice that, row 2 of all syndroges-ape "1"'s .

Rows 6 and 7 al) are
"0"'s . Row5 is."1" when the digits in rows'3 and 4 of each

individual syndrome are identical and is D" when these digits,ar:e

different.. Based on this information the logic circuit for detecting-
" the-error digit in d¢¢ {s drawr in figure 3.12b. |

+

Since we are not interested in correcting parity bits, the
: .

circuit for detecting them is not considered here, - \
- The complete decoder circuit for. (21, 14) Rodgers codé _15:.
‘11lustrated in figure 3.13.
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(a)

Corrects d;iand sets. syndrome bits o

3 and 4 to zero

<

2 o i
Corrects d; and sets syndrome bit

2 to zero and bit 5 to 1

K
FIG. 3.12 Circuits which 1

/

v
(b)

-/

€
»

I

Cor?ects d% and sets synd;gme bit

2 and 5 to zero

dentify incorrect bits; a) d; ;°b)
sub-block of the error burst

2
d

in the first

~

-
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| RANDO!"I AND BURST-ERROR-CORRECTING CONVOLUT}IONAL CODES
. : v
In real comqnication channels we usually interface with two
kinds of error patterns. These are bufst errors and random errors.
The codes described in th1s chapter have the capabﬂity of combating
random and burst errors prdvided that the required condﬁ:ions for each’

case exist.
& 1]

4.1 Massey-Kohlenberg Diffuse Code

-

The Massey-l(ohlenberg code [23], [24], [8] is a- (2(3x+2) .
3x+2) convolutiona'l code wi,th rate R =1/2 which is derived from a

. - k
t=2 random error correcting Massey code [34]. It is capable of correcting |

I

all burst-err’r patterns not more than 2x digit\s Jong (x > 1 ‘
(Z\-

-1nformat10n digits and x parity digits) given an error free guard space

7 |

of g=n-t = 6x+2 digits on either side of the burst.

v The encoder, shown in figure 4.1, is a (3x+])-stage shift | >
register. Information digits are fed into the channel (thege is no ‘ L
information delay in the encoding process) and the shift register : 1
simul taneously, and a papity digit is formed by summing (modulo 2‘) the
contents of three register locations and the input (1ocations 1, x+2
‘and  2x+2) . For the case in which the information digit dae2 enters
into the channel and shift register, the related parity digit: 1s

124

Pax+2 © d1+dx-}2 +,d2x+2 * d8x+2 . ) (4.‘”

.
- %
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which, agaMH be fed into the channel after information digit
“od

o & AT owddedh .

3 b‘]
s . R i <
5

7 | ' -,91'-.

o

This will be fed into the channel after information digit d In

It -
the next coding cycle, digit d3xt3 enters tge register, all other

digits shift one p'ljace and the related parity digit is:

p3x+3 =dy + dx+3 ¥ d2x+3 * q3x+3

.

T T il it s Kn

343 * The encoding operation continues in this mmner with no

.~

)
!

division of the information or parity into an independent block structure.

The decoder\, shown in figure 4.2, contains a replica of the
encoder into which thg received information digits are fed. These ’
received digits dL are primed to indicate that they may not be equal
to the original digits .dk , due to possible transmission error. B

3Ix+
parity digit péx+2 enter the decoder, the syndrome 53“~2 is given

beforé, we calculate the syndrome. When the data digit d. 2 and the

~

by: : ’ o -
. ' L
ot 1 . \o )
S3x+2 i 4y e daxs2 * Y3542 P3x+2 (4.2 ’
where d: = d, + ed v
' -k k 7k _
‘ # : (4.3)
»
' = P
P = Pt & %
ei is the ‘information etror digit and eE ‘is the parity error digit. %
. . Vaas 2
They are "0" or "1." depending on whether the corresponding received
bit s correct or incorrect. Substituting Eqs.4.3 into Eq. 4.2 and using é

Eq. 4,1 we find that:
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. used in decoding. The result will be: . -

-93 - ) \

Y B d -, d . QP ' '
'53x+2, ey * e t Oy e YO0 (4.4),

v

This means that the values of the syndrome depend only on the errors
in the information and parity bits from which they are formed and not
on the actual values of the transmitted bits themselves. These syndromes

are stored in a shift register of the same length as that of the information

+ register. ’ o

. At the instant stnM’in) figure 4.2 the function of the decode'r
is to decide whether or not ’di is correct and if it is incorrect to
change it. To explain the decoding procedu e we shall 1n1tia11y assume
that there have been no previous transmission errors, so that errors
in """, ‘or "p" , may be -«called first errors. With this assumptidn,

we can compute.the values of the/ specific "S" shown in the figure and
]

A

.

Sy .- = ef|’+e$ : when dj and p-" enter into the decoder,

Sx+1 = e$+e:+]+e£+] . when d' o and ‘d;m enter into the dlecoder, ]
: Soxsl e%’-l-ef:+1 gx+'l +e2x+] : when dj 4 and py ;- enter. into t'he decoder;

S3y 41 ® egﬂ +egx+l +egx+1 +egx+] when d:'ix +1 and péx 4] enter into th?-decoder,

-

= o4l 4 d p
and S3x+2 e1+ex_,,2 J“,!+e:.m_‘_2+e3x_._2 when déx+2 and p3'x+2 enter into the

- decoder. From the above equations we notice that if we constitute the

3x4] (modulo 2) , we will have four equations in
X L . — [

which the term °e$, appears,’ while no other bit error term appears more

than once. Such equations are caljed “"orthogonal" on eg . It is this

sum of 52x+1 and —S

L

property of orthogonality that permits their solution for e? if not ,

-



‘o

»

) These equations are rewritten be]ow-

~ the decoding may succeed or fail depending upon the spec'lfic error pattern;

" later bits, its state is precisely what it would have been if d1

- not ‘been wrong.

