I* National Library Bibliothéque nationale

of Canada du Canada

Youn Bie Votre réfdon e

Our e Notre reforemce

Acquisitions and Direction des acquiisitions et
Biblhographic Services Branch des services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa, Ontano Ottawa (Ontano)
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1570, c¢. C-30, and
subsequent amendments.

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec I'université
qui a conféré le grade.

La qualité d'impression de
certaines pagus peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielie,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

An Extended Relational Model
for
Managing Uncertain Information

Joseph Nassif Said

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University
Montréal, Québec, Canada

April 15, 1994
(©Joseph Nassif Said, 1994

l * . National Library
of Canada
Acquisitions and
Bibliographic Services Branch
395 Wellington Street

Ottawa, Onlario
K1A ON4

Bibliothéque nationale

duC a

Direction des acquisitions et
des services bibliographiques

385, rue Wellington
QOttawa (Ontario)
K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL

LIBRARY OF CANADA TO

REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS

AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER

PERMISSION.

Canadi

Youwr file Voire rélérence

Owr e Notre sélérence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-97657-8

ABSTRACT

An Extended Relational Model
for

Managing Uncertain Information

Joseph Nassif Said

Representing uncertain information in datubase systems could have two approaches:
a quantitative approach and a qualitative approach. In the quantitative approach a
factor is associated with the information stored in the database representing its “de-
gree of validity” (certainty, reliability, confidence, etc.). In the qualitative approach
we track the sources of information by associating source vectors to the information
stored into the database. In our new framework, we will consider the qualitative
approach to manage uncertain information and we will extend the concept of The
Information Source Tracking Method introduced by Sadri. To achieve this goal, we
seek a correct semantics for the uncertain database model and correct methods to
manipulate the uncertain information to provide the users with answers to queries
given to such systems as well as the contributing sources and their roles with respect
to each answer.

The Information Source Tracking Method (IST) allows every information source
(observer) to contribute to the whole tuple in the extended relations. The goal in our
new approach is to allow the information sources to contribute to any attribute value

of any tuple or to the whole tuple in the extended relations.

i

Acknowledgement

This thesis would have been impossible without the encouragement and support
of My two supervisors Dr. F. Sadri and Dr. V. S. Alagar. I would like to thank them
for their helpful discussion and guidance during this work.

I wish to acknowledge the support and help of the SOFTEKS Reasearch Group
since the implementation of this thesis was carried out in the SOFTEKS Rescarch
Laboratory at Concordia University. Moreover, I would like to point out that the
thecretical model in this thesis is an out growth of a term paper presented to Dr. V.
S. Lakshmanan in connection with the course COMP 659 - Introduction to Knowledge
Base Systems (Fall 1993).

I’d like to thank my parents, my father Nassif, my mother Salma, and my beautiful
sister Sandra for always believing in me and encouraging me to achieve high goals. A
very special thanks to my brother Fady for many great discussions and for providing
me a place in his great heart and in his great soul and mind.

iv

Dedication

This thesis is dedicated
to
My Father
Nassif
My Mother
Salma
My Brother
Fady
and
My Sister

Sandra

Contents

1 Introduction

1.1 TheProblemt iiniennn.
2 A Survey of Similar Works and Their Relationship to This Work
2.1 Quantitative Approach (van Emden)
2.1.1 Syntax of the Language

2.1.2 Semanticsl e
213 Soundness e e e

2.2 Annotated Logic Programs
2.2.1 Syntax of the Language
222 SUMMATY . ¢ v v v e e e e e e e e e e

2.3 Quantitative Logic Precgramming
2.3.1 Syntax of the Language
2.3.2 Interpretationsand Models.
2.3.3 The Fixpoint Semantics
2.3.4 Semantics of Conflicting Evidences and Negation
235 Summary e e e e

2.4 Probabilistic Data Model (PDM)
2.4.1 Probabilistic Relational Algebra
2.4.2 Semantics for Probabilistic Relations
2.4.3 Relational Algebra Operationsfor PDM
244 LossyOperations,
2.4.5 Decomposing Relations

vi

16
22
23
24

246 NewOperators
247 SUMMmMALY . . . v o i e e e e e e e e e e
2.5 The Information Source Tracking Model (IST)
2.5.1 Information Source Vectors
2.5.2 Source Vector Operationsc0ov....
2.5.3 Extended Relational Algebra Operations for IST.
2.54 Reliability Calculation
2.5.5 Reliability Calculation Algorithms
2.5.6 Semanticsfor IST
2.5.7 Probabilistic Approach
258 Summary . .. 0.t e e e e e e e e e e e
2.6 IST-based Deductive Approach
2.6.1 Uncertain Database
2.6.2 Minimal Model Fixed Point
2.6.3 Immediate Consequence Operator Tp and its Fixedpoint . . .
2.6.4 Top-Down and Bottom-Up Evaluation
2.6.5 Incorporating Negation
2.6.6 Stratified Uncertain Databases.
2.6.7 Summary e e e e e e e e e

3 The Model and The Extended Relational Algebra Operations

31 OurNewModel
3.2 Information source vectorso e i e e e
3.3 Extended Relational Algebra Operations
3.3.1 Extended Selection (o').
3.3.2 Extended Projection (IT')
333 ExtendedUnion (U')
3.3.4 Extended Cartesian Product (x')
335 Extendeddoin (™)
3.3.6 [Extended Intersection (')

vii

3.3.7 Extended Set Difference (-')

4 Semantics and Correctness of Operations

4.1 Alternate Worlds Model
4.2 Extended Relational Algebra Operations are Precise.
4.2.1 Extended Selection is Precise

4.2.2 Extended Projection is Precise
4.2.3 Extended Union is Precise
4.24 Extended Cartesian Product is Precise

oooooooooooooooooo

425 Extended JoinisPrecise
4.2.6 Extended IntersectionisPrecise
4.2.7 Extended Set Differenceis Precise

5 Reliability Calculation Algorithms

5.1 Reliability Calculation
5.1.1 Reliability Calculation Algorithms.
5.2 Probabilistic Approach (Proof of Correctness)
5.2.1 Reliability Calculation Algorithms.
Implementation
6.1 Introduction 0,
6.2 Environment and Tools Needed
6.2.1 The Intelligent Database (INGRES).
6.22 Embedded SQL (ESQL)
6.23 UIM/X e e
6.3 System Architecture o 0o,
6.4 Subsystemsand Models
6.4.1 The User Interface
642 TheSubprocess
6.5 Capabilities of the Prototype

viii

7 Conclusion and Future Directions 129
71 ISTandQurNewModel 129
7.2 Conclusion and Future Work 131

8 Appendix 135
8.1 UserInterfacecode 135
82 Includefiles e e 173
83 ESQLcode i i ittt 174
84 Makefiles. i i e e e 236

ix

List of Figures

2.1

6.1
6.2
6.3
6.4
6.5
6.6

Ordering of truth values in 7. 7
The Uncertain Database Management System. 119
System Architecture. o oo 121
Subprocess Architecture. o o L 124
Reliability of Multiple Source vectors Supporting The Same Evidence. 125
Our Model and IST model (in this case they are the equivalent). . . . 127
Our Model and the Regular Relational Model (in this case they are

equivalent). e e 128

Chapter 1

Introductioi

Description of the problem, its significance,
the novelty of the approach, and thesis organization.

1.1 The Problem

Information in a relational database system could come from different sources, where
every source has a certain reliability associated with it. In this context, the IST
model proposed by Sadri [18, 19, 20, 21] assumes that the information is confirmed
by information sources (observers). The reliability of the information provided by
these sources is based on the reliability of the contributing sources of information.
Each tuple in an extended relation is associated with an information source vector(s)
indicating the contributing sources to every tuple. Answers to queries identify the
sources contributing to the answer as well as their nature of contribution. Reliability
calculation algorithms (18, 19] could be used to calculate the reliability of the answers
presented to the query.

Recently, there has been a great deal of interest in implementing the IST method
in several strategic areas of importance such as defense and medicine. In such sys-
tems, observers might not contribute to a whole tuple stored in an extended relation;
however, an observer might contribute to some attribute values that constitute part of
that tuple. In this context (IST approach), the observer will contribute to the whole

tuple provided to the uncertain database instead of contributing to the individual

attribute values that constitute that tuple. For this reason, we are in need for a new
model that gives the observers the flexibility to contribute to any attribute value of
any tuple in the extended relations.

An extended relational model is proposed in which each attribute value of each
tuple in an extended relation is associated with an information source vector showing
the sources (observers) that contribute to that attribute. Moreover, each tuple in
an extended relation is associated with an information source vector showing the
contributing sources and indicating the condition under which each tuple exists in
an extended relation. We will discuss how the relational algebra operations can be
extended and implemented using information source vectors to trace the information
source(s) that corresponds to each attribute/tuple in the answer to a query provided to
the extended relational model. This helps us to identify the contributing information
source(s) to each attribute/tuple in the answer to a query. The reliability of answers
to queries could be calculated based on the reliability of the information sources that
contributed to the information stored in the extended relational database model.
The reliability calculation algorithms were introduced by Sadri [18, 19} and were
proven to be correct. In our work, we will not discuss how to give reliabilities to the
contributing information sources; however, we assume that information sources have
predefined reliabilities so that we can calculate the reliability of answers to user’s
queries.

The rest of this thesis is organized as follows. Chapter 2 introduces a survey of
similar works in the same area and highlights two active research areas: Qualitative
and Quantitative. Chapter 3 introduces our new formal model and defines the ex-
tended relational algebra operations Selection, Projection, Union, Cartesian Product,
Join, Intersection, and Set Difference. Chapter 4 presents the semantics of our model
and proves that the extended relational algebra operations are “precise” (correct).
Chapter 5 introduces and proves the reliability calculation algorithms that calculate
the reliability of answers to users queries. Chapter 6 discusses implementation issues
of our framework and presents a prototype that implements the new model. Chapter

7 presents the conclusion and our future research directions.

Chapter 2

A Survey of Similar Works and
Their Relationship to This Work

Review of some other approaches for uncertainty
such as “Quantitative Approach” (van Emden), “Annotated Logic Pro-
grams”, (Subrahmanian), “Quantitative Logic Programs” (Kifer and Li),
“The Management of Probabilistic Data” , (D. Barbare, H. Garcia-
Molina, and D. Porter), “Information Source Tracking (IST)” (Sadri),
and “IST-Based Deductive Database” (Lakshmanan and Sadri) and a
comparison study to Our model.

2.1 Quantitative Approach (van Emden)

van Emden [26] developed a framework for quantitative deduction based on positive
Horn clauses. In this context, instead of associating the usual truth values {0,1}
with a rule, an entire continuum of “uncertainties” will be used, where each clause
receives a numerical attenuation factor from the interval [0, 1]. In other words. in the
new extended model, each element in [0, 1] is viewed as a degree of belief, a certainty
value, or a confidence factor. Moreover, Herbrand interpretations that are subsets
of the Herbrand base are generalized to fuzzy subsets. On the semantic level, van
Emden proved that the result of the fixed point method in this quantitative approach

is an extension of that in the conventional model.

2.1.1 Syntax of the Language

In the quantitative approach, a rule is of the form:
J
A +— Bl, co ey Bﬂ

where A, B,,..., B, are first order logical formulas, and n > 0.
The attenuation factor f of a rule is associated with the implication itself rather
than with the components A, By,...,B,. The purpose behind attaching a factor f

to each implication “ « ”

indicates the existence of uncertainty in the propagation
of the truth values from the conditions, described as the rule body, B,,..., B,, to
the conclusion A presented in the head of the rule. Such a rule is called Quantitative
rule.

In the new framework, the factor f associated with each quantitative rule in a
given program (viewed as a set of annotated rules) is equal to a real value in (0, 1].
As in the conventional case, an attenuation factor f = 0 is associated with each rule
not present in the program. In [26], the propagation of truth values from the body
to the head of each rule is defined as follows. The truth value assigned to the head A
of a quantitative rule with factor f is f x m, where m is the minimuin of the truth
values of the atoms in the rule body. In the case where the rule body is empty, m is
defined to be 1.

Programs written in van Emden’s language are called rule sets. A ruleset R is a
finite set of quantitative rules. As in the conventional case, a Herbrand interpretation
I for arule R is a fuzzy subset! of the Herbrand base Bg of R, i.e., I : By — [0,1].
In other words, if A is a ground atom that appears in the head of a quantitative rule,
then The interpretation of A denoted as I{A) is the value of the membership function
I at the argument A. The value I(A) can be regarded as the minimum certainty with

which A, being the head of the quantitative rule, is known to be true.

1A fuzzy subset S of a set U is a set where each element X € U is associated with a value ugs(z),
where ps(z) indicates the degree or the level of the membership of z in S. The function ps : U — M
is called a membership function, where M is a totally ordered set [9, 28]. In van Emden’s language
M is extended to be M = [0,1]. Note that when M = {0,1}, the “fuzzy subset” becomes as an
“ordinary subset”.

As aresult of extending the truth values from {0,1} to [0,1] the notion of “impli-

cations” and “interpretations” should be generalized in the new model.
Definition 1 Let R be a rule, and let 7 be an interpretation.
1. Ristrue in [if and only if every rulein R is true in I.
2. A rule is true in 7 if and only if every one of its ground instances is true in I.

3. Agound instance A & B,,..., B, of a rule is true in I if and only if I(4) >
f xm, where m is equal to min{I(B),...,1(By)}. If che rule body is empty,
then definem = 1.

Note that the above definition reduces to the qualitative case if for all rules in R
we have f = 1, and I(A) € {0,1}, VA € B

2.1.2 Semantics

A Herbrand model of a rule R is a Herbrand interpretation 7 in which R is true. For
all rule sets R, YA € Bg, and Vf € (0,1] we have that R |= {A <—l—} if and only if A
is true in every Herbrand model of R.

In the qualitative case, the classical result that the intersection of all Herbrand
models is also a model, is extended by Emden. In [26], this definition is extended
as follows. If Mp is a set of all Herbrand models of a rule set R and S is a family
of Herbrand interpretations for R, then NS is an interpretation for R such that V
A € Bp, it assigns the value inf{S'(A) | &' € S}, where inf is the greatest lower
bound?. It was shown in [26] that the value assigned to each element A € Bp in the
least model NMp is sup{f | R |= {A ‘f—}}, where sup is the least upper bound.

In the interval [0, 1], from which an attenuation factor is used, an ordering “ <7,
defined on real numbers, could be defined. As a direct consequence of this, it is
obvious that a partial order could be defined among the interpretations as follows. If
Hpg is aset of all Herbrand interpretations for a rule set R and I; and I, are elements
in Hp. Then I, C I, if and only if (VA € Bg), 1(A) < I(A).

3This definition is adopted from a rule for “intersection” for fuzzy sets [28].

5

Associated with each program Ris an operator Tg : Hp — HRp, such that Tg(/)(A)
is defined to be:

sup{f x min{I(By),...,1(Bn)} | A L B,,...,B, is a ground instance of a rule
in R}.
Note that min® = 1. In [26], it was proven that Tgr is monotonic and continuous.
Moreover, in [26] when no functions symbols are not allowed, it was shown that for

any finite set of rules, and for all A € Bgp,
NMg(A) = Tr"(0)(A)

for some integer number n, where Mp is the set of all Herbrand models of a program
R, and @ : Bp — {0}. This shows that the truth value of an atom A in the least
model of a program R can be obtained in a finite number of iterations of the Tx

operalor.

2.1.3 Soundness

As for the soundness results of rule sets van Emden [26] pointed out that the proof
should be viewed as a two-person game. In this approach, the value of the game
turns out to be the truth value of the atomic formulas to be proved, evaluated in the
minimal fixpoint of the rule set. Moreover, The analog of the PROLOG interpreter
for quantitative deduction becomes a search of the game tree using the alpha-beta
heuristic known in game theory. In other words, for every rule set R with a finite
and/or tree T(R, A) and every A € Bp, the value of the root in the tree is not greater
than Mp(A), where Mg(A) is the value of A in the least model of R.

Formally, for every rule set R with a finite and/or trec and for every A € Bp,
the value of the root in the and/or tree T(R, A) is at least Mgp(A). This theorem

indicates that the proof procedure works when the following conditions are true:

o the and/or tree associated with R is finite

e the query G is ground, i.e., G € Bg.

Figure 2.1: Ordering of truth values in 7.

In van Emden’s work we realize a clear connection to fuzzy logic, resulting in what
he called as the “fuzzy” logic “programming”. van Emden pointed out that when the
existing framework is generalized, in the sense that a weight is assigned for each atom

in a rule body, the corresponding results hold true.

2.2 Annotated Logic Programs

The notion of annotated programs was introduced in [24] to extend van Emden’s
approach [26] since, according to [24], there are two problems in the quantitative
approach introduced by van Emden in [26]. The first problem is that negation in the
rule bodies and rule heads is not allowed in the quantitative approach. Subrahmanian
[24] proposed what he called the annotated logic, where negated atoms are allowed to
appear in a rule head as well as in the rule body. The second problem observed by
Subrahmanian {24] is the total ordering of truth values [0, 1]. As a solution, annotated
logic used the truth values illustrated in Figure 2.1. 7 = [0,1] U {T} on which the

ordering < is defined as follows:
o forallz € T, wehave z € T and 0.5 € z;
o forallz,y€ T,if z,y € [0,0.5) and z < y, then y < z;

o forallz,ye T,if z,y € (0.5,1] and = < y, then z K y.

The value 0.5 represents the least information (i.e., unknown, undefined, or under-
specified), while T denotes contradiction or over-specified. The values 0 and 1 are

false and true, in the conventional sense.

2.2.1 Syntax of the Language

The syntax of the language is quickly reviewed next. A : o is an annotated literal
(atom), where A is a literal (atom) and @ € [0,1). a is called the annotation of
A. The result of applying a substitution # to an annotated literal A : a is A6. A

quantitative clause (q-clause, for short) is defined as:
Ag:ag— Ay aq,..., Ay ay,

where Ao is an atom, Ay, ..., A, are literals, and ao, ..., ay, are all in [0, 1].

A quantitative logic program (QLP) is a finite set of q-clauses. We refer to a QLP
Q as a program Q.

If Q is a program, and Bg is its Herbrand base. An interpretation / for Q is
defined as a function from By to the truth values in 7. In other words, to each
ground atom in Bg, I assigns a truth value in 7.

Let us give an example. Consider the QLP @, shown below:

p(a) — 1

p(a) «~ 0.0001

The truth values assigned to p(a) in the least model of @, is a value from 7. Assume
that each rule in @, is provided by an observer or an expert. Thus, the first expert
says that p(a) is true, giving p(a) an annotation of 100%, while the observer assumes
that p(a) is almost false, giving p(a) an annotation of 0.0001%. In this case, Q; con-
tains contradictory information about p(a). To model such contradictory situations,
the truth value T is introduced in 7, giving a result, based on the ordering in T,
{ub{1,0.0001} = T.

A generalization of quantitative rules [26] is viewed as follows. Associated with
each rule is a computable function g, called certainty function, whose range is in (0,1].

In this case, the quantitative rule
J
A& By,...,B,

In van Emden’s language [26], where the certainty of B; is k; € [0,1], could be

expressed as a generalized annotation rule:
A:rxglkry... kn) «: By kyy..., Byt kn.

where g = min.

2.2.2 Summary

In a q-clause, each component of an implication has a truth value associated with
it; however, in [26] van Emden defined the rule sets where an attenuation factor

is attached to the * « 7

To compare the two approaches, note that the truth
assignment in the latter is more intuitive, since it is conceivable that it deals with
uncertainty rules. However, the former is close to tke framework of standard logic,
since the meaning of “implication” is unchanged.

In some situations we observe that the choice of T as the truth values and their or-
dering structure, as represented in Figure 2.1, is not applicable for some applications.
Such a problem implies that the semantics is not capable to capture such situaticns.
For instance, if p is known with a high degree of certainty and at the same time p
is known with a low degree of certainty then according to [24], this should result in
a contradiction -an unhkely course of action in most problem domains like medicine
and military. We will see later in section 2.3 Kifer and Li proposed a different solution

based on what they called support logic [10].
To illustrate, let us consider the following QLP ¢,.

Students(12345, Mike) : 1
Students(12345, Mike) : 0.49 «—

9

We assume that the predicate Students records a name for each student Id. We record
such information in a database where each fact comes from an observer or expert. In
this example, an expert states that he is 100% sure that “Mike”, a student, has an
Id number of 12345. However, another expert states that he is 49% sure that “Mikc”
has an Id number of 12345. If we observe this fact clearly, we realize that the QLP
program, based on the ordering presented in T, gives in the least model the following

answer:
Students(12345, Mike) : lub{1,0.49},

where [ub{1,0.49} = T. The least model of QLP informs us that the fact that “Mike”
has an Id number 12345 is considered as contradiction, which is counterintuitive.
Moreover, we observe that the semantics of the QLP does not take into consideration
the possibility that the observer who gave us the information Students(12345, Mike) :
1 « might be 100% knowledgable or reliable, while the observer who gave us the in-
formation Students(12345, Mike) : 0.49 «— might be 0.0001% reliable. In this case,
we obtain in the least model the fact Students(12345, Mike) : T. Such situations
could arise in medicine, military, and many other applications that collect data ob-
tained from various observers and serves the users by answering their queries based
on the semantics of QLP, in which case such answers (as the one presented in the
previous example) should be tolerated.

Kifer and Li in [10], extended annotations to allow variables and function symbols
in the language. Semantics of programs in the extended annotated programs is care-
fully studied. As to the certainty function such as g = min in the previous example,
they defined several properties that a certainty function should have.

In the next section we will present the framework introduced by Kifer and Li in

[10].

2.3 Quantitative Logic Programming

Kifer and Li in [10] presented a formal semantics for rule-based systems with uncer-

tainty called “quantitative logic programming”. They provided a rigorous treatment

10

of the issue of evidential independence, and its impact on the semantics. Negation
and conflicting evidence based on, the so called, support logic is given in the last part

of their work.

