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ABSTRACT P B

ANALYSIS OF PERFORATED WALLS AND TUBE-TYPE ‘
TALL BUILDING STRUCTURES

bl

Osama El-Sayed El-Moselhi, D.Eng.,-
Concordia Unlver31ty, 1978

-

An efflcrent technique for the analysis of perforat-'

‘ ed walls and tube-type tall bulldlng structures is present-

'

ed. The method is based on replacing the dlscrete Béam-

. column system and any band of 11nte1 beams by.an elasti- .

!

cally equlvalent orthotroplc membrane. The %gulvalent

.structure 1s then analyzed for the dlsplacements and

' Stresses. From the condltlon of elastic equlvalence, the

1

dlsplacements dlrectly represent those of the actual struc-

*

ture and the member 1nternal forces are obtalned by 1nte—_

gratlng the correspondlng stress components.

-
)

-
i

Reflned expre551ons for the’ elastlc Properties of

¢
the equlvalent membrane are developed taking into account

.bendlng and shear deformatlons of members, ‘axial deforma~
_tlons in columns, flexrbrlzty of*finite smze jOlntS, and

'the reductlon of member stiffness due to axial 1oads

-

-~

Two speczally orthotroplc flnlte elements are ’

developed for the efficient modelllng of the equlvalent -

'membrane by maklng userof the assumptron of 1nf1n1te in- .

plane figldlty of floors. ‘The element may span over

L
A



‘,'éeveral‘baye and stories of uniform proéerties;
[ . . : . ‘ -.“' ) .
A computer program is wrltten, 1ncorporat1ng the "
theoretlcal developments presented in thls the51s, w1th )
the capablllty for the analysms of most of the exlstlng : ’”:,”
" two and. thrhe-dlmen51onal structural systems for tall

L]

bulldlngs

»

Closed~form | .solutions are also developed for planar

unlformly perforated walls under th actlon of unlform

ment of de51gn curves and *a complete reduction technique,
but also the determlnatlon of the" characterigstic parameters
controlling the behavior of such structures. These para- |
meters are of particular importance to an efficient imple;
-mentation of the present method.

A number of representatlve two and three-dlmen31on—
al structures- con51st1;; of frames, walls and-coupled shear
walls are analyzed. The results are in very close agree-
"ment W1th those obtained by the "exact" and other 51mp11f1ed.
methods. - The Present method, 'however, requlres only a
fraction of the computer time and storage requlred by the
others In v1ew of the accuracy, efflﬁlency, 51mpllc1ty
and flexibility offere by the present technique, it ig bellev-
ed that the method ‘ls not only suitable for routine offlce
de31gn but also gives a new viewpoint where the art1f1c1al

class;flcatlon of structural systems for tall buildings

can be removed. ) g
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NOTATIONS

a, b, ¢, VDimeneioné of the elements
A Cross-sectional area
o Am An Bm m Coefficients used in determlnlng the
m elastic properties of the equivalent.
membrane
A, ) Reduced (effectlve) area ‘of beam
cross—sectlon
B - ‘Bay width ,
c Carry-over factor
o Cx, c._, ¢C Coefficients used -in determinlng the
: Xy ,Y elastic propertles of the equlvalent
membrane )
'd Depth of llntel bean, half-w1dth of ~
, perforated wall tow .
"‘:'. ’ . . ‘-""h' .
{a} . Displacement vector
db Depth of beam
dc Depth of column -
- D The total width of a perforated wall,
perpendicular dlstance between the z~axis
and a facade - .
- [E] - Elasticity matrix
E, G Elastic moduli of the materlal of the
actual structure
Ex' E._, Gx Elastic moduli of the eQuivalent ortho- .
Y ¥ tropic membrane .
F, p' Shear lag functions .
. - ,
ny ~ Modified shear modulus of eguivalent

orthotropic membrane to account(for
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CHAPTER I -

v INTRODUCTION - o : S

1.1 GENERAL

v
Lo
3

~

N ‘

From time immemorial tall structures, as a symbol of
greatness, have attractéd and challenged the abilities of
man; A good example is the great Egyptian’ pyramld of Che0ps

built by King 2,900 B C. at a helght of 481 ft

L) -

" which is-equivalent td a modern 50—storey bulldlng. ‘Thé

basic constructlon materials used 1n these early tall struc-

tures were masonry and tlmber, nelther of Wthh ‘had

qualltles that were.best’ sulted to the constructlon of build-

*

lngs hav1ng more than a few sterres. -
& : :

The socio-ecohomic problems thatacame with industriali-

zation of the 19$E,century and ‘the insatiable need for space

-~

. iln the cities gave the big impetus towards hiéh—riSe construc-

tion. The’ invention of elevators, the use of hlgh“strength

materials together with the lntroductlon of the beam-column
'framlng system by the Chicago School of Archltecture hrought

 the flrst major change to the scale of urban centres. The

é;iler six to elght storey bulldlngs were replaced by 20 to
r
30 storey bulldlngs,and this trepd undoubtedly reached its

peak w1th the construction of the Empire State Bulldlng.

After 1930, because.of.the depression years and later

the Second World War, there was not mucH activity in the

" building construction. In the '50's, the fast growing 'indus-

"

IS YT =N



tgial development and the reSulting economic prosperity pro- -
duced new demands for more space in the urban centres. Land

™

prices began climbing, dlctatlng vertical rather than horlzon-

¥

tal expanglon. At this time the shear wall system was 1ntrof

duced at}owmng economic constructlon of concrete bulldlngs
up to 3gﬁstor1es high. “?- - i
. Ever since the early sixtieét the need tor;taller
bull%%ngs has been steadlly growing. This;neoessitated the
development of new structural systems [38, 53, 63 to 66, 68 69
70, 72, 99] aimed at achieving ultlmately what isg. referred
P to'as premlum—free bulldlng" by keeplng wind stresses
 below the alloWable 333 overstress [69]. These systems
utilize the idteraction among the different planar systems
.(e.gf, frame-shear wall system).or recognize the actualmthree-
dioensional behavior of buildings (e.g.’tube—typeotall build-
ing structures.) 1In particdiar, the framed tube (also known
as the perforated tubé)rintroducéd by Khan [67, 68] .(for the
desigﬁ of the 43-storey Dewitt Chestnut Apartment Building
' in Chicago) in 1963 has proven. to be a very efficient struc-
tural system [8, 58, 83, 90, 99]. Further studies’ [56,66]
revealed that the. concept of perforated tuoe could effect
economic galns not only for ggsutadlest bulldlngs'but also
for buildings with as few as. twenty stories. A brief des-
cription of the system and its- behavioral charaotefdstics‘is

. outlined in the following section.

~

e

\



1.2 FRAMED TUBE SYSTEM.

s ) ' ‘ N

A typical framed tube system is shown in-Fig. 1.1
where closely spaced columns are tied at each fioor level
by deep spandrel beams Producing a number of frames with’
relatively deep members (perforated walls) around the peri-
phery of the bulldlng which could be of arbltrary shape' [ 34, .
59] or rectangular as most often found This structural,
arrangement is a logical extension of the shear wall frame
system, since it is well known that the frame eff1c1ency
in resisting lateral loads results from deeper- members and

‘shorter spans.

The center-to-center spac1ng of columns of a framed .
tube generally varies from 4 ft to 10 £t although the Struc-
tural efficiency is not srqnlflcantly reduced for spacrng
up to 15 ft. Typlcal widths of columns or depths of spand -
rel beams vary from 2- ft to 5 £t depending on the structural
requirements and the extent of the glazed area on the facades
[58,67]. The facades of the bulldlng act as bearlng walls
. which ,because of windows ,appear as a rerforated tube ThlS
'eff1c1ent form of facades (perforated walls) which: are also
known as wall- frame structures [61], comblne the characterls-
tic behavior of both frames -and walls. Modelllng of such
structures for the purpose of analysis becomes complicated,
since the use of an ordinary frame or a frame with rlgld arms

will result in underestlmatlon and overestlmatron of

the rigidity of the structure respectlvely. The finite element
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.

method, on .the other Hand, requires a large number of

-
[N
'

unknowns to yield a reasonable degree of accuracy. An o

assemblyfof these perforated walls forming a tube-type tall

Lil TR AT N

puilding structure, obviously,'precludes the use of the finite

element technigue foxr design.

Approximate T methods of analysis ,[1, 12, 32, 59, 67]
of framed tube systems are based on recognizing its behavior
as a combination of the cantilever bending mode ard the usual
" frame shear deformation mode. Cconsidering, for example,
. the ffamed tube shown in Fig. l.l, the OVerturning moment
due to lateral forces 1s resmsted by ‘the entire three-dimen—
sional tube form giving rise to compressive and tensile force;J’/”"
in the columns. In addition to this cantilever benclng mode,
the two facades parallel to the lateral loeds undergo the
shear mode-deformatlon by bendirnig of beams and columns. In ‘ -
contrast with the pure bending behavior of an ideal tube
which exhlblts linear variation of axial forces (Flg; 1.1ib) .-
the, flexibility of spandrel beams results in the so—called
"shear lag" in all facades whlch tends to increase the axial
forces of columns near the corners and decrease those in the

central region.

1.3 SCOPE AND OBJECTIVES

The primary objectlve of this the51s is to develop
an efficient technique for -the elastic analysis of framed
tube structures. The technlque is intended to be general

and flexible-enough for the analysis of most existing planar



and tubular structural systems for tall buildings. fhese.
systems may includeZmuléi-storey,multi-bay frames haviné.a
wide range of aspect ratios and stiffnesses, couplea.shear
walls, gléd frames, planar and tubular struc£ures consisting
of frame aﬁ%/shear wall aésembliés, and core-supported

structures.

&

The analysis technique is baéed on replacing the disg-
c;ete geam-column planar‘system and any band of lintel beams,
by an elastically equivalent orthotropic membrane, which is
then analyzed by thezfinite element method: Computational
efficiency is achieved by a drastic reduction 6£ the number
vf degrees of freedom expressing the deformations of the
structure. - Since each element in the iéealized structure '
ﬁay span over several stories and bays of the actual struc-

ture, it is appropriate to term the present technique as "The

Equivalent Orthotropic Macroelement Method."

The present work covgrsrboth the static ana stability
analyses of a l;rge variety of planar and tubular structural
systems for tall buildings;.thus it seems 'to be‘appfopriate
to review the 1iterature for each'topic when it is first
discussed. Nevertheless, it is nﬁted that the work of
DeClercqg [ 34] is siTilar to the present'study in that both
approacﬁes can_be'regarded as an.extended version of the
usu%; finite element method on a macro scale where a single
element may span several beams' and colﬁmns. However, the

“present method digresses from DeClercq's in several aspects



-

that will be disqussea in detail at a later stage.
"N
1.4 GENERAL ASSUMPTIONS (/'

r "
-

In addition ﬁo the specific assumptions which will be

3 .
given later in connection with the specific topics treated

in this work, the following are ‘the main general assumptions |

in the present work.
\

(1) The material is. isotropic, homogeneous and linearly
. elastic. '
(2) The frame members form an orthogonal grid syste$,

and the connections. among the members are rigid.
. , -

:

{(3) The floor diaphragms are infinitely rigid in their
own planes. This assumption is generally accepted
for the "exact™ analysis’ of tall building struc-

tures [llQJ.‘ T L2

(4) OQut-of-plane deformations of frames and walls can
- |
be neglected. The effect of these deformationa has

been shown to be negligible. [12, 36, 44, 110, 128].

-

1.5 ORGANIZATION OF THE®THESIS

+

Chapter II of the thesis deals wiﬁﬁ the evaluation
of the elastic propertieé-éf the equivalent membranes. The .
effect qf bending and shear deformations, axial deformation
in columns, and flexibility of finite size joinfs, are.taken

into account. These elastic properties are further modified



K]

to allow for second-order (stability) analysis.

-

Because an understanding of the behavior of the

- entire structure is crucial to the application of the equiva-

lent orthotropic macroelepent'method, Chapter ITII concentrates
on the behavior of planar perforated walls and the identifi-
cation of its characteristic parameters. Closed-form solu-

tlcns of a 31mp1e planar system are derlved and design curves

- are also developed. A typlcal 20-storey wall frame structure

-

is anélyzed and the results'are compared to those obtained

by a detailed finite element and other simplified method%.
| .
|

Applications to frame and shear wall struc¢tures are also

presented.
Q

In Chapter IV, a finite element model for the analysis
of planar systems is develcped. Example analy51s of a 52-

storey frame is carried out and the results are ccmpared to

.those obtained by the "exact" and other 51mp11£1ed methods.‘

The validity of the assumption of ibfinite in-plane floor |

g

-

stiffness is also examined.

Chaéter V presents two specially ctthotropic rectangu-

lar finite elements specifically developed to incorporate

the above assumption with a view to improving computational .

- efficiency. The first is an ordinary element with four-

¢

corner nodeshand six degrees of freedom. The second is an
eight-node refined element with nine degreec-of freedom.
Vacious applications to'picnar systems are given to demop-
strate the flexibility and ef#iciency“of‘thé method.

f



Formulation of the theory for application to three-

dimensional structures ig presented in Chapter VI.

Chapter VII is designed to demonstrate the practi- ' g
cal appllcatlons of the present method and to lllustrate its

accuracy when applled for the analy513 of tube-type tall

'. building structures. A number of numerical examples repre-

gsenting both framed tube and core-supported structures are
considered.: The results are compared to those available in

the literature. l © ' A

Finally, the conclusions and recommendations for

s —

further studies in this area are preseﬁted in Chapter VIII.
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CHAPTER IT

EQUIVALENT ORTHOTROPIC MEMBRANE
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CHAPTER II

EQUIVALENT ORTHOTROPIC MEMBRANE

"2.1 INTRODUCTION .

The idea of replacing a coﬁplex, highly redundant,
discrete system by an elastically equivalent continuum is
-not new. It'was first applied for analyeis of ehip and air-
craft structures [116]. Slnce then, it has neen employed
for the analysis of bridges [115], Shells ['40], and space
roof trusses [ 39]. Ih‘the early 1960'5, the elastic equiva-
lent concept has been employed for the analy51s of coupled

shear wall structures [7,91]‘ and recently to the analysis

of tall building f:ame—type structurea [6;32,61]L

-

Con51der1ng the appllcatlon of this concept to
conpled shear walls, 1t-1s commonly Shown in the literature
that the replacement of a band of llntel beams by an equ;va—

. lent continuum (Fig. 2.1) is due to Beck [7] “and Rosman -
[91,to 98 ]. However, the problem hds been prev1ously con-
sidered by Vlasov (1191, in his- theory on thin-walled elastic
beams, where the closely—spaced strlp braces of a thln-wall-
ed beam are replaced by an elastlcally equlvalent orthotrop-
ic membrane (Fig. 2.2). In this case, the orthotropy
manifests itself by the gembrane oeing only able to sustain

-shear Stresses and not tensile stresses. '

A

The - elastlc equ1valent concept was lntroduced at a

later stage for the analy515 of frame—type structures. ;In
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1971, Bazant and Christensen [ 6] modelled rPlanar multi-

storey, multi-bay rigid frames by a. special micropolar equiva—

-~

lent continuum. The resulting differential equations were
solved by the finite differénce method. Four years later,
the equivalentlorthotrcpic membrane technique wds introduced
‘by Coull and Bose [ 32] for the analysis of framed tube struc-
tures where closed-%orm solutions were derived for the ortho-
‘tropic tube by employing an energy principle in conjunctlon
with some assumed stress functlons. But before any further
.elaboratlon on thlS technique, it Seems more appropriate to
consider first liigge's model [40] fcr gridwork s8hells.
Tnegactual shell was repiaced by an orthotropic sclid one.
Elastic properties of the equivalent ccntinuum were evaluat-

ed ccnsidering Iine grid elements,as shown.in Fig; 2.3, and

cnly bending deformatlons were accounted for. Tnié model

was later adopted by Coull and Base [32] for the analysis of~
framed tube structures. Inflnltely rlgld arms were intro-
duced to model finite size jOlntS, as, shown 1n Flg. 2.4,
Although framed tube structures consist of closely spaced
columns connected by deep spandrel beéms (8,58,67,83,90,99 ],
shear deformations were neglected in evaluating the equiva-
lent shear mcdulus and effect of finite size joints was —.
completely ignored in evaiuating the equivalent elastic
mcduius. Thus, the shear modulus was overestimated angd the

elastic modulus was underestimated [85].

In 1976, Khan and Stafford-smith [61] presented a

simplified method for the analysis of wall-frame structures



.. : | N -.” C . o | ':;2
{also known as perfora%ed Walls) The actual structure was

replaced by an equlvalent isotropic SOlld wall. Stresses in

" the equlvalent wall were evaluated by the englneerlng beam

theory and internal forces 1n the actual structure were de-

.termaned using specially defined stress concentratlon factors.,

 The extensronal and shear, moduli of elast1c1ty of the equiva-

lent wall were derlved from both . the, strength of materials.
approach’ and plane stress flnlte element ideallzatlon of the
models shown in Fig. 2.5. In the strength of .material
approach only shear deformatlons were considered in evaluat-
ing the shear modulus. and ,furthermore, the beam was assumed
to elongate unlformly along 1ts depth in evaluatmng the ex-
tensional elastic modulus, Therefore,.both moduli, especial—-

ly the shear modulus, were overestimated. On the other'hand,

the finite element models (Figs. 2 5.2(c) and 2.5. 3(c)), due to’

their dlscretlzatlon.and the. 1mposed boundary condltlons,

_are suitable only for relatlvely deep members. This may

};

account for the apprecrable loss of accuracy when the’ column
depth/bay width and the beam depth/storey height ratios are

each less than 0.25. : /
- / *

With respect to the P-A effect, the analysis of !

{
framed structures may be grouped 1nto several categorles-

f -7

_(1) approx1mate nethods for the overall stablllty of the

T /

_____—_
ucture, generally“baseﬂ on an equivalent cantllever

approach [41 57,73,98 ,126] (2) simple modification of the
results of ‘first order/analysls {8,15,42,55,75 76]. (3) nega-

tlve bracing member method [ﬁ?] in which a flctltlous diagon-

-

5
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al brace, of negatiVe drea, id.introduced at each storey

enabllng a dlrect solutlon for the second—order deflections - -

[

and moments by means of a standard first-order structural
! .

anai&sis program; (4) lteratlve P-4 methods L2, 74] and
flnally, (5)"WExact" methods based on the. matrlx formula—

tion of the displacement method of analysrs whlch dbuld in-"

.

clude the éffects of the deflected shape of ‘the structure

and the reduction in. member stiffnéss due to the axial

. . - ) - - ) ’
loads-(48,120]: - <
The methods in the Second group are approximate but

sufflcleptly accurate for all practlcal purposes as recently

demonstrated by MacGregor [(76] and Cheong—51at-Moy [15] for

s

" concrete and steel framed structures, respectlvely. Qne

L]

may note that these methods lgnore the fact that axlal 1oads

tend to reduce the column stlffness, Whlch may in a severe

case substantlally increase moments in the columns and,de—

crease those in the beams. The: equlvalent micropolar contln—'

‘uum as advanced by Bazant and Chrlstensen [6] allows for an-

e
lteratlve stablllty analysis of slender multl—bay, multl—

storey planar frames. Despite the attractlveness of the
underlying goncept, ‘the use of micropolar rather than the
conventlonal elastlc propertles compllcates the subsequent
analy51s to the .extent that the complexlty of the original

problem is not likely to be significantly-reduced [126].
. - -

il

.

Slnce the accuracy ‘of the solutlons based on the

elastlc equlvalent concept depends to a great extent on tﬂe

elastlc propertles of ‘the equlvalent .continuum, the primary .’

b

i
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concern in thlS chapter is to develop refined expre551ons of

these elastlc propertles for two partldular groups of struc—

tural systems

f-;“:“-: “ * @" ' B | "

w

‘,' N ‘l'-.~', . ) ' ’ _3’ .
(1y" Coupled shear Wwalls a core-supported structures,

where the lintel heams are to be-reefesented'by an ‘
equivalent orthotropic membrane. - o

oo ' L) 9 N -
(2 Planar and tubular structures]composed of orthogdn—

al grld systems in which:- the members areﬁnot“onlyore-

'presentatlve ofthose in’ perforated wdlls. but also

those in multl—storey multl-bay slender frames at
. ; 2

' one.extreme and completely solld ralls at the other
‘mextreme. Expresszons for- the propertles of the

equlvalent membrane are further extended to allow
o for‘the stablllty anal;:esgof these structures

including the Toss oflcgiumn stlfgness due to hlgh

'+ . - axial forces. - Ce -
D - /,. ! - . g

N

S ]
E

2 2  ORTHOTROPIC MEMBRANE FOR COUPLING o .
" LINTEL BEAMS : :

R . B
o : @ : e
Lintel beams connecting planar or three-dimensional,

assembly of shear walls'are replacea by &h elastibally equiva=-~

1 —_

lent orthotroplc membrane as shown in Elg. 2, 6- Bqth bending-

and .shear deformatlons of tgé connectlng beams are conSLdered

in evaluatmng the shear modulus of the membrane, thus allow—
C p‘

ing for‘modelllng of a w1de range of{cbupl;ng elements (1.e.,

. - . . R & . . *

¥
-

'S
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from slabs to relatively deep lintel beams.)

X
From the deflected shape of coupled shear walls under

the action of lateral loads, points of contraflexure can be

assumed to be in the mid-span of the coupling beams. This

assumption is also employed in the continucus connecfion tech-

- nquE’ [5 7,9,10 19 -27,29,30,31, 51, 59 91 to 98, 102, 03

105,117]. Con51derlng now one half of the coupling beam as

. shown in  Fig. 2. G(a), the maximum deflectlon due to both bend-

ing and shear deformatlons ;s -

' 3 | ‘ . {L
gL . __0f L (2.1) b

&, = T34ET) (ZGE))

in which

l Q = applied shear

2 = span of lintel beam

E,G = elastic moduli of the lintel beam
material
I,Ar = moment «of inertia and the reduced {effective) -

area of the beam cross-section e

Equation (2.1) is obtained by a direct application of the
method of virtual work. Equating the maximum deflection of
half the beam, Eq. (2.1), to the shear deflection of

the equivalent~oithotropic membrane (Fig. 2.6(b)), i.e.,

Cearm ey



m - (2tHG (2.2)

.in which -

t = thickness of the membrane
H = storey height
G = shear modulus of the equivalent

orthotropic membrane

yields the fbllowing-expreésion for the shear modulus

E . SN
G, = —Hi (2.3) -
AR, 1 E ‘ '
- . 121 Ar G

For a rectangulér qoupling'beqm having a thickness
t and a depth d, the shear modulus ny‘ can fu;ther'ﬁé

expressed. as '

- a |
E(3) . .
- H . . .
G = .z . (2.4)
-f(a) + 1-2(6)Jt

~»

2.3 ORTHOTROPIC MEMBRANE FOR PLANAR
GRIDWORK SYSTEMS ‘ -

-

In replacing the perforated“wall or planar gridwork

!
system by an elastlcally equlvalent ortzéffgglc membrane,
' H

and = of

it is necessary that the perforation ratios % I

the structure be small [116],
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where Lo

B = bay width

H = storey height

D and L = width and height of the strugture,.
respectively.
| -
Typical values for % and %ﬁ'infthe.existing structures
1 1 1 1

[8,67,83,90] are from (_Tﬁ to —fﬁ)' and o—?a to Iﬁﬁq

. : . l .
respectively which fall within the range for the applica-

bility of the elastic equivalence_concept as will be shown

in later chapters.

In addition to tﬁé:?beve—:estxigtion and the general
- N o

assumptions in Section 1.4, it is further assumed, that_,

s

member properties, storey heights, and bay widths are.éach
constant either throughout the building or at least within

a macroelemént. This will soon become apparent in the
formulatiah given laﬁer in Chapters III to V. .This is not,
© as it may first appear, a severe-limitation. For-thé
reasons of ecdnomy, fast and. easy construcfion, it is common
infkhe ﬁesign of'tall buildings to repeat member sizes and
pProperties over large partstgf a ;tructure [34767;83,90]
which in typical concrete [{90] and steel [83] framed tube
structures,_covers the Qhole Structure. In other practical
examples {67] member sizes and properties were kept cdhsfant

over from 5 to 15 stories along the height of the structure.

In general, this assumption characterizes macroelement tech-
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niqnes [34].

UnAer the action of laterai‘(in-plane) forces, the
members of an orthogonal grid system would bend in double
:curvature with the 1nf1ectlon points approximately at mid-
spans.of the members. , This has also been assumed by\
Flugge [40], COull and Bose [32], Khan [59], and Khan and
Stafford-Smlth [61] in evaluatlng the elastic properties o~
of their dlfferent equlvalent continuums. In most
_other Slmpllfled methods which are not based on the
elastic equivalent concept §3,4,;2,l3}14p52{67:106] such an

assumption is also introduced.

Consider a unit or a segment of the grid system

bounded by féur"adjacent inflection points (Figs. 2.7(a)
.and 2.8(a)). It is proposed that such a unit be replaced by
a solid orthotropic membrane spanning the Same area. The
elastic properties of the membrane are derived nased on the
condition that nnder staticall§ equivalent external force

-

systems, both the actual grld and membrane units develop
|

the same characterlstlc deformatlons. Since the boundaries
of the grid unit consist of four inflection points, the

only forces applied are of axial and shear types as shown in
Figs. 2.7 and 2.8. ~ The corresponding characterlstlc deforma-

|

tions are then the axial and lateral displacements of the

3 N

units. These two deformatlon models will furnlsh enough
equatlons for the determinati n. of the elastlc properties of

the equlvalent membrane. For application to a wide range of

e

e
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member sizes, ‘these expressions would have to account.for.
the flexibility of the finite size joints and axial deforma-
tion of columns in addition to the usual bending and shear

deformations in the members [ 84, 85].

2.3.1 Moduli of "Elasticity E and E

B

Considering the wall-frame unit (Fig. 2.7) under the

!

action of an axial force P, the deformations in Parts 1 and

3 aré:
) P(H—db) -
Al = Ag = W . (2.5)
in which

H = stofeyaheight .
db = beam depth

dc = column depth

tc = column thickness

E = elastic modulus of the material of the
actual structure
The deformation in Part 2 is not uniform as in
Parts 1 and 3. 1Its averagq{:ilue along the column_depth is

obtained by integrating the strain in the y-direction as

fcllows
1 3 db/2 (0. -uo_ )
A, = = % 2 f X__X8 3, (2,6)
' 3 n=1 0 E

L et e e et Y



The streéses-in‘Eq. (2.6) are given by Timoshenko [ 114] as:

o . P
g, = + E [(B +C Jcosh 2ay -
Yy th Trtbdc m=1 A

-~ Dy sinh 2ay]Ah' _ ‘o (2.7}
_  -4P N
o, = 3 2 A [(B -C )cosh 2ay - S
x " TS ey
- Dy sinh Zay]An ' (2.8)
in which
sinh ad
A = ‘ c

m m{sinh 2adb + Zmdb)

Bm = adb cosh adb

Cy =-sinh uéb o WS
D =‘2u sinh‘adb; and & = mn/B

A = cos{adc(Z—n)/Z}

Equation (2.6) then gives

P i 3 = A :
Ay = EBdb 8e3 DI An _ﬁ 'sinh?® ad {2.10)
tb m2Et d_ > n=1 m=1 . b -

Wl

.
+
-
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By equating A, + b, + A3 to the deformation in the eguiva-

lent membrane (shown by the dotted line in Fig. 2.7(a)) g

_ PH '
m  tBE ) . (2.11)

in which

+ = thickness of the mémbrane

the equivalent elastic modulus ‘Ey is obtained as

' Et 4,
E, = €50, (2.12)

in which

B = bay width »
and Cy is deffned by

t d 3 © A
c =1 - _;E + S dgH? + 8B % 3 I An—JE sinh? od,]
Y Y w2H n=1 n=1 \

(2.13)

r

Tt can be seen from Eq. {2.13) that for structures .

having slender members the factor Ci approaches unity,

and for those having deep, beams and wide dolumns the factor

could be significantly'less'than one.
The elastic modulus' Eg"can be derived in a similar

manner as

’_._,_._A.‘.._-.d

PR ——



in which
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THC : ' (2.14)

t, and d. = thickness and depth of beam,

'respectively

b

and C_ is defined by

X

L]

-~

d., & -4 ' 3 = K , :
c =1—%+;b-[§§b-+ 2 Tz I K, -t sinh? Bd_]
x c T T8 “n=1 m=1 B -
. (2.15)
in which
AKn.= COS{Bdb(Z—n)/Z} |
K = sinh 84, (2.16)
m  m{sinh 28 d, + 2B dc) ‘ ' ne
B = mw/H -

Except in the‘next)éhapter, where the effect of the elastic

modulus E
, X

on the analysis is examined, Ex

is ' assigned

an infinite value throughout the theoretical developments

presented in this thesis.

the acceptable assumption

The latter case. corresponds to ..t

[110] of infinite in-plane

rigidity of floors in tall building analysi‘!' In such a case,

Poisson's ratios

-

Qx

and

uy of th% mémbrane which are

S
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relatéd to its elastic moduli Ex and E by [ 116]

WE = pE (2.17)

are, therefore, assigned zero values.

2.3.2 Shear Modulus G
xY—

The grid unit is now subjected to a lateral force Q
as shown in.Fig.;Z,B. 'Thé laﬁeral deflection may be comput-
| ed as the sum of that due to bending, Ab,-énd due to
_ shear Av{ “”The\be;ding.deflectioﬁ can be obtained in the
. o :

form !

(H-4.)° . H(B-d )’

] (2.18).
b

A :-.QI.[ ©
b E .12H IC 12 B2 I

* in which

T, and.Ic = the moments of inertia of the beam’

% and column, respectively

The deflection. 4, 1is due to shear deformations in
the members Avm" and in the finite-size joint A;j:

A" QH H(B-dd) HTdb

= — +

vm. -G 2 .
- B Arb

(2.19)

in which .

e

(=5

Ay A?é = the reduced or effective shear areas

of the beams and columns respectively; and

—
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G = the shear modulus of the material of tl{e‘ actual

gtructure

Equations (2.18) and (2.19) are derived by a sﬁraightf

forward application of the method of éirtual work. Finaily,

the lateral deflection due to shear deformation of the joint,
A ., can be evaluated using the same method in conjunction

vy .o .
with a net shear force:

h | 2 o -
, Q =Q- —;ﬁ— j (2.20)

acting at the top and bottom edges of the jOlnt, in the same

and the opposmte dlrectlon of the lateral force Q. respectlvely

. in which
Mb maximum beam moment at»the column face’ Whlch

from simple stati¢s can be evaluated as

- (B"d ) -
o3 __¢
M, =05 —3 ozl
. 1 ‘ .
- In Eq. (2. 20) the bending moment in thelbeam is assumed

to be carrled by the flanges ot the -extreme fibers of

the beam croAs-sebtion. Applying the method of v1rtua1 work
over the length of the joint, db' yields

d. q, 2

Aiis - = giq LT ® T TH' L (2.22)
v )

in which



<

Arj = the cross-sectional area of the joint

Py

parallel to the écting force Q

1

The total lateral deflection, the sum of Egs. (2.18),
(2.19) and (2 22), is now equated to the shear deflectmon

of the equivalent membrane (shown by the dotted line in
Fig- (2. Ba) - . ' . =
_A N ¢ - S o (2.23)

m G _tB
Xy

- -and the equivalent shear modulus ;ny of the membrane is

. then . ' . ' ) /
[} . ‘E : h
G = - (2.24)
Xy tB ny
in which
3 3
_ (B- db) H(B -d. ) E H(B—dc)
CXY - 12HI .+ G C 2 +
cC 12BZ Ib. B Arb
H—db a db
H C 2
+ o + 5 Al - —=— - =) °1 - (2.25)

2.4 CONSIDERATION OF SECOND-ORDER EFFECTS .

b4

_ Frame;tfpe etruogures when eubjected to combined
gravity and laterel loads are affectéd;significantly by the

-A moment [74] resultlng from grav1ty load action (P)
through the sway dlsqlacement or drlft (a) . In the elastlc

range this moment tends to increase both stresses and

Pt a'a B



26 o °

lateral deflection of the structure over those'evaiuated

without the consideration of.such effect. In tall building

pia
e

_structures with'a_large height-to—width ratio the increase :',?

(LM

in these stresses and. lateral deflection becomes relatively.

‘large [76].. : ‘ o .

" The need for the consideration oﬁ“the'PéA effect has -
been steadily 1ncreas;ng Wlth the use of hlgh strength
materlals and the 1ntroductlon of new hlghly efficient

structural systems for tall buildings wh%ch resulted in a

-slender structure [38,57,74.76]. ' ' . .

In this‘seétion, both the ?roperties ef the eéuinalent
membrane developed in the previous section and the acting
,'lateral‘lded, Q,ate mddified;to include both the reduction
‘of member stiffness due to'axiallloads and the P-A effect;.

respectively. ' - -

-

Considering the'frame segment or.unit ehown in.Fig.2.9a
under the combined actlon of axxal ¢(P) and lateral’(Ql)
loads{ the lateral deflectlon at the top can be evaluated by
the'dlsplaqement method of anaLy51su The stlffness matrix
corresnonding;to'the two'rotational'degrees of freedom at
the ends. i -and .j of a Column menber eubjected to -com~

pressive force P is [120]

-



pra— ,t T
| 1 %1 Sig| .
[s] = 1. - " (2.26)
" syt Sas S
Lf:l 33 s

* B
N - ( om0 . B B
- - _ a(sina-occosg) . 3 ,
v o Sii;“j?jj ~ (2-2cosc-asina)}, X (2.27)
_ _ a{o-sina) - EI
Sij =544 - {2-2cosc-osinog) 2 (ija)
S
where G .
- £ = member iength'
I = moment of inertia - id
' o' » ' ,‘
and o 1is defined as
¢ T ) .
o = &YP/EL . {2.29)
" For. small values of a, the expressions for §,, .and
; ’ ii ¥ .
Si5 can be simplified [120] to
. ° ’ T
Ca . | .
ﬂ\) 5, - 4 (l-a°/10) EI _ S (2.30)
. (1-a?/15) : :
VR . .
e ' 2 ' '
. 5, = 2{1-a”/20) Bl , (2.31)
‘. J (1-a?/15) ‘

rs

' It can be seen that these stiffness coeﬁfidients.appfbabh

“their corresponding firstyorder values as . ¢’ approaches

R

A T
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v zero. .
. I .

