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Abstract

Architectural Synthesis for VLSI Neural Networks

Elie Torbey

The growing use of artificial neural networks for real time adaptive applications in
robotics, signal and image processing, creates the need for VLSI ASIC designs that satisfy
response time and silicon area constraints. Using high level synthesis techniques, the
design of digital ASIC implementations of neural networks can be automated, thus
reducing the design cycle while extensively sesrching the design space for optimal
architectures. This thesis presents a synthesis methodology for the automated design of
single and multi-chip processors implementing neural networks. Special, effective
heuristics and synthcais algorithms specific to neural networks and VLSI bus style data
paths are proposed. The synthesized architectures employ multiple busses and functional
units with internal parallelism in single, or multi-processor configurations, which exploit
the inherent parallelism of neural networks. Pipelined functional units with internal
storage are designed to match neural network rcquirements. Our novel approach of
investigating neural network hardware using synthesis, results in high performance
architectures that are better than other architectures previously published. The synthesis
results of several real-time networks are presented and architectural optimization and
trade-off techniques are demonstrated. A verification methodology of the resulting
synthesized systems that involves VHDL simulation is developed and used to verify our
results. Morcover, VLSI implementations are used to provide insight and guidelines for
the synthesis system as to the silicon areas and delays involved in neural network digital
hardware. These issues are incorporated within a general synthesis CAD framework

presented in this thesis.
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Chapter 1:
Introduction and Motivation

As a result of the recent growth in using neural networks for real time applications,
the design of efficient architectures satisfying hard performance requirements is needed.
The requirements of neural systems in processing time differ with the type of application.
Typically, signal processing and adaptive control applications, for example, have
constraints on the order of 50 ps to 10-100 ms respectively. Differences between
applications that affect hardware implementations, are also manifested in the size of
networks. While typical signal processing problems require networks on the order of 3-
400 neurons, image recognition systems can require up to 64,000 neurons. The speed
requirements suggest the need for high performance architectures. The differences in the
types and sizes of networks imply the need for ASIC implementations of such systems. A
whole class of applications also require a certain degree of adaptability. Such applications
as adaptive filtering and adaptive control will necessitate the implementation of on-chip
learning while others may not require such algorithms. These reasons make the design of
neural network architectures subject to certain trade-offs and optimizations. An cffective
architecture is one that strikes a compromise between computational power, memaorv size
and input-output bandwidth.

Several digital neurocomputer designs were proposed for the implementation of
neural algorithms. Most of these, however, use large and expensive general purpose
processors in single, or multi-processor configurations, which provide more flexibility
than is required in specific applications. Systolic arrays that use simple processing
elements with limited internal parallelism were also proposed, but did not investigate the
use of parallelism within each processing element. These shortcomings have been
recognized in DSP real time applications and the use of automated ASIC design and

architectural exploration techniques have achieved uncqualed performances. Neural



networks are special signal processing applications with a high degree of connectivity,
special transfer function considerations, and large memory storage requirements. The use
of DSP style architectures for the implementation of neural networks is therefore justified.
Further, the parallelism in neural network algorithms lends itself to efficient parallel
implementations and the investigation and exploration of the different degrees of
parallelism for a neural processor is warranted.

This thesis presents automated synthesis methodologies and architectures targeting
those real-time adaptive applications with high performance constraints. A synthesis tool
is therefore presented in this thesis that uses novel methedologies that are specifically
designed and oriented for neural network synthesis. The tool automates the exploration of
the different degrees of parallelism of proposed architectures and generates one that
satisfies the hard real time constraints and fulfills the VLSI silicon area limitations. The
synthesis methodologies are further extended to implement multi-processor environments
for regular algorithms. Several architectural design techniques and optimizations are
investigated using the synthesis tool to achieve optimum architectures for specific
applications. The synthesis is further based on a multiple-bus data path using pipelined
functional units specifically designed for neural network implementations. The
architecture, which can consist of single or multi-chip implementations, is flexible and
allows for several degrees of pipelining,

Novel issues addressed in this thesis include the neural network architecture design
search using synthesis techniques similar to ones used for DSP applications and the design
of special pipelined units for the proposed architecture. Scheduling of pipelined units with
varying pipeline depth is implemented and special compound operations are also
introduced that result in more compact schedules. Several optimizations include neuron
splitting and the use of local storage and local interconnections. Multi-processor synthesis
is implemented, hased on a systolic architecture. Several neural network specific heuristics

are proposed and implemented in the synthesis system.




The organization of the following chapters in this thesis is as follows:

Chapter 2 is an introduction to artificial neural networks and their hardware
implementations. It presents the basics of neural networks in terms of topology and
algorithms. The requirements for real-time adaptive neural networks in terms of their
hardware implementations are provided. Based on these requirements, different
implementations including analog and digital techniques are compared. A survey of a
variety of digital implementations i3 also provided.

Chapter 3 is a review of high-level synthesis and introduces the problem of neural
network synthesis. Those issues involved in synthesis that are integral to this thesis are
explained and various scheduling techniques are compared. The issues involved in the
choice of synthesis methodologies used in this thesis are mentioned.

Chapter 4 proposes a bus style architecture to implement artificial neural networks.
To that end, several special functional units, specific to neural network requirements are
presented. Multi-processing systems are also proposed. Different architectural trade-offs
are presented and discussed.

Chapter 5 explains the architectural synthesis methodology uscd to optimize the
designs and investigate the architectural trade-offs. It contains descriptions of the
algorithms involved in the synthesis as well as the description of the synthesis
methodology as a whole. Novel approaches such as compound operations are introduced.

Chapter 6 presents the results of the design space exploration of typical neural
networks used in real-time applications. The architectural trade-offs which are presented
in chapter 4 assume a quantitative nature based on the results of several simulations of
typical architectures.

Chapter 7 details the VHDL synthesis verification tool and provides the VLSI
implementation of an example implementation. The VHDL modelling of the architectures
is given and thus, the correctness of the synthesis can be checked by simulating the

resulting architectures. VLSI implementations provide accurate area and delay



measurements and provide an idea of the silicon area involved in systems based on the
proposed architectures.

Chapter 8 is a conclusion and an overview of the future directions that the
extension of this work can follow. The novelty and importance of the different approaches
used in this thesis are emphasized. Further, this chapter sets the foundations for future
research geared towards completing and further optimizing the synthesis tool and the
different architectures used.

Appendix I provides an insight into what is involved in terms of the Prolog
implementation of our synthesis tool. The different lists and data structures used are
shown.

Appendix Il shows the VHDL modelling of an example architecture implementing
a XOR using the backpropagation network.

Appendix 1II presents the synthesis output of our developed tool for the XOR

network and its corresponding microcode used in the VHDL simulation.




Chapter 2:

Artificial Neural Network Algorithms and Implementations

2.1. Introduction

This chapter presents an overview of artificial neural networks that includes
descriptions of network’s topologies, neuronal computations and a presentation of the
ideas involved in training artificial neural networks. The model of an artificial neuron is
introduced. Feedforward and recursive topologies are presented. The most common
neuronal activation functions in use are explained and various supervised and
unsupervised training mechanisms are given. The chapter also discusses the hardware
requirements of neural network systems as far as performance, memory, communications
and flexibility. It also compares digital and analog implementations and advances several
arguments for choosing digital systems for hardware intended for adaptive real-time
networks. A survey covering several types of digital implementations, ranging from bit-
serial and stochastic implementations to parallel and general-purpose DSP processors, is
included. We attempt here to survey the different paradigms in order to define the terms
and create the proper context to subsequent discussions. Further detailed surveys can be

foundin [1-11].
2.2. Introduction to artificial neural networks

2.2.1. Overview of neural networks

In recent years, the use of Artificial Neural Networks (ANNs) in adaptive real-time
applications has seen a dramatic increase. The special features offered by ANNs such as
the capability to learn from examples, their ability to generalize and adapt, their extensive
parallelism, fault tolerance and noise resistance, made their use in a number of real-world
applications extremely attractive. Their successful use in an impressive number of

applications ranging from signal processing to robotic control applications has lead the




way to their integration into existing real-time applications.

{ 1+1

B¢i+1)
Figure 2.1: Artificial neuron with activation function

ANNs are loosely modeled after the brain. The attempt to model neurons in the
brain gave rise to a class of systems known as perceptrons which are single layers of
artificial neurons. The artificial neuron whose basic functional architecture is shown in
Figure 2.1 is a simple model of the biological neuron. Input activations from other neurons
are designated by x; to xy.The weighted edges w;; to wy; (weights) correspond to the
synaptic connections between neurons in the brain. In this model, the weights are
multiplied by their corresponding states (neuronal activation states) and summed. An
added threshold adjust 0 is sometimes used to offset the neuronal summations. The neuron
activation ¥ is then calculated using an activation or thresholding function. This reduces
the summation result to within the boundaries of the activation function. The artificial

neuron then, functions as follows:

N
yu+ly =f Y xi(l)wij(l”) +0(+1) .1
i=1

where /+1 is a layer of neurons including the one which activation is being calculated and




[ corresponds to a preceding layer of neurons.

These systems gave rise to a whole generation of ANN maodels some closer to their
biological inspiration and others having mathematical and statistical conceptions. ANNs
use the matrix of synaptic weights as the primary medium for representing and
manipulating information. These weights are usually adjusted during training unil the
matrix converges towards the best values yielding the desired network. This training
process is often guided by an energy function. The different types of ANNs available can
be characterized by the following properties:

- The topology of the network and interconnec*” ons (fully connected, layered)

and the propagation of information (feedforward, recurrent)
- The type of neuronal computation (sigmoidal, linear)

- Learning algorithm (auto-associative, delta rule, etc...)

INPUT OuUTPUT
PATTERN PATTERN

Figure 2.2: Backpropagation network (Feedforward multi-layer percepiron)

2.2.2, Network topology

ANNG5 are usually arranged in layers of artificial neurons. The Perceptron (as well
as similar models such as the adaptive linear element or Adaline [11]) consists of a single
layer in which each input connects to all neurons. Single layered networks such as the
Perceptron ase severely limited in their computational ability, notably demonstrated by tne

XOR example, a linearly inseparable problem. The linear separability problem was solved
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Figure 2.3: Hopfield Network (Recurrent, auto-associative)
by extending the idea of Perceptrons into multilayer networks which have the ability to
perform more general classifications. Multilayer perceptrons are the most widely used
networks. They have several layers of neurons (usually 3 or 4; a number of layers greater
than 4 usually results in a network that is difficult to train). The input layer receives
patterns of data and the output layer presents the network’s response. The layers in
between are called hidden layers. These ANNs are called feedforward networks, the most
popular of which is the Backpropagation network (BP), shown in Figure 2.2.

Another type of networks is recurrent, such as the Hopfield network shown in
Figure 2.3, where the outputs of the network are fed back to the input [12]. The capability
of calculating outputs based on current inputs and previous outputs can exhibit behaviors
approximating short-term memory in humans. While the Hopfield network consists of one
layer only, other recurrent networks can consist of more than one layer as the Bidirectional
Associative Memory | 16].

Most neural networks are fully connected (between pairs of layers), some like the
Neocognitron |13} . (shown in Figure 2.4) have different interconnection styles to
distinguish different features of the input patterns. Even networks that are commonly fully
connected such as the BP, can assume any interconnection pattern between consecutive

layers depending on the specitic problem at hand.
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Figure 2.4: Neocognitron topology [14]

2.2.3. Type of neuronal computation

The adaline uses an activation function thai produces a binary = 1 output. The hard

limiting quantizer used as the activation function being:

f(x) = sgn(x) 2.2)

A bias weight connected to a +1 activation state is used to provide a threshold level
to the activation function. Networks such as the Madaline used additional boolean logic
function such as and gates, and or gates as well as a majority-vote-taker. Other forms of
activation functions have been used in ANNSs, notably the sigmoid (logistic) function

(shown in Figure 2.5):.

flx) = —-—1—;——- (2.3)

ox
1+e

This type of nonlinear activation function provides saturations for decision making



f(x)
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Figure 2.5: Sigmoid function
and has differentiable input-output characteristics that facilitate adaptability. Another
nonlinear, sigmoid style, function is the hyperbolic tangent which is also used in today’s

ANN models:

£(x) = tanh (%) (“e_zx)
X) = tan X) = —_— (2.4)
1 +e 2%

The advantage of the hyperbolic tangent over the logistic function is that it

produces bipolar outputs which has proven beneficial for a number of applications.

2.2.4. Training algorithms

Artificial neural networks can modify their behavior and self-adjust in response to
a training (learning) mechanism. During training, the network is presented with a set of
patterns and produces a certain output. The network’s weights are then readjusted to get an
output closer to the one expected. While supervised training presents the network with the
desired outputs, and unsupervised training does not, both have to adjust the weights of the
network in order for it to converge towards a solution. The network’s learning rule
determines the method and rate of convergence by specifying the procedure to adjust the

weights, Learning algorithms are typically iterative processes. Some models use

10
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modifications of the Hebbian rule which strengthens the weights between ncurons

according to their activities:

Aw.. = x.x. (2.5

where w; i is the weight of the connection between neurons i and j which activation states

are x; and Xje Statistical training methods make pseudorandom changes in the weight
values, retaining those changes that result in improvements. Competitive learning methods
usually adjust the weights of a winning (one with the highest activation state) neuron.
Learning rules include the generalized delta rule, competitive learning, Hopficld

minimum-energy rule and the Boltzmann learning algorithm. The training dynamics are

usually controlled by an energy function that describes the system’s stability.

Model Recall algorithm Learning rule

Backpropagation _
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Table 2.1: Three of the most common ANN models

Table 2.1 shows three of the most common ANNs in use today. Backpropagation
is a feedforward network that uses supervised training implemented by the generalized
delta rule. The Hopfield network is a recurrent auto-associative system that uses an
unsupervised training algorithm. The Boltzmann network is a stochastic network that
uses a noise function to reach a global minimum energy state. While these three networks
define the three techniques most commonly used to attack real world problems, a large

number of different, more complicated networks, is available. Networks like
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Counterpropagation [15], Bidirectional Associative Memory [16], Adaptive Resonance
‘Theory {17} and the Neocognitron [13] all have been successfully used. More biologically

oriented networks include the Retina and the Cochlea [18].

2.3. Typical real-time ANN anplications

In order to evaluate the performance of the architectures presented in this thesis, as
well as the performance of the synthesis tool, three main fully connected backpropagation
(BP) networks and one counterpropagation (CP) network have been used. The first BP
nctwork is a one DOF robotic flexible joint manipulator (FJM) with 6, 21, 12 and 1
neurons used in adapuive plant dynamics [19]. The real-time requirements of such a
network can vary from 10 to 20 ps for the recall phase. The second BP network is a an
clectro-cardiogram (ECG) biological signal processing network with 40,10 and 1 neurons
used for filiering the high frequency noise of electro-cardiogram signals [20]. While an
ECG with 8 probes has requirements on the order of hundreds of Hertz sampling
frequency, it is typical of a class of biomedical signal processing problems that may
require faster systems such as EMG and EEG with up to 10 KHz sampling freg:2ncies.
Reasons vor using neural networks for signal processing applications are given in [20].
The third BP network is a Pattern Recognition (PR) network with 16,5,9 and 4 neurons
{21]. In a typical postal code recognition problem, such a network would need to read up
to 10,000 characters per second translating to a requirement of 100 ps for the recall mode.
The CP network used (intended to prove the flexibility of the architecture and synthesis
tools proposed) is a small version of the NASA space «tation robot arm guiding network
using 64, 8 and 1 neurons respectively [15]. I ne size is reduced to keep it in line with the
BP networks. Its speed requirements are of the same order as the FIM network. All these
networks are real-time  adaptive  ANNs with specific requirements. They have
approximately the same size and are typical of the types of networks that are being used in

industrial applications today. These networks, the robotic network in particular, further
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require on-chip training and a certain degree of flexibility.
2.4. ANN hardware requirements

2.4.1. Performance constraints

Real-time applications require high processing speed. A typical Radar Pulse
Identification problem requires a sampling period of 50 ps. This entails a performance on
the order of hundreds of Mega Connections Per Second (MCPS). CPS is the most popular
speed measure of ANN hardware (Refer to Section 2.7). Increasing the speed of a network
requires an increase in the concurrence of computation and therefore parallelism at the

hardware level [2].

2.4.2. Memory storage requirements

One of the major problems in ANN hardware implementations is the size of the
networks. While this is a constraint on the minimum achievable speed, it is more
restrictive for memory storage requirements. The memory size is directly proportional to
the number of synapses which usually grows by a square order of the number of neurons.
A typical ANN system requires between 5 KWord for robotic applications to 5 MWord of
memory storage for low level pattern recognition algorithms, using anything from one bit

to 32 bit words.

2.4.3. Parallelism and virtual implementation

ANNs attractiveness is due to a certain extent to their massive parallelism.
Architectures implementing them in hardware need to provide a certain degree of
parallelism. This also leads to faster architectures. The use of large, parallel systems
requires the assign of a simple architecture that could be scaled up easily. The middle
ground between highly flexible, serial simulations and rigid, hignly parallel
implementations of neural networks lies in virtual implementations of neurons where

more than a single neuron is executed on a processing element allowing for internal
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parallelism among the hardware units on the processor as well as inter-processor

parallclism (Section 2.6).

2.4.4. Communication

For any degree of parallelism in a hardware implementation, different components
have to connect to and transfer data among each other. The high performance
requirements of ANN applications enforce strict speed requirements on the
communication between the neurons. Due to their massive structure and their large
number of interconnections, ANNs rely heavily on interneuronal communications and

effective transmission methods should be implemented.

2.4.5. Flexibility and adaptability

A number of real-time applications require adapting to the environment which
would involve slight modifications in the size or training data of an ANN’s lifetime. Non-
adaptive systems are fast since their implementations use fixed weights and conseque :tly
result in less overhead. Adaptive systems, on the other hand require programmable storage
of the weights which complicates their hardware implementations. While there are
applications where off line learning is practical, the ability to learn as more information
becomes available to the system is invaluable. Adaptability is important for these types of
systems. A completely non-adaptive customized implementation may not be suitable in
such cases and general purpose neural-computing machinery may loose some of needed
performance. Customized implementations with a certain degree of flexibility are then
needed. This implies some programmability in the architecture.