2.3.1 Syntax of the Language

Literals are of the form p: o, where p is a literal in the usual predicate calculus , and
o is the certainty information (certainty term for short) about p. The usual first order
literals are called the d— literals. D-literals are of the form p(z,y,...) or -p(z,y,...),
where p is a predicate symbol and z,y,... are variables or constants. In such literals,
function symbols are not allowed. Ground d-literals will be called d-facts.

A finite collection of interpreted certainty functions is also assumed. A k-ary
certainty function maps [0, 1}* into [0,1]. Certainty terms are built in a usual way
using these functions, certainty variables, and certainty constants which will be taken
from the domain of real numbers in the interval [0,1].

Definitely true facts are d-literals annotated with certainty 1. A fact with certainty
value 0 has no supporting evidence whatsoever. Certainty values between 0 and 1
mean that there is some inconclusive evidence that the fact, to which the certainty
value is associated, is true. Note that this does not imply anything about the falsehood
of the fact. Dealing with negative information, and representing falsehood of facts
was discussed in support logic by Kifer and Li.

A Horn rule is a statement of the form:
P0G — q1:01,...,4n " On,

where p, ¢, and g, are positive literals, and 0y, 0,,...,0, are certainty terms. Vari-
ables that appear in the head of the rule (including certainty variables) also appear
in the body of that rule. In their work [10], Kifer and Li, assumed that rules are of

the form:

p:fla By) = qmia,q2iBynqnt s

where a, §,...,v are certainty variables or constants and f is a certainty function

associated with this rule.

11

An uncertain database is a collection of Horn rules P and a set of facts, D. Keeping
with the database tradition P is called the intentior. il database (IDB) and D is called
the eztentional database (EDB).

A certainty function associated with a rule is a measure of strength of the causality
link between the rule premises and the consequent. Certainty functions have the

following restrictions:

e Monotonicity: which means that the higher certainty of premises should yield
a higher certainty of the consequent. Formally, f(z1,...,2,) < f(y1,...,¥0) if

z;<yifori=1,...,n.

e Boundedness: Thi= states that conclusion of a rule can be only as good as its

premises. Formally, f(xy,...,2,) < xifori=1,...,n.

o Continuity: f is continues w.r.t. to all of its arguments. As pointed out in [10],
this technical assumption is needed in order to ensure the agreement between

the model-theoretic and the fixpoint semantics introduced later.

Since an evidence could be supported by different (dependent or independent,)
sources in an uncertain databases, then strengths of such evidences are combined
to determine the strength of the overall support for the same fact. Combination
function could be different in different problem domains and for different types of
facts. Moreover, the order in which facts are combined is not significant in some
problem domains.

With a predicate symbol, p, there is a unique combination function used to cal-
culate strength of combined evidences for p. Combination functions accept a single
multi-valued® argument, which implies that the combined strength of evidences for the
fact is independent from the order in which these evidences are obtained. Note that it
could be argued that it should not be that way, i.e., evidences obtained prior to some
other evidences may increase the significance of the latter evidences [8]. Combinction

functions should have the following properties:

3which could have many occurrences of the same element.

12

o Commulativity.

® Monotonicity: to ensure that stronger evidences yield stronger overall support
for a fact. Formally, S < S’ implies F(S) < F(S'). The order on the multisets
is defined in the usual way: S < S’ if there is a 1 — 1 mapping f from S into S’
s.t. for every s € S, 3 < f(s).

e Associativity: to ensure that there is no need to wait until all evidences for
that fact are obtained to calculate the overall strength of the fact. Formally,
F(5US') = F(SUF(S")). HereU is a union of multisets which retains duplicate

occurrences of the same element.

o No Information Rule: to ensure that a non-evidence cannot change the overall

support of a certain fact. Formally, F(SU {0}) = F(S).

o Correctness: This means that the combined support provided by a single evi-

dence is exactly as strong as the evidence itself. Formally, F({a}) = c.

e Continuity: F is continuous w.r.t. > on multisets. Continuity of of combination

functions is needed for the same reason as in the case of certainty functions.

2.3.2 Interpretations and Models

Although general interpretations can be used, Kifer and Li considered Herbrand inter-
pretation. Given an uncertain database £ = PU D, the domain Dg of any Herbrand
interpretation is a collection of constants mentioned in E. The Herbrand base of E
is a collection of all ground facts of the form p(a;,...,a,) : a, where p is a n-ary
predicate symbol in P, a;s all belong to Dg, and a € [0,1] is a certainty factor of
play,...,an). A Herbrand interpretation I of E is a subset of the Herbrand base of
E. Assume that for every d-fact there is at most one fact p:a € I. lf p: a ¢ I for
all @ > 0 then we assume that p: 0 ¢ I.

13

If I is an interpretation and p(ay,...,ax) : a is a fact, then p(ay,...,ax) : a is
true under I whenever p(a;,...,ax) is known with a higher certainty, 4. Formally,
p(e1,...,ax): a is true under [if there is p(ay,...,a,) : § € I such that g > a.

A ground rule p(d@): f(ay,...,ax) « q1(€1) : oq,...,q{€k) : aiis truein I if and
only if whenever all the ¢i(€;) : a; are true in I, the head of rule, p(@) : f(a1,...,a,)
is also true. A (nonground) rule is true in I if and only if all its ground instances
are true. In this framework, ground rules are used as evidences to the facts in their
heads. We say that the above rule supports p(@) : f(ay,...,ax) in I if all its literals
(head and body) are true in I. We will also refer to such rules as evidences.

A program, P, is true if all its rules are true, and in addition, the following
combination requirement is satisfied:

For every set of independent (explained later) ground instances of the rules of P

with the same head d-literal

P(fl‘) . fl(alla- --,ﬂk,l) — Qu(e-ﬁ) H45) P -anll(eI;l) C Ok

P(a) : fm(alma .. 'aaklm) A qlm(el-.m) ‘Q1my ... »lem(ek-;m) P Qym

such that each individual rule supports its head literal in /, the literal

p(@): B({filen, - ak1)s - ooy fm(@imy oy ckym)})

should be true in I. This will ensure that independently obtained evidences for the
same fact are combined to obtain a possibly stronger evidence.

An unusual consequence of this definition is that although each individual rule
might be irue, the program might not be true, the program itself might not be
satisfied by the interpretation, because some of the facts may not be known with
sufficient certainty to satisfy the combination requirement (since F(S) > a for any
combination function F and for each a € S).

Supporting evidences should be independent so that they could be combined to-

gether. Kifer and Li introduced two kinds of evidential independence.

14

o Independence-1: A pair of ground rulesp:a «—¢q : fi,...,qn : frand p: vy «
r1:61,...,7m : 6m provide independent evidences for the fact p if and only if

the sets of gruund atoms {q,...,¢.} and {ry,...,rn} are different.

o Independence-2: A pair of ground rulesp:a « ¢ : B1,...,0, : fnand p: vy «
ry:6y,..., m : 6 provide independent evidences for p if and only if the sets of

{q1,...,qn} and {r1,...,rm} are incomparable w.r.t. C.

I is a model of E = P U D if and only if P and each fact in D are true in 1. We
also write F | p(ay,...,a,): a if p(a1,...,a,) : & is true in every model of E. A
pariial order on the interpretatiors is defined as follows: I C J if and only if for every
p(a,...,a;) : a € I there is p(b1,...,b,) : B such that o < B. Clearly, I = J if and
onlyif /CJand JCI.

Intersection of a collection of interpretations, {/x}xek, is the interpretation:

n ={p:ala= mf(ak) where p : ax € Ii, for all k € K}.
Similarly, the unzon of the above collectnon of interpretations is defined to be
kéJl\- ={p:ala= 22}3(0")’ where p: ax € Iy, for all k € K}.
In this context, I{ifer and Li, pointed out that it could be shown that the intersection
of any number of models of E = PU D is also a model. Therefore, E has a least

model, which is called the intended model of E.

2.3.3 The Fixpoint Semai:tics

The immediate consequence operator Tg of E is another interpretation of E, where I
is an interpretation of E, defined as follows. Let a(g) be an arbitrary d-fact. If a(qg)
is a base predicate then a(q) : « € Tg(I) if and only if a(¢) : @ € D. if a(q) is a
derived predicate then and for no certainty a > 0, a(g) : a is supported by a rule in
P, then a(q) : 0 is in Tp(I). Otherwise, suppose that a(q) : a is supported for some
a > 0. Consider any sev of independent ground rules of P defining a(g) whose bodies
are true in I a(q§) : Bi — body,,...,a(q) : Br + body,. Then a(g) : v is in Tg(I),

where

15

T= mﬂd.’L‘{Fa({ﬂla . wﬂk})}a

and maz ranges over the collection of all multisets of certainty factors 8 = {8, ..., i}
produced by all possible independent ground rules defined before.

The definition of the Tg operator is somewhat more involved than that defined by
van Emden [26] because with general combination functions it is possible that F'(S) >
max(S). In this case, one should be careful not to combine dependent evidences. In
contrast, in [23, 26, 24] F(S) = max(S), in which case evidence independence does

not have any significance.

Lemma 1 The immediate consequence operator T is monotonic, i.e. I C J implies

Tg(I) € Te(J), and continuous, i.e. for any monotonically increasing sequence of
interpretations Iy C I, C I; C... C Te(ul;) = uTe(1,).
3]

Theorem 1 Th least fix point of 7% is equal to yT£' (@) * , where @ is the inter-

2
pretation in which every fact is assigned certainty 0.

Theorem 2 The least fixed point of Tg is the least (w.r.t C) model of E. in other

words, the least fixed point of T coincides with the intended model of E.

2.3.4 Semantics of Conilicting Evidences and Negation

To allow negative literals to appear in rule premises as well as rule consequences, Kifer
and Li in [10} extended the framework introduced in section 2.3.1 . When dealing
with incomplete knowledge, the latter is particularly useful, where different evidences
may contradict one another. Support logic is used to cope with such situations. In
support logic, each fact, p, has a measure of belief, M B, or certainty, and a measure
of disbelief, MD, viewed as the measure of the belief in ~p. Thus, each fact, p, is

assigned an interval [low, high), meaning that the strength of belief in p is somewhere

ATE%(I) = I and Te"(I) = T (I)(Te(l)) for n > 0.

16

between the value low and the value kigh. The difference high — low is the knowledge
gap about p.

In support logic, literals are of the form p : [a,] or —p : [a, 8], where p is a
d-literal, and a, f are certainty terms. A negative literal, -p : [a, 3], should be
perceived as (—p) : [a,] rather than —(p : [a, #]), which will be clear from their

semantics. Rules are as in secticn 2.3.2, except for the following difference:

e Certainty terms are replaced by intervals of certainty terms.

o Negative literals can appear in rule bodies as well as their heads.

Certainty intervals are ordered according to <*. Given two certainty intervals
[a, 8] and [v, 6] the partial ordering on these two intervals is defined as: [a, 8] <*
[v, 6] if and only if [, 6] C [a, B]. The intuition behind this definition is that a bigger
(w.r.t. <P) certainty interval means that stronger positive and negative evidences are
available for the associated fact. The domain of all certainty intervals is augmented
by adding the element T that represents all inconsistent intervals, i.e., intervals [a, 5]
such that a > f. Thus, [y,6] <¢ T. Interval [0, 1] is, obviously, the smallest certainty
interval. Certainty intervals form a complete lattice: glb (greatest lower bound) of a
set of intervals is the smallest (w.r.t. C) interval containing each of the intervals in
the set. The least upper bound, lub, of that collection is the largest interval contained
in cach of the intervals in the set, if it exists; it is T, otherwise. This partial order can
be naturally extended to literals so that for the same d-literal p, p : [a, 8] <* p: [v, 6]
if and only if [a, 8] <* [v,6]. Moreover, p: [a,8] <* p: [y, 6] if [a, 8] <7 [v,6], but
[, 8] # [7,9)

Given that E = PU D, the Herbrand base of E is now a collection of all positive
ground facts p(d@) : [a, B], where [a, B] is a certainty interval (orT), p is a predicate
symbol from P, and & is a vector of values from the domain Dg. A fact p: T is
called an inconsistent fact. Interpretations are as before, subsets of the Herbrand
base. Without loss of generality every d-fact, p, may appear in I in conjunction

with at most one certainty interval. For convenience, if p does not appear in I and no

17

certainty interval is associated with it, then p : [0, 1] € I, meaning that no information
is available about p and -p (i.e., the truth of p and —p is undefined). Intervals [0,0)
and [1,1] represent the usual false and true, respectively.

If I is an interpretation, then a ground positive fact, p : [a, 8], is true in I, if there
is p : [, 6] € I such that [a,8] <r [y,8]. A negative fact, =p : [a, §], is true in [if
and only if p: [1 — 3,1 — o] is true in I.

Certainty (resp. combination) functions now map sequences (resp. multisets) of
intervals (including T) into the set of all certainty intervals plus T.

The partial order on interpretations and other definitions carry over from Sec-
tion 2.3.2 without much change. Let I and J be a pair of interpretations of E
We write I C J if and only if for every positive fact p : [a, 8] € I there is a fact
?: 17, 6] € I such that [e, 8] <* [4,8]. The notions of intersection and union of inter-
pretations carry over directly with the exception that < replaces the usual ordering
on real numbers in the interval [0, 1] which was used in Section 2.3.2.

It is now easy to see that the framework of Section 2.3.2 is a special case of support
logic once we replace each literal p : o of Section 2.3.2 by a support logic literal of
the form p: [a, 1].

Because of negative information (either in the form of negative literals, or as
disbelief measures), defining model-theoretic semantic is much more involved than it,
was in Section 2.3.2. Non-Horn programs may have no unique least model, which is
the same case as in Logic Programming. Instead, Non-Horn programs usually have
several minimal models, and it is not always clear which one should be preferred.
Kifer and Li handled this situation by developing a theory of stratified programs in
the framework of support logic.

To develop a theory of stratified programs in the framework of support logic an
additional point should be considered, though. The semantics of {1] is a manifestation
of the so called, closed world assumption (CWA), in which a fact is assumed false
unless there is an evidence to prove that this fact is true. However, negation is
already present in the current framework in the form of disbelief factors, and we do

not always want to deduce a negative conclusion whenever there is a knowledge gap

18

about some fact. Namely, if say, p(a) : [0.4,0.8], is known then as an answer to
the query p(a) : [a,8])? we expect the answer p(a) : [0.4,0.8], not p(e) : [0.4,0.4],
as CWA would suggest. As in Logic Programming, Kifer and Li took the position
that the intent of deducing a negative conclusion should be explicitly stated in the
rule. For this, Kifer and Li viewed some negative body literals as such an explicit
declaration, which is, again, consistent with the approach taken in logic programming
and deductive databases.

Thus, (OWA) will, sometimes (not always), be used to treat some negative in-
formation either in the form of disbelief measure of positive literals or in the form
of negative head literals. However, in some other situations the CWA assumption
should be used to treat some specially annotated negative body literals. Treating
negative literals using CWA has the following consequence. Suppose p : [0.2,0.6] € E.
Then the answer to the query p : [a, 3]?7 would be p : [0.2,0.6], while the answer to
p:{l—a,1—p]7is p:[02,0.2], even though the literals in these two queries are
logically equivalent.® This effect is not a shortcoming of the proposed semantics, but
merely a manifestation of different meanings attached to these queries.

It was argued that not all models capture equally well the causality aspect hidden
in the syntactic structure of logic rules [16]. The appropriate semantics is given by
the, so called, perfect models [16]. Kifer and Li extended this notion to accommodate
uncertainty.

With the purpose of providing a suitable model-theoretic semantic, Kifer and Li
assumed that, in the program, certain occurrences (not necessary all) of negative body
literals are specially annotated with “®” to indicate that they should be treated under
CWAS. Then each occurrence of an annotated negative literal, =¢° : [e, f) is replaced,
by a new positive literal ¢-[a, 8]. In addition, rule g(X) : [1,6) « —~q(X) : [1,8] is
added for each symbol ¢ (and remove the annotation). From now it is assumed that

the program P is modified in this way. Predicates of the form ¢., introduced by this

®More precisely, initially we get —p[0.4,0.8]. as an answer, but after closing the knowledge gap
under CWA the result is —p[0.8,0.8] or, equivalently, p[0.2,0.2].
51t is allowed to treat some occurrences of a literal under CWA, while others under OWA.

19

modification will be called CWA-predicates; the remaining predicates will be called
OWA-predicates.

The predicate dependency graph is used in support logic to introduce stratification
into P. For this, Consider P, its predicate dependency graph, Gp, has predicate
symbols of P as its nodes. An unlabeled arc < q,p > between a pair of nodes in the
graph exists if and only if P has a rule g p(Z) « ..., Aq(¥),. .., where and X can be
either “=” or blank (i.e. no negation). A CWA-cycle in Gp is a directed cycle passing
through at least one CWA predicate. If the dependence graph has no CWA-cycles,
then the program is stratified. £ = P U D is stratified if its intentional part, P,
is stratified. A stratification ordering is defined (in fact, a partial quasi-order) on
predicale symbols appearing in a stratified program as: ¢ < p if there is a path from
g to pin Gp. If at least one node on the path is a CWA-node (including p or q) then
we write ¢ < p.

Next the notion of perfect models in [16] is extended to this framework. First, the
order <7 defined on OWA ground literals should be extended to include the CWA-
literals which were added to replace negative literals in the rule bodies. This is done
by assuming that for each CWA d-literal q : [a, 8] <* ¢-[v,6] if and only if @ > v and
B > 4. Notice that the <r ordering on CWA literals differs from the case of OWA
literals only in that the first inequality is reversed.

<r is extended further by writing p(@) : [...] <* q(b) : [..], where p and ¢ are
predicate symbols in P, if and only if p <* ¢ in the stratification ordering. Of course,
with this extension if P is stratified, then <P is no longer a partial order,in general,
but it is a partial order ifP is stratified. An interpretation I of P is preferable to J
(I < J) if and only if for every ground atom p : [a, 8] which is true in I but false in
J, there is a ground atom q : [,] which is true in J but false in I such that ¢ : [, §]
<? p: [, B). A model of P is said to be perfect if it is minimal with respect to the
preference relation <.

In Logic Programming, stratified programs have a unique perfect model, which
represents its intended semantics. Moreover, by applying the rules to the partial

order imposed by stratification, perfect models is relatively inexpensive to compute.

20

In this case one never has to retract any fact previously derived in the computation.
However, in the quantitative case, stratification alone does not ensure such behavior.

An assumption on the certainty and combination functions should be true and that
is to satisfy all the requirements for these functions listed in Section 2 3.2, where, as
before, scalar certainty are replaced by intervals of certainties, and the usual order <
on [0,1] is replaced by <* on the certainty intervals. Again, it is intuitive to see that
the requirements introduced on certainty and combination functions in Section 2.3.2
become a special case of the new requirements, once each scalar entity, a, is replaced

by the interval [a, 1].
Theorem 3 Every stratified expert system has a unique perfect model.

We will call the unique perfect model of P the intended model. This model can
be computed as in [1) by successively applying the fixpoint operators corresponding
to different strata of the program (in the stratification ordering). We will refer to
this process as the firpoint computation. Notice that it may turn out during the
computation that the intended model of P contains inconsisteni facts of the form
p : [a, O], where a > B. However, as noted earlier, this problem is localized to the
inconsistent facts themselves, and to the facts which are directly dependent on them.

In what follows we will list the theorems proven by Kifer and Li and present an

example used in [10] to illustrate their approach.
Theorem 4 The fixedpoint computation yields the intended model of P.

Example 1 We will present an example taken from [10] that contains negative pred-
icates in the rule bodies to illustrate the approach. Suppose the EDB contains a

single fact bird(tweety) : [0.7,0.9], and consider the following rule:

flies(X) : [min(a,v),maz(B,8)] « bird(X) : [a, 8], ~abnormal®(X) : [y, 6].
Applying the rule yields flies(tweety) : [0.7,1)]. If, in addition, there would be an
evidence that Tweety is abnormal, for example, abnormal(tweety) : [0.4,0.7], then we

can only conclude flies(tweety) : [0.3,0.9], thereby decreasing our belief in T'weety’s

21

ability to fly. On the other hand, if we were told that abnormal(tweety) : [0.7, 1] (say,
because Tweety looks like a penguin), then the conclusion would be flies(tweety) :
[0,0.9], eliminating our belief in Tweety being a flying creature, while leaving some
small evidence to the contrary.

Suppose now that we had another rule, -~ flies(X) : [a, 8] «— abnormal(X) : [a, A,
and the combination function for flies(...) were F({[z,v],[y,w]}) =[z+y—z*y,v*
w]. Here abnormal is treated under OWA. Assuming abnormal(tweety) : [0,0.27],
strongly suggesting that Tweety cannot fly.

2.3.5 Summary

Kifer and Li presented a model-theoretic and fixpoint semantics for rule-based systems
with uncertainty. Their approach to the problem is much more general than the earlier
works on that issue [24, 26]. They have also considered some new aspects of the
problem such as evidential independence and conflicting evidences. Their treatment
of negation accommodates both the closed and the open world assumptions.

Other cases of evidential independence need to be studied. The two independence
criteria presented in Section 2.3.2 do not always produce the desired results. For
example, under both criteria, combination of the rule p : @ « p : a and a fact
p : 0.0001 would lead us to conclude p : 1. This conclusion may not be the desired
one in many situations. Likewise, given the following three rules: p « b,p « a, and
a — p, we may not want to view the first pair of rules as being independent (because
a « p).

Rules are viewed as being either totally independent, or totally dependent on cach
other causing the concept of independence to be restrictive. In practice, however, one
may want to think of a pair of rules p « «¢,b and p «— a,c as being only partially
dependent (because of the common premise a). This means that different evidences
supplied by the two rules should not be combined to a full extent, as it would be in
the case of totally independent rules. We are currently pursuing several possibilities

for accommodating partial independence in the proposed framework.

22

The assumptions specified on the combination functions and the certainty func-
tions makes it hard to find an adequate application to implement this model which
is able to respect these assumpticns. However, if there exists a system that is able to
make these assumptions true, then in section 2.3.4 these assumptions are no longer
that natural as they were in Section 2.3.2. For instance, it may be desirable to assume
that, as the belief in —p increase, the belief in p should decrease. The monotonicity
assumption about the certainty and combination functions rules this possibility out.