-

-/ i
more than two errors are present’ in the bits entering the\four equat'lons.

L}

S] =R + e.f o '
*"ﬁm‘d ed1*°p1 ‘ e -,
;: Sox41 * S3x41 * ef + b * egx-ﬂ * egxn[ . \’(‘4.5)

‘ S‘3x+2' } e;‘ * e:+2 ;-Ve.gx+2 ¥ egx+2 * e§x+2. .
Since the decoder at the instant shown s only interested in the value ~
of ef s- solvfng for it 1is the decqding opera/dn ‘

The so’lution is mp1 emented by the Togic indicated in the
4

figure as the threshold device, that is, 1F more than two of the four

we decide that ‘e? = ]

and make a correction in d"‘“’”’i‘his decision is correct if at most, two

expressions forming (4.5) have the value 1,

of the eleven d1fferent error bits in (4.5) are in error. Otherwise,

When the th‘-eshtﬂd circuit has produced an oytput, meaning that the ‘

recewed d.i is wrong, it not only changes d]' but afso -complements
¢

These are the

¢ T

the values of syndromes, 53x+2 s 52x+1 and - S X+l

three syndromes that contain . e? and that will be involved in later

P

decoding decisions. .If the decoding decision is carrect, the effect -~

of complementmg these three bits is to remove ‘the effect of the incorrect
Thus. whan the decoder goes gn to cons1der '

had

b1t d1 from the decoder.

n

In this sense, each correction is a correction of a‘first

TTTTT
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err‘or and this Justifies the atove assumption that if d] or p] ‘were

3
wrong, they were first errors.

’ ' “

B o Now we explain the burst-correcting capability #f this code.
Subpose an error burst occurs, but that it does not span more than 2x
.cﬁan'neI digits (x parity and x information digits). Examinationpof
figure (8.5) shows that as the burst moves through the decoder, it can
" Just.cause two error bits in S, and one error bit in the three other
‘syndrome equ'at.:ions (the other bits dre separated from each other by

. atleast x digits). Thus the burst errors can be detected and totally
correc eddrhe absence of other errors. This means that there shall
‘be no erro(r in the decoder when the burst first enters, and tiit none .

o -wiﬁ enter until it leaves. Referring to figure 4. %, notice that 'when
we' have 2x-digit burst errors in ‘the channel, x of them wm be
“ information digits. When these x digits reach to the r.\ight most shift
register stages of the decoder, the other 3x+1 x = 2x+1 shift register
. L stages of the decoder should have error free digits. The same amo\un
. of error free parity digits should have been ‘entered into the syndrome
. shift register, 'so the total error free digitsare 4x+2 when the first
digit ofrburst error is in the stage of 'Ieaving the decoder. In order
éhat. the last in%tion dig'ft of the burst, di'g'lt x , leayes the
o decoder correctly, 2x Mmore error ‘free digits should enter into the
decodgér, so that the total 'ammfmt of 4x+2+2x = 6x+2 error free digits

v : ‘are\requ'ired after each -burst of length 2x for correcting /erroneous
r Q

Massey-Kohlenberg code are illustrated in figure 4.3.

o

N

data digits. As an example, for x=3, the encoder and decoder for (22,11)

9

A T e s 5 3

Al i sl

ey



1

¢
° ~—
¢
*
L]
-
e
e
’
/ »
P
"

P

]
L ) '963 P F
. - - i
0 '6 s
oy \\ !
[ ' ' .
] T . 3
o tj< , M
o ? ) ‘
v s < o
L | \ ‘
. ’ ¢
» “
1 ) ’ - ;
(a) _ )
. — ’
- - M - ..
a8 N -
. ;’\ >
Cm - Y .
e ' . . |
i l P
> .
/ [ ) o+ \
— ]
REN S
. 9 l 9
//>' }—.D J\JJ '\57

R | ]

Threshold device

FIG. 4.3 Massey-Kohlenberg; a) encoder, b) decoder for

(22,11) Code

. o



PR, T T

-97 -

-

Lynon and Beaudet [35] recently studied the-performance of:
different codes on aeronautical sét‘enite da}a 11‘nks. Their results
indicates that the Massey-Kom enberg code has the least imp1ementat1on

; d?fficu]ty and is very weH suited to these channels.