Algorithm development has stabilized to a certain degree, the optimization of
learning algorithms however, has opened the way to a large amount of learning techniques
and additives to each algorithm that may be used in an application. A good hardware
implementation needs therefore, to take into account all these variations by allowing a

certain degree of programmability.
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2.4.6. Minimum silicon area

The large ANN algorithms require large hardware areas in order to attain real-time
speeds. Silicon area is important in terms of cost of the units and the manufacturing yield.
Area is also important in terms of fault tolerance and testability. All these issues common
to any VLSI design are even raore important in the design of ANN hardware since their
direct, parallel implementations consume large areas. One of the ways of minimizing the
implementation areas on the system and architectural levels consists of using virtual
implementations and mapping several neurons on each available processor rather thin

provide one processor per neuron.

2.5. Analog versus digital implementations

Implementations of ANNs have used digital, analog, optical and combinations of
these technologies. While optical implementations seem ideal for ANNs due 1o their
parallel nature, several problems exist in the difficulty of storing photons and weight
modification by light switching. Additional problems include cost, size and criticalness of
alignment. Coupled with the fact that real-time applications are usually electrical in nature
which requires electrical interfaces, optical computing is yet to be employed in practical,
cost-effective implementations. A large amount of research into ANN optical
implementations is being performed, but analog and digital technologics are still more
mature approaches to ANN system hardware implementations.

Analog implementations of ANNs are typically designed using MOSFETS for
synapses and operational amplifiers in a comparator configuration as shown in Figure 2.0.
These implementations as well as other more complicated analog neuronal integrations
suffer from several problems:

- The difficulty in programming analog weights requires designers to use

digital techniques to implement on-chip leamning algorithms, or even

export the training to a host computer.
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Figure 2.6: Typical analog implementation of a neuron

- The size, resolution and design are all interdependent making the design

process more difficult and increasing the design cycle. Accuracy is
highly dependent on chip area.

- Difficulty of fabrication of precision resistors and capacitors results in

the use of limied resolution systems that may not be suited for several
applications.

- Crosstalk and susceptibility to coupled-in interference as well as noise

and temperature dependence require special considerations.

- Noise and current consumption limit the size of the network (or the

number of neurons) that can be implemented on a chip.

- The lack of design tools that are available to digital design makes analog

implementations unfavorable.

A number of researchers advocate the use of analog hardware to implement neural
networks based on similarities between the structure of the brain’s neurons and today’s
transistors |[22]. Whether the arguments for analog neural networks are well directed or
not, 4 clear advantage of digital implementations is that the analysis and modelling of the
network's characteristics can be made independently of circuit design. This reduces the
amount of time spent on a system’s design and allows the use of computer-aided design

(CAD) tools to optimize the architecture and further reduce the design cycle. A clear
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boundary between the advantages or disadvantages of the two technologies does not exist
but certain applications with specific requirements have been proven successful for both.

Some of the problems with digital irnplementations, however, include limit cycles
(parasitic oscillations) [3]. This is a result of amplitude quantization in recursive digital
structures. This problem can be eliminated by increasing computing accuriacy and numeric
range or by modifying certain algorithms. Another problem is the large silicon arca
required as compared to analog implementations. The large number of transistors used in
digital ANN implementations would require these systems to have a certain amount of
fault tolerance.

As a general comparison of digital and analog implementations of ANNy, Table
2.2 presents the advantages and disadvantages of each. Digital implementations are
definitely the choice for adaptive real-time systems that require a certain degree of
fiexibility. It is also usual to implement biologically styled networks in analog because of
their connectionist nature and mathematically oriented ones in digital since they are more

suitable for mathematically intensive algorithms.

Implementation Advantages Disadvantages
Digital High precision Quantization errors
Smaller transistor sizes Large area
Ease of memory storage Difficuit nonlincar function
Ease of learning algorithm implementations
implementation Large number of transistors
Parallelism and scalablility
Flexibility
Generality
Ease of Testability/ reliability
Availability of CAD support

Table 2.2: Comparison of digital and analog implementations
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Implementation Advantages Disadvantages

Analog Small area Limited resolution
Nonlinear functions easy to Poor noise immunity
implement Crosstalk susceptibility
Small number of transistors Difficulty of memory storage
Difficulty of learning implemen-
tations

Rigidity, inflexibility
Temperature dependence

Table 2.2: Comparison of digital and analog implementations

2.6. Digital architecture survey

Digital implementations of ANNs use parallel, bit-serial or stochastic arithmetic.

The majority of these have one processor per neuron as shown in Figure 2.7. The neuron

local local local local
weight weight weight weight
storage| [storage storage| |storage

Figu-2 2.7: One processor per neuron implementation

processors are designated by a multiply-accumulate unit symbol. The weights are stored in
memory local to each neuron processor. The communication in such systems can use
either systolic interconnections {23,24] or broadcast busses.

The second type has one processor per synapse as shown in Figure 2.8. This
implementation has a low synaptic storage density but a high throughput. Systolic
interconnection are usually implemented for such systems.

The third type uses one processor for many neurons in DSP fashion as shown in

Figure 2.9. This number of processors that can be put on one chip is then I/O limited. The
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Figure 2.8: One processor per synapse implementation
processor architecture can assume a variety of structures. The weights and other
intermediate variables can be stored on-chip or the processor can be interfaced to a RAM
chip. The advantages of using such system include minimizing the silicon area and
reducing the massive connections problem to one of inter-processor communication.
Implementing one neuron per processor requires a number of connections equal to or
greater than the number of network connection. This is dramatically decreased in virtual
implementations and depends on the relatively small number of processors. Parallel

systems can use several processors each using virtual implementations.

Weight
and intermediate
storage

memory

DSP processor

Figure 2.9: Virtual implementation of neurons
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The following is a survey of digital architectures for ANNs intended to provide an
idea of the diversity of the digital implementations that have been proposed.

NETSIM

TI’s NETSIM includes a solution engine chip that does the neural computations
and a communication handler chip to route the neural activations. The NETSIM card
includes the solution engine, the communication handler, a microprocessor and memory.
The solution engine can perform an §x8 bit multiply-accumulate in 250ns resultiig in a
performance of 4 MCPS (Mega Connections Per Second) [25].

Digital neurochips

Duranton and Sirat’s digital neurochip is a fully digital architecture storing 16 bit
synaptic weights in an on-chip RAM. On-chip learning is implemented but the sigmoid
function is exported. It uses a bit serial technique to implement the inner product [26].
Hirai et al’s digital neuro-chip is a 1.2 4 CMOS gate array implementation, of 6 neurons
and 84 6-bit synapses using a variant of pulse-stream arithmetic [27].

Quali and Saucier’s Neuro-ASIC

Ouali and Saucier’s neuro-ASIC includes & local memory for storing synaptic
weights and activation function parameters, a multiplier, an adder/subtracter, a controller,
input, output and state registers for interfacing to a multi-chip network [28].

DNNA

Neural Semiconductor’s DNNA is based on stochastic pulse trains. Each synapse
includes a separate stochastic pulse train generator. Each synaptic pulse stream is anded
with an activation output stream to produce a synaptic product which are wire-ored to
produce activation input streams. A two chip set can implement 32 neurons and 1024
connections |{29].

STONN and TInNMANN

North Carolina State’s STONN is an 100K transistor CMOS implementation of the

Hoptield network using stochastic logic and bit-level pipelining. STONN stores the
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weights in an on-chip shift register and generates stochastic samiples of N weights per
cycle [30]. TINMANN (The integer markovian artificial neural network) is a stochastic
architecture proposed by the STONN group to implement competitive learning using
stochastic computation. It updates the weights with a probability proportional to the neural
input, causing neurons closest to an input vector to move toward it and push others away
[31].

CNAPS

Adaptive Solutions’ CNAPS is a general purpose SIMD multiprocessor
architecture developed for ANN applications. A single chip contains 64 processors (80
processors for fault tolerance), a 32 bit instruction bus, an & bit global output bus, an 8 bit
global input bus, and a 4 bit inter-processor bus. Each processor includes 4 kbytes of
weight memory, a memory base address unit, 32 16-bit registers, an input unit, an output
unit, a 8x16 bit muluplier, a 32 bit saturating adder, and a logic and shift unit [32].

Kung’s systolic implementation

Kung presented a systolic mapping of ANNs. A board level prototype of a
processing element was designed using microprogrammable, commercially available
chips. The architecture includes a multiplier, an ALU, 2 memory banks, a 5 port register
file., a RAM and address generation units and input/output units {23,3%].

GCN

Hiraiwa et al’s GCN is a two level pipeline processor array of PEs that use Intel
80860 processors with local memory. Communications between processors can be
asynchronous and use 2 high bandwidth FIFO. The local memories are used to store the
weights, data and intermediate results [24,34].

Delta

The Delta processor from Science Applications Intl. is a floating point processor
with 1900 instructions supporting 32 and 64 bit integer and floating point operations. Most

instructions execute in one cycle {35].
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Neurocomputer implementations on parallel machines

Mappings of ANN algorithms on the Hypercube [36], the Connection machine
[37], the CMU Warp [38], as well as other parallel machines were also implemented. The
networks are usually pre-partitioned before the actual mapping is done.

A good survey of existing digital architectures and circuit design techniques

involved in digital VLSI implementations is presented in [3].

2.7. Performance measures

The variety of ways that ANNs have been implemented in hardware and even the
variety of ANN algorithms and configurations themselves make it extremely difficult to
evaluate the performance of a particular implementation. A relatively good indication of
the network’s speed is the number of connections processed per second (CPS) in recall and
the number of connection updates per second (CUPS) in training.

Connection refers to the number of synapses in the network. In feedforward
networks, the execution of a connection corresponds to the multiplication of the activation
value with the weight of the connection. Several other operations are included in the
calculation of the network, mainly the accumulation of the connection results and the
activation function calculation. The BP network of Figure 2.2, has 30 connections. This
entails 30 multiplications and 30 additions. The activation operations on the other hand,
depend on the number of neurons and for the same example, only 8 activation function
operations are used. Other operations such as inputs and outputs may be required in a
typical architecture. However, the large number of connections being the dominant factor
in ANNs, the number of connections per second of execution gives a good indication of
the speed of the network. A connection could therefore be considered as a single
multiplication, followed by a single addition. All the other operations are implicit and for
most cases, when large networks are considered, negligible. CUPS refers to a more

complicated algorithm, the one used in training. These algorithms usually entail a larger
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number of operations and a wider variety. The fact that the majority of operations is
related to the number of connections still allows the number ot connection updates (the
correction or modification of weight values) to be an effective measure of comparison.

These measures are still dependent on the network’s style. Even for the same
network style, such as backpropagation, these measures are reiatively inadequate to offer a
good indication of the system’s speed because of the type of architecture and the type of
interconnection system used. The operations performed in such similar ANNs as BP and
CP networks are still quite different. CP, for example requires some type of winner take all
mechanism that is not present in BP networks. Even BP networks can be using slight
modifications in their learning rules or their nonlinear functions.

On the architectural level, some systems will perform better for fully connected
networks whereas others exploit the interconnection pattern in their partitioning. Some
will perform better activation function calculations whereas others achieve faster
multiplications and additions and would perform better for networks that use simple
activation functions. An impleme.tation of CP network, for instance, can implement
competitive activation functions in a variety of ways. Special purpose architectures may
be optimized for this style of computation whereas a flexible system will generally use
standard operations to implement the competitive algorithms. Again, some architecture
are optimized for the recall phase whereas others perform just as well in training.

Nevertheless CPS and CUPS present the only available method of comparing
different architectures and they are analogous to the general purpose and super-computing
standards of MOPS and MFLOPS.

For systems allowing more than one unique clock speed, or for systems that have
not been implemented, it may be useful to evaluate the performance in terms of the
numbei of cycles needed to execute the computations of a single interconnection or CPC
(cycles per connection) in either the recall or the training modes. The relation between

CPC and CPS (or CUPS) is
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_ NCxClock

CPC = CPS (2.6)

where NC is the number of cycles for the execution of the network and Clock is the clock
frequency of the architecture. This provides a reasonable measure of comparing different
architectures with different clock speeds. This measure is analogous to the Number of

Operations per Cycle for RISC and super-scalar machines.

2.8. Conclusion

The use of ANNs in real world applications requires the design of highly efficient
hardware. While the need for both customized and general purpose processors is evident, a
greater need exists for customized implementations with a certain degree of flexibility and
adaptability. It is also evident that the inherent parallelism in ANN algorithm should be
exploited. For applications requiring high precision calculations, or on-chip
implementation of learning algorithms, digital implementations are usually necessary. The
need to balance performance, flexibility und affordability creates a need for design tools
that can investigate the architectural trade-offs of parallel implementations of digital
neural networks. This thesis presents such a tool that offers optimized architectures for

real-time adaptive ANNs.
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Chapter 3:
Review of High-level Synthesis

3.1. Introduction

This chapter presents a review of high-level synthesis. It outlines the need for
automating the design process, and discusses all the steps involved in synthesizing digital
architectures including scheduling, allocation and binding. It investigates difterent
techniques that include partitioning algorithms and pipeline scheduling. It also presents
several scheduling algorithms in use and discusses their advantages and disadvantages. It
further discusses the suitability of those algorithms for the synthesis of neural networks.
High-level synthesis includes data path and control synthesis. Data path synthesis involves
the automated design of the arithmetic units whereas control synthesis is concerned with
the automatic generation of a system’s control units. The main emphasis in this review is
towards data path synthesis which is more relevant to the synthesis system proposed in

this thesis.

3.2. Introduction to high-level synthesis

Automatic datapath synthesis has become an important area in computer-aided
design. The synthesis transforms an abstract behavioral description of a system into a
structural hardware description respecting certain constraints and requirements such as
area, speed and functionality. Figure 3.1 shows the different design representation levels
of a system. Descriptions of a system can be at behavioral, structural or physical levels.
Each of these is further divided into an architecture, a register transfer, logic or device
level. The design process usually involves a spiral from the higher, more abstract
representations to lower, more specific descriptions. High-level synthesis is shown as a
transformation from an algorithmic description to a netlist or register-transfer-level

description using functional units, registers and interconnects. The use of automation
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Figure 3.1: The different levels of a system’s description

allows for shorter design cycles and pre-defined methodologies result in fewer design
errors. Synthesis also provides the ability to search the design space and optimize designs.
Synthesis includes solving NP-complete problems inherent in most of the issues involved,
hence heuristics are employed to obtain a reasonable execution time for the CAD tool.
Most synthesis systems available today are geared towards specific applications in order to
find effective heuristics tuned to the application.

The first step in high-level synthesis is the compilation of the initial specification.
This is followed by several synthesis procedures including scheduling, allocation and
binding. After scheduling, the datapath and control generation is done [39]. A brief

definition of these issues follows.
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3.2.1. Compilation

O Operation

Data
dependence

Figure 3.2: Example signal flow graph

The compilation procedure consists of translating the initial specification into the
language used by the synthesis systems. This language can be a procedural (sequential)
language or a declarative (functional or a logical) language. Languages that have been
used include everything from C and Hardware C [40] to VHDL [41] to LISP and Prolog.
The resulting specification of the problem is usually a parse tree or a signal flow graph
(SFG). The advantages of using SFG descriptions is the nature of algorithms targeted for
synthesis (DSP) where the designers are familiar with block diagram representations of
the algorithms. Another reason is the ease of graphical interfacing in general. An example
is shown in Figure 3.2. For data/signal flow graphs, the nodes designate the types of
operations and the arcs specify the data dependencies. Separate data-flow and control-flow

graphs can be included in the system’s description |39].

3.2.2. Scheduling

Scheduling is the assignment of operations to control steps (clock cycles) given
certain constraints and minimizing a cost function. The object is usually to minimize the
number of control steps needed to execute the algorithm (i.e. speed) given constraints on

hardware resources. These resources can be totally specified a priori or dynamically
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allocated respecting upper limits. Operation scheduling determines the cost-speed
tradeoffs of the design. In time-constrained scheduling the object is to minimize the area
(the cost) required to meet a predetermined maximum number of time steps. In resource-
constraint scheduling on the other hand, the object is to find the fastest schedule given
constraints on the hardware resources, while in feasible-constraint scheduling the object is
to find a solution, if one exists, given both time step and hardware resource constraints
[42]. A number of scheduling techniques have been investigated and the following is an

overview of the most common ones.

3.2.2.1. ASAP

As soon as possible scheduling is the simplest scheduling algorithm. It schedules
the operations from a topologically ordered list and assigns them to the first possible

control steps. Figure 3.3 shows the ASAP schedule of the SFG of Figure 3.2. A modified

Clock Step
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Figure 3.3: Example ASAP schedule

ASAP algorithm can enforce some hardware constraints reducing the number of
operations of the same type in the same control step. if, in the given example, only one
multiplier is available, the resulting resource. constraint schedule becomes as shown in

Figure 3.4.
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Figure 3.4: Modified ASAP schedule
3.2.2.2. ALAP

As late as possible scheduling is similar to ASAP but schedules the operations in

reverse order (from the last operation to the first). Figure 3.5 shows the ALAP schedule of
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Figure 3.5: Example ALAP schedule

the example. Modified ALAP algorithm also exist that incorporate hardware constraints.
The mobility of an operation can be calculated from the ALAP and ASAP schedules and is
an indication of the affordable flexibility in the scheduling of that operation, This is used

in other scheduling approaches.
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3.2.2.3. List scheduling

List scheduling is an approach that considers resource constraints. It orders the
operations in a list using a priority function according to certain heuristic rules and then
schedules them to control steps. Conditional postponement is also used to avoid resource
conflic:s. The selection of the next operation or the ordering criteria is more global than
ASAP and ALAP. This technique requires that the number of FUs be specified. List
scheduling yields good results and is simple and fast. It is useful for long, complex
algorithms since it is of the order O(n). Criteria for list scheduling can include the mobility
of the operation or the path length (Figure 3.6). Mobility measures give priority to the
operations with the smallest mobility whereas path length measures give priority to the

operations with the longest path length.
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Figure 3.6: Mobility and path length criteria

3.2.2.4. Force directed

Force directed scheduling creates a distribution graph (Figure 3.7), based on the
mobility of the operations, showing the load for each control step. Forces for every
operation are calculated. An operation is then scheduled in the control step that provides it
with the highest force. The forces are then re-calculated to account for the scheduled

operation. This technique requires that the maximum number of control steps be specified.
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Force-directed scheduling yields better results than list scheduling, but is much more

complex and computational, on the order of O( n ).
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Figure 3.7: Example distribution graph

3.2.2.5. Simulated annealing

Scheduling based on simulated annealing randomly generates modifications in the
schedule and accepts or rejects them according to a random rule and a temperature
parameter, that decreases gradually as the annealing process proceeds, similar 1o the
physical annealing problem. Simulated annealing is computation-intensive. The advantage
of using simulated annealing, however, is that it provides Aill climbing moves, that helps

the optimization problem not to get stuck in local minima.