Extensions to include other important combination rules is a topic for future research.

2.4 Probabilistic Data Model (PDM)

Barbara, Garcia-Molina, and Porter [4] extended the conventional relational data
model into a new model called the Probabilistic Data Model (PDM) in which proba-
bilities are associated with the attribute values. Relations in this context are viewed
as probabilistic relations and have deterministic keys, which is a central premise in
this model. In other words, each tuple in the probabilistic model represents a known
real entity. Nonkey attributes contain information describing the properties of the
entities, where such nonkey attributes are deterministic or stochastic in nature (to be
defined later).

In PDM, each stochastic attribute is handled as a discrete probability distribution
function. In other words, the sum of probabilities associated with the attribute values
of a given key of an entity in the probabilistic relation should alvays add up to 1.
This requirement will introduce the missing probability concept since it is not always
possible to know the probabilities of all possible domain values of a given non-key
attribute value.

In fact, the model makes use of the missing probability problem by giving various
interpretations to the missing probability. In other words, the missing probability
allows the model to capture uncertainty in data values as well as in the probabilities.
It facilitates the insertion of data into a probabilistic 1elation, i.e., it is not necessary

to have all the information when displaying relations as answers to users queries. For

23

instance a query might be interested in locating all tuples with probability greater
than a given value p € [0,1]. As noted in this paragraph, various interpretations
could be assumed for missing probabilities. The PDM [4] assumed the so called
no assumptions interpretation, for simplicity, to interpret missing probabilities. An-
other possible interpretation, however, may consider the missing probabilities to be
distributed over the domain values not explicitly listed in the probabilistic relation.

In the following section we will present the formal model, semantics of probabilistic
relations, some relational algebra operations for the PDM, the definition of lossy
operations, probabilistic relational decomposition, and some useful new operators

that are useful to answer probabilistic queries?.

2.4.1 Probabilistic Relational Algebra

In this section, the formal model is formally defined as well as some formal probabilis-
tic relational algebra operations. Single group relations® are defined and introduced
first and at the end of this section the concept of a single group relation is extended
to define multigroup relations (multirelations) which could be viewed as a collection

of single-group relations.

Definition 2 Probabilistic Relation: Let K be a set of attributes Ky,..., K, and A
be a set of attributes A,,..., An. The domains are given by dom(K,) and dom(A;).
A probabilistic relation r (or K, A) is a function (many to one) from dom(K;) x ... x
dom(K,) into PF. The set PF is a set of probability functions for A. Each 8 € PF
is a function (many to one) from dom(A;)U {*} x ... x dom(A,,) U {+} into the real
number interval [0, 1]. The symbol * ¢ dom(A;) for 1 < ¢ < m, represents instances
in which the value of attribute A; is unknown, i.e., acts as a wildcard. (The symbols
* is not allowed in any key domain dom(K;).) Every B must satisfy the following
property:

7We define Probabilistic queries as queries that selects tuples/entities from probabilistic relations
giving the users the power to specify probabilistic arguments as part of the query syntax.

8A single group relation is a probabilistic relation with a set of attributes K = {k;, ..., Kn} that
works as a set of keys and a stochastic or deterministic set of attributes A = {A;..., Am}.

24

3 Bla)=1 (2.1)

As in the conventional relational database model, a table form is used to represent
probabilistic relations. Note that, since PDM shows tuples whose attribute values
have non-zero probabilities associated with them, then tuples that have zero values
for their attributes are not displayed in the table. Consider the following table that

contains prebabilistic information on students:

Probabilistic Relation for Students
Stud — Id | Address Phone
12345 0.6 [St. Paul 345-3232]
0.2 [St. Paul 345-3231]
0.1 [St. Paul *|
0.1 *%
12346 1.0 [St. Dennis 345-2342)

This probabilistic relation is equivalent to the relation r(k,) = 8y, r(k2) = B2, where
Bi and B, are defined as follows:

By ([St.Paul 345 — 3232] = 0.6)

Br([St.Paul 345 — 3231) = 0.2)

Bi([St.Paul ¥] = 0.1)

Bi([* *] = 0.1)

B2([St.Dennis 345 — 2342] = 1.0)
and all other values are mapped by £, and 83; to 0. We refer to the probabilistic func-
tion of a relation as rows since they correspond to tuples in the table representation.
For instance we will define (12345) = B, and r(12346) = B, as rows in the probabilis-
tic table for students. Note the interpretation of such a table is as follows: In r(12345)
we are told that the probability that Student-id = 12345 has Address = “St.Paul”
and Phone =345-3232 is exactly 60%, 20% is the probability that Student-id = 12345
has Address = “St.Paul” and Phone = 345-3231, and 10% is the probability that
Student-id = 12345 has Address = “St.Paul” where the phone number could take
any value because it is not known. Note that the last entry (0.1[* *]) in r(12345) is

25

called the missing probability and is introduced to indicate that 10% is the unknown
probability. In other words, the missing probability is introduced to make sure that

every [satisfy property 2.1.

Definition 3 a’ = (a'y,...,a'n) covers a = (ay,...,a,) if for all i,1 <i < m, either

a;=a;ora;==*

2.4.2 Semantics for Probabilistic Relations

A probabilistic relation r on K, A defines the probabilities of certain events. One can
think of attributes K and A as random variables. If there are no missing probabilities
then it is possible to say:

r(k)(a) = problA =a | K = k]
where k = (ky,...,kn), a = (a1,...,0n), ki € dom(K;} and a; € dorn(A,). Note that
the expression A = a above is shorthand for the event “A; = ay,..., A, = a,,”. The
event K = k has similar meaning.

With missing probabilities, and a containing no wildcards:

r(k)(@)=ProblA=a| K =k < Y r(k)(d)

‘covers a

That is, the function r(k)(a) gives a lower bound of the probability assigned to a.
The upper bound is found by adding probabilitics assigned to all a’s that cover .

There is an implicit independence assumption in every probabilistic relation. In
other words, it is assumed that probabilities given in r are independent of any other
possible database attributes. So, the existence of r in the database indirectly implies
that:

ProbffA=a|K =kand B=b]= ProbjA=a | K =k

for any set of attributes B such that BN K =BN A=0.

2.4.3 Relational Algebra Operations for PDM

In this section, some relational algebra operations for the PDM are formally intro-

duced, but some definitions are needed first.

26

Definition 4 A Restricted tuple is defined as follows: Let a be a tuple over a set of
attributes A, and let B be a subset of these attributes. Then a[B] is the subtuple
that contains the corresponding B elements. For example, if A = A;, A, A3 and
B = A,, A3, then (a,, a3, a3)[B] = (a3, a3).

Consider r’' = [],(r), where r is a probabilistic relation over K, A and a is a set
of attributes a,,...,ay,. Let A’ = AN a, the nonkey attributes that remain in ’. In
what follows it is assumed that A’ # @ (the case where A’ is empty is trivial; the key
attribute will simply be projected out).

I no missing probabilities are assumed, then the interpretation of r’ is that
r'(k)(a’) = ProblA’ = a' | K = k]. From basic probability theory, we know that
this probability can be computed as follows:

ProbA' =d' | K = k] =) ProblA=a| K = k].
all g 8.t. a[A')=a’
As a direct consequence from this equation we deduce how to define r’, at least for

the case with no missing probabilities.

Definition 5 Projection ([T). The project of r over a is the following probabilistic
relation r’ over K, A’. If r(k) is not defined, then r'(k) is not defined either. If r(k)
is defined, then 7'(k) is the function 3 defined by:

Bla)= X r(k)a).

all a a.t. a[A')=a’
Note that in this case the function # is valid and we have:
S=Y B)=) > r(k)(a).
e o' all a a.t. a[A')=a’
If an arbitrary tuple z = (z1,...,2m), (where z; € dom(A;) U {}). It will be
included in the sum S sum when @’ = 2[A’] and ¢ = 2 (and in no other case). So,

since all z tuples are being considered once in the sum we have:

§= Z r(k)(a) = 1

27

Example 2 Consider the probabilistic relation r for students presented in section 2.4.1
and let us project on the Stud-Id and Address. In this case we have K = {Stud — Id}
and A = {Address}. let v’ = [[x a(r).

Probabilistic Relation for Students Addresses
Stud — Id | Address

12345 0.9 [St. Paul]

0.1 [*
12346 1.0 [St. Dennis]

This example illustrates that for the stud-id = 12345 there is 90% certainty that his
address is “St. Paul® and 10% is the missing probability.

Definition 6 A selection condition C(k,r) evaluates to true if row k of r satisfies
the selection condition. A specified syntax is considered. A selection condition is of
the form V = a, P op p (or v=a, p op p), where a is a tuple with possible #’s, op is
an operation like <,>,..., and p is a real number in [0,1]. Recall that V,P are used

for certainty conditions and v,p for possibility condition.

Definition 7 The conditions C(k,r): V =a, P opp whenopis >,>,=;and C(k,r):
v = a, p op p when op is <, <, are evaluated as follows. Let A’ be the attribute of

r where a has no #'s, and let a’ = a[A’]. Let r; = [14(r). Then C(k,r) is true if
r;(k)(a’) op p is true.

Projection ensures that the probability referred to is at least the value obtained
for a’. Therefore, when op is >, >, =, and r;(k)(a’) op p is true, then it is certain that
the same will be true for a. On the other hand, when op is <, <, and r;(k)(a’) op p is
true, then there exist the possibility that the value in a does not go beyond the one

obtained for a'.

Definition 8 The condition C(k,r): v=a, p op p when op is >,>,=; and C(k,r):
V = a, P op p when op is <, < are evaluated as follows. Again, let A’ be the attributes
of r where a has no *'s, and let A’ = a[A]. Let r; = [14/(r). Then C(k,r} is true if:

28

) ri(k)(z)opp

all z a.t. z covers a’
is true.

Here, with respect to definition 7 the situation is reversed. When op is < or <,
and the sum for all tuples that covers a’ evaluates to true, then this implies that we
are certain that the value of the probability will never be greater, or greater or equal
than the one obtained in the sum. If op is >, > or =, there is the possibility that the

value is greater, greater or equal or simply equal to the one obtained in the sum.

Definition 9 Select (o). Let K, A be a probabilistic relation defined as r. Moreover,
Let r' = o¢(r) be the relation obtained by the operation select over the probabilistic
relation r. Probabilistic relation r' is also defined on K, A. If r(k) is undefined or if

C(k,r) is false, then (k) is undefined. Otherwise, r'(k) = r(k).

Example 3 Consider the possibility relation r on students and suppose we would
like to select all tuples from r that have Address = “St. Paul” with a certainty greater
than 0.8. In other words, the query is asking if we assume a certainty (not possibility)
0.8, can we find any tuples where Address = “St. Paul”. The result of this query is

shown below:

r' = [Txa(r)
Stud — Id | Address Phone
12345 0.6 [St. Paul 345-3232)
0.2 [St. Paul 345-3231]
0.1 [St. Paul ¥]
0.1 [* *]

In this case K = Stud-Id and A = Address, Phone.

Definition 10 Natural Join (M). Consider two relations, r on K, A, and s on A, B.
Let v’ be the natural join of r and s. Relation r' is over K, AB. If r(k) is not defined,

then r’(k) is not defined. Otherwise the function is defined as follows:

29

If s(a) is defined then
P (K)(ab) = r(k)(a) x s(a)(8)
else if s(a) is not defined then
#(k)(a+) = r(k)(a)
r'(k)(abd) = 0 for ali b other than *.

The second part of the definition covers the case in which a does not appear in
the relation s. In this case, the resulting row contains an unknown value for attribute
b, and the probability equals that of row r(k)(a).

Note that if @ = (a;,...,an) and b= (by,...,b,), then ab is the tuple (ai, ..., an,
bi,...,b,). The tuple a* represents (a1,...,am,*,...,*).

If no missing probabilities are present, this definition is justified by basic proba-
bility theory. The value r'(k)(ab) should be equal to Prob[AB = ab| K = k]. Using
Bayes’ theorem, we get:

prob[AB=ab| K = k] = Prob[B=b| K =k and A= a] prob{A =a| K = k|.
Because of our independence assumption, the probability of B = b only depends on

A, not on K. Thus
ProblAB =ab | K = k] = Prob{B =b| A= ¢|ProbjA=a | K = k]
This is the formula that is used in Definition 10.

Definition 11 Multirelations: A table with multiple groups is represented by a mul-
tirelation. A Multirelation R on attributes K, A;,..., A, is a tuple (ry,...,7rq) where
each r; is a probabilistic relation on K, A;. There is one condition (we call it the
“same keys” constraint) that must be satisfied by the relations: if ri(k) is defined,

then for all j,1 < j < g, r;(k) must also be defined.

Relational operators on muluirelations can be defined in terms of the operators on
the component relations. Let R = (rq,...,r,) be a multirelation on K, 4,,...,A,.

Project (I1) : T1.(R) is another multirelation defined as (r'y,...,r'), where ', =

na(rl)‘

30

Select (0) : Ococy,.cq(Ti). The selection condition ¢ for R has ¢ 4 1 components,
€0,C1,. .- ,Cq- The condition ¢; is intended to select within relation ;. Condition ¢
selects keys. If no selection is desired for r;, then c; is set to “true”.

Ocoscyrncq(Ti) = 0d(ri). Condition d(k,r;) is true if and only if co(k), ci(k, 71), ...,
c,(k,7,) are all true which implements a logical AND of the conditions.

Natural Join (X) : Let S = (s1,...,8:) be a second multirelation on A;, By,. .., B,
R™X S is

’ 7 / / ’ '
(7'1,...,7‘.‘_1,7‘.‘4.1,...,1‘,,,81,...,8 t)

, where r'; = r';(j #), and ¢'; = r; ¥ s;.

For each of the above definitions, it is relatively simple to show that the result is a
valid multirelation, i.e., the same keys constraint holds. Deterministic attributes have
the same concept as that introduced in an earlier section. In the case of multirelations,
deterministic attributes are just like probabilistic ones except that the probability
function always assigns probability 1.0 to a single value. When such attributes are

displayed in a table the probabilities are stripped away.

Example 4 Consider a University’s database and let the two probabilistic relations
r and s be as follows. r is the probabilistic relation on students registration. s is the

probabilistic relation on full time professors.

Probabilistic relation r represents the probability that a student will register in
a course (not the actual or the current registration). For instance, The first tuple of
r indicates that there is 60% chance that the student, whose Id is 12345, will take
COMP 664 and 20% chance that he will take COMP772 etc. Notice that there are
no missing probabilities in r.

Probabilistic relation s represents the probability that a professor will give a course
for the coming term. For example, in the first tuple there is a probability of 40% that
John will be giving COMP 664, while Mike have a higher probability to teach the

same course. Note that there are no missing prebabilities in s.

31

Student Registration (r)

Stud-Id | CrsNumber

12345 | 0.6 [COMP 664]
0.2 [COMP 772]
0.1 [COMP 345]
0.1 [COMP 777]
12346 | 0.5 [COMP 520]
0.3 [COMP 575]
0.1 [COMP 543
0.1 [COMP 745]

Full Time Professors (s)

CrsNumber

Prof

COMP 664
COMP 664
COMP 345
COMP 345

0.4 [John]
0.6 [Mike |
0.9 [Peter]
0.1 [Mary |

COMP 777 | 1.0 [Mike]
COMP 745 | 1.0 [Mary]

Probabilistic relation r X s contains missing probabilities because of the tuples
that did not join. The first tuple in r X s indicates that there is 26% chance that
student, whose Id is 12345, will take COMP 664 with John and 36% chance that the
same student will take COMP 664 with Mike. Similar interpretations hold for the
other tuples.

(r ™ s)

Stud-I1d | CrsNumber Prof

12345 | 0.6 x 0.4 [COMP 664 John]
0.6 x 0.6 [COMP 664 Mike]
0.1 x 0.9 [COMP 345 Peter]
0.1 x 0.1 [COMP 345 Mary]
0.1 x 1.0 [COMP 777 Mike]
0.2[**]

12346 | 0.1 x 1.0 [COMP 745 Mary]

32

2.4.4 Lossy Operations

We realize from the previous definitions of project and join that these operators
generate new probability distribution functions in the result. The operators join,
select, and project were presented when no missing probabilities were involved. The
project and join operators become more and more complicated when the probabilistic
relations in use have missing probabilities. In this section, the issue of whether the new
operators are still meaningful when missing probabilities are involved is addressed.

Before we proceed any further we need some definitions.

Definition 12 Potential Set: Given a tuple with key k in a probabilistic relation 7,
the potential set of r(k) , or simply PSET(r(k)), is defined as the set of all functions
(without missing probabilities) that can be obtained from r(k), by each one assuming
a particular distribution of the missing probabilities. More formally, PSET(r(k)) is
the set of all valid probabilistic functions 4 such that

i) for all tuples a with ¥'s, B(a) = 0;

it) for all tuples a with no *'s:

r(k)e) < Bla) < Z r(k)(a’).

By extension, the PSET of a relation r is simply defined as:
PSET(r) = {r'|r'(k) € PSET(r(k)), for all k}.

Definition 13 Probabilistic Lossless Operation. Let @ be an operation over relations
riy...,ry such that 7 = @(ry,...,ma). The operation is probabilistically lossless if for
all k r(k) is defined as either

i) r(k) = ri(k) for somei,1 <i<mor

ii)

PSET(r(k))= U PSET®(r",...,"s)(k).
all #,€PSET(r,)

33

In part (ii) of definition 13, notice that even though r'y,...,r; have no miss-
ing probabilities, @(r'y,...,r'»)(k) may have missing probabilities (in particular if
@ is a inin). This makes necessary for the application of the PSET function to
B(r'1y. ..y r'n)(k).

In PDM the following theorems were proven correct.
Theorem 5 Project is a probabilistically lossless operation.
Theorem 6 Select is a probabilistically lossless operation.

Theorem 7 If a relation r has property NMP®, then r; X r; is probabilistically

lossless, for any relation r,.

2.4.5 Decomposing Relations

We introduced, so far, possible information loss at the level of probability distribution
functions. It is also possible to study information loss in the conventional sense [27].
That is, assume we have a relation K, AB. 1l is always possible to decompose ¢ into
two relations r over K, A and s over A, B such that t = r M s. However, since
t should be recovered after the decomposition is done to ensure the correctness of
the decomposition, the decomposition should follow some non trivial steps before it
is done. A condition should be satisfied before any decomposition is made. The

condition under which decomposition is not lossless is stated below.

Definition 14 Probabilistic Independence: Given a probabilistic relation ¢ over K, AB,
we say that B is probabilistically independent from K if the following is true

ProbB=b|A=a,K =k]= Prob|B=0b| A =a.

Decomposition of ¢ involves two steps. The first step is the projection over at-
tributes K, A, to generate r. To generate s we need a new operator that extracts
conditional probabilities and an extension of the project operator that allows projec-

tion over subsets of the key.

A relation r has property NM P (No Missing Probability) if no row in r is a function with
missing probabilities.

34

Definition 15 Conditional Operator (COND): Given a relation r with key K and
attributes AB, the conditional operator converts r into r* with key K A and attribute
B. The value r'(ka)(b) is equal to Prob[B = b | K = k and A = a]. This value is
computed as (Bayes Rule)

r'(ka)(b) = Prob[B=b| K = kand A = a]
Prob[B=b and A=a|K=k]
Y _Prob{B=b'andA=a|K=k]
¥ r(k)(ab)
%}(k)(ub’)
The syntax of the condition operator is denoted as COND r OVER a, where a is

the set of attributes that are pulled into the key of the new relation.

Definition 16 Strip. Given a probabilistic relation r on K, A, the operation Strip(r)
results in a probabilistic relation in which all the no information rows have been

deleted.

It is obvious now that the significant use of the Strip(r) operation to a relation
r allows us to get rid of the useless rows. However, before using this operator, we
should be careful so that stripping useless tuples does not somehow affect our results.
The following theorem illustrate that performing a Strip operation on Join of two
relations is exactly the same as performing the Strip on separate relations and then
performing the Join between them. The proof of this theorem is not included here,

but it was proven in the PDM that this theorem is valid.
Lemma 2 The operation Join and Strip are distributive.

Strip(ry X ry) = Strip(ry) X Strip(ra)

We need to introduce the notion of projecting out a subset of the key, in a proba-
bilistic relation K, A, before providing how to decompose a relation. In other words,
given a rejation r with key attributes K A and attribute B, we want to create a rela-
tion with key A and attribute B. The value r'(e¢)(d) for all possible values of k. In
the case of probabilistic independe-ice between K and B, r(ka)(b) is the same for all
values k, hence, '{(a)(b) = r(ka)(b) for any k.

35

Definition 17 Projecting Out a Subset of the Key: Consider a relation r with key
attributes KA and attribute B. The projection of r onto o = AB is a relation r'
with key attributes A and attributes B. If K and B are probabilistically independent,
r(ka)(}) is the same for any k, hence, r'(a)(b) = r(ka)(b) for any k. If K and B are

not independent, the project operation is not defined.

Lemma 3 Given a relation ¢ over K, AB, where K, B are probabilistically indepen-
dent, it is possible to decompose ¢ in two relations r over K, A and s over A4, B such

that r =]k a(t); s =[1a,(t), where ' = COND t OVER Aand t=r N g,

2.4.6 New Operators

So far we presented the formal PDM, the semantics, some operators (join, select, and
project), and the method to decompose probabilistic relations specially when we have
missing probabilities in the probabilistic relations. In some application domains it is
important that the user is able to specify queries where probabilistic arguments are
passed to the query processor. In this case, the query processor will use some proba-
bilistic theories like the Total Variation Distance Between Two Probability Functions
introduced next. In the coming sections we will introduce some operators that can

model these situations.

Definition 18 Total Variation Distance Between Two Probebility Functions: The
total variation distance between two probability functions 8, and B, is computed as

follows:

d(B,) = 5 X1 Bula) ~ Bafa) |

Now, since some probabilistic relations contain missing probabilities, definition 18 is
no more efficient. In this model, however, every relation (k) with missing proba-
bilities could be used to compute PSET(r(k)), which is the set of distribution (no
missing probabilities) that corresponds to a distribution r(k) (in relation r) with

no missing probabilities. Using the definition of the PSET, the maxirnum distance

36

which is the largest value for total variation distance over all the combinations of the
elements in the potential set of distributions involved will be considered instead of
the total variation distance between two probability functions. In the same sense,

finding the minimum distance should be obvious.