When ‘the member is free to rotate at one end (Fig..

2.9b), ,the rotatlonal stlffness at the-other end s modl-

" lfled as’
. . . . , i Yy
* = ~C2 c >
- in which - - . | S S
L . . ) . . . ' 4) . . . o
S ‘ . C= éarry—over factor defined by‘the ratio
» .. | (8../5..).

ij’rid
"
. ;

The other stiffness coefficients in this c¢ase are

& CSu p -
Si11 == 821 = { ) - T S : (2-33f'
L 22 . - '
* -t
’ Sii . . , . . 4
T Saa ='(—E—9 _ - (2.39)

Using Eqs.,(2 32) to (2. 34) w1th the approprlate column

propertles, the force—dlsplacement relation 'for the frame

unlt ln Flg. (2,9¢c) can be derlved.as _ ' -~
andt ‘ _ . } _ . z
. , B
,Ql\ Ki: -K11 K13 *| Ba
0 b= |-ki1 2k 0 | {Dyp  (2.35)
o.f | Kax 0 K3 D3

: . ‘ . * ¢
", in which K_11 = 511, Ka:r = 831, K33 = 2833 +(5EIb/-Qr ). rand

. {p} and {Q} are the displacement vector and ltS corres-

ponding force vector, respeetlvely. Solv1ng the above set

. 9

L221
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of simultaneous equations yields the following expression

for the lateral deflection D,

D, = Q1 - S (2.36)
K2
[ K11 - (R'g'—;)]

&

'it should be noted that the defiection, Dy, ipcludes both
the réduction of member stiffnesses due-to axial.ioads and
the_additioﬁa; P-4 moméhts as diréctly'reflectqd in

.qu (2.33). 'To‘agcount for these twb effects in the case
6f the équivélent membrane,fthe‘sﬁeaf medulus GxY of the
membrane is reduced Fo G;y. and the lateral load Qi is
magnified:to Q% <rfespectively. The latter is obtained by
adding to the initialllate;al;lgad the following sﬁetically
“equivalent load .

PD,

c.

S - : AQ: = (2.37)

EQ: (2.37) is similar to the additional sway force recently

presented by MacGre§or and Hage [76]. The total magnified
R . R -
'lateral load can then be expressed as

. * ) - N .
- Ql = Q1 + AQI ' - (2:38) {

Upon equating the lateral defiection, D, of the frame unit
: s . - .
tg/thgt, Am' Qf the equivalent membrane



. Q* E -
A = —32 C - (2.39)
(ny t L)

the following expresSion for the modified shear modulus’
* ’ Ce
(ny) of the equivalent orthotropic membrane is obtained:

- 4 - T2 ’

* .. C _ (K31 P ,
Gy = (“ﬂ? {[4 klf =1+ 27:} (2.40)

By subst%tuting Eqs. (2.30) to (2.35) into Eg. (2.40) and

rearranging the terms, the shear modulus of a second-order
* ’ e

analysis, ny, can be expressed in terms of that of the

first-order analysis, ny,'as follows

(2.41)

in which

2

Iﬁ)
302

(1-%) 13

l_a

2
(1—%_,;) (

If %%f'can be ignored, then:,

I, L
+ —
x I

¥ X 305u)+( ;:__)

} (2.42)

30-7a?



31

Also, by substituting Egs.(2.30) to (2.37) into Eg.(2.38), -
* ‘ :

the modified lateral load, QI; can be expressed in terms of

the shear modulus of the first-order analysis, ny,'and‘the

initial lateral load, Qi, as follows:

Q" = Q.1 1 } (2.43)

Again, Eq. (2.43) is similar to the amplification factors
presented recently by MacGregor and Hage [76] and

Cheong-Siat-Moy= [ 15]. -
. hY

\



32

e

|_COUPLING
BEAMS -

]E]iDDDDDD

f.f/IV////)///////f/, re -, - -5r§. L |
la) ACTUAL® STRUTURE (b} EQUIVALENT STRUCTURE

FIG. 2.1 MODELLING OF COUPLED SHEAR WALL-BECK [7]

A a WY ] ‘lq ‘
:[r-rE! Ll uanm
| BATTEN [ . :
PLATE fsE ey _
: =h | EQUIVALENT
] . ORTHOTROPIC
i Al 7| PLATE
: e Hisushin .
L i -
Ll// ( it
1i{b

“la) ACTUAL STRUCTURE } EQUIVALENT STRUCTURE

FIG. 2.2 MODELLING OF BRACED THIN-WALLED ELASTIC
BEAM - VLASOV [119]
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" CHAPTER III

BEHAVIORAL CHARACTERISTICS OF PERFORATED
WALLS

3.1 INTRODUCTION

4

Since the work in this thesis is mainly confined to the
analysis of planar perforated walls and their three~dimensien-
al tubular assembly in tall building structures, this chapter
is mostly dedicated to the establishment of the behavioral

characteristics of planar perforated walls and the direct de-
termination*of the parameters which control their beﬁavior,
This, as will be shown later, providei'a good required back-.
ground for the efgdcient iﬁplementation of the equivalent 3
erthotr0pic macroelement method (developed in the next three |
chapters) which depends crucmally on the Englneer s percept— |

ion of the behavior of the structure.. '

Perforated walls (ng. 3.1(a)), also known es wall-'
frame structures KGij’ encompass, et one extreme; Elender
nulti-storey, multi-bay frames and at the other, splid canti-
~lever walls. Numerous techniques a£e avallable for the |
analysls of structures at elther end -of the spectrym, how-
ever structures in the_lntermedlate‘range have recelved con-
-siderably less attention. It has been shown [61] thaﬁ the
' analysis‘of theeé‘sﬁructures is complicated by their combin-

ing the characteristic behavior of. both frames and walls.

- SO P

[T N TSP . S,

P S S I N

oy
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-

While the exact’analysis of,this highly redundant
structure in the rntermediate range is practically imposs_
~ible, the finite element method " {FEM) is capable of provid-
ing a solutlon uith‘ss much accurecy as required. However, o
its use is not- economlcally feasrble, espec1ally for pre- ‘

. llmlnary desrgn. Modelllng of such structures, .on the other
hand, as plane frames w1th rrgld arms srmulatlng the flnlte

‘size joints has proven to be exces51vely stiff [61]

Khan and Stafford-Smith [Gi]- recently presented a
.‘~Slmpllfled method for the analysrs of these structures. It.
is based .on replacing the actual structure by an equlvalent
1sotrop1c solid wall, which is ‘then analysed by the Engln-

eering Beam theory. Internal forces in, the actual structure

— -

are calculated using spec1ally-def1ned stress concentration
. factors. But, as has been mentioned, the method is only
suitable for structures wrih helght/Wldth ratio greater than
.two and is limited to structures with relaF1Vely small w1ndow
| openings in whlch both the ratlos‘ beam depth/storey helght
and column depth/bay w1dth Have to be greater ‘than 0 25

In this chapter,'a simple hgnaémethou £6r the enelysis.
"of plsner perforated walls (wall-frame structures) under the. .
_ action of in-plane lateral loads is presented.. The perfor—
-_f\i\\‘ated wall is modelled by an elast;cally equlvalent ortho-

~ tropic.membrane (Fig. 3.1(B)) hav1ng the elastic properties
defined in the_previcus chap r; The %quivalent structure

‘is then ahalysed by using th principle of minimum total

.-
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complementary potential energy. Internal forces in the
"actual structure are obtained by dereet 1ntegrat10n of the
Sorresponding stress components inrthe equivalent'structure.
' The present met;od is capable of ana;ysgng'uniform wall- |
frame et:uctures,withoﬁ£ any direct limitations on the'eizes
of wiane‘openipgs and the Heiéht/width ratio of, the Btruc-
ture. i.e., it can be applied for the analysis of plane;
slender-multi-storef multi-bay frames and solid walls with
any height/width ratio, subjected to the limitations eutlin-

ed at the end of this chapter. ' . -
A : -

- M .
Closed—form solutlons and de51gn charts are also develop-
ed which enable (i) the 1dent1f1cat10n of the characterls-
tic parameters cehtrolling the behavior of planar perforated
walls under the actioh of lateral i@nds; éha (iij the ewvalua-
tlon of the effect of these parameters on the resp0n5e~(de-
3

flectlon mode type, and distribution of member lnternal

forces) of the structure.

. ’ . ' _. . “II ?'-.‘
3.2 THEORETICAL ANALYSIS"' ' v

The wall frame structure Ts first replaced by an eQulva-

lent orthotroplc membrane with the elastic propertles E %’ EY
and’ ny (Fig. 3.1(b)) besed on phe expressions deve&oPed ‘
earlier7in the previous chaptef. In the eubseéuehté%nalysis,
the elestic-mgduius E, i; assigned-an-infinige velﬁe in

h

correspondence with ‘the acceptable [110] " assumption of in-
finite in-plane rigidity of floors and consequently Poisson's

ratios, “ux and _uyf dre zero values as explained in the

v
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b P

previous chapter.

3.2.1 'Energy Formulation

The principle of minimum total complementary potential
energy [43] is répresqnted by ‘the equation |

o

Cia . TSt 4 IRA) =0 . . (3.1)-
in which e : - )
” . o N ‘ ‘ |
n* = complemenfary strain energy.‘ | '. B
fRd = work ddneé by the reactions .

.
N . ' - : A
£y , . '

Eor'the'cantilevér‘strEé;ufeIShown in Fig. 3.1(b),

'IRd = O .

- Therefore, equation'(B;l) becomes S

- b "

r

su* = 0 o (3.2)

-'Although the complementary strain energy u* 1is equal to
_.the strain energy u for linearly elastic structures, ﬁhe )
variation of the fér@er“should be with respect to the

stresses. ‘ o . . o

. . s

-

The general expréssion for strain energy in the case of
' 'a plane problen is

U= Y SIS0 (oge, + oot TN, )dx dy dz (;._3)

I



For orthotropic material,; Hooke's Law is:

SI ox . . ’
g = - u, = 2 (3.4)
Y By xE -
Y ='i‘Y-G ‘
T Sy ]

Substltutlng Equation (3.4)" lnto the strain energ; express-
ion, yields:.

g g M u
e R o 2 7x% +
' X Y X Y
. ‘ \TZ : o ‘
. +a§£z] dx dy dz - ¥ ' (3:5)

' For a plane stress state, the stresses are independent of

2z, therefore, Eq. (3.5) can be rewritten asg:

- g2 g2 u u : I
U=t/ Z2a Lo (X ¥y o4 4
R Ex EY Ex Ey Xy |
2 . /fg—\\i\;\ “
+ 4] ax gy S @)
‘ Xy, ' -

3.2.2 ggpiiibrium Conditions

The equlvalent orthotropic membrane (Fig. 3. l(b)), under

, the actlon of planar 1ateraﬁ loads 'is in plane stress state.
' A4

Stress components (Ux'cy’rxy) in this case should satisfy

!

o Fyin

e ne Do MV SN T

i b me Pl o ot o A A et e
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the following equilibrium conditions . (neglecting body
forces): . \

90 9T,
—é—'i‘ —§ﬂ=0 {3.7)
X Y

“\
1e; 9T LA ‘
3_1+—aﬂ=o . (3.8)°
v < ‘

3.2.3 Stress Components

Because'of the flexibility of the beams the axial forces
ltend to be hlgher i columns near the ends and lower in
those.ln the middle region: -when compared to the simple lin-
ear variation (Fig.3.2). This phencmenon, is termed “spear—-

lag" [12, 32 34 59, 67,681.

chaldering the above phenomenon and the anti-symmetri-

cal dlstrlbutlon of the normal stress *in the x-direction,

one may assume o, . in the form: -_f . y
N | - ¥.. Yy s ' 3
‘ Gx Fi ,M'I + F(d) ..(3'9.)

- -

in which I is the moment of inertia of'thé'equivalent

membrane E%Q— ; £t and 4. are the thickness and one-

.

' half the depth of the membrane, respectlvely (Flg 3.1(b));
and E1 and F are functlons of the x—coordlnate only,

expressing'the effect of the shear lag. f :

» - " \

The normal stress 0 has to satisfy, at any section of
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constant x, the following condition of the overall moment

equilibrium:. . <
d o . ,o
2¢ J o,y dy = M - . (3.10)
o X )
in which - 7
M = overturning moment due to the external
- forces LIRS _ ¢
Substituting (3.9) into (3.10), yields: ’
. .v R
pp=1-E2£& " (3.11)
S M5 AR
By subs;titut;ing Eq. (;.11) ‘ into Eq. (3.9}, dx. can be ex-
preé'Sed as © )
l T
My _3 Y e (3
U}F T 5 (d) F + (d)'- F o (3.12)
The shear stress LI be cbtained by integrating °
Eg. (3.7) and applying the boundary conditions "
1 =0aty=%*4d oy (3.3
xy . Yy = \ ‘. ( . )

The expression is b .

. i .
r = G (- (Rl ar [0 (7 -

- a.25 (D" - 0.057 | (3.14)

PR
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in which the prime denotes the first derivative with respect

!
-

to x. - ' ,‘ 4 ~e
Slmllarly, by substltutlng (3 14), into (3.8), and

con31der1ng the follow1ng boundary cond1t10n3

(3.15)

' y=d Q; L
\ (cy) =-p : . (3.{6)

x -

in which the double prlme denotes the second derivative w1th

respect to x, the nommal stress UY can be evaluated:

+@F't [0.05 (P° -0+ .05 (DI (3.17)

< -
[

3.2.4 Governing leferentlal Equatlon
and Its Solution

Upon substituting Equations (3.12), (3.14), (3.17)

~and (3.6) lnto the strain energy eXPIESSlon, Eq (3. 2}, and

by means of calculus of variation [71], the followlng

governlng Euler-Lagrange equation is obtalned.

. F" -~ a®F = BM", ‘ (3.18)

in which
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. ' ‘G T :
= 26336 |y Gl
d X

- a2 d.

(3.20)
The resulting natural boundary conditions are
at x = 0; F=0 o (3.21)
at x =_%; F' B Mt (3.22)

The solution of EquTtion (3.18),subjeC£uto the boundary 4
conditions of Equations (3.21) and (3.22),for the case of
uniformly distributed lateéral load (w) is:

)

[(—SEEET - tanhal) sinhax + coshax - 1]¢(3.23)

and its first derivative with respect to x is:

-

F' [(ESEHEE tanhaf) coshox + sinhax] (3.24)
“-

\

Similar solutions can be obtained for other loading .
conflguratlons by considering the corresponding values of

M" and M! in the solutkfn.

3.2.5 Internal Forces 1n the Actual
Structure :

Column axial forces and shear forces in beams and

columns are evaluated first at their mid~length points by
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integrating the-corrésponding Stress comporent over a bay

width B .or a storey height H for columns or beams res-

pectively, as follows: , . -
yj+B/2. o
' Pij = t / (cx) dy (3.25)
D w2 My
PRy - R .' * ~
CygB/2.
V...=t. (t.) dy . (3.26)
cij ~ XY o
) ) . Xj B/2 X=X
, xi+H/2 |
vbij = t‘ .f' ) "(Txy) . dx (3.27) ..
x,=H/2 Y=¥5
l .
- #
in which .
N~ e
;. . P, . ané V .. = the axial and shear forces res-
ij o cij

pectively in the 1j column

vﬁij = the shear force in the ij beam

X; and y. = the coordinates of the appropriaté

mid~length point, ags shown in

J

Fig. 3.3. e s
By assuming a linear variation of the stress compon-~
ents o and'Txyrwithin the limits of these integrations

with an average value at the location of the appropriate

mid-length points,-Egs. (3.25 to 3.27) can furﬁhér be simpli-
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fied to: - . S .
?ij = t.B. (cx)x‘x 1 1Y=Y _- .(3'28)
) | Vg - tB S Y"YJ ‘ (3.29)
_Vbij = t.g (t. ) (3.30)

XX p YV g,

Bending moments in any section at a distance s
from these mid—points along the length of ‘the beam or the
™
column are directly obtained by multiplying the appropriate '
shear force, vbij or Vcij respegtlvely, bY.thg_dlstance
s. .

3.2.6 Lateral Deflection

Since the condition of elastic equivaience is that
both the perforated wall and the equivalent orthotrépic mem-
brane should have the same rigidiéies, the lateral deflec-
tion of the actual structure is equal to that of the equlva-
lent structure. By using the method of v1rtual work, the '
follow1ng express;on is obtained for the lateral deflectlon
due to a unlformly %d;strlbuted load, w, along the he:.ght

o .
o

' 5 2
S e gy U= ferde e B2 0 e Gy
| Xy
J
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)

in 'which
) f

A= cross—seééfbnal area of the eQuiva;ent
. 3 i
cantilever (2td), and § is a nondimensional
. parameter = x/4 (Fig.3.2).

P
I . _
| "N

The maximum deflection is at the top (& = 0);

wit . 1.2 wi? - '
‘Smax T 8§ EI *t 3 nyA (3.32)

3.3 - DESIGN CURVES

[

By introducing.the following two characteristic non-

dimensional parameters: .
(1) The aspect ratio, R = L/D. 4 . .
™" . (2) The shear lag parameter, SL = G _ /E_

Xy
‘and using the nondimensional coordinates £ = x/% and

n = y/d; the functions. (&JE_ and (%)dF' can be expressed .

in non'diménsioitl form, as follows:

(5F = 0.25 (C sinhokf +coshalf - 1.0)/SL  (3.33)

1 -’

b -
-

: \ (5-)6'3' = 1.1914(C cosha?f + sinhalf) //EL (3.34)

in which

3

e e d————



e

- T . — S

9.515

vy . 51
C = (al/coshal) - tanhQﬁ' , :
ak = /ST R - .

The stress componénts'cx and Txy ©an also be, express-

ed ag

el @i G (3.35)
iy Tt [pcs Cu' () aF'] (3.36)

' in'whiéh C: to ¢, are functiong of the coofdinate y:

0
+
i
(=]
w
P |
A
(o]
L]
(8]
m -
=
|
o
o
n
e
s |
1]
P

é

e e e

e s



3.4 CONTROLLING PARAMETERS

1

To identify.the,parameters controlling the behavior
of slender planar frames, De Clercq [34] carried out a
series of exact: analyses of a ten-storey, twelve Mnd
eight) bay hypothetical frame. The bending stiffness of ‘the
beams and columns, as well as the axial stlffness of ! the
columns were varied., It was concluded in this study that-*-
(1) the most important factor is. ‘the shear lag parameter
which is defined as\the ratlo of the joint rotational -
stiffness to the column axial stiffness, (ii)'the number
of bays 1nsmgn1f1cantly affect the behav10r of the struc—
‘ture; and (iii) the reduction strffness factor, lntroduc—
led by’ Khan and Amln [67] for the Ppurpose of Yeducing any
framed tube structure to a lO—storey equ1valent one, is
generally valld at least for the planar frames whlch were
~investigated. The above findings by De Clercq [ 34] will

further be dlscussed in this section., : !

- The closed form solutlons presented in thls chapter
enable the direct determination of the. characterlstlc para-
meters which control the response of planar perforated
walls to lateral loads. It can be seeh frem.the pPrevious
. formulation (Egs. 3.31 and 3.33 to 3.36 and Figs. 3.4(a) to
3.4(e)), that the shear lag and the aspect ratios are the °
main parameters influencing the distribution of beth the

deflection and stresses. The shear lag. parameter reflects

the 1mportance of the bendlng and shear stiffnesses of



beams and columns W1th respect to the axlaizstxffzess of

| sented b
(repre ented by nyx

S .53

columns. It also reflects the effect of flnltﬂ size joints
as indicated by Egs. (2.12) and\\2\2 . ~Thus,” it is clear
that the shear lag parameter presently defined is, 1n

fact, a refined version of De“Clercq s [34].

Introduc1ng the aspect ratlo R and the shear lag

parameter - SL of Sectlon 3.3 into Eg. (3. .31}, yields:

¢ = 3 - [r* sna-deeken) 4 o.an(roge 1 (3.

Xy -

Equatlons (3 31) and (3 37) show that the lateral\

deflectlon is composed of two ccmponents. On the one hang,

it consists of a cantllever bending mode as represented by

the first term of Eq. (3. 37),and Lon the other hand the
usual shear mode of frames whlch Primarily depends on the

aspect ratio and the rotatlonal stiffness of the joints

The bendlng mode of deformation lncreases with the
1ncrease in the aspect ratlo and the decrease-ln the column
axial stiffness.  The appearance of R? in the flrst term of
Eg. (3.37) emphas;zes the 1mportance of cons;derlng the
axial deformation of the columns in tall bulldlng analysis

[ 12, 34, 59,67, 83, 90 117, 1211 The shear mode is dlrectly

: proportlonal to the aspect ratle and inversely proportlon-

al to the rotatlonal stlffness of joints (represented by
4

G ). ThlS dlscu551on clearly shows that in contradiction’

xy

L) . . . =

-
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to what is found by De Clercq [ 34], the*aspect ratlo R

has a 51gn1f1cant effect on the shear mode of deformatlon :
as wel; as the.bendlng,mode.

With regard to the distribution of member internal
forces, the shear. lag parameter and the aspect ratio also
play domlnant roles. This cah readily be seen from
Egs. (3. 12) and (3.14) which express the stress varlatlon _
in terms of the functions F and F' -(Egs. (3.33) and (3u34),
?‘and Figs. (3. 4(a] to (3. 4(e))).‘-The most'iﬁteresting
dlstrmbutron is that of the column axial forces._ From
Flgs. (3 4(a) to (3. 4(e)} it can be seen that a decrease 1n
the shear lag’ parameter would increase the shear lag
function F, which, in turn, increases the nonllnearlty-of

the axial force distribution (Eq. 3.12). A s1m11ar effect

on the axlal force dlstrlbutlon is due tg the lncrease 1n

the aspect ratio R, - S .

3.5 NUMERICAL EXAMPLE

a

. »

In order to demonstrate the use of the present method

and to 1llustrate its accuracy, the 20-storey concreté
shear wall- frame structure analysed by Khan and Stafford—

Smith [61] is considered hereln. The structure has_the*:

d1mensmons shown in Fig. 3.6.



3.5.1 Structure Properties
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Storey height, .H = 12' (3.66 m)

N 'Bay width, B = 10' (3.05 m)
: ~ Structure height,L = 240°' (73.%5 m) ‘
Structure width, D =24 = 60' (18.29 m)
. Clear column c .
height, ..  ~ h = 7.2" (2.19 .m) ,
Clear beam ' ’ ' . i
span +.'b T 6.0' (1.83 W).

.- Depth of beam, d < 4.8' (1.46 m)..-

Tt Ui

Debth-of.column,qc = 4.0' (1.22 m)
Lateral load ' - : _
1nten51ty, ' w = l‘k(ft (14.593 KN/m) "
Young's. modulus, E = 4.32 x 107 ksf (3208.5 KN/m?
. . . ‘ r\
- : P01sson s ratio, B = 0.15 : S
3.5.2 Elastic ?rqperties of the Eguivalent
" . Orthotropic Membrane C o
By using Eqs. (2.12),(2.13) and (2.24), (2.25)., E#

and'~G£y‘ ‘are ‘evaluated respectively.és'

. . o
. E, = 2.01 x 10° ksf |
. S G = 0.273 x 10% ksf . .
. -_- e . "ea .‘- . .- } x_Y) ' . S - .

'.*3.5.3 Internal Forces in the Actual Structure

Wh:.le- ‘the desxgn cpz& develop@ in ‘the prevmous

sectlon can be used for the - rapld determlnatlon ef the 1n-.

et . oo - .p
.:5 'u '- LR .

oo SR
w e T .- . . : ;



ternal forces, the original equations will be directly ' .
used.in the computation for better accuracy.

e Y

d For the purpose of comparison with existing solutions

‘[613, the member forces are evaluated at sectlons of\‘

x = 210, 216, and 222 ft. The shear lag functions F and F'
are determined at thése locations, as shown in Table 3.1.
Substituting the Qalues of F and F', both the nbrmal.an&
'shear stresses at mld-helght of the columns and the shear
stresses at the mid-span of the beams are obtained (Tables 3.2,
3,3). Thé:columq axial and shear forces and the beam shear
%bréés are then evaluated by-integraﬁing the corresponding
normal and.shear stresses according to Egs. (3.28) to

(3.30), as shown in Tables 3.2 and 3.3. and Fig.- 3.7.

3.5:4 Lateral Deflection

The defleq&ed shape ‘and the maxzmum drlft are : -
obtained by using Egs. (3. 31) and (3. 32), respectlvely The
deflécﬁed'shapé ié_shown.ln Flg. 3.8, with a maximum. value.
of 113.58 x 107" ft.

3.5.5 ‘Comparisoﬁ'of.Resulté

-

-

The results obtalned u51ng the present method ‘are

-

compared to those obtalned by the simplified and flnlte

'element methods of Khan and Stafford-Smith [61], as shown °

s

in Figs. 3.7 ahd‘3.8, fof‘member internal forces and the

‘1ateral deflec¢tion, respecfively.' There is a gooé agree-

4

ment between-thé results.bf the present method and those of

o o



the detailed finite elemént analysis which employs 1920
' finite elements. This agreement is generally better than
that of the simplified method of Khan and Stafford-Smith

[61].

&>

3.6 OTHER APPLICATIONS

—

The present méthod was also‘used for analyzing the
two exﬁremes of perforated wall strqctﬁres, (ifé., thé_
solid shear walls and the slender multi-stdrey ﬁuiti-bay
frames) ;nd the results were iﬁ'reasonably.good agreement

with those obtained by detailed COmputer analyses.

The short solid cantilever wall (Fig. 3; 9(a)) was
analyzed according to the method descrlbed in this Chapter.
“The normal stresses at Section A-A near the base are plott-
ed in'fig: 3.9(b) which also shows those obtained by finite
‘element analysis ehployingleighty ( 10 x 8 in the horizontal
and vert1ca1 directions, respectlvely) equal rectangular

i

ordinary plaln strdss elements . /

Thé.preseﬁt method was also used to analyze the 10-

storey slender frame of De Clercqg [ 34] " and the'column axjial
forces at the base :0f the frame are obta}ined and.comp'are
 to DeClercqg'y¥ [ 34], as shown in Fig. 3}i0(b).

Pl

3.7 LIMITATIONS - - ' | D e

“ In addition to the apparent limitations of the con-

a ?



stant member'properties and lateral loads'inherent in the
present analysis, the solutlons are further based on the

assumed cubic varlatlon of the normal stress, (Eq 3.12)
which will be lnadequate for representlng sharp varlatlon

in-c distribution caused’ by hlgh shear lag effect.._To_

quantify the last llmltatlon, conszder the aseumed°express-

Q

ion of o, in Eq. (3.12) which can be réwrltten 1n the form o

= n{(1.5m/ea%) ',+' FRE-0.6} .j.’cz_'; 38)
‘ ) v D h 3 ' - : ,>‘.-- c ,-“.._-‘-. R
. ‘ ) o T ‘ . b o
in which SR
: \t:?j'L:n.=jyydf:15

2 S 3

'.J' 330 2 23,

The first termoof the exéressioh represents +the usual 11n:.
ear dlstrlbutlen ofxthe englneerlng beam theory and the
second term accounts for the shear lag effect. Slnce the
column axial forcee whlch are dlrectly.xepreaented by the
normal stress O (Eq. (3. 28) should’ not change signs as the
ratio n varies from O.OZto 1.0 or 0.0 to- - 1. Gﬁ the brack-
" eted tefm of Egq. (3.38) must be positive (essuming M>0).

- The minimum value of this term is at n = 0; and thus ﬁre

condition is
F < 2.5(M/td?) o (3.39)

Since the .shear lag function.F is maximum at x = &, the:
condition of Eg.- (3. 39) can furthexr be expressed b§ sub-

stituting thiwapproprlate values of F and Mat x=2% as

o+

'1

)_.:.‘ s ° ).“'

o

-]

o
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w G.25 al L
. ‘E' T [(m - tan af) sinh af +

"! f-.}
B

cosh af = 1] < 1.25 ¢ (2/8)% (3. 40)

@
t
N

’

_ By rearranging the terms, the condition becomes

¢

.

af tanhal < K . (3.40)

in‘which ~

. A
ﬁ K =1+ 20 SL R?

Since ‘&% is generally greater than 3 for most tall struc-

tures, tanha? can be taken as 1l: e

al < K (3.42)

Substituting the appropriate valuéE"Ofw_q& and K into

‘condition (3.42) yields the following relation

’

g 202z% -~ 9,515 2 + 1-> 0 : (3.43)

in which _
2'= (sL R¥)Y -
‘ - \

which finally yields:

SL R® > 0.10° - | (3.44)
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. Because the shear lag effect increases with smaller
values of SL, the above condition limits the applicability

‘of the simplifieq approach to cases where the shear lag

’ phenomenon 18 not too severe. Example structures for which

the above limitations are violated will be con31dered in
the subsequent chapters where a more general method of

analysms is presented

3.8 DISCUSSIONS ON KHAN'S FRAME REDUCTION
TECHNIQUE -

-

it can be noticed fiom Eg. (3. 44) that in order

SL R’: = SL_ R; (3.45)

or - » - : - R
. . . 'Rn 2 .

SL = SI,_ (-2 . . (3.46) .

L I S

If the two Structures have the sSame overall w:.dtlk and -

ldentlcal storey height, Eq. (3.46) reduces to v
Noo, . o '
sL = SL, (ﬁ;? | : . (3.47)

which.indicétes that any structure n o% Nn stories, can

be reduced to an equivalent .one of N . storles (N < N )

having the same Wldth by modlfyzng the member stlffnesses
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such that Eq. (3.47) is satisfied. The last‘equation_repre-
sents a'technique which was introduced but not proven\by
Khan and Amin [67] for reducing an actual framed tube of any
number of stories to an'equivaleut lo—storey one. This

technique enables the use of Khan's and Amin's influence

curves for the analysis of framed tube structures.
L) .

\DeCIercq [34] . later.tested the postulate by compat—
lng the lateral deflection and axial forces in golumns at
the base‘of a 20-storey, lZ-bay frame and- 1ts eq 1valent
lO-storey, l2-bay one, and thus showed the valldlty of the
'Smele reductlon technique. Based on the cloged-form solu—
tlons prLsented in. thls chapter, a more solid basls for this

o

hypothesls can be established. . .
8 o 4
Rk t- _ : R J -

In order to have complete equivsleuce between'luef
ﬁctual and reduced structures, the-laterai deflection andf
member lnternal forces at any correspondlng sectlon, say
E(E=X/%) from the top of the two structures, must be ldentl-
cal when the section is subjected to the same overturning.

\..

moment and lateral shear. o o
i f - 3 v \\
Let £ and 2 Jbe the total helghts of the actual aud

reduced, equlvalent structures, respect:l.\.rel},(,s At the sectlon

E, the overturning moment due to external forces is \

. ' (Ef;)z . (gﬂ, )2 R i :
M= ow =y glEf= mr—'—r— g (&) | (3.48)



in which
w and w_ = lateral load intensities at the top
~of the actual and reduced structures

o

respectiuely,

and the function' g(£) represents the load distribution and
is equal to 1 for uniform load, and to l(2--5) for triangu-
lar load. From Eq. (3. 48) 1t is obvious that the load to

be applmed on the reduced structure is

(3.49)

so that the same moment will be ‘applied at the same. sectlon.

Similarly, the equivalent load giving rlse to the same

total lateral shear force at the sectlon is ’ .
o . L
N : mrl= w(I;) | : (3.50)

It will be shown next that the condition'expressed
by Eq. (3.47) will produce in the reduced structure the
same d;splacements and ax1a1 stresses when used in conjunc-
-tion with the equlvalent 1oad mr, and will produce the
correct shear when used with the equivalent load o . It
is interesting to_note that‘both Khan- and Amin [67] and
DeClercq [34] Seemed to ignore the equivalent load Bpr

shear. The following dlscu351on w1ll»also make clear that

in-: satisfying the. condition of Eq. (3.47), only the axial

ol

C _ P

o= Tt o vyt = £ A
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. Sstiffness of the columns should Be adjusted.

For simplicity, only the case of “uniform 1oad is
considered. The deflection at Section & (using Eq. (3.37))

is given, as for 'the actual structure:

Sa T 1wl 2 [2% SLO(E) + 0.4y(5)] (3.51)

L
A

N

in which -
2

Cy = —=
3Dt G
Xy

. and ¢ and ¢ are functions of &, and for the reduced

-

structure

-

8, =-°1'“‘%;’2‘%r br DA ST 0(6) + 0.4p(e)] (3.52)

‘Note that since the same constant ¢, 4s used in the above

eqﬁation, the reduced structure should have the same shear

modulus (i.e. ' the same bay width, storey height, and

'member bending and shear stiffnesses}, ‘thicknes$, ang total

t

. w1dth (or number of bays )

I\ Equating 6 and Gr gives
|

- 22 8L = g2 SL_ (3.53)
. r - -
orﬁ ’ A}
sL_ = (292 g : (3.54)
r [ *

FU o AT S TR TR
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and since ny of both structures is the same, this condit-
ion can be satisfied by ddﬂhsting E_ (or column axial stiff-

nesses.)

=

‘ ’To have identical column axial forces in the two
structures, it is apparent from Eq. (3 12) that the functlon\
F (Eq. 3.33) must be identical in the two structures. To
facilitate the subsequent analysis, F can be further express-

ed as, for the actual structure

o

F, = c2 -gf (¢ (aR)Y(aRE)+ B(alE) - 1.0] (3.55)
in ‘which ‘
cs = oégs
‘.\ .
af = 9,515 4/SL
¢ = fuﬁction of al

!