3.2.2.6. Integer linear programming

In integer linear programming the scheduling problem is formulated as an
optimization problem meeting certain constraints. ILP will then minimize the cost of the
resources. The objectives of the optimizations and the resource constraints are expressed
in integer linear programming formulations. These can include a varicty of scheduling
problems including pipelining, chaining and multi-cycling. The advantage of ILP is that it
provides optimal solutions. The disadvantage is the difficulty of formulating large

problems as ILP problems and the computational nature of these optimizations. Further,
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some specific scheduling problems may not be suitable for ILP formulation.

3.2.2.7. Synthesis consiuerations for neural networks

When handling algorithms with large numbers of operations and high parallelism,
such as ANNs, approaches such as ILP are not desirable since they would require a
massive number of constraints that cannot necessarily be handled by optimization
software. In addition, highty parallel algorithms present high mobility of operations
making force-directed scheduling an unreasonable approach. In general, any synthesis
approach that does not enforce hardware constraints is not desirable if the underlying
heuristics can be tuned to the type of algorithm to be synthesized. In chapter 5, a heuristic
list scheduling approach is presented that is most suited for large algorithms with high

parallelism, specifically, layered neural networks.

3.2.3. Allocation and binding

Allocation refers to assigning hardware resources to execute the behavior. Binding
is the assignment of operations to the allocated hardware, according to a given schedule
and respecting certain constraints. The object is to minimize the hardware which consists
of functionzc! units (FUs), memory elements (Registers, register files, RAMs), and
communication paths (busses, local interconnects). Register allocation deals with
minimizing the number of registers used in a given system. Functional unit allocation
involves scheduling on a minimum number of FUs required to meet the speed
requirements. Interconnect allocation entails allocating busses, local links, multiplexers
and demultiplexers for all data transfers. At extremes, allocation will serialize the whole
algorithm providing the smallest area and lowest speed or completely parallelize the
system achieving the highest spced with the largest useful area. A good synthesis system
should find an optimum architecture between those two implementations. Scheduling,
binding and allocation are interdependent and the three are usually separated to produce

easier algorithms [43).
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3.2.4. Synthesis hardware

In general, the types of FUs usually used in synthesis systems are simple
arithmetic units from available libraries. These units are seldom pipelined and allow single
operation execution at a time. The pipelined units are generally simple and do not
constrain the scheduling. These units are also general purpose units that are not optimized
for specific applications such as ALUs, adders and multipliers. Local storage is not usually
implemented and accumulators are relegated to storage registers in register files, latches or
even in RAMs.

Special applications may need special FUs. These can affect the quality of the
design since they account for specific requirements, That aspect is usually not addressed in
general purpose synthesis systems and specifying the kind of FU that arc most suited

becomes a main task for the specialized synthesis system.

3.2.5. Partitioning

Partitioning refers to the division of an algorithm into several parts that are
assigned to or synthesized on different processors. Partitioning is used to exploit the
characteristics of large algorithms and allow for more parallelism and overlapping of
operations between different processors. The resulting partitions can be implemented on
several chips.

Partitioning is done before architectural synthesis and involves determining the
number of chips to be used and dividing the behavior of the system among the chips as
well as on separate on-chip modules. An advantage of partitioning is that it reduces the
amount of hardware needed for every partition It may also reduce the global wirclengths
by grouping the interdependent parts together. Partitioning can also improve the
parallelism of the architectures [44]. The several methods used to implement partitioning
of algorithms mimic the solutions proposed for the scheduling problem, the most common

of which are presented in Section 3.2.2 [45]).
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3.2.6. Functional pipelining

Pipelined hardware allows the execution of more than one operation on the same
unit. The use of pipelined FUs complicates the synthesis procedure where additional
constraints need to be taken into account. Data dependencies and resource conflicts should
be resolved and resynchronization should be used to avoid stalling the pipeline. This fact
makes the pipeline scheduling problem NP-Complete [46]. Pipeline scheduling can be
achieved when scheduling the operations by overlapping their SFGs as in functional
pipelining. Behavior pipelining, on the other hand, uses retiming transformations [47] to
guarantee the correctness of the algorithm. Several methods to obtain sub-optimal pipeline
synthesis results are used most of which use some sort of allocation table to check

resource conflicts [48].

3.3. Conclusion

Synthesis has been used in DSP and numerical algorithms. ANNs have not been
addressed explicitly. Due to their high parallelism, regular nature and the large number of
operations, special attention for their synthesis algorithms and hardware resources need to
be addressed.

The use of automated synthesis tools in the design of ANN hardware can reduce
the design time and enhance the performance requirements of networks that have to meet
stringent real-time constraints. Several scheduling methods exist for the synthesis of
hardware from high-level descriptions and heuristic-based list scheduling is the best

choice for synthesizing the large algorithms typical of neural networks.
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Chapter 4:
Single and Multi-Processor Neural Network Architecture

4.1. Introduction

This chapter introduces the architecture model proposed in this thesis to implement
neural networks. The discussion highlights the similarities and differences between ANN
and DSP algorithms. An overview of the architectural styles used in DSP hardware
implementation and synthesis is presented. The proposed architecture for ANNs is then
introduced, the architectural trade-offs achieving different degrees of parallelism and the
optimizations involved are presented and discussed. Examples of special functional units
which are specially tuned to ANN implementations are shown and an example data path is
given along with its synthesis description. The issues involved in the pipelining of the
units used are also laid out. Moreover, this chapter serves as a precursor for the next
chapter which describes an automated approach to compile a general ANN onto this
architecture. The synthesis results showing the trade-offs and optimizations introduced in

this chapter are shown in chapter 6.

4.2. DSP-oriented architectural styles

ANNs are special signal processing algorithms with a high degree of
interconnectivity, special activation function implementations and large memory storage
requirements. Some neural networks such as the adaline evolved directly from adaptive
filtering applications. The adaptive digital filter shown in Figure 4.1 is similar to single
layer perceptrons (or adalines) as described in [49]. The difference is that the inputs x; to
xy, in the adaptive filter are delayed versions of the input x4 whereas in an adaline the
inputs in general can be independent. The similarities in the algorithms make DSP style
architectures suitable for implementing ANNs especially if specific care is taken to

accommodate the differences and optimize the architectures for neural networks. Figure
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Figure 4.1: Adaptive digital filter

4.2 shows the SFG of a typical second order filter [50] where the boxes correspond to unit
delays. Figure 4.3, on the other hand, shows the SFG of a small 2,2,2 BP network (the
recall and learning modes). The boxes indicate delays for the update of the weight values.
Even though the filter is not adaptive, it is typical of the DSP algorithms used in synthesis
and the comparison with the general BP algorithm to be synthesized need to be made. The
differences between the two algorithms can be seen in the sheer number of operations
even in a very small BP network and in the fanout of some operations that suggest the
parallelism involved. ANN algorithmes as such involve a large number of variables and the
large number of operations necessitate a large number of temporary variables and their
corresponding storage.

DSP architectures as investigated by synthesis tools have evolved in four different

directions as discussed in [S1].
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Figure 4.2: SFG of a typical second-order filter

Hard-wired bit-serial architectures: These architectures are  suitable  for
applications with low sample rates. Signals are processed bit by bit. This style has the
advantage of consuming less area. Problems with this style of architecture, however,
include the difficulties in synchronization at higher clock rates. While the number of IFUs
in a bit-serial implementation is independent of the word length, the number of registers is
increased with the wore! length. This can dramatically increase the storage requircments of
operations.

Microcoded processors: These are suitable for low to medium rate algorithms,
Processors in these architectures are dedicated FUs controlled by a microcode controller.
The FUs include ALUs, multiplier-accumulators, RAMs, address-computation units,
comparators and ROMs. These units can be pipelined. The architectures belonging to this
style are programmable and may provide for more flexibility than is generally required in
specific DSP algorithms.

Bit-Sliced multiplexed data-paths: These are suitable for irregular and recursive

high-speed algorithms. They use a hierarchical control. Timesharing of hardware in this
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Figure 4.3: SFG of a 2,2,2 BP network
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Figure 4.4: Multiple Bus/FU architecture
style of architectures is limited. The control flow is simple and typical implementations of

the controller use a finite state machine rather than a microcode controller.
Regular array architectures: These are modular and can achieve very high rate.

Regularity of the processing elements (PEs) and of the interconnection networks is
important for modular, flexible systems. Systolic architecture are a special case of these

systems. They are highly modular and heavily pipelined [33].

4.3. Bus style neural network data path
The architecture proposed, shown in Figure 4.4, is a multiple-bus architecture that

uses the technologically proven bus-oriented interconnections. It originates from a

synthesis system for DSP algorithms [52], and is used in this thesis to implement ANN
39
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algorithms [53]. It is a virwal implementation of neural networks and partitions the

neurons onto the available processors rather than providing a processor for each neuron.
Virtual implementation of ANNs is the mapping of more than one neuron onto the same
processor as explained in [4]. The architecture consists of nb busses, nfu functional units
(FUs) (adders, multipliers, etc...), and nr storage registers that could be grouped in register
files or RAMs.

Other architectures were used for the design of artificial neural networks such as
the one proposed by Viontzos and Kung [54] to implement the processing elements (PEs)
of their systolic design. Such proposals, however, implemented the network as one
processor per neuron rather than allowing for some parallelism as in virtual
implementations. The architecture proposed in these thesis includes internal parallelism in
the processor providing for multiplexing different neuronal computations on the same
Processors.

After the synthesis, the number of FUs, busses and registers as well as the
interconnections is reduced from an initial maximum allocation to an optimum value. The
resulting processor architecture would have one RAM (or register file) connected to each
bus. FU inputs are connected to some or all of the busses through multiplexers, their
outputs through tristate bus buffers. The architecture uses a two phase clock cycle (®y:
Read, @,: Write) which results in an efficient use of the busses and in the grouping of
registers into one register file per bus. A microcode controller (generated by the synthesis

teol) produces one control word per clock phase.

4.4. Suitability for synthesis

The advantages of using bus style architectures for synthesis include the accuracy
of the dzlay estimates. The critical path delay in random data path topologies cannot be
accurately estimated. Furthermore, this architecture is flexible. It is also possibly

programmable which is important .n adaptive applications of ANN implementations. It
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allows several degrees of parallelism giving more freedom in selecting an optimum
architecture to implement the massive parallelism of ANNs. It imnplements straight code
algorithms avoiding the overheads incurred by the generality of providing for branching
which is not needed for the most common ANN algorithms. It further provides parallel
access to the stored values during execution, an important issue during the training phase
of ANNs where the network’s weights are to be updated. This architecture is scalable and
expandable into a multiprocessing environment as will be shown in Section 4.7, which is
important for the implementation of large neural networks. The architecture is also casily
testable where testing can be done directly through the I/O ports (Section 4.8). A certain
amount of fault tolerance can bc easily integrated with this style of architectures as shown

in Section 4.9,

4.5. Special functional units

The above architecture can be used to implement any computational algorithm.
Using it in artificial neural networks, however, provides for optimizations based on
exploiting the characteristics of neural network algorithms. The most important
optimizations are those that involve the use of special functional units such as the ones

explained below.

4.5.1. Multiply-accumulate unit

The abundance of vector-matrix operations in ANN algorithms make it necessary
to provide a special FU for these computations. Forcing the columns of the matrix w, in
Equation (2.1) to be accumulated on one unit saves on data transfers and temporary
storage of intermediate values. Thus the required FU is a pipelined multiply-accumulator
(MAC) such as the one shown in Figure 4.5. The MAC has a local storage register Ir or
accumulator (Section 4.6.2) for the MA (multiply-accumulate operation). Figure 4.6 has a
different MAC organization that includes a threshold function which is essentially a

truncator used to implement activation functions such as the sigmoid. It also has more than
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Figure 4.5: Regular MAC
one accumulator. The advantage of using more than one accumulator is shown in Section
4.6.2. Adding the thresholding unit in the MAC rather than providing a separate FU results
in a more efficient transfer function implementation. Separatf FUs, such as Comparators,
Lookup Tables. ALUs and others are also supported. Providing for separate interconnects
(other than the busses) between different FUs enables MACs to he constructed such as
shown in Figure 4.7, where a distinct multiplier and a distinct adder are interconnected.
This will enable these units to function as separate functional units or as a MAC.
Overlapping the operations between the MAC, multiplier and adder units results in better
utilization of these units. It should be noted that a bus-style architecture using such
complicated functional units with local interconnects approaches random data path
architectures while still providing all the advantages of fixed data path and bus-style

architectures.
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Figure 4.6: Multi-purpose MAC with threshold unit

4.5.2. Activation function implementation

The transfer functions ured in ANNs can consist of simple hard limiters
(truncators) which can be implemented on the MAC or geometrical functions such as the
sigmoid which can be implemented by a lookup table or on the MAC as will be explained
next.

A truncation or a thresholding function can be implemented by saturating the
function at the required values. A general truncation unit, however, would require that
these values be easily modified. For this reason a proposed scheme is shown in Figure 4.8

that can accommodate changes. To truncate a value S using the saturation values o with a
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Figure 4.7: Multiplier and adder with local interconnection

hardware truncator at 3, then two multiplications are needed as shown in the figure. &
corresponds to the truncated value of S (i.e. + or - «). Appropriate biases could be added to
obtain general truncations which are translations of the one shown in both the x and y
directions.

To obtain a function with a linear region, rather than a simple cutoff, the truncation
in the above description is multiplied by a certain coefticient representing the slope. A
combination of several linear regions constitutes an approximation to the sigmoid
function. In this thesis, a piecewise linear approximation of the sigmoid function is
proposed, as the 3-region sigmoid, shown in Figure 4.14 along with its signal flow graph
(SFQG). The first three operations for each region correspond to those used in the general
truncation unit of Figure 4.8. Appropriate shifting and linearization (multiplication by a
slope) is done on all linear segments which, superimposed (added together) produce the

sigmoid approximation. The linear approximation of the sigmoid function (or similar
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functions such as tanh) is then based on the following:

Yp = B, (x,+0,) forthe linearregion N
@1

Y = o forthe cutoff regions

n

where n is the number of linear regions. W, is the slope of the linear region n, o, is the
value of the shift for segment n, and o, is the truncation value. The final result of the

activation is then:

f(x) = Zy (4.2)

Recall that a shift in the y-direction is also required to obtain a sigmoid function
with outputs between 0 and 2 (or other values). The values o, 1, and 6, are specified by
the user according to the requirements of the function.

This is the most fiexible implementation of the sigmoid possible and can be
tailored to the user’s specifications and modified accordingly for cach neuron whereas

most sigmoid implementations are rigid approximations of a fixed sigmoid function.
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4.5.3. Comparator for competitive neurons

Counterpropagation, and similar networks, require a different style of activation
functions than the ones previously described, namely, winner-take-all mechanisms where
neurons receive inhibitory signals from neighboring neurons and, as a result, only one
neuron (the one with the largest value) is activated. An implementation of such a
mechanism normally requires a sort procedure on all neurons that changes the value of all
loosing neurons in the layer to zero. The activation value of the winner is then set to one.
The outputs are then calculated using MAs as in « regular layered perceptron.

Such an implementation in hardware requires information on the storage locations
of all neurons. This constrains the controller or, alternatively, requires the transmission of
corresponding addresses along with the needed data. These schemes do not fit into the
architectural style proposed in this thesis which implements ANN algorithm as straight
code segments. In order to implement CP networks with winner-take-all mechanisms, a
different approach to the sorting process is used.

It should first be noted that, in CP networks, since only one neuron is activated
with a value of one, only the weights corresponding to that neuron are output as shown in
Figure 4.10. A result of this implication is that a substantial saving can be achicved by

avoiding the MA operations (since most of the constituents are zero) and simply output the
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weights corresponding to the winning neuron. This eliminates all the unnecessary
multiplice.ions by 0 and 1. So the sorting procedure need only find the right neuron (no
requircments to inhibit the others or set their values to zero) and its corresponding output
weights. For this, all the weights are stored in blocks with known address offsets as shown
in Figure 4.11. A comparator is used to select between neurons and adjust the weight
address offsets accordingly.

The comparator used in thesis to implement the winner-take-all algorithm in CP
networks is shown Figure 4.12. The greater of the two inputs could be stored in the local
register and compared with a subsequent input. The address is incremented when a new
vilue is stored in the register. This requires the weights connecting the Grossberg and
Kohonen layers of a CP networks to be stored in the order of the comparisons. Indeed
etfective addressing can be guaranteed by the use of the synthesis tool. Variations on this
scheme are possible. Comparing 3 values at once (2 inputs and the value in the local
register) with appropriate indexing and the use of several constant for the addition can
speed up the procedure. Using more than one comparator is possible and the synthesis tool
can generate a schedule for appropriate indexing. The use of such a scheme, specifically

designed for CP networks, is clearly superior to sort procedures as explained above.
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4.5.4. Table lookups and other special units

Table lookups can also be implemented to approximate activation functions. These
units can be used as regular functional units with one input and one output each or can be
interfaced on the busses and register files where they can be used on the write clock phase
when a value of an output neuron is to be written in a register file and then retrieved, its
activation value calculated and then is stored again.

Other units may be required for specific ANN algorithms and the architecture is

flexible enough to accommodate a large style of special unit organizations.
4.6. Proposed architectural optimizations and trade-offs

4.6.1. Neuron splitting

Flattening the MA operations of neurons completely into series of multiplications
and additions is not beneficial since it adds to the bus load and requires more time for
intermediate data wransmission, and extra storage. However, there are cases where the
number of neurons in one layer does not divide evenly into the number of MACs

available. This asymmetry increases the number of cycles for the ANN computition when
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Figure 4.13: Splitting neuron to resolve asymmetry
idle MACs are present. In this case, splitting the MA evenly onto the number of MACs

increases the speed (Figure 4.13).