4.2 Gallager Code , \
The Gallager code [25], [16] isa (mn_, m{n,-1)) convolutional
n -1 , ’
code 'with rate R = which is capable of correcting random errors
o . \) 5
and almost all burst errors using an adaptive decoding scheme which was
& - . .
devised by Gallager himself. For this code m = L'+M+k.,+1 where L, M
7~ '

and k] are design parameters. They will become clear when we study
encoder and decoder circuits. This code is capable of correcting «"t'gv
random errors (depending on the first k] shift register stages of the :
encoder and its tap conﬁguratmn), and b < noL burst errors if

Yo,

g = no(L+M+k1)errqr free chg1ts are available on either side of the burst. It

is glear that "t" ‘random error correcting is possible when "t* rors
are nfined to o (k +1) consecutive digits. For ease of explanation
we cons1der the Ga'Hager code with rate R=1/72 . :

The operatmn of the encoder is similar to that described for
the Ma.:c.sey-l(ohlenberg code. As each new information bit enters \the encoder
it is also simultaneously transmitted over the channel along with the
corresbondiné parity bit. This parity bit 1Nhe sum off (modulo 2) the
oldest bit and the new bits in the tapped positions atjhe left end of

the register. Figure-4.4 ﬂ'lustrates a general encoder for the a]hgggg%

code with rate R=1/2. -
&

sy ——— —
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) The opeeation of the decoder for the Gallager code with rate '
R =~1/2 1is gjven in figure 4.5. The figure shows the decoder in its
normal form in which the received parity digit as well as the present
'l

and past information digits are used to form syndromes. The values of

the syndromes are used as decoding criterion.

The deeoder can operate in tw modes: random and burst. In

eitherjmode it uses the values of certain syndromes to decide Whether

. to move ahead without change, to performm a .correction, or to shift to the
¢

other mode.

In order to.understand the functioning of the circuit in

. .figure 4.5, suppose that all _the shift register stages of the decogder

ﬁw'luding the syndrome register contain zero digits. When the first
information and parity diéits enter ;he decoder, thegfirst syndrome

digit will constitute and will be stored in the syndrome register. This
information digit will be corr‘eéted ‘(1f received in error) when it leaves

the L-stage shift register of the decoder, provided the syndrome dig'lts

| in the k,-stage shift register ({Fthe syndrome satisfy the criterion of

random error correcting mode. Therefore, the correct i'nformation dfr/g1ts
will enter to M-stage shift register of the decoder and will leave the®
decoder after, M ti/me ﬂ;\its delay. For each error correction the,
related syndromes wﬂi be reset. This means that the values of the
syndromes will be complemer;ted in order to remove\the‘effect of the
orrected error from the syndromes which will be involved in later
decoding decisions. If the.criterion does nc;t satisfy the random mode

Caty

.but can detect burst errors, a signa¥ will turn off gate "2" and turn
¢ ' f @

[
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“n=n vl-no(L-m) = no(L+M-l~k1+1) . Any basic convolutional code can be

-100- .o D ‘ :

A

on gate "1", switching from random mode to turst mode. The incorrect
information digits’ i1l enter into-the M-stage shift register without
any correction at this' stage, Sincé the length of the turst should be

b< 2L then, at most, ‘L information digits are in error .and after

M time units all of them will occ{:py at most the L right most shift
register stages of tMe decoder. This implies that all digits in k1+M )

Teft most shift register stages of thé decoder must be error free -and

"the new syndrome digit, from the errér point of vjiew, depends only on

the information digit which 1eaves;the M-stage shift register of the

decoder. If this syndrome digit and the one which is leaving the M-stage
shift register of the "s_)ndrome satisfy the gnput of the AND gaté, then

the error information digit will be corrected and the rlew' syndrome will

. - (} . !
be reset to zero through the main feedback line. This process will

r

continue until all corrected burst errors Teave the decoder and aH

syndrome digiss in the k1 -stage and M-stage<sydrome shift registers:
become zero. At this time a signal will turn on gate "2" and turn
off Qate "% 1ndicating a, smtch from burst mode to random mode. From
the above exp1anation we rea]& that the Gallager code is constructed

1

from a tasi random error correcting code which tas a constraint length

\

1)f n' ='n (k-'ﬂ) The 'constraint length of the Ga'llager code s

L used as the Gallager code if the required design parameters are followed.

In practice L >> M+k1 and is normally quite Targe, say several hundred,

while M 1is much smller, say aboﬁt twenty.

4
\” The Gallager code's outstanding virtue is that it requires a
very short and adaptive guard space, roughly equgl to the actual length

£

IO S

[y
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- of the birst 1t 1s correcting. VThis is a contr%y.to the other/ codFs b

vfﬂch require a guard space abouf— three times the*length of the maximum

corcectab'le burst This can be c'larified by using Gallager's Tlower bound
. n o]
? Eq. 2.11, for a code with rate R = —%—-— . HWe find: , -

\.“ o

9/b > 2n -1 ‘and since n_ > 2 , this means ‘g/b> 3 .

/ Now if we write the ratio g/b for the Gallager code which-we explained

iy

above, we find:

r

| n, (L+Ms ) L+M+7
, a/b = 4 4

i n, L L
h 4 ) ' | \+ . }, }

Since L >> M+k, we conclude that g/b =1 . This.result indicates

'S

\ , ‘ that the Gallager’ system wiH not correct ever_y burst of less than 1ts

\ o maximum designed.length. Some bursts vrﬂ‘l begin with error patterns

_ .. that the random error correcting part of the deco/c‘ier; cannot getect. ,

| For: these the decoder will not enter the burst mode before the first

bit of the buraeaches the last position of the M-stage shift register
of.thc decoder. These bits will therefore not be corrected., Other .
bursts may be of sucha nature that the decoder will leave the burst
‘mode too early: and a@ing the burst is over, other errors will-be

made. However, if suitable criteria are used for burst detection,

the errors due to failure of detection will be very infrequent.