Definition 19 Maximum and Minimum Distances. Given two distributions $; and
B2, the maximum between them is computed as:

mazd(By, f2) = maz(d(f'y, 8))
where #', € PSET(B,) and B’y € PSET(f#;). Conversely, the minimum distance
between them is computed as:

mind(f, f2) = min(d(8';, B'))
where ', € PSET(p:) and §', € PSET(4,).

Having defined the maximum and minimum distances between two probabilistic
entities we now concentrate on the syntax of some useful operators that are able to
accept probabilistic arguments and use the probabilistic relations with the purpose

of increasing the power of expressing more meaningful queries.

Definition 20 ¢-SELECT and E-SELECT : Given a relation r on K, A, and a
parameter ¢ (or E) and a target distribution S, the relation ' = ¢SELECT r
USING 8 is the relation formed by rows r(k) such that mind(8,7(k)) < e¢. The
relation v = E-SELECT » USING B is the one formed by rows r(k) such that
mazd(f8,r(k)) < E.

Here the distinction between the possibility and the certainty should be cleared.
In other words, the condition min d < € yields the possibility that the actual distance
between the two distributions is less than or equal to the target value. On the other
hand, the condition maz d < E yields the certainty that the actual distance is less

than or equal to the target value.

Definition 21 ¢-JOIN and E-JOIN: Given two relations, r on K, B and s on

A, B, and a parameter ¢, let ' be the e-Join over B. Relation 7' is over KA, B. If

37

r(k) is not defined, then r'(k) is not defined. Otherwise, the function is defined as
follows:
v'(ka) = r(k) if s(a) is defined and mind(r(k), s(a)) <e.
r'(ka) = 0, otherwise.
Conversely, the E-Join is defined in the same way replacing min d by maz d, and
eby E.

Given a deterministic relation and a probabilistic schema, the STOCH ASTIC
operator takes as input the deterministic relation and the probabilistic schema return-
ing a probabilistic relation based on that schema. The probabilistic schema describes
what atiributes comprise the KEY, and which of the dependent attributes are jointly
distributed or independent. The relative frequencies of the attribute values in the
original relation will determine the probabilities of the new relation. Hence, one
deterministic relation can generate many different probabilistic relations.

Operator DISCRETE goes the opposite direction as STOCH ASTIC operator.
DISCRETE takes as input a probabilistic relation and yields a deterministic relation
as output.

The last operator to mention is the GROU P operator. The GROUP operator
combines two or more attributes in a relation into a single group. In doing this, it
computes the join probability distribution for the new group. Operator GROU P
exemplifies a multirelation operator, i.e., one for manipulating multirelations. Other
operators in this context include CUT, which breaks up a multirelation into its comn-
ponents, and GLUE, which produces a multirelation out of a collection of simple

relation.

2.4.7 Summary

A Probabilistic Data Model PDM is a model in which tuples ha e deterministic keys
and both probabilistic and deterministic attribute groups. Some problem domains
that deals with incomplete information could be modeled using the PDM. A null

value, for instance, could be represented by 1.0{**] distribution. Missing probabili-

38

o

ties is another important concept that was introduced in the PDM. This concept
is important because based on this method we would like to distribute the missing
probability, we can have different relational algebra operators that are able to manip-
ulate the probabilistic relations. In the PDM the missing probability was interpreted
as distributed over all domain values. As another interpretation, missing probabili-
ties could be distributed over values not explicitly listed in the relation. Probability
distribution function could also be used to assign probabilities to attribute values
instead of assigning probability to each attribute value separately.

Sometimes it is desirable to have the same set of data where different distribution
functions are associated to them. The PDM could further be extended to capture this
idea. An operator could be introduced that is able to take two distribution functions
that corresponds to the same set of data and combine the distribution functions
yielding one distribution function associated with the same set of data. Of course,
this requires a clean and correct semantics as well as a meaningful interpretation in
providing answers to queries.

As an interesting application that could be a consequence of the PDM arestricted
model in which only distributions with one probabilistic value are allowed. For in-
stance, one may model evidences like the probability of having a storm at a particular
timeis p and hence the probability of not having a storm at the same particular time
is 1 — p. In some real life applications, the restricted model is useful and simple

enough to be implemented.

2.5 The Information Source Tracking Model (IST)

In this section, we review the basic concepts of the IST proposed by Sadri [18]. An IST
database is a set of extended relation schemes. An extended relation scheme (relation
scheme, for short) R = {A,,...,An, A1} is the set of attributes, where A;,...,Aq
are called regular attributes as in the regular relational model, and Aj is a special
attribute called the information source attribute, (source attribute for short). Let

S = {s1,...,9]} be the set of all information sources in an IST database. We will

39

refer to an information source s; € S as a source. The domain D; of the attribute A;
is the set of all vectors of length k with entries {+1,-1,0, T} . That is,

D; = {(a1,...,a¢) | a; € {+1,-1,0,T},i=1,...,k}
where k is the number of source vectors.

Let R = {A;,...,An, A} be an extended relation scheme. An ertended relation
(instance) r of R is a finite subset of D, x ... x D, x D;, where D,,...,D, are
domains corresponding to the normal attributes A,,..., A,, and D; is the domain of
Ar. A database scheme is a set of relation schemes R;,..., Bn. An IST database D
is a set of extended relations ry,..., n, where r; is defined over the relation scheme
R; € R, for i = 1,...,m. Moreover, each relation r; € D is called a base relation, as
usual.

Each tuple in a base relation r; is of the form ¢Qu, where t is the component
of the tuple corresponding to the normal attributes A,,...,An, and u € D; is the
component corresponding to the source attribute A;. If {Qu is a tuple in 7, then we
refer to t as the pure tuple, we refer to u as the source vector associated with ¢. The
user may not know that the tuples in the database are associated with source vectors.
In the IST model, it is allowed that a tuple in an extended relation to be associated
with a set of source vectors, rather than a single source vector. For instance, an
extended relation r may contain a tuple t@z, where ¢ = {u),...,1q} and { > 1.
In this case, @z is a tuple associated with a set of source vectors in the extended
relation r. This gives the flexibility to record the same information (evidence) that
is contributed by different observers at different times an issue that could not be

modeled in other approaches.

2.5.1 Information Source Vectors

Let r be an extended relation and let t@u € r. The source vectors that are contribut-
ing to the pure tuple ¢ in r are listed in v. If source s; = (a,...,ax), where k is
the number of source vectors in the model, confirmed the information for the pure
tuple ¢ then the ¢** position of the source vector u is set to one and all the other

elements are set to zero indicating that they did not contribute to the information

40

in the pure tuple t. An element a; = —1 indicates that the source vector s; denies
the information in the pure tuple . An element a; = 0 indicates that the source s;
did not contribute to the information in the pure tuple ¢ in the extended relation r.
There are two special source vectors T' and F, representing that the pure tuple ¢ is
true and false respectively.

A source vector u = (a;,ay,..,a;), associated with a pure tuple ¢ in r specifies
the conjunction of the meaning of each information source s; as given by a;. A set of
source vectors r = { uj,...,u,, } specifies the disjunction of the specification of the
vectors uj,...,u,,. More precisely, the meaning of information sources is captured
by the expression corresponding to a set of source vectors defined as follows:

A boolean variable f; is associated with each information source s;,7 = 1,..., k.
For a source vector u = (ay,az,...,ax), the set of information sources that are con-
tributing positively to u is S* = {s; | @, = +1}. Similarly, the set of information
sources that are contributing negatively to vis S~ = {s; [a; = ~1}.

Having classified the behavior of the contributing sources we associate a boolean
expression e(u) corresponding to the source vector u, associated with the pure tuple
tinr as:

ew)= A fi A -F
s€S+ s,€5-

This definition can be extended to a set = of source vectors associated with a pure
tuple ¢ in r as:

(@) = \/ e(u),
u€r

The expression corresponding to the source vectors T' and F is true and false
respectively. The special source vector T denotes a contradiction. If there exists
a source s; that supplied contradictory information about the pure tuple t in r, we
define e(T) = false.

The expression corresponding to the pure tuple t could be used to identify the
contributing information sources as well as to derive the reliability of the information

stored in the pure tuple t. In other words, given the probabilities (reliability of being

41

correct) of sources sy, ..., s, we can calculate the probability of the validity of pure
tuple ¢. Calculating the reliabilities of answers to queries, which could be optional,

could be done as the last step by the query processor.

2.5.2 Source Vector Operations

The extended relational algebra operations are defined in terms of the source vector
operations conjunction A, disjunction V, and negation —. In what follows we will
explicitly define these operations.

Note that the domain of the source attribute A; = {+1,-1,0, T} constitutes a
lattice, where T is the top element and 0 is the bottom element. The partial order <
among the elementsof A; isdefinedas0 <1< T and 0 < —1 < T. Given two source
vectors v = (a,,as,...,ax) and w = (b, by,..., bi), their conjunction u = v Aw is

a source vector u = (c1, ¢z,...,ck), where ¢; = lub(a;,b;) is calculated based on the
table below:

a; b, Ci a; b.' C; a; b, C; a; b,‘ Ci
010 0 {+1{0 |+1]|-1|0 -1|1T10 T
O |-1|-1|{+1|-1|T |~-1|—=1|-1|T|-1]|T
O |41 | +1 (41 [41|41 |1 | 41| T [T|+1|T
0 |T (T |4 | T |T |-1|T [T |T|T T

The source vector conjunction operation of two sets of source vectors 2 and y is
defined as:

tAy={uAv|u€zandve€y}
The disjunction operation of two source vectors x and y, denoted by r V y, is their
union, ie,zVy=zUy.
The negation of a source vector u is defined as follows: Let u = (a;,...,a;) be a
source vector, and let a;,,...,a,, be the non-zero elements of u. The negation of u,
written —(u), is a set of source vectors {v;,..., v} constructed as follows: All the
elements of v;; are zero except the element corresponding to the position i3, which is
1(-1) if a;; = —1(1).
The negation of a source vector u could be extended to the negation of a set of source

vectors z, where z = {u;,...,u,} and p is the number of times pure tuple ¢ appears

42

in r, is as follows:
S(z) = ~(ur) A .. A (up).
The following theorems were proven in [18], where z,y, and 2 are sets of source

vectors and e(z), e(y), and e(z) are their corresponding expressions, respectively.

Theorem 8 Let z = z A y. Then e(2) = e(z) A e(y).
Theorem 9 Let 2 = z V y. Then e(2) = e(z) V e(y).

Theorem 10 Let z = —(z). Then e(z) = -(e(z)).

2.5.3 Extended Relational Algebra Operations for IST

In this section, we review the definition of the extended relational algebra opera-
tions in the IST model. These include o (Selection), [T (Projection), U (Union), x
(Cartesian Product), ™4 (Join), and — (Difference).

In the following definitions, r, and r, are two extended relation instances on the
extended schemes R, and R; respectively. C is the selection condition in o¢(r;)
and can include attributes from R, — {A;}. X in [Jx(p) denotes the set of joining
attributes where X C R, — {A;}.

oc(r1) = {tQu | t@» € r, and ¢ satisfies condition C}

Mx(r) = {t{X]Qu | tQu € r}

riUr, = {tQu |tQu € r; or tQu € r3}

rnNr,={tQuw|tQu € r,tQv € ry, and w = u A v}

r X rp= {83Quw | t;@Qu € ry,t,Qv € rp, 13 =1;.23, oand w = u A v}

r My = {t3Qw | t,Qu € ry,t;,@Qv € 7y, t3 = tioty,w = u Av, and ¢, and 2, join}

r1 —r; = {t@z | t@z € r, and pure tuple t does not appear in r3} U

{t@z | tQy € ry and t@z € r; and = =y A (—z2)}
where t,.t; indicates the concatenation of ¢; and ¢, and ¢,0t; indicates the join of
t) and ¢, i.e., the concatenation of t; and t; with the removal of duplicate values of

common attributes. Two tuples ¢; and ¢ join if they have the same values for the

43

common attributes. Note that tuples t; and t; are pure tuples and do not contain

values for information source attribute A4;.

2.5.4 Reliability Calculation

knowing the reliability of information sources that contributed to a pure tuple ¢ in an
extended relational database system, we can calculate the reliability of answers to a

query to the extended relational database.

Definition 22 The reliability of a source is defined as the probability that a tuple
coming from that source is valid. We designate the reliability of source j by re(j).

Moreover, We assume that different information sources are independent.

Let r be an extended relation which is the resuit of some query and let R =
{A),...,A,, I} be the extended relational scheme of r. Consider a tuple t@u € r
and let u = (ag,ai,...,an), where ¢, € {1,0,—1, T} corresponds to the nature of
contribution, to the pure tuple ¢, of the information source s,.

Given the reliability of the contributing information sources, we would like to
calculate the reliability or the probability that tuple ¢ is in the answer to the query.
Since u is the source vector associated with the pure tuple ¢ in r, we consider the
sources $;,,...,3i, corresponding to the elements of u with a value of 1. Formally,
a;, = ...ai, = 1, where VIl € {i),...4,}, w represents the [th element of the source
vector u, associated with t, s.t. s is contributing positively to t € r. Similarly,
consider the sources s,,,...,8j, corresponding to the elements of u with a value of
—1. Formally, a;, = ... = aj, = —1, where Vj € {ji,...j;}, u, represents the jth
element of the source vector u associated with ¢. Given the reliability of source vectors

81,..., Sk, the reliability of the pure tuple t denoted as rel(t) is:

relt@u)= J[re(t) JI re(s) (2.2)

le{iy,...ip} k€{j1,...dq}
rel(t@Qu) indicates the probability or the reliability under which pure tuple ¢ exists in

r. In other words, pure tuple ¢ exists in r provided that the sources s;,,...,s;, are

reliable (or correct) and the sources s;,,...,3,, are not reliable (or not correct).

44

Definition 23 Two source vectors u and v associated with { € r are said to be
independent if for no source j both of them have a nonzero entry. This definition
could be extended to define independence between sets of source vectors. A set of

source vectors is independent if the source vectors are pairwise independent.

Let t@z € r, where z = {uy,...,u,}, where {uy,...,u,} is the set of independent
source vectors associated with pure tuple ¢ € r. The reliability of ¢ is calculated as

follows:

rel(t) =1 - ﬁ(l — rel(tQu;)) (2.3)

=1
2.5.5 Reliability Calculation Algorithms

In the previous Equation 2.3, it is assumed that the source vectors contributing to the
pure tuple t are independent. However, in some application domains, sources might
be dependent one on the other. The following two Algorithms were introduced by
Sadri in [18, 19] to calculate efficiently the reliability associated with the answers to

queries when source vectors are dependent.

Algorithm 1 Assume tQz € r, £ = {uy,...,u,}. Let

4
Ky =Y re(u)

=1

K, = zp:zp:re(u; A u_,-)

i=1 j>¢
P p p
Ks = ZZ Z re(u; Auj A ug)

i=1 >4 k>j

Then

45

re(t) =K -K,+ Kza—...+ (-l)p-le (24)
Before we proceed to the second Algorithm we need some definitions.

Definition 24 Let r be an extended relation and let tQu € r, where u = (ay,...,ax)

and k is the number of information sources in the model (assumed to be a constant).

We define the set of contributing information sources that contributes tQu € r as:
CON = {s; | a; # 0, where a; corresponds to the contribution of source s;}

This definition could be extended to find C, the set of contributing information sources

that contributes to t@x, where x = {u;,...,u;}. In this case we define C as:
C = {si | u;,i =1,...,p, wherea; # 0}

Algorithm 2 Consider the expression for 1@z, where x = {uy,...,up} is a set of
dependent source vectors associated with ¢ in r. As pointed out by Sadri in [18, 19},
the idea is to find an equivalent set V' corresponding to a disjunctive normal form,
and then calculate the sum of their reliabilities. For obtaining the set V we proceed
as follows. Let C be the set of contributing information sources that contributes to
1@z € r. We define a vector v tn be in standard form if all entries in v corresponding
to sources in C have values from the set {1,-1}.

Based on this, we define V = {vi,...,v}, where all v;’s are in standard form,
obtained by replacing each u; € z,7 = 1,...,p, by its equivalent standard form set,
and eliminating duplicates (this is the important point: by eliminating duplicates we

are making sure that the calculated reliability is correct).

e(t@Qz) = \7 e(tQu;)

i=1
This expression is in disjunctive form, (also called “sum-of-products”) where each u;
is a conjunct. Convert this expression into disjunctive normal form, i.e.
9

e(t@z) = \/ e(tQu;)

=1

46

where each e(t@u;) is a conjunct in which all variables fy,..., fi (maybe negated)
appear. Note that the disjunctive form of a Boolean expression is unique (up to a

permutation of conjuncts). Then

re(t) = re(tQu;) + ... + re(tQu,) (2.5)

Example 5 Assume t@Q{(10 — 1),(110)} € r. Let the reliability of information
sources be 60%, 80%, and 90%, respectively. We calculate the reliability of ¢ us-
ing the two algorithms. Using Algorithm 1:

K, = re(t@(10 — 1) + re(t@(110) = 0.06 + 0.48 = 0.54

K, = re(t@(10 — 1) A (110) = re(tQ(11 — 1)) = 0.048

re(t) = K; — K; = 0.492

Using Algorithm 2, first we convert. e(t) to disjunctive normal form:

e)=(HA-L)V(LAR)=(AANLALRBVHAf2A-f)V{i A-fa A fs)

obtaining t@({(111),(11 - 1),(1 -1 -1)}). Now
re(t) = re(t@(111)) + re(t@(11 — 1)) + re(t@(1 -1 - 1))

re(t) = 0.432 + 0.048 + 0.012 = 0.492

2.5.6 Semantics for IST

In this section, we will introduce the semantic of the IST model introduced by Sadri
in [19]. As discussed in [19], an extended relation represents a set of regular rela-
tions. Once we identify this set, we can process a query on the extended relations
by processing it against the (regular) relations represented by the extended relations.
Of course, this approach is not computationally possible in general. What we need
is a query processing methodology that is applied to extended relations directly, is
efficient, and generates the same answers that would be obtained by processing the
query against represented (regular) relations. A query processing methodology that

satisfies the latter condition is called “precise.”

47

In what follows, the formal definition of the set of (regular) relations that repre-
sents an extended relation is quickly reviewed. Given a relation r on the scheme R,
r = {tQzy,...,tQz,}, where x,,...,z, are sets of source vectors, we define r* as a
function from the set of subsets of information sources § = {s4,...,3x} to be the sct

of (regular) relations Rel on the schemes R — {I}, that is,

125 o Rel

Let @ C S be a set of information sources. Assign truth values “true” to sources in
Q, and ‘“false” to other sources. (We will denote this truth assignment by truth(Q) .)
Then,

r*(Q) = {t. | e(t;) = true under truth(Q), }

where e(t;) is the expression corresponding to ¢; in r.

Definition 25 An extended relation r represents the function r*. We write this as
rep(r) = r*. The set of (regular) relations r*(Q), @ C S, is called the alternate world

of r.

Informally, an extended relation r represents the set of (regular) relations consist-
ing of those tuples that would be valid if the sources in @ were correct and all other
sources were incorrect, for all Q C S.

Example: Consider the extended relation r; that represents the information

gathered by sources s;, 33, and s3 on students.

Relation r
Stud-Name | Stud-Address | Stud-DOB | 54,
John St. Paul 10/07/1956 | 100
Sally St. Paul 02/06/1954 | 001
Mary St. Jack 01/01/1973 | 100
George St. Dennis | 02/03/1975 | 100
Peter St. Paul 08/08/1975 | 101

We would like to find the alternate world representation of r,. We will consider all

subsets (Q) of { s, 32,33 } and find their corresponding regular relations. Given 2° =
{ (1,{ s1},{s2},{s3},{s1,82},{s1, 83}, {82,33},{s1, 92,83} }, then the alternate world

48

set @ and the following:

representation of r; consists of the empty regular relation corresponding to the empty

rep({s1})
Stud-Name | Stud-Address | Stud-DOB
John St. Paul 10/07/1956
Mary St. Jack 01/01/1973
George St. Dennis | 02/03/1975
rep({s.}) is empty.

rep({sa})

Stud-Name | Stud-Address | Stud-DOB
Sally St. Paul 02/06/1954
rep({s1,s2})

Stud-Name | Stud-Address | Stud-DOB
John St. Paul 10/07/1956
Mary St. Jack 01/01/1973
George St. Dennis | 02/03/1975
rep({s1,s3})

Stud-Name | Stud-Address | Stud-DOB
John St. Paul 10/07/1956
Sally St. Paul 02/06/1954
Mary St. Jack 01/01/1973
Gcorge St. Dennis | 02/03/1975
Peter St. Paul 08/08/1975
rep({sz, s3})

Stud-Name | Stud-Address | Stud-DOB
Sally St. Paul 02/06/1954
rep({s1, 52,33})

Stud-Name | Stud-Address | Stud-DOB
John St. Paul 10/07/1956
Sally St. Paul 02/06/1954
Mary St. Jack 01/01/1973
George St. Dennis | 02/03/1975
Peter St. Paul 08/08/1975

49

Definition: Let r be an extended relation, and © be the unary relational algebra
operator. An extended operator ©’ is precise if
rep(©'(r)) = O(rep(r))
for all extended relations r, where O(rep(r)) represents a function f such that
f@)=0("(Q))VQcS.
The graphical representation of this definition is depicted as follows:
r — o'(r)
l l
rep(r) — rep(0'(r)) = O(rep(r))
Definition: Let r; and r, be extended relations, and let © be a binary relational
algebra operator. An extended operator ©' is precise if
rep(r10'r) = rep(r1)Orep(ra)
for all extended relations ry and 73, where rep(r,)Orep(rs) represents a function
f such that f(Q) = n*{(@)0r*(Q) VQ C S.