4.6.2. Multiple word storage

MAC:s with multiple word storage allow more than one MA to be performed on the
MAC at the same time. This tends to increase the performance of the system over the use
single accumulator MACs when the number of busses is constricted. On the other hand,
adding local registers for each MAC constrains the scheduling and could result in lost
cycles. In the case of multi-stage adders within the MAC, special consideration need to be
observed in order to prevent Read before Write hazards. This is shown in Figure 4.14
where the cases for one and two local registers are shown. For one Ir, an extra delay is
needed. This is guaranteed by a dynamic resource limitation list that scans the FU
scheduling lists backwards by the total FU stage delay to adjust the initiation list. For the
case of two Irs, however, other MA operations can be executed on the same FU. Since a
MA is divided into small atomic MAs which can be interleaved with those of another
operation, the delay is not needed. The use of local interconnects is beneficial in the case
of MAs. Indeed, this approach can be generalized to any combination of operations saving
on bus transfers. Section 5.3.1.1 shows several cases where combinations of operations
can be used as a pre-scheduling optimization technique. The use of local interconnects,

however transforms the bus style architecture being used into one that is practically a
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rendom topology architecture. The architecture can, therefore be optimized further while

the synthesis approach remains simple as explained in the next chapter.

4.6.3. Deep pipelining

FUs can have different pipeline levels depending on the details of their

implementations. Increasing the number of stages of the multi-purpose MACs described
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in Section 4.5.1 allows for more flexibility and possible higher throughput. The cycle time

for a typical bus style architecture is calculated as follows:

Tcy = TRd + TWr + Tdelay @.3)
where 7, is the total cycle time, T, Ty, the bus read and write times, T,,,,, the largest

delay of the FU stages. For comparison purposes, typical delays are taken as follows:

Tp, = 1505, Ty, = 15ns, Tdelay =30ns = Tcy = 60ns (4.4)

When the number of stages of the MAC is doubled T,,,,, is reduced by half resulting in

T,, = 45ns. In this case, the performance of the whole system is enhanced by 25%.

4.6.4. Separate activation function units

Providing a separate unit to perform the calculation of the activation function
rather than using the multi-purpose MAC yields a slight improvement and having more
than one unit can further enhance the performance. For more complicated transfer
functions, such as the one described above, the presence of additional threshold units does

not improve the performance since multipliers and adders are also used.

4.6.5. Architecture saturation

The maximum number of busses that can possibly be used in this architecture is

NB .= D ltz FU, )

where M designates the different types of FUs in terms of the number of inputs (The
assumption is that the number of inputs is always less than or equal to the number of
outputs), and N the number of FUs of each type used. / is the number of input ports per
operation for the FU.

It is noted that the efficient use of the busses, however, results in the performance
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of the architectures saturating well below that upper limit. Architecture saturation refers
to the saturation of the speedup curves where the addition of busses does not increase the

speed of the system.

4.6.6. Network topology

ANNs with the same number of neurons and connections can still have ditferent
topclogies. The same architecture, then results in different speeds. This is particularly
noticeable in BP networks where the algorithms for the recall and learning phases differ
greatly in the amount and types of operations needed. Synthesis tools like the one
proposed in this thesis are needed to select the best architecture for each network

implementation.

4.7. Proposed multi-processor implementation

4.7.1. Systolic embedding

The regularity of ANNs makes them amenable to systolic implementations.
Several architectures based on this approach have shown that systolic mappings of neural
algorithms prescut a suitable solution. The existing systolic architectures, however, either
use simple processing elements (PEs) with limited internal parallelism 123) or large,
expensive general purpose processors [24]. Networks are usuaily implemented on parallel
arrays with each PE implementing one neuron. Such parallelism may not be needed and
the addition of an I/O port for each neuron results in significant cost to the overall system
in area and power. As the technology advances, the speed of a simple processor will be
very high which will make global synchronization difficult. By increasing the parallelism
within each processor, the total number of processors is decreased thus maintaining 2 good
ratio between internal clocks and data transmission clocks. Our approach is investigating
internal parallelism and the implementation of several neurons on each PE of the systolic
array.

Present systolic implementations of neural nctworks opt for simple processors
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(with no internal parallelizm) rather than ones such as the architecture proposed in this
chapter. They also map each neuron onto a different PE and cannot take advantage of
virtual implementations. the reason for this is that systolization in this manner becomes
simple whereas the use of complex PEs constrains the problem that it cannot be solved
mithematically. The use of a synthesis tool, such as the one presented in this thesis,
cnables these complicated systolizations where the tool will systolize the algorithm as part
of synthesis procedures. The tool, is guided by the user and information about partitioning
and communication need to be specified. These issues will be discussed in detail in
Chapter 5.

In this thesis, a systolic implementation is proposed which consists of single or
multi-dimensional circular arrays. It uses the PEs with internal parallelism as described in
Section 4.3 with added 1/O ports for systolic interconnection. In a single circular array, the
network is  partitioned  horizontally as shown in Figure 4.15 where a 4,4,4
Backpropagation network 1s partitioned onto 2 PEs. For multi-dimensional arrays,
additional vertical layer-based partitioning is done. In its simplest form the partitioning for
multi-dimensional arrays is done on perfectly symmetrical networks. In cases where the
networks are not symmetrical special modifications such as splitting neurons or inserting

dummy operations need to be performed. The intensity of the computations involved in
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ANNs allows for the systolic communications to take place without affecting the
performance of the system (Section 5.4.3). From the synthesis of a number of systolic
architectures it is concluded that the number of 1/O ports per PE does, however, influence
the performance of the network due to the large inter-processor data transfers and the
transmission delay. For BP networks in recall, the number of 1/O ports should be equal 1o
the transmission delay in terms of the PE clock. Details of the multi-processor synthesis

are given in Section 5.4.

4.7.2. Input and output ports

The systolic inteiconnection requires efficient communication between  the
processors. This is allowed by input and output units using the same busses that the Fus
use. To that end, descriptions of the /O ports are similar to that of FUs. An input unit is
therefore a functional unit that receives an input from outside on read bus clock and uses
the write bus clock to write it to the register. An output unit receives the output value on a
write bus clock and outputs it on a read bus clock. The delay between the reads and writes
of the I/O units is in fact the interconnection delay and is modelled appropriately. ‘The
synthesis tool decides which busses are used and guarantees synchronizauon as will be

explained in the next chapter.

4.8. Testability

Design for testability is an important issue in VLSI design. Structured approachzs
that allow for partitioning the design to obtain easier controllability and observability are
needed [55]. The importance of partitioning systems provides bus-style designs with a
clear advantage. This architecture allows a cess to busses which go to different modules.
Testing a particular FU, for instance, would necessitate the use of the busses only.
Therefore, the global busses used in the architecture proposed provide a way to both
control the units they are connected to and observe the outputs of test sequences Since the

architecture does not assume any local interconnects, the testing procedures are much
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easier and can be done from one particular test point interfaced to all the busses. Special
considerations have to be taken into account so that all FUs are fully testable from the

husses.

4.9. Fault-tolerance

The same reasons that allow easy testability of the architecture provide it with
inherent fault-tolerance mechanisms. The first immediate solution to the fault-tolerance
problem concerns the FUs where redundant units can be used. An architecture using 4
MACs, for example may include 6 MACs on chip for reliability purposes. This is a
practice not uncommon in similarly styled architectures with complicated FUs [32]. A
RAM controller can easily allow for disregarding certain memory words that may be

dysfunctional. A slightly oversized RAM may be a good solution.

4.10. Conclusion

Several architectures have been proposed for the implementation of ANNs that try
to exploit the parallelism of those algorithms. While most digital architectures implement
one neuron per processing element it is clear that there is a need to investigate different
degrees of parallelism within each pro:essor. To that end a flexible bus-style architecture
is proposed that can optimize the parallelism of neural networks with area constraints.
This DSP oriented architecture is optimized for neural network applications by the use of
special functional units. It is further extended into a systolic multi-processing environment
suitable for large networks. The architectural trade-offs observed give clear indications of
the different optimizations possible. It is then up to an automated synthesis tool to
investigate these trade-ofts for a specific applications and optimize the corresponding

architecture.
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Chapter 5:

Architecture Synthesis Methodology

5.1. Introduction

This chapter presents the architectural synthesis methodology conceived for the
synthesis of neural network hardware. The synthesis framework is presented as a complete
computer-aided design system for digital neural networks. The architecture synthesis steps
are then explained and the various issues involved in the compilation, scheduling and
allocation steps are presented. A new approach to the synthesis of compound operations
such as the multiply-accumulate operations abundant in neural network algorithms is
discussed. The synthesis methodology is then extended 1o a novel multi-processing
synthesis environment based on regular structures and the issues dealing with partitioning

and synchronization of such systems are presented.

5.2. Synthesis framework

The synthesis system presented in this thesis and diagrammed in Figure 5.1 starts
with a specification of the network to be synthesized. This specification is written in an
Axon-like language [4] that describes the size, topology and behavior of the network (A
model and example of the description are shown in Appendix 1). The specification could
also consist of a signal flow graph (SFG) or a combination of both descriptions.
Architectural or high-level synthesis then consists of finding the optimum (fastest)
schedule for the given network for a certain hardware allocation specified by the user. The
synthesis further binds all operations involved in the execution of the network to the
hardware units. The outcome of the synthesis is a register transfer (RT) description of the
system. If the resulting schedule does not satisfy any or some of the constraints then the
network is redesigned by providing different hardware allocations. The initial hardware

allocations are done by the user (or expert system) and further refined by the high level
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Figure 5.1: Architectural synthesis framework

synthesis procedures. The decision to accept the outcome of the synthesis or further search
the design space is made by the user. The system, however, can be used to search the
design space and produce area delay trade-offs for a range of architectures. The system
can further be interfaced to a set of library units to get accurate measurements of the
resulting VLSI implementations and eventually mapping the RT description onto the
technology specitic components present in the library.

An important aspect of any synthesis system is the ability to verify its correctness.
The RT description obtained as a result of the synthesis is used to generate a VHDL
description of the system at hand. Simulations of the networks at both the high abstract
level (ANN simulator) and at the architectural hardware level (VHDL) are then compared.
Further, the VHDL system description can check for inconsistencies and errors such as
memory and bus contentions.

The synthesis tool presented as part of this synthesis framework was implemented
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in Prolog and the algorithms used as well as all the issues involved in this synthesis tool

are discussed below. The results of example simulation runs are discussed in chapier 6.

5.3. Architecture synthesis methodology

5.3.1. Synthesis of artificial neural network hardware

The high performance requirements of ANNs add to the complexity of their silicon

implementations. In order to meet the high computational power demand, design aids have

to be developed. The architectural synthesis tool presented is written in Prolog and based

on the multiple-bus/FU architecture described in chapter 4. The tool is interactive and uses
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user-defined heuristics 10 obtain an optimal design. It is divided into three major synthesis

phases described below and shown in Figure 5.2.
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Figure 5.3: SFG for the recall phase of a BP network

5.3.1.1. Network description and pre-scheduling transformations

The first phase (Extractor) transforms a neural network description, specifying the
type, topology and interconnections, into a SFG as an intermediate form (which can also
be used as input). The network description is modelled after the Axon language presented
by Hecht-Nielsen but is oriented for hardware syntnesis rather than algorithm simulation.
A model description is shown in Appendix 1. The input to the tool can also consist of a
general SFG, formed of the operation set and the connections set, describing the network’s
operation or a combination of both descriptions allowing ecasy modification of the standard
ANN algorithms. An example SFG for a 2, 2, 2 BP network in the recall phase is shown in
Figure 5.3. The activation function implementations are shown as simple truncations

according to a constant value. In the case of BP networks and most layered networks, the
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Figure 5.4: Generalized Delta rule (hidden layers)
data d~pendence is imposed by the layered structure of the network. The set of operations
for each layer associated with each neuron is further divided into classes of operations
performed by all neurons as shown in Figure 5.4 for the generalized delta rule (applied o
the hidden layers) used to train BP networks. A class is a set of similar operations that can
be executed concurrently. The use of classes reduces the complexity of the gencration of

operations and their pre-ordering since the classes incorporate a number of similar
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operations. The classes arc pre-ordered to achieve better reservation schemes based on the
number of interconnections of a neuron I(n;) which is assumed to correspond to its
execution time T(n,) for a neuron n,. The number of operations per neuron increases with
the number of connections and therefere this measure gives priority to neurons with the
longest corresponding operations delay (Section 5.3.1.2).

The ordering of the operations within a class ensures a good scheduling scheme by
taking advantage of the inherent parallelism of classes while the ordering of the classes
themselves ensures correct data dependence. For the recall modes, the ordering includes
all the MA operations of a layer followed by the set of activation function operations. The
operations of the following layers follow in the same manner. In the learning phase, the
operations are ordered as partially shown in Figure 5.3. The forward propagating phase
with operations being the same as in recall is followed by the backward propagating phase
with classes of subtract, multiply, MA and add operations. The classes 3 and 4 of Figure
5.3 are interleaved so as 1o achieve correct data dependence since the output of the
multiplication for class 4 is needed in the input of the MA of class 3 for other neurons. The
rest of the classes are ordered consecutively.

The reservations corresponding to two consecutive classes can overlap without
violating the data dependencies. The types of operations as well as the type of hardware
units to be used is determined :t this phase. For instance, a pre-scheduling optimization
may consist of grouping the multiplications and additions in the SFG of Figure 5.3 into
MA operations (described in Section 5.3.1.2) which will result in the SFG shown in Figure
5.5. Indeed, any two or more operations can be grouped together to save on bus transfers
as explained in Chapter 4. .In Figure 5.4, it can be seen that a number of operations can be
grouped together such as the multiplications in classes 5 and 6 creating @ MM (multiply-
multiply operation) or classes 1 and 2 where one of the inputs is common resulting in a
SM (subtract-multiply) operation. Even classes 5, 6 and 7 can be grouped together

producing a MMA  (multiply-multiply-add). While these operations may not be as
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Figure 5.5: SFG of recall phase of BP network using MA operations
beneficial as the large MAs (which benefit is shown in chapter 6), they nevertheless result
in more compac* schedules and should indeed be investigated.

Further optimizations and algorithmic transformations are performed at this time

such as neuron splitting which is described in section 3.3

5.3.1.2. Scheduling, FU binding and bus reservation

The SFG is the input to the second phase (Scheduler). It is a finite directed graph
G(N,E) where N = 0uUC. O = {o,,..,0,} is the set of executable operations including
input and output port operations. C = {c,,...¢,.} is the set of non-executable operations
such as constant value assignments. Each operation oe 0 is described by
(t(0),i(0),u(0),s(0),e(0), h(0)) where:

1(0) is the type of the operation,
i(0) is the input list usually containing two values except for the
compound MA operations
ufo) is the output list with one datum except for complex numbers

(Real and Imaginary parts) and special functional units
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s(0) is the starting time of the execution of the operation
e(0) is the end time of the execution of the operation
h(o) is the identifier of the hardware unit to which o is bound.

£ = RuD is the set of edges consisting of a register set R = {r,,...,7,} and a
dependence  set D = {d,,...d,}. Each register reR is described by
(rd (r), wr(r),op(r),rf(r)) where

rd(r) is the register’s read time from the register files

wr(r) is the register’s write time from the FUs to the register files

ap(r) identifies the operation in which this register is used

rf(r) defines the register file in which it is stored and its index
within that register file (address)

Registers are subject to the constraint wr (r) < rd (r) except the weight registers, for
backpropagation (BP) nctworks for instance, that will be updated after they are read or any
other registers used in a feedback-style operation where the write time corresponds to a
write in the previous sample period. The registers correspond to each edge in the signal
flow graphs. The data dependence set is also used to describe compound operations such
as MAs. An MA operation is described by its own SFG in terms of multiplications and
additions as shown in Figure 5.6 . A is the set of edge lists (arc lists) describing each MA.
ue A is described by ((x;,w).(x3,w2).....(x,,w,)) where the calculation performed by the
MAis y = ix‘w‘.

Scth‘iuling consists of assigning each of the nodes in the SFG to a hardware unit
minimizing the number of cycles T,y it takes to execute the whole set, respecting data
dependency. For a N-layer network L. L,,...Ly_, the scheduling time of the tasks
corresponding to layer Lye (Ly....Ly_,| should satisfy a(S,) <a(S,,,) where S is the
schedule and o(Sp) is the schedule initiation time. The hardware description
It = FUUBUIUO consists of a set of FUs a number of busses and a set of I/O ports. The

operation set is scheduled on the available FUs and busses using a list scheduling




Figure 5.6: SFG of a MA operation
approach. The list of operations is pre-ordered according to their prioritics as explained
above. The operation with the highest priority is scheduled on the first FU of its type. In
order to ensure correct scheduling several issues have to be addressed.

The operation to be scheduled (usually) has two input values from registers with
availability times write-clock(l) and write-clock(2) corresponding to the time they were
written (those operations with write-clock times in the previous sampling period would
not include this extra constraint and would have write-clock times of zero until they are
written at a later time in the scheduling process). The availability time clocks of all FUs
corresponding to the operation being executed are then obtained and binpacking heuristics
are used to select the FU that results in the best possible utilization as explained later. The
FU’s availability clock is then FU-clock. The new reservation clock of the FU is therefore
subject to reservation-clock = max(write-clock(x), FU-clock) for x=[1,2]. This translates
into initiating the operation as soon as the second input is latched by the FU without
constraining the arrival time of the first input. Further, each of the variable inputs necds 10
be transmitted from the register files to a FU latch. The availability of the busses need to
be guaranteed. While the FU availability lists are scanned to find the last available times,

the bus lists are scanned from the availability times of the register write-clock(1) and

65



reservation-clock is
max(write-clock(1),
write-clock(2), FU-clock)

l

Get bus-clock(1)

use next bus_clock(1)

bus-clock(1)
<

reservation-cloc

use next bus_clock(2) jg——

bus-clock(2)
<

reservation-cloc

A

bus-clock(out)
NO <

reservation-clock
+

operation-dela

Bind Operation to FU
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write-clock(2 ) onwards. Inputs to the FU have to be guaranteed access through the busses
on the read clock phase and the output of the FU needs to be guaranteed access to the
busses on the write clock phase. Rather than use FIFO techniques at the output of a F,
the operation will only be scheduled when the input and output words can all access
busses. The execur. i of the operation is thus conditionally delayed. Bus cycle times on
the read phase are subject to the following: bus-clock(1) < reservation-clock and bus-
clock(2) < reservation-clock. The bus cycle time reserved on the write phase is then
subject to bus-clock(out) = reservation-clock + Operation-delay. All the busses have to be
reserved before the operation can be bound to the FU. The transfers ci.a be done on any of
the busses unless bit size and additional constraints are taken into account. The bus
reservations are later bound in the optimization phase. The procedure given above is
diagrammed in the flowchart of Figure 5.7. For pipelined units, additional constraints are
involved in determining the reservation and bus clocks as explained in Section 5.3.2.