¢ and 8

functions of aff

and for the reduced structure

: E‘ir = g, ,w(%;)z g-%; ‘[‘Maz)r tp_(aﬁ,g)r + a(azg)r -

-

' | 1.0] o : . (3.56)
. ' . 1 - . , I s
. ‘.‘.

Thus to éatiSfytthe equality of Fa and F_ the following
two conditions must be satisfied '

\
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s'z.r = (%-)2 SL (3.57)
. r
and

From the .definition of af, the second condition will pe

automatically'satisfied if the basic condition (Eq. 3.57) is

- 8atisfied.

Finally, for equality of shear forces in beans

and columns, it ig apparent from Eq. (3.14) that the function

F' must be identical for the two structures. By using the
equivalent loaqg for shear E? it can be shown that the re-

sulting condition is the basic one, i.e., Eq. (3.57).

In summary, the only condition of equivalence ig

that of Eq.'(3.57) which when used in conjunction. with the

L1

v
A
3
:
hi
‘l
A
Wy
v g
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TABLE 3.1

@

VALUES OF F AND F!

Height x, ft. F Eq. (3.23) F' Eq. (3.24)
210" , 2.198 _ 0.218
216' ) ——— ' 0.308
222 5.767 ' ©0.427
. - ' .
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' T ~6§4
. Y ’ a
. .
e T.A‘BLE'3.3
', BEAM INTERNAL FORCES* (x = 216')g
) '%J o Shearing.
Beam No. *¥* (L _ Xy Force .
o NN Eq. (3.14) . Eq. (3. 30)
1 0.167 '3.988 57.43
. : X
L2 0.50 3.375. 49.847>
- S : r
W3 0.833 - 1.724 24.:828
‘r B At # .

“ The unlts are ksf and klpS for stresses .and. ﬁorces

respectavely. (1 ksf =

-427 kN/m , 1 kip =

4.448 kN)

-Startlng from the centre -lines of the structure’ and
‘1ncrea81ng in the“outward dlrectlon.
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. FIG. 3.6 EXAMPLE STRUCTURE (3.1) - KHAN AND
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CHAPTER IV

FWO DIMENSIONAL FINITE ELEMENT ANALYSIS
OF PERFORATED WALLS
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CHAPTER iv

TWO- DIMENSIONAL FINITE ELEMENT ANALYSES\
OF PERFORATED WALLS

o

‘4.1 INTRODUCTION

»

In the previous chabter, the perforated wéll idealiz-
ed by an equivalent‘membrane.was analyzed emploYing a con-
tinuum approach. The closed-form solutions obtained enable
direct det;rmination 6flthe characteristic parameters-which
control the behavior of the strucFure. The effects of

these parametefs on the mode of deformation and distribution

of the member internal forces were also discussed.

In this chapter, a more general approach to .the
‘problem is presented. The solutions £o the idealized equi;
valent membréne are obtained by the finite element method.
The technigque can account for moderate variation of the
propefties of the structure across its width and élong its
height; Loading, as well as support conditions, can be
arbitrary. The technique is applicable to a'gide range of
tall structures .including those where the shear lag effect
is severe. As mentioned in the previous chapter, for the
latter structures, the assumed cublc varlatlon of the longl-'

tudinal stress would be 1nadequ5te for representlng the
sharp stress gradient. In.partlcular, emphasis will be plac-
ed on the analysis of large regular multi-storey, multi-bay

framés, where significaht shear lag effect can be encountered.
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A numerical example 1llustrat1ng the severe shear lag effect
on the response of the structure, 1s consxdered and the
results are compared to those obtained by_the “exact" and
othef simplified methods of analysis.. Before developing

the presen£ technique, the literature on the analysis of

slender multi-storey, multirbay frames is reviewed.

e

Since the beam-oolumo framing system was introduced
by-the Chicago School of Architecture after the turn of the
last century [ 69], engineers have tried to develop approxi-
mate hand methods for the lateral load anal&sis of this
structural system. The cantilever and portal methods thB,‘

123] are the best known among these methods.
y
With the advent of the electronic computers, the

"exact" analysis of framework structures became possible

. [16,17, 18, 54, 86, 111]. Nevertheless, because of the large

e

computer time’ and storage requlred for sudhgan analYSlS,
engineers are still being c¢hallenged tofdevelop simplified ..
methods with the aim of reducing computer time and’ storage
wﬁile maintaining sufficient eccuracy for design purposes.
Foremost among these methods are the substltute or equiva-
lent frame methods f1n§2,90] where several beams and col-
umns are lumped together to form a reduced eoolvalent struc-

ture. Although these methods are more accurate than the

cantilever and portal methods, they are subjected to severe



.
) _limitations [ 6, 34]. For example, the effect of the axial

deformation of the columns is either ignored [62]'or‘grqssly

approximated [ 1, 90].

To account for the effect of the axial deformation of
the columns on the latéral defleétion,'MacLeod [ 77] suggest-
ed a simple approximate method where only the external
columns :are assumed to take s;cial loads. The,,met:hod, how-
ever, does ﬁot consider the effect of this deformation on
the distribution‘of member internal forces. Chan and others
{12 to 14] have tried to include the effeCt of the axial
deformation of the columns on lateral deflection and member
lnternal forces by assuming the p01nts of contraflexure at
mld—span and mld—helght of the beams and columns, respect-
ively, and employing an energy approach for the ana1y31s.
Only the shear deformations of the beams were con51dered and
the finite size joints were assumed to be infinitely rigid.
The micropdlar equivalent continuum of Bazant and Christensen
[ 6] discussed in Chapter II, éompletely ignores the effects
of the finite size joints and shear deformation of the-

members . e

Harman and Walker C47] con51dered the 1ndLV1dual
columns but lumped the beams at certaln "nodal floors". The
method ylelds reasonable results with a considerable saving
in computer time. The macroelement method of DeClercq [34J

as an extension of the above method, reduces both the number



of nodes on any level awd the number of levels. A single
element may span several bays and stories. The shape func--
tions are assumed over the reglon of each element to express
the aisplacements of the beam-column joints in terms of the
disﬁlacements of the nodes” on the boundary of the element.
;Rigid arms were used im modelling the finite sized joints.
Good accuracy and considerable saving in computer time may
be achieveé if the structure is properly modelled. Aithough,
De Clercq pointed out the importance of the p-Ateffect, and’

the flexibility of the finite sized joints, both aspects

were not included in his' method.

<

The objective of this chapter is to develop.a general ?r?j
approximate method of analysis for planar perforated walls
under the eetiom of lateral, loads. The technique should
allow for: (i) a variation of the properties of the struc-
ture across its width and along its height, (ii)- a variation
of the lateral loads along theé height of the structure, (iii)
imposing boundary conditiohs dug to symmetry, (iv) considera-
tion of the P-4 effect on the lateral deflectlon and member
internal forces, and (v) the effects of axlal deformation
of the golumns and shear deformation of the members, as_well

as the flexibility of the finite sized. joints.
K
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4.7 ANALYSIS PROCEDURE

N

The frame structure (Flg. 4. 1(a)) is jdealized bY.

an . assemblage of rectangular-flnlte elements (Fig. 4.1(5)) -

Each element may span several bays and stories of the frame

st ructure .

system fo

Within each element, the .discrete beam-column ¢

rmihg part of the original frame lS replaced by a

continuous homogeneous orthotroplc membrane which can repro-

duc

been

vector 1

the response of the actual peam-co lumn systen, as has

;n'Chapter 1I.

Y

The overall structure stiffness matrix and the 1oad

s then: assembled if the usual way of the displace—

* ment method [35]. The eqdlllbrlum equations are solved’ for

the nodal

displacements and subsequently, the element stresses-

From_;he condition of elastlc equivalence, the nodal .

.

“

deflectlons obtalned by the finite element analysis repre-

sent‘directly those of the actual frame. The lnternal axial

and spear forces in the members are obtained by integrating

the corresponding stress components, as shown in Chapter III

(Sec. 3 2. 5) The specific steps of +he analysis procedure

may

<

be summarlzed as Follows:

1

(n

Idealization of the actual frame structure bY

an elastically equlvaient orthotropic membrane

having the elastic propertles defined in
A

Chaptef II.

L e i
(Dt e R -

;ew;)ww3'~



(2).

(3)

(4)

(3)

(6)

(7)

' Evaluation of internal forces in the members

88

N

Dlscretlzatlon of the equlvalent membrane.‘
into a number of specially, orthotropic flnlte

eleménts.within which the mechanical prbpertles

‘must be constant

Computatlon of alement stiffness matrices.

Assembly of the overall structure fness

matrix [K] and the load vector {P} of the
o ' ' .

joint equilibrium equations .

{p} = [xkI{a} (4.1)

-

in which {d} is the nodal displacement vector.

Introduction of the displacement bouhdary
conditions, and solution of Eq. (4.1) for the

unknown nodal displacements {dl.

Determination of stresses in each element

based on its nodal displacements (obtained in.

~Step 5).

of the actual structure by integrating the

correspondlng stress components (obtained in

Step 6). «J/
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Details of the above steps are described in the

following sections.

4.3 ELEMENT STIFFNESS MATRIX

- ' - * - Jé). -
Research in the field -of finite element theory has.

produced a large number of element types to fit some'parti-ﬂ’

cular purposes or to be used in the 501u§ion og;speéific

et T

Mt

.problemé. As the present work is concerned wiﬁh-modelling
a membrane which is sﬁbjected to in-plane loads, the search .
' fbr a suitable element is directed towards twonimeﬁéiOna;‘
plane stress elements. For the present‘purpose; ﬁhe rec-
tangdlar elemént wiﬁh ligear'variatioﬁs of displacements.
along the edgéé seems‘mﬁst suitable t3]h épis simple ele- -
ment, which insures compatibility of deformaéions along .
-thé interfacés, has been éhqwn to prdduce better results than
the éonstaqt‘strain triangle or tﬁe-quadrilatgral formed
by combining_four of such.ﬁriangleé [(3]..The glement has
eight degrees of freedom (8 DOF) , two at each of its four
| corner nodes, as shown in Fig. 4.2. As nmentioned in Chapter
11, the effect of Poisson's ratidé of the equivﬁleﬁt ortho-
‘tropic membrane (ux§, uyx) on the apaiysis is negligible
(béing zero for slender frames), and hence can be assigned

a zero value. Therefore, the 8 x S-elément.stiffness matrix

[Ke]‘of Ammar and Nilson [3] can béfmodified to: : T



™,
~ Ki:x . ' | | - T
.Kﬁi kzz -
K3 Kzllsz% - . ézgh
-K21 - K2 -Kéx- ‘Kz2 - " ::
= [k, = -3K11 K21 'K71 K21 Kn |

-Kz1 =4Kz2 -Kz1 Ks2 K21 K2z

K71 -Kz1 -%iKi11 K21 Kix Kai1° Kirno v

K21 Ks2 Kz1 -—-%Kz22 K21 Kyz -Ka21 K2z

L -‘ - . . -
1 2 s y 5 5 7 .8
in which o o .
-t
Kii = 3(EX/ZI‘.‘ + erY) c
t
K1 = 7 ny ‘

"Rap = %(mzax/r £ rG, ) T

, :_. K71 = %(Ex/r - 2ery)

Rzz = %(rEy + Gy, /T)
— E ' — ) ‘ - L.
K"I'z = G(rEy Zny/r)

" Kaz = %(—2rEY + ny/r)

. where E,, E., and ny" are the mechanical properties of

the equivalent, technically oithotropic membrane and r *

is the gspect rétio of the element.

-

go
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4.4 ASSEMBLY OF *THE STRUCTURE STIFFNESS
MATREX MATRLX AND THE LOAD VECTOR

P

. Oonge the stlffness matrices of all the individual

"'elements are calculated, the structure stlffness mattix is
ssembled employlng the dlrect stiffness method [ 35 107 -

118 , 12Q. The resulting: stlffness matrix is symmetrlc and

panded. Thus, lt is necessary +o store only the coefficients

within the bang 'of one triangle of'the matrix.

4.5 BOUNDARY CONDITIONS AND SOLUTIONS

The stlffness matrlx and the load vector assembled in
the preV1ous sectlon are now modlfled by imposing the .kine-
matic constraints (gecometric boundary conditions). Tract;on
boundary condltlons are dlrectly incorporated in the load 2
vector {Pl}. Natural boundary conditions are implicitly
satisfied in the finite element formulatlon through the hm-
plementatlon of any valid varlatlonal prxnc1ple [35] Con-
sideringrthe problem at hand, only homogeneous, " normal, geo-

metric boundary conditions exlst. This enables the par— .

titioning of the global equlllbrlum equations as follows

r3s1. =
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in whieh {d:} is the vector of unconstrained displacements,
and {d.} is that of the specified dlsplacements which is

null in uhe present-problem. This simplifies Eq. (4. 2) tos

[K11] (0] 7 o

(Lar) o (eadp . o
uil SRR B (4.3)
{0} {0}

e R

fo1~ [1l
vy b S : .. : .
jFor programmlng purposes, to preservé the banded nature of the
equatlons,~the row and c¢olumn correspondlng to each klnematlc
constraint ‘are deleted and a unit value 15 assigned to the
diagonalf A computer code for the above procedure is develop-

ed by Wilson [124] and used in the present program.

Having setrthe boundary condltlons, a dlrect (Gauss-—
ian ellmlnatlon) solution of Eq: (4. 3) is 'then performed for
the unknown displacement. The code developed by Fellppa [37]
and based on decomPOSLtion of the stiffness matrix and solu-
tlon by forward reduction and back substltution is‘adopted i
in the present program. .

)

4.6 DETERMINATION OF STRESSES

Having determined the nodal displacements {d}, the
element nodal displacements {d}e may now be extracted, and

the element strains {el are then obtained bys

~



.in which

the element considered herein)by: - 0 R

where

by:

93

{e} = [pl{a}, (4.4)

[D] "is the strain-displacement matrix_given (for

a and b

=(1l-n) =(Ll=£)
a 0 b 1
0 =(1-E) “(1-n) 2
b a
(1-n) _E 3
a _O b
: E' (1-n)
0 b a *
3 5
y 0 b
13 n 6 ‘
0 b a
_T]___ 0 (l_g) 7
a b
(1-E) n
0 b “a ’

the length and the height of the element,

'J
respectively,

X
-y

Stresses {0} are now expressed in terms of strains
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{U}'= [E]{el - : (4.5)

in which the [E] .matrix defines the constitutive relation
between the stresses and strains for an orthotropic

medium and is given by:

. — :T
|- By PyxEx : 0
[E] = 1 u B E .0
;x XY Y y
0 0 AG

in' which

1

Sihce the effect of Poigson's. ratios (uxy'uyx) on the

. analysis, as méntionedfearlier, is negligible, the [E]

matrix can be simplified as

~ -
E, 0 0 p—
. ) . l
E] = 0 E 0 1
[£] = y 0
A 0. 0 G, '
ZL_ Xy

Stressés are evaluated by sﬁbstitgé}ng the simplified

a

form of the [E] matrix and Eq. (4.4) into Eg. (4.5).
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"4.7 COMPUTER. PROGRAM

s

A computer program was developed 1ncorpo§§t1ng the
ideas presented in the prev1ous sections.

The program was
wrltten .in FORTRAN IV and run on a CDC 6600 computer..

The
llstlng of the pProgram is not given here 51nce two—dlmen51on—

al problems can also be analysed using the more general
program, given in Appendlx cC.

The follow1ng are some of

the program feat

(1) While properties ©f the equivalent structureimay

vary across 1ts width and along its helght they

must be kept constant within each element.

All
elements on the same level must span the same

snumber of stories.

(2) ‘Nodal p01nts and element data can be automatlcally
' generated

L ]

(?‘) Boundary conditions simulating symmetry can be
imposed..
— J
(4) The output con51sts of nodal dlsplacements and
‘ . element stresses.

*

4.8 NUMERICAL EXAMPLE

S )
To-verify the theory of thL present method. and to
illustrate its_appl;cation and;accuracy, the 52-storey slen-
'der frame of Bazant ang Christensen .

" 6]

is considered.

P RE LT



96

The frame has uniforﬁ“properties as showﬂ in Fig. 4.1; The(
analysis is carried out for the lateral deflection and g
column axial forces. The results are compared to those
obtained by Bazant and Christensen [g] based on:

~,
-

(1). "exact" solution;

;(iiﬁ_finité difference method applied to an eguivalent
e . .

~ micropolar continuum; and

(1ii) substitute frames [1,62]-
A comparison of the lateral deflectlon, the variation of
column axial forces across the width of the structure, and the
variation of the axial force in the external column‘along
the height of the structuré, are shown in Figs. 4.3, 4.4,
and 4.5, respectively.

It can be seen that the substitute frame methods, .
as recommended by ACI Committee 442 [l], and as proposed
-by Khan and Sbarounis [62] are inadequate and carnot re-
flect completely the. behaviour of the original structure.
The former underestimateés the lateral deflection by 60%
and the latter underestimates the maxfﬁum column axial

force by 52%, as can be seen from Figs.- 4.3, 4.5, respec-

tively.

The lateral deflection and column axial forces ob-

tained by the present method are in excellent agreement
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with those obtained ﬁy the "exact" and the micropolar meth-
.ods, as shown in Figs. 4.3 to +4.5. However, the number of
unknowns required for the'sélution in the présent method is
: oﬂly 7% of the "exact" and 20% of the_micropolar. Further-
more, the present_method.drastically reduces ;he‘required
compﬁter étorage to 1.5% and 6.1% of that reguired by the
other two meﬁhods, respectively. Moreover, the micropolar
method [6], unlike the present méﬁhodh is only suitable
for the analysis of frames having slender members since it
ignores'éompletely the effect of finite size joints and

shear deformations of the members.

L

4.9 DIAPHRAGM ACTION OF FLOORS

Floor slabs normally possess high in-plane rigidi?y‘
and can be assumed rigid in their own planes [110;129].
According to this assumption all joints on the same floor
level wbﬁld displace laégrally the same amount. In the
present analysis, the.élastic modulus - Ex represents such
in-plane rigidity. To examine the effect of the above
assumption, E, is éssigned different values and the
éorresponding'méximum‘deflection and column axial force are
determined, as shown in Table ‘4.2. The value of Ex on
the first line of the table corresponds to the actual pro-
.perties of the structure pnder consideration. By increés*
ing E, to 105_ times its actual value, the maximum de~

flection decreases by only 0.015% and the maximum column
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axial force increases insignificantly as shown in Table

4.2.

In summary, a simple method for the_analysis of
large multi-storey multi-bay framework is presented. TﬁéA
method is based on replacing the aétqal structure by anj
elastically equivalent orthotropic mémbrane’which is then
anaiyzed}by finite element téchnique. While the substitute
: frame methods [1;62] are unacceptably in error, the
present method is in excellent agreement with bath the micro-~
polar and the "exact" analyses, yet it requires significant-
1y less number of uhknowns and computer storage (Table 4.1).
The effect of the elastic moddiﬁéj E, on thg analysis is
insignificant and the%efore can be assigned an infinite
value. 1In so doing, a further reduction in the required
number of unknowns (number of degrees of freedom) and com-

puter storage can be effected,as will be shown in the next

Chapter.
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'CHAPTER V. ..

SPECIALLY ORTHOTROPIC FINITE ELEMENTS FOR
TALL. BUILDING 'ANALYSIS

5.1 INTRODUCTION

It heé bééh shown,. in cEe previous chaptertﬁhat che ’
effect of the eldstic,moculus Ex -on the acalysfc of rea;—
isticlstructures';s cegligible. _ Thus, to avoid the un-
'pecessary'algebraic_eQuations coikesponding to the laferal
displecehepts-of nodeefon_the same:leve%;) Ex- is.assigned
an infinite value in the present formulation. This corres- ‘
' ponds to the widelf accepted assumption;of-infinite in-

'plane rigidity of floors in tall building analysis [110].

In this chapﬁer twe finite elements are dévelOped

incorporating the;above‘assumption. - The first is an ordin-

ary element with lihear-variaticn of dispiacements along

its edgés*ana the second, a refined element with quadratic
dlsplacement fenctlons. Numerical examples are also pre-

-sented to 1llustrate the accuracy and appllcatlons of the

two elements. | ‘

5;2 ' PRbCEDURE:FOR DERIVING THE ELEMENT STIFFNESS _' ’

'MATRIX AND THE) CONSTISTENT LOAD VECTOR

¢

+
oo

Iﬁ‘deriving the stiffress matrix and consistent loedﬂfiugl’
. _ ) : ' \
‘vector of the two elements, the principle of minimum total ' .

4 oo
potential energy is used. Expressing the potential energy — - '

) . *
-
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o
r

l

functlonal in, terms of some assumed dlsplacemenh'functions,
and its subsequent manlmlzatlon will yield the approximate O
equilibrlum equatlons ‘which automatlcally deflne the s€iff- 5

ness matrix and ‘the load vector.

-

Solutlons of .an elasto—mechanxcs problem have to

_satlsfy three types of condltlons. comﬁatablllty, phy31caln.
and equilibrium. Once a dlsplacement model is assumed
within an element, and expressed in, terms of the nodal dis-
placeﬁents {4}, the:strains {e} are obtalned by proper

differentiation of the displacement functlons, In symbollc

form * ' X ’ _ ” o -
N e} &,[pllal s,

P

Equation (5.1) congtitutes the relation of compatibility.

The constltutlve relatlon llnklng stresSes £o straiﬁs

Lo N

expresses the physical,nature of the problem as follows:

4

(o} = EMeX ~ - ° (5.2)
in which the [E] matrix ;epresehts,the mechanical propexr:-

ties of the material.

. Now, the third and 1ast condition (i. e., the equlll—,

brlum) can be satisfied through the minimizatlon of the
]

total potentlal energy with' respect to the nodal dlsplace— |
ments. )

N A

The procedure,outlihed‘in this section is now employ—‘.
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‘ed in detail in the following two sections.

5.3 FORMULATION OF THE ORDINARY ELEMENT

Consider the fectangul%r element shown in Fig. 5.1

- o

"ln accordance w1th the previoufdly stated assumption of in-

flnlte ln—plane rlgldltY ofvfloors, the strain in the x-

gar ction Ex should vanlsh and consequently the correspond—
ing elaStic modulus, E_ is considered to be inffnite.'The

dlsplacement functlon whlch satlsfles this condltlon, main-

‘tains the compatlblllty qlong the edges, and satlsfles all

- other requlrements for convergence in finite element theory

~ig assumed to be: - |

- o \ | --_(
N n = o1 + ¢z N . o T
. . * (5.3)
A .- Vs 3 + ayE + asn + g En .

in whlch £ and- n_ are non—éimensionsl coordinates equal
to x/a and y/b respectively‘{?ig.'S.l). —_
.- . . . . LA \ . - “

P

. 8ix degrees of freedom are assigned to the element;

qfour vertlcal dlsplacements at its four nodes and two hori-

‘zontal dlsplacements at the upper and lower levels as

shown 'in Flg. 5.1. The o coeff1c1ents-&n Eq. (5.3) ‘can
RN
further be expressed by means of the* nodal dlsplacements

as v .

a8
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u,
- T ) uz
u (I-n) n O o 0 0 0 v )
= . '1'v ) o (5.4)
v 0 0 (1-&) (1-n) &(1-n) &n n(l-§) 2 .
| vs )
[V
O.I.-.- _-' | - .. . ‘~ .
. | D ,
- . u _ S el
i = [ml{al - ¥ 5.5)
R v . ‘ LT
' The strain~-displacement relation is: ' . o
. e L {L
&y 3/9x 0 Y _ RN
P D R { } s
Y o v ‘ T
Yy 3/3y 3/3x .
Substituting Eq. (5.4) into Eq. (5.6) yiélds: )
. B : ) 7] ful-
€0 ‘0 0o . 0 0 0 0 s
e, p=| O 0 -(1-8)/b -&/b . &b (1-E)/bilvi}
Y -1/6  1/b -(1=n)/a (l-n)/a n/a" -n/a || 2
[ Vs
: | . (5.7
or in symbolic form: '
; . )
{e} = [pl{d} i (5.8)
: - ; \ -

PR R
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-

¥X

’} Poisson's ratios pxy and H of tte equivalent ortho-
tropic membrane have zero values in corr

spondence with the,
assumption of infinite in-plane rigidity of'flogrs (Section
2.3.1). Therefore the constitutive relation for this

specially orthotropic membrane is:

] ‘ T .
cx Ex 0 .0 Ex
o} = 0 E . 0 ) e 5.9i-
Y, . Y _ Y ( )
@
‘ny . EO 0 xy | 'ny
or,
{s} = [E] {e} o (5.10)

-

Upon minimization of the total potential energy [351, each

element in the stiffness matrix can be given by:

1
*

: 1 1
K=tab [ J (pIT[EI[D] &€ dn  (5.11) "

Performing the triple matrix product’ [D]T[D][D], the

following 6 x 6 matrix is obtained:



A1l
- [ b
r1
2. - b, b 7 Sym.
3 - bz - ba (by+bs)

4 - bz by (bs-bs) (bgt+bs)

5 - bs; bs (-bs~b7) (=batbs) (batbg)

| 6 bs - b; -(-b»+b7j (-bs=bz7} (bs~bs) (buy+bs)
\\,/r" 1 2 s 7 4 5 6

' . - (5.12)
in which
b; =
‘ l
b, =
G_.n
' E_(1-&)?2
b,.’ == —L__ s
2
b
- T G ({1-m) 2 -
1 . bS = i_..___ ) .
2
. a
E -
be = ¥ Eg} £}
. 2
G n{l-n)
b'] = XY
2
a ’ -
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Carrying out the double integration’ of each term in
the previous matrix accord;i.ng 'to Eq. (5.11), the & x 6
stiffness matrix for the specially orthotrbpic rectangular

element (Fig. 5.1) is found to be:

. .
v, : {';B'

K= | .~ —
- Kg Ko Ky K3
- K2 Kz - %i Ks Ks
. ‘s | .
‘K; - K2 Ks - 5 K Kal_‘--- A ‘ (5.13)
L -
in which I
' taG, .,
Ki= o
G
K, = “EEK
a b
Ka = t(E I:T*'ny a
3 —
3 |
a b |
. t(E, —55=Cy 2’
- . y ]
h .

eaapee
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[
‘b a
B Kg = t(ny —2a Ey BJ
3

The integrals which were used to evaluate the Kij . terms

- of the stiffness matrix are given in Appendix A.

Minimization of. the total potential energy yields,
also, the following'expreesion for the consistent load

(kihematically equivalent force) vector:

< {Pe} = fsf [N]T{T} ds (5.14)

4

in which ([N] is the shape function expressing the displace-
ment at any point within the element in terms ‘of the nodal
displacements as defined in Eq. (5.4), and {T} is the in-

plane surface tractions vector: acting on the surface sS.

In general .

{r}* = [p_ Rl | - (5.15)
‘ ;
in wh?ch P and P? are the preseribed in;plane load in-
tensities along the ceordinate'directibes (Fig. 5.1). These
load 1nten51t1es are distributed load per K unit thickness and .
per unit length measured along the side of: the element. In
the present application, only P will exist. For the
case of uniform lateral load p. the con51stent load vector

can be expressed as
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e - P
(l_n) s
n °
. 1 0 (1-E) (1-n) p
{p}=¢tb S dn (5.16)
e © I o E(l-n)
0 En
0 n({1-&}) a
_ S
Thus }
4 1 L
1
| -EEE. 0 o '
- (R} =55 1 . ? : _ . (5.17)
0 .
L 0

It can be seen from Eg. (5.17), that the consistent
loads, for the present element, are identical to the lumped
loads. This is also true for the case of linearly.varying

loads (Fig. 5.1).

9
i

l5.4 FORMULATION OF THE REFINED ELEMENT

The element has eight nodes and nine associated
ldegrees-of freedom (Fig..5.2). The.elemEnﬁ'ié rectangular
in shape, of length 2a, height 2b and a uniform thickness t.
It is especially orﬁhotropic with respect to the axes x

and y which have their origin at the center of the element
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as shown'ih Fig. 5.2.

The procedure for deriving the stiffness matrix and

consistent load vector of this element is similar, ifrnot

- -~
=

identical, to that given in the previous two sections. Thus,
only a brief'formulatioh is given hé;ein. For‘éhe complete

‘detailed derivation refer to Appendix B. fhe agsu;ption,of

“equal lateral displacement for all nodes locatéé on the

same level is also incorporated subéeq@éﬁtly: ~The displace-
ment functions satisfying the necessary. requirements for

convergence in finite element theory [ 35,107, 128] may be

assumed as

u = o; + azn + azn?

<
]

aw + asE + osn + arE*+ agfn .
‘ o)

+ a9 ?n | - (5.18)

‘The displacement field can further be expressed in terms of

the nodal displacement as:

. Ca
' -
u

= [N] {u; w2z u; vy vz v3 vy vs VG}T (5.19)
v - : )

24

in which [N] 4is the shape function defined as:
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_ . ,_,
-in (1~-n)
1-nt
in (1+n). .
0 -%E(1-E-n+En) _
1T = | ot R(en-gteetn) D
0o 3£ (1+E-n-En)
0 RE(L+En+En) -
‘ 0 . 2 (1#n-£2-£%n)
0 ~3E (1~E+n=-n§) “ | (5.20)
bt ’J l

where £ and n are non-dimensional coordinates defined as

3

x/a and y/b_respectively.
The [D] matrix relating element strains {e} to
. | ‘
the nodal displacements {d} (Eq. 5.8) can" then be expressed

by the aid of Eq. (5.6), as shown in Eq. (5.21) on the

following pagé.

The constitutive-relation, [E] matrix, relating
stresses to strains is)the same as that of the ordinary

element (Eg. 5.9).

[N

‘Performing the tfiple matrix product [D]T[E][D], a
9 x 9 matrix is obtained populated by expressions which are
functions of ¢ and n, as’shown in Appendix B.
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o | 0  ~(1-2n)/2b
0 o - -2n/b
.0 0 (1+2n}/2b )
6 ' £(1-€)/4b  -(1-2E-n+2En)/4a
[p1* = o ~(1-£%) /2b -E(l-ﬁ)/a
0o -£(1+£) /4b  (Ll+2E-n-28n)/4a
o '_. £ (1+£) /4b (1+2E+n+2En) /4a ;
0 - (1-£%)/2b -£(14n)/a
0 -§£ (1-§) /4b = (1-2E+n=2£n) /4a

(5.21)

Each Rij term of the stiffness matrix is obtgined by'integratf
o ing the correéponding term in the previoué-matrix. The"
integration is pérfofmed according to Eq. (S.ilj exCep£ that
‘the lower béundé‘of‘the double ihtegrétion‘are'changed from
VO.to ;l. The integrals are also.included in Appendix B.

Finally, the 9 x 9 stiffness matrix of the refined element is

obtained as shown on the following page.

-

Substituting ﬁq. (5.20) into Eq. (5.14) and carrying
out the integrations, the consistent load vector, for the

case of uniform lateral loads is:

N\ . -
“

e T =B 1 4100000 03 e (5.22)



1 7K;
2 "'SKI 161{1
3 K1 =-8K; - -7TK)
4 5K2 -I-4Ii2 - _Kz
[rI=s| 0.0 0.0 0.0
" s | =5K2 4K, K2
;| <K, =4k, 5Kz
s{ 0.0 0.0 0.0
o Kz 4Ky -5Kz
1 2 3
in which .
t G
K1 ='- ~'—xx3r
1
K ==t G
7% xy
- 2r 7
Ky = (&= LA
3 (15 Ey t o Or
R . .. 8
Ky -— Et('s- Ey T
1 2
Ks =-2t (X -2
s 6 (3' Ey 3r
1 ’ 1
K¢ = =t (L ——
‘ 6 5 ('s- EY +‘ 3L
IS o 4
Y - L 4r
Ka -G't (.5_ Ey -_—

Kgl

K7

Kio

K7 .

sym.”

Ky

Ka

K7’

Ke
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4

é 2
- r
Kg §t_§ Ey + T ny)
- 8, ./ r 1 '
“ Kype—-=t(= - —_—
”,3(,5EY 3rG:]’)*

where

r = the aspect ratio (r=a/b).

K

For the case of linearly varying lateral loads, as

shown in Fig. 5.2, the consistent load vector is:

p P, tDb - .
{p }* = 25— {(1-2a) 4 (1¥2a) 0000 0 0}
“(5.24)
in which o o S
! _ (pt_PC)
P
Py and P. = the intensity of the load at the top and the

center of the element respectively, as shown

in Fig. 5.2

It should be mentioned, however, that only lumped
[

loads are used in the-three-diﬁensional solﬁtionlaq will be
‘ a .
shown later in Chapter VI.

&y
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‘5.5 _NUMERICAL EXAMPLES . . . o

‘ -
° To test the efficiency (in terms of the aCCuracy

'versus the required computer time and storage) of the ele- -
ments developed in Sections 5.3 and 5. 4 five examples J

are conSidered. The ordinary element is employed in the

~first three examples and ﬁhe 1ast two examples are analyzed ‘ ﬂ
uSing the refined ‘element. Also, to illustrate the versa-

tlllty of the present metLod incorporating the newly develop=~

ed elements, the examples are designed to include not only

direct static analysis of slender multi-storey, multi-bay

frames and those with relatively deep members, but also L ;

other aspects such as frames w1th variable properties, and .

stability analysis of frames.

The results in- all the examples are. compared with
. 5 .
those obtained by "anct" and other 51mplified methods of '

> '

analysis. For the purpos$e of comparison, member internal
fforces -are diVided into €Wo categories, namely those termed
1mportant“ and the remainder as defined .by De Clercq [34]
Such a division was Suggested by the fact, that the largest
errors, . expressed as -a percentage, 1nvariably occur near the .
top of the: building, where member sizes tend to be deter-
mined by vertical loads rather than lateral 1oads. iMember
internal. forces are termed important" if larger than one’
"third of the largest corresponding - value recorded in the

-

structure.
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5.6.