The graphical representation of this definition is depicted as follows:

r 3 — (r) © (s)
! i !
rep(r) rep(s) — rep((r) O'(s)) = (rep(r)O(rep(s))

Correctness of extended relational algebra operations were proven by Sadri in [19)].

We will list the result from [19].

Definition 26 The extended relational algebra operations selection (), Projection
(IT), Union (U), Intersection (N), Cartesian Product (x), and Set Difference (—) are

precise.

2.5.7 Probabilistic Approach

In section 2.5.5 we had concentrated on the problem of determining information
sources that contributed to an answer to a query. It is often possible to attach a
quantitative reliability measure to each information source. In this section we will

justify the correctness of these algorithms using the alternate worlds semantics.

50

Definition 27 The reliability of correctness of an information source s; is called its

reliability , and is denoted by P,.

Recall that the information content of an extended relation r is a function r*, where,
for a given Q C S,

r*(Q) = {t | t@z € r, and e(tQz) = true under truth(Q) }

With each @ € 5, and with each r*(Q), we associate a probability P(Q) as follows:

PQ=1T~ II 1-P)
83,€Q 3€E€S-Q
(2.6)

In this way, we have associated with each (regular) relation r*(@) in the alternate
world set or r a possibility P(@) which is the probability that r represents r*(Q)
(when the sources in @ are true and all the other sources are not true). In other
words, not only we know r represents r*(Q); but we also have a quantitative measure

of the likelihood that r represents 7*(Q).

Example 6 Consider the following extended relation. Assume the reliabilities of
the three sources are as follows: p; = 65%, P, = 70%, and P; = 90%. Then, the
probabilities attached to the regular relations in the alternate world of the given ex-
tended relation is, corresponding to the set 25 = {@, {s1}, {s2}, {s3}, {s1, 82}, {1,93},
{52,983}, {81,82,83}}, are 0.0105%, 0.0195%, 0.0245%, 0.0945%, 0.0455%, 0.1755%,
0.2205%, 0.4095%, respectively.

Given an extended relation r {e.g. representing the answer to a query), and pure
tuple ¢ such that 1@z € r for the set of source vectors z = {u,,...,u,}, we would like
to calculate the religbility of t. we define the reliability of ¢ to be the degree to which
r represents t. This, in turn, can be equated to the probability that ¢ is present in

the alternate world of ». We will make this notion precise below.

61

Definition 28 The reliability of a pure tuple t, ,represented by an extended relation

r (i.e. t@z € r for a set of source vectors z = {uy,...,u,}), is

re(t)= Y P(Q) (2.7)

ter*(Q)

First, let us assume that z = {u}, e.g. t has a single source vector associated with
it in r. Let u = (a;,...,ax). We can partition the set of information sources I into
three sets: S*(u),S~(u), and S°(u) as follows:

St(u)={si|a;i =1}, S (u) = {s; | a; = ~1}, and S%u) = {s; | a; = 0}.

Intuitively, S*(u) is the set of information sources contributing positively to a
tuple ¢t; S~(u) is the set of information sources contributing negatively to ¢; and

S%u) is the set of information sources not contributing to t.

Lemma 4 If t@Qu € r, then the pure tuple ¢ appears in (regular) relations »*(Q) from
the alternate world of r if and only if $*(u) C Q C S*(u)U S°(u). Proof: Recall that

e(t@u)= A f A ~f
8,€St(u) s8,€5(u)

Obviously e(¢@u) = true under truth(Q) if and only if S*(u) C @ € S*(u) U S%(u).

Theorem 11 If t@u € r (tQu is the only extended tuple in r corresponding to the
pure tuple t), then

rty= [I A I (1-R) (2.8)

8,€St(u) 8,€5-(u)
where re(t) is the reliability of ¢.
Proof: By the definition of the reliability of a tuple (Equation 2.7), and lemma 4,

we have:

()= > P@ (2.9)

S+(u)CQCSH (u)us®(u)

52

If we replace P(Q) by its expression from the previous equation and reduce the above
assumption, we obtain:
ret)= [A J[1-P)
5,€St 2,65~
Let us, now, concentrate on a more general case, where t@Qu € r has a set of

source vectors associated with it. Reliability calculation algorithm were presented in

section 2.5.5 to calculate the reliability of . We will use the following definition:

ret)= 3. P(Q)

ter*(Q)

which is based on the alternate world model, to justify these algorithms.

Lemma 5 Assumet@z € r,z = {uy,...,u,}. Thent € r*(Q) if and only if S*(u;) C
Q C S*(u;), for at least one 1,1 < i < p.
Proof. Obvious from lemma 4, and by the fact that
e(tQz) = \p/ e(tQu;)
1=1
Now we can derive an equation, similar to Equation 2.9 for the reliability of a

tuple t@z, where z is the set of source vectors associated with ¢. Let

Q= {Q:i]S*(w:) € Qi € SH(w)US°(w),i=1,...,p} (2.10)
then
re(t) = Y P(Q) (2.11)
QeR

where re(t@z) is the reliability of ¢ when ¢@z € r, and re(t@u;) is the reliability of ¢
when only tQu; € r. This is because some of P(Q)’s in Equation 2.11 may be added
more than once when we sum up re(t@u;)’s. This observation led to the reliability

calculation algorithm 1 and the following theorem.

53

Lemma 6 Let Q = {Q@ | S*(u;) € @i C S*(w;) U S°(u;)}, 4 =1,2. Then
Y P@)=) P+ Y PQ- Y PQ)
QeQi1UQ2 Qe Qel: QeQiNg:

Proof: This lemma is based on the principle of inclusion and exclusion [14]. Some of
the Q’s may be repeated in the first and second summation on the right hand side,
which are deduced in the third summation on the right hand side.

This lemma can be generalized to more than two sets. The generalization will
alternate adding and subtracting the effect of elements appearing in only one set, in

two sets, in three sets, etc ...

In {19], Sadri proved the reliability calculation algorithms are correct. We list

these results below.

Theorem 12 Algorithm 1 correctly computes the reliability of a pure tuple ¢ accord-

ing to Equation 2.7.

Theorem 13 Algorithm 2 correctly computes the reliability of a tuple t according
to Equation 2.7.

2.5.8 Summary

In the IST model, information that contributed to data are recorded along with data.
The accuracy of data is represented by the reliability of the contributing source(s).
The query processing algorithms manipulate data, as well as contributing sources of
information. For eacn answer, information sources that contributed to the answer,
and their nature of contribution are identified. A measure of validity (certainty) can
be calculated for the answer as a function of the reliability of information sources.
The approach taken in IST differs from most other approaches to uncertainty man-
agement, in which rules and data are associated with “certainty” measures directly.
IST provides a clean and effective way to model dependent and independent data, an
issue which creates substantial difficulties with other techniques. The calculation of
certainties to answers to users queries (or validities) are left as an (cptional) last step

in query processing.

54

2.6 IST-based Deductive Approach

Lakshmanan and Sadri [11] extended the IST method [18, 19] to deductive databases.
They show that the positive uncertain database, i.e., IST-based deductive database
with positive literals in the head and bodies of rules, has a least fixed point semantics.
Query processing in this framework for answering queries was studied. The top-down
and the bottom-up query processing techniques of logic programming and deductive
databases are extended in their approach to provide reliabilities to query answers.
Negation was studied for uncertain databases, concentrating on stratified uncertain
databases.

In this approach, IST-based deductive database associates certainty, showing
the contributing information sources, with the information stored in the deductive
database. In other words, the information is supplied or confirmed by the informa-
tion sources, and the reliability of the contributing information sources determines
the certainty of the information stored in the deductive database. Query processing
algorithms handle data as well as the information sources associated with the data to
keep track of which source centributed to which data. An answer to a quer; also iden-
tifies sources contributing to the answer as well as their nature of contribution. Based
on the nature of contribution, the reliability of data is calculated as an optional last
step of query processing. Moreover, IST-based deductive database provides a clean

and effective framework to deal with the issues of dependent and independent data.

2.6.1 Uncertain Database

The first order language for the IST-based deductive database is used. A deductive
database, in this approach, consists of a set of annotated rules. The annotation of
a rule identifies the informat.on sources contributing to the rules and their nature of
contribution. The facts, i.e. raw database information, are special cases of the rules.
We will make these notions precise in the following definitions.

Variables, constants, and predicate symbols, as well as the set of information source

constants, {0,—1,+1, T} constitute the alphabet of the language. As in the classical

55

case, a term is a variable or a constant; a literal is of the form p(z,,...,z,), or
-p(z1,...,%,), where p is an n-ary predicate symbol and z,,...,z, are terms. The
information source constants are used to form vectors to annotate logical rules. In
other words, a set of source vectors is associated with the head of a rule showing the
contributing information to that rule. A rule r is defined as follows:
(p ~ q1y...,¢:)@x, where

p is a positive literal, q;,.. ., ¢, are literals, and z is a set of information source vectors.
p is called the head of the rule and ¢,...,q, are called the body of the rule r. As
usual to produce a finite set of answers to a query, we require the rule to be range
restricted, that is, all the variables appearing in the head of the rule must appear in
the body of the rule. An uncertain IST-based deductive database (unccrtain database,
for short) is a set of such annotated rules.

As a special case, a fact is a rule with an empty body, and no variables in the
head. We usually write a fact as follows:

(p «) or pQz, where

z is a set of source vectors associated with the fact p.

As in the regular deductive database system, tne positive uncertain database is
divided into the extentional and the intentional predicates, EDB and IDB, where the
EDB and the IDB predicates are disjoined.

2.6.2 Minimal Model Fixed Point

Let D be an uncertain database. The set of ground atoms obtained using the sym-
bols of D is the pure Herbrand base Hp of an uncertain database D. A Herbrand
interpretation I of D is defined as:

{p@Qu | p € Hp and v is an information source vector}

A ground instance of a rule (p « q1,...,¢,)@z is satisfied by an interpretation /
of an uncertain database D if for all ¢;@Qu; € I for ¢ € {1,...,n}, then we also have
pQu € I, for allv € (z Avy A...Avy). An interpretation I of a positive uncertain
database D satisfies a rule r if it satisfies all its ground instances. An interpretation

I of an uncertain database D satisfies a model of D if it satisfies all the rules in D.

56

A Herbrand model of a positive uncertain database D is a Heiorand interpretation of

D that is also a model of D.

The following result was proven by Lakshmanan and Sadri in [11]:

Lemma 7 Let M, and M, be two Herbrand models of an uncertain database D,

then M = M, N M, is also a Herbrand model of D.

It follows from the above lemma that the intersection of all Herbrand models of a
positive uncertain database D is a model of D, and it is the least fixed model of D.

The result of the Lemma 7 and Theorem 14 was proven in [11].

Theorem 14 Let D be a positive uncertain database. Then D has a least model

Mp that is equal to the intersection of all models of D.

The lcast model of a positive uncertain database D characterizes the information
content of D. In fact, we can regard the least model of an uncertain database as
a collection of relations (instances), as in the relational model, and evaluate queries
against this relational interpretation. The characterization of the least model as the
intersection of the models does not provide an effective algorithm to obtain the least
model. The immediate consequence operator, Tp, is needed to build up the least model

of D which should be equal to the intersection of all models of D.

2.6.3 Immediate Consequence Operator Tp and its Fixed-
point

As in a regular deductive database system, we need an operator so that when applied
to the EDB and I DB of the uncertain database the intended model wili be calculated.
Lakshmanan and Sadri in [11) proved that the intended model and the least fixed point
model of the positive unceriain database are equal.

For a given positive uncertain database D, the operator Tp maps interpretations
of D into interpretations of D. That is:

Tp:I—> 1T,

where T is the set of all interpretations of D. Let I € Z, Tp(J) is defined as:

57

To(I) = {pQv | (b «— (q1)---,9:)@z is a ground instance of a rule in D, where
g@u,eIandve(zAviA... A}

Lakshmanan and Sadri proved the following results in [11].

Lemma 8 An interpretation I of a positive uncertain database D is a model of D if

and only if it is a pre-fixpoint of Tp, that is Tp(I) C [I.
Lemma 9 The operator Tp is monotonic.

Theorem 15 If D be a positive uncertain database, then the least fixedpoint of 77
is the least model of D.

Example 7 Consider the a positive uncertain database D with the following sct of

facts and rules.

F : edge(a,b) @ (10000)
F; : edge(b,c) @ (01000)
F;: edge(c,d) @ (00100)
Ry : (path(X,Y) « edge(X,Y)) @ (00010)
R, : (path(X,Y) — edge(X,Z), path(Z,Y)) @ (00001)
The first iteration of the Tp operator yields the following:
edge(a,b)@(10000), edge(b, c)@(01000), edge(c, d)@(00100)
The second iteration, in additicn to results of the first iteration, yields the following:
path(a,b)@(10010), path(b, c)@(01010), path(c,d)@(00110)
The third iteration, in addition to results of second the iteration, yields the following:
path(a, c)@(11011), path(b,d)@(01111)
The fourth iteration, in addition to results of the third iteration, yields the following:
path(a,d)@(11111)
The fifth iteration, nothing new is generated:

As a result, the least fizpoint of Tp for this example, which is the least model of the

positive uncertain database D, is shown below:

58

edge{a,b)@(10000), edge(b,c)@(01000), edge(c, d)@(00100),
path(a, b)@(10010), path(b,c)@(01010), path(c,d)@(00110),
path(a,c)@(11011), path(b,d)@(01111), path(a,d)@(11111).

2.64 Top-Down and Bottom-Up Evaluation

Using the Tp operator to derive the minimal model of a database and evaluate the
answers of a query using the derived minimal model is inefficient. What is really
needed is a method that identifies the relevant part of the database to produce all
answers to a query. In an approach based on logic in a regular deductive database,
a query is evaluated by using logical rewriting and a logical evaluation method in
sequence. This entails the notion of unification, resolution and so on. In contrast,
in an approach based on relational algebra operations a query is solved by using an
algebraic evaluation method in sequence. In this case, operations are expressed using
the regular relational algebra operations. In the work done by Lakshmanan and Sadri
[11}, these approaches were extended taking into consideration the manipulation of
the source vectors associated with the EDB and the I DB of the positive uncertain
database.

Top-Down and Bottom-Up evaluation techniques are two methods that have been
extensively explored for logic programming and query processing in deductive databases
to yield answers to users queries. In their approach, Lakshmanan and Sadri [11] ex-
tended the top-down and the bottom-up evaluation techniques to take into consid-
eration the manipulation of source vectors. In such an approach, the source vectors
associated with answers to queries identifies the information sources that contributed
to each ground instance, as well as the nature of their contribution.

A top-down approach query evaluation technique (such as the SLD-resolution)
starts from the query and derives answers by applying the rules using backward
chaining '°. In other words, The top-down technique is based on theorem proving

(SLD-resolution). Such techniques benefits from the structure of the query (goal) to

1%he backward chaining concept corresponds to the top-down technique.

59

reduce the search space. However, these techniques produce one ground instance at a
time and, for each instance, all corresponding source vectors that contribute to that
particular instance.

A bottom-up approach query evaluation technique can yield efficient query evaiu-
ation benefiting from certain rule rewriting techniques, such as magic sets and magic
templates to produce a set of answers at a time for each query. In general, a bottom-
up evaluation technique will produce a large number of facts that is not needed in
generating query answers. To reduce the large number of irrelevant facts during the
bottom-up query evaluation technique, extra rules and predicates are added to the
database. The extra rules and predicates are added using the magic sets and tem-
plates methods. Each new rule added to the positive uncertain database is associated
with a T (true) source vector. The source vectors of the modified rules remains
unchanged.

Using the extended methods top-down or bottom-up, answers to queries arc an-
notated with sets of source vectors. At this point, the reliability of answer to queries
is calculated using the reliability calculation algorithms introduced by sadri 18, 19)
provided that the sources are independent and have predefined reliabilities. In this
sense the accuracy (reliability) of answers depends on the reliability of the contribut-
ing information sources as well as on the nature of their contribution. In what follows

we will give an example on both approaches adopted from [11].

Example 8 Consider the uncertain database of example 7.
Let § = {si,52,33,54,85} be the set of information sources in D. Let 90%, 65%,
75%, 80%, and 85% be the reliability of the information sources sy, 32, $3, 34, and s
respectively.

F; : edge(a,b) @ (10000)

F; : edge(b,c) @ (01000)

F; : edge(c,d) @ (00100)

R, : (path(X,Y) « edge(X,Y)) @ (00010)

R; : (path(X,Y) « edge(X,Z), path(Z,Y)) @ (00001)

60

Let the « path(a,d) be the goal (query). We will use the extended Top-down evalu-
ation method that Lakshmanan and Sadri introduced in [11] to evaluate this query.
Unifying path(a,b) with the head of rule Ry:
+ edge(a,Z), path(Z, d)@((0001)
Unifying edge(a, Z) with fact F;:
+ path(b,d)@(10001)
Unifying path(b,d) with the head of rule R,:
~ edge(b,2), path(Z, d)@(10001)
Unifying edge(b, Z) with fact Fy
+ path(c,d)@(11001)
Unifying path(c,d) with the head of rule R;:
+ edge(c,d)@(11011)
Unifying edge(c,d) with fact F; (O denotes the empty clause):
o@(11111)
Using the reliability calculation algorithms introduced by Sadri in [18, 19] we
deduce that the reliability for the goal (query) is calculated as follows:
rel(path(a,d)) = 0.9 x C.65 x x0.75 x 0.80 x 0.85 = 0.29835
The reliability factor associated with the answer to this query is amount of cer-
tainty associated with the fact path(a, d) and this certainty depends on the sources
81482, 93,84, and s;. In other words, we say that the is a probability of 29.835% that
there is a path from @ to d and the sources who contributed to this information are

81, S2, 83,84, and s, where they all confirm this fact and no one denies.

Example 9 Consider the following rules in an uncertain database. The magic set
approach will be used to demonstrate how answers to queries could be generated

together their corresponding source vectors.

person(h)Quw,
par(a,b)Quw,
par(c,b)@ws

61

(sg(X, X} « person(X))Qu
(59(X,Y) « par(X, X;), s¢(X;, Y), par(Y, Y3))@v

Assume s(a, W) is the query to be answered, where “a” is a constant. The Magic

sets algorithm generates the fact m_s(a)@T, and the following rules:

(m-s(X,) « supaa(X, X;))@T
(supio(X) — m.s(X))@T
(sup2o(X) « m_s(X))QT

(sup2.a(X, Xp) «— supao(X),par(X, X;))@T
(sup2.2(X. Xp) « supaa(X, X,), s9(X,, Yy))QT
(sg(X, X) «— sup1.o(X), person(X))Qu
(s9(X,Y) « sup22(X, V), par(Y, V) Qv

Both the original database and the rewritten database generates the following

answer:

sg(a,c)@(uAv Awy Awz A ws)

2.6.5 Incorporating Negation

In recent years, representing negation in logic programming and deductive databases
have been studied and it is still an active area of research. In general, the problem with
such a deductive database, which allows negative as well as positive literals to appear
in the heads and bodies of rules, is that it does not have a unique minimal model.
Uniqueness of the minimal model is significant because the minimal model represents
the semantic in‘erpretation of the deductive database. The perfect model, the well
founded model, and the stable model were introduced in (1, 7, 25] for general logic
programs and deductive databases as the semantic interpretation to handle negation
in such databases.

Lakshmanan and Sadri [11] extended the concept of stratified databases to handle
uncertainty in the presence of negative as well as positive literals in the heads and

bodies of rules provided that the database remains stratified.

62

2.6.8 Stratified Uncertain Databases

A deductive database D, which allows negative and positive literals in the body of
its rules, is stratified provided that the predicates of D can be partitioned into sets
P,,..., P, such that if given the following rule:

TiP* quyeeesGny " Giye o9 Gky
where p € P, then q € P;, for some j < i.

P; (Vi€ {l1,...,k})is called a strataof D. Although stratified databases can have
more than one minimal model, there is a unique minimal model among them that
could be obtained by computing the predicates in the order of the strata, starting
from the strata P; which have the lowest order.

Lakshmanan and Sadri in [11] extended the stratified databases to stratified uncer-
tain daiabases. The stratified uncertain database is defined as an IST-based deductive
database where the rules, without sources vectors, form a stratified program. The
source vector negation is nceded for the manipulation of source vectors for negative
literals. For example for a rule of the form:

(P < q1,-+sqm,—T1y...,7 T,)@z, where
is the stratified uncertain database D, if ¢;Qu; (Vi = 1,...,n and r,Qu;, (V) =
1,...,m) are already obtained, then

PQ(uy AL AUy A(mvr) ... A (Pop) A)

can be derived.

2.6.7 Summary

In the Information Source Tracking Method (IST), introduced by Sadri [18, 19], ac-
curacy (certainty) of data is modeled by the reliability of information source(s) con-
tributing to the data. IST-based deductive databases, introduced by Lakshmanan
and Sadri {11] extended the IST concepts to deductive databases where they studied
query processing techniques for the new model. SLD-resolution, a top-down evalu-
ation technique used in logic programming, is extended to handle the manipulation

of the source vectors associated with the facts and rules of the positive uncertain

63

database. Magic sets method, a rule-rewriting technique used in conjunction with
bottom-up query evaluation in deductive databases, is extended to manipulate the
source vectors associated with the rules and facts of the positive uncertain database.
Both approaches, in [11] were proven to be correct. Stratified databases were ex-
tended to handle negation in an approach similar to that in the regular deductive
databases.

IST and IST-based deductive database are capable of modeling probabilistic data
interdependencies, an issue that created difficulties in other models. In addition, both
models calculate the reliabilities of answers to queries as the last step in the query
processing algorithms of each model. In this case, the reliability of the contributing

sources determines the accuracy of the answers to queries.

64

Chapter 3

The Model and The Extended
Relational Algebra Operations

A formal approach to the Ertended Relational Model
and the Extended Relational Algebra Operations.

3.1 Our New Model

We will assume that an extended relational model will have k& sources. In other
words, k is the number of sources (observers) providing us with the information to be
stored in the extended relations of our model. Any source or observer can contribute
to any tuple or attribute value provided. Based on this intuition, we will associate
an additional attribute whose values (source vectors) will be associated with each
tuple in the extended relation. The value (source vector) of the additional attribute
indicates the contributing sources and the condition under which the tuple exists in
the extended relation. Moreover, with each attribute in the extended relation we
associate a source attribute whose value, a source vector, is associated with the value
of that attribute to indicate the information sources that contributed to that attribute
as well as the information sources that contributed to the tuple or to the condition
under which the tuple exists in the extended relation.