The selection of FUs minimizes the idle times without scanning the FU list tor
possible gaps where an operation cau fit. For an operation that can be initiated at time 7,
where the availability times in clock cycles of FU; 1o FUy are A; to Ay the chosen FU is

the one that satisfies the following selection criteria:

if —3(ie (1,N))|[A;<TI thensclect FUill(Ai'T) isminimum|  .0)

cse V(ie ,N)|[A;<T] sclea FUI-| [(T-A,) isminimum| (5.2)
This is shown in Figure 5.9where the shaded boxes designate the use of the FFU and the
white box designates the execution period of the operation to be scheduled.

The MA operations are compound operations (made up of smaller operations) and
are dealt with in a manner slightly different than regular operations. Each MA operation
ma € O consists of n operations o, [ma), 0,ma}, ...,0,1ma} . First, o, {mal is scheduled as
explained above except that the selection of FUs requires information on the availability

of local registers (accumulators) o store the intermediate results. Once a MAC has been
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Figure 5.8: Selection of FUs
reserved for o, (mal, using a specific local register, oll the corresponding (n-1) MA
operations are bound to that MAC where binding of pipelined operations is performed.
The way the MAs are scheduled depends on their first sub-operation. All FUs and local
registers are scanned to find the MA rag (identifier of MA operations) and the remaining
operations are scheduled accordingly. MA sub-operations o;/ma] through o,,_;/ma] do not
require the reservation of a - output (only o,/maj does), since the results are stored
internally and accumulated, which relieves part of the constraints on scheduling and

results in a4 more compact schedule.
5.3.1.3. Bus bindings and register minimizations

The third phase (Optimizer), performs several optimizations on the architecture. It
involves a modified bipartite edge coloring algorithm to assign the registers used to a
register file for each bus, minimizing duplication of storage. Minimizations are also
performed on each register file by having temporary registers re-using the same hardware
registers. The time sharing of registers is performed by an algorithm that colors a circular
arc graph of the registers lifetimes {52]. Initially each link in the SFG is assigned a
register. Even though the bus scheduling approach a'lows for duplication, the

optimizations consistently reduce the number of registers (for BP in recall) to within 10%
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of the lower bound:

K n K1
Ilb=M+W+ Z Ci—-r" where M = max (z N‘-) AR}

i=1 =1\ =y

and P = NgyXN;p
where N; is the number of the neurons in layer i, W is the total number of weights and C is
the number of constants in layer i. P refers to the neurons being performed in paralie]
using the local registers in the FUs. Ny and Ny g are the number of FUs (MACs) and the
number of local registers respectively. (The assumption is that N, >N, . Vi).

The microcode generation »s performed after all the synthesis and optinizations
are completed. It is specific to the architecture used and highly dependent on hardware
specifications such as the number of Lits/word, the resulting number of multiplexers, the
register count, the number and size of the register files, the number and types of FUs as
well as the number of operations supported by each. One control word is generated for

each clock phase.
5.3.2. Scheduling of pipelined functional units

Pipelined units such as the MACs explained in Section 4.5.1, add to the
complexity of the synthesis procedures. A special hazard avoidance algorithm is used 1o
ensure that no conflicts occur in the allocation of hardware resources.

The first part of this algorithm uses the reservation tables obtained from the
hardware descriptions of the FUs augmented by information on resource limitations to
generate initiation lists for all pairs of operations. A typical FU description of the MAC
unit presented in Section 4.5.1 is shown in Figure 5.9. The filled boxces indicate the stage
usage of an operation. The arrows indicate hardware resource limitations due to input and
outnut ports available. The pairs of initiation lists are then calculated based on an

allocation table method, where one operation is shifted in time with respect to an existing
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Figure 5.9: Example pipelined FU descripticn
operation. The positions that do not result in any hazards or conflicts are inserted in
corresponding initiation lists, examples of which are shown in Figure 5.10. The shaded
regions indicate the iniiation times that cannot be used due to some conflicts in the stage
usage or hardware resources. This part is executed prior to the start of the synthesis
procedures on all the available pipelined units.

The second part of the algorithm is invoked when an operation is to be scheduled
on a pipelined FU. The purpose of this algorithm is to combine the initiation lists to allow
for multiple operations to be executed on the same FU at overlapping times. For an
operation to be scheduled at time T, the set of initiation vectors, for the operations

executing on the FU relative to the new operation is:

Vi tor i = {T, ..., T} where To=T-SxCk (59
Ck being the number of clock cycles used by a stage and S being the number of stages of

the pipelined FU. The initiation vector of the new operation will be:
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Figure 5.10: Example initiation lists of the MAC of Figure 5.9
T

X = ;Q;,Wi_si) (5.5)
where 8 is the set of delays between the initiation of existing operations and the new one

(adjusted by S x Ck to produce a value relative to T).
Thus, if @ TRUNC operation whose inputs are available at clock cycle T is 1o be
scheduled on the MAC of Figure 5.9, where two MAs and one addition are exccuting as
shown, the resulting initiation vector becomes [1,2,...,00], or [T+1,T42....,20] a5 shown in

Figure 5.10.

5.3.3. Pre-scheduling optimization using neuron splitting

Compound operations such as MAs when bound to a FU constitute lons operations
that may include idle times between their distinct parts. Optimum scheduling of these
operations cannot be obtained when their number is not a multiple of the available MACs

since this may result in uneven use of the MACs and additional cycle time as shown in
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Figure 5.11: iaitiation list for TRUNC with MA and ADD
Figure 5.12. This asymmetry can result in loss of cycles and eventually a bad schedule.
Splitting the neurons that cause asymmetry into pseudo-neurons which execution can be
evenly partitioned on all available MACs can result in substantial savings. This approach
requires additional temporary storage registers and could result in delays due to the
additional bus traftic needed to transmit the intermediate results on the busses. However,
for mest neural networks, the MAs are large operations (since a neuron’s inputs can
consist of all the previous layer’s state and weight values), and the results of splitting
neurons to resolve asymmetry saves clock cycles. It is clear, as will be shown in Section
6.3.1, that some networks benefit from this optimization more than others due to their
topologies. 1t is also clear that the optimization is most effective when applied to the last
layer where overlapping of the last MAs in the layer with the first ones in the following

layer cannot occur. The speedups obtained are not high for some cases due to the
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Figure 5.12: Splitting neuron to resolve asymmetry,
additional constraints on bus transfers and FU usage that splitting will induce, which is the
argument against splitting the neurons completely and using multiplications and additions

to perform the MA operations.
5.3.4. Implementing loop folding by augmenting the network’s SFG;

In order to reduce the controller size, the network is divided into similar partitions
and looped execution (FOR... DO loops) of the network is implemented. ANN algorithins
are highly regular and thus suitable for folding into similar partitions. Two types of folding
are discussed which can be combined to implement specific folding patterns for specific
networks: vertical and horizontal folding. Vertical or layered folding is achicved by
executing one layer at a time. This is accomplished by the addition of feedback edges to
the SFG as shown in Figure 5.15. This adds to the complexity of the controllgr in terms of
word length (microcode controller) but results in a greatly reduced schedule and therefore
reduces the total controller size. The addition of the feedback edges does not modify the

datapath scheduling. The second type of partitioning uses horizontal or ncuronal folding

73



- _/

Figure 5.13: Vertical folding of a network
which divides each layer into similar partitions as shown in Figure 5.15. Dividing a layer
into two different parzitions will necessitate the addition of two partial sums or the use of a
storage register 10 store the values of the same neuron and initializing the local storage
registers for each subsequent MA operation with the appropriate sum. It should be noted
that in such a folding scheme the nonlinear operations cannot be executed until all the
partitions are done and the final sum of MAs is computed. Classes of MAs and nonlinear

function implementations are then separated in the synthesis.

5.4. Multi-processor Synthesis

The methodology used for multi-processor synthesis is general and can be applied
to any signal flow graph but is most suitable for regular algorithms such as ANNs. The
following discussion, however, concentrates on ANN synthesis issues, specifically

feedforward-style networks. Examples and explanations presented are based on BP
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Figure 5.14: Horizontal folding of a network
networks in the recall mode.

ANNSs are large systems that are inherently parallel. This parallelism should be
exploited beyond the area boundaries of one processor implementations. An extension of
loop folding as described above is to implement each partition on a separate processor. All
the processors would execute the same schedule on different partitions resulting in a
SIMD structure. In order to achieve this, however, several issues such as partitioning,

synchronization and inter-processor communication have to be addressed.
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5.4.1. Partitioning the network on the available processors

The network is partitioned symmeirically so that the same schedule is used for
different partitions on different processors. The types of partitioning used in loop folding
(Section 5.3.4) can be used, however the SFG must be modified to allow for 1/O
operations to accommodate for the interconnection which is not the case in folding the
network on the same processor.

A symmetrical network is one in which the number of neurons (and
interconnections) can be divided evenly among the number of processing elements used.
In the case of asymmetrical networks, either dummy operations are inserted or neuron
splitting is implemented as detailed in Section 5.3.3 or 4 combination of both methods is
used. Dummy operations are anzlogous to NOOP in microprocessors and their sole
purpaese is to delay the processing in a PE to allow for the synchronization. The easiest
wity to implement these operations is to implement redundant calculations that may be
executed on another PE. This will guarantee synchronization (the operations execution
times are wdentical) without affecting the behavior of the processor.

The partitioning is done by the user and according to the number of processors
avaulable. The synthesis tool takes one partition, augments its corresponding SFG and
synthesizes it using the same methods used for architectural synthesis.

Once a network has been partitioned as shown in Figure 5.15, the SFG
corresponding to each partition is augmented and modified as explained in Section 5.4.2.
The resulting graph is then synthesized. The partitioning shown, includes input and output
operations at the interfaces of the two partitions. In cases where more than two partitions
exist the neuron activation values input to a partition will have to be output to the
following partition as will be explained in details in Section 5.4.2.

The multiprocessing model used as an example to exccute the network of Figure
5.151s a circular systolic array as shown in Figure 5.16. Any type of systolic configuration

can be used with each PE implementing one of the partitions. The synthesis as outlined
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Figure 5.15: Example network partitioning for multi-processing
above will ensure correct operation. The interconnections between PEs can consist of
several links which are set by the number of input and output ports used as part of the

hardware configuration for each partition.

5.4.2. Modifying the SFG for multi-processing

Multi- processor synthesis is an extension of the architectural synthesis
methodologies presented in Section 5.3. In order to simplify the synthesis task and exploit
the parallelism and regularity of ANNs, a systolic model of the multi-processor

architecture is proposed as explained in Section 4.7. Extending architectural synthesis to
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Figure 5.16: Circular systolic configuration example
accommodate processor inter-communication necessitates the following modifications to
the SFG:
let oy : be the number of internal neurons for layer L
f3,.: the number of external neurons for layer L
Ny : the number of neurons used to generate the SFG for layer L
Net: the set of layers in the network

then:

Np—y=op_1+B;_,
V(L e Ner), and (5.6)
Np=0a,
Internal neurons are those which operations are implemented on a single partition and
therefore would be executed on one PE and are thus internal to that PE. External neurons
on the other hand are those neurons (for each layer) that are not internal to a PE and which
activation values need to be input from the neighboring PEs. Equation 5.6 is a

formalization of the number of neurons needed in each layer. It basically states that the
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number of neurons used in the SFG, for each layer, is actually the number of intemal
neurons whereas the number of neurons in the previous layer is the total number of
neurons in that layer for the whole nc:.xvork. The distinction need to be made in order to
generate the correct neuronal and input/output operations. In fact, the number of inputs to
PE;;, where L denotes the current layer and i is an index for the PEs in that layer, is B _;.

The number of outputs is given by:
numberofoutputs=a, +8, _, =7, _, 6.7

where v .1 denotes the neurons internal to the PEy 4 ;)i
. . 3,1 o
The number of PEs used to configure a layer L is PE, = [?E:_[_L] I'he number
43
L

a, + . - . . .
[Lﬂ} can also be modified by splitting neurons to reduce cycle time (as explained for

o,

the single processor case in section 3.3) or inserting dummy operations to obtain a more
symmetrical network which is needed in order for the controllers of all the partitions to be

identical.

Figure 5.17: SFG with I/Q considerations for multiprocessing
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5.4.3. Scheduling modifications to accommodate multi-processing

Once the network has been partitioned, the modification of the SFG is done by
adding the appropriate input and output operations. For the network of Figure 5.15,
additional input and output operations are included. The modifications are as shown in
Figure 5.17 for cach partition. Each output operation in a partition corresponds to an input
operation in a second partition. The input operations need to be performed before their
values are needed in the calculation of the regular operations such as the MAs. These input
and output operations have to be synchronized in order for the multi-chip system to
function correctly. One way of achieving this is by adding appropriate delays on the
systolic links. This, however, could result in extreme delays and a poor execution time.
The other method is to include the synchronization in the synthesis itself. In order to
achieve this, a new operation is introduced. This operation as shown in Figure 5.18. The
input to this operation is the output value and will be transmitted on one of the busses and
outputied through the O/I (Output-Input) unit to another partition on another PE on the
Read clock phase. The output is an input value and is transmitted on one of the busses
through the O/l unit to the partition implemented on the PE itself. The delay is the
interconnectior. delay. Using this operation, synchronization is guaranteed and the SFG of
Figure 5.17 is transformed into the one shown in Figure 5.19. The number of systolic
interconnections is equal to the number of O/I units. Different types of O/I units can be
modelled and used in the synthesis as FU. This allows any systolic interconnection to be

maodelled appropriately. The transformed SFG is synthesized using the methods outlined
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Figure 5.19: SFG with added O/I delay operation for multiprocessing
before. The modifications are automated and based on the number of PEs allocated by the

user. Once a synthesized network exists the same schedule can be used for all partitions.

5.5. Conclusion

This chapter introduced the methodologies used in the architecture and multi-
processing synthesis of ANN algorithms and implemented in a Prolog synthesis tool. The
issues involved in the extraction of the network’s description, the pre-scheduling
optimizations that included neuron splitting and operation type allocations were
explained. The scheduling and binding problems were discussed including compound
operations such as the multiply-accumulate operation. Issues involved in the scheduling of
pipelined units were introduced. For multiprocessor synthesis, a new output/input
operation is used to synchronize communications and modifications to the partitions’
SFGs are used to incorporate multiprocessing. All the issues proposed in chapter were
implemented in a Prolog synthesis tool and results from synthesized architectures showing

the different optimizations and trade-offs are presented in chapter 6.
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Chapter 6:

Architectural Trade-offs and Synthesis Results

6.1. Introduction

This chapter presents the synthesis results using the architecture described in
chapter 4 and the algorithm detailed in chapter 5. The developed synthesis tool is used on
several neural networks detailing the architectural trade-offs that were discussed in
chapter 4. The design space of the four networks presented in chapter 2 is scarched and the
corresponding optimum architectures are presented. The architectural optimizations
discussed in chapter 4 are then investigated. Comparisons with existing neural network
hardware is made proving the quality and importance of the design search provided by the

tool and the proposed architecture synthesized as described in this thesis.
6.2. Performance Evaluation

6.2.1. Design examples

Several networks have been synthesized using the synthesis methodologies as
described in Chapter 5. Three fully connected BP networks and one counterpropagation
network presented in Chapter 2 were used as examples of searching the design space,
cthers were used to illustrate specific architectural trade-offs. The first network used in the
design spacs explorations is a robotic one Degree of Freedom Flexible Joint Manipulator
with 6, 21, 12 and 1 neurons respectively. The second is an ECG signal processing
network with 40,10, and 1 neurons respectively and the third is a pattern recognition (PR)
network with 16,5,9 and 4 neurons. The couaterpropagation network used is a small
version of the NASA space station robot arm guiding network using 64, 8 and 1 neurons
respectively. All these networks are real-time adaptive ANNs with specific requirements.
They have approximately the saine size and are typical of the types of networks that are

being used in industrial applications today.
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Figure 6.1: Total word storage for the number of busses

The architectural performance evaluations were done in two different ways. The
first is an architectural top-bottom approach that assumes typical values for the execution
times and speeds (based of course, on technological ranges available in today’s
technologies). The second is a VLSI bottom-up approach that uses technologically
specific measurements of area and speed to evaluate architectural trade-offs. The first two
BP networks (Robotic and ECG) as well as the CP network were synthesized using the

tirst approach while the PR was synthesized using the second approach.
For the first approach, the evaluations were based on the speedup with respect to
a reference architecture as well as AT? where A corresponds to the increase in area with
respect to the reference architecture which is a configuration with a minimum allecation of

one MAC (one accumulator), 1 bus and 1 register file. The number of MACs, busses and
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Figure 6.2: Recall Performance of BP networks (Speedup) for increase in MACs/area

local registers is then increased to investigate the design space. The specdup relative o the

increase in areais S, = ;‘-’ where Ty and T, are the execution times in clock cycles of
a

the reference architecture and the one being evaluated respectively. The percentage

increase in area relative to the reference architecture is based on the arca assumptions as

follows:

where Nyac, Nr and Np are the numbers of MACGs, registers and busses used. These
assumptions are used to indicate cost trends and not absolute cost values as these depend

on layout details and technology. This area estimate is for the data path area including the
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Figure 6.3: Learning performance of BP networks (Speedup) for increase in MACs/
area

MACs (with their local registers) and the busses aiea The controller and the register file
arcas are not included. This is due to the fact that their inclusion would smooth out the
trade-off curves, that will be explained shortly, without adding any insights since their
arcas are relatively similar as can be seen in Figure 6.1 for the Robotic network. It should
also be noted that the total number of word storage is between 0 and 0.028% over the
minimum calculated as explained in chapter 5. Since the register files are implemented as
RAMs with 2N words. the small differences do not result in actual differences in the
hardware areas at all.

In the examples presented here, the FUs considered are the general MACs

specified in chapter 4 with operation delays taken to have typical values as follows:
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Figure 6.4: Recall Performance of BP networks (AT2) for increase in MACs/area

MA 3 cycles
Multiplication 2 cycles
Addition/Subtraction lIcycle
rhreshold lcycle

The transfer functions for the examples shown are implemented as simple
truncations with respect to a constant value.