Another drawback of the Gallager code is its sepsitivity to

errors in the guard space. Sullivan,[28] generalized 'Gaﬂa;;er's scheme

~

3
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] e
to af}bw the pgbsence of random errors in the guard space. This was -

]

achieved at a modest sacrifice in (ate,'but~a significant increase in

decoder complexity. . _ -

i

4.3 Interleaved Qpnvo]ufiona] Codes

¥

R The idea of interleaving burst-correciiﬁg convolutional codes
vas first introduced by Hagelbarger [18]. It is understood that the
basjca%dea behind a1l burst correcting convolutional codes is that the
digi%ssinvo1ved in the, decoding bf a particulér digit are sprsad'in time
so that only one, or at most, a few can be affected by ‘a single burst
of errors. Interleaving technique is the simplest way of achiev{ng this
"spreading. This éan be done effectively by breaking the data stream
19%0 A indepehdent.st}eams-as shown in figure 4.6. Each of the
data streams is then separately encoded and the encodi? sequences are
multiplexed together for transmission on the channe1; At the channel
outpuf the received data stream is-again separated into 1A streams..
Each stream is separately decoded and the decoded data is finally
multiplexed toggther again. Consequent]y; any of the coding technidues
prev iously discussed or any other-raﬁdqmverfd} correcting convolutional )
codes cap be used on a burst noise channel in conjunction with inter-
leaving technique. The parameter 2 s éeﬁérred to as the interleaving
degree. In pr;ctice one does not want to actually build ) separate

. encoders and decoders but seeks a trick to use one encoder and one

“\gscoder in such a way that its operation is equivalent to that of 2

separate encoders_and decoders.

Interleaving can be achieved by simply inserting A-1'|§tage

LT . //}
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) > .
delay lines between stages of the original convolytional encoder. "The

resulting single encoder then generates the 2 1pterlféaved,‘codes.

This method is of é%eciaf J%ntelr‘est when the threshold decoding [34] -
tecﬁnique is us_e/d‘ for_t”he decoding of bhasic ‘code‘s since the same tezhnique
can be employed. in the decoder ‘resu1t1ng in a sdngle (time-shared)
decoder rather‘ than 1 decoders. This method is known as the block
interleaving technique [32] in which no-bit blocks, séparated by A
blocks, form aﬁ independent data str_eam. This technique is ap_p'l'lcab]e
when the ‘bursf ‘errer cor‘rectjng capability of the basic code is b“; No -
The interleaved code will correct bursts of 1ength bx or less when

an error-free guard space of length gx is avaﬁab’lé on either side of the

burst (g s the gu,ar.d space of the basic code). As an example the basic

’(27, 18) Hsu code with burst error correcting ability b=3 s block
" interleaved to degreé A=2 . This new code has burst error corr/e(gtin.g
ability of b6 . The c:rresponding encoder and decoder are shown in
figure 4.7 t}nd 4.8, respectively. The or}'ginafl .encoder and decoder .

were shown in figure 3.9 and 3.10. S .

Another technique which is more flexible is known as bit
1ntér’beaving téchnique [11], [33] which is a true interleaving technique.
This method’ sepafrates each digit by a-1 intervening digits and is
appﬂcab]e to any basic code with any error correcw'ng ability brovided
that n divides A-1 . Figure 4.9 illstrates a general bit ‘interieaed

convolutional ‘encoder and decoder where each stage of the shift register

of the c;riginaI encoder and decoder are replaced with 1 stages shift

¢

-

b Cre M e i M a aecdesee & ke L



1
P
i
|
s
.
»
.
R
X . Aond

¥
v
»
e

P
2=t ‘3po) nsH {g1°/z) DiSeQ 40 A3pODuUI PaARI[JAIU] Ad0l8 [*p ‘94 . : - g
- . . o ) < ) \\ o.. 3




B e sl penee bt b WY a w e -

EHE TR Yo DT TR IR NP I T T
N e - - o ~ .

: g=Y *9p0)’nsH (81°L2) o
30 P3AR3[437U] ¥O01g8 404 43P038Q 8y "9Id.

>

S

.

¢ ) . o

oD

Wqn)

-

¥ 4

o~



FAN

LRUOLIN|0AUD) PIARB[JA] 318 6P "9I4

L-Y 3p}ALP 3snu ‘u :ajop

A . ° -
\ - . . i ‘.‘.‘ 1 3
. ] N .
* LS * -
. .
. - R . - /.m
\ : wa3sAs buypo)
— - - : -
\ -
nm . .
. 40:
sabejs v o, . .
- ). —To =X ’ i
- ul
Yim ﬂ
[ ] -
. i} g
padedau ) =
' T ¥ M. |  [3UURY)
sy abeys - o .
- -3
: - )
yoea uaym .-
J43p0odap - o <
u
1] 0
teutbrap | Y (-0 (1-w)
AY ’ ~

]
% . ,
1 0 o 6 . :
(L-Y)(1-u) u sabeys ¥ o
W\\ ' - =
o+ = paoeidad -
.m.u.“ j 1 -
a ¥
m o, .S} abe3s
py -2 h €
- yoea uaym : B
A : 3 o
S BT
- o > - dapodus f—— 2
T 1| L leutbieg [ L
i ‘ s
¢ /



- 109 -,
_\\\‘ '. )
b : ’ Co
(n,-1)a-1) . ,
» register and thé additional — stages shift register are used o P

after the output of the original encoder, known as interleaver. The same
amount of stages shift register are used beforé the input of the orjginail
decoder, known as de-interleaver. The function of the interleaver is to