-storey wall frame structure of Khan and °
. stafford-smith [ 61] considered in Chapter III, is reanaleed
(for the conyenience of reference, the structure is shown

in Flg, 5.3) using the ordlnary element developed in Sectlon
5.3. The structure is flrst replackd by an’ qu;valent ortho-
tropic membrane as in Example 3-1. " The equlvalent structure
is then idealized}using 48 ordinary elements; 4 across its
width and 12 along its'height * as shown in Fig. 5.4b. It
should be noted that because of it belng antlsymmetrlcal,
only one half of the structure need be consrdered. The '

results are compared to those of Khan and Stafford-Smlth [61]

4

based on a detalled flnlte element analy31s using 1920° ‘

plane stress rectangular elements with two- dégrees of free—

dom at each node. - A typlcal part of the mesh used is shown

L M '
in Fig. 5.4af

A

!

I
An excellent agreement is found between the present

methdd and the detailed finite element of Reference [Gl], as
shown in Figs. 5.5 and 5. 6 * which 1nclude the lateral deflec—
_tlon and a sample of the internal member forces, respective-'
ly. A total of 48 elements and 60 unknowns have been used
by the present me;hod versus 1920 elements and 4 000 unknowns
in Khan and Stafford- Smlth s mesh (qu 5. 4), yet the differ-

ence in both the 1ateral deflectlon and member internal
forces is less than 2%:"

-
-

et 3 T
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' 5.6.2 Example 5-2-

The 52-storey slender frame of Bazant and ChrfEtensen

[s] con51dered in the prevlous Chapter, is also .reanalyzed.

_The finite element mesh of Flg.‘4.1(f) w1ll be used.- Then'

only change is-that the rectangular element of Ammar and

N Hllson [3] is replaced-by the ordinary element {Section 5. 3I

The resulta obrained from the two eleéents~are almost 1den-‘
tical as to be expected, since the'ef%ect of Ex. on the
analysie was found to be negligible (Section 4.11).- The
ordinary element, 'however, resulted in a considerable re-.
ductlon of the number of unknowns compared to that of Ammar‘

and Nilson. [3] (54 @5% for this example structure, as .

“shown in Table 5.1).

'5.6.3 Example 5-3

The 20-storey, l2-bay frame with variable properties
of De Clercqg [34 ] is con51dered in thlS example. The pro-

pertles of the beams. and columns are varled along the helght.

T -

of the frame 1n six shlfts, as showh in Flg. 5.7(a) - The

J

¢
frame is subjected to‘a‘lateral uniform load of two-unit

'loads per storey. One-half, of the frame is modelled,.
employing 24 ordinary elements, as ehown in Fig. 5.7(b).

The analysis is then carried out for the lateral deflection

and column axial forces. The results are*compared "to the

1

"exact" values obtained by De. Clercq [34]. Excellent:

| agreement‘between the results of the "exact".methods and.

. | . g

LS, -

T e
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a

“t7~mm;mthewpresent.methods, is obtained aswclearly_illustrated by
Figs. 5.7tc1 and 5.8 for the maximum column arial forces
and the lateral deflection. The error is less than 2% in
the latter and 4% in the former. A varlation of the shear
forces(ln the beam adjacent to the centre line of the

"structure) throughout-the height is plotted and comPEred

. to that of the macroelement method and the exact" method
[34]. Although the varlatlon of the shear obtained by the
three methods ls generally 1n good agreement (Flg. 5.9), the
pPresent method employs only 7 6% and*23.3% of the degrees,

© @f freedom, DOF, (number of unknowne) used~1n the "exact”
and the macroelement methods, respectively. It ‘can also be ‘
seen from Flg. 5.9, that the present method in general, is

closer to the "exact” than the macroelement method [34]

In order to demonstrate further the eff1c1ency of
, the present method versus that of the macroelement [ 34],
the same 20-storey frame is reanalyzed (using the same mesh
of Fig. 5. 7(b)), but with constant properties such as that
of zone—F(Flg 5. 7(d)) This tlme, in addltlon to the later—
: al deflectlon the variation of the axial forces in the - Vﬂ\{\\“df.
edge column throughout the helght of the structure is con- -
* ‘,31dered. ),Agaln, the results are in excellent agreement
with those obtained by the exact" and the macroelement y
methods {as shown in Flgs. 5 10 and 5. 11), yet only 7. 6%
:f4l' and 17.26% of the DOF réquired by ‘the former and the lattef

-

methods, respectlvely, is used in the present method.

\

@
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5.6.4 Example 5-4 \ /

L e )

In this example, the refined element developed in
Section 5.4'is.employed for the analysis of the same 52~
storey frame coneidéred previcusly in Example 5-2. A total
number of 24 elements‘are used to_modei the equivalent
.Structure, 3 across its width and 5 along itsg height, as
enown in Fig. 5.12. This particular discretization is used
to allow sllghtly less numbers of degrees of freedom than
that used in the previous example, being 64 versus 72,
respectlvely. (i.e., about 11% less),'as given ;n Table
5.1. The analysiS“ie alec performed for the lateFal deflec-
tion and column axiaf‘fcrces. The values of the lateral
‘ceflection_obtg;ned from the two analyses (uéing the
ordinary and the :efinee elements, respectively) are almost
identical (the maximum difference throughout the height of
the structure being less than 0. 34%)' However, column
axlal forces obtalned in thlS example (usmng the reflned
-element) are more: accurate than those- ofwthe prev1ous
example (using the ordinary element), especially at the third
column from the:outer edge, as shown 1n Flg. 5.13. This is

due to the capac1ty of the refined element, inherent through
its qigpiacement model, to express the shear lag phenomenon

= o o
more accurately than the ordinary element does.

—
I% I

-
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5.6.5 Example 5-5

A stability (P-3) analysis of the 52-storey frame — .

‘

7 of Bazant and Chrlstensen [6] is conSLdered herein. 1In

addition to the lateral loads of the prevlous example, the
strueture is subjected to.a uniform compress;on of 2% of
Euler buckling load of a typical column with.both ends
hingedl ‘The ﬁrame lS analyzed using the mesh shown in

Flg. 5.12. The lateral deflectlon obtained using the present

second-order analysis (Fig.5. 14} 1s in ivery good agreement
«

with that obtained from both the "exact" and the mlcropolar

'-";J
by Bazant and Chrlstensen [6] However,-unllke the first-

" order an&Iysms (lateral load only)- there is a slight de-

‘viation from the exact valués which increases to a maximum |

value of less than 6% at the top of the structure. It
should be noted that in spite of the close agreement among

the three methods, only 64 DOF are used in_the present

“method versus 1, 872 in the nayxact® and 648 in the micro-

polar methd (1.e.; using only 3.4% or 9.87% of the DOF

used in the other two methods) .

"In'eummaryj

(1) Two plane stress, rectangular, specially orthotropic
finite elements are developed. By inborporating
the reflned evaluatlon of the. mechanlcal propertles

of the egquivalent membrane_given earlier in Chapter

II, the two elements have proven to be efficient for

s nr s e




(2)
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?
the analysis of slender multi-storey, multi-bay
frames and those with reiatively deep members, hav-
ing constant and variable prOberties; under lateral

load and considefing the P-A effect.

The two elements are employed in five numeeidal
exampies. In the first three examples, the ordinary
element is'employed for the analysis o? a 20-storey
reinforced concrete GalL—frame structure and a 52-
storey steel frame, both being of constant proper-
ties. Iﬁ the'third example,-a 20-storey frame ﬁith
variable propertles is con51dered. The refined '

element is then used, in Examples 4 and 5, for both

- the flrst-orde; 1ateral load analysxs and that in-

cluding the P-A effect of the same 52-storey steel

frame respectlvely In all of the examples consider- 5

ed, the lateral deflectlon is very close to the
"exact"” values,. the error belng less than 2% except

in the case of second-order (P-A) analysis, where it

is less than 6%. Member internal forces, however,

are -in generel,‘slightly less accurate than displace-
ments, yet all important'member ineernal forces had
accuracies better than 96% except the shear force
inmthe middle beam, in case of frames with Qeriable

properties, where the accuracy has dropped to 92.4%.



(3)

(4)

i tics of perforated walls presented previously in

127

The ordinary element developed in Section 5.3 is.
more efficient, in the scope of the present work,
than that of Ammar and Nilson [3], yielding almost
the same accuracy andg yet con51derably reduc1ng
the number of deg;ees of freedom in the analysis.
Considering the stfucture in Example 5.2; the
degrees of freedcm are reduced from 132 to 72 (ife.

reduced to approximately 54.54%.) SR
l .

—_—

- The refined-Element can be recommended for the cases

{

where the effect of shear lag is 51gn1f1cant. This

can be judged by the Engineering analyst and w1th
the aid of the study of the behavioral characteris-
Chapter III. 1In the general computer program pre-
sented later in Appéndix C , an option is given to

the user to select the tyée of element to be used

in the 'analysis.

-’.
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FIG. 5.3 20—STOREY WALL—FRAME STRUCTURE OF KHAN
. AND STAFFORD—SMITH [(61] - EXAMPLE 5-1
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CHAPTER VI

ANALYSIS OF TUBE-TYPE PALL . BUILDING
STRUCTURES :

[y

-

6.1 INTRODUCTION

Tube-llke tall bulldlng ‘structures may, in general,
be assembled from rigid frames (framed tubes), or solld walls
connected by bands of lintel beams’ (core—supported struc—-
_tures)'. A combination of frames and ‘walls in-a tube. form
'is also oossible [13]. Before deueloping ther present

technlque, the literature on the analysis of framed tube '

and core- supported structures lS revrewed

.

-

Framed tube structures are generally-composed of a large

number of members,‘ n the order of several thousands, lnter-

onnectlng at the 301nts..An “exact" analysis of such structure
usihg standard:computer programs [ 54, lllJ would be expensive, .
and the data preparatlon tedlous. Thls type of analysrs
would then be impractical especially in the preliminary
desrgn stage where member gizes are in the trial .stage and -
the design engineer wants to acquire some feellng of the
behavior of the structure and to visualize the order of tqﬁ -
design forces and the locations of their peak values. Also,
in analy21ng these tubular frameworks, the capacrty of most
currently avallable computers 1is overtaxed. The dmfflculty :
is further compllcated,lf problems of dynamics, stablllty,-

- and nonlinear behavior areﬁspnsidered;

.
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Furthermore, it should also be kept'in mind that'the
analysis is'“exact" onlf for structures having slender
members where-the effect of'finite'size joints is hegligible;
"However,.framed tubes in general are characterized by‘finite

size joints and'neither ignoriné’their effect nor aporoxi—
ﬁatihg it by ihtroducing.infinitely-rigid arms would yield
an “exact” splution: Ast and Schwaighofer [4] have shown
that the latter approxlmatlon may result in reduc1ng the
‘lateral deflectlon of the former approxlmatlon by as much
‘as 50% thus illustrating.the lmportance of the effect of
such joints. Recently, Khan and Stafford-Smlth [61] have
‘ demonstrated, experlmentally and through a detailed flnlte
element ana1y31s, that by neglectlng finite size joints or
modeliing it by infinitely rigid arms, the ‘lateral stiffness
~ of the structure is underestimated and overestimated respec-

tively.

Considering the approximate methods of ahaiysis, it
appears.that the method proposed by the ACI Committee on
response cﬂfbulldlngs to lateral forces [ll is among the
earllest ones introduced. In thls method, two, dlStlnCt types
of. behavior of framed tube structures are recognlzed the
usual shearlng action of the side frames (frames parallel tol
Athe actlng loads) and the cantilever hendlng action of the
tube. Side frames are then assured to resist the'total_hori-
zontai shear force and‘analyzed by the portal,method or other

-\ * e —_

frame methods. In the cantilever bending action] to account
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for the shear lag effect of normal frames, the tube’ structure

is reduced to a pair of channels. Thus the shear lag effect
- of 'side frames“isuignoreq. -_

) . ‘I’*

By recogn121ng the domlnant mode of behavior of the

structure, Coull and Subedl [ 28] reduced the conventlonal
three-d;mensxonal analysis to an equlvalent two-dlmenSLQnal
Qne. This was achieved by introducing fictitiohs.connecting;
. members at each storey lenerto transfer shears from the
side to the normal frames which are cqneidered.gq lie in the
 same plane as that of.the side frares. The stiffnesses of
these fictitious memners were chosen to allow only. for the

transmlsSLOn of shears between the 51de and normal frames.
Although the- method considerably reduces the number of un=
knowns required for the solution, it is restrlcted to framed
tubes having rectangulaf shape in plan and under the action
of bending only. Several 1nvest1gators heve resorted to

the equivalent two-dimensional frame concept to establish a

more simplified method of analysis.

Khan and Amin [67] ha\}e -developed "influence curver"'
in conjunction with a simple“reduction model technique for
the simplified analysis of framed tubes having'reetanguiar
shape in plan and eubjected to uniform lateral loads., The
method is helpfui not only in ﬁhe preliminary design stage,

but also in_iilustrating the behavior of framed tubes. The

. . L . . '
- method, however, provides incomplete solutions which consider

\.

R P ST R Ly
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only the cantllever bendlng action of the structure. Fdﬂther-

»

more, the solutlons are avallable only for the column axial

forces and the shearlng forces of the side frameabeams at

the bottom of the structure.

Schwaiéhofer and Ast [ 106] have nresented tables for
- the prellmlnary analy51s._The-tables were.obtalned by carry-
ing out a serzes of analyses, employlng also the equlvalent
plane frame technlque, on a range of framed tubes w1th dlffer;
ent geometrical characteristics. The analyses are based on
the lateral wind loads spec1f1ed by the Natlonal Building
Code of Canada. The tables, . however, are only appllcable.to
framed tubes havlng a square shape in plan and all beams and
?columns are assumed to have’ the same dlmen51ons. ‘The solu-~

-

tions are tabulated only for the side frames.

Chan [ 12], Khan [59], and Coull and Bose [32,33] em-
| ployed an energy approach to develop simplified methods of
analy315. The dlscrete beam-column system was -considered by
chan [12] and axial deformations of columns were assumed 1n
terms of that of the corner columng. 'The ‘latter were dete;-
mined from the minimization of the total potential energy ofh
the structure and subsequently member 1nternal forces were
levaluated. Khan [59] also assumed the chord—w1se dlsplace-
ment, but for an equlvalent lSOtrOPlC tube. Internal forces
in the actual structure were evaluated by some specially de-
fined stress concentration factons. Both benddng and tor-
sional analyses were considered. The method is subfect to

i .
i “

—
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the same limitations stated earlier in'Chapter IIT.

Coull and Bose [32] replaced the ’ perforated tube by
an equivalent orthotropic one. chord—w1se normal stresses
were assumed.instead of dlsplacements, and the .energy solu-
tron resulted in the planar stress components of - the equlva—
lent tube. Member internal forces, in the actual structure,
were then obtalned by 1ntegrat1ng the correspondlng stress
component The mechanlcal propertles of the equivalent
_orthotroplc membrane (or plate) were 'grossly approxmmated,_
as shown in Chapter II.

-

"In all the prev1ously mentloned methods, which are
based on energy solution, only the structures hav1ng rectangu—
| lar shape 1n plan and subjected to spec1f1c loadings can he:
analyzed. Structures are also assumed to have unlform pro-
pertles everywhere (1 €., no variation of materlal and dlmen—
SlonS of members across the w1dtﬁ of " the structure and along *
its height). Also, in cases where high gradlent of stress
~occurs across the frame facades, the assumed dlsplacement

!

or stress functlons are 1nadequate and poor accuracy would be

expected. .,

bf Significant importance .is the PMacroelement Method® -
advanced by De Clercq [ 341, in th.ch & macroelement may
Span several bays and storles of the orlglnal structure, and -
its deformation pattern is exp11c1tly specrfled by Some assum- -

ed displacement functlons. Interlor 301nt dlsplacements ‘'with-
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in'thé elements are then obtained in terms oflthose atlthe
element nodes.' The-method considerably 'reduces the regquired °

-computer +ime and storage. Structures with_ arbitrary shape
in plan, varlable propertles, and subjected to arbltrary
1ateral loads can be efflclently analyzed. Although the
method can account for the con51deratlon of symmetry, this

not be lmplemented when a facade 1ncludes an odd number
of-bays sxnce ann element must span a complete number of
bays and storey heights. The effects of the P-A‘istabrlity),
'flexibility of finlte siae jornts,'dnd deformation of the
supportlng sorl on the analy51s were not considered.’
Flnally, ‘the method Stlll requlres conslderable computer

time and effort for data preparatlon, due to its lack of

: effrcment_transformatron, assembly, and consideration of

. \E.,. - - B . h
syrmmetry. -

- With regard to core-supported structures, these

ntral -cores whlch usually house elevators ‘and servrce ducts

. prov1de the maln lateral resistance of many high-rise bulld—

ings. The cores are ba51cally nonplanar ‘shear walls having

either an open section [102, 113, 117] or partially ficlosed

sectlon, coupled through a band oxr more of llntel beams or

connectlng slabs, at the. floor levels [51,60,109,112]

In general, the cores are subjected to torsion as well as-

to shear ‘and bendang.. The torsron usually results from
\asymmetry of the cross—section of the core itself or of the

applied lateral loads.,:The Qimensions'and behavior of the

-
.« ~
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cores are such that they may be classified as thln-walled
beams [50,109] Such structures when subjected to torsron

‘ Suffer warping stresses which can be of the same order as ‘f
the bendlng stresses [109,112,113]. Mostﬁgf the presently - \‘_7
.available methods of analys:.s (9,10,50,51,60,94 ,102,109, .
112,113, 117], except that presented- recently by MacLeod _
and Hosny [g2] are based on Vlasov s theory for thrn-walled-
elastic beams {119] 1n conjunctron wrth the contlnuous . ) ,;
connectron method [7]. 1In all methods based on Vlasov 8 _

~

theory, the total behavior of ‘the structure is consrdered

.

by superrmposrng “the bend;ng and the torsronal analyses.

- «

Torsxonal momenﬁs are consrdered with respect to the shear

centre of-the core cross-sectlon.. Its locatlon is commonly

determlned, based on an open sectlon assumptron, thus completely

-

. 1gnor1ng the effect of coupllng beams Recognlzlng that “'=:f7

such an assumptron may result in a signlflcant reductron of_thef

- [

tors10nal stlffness of the structure,_espec1ally for cases

&
of deep 11nte1 beams, Khan and Stafford-Smlth [601] have-' —

'l. presented a method based on 4an equlvalent closed sectron

analysrs to account for :Ehe shlft of the shear centre due to

. A
.’\

‘the stlffness of the coupllng beams - e
, - .. ) : y

bﬁLeod and Hosny [32] havgresented a. dJ.screte '

- - -

frame method for the analysrs of cores of rectangular shape

\ -

'rn plan. It lS a’ dlrect extensren of the equlvalent frame

B concept as, applled to the alysrs ogmplanar coupled shear

3vr.r
{-.\' ..

‘- / : walls [49,73 to 81,104] The method is simple and ‘can be -

. I PR : R -

. o L e . . v . :

\ LR . - : =y . b
. LR e N T .
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readily ihcorpdrated into conventional frame computer pro-

grams. The method, however, requlres the 1ncorporatlon of

'\
a stiff member to brace the core cross-sectlon agalnst any

‘dlstortlon._ The method cannot be applied to cores of arbi-

A "

trary shape in cross-section due to its lack of proper co-

ordinate transformation.

~d

v

Each of the above-meationed methods has its relative
merits; and constitutes a forward step in meeting the persis-
tent cﬁallenge of reducing the‘cost and effqrt of the -analy-
sis while improving the accuracy of the results. However
these methods'are subjected.to\a number of limitations, some
of which have been already mentioned in the previous chapters.
For example;(l) the effect of finite size-joints‘is either
neglected [28,67,90] or grossly approximated by introducing
infiaitely rigid arms to model these joints [4,12,32,34,83];

f2) "exact" analxpes requlre large computer storage and time

‘in addltlon to tedlous data preparation; (3) 31mp11f1ed

methods-based on energy approach generally do not allow for

the variation af geometry, loads, and structure'properties;

h(4)'whiie'substitute frames (1,62,90] can provide reason- -

o v -

ably accurate modeliing under certain circumstances, their

”acy (6, 34] as already shown in Chapter IV; (5) the macro-

\

'fllmltatlons are substantlal, resultlng in a very poor accur-

- L3

, element method cannot be dlrectly applled for the anaIYs1s '

dof spatlal -shear wall assemblles. Flexibility of finite-

;31ze 301nts is also neglected. The method requires coneider-

able effort for data preparatlon, and flnally, (6) none of
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-

these methods considers the‘secon&-order (stability) effects.
. . N - b )

6.2 SCOPE

i’ .

The method to be presented in this Chapter is for
the ﬁhalysiﬂ“sffisge—type tall building structures with the

following characteristics:
~1l) The behavior is elastic

2) The structure may consist of an assembly of planar
'ffames, or solid shear walls in coﬁjunction.with
uniform bands of lintel beams, or any combination

of these.

3) Planar frames consist only of rigidly connected

vertical columns and horizontal beams.

—

4) Both static and stability analyses aré considered.

. under the same general assumptions stated earlier

i

in Chapter I.

The present method is seen to cqmbiné both features: of the

‘ordinary finite element and. macroelement [34] method§. In
the former, an element represents pnly a small finite
region withijx a structural'membe:;funlike_ the macz':oeiemgnt
[34] and the elgment_df the predént method.

T
|

| ' D
| - . .

i



6.3 ANALYSIS PROCEDURE

The perforated tube of arbltr
first replaced by an equlvalent unper
shown in Fig. 6.1. The’ equlvalent st
ed by an assemblage of rectangular pl

developed in Chapter V.. These elemen

gether only at the nodal points dlvrdlng the structure to Ajf{a‘,,-

a number of levels, as shqyn 1n Flg.

assumption of rigid- floor dlaphragm,

.structure would have three degrees of

tions and a rotatlon in the plane of the floor. HoWever, ,13;7'
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ary. cross-section is
forated tube, as

ructure is then ldeallz-
ane stressgelements

ts are connécted to— °

6.1(b) . Adopting the S

each story of the

freedom- two transla_.itif,._‘

)30:0'.

in order to malntaln compatlblllty of the vertlcal dlsplace-

ments at- the 3unctlon of. any two facades,san add;thnal\

degree of, freedom correspondlng to th

k]

is introduced at each corner of the s

e vertlcal translatlon

trycture for each level. .

These degrees of freedom will be referred to as global

' degrees of freedom" which may be ass

trary reference point in each level (
2

‘dlsplacements associated with interio

dividual facade are termed ‘“internal

freedom™ whlch wild be ellmlnated by

before the global structure stiffness

Solutions are flrst obtalned
of freedom, which then allow the reco
ingerpal facade degrees of freedom.

OClatEd wfth an arbl-
Fig. 6.2). Other ’,
r nodes w1th1n an An-
facade degrees of
static condensation

matrix 1s formed.

for the global degrees
vefy of the eliminated
Stresses and hence,

/

£
=

b AL

H
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-

member internai forces can be subsequently determined. The

-

major steps in the analysis procedure are summarized below.

1) Assembly of the individuai facade local stiffness
matrix taking directly into account the boundary
and symmetry conéitions. 'The.éacades are assumed
to have negligible resistance aéainst Qut;of-plane

1l

deformations.

Ry

“

2) Condensation of all internal degrees of freedom .
in each facade stiffness matrix leaving only

those at the edges.of the facade.

~

3) Transformation of the condensed facade stiffness .
matrices into the global coordinate system taking -

into account the global symmetry conditions.

T
gy .

W

- 4) Assembly of the oﬁaféliagggucture stiffness matrix
. from the transformed facade éEiffness matrices

obtained in the previous step.

5)  Assembly of the overall load vector in .the global
axis system.’ | '

6) Solutipn for the global d%§placements or -degrees

of freedom.

.
7) Extraction and transformation of the external
global'nodal displacements of each facade into its

local system..
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L

8) Recover? of the internal local displacements of -
each facade and calculation of the stresses within .

each element.

9) Déte;mination of member internal forces in the
-y
actual structure by integrating the corresponding

stress component.

-

The . above-mentioned steps are described in detail
below, with particular attention giveq to the programming

' aspects. R
, :

6.4 STRUCTURE IDEALIZATION

PR,

To illustrate the rules and aefinitions which
govern the process of Ydealization, thg hypothetical framed
tube structure éhown in Fig. 6.1(a) is considered. It -
consists of an assembly of three vertical frames 6: "facades"
intersecting each other at three “éq;ners“ (Fig. 6.1(c).) ﬁb
The facades are numbered-in a countérfplqckwise direction
starting with the lower left corner with respect to the

globfll cﬁordinate system as shown in Figs. (6.1(a)® and ~
(6-1(c)). | | |

The actual framed tube is replaced by an equivalent
orthotropic¢ tube which. is -then, discretized into a number of
. finite eléments” (Fig. 6.1(b)) accordihg_to the following

rules and definitions:

'
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l) An element normally extends over one Or more

complete storles and one or more complete bays

depending on the accuracy ;equired. The boundary

of the elements need not coincide with the lines

of beams or columns as-shown in Fig-. 6.1(b).

. Bowever, all elements at a given height in the

building must include the same number of stories.

Thus, the elements divide the structure into a

number of levels called

ngtructure levels\ifonse-

cutively numbered from the bottom to the t P as

shown in Fig. 6.1.

PR

2) Properties of the gtructure may vary across its

-

‘width and along its height but not within an element.

In other words, within each element the following

preperties must be constant- bay w1&th and storey

he:.ght_l moment of inertia, area and shear area of

columns, moment of inertia and shear area, of

beams; and finally, dimensions of the finite sized

joints (i.e.. column depth and beam depth )

3) For chh facade, the element corner_ncdes are

numbered from the bottom to the_top'starting from

-
the ‘left to the rxght, as shown in Pig. 6 3(a).

If the‘refiped element

height and mid-width el

is,used, numberlng of mid-

ement nodes are considered

one after the other, starting aftef that of the

)
N

A ertlom 57 .

. . .
. LM A e et a0 T Ll
by .‘..-I.-;'?Ln:-a L LR e Lol

et

b SR B S s
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corner nodes and in the same fashlon as the latter

as shown in Fig. 6.3(b).

4) Element numbering system is independent'of the type .
of element used in the analyeisf Elements are
numbered from the left to the right, starting from
the bottom to the top, as shown in Pigs. 6.3(a)

and 6.3(b).

- 5) Element 1nc1dences or connectivity are. BpelelEd

by startlng from the lower left corner node in a

LY

counter clock-wise manner.

. | | | .

"The dlscretlzatlon process (node numberlng, and

~

' element numbering, connectivity and type) is generated -
automatically from the given number of elements in the
horizontal and vertical ‘directions of each facade, thus re-

duc1ng the effort in data preparation and at the same time

eliminating p0551b1e data errors.

6 5 ASSEMBLY OF FACADE STIFFNESS
MATRIX IN LOCAL AXES

+
.

4 Since’ the facade coordlnate system coincides with
that of 1ts 1nd1v1dual elements, the element stiffness
matrlces are assembled dlrectly without trangformatlon to

form.the facade stiffness matrix. At<fhis stagg, zero-dis—

.-
u : '
. . ! :
. - - T a . .
. : . . % -
. [
’ . .
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plaeement at the boundaries.td simulate the supports or:
possible symmetry conditions are imposed by not setting up
the equilibrium equatiqns;corresponding to the restrained
displacements. This allows some savings in computer stor-
age and computation time‘especially in cases of symmetry.

The bottom nodes (i.e., 1eve1-0) are assumed to be fixed;
however, the effect of foundatlon settlement can be taken
into account by 1ntroduc1ng a bottom strip of e}ements

gimulating the supporting soil.

In the present method, symmetry is considered at
two levels: global structure level, and local facade‘level.
The latter may not egist with the presen?e of the former, .
but not the reters%,l Facade stiffness matrix is assembled
element-by-element accordinqlto the degtees of freedom
associated with each element. These degrees of freedom are
generated di fferently according to the type of facade

symmetry as follows:

6.5.1 No Symmetry ‘ .

In this cese degrees of freedom'are_assigned as-
shown in Figs. 6.4(a) and 6.4(b) for the’ordinary and re-
fined element assemblies, respectively. In_the case of h“.
the ordinary eleﬁent, lateral degrees of freedom are- assign-
"ed flrst startlng from the bottom to the top, i.e., identi-

¢al to the level numberlng.' Vertlcal degrees of freedom

are then asszgned sequentlally to the nodes of the leftmost

[

NPT PR
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edg%,_fightgostledge, and those in between in that order,
starting from the bottom to the top, as shown in Fig.6.4(a).
In the case of the refined element, degrees of freedom are
;ssigned to nodes on the exterior, lateré; mid—heighé,
vertical interior at cornmers, and finally vertical interior
at mid-width in that order, exactly the same as the previous

caseé (Fig. 6.4(b)),

6.5.2 ‘S?mmetry Type Qne

If the‘normal.stréss (cy), which represents theA
'diétribution of column axial fqrces,lis syﬁmetrical about
the center 1;ne of a faéade, only one half of this facade
' needﬁbe considered with all nodes at the line of symmetry
- restrained from lateral movement (Figs. 6.4(c) and 6.4(d)). .

Qggrees of fre;abm are assiéned exactiy iﬁ the same order

and fashion as fhat given in the previous section.

6.5,53 Symmetry Type Two

o Thié fYPe of symmetry describes an anﬁi-symmétric
distribution of column axial forces in Lhé facade and, only
the half of the facade on the left is to be considered. In
this case, the vertical movements of all nqdes on the
symmetry axis are re§trained. Degrees of"freédpﬁ are then

assigned following the same format given in Section 6.5.1,
. . i ' LY . . . .

as shown in Figs. 6.4(e) and 6.4(f), according to the type
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' of elements. T - ' .

-6.5.4 Symmetry Type Three

ThlS type of symmetry w1th1n a facade is similar to
type two, except that the right half of the facade is being
analyzed, and thus vertical dxsplacqments of all nodes ‘on

the symmetry axis are restrained (Fig. 6.4(9) and 6.4(h)).

In the computer program described in the last
Appendlx the facade degrees of freedom are generated auto-

mat;callyilncorporatlng the details glven in the prev1pus

sections.
Since the facade stiffness matrix, [KFJ, is
symmetric, on;y its upper trianglg-is assembled and stored.
A Kin Kiz ... Ko ..o Kin ' "

Kzz -'-. K2- LI 'Kz

[K ] = ﬂ% . A ' - ‘(6.1)
F , ’ .
. Kij T Kin
' &
z Knn

L]
LS

n =;total number of degrees of freedom of a

-

facade

e .
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For the efficient use of computer storage, [KF] is stored
in a singly subscripted array column-by-column

[KFJ = {a1 az ... 3 e am} (6.2)
in which

% = storage location of the element Kij (Egq.6.1})

in the row matrix (Eg.6.2).and

m = the order of the row matrix given by

m = n(q41)/2 ) (6.3)
p )

-

The mapping function. is

[

[

L= i+ {(§-1)j}/2 - . (6.4)

6.6 CONDENSATION OF FACADE INTERNAL
DEGREES- OF FREEDOM

In.an’effort to minimize the computer storage re-
quirement as well as the cémputation time, the facade in-

ternal degrees of freedcm (i.e. those not requlred fon

»

malntalnlng compatibility with the adjacent facades) are

r

ellmlnated by the process of statlc condensation yhlch is

‘ brlefly descrlbed belo .[ 46].

The facade stiffness equation may be written in

M ¥

partitioned form as ‘ . o o

160
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' yields

161 ' -

[Ki:] [KizljHa .} - H{P.} L

' _ - {6.5)
(K221 [R22]][{a Y. [{P}

e e
in which

' {d 1 and "{4, } = the remalnlng and\ellmlnated

degrees of freedom, respectlvely. .

| Expanding'Eq.'(G.s) and aolvipg for ‘{de} gives

A : T =l oo -

) laghe (K217 [K2p 10, Y + (Kadl ™ {ReE - (6.6)
v ' iy o

Substituting this result into the first part of Eq. (6.5) .

. . [
L - -
%
P |

L [KF]{d} {p} N G

*

a -

'_Ln Whlch [KF] ~and - {P Y are the "reduced" oxr cbndensed

) facade stlffness matrlx and 1oad vectors, respectlvely, and

are deflned by b'*ﬁ v
[KF] . [Kards - (Kaal[KEE] ‘IKMJ R
{P } 2 {P } - [Klz:”;Kzz]% {p }~ | - (6.97
P . ) ) : ._‘“ o . - )

The static condensatlon procedure descrlbed by

. Egs. (6 8) and (6.9) is not 5u1table for d:u%ltal computation

,Vand can be more ‘efficiently carrled out by a symmetric back-

ward Gaussman ellﬁ;natmon whlch is qulte well known [I11].

L 2

Wilson, EZSJ has given a FORTRAN routine to perform thlS

e ik e
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-l

operatlon, however, it is applxcable only when the full

storage for the stiffness matrlx is provmded. The maln -

stfucture of yllson s routlne zs adapted to the present

-

trlangular storage scheme , and also extended for. other opera-

- ~

. .. oL - )
tions. ' Tt e - - ° o

~ . a . 7

After a part:al bachward ellmination'of the unknowns .

{dr} has been completed, Eq (6 5) has the form

o -4

fay o eEa L

o,

v

In thlS equatlon the elements of the submatrix '[fzz]‘above

the, main dlagcnal are all zero' s, and the submatrlx (Kiil

~'pﬂd1rectly represents ‘the requlred condensed facade st}ffness

)

' hwtrlx [K ] 'f' ' T .