Consider, for example, an information source s; that confirms the existence of a
tuple ¢ in an extended relation. Then the i*h element of the source vector associated

with ¢ is set to 1, and the remainingelementsof the source vector are set to 0 indicating

that the other sources did not participate (confirm). Having this concept in mind,
we say that the source s; contributed positively to the condition under which tuple ¢
exists in the extended relation r. Similarly, for an information source s, that confirms
the information value for an attribute A; of tuple ¢, the i** and the j** elements of
the source vector, which is associated with the information value of attribute A,
are set to 1 and the remaining elements of the source vector are set to 0. Setting
the i** and the j** elements of the source vector associated with the attribute A; of
tuple ¢ in r indicates that the value for attribute A, is valid whenever the source
si, who contributed to the condition under which the tuple ¢t exists in r, is reliable
and the source s,, who contributed to the value of attribute A;, is reliable. In other
words, the validity of an attribute value of a tuple ¢t in r depends on the source(s)
contributing to the tuple ¢ and the sources contributing to the attribute value. The
source vectors that are associated with every attribute value of a tuple in the extended
relational model will usually have 1 and 0 elements, showing the contributed and the
non-contributed information sources respectively. Some attribute values, in answers
to queries, might have source vectors with —1,0,1 elements or T . A source vector
with a —1 entry at position 7 indicates that the corresponding attribute is valid if
the information source s, is not reliable (correct). A source vector with a T entry at
position i indicates that the corresponding attribute is not consistent with respect to
source s;. We allow special source vectors T' (True) and F (False) to indicate that
the information they are associated with is correct and incorrect respectively. The
same concept will hold for the source vectors associated with the pure tuples of an
extended relation. In the coming sections we will explicitly define these concepts.
An extended relation scheme R = {A,,...,An, Sag,S4s;---254.} is a set of reg-

ular attributes A;,... A, and special attributes Sy,,...,54, called the source at-

tributes. The special attributes Sy,,...,S5,, are associated with A,,..., A, respec-
tively. Values for source attributes are defined to be source vectors, where every
source vector has a fixed length k (k is the number of contributing sources.) More-
over, Sy, is the source attribute whose values, source vectors, are associated with the

pure tuples in the extended relation. A value (source vector) of Sy, indicates the

66

condition under which the tuple exists in the extended relatior. ». A schema for an
extended relational database is a set of extended relational schemas such that the
domain of source attributes remains the same in all extended relations.

An extended relation instance r is a finite subset of D; x... x D, x Dg 4 X Dg ”
X...x Ds, ,where Dy,..., D, are the domains of the attributes Ay, ..., A, respec-
tively, and Ds, , Ds, , ..., Ds,, are the domains of Sy, S4ys- -y 54, Tespectively.
We say that any tuple £ in r is made up of values for the regular attributes Ay,..., A,
and values, as source vectors, for the source attributes S4,, Sa,,.-.,54,. For example,
consider the following extended relational scheme, R = { Ay, Az, A3, 54, 54,,54;, 545}

where k (number of source vectors) is 4.

Al AZ A3 SAo SA) SA: SA3
a, | a; |az | 1001 | 1101 | 1011 | 1111

We will denote an extended tuple ' in the extended relation r by '@U € r, where t
is a pure tuple, 1@l i.e., t is the restriction of ¢’ to the regular attributes, and Y =
{Us,...,U,} is associated with the pure tuple t, and m (m > 1) is the number of times
the pure tuple ¢ appears in the extended relation r. We define U = (ug, wy,. .., u,),
where U € U; uq is the source vector associated with the pure tuple ¢ in the extended
relation r. Moreover, we define (Vi) (1 < i < n) u; as the source vector associated
with the value of attribute A;. The expression of u,, for some U € U, shows the
information sources as well as their nature of contribution to the attribute value for
A, of tuple t.

In the above example, there are four source vectors (s, 82, 83,84} (k = 4) and
a single pure tuple ¢t = (a;, az,a3) such that t@U € r, where Y = {U} and U =
(uo, u1,uz,u3). The source vector ug = (1001) is associated with the pure tuple
t, where sources s; and s; contribute to the condition under which ¢ exists in the
extended relation r. The source vector u; = (1101) is associated with attribute value
A, = a; confirmed by sources s;,s3, and s4 of tuple ¢ in r. The source vector u; =
(1011) is associated with attribute value A; = a; confirmed by sources s;, s3, and s4
of tuple ¢ in r. Similarly, The source vector u3 = (1111) is associated with attribute

value A3 = a3 confirmed by sources s, s2, 83, and s4 of tuple ¢ in r. Notice that the

67

sources s; and 84, that contributed to the tuple (a,, a;,43), appear among the sources

that contributed to the attribute values a,,a;3, and a.

3.2 Information source vectors

Consider an extended relation r, whose extended scheme is R = {A;,..., A, Sa,,
Sayy «-., Sa, }. Let t@U € r, where U is associated with the pure tuple ¢ in r. If
U= {U,...,U,} and for any U € U, where U = (ug,..., un) we define the intended
meaning of the source vector u; as follows:

The source constants, {0,+1,—1,T}, are used to specify the meaning of the con-
tribution made by the information sources to the pure tuples and to the attributes
of the same tuple. In general, for a source vector u = (a1, ¢z,...,ax), the value of e,
specifies the meaning of contribution of the information source s; as follows:

a; = 0 means that the source s; neither confirms nor denies

a; = —1 means that the source s; denies

a; = +1 means that the source s; confirms

a; = T means that the source s; is inconsistent

The constants 0 and T denote under specification and over specification, respec-
tively. The case of a; = T happens when an attribute value of a tuple or a tuple is
confirmed and at the same time denied by the same source s;.

As defined by Sadri [18, 19], a source vector u = (ay, a2, ..,ax) specifies the con-
junction of the meaning of each information source s; as given by a,. A set of source
vectors £ = { uy,...,U,, } specifies the disjunction of the specification of the vectors
u1,...,Uun. The following definitions follow from section 2.5.1.

For a source vector u,

ew)= A fi A S

s,€S+ J,GS_
Note that e(u) = false if (3¢) (1 £ ¢ < k) such that a; = T.

For a set of source vectors z,

e(z) = \/ e(u),

u€z

68

We aim to answer queries in a relational database systems where data is uncertain.
The uncertainty of the data is modeled by the reliability of the information sources,
that provided the information to the database, and captured by the meaning given
to the contribution® of a source vector. The answer to a query reflects its uncertainty
because of the appropriate accompanying set of information source vectors that are
associated with the answers of the query. The query processing algorithm determines
the answer to a query along with their respective source vectors and the associated
reliability for each tuple in the answer to the query. The following example illustrates

our approach.

Example 10 Let us consider an application for a certain Coast Guard database. For
simplicity assume that the database designer is interested in the name and location
of a ship. Let the database system admit four observers that are providing the
information concerning the name, location, and type of a ship. Any observer (source)
could contribute to any attribute value. In other words, the first observer in the
first tuple in the extended relation » confrms that the location of “Atlantica” is the
“Atlantic Ocean” and the type of this ship is “Commercial”. A similar interpretation

holds for the other sources of the same tuple.

Let S = {sy, 52, 83,34 } be the set of source vectors that contributed to the information
presented in the extended relation r whose extended scheme is R = { Ship-Name,Ship-
Location, Ship-Type,Sa,, Sa,,S4,,S4, }, where

S, is the source attribute whose values (source vectors) are associated with pure
tuples in r. S4,, S4;, and S, are the source vectors associated with Ship-Name,

Ship-Location, and Ship- Type respectively.

Relation r
Ship-Name | Ship-Location | Ship-Type | Sa, |Sa, | Sa, | Sa,
Atlantica | Atlantic Ocean | Commercial | 1001 { 1001 | 1101 | 1011
Rlack Bird | Atlantic Ocean | Commercial | 0101 | 0111 | 1101 | 1111
Black Bird | Atlaniic Ocean | Commercial { 1010 | 1010 | 1110 | 1011

confirms, denies, don’t know, or inconsistent.

69

Let ¢, = (Atlantica, Atlantic Ocean, Commercial) and {; = (Black Bird, Atlantic
Ocean, Commercial). Let A, = Ship-Name, A, = Ship-Location, and Az = Ship- Type.

We say t,@U and t,@V € r,where= { U }and V={ V,W };

U = (ug,u1,u2,u3), V = (vo,01, v2,03), W = (wo, wy, wq, w3).

up = 1001, u; = 1001, up = 1101, u; = 1011.

vo = 0101, vy = 0111, v, = 1101, v = 1111,

wp = 1010, w; = 1010, w, = 1110, w3 = 1011.

e(uo) = 8 A 84 is the expression of the condition under which pure tuple ¢, exists
in r; and e({vo,wo }) = (82 A 84) V (51 A 83) is the expression of the condition under

which tuple t; exists in r.

Source vector operations conjunction, disjunction, and negation and theorems 8, 9,
10 were given in section 2.5.2.

It should be clear that the expression of a source vector gives the meaning of
contribution to information presented as a tuple or as an attribute. Theorems 8, 9, 10
are introduced to capture the meaning of new source vectors (z) after a A,V, and-
are performed on other source vectors like z and y.

These operations are required to identify the information sources that contributed

to the answers to queries.

3.3 Extended Relational Algebra Operations

Like the regular relational database system, we expect that the query processor ac-
cepts the query and uses the extended relations giving an extended relation as the
answer to the query with the corresponding reliabilities. Calculating the reliabilities
is the last step done by the query processor and is based on the algorithms given hy
Sadri [18, 19].

Let r; and r; be two extended relations whose schemes are R; and R;, where
R, = { Ay,...,Ap, S4,,S4,,..-,54, } and Ry = { By,..., B, SBy> S8,y SBn
}. Let t,@QU € vy, whereld = {U;,...,U, }, pis the number of times pure tuple ¢,
appears in ry, and U = (ug, uy,...,uy) (VU € U). Similarly, let L@V € rp, where

70

V={W,..,V, ,,V={(ve,v1,...,um) (YV € V), and q is the number of times pure

tuple ¢; appears in the extended relation r,.

3.3.1 Extended Selection (¢’)

Let r and r’ be the extended relations defined by r’' = o', (r), where F is a formula

involving:
1. Operands that are constants or attributes A; € { A;,..., A, }.

2. Arithmetic comparison operators <, <, >, 2, =, #.

3. The logical operators A (for AND), V (for OR), and - (for NOT).
Formulas are defined in the usual way:

I. F = A,Oc is a simple formula, where c is a constant and O is an arithmetic

comparison operator,
2. F = A;0A; is a simple formula
3. If F; and F; are formulas, then (Fy A F2) is a formula
4. If Fy and F; are formulas, then (F; V F3) is a formula

5. If F is a formula, then —(F) is a formula

Assume that the formula F (seiection condition) is converted to a disjunctive
form,i.c., F = F; V...V Fy, where each F; is a conjunction of simple formulas. If a
pure tuple ¢ satisfies F\ it satisfies at least one F. Let Fy,..., Fy, be the conjuncts
satisfied by t. Consider QU € r for any U € U. We are interested in finding
Ui = (Wo,i1,...,uin) (1 €1 £ p') associated with pure tuple ¢ in »'. The value
u';p needs to be determined for each selected tuple in r’;. The source vector for u';o
can be obtained, as a function of ug,uy,...,u, using the conjuncts Fy,,.. .,F,p, as

follows:

71

Define, Vi € {1,..,p'}, A, = {A | attribute A appears in F,, }, S, = {u | source
vector u is associated with A € A;, }. Let

C(S)= A u

u€ES:,

Finally, ' = {t@QU"; | Vi € {1,...,p'}, (U = (¢'s0, i1, .., t'w), where v’y =
ug A (C(S4,), v'ij = w'ip Au; 1 <5 <n,and t satisfies F,,) }.

Example 11 Consider the following selection: ry = o’,ry, where F is the formula
(Stud-Address = “St. Paul” AND Stud-DOB > “01/01/1955") OR (Stud-DOB >
“01/01/1970" AND Stud-DOB < “01/01/1980”).

Relation r,
Stud-Name | Stud-Address | Stud-DOB | &4, | Sa, Sa, Sa,
John St. Paul 10/07/1956 | 10000 { 10101 | 11100 | 10010
Sally S.. Paul 02/06/1954 | true {01100 | 11000 | 01101
Mary St. Jack 01/01/1973 | true | 10110 | 11010 | 10010
George St. Dennis 02/02/1978 | 11000 | 11011 | 11011 | 11001
_Peter St. Paul 08/08/1975 | 00011 | 10011 | 11011 | 01011
The resulting extends=d relation is represented as follows:
Relation v’y
Stud-Name | Stud-Address | Stud-DOB | Sy, | Sa, Sa, I Ay
John St. Paul 10/07/1956 | 11110 { 11111 [11110 | 11110
Mary St. Jack 01/01/1973 | 10010 | 10110 | 11010 | 10010
George St. Dennis 02/02/1978 | 11001 | 11011 | 11011 | 11001
Peter St. Paul 08/08/1975 | 111011 | 11011 | 11011 | 11011
Peter St. Paul 08/08/1975 | 01011 | 11011 | 11011 | 01011

The values (source vectors) for the source attribute Sy, associated with the tuples
of the extended relation r; and some values (source vectors) for the source attributes
Sa;yS4;,S4,, of some tnples in 7'y, associated with Stud-Name, Stud-Address, and
Stud-DOB respectively, have new values in the extended relation r';. For example,
the source vector (11110) associated with the first tuple t of r'; is obtained by the
conjunction operation using the source vectors (10000) associated with the pure tuple
t in ry, (11100) associated with Stud-Address = “St. Paul”, and (10010) associated

"2

with Stud-DOB = “10/07/1956”. These attributes satisfy the first part of the .election
condition F (Stud-Address = “St. Faul” AND Stud-DOB > “01/01/1955) presented
in the given query. The source attributes Sa,, S4, and S4, have new values in
r'. (11111) = (10101) A (11110), where (10101) is the source vector associated
with Stud-Name = “John” of the first tuple in r; and (11110) is the source vector
associated with the tuple t in r';; (11110) = (11100) A (11110), where (11100) is
the source vector associated with Stud-Address = “St. Paul” of the first tuple in
and (11110) is the source vector associated with the tuple ¢ in r'y; moreover, (11110)
= (10010) A (11110), where (10010) is the source vector associated with Stud-DOB
= “10/07/1956" of the first tuple in r; and (11110) is the source vector associated
with the tuple ¢t in r'). In the tuple (Mary, St. Jack, “01/01/1973"), the value of
Sa, i3 changed to (10010) since this tuple satisfies the second part of the selection
condition F (Stud-DOB > “01/01/1970” AND Stud-DOB < “01/01/1980”); in this
tuple the values for Sy,, S4,, S4, did not change since the source vectors s; and s4 are
shown among the source vectors (10110), (11010), and (10010) associated with values
corresponding to attributes Stud-Name, Stud-Address, and Stud-DOB respectively.
The same argument holds for the tuple (George, St. Dennis, “02/02/1978", of the
extended relation r’y. The tuple t = (Peter, St. Paul, “08/08/1975”) in r; is presented
twice in r’; since it satisfies the first part of the selection condition, (Siud-Address =
“St. Paul” AND Stud-DUB > “01/01/1955"), and th= secoud part of the selection
condition (Stud-DOB > “01/01/1970” AND Stud-DOB < “01/01/1980”); (11011),
associated with ¢ in 'y, ' the result of the conjunction -peration using the source
vectors (00011), associated with ¢ in 7y, (11011), associated with Stud-Address = “St.
f aul” of tuple t in ry, and (01011) associated with Stud-DOB = “01/01/1956” of tuple
t in ry. The source attributes S4, and S4, have new values in 7/;. (11011) = (11011)
A (01011), where (11011) is the source vector associated with Stud-Address = “St.
Paul”, and (01011) is the source vector asscciated with Stud-DOB = “08/08/1975”.
The source vector (11011) did not change since the source vectors sy, 83, 84, and ss
are among the source vectors that are contributing to Stud-Address = “St. Paul”.

Morcover, (01011) is the new source vector associated with the last tuple, as a second

73

instance of tuple ¢, in the extended relation 7’y since the tuple ¢ in r; satisfies the
second part of the selection condition F'. The same interpretation holds for the source

vectors associated with the attribute values of £ in r';.

3.3.2 Extended Projection (II')

Let v = [T', (r), where X = {A;,...,Ai,, } € { Ay,...,As }. Define Sx = {
Says-+-154,, } to be the set of source attributes associated with the regular at-
tributes in X. The extended relational scheme of ' is R’ = { Aj,,...,Ai,,, Sa, s+ s
Sa.,} T 10 € r; we would like to find U’ such that t'QlU’ € r', where U’ = {
U,-..,U'p}, using t@QY € r. Clearly,

ry={tQU' | (VU e U) (tQU e€r, V' =1(X) and U’ = (up ,uiy, ..., ui,)) }

Example 12 Consider the projection of relation 7'y of Example 11 The relation 7"

=[1'x (r'1), where X = { Stud-Name, Stud-DOB }, is shown below.

Relation
Stud-Name | Stud-DOB | Sp, | Sa, Sa,
John 10/07/1956 | 11110 | 11111 | 11110
Mary 01/01/1973 | 10010 | 10010 | 10010
George 02/02/1978 | 11001 | 11011 | 11001
Peter 08/08/1975 | 11011 | 11011 | 11011
Peter 08/08/1975 | 01011 | 11011 | 01011

3.3.3 Extended Union (U)

Let r3 = r, U' vy, where r; and r, have compatible schemes. We definc r3 = {{1QU |

tQU € r, or tQU € r,}.

Example 13 As an example, let r; and r; be the following extended relations on
schemas Ry = R; = { Stud-Name, Stud-Address, Stud-DOB, Sa,,S4,,S4;,54,}-

74

Relation r,

Stud-Name | Stud-Address | Stud-DOB | S4, Sa, Sa, Sas
John St. Paul 10/07/1956 { 10000 | 10101 | 11100 | 10010
Sally St. Paul 02/06/1954 | 00011 | 01111 | 11011 | 01111
Mary St. Jack 01/01/1973 | 11001 | 11001 | 11101 | 11011
George St. Dennis 02/02/1978 | 10001 | 10011 | 10011 | 10001
Peter St. Paul 08/08/1975 | 10101 | 10101 | 11101 | 11101
B Relation r,

Stud-Name | Stud-Address | Stud-DOB | Sy, S4, Sa, Sa,
Mark St. Jack 03/03/1976 | 10101 | 10101 | 11101 |} 11101
John St. Paul 10/07/1956 | 10000 | 10101 | 11100 | 10010
George St. Dennis 02/02/1978 | 10011 | 11131 | 11011 } 11111
Peter St. Paul 08/08/1975 | 00100 | 01100 | 11100 | 01101
Then r3 = r; U ry is as follows:

Relation r3

Stud-Name | Stud-Address | Stud-DOB | S4, Sa, Sa, Sa,
Mark St. Jack 03/03/1976 | 10101 | 10101 | 11101 } 11101
John St. Paul 10/07/1956 | 10000 | 10101 | 11100 | 10010
Sally St. Paul 02/06/1954 | 00011 | 01111 | 11011 | 01111
Mary St. Jack 01/01/1973 | 11001 | 11001 | 11101 { 11011
George St. Dennis 02/02/1978 | 10001 | 10011 | 10011 | 10001
George St. Dennis 02/02/1978 | 10011 § 11111 { 11011 | 11111
Peter St. Paul 08/08/1975 | 10101 | 10101 | 11101 | 11101
Peter St. Paul 08/08/1975 | 00100 | 01100 | 11100 | 01101

Let W = UAV be defined as W = (ug A vo, t1, uz,..., tn, v1, Vzy..., Um)-

P
Moreover, we define the catenation of the pure tuples t; and t; as t3 = (¢;.13) to be

75

3.3.4 Extended Cartesian Product (x’)

Consider the two extended relations 7, and r, defined on the schemes R; and Rz, of
Section 3.3, respectively, and let r3 = 7y x’ ry. The scheme R3 of the extended rela-
tion rj is defined as: R3 ={Ai,...,An, B1,--.,Bm, Sags Sayy+++154ns SBysev+158m 11
where S4,,...,54., SBy»-.-, 9B,, are the source attributes associated with the regu-
lar attributes Ay,...,A,, B,..., B, respectively. S,, is the source attribute whose

values (source vectors) are associated with the tuples of the extended relation ra.

the regular catenation of two pure tuples t; and t;. Then,
™ X'TQ = { ta@w l tl@U €, tz@v € ro, and W = UAV) }
)

Example 14 Let r; and r; be two extended relations on the schemes R, and R
respectively. R, = { Stud-Name, Sa,,,Sa,, } and R, = { Prof-name,Prof-DOB,
SAzo’SAn’SAzz }

Relation ry
Stud-Name | Sa,o | Say,
John 0110 | 1110
Sally 1100 | 1110

Relation r,
Prof-Name | Prof-DOB | Sa,, | Sa, | San
Heather | 01/01/1968 | 1000 | 1001 | 1000
Heather | 01/01/1968 | 0100 | 1100 | 0100
Stacy 05/05/1960 | 1001 | 1001 | 1001

Then, r3 =ry X' 1y, is as follows:

Relation ra
Stud-Name | Prof-Name | Prof-DOB | Sa,, | Say | San | Sas
John Heather 01/01/1968 | 1110 | 1110 | 1111 | 1110
John Heather 01/01/1968 | 0110 | 1110 | 1110 | 0110
John Stacy 05/05/1960 | 1111 | 1111 | 1111 | 1111
Sally Heather 01/01/1968 | 1100 { 1110 | 1101 | 1100
Sally Heather 01/01/1968 | 1100 | 1110 | 1100 | 1100
Sally Stacy 05/05/1960 | 1101 | 1111 | 1101 | 1101

3.3.5 Extended Join (X')

Consider two extended relations r; and r, on the schemes R, and R,, respectively.
Let the set of common attributes be X, i.e. X = {A,,...,An}N{By,...,Bn}, and
let X; = {A;,...,A,} = X. We define Sx, = {u | source vector u is associated with
t1(A), (VA),(A € X)}. Similarly, let X; = {By,...,Bn} — X. We define Sx, = {v|
source vector v is associated with tz(B), (VB),(B € X)}.