For the second approach, the areas and delays are calculated as explamicd in
chapter 7 and are actual measurements in mm? and us. The area calculated includes the
data path area as well as that of the coatroller and register files. The delay is based on the
processor clock cycle time as explained in chapter 7. Measures such as ATZ can then be

obtained to investigate the architectural design trade-offs.
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Figure 6.5: Learning Performance of BP networks (AT?) for increase in MACs/area

6.2.2. Design space search

For the Top-bottom architectural design the Robotic and ECG networks are used.
Figure 6.2 and 6.3 show the synthesis results for the networks in the recall and training
modes respectively for the speedup measure. Figure 6.4 and 5 present the same for the
AT* measure. The graphs show distinctly the difference between using 2, 3 or 4 MACs.
The optimum architecturzs with the number of busses and local registers (NB, NLR) used
are shown. Figure 6.2 further outlines the trade-off relating to the number of /rs. Figure 6.6
and 6.7 present the recall and leaming performance of the CP network. All these figures
have similarities in their general shapes but outline specific diff&ences between the
networks as will be explained later.

For the bottom-up approach, Figure 6.8 presents the AT? behavior of the PR
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Figure 6.6: Recall Performance of CP network (Speedup) for increase in MACs/area
network from actual VLSI area and delay measurements, The general shape is again
similar in nature to the curves obtained using the first method proving the relative

accuracy of such broad assumptions as were made to evaluate the arcas and the delays.

6.2.3. FU saturation for the number of busses

The saturations of the speedup curves occur when the addition of busses does not
improve the speed and they indicate the highest speedup that could be achieved with the
number of FUs provided. These saturations occur well below the limit of two b ses per
FU. This limit is due to the fact that all the FUs used have two inputs and onc output
requiring a maximum of N, = 2xN,., busses on the read clock phase to provide complete

parallel access to the FUs. It is clear that the optimum architectures for different networks
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arc not necessarily identical even though these networks were selected in the same size

range.
6.2.4. Multiple word storage

The Ir register trade-offs play an important role where the number of the busses is
constricted and when operations are interleaved as explained in Section 4.6.2. Figure 6.2
shows several cases where one additional register results in 10 to 25% speedup over the
previous architecture. Adding more Irs, however could result in worse performance due to
the added scheduling constraints.

Table 6.2 shows several cases where adding one local register to each MAC can
result in substantial savings in terms of speed. In the table, Mode designates the Recall (R)

or the Leaming (L) modes. NMAC, NB and NC are the number of MACs, busses and total
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clock cycles respectively. CPC is the number of cycles per connection. The percentage

local register per MAC).

speedup designates the speedup achieved as a result of the optimization (i.c. adding one

6.2.5. Topology differences’ effect on speed

The networks presented (with approximately the same number of ncurons) achicve

dramatically different performances in the learning mode due to the difference in their

mm*
- f »
20.00

a0 YLSI

topologies. This is due to the fact that learning algorithms behave differently than recall

algorithms. The propagation itself in BP networks suggests the difference in the number of

operations since the MAs involved are being calculated in an opposite direction than in the

recall. Table 6.2 compares the ECG and robotic networks in recall and learning. NLR
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NC CpC Percentage

Network | Mode | NMAC | NB Speed
Lir | 20rs | 110 | 21rs peedup

h-I::)h()tic R 2 2_T?WW 20.6%
Robouc |R |4 4 |208 [188 053048 |94% |
Robotic | 1. 2 2 |1230 | 1091 | 3.15 | 2.80 | 1119
Robotic | L. 4 4 las0 437 1115|112 | 26%
ECG R 3 3 227 [218 055053 | 3.6%
ECG L 4 3 462 436 [1.13]1.06 | 6.2%
PR R 3 31100 |90 |062]056|97% I
cp R 4 a_l163 {13z ]031]0.25 | 19.3%

Table 6.1: Effect of adding one local register to each MAC
designates the number of local registers used. * denotes the reference architecture for the
speedup caleulation (in this case the slower network).It can be seen that the networks
achieve almost the same speeds in recall (Rows A and C), with the robotic network being
slightly faster, but a large difference exists in learning (Rows B and D), and the ECG

network becomes faster.

Network | Mode | NMAC | NB | NiR | NC | cpe | Pereentage
Speedup
AY Robotic R 4 5 1 119 1031 1 0%
!ECG R 4 5 1 128 {031 | *
B ¥ Robotic L 4 5 1 339 | 0.87 | *
ECG L 4 5 1 259 10.63 | 24%
prmaag,
ClRobotic | R 3 3 2 211 1054 ; *
ECG R 3 3 2 218 10.53 | 1.8%
D Robotic | L 3 3 2 615 | 1.58 | *
ECG L 3 3 2 463 L 1.13 | 28.5% I

Table 6.2: Topology effect on speed for recall and learning

6.2.6. FU utilization

Table 6.3 contains the utilization percentages for the MAC stages for the Robotic

and ECG network. The uatilization of the threshold is low since it is performed once for
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Table 6.3: Average pcrccnlge utilization of the MAC stages

Network NB | NLR | Recall Utilization Learning Utilization (%)
(%)
Multipli | Thresho | Multipli | Adder Thresho
er/ 1d er 1d
Adder
.
Robotic 4 1 86.29 7.52 61.24 83.04 2.04
3 4 1 82.28 147 57.62 78710 248
4 6 1 79.27 6.9 57.42 78.42 247
2 4 1 92.76 249 49.26 89.38 .16
3 4 1 81.83 2.20 46.58 ¥4.54 1.10
4 6 1 80.08 2.15 45.85 83.20 1.0
P T N

every neuron. The multiplier and the adder have the same utilizations in recall since they

are only being used in MAs. In learning, the number of additions and subtractions is larger

than multiplications (even though multiplication classes outnumber addition/subtraction

classes) resulting in better utilization of the adder. This type of architectural search can

provide several important guidelines for the design. 1t is clear that more care need to be

taken when implementing the nonlinear function for the Robotic than the ECG network

since the utilization is 4 times as much. Another important point concerns the possible use

of additional adders in the learning phase since their utilization is much higher than other

units’ utilizations.

6.2.7. Multi-processing results

The ECG network is synthesized using 2 and 5 processors in a lincar systolic

configuration. For 2 processors, the partitions used, had 20, 5 and 1 neurons cach. For 5

processors, the partitions had 8, 2 and 1 neurons cach. Neuron splitting is not

implemented. The speedup graph for the recall performance in comparison to the one

processor implementations are shown in Figure 6.9. For 2 processors a maximum speedup

of 1.91 is achieved. For a 5 processor configuration, a speedup of 3.68 is obtained. The
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Figure 6.9: Speedup for EKG for 2 and 5 processors with respect to one
reason the speedup for the 5 processor configuration is not as high as expected lies in the
fact that the partition (8,2,1) is too small so that additional hardware within a processor
does not yield better results. Further splitting neurons rather than using dummy operations
can enhance the performance. Table 6.4 further shows an important result of investigating
multi-processor configurations. A trade-off exists between the mumber of hardware units
used per processor and the number of processors used. It may be of use, therefore, to us~ 2
processors with 2 MACs each (Row b) rather than one processor with 4 MACs (Row g),
as can be seen by the small difference of the number of clock cycles for the execution time
in Table 6.4. Using less hardware per processor further reduces the complexity of the

system and may result in a slightly faster clock. The use of the synthesis tool for multi-
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[
Network Number of CPC | Speedup
PEs | MAC | busses | I/O | cycles
1 2 4 1 221 054 | *
2 2 4 1 135 0.33 | 1.6
5 2 4 1 60) 0.15 [ 3.6
1 3 5 1 167 041 | *
2 3 5 1 96 0.23
5 3 5 ! 60 0.15 27
1 4 6 1 128 0.31
h | 40,10,1 |2 4 6 1 95 023 | 1.3
i §40,10,1 S5 14 6 1 60) 0.15 (2.1 J

Table 6.4: Multiprocessing trade-offs and their effect on speed
processing can determine these trade-offs. Table 6.5 shows the effect of adding /O ports

on the system’s speed. Adding 1/O ports can speedup execution by reducing constraints on

communication.
Network Number of CPC Percentage
PEs | MAC | busses | I/O | cycles Speedup
24,2424 | 12 4 6 1 100 0.09 *

Table 6.5: 1/Q ports’ effect on speed

6.3. Architecture optimization techniques

6.3.1. Neuron Splitting

Splitting the MA operations of neurons when the number of neurons in one layer
does not divide evenly into the number of MACs available can enhance the performance
of the system. The asymmetry of the network increases the number of cycles for the ANN
computation as explained in Section 4.6.1. Table 6.6 prescnts the results of using neuron
splitting as an optimization measure for several networks. This shows improvements as

high as 40% over the networks synthesized without splitting neurons.
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Architectural trade-offs | Network | NMAC | NB | NC ! CPC | Speedup
No splitting 1,20,1 4 6 ;6 090 | *
| splitiing 1,201 |4 6 (25 062 |40%
§ No splitting 1,201 |2 4 |46 {115 |*
Splitiing 1,20,1 2 4 37 1093 | 20%
No splitting 20,3,1 2 4 49 1078 | *
Splitting 20,3,1 2 4 42 10.67 { 15% —
No splitting 40,10,1 3 5 167 1 041 | *
Splitting 40),10,1 3 — 5 154 1 0.38 | 7.3%

Table 6.6: Effect of splitting neurons

6.3.2. Deep Pipelining

FUs with different degrees of pipelining can dramatically modify the behavior of

the systenm. Considering the MAC of Chapter 4 that includes the threshold unit, the stages

for the different hardware units being as follows:

Multiplier 2 clock cycles

Adder ! rlock cycle

Truncator I clock cycle

Clock
MAC stages cycle Network | NMAC [ NB | NC | Delay Speedup
S ¢ S A S

{2,1,1} 60 ns 40,10,1 |4 6 128 | 7.68 us *
{4,2,2} 45 ns 40,10,1 | 4 6 135 16.08us | 21%
(2,1,1} 60 ns 40,10,1 |3 4 167 | 10.02us | *
14,2,2} 45 ns 40,10,1 |3 4 174 | 7.83 s 22%
{2,1,1} 60 ns 40,10,1 |2 3 221 } 13.26us | *
{4,2,2) 45 ns 40,10,1 |2 3 222_J 9.99 s 25% l

Table 6.7: Effect of deeper pipelining of MACs

If deeper pipelining is introduced such as doubling the stage clock cvcles to

[4.2.2], then the result is as shown in Table 6.7. The speedups shown are a result of the

decrease in the total cycle time as expiained in Section 4.6.3. The improvement seen is

close to the gain in the clock cycle of 25%. The use of separate multipliers and adders with
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local interconnects as suggested in chapter 4 can further enhance the performance by

providing a pipeline with less constraints.
6.3.3. Activation function implementation

The use of a separate FU for the nonlinear function calculation may be required. Its
use rather than the use of the unit provided on the MAC may result in a slight
improvement. In the examples shown in Table 6.8, a slight improvement is shown when a
single separate threshold is used. Using 4 of these units may not, however, be desirable
since the resulting speedup is not high. This is due to the fact that nonlincar operations can
be performed in parallel with MAs which take a longer time to execute. One threshold can
therefore suffice to finish the nonlinear operations of all MACs while they are exccuting
new operations. This is specifically true when the activation function is implemented by a

look-up table.

Architectural trade-offs Network | NB | NC | CPC | Speedup

1 Thresh. on each MAC 12,12,12 | 6 83 (029 |*
1 separate threshoid 12,12,12 | 6 78 1027 | 6%
4 separate thresholds 12,12,12 0.26 | 8.4%
ST
Table 6.8: Threshold implementation as part of MAC or separate unit

6.4. Performance Comparison

The Delta II ANS processor achieves 4 CPC (Connections Per Cycles). The
Balboa HNC uses an i860 with 4.4 CPC for learning (or 4.4 CUPS) and 1.6 CPC for
recall. The GCN, a network of 128 PEs each being implemented by an Intel 8086()
achieves 6.4 CPC. The optimurn architectures presented in this paper achieve consistently
less than 1 CPC (Recall). The best architectures produce results as low as 0.31 CPC
(Recall) and 0.63 CPC (Learning). These results are for single processors. For multi-
processor performance evaluation, the NetTalk network [59] with 203, 60 and 26 ncurons

partitioned on 16 processors is executed in the recall phase with 0.039 CPC. With a system
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clock of 45 ns, this amounts 1o 750 MCPS.

Our architectures outperform the above mentioned systems since they have been
optimized for the specific applications using the synthesis tool. Furthermore, special FUs
targeting ANNs have been used. Also, implementing networks as straight line codes
climinates all the overhead associated with branching. Therefore, the synthesis
methodology and the architecture presented here result in a better performance than
general purponse neural processors by avoiding the overhead induced by general purpose
systems and optimizing the architectures for specific applications.

In the case of the robotic BP network presentzd, the real time recall requirements
of 17 us can be obtained using 3 MACs (with 1 Ir) and 4 busses with a /00ns clock

resulting in 15.8 us.

6.5. Conclusion

The architectural trade-offs explored in this chapter prove the importance of using
a synthesis tool to investigate the design optimizations that can be performed in the
synthesis of neural network digital hardware. The performance evaluation further
indicates that the optimized architectures resulting from the synthesis tool can outperform
other architectures for the same applications. The ease with which different degrees of
parallelism can be investigated allows for customized architectures that are flexible
enough for use in the adaptive applications targeted. The use of the tool alt..vs for some
non-obvious architectural trade-offs that would otherwise have gone unnoticed by the

designer.
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Chapter 7:

Verification and Implementation

7.1. Introduction

This chapter completes the synthesis framework by presenting a VHDL
verification methodology to ensure the correctness of the synthesis procedures by
simulating the resulting hardware. A VHDL behavioral model of the multiple bus/
functional unit architecture is presented. An example XOR backpropagation network is
synthesized and the resulting control is used in VHDL simulation proving the correctness
of the synthesis procedures. This chapter also presents an example VLSI implementation
of the minimum configuration of the proposed architecture and details the area and delay
measurements used in chapter 6 for the bottom-up approach for evaluating architectural

trade-offs.

7.2. VHDL verification of synthesis

A number of synthesis systems have been implemented using VHDL. The
possibility of describing a system at various levels of abstractions in VHDL is particularly
useful. The synthesis system proposed uses YHDL to specify the architecture after a
complete RT description is obtained. Verification is done through the simulation of the
given description and by obtaining accurate estimates of execution time for specific styles
of implementations. The VHDL part can detect any errors in the generation of the RT
description by detecting memory and bus contentions. The VHDL description of the
system is a behavioral one. Further extensions to the verification system include the
structural VHDL modelling of the library units to allow for accurate simulations of the

intended hardware.

7.2.1. VHDL unit modelling

The units used in the processor are modelled in a behavioral manner. The MACs
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Figure 7.1: Example of a VHDL model
are separate units with ports for two input latches and one output driver interfaced to the
busses. They ferther include ports for the clock and an opcode from the controller which
specifies the type of operation to be executed by the MAC. The pipelining is not explicit
but is guaranteed by appropriate delays for each operation. The register files (with a fixed
number) are modelled as arrays with the indices being read from the microcode. The
busses are modelled using an address decoding scheme that selects the appropriate

registers in the register files and the appropriate MAC and latch of the FUs. This decoding

99




X] ) Y1 Y2 ty) tya z XOR
0 0 0 0 0 0 0

0 1 0.5 -0.8 1 0 04 |

1 0 -0.7 (03 0 1 0.6 l

1 1 -0.2 1-0.5 0 0 0 0

Figure 7.2: XOR network example
is further divided for the two clock phases. Units that generate clock signal and control the

simulation are also used. The model for the example architecture is given in Appendix 11,

7.2.2. Example VHDL model

An example model of a system using 3 busses and 2 MACs is shown in Figure 7.1.
A small XOR network is synthesized with the synthesis tool presented in this thesis using
2 MAC:s and 3 busses. The resulting control sequence is converted into VHDL code. The
results of the synthesis and the VHDL microcode description are shown in Appendix (H,
The XOR network has been used as an example of a non-linearly separable problem and
as a result, one that a single layer perceptron cannot solve. Its usc in this thesis is mercly to
indicate the correct operation of the control generation and the synthesis procedures and as
a working example to demonstrate the VHDL behavioral simulation. The XOR network is
then simulated in VHDL and the results evaluated. The XOR network is as shown in

Figure 7.2. The weights for the 2,2,1 BP network were set as shown (not derived using BP
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algorithm). In the given table, 1 preceding a variable indicates its value after truncation. In
the same way XOR is the truncation of z, which in this case may not be needed (a linear
neuron could be used), but is included for completeness. The activation function

(truncation) is simply:

trunc(x) =0 for x<0
7.1
trunc(x) =1 for x>0 D

. The resulting VHDL simulation (using the Valid VHDL interface) proves the
correctness of the synthesis algorithms and control generation procedures and is shown in
Figure 7.3 (Obtained from the Valid VHDL interface). The cycle time is set at 36ns with a
two phase clock (¢1: Read and ¢2: Write). Two MACs, denoted FU! and FU2, and three
busses with three corresponding register files, RF1, RF2 and RF3, are used. For each FU,
the values of the opcode, latches and output driver are given. Only the registers that are
maodified during execution are shown. The final value of every item is given in bold
figures. the vertical bars indicate changes in the value of each signal. If the new value of a
signal is the same as the old value, no change appears on this graph. This case corresponds
to x;=1 and x,=0 resulting in z=1 on the tenth cycle as shown by FU1.DRIVER. The large
negative numbers are initial values set in the initiation phases. All four inputs to the

network produce the correct results according to the XOR truth table.
7.3. PE Chip Implementation

7.3.1, Custom Arithmetic Cells

A set of VLSI modules are designed specifically for the implementation of the
architectures presented in this thesis using the NT 1.2 pum CMOS technologyl. The

designs presented here use standard library cells. Future extensions of this work include

1. The cell designs were done by project groups in VLSI graduate and undergraduate courses under
the supervision of Dr. B. Haroun.
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the design of various customized library units that could be interfaced to the synthesis
system. The use of the currently available designs, however is important to gather an
understanding of the area versus delay trade-offs as discussed in chapter 6. The main
purpose of the PE chip implementation is to present an idea of the silicon area involved in

such designs.
7.3.2. Multiplier

The multiplier used is based on the modified booth algorithm [60]. The algorithm
involves bit-pair recoding. This scheme decreases the number of rows to be added
together at the last stage of the multiplier speeding up the computation. The
implementation of a 16 x 9 multiplier yields a regular structure occupying 1.4 mm?Z. Its
total delay is 18 ns (The area and delay do not include the adder stage). The multiplier is
designed with standard library cells but using over the cell routing. It is to note that this

multiplier can be highly pipelined.
7.3.3. Adder

The adder implemented was a 25 bit Binary Carry Lookahead adder {61]. In this
design, the carry propagation time is reduced by using an associative operator to compute
the carry in a binary tree fashion and generate the sum bits using the intermediate carries.
The implementation using standard library cells and automatic place and route techniques

resulted in a 0.6 mm? adder with a delay of 12 ns.