-
- v, .-
[ - 1

i, It should also be. noted that the above condensatlon

procédure,—as‘descrlbed by Eq. (6 10) can dlrectly be used '

«for the solutlon of any system of llnear algebralc equat;ons

.fhav1ng the form of. Eq. (6.7). The solutlon can be achleved
'by SEttlng the number of. the remalnlng degrees of freedom '
£o one,-ln Eq. (6 100 ‘ Thls would result ln a domplete
backward ellmlnatlon of all but the flrst unknown, and thus

l‘
only a- forward substltutron is required to obtamn the rest

- of the unknowns. '. e : &_

: A . . ) s
v ' . . . . . o b 3
* - N Lo
. . r - . ..
v oo . ‘ . e - e - ‘
N - . . - .o
- . S .. ’ . e
: . ) . B A M . : . ‘.
. . ’ v ' . B .
L} " . .
- " L - o
. '
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-*

Finally, the eliminated or condensed displacements
a{de} can simply be "recovered” after the determination of -
the remaining displacements ‘{d_} by a forward substitution

starting from the row NR + 1 of Eg. (6.1Q), where NR is:

the number of ﬁhe remaining degrees of freedom.

6.7 ASSEMBLY OF THE GLOBAL STRUCTURE STIFFNESS'
MATRIX ;

.

. Since the in-plane st%ffgpgs of a fgéade can resist
both translation and twisting Zf the three-dimensional struc-
ture and the facade could be arbitrarily locatéd in the plan,
i£ is‘necessary to transfqrﬁ the con@gﬁsed facade stiffnes’s
" matrix of the previous section intb the giobal coordinate
system. .This may be done bg means of the tranéformation

. 1!

matrix T defined as
?

{a } = [Tl {a } . - (6.11)

in which ' 7 '

*
{a_} = a set of global degrees of freedom affecting
. . . /ln

-

the facade deformations

To facilitate the presentation and the derivation
of the transformation matrix - [T], a specific orderihg system

of the global as well as the local facade degrees of freedom

is chosen: 3
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{8},
{8 Yy = {ford 1 ) (6.12)
loglrx .
ans | |
14} 310
(@ dg g = {lugd o (6.13)
ﬁ | o Ulegdy |

in which .

{A} = the lateral deg:ees of freedom at each

level in the facade with respect to th

local axishgystem

u

{mI} and {mj}'=-£he vertical degrees of freedom at. each
level along the two. edges of the facade' '
in both the local and global coordinate

systems . | )

{dc} = the degrees of freedom associated wi
the'arbitrarily located centre or reference

point at each level, and is defined by

-

T
tay)*

{1.11 v 91‘ }12 vz 02 «se UL VL SL} - (6.14)

L = number of levels
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To derive the transformatioh mafrix T, the effects of trans-
1ati9ns and twisting of the building on the lateral in-plane
local displacement of the facade are-first_considered. |

Refer to Fig; 6.2, the lateral displacemént of thé faca&e at

level 1 c¢an be written as
'Ai.= {cosa ‘sina D} V. {6.15)

.in which : . :

L
a = the angle measured from the x-axis t& the

positive direction of the facade (Fig. €.2).
It should be noted that the positive direction of the facad
is from the first specified edge to the other edge (i.e.,

facade 1-2 ¥ facade 2-1).

D = the perpendicular distance between the

’
facade and the z-axis.

Let {cosa sina D} be denoted as {A}, Eg. (6.15) can be
generalized for L levels: /

{a} A (6.16)

Ixl - [T1]{dc}3Lxl

in which t
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~{Al
RPN I .
[T1] = ~ (6.17)
- Xl .
L | Jr x 3¢
The complete transformationlmatrix [(T] ecan now be
‘- written ‘ )
- . 7]
[TIJ ?
' _ . [1] |
o [1]
- TxL
" -

where the identity matrix [I] reflects the fact that the

vertical displacements of the corner nodes are the same in .
. _ ;
both the global and local coordinate systems.

From Eq. (6.11) , the contragraéient 1éw of trans-

fgrmation vields
-»
—*. T = ¥ . | |
d {p.} = []° {BP_} (§.19)

which, by substituting Eg. (6.7) into it, beconmes

n

. A .
(Fl} = [T17 [K 1{d_} (6.20) , i%

From Eg. (6.11), the above equation canéfurther be written in

the form

- T — ‘k
{Pr} (T] [KF][T%{dr} (6.21)



167

Thus the transformed stiffness matrix can be recanized as

—

—*_ =
(K51 = (117 (K107

'}6.22)‘

The transformation described above requires storage

and manipulation of large matrices and is’not convenient for

programming purposes. A more efficient scheme can be achiev- .

ed by rearranging the order of numbering for the degrees of

fgeedom,

. -

Let {d,} represent the three local displacements

of level i in the sequence: latergl displacement, verti-

cal digplacements of .the left and right edges, respectively.

The local fécadé s

form. e

in which

\

3Lx1

K. .

1]

ii

-

- b
L B ] ,KIL d1
e KzL d2
* & & KiL 1 di
KI@L dn
3Lx3L - °

tiffness matrix can be written in the

}  (6.23)

-

3Lx1l

is a 3x3 sub-matrix representing the stiff-
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th

_ ness coupllng of the i=— .level with the jEE‘ level.‘ In -

actual programmlng, all the terms of the sub-matrlx EK”J]
can be extracted from the upper trlangle of the condensed
: * %

facade stlffness,matrlx of Eq. (6. 23)

The global degrees- of ‘freedom’ at .the - iEE_ levelf

*
(Fig. 6.2). are also grouped together in the vector {di}"‘

,

deflned as-

i

PR ' - e a4y
{a;1% = fuy vy 85 w4 wzi} L .'(6:24)

The local dispiacements at the iJ—C-ll level {di} are relat-

N * _
ed to those in the .global gystem {di} ags follows:

{a,} = [r;1+{4;} f ' (6.25)

b

The trahsfoxmation matrix for the complete‘facade is

now L ' ' : o

-]

——

(] = ey 4(6.é6})

-
“and the transformed stiffness matrlx of Eq. (6.22) making

‘use of Eqs. (6.26) and (6.23) ylelds the followxng express-

o
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ion o ST | Lo
| t'*J—LTT[ N - 6.2
3.. = i] . Kij] . j o (6. 7)
Thus, the transformatlon 1s now performed for the
ub-matrlces (K, J] one by one, 1nstead of the complete
facade stlffness matrix. It should be hoted that for' a11 -
the types of structures: considered throughout this.thesis

[T ] equals [?J]

‘For the case of no Symmetry, there arxe five global
dlsplacements at each level. The transformationuﬁatrix

[T 1

u v 8 Wi 2
cosa  sina D ¢ g
(1,7 = 0 0 o 1 ‘of . - "(6.28)
0 Q 0 0 1l

Hav1ng transformed the ' condenseqd facade stlffness
matrlces, the overall globei Structure stiffness matrix-
[K ] is assembleq’ by direct .Summation of all 1nd1v1dual

g}obal stmffness sub-matrlces [K J in eac§XEacade and

only its upper triangle is

1n_a_row fashion as that

:of a'facade (Eq. 6.2).

FOR DIFFERENT

6. 8 TRANSFORMATION MATRIC
' ITIONS

STR CTURAL SYMMETRY CON
i

Symmetry condltlons of loadlng and geometry would

allow srgnlflcant reductlon of data input, as well as comput-
. [
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er storage and time. To take-advantege of this, the erbit—
rary reference point where'global degrees of -freedom are

attached must be located on the:symmefry axis. -

For the case of structural symmetrxy Type 1, the
jstructure is restralned from twisting and translating in the
y-dlrectlon. The remalnlng global degrees of freedom are
+the x—dlsplacement and the vertical displacements at the
corners. The transformatlon matrlx is ‘modified, in this

case, to F

-

(6.29)

—-
H
Lo
1l
o
!_l
o

RREN I
-

-~
“

L

The structural symmetry Type 2 ls similar-to the

above type except that the x-dlsplacement is restrained in-
stead of the y-dlsplacement. The appropriate transformation

‘matrix is

[r.] .= 0 -1 0 |- i . {6.30)

If the loading and the géometry are such that only
twisting occurs, tﬁe.apprdpriete transformation matrix for

this third type of structural symmetry is
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6 - wy W,
S ’ D G 0
[T.] = 0 "1 o (6.31)
o o0 1 5

It should be noted that the sub-matrlx (K. J] of
Bq. (6.27) is normally of (order 3x3 dnd its terms can- be
: ‘extracted from the condensed faéade stiffness matrix. How-
ever, when symmetry of a facade is considered, the order of
the sub-matrix [Ki.] is reduced to 232‘ which is‘then
exténded to size 3x3 before performing the transformatlon
to allow the use of the above transformation matrices

£

(Egs. (6.29) to (6.31)).

6.9 SOLUTION FOR DISPLACEMENTS

-

Nodal displacements are determined in two stages:
the first stage deals with theiglobaI structure displaceménts,
énd the secoqd considers the local displacements of nodes
within éach facadg..' )

Having established the global stfuctﬁre'stiffness
matrix and-the éssociated o&erall load vector, the global
structure displacements can now be obtained by solv1ng the

set of equatlons >

%} = [K;J'{d*} ' (6.32)
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The solution technique is based on Gauss elimination as was-

described in Section 6.6. L

Determinatiog 6f the local internal nodal displace-
ments within each facade is now considered in the second
stége} anéide;ing each facade at a time, the global dis-
placements associated with it are first ext}acted from those
obtained in £he first stage for the whole structure. These
extracted displacements are then transformed (Egs. (§.28) to
(6.31)) to the local facade system 1eve1‘5y'ieVe1. The latter
displacements constitute the femaining faCade‘degrees‘Bf

. freedom which can be used to recover the internal nodal dis=-

placements, as explained in Section 6.6.

6.10 DETERMINATION OF STRESSES I

5

The .facade, nodal displacements are tﬁeh extracted
to yield the digplaéemgnts'associated with eacﬁ element
within the facade and subseqﬁéntly the strains and étresses
are calculatéé-as given in Chapter V. It should be remember-
ed that these stresses are for the facade membrane. Member
internal forces of the actualldiscreﬁe beém-cglumn system
" of the actﬁal stfuctures.aﬁg evaluated, based on these
stresses, as desc¢ribed in Ehapter IIi.

F
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6.11 COMPUTER PROGRAM

A largé‘capacitylébmputer program (program TUBE)
was developed for the analy31s of most currently avall—
able Planar and_ tubular gtructural systems for tall build-
. ings. The program lncorporates not-only the theoretical
developments of this chapter, but also those of Chapters'
iI,. III, and V. A descflptlon,user s guide, and FORTRAN
liéting of the program ére'presented in Appendix C.

[y
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CHAPTER VII

APPLICATIONS TO THE ANALYSIS OF TUBE-~TYPE
TALL BUILDING STRUCTURES

7.1 INTRODUCTION

The Equivaieht Orthet;opic Macroelement Method was
developed in an attempt to minimize the computer time and
Storage required in analy21ng planar and tubular tall build-
ings. Appllcatlon of the method to a number of planar struc-—
tures has been presented in Chapter'V. "In this chapter, the
method is applied to the analysis of three-dimensional fram-

ed tube and core-supported structures.
The objectives of this chapter are:

(1) To verify the validity of the ?heoretical develop-
ments of Chapter VI with partieular emphasis on
those aspects such as: the bendlng analysis of
framed tube structures taklng symmetry into account,
combined bending and torsional analysis of core-

supported structuree,
. .

(2) To inbestigate the effect of the mesh size on the

accuracy of the results, and
b

(3) To'illustrate the efficiency of the Present method
as applied to the analysis of tube-type tall buildg-

ing Structures.
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-
7.2 APPLICATiON TO FRAMED TUBE STRUCTURES

In this section three diffefent examples are
considered: the l6-storey framed tube of Chan [12], the
ten-storey framed tube of DeClercq [ 341, and the 36-storey
plexiglass framed tube model [12]. The results are compar-
ed to those obtained from the “exact"-analysié, experi-
mental data and from other simplified methods whenever these
are available; The basic assumptions affecting the res-
ponse of framed tﬁbe structures to latéral loads, (i.e.,
line members, sheér deformations of members, infinitely
rigid joints, and flexibility of these joints} are investi-

gated in the first example. Effect of the mesh size, in

' modelling structures employing the present method, is also

examined in the first two examples. The refined modélling
of finite size joints, developed previously in Chapter II,
is applied to the analysis of the plexiglass model in the

third example.

7.2.1 Example 7.1

In this.example.the lﬁFstorey framed tube of
Chan fl2] is cohsidered. The structure ig square in plan
with each facéde congisting of a iz-bay, lG-étorey frame.
Typical dimensions and properties of the strﬁctu;é are
given in Fig. 7.1. The:disc;ete beam~column system is

first replaced, for the analysis; by an elastically equiva-

-
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- lent orthotropic membrane. In ‘order to investigate the
effects of some commonly used simplifications on the struc-
tural response, five different analyges are carried out

congidering respectively:

(1) bending deformations in members with.rigid finite

size joints [ 32];

(2) shear deformations of beams in addition to (1) [12];

T

(3) shear deformations in columns in addition to those

in (2) [54,105] ;

L%
(4) flexibility of finite size joints in addition to
(3); and R -
(5) 1line members (i.ey, joint size is ignored) with

their ben@ing stiffness only [ 67, 90].

Due to symmetry conditions, only one quarter of the .

%tructure needs to be modelled utilizing a total of 24
ordinary elements'per facade (three across its width and

eight alohg its height), as shown in Fig. 7.1l(c). -

The results (Fig. 7.2) show that ignoring the
effects of finiée size joints (analysis 'No. 5) may reéult
in underestimating the rigidity of the structﬁre to almost
one half of that based on.iﬁfinitely rigid finite joints
(analysis No.l). This was also pointed out by Ast and

Schwaighofer [4]; It should be noted that the rigidity of

--

st ’u'h 0 e

ad
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the structure as modelled by Noi'l and No.5 represents the

‘l 1-

upper and'lower bounds respectively sinee the actual rigid- .
ity,:considering shear deformations in members and joints,
obvieusly should 1ie within these two bounds, as shown in :
JFig. 7.2. It should'aiso be emphasized'that~while’;he _
lateral deflection predlcted by theé .method of Chan_ [12]
colnc1des w1th that obtalned by the present method under

the sam@‘assumptlons, the conSLderatlon ‘of shear deforma—
tions of co;umns and ]Olnts increases its wvalue by about

LY

13s. .
s
In order to examine the effect of mesh size on the

“aCQuracy of the resulté four different meshes (Figs. 7.1(c)

and 7. 3) are cthLdered. Surprisingly, it is observed that

the\ﬁaxlmum lateral deflectlon is little affected by the
ieﬁmesh size ‘and is within 3% of_the "exact" value. However,
5&em5ér‘in§ernal forces, especially the column axial forces,
are significantiy affected by the mesh siZe to the extent
of making mesh 4 unacceptable as shown in Table 7 1 and
Fig. 7.4, yet rapid convergence is cobtained (Flgs. 7.4 and
7.5} resulting in an error of less than 3% with the finest
3

‘mesh used: Tne number of unknowns (degrees;pf freedom) in

b)

the finest mesh is only 19% of that used in thé "exact" ' |
analysis. It should be noted that "ekact" methéd’referred
to here, is based on a twb—dimensional frame idealization

(28] and hence 'is 11m1téd to framed tube structures having

rectangular shape in plan and subjected to symmetrlc bendlng
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‘action.

.. Since the accuracyfdbtained with mesh-2 (Fig.7.1(c))
is quite acceptable, it was decided to carry out a more de-
tailed analysis of the same structure using this mesh; The
results.are.compared to those obtained from the "exact" and
simplified methods by Chan [ 12] as wéll as to those obtain-
‘ed by employing the gimﬁiifigd method of Coull and Bose [32]
for the analysis of the same structure. As shown in Figs.
7;2 and 7.6 to 7.9, both the lateral deflection and."impbrf--
antﬁ member internal forces are calculated with errors less
than 3% and 5% respectively, yet employing a fraction (8%)
of ﬁhe number Q% degrees of*freéddm‘iﬁ the. "exact" analysis.
The simplified methods, ééﬁeciallfjthat of cOﬁll and Bose,
on the‘sther hand, show serious errors. It should be men~
tioned that for the purpose of comparison, fhe member'ﬁn-
ternal forces were obtained baéed on thé same basic aésump—'
"tions of Chan [121 (i.e., infinitely rigid finite'siie joints
.and oniy-shear deformations ¢f beams in addition to the

bending deformations of the members. ) _ ' -

v

) As mentioned in the introduction, tﬁe'accufacf .
fesulted_%rqm the‘application of the elastiévequivalent
“concept depends primarily on the elasti& properties of the
:equivalept continuum and the modelling. This is clearly

illustrated in' Figs. 7.6 to 7.9, in which the results ob~-

tained by the present method are in élose'agreement with

-,
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the "exact" values whereas those by Coull and Bose [32]

method are unacceptably in error even though both methods
are based-on the same equ1valent=concept. I+ should be |

noted that the poor results, especially those in column

‘axial forces, by Coull and Bose's theory, were"expected

since it is obvious that the assumed secondrdegree para-
bolic distribution of no;mél stresses in the normal frames
cannot represent the severe variation of the axial'fofces.
As a consequencé, the maximum corner columh axial force is
undereotimatodlby 41.5% and that of the-adjacent colhmn is
overestimated”by 24.6% (Figh. 7.6 and 7.7; reﬁpectivéiy.)
It can also be seen that the assumed stress functions
resulted in extremely unacceptable shear dlstrlbutlon in
the beams intersecting at the corner (Flgs. 7.8 and 7. 9),

espeoially that in the normal frames (Fig. 7.9}).

- 7.2,2 " Example 7.2

. This is the l0-storey framed tube structure of
peClercqg [34]. The structure is subjécted to a uniform
Ca . ‘ _
jateral load and has the dimensions and properties shown in

Flg. 7.10. As usual, the discrete beam—column sysfem is

" replaced, for the analysis, by an equlvalent orthotropic mem- ”

brane. In this example, ‘the reflned element is employed

Ifor modelling the equivalent structure and flve different

‘meshes (Figs. 7.10(c} and 7.11) are used to test further

the effect of mesh size on the accuracy. Again, it is

, .
! St

-
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found that the mesh size has a negligible effect on.the
lateral‘deflection. The errors in all cases do not exceed
3% of that obtained by the "exact" three-dimensional frame
anaiysis. Column axial forces are shown to be the most
greatly affected by the meshlsize. ‘However,'unlike_the
previous example, none of the five meshes ﬁsed has_resulted
in unacceptable errors. ThlS igs ‘due to both the use of the
refined element and the moderate shear lag effects. The
'maximum error in both column base axial forces and the

ﬂ maximum shear forces in spandrel beams, is less than 13%

" (Figs. 7.12 and 7.14) for the coarsest mesh (number of
degrees of freedom is less.than 4% of that ih‘the‘"exact"

. analysis).

In general, as the mesh gets finer, the error re-
duces, but neverhhelesé} thel"exaet" solutions may not beﬂf’
reached even when each element spans a'oneebay, one-storey
. area,_ée‘shown in Fig. 7.12 (Case E). This is because a bas-
ic approxlmatlon was. introduced in assumlng the inflection
p01nts at the mld-lengths -of the members when the elasti-
cally equlvalent membrane was der1de. .In addition, it
should be pointed out that while equilibrium exists at the
nodal p01nts of the eguivalent macroelements, 1ndlv1dual
jOlntS of the actual structure Wlll not generally be in
equilibrium. This situation also occurs in the macroelement
method of DeClercqg [ 34] and that of Ha [45] and may be .

explained by the fact that the structure is constralned to



.
oy,

deform as prescrlbed by the assumed dlsplacement functions,

o

*

~ and thus true equlllbrlum conflguratlon is not obtalned.

{

7.2.3 Example 7.3 | ' i

In this example the 36-storey plexiglass framed

ﬁbe modeI.of Chan'[12] is apalyzed. The elastic properties
of the equlvalent membrane are evaluated taking into con-
51deratlon both the bendlng and shear deformations of
members, axial defor;etion of columns, and the flexibility
of the flnlte size ]01nts. Due to symmetry conditions, v
only one-quarter of the structure is analyzed (Fig. 7. 15)(\3
with each. of its two faches modelled by 12 reflmed element \_&3
' as‘shown‘in Fig. 7.15(c). The anaiysié is‘oarried.out for
two load cases; a top concentrated lateral load of 10 1lbs ’
and e‘uniform;lateral icad of 1 1b/in. The lateral deflec-
tion and coidmn axial stfesses at mid-height of the fifth
storey were obtained expefimentallyuand theoretically by
Chan [12] and are compared with those predicted by the

present method.

In the twolloadlcases considered the experimental
values of the lateral deflection (Figs. 7.16 and 7.18) were
found to be less than those obtained by the simplified meth-
od of chan [12]. This is contrar& to what is to be expect-
ed since the Chan method treats finite size joints'as'

infinitely rigid and ignores shear deformations of columns.
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Y =

chan [12] attribdted this aoparent contradiction to the use

- of nonefrictionless:polleys‘(in the loading system) which
reduced t@e.load‘traosferred to the structure. The actual
applied loads were evaluated by usinq the experimental
values of the axial stresses in columns and reduction fac-
tors of 0.873 and 0.84 were obtained for the two cases res-
pectively. Upon applylng these reduction factors, both the
lateraldoe;lectlon and column axial stres;es (obtalned by i
the present method) are found to be ln very close agreement

and theoretlcally consrstent with the experlmental values as

shown in Figs. 7.16 to 7.19. . - e

7.3 APPLICATION TO CORE—SUPPORTED’STRUCTURES.

The core—supported structure_of Stafford-Smith and
Taranath [109] is consrdered herein. ' The structure has 15
stories at 12.5 ft each, 50 x 50 sqg. ft. in plan, and is
subjected to unlform wind load of 25 psf as shown in Fig.7.20.
The supportlnq core con51sts of 4 one~ft.thick 20-ft wide
concrete (E = 576,000 ksf) walls formlng a tube of square
cross-sectlon,. as shown. 1n Flg. 7. 20. One of these walls is
regularly perforated by door. openlngs (10 x 11 sq.ft.) re-

sulting in a band of llntel beams each having a depth of

1.5 ft.
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7.3.1 Structure Idealizatioﬁ,

t

The band of lintel beams is. replaced, for the.
analysis, by anhelastically equivalent orthotropic membrane

having a uniform thickness of one ft. The shear modulus

'(ny) of the equivalent membrane is evaluated from Eq. (2.4)
to be 1,464 ksf, and the elastic modulus (Ey) is assigned
. i _ .
a very small value (10 that.of the solid walls, i.e.,

E_ = 0.576 ksf). ‘
y ’. S

—_—

Due to the lack of symﬁetry in the loading with

A }eSPect to ‘the structure orienéation, twisting (in addition
to the laterai displaéément).of‘thg‘structure will occur.
Therefore, none of the types of the‘global_structgral ﬁ
'symﬁetfy, discﬁssed in the previous chapter, can be used
_End consequently; é ﬁgkee-dimensional idealization of the
complete'st;ucture is necessary."Tﬁe'mesh used is shown in
Fig. 7.21 and consists of 176 ordinary e%%ments (8 elements
in the vertical direction and 22 elements around the pe;i—
phery of the structure) with a total of 182 deérees~of.free—
dom, of which only 56 are the béundary or global degrees

of freedom. ™

r

7.3.2 Comparison and Discussion of Results

Both the floor rotation and stresées at the base of
the core structure are.obtained énd'compared to those of
(15 Stafford~-Smith and Taranath L109]; f2) Heidebrecht and
'Stafford-Smith [51]; and (3) Khan and Stafford-Smith [60];

-and (4) Macﬁeod and Hosny [82].
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The last authors used a dlscrete modlfled frame method and

‘the. other authors employed Vlasov s theory for thln-walled_

A

-

elastic beams [119]. --

Flg..7 22 dlsplays a very clese agreement among.
'the different methods on the floor rotatlon. Comparison of
maximum rotatlon at the top of the structure is showh in
-_Table 7.2; The distribution‘of the axial stresses at the
hase of the structure are shown in Fig. 7.23 and their .
. peak values in Table 7.2. It can be seen that“the stresses
of the different methoes-arelgenerally in reasonable. agree-

ment, but not as close as in the case of rotations.

3

It should be emphasized that all the methods employ-
ed here except the present method assume a linear variation
of axlal stresses. ThlS assumptlon is reasonable only when
the shear lag effect is small [88.89,122.127] Severe shear
lag tends to lncrease stresses at the .edges of the facades.

' (esPec1ally these actlng as flanges), and reduce them near

ﬁthe centre, and this effect 1ncreases with the lncrease of

the aspect. ratio &f the structure in plan and elevation.
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CHAPTER VIIT

S CONCLUSIONS AND RECOMMENDATIONS

8.1 CONCLUSIONS | : L |

The Equivalent Orthotroplc Macroelement Method has
been developed and implemented for the eff1c1ent analy51s
of planar and tube-type tall bulldlngs con51st1nq of frames,:
shear walls, coupled shear walls, Or. ‘theix comblnatlons.
Frame-type structures are assumed to consist of rigidly
connected horizontal beams and vertlcal columns. Repetit—.
ion of dimensions and member sizes over parts of a structure

is necessary for efficient 1mplementat10n of-the method.

L)

s | " ) /
The analysis technique is based on replacing the
dlscrete beam~column system and any band of coupling beams

by an elastlcally equivalent orthotropic membrane. Reflned

expreSSLOns for the mechanlcal properties of the equivalent

membrane were developed taklng into account the axial de— T

formatlons ‘'of columns, bendldb and shear deformations of

members, the reductlon rn stiffness due to the presence of

axial forces in-members, and the deformations of finite

-

size joints.
E
For the case of planar regularly perforated walls,

closed-form solutlons were also presented which enable, not

only the development of de81gn curves and a complete reduc—
I
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tlon technlque, but also the determination of the character~

[}

- istic parameters controlling the behavmor of these structures.

The two specially orthotroplc flnlte elements developed 1n

this work and, ;ncorporated in the present method provrde
J‘

a more general solution to the\problem and have proven to
be very efficient for the ahalysis of a variety of two and
three-dimensionalftall building structures. . <.

A general large capacity computer program (programi'
' TUBE) was developed with the capablllty for analyzing most
existing large planar "and - tubular structural systems‘for
tall bulldlngs. The program requlres mlnlmal computer
memory storage, as well as effort for data preparatn.on , as
compared to those programs used in the “exact" and other

“simplified methods.

N\

\\\In general, excellent’ résults have been ohtained
‘for botﬁ\planar and tubular structures, ‘and in common with

most flnlte\element solutions, the dlsplacements tend to

o

be more accurate than streSSes and member lnternal ‘forces.

s -

The errdrs are within 3% and 10% for the dlsplacements and

stresses; respectively. ' y S . L

The closed- forF solutlons when applled to a typlcal

' waIl—frame structure yielded results comparable to those .

obtalned from a detalled finite element analy31s - The errors

are less than 3% and ‘6% for the maxlmum lateral deflectron

4
[}

and member internal forces,.respectlvely. " The error in the

N

3ad s mtrsend ot g e
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~ -

<

shear force in the edge column is more s;gnlflcant belng 16%

-~

. £
however, thls is Stlll léss than the 35% error produced by

. the s1mpllf1ed method of Khan and Stafford-Smlth [61]

With regard to the accuracy of the Equivalent Oortho-
.tropic Macroelement Method when applled to planar frames of;ﬂ \
varlous characterlstlcs, the error in- the maxlmum 1atera1
deflectlon is less than 2% except in the case of second-
order (P—A) analysis where the error is still 1ess than 6%.
."Important" member 1nternal forces were obtained with accur-
acy better than 96% except for beam shear in the case of
frames with variable propittles where the accuracy drops to
92. 4%.‘ All of thesg results have been obtalned with the |
TUBE program with the total number of degrees of freedom 1ess‘
than 7% and 24% of those requlred by the "exact" and other

e

srmpllfled methods, respectlvely. The efficiency of the

present method becomes more prOnounced when applied to the

analysis of framed tube. structures, espec1ally when.a full -

1
" a

three—dimensional analysis is needed. Inkall the examples K
consrdered on Eﬁamed tube structures, the maxlmum lateral -
deflectlon was obtalned with accuracles better than 397%,
even when using as few as two or three elements in the verti-"
rcal dlrectlon in modelllng the structure. ' Convergence
study has shown that the deflectlons are 11tt1e affected by

the mesh size, however internal forces seem to converge

toward the "exact" solutlons upon reflnlng the mesh Flnally,

g

»

it is worthwhlle notlng that although the equlvalent proper—

-y
~

-
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N
.

.

ties of the membrane have been derlved analytlcally, taking
1nto account many factors, it 15 p0531b1e to determine them

experimentally ot by detalled flnlte element analysis.

) . r
In view.of the versatility, the accuracy and- the

.great efficiency offered by the present method, it is bellev-

ed that the technique should be of value to de31gners of
tall bulldlng structures.'

8.2 RECOMMENDATIO&S:FOR FURTHER STUDIES

The present work has been conflned to the statlc

and. stablllty analyses.' Extension of the technlque for‘

e

dynamic analysis' and optlmlzatlon study of three-dlmenelonal

tall bulldlng structures would be possmble In addition to

these natural “extensions of the method, the following points -

' could also be explored.

(1) Improvement of the equivalent membrane properties

by experimental or detailed finite element analysis
of' the basiéfframe'unit. ‘

2y Imprc rement of the finite element stlffness matrlces
. by hsing hybrid stress elements or 1ncompat1ble dis~

placement models.

(3) Extension of the program code for the analysis of

tube—;n—tube structural system.

Wb i e e
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Since the frame reduction technique has shown to

to be ﬂseful in static analysis of tall frames it

-would be interesting to lnvestlgate its validity

for vibration analysis.
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THE INTEGRALS USED IN EVALUATING THE TERMS
OF THE ORDINARY ELEMENT STIFFNESS MATRTX
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Each Kij term in the element stiffness matrix
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(Eg. 5.13) is obtained by integrating the corresponding term

of Eq. (5.123 according to Eq. (5.11) as follows:
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APPENDIX B

DERIVATIONS. OF 'I'HE REFINED ELEMENT STIFFNESS
‘ MATRIX

Each Kij _téfﬁ in the element stiffness'matrix,{as
explained breviouély in Chapte;‘v,_is obtained by integrating

"the corresponding B,. term of the matrix resulting from

j .
: t
the triple matrix product [D]Y[EJ[D]. The B;; terms '
are first e&aluated as follows: ,
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APPENDIX C

COMPUTER -PROGRAM

- " . . \ . . ¢
- .
:

Cc.1 INTRODUCTION

A laxge capaci%y computer program (program TUBE}
has been developed for the anlaysis of most currently avall-
~able planar and tube-type tall bulldlng structures, incoxr-

porating the developments preseuted in Chapters II, I1I,

'V and VI. The program is written in FORTRAN IV and was

run on a CDE 6600. computer. Efficient use of the memory

storage has been achieved by employing the transformation
(and the global assembly techniques of Chapter VI and by

the aid of auxlllary storage via six magnetic tapes.

As with the finite element method, a feeling for

. \
the physical behavior of the structure is desirable for the

efficient use of the program which is based on the eguivalent

orthotroplc macroelement method. The-developments of

Chapter II1I are 1ntanded to serve thlS purpose. . Other
studies on phe behavioral characterzstlcs,of other struc- .

tures that,mdy be analyzed by the TUBE program [1,6,34,60,

67, 73] are also. recommended.

-
L}

{ 7

Genéfally, the reduction in copputer time and storage

is obtaihed at the expense of some loss in accuracy. - Such -

loss in accuracy can be m;nlmlzed if ‘the structure under

L]
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consideration is properly idealized. 1In this case the
‘program can yield results very close .to thoée obtained

from .the "exact" analysis. This has been demonstrated for

planar and tubular structures-as_shown in Chapters V and

VI1, respectively.

. ' The "amount of‘input data required for the program
ié”kept to a minimum by implementing_automatic data generation
wherever it is possible. subsequently, both the effort of

data preparation and the possible data errors are minimiied.'
\

Tae objective of this Appendlx is to describe
clearly the logic of the program through its dlfferent
stages and to express its essentlal features. This will

serve two purposes:

-

(1) Assisting the user to implement the TUBE

prograﬁ'oorrectly and efficiently,

(2) fac111tat1ng any furthe; developments to update
and/or modify éﬂh current version of the program.

. .A . . . ..' \

'C.2 SCOPE .

¥ . The program TUBE performs approxlmata elastic static
and stablllty analyses for 'a number of planar and tube-type
tall bulldlng structures. Frames consisting of slender or
relatlvely deep members,‘coupled shear walls, £xrames inter-
act;ng with shear walls,. and clad-frames are dlrect examples

'] ~

,

[ P T
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o . : .
of the planar structural systems Wthh can be analyzed us-
ing the TUBE Program. The tubular systems which the pro-
gram can be implemented for their analysis 1nc1ude primar-
ily framed tubed structures, core supported structures
with open or closed Section, and structures conszstlng of
interacting shear walls with normal frames. Thege tubular

systems can be seen as the three—dlmen51onal assembly of

the flrSt three planar systems respectlvely.

The structures to be analyzed byltHe Program should
preferably POsSsess a hlgh degree of regularlty. For framed - -
Structures, bay widths, storey heights, and member sizes
. 8hould not change over large parts of the structure This
is also true for structures containing coupllng lintel
beams;: - ThlS does not constitute 3 severe restrlctlcn, hi§h
degree of regularlty is inherent in most, if not all tall
bulldlng structures due to aesthetic reasons and to ensure
ease of construction and consequent sav1ngs in time ang

money [34] '

. Planar frames and their spacial assembly must
consist of horizontal beams rlgldly connected~to vertical
columns, Structures must also satlsrnghe assumptlons

stated earller in Chapter I.
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c.3 DESC3IPTION OF THE PROGRAM

- The major part of the program logic follows the

; sectlon on analysxs procedure presented in Chapter VI. The

-~

program can be divided lnto three main stages. In the flrst

stage, the data 18 entered on two levels. global structure

level through subrout:ne DATAl and local: facade and element .