A

énsure that the n = digits 16 each subblock formed by thg encoder are o
‘separated by i-1 intervening digits for transmission oJ;r the channel. .
The modification of the oridina? encoder, actually corresponds to' A

distinct encoders hmb;e subb1ocksuare successively foqged by tpe'new

single encoder. This ensures that there.will also be A-1 intervening
digit.} between the last digit in a subblock and th;?rst digit of.the

next subblock of the same one of){he A different cohvo1utiona1 codes

as the digits are sent‘?ver the chann€l. As an exampie the encoder and

ecoder for a (4,2) convolutional code with rate R = 1/2 with error

correcting ability of L=1, when g=3 error free digits are available

on either side of each error, are shown in figure 4.10a. The-corresponding bit
1nter1j?ved°convo1utiona1 encoder and decoder for A=5 are illustrated
in figure 4.10b. This code is capable of correcting burst errors of

length 5 or less when a guard space of length '15 digits is available

on either side of each burst. .

The zbove ?éhtidhed techniques are perfectly acceptable
techniques when threshold decbding is used but are not attractive for
~ the more powerful Viterbi maximum Tikelihood ‘decoding technique [14]:
The reason of course is that the latter must siore and constantly update
a relatively ,1arge,amo~unt of information in the form of path metrics
and hypothesized ipformafion sequences, If the decoder is faced wifh‘

~decoding several-independent bit streams it ﬁust either store this
\ . .

J 1]

W
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1nformat1on f'or each stream or haVe a sufficient speed advantage so that
it can re-compute a considerab'le port'lon of this 1nfov%netion as it moves
from kst‘.ream to, stieam. A more desirable system is to Ynterleaveso that ",
only one encodeﬁ message need be provided to the decoder. *This is easily ’
done by 1nsert1ng an ext;:-na’l inter]eaver-demter]eaver between the .

encoder and decoder, r;espectweu.,‘_ ~A good reference regarding interleaves-

deinterleavers (scramblers-unscyamblers) can be found in a paper by

]

Ramsy [36].. .
Goldberg, Moyes and Quigley's [37] experiment shows that

rate 1/2 interleaved convollt'io.na1 code with Viterbi decoding has better

performance over tro§sc|atter channels when compared with the Massey-

Koh1enberg and Gallager codes. Their results are given in tab]e 41

and the related diagram is shown in figure 4.11. \

Burst-error-correcting codes using interleaved Viterbi

* decoding is currenfly used in most mobile military satellite communication

systems for multipath immunity and error control ‘and is prédicted as
possible in future technology (1980-90) for comﬁerciaf ‘application using

current techniques with improved pérfonnance and at reduced cost [38].

N~
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DECODED OUTRUTS AT—ERRORrRATES (BER) AND RELATED IMPROVEMENT
FACTORS (F), DUE TO CODING EFFECTS IN TROPOSCATTER SYSTEMS

)
' 1 Massey-Kohlenberg Gallager Interleaved, Viterbi
; Chéasgor [ Inf. Error Anf. Error Ing'?-sé}'?'gs' encoder)
Rate F Rate F Rate " F
: | 2.2107° 9.2<107 | 2.4 | 2,907 | 0.8 | 6.3a07 | 3.5
o eex0® |y 2.6a07® | 399 | 1.9a07 [50.3 | 0.00 -
D 1.1x107° 9.0008- | 1.3 | 8.6x07® | 1.3 7207 1.6
1.8x10™° 2.4x07% | 7.3 | 92207 | 1.9 2.9<1077 {61.6
. 2.4x107° 170 [ 13| a0 [ 1a b 2.8x]0-5) 0.8
. e | 3.6x10° 3,806 } 9.4 4 1.000° [35.1 | 0.00 -
7.4x107° »7a0"> | 4.3 | 9.1a0”7 [s1.2] 0.00 -
1.0x707 3.810°% |26.5 | 9.8x10® [10.2 | 1.6x107® [63.7 .
: : -8 . ,
. ' I“) Improvement Factor (F) e Outpughalmslmggri‘z: ’g:gr Rate
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FIG. 4.11 Diagram of the results shown in Table 4.1



SUMMARY AND CONCLUSIONS

In this report we have~considered burst-error-correcting
convolutional- codes which are in use in digital communication systems
Some mportant definitions and mathemat1ca1 background which are required

to dnalyze these codes were given in chapter 2.

.In chapter 3,_we.discuséé;,some?FEC\Egnvo1utiona1 codes which
are\good for burst-error-correction. ' These codes have rate 2%j;-and .
burst-error-correcting ‘ability given by burst length b _<_}\° . (?Among these
codes, Rodgers code has the least required guard space of g = 3n2-2n -1
but it is difficuit to.implement. On the other hand, Hsu code has the.
least 1mp1ementation difficulties but is 1nfer1or to Rodger; code when the
compar1son is based on the required ge;rd space (g = 3n2-1)

)

The FEC convolutional codes with random and burst-error correction
ability were studied in chapter 4. These codes have practical use and are '
applicable to real communication channels. For rate 1/2 in the Gallager
code, we noticed that the required guard space 1s'approx1mate1y equal to’
the burst length g « b<n, (which is the smallest possible guard space
achievable). This 1s also_smailer than the guard space given by\L:e Wyner
and Ash, and Ga11ager bounds. This 1s obvious because this code could not
correct : bursts Bf length b . From the points of view of implementation
and of 1ess*sens1t1v1t;mf:?pdiors in the guard space she Massey-Koh]enber§
code seems more advaniageous than the Gallager code, Llastly, the inter-

Teaying technique described in this. chapter, makes it posstble to use
&




€ -5 -

any existing convo1utiona1 code for burst-error-correction ~An additional
advantage of this technique is that it provides the existing basic codes
the ability of correcting burst errors that are longer than those considered

-

in chapter 3, provided that the bounds are met.