7.3.4. Multiply-Accumulate Unit

The multi-purpose MAC described in chapter 4 is designed as part of the FUNN
(Functional Units for Neural Networks) project aiming at the design of hardware units
(arithmetic and otherwise) specitically designed for ANNs and the synthesis procedure
presented 1 this thesis. The area of the multi-purpose MAC is 4.6 mm?. This figure
includes the multiplier, adder, truncator, and all the associated multiplexing and decoding

logic and local control as well as the routing. The MAC was again designed using
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gy

Figure 7.4: MAC organization
automatic place and route algorithms. It is pipelined so that a multiplication takes 2 cycles
and an addition takes 1 cycle resulting in 15ns delay per stage. The resulting MAC has the

organization as shown in Figure 7.4,

7.4. Neural processor implementation

The areas of the register files/RAMs used in the architecture were calculated from
actual SRAM layouts. The areas of the bus latches and tristate drivers were also
calculated. These values were used in the architectural trade-off exploration presented in
chapter 6. The delays of the busses are estimated to be 15ns on cach clock phase for all
possible architectures, the resulting system would run at 45ns.

An example minimum configuration (1 bus, 1 register file and 1 MAC) is shown in
Figure 7.5. The MAC used is the one described above. The SRAM is a 512x16 RAM. “the

resulting chip layout is then shown in Figure 7.6. This chip is presented here as an
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indication of the silicon areas involved in such designs.
It is clear that for the same amount of memory more than one MAC can be used
without increasing the area dramatically while allowing for parallelism.
It should be noted that a much more compact design is achievable with the use of

customized cells, detailed hand routing and optimization, as well as DRAMs.

7.5. Arca measurements for synthesis

The area used for each MAC is the area of the MAC logic added to the area of the

local registers and the multiplexing involved resulting in 4.6 mm? for a MAC with a single
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accumulator, 4.9 mm? for one using two accumulators.
The bus area is proportional to the number of FUs énd includes the areas of the
latches and bus drivers.

The RAM area was calculated based on the number of bits N and the number of
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words M using a fixed per bit area of the RAM cells in addition to the areas consumed by
the sense amplifiers and column and row decoders used for each configuration.

The controller used is also a RAM. The number of words is twice the number of
clock periods (one word per clock phase). The number of bits, however depends on the

configuration. The number of bits for the architectures used is:

nb = NFU[ (log,NOP) + NP xlog,NB] + Address (12)

where NFU, NP and NB are the number of FUs, 1/O ports for each unit and busses
respectively. NOP is the number of different operations that could be executed on a FU.
Address consists of the number of bits needed to address the register files. This is
dependent on the number of register files (or busses), the number of words in each register

file as well as the type of encoding used.

7.6. Conclusion

This chapter completed the synthesis framework presented in Chapter 5 by
introducing the VHDL modeling of the architectures. An example XOR backpropagation
network is given to prove the correctness of the synthesis procedures. The VLSI area and
delay measurements used in chapter 6 are also given and the design of the minimum
configuration of one RAM and one MAC is presented as an indication of the silicon areas

involved in the design of such architectures as the ones proposed in this thesis.
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Chapter 8:

Conclusion

This thesis presents a novel approach to the design of digital neural networks.
Real-time adaptive neural network applications are targeted and an ASIC design
methodology is designed to meet their requirements. A flexibic bus style data path is
suggested that uses pipelined units, such as the multi-purpose MAC, that are specifically
designed for neural network applications. This architecture allows a certain degree of
parallelism within each processor, something that most digital implementations of ANNs
fail to provide. The architecture is further developed in a mualti-processing environment
using systolic communication. The parallelism involved in such architectures, as well as
the design trade-offs involved, are investigated using an architectural design synthesis
tool, written in Prolog, that performs FU, bus and memory allocation, reservation and
binding. The algorithms involved in this tool take advantage of the nature of ANN
algorithms and allow compound operations such as MAs to be used, guaranteeing a more
compact schedule. The tool uses heuristics specific to neural networks that help in the pre-
ordering of the operations and the scheduling and binding processes. Multi-processing
synthesis is also performed where the developed tool systolizes the neural algorithms
using complicated PEs with internal parallelism. Several architectural trade-off's can be
examined using the tool such as the addition of local storage registers, the use of deeper
FU pipelining, neuron splitting, the use of special FUs and the number of busses necded.
These trade-offs vary between applications depending on the type of algorithm used and
the topology of the networks. The tool is therefore needed to examine the cases where
such optimizations are useful. The synthesis framework is completed by the use of a
VHDL simulator that verifies the correctness of the synthesis procedures and the
microcode generation of the controller, and by VLSI library units that can be used to

obtain accurate area and delay measurements as well as the design of the ANN ASICs.
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The networks synthesized using this CAD tool result in architectures that outperformi other
systems for the same applications. The benefits of the optimizations are also shown in the
synthesis results proving the importance of the use of autornated design techniques.

In general, the use of high-level synthesis techniques to investigate the design of
‘igital neural networks for real-time adaptive applications is proven to result in optimized
architectures that outperform other architectures previously designed and published. Also,
the synthesis tool developed can be used to implement optimized architectures by
extensively searching the design space while reducing the design cycle clearing the way
for cheap ASICs for ANN applications.

Completing the full CAD framework presented in this thesis to obtain a general
system that accommodates all types of neural networks and provides support from the
specification through the chip development is a monumental task. Nevertheless, the work
in this thesis provides the foundations for all possible expansions. Suggested future work
in this area includes the design of a complete VLSI library equipped with several design
styles of each unit needed in such implementations. The characteristics of these units such
as the areas, delays and power consumption could be used as part of the criteria in judgi..g
the synthesized designs. Even though the synthesis methodologies presented in this thesis
are general, many important issues in synthesis were not addressed such as the use of
conditional branching. This issue was avoided partly because it would strip the
customized architecture of its advantages and would slow down the overall system. It is
the case, however, that some neural networks rely on probabilistic algorithms that require
specific considerations for branches and control in general. The synthesis tool presented is
mainly a data path synthesis tool. Even though a microcode controller can be generated, it
is generally favorable to include the control in the synthesis procedure. This type of mixed
control data path synthesiys is a difficult area that needs, nevertheless, to be examined. The
techniques used to implement the MA operations can be used to combine any two or more

operations. With appropriate functional units, this type of synthesis would result in much
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more compact schedules. A regular SFG can be used as input to the tool, it is beneficial,
however, to provide parsers that could generate these SFGs from simple descriptions of
neural networks. The reason for this being the complication of the SFGs for large
networks. It is indeed impractical to propose writing a signal flow graph for cach network
to be synthesized. Appropriate parsers were implemented for backpropagation and
counterpopagation networks. Hopfield networks could also be accommodated. There is,
however, a large number of networks which need have the same support. In the multi-
processing synthesis, issues like pariitioning were relegated to the user. While the
regularity of fully connected neural networks allows easy partitioning, networks with
special interconnection patterns may prove to be more difficult. Synthesis procedures
should be developed to attack this sort of problems.

These issues can be investigated and the resulting work can be incorporated in the
synthesis framework presented in this thesis. It should be noted that the field of neural
networks is still growing and that neural network ASICs are still gaining ground in
commercial applications. Whatever the future trends of neural networks may be, it is
guaranteed that they can always make use of automated synthesis techniques for the

design of their ASIC implementations.

110



References
|1} P. Treleaven, M. Pachco and M. Vellasco, “VLSI Architectures for Neural Networks,” IEEE MICRO

Magazine, pp. 8-27, Dec. 1989.

[2] U. Ramacher, “Guidelines to VLSI Design of Neural Nets,” in Ramacher U., Ruckert U., ed. VLSI Design
of Neural Networks, Kluwer Academic Publishers, Boston, 1991, pp. 1-18,

(3] J. Burr, “Digital Neural Network Implementations,” in Antognetti, P. and Milutinovic, V. eds. Neural
Newworks: Concepts, Applications and Implementations, Vol II. Prentice-Hall, Toronto, 1991, pp. 237-
28s.

|4] R. Hecht-Niclsen, Neurocomputing, Addison-Wesley, New York, 1989,

15} B. Soucck and M. Soucck, Neural and Massively Parallel Computers, John Wiley & Sons, 1988.

[6] P. D. Wasserman, “Ncural Computing: Theory and Practice,” Van Nostrand Reinhold, New York, 1989,

[7} Eckmiller, R., Ed., *Advanced Neural Computers,” Elsevier Science Publishing Company, New York,
1990,

[8] Anderson Dana Z,, ed., “Neural Information Processing Systiems,” American Institute of Physics, New
York, 1988.

[91 R. Eckmiller, C. Malsburg, Eds. “Neural Computers,” Springer-Verlag, New York, 1988.

[10} I. Alcksander, Ed., “Neural Computing Architectures,” North Oxford Academic Publishers, 1989.

(11] B. Widrow and M. Lchr, “30 Years of Adaptive Neural Networks: Perceptron, Madaline, and
Backpropagation,” Proccedings of the IEEE, Vol. 78, No. 9, Scptember 1990, pp. 1415-1442.

(12} J.J. Hopficld and D. W. Tank, “Necural Computation of Decisions in Optimization Problems,” Biol.
Cyber. 52, 141-152, 1985,

[13] K. Fukushima, “Neocognitron: A sclf-orgamzing ncural network model for a mechanism of pattern
rccognition unallected by shift in position,” Biol. Cyber, Vol. 36, pp. 193-202, 1980.

[14] B. Whitc and M. Elmasry, “The Digi-Ncocognitron: A Digital Neocognitron Neural Network Model for
VLSL,” IEEE Transactions on Neural Networks, Vol. 3, No. 1, January 1992.

[15] R. Hecht-Niclsen, “Applications of Counterpropagation Networks,” Neural networks, Vol. 1, pp. 131-
139, 1988,

{16] B. Kosko, “Bidirectional Associative Memorics,” IEEE Transactions on Systems, Man and Cybemietics,
vol. 18, no.1, pp. 49-60, Neural Networks, Vol. 18, no. 1, pp.49-60, Jan. 1988.

[17] G. Carpenter and S. Grossberg, “Neural Dynamics of Category Learning an Recognition: Attention,

111




Memory Consolidation, and Amnesia,” in J. Davis, ct al. Eds. Brain Structure, Learning and Memory,
AAAS Symposium Series, pp. 239-285 1986.

[18] C. A. Mead, Analog VLSI and Ncural Systems, Addison-Wesley, 1989,

(19] V. Zeman, R. V. Patcl and K. Khorasani, “A Neural Network Based Approach for the Control of
Flexible-Joint Manipulators,” to appear in the 8th International Conlerence on CAD/CAM, Robotics and
Factories of the Future, Metz, France, August 1992,

{201 B. Soucek, Neural and Concurrent Real-Time Systems, Wiley, Toronto, 1989.

[21]J. Lont and W. Guggenbuhl, “Analog CMOS Implementation of a Multilayer Perceptron with Nonlinear
Synapses,” IEEE Transactions on Neural Networks, Vol. 3, No. 3, May 1992, pp. 457-465.

[22] C. Mead, “Neuromorphic Electronic Systems,” Proceedings of the IEEE, Vol. 78, No. 10, October 1990,
pp. 1629-1636.

[23] S. Kung and J. Hwang, “Parallel Architectures for Artificial Neural Nets,” International Joint Conlerence
on Neural Networks 1990, Vol. 11 pp. 165-172,

[24] A. Hiraiwa et al. “Implementation of ANN on RISC Processor Array,” International Conference on
Application Specific Array Processors, 1990, pp. 677-688.

[25] S. Garth, “A Chipset for High Specd Simulation of Neural Network Systems,” IEEE First Intemational
Conference on Neural Networks, Vol. 111, 1987, pp. 443-452,

[26] M. Duranton and J. Sirat, “Learning on VLSI: A General Purpose Digital Neurochip,” International Jomn
Conference on Neural Networks, 1989,

[27] Hirai et. al. “A Digital Neurochip with Unlimited Connectability for Large Scale Neural Networks,”
International Joint Conference on ncural Networks, Vol. 11, pp.163-169.

[28] J. Quali and G. Saucier, “Silicon compiler for ncuro-ASICs,” International Josnt Conference on Neural
Network, Vol. 11, 1990, pp. 557-561.

[29] M. Tomlinson ct. al. “‘A digital Neural Network Architecture for VLSI,” International Joint Conference
on Neural Networks, Vol. 11, 1990, pp. 545-550.

[30] W. Wike et al. “The VLSI Implementation of STONN,” Internationat Joint Conference on Neural
Networks,” Vol. I, 1990, pp. 593-598.

[31] D. Van den Bout and T. Miller, “TInMANN: The Integer Markovian Neural Network,” International
Joint Conference on Neural Network, Vol. 11, 1989,

[32] D. Hammerstrom, “A VLSI Architecture for High-Performance, Low-Cost, On-chip Lcaming,”

112



intemational Joint Conference on Neural Networks, San Diego, 1990, Vol. 11, pp. 537-543.

133} S. Kung and J. Hwang, “Digital VLSI Archilcctures for Nearal Networks,” International Symposium on
Circuits and Systems 1989, pp. 445-448,

[34) A. Hiraiwa ct al. “A Two-Level Pipeline RISC Processor Array for ANN,” International Joint
Conference on Neural Networks, 1990, Vol, [ pp. 137-140.

135) G. Works, “The Creation of Delta: a New Concept in ANS Processing,” IEEE Conference on Neural
Networks, Vol. 11, pp. 158-164, 1988.

136] D. Jackson and D. Hammerstrom, “Distributing Back Propagation Networks Over the Intel iPSC/860
Hypercube,” Vol. I pp. 569-574.

1371 G. Blelloch and C. Rosenberg, “Network Learning on the Connection Machine,” The Tenth International
Joint Conference on Artificial Intelligence, pp. 323-326, 1987.

{38] D. Pomerlau, G. Gusciora, D. Touretzky and H. T. Kung, “Necural Network Simulation at W ARP Speed:
How we got 17 Million Conncctions per Second,” IEEE International Conference on Neural Networks,
San Dicgo, CA, 1988, Vol. 11, pp. 143-150.

{39} M. McFarland, A. Parker and R. Camposano, “Tutorial on High-Level Synthesis,” ACM/IEEE Design
Automation Confcrence, 1988, pp. 330-336.

[40] D. Ku and G. D¢ Micheli, ““Hercules- A System for High Level Synthesis,” Design Automation
Conference, Junc 1988, pp. 483-488.

{41]). Lis and D. Gajski, “Synthesis from VHDL,” International Conference on Computer Design, 1988, pp.
378-381.

[42] C. Hwang, ct al. “A Formal Approach to the Scheduling Problem in High Level Synthesis,” IEEE
Transactions on Computer-Aided Design, Vol. 10, No. 4, April 1991, pp. 464-475.

{43} S. Devadas and R. Newton, “Algorithms for Hardware Allocation in Data Path Synthesis,” IEEE
Transactions on Computer-Aided Design, Vol. 8, No. 7, July 1989, pp. 768-781.

{44] E. Lagnese and D. Thomas, “Architectural Partitioning for System Level Synthesis of [ntegrated
Circuits,” IEEE Transactions on Computer-Aided Design, Vol. 10, No. 7, July 1991,

[45] B. Kernighan and S. Lin, “An ctficient Heuristic Procedure for Partitioning Graphs,” Bell Systems
Technical Journal, pp. 291-307, Fcbruary 1970,

[46] C. Ramamoorthy and H. Li, “Some Problems in Parallel and Pipeline Processing,” Proceedings of

COMPCON, IEEE, pp. 177-180. 1975.

113




{47] C. Leisersen and J. Saxc, *Optimizing Synchronous Systems,” Journal of VLSt and Computer Systems
1, no. 1 pp. 41-67, 1983

{481 N. Park and A. Parker, “SEHWA: A Program For Synthesis of Pipelines,” 23rd Design Automation
Conference, 1986, pp. 454-460.

[49] B. Widrow and R. Winter, “Neural Nets for Adaptive Filtering and Adaptive Pattern Recognition,” IEEE
Computer magazine, March 1988, pp. 25-39.

[50] L. Jackson, Digital Filters and Signal Processing. Kluwer Academic Publishers Birmingham, MA, 1986,

[51] H. De Man ct al. “Architecture-Driven Synthesis Techniques for VLSI Implementation of DSP
Algorithms,” Proccedings of the IEEE, Vol. 78, No. 2, February 1990, pp. 319-335

{52} B. Haroun and M. 1. Elmasry, “Architectural Synthesis for DSP Silicon Compilers,” IEEE Transactions
on Computer-Aided Design, vol. 8, pp. 431-447, April 1989,

[53] E. Torbey and B. Haroun, “Architcctural Synthesis for Digital Neural Networks,” International Joint
Conference on Neural Networks, Baltimore, Maryland, June 1992, Vol. H, pp. 601-606.

{541 ]. Vlontzos and S. Kung, “Digital Neural Network Architecture and implementation,” in Ramacher U.
and Ruckert U, ed. VLSI Design of Ncural Networks, Kluwer Academic Publishers, Boston, 1991, pp.
205-228.

[55]) T. Williams and K. Parker, “Design for Testability-A survey,” Proceedings of the IEEE, Vol 71, No. |,
January 1983, pp. 98-110.

{56] B. Haroun and E. Torbcy, “Synthesis of Multiple Bus/Functional Unit Architectures Implementing
Neural Networks,” to appear in the proceedings of the International Conference on Computer Design,
Cambridge, Massachusetts, October 1992,

[57] B. Haroun and M. 1. Elmasry, “VLSI Architectural Synthesis for Large Data Storage Signal Processing
Algorithms,” International Confcrence on Microclectronics, pp. 26-29, Dec. 1991,

[58] J. Holt and J. Hwang. “Finitc Precision Error Analysis of Neura! Network Electronic Hardware
Implementations,” Inicrnational Joint Conference on Neural Networks, Vol, 1, pp-519-525, 1991,

[59] T. Sejnowski and C. Rosenberg, “Paralle! Networks that Learn to Pronounce English Text,” Complex
Systems 1(1), 1987, pp. 145-168.