76

Now, let Sx = Sx, U Sx,. If r3 = r; @’ ry, then the extended scheme Rj of the
extended relation rj is defined as: R; = {A,-;,...,Aj:l,, Ajisyeroy Ajuyy Bity- o ,B,-:n,,
Says SA,: ""’SA’I.f’ Shpre15Ap s SB.;,...,SB.;"}, where Sy, is the source at-
tribute whose values (source vectors) are associated with tuples of the extended
relation rj, SA’;,. .. ,SA,; | are the source attributes associated with the attributes
Ajiyoey Aj Shyse-+154,, are the source attributes associated with the attributes
Ay,..Aj,,,» and SB'; y e ’SB‘Q. | are the source attributes associated with the at-
tributes By, ... ,B,:n'.

Define C(Sx) = /; u, we will define t3@W € rs,where t3 = ti0t; and W = U/J\V
= (wp, wj:l,...,w_,-::?,):vj,,. ey Wiy Wity .,w,-:",), where wo = (uo A vo A C(Sx)),
wy, = wo Aujr (VI € {1,...,n'}), w, = wo Ay or wj, =wo Ay (V€ {L,...,m1}),
and wy = wo Avg(¥l € {1,...,m'}). wo is the source vector associated with the
pure tuple t3, wjr, ..., wy, are the source vectors associated with ¢1(4;1), ..., t1(A;,)
respectively, wj, , ..., w,, are the source vectors associated with ¢,(A;,) (4;, = By,),

ovos t1(A;n,) (Aja, = Bipn,) respectively, and wy,...,wy , are the source vectors

associated with t3(By),...,t2(Bir) respectively.

!
1 m!

rz3= {t3@l'V I tl@U € Tl,tz@v € T2,t3 = tlotg, W = UAV},
J
where ¢;0t, denotes the join of (joinable) tuples ¢, and t,.

Example 15 As an example, let r;, which represents the extended relation of stu-
dents, have the extended relational scheme Ry = { Stud-ID, Stud-Name, Sa,q, Sa,,,
Sa,; }. let ry, which represents the extended relation of students that are teaching
courses, have the extended relational scheme R; = { Stud-ID, Course-Num, Course-

Date,S a,y,S a2y ShzarSass }s Let 73 = 1y X' 19, where Rz = R; (in this case).

Relation r,
Stud-ID | Stud-Name | Sa,, | Sa,, | Sy,
12345 | John 010 } 010 {110
12346 Sally 100 {100 {101

7

Relation r;

Stud-ID | Course-Num | Course-Date | Sa,, | Say | Sazs | Sans

12345 | COMP 546 | M 8:00-9:45 | 100 | 100 | 101 | 100

12346 | ELEC 520 T 8:00-9:15 {001 {001 |111 | 011

12347 | DESC 554 M 8:00-9:00 | 100 | 110 | 101 | 100

B Relation r3

Stud-ID | Stud-Name | Course-Num | Course-Date | Sa,, | Sas, | Sy | Saza | Saq,
12345 | John COMP 546 | M 8:00-9:45 | 110 | 110 [110 [111 [110 |
12346 | Sally ELEC 520 | T 8:00-9:15 |[101 |101 {101 | 111 | 111

To understand the result 73, let us consider tuple t,;QU € ry, where t; = (12345,
John) and U = { (010, 010, 110) }. ug = (010) is the source vector associated with
tuple ¢, u; = (010) is the source vector associated with the attribute value Stud-1D)
= 12345, and u, = (110) is the source vector associated with the attribute value Stud-
Name = “John”. In relation ry, we consider {,@V, where t, = (12345, COMP 546, M
8:00-9:45) and V = { (100, 100, 101, 100) }. vo = (100) is the source vector associated
with tuple ¢5, v; = (100) is the source vector associated with attribute value Stud-1I)
= 12345, v, = (101) is the source vector associated with Course-Num = COMP 546,
and v3 = (100) is the source vector associated with Course-Date = M 8:00-9:15. When
the tuples t; and t; are joined, we will get 13@W € r3, where t3 = t)ol; (regular join)
and W = (wo, wy, wa, w3, wy). = (ug A vo A uy A vy, wo A uy,wo A uz,wp A va,wy A v3)

= (110, 110, 110, 111, 110).

Theorem 16 r, X' r; = [T'y(0'F(ry x'12)), where Y = {Ay,..., A} U{By,..., By}
and

F = A (TI.A = 7'2.A).
AE{A]....,An}ﬂ{Bl,...,Bm}

Proof: We wil' arove the following:
(1). 11 ¥ ry C [Ty (0'F(r1 %' 12))
(2). O'y(o'F(r1 X' r3)) C 7y W' 1y
(1) Consider t3 € r; X' 1y, then (VU € U) (VV € V) (L3 = tjot; and W = U/J\V,

where t,@QU € ry, $,@V € 1y, and t; and {; join). W = (wo, Wigye e oa Wty Wyyyenes

78

wj, w;;,...,w,-;‘,), where wo = ug A vo A C(Sx). wjp = wo Auy(Vl € {1,...,n'}),
wj, = wo A (VI € {1,...,m1}), wi = wo Avg(VI € {1,...,m'}). Let #'3 = x'ry,
$h@QU € ry and t;@V € 1y, we have 'y = t;.t; and W" = UpV = (w”o,w"y,...,w",,
w"y, ..., w"y), where w”o = ug Avg, w"; = uj Aw'y (Vj € {f, cooyn}), W = v Ay
(Vi € {1,...,m}). It follows that ¢'3@W;"” € r; x'r,. If we consider '3 = o'p(r"3),
then we have t'3@W’ € r's; W' = (o, w'jr ..., w50, w's, .o, Wy, w0y,
w'iy,..,w',), where w'o = w" AC(S), w'y, = wo A"y, (VI € {1,...,n'}), v'; =
wo Aw”, (VI € {1,...,m}), Wy, = wo Aw"y, (VI € {1,...,m'}), and vy =
wo Aw”;, (VI € {1,...,m}). i welet r3 =]’y (r's), then W = (wp, Wity Wit
Wyseery Wy s w;;,...,w,-:n,), where wo = wlo, wy = w'y(Vl € {1,...,n'}), w;, =
w' (VI € {1,...,m}), and wy = w'y(Vl € {1,...,m'}). Therefore, we deduce that
QW € [T'y(0'Flry X' 13)).

(2). Consider t3 € [T'y(¢’F(r1 X’ r2)), then there exits t;@QU € r; and t,@V € ry,
where '3 = t1.t,, W" = UpNV = (w9, w", ..., 0", w",...,w",), where w"y =
ug A vo, w" = w A wy (VI p€ {1,...,n}), "y = W A v (VI € {1,...,m}), and
t'3@W" € ry x'ry. It follows that if we let v'3 = o'p(r"3), then we have t3@W’ €
r'a; W= (wo, W'y, .oy, whhy, ooy Wl s Wy ooy wla Wy, Win)y
where w'y = w"p AC(S), w'j, = wo A w"j, (VI € {1,...,0'}), w'; = wo A 0"},
(e {l,....m}), v, = woAw'y (VI € {1,...,m'}), vy, = woAw";, (VI €
{1,....,m}), and t@W’ € r'3. Now, let 3 = [1'y(r'3), then W = (wo,wjs,,...,wjr_,,
Wiy «eey Wiy y Wi, -.., Wir_,), where wp = w'o, wy, = w'p, (V1 € {1,...,n'}),
w;, = w'; (Ve {l,...,m)}, wy, = w'y (VI € {1,...,m}). Therefore, we deduce
that t3@W € ry ™' 7y,

3.3.6 Extended Intersection (N')

For two compatible extended relations r; and r, we define r3 = r; N' ro whose ex-
tended scheme, R3 = {A,...,An, Say,Says--+,54, }, is compatible with the ex-
tended schemes of r; and r,.

It follows that the extended intersection is a special case of an extended join;

hence the set of common attributes X4 = R, = R;. Then,

79

b n' Ty = {t@W l (W = U/I\V,t@U eEn and tQV € 1‘2)},
where W = UAV = (wo,w1,...,wy) such that wy = (ug Avg AC(Sx)), 0 <k < n.
1

Example 16 Consider the extended relations r; and r;.

Relation m
Stud-Name | Stud-Address | Stud-DOB | Sa, | Sa, | Sa, | Sa,
John St. Paul 10/07/1956 | 100 | 110 | 110 | 110
Sally St. Paul 02/06/1954 | 001 | 011 | 101 | O11
Mary St. Jack 01/01/1973 | 100 | 100 | 101 | 101
George St. Dennis 02/03/1975 | 100 | 101 | 100 | 100
Peter | St. Paul 08/08/1975 | 101 | 101 | 101 | 111

Relation r,
Stud-Name | Stud-Address | Stud-DOB | Sa, | Sa, { Sa, | Sa,
Mark St. Jack 03/03/1976 | 010 | 110 | 010 | 110
John St. Paul 10/07/1956 | 010 | 110 | 110 | 010
George St. Dennis 02/03/1975 | 001 | 001 | 101 | 101
Peter George Vanier | 03/06/1978 | 001 | Oil | 101 | 011

Then r3 = r; Nry is as follows:

Relation r3
Stud-Name | Stud-Address | Stud-DOB | Sa, | Sa, | Sa; | Sa,
John St. Paul 10/07/1956 | 110 | 110 | 110 | 110
George St. Dennis 02/03/1975 | 101 | 101 | 101 | 101

In this example, we have t;@QU € ry, where t; = (John, St. Paul, 10/07/1956)
and U = (100, 110, 110, 110); t,@QV € ry, where V = (010, 110, 110, 010).

We notice that the pure tugple ¢; exists in both extended relations. t; will appear
in the extended relation r3 with a source vector W that is calculated as follows.
W = (wo, w,ws, ws), where wo = wy = wy = w3 = 100A 010 A110 A110A 110 A
110 A110 A 110 A 010 = 110.

80

3.3.7 Extended Set Difference (-')

Let ry and r; be two extended relations having schemes R; = R, respectively. Let

r3 = r; ~' ra. In this case, r3 will have a scheme R; = R; = R,.

Definition 29 For each QU € r, where U = (up,...,u,) we define the set of con-

tributing source vectors vectors(U® = {ug,uy,...,u,}. Then
rm —'ry = {tQU | tQU € ry and AV suchthat tQV € r,}

U

{teW | 1QU € r,tQY € ry, and wy € (\P/ N (vectors(U;)) A ﬁ(\q/ N(vectors(V;)),

j=1 j=1

where W = (wp,...,w,) € Wyw; = wp,i =1,...,n}
U

{taW | t@U € r, thereexists V s.t.tQV € r,, W = (wo,...,wn), wherewp =
up A 'y, AL AUn Uy = ujoru’; = —ujandat leastoneu’; = —wj, and Vi =

l,...,n, w,-=wo/\u.~}

Example 17 Let r, and r, be two extended relations having the same schemes R,

and R; respectively.

Relation ry]
Stud-Name | Stud-Address | Stud-DOB | Sa, | Sa, | Sa, | Sa,
John St. Paul 10/07/1956 | 100 | 110 | 100 | 110
Sally St. Paul 02/06/1954 | 001 | 011 | 101 | 011
Mary St. Jack 01/01/1973 | 100 | 100 | 101 | 101
George St. Dennis | 02/03/1975 | 100 | 101 | 110 | 100
Peter St. Paul 08/08/1975 | 101 | 101 | 101 | 111

A pure tuple ¢ that exists in r, indicates that the student corresponding to the

pure tuple ¢ is registered in the university and is or is not attending courses at the

university. A pure tuple ¢ in r, indicates that the student corresponding to the pure

tuple ¢ is registered in the university and is registered in some courses at the same

university.
Relation rq
Stud-Name | Stud-Address | Stud-DOB | Sa, | Sa, | Sa, | Sa,
John St. Paul 10/07/1956 | 101 | 101 | 111 | 10!
Mary St. Jack 01/01/1973 | 100 | 100 | 101 | 101
George St. Dennis | 02/03/1975 | 001 | 011 | 011 | 001
Peter St. Paul 08/08/1975 | 001 | 101 {001 | 101

Assume a query is interested in the list of students who are registered in the
university but are not registered in any course offered by the university. Asan answer
to this query we are interested in listing the tuples t,@W; € r; —' rp taking into
consideration the manipulation of the source vectors contributing to the tuples in the

extended relations (r; and r;) and the source vectors contributing to the individual

attributes.
Relation r
Stud-Name | Stud-Address | Stud-DOB | Sa, | Sa, | Sa, | Sa,
John St. Paul 10/07/1956 | 11-1 | 11-1 | 11-1 | 11-1
John St. Paul 10/07/1956 [1-10 | T |1-10| T
Sally St. Paul 02/06/1954 | 001 | 011 {101 | Ol11
Mary St. Jack 01/01/1973 | 10-1 |10-1 | T T
George St. Dennis 02/03/1975 | 1-1-1 | T T I-1-1
George St. Dennis | 02/03/1975 | 1-11 | 1-11 | T 1-11
George St. Dennis 02/03/1975 | 11-1 | T 11-1 | 11-1
Peter St. Paul 08/08/1975 | 1-11 1 1-21 |1-11 | T

If a pure tuple ¢ appears in r; but does not appear in rq, then this indicates, in
this example, that the student is registered in the university but he is not registered
in any course since the pure tuple ¢ does not appear in the extended relation r,. On
the other hand, if a pure tuple ¢ appears in Loth extended relations ry and rz, then
this indicates that the student is registered in the university and is registered in some
courses too. Note that in both cases, for a pure tuple to exist in any extended relation

the sources contributing to the pure tuple ¢t must be true.

82

Consider, for instance, the tuple t@QU € ry, wheret = (John, St. Paul, 10/07/1956)
and U = (100,110,110,110). Moreover, t@QV € r;, where V = (101,101,111,101).
We are interested in finding t@W € r;, —' r;. If we consider t@U € r; we notice
that the tuple exists in r; whenever sources contributing to the tuple as well as to
the individual attribute values are reliable. Based on this, pure tuple ¢ exists in r;
provided that sources s; and s;, which is the result of the conjunction between the
source vectors (100), (110), (100), and (110), are reliable. Similarly, pure tuple ¢
exists in r, provided that sources s;,8; and s3 are reliable. Mow it should be clear
that pure tuple ¢ exists in r3 when the sources contributing to ¢ in r, are reliable and
the sources contributing to t in r, are not. In cther words, pure tuple tQ@W € rj,

where
W = (110A—(111),110A—(111),110A~(111),110A-(111)) = (11-1,11-1,11~-1,11-1).

The previous result is not the only case to be considered. There are other cases
that should be listed too:

Given vectors(U) = {uy,uz, u3} = {160,110}

wor =g AUy Aua Auz =100 A-110A 100 A110=T

Woy =Ug AUy A ug Auz =100A110A-100A110=T

woz =U AUy Auag A-uz3 =100 A110A100 A 110 =T

wo =up AUy A-uz Aug = 107A-110A-100A 110 =T

wos =ug A -uy Aug A ~uz =100 A -110A 100 A-110 =1 - 10

wee =up Ay A-ugA~uz =100 A110A-100A-110=T

wor = Ug Ay A ug A -uz =100 A -110 A-100A-110 =T

In this case Vi = {1,...,7} and Vj = {1,...,n}, we will calculate w; = we; A u;
toget w; =1-~10A110=T,w, =1—-10A100 =1-10, and w3 =1~10A110=T.

As aresult, t@(11-1,11-1,11-1,11-1) € r3 and t@(1-10, T,1-10,T) € r3.
In other words, pure tuple ¢ cxists in extended relation r3 provided that source sy, s2

but not s; are reliable or source s; but not s, are reliable.

83

Chapter 4

Semantics and Correctness of
Operations

We will present the formal semantics of our model and we
will extend the Alternate Worlds Model introduced by Sadri [19].

4.1 Alternate Worlds Model.

In this section we will formalize the semantics of our model. We will extend the
approach used by Sadri [19] to prove the correctness of the extended relational algebra
operations. “An extended relation represents a set of regular relations. Once we
identify this set, we can process a query on the extended rclations by processing
it against the (regular) relations represented by the extended relations. Of course
this approach is not computationally possible in general. What we need is a query
processing methodology that is applied to extended relations directly, is efficient, and
generates the same answers that would be obtained by processing the query against,
represented (regular) relations. A query processing methodology that satisfies the
latter condition is called “precise.”” Sadri [19]

In what follows, we will characterize the set of (regular) relations represented by
an extended relation.

Given an extended relation r on the (extended) scheme R , r = { t;@U,, t,@lU,,
..+, 1,@U, }; we define r* as a function from the set of subsets of information sources

S = { 81,82,...,8 } to the set of (regular) relations Rel on the scheme R — I, where

I is the set of scurce attributes, that is,
r* :25 — Rel
Let @ C S be a set of information sources. Assign truth values “true” to sources
in @, and “false” to other sources. (We will denote this assignment by the truth(Q)).
Let t = (ae1,a3,...,a,) be a pure tuple such that tQU € r and e(up) = true under
truth(Q). Let t’ be a tuplein 7*(Q); we define t’ asing t@U and Q ast' = COR(¢t, U, Q),
where t' = (b, b, .. .,bs) such that there exists at least one (& # NULL), and
b; = a; if e(u;) = true under truth(Q)
b; = NULL! if e(u;) = false under truth(Q).
Q)= {t'|t'=COR(t,U,Q), where tQU € r and e(uo) = true under truth(Q). }
Definition: The Alternate World of an extended relation r represents the range of
function r*. If we define rep(r) = »*, then the set of (regular) relations r*(Q), (VQ)(Q C
S), is called the alternate world model of the extended relation r. In other words, the
alternate word representation of an extended relation r is the set of regular relations
COR(t,U,Q) corresponding to tu-

ples tQU € r that are valid provided that the sources in @ are correct and all other

where each regular relation contains tuples t' =

sources are incorrect, for all @ C S.

Example 18 Consider the extended relation r, that represents the information gath-

ered by sources sy, 8y, and s3 on students.

Relation
Stud-Name | Stud-Address | Stud-DOB | Sa, | Sa, | Sa, | Sa,
John St. Paul 10/07/1956 | 100 | 110 | 116 | 100
Sally St. Paul 02/06/1954 | 001 | 011 | 101 | O11
Mary St. Jack 01/01/1973 | 100 | 100 | 101 | 101
George St. Dennis | 02/03/1975 | 100 | 101 | 100 | 100
Peter St. Paul 08/08/1975 | 101 | 101 | 101 | 011

We would like to find the alternate world representation of r;. We will consider
all subsets (@) of { s1,92,33 } and find their corresponding regular relations. Given
25 = { {}.{ s1},{s2},{s3},{s1,92},{s1,83}, {s2,83},{31,82,83} }, then the alternate

In our model we assume that all NULL values are different

85

empty set Q and the following:

world representation of r; consists of the empty regular relation corresponding to the

rep({s1})
Stud-N..me | Stud-Address | Stud-DOB
NULL NULL 10/07/1956
Mary NULL NULL
NULL St. Dennis | 02/03/1975

rep({s2}) and rep({sa}) are empty.

rep({s1,2})
Stud-Name | Stud-Address | Stud-DOB
John St. Paul 10/07/1956
Mary NULL NULL
NULL St. Dennis | 02/03/1975

TCP({sla 33})
Stud-Name | Stud-Address | Stud-DOB
NULL NULL 10/07/1956
NULL St. Paul NULL
Mary St. Jack 01/01/1973
George St. Dennis | 02/03/1975
Peter St. Paul NULL

rep({32’ 33})

Stud-Name | Stud-Address | Stud-DOB
Sally NULL 02/06/1954
rep({s1, 32, 53})

Stud-Name | Stud-Address | Stud-DOB
John St. Paul 10/07/1956
Sally St. Paul 02/06/1954
Mary St. Jack 01/01/1973
George St. Dennis | 02/03/1975
Peter St. Paul 08/08/1975

Definition: Let r be an extended relation, and O be the unary relational algebra

operator. An extended operator ©' is precise if

rep(0'(r)) = O(rep(r))

86

for all extended relations r, where ©(rep(r)) represents a function f such that f(Q) =
o (@) VRS S.
The graphical representation of this definition is depicted as follows:
r — O'(r)
i d
rep(r) — rep(0'(r)) = O(rep(r))
Definition: Let r; and r; be extended relations, and let © be a binary relational
algebra operator. An extended operator @’ is precise if
rep(r10'ry) = rep(r)Orep(rs)
for all extended relations r, and ry, where rep(r,)Orep(r;) represents a function f
such that f(Q) =n*(@)Or*(Q) VQ C S.

The graphical representation of this definition is depicted as follows:

r s — (r) © (s)
{ ! !
rep(r) rep(s) — rep((r) ©'(s)) = (rep(r)O(rep(s))

4.2 Extended Relational Algebra Operations are
Precise.

In this section, we will prove that the extended relational algebra operations arc

Pprecise.

4.2.1 Extended Selection is Precise

Theorem 17 (o’ is precise) The extended relational algebra operation Se-

lection is precise.

Proof: Let r; be an extended relation whose schemeis defined as R, = { A,,..., A,,
Sa0ySAyy---254, }. Let ry be the extended relation whose scheme is R; = R, and
let ro = 0',(r1). Let F = F,V...,VF, where each F; is a conjunction of simple
conditions. Let S be the set of source vectors.