1evei through subroutlne DATAZ. Basically. ln the global
levea the geometry of the tube vlew plan is specmfied and _
the oVerall loadigeotor ig 'directly assembled. Facade
properties (number of elements and properties of each
element type) are specified at the locaI level. Construc—
tion of the global structure stlffness matrix whlch corres-
ponds to the overall load vector constitutes the second
Taln stage of the program. In this stage the mechanlcall
propertles of the equlvalent orthotroplc membrane, if not
.given dlrectly, are evaluated in subroutine EMAT. DlS-
cretlzatron lncludlng element connect1v1ty and type is
generated automatically 1n ELCON. Ind1v1dua1_element stiff-
.ness matrices are generated ln RECT an then assembled to -
form the local facade stiffness matrlx in ASMBL 1. This
assembly is based on the degrees of freedom assocmated

with each element.v The degreesjpf freedom are autOmatlcally

generated 1n LABEL and adjusted in SYMM if any type of p
A
symmetry exists W1th1n the facade. The facade stlffness

matrlx lS then condensed by eliminating all internal degrees
' of freedom uslng GAUSS -and transformed to the global system

]
A .
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u51ng the technique explained ln Sectlons 6 6-and 6. ‘7.

leferent transformation matrlces -are used for the differ-

ent, symmetry types of the global structure. Facade proper— ..

tles 1ncluding the cbndensed stiffness matrlx, global 1nter—'

actlng level stlffness matrlces and the correspondlng trans—

~ formation matrlx are stored on tapes 1 2 and 5, respectlve-

ly. Global 1nteract1ng level stiffness matrlces are finally
assembled uslng LABS in’ ASMBLz to form the global structure
stiffness'matrlx- In the third and f1na1 stage, displace-

ments, stresses and member 1nternal forces are evaluated

--respectlvely v1a-(GAUSS); (STRESS) and (STRESS and EORCE).

s

-~

N . . Co X .
L. . ' . . L m r
..&

-->?\
efflc;ént 1mplementat10n of the program, a detazled dls-'

cussmdn on data‘preparatlon including suggestlons to. 1mprove

To mlnlmlze any possxble data errors and to ensure .’

il

the accuracy of the analysis is glven in thlS sectlon.,'“”

These suggestlons are based on the flndlngs of Chapter III, :

4
*

'the experlence galned through implementing the program for

the analysxs of a variety of structures, and prevrous work:

[6,34, 51,52 60, 67,73]

* . ) ' T
Eg.¢.1‘ Structure Modelling - o S s

Besldes the rules and deflnltlons glven prevlously
/
1n Sectldn 6 4, the follow1ng Smele, systematlc 'stéps may

be fcllowed. ' - ) . oo ) .,

" 253
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'SteE l: -

' . !

Draw a plan view. and elevation for the stiucture
to be analyzed lndlcatlng the reference axes, 1l ral loads,

" and the number of each level, corner and facade as shown in

Fig. 7.1;
Steg 2:

Decide‘on whether the ordinary element (A-corner
nodes and 6-degrees-of-freedom) or the'refined element
(anodes,and 9—degrees-of—freedom?y'is to be used in the
analysis. The latter is recommended for cases where the
effect of shear lag is sigﬁificant, as shown earlier in ~

vt

Chapter V. 7
‘Step 3:

In case of symmetry decide on the degrees of free-.
dom to be restralned in the part of the structure. "Thus,

‘lndlcate the symmetry type number for the whole structure

'and within each facade.

: Steé 4:
Since each facade is almost considered separately
in the, program,‘draw'a separate ‘elevation for each facade

_dlscretlzed to a number of elements, indicating the number

df each e;ement.andults type. Note that whlle leldlng a
;-\".' : s \

.

I
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. facade into a number of elements, the vertical and horizon-
tal lines used for this purpose need not coincide wifh the
centertlines of celumns and beams, respectively. A table
may be arranged in conjunction with the drawings as shown

in Fig. 7.10.
Step 5:

Decide on the tybe of output (i.e., stresses or
member internal forces) and the levels at which these values

should be printed.
' i
’ -

In additien to these five steps, the following
suggestions maf prove helpful while dividing the'structuret
to a number of levels and consequently, each facade to a
number of elementsy |

(1) In'generel, as manf'as five to ten stories can be
incorporated in an element. In the cases treated,
this represents approxlmately from one- th1rd to

" one-fourth the total number ‘of stories in the

structure.

(2) "The use of three_mere'single storey levels near

the base of the structure [6,34], appears to be a

sound rule.

T

P PR
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(3) .At the top of the structure, a single-storey
level or more in some cases is desirablé. This
is not crucial for the overall behavior of the .

structure [34]. However, such consideration is

more important in structures deforming in a pre-—,

domihant bending mode.’

(4) In-di&iding each faﬁade to a number of elements,
always prov1de a’ finer mesh at the area of stress
concentratlon (i.e., near the edges of the facade.}

In general, the elemegts adjacent to gpe corners .
of fﬁe'building are desirable to incorporate only
one bay; especially when using the ordinary

element.
»

C.4.2 Input-Data

Units must be consistent and data cards for'each
problem must be in the sequence shown below. Integers

and reals are specified in 5-and-10-column fields respect-

fully throughout all data cards;’(,

A. PROBLEM NUMBER AND TITLE - (I5,3X,%9A8) - One Caxd

Columns 1-5: Problem number

Columns 9-80: - Title of the problem to be printed

LS
« as output heading

T A
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STRUCTURE CONTROLLING PARAMETERS . (7I5): - One Card’ '

‘Columns 1-5:
Columns-6-10z

Columns 11-15:

Columns 16-20:

Columns 21-25:

Columns '26-30: °

Basic element type code.:'

Number of facédes

“Number of levels

Number of 301nt loads
0: - Use the ordlnary element lh the'

' analysis (sée Chapter V)

l: Use the refined element in the
analysis (see Chapter V)

Plan view shape code:

0: Clqsed cross-section

T
)

l1: Open cross-section

-

Symmetry type code:

0: No symmetry
. Y

l: Besides the vertical displacements

of corners, the structure is only
allowed to displace laterally in

the *%-direction {(i.e. v=8=0,0)

2; As in 1 bqﬁ'with respect to the

y—direceion (i.e. u=6=0.0)

3: As in 1 but with respect to.the

rotation about the z-axis(i.e. u=v=0.0)



Type of dutpﬁt code: ¢ -

o
" -

ol

‘Member internal forces

1: Stresses at the mld-helght of
the element,and at Spec1fled

- co;umn centerlines .

.

23 Stresses at element centroid of

- the ordlnary element and each half

i (aividing width-wise) of the. re—
v

P

‘fined element

CORNERS (IS5 ,2F10.0) - One card for each

COORDINATES OF

Columns:

1-5:
6=-10:
11-15:

corner

Corner number

Its X-coordinate

Its ¥-coordinate

GEOMETRY OF FACADES (5I5, F10,0) - One card for each.

Columns:

21~25:

1-5:

6-10:l'

11-15:

16-20:

26—35:

facade

Facade number .

Number ©f its_first side

" Number ‘of its second side

Number of horizohtal elements
Number of vertical elements
ﬁerpendicular distance between the

facade and the reference center of
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‘the structure

E. APPLIED LATERAL LOADS (I5,3F10.0) - One card for each

L ' _ ' loaded level
Columns: 1-5: Level .number
6-15: Value of load compénent_in'the
éirection of global k-éxis -
i6-25: ?alue of the load component in the
direction of globgl Y-axis‘ l
26-35: Value of the torsional momgnt about

ihe‘global Z-axis

STRESSES AND INTERNAL FORCES PRINTING CODE (16I5)

As many cards as needed (one card in most - if not'all
- cases.) Each 5-column field corresponds to a level
in sequence starting from first level.:»

' i .

0: Do not calculate stresses and member internal ] \
, : . ' |
forces in all elements bounded by this level and

. ¥
the one below it. )

1: Calculate and print stresses or member irternal
forces (according to the type of output indicated
in B} in all elements bounded by this level and

the one below it.

PN, B R



- 260

. G.- The lelowing_group.offcards,-from‘G.l 66 G.5, is to

be repeated for each facade;

G.1 FACADE TITLE (8Al0) - Ope card r =

Cplumns

1-80:

Title of the facade

G.2 FACADE CONTROLLING PARAMETERS (6I5) - @ne caxd °

- Columns

l—é:
6—_10 H

11-25+

1l6-20:

21-25:

Number of Horizontal elements

-Number of‘verticél elements ™\

Number of diféerent material
types ‘ |

Number of diffefent e;ement
types

Sy@metry type code:

0: No symmetry

1: Facade is not allowed to

translate laterally in'its

plane

2: All nodes 'located on the
second side of the facade are
restrained from the vertical

displacement

3: As in 2 but with respect to
the first side.

¢

EAEr et S A
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Columns 26-30: ‘Material input code:

0: Beam, column, and the origin-'

. al material properﬁies
should be entered (See G3.1,

G3.2, and G3.3.)

e

Mechanical properties of the
.equivalent membrane are
entered directly. (See G.3

below.)

‘Cards from G. 5 1 to G!3.3 are to be.érepared Only
if the materlal lnput code glven in G. 2, equals

A zero. ThlS set of cards should be repeated when-
ever any of the properties included in it is

* 4

different.

G.3.1 MATERTAL PROPERTIES (2E10.3) - One card

Columns = 1-10: Young kS modulus(E)

11>-20: Polsson s ratio (u’Er

G.3.2 BEAM PROPERTIES (3F10.b).- One card

¢oluﬁn$ 1-10: . Span
©10-20: ' Depth

.QIHBO:. Thickﬁess

IS PP TSRl L
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Columns

4

G.3.3 COLUMN PROPERTIES (3F10.0) - €ne card

1-10:  Height
11-20: pepth
21-30: Thickness

o B s

» ' .

6.3 | EQUIVALENT MATERIAL PROPERTIES (4E10.3) - One card

To be prepared only if. the material input type

code, given in G.2, equals one.

Columns-

f

1-10:  Corresponds to Ey and may be
left blank |
11-20: value of Ey ,
21-30:  'Value of G
xy .
31-40: . Thickness : v

FAEN

-Eblumns

G.4 ELEMENT TYPE PROPERTIES (I5,2F10.0,3I5) - One card

for each element type

1-5: Type number

6-15: width

16-25: Height

2%—30: Material type number |
31-35: Number of bays |
36-40:

Number of stories

L Pl e N e

LT
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. 'G.5 ASSIGNMENT OF A TYPE NUMBER FOR EACH ELEMENT (4I5) -

- . One card for each element type

Columns 1-5% N1.

6-10: . N2
11-15: I

16=20: NT

All elements from number N1
through number Nzlﬁith incre-
ment I are agssigned an element

type number of ﬁT.

Repeat the whole group of data cards fxom A to
G.5 for each new problem. After those of the
last problem place a BLANK CARD at the end of the

'complete set of data cards.

G.6 PROGRAM OUTPUT

5
\
. -
K
iy

To ensure difect checking'of input data, most ef
the lnput 1nformatlon and those automatically
generated are printed out. In case of errogs
result;ng ;tém core al}qcation, or any opera~
ﬁion on the aiéebraic equilibrium equations; a
correepondiﬂg ﬁessage Will'be printed out.

Global structure displacements which inciude:

-

[
L
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h . " lateral displacement ig the X=-direction (u},

"lateral‘displacement in the Y-direction (v),
rotation (6) about the Z-axis, and vertical
dlsplacement at each corner are prlnted at

each level.

.. . According to the codes wﬁich indicate the type
of the printéd outpuf and its location, stresses
or Wember internal forces are printed at the

specified locations.

]

¢.6 PROGRAM LISTING

The FORTRAN listing of the TUBE program is

documented below.

IS = r UL OR ST

QIR el D



COMPUTER PROGRAM LISTING

/

e e
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20. .

25
10
-3;
L
45
SE

55

#

-

-

ﬂf)nt)ﬂ}ﬁn(1n€)ﬂt1ﬂ(10(10(10E’nf’OC1DC1hC1ﬂC1OC10}?ﬂC1ﬂC)Q(10!10(10(10(10}10(10

aoon

P N N I R I I
. s s s s ds a2

737172 CPT=1 ) _ FIN 4o6+aL6 TR/01s30. 19.74

PFOGRAM TUBE (INPUT-UUTPUT‘TAFEi.TAPEZ.TAPES.TlPEhgTAPESgTAPE&)

l'al‘lilll.n-l;lla-._--&aa‘q‘Il‘ll‘alab‘.dli BRSNS NS RASASL A NUSA SRS
. . . e . -
sasssswsssTHE PURPOSE OF THE PROGRAM IS TO ANALYZE TUBULAR sssnss

ssswesesssTALL PUILOIBG STRUCTURES, THE AMALYSIS IS LINZAALY vassse
smssssmnsaf| ASTIL AND STATIC. P Y TYY YT S Y R T Y L S 1
. ’ . . . ’ Y
uﬂ;panﬂnaolall.a“la*“?.a‘;‘l!l.a;&“l.‘l!aly.“l.a-;&u-&g’h"alduooﬂ
Y . : M, i :
. .

l‘"II‘I‘-I‘“l.l"il'.“l..‘.l‘.‘l.“l‘l'!’.‘lllll FYYYYTY Y PR YL LY LR L

PROGRAM VARTABLES
MF ~=NO. OF FACAOES
NL =NC. OF LEVELS
NJL =NC. OF JOINT LOBODS - - . . .

- NHEL=NQe OF -HOPIZONTAL ELEMERTS IN ONE FACADE
.NVEL=NC., O F VERTICAL ELEMENTS IN ONE FACADE
NMAT=NG. OF DIFFRENT MATERTALS I ONE FACADE

© NTYPE=NO. OF ELEMENT TYPES IN ONE FACADE .
NEQ =NO. EGUATICONS FOR THE JUE STRUCTURE

R R EEERERE)
T E R EE R N

u;:s;tn&aucaasn;uon“aal;nn;c‘l.ld.ncll'll".'l!l#UOlll'Ol“lliiiiiltl

SURBANLBSRRINES PYYTIYTYVEYYFTRIPE P YL Y L LS o PYTSYIISYYSPYSYFTE AR L E LY S 00
. 1) o

w2 ¥pAGRAM ARRAYS
FP{Ns5) =5 PROPERTIES FOR EACH FACADE, N=. NGO OF' FAGADE
FO{N.1} =NQ, GF FIRST CORNER LINE
, FP{Ny2) =NQs ¢ SECOND CORNER LINE ’
= FP(N+3) =NHEL . * o ) '
FP{Ny LT *NVEL ) .
FP(Ns5) ,0ISTANC OF FACAQE FR0QM CENTRE LINE OF TUBE STRUCTURE*

L3
-
-
»

XN} ' = X=-COORDINATE OF A CORNER LINEe. N=NO. OF FACADE -
Y{N) ‘x Y=COOROINATE OF A CORNER LINE, NaNO. 0f FACAQE he
Ex‘"‘.. . ! . -
EY(HM) ua ) ! -
CGXY M), ! ' . .
GXY (M) .=ELASTIC PROPERTIES OF EQUIVALENT ORTHOTROPIC e

) MEMBRANE, M= MATERIAL TYPE NQ. *
ECINP) = ELEHENT CONNECTIVITY. NFINODE NO. -

€L {ND) = ELEMENT LABEL, NO=NO. OF ELEMENT OOF . K

aK = ELEMENT STIFFNESS MATRIX .

. T = TRANSFORMATIGN HMATRIX * - : .
v . Kmmemme=es ) 0oC4L SUB STIFFNESS MATRIX .
grm=——es= cLOOAL SUB STIFFNESS MATRIX »
STN{N) = ELEMENT TYPR NO IN:SEGQUENCE FROM. 1L TO N .
, 88 = STRAIN GCISPLACEHENT MATRIX - .

c = STRESS STRAIN MATRIX *

R = GENERALIZED LOAD OR DISPACEMENT VECTOR hd

. OR LOCAL FACADE OISPLACEMENT VECTOR .
~AX FACADE STIFFNESS MATRIX BEFORE ANO AFTER CONMOENSATION
OR GLOEBAL TUBE STRUCTURE STIFFMNESS MATRIX -

Qs SIG = ELEMENT NOOAL GISPLACEMENTS, ANO C.Ge STRESSES ON .
A,88CLKeLNy FDy FLDy «es “ARRAYS FoR " MATRIX MANTPULATION he

» N a

~

265



7S
&
85
a'p
35
106
105

1110

’

[y} (3] D00

(4]

”OHHON ON FAVAODE LEVEL esseees INPUT

aa0 Iy ]

L ' 266

o«
737172 .0PT=y FTH 4aGobbE 7

ql;.q...‘;..g.;.;..lll.‘Il‘lGJll'l&llll‘.“l"lllll“i"“- IS T YIRS Y Y

-
-
»

DIMENSION TITLE({9)

CCMMON ON STRUCTURAL LEVELewseasese INPUT

"COMMON NF¢NLy NJLy NODOF s NSHAPE, NSSYM,NOUT _

COMMCN/PL/ FP (G o) gRFP (G4 X (H) oY (4) s NPRINT(LD) - ',r,
COMMON/P2/NHEL s NVEL NMAT W NHTYPE, NEDF LNAY, NSYM,NPR, NBAY,NSTOR] .~
LEX(B) 4EY(B) 4GV (6) o THLEB) 4EC(AI 4EL LB 4LEL (D)W

JET(1292) +ETHEL2) 4ETNIO0) 0K (9493 »IEN (12D ,IEHLL2Y

CCMMON/PI/Z TE345) 4K{Z43)45(535)+B(3:5)

CCMMON ON STRUCTURAL LEVEL saseeeeesSOLUTION T e

COMMON/PO/NEQ.R 7T, AK(6LO5)

INTEGER FP,ECsELETHETN : G
INTEGQ AI‘MX R . '., ::..:._ L.
DATA MOXNF,MAXNL,MAXMAT 4HAXTYP ,MAXFEL ot
1 I's iy 10, B 124 90/
W
REWIND 3 . e
- ‘.

PQOALEM IDENTIFICATION AND DESCRIPTION

9999 READ 100, NPROB, (TITLE (1), 131, 9)

£ READ OVERALL STRUCTURAL DATA

[}

c

"CALL DATAL(MAXNF,MAXNL.ISTOP1)

\snnnnnnno.

- IF(NPPOB.LE.O0) GO TO 999 _ "
PRINT 2004 NPOOR, (TITLE (1) T=L, 9),

IF(ISTOP1.6T.0) GO TO 999

COMPUTE REQ. STOR#GE‘FOR GLCBAL TUBE STIFF MATRIX,

AMAX = (NEQ*NEQ=NEQ)/2#NEQ : ¥
St

£ .
READ EACH FACADE 'DATA

REWIND t
REWINDG 2
REWIND 5
REWIND 6 o 5

00 500 NWLsNF

CALL BATﬂzlHl!FATvHAXTYP,HAXFEL.ISTOPZ,NEOF!
IF{ISTCP2,GT.0) STOP

1eeseASSEM PEL EACH FACADE STIFF. MATRIX
Z2eveeCONDENSE INTERNAL GOF,

" 3eeeeSAVE CONDENSED STIFF., MATRIX ON TAPEL

. Beese EXTRACT SUB MATRICES K 3X3 FROH MATRIX IN STEP =
5ees« TRANSFORH EACH K TO GLOBAL SYSTEM FORMING S 5X5
BeessSAVE ALL S MATRICES OM TAPE2

CALL ASHBLL (N3NLsNBOF 2 NSSYM)

500 CUNTINUE - : ‘ R

¢ ASSEMBEL OVEPALL STRUGTURAL STIFF. MATRIX AK

e P

. L



FROGRAM TUBE 737172 OPT=x}

115 - - .
caLL ASHBL2(NL.HEQ;AHAX;&K.NF-NSHAPE;NSSYH'

CALL GAUSS(AKR+NEQeNLOs1,0ET,1)

a o000 o

1240

IF(NSSYN.NE.Q) GO Ta 10
PRINT 300 : -
NC= (NEQ/NL ) =3 a _
, D0 1000 II=14NL .,
I= (NEQ/NL)*(II-1) Y
PRINT 4004II,R(X¢1),RII+21,REI+32, (RCI+I+)
1000 CCNTINUE .t oo
GO TO Wik .
130 10 CONTINUE :
, NC= (NEN/NL}Y=1 v
IFINSSYM.EQ.1) GO TO 31 4
IF(NSSYM.ED.2} GO TO &8
: PRINT 800 ) .
135 . " GO TQ 222
‘30 CONTINUE ¥
PRINT BOO~ .
GO To 222
- 40 CONTINUE
140 PRINT 700
222 CONTINUE ‘
. . D0 1£00 IT=i,NL
Iz (NEQ/NL)*(II=1) *
PRINT 900,IX,R(I+1), (R(Is14J),J21,NC)
145 1100 CONTINUE ) . '
. bish CONTINUE
HRITE(T) RLD) 5 21 ,NEQD

125

CALCULATE STRESSES
150 :
CALL STRESS!NQ.NF-NUOF-NSHAPE-NSSYH-NOUT!

GO0 To 9999

O O OO0

155 100 FORMAY(IS,3X,9A8)}
200 FORMATU(/AHLPROBLEM IS +3Hee +948/)
308 FORHAT(38H1QUTPUT TABLE L.. GLOBAL OISPLACE
2 "ZSHVERTICAL OISP. OF CORNERS/ )

160 T L] FORMAT(I7 +3E1543s5X+4 {E104343%))

600 FORMATIISHIQUTPUT TABLE 1.. GLOBAL DISPLACE
1 * LEVEL HNQ. X=0ISPL,
1 CORNERS *s/)

267

-

FTN 4.64406

SOLVE FOR GENERALIZED SRTUCRE DISPLAGCEMENTS AND PRINT IT

+JE14NC)

MENTS //
qﬂx" TH RUT-O L 15!'

MENTS 7/
DISPLACEMENT OF

700 FORMAT (38HL1QUTPUT TABLE f.. cLoeag DISPLACE&ENTS /7.
155 _ 1 ®* LEVEL N0 Y=~0ISPL. DISPLACENMENT OF

1 CORNERS *®//)

. 800 FORMATI(3IBHIOUTRUT TABLE le. GLOBAL DISPLACEMENTS //

1 * LEVEL NOs. . ROTATION
’ 1 CORNERS *//3}
170 900 FORMATUI10,4X,E204 T34 (4XoE10, 7))
c ‘ o

-
v

999 COMTINUE , ,
sTOP
END

DISPLACEMENT OF

POoFE ST
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~
SUSROUTINE OATAL 737472 OPT=1 FTNH Lebehlkb 7

1 SUSROUTINE DATAL(MAXNF,MAXNL,ISTOPL)

;J&ssn---;hus.---;--c-oo-v-nauoan:-clinll--:ottnuov::a-&.-;:-
- s
e THIS SUBROUTINE READS PROPERTIES OF THE TUSE STRUCTURE *
» - ‘ .
Py e T T Y YT Y TRV Y T T R SR TR F T DAL S L LS L L g

s R NeRaoNe Ny

COMMON NF 4NL, NJL, NOOF , NSHAPEsNSSYH.NOUT
"COMMON/PL1/7 FP thok) yRFPLL) o X LA oY (41 4NPRINTULID)

10 COMMON/PL/NEQ,RIT0Y,AK(6105)
) INTEGER FP.EG.EL.ETH.ETN -
PEAL MT .
C
c .
15 READ L1+NFoNLyNJL, LKDOF ¢ NSHAPE NSSYM.NOUT

PRINT 1014NF,NL4NJL
- IFINDOF.EQ.0} GO TO 9C¢ . 7
AN . _PRINT 95
GO TO 9%
20 90 CONTINVE "
PRINT 100 v
91 CONTINUE
Ll c . )
C CHEGH TO BE SURE IAMPUT DATA DOES NOT EXCEED STORAGE CAPACITY !
25 c )
1STOP1=D
. IF(NF.LE.MAXNF) GO TQ 10
: ISTOPL=ISTQP1+1 _ -
PRINT 20,MAXNF’
30\ 10 IF(NL.LE.MAXNLY GO TO 11 .
ISTOP1=ISTOP1+1
PRINT 21sMAXNL
11 IFCISTOPL.EQ.0) GC TO 12
PRINT 22.ISTOP1
35 . s5TOP
12 CONTINUE

)

¢
€ COMPUT TUBE DOF (NC. OF EQUATIONS)
. c )
L IF{NSSYH.NE.0) GO TO 60
IF (NSHAPE.NE.0) GO TO 50
NEC= :t3+NF)*NL
GO TO 51
50 CONTINUE
us5 . NEQ= (L4+NF)Y*NL
51 CONTINUE A
GO TG 61 .
60 CONTINUE
NEQ=NL® (1+NF)
59 61 GONTINUE

o
~

C READAND PRINT PPOP’RTIES OF FACADES

[}

. PRINT 102
85 IF (NSHAPELNE. 0) GO TO 14
. I=NF
GO TOo 15




60

€5

70

75

80

a5

°0

95

105

110

SUBROUTINE 0ATAL ' T3/172, CQPT=L

14 CONTINUE .

t 15

I=NF+1 -
CONTINUE ) .
DO 29 Nwi,1l

READ 24 HN2XI(NIY{N)
PRINT S52MeX(N)+YINY

29 CONTINUE ‘

PRINT 103
D0 30 N=1.NF

READ 3oNNy (FP (NsI)sIngst) oRFPIN)
PRINT 53'H|(FF(N.I'.I’ng!.RFP(N)

30 CONTINUE

a0 oOona0

40

~
41
c
W2
AR
45
70
Ly
c

INITIALIZE LOAD VECTOR

1 FOPHAT(TIS)
401 FORMAT(35H INPUT TABLE 1.,. BASIC PARAMETERS
1 SX, 4LOH NUMBER OF FACADES o 's o ¢ » & 2 o » & @ vyIS/

READs PRINT OIPECT LOAD
READ,PRINT DIRECT JOINT LOCADS AND SET UP OVERALL LOAD VECTOR R
FOR SIMPLICITY , JLN=NO. OF CORRESPONDING LEVEL '

_PRINT 104

D0 40 I=1,NEQ

R(I}=040

CONTINUE

J2=NEQ/NL
IF(NSSYM.NE. 0} 6O TO 42
DO &1 J=1,NJL :
READ boJloFXeFYoMT
. PRINT ShyJleFXsFYaMT
33=J1492-92
RUI3+1)=FX

REJI+2)=FY

REJI+3I1=NT

CONTINUE

GO TO kiha

CONTINUE

DO 70 I=1.NJL

READ hLyJloFXaFYeMT

PRINT SkeJisFXyFYoHT

JI=J1rg2=-92 . !
. IF(NSSYHM.EGQ.1). GO TO 4k |

IF(NSSYML.ER.2) GG TO 45

R{J3+1)3MHT

GO TO 70

CONTINUE

R{J3+1)=FX

GO 10 70

CONTINUE .

RLJ3+1)=FY

CONTINUE

CONTINUE -

READ 80, (NPRIhT!I)iI-g?NLl

’/

FTN L, B+4kb

)

269
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115

120

125

130

135

SUSROUTINE

270
DATAL 737472 COPT=1 FTN LeB+uk b ;
2 GXe &OH NUHMBER OF LEVELSe ¢ ¢ o = ¢ o o o » & o + 157
3 BXe WOH NUMBER OF LOADED JOINTS o » « = o s o o 21I5)
100 FORMAT(//* ANALYSIS IS PERFORMED USING THE ORDINARY ELEMENT WITH
1 600F*s/) :
95 FOPMAT(//* ANALYSIS IS PERFORMED USING THE REFINED ELEMENT WITH
{ 9DOF*//7) _
20 FORMAT(//// ~28% TOO MANY FACADES, MAXIMUM = 3 +I5)
21. FORMAT(//77 28+ TOO MANY LEVELS., MAXIMUM = « I5)
25 FOPMAT(//77 28M EXCUTION MALTED BECAUSE OF,I5,13H FATAL ERRORS /)
2 FORNMAT{IS,2F10.0) .
102 FORMAT{//3SHOINPUT TABLE 2.. FACADE PROPERTIES /7
1 124 CORNER NO.y8X,12HX-COORDINATE,8Xs12HY~COORDINATE}
52 FOPMAT(I12,2F20.4)
3 FORMAT(S15,F10.0)
103 FORMATU/Z 12H FACADE NO.stXg1HIokXe1HJdy kX, SHNHEL, X+ bHNVEL po X
1 17HDIST. FROM CENTRE/} ;
SX FOPMATIIL12,215,2I8,F20.4) . )
G FORMATIIS«3F10.0) ‘ e
104 FORMAT(//26H INPUT TABLE 3.. LOAD DATA s/
1 - 10H LEVEL NOa ,5%, 7uFoacE-x.5x.7HF0Rc5- 25X THTORSION)
54 FOPMAT(IL10,3F1244) ' !

80 FORMAT(10]15)

399 RETURN ' .
END .
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SUSROUTINE DATA2 737172 OPTEL . ‘ " FTN BeGéihb !

.

1 . SUBROUTINE DATA2(MAXMAT,HAXTYPMAXFEL 4 ISTOP2, NOOF)

llll.ldll‘ll‘ﬂlllll‘.l‘lll'l.;Dlllhlbil-llillll5--..IDll.l.I
- A [ )
- THIS SUBROUTINE READS AND PRINTS FACADE“S PROPERTIES .
» -
ll‘b‘lbtl.‘4.4#‘!.4.‘.‘0‘0l#“ll¥l0-.lll.¥llll..Cll!lll.lllb

Oo0aOoO00O0n

[y

) . :
10 COMMON/P2/NHEL 4 NVEL NMAT 4 NTYPE , NEQF , L MAX ,NSYH,NPR, NBAY, NSTOR, -
1EXTE) 4EY(E) oGAYIB) s THIB) 4EC{B8)4EL(E) 4 LEL (D),
2ET(12+2),ETHIL2), ETH(90},0K(9,9) o TEN(12),IEH(12} -
DIMENSION TITLE(B) ‘ .
INTECGER FP+EC+ELJETM:ETN

READ 9% TITLE - L ) e
PRINT 100,TITLE
T . READ 1, NMBjeNVEL,NHAT.NTYPE,NSYM,INCCOE .
20 NEL=NHEL*NVEL N .
— PRINT 101¢NHEL sNVEL+NMAT 4NTYPE .
c < + . : .
C CHECK TO BE SURE THAT INPUT DATA DOES NOT EXCEED STORAGE CAPACITY
c ) .. '
25 ISTOP2=0 _ ” } : ,
* IF(NEL.LE.HAXFEL) GO TO 10 :

. ISTOP2=ISTCP2+1 .
* PRINT 204MAXFEL - .
10 IF(NMAT.LELHAXMATY GO TO 1 .

. ISTOP2=ISTCP2 ¢4
PRINT 214MAXHAT
11 IF(NTYPE.LE.MAXTYP) GO TC 12
ISTOP2=ISTOP2+1 .
PRINT 224MAXTYP ‘ ‘
35 12 IF(ISTOP2,EQ,0) GO TO 13
ISTOP2=ISTOPZ+1
, PRINT 23,15T0P2 .
g SToOP
c :
40 13 CONTINUE . J
C READ AND PRINT MATERIAL PRPERTIES
c

30

IFIINCCDE.NE. D} GO TO 1& - ’ .
CALL EMAT -
LS5 GO TO 15 .
! 14 CONTINUE

READ 24 (EXCI}EYITI)oGXY LI, TH(I),Im1, NMAT)
15 CONTINUE
© PRINT 102 :
50 PRINT 52, tIEX(I},EY(I), GXY!I),THII’;I'i.NHAT|

BEAD AND PRENT ELEHéNT TYPE FROPERTIES

BEAD TYPR OF EACH ELEMENT

QOO0 0O0O0

PRINT 103 !

4
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SUIROUTINE DATAZ TI/L72

60

D00

65

70

.31

90

9%

100

105

110 c

30

.

opTal

Do 30 J =1,NTYPE
READ 3NN (ET [JyI)oIn1s2
PRINT 53|J1(ET(J11’91‘1|

CONTINUE

}ETH(J) » IEHC D4 TEH

FTN Leb+ih6

J)

23 JETHCJY +IEWIIILIEHLDY

GENERATE AND PRINT ELEMENT CONNECTIVITY AND TYPE

35

b1
L2
1Y)

99
100

101

SN

PRINT 104

DO 35 I=3,NTYPE-
READ ko NSoNEyINCSNELT
D0 35 II=NS,NE+INC

ETN(IIIahELT
CONTINUE

DO 4§ I=1.NEL ,
CALL ELCONC(I4NDOF)
IF (NDOF.NE.0) GO TO &1

NNP=L
GO TO 42
CONTINUE
NNP=8
CONTINUE

L

PRINT SlyIs (EC () ouf3L1sNN

CONTINUE

FORNAT (8A10)

’

FOQRHAT(1H1///2X48A10)

FORNAT (615)

P1ETN(T)

FORHAT(3SH TNPUT TABLE Ass FACADE PRPOPERTIES

5X, LOH NUMBER OF
5%, LOW NUMBER OF
5X,. &0H NUMBER OF
. ' 5Xe WOH NUMEER OF

? FOPMAT(4ELD.3)

102

52

b

53

106
Sh
20
21
22
23

"FORMAT(//3EH
1 10H
2 T . AXe7H

INPUT TABLE
HATERIAL,5Xe10H MODULUS ¢+ 5X+10H

SHEART X+ 8

3 LY, EHNUMBER 410X, 2
FORHAT(I1G4LE15.41
3 FORMAT(IG,2F10.043I9)

« 10W

] T

103 FORMAT (/7304 INPUT TABLE
ELEMENT, 8X,
WYXy GHNO, OF 4Xo6HNGe OF/ ‘
sx.uurxPE.ux.?uutnTu-a.?x.anuEIGn1-a.
6 X 4HBAYS,4XyTHSTORIES /)

FORMAT(I1042F15e k31200

FQPMAT{WI5)
FORMATL//*
FORMAT(101I5}

HORIZONTAL ELEMENTS
VERTICAL ELEMENTS »

DIFFERENT HATERIALS + &

DIFFERENT ELEMENT T
B.e MATERIAL PROPER

HHMATERIAL/

PEX.13X.ZHEY'11!,7HHODULUS,5*.9RTHICKNES'-

Ce.e ELEMENT TYPSS /

THELEHENT.%}'THELEHENT.