Due to advancement in LSI and microprocessor technology ané
their cost effectiveness as we1i as the demand for accurate high speed
data transmission it seems that Interleaved Viterbi Convolutional Code
. will be used in future digital communication systems where tﬁere is ?
requirement. for compensating the degradation of the system due to the

’ L%
occurrancei,of the burst errors.

u-{\b .
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: , v 1
| PROOF OF WYNER AND ASH BOUND :

"

Due to Wyner and Ash [4], the fo1‘lowing assumptions and theorems
are required to prove inequality 2.9 gwen in chapter 2 .- . : ’

2]

1) Type B, code with i=1 has been constructed where

v

b2 rn s the burst length. -

2) B' = the (N+r-1 )x'n0 matrix consisting of the first
N+r-1 rows of B . Note that at least the last r-1 T

v

rows of B' are zero. .

+ 3) T' = the following" (h.l.+r-1 )x(N+r.1)’ matrix:

column of Hﬁ is C'(fJ)_.
L)
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N
S -
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" FIge A1 Schematic diagram of the matrix Hy for r=3. The nomzero
' - entries are within the shaded areas

. #
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, Remarks ¢

Theorem 2: If z

18 - )

A at

5) V_ = the space of (N+r-1) -vectors spanned by the columns

0

of B, T'B' ... T

(1inear independent vectors).
16) V
of T8, T'"Her ..., T3

blocks of Hﬁ .

v

B' = the first b columns of H

1) [C (R 7 CE) BF Fedn and [C'(A], =0 if

f > Nn (C(F) ' is the fth column of Hy - It is also-

-assumed that the top entry of C(1) is "1") .

2) If 2= ] C'(f), “then:
feF

n
v s . N (o]

(2 = L )j c' (f)]N fZF [ (M, = meK ce) 4
€ €

is a linear combination of columns of H, . We now

N

- in section-2.7 of chapter 2, in terms of the H

feF. Jed
correctable Tinear combinations of columns of Hy’, then:

z]'=zk‘2 implies FnKb=JﬂKb N

c

Proof: The proof paraﬂels that of théorem 1 . If zd = 2]

1

2

matr

= ] c'(f) and zé= Y ¢'(j) are type B'2

and

N

1 = the s;ba'ceof (N+r-1) -vectors spanned by the columns

B' =.the second set of r

restate the necessary condition of theorem 1, mentioned

ix.

FoK FONK then z.i and zé form a truncated syndrome SN+r -1

correspanding to two different sets of errors in the first r

°

blocks.
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3

This con ad1'c_ts¥as«sumpt10n 2 in'section 2.7.. Hence z{ = zé implies

The columns of P are the first columns of each of the N blocks of H

. vector space of N-vectors (over th

R | | :

' ! ~

3

-

Fo K, 230K . Following a sequepcé of 1emmas‘,/p\roved by Wyner and

Ash, along with theorem 2, will lead us to the 1ower" bound on N .

Lenma 1: Any type 82 code with 1i=1 must be such that N>r .

A

' ! »
Proof: We assume the contrary, i.e., N <r and consider theé'matrix P

as follows: ,q s

.

P =C(1), C(ngA1), coy CC(N-1In 41)]

N
Matrix P’ has the following properties: .
\ E 1) P 1is triangular since the top entryof C(1) is ™%
Hence,\ the colums of P are N independent N-vectors and thus span the

e modulo two field).
g e

2) The columns of P are from the first "b" columns
of HN since (N-1 )n°+'l < (ra1 )n°+'| = b-no+] < b . Any linear combination
of columms of P is type B?_ correctable, since ‘the columns are confined

o

to r blocks. Since C(2) 1is an N-vector. 1) yields

c(2)= § clf) - ' | | .
feF ' ) )

where the C(f) are columns of P, By2) F 1is type B, correctable.

But Fnk =1{1} and {2} N K, = {2} . This contra:dicts the necessary
o o - .

_ condition of ;heorem 1 . We conclude N>r .

Lenma 2: If z.l' is a nontrivial linear combination of the generators of

'

e % T ~



- 120 -

I
V. (i.e., of the figst b columns of H}) , then [2/] £0, “+n
0 . N ! 1 N‘.-‘ // .

' ( 3 //
Proof: Assume the lemma is false so that [zfl\l = 0. Consider the

- AN

po= Moy, ey L T 2oy N
The columns of P' are the first colihs of the :last r blocks of Hy .
It follows from the definition of T' that L MO = 0 . Also, since we
are assuming that the top entry of C(l), is 1, hence C'(1) has top
entry "1"., As well, the last r rows of ‘P' are triangular; hence
a nonsingu‘lér matrix. It follows that the columns of P' span the set

of (N+r-1)-vectors whose first N-1 entries are zero. Thus, if [271y4%0

we may write zJ) asa 1inear combination of columns of P' , or equivalently:
1

z

1= sz C'(f)

€ ) . . . . M 7
- where F 1is confined to the last r blocks of H' , i.e., > (N-1 )no+1 -
f:)r all feF . Note that since the columns of P' are restricted to r
consecutive blocks of - l-lh"l » F 1is type Bé correctab]e.‘ Now z]'e:vo by
shypothesis, and consequently:

TN
— N\,

\

N
where J is an non-null subset of Kb and hence type}g cor‘rec&b'li.