{60] M. Anaratone. Digital CMOS Circuit Design. Kluwer Academic Publishers, 1986,

{61] R, Brentand H.T. Kung, “A Regular Layout for Parallel Adders,” IEEE Transactions on Computers, Vol.
C-31, No. 3, March 1982, pp.260-264.

114



Appendix I:
Prolog Implementation Issues
I.1. Network description

% This is the user’s network description

% network(]

% {layer _name, num_of slabs,

% stab([...[slab_name,num_of neurons,

% neuron(neuron_type,|[...[ ?neuron, ?priority]...], , ),
% xfer_fetn(]...[passxfer fein_type]...]),

% out_weights(connec_type, [...[weight_name]...]),

% [error_list]])].

% Example: Backpropagation with one hidden layer
%o with 3,4,2 neurons respectively.

% no bias

network(backpropagation,|
[layer-1,input,l,
slab([{slab-1-a 4, neuron(input_node, Neuron_list),
xfer_fctn([fwd linear],[bwd,back-error]),
out_weights(none, []),
Error_list]])],
{layer-2,hidden 1,1,
slab([[slab-2-a,4, neuron(perceptron, Neuron_list),
xfer fewn({fwd,sigmoid],|bwd,back-error]),
out_weights(full, Weight_list),
Error_list]])],
llayer-3,hidden 2,1,
slab([[slab-3-a,4, neuron(perceptron, Neuron_list),
xXfer foin([fwd sigmoid],[bwd,back-error]),
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out_weights(full, Weight _list),
Error list]])]).

1.2. Hardware description

% H = hardware(functional_units({...[Type.[operator_id,..]]...]),
busses({..,Bus_id,..])).

hardware_allocation(H).-
eq(H,hardware(fus([[mac,2 [macl ,mac?]].lic,1.[iol ] ] .[owput,] foutl]]],
busses({bus_1-all,bus 2-all]))).

1.3. FU type description

Yotype_def(FU _type,Opn_type,Num_of inputs,Delay,style(Design_style,N
umber_of stages,Initiation_list)local_storage(num_of regs,[reg list])Ar
ea,Power,Design_num).

type_def(mac,mul_ac,2,1,6,style(pipelined,3,/[s-1,[1]].]5-2,[2]].[5-
3310.15-4.141].[5-5.15]1.[5-6,[6]],[5-7,[0]].[s-8,[011]).1,_, _,_).

type_def(mac,mul,2,12,style(pipelined,2,{[s-1,[1]],[5-2,(2]].[s-3.[3]].]s-
4![4]]:13'5;[5]]![8'6116II:IS'71[()l]r/s'8yl()lll)lI:__v__:_)-

type_def(mac,add,2,1,1,style(non_pipelined,1,{[s-1,[0]].[5-2,[0]] |5-
3v[oll’[s'4’[0]l:[s'5:[]Iltls'éi[zll)ls';’:l()ll’/s'811()///): I,_,__,_‘).

type_def(mac,sub,2,1,1,style(non_pipelined,1,[[s-1,[0]],[5-2,[0]] ]5-
3,[07].[s-4.[0]].1s-5.11]1.[5-6,(2]],[5-7.10]].[s-8.L0111).1._._._).

type_def(mac,trunc,1,1,1 style(non_pipelined,1,[[s-1,[0]],[s-2,10]].]5-
3,[0]],18'4,[011,{5'5,/0]],[8'6,[01],[&"7,/1/],[S'8,[2/II),1,__,__,__).

type_def(sorter,sort,2,0,1,style(non_pipelined, 1 [{s-1,[11]11).0,_._,_).
type_deflio,in_out,1,1,2,style(non_pipelined,1,[[s-1,[1]]]).0,_. . ).
type_def(input,in,1,1,1,style(non_pipelined, 1, {s-1,{1]1]).0,_, , ).
type_def(output,out,1,1,1,style(non_pipelined,1,[[s-1,11111)0,_,_,_).
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1.4. Operations list

% 0 =
[..[Op _id,FU type,Op typeInput_list,Qutput Start_time,End_time,FU id
-LR id]...]

[ma-0-f-2-a-1,mac,mul_ac,edges xt-2-a-1,1,4,macl-1]
[n-2-a-1,mac,trunc,[xt-2-a-1,c-2] x-2-a-1,5,5,macl]

L.5. Registers list:

[..[Reg_num,[Reg id,Tag],|Opn_id,Input tag],Wr clock,Rd_clock,Bus_i
dRegister file id-Index]...]

[xreg-1,[x-1-a-1,1],[ma-0-f-2-a-1,1],0,1,bus-1,rf-1-r2]
[wreg-1,[w-1-a-1-2-a-1,1],[ma-0-f-2-a-1,2],0,1,bus-2,rf-2-wrl]
[xtreg-2,{xt-2-a-2,1],[n-2-a-2,1] 4.5 ,bus-1,rf-1-r1]
[ereg-3.(c-3,1],[n-3-a-1,2],0,10,bus-3,rf-3-cr3]
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Appendix II:
VHDL Modelling Issues

2.1. Example architecture

use work.all;
use work.Types.all;
use work.all;
entity nnchip is
generic (clock_period : integer := 50);

end nnchip,;

architecture nnchip_arch of nnchip is
signal clk : bit;

signal stop_sim : boolean := FALSE;
signal cycle : word;

signal READ : microcode_rd;

signal WRITE : microcode_wr;
signal rfl rf2,rf3 : reg_array;

signal
MACI 11, MACI _12,MAC2_l1.MAC2 12, MACI drMAC2 dr:word;

component CLOCK
port(clk: out bit);
end component;

for all : CLOCK use entity clkgen(generator);

component SIM
port(clk: in bit; cycle: inout word);
end component;

for all : SIM use entity sim_control(sim_control_arch),
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component MICRO
port (clk: in bit; cycle: in integer;
RD: out microcode_rd; WR: out microcode_wr),

end component;
for all : MICRO use entity MICROCODE(MICROCODE _arch),

component READ _BUS
port (clk: in bit; RD : in microcode_rd;
reg filel: inreg_array,
reg_file2: inreg_array,

reg file3: inreg_array;

MACI latchl MACI _latch2, MAC2 latchl MAC2 latch2: out word):
end component;
for all : READ_BUS use entity BUS rd(BUS _rd_arch),

component WRITE_BUS

port (clk: in bit; cycle: in word; WR : in microcode_wr;
reg_filel,reg file2,reg file3: inout reg_array;
MACI! _driver, MAC2 driver: in word);

end component;

Jor all : WRITE_BUS use entity BUS wr(BUS_wr_arch);

component FU

pore(clk: in bit; opcode: inop_codes; latchl, latch2 : in word,
driver : out word),

end component;

for all : FU use entity MACIMAC _arch);

begin
CLOCK!1 : CLOCK port map(clk);
SIM1 : SIM port map(clk,cycle);
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WRITE BUSI: WRITE BUS

port map(clk,cycle WRITE,rfl .rf2.rf3. MAC1_dr.MAC2 dr).
MICRO! : MICRO port map(clk,cycle READ WRITE),
READ_BUSI: READ BUS

port map(clk,READ rf1.rf2,rf3 MACI1 11, MACI_12, MAC2_11 MAC2 12);
FUl : FU

port map(clk, READ .opcodel MACI 11 MACI 12 MACI dr);
FU2 : FU

port map{cik, READ.opcode2 MAC2 11 MAC2 12 MAC2 dr);

end nnchip_arch;

2.2. Clock and simulation control

use work.Types.all;

use work.all;

entity clkgen is
generic (clock_period : integer := 36);
port(clk: out bit),

end clkgen;

architecture generator of clkgen is

begin
CLOCK_CONTROL : process
begin
clk<="1";
wait for clock_period/2 * Ins;
clk <="0";
wait for clock_periodi2 * Ins;
end process CLOCK_CONTROL;
end generator;

use work.Types.all;
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entity MAC is
port(clk : in bit; opcode: in op_codes; latchl, latch2 : in word;
driver : out word);

end,;

use work.Types.all;
use work.all;
entity sim_control is
port(clk: in bit; cycle: inout word := 0);

end sim_control,

architecture sim_control_arch of sim_control is
begin
process(clk)
begin
ifclk="1" then
case cycle is
when 15 => assert FALSE report “Stopping simulation” severity failure;

when others => cycle <= cycle + 1;

end case;
end if;
end process;

end sim_control_arch;

2.3. MAC behaviour

use work Types.all;

entity MAC is
port(clk : in bit; opcode: inop_codes; latchl, latch2 : in word;
driver : out word),

end,;
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architecture MAC _arch of MAC is
signal reg: word:=0;
begin
process
begin
wait until latch2’ event,
case opcode is
when ADD => driver <= transport latchl + latch2 after stage_delay ;
when SUB => driver <= transport latchl - latch2 after stage_delay ;

when THRESH => if latchl < latch2 then driver <= transport () after
stage delay ;

else driver <= transport 1 after stage _delay ;
end if;
when MULT => driver <= transport latchi*latch2 after M_delay;

when MULT ACl1 => reg <= transport latchl * latch2 + reg after
stage_delay;

when MULT AC2 => reg <= 0 after 3*cycle_delay - Rd_delay - Wr_delay;

driver <= transport latchl*latch2 + reg after
3*cycle_delay -Rd_delay - Wr_delay;

when NONE => null;
end case;
end process;
end MAC arch;
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Appendix III:

XOR Synthesis and Simulation Results

3.1. Synthesis output:
The operations list is :

[ma-0-f-2-a-1,mac,mul_ac edges xt-2-a-1,1,4,macl-1]
[ma-0-f-z-¢-2,mac,mul_ac,edgesxt-2-a-2,1,4,mac2-1]
[n-2-a-1,mac trunc,[xt-2-a-1,c-2] x-2-a-1,5,5 macl ]
{n-2-a-2,mac,trunc,[xt-2-a-2,¢-2] x-2-a-2,5,5,mac2|
[ma-0-f-3-a-1,mac,mul_ac,edgesxt-3-a-1,6,9,macl-1]
In-3-a-1.mactrunc,/xt-3-a-1,¢-3],x-3-a-1,10,10,macl]

The registers list iy :

lxreg-1,[x-1-a-1,1],[ma-0-f-2-a-1,1],0,1,bus-1,rf-1-r2]
[xreg-2,[x-1-a-2,1],[ma-0-f-2-a-1,3],0,2,bus-1,rf-1-r3]
[xreg-3,[{x-1-a-1,1],ma-0-f-2-a-2,5],0,] ,bus-1,1f-1-r2]
[xreg-4,[x-1-a-2,1],[ma-0-f-2-a-2,7],0,2,bus-1,rf-1-r3]
[xreg-5,[x-2-a-1,1],[ma-0-f-3-a-1,9],5.6,bus-1,rf-1-r1]
[xreg-0,[x-2-a-2,1],[ma-0-f-3-a-1,11],5,7 bus-2,rf-2-r4]
[xreg-7,[x-3-a-1,1],]out-3-a-1,1],10,0,bus-2 rf-2-rd]
[xreg-8,[xout-3-a-1,1],0ut,0,0,bus-2,rf-2-r5]
[wreg-1,[w-1-c-1-2-a-1,1],{ma-0-f-2-a-1,2],0,1,bus-2,rf-2-wrl]
[wreg-2,[w-1-a-2-2-a-1,1],|ma-0-f-2-a-1,4],0,2,bus-2,rf-2-wr2]
[wreg-3,[w-1-a-1-2-a-2,1],{ma-0-f-2-a-2,6],0,1 ,bus-3,rf-3-wr3]
[wreg-4.[w-1-a-2-2-a-2,1],{ma-0-f-2-a-2,8],0,2,bus-3 ,rf-3-wrd|
[reg-5,[w-2-a-1-3-a-1,1],|ma-0-f-3-a-1,10],0,6,bus-3,rf-3-wr5]
[wreg-0.[w-2-a-2-3-a-1,1],[ma-0-f-3-a-1,12],0,7 bus-3,rf-3-wr6]
[xtreg-1,(xt-2-a-1,1],{n-2-a-1,1] 4,5 bus-3,rf-3-r6]

[xreg-2 [xe-2-a-2,1).[n-2-a-2,1) 4,5 ,bus-1,rf-1-r1]
[xtreg-3.fxe-3-a-1,1],[n-3-a-1,1],9,10,bus-2,rf-2-r4]




[creg-1,[c-2,1],[n-2-a-1,2]0,5,bus-2,1f-2-crl]
[creg-2,{c-2,1],[n-2-a-2,2],0,5,bus-2,1f-2-cr2]
[creg-3,[c-3,1],[n-3-a-1,2],0,10,bus-3,rf-3-cr3|

The hardware list is :

hardware(fus([[mac,2,[macl,mac2]] [io, 1 ,[iol]].[owtput ] [owutl]]]),buse
ss([bus_I-all,bus 2-all,bus 3-all]))

The bus reservation input list is :

[0,[bus_I-all,bus 2-all,bus 3-all]]
(1[x-1-a-1w-1-a-1-2-a-1 w-1-a-1-2-a-2]]
[2,[x-1-a-2,w-1-a-2-2-a-1,w-1-a-2-2-a-2]]
[3,] 288718, 288720, 288722]]

(4, 288740, 288742, 288744]]
[5.[xt-2-a-1,¢c-2,xt-2-a-2]]
[6,[x-2-a-1w-2-a-1-3-a-1, 298637]]
[7,[x-2-a-2,w-2-a-2-3-a-1, 300224]]
[8.[_302266,_302268,_302270}]

[9,[ 302298, 302300, 302302]]
[10,[xt-3-a-1,c-3, 302336]]

The bus reservation output listis :

[0,[bus_1-all,bus 2-allbus_3-all]]
[1,[ 285991, 285993, 285995]]
[2,[ 286009, 286011, 286013]]
[3,] 286029, 286031, 286033]]
[4,[xt-2-a-1xt-2-a-2, 286055]]
{5.[x-2-a-1x-2-a-2, 289067]]
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[6,] 300580, 300582, 300584]]
[7.]_300608,_ 300610, _300612]]
[8,] 300638, 300640, 300642]]
19.[xt-3-a-1,_300672,_300674]]
[10,(x-3-a-1,_302673,_302675]]

The FU list is :
mac

macl

[lreg-1,w-1-a-1-2-a-1,w-1-a-2-2-a-1 free,w-2-a-1-3-a-1,w-2-a-2-3-a-
! free] 300882]

in

[1.[xreg-1,wreg-1]]
[2,[xreg-2,wreg-2]]
[5.]xtreg-1,creg-1]]
[6,[xreg-5,wreg-5]]
[7.[xreg-6,wreg-6]]
[10,[xtreg-3,creg-3]]

out

[4.xt-2-a-1]

[Sx-2-a-1]

[9.xt-3-a-1]

[10.x-3-a-1]
[1.2,3,6,7,8,11] 302617]

mac

mac2
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[lreg-1,w-1-a-1-2-a-2 w-1-a-2-2-a-2 free] 287493
in

[1,[xreg-3,wreg-3]]
(2,[xreg-4,wreg-4]]
[5.xtreg-2,creg-2]]

out

[4xt-2-a-2]
[Sx-2-a-2]
[1,2,3,6/ 290300]

3.2. Corresponding VHDL microcode
use work. Types.all ;
entity MICROCODE is

port (clk : in bit;
cycle: ininteger,;
RD: out microcode_rd;
WR: out microcode_wr),;
end MICROCODE;

architecture MICROCODE _arch of MICROCODE is

-- read word =[...[reg-file-id, FU-id, Input-latch] reg-file-index,...|
-- write word=[...[reg-file-id FU-id Input-latch/...]

begin

process(cik)

begin

ifclk="1" then

case cycle + 1 is
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when 1 => RD <=

((RF1,MACI12,1)2(RF2,MACI1,2),]1 (RF3,MAC2,2), MULT ACIMULT _ACl);

when2 => RD <=

((RFI.MAC12,1),1,(RF2,MAC1,2),2(RF3,MAC2,2),2 MULT AC2,MULT _AC2);

when 3 => RD <=
((NONE,NONE,1),l (NONE,NONE,I),1 (NONE,NONE,I),l NONE,NONE);
when4 => RD <=

((NONE,NONE,I),1 (NONE,NONE,1),1 (NONE,NONE,I1),]1 NONE,NONE);
when 5 => RD <=

((RFIMACI,1),3,(RF2MACI2,2),3,(RF3,MAC2,1),3, THRESH, THRESH );
when 6 => RD <=

((RFIMACI,1),3(NONE,NONE,1),1 (RF3,MAC1,2)4MULT ACINONE);
when7 => RD <=

((NONE,NONE,1),1,(RF2,MAC1,1)4,(RF3,MAC1,2),5, MULT AC2,NONE);
when 8 => RD <=

((NONE,NONE,1),1 (NONE,NONE,1),1 (NONE,NONE,1),1 NONE,NONE),
when 9 => RD <=

((NONE,NONE, 1), (NONE ,NONE,1),1 (NONE,NONE,I),1 NONE,NONE),;
when 10 => RD <=

((NONE,NCNE,1),1 (RF2,MAC1,1)4 (RF3,MAC1,2),6, THRESH,NONE);
when others => null;

end case,

elsif clk="0" then

case cycle is

when 1 => WR <=

((NONE,NONE),4 (NONE,NONE),5 (NONE,NONE),5);
when 2 => WR <=

((NONE,NONE),4 ,(NONE,NONE),5 (NONE,NONE),5);
when 3 => WR <=

((NONE,NONE)4,(NONE,NONE),5 (NONENONE),5);
when 4 =>WR <=
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((RF1,MAC2),3,(NONENONE),5 (RF3.MAC1).3);
when 5 => WR <=
((RF1,MAC1),3(RF2,MAC2),4,(NONE.NONE),1);
when 6 => WR <=

((NONE,NONE) 4 (NONE,NONE),5 (NONE,NONE).S );

when 7 => WR <=

((NONE,NONE)4,(NONE,NONE),5 (NONENONE),5 );

when 8 => WR <=

((NONE,NONE)4 (NONE,NONE),5 (NONENONE),5 ),

when 9 => WR <=

((NONE,NONE)4,(RF2MAC1 )4,(NONE,NONE),S);
when 10 => WR <=

((NONE,NONE)4 (RF2,MAC1)4,(NONE,NONE),5);
when others => null;

end case,

end if;

end process;

end MICROCODE _arch,

3.3. Simulation results

The following are the simulation results for the XOR for the inputs, ‘00’, ‘0 1” and

‘1 1’ obtained through the Valid Software VHDL interface. The case for ‘10" inputs is

shown in chapter 7.
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