7/ .
L ] - L] - .Is,
o+ +157
evs +15/7

e + 21I%)

. = & &

YPES

TIES /7 )
MODULUSs

/

GI-QHTYPEo

ELéhENT CONNECTIVITY AND TYPE®//)

FORHAT(III!'TDONAN{_ELEH
FORMAT(/7/772TCO MANY OIFFERENT MATERIALS. Wi
FORMAT (////2TQ0 MANY ELEMENT . TYPES #MAXIHUM=
FOPH&T(IIII'EXCGTION'HALTED AECAUSE OF #4150

RETURN
END -

1

¢NTS IN FACADE, MAXI

HUM=s, 16}

XINUM= =, I5)
2,15

»FATAL ERRORS*®/}

2%y BHMATERIAL,

272
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SUBFOUTINE EHfT . -+ T3/172  CPT2i

-

SUBROUTINE EMAT -

»

. THIS SUGROUTINE EVALUATES THE ELESTIC
«  OF THE EQUIVALENT ORTHOTROPIC MEMBRAN

- L] I3

oDoOoOOoooO00

. COHHON/PZINHELfNQEL.NHATgNTYPE.&EDF.LPAXoNSYH,NPR.NBAY-NSTUR.

IEX(6).EY(S’oGXY(EIqTH(6).EC!BIvELIS).LELIQ)'
PET(12+2) +ETHIL12),ETNI90) 40K{S. DN »TEH (12} +IEHC
INTEGER FPGEC+EL+ETH.ETN

REAL MU ’

DO 9999 I=1.NMAT
READ 1, E.MU
READ 2, 8,080,887
READ 2+ HaCOLCT
TT=8T
G=E/2:" (1. +HU)
g=1./(CD*BT)
X=C0/2.

Y=00/2. -

oo

FIRST DELTA OF PARTS 1 AND. 3
DCOL= (H=BD) /(CD*CT*E)
PRINT 91,000L .
91 FORMAT (/7% DEFCRMATION OF PARTS 1 AND 3 = % o
¢ DELTA OF PART 2 DUE TO UNIFORM STRESS ‘ONLY
VUNIF=Q®CD*BD/ (B*E) S
PRINT 92, VUNIF n
92 FORMAT( * EDFORMATION DUE TG UNIFORM STRESS
1E15.4) :
C DELTA OF PART 2 DUE TO INIFNIT FOURIER SERIES ONHLY
. TEPRMal.
0O 10 M=i,.50
AL=N#22,/(7.%8/2.)
ALAZAL®CD/2.
ALC=AL*BG/2.
ALX=aL*X
ALY=AL®Y
T1aSINCALAY # (AL=M) .
T2 (1. +HUI *ALC*COSHIALC) *STNHLALYY
‘ T3=(1.~HU}*SINH (ALCI*SINHEALY)
TLE (L1 #MUI* (ALY*COSH (ALY)~SIHH (ALY) ) *SINHIALC)
TS=COSCALY) Z({SINH(2,*ALC) +2,*ALC) .
TERHRTERM+TL* {T2+T3=-TL) *T5
= 10 CONTINUE :
v . VFUNC=TERM® L * 0/ (E®224/7)
PRINT 93, VFUNC : )
93 FORMAT( * EDFORMATION DUE TO FOURIER TERMS
1E15.41
E2=H/{3*TT* (DCOL+VUNIF+2,BVFUNC))

FTH 1o 6+eh 6

- ll.“ll..l#..“.“"."'ll'Ull‘l“‘“ PYYYYTYYYEY S YRS P L L L o

PROPERTIES
E

FYYTYYPrY Y YRYYRT LS 2 oLl bl d IYYYY YN R I LS L L LT YTYIFY Y VYL Y
m v .

12)

E15. %)

s oPART 2ee *»

es PARTZ oo,y

-F

a0

273
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SUSROUTINE EMAT 73/172 CPT=1 ' . FTN 4.6¢446 7

oo

274

EY(I1=0. ' : o

EYLII=EY(II+E2 . i vy . .

PRINT 999, E2 ) - e
999 FOQRMAT(////* EQUIVALENTY ELASTIC MODULUS EY = - ®4F15.4)

TOUIVALENT SHEAR.MODULUS GXY

Ti={H=BD)/H -
CI=CT*CD**3. .

gI=QT*B0%e3, )

nELTAa=¢T1-¢H-90:-¢H-3011c1)¢ (HIBI'((B—CDD!B"((B-CD)‘(B—CU!IBI)

DELTAB3DELTAR/E

orLrav-H'(ﬂ-CU)/te'a‘arvﬂnzi.zl+1.2'T1/tc1‘cn:+ o

1 ({{9=C0)1/P+T1=21)%22,)/(8T*CO* (1=T1)} AR , '
DELTAV=DELTAV/C ) . . ) .

0e=DELTAB . - ' . L

OV=DELTAY . .

G12zi./(TT*8% (0D+DV)) L . L
GXY{I1=0. . t ST .
GXY(I)=GXY(IV1+G12 ) . T
TH(IY=0. . ‘ L
THII=TH(TI*TY , S .

PRINT 111, Gi2 .

111 FOPMATI(//* EQUIVALENT SHEBR MODULUS = *4F15.4}

-

"9999 CONTINUE g . -

.

1 FORMATI(2E10.3} ot - . - . "
2 FORMATI3IF10.0)

RETURN

END

-
E e =

e 2w
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SUaPOUTINE ELCO

THI

0o0QOO0aONOO0O0 (]

10

999

-t

. BRABRABPER ‘llll'l‘lll.l.‘lﬁ"“l‘ SRNABBFLY MTYYYYYY Y YR Y L L L Ll LX 3]
e :

™~

: ' ; - \ 275

N 737172 OPT=1 ‘ © FTN be6bale6 C 7

Il

SUBROUTINE ELGON(I.NDOF) . .
COHHONIPZINHEL-NVEL.NﬂAT.NTYPEQNEQF:LPAXqNSYH.N?R-NBIY-NSTOR;
15X(61gEY(6).GXY16)oTH(B!.EC(!)'ELGGQcLELIQ)J
ZETliz.Zl.ETH(lEl.ETN(QU).QK(Q'QI «IEW {121, IEHILD)

INTEGER FP,ECJELLETH,ETN

-

» »

. THIS SUBROUTINE GENERATE ELEHENY CONMECTIVITY .

» L3

FYYYRT YL LS L 2 “llll.“‘lll‘..l.-."'."‘q-‘CI.‘.Q‘C'...I_I.“‘&“.-'

S GAN BE ACHIEVED 8Y RELATING THE ELEMENT NO. TO ITS
FIRST NODE(L/WERs LEFT) . ‘ . ' :

JJ=tI=1) /NHEL
Il=I~JI*NHEL
“Ni=(II=1) /NHEL#14 (I1=2)% (NVEL+2)+JJ

N2zNi+HVEL+L ‘ ”
"IF(NDOF.NE. 0} €GO TO 10

EC{1)=N1 ' ’ .
EC(2)=N2 : ' -
ECI3YaEC(2)+1

EC(4)2ECI1)+1

Go To 999

GONTINUE . ) ' a .
N (NHEL+1) *'(NVEL+1) . ' -
SClLy=NL T

ECI21=EC {1 +N+NVEL* (NHEL+1)

EC(3)=N2

EC (L) =H+II*NVEL+JJ+L b

ECH5YaN2s 1 ‘ ‘ '

EC(6)=SC(2)+1

EC(7IaNL +1
EC(8)=EC (L) -NVEL
CONTINUE

.RETURN

END . -~ :



SUBROUTINE ASMOL1 737172 OPT=1 - FTN LeB+als

140

15

20

25

“3p

35

uQ

45

S0

55

OOoOOOa000

SUBPOUTINE ASMEL1 (N, NL,NCOF,NSSYH) l :

I

- THIS SUBROUTINE ASSEMBELS E‘CH FACAODE STIFF. MATRIX
*  CONDENSE IT, AND FOPMS LOGAL{X) LEVEL SUBMATICES AND
hd AND GLCBAL SUEBMATRICES (5).

‘.“.".;.“".."‘l‘.l.."'l‘....'.‘..I”...ll.“l.."."..‘..-‘¢'.
COMMON/P1/ FP {ligh} 4RFPIL) X&) 4 Y (4} 4NPRINTC1D)
OMHQN/szNHEL.NVEL'NHAY.NTYPE-NEOF.LHAX»NSYH.NPR.NB&Y.NSTDP.
1Extsr.ev¢e).cxvqpt.THlsa.ECta:.ELcsa.LEL19:.
PET(L2,2) ,CTH(12) ,ETN(90) QK9 D) .Ieucxzn.leutzzn
COMMON/P I/, TII45)1 g K{393)+S51{945)98(3,5)
COMMON/P&4/NEQs R (70) s AKIELD5) -
DIMENSION l.ma: .L:m T

REAL K . -
INTEGER FP, ECvEL'ET"vETN

WRITE (2) NEYM .
NEL=NHEL *NVEL . .
c . . . . '.i
C EVALUATE NQ. OF EQUATIONS FOR FACADE “NERF™ AND
C THE REQ. STORAGE FOR ITS STIFF., MATRIX
c - .
IF{NDDF.NE.O) GO TO 11 - *
IFINSYH-NE-DI GO, TQ.iZ :
NEQF=NVEL+ (NHEL +1) *NVEL
GO TO 111
12 CONTINUE : .
NEOF:NVEL'(1+NHEL1 . ' ‘
GO0 TO 114 . e :
11 CONTINUE' , : _ N
IF(HSYM,NE.D) GO TO 15
NEQF=NVEL® (2% NHEL+3) ‘ )
GO TO 111 s
15 CONTINUE . . : .
. IF{NSYM4EQ.1) GO TO 1& ' ‘ : b
NEQF=NVEL® (2*NHEL+2) : )
GO0 TO 111t ! .
14 CONTINUE .
NEOF=NVEL'12‘NFEL+11 T -
111 CONTINUE .0 ' .
LHAX= (NEQF+NEQF -NEQFY /2+NEQF e .
c - . N
C INITIALIZE FACADE STIFF. MATRIX AK ' : o
DO 1 I=1,LMAX v o
AK(I)=0.0 - ‘ .
1 CONTINUE . " P E
PRINT 100 -
IF(NDOFeNE.O) GO TO S . . T
LIM=6 ) : . ’
DO 99  M=14,NEL

. e

c . . . - \ ‘

C RRCEDURE IN THIS SUBRQUTINE WILL BE AS FOLLOWS.. !

L L L X 2T T Y Y] D...Ml“_“l‘l.“.«l.“..-.ll"ll.'.‘ll“lll“llll

276
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60
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70

75

SUSROUTINE ASMBLL 737172

‘85

20

as

100

105

110

dpaaaaaooan

nnnnn SO0

Uae

i Cesn

. 4 3.-
- LY

5.'

FORM ELEHENT LAB

CALL LABEL (M
PRINT 200+M,

FORM ELEMENT STI

CALL RECT (M,

'NOTE . LIM=x NO.

00 10 LLai,L
ImEL{LLY

s DO 10 MM=i,L
JaELIHM)

¢ QR

C THE UPPER TRIANGLE COL. BY COL.

C i
IF(I.GTeJ) G
IFIXI.EQ.T) G
LoC=( (J=12%J)
AKX (LICI=AK(L

10 CONTINUE

" 99 CONTINUE

. GO0 TO.6

S CONTINUE !
LIM=9
D0 88 M=x14NE
- CALL LABEL(H

0PT21

FOSM LOCAL ELEMENT ETIFF.

FTH be6+446

HATRIX 0K

ASSENBSEL EACH QK TO FORM FACADE STIFF. MATRIX AK

CONOENSE AK

TRANSFGRM EACH SUE MATRIX K 3IX3IN AX=-CONOENSED

TO GLOBAL SYSTEM FORMING S 55
ASSEMBEL EACH S FOR EACH FACACE TQO FORM OVERALL
STRUCTURE STIFF. FATRIX IN SAMS LOCATION AK

EL VCTOR*™ EL®

+NOOF)
(ELEI) ,Ix2,6)

FF. MATRIX, QK

NOGF)

OF ELEMENT DOF
In

In

0 To 10

0 TO 10

1 /241

0C) +QKLLL, HH}

L,
yNOOF)

PRPINT 200, Hi(LEL‘IiQI’i!g,

CALL RECT (M,

" ‘DO 8 LL=1,LI

I=LEL (LL)
DO 8 HH=1,LI
J=LEL (MH}

NOCF}
M .

M

IF(I.GT.J} GO TO 8
IF(I.EG.0) GO TO 8
LOCa(tU=1)%2):/ 21"

AK{LOCI=AK(L
© & GONTINUE
88 CONTINUE
& COMTIMUE

OC ) +0K {LL 11D

L]

G
"¢ ASSEMBEL ONLY THE LOWER TRIANGLE . ROW BY ROW

ees NOTCE THAT BOTH ARE IDENTICAL

S
ASSEMBEL EACH GK ACCORBING TGO THE CDRRSPONUIHG LABEL VECTOR ~EL"

" 277
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SUSG9QUTINE AsMALlL

115
120
125

130

1a
w
W .

14Q

145

150

150

166

c

c

17

16

c """""“.“I*Il'J.'I'ICE"“""“I FPINs1) eaaolUP TO FE(N,
c .

737172 .CPT=t FTN LeB+h46

e

C COMOENSE INTERNAL BOF IN ABOVE AK
c

IF{NSY4.NE.O0) GO TQ 17

NR=T3®NL, *

GO TO t& '

CONTINUE

NR=2eNL

CONTINUE

CALL GAUSS (AK+RoNEQF, 04NR,DET41)
WRITE(L1) NSYMyNEQF4LMAXeNEL4+NMAT NTYPE Mﬂ//
WRITE{L) (AKCI) yIx1, LMAX) o (ETN(J) ydal 4 KEL)

WRITE (1) {EX{T)I 2EY(I) 4+ GXY (I} o TH(I) o Ix 1,NMAT) - :
HRITE (1} (ETH(I).IEH(I).IEP(I).IET(I.J'.J=1.2)'1’1.NTYPE’

C FORM TRANSFORMATIOM MATRIX T IXS, .

C "W SSNOTICE**®2% FD[N,1)4usolP TO.FPtNs5) ARE F

C 15T«+NQDE LINE, 2N« NOOS LINE. NHEL, NVEL, OIST, OF FACADE
© € FROM-STRUGTURE CENTRE LINE FOR THE N THe FACADE

c

II=FPIN, L)
JU=FP (N, 2)
D=RFP (N}
XX=X{JJ)=X(IT)
YY2Y(JJ)=Y(IT)
FHaSART (XA* XX +YY*YY) i '
SA=YY/FW -

CA=XX/FH .
NRQT=aq } -
IFINSSYM.NE.Q) GO TO &0

JT=5 . .

NROT=3 . . :
00 20 I=1,3 ’ :

00 20 Jmi.s

20

&n

62

T{I+J)20.0

T(1y1)=GA :

Te1,2)254 . . <
T(1,3)=D

T(244)21,

T(3,5)a1,

WRITE(S) T

GC TO 6666

CONTINUE .
JT=3 A
00 62 I=1,3
00 62 J=1,3
T(led)=0.0 )
CONTINUE - : .
Tiz,2)1=1, : :

T(3,3)1a1,

IFINSSYM.EQ.1) GO Ta 63 S RS
IF{NSSYM.EN.2) GO TO 5 . .
NROT=1 . .

278

73701731,

57 ARE FRST NOOE LINs SEGOND NOOE LINE,
T
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175

140

£45

190

195

200

205

<219

215

220

225

SUBROUTINE ASMulLi

i

—

. ‘N
TIsLve ‘OPT=1

T1,1)20
60 YO 666
53 CONTINUE -
T(il,1)=CA
GO TQ 666
64 CONTINUE
T(1,1)=SA
CONTINUE
WRITE(S) T
CONTINUE

666
6666

-

Qoo an

£X
FROM CONOENSED FACADE STIFF.

DO 30 Ixq,NL
00 30 J=i.NL
IFtI.6T.J? GO TO 30
Lkit1)=I

LK (2)ST+NL
LK(3)=I+2%NL
LN(L)my
LN{2) = eNL
LN{IY=Je2®NL
IF(ﬁSYH.EO.Dl
LK (31=0
LNC3Y=D

25 CONTINUE

GO TO.25.

c
C INITIALIZE SUBNMATRIX|K
o ‘
00 31 Ii=1,3°
00 31 Ji21,3
K(I1,J1)=0.0
31 CONTINUE .

s e

AF(I.NEL.J) GO TO 33
00 32 II=1,3

00 .32 JJ=1,3
IF(II.GT4JJY GO -TO .32
LLK=LK{II}

LLN=LNCJJ)

b

FTN bebebhb

TRACT ZACH SHALL SUBMATRIX K 3X3 {REPRESENTING. LELVEL STIFF. )

MATRIX

-

IFCILLK4EQaQ) «ORs (LLN4EQ. Q)Y GO TO 32

LOCS {(LLN=1)%LLN) /24LLK
K(IT.JdJ)=AK(LOC)
32 CONTINUE
C"
7C FORM FULL K

c .
K (20 137K(1s2),
K(341}3K (1,3}
K(3+2)=K(2+3)
G0 TO 333

279

78401731,

19.
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230 .
235
. 2a0
249
c
’
250
255,
260
265
- 270 c
. c
c
275, c
R 1.7 c
y 2 .
‘286

1.

SURROUTINE ASNALL

¢ ) A
€ IF NSYM=i MOOIFY X TO HAVE ZERQ FIRST COL. AND ROW

37

CONTINUE
.00 34 II=1.3

00 34 JIuisd

35

3%

LLK=LK(IT)
LLN®LN{J))

IFC(LLKaEQa0) « ORw [LLN~ EQ 1) GO TO 3&

73/172

CPT=l

IF{IT.GT.JJ? GO TQ 35

LOC=( (LLN~1)*LLN) 72+LLK

K(ITsJJI=AKILQCY

GO TO 34

LOC= ( (LLK=1)*LLK) /24LLN

K(II,JJ)=AK(LOC}

CONTINUE

333 COMTINUE

C INSTEAQ QOF THIRD

IF (NSYMeNES1)
K(343)12K(242)
K(3,2)3K(2,1)
Ki12,31=2K (1.2}

‘ 5{2'2’=K(1o1)

1s1)=0.
K(1:2)=0,
K(1s3)=0s
K{2e1)284
K{3,1)=0.
"GO Ta 55 '

50 CONTINUE

IF{NSYM. NE.SI

K(1,3)=Ktl'2)
K313 L2,1)
K{2313K(2,2)
K(2+1)=0.
K(2+2)=0. :
K(Zo3)=0- ..
Ki(L,2)m=0,
K(3'2'=Uo

56 CONTINUE
ZVALUATE TRANSFORMED SUB HATRI! S 5%5
SxT TRANSPOSE TIMES K TIMES T

00 40 II=1,3
00 40 JJ=1,JT

B(II,JJ”U-U
00 40 L=1,3

B(II.JJI=B(II-JJ)*K(II;L)‘T(L-JJ)
"0 CONTINUE -
COMPUTE T TRANSPOSE TIMES © AND STOFE IN S

00 &1 II=1.J7
DO b1 JJ=1.JT
S{ITydJ1=0.0

00 41 L=1,3

SIII-JJI=S(II.JJT+T(L.II)‘F(L'JJI

G0 TO 50

GO TO 5%

..

HULTIPLY X TIMES T ANOD STORE IN 8

..

FIN Lab+blb

280

7TA/01/31.

1%
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SUEROUTINE ASHPLL 737172 O0PTal

41

30
100
200

281

FTN 4o64446 78/04/31. 19,

CONTINUE

-

HRITE (ZY tUS(IT+JJ) eddaledTIoIIatJT)
CONTINUE ‘ ) ! : :

FORMAT (/7% ELEMENT MO« DEGREES OF FREEDOM 877}
FORMAT{T14+5X +31I5) .

RETURN

. END

=
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SUSROUTINE LABEL 737172 0OPT=1 FTN &4.6+445 o T8/01/31. 19,

1 SUBFQUTINE LABEL (M4NOOF)
COHHON/PE/NHEL:NVEL.NHAT,NTYPE-NEOF.LHAXoNSYHcNPR'NBﬂYqNSTOR.
1EX!6).EY(S).GXY(E):TH(G!oEC(Bi-EL(Gl.LEL(qlc
ZETI12+2)oETHI127,ETNI9D) 40K (949) LIEW(12),IEH(12)
5 " INTEGER FPLEC+EL,ETM,ETN
) 4
BERBABLRASBL LSS SANERBEB RS SARESEISLE PR ESISSRIIBAIRASTLBBAGENSEBIE

. THIS SUBROUTINE FORMS THE LABEL(MUMBERING OF DOF) FQR EACH ELEMENT
10 ' :

. . .
Ty Y YTy YV YT PV VYYPP PV VY PYY P YT VY Y TFY ) LY ST LRI R AL R R L L L L]

FIFST -HORIZONTAL OOF . : B

A0 O000

15 L= (M=1)/NHEL - ¢ s :

NPRal +1, , : i '
LIM=NO. .OF 00F PER ELEMENT - °
NP= NC, OF NODES Prn ELEHENT )

: ‘ LIM=G- . . ) .
29 NPaLIMa2 .
) ; 00 1 .Iai,NP : P
. IFtT.6T.2y 6d TO 2

- . : EL{L)=L

G0 TO 1
2s "oz ELt2) =i+l

1 CONTINUE . ;

o0

SECOND VERTICAL OCF

[+ Ry Ryl

a0 - LL=H=L*NHEL .
LLLANVEL®(LL+1)

1.2 ZLEMENTS FIXED TO FOUNDATION — .

.

Qo

35
. . i IF(L-NE-U) GO TO 10 . -
' . EL3Y=0 v
. T OELt4Y=D . ’
IF({MeZR+1)Y GO TO 11 ’
(] : IF{N.EQ.NHEL) GO TO 12
r - EL¢e)=LLL+L
EL(S)‘EL(5)+NVEL
V- . GO .TO 11t
. 11 LL(5J=3‘NVEL+1
45 ELCEYENYEL +Y
. T G0 TO 114
. 12 EL(SY=NVEL*Z2+1.
-:L(EI=NVEL‘(NHEL*1301
G0 TO 111
50 - .
Z-.. REST OF ELEH“NTS \‘ I

O0aoo0

LYY ELEHENJS ON THE LEFT HOST SIDE |

59 10 IF{LLNELLY GO TO 20
EL(3Y=NVEL+L - . :
EL(&I?NVEL‘3§L " s
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55

70

75

a0

15

o0

Qs

1090

. 105

1140

SU3POQUTINE LASEL

O0o0

oa0

00000

e K]

c
C

20

3a

111

70

GENERATE 00F FOR THE REFINED ELEMENT %%% QASED #+
ON THOSE OF THE ORDINARY ELEMNENT

Lenses

737172 CPT=i

EL{SI=IL (4] +1
EL{6Y=EL (3) 41
6o TO 111 .

Bes ELEMENTS ON THE RIGHT MOST SIDE

IF{LL.NEJNHEL) GO TO 30
EL(I)aNVELY (NHEL+ 1)+
EL (&) aNVEL®24+1,
EL{S)=EL (&) +1

EL (6)=EL (3241 -

GO TO 111

Ces INTERIOR ELEMENTS

EL{3)=LLL+L

EL (L) =EL (T} +HVEL
EL(S)=EL (4)+1
EL(6)=EL{IV+L

COHTINUE

IF(NDQF.NE. D) GO TO 70

IFINSYM.NELQ} CALL SYMMINDOF4LL)

HRITE(EY EL.NPR
G0 To 999
CONTINUE

LEL{1)=EL (1}
LELA2)aNVEL*I+14L
LEL (3)y=EL(2)

IF(L.NE.0} GO TO a0
LEL(4)=D

LEL(S)=0

LEL (6)=0

IF(LL.EQ.NFEL) GO TO 83

~~ LEL{Z12EL(SI+NVEL

Al

az

83

-1

C 2deve REST OF SLEMENTS

80

GO TO A2
COMTINUE
LEL(7Y=CL(5)
CONTINUE

LEL(5|‘NVEL‘(3+NHEL)+(LL-1)‘NVEL+1
-IF(LL.EQ.1) GO TO &3
LEL(9)=EL(6)+NVEL

GO TO AL
CONTINUE
LEL{II=EL(6)
COMTINUE
GO TO 9t

CONTINUE

ELEMENTS FIXED TO FOUNCDATIOM

FTN

heBihhiE

283

78/01/31.

19,



SURPQUTINE, LABEL

115
120
o«
an
125 .
31
130 .
o 999

737172 OPT=s1

LEL{6)=EL(ZI+NVEL .
LEL(5)1aNVEL*{3+NHEL} + (LL=1}*NVEL+L
LEL (6)=EL{W}+NVEL

LEL (7Y =LEL(6) +1

LEL (8)Y3LEL(S)+1
LEL(II=LEL(L) »1

IF(LL.NE«1) GO TO 90

LEL th)=EL (3]

LEL{9)=LEL (4) +1

COMTINUE

IF(LL.NELNHELY GO TO 91

LEL (6) =EL th)

"LELA(7Y=LEL (6) #1 -

CONTINUE .

IF(NSYHNEL0) CALL SYMM(NDOF,LL)
WRITE{5) LELsNPR '
CONTINUE

. RETURN

END

FTN Leb+4i6

+

284
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SUBROUTINE SYHM 737172 OPT=1 FTN Le54+bkb TA/01/31. 19.

GOOOOO0O0n

S oOOo0aag00

oo

OO0

onDa
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SUBRGUTINE SYMM{NDOF,LL}

D Py TP P P Y P T P P P PP PP P P TP T Y Y
- .

| .
he THIS SUBRQUTINE MQCIFIES ELEMENT LABEL TO ACCOUNT FOR
- SYMMMETRY CONOITIONS :

*»
[ ET I VER PPN YY RS Y SR PSSR S R PSS L ST S R Y PRI RN Y Y R L R L

T

= asw

COMMON/P2/NHEL y NVEL NMAT NTYPE 4 NEQF 4L MAX ,NSYH,NPR,NBAY, NSTOR,
LEX(6) sEY(6) oGXY(6) 9y TH(H)EC(B) LEL (6D, LEL 19},

ZET {12421 +ETM(L2),ETNI90) +OK(F49) +TEHILIZ}+IEHC(LD)

INTEGER FP+EC/+EL,ETH.ETN

#%x MOIFICATION |
=®» MODIFY ELEMENT LABEL ACCORCING TO SYMM. CONDITIONS
#»» NOTE THAT FOR NO SYHMM. NSYM=0, SYMM. NSYMal, ANTI-SYMM. NSYM=2

IF(NOOF.NE.0) GO TO 30
IF(NSYM.NE.1) GO TC &0

B T

FOR CASE OF SYMM. NSYH=1

(V]
[RREES N

EL(1) =0

EL(2)=0
EL(3)2EL (3)~NVEL
EL (L) 3EL () =NVEL
EL (5}=EL (S}-NVEL . .
EL(6) =EL (6} -NVEL ' ?
GO TO Lk 2

40 CONTINUE .

FOP CASE OF ANTI-SYMM. NSYMa2 . S , : .

IF(LL.EQ.1) GO TO &1 _ ‘ ;
IF{LL.E0.NHEL} GO TO 42 - . , . . )
Assseaee INTERNAL ELEMENTS ’ * ! ' .
ELI3)=EL{3)~NVEL . ?
EL{4) =EL (&}=NVEL g
EL(S)=2L{5)-NVEL
ZLBY=EL(B)=NVEL . -
GO TO GLuk ’ . !
41 CONTINUE ) _ o -

Beesoss ZLIMENTS ON THE LEFT MOST SIDE
EL(4)=ZLIL)=NVEL .
EL(S)=EL {5)~NVEL ' . :
IF(NSYMeNEL3) GO TO 4hb " :
EL(3}=0 ] ' :
ELtEY=0 .
GO TO 4hé

42 'CONTINUE

P

Cueves ELEMENTS ON THE RIGHT MOST SIOE

EL{II=EL(II-NVEL
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70
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85
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100

105

118

.
- . —
Il

SUERGUTINE SYWM 737472 OQPT=y

8

EL (M) =EL (4) =NVYEL
EL(5)xEL{5)=-NVEL
ELCE) =EL(6)=-NVEL
IF(NSYM.NE.2) GO YO &u4&
ELt) =0 )
EL(S)=0

kbl CONTINUE
DO bLuky I=m1,6
IFCELC(I)4GE40) GO TO Libbkk

EL(I)aD
Wius CONTINUE .
GO T0-9999 -
c
c
80 CONTINUE
c

C #sxne MODIFICATION FOR PEFINED ELEMENT

IFINSYMJNEL.1) GO TO B1

£
C FOR CASE OF SYMH.
c
"~ LEL(21=0 '
LEL{2)=0
LEL(31=0
NN=2%NVEL

IF(LL.EG.1) GO TO 82
IF{LL.SQ.NHEL) 60 TO 83
5 LEL (4)=LEL: (&) =NN
LEL(5)=LEL (5)=NN
LEL(B)ALEL (6) =NN
LEL(7)=LEL (7} =NN
LEL(BI=LEL(B)=NN
LEL(9)=LEL t9) =NN
- GO TO 888
82 GONTINUE

LEFT MHOST SIDE ELEMENTS

o0

LEL [4)=LEL {4) =NVEL
LEL(S)=SLEL{S) =NN
LELIBI=LEL{B) =NN
LELITI=LEL(TY~KN
LEL(8)=LEL{8}~NN
LELI9)=LEL (9} =NVEL
GO TO 8as

83 CONTINUE

C RIGHT MOST SIDE ELEMENTS

LEL {4 )=LELf4) ~NN
LELISY=LEL(S)=NN
LEL(6)=LEL(6)=NVEL
LEL (7¥=LEL(7)=NVEL
LEL(8)=LEL(8)=NN
LEL{2¥=LEL (9} =NN
GO TO Bas

81 CONTINUE

FTN LaG+LbLE

"')
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SURROUTINE SYMM’ 737172 OPT=1 : FTN 4, b+4k6 T804,

115 ¢ FOP CASE OF ANTI=SYMM.
LEL(2)=LEL(2}~NVEL
IF(LL.EQ«LY GO TO B4
IF{LL.EQ.NFEL) GO TQ 85
LEL (b ISLEL (&) =NVEL :
120 LEL(S)=LEL{5)=NVEL
LEL (6Y=LEL {61 —NVEL
. LEL(7I=LEL(T}I=NVEL
LEL (8)=LEL {831 =NVEL
- LEL (93 =LEL (9) -NVEL
125 GO TO %88
84 CONTINUE
LEL¢5)=LEL {5) -NVEL
LEL(6)=LEL (B} ~NVEL .
LEL¢TI=LEL (7)) —-NVEL '
130 : LEL (8)=LEL (8) =NVEL
IF(NSYM4NE.3) GO TO 868
LEL (4 )=0 "
LEL (9 =0

135 GO TG Bbsse
85 CONTINUE
. LEL thI=LELCW) =NVEL N
LEL ¢5)=LEL (S5)=NVEL . ) '
LELIGY=LEL (6)=NVEL .
140 . LEL ¢7)=LEL (T =NVEL ’ .
LEL ¢B)aLEL (8)=NVEL .
LEL{9)=LEL (D ~NVEL :
IFINSYMsNE.2) GO TO 888
LEL(B)=0
145 LEL (73=0
: 888 CONTINUE
. 00 s8s3 I=1,9
IF(LEL(T}.GE. 0} GO TO 4888 -
EL(I¥=0
181 888 TONTINUE
3999 CONTINUE
- RETURN , , )
END !
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SUBROUTINE RICT

ALY

.

ELE

o0aOOO0000

OO0 [y

10

00

INITIALIZE ELEMENT STIFF.

73/172 CPT=1

SUBROUTINE RECT (M,NOOF?

288

FTN Lasb+LLE 73701,

[y

CDHHONIP?INHELoNVELvNHAT'NTYPEoNEOFnLHAKoNSYHsNPR-NBAV;NSTUR-
1EX () JEY(EY 4GXY (D) 2 THIHILECIBILELIE), LEL (9),

ZET(1242) yETHIL12)1,ETN(GD} QK (D)
INTEGER FP4ECoCLETM.ETN '

+IEW (121, IEH L)

'C"“‘l‘I#‘D&‘b..“"‘.l'-‘.Il.l‘l‘-'.I.U“‘.“‘l.ll.l‘l““.

THIS 'SUBROUTINE FORMS EZCH ELEMENT STIFF. MATIX

FYSYSYY TP YR VY PR VIR YRR Y RS R L L 202 b o

MNNT PROPERTIES

IT=ETN(H)

A=ET (1T, 1)

BEET(IT,2)

IH=ETMLIT) .
EL=EX (IM} '

E2=EY (IM)

G12=GXY (IM)

TTaTHLIMY

R=A/B

IF (NDOFLNE.0) GO TO 50°

HATRIX OK

D0 10 I=1.6
DO 10 J=1,¢€
AK{IsJ} =00
CONTINUE

FORM STIFF. MATRIX OF CRDIMARY ELEMENT

QK(1,1)aTT#R*G12
QK(2+1)==0KC1y1)

OK(341)x ,58TT=G612

QK (g 1) ==0K (3, 1)

QK (541}==0K (3,1}

QK (By1)= QK (Je¢1) .