Thus we will have: - ‘ o
- m ° - S
I c(f)= ) c'j) v- !
feF Jjed ¢ B

S



- e -

.z]'e:V0 . If we can show that T,; is nonsingular and thus dimension

2121 - , L ‘
/\( r

where Jn Ky #¢ . MWeclaim that . F n Ko= ¢, thus contradicting theorem 2

r~

and establishing the. Temma. To verify the assertion, we note that since

f > (N- l)n +1 for all fcF , Temma 1 yields f> (r- )n°+1 . Since each °

f corresponds to the first, column of a block, f'>_ rno+l = p+1 and t?ds

FﬁKb¢. . )
{ ‘ . Q.E.D.

L

Cdroﬂarz 1: “Dim V°=b , where dim V0 is thé dimension of the vector

space V_ . ° =
. 0 1 3 '

Proof: If the b generators 'of' V0 are not independent, there is a

nontrivial 1inear combination z]' of these generators which is zero.

Thus [z]'] -= 0, contradicting 1emma 2.
N-1 '

Corollary 2: Dim Vy=b

Proof: Let T0 be the linear transformation from Vo into the space of
b : 1) : 1Y = Tigt

all binary (N+r 1)-vectors defmedo/hyl To(z'l) T 2y (zl'evo) . We may

. _ or . ) r
write V] = To(vo) , i.e., V1 is the set of‘ all vectors To(z1') .

preserving, then dim v] = dim v #= b . It will suffice to show that

the kernel of T contains on]y the 2zéro vector. Suppose Z]e kernel Tr

e, zjeV, and Th(z{) = (T')'z) = 0. Now it follows from the definitio‘h

of T' that if (T )qzé =0 , the top N+r-1-q <entr1es of 2z, are zero.

Thus the top N+r-1-r-= N-1 digits of ‘z]' must be zero, i.e. [z]'] = 0';
N N-1

But since z'eVo . z.i=0 by 1eqlma 2, this concludes the proof.

1
Lemma 3: .V nV. = {0} » - /
_— o ] ; .
Proof(: If ,z]'evo -we write z' s Z C'(f) where F is a subset.of K
feF .-

If 2zjeV, we wite z{ = ) C'(j) where J isa subset of Kop-Ky
11 1° jed b
1 i
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. v ‘ -
'Nuz s JNK =¢ . Since F. ag J are type B, correctdple, FN K =¢
by "t

2, Since F C Kb ,» F=¢ and therefore z1‘ =0, .

. rd |
Theorem 3: Any type 82 code with 1i=1 must be such that N > Zb-r+l \

o
Proof: Let Vofrvl be the-sum of the sybspaces - Vo and V] s Tee,
/ i ’ ' ’\ )
= ' [ | ' =
vo+v]. {az1+az2 .z]sv0 ,‘zzev] » a,8 =0 or 1}

-

A standard theorem of vector space theory states that:.

4

: ’ C
)\A dim(V_+/,) = dim V_+ dim V’] -Aim (v N V,)

Since V +V, is’a space of —~(N+rz1)-vectors, dim (Vo)) < Neral

$
Thus by 1emma 3 and theccorollaries to lemma 2 we have:
R 2
At ' -

@ ~ 'N#r-1 > b#b-0 = 2b

L
K
.
15"" .
. N. o o
58

and the proof is comp?eté_. The following generalization of theorem 3 may

- be derived in a.manner analogous to the-above procedure.

A

§

Theoren N .Ar}{y type B, code must be such that: |

N > 2b-(r-1)i . ,
- consequently T .
- N " 2bn
D=ETNng2 - (r-Un '
0= 0
’ - .
TN R _
,’Q: 0 e
& - ' o /7™
“
. * \
~ - 5
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“ " PROOF OF GALLAGER BOUND 0

Gallager's approach [16] for proving inequality 2.11, given

in chapter 2, is as follows:

| J

Accorldng to Gallager, we assume that there is an arbitrary

s a—

but finite decoding delay of, say, L information digits. That is, by’ e
the time the "u"th information digit enters the decoder} (wlL) ,'at
least &L information digits must be decoded. This tondition can be

translated into requiring that by the time "M encoded digits have

been received, at‘]east RM-L information digits must be decoded (3 is

Y
code rate), We also assume that the code has burst-error-correcting
N A
. .capability "b" relative to a guard space "g" , (g>b) , and the number of

received &igits, M, isamultiple of btg , i.e., = 2(b+g) .