OK(242)¥20K(1,1)
QK (3,2)==0K {3, 1)
A (e 232 OK {34 1)
QK (5+2)=0K {3+ 1)
QK (654 2)==0K (3, 1)}

OK(3,3)a(E2%R+G12/RI*TT/ 3,

OK the3Vm (4 5*E2*R=-G12/RI*TT/ 3.
AK(Sy 3V m= G2QK L34 3}

QK {693¥= (a5"GL2/R=-EZ¥RI*TT/ 3.

OK(Gy 4)=0K {3+ 3)
QK (Se 412QK (64 3}

MYFYYS YT LY R RIS L2 L L L L]



SUBRPOUTINE RECT

., T37172 CPT=l

QK €y L)m=0 530K (T, 3)

. OK(S'E’-OK(313|

20

S0

FORM STIFF. MAT®PIX OF THE

INTI

55

QK (6+51mQK L, 3)
QK (6e6I=OK (343

00 20 I=1s€

DO 20 Jai.€
IF(J.LE.T) GO Te 20
QK (I, J1=0K (s 1)
CONTINUE

GO TO 999

CONTINUE

FLIZE QK °X3

00 55 I=1.9

DO S5 J=1e%/ " o _
GK (I,J) =0.
CONTINUEZ

S1=TT*G12%9/12.
S2=TT*G12/%2.
S3I=TT*E2%R760.
S4=TT*G12/ (R¥364)

aK{1,1)=28.%51
QK {2,1)3=J2.,%51

L QK (391)=k,e*51

QK (4+1)=104*52
AK (B, 1)m=2(4252-
AK (T, 1)1m~2,*52
QK19,41)=2,*52

OK(2,Z1=mbk.®S1

aAK (3, 21=0K (24 1)
AK{L,2)==-8,%52

QK (5,2)==0K (ks 2)
AK{T, 2¥=QK Ly 2)
QK(9.2|=-QK(&.2)d

QK (3,3)=0K(1+1)"
QK (e IV =AK (74 1)
QK (6,31 2=0K(741)

“QK (T4 3)1=0K ke 1)

: ¢
60
) c
: c
65
70
: c
, ¢C
c
75 &
c
¢
80
c .
c
85
c
c
.20 -
as
c
100 -
-
105
110 c

QK (943)==0K (k1)

QK (e G138, *ST+284"Sh

QK (Sels )=l «®*S3-32.254
‘QK(G.#)z-E-‘53+4o'Sk
QK (Tyl)22.*5342,%5h

: ' o 289

FTN L.Beblb TR

REFINED ELEMENT ‘ Lok

-



220

- -

"

I gUBRQUTINE RECT 3,172 OPT=i FIN e 6+4l6 78701,

N -
115 QK (By b m=b o *SI=16"5k .
- - QK(Q;“)'-B-'S3#1Q.'Sk

QK (S+5)m32.°53+64%5h , *
AK (64 5)20K (5. 4) w
120 7 QK (7+5) 0K (By )
. QK (8,5)m=32.2ST+32.%5h
' QK (955)120K (Be k)

QK (64 6)BAK g i)
125 . QK (746)=0K {9+ 4) . -
: OKI846) =OK (B &Y T .
QK (9e61=0K (74 4) , . .

QK7 TY=AK (e k) .
130 . QK (B, 710K (54 &) -
. QK (9y 7T)mQK (e k)

QK (B, 8)=0K (5.5} .
. QK (39 B)=0K (5 4) : .
135 c . _
‘ : uth.elqutu.tt

‘ DO 60 I=149
161 : Do 60 J=1.9 .
IF(J.LE.IY GO TO 60
60 CONTINUE . ‘ . ‘
) 999 GCONTINUE ~ : : :
145 RETURN
' - - END
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SUEFOdTINE GAUSS . T3s172  CPT=my * FTN LeB+ubb Tasni.,

1 , SUBROUTINE GAUSSTAKeRWNEQsNLO9NReDET4 NCOCE) ° -
DIMENSION R{70+1) yAK(6105) : .
- g “I-U.l“l“#ll‘l#‘ll".l#b.'..&!‘“lﬁllll‘l.“l.‘.04!'.‘!44.&! .
5. c )
¢ AX CONTAINS COEFFe IN' ONE TRIANGLE OF ASYNMe MATRIX - .
c COuLa BY COL.' IF UPPER TRIAMGLE s ROW BY ROW ' .
¢ IF LOWER TRIAMGLE.
c R= RIGHT HAND SIDE MATRIX IN {AK) (X)=(R) . . .
10 c NEQ= NOo OF EQUATIONS .
¢ NLCaNO. OF LOAD CASESs I.E. GOLS, OF @ .
c NR= NO. OF EQUATIONS REMAINED IN CONCENSATION
c sass NOTICE®®*¥s ELEMINATED DOF STORED LAST
c DET= DETERMINANT
15 c NCODE= 1 FORWARD ELIMINATION AND BACK SUBSTITUTION
‘ c ‘ 2 ELIMINATION OF PIGHT HAND SIDE AND BACK SUBSTITU,.
‘ c NRoLT.0=MODIFY MATRIX AK AND BACK SUSSTITUTE TO :
c RECOVER ELIMINATED UNKNOWNS. KNOWN VALUES OF .
- c R MUST BE IN POSITION BEFORE. - .
20 c
. - c " . .
c MesusaCALLING ARGUMENTS »ssssssss c,
c . -
c FOR SOLUTIONS GAusstnx.R.Nca.NLo.i-oer.zn
25 . c FOR NEW RIGHT HWANO SIUE - cnuss:nx.R.hEQ.NLo.x.DET.z’.
c FOR DETERMINANT GAUSS(AKs0sNLO+0»240ET,1)
¢ FOR CONDENSATION cnusscAK.R.Neo.sLo.NR.osr.zt
. . ¢ NLO MAY BE 0
c. FOR RECOVERY GAUSS(AK.R, Nsu.NLo.-NR.uET 23
30 g LI S R Y YRR Y P T Y R Y R P P Y Y PY Y PR P YR Y PR Y Y Y PY P Y VYFR RSN TRIRYYY
c - b
IF(NR.LT.0) GO TO 15° ' ST S
.. NEaNEQ=NR * ' . ]
35 DET=1. . -
e, 00 500 M=1,NE , :
- MAX=ENEQ=H i ) . '
‘ NxHAX+1
- L= {N®(N+1)) /2
%0 , . LN=L=N '
IFCAK L) «GT.1.5=2T) GO YO 600
PRINT 14N
GO To 500 : .
608 PIVOT=1./AKIL)
45 IF(NCODE«GT«1) GO TQ 400
: : * DO 300 J=L1.MAX o
' TRAK(LN+ DI *PINCT : o
. IF(T.EQeDs) GO TO 300 - .
- DO 200 I=JeMAX
50 . K= (1% (I=1))/24J
' T KN=LN+I -
200 AK(K)IZAK(K)I=AK(KN)*T - .t
300 CONTINUE y . _ .
IF{KLO.NE.0Y GO TO ‘000 . *
55 IFINR.NE.1) GO TQ 500 .
. DET=DET=AK (L) ) .
400 DO 360 J=1.NLO - - o



60

SUERQUTINE GAUSS

350
360
500

€5 |

70

19

75 |

a0

e

25

737172 QPT=1,

T=RAN, JI#PIVOT *
IF(T.EQ.0) GO TO 360
00 350 I=1,HAX
K=LNST - .
RIIsJI=REIeJI=AKIKIST
CONTINUE »
CONTINUE .

IF (NR.GT.1) RETURN

DO 10. LE=1,NLO

RU{1sLI=R(1,L) /AKILY

M=2 .

IF (NR.LT.0) M=i1~NR

g0 20 I=M,NEQ

K=T1 -

KI= (I*K)/2

KN=KI+I .

D0 30 L=1,KLO

DO 25 J=1sK .

KS=KI+J -
RATLI=R (Lo L)=F Iy LY *AKIKJI}
REI,LI=R(TLLY/ZBKIKN]

COMTINUE - : :
FORMAT(* ZEZRO DIAGONAL AT ROW ®41%)
RETURH |

END . ‘

‘o

"

FTN &e Brbb

74701

292
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SUSROUTINZ ASMBLZ  ° 73,172 (OPT=1 .

+

.20

+ 100 CONTINUE

a0 0000 aocaaac

FTN 8.6+446

-

SUBROUTINE ASMBL2(NLe.NEQ,2MAX 4 AR NF4NSHAPE,NSSYN)

co"“o"/Pz’Nch'NUELINH“T'HTYPE.NEQF'LHA!'NSVH'NPR’hBAY'NSTGS/’_J)

SLEX(BY s EYUB) 4GXY(6) 4 TH(B) 4ECCA) 4, EL(6) 4 LEL 19),
2ET(1242) s ETMI12),ETN(O0) 3 UK (e 9) s IEH {121, IEH(12)
COMMON/PI/ TU3+5).KI(3.3),515,5),08(3,5}
DIMENSION AK(6105})
INTEGER FPLECsELJETH,ETN
INTEGER AMAX :

5.

l
]

. . - )
b LI LI I PR YR INYE YR YR FY Y VY VY F ey (Lo RIS T TP IR R NTY ¥ VYT ¥y
. :

THIS SUBROUTINE RETRIEVES THE SUE'STIFF..‘HATPICES 5
YRANSFCRMED TO THE GLOBAL SYSTEM AND THEN ASSEMBELES
THEM QONE BY ONE TO FCRM THE OVEPALL STRUGCTURE :
STIFF.. MATRIX AK.

*

* -
l‘l"."-‘“lh‘l..“U.CI.“‘.‘U‘I!.‘Q'lllll‘.“l.l“l.‘&.l‘ll‘l

REWING 2 .
INITIALIZE “AK v

LLL=AMAX + - & ¢
DO 100 I=g,LLL ‘
AK(II=0.0 -

]

IF (NSSYM.NED) 6O 70 101

LIMx5 . . . o
GO To 102 , - <ig
. 101 CONTINUE - ot
LINeZ )
102 CQNTINUE - ‘ o

aao QOODaO0

ND=NEQ/NL *

RETRIEVE EACH SuB MATRIX S
DO 9999 Nxi,NF .
READ(2) NSYM
DO 9999 Isi,NL o
DO 9999 Jmi,NL '
L.IF(I.6GTed) GO TO 9999 . -
_READ(ZIt(StII+JJ)vJJ=1.LIH1.II=1-LIH)

ASSEMBEL S TO FORM AK ' .

-ND=NO. OF 00OF FER LEVEL

3 CENTRAL DOF(U,V4ROT.) AND 1 VERTICAL DOF(H! PER CORNER
IFCNSYM.NE.0) GO TO 777 L
Lesees ASSEMBEL FOR CENTRAL DOF (UyVeROTe)

NS=LIM=2 . ' o .

00 S IL=1i4NS - : ~

D0 5 IIK=1.NS
II=T1*ND=NO¥IL
CJJITIPND=ND+IIK : .

-
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85

990

-

SUBROUTINE ASMBLZ  73/172 0PT=1 : i

.

95:.

100

105

Ci10”

o000

aoaaoa

S

" LFATI.GT.JJ) ‘GO TO 5°
LOC=( (JJ=1) *JJ) /72411
AK(LOCH=AK(LOCI+SCIL, TIK)

S5 GONTINUE

.

Zalee. ASSEMBEL FOR VERTICAL DOF OF GORNERS(H)

EXCEPT LﬁST FACADE

IF((N.EQ-NF).A&O-(NSHAPE.EQ-U)) GO TO &0
“Ni=N+LIM=2

NZ=N+L IH-1
B0* 6 LeNi.N2 .
LL=L#+#1=N - y “ e
D0 6 -IK=NL,N2 .
KKaIK+1=N . o
IISI*NO=NO+L
JJz J*NO=ND+IK ‘ 3

C JIFILLGTedd) GO TO 6 -

60

.60 TO 9 L '

<740

[N

11

LOC’((JJ—ii‘JJlIZ*II

AK (LOCYHAK (LOC) +5 (L KK) T
CONTINUE . | ; :
60 TO 99 - _—

. ) A

"FTN Ko 6eLLE

. -8 .
2.2.% As;Ene$L FOR VERTICAL DCF (W) OF LAST FACAOE

GONTINUE - '~ ' #
DD 7 L=1,2 - .
IF(L.NE.1} GO To 2

Li=N+3 ¥if.
LL=6 -

Liz4
LL=S .
00 77IKs1s2 : : :
IF(IKeNE.1) GO TO 10 D

KisN+3

KKk

GO TO 11

Ki=i

KK=S - ‘

{12 1*ND=-ND+LL: o &
JJFJSNO=ND4KY

.IF(II.GT,JJ) GO TO 7

- NCC=LIM=2

kOC-((JJ-i)‘JJ)IZ*II

AK tLOCH=AK (LOC) +S (LLsKK)
CONTINUE

GO To 88

. . ) . . .
3eles ASSEMBEL Fgﬂ INTERACTING {CENTRE 4 CORNER) DOF *EXCEPT

"LAST FACAD
CONTINUE :

D0 16 IL=1,NCC
DO, 16 IIK=N1.NZ
' -

r

294
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t%s
120

125

130

13%

149

145

150

155

160

165

170

SUBRQUTINE ASHBLZ

0Do0O9

oo

16

73s/172 O©OPT

- XK= TIK+1=N
LIS I%ND=ND#IL
JJ=J*ND-ND+IIK

LOC=t(JJ=1)20J) /2

AKILOC!IIK(LOCI‘S(;LnKK)

CONTINUE

- G0 .70 999

20

21

17

¥eouea ONLY FOR NON DIAGONAL sue MATRICES S
INTERACTING (CORNER,CENTRE) DOF '

949

CONTINUE
00 17 IL=1.3
DO 17 IIK=1.2

=T

+11

IF(IIK.NE«1) GO TO 20

NI=N+3

NN=&

Go TO 21
CONTINUE

NImb

NN=5

CONTINUE
II=I*ND=ND+IL
JJ=JENO=-ND+N]
Locx{(JJ=1r*JdY /2

"

AKTLOCY=AK (LOC ) +S(IL s NNY

CONTINUE
GO TO 883

CONTINUE
IF(I.EC.J) GO TO

0O S50 L=N1.N2.
Li=L+1=-N

DO 50 KK=1.NCG
II=I*ND~ND+L

JJ=J*NO~ND+KK

S0

ase

w2

LOC=( tJJ=1)"JJ) /2

AK(LOB)-AKILQG!#S(LL;KK)

CONTINUE

60 TO 9999
4e2es LAST FACADE

CONTINUE

IF (I.E0.Ji_ GO TO
DO 41 L=142 -
IF{LeNEs1) GO_TD
L1=N+3

Li=L

GO TO #3 .
CONTINUE

Li=h

+11

9999

+11

2939

.

~

3.2.. ASSEMBEL FOR INTERAGTING(CENTRE,CORNE

.

FTN GLeb+LLb

R) DOF *LAST FACADE*®

295



175

180

186

195

SUBROUTINE

190

ASHAL2 73/172 (QPT=1
LL=S
%3 CONTINUE

1

77

17

DO 41 KK=1,3°
II=T*ND-ND+LL
JJEJEND=NO+KK

LOC={ (JJ=13 20U} /72411
AKTLOCY=AK(LOC)Y +S(LL, KK}
CONTINUE

60 TO 9999

CONTINUE

00 77 L=1,3

EC(L)=0

ELtL)=0"

CONTINUE

CALL LABS(IN.I+JoND)

" DO 70 LL=1,3

.70
9999

IT=EC(LL)

DO 70 KKu1,3 '
JJ=EL (KK}

IF(I1.GT.JJ) GO TO 70
LOC= {(JJ=1) *JJ) 72411

AK (LOCI=AK{LOC) #5 (LLy KK}
CONTINUE ' ‘
CONTINUE .
RETURN .

END '

FTN Lu6ebb46

296



SUBROUTINE LABS

10

156

20

25

30

35

Qo000

v

290

999

T3/172 . QPT=1

SUBROUTINE LABS (NyLed+ND)

297

FTN S4eB44L6 T

SRBRBNLS .Cllﬂ"‘l.-“.l.“‘.l’.l.u FYYSPYTYY Y YT P YRS P L L Ll bt

»

' . L

» THIS SUSROUTINE FORMS LAREL FOR THE (3) MATRICES..

L]

»

FYYYYPVRYINR YT YN SIS 22 D L bl FYPYRT R T Y L L Bt tL Ll FYYYSYST YY)
. - .

COHHONIPEINHEL.NVEL.NHAT-ﬂTYPEoNEDF'LHaXsNSYH;HPR-NEAY.NStOR.. -
IEX(ﬁl.:Ylﬁ).GXY(Gl.TNIG).ECIB!.EL(B).LEL(Q!.
2ET (12421 ETMI12) ,ETNCSD) (OK(9,9) .IEH(iZ),IEH(iz)

INTEGER FP+EC+SL+ETHLETN

ECC1)aND*I=ND+1
EL(L)=NO*J=ND+1
IF(NSYHM.EQ.1) GO TO 10
IF(NSYM.EQe2) GO Tn 20
EC(2)=0
Ec:aa-ac(11+1

ELt2 =0

EL (33=EL(L1)+1

GO Yo 999 ’
CONTINUE
EC(2)=mEC{1) #N=1
EC(3I=EC(2)+1
EL(Z2),=EL (1) #N~1
EL(3)=EL(2)+1

GO TO 999

CONTINUE ‘
EC{2)mEC L) +N~-1
EcCt(T=0
EL{2)=EL (1) #N=1
EL{()=D

CONTINUE

RETURN

END

r.
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c

STRESS 737172 (QPT=2 ‘ . FTN Leb+ihb

SUBROUTINE STRESS(NL.NF!NDOF-NSHAPE;NSSYH:NOUT’ ,
COMMON/PL/ FP(ﬁq“,oRFP!“Iv’(h\1‘(531NPRINT(10)
COHﬂDNfPZ/NHELcNVEL'HHﬂT.NTYPE;NEOF.L"Q!.NSYN,NPR;NBﬂY.NSTORv
LEXCH) 2EY (6 4G XY (6% + TH (B JECIDY +ELIB) S LEL IOy .
ZETtiz.Z!.ETH(iEIQETN!Qn).QK(E.Q) ZJIEW (12, TEHL2)
COHMON/P3/ T(3|5‘!K(3'3‘15(515,c613|5)
CQHHON/PMINEU,Rl?ﬂ).AK(BIUE‘ )
.. DIMENSION FD(S’QFLD(3)|EE(319'uC(3o3'0930(3'9'10(9|'SIG(31
INTEGER FP4ECsELyETHLETN

l"ﬂl“il.l‘l-“.l".&ll‘l‘l'-l...“. PrrT YT Y Y Y L L L L L L FYYYYY XL L LY

THIS SUBROUTINE EVALUATES STRESSES
IN EACH ELEMENT IN EACH FACADE

‘4‘.'"."“‘ll‘bl‘ll‘l"#‘l.ll““l".l"‘.““ll"l.“ll“ LY 2

£XTPACT THE 5 OISP. COHPONENTS(U.V.ROT-HI.HZf
FOR EACH LEVEL IN EACH FACADE FRCOM THE GENERALIZED
DISP. VECTOR R . \

DO 1 I=1.NEQ . _ o
. R(I)SUQ - - H
1 CONTINUE-—
ND=NEQ/NL .
IF (NQUT.NE.D0) GO TO 6.
PRINT 500
G0 TO 7 .
& CONTINUE ‘ . L
PRINT 100 .
7 CONTINUE
_REMWIND %
REWIND 5 *
REWIND 6 e
DO 93999 Nx1.NF o
REWIND 3
QEAD(3I(R(I],I'1,NEQ!
REHIND &
IF(NQUT.NE.0) €0 T0 8 -
PRINT 600.N .
G0 TO 9 b
-8 CONTINUE |
PRINT 200N . . :
9 CONTINUE :
DO 2 I=1.3
oo 2 Juie5
’ T(Isd=0e
2 CONTINUE
READ(5Y T

c . .
‘¢ RETREIVE THE CCNDENSED FACADE STIFF. MATRIX

REAQ (1) NSYH'NEQF;LH&X,NEL'NHchNTYPE
READ (1} (AK{T) ,I=1,LMAX) ¥ ETN (J) yJ=1 4 NELD
READR (1) (EX(I)LEYLI)GXY (] «THID) s IR 1, NHAT) .

READ {1} (ETM(T), TIEW(T1 . IEH IIoJET(IoJI'J=1.2)1I=1cNTYPE!

DO 99 M=1.NL
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65

70
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90

95

100

105

i1g

R

nnnnn

f?
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SUBROUTINE S5TOESS

S

&L

'3

10

11

12

737472 0PT=L

00 S I=x1.5

FDt(I)=0, ) J
CONTINUE !
L=ND*"M

Jel=ND+1

FOt1y=REJY
IF(NSSYM.EQ.0} GO.TQ 3
LIH=3

FOCIY =R (I4N)
"IFENSYM4NE.1} GO To 4
FD(2)Y=R (J+N=1)

GO TO 11

CONTINUE

IFINSYH.NE.2) €GO TO 11
FO(2Y=FD(3} -
FOUI)=0.0

G0 TO 11

CONTINUE

LIH=S

FOt(2)=R(J*1)

FD (31 =R [(J+2)

KK= je2

LL=KK N

IF((N+EQNF}. ANDa INSHAPE.EG.0Y) GO TO 10
FOtL)y=RILL) .

"FO(S)=R (LL+1)

G0 TO 1t

CONTINUE

FDt4)= RILL) -,
FD{S)=R{KK+1)

TRANSFRM THE PREVICUS 5 DISP. COMPOKENTS TO THE
.COFRESPONDINO LOCAL 3 DISP, TA EACH LEVEL IN EACH F&CADE
LI+Eas TO Use Vi, V2

8Y MULTIPLYING T TIMES FD

CONTINULE

DO 12 J=1,3

FLDEJI=0.0

00 12 I=1,LINM
FLDlJi=FLD(J)¢T!JcII‘FD(II
CONTINUE
HRITE(#I(FLDIII'I'1p3)

g9 CONTINUE

"FLD= FACADE LOCAL DISP. (ONLY THE REMAINED DQF) .
RSTREIVE MATRICES FLOs INITIALIZE Re ANO ASSEMBEL FLO IN "R

INITIALIZE LOCAL FACADE OISPLe. VECTOR '

DO &4 I’i.H‘QF
R(IY=g,.

L4 CONTINUE

NHELa2FP (Ny3) !
NVEL=FP(Ny&4)

FTH Lab4h4b
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SUBROUTINE STRESS 73/172 CPT=1

-115

120

125

130

135

1450

145

150

155

160

165

170

0oaod aooo0

999

a1

93

91

96

92

i 95
10%

-
-

REWIND ‘&

IF(NSYMJNE. 0)'GO TO 90

NP=3#NL
00 999 M=i4NL
READ(E!!FLD(II:I=1o3)

I=M . . : :
J=I+NVEL

IK=J+NVEL - -

R(I)=RIIV+FLD {1}
R{JI=R () +FLOC2)

RIIKI=RLIK)+FLO (3D

CONTINUE

GO TO 105

GONTINUE .

NR=2*NL '
IF(NSYM4EQ.1) GO TO 91
IF{NSYM,EQ.2) GO TO 92

DO 93 M=i4NL
neanta!lFLctri.xri.ax

IzH

J=T+NVEL -
IK=J+NVEL ‘ '
RE{II=RIIV+FLD(Y)
REJIZRIJIHFLODULTY
CONTINUE

G0 TO 105

COMTINUE

DO 9% M=LsNL

READ(&4Y {FLDII) ,I=1,T)
InN

J=T+NVEL

IK=J+NVEL
RIIIaRIIV+FLO (2}
RI{JI=R (J}+FLD (2
CONTINUE .

G0 TO 105

CONTINUE

o 95 M=1,NL

READ(4) (FLOCI) +I=133)
rEnotws ot i
J=I#NVEL

IK=J+NVEL
ROII=RITI+FLDULY !
RJ)=RCJI+FLD 2}
CONTINUE

CONTINUE

RECOVER THE CCNDENSED FACADE DOF

CALL GAUSS(AK.F, NEQF s NLO+=NR, DET, 2}

FTN Lo.B+hiub

EXTRACT EACH ELEMENT NOUAL DISPe FROM THE COPPLETE FACADE
pISP. VECTOR..

NgL;NHEL‘NVEL
00 9999 H=14.NEL
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175

180

1910

195

200

205

210

215

220

225

SUZRQUTINE STRESS T3/172 OPT=1

oo0

ELEMENT PROPERTIES

IT=ETN(M)
AZET(IT41)
D=ETC(IT,2)

C NDTZeeas D=B=HEIGHT, OF ELEMENT

oo

20

izt

L0

10

c

IM2ETH(IT)

E1=EX(IM)

£2=EY (IN)

G12=G6XY (IM)

TT=TH(IM)

NBAY=IEW(IT}

NSTOR=IEW(IT)

BH=A/NIAY ‘
SH=D/NSTOR

IF (NDOFJNE. 0} GO TQ 70
READ(6) EL.NPR
IPRNTaNPRINT (NPR)
IF(IPRNT.EQ.0) GO TO 999¢
ISTRS=1

JSTRS=1

RE=m1, /NEBY

RS=14 /NSTOR

LIM=6

INITIALIZE STRAIN =DISP. MATRIX 88 3X&

DO 20 I=1+3
00. 20 Jai.€
Ba(I,J}=0.
COMTINUE

. EXTRACT EACH ELEMENT NODAL DI?P.

DD 40 ImiaLIM
QtI¥=g.
J=EL{T}
QeI1=QrI) *R(I)
CONTINUE -

GO TO 71 .
CONTINUE »
READIB)Y LZL.NPR
IPRNTaNPRIKT (NFR)
IFU{IPRNT.EC.0) GO TO 9999
ISTRS=1

JSTRS=2

LIK=19

0=D/2.

AmAS2,.

R9=2, /NBAY

RS=2./NSTOR

C ‘ :
€ INITIALIZE STRAIN - DISPL. MBTRIX BE 3x9

DO 72 I=l.3

301
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_SUSEOUTINE‘STRESS

230

235

260

2ub

250

255

260 -

265

27Q

275

280

285

7TI/172 OQPT=1

DO 72 J=1,.9
BE{I,JI=0.0 .
72 CONTINUE ‘

. c - .
¢ EXTRACT EACH ELEMENT NODAL DISPLACEMENRETS

DO 80 I=xi.LIM
QtIi=0.0 :
JELEL(I)
QUI=QtI)+R I}
80 CONTINUE
71 CONTINUE

Qoo

FOoM STRESS=STRAIN HMATRIX ¢ IX3

DO 25 I=1.3
DO 25 "J=i,3
- G{IeJ)=00
25 CONTINUE
ct1.1)=EL
ce2,2)=E2
C(3,31=612

IF{NQUT.NE.D) GO 7O 75
ISTRS=2*NSTOR
75 CONTINUE ‘

DO 888 1I=1,ISTRS
IF(NOUT.EQ.2) GO TO 88
ISIGK=(=1)+*]I .
IF(ISIGNsLTa1) GO TO 81 °
JSTRS=NBAY
I1Z=1.

GO TO 38
81 CONTINUE .
JSTRS=NEAY+L §
1Z2=0 . . |
88 CONTINUE
00 888 JJEL,JSTRS
Exe5
IF (NDOF.NE.0} GO TO 73
IF{NOUT.EQ.0) GO TO 82
. GO TO0. A3 . ’ .
32 CONTINUE
E=TI*R5*0.5 -
83 GOMTINUE o

c
¢ FOPM THE 88 MATRIX P
e

IF(NDUT.EQ.2} GO TO 65
7= (JJ-1) *RB+IZ*RB%0.5
G0 TO 66

‘65 CONTINUE
Z=.5

66 COMTINUE
BE(2,3)1#~(1=2)/D
BBIZok}==Z/D
88 (2,53¥=2/0
BB!Z'G"‘io—Z,,D -

-

»

_FTN hebdihkb
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290

295

305

310

315

320

325

334

" 335

SUBROUTINE STREISS 737172 QOPT=i -

BB (3, 1)m=1/0
68 (3,2)21/C
BE(3e3)a=(1-E3 /A
9B (Iek)x(1.-EV/A
8B (3, 5)=E/A
8B (3, 6)==EsA
GO TO 7% -

73 CONTINUE .
IF{NOUT.EQ.0) GO TO Bk
GO TO 85

84 CONTINUE
E=TI*RS*0.5-1.0

a5 CONTINUE

FOPM THE 88 MATRIX

- 1

NOTE THAT BOTH D AND A REPESENT ONLY ONE HALF THE
HEIGHT lND THE LENGTH OF THE ELEHENT RESPECTIVELY

a0 0nn

IF(NOUT.EQ.2) GO TO. 76
7= (JJ=1) *RE+IZ*RI%0e5=140
- 6O Y0 77
. 76 CONTINUE
Z=JJ*1.=1.5 :
77 CONTINUE v
BB (244)%7% {1, =271/ (4o ®0) .
BB (2,5)%={1,=2%2) /7 (2.%0)
BB (2s6)m~(1,+Z)%2/ 1l *D)
BE(2,TIa=BB(2+6) -
BB (24 8)==BB (2, 51
. BB (2,9)=-88 (2,41 "

BB(3.1)3-(1|-2-'E)/(2.‘D)
88 (3,2)3=2,%E/0
' BB(3|3”(10*2.‘E}/(2.‘0‘

BB [Sek)T=i{le=2.Z=E42,225E)/(ha*8)

98 (345)a=2%(1.-E) /A

BEI3,6)= {1, +2.%2-E= 2-‘2'¢1Ilﬁ.’ﬁ)

BEU3,TIX[1,42.2Z+E+2,%2%C) /7t *A)

BB(3+8)=3=2%{1.+E) /A

BB{3+9)2=(1s=2 s *7+E=2.*Z%E) / (ke *A)
Th CONTINUE

-

MULTIPLY C TIMES BB AND STORE IN BEC

.

000

DO 30 I=1.3°

00 30 J=1,LIM

BBC(IyJ) =04

DO 30 Lx1e3 ~ i

BBC(I'J)SBEC(IrJI+G(IsLI'EB(Lch
30 CONTINUE

- .-~ C. CLCULATE STRESSES, SIG=(8ACIX((Q)

FTN LeB+ahE
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345

350

360

365

370

375

SUZROUTINE STRESS

"

c

c

T3/172 CPI=1

DO 50 I=1+3

SIG(I1al.

DO S0 J=i,LIM
« SIG(II®SIGCI)+BBC(I,J1*Atd
CONTINUE

IFINOUT.NE.D) GO TO 55

. . 304

FTN LeO+LLE 7+

CALL FORCE(SIG’II'JJOHQJSTPSQTT'BHvSHUIZ‘

. GO TO 6&8 .
55 CONTINUE -

PRINT STRESSES » 50 LINES PER PAGE

NLINE=LT
IFI(NLINE«GT.0)
PRINT 1000
NLINE=LQ
HLINE=NLINE=1
PRINT 1010 ¢My (SIGC(I)oI=143)
CONTINUE

CONTINUE

G0 TO &0

60

.a88
9999

FORMAT(4THLOUTPUT TABLE Z2ee
FORMAT(//7 20X+ 1SHFACADE NU
1 3N 7THELEMENT » 7 X4 BHST
2 7% AHTAU (X, YD)
500 FORMAT(S3H1QUTPUT TABLE..Z
500 FORMAT(//34X,*FACADE HUMEBER
1 *  ELEMENT NC. COLe A
2 BEAM SHEAR
1000 FORHAT(LML, FHELEMENT, 7 X+
1 CTXeBHTAU(X+Y))
1010 FORMAT(I10,2P3E15.4)

100
200

RETURN,
END

BEAM MOMENW *+7} .

STRESSES AT ELEHMENT CENTROIDS }
MBER 21577/
GMA LX) »TXe BHSIGHA (YD,

INTERNAL FORCES IN COLUMNS AND BEAWS )
*, IS/77
XIAL F.  COL. SKEAR COL: MOMENT.

BHSTIGHACY) o 7X«BHSIGHMA LYY,



L o - .7 " 305

SUBRDUTINE FORCE 73,172 CPT=1 . FTN LeBe4bs O L7

1 ' : SUBROUTINé FORCECSIG ITsJUsMa JSTRS, TT 48K, SH, 12}

““‘l‘ll...‘Il"..'l.‘-‘ll -J.lﬁﬂlﬂl.-l!.'l'l.‘ll (YT Y YY YT VYT T
- .

® .° THIS SUBROUTINE EVALUATES INTERN AL FOPCES IN
- BEAMS AND COLUMNS

5
.o .
Lo R TR YY) .lll"“.‘l‘...‘Cl."l‘l‘“"..-“‘--.Il‘-".l‘.#l L

r
OO0 [y R=] QOO0 00O0000

L I BN B

-
' ~ . . ’ . ¢

OIMENSION SIG(3}

10

oY . ?

IF(IZ.EQ.0) GO TO 10

15 . : :
EVALUATE BEAM INTERNAL FORCES ~ . A :

SFaSIG{3)*TT+SH
. . BM=SF*8KH/ 2,
20 . PRINT 100+ N.II-JJ.SF.BH
G0 TO 999 . S
10 LONTINUE © . .
c R - . T . . . )
C EVALUATE COLUMN INTERNAL FGRCES ’ . ' ' /
25 c ‘ ] . . .
) IF‘(JJ-EQ.i’.OR-(JJ-EQ-JSTRS'l GO To 20
AF=SIG(2)..*TT*aH -
SF=SIG{3)*TT*EH
.60 TO 30 .
30 20 CONTINUE )
. AF=SIG(2)*TT*nH/2,
SF=SIG(3!‘TT‘8HIZ.
30 CONTINUE
BH=SF*SH/2.
35 PRINT 200¢ My IIyJJeAF.,SFBM
939 CONTINUE ° .
- 100 FORMATIL 3IS +47%92(4XeE10.3))
200 FORMATC 3I5 54XsE2333+2(4%,F10.3))
RETURN
40 END