Two types of error sequences are. supposed and shown in f1gure B.1. In

each type, the error sequque is constrained to have zero values in the ~~

f . v .
positions'-shown and may have arbitrary values in the positjons marked ]

“x" . Let X] and x2 "be encoded sequences corresponding to different

choices of the first RM-L information digits, and E.‘ and E2 be

error sequences of the first and ‘second type respectively. Since by

\
~ap

assumption these error sequences cannot cause decoding errors, we have:

(mod 2) ’ (8.1)

pv

-

Xy+Ey 7 Xp0E,

More generally, if E] and El' are error sequences of the first type

and E‘2 and E, are error sequences of the second type, we must have:

,.
kN .
.
. " et . - - AN
s SR PRt e S N MO - oty
N -
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V4E
+E]+E2 # X2+E +E

.
‘

X

1*E2 - {8:2)

s L L.

;‘v" "To establish B.2 , we assume that B.2 15&2fa1 se for some choicé‘ of

'sequences‘ and establish a contradiction. If the equality holds true in

< \

2

L d

.B.2 then we can add }E.IT a'n_d E2 ‘to both sides of the equation, resulting

T v o ‘ . R
' = ' ! (8'3) .
X-l +E~| +E-| X2+E2+E2 . ‘ ’ : '

in

-

- e
. v . ¢ > .
Since E]+E1' is an error sequence of the first type and E2+E2' is an.

error sequence of the second type, B-3 contradicts B.1 and thus B.2
is valid. Finally, we observe that if X and X, are equal and correspond
to the same first RM-L information digits but if either Ey # EJ or

J
E, # E; , then again the inequality holds ‘true in B.2 . |
. s )

In order to choose X], we can consider at least ZRM'L?=

ot

oRe (g+b)-L different ways, each corresponding to a different choice of
2 kY

the fir‘?:t RM-L informatior% didits. S'im1‘1ar1y'we can consider 2“’

different ways of choosing E1 and 2%b

different ways of choosing - E, .
From B.2 , each different choice of the triple (X]/, E1, Ez) leads to
a different sequence X, iE,+E, . Since there are ?M different received

binary sequences of 1ength M , we have the inequality:

. 2RM"L‘22-b zlb _‘<_ zM . . "' ' '(B;.4)
, or " log 2RM-L4;2£b < log M o - . c . (B.5)
o\r . RM-L + 22b < M ) © (B-6)

- . - ! ¢
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* .
]
-
»

We substitute 2(g+b) for M, thus

)

R(g+b) -;t-«- 2b < g+b-

Since L is fixed but, B-7 must be satisfied for all g1

to the limit- £ + « | obtainingr
PN [

P

2b < (g+b). (1-R)
14

or. /b2 IR

~ ol
which is Gallager bound.

v 1Y \
€ oY
-
y
LI - 3
-
R 4
)
.y b Y
o

4

(8.7)

s

. We can pass

=




BO MATRICES OF CONVOLUTIONAL CODES WITH MINIMUM.
CONSTRAINT LENGTH .

: ¢ a " ¢ n_-1

This appendix contains all known codes of rate On with -
. ‘ B 0 )

g‘ﬂhaving burst-error-correction ability of ‘

b <0, - Three out of four. codes of rate 1/Z2 and all codes of rate 2/3

d

. constraint length n = 2n

were found by Berlekamp [21]. One code of rate 1/2 and 18 codes of rate

y: . ) . .
< 2/3 were found py Rodgers [5]. Two other cpdes of rate 3/4 were also - '* -
N ' found by Mandelbaum [30]. The Bo matrices of these codes are given below.
: Bo Matrix for Rate 1/2 Codes . B
) .,
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Co T S et

: - B, Matrix for Rate 2/3 Codes
? A1l found by Berlekamp
%:
Iy - - - [~ -
0 1 ] 0 0 1] 11 ] 10 1
: 01 0 110 1 0 0 100
3 '
; /110’010 o f“].oo
' lo 0 0 10 0 1.0 0 01 0
1 00 010 1 0°0] ° 000
{
1 00 01 9 01 0 01 0
~ ' -
0 1 1] 1 0 1
’ 110
g \ 9 . 1zo
: 1 00 0 0
i hy ’
: « 1™ o 0.0 0
0 0°0 101
‘J .
01 0 LI
Bu Matrix for Rate 3/4 Codes
: ‘ [0 01 1] 001 1] .1 v 1 1]
»
01 1 0 1110 01 0.0 0010
1100 0110 1 0 1010
,l0100f,40010{¢[101O0O|,| 1100
: 1 01 0 1110 01/00 001 O
1100 0 00O 0 070 O. 0000
loot1 o 1110 0010 o1 0 0
| o | 4 .
|1 00 0 _.0100_1_’_101'94 | 11 0 0]
. ¢ ~— ! g .
4 Mandel baum _ . Rodgers, also

. ‘ / "the other next 16 codes
1 :

e My e Tt &
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0

0 01

1

0
0 00O

1 0.0

0

0 00

1

1%0

1

0

0 0 0O

0
0

1
1

0 1.0
0 00

1
1

0
0 0 0O

0
1
0

1 00

0

0,00 0

1.0 O}O_J

0 00O

0
-0

1 -0

p

0 0

0

0 01 O
0 0O

1

1
1
0 00
1
0 01

0
1
1

0 0

0

0

1

0

0

0

0 01

0 0 0O

0 00O

1

0 0 O

1

0 0 00

1 00

0 .

1 0 0

0

‘0 0 0 O

1

0 00

0 00

1

0

0 01 1)

-

0 0O

!

0 00
0
1

.

o 0

0

1

0

0 00

1

0 00O

0

0 00

.

1 00

0

0 0 0O

L]

0 00

1
1
0 00

0 0 0O

1 00

0
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