We will show that for any Q C S

87

1. If t’ € r*(Q), then t’ satisfies the condition F and t' € r1*(Q)

2. ¥ € r"(Q) and t' satisfies the condition F, then t’ € ry*(Q).
(1). It € r°(Q), then there exist ¢ and U such that tQU € ra, e(up) = true
under truth(Q), and t' = COR(¢,U,Q). Let A = {A | t/(A) # NULL} and B =
{A | (A) = NULL}. Now, since r; = o',(r;), then there should exist t and V,
where tQV € r, and t satisfies F. Since ¢ satisfies F, then t satisfies at least one
F;. Let F.,,...,F,q, be the conjuncts satisfied by ¢. It follows that there should
exist V = (vo,v1,...,v,) such that t@V € r, pure tuple t satisfy F; for some
le{l,...,q}, and

® ug = vo AC(Sy,) and e(up) = true under truth(Q), where uq is the source vector
associated with pure tuple ¢ in r,. It follows that by theorem 8 e(vy) = true

unde. truth(Q), where v, is the source vector associated with pure tuple ¢ in ry.

o VA; € A, Ju, associated with {(A;) in ry such that u; = ugAv; where e(y;) = true
under truth(Q). It follows that by theorem 8 e(v;) = true under truth(Q), where

v, is the source vector associated with ¢(A;) of tuple ¢ in ry.

e YA, € B, Ju, associated with {(A,) in r; such that u, = us A v; where e(u,) =
false under truth(Q) and e(uo) = true. It follows that by theorem 8 e(v;) =
Jalse under truth(Q), where v; is the source vector associated with t(A;) of

tuple t in ry.

Now, pure tuple t satisfies the selection condition F;, and e(vo) = true under truth(Q);
moreover, since VA; € A, e(v;) = true under truth(Q) and VA; € B, e(v;) = false
under truth(Q), we deduce that ¢' € r1*(Q), where t' = COR(¢,V, Q) and t’ satisfies
F,,. Therefore, rep(c’r(r1)) C or(rep(r,)).

(2). If t' € r*(Q) and ¥’ satisfies F, then there exist ¢t and V such that t@V € ry,
€(vo) = true under truth(Q), and ¢' = COR(t,V,Q). Let A = {A | t'(A) # NULL}
and B = {A | t'(A) = NULL}. Now, since r; = ¢'r(r,), where t@V € r,, and since
t satisfies FF = F; V...V F,, then t satisfies at least one F;. Let F,,,..., F,q, be the

88

conjuncts satisfied by ¢. It follows that there exist some U € U such that tQU € ry,

where U = (ug,u1,...,Us), 4o = vo A C(S,,), and

o up = vg AC(Sy) and e(vg) = true under truth(Q), where v, the source vector
associated with pure tuple ¢ in r;. Moreover, e(C(S;,)) = true under truth(Q)
since t’ satisfies F. 1\ follows that by theorem 8 e(up) = true under truth(Q),

where ug is the source vector associated with pure tuple ¢ in r,.

o VA; € A, v, associated with ¢(A;) in ry such that e(v;) = true under truth(Q),
it follows that, since u; = ug A v; and e(up) = true under truth(Q), then by
theorem 8 e(u;) = true under truth(Q), where u; is the source vector associated

with £(A;) of tuple ¢ in ;.

e VA; € B, Jv; associated with ¢(A;) in ry such that e(v,) = false under truth(Q),
it follows that, since u; = ug A v; and e(ug) = true, then by theorem 8 ¢(u,) =
false under truth(Q), where u; is the source vector associated with t(A,) of

tuple ¢ in r,.

Now, pure tuple ¢ satisfies the selection condition F' and e(ug) = (ruc under
truth(Q); moreover, since VA; € A, e(u,) = true under truth(Q) and VA, € B,
e(u;) = false under truth(Q), we deduce that ' € r*(Q), where t' = COR((, U/, Q).
Therefore, op(rep(r1)) C rep(c’r(r1)).

4.2.2 Extended Projection is Precise

Theorem 18 ([]' is precise) The extended relational algebra operation pro-

jection is precise.

Proof: Let r, =T1', (r1), and S be the set of source vectors. We will show that:
(1). 1*(Q) S I, (@),
(2). M,m™(Q) € r2*(Q)
forallQCS.
(1). Consider a tuple t' € r;*(Q), then there exist t and U such that tQU € ry,
e(uq) = true under truth(Q), and ¢’ = COR(t,U,Q). Let A= {A|t'(A) # NULL}

89

and B = {A | t/(A) = NULL}. Now, since r; = [I', (r,), then there should exist
a tuple t; and V, where $;@Y € r; and t = ¢;(X). It follows that there exist some
V = (vo,v1,...,0s), where ug = vy, and u;, = v;, Vk € {1,...,n}.

Since vg = up and e(ug) = true under truth(Q), then e(vo) = true under truth(Q).
VA; € A, Ju; associated with ¢(A;) in r; such that u, = v;, where e(u;) = true under
truth(Q). It follows that e(v;) = true under truth(Q), where v; is the source vector
associated with t;(A;) of tuple t; in r. VA; € B, Ju; associated with t(4;) in r,
such that u; = v,, where e(u;) = false under truth(Q). It follows that e(v;) = false
under truth(Q), where v; is the source vector associated with t;(A;) of tuple ¢, in r,.

Now, since e(vg) = true under truth(Q) and VA; € A, e(v;) = true under truth(Q)

and VA, € B, e(v;) = false under truth(Q), we deduce that t'; € r*(Q), where
'y = COR(t1,V,Q). Therefore t' = t'y(X). Hence, for every t' € r;*(Q) we can find
a tuple t'; € r*(Q) such that ¢’ = ¢';(X) and e{vp) = true under truth(Q) for some
V € V. Therefore, r2"(Q) C 1, (n™(Q)).
(2). It ¢’ € [1,(r1*(Q)) such that there exist t'; € r;*(Q) and ' = t'1(X). t'; € n*(Q),
then there exist ¢; and V such that 1@V € rq, e(vo) = true under truth(Q), and
t'y = COR(11,V,Q). Let A= {A|t'(A)# NULL} and B = {A |t/(A) = NULL}.
Now, since 72 = []', (1), then there exist a tuple t@U € r; such that t = ¢;(X) and
e(uo) = true under truth(Q), where (uo = vo). VA, € A, Jv, associated with ;(A;) in
ry such that u; = v;, where e(v;) = true under truth(Q). It follows that e(u;) = true
under truth(Q), where u; is the source vector associated with ¢(A;) of tuple ¢ in r,.
VA, € B, Jv; associated with ¢,(A;) in ry such that u; = v;, where e(v,) = false
under truth(Q). It follows that e(u;) = false under truth(Q), where u; is the source
vector associated with t(A;) of tuple ¢ in r,.

Now, since e(uo) = true under truth(Q), VA; € A, e(w;) = true under truth(Q),
and YA; € B, e(u;) = false under truth(Q), we deduce that t' € r;*(Q), where
t' = COR(t,U, Q). Therefore, I1, (r1*(Q)) C r2"(Q).

90

4.2.3 Extended Union is Precise

Theorem 19 (U’ is precise) The extended relational algebra operation Union

is precise.

Proof: We would like to show that for all extended relations ry and r; we have:
rep(ri U’ r3) = rep(r1) U rep(rs),

where U’ is the extended union operation and U is the regular union operation.

Let S be the set of information sources, and @ C S. Let r3 = vy U' r5. We will
show that

L r3*(Q) Sm™Q)Ur*(Q)

2. n™(Q)Ur"(Q) € 75%(Q)
where = *, 7", and ry* are the functions represented by the extended relations ry,r,,
and r3, respectively (see previous sections).
(1). In this case t' € r3*(Q); hence there exist ¢ and U such that tQU € r3, e(up) =
true under truth(Q), and ' = COR(t,U,Q). Let A = {A | '(A) # NULL} and
B={A|t(A)= NULL}. Now, since r3 = r; U’ r; and tQU € rj, then tQU € r| or
tQU € r,.

o IftQU € ry or tQU € ry but t@QU does not belong to both we have: e¢(uy) = true
under truth(Q), VA; € A, Ju; such that e(u;) = true under truth(Q), VA, € B,
Ju; such that e(u;) = false under truth(Q). It follows that ¢’ € r*(Q) or
t' € r2"(Q) but not to both. Hence t' € r*(Q) U r2*(Q). Therefore, r3"(Q) C
r*(Q) U (Q).

o IftQU € r; and tQU € r;, we have: e(up) = true under truth(Q), VA, € A, Ju,
such that e(u;) = true under truth(Q), however, in this case, B = @ and hence
t' =t. It follows that ¢’ € r{*(Q)Ur,*(Q). Therefore, r3*(Q) C r*(Q)Ur*(Q).

(2). Ift' € 1" (Q) Ur2*(Q), then t' € 1 *(Q) or ' € 2*(Q).

o If t' € r*(Q) or ¥’ € r*(Q) but not in both, then there exist t and U such
that tQU € r or tQU € r; such that e(ug) = true under truth(Q), and t' =
COR(t,U,Q). Let A={A|t'(A)# NULL} and B = {A|V'(A)= NULL}.

91

o If ' € r*(Q) and t' € r,°(Q), then there exist ¢t and U such that tQU € r,
and t@QU € r,, where e(ug) = true under truth(Q), and ¢’ = COR(t,U,Q). Let
A= {A|t(A)# NULL}, and B = {A | /(A) = NULL}, where in this case

we have B = @ and hence t' = t.

Now, In both cases, since r3 = r; Ury, it follows that tQU € r3 and therefore,

n*(Q) Ur*(Q) C r3°(Q).
4.2.4 Extended Cartesian Product is Precise

Theorem 20 (x' is precise) The extended relational algebra operation Carte-

sian Product is precise.

Proof: We would like to show that for all extended relations r, and r; we have:
rep(r1 X' r2) = rep(r1) x rep(r2),

where x’ is the extended cartesian product operation and X is the regular cartesian
product operation.

Let S be the set of information sources, and @ C S. Let r3 = r; x’ ro. We will
show that

1 15°(Q) € m"(Q) x r27(Q)

2. 1*(Q) x r2*(Q) € 3%(Q)
where 7,*,r,*, and r3° are the functions represented by the extended relations ry,r,,
and r3, respectively.
(1). If t'3 € r3*(Q), then there exist 3 and W such that {;@W € r3, e(wo) = true
under truth(Q), and t's = COR(t3,W,Q). Let A = {A | t's(A) # NULL} and
B ={A|ts(A) = NULL}. Now, since rs = r; X'r,, then there should exist tuples #;
and 1, such that t,@QU € r, and t,@V € r,, where {3 = #,.t;. Moreover, W = U/\V,

)

wo = Up A vg, and

® wo = gy A vy and e(wp) = true under truth(Q), where wyq is the source vector
associated with pure tuple ¢3 in r3. It follows that by theorem 8 e(ug) = true
and e(vg) = true under truth(Q), where ug is associated with pure tuple £; in

r, and vg is associated with ¢3 in ro.

92

o VA; € AN{A),...,An}, Jw; associated with t3(A;) in r3 such that w; = we A,
and e(w;) = true under truth(Q). It follows that by thcorem 8 e(u;) = true
under truth(Q), where u; is the source vector associated with t;(A;) of tuple ¢,

in ry.

o VB; € AN{By,...,Bn}, Jw; associated with t3(B,) in r3 such that w; = woAv;
and e(w;) = true under truth(Q). It follows that by theorem 8 e(v;) = true
under truth(Q), where v; is the source vector associated with #3(B;) of tuple ¢,

in 2.

o VA; € Bn {A,,...,An}, Jw; associated with t3(A;) in ra such that w, =
wo A u,, where e(w;) = false and e(wy) = true under truth(Q). It follows
that by theorem 8 e(u;) = false under truth(Q), where u; is the source vector

associated with ¢,(A;) of tuple ¢; in ry.

e VB; € BN{B,,...,Bn}, 3w, associated with t3(B,) in r3 such that w, = wyAv,,
where e(w,) = false and e(wo) = true under truth(Q). It follows that by
theorem 8 e(v;) = false under truth(Q), where v, is the source vector associated

with t3(B,) of tuple t; in r,.

Now, e(up) = true under truth(Q), VA; € A - {By,...,Bn} e(u;) = true under
truth(Q), and VA, € B—{B,...,Bn} e(u,;) = false under truth(Q). It follows that
t'y € r*(Q), where t'y = COR(t;,U, Q). Similarly, e(vp) = true under truth(Q),
VB; € A- {A,...,A,} e(v;) = true under truth(Q), and VB, € B — {A,,...,A,)
e(v;) = false under truth(Q). It follows that ', € r,*(Q), where t'; = COR(l,, V, Q).
Moreover, Since e(ug A vp) = true under truth(Q) and tuple t/; € r,*(Q) and {'; €
r2*(Q), then t'3 = t'1.1'; € r1*(Q) X r*(Q) and W = UpAV. Therefore, r3°(Q) C
(@) x r2°(Q). ”

(2). If t'3 € ri*(Q) x r2*(Q), then there exist tuples t'; and t'; in r;*(Q) and r,°(Q)
respectively such that t'3 = t';.t';. Since t'; € r,*(Q), then there exist ¢; and U such
that t,@QU € ry, e(up) = true under truth(Q), and t'; = COR(t,,U, Q). Similarly,
since t'; € ry*(@), then there exist ¢, and V such that {,@V € ry, e(vg) = true

93

under truth(Q), and t; = COR(ts,V,Q). Let A = {A | t4(A) # NULL} U {B |

#,(B) # NULL} and B = {A | 1(A) = NULI} U {B | t\(B) = NULL}. _iow,

since r3 = 1y X'ry, then t:@W € r3, where t3 = ty.ty, W = UAV = (wo ,u1,...,p,
P

V1,...,Yy), Wwhere wo = up A vg, and

e wo = ug A vo, where e(up) = true and e(vp) = true under truth(Q), where uo is
the source vector associated with ¢, in r; and vg is the source vector associated
with ¢, in ro. It follows that by theorem 8 e(wp) = true under truth(Q), where

wp is the source vector associated with ¢3 in r3.

o YA; € AN {A,,..., A}, 3u; such that u; is associated with ¢;(A;), where
e(u;) = true under truth(Q). It follows that, since w; = wp A u;, then by
theorem 8 e(w;) = true under truth(Q), where w; is the source vector associated

with t3(A;) in 3.

e VB; € An{B,,...,B,}, 3v; such that v; is associated with t,(B,), where e(v;) =
true under truth(Q). It follows that, since w; = wo A v;, then by theorem 8

e(w;) = true under truth(Q), where w; is the source vector associated with

ts(B.‘) in T3.

o YA; € BN {A,..., A}, 3u, such that u; is associated with t;(A;), where
e(u;) = false and e(wo) = true under truth(Q). It follows that, since w; = wp A
u;, then by theorem 8 e(w;) = false, where w; is the source vector associated

with t3(B;) of tuple t3 in r3.

e VB; € BN {By,...,Bn}, Jv; such that v; is associated with t2(B;), where
e(v;) = false and e(wp) = true under truth(Q). It follows that, since w; =
woA\vj, then by theorem 8 e(w;) = false, where w; is the source vector associated

with ts(B,) of tuple i3 in r3.

Now, t3@W € r3 and VA4; € A, e(w;) = true under truth(Q), and VA; € B,
e(w;) = false under truth(Q), we deduce that t's € '3, where t's = COR(t3, W, Q).
Therefore, r,*(Q) x r2*(Q) C r3*(Q).

94

4.2.5 Extended Join is Precise

Theorem 21 (X' is precise) The extended relational algebra operation Join

is precise.

Proof: Let S be the set of information sources and r; and r; be two extended
relations whose schemes ate Ry = { Ai,...,An, S4,,S4,,..-,54, } and R2 = {
B,...,Bn, SBy,SB,s---, 5B, }. Let X = { A1,...,An } N { By,...,By }. Let
@ C S. Let r3 = r; X' r;, where ™' is the extended Join operation. We will prove
that for every Q C S:

L r3%(Q) € n*(Q) X r2*(Q)

2. Q) XM (Q) & r3*(Q)
where ™ is the regular Join performed on regular relations.

(1). If t'3 € 3°(Q), then there exist t3 and W such that :@W € ry, e(wo) = true
under truth(Q), and t3 = COR(t:3, W, Q). Let A = {A | t'3(A) # NULL} and
B = {A|t'3(A) = NULL}. Now, since r3 = r; X' ry, then there should exist tuples
t; and {; such that t,QU € r, and t,@V € r,, where t3 = tjoly (tuples ¢; and
ty join). Moreover, W = U{’\V = (W0, Wjr,yeery Wyt yy WipyeooyWip w,';,...,w,':"l),
where wg = (uo A vo A C(Sx)), wj, = wo Auy (VI € {1,...,7'}), wj, = wo A u, or

wj, = wo Avj, (VI € {1,...,m}), wy = wo Avy(VI € {1,...,m'}), and

o wy=upAvgAC(Sx) and e(wp) = true under truth(Q), where wy is the source
vector associated with #3 in r3. It follows that by theorem 8 e(up) = true and
e(vo) = true under truth(Q), where u is associated with pure tuple ¢; in r; and

vp is associated with pure tuple t; in 7.

o YA; € An{A,,...,An}—X, 3w, associated with t3(A;) in r3 such that w; = weA
u; and e(w;) = true under truth(Q). It follows that by theorem 8 e(u;) = true
under truth(Q), where u; is the source vector associated with £;(A;) of tuple ¢,

in 1.

o VB; € AN{B,,...,Bn}—X, Jw; associated with t3(B;) in r3 such that w; = wyA
v; and e(w;) = true under truth(Q). It follows that by theorem 8 e(v;) = true

95

under truth(Q), where v; is the source vector associated with t3(B;) of tuple ¢,

in ra.

o VA; € AN X, Jw; associated with t3(A;) of tuple ¢3 in r3 such that w; = wp Au;
or w; = wp A v; and e(w;) = true under truth(Q). It follows that by theorem 8
e(u;) = true under truth(Q) and e(v;) = true under truth(Q), where u; is the
source vector associated with £,(A,) of tuple ¢; in r; and v; is the source vector

associated with t3(A;) of tuple ¢ in r,.

o VA; € BN {A,,...,A,} — X, Jw; associated with ta(A;) of tuple ¢3 in r3 such
that w; = wp A u;, where e(w;) = false and e(wp) = true under truth(Q). It
follows that by theorem 8 e(u;) = false under truth(Q), where u; is the source

vector associated with t1(A;) of tuple ¢, in ry.

e VB, € BN{By,...,Bn} — X, 3w, associated with t3(B;) of tuple ¢3 in r3 such
that w; = wg A v;, where e(w;) = false and e(wp) = true under truth(Q). It
follows that by theorem 8 e(v;) = false under truth(Q), where v; is the source

vector associated with t3(B;) of tuple {3 in ry.

Now, e(up) = true under truth(Q) and VA; € A — {By,...,Bn}, e(w) = true
under truth(Q) and VA, € B - {B,,..., B}, e(u;) = false under truth(Q). It
follows that t'; € r1*(Q), where t'y = COR(t,,U,Q). Similarly, e(vg) = true under
truth(Q) and VB; € A ~ {A;,..., A}, e(v;) = true under truth(Q) and VB; €
B - {Ai,...,A.}, e(vj) = false under truth(Q). It follows that t'; € r;*(Q), where
t's = COR(t3, V,Q). Moreover, Since ¢(C(Sx)) = true under truth(Q), then tuple
t'y € n*(Q) and t'; € r2*(Q) join on X. Hence t'5 = t'1ot'; € r*(Q) X r2*(Q).
Therefore, r3*(Q) C r"(Q) X r*(Q).

(2). i t's € r1*(Q) ™M r,*(Q), then there exist tuples t'; and t'; in r*(Q) and r;*(Q)
respectively such that t's = t'jot’;. Since t'y € r*(Q), then there exist U, where
e(uo) = true under truth(Q) and t'y = COR(t1,U, Q). Similarly, since t'; € r2*(Q),
then there exist V, where e(vg) = true under truth(Q) and t'; = COR(t2,V, Q). Let
A={A|t"(A)# NULL}y U {B|t"\(B)# NULL} and B = {A | #1(A;) = NULL}

96

U {B | t"(B;) = NULL}. Now, since r3 = r; M’ r; and t,@U € r, and 1,@V € ry,

then t3@W € r3, where t3 = tyoi; and W = UAV = (wp, Wyt yee oy Witys Wiyy ooy Wy,
J

Wi, ..., wie), where wo = (uo A vo A C(Sx)), wy, = wo A uy (VI € {1,...,n'}),

wj, = wo Auj or wy = wo A vy (VI € {L,...,m}), wy = wo Avy(Vl € {1,...,m'}),

and

wo = ug A vo A C(Sx), where e(uo) = true under under truth(Q), e(vo) = true
under truth(Q), and e(C(Sx)) = true under truth(Q). up is the source vector
associated with t; in r; and vy is the source vector associated with ¢; in r9. It
follows that by theorem 8 e(wp) == true under truth(Q), where wy is the source

vector associated with 23 in rj.

VA; € AN {Ai,...,A.} — X, Ju; such that v is associated with t,(A;), where
e(u;) = true and e(wo) = true under truth(Q). It follows that, since w; = woAu;,
then by theorem 8 e(w;) = true under truth(Q), where w; is the source vector

associated with #3(A;) of tuple 3 in rs.

VB; € AN {B,...,Bn} — X, 3v, such that v, is associated with ¢;(B;), where
e(v;) = true and e(wg) = true under truth(Q). It follows that, since w, = wyAu,,
then by theorem 8 e(w;) = true under truth(Q), where w; is the source vector

associated with #3(B;) of tuple t3 in r3.

VA; € AnX, 3u; and v; such that u, is associated with ¢;(A;) and v; is associated
with t3(B;), where e(u;) = e(v;) = true and e(wp) = true under truth(Q). It
follows that, since w; = wo A u, or w; = wp Av;, then by theorem 8 e(w;) = true
under truth(Q), where w; is the source vector associated with ta(A;) = t3(8;)

of tuple #3 in r3, where A; = B;.

VA; € BN{A,...,An} — X, 3u; such that u; is associated with ¢,(A;), where
e(u;) = false and e(wo) = true under truth(Q). It follows that, since w; =
wo A uj, then by theorem 8 e(w;) = false under truth(Q), where w; is the

source vector associated with t3(A;) of tuple {3 in rs.

97

o VB; € BN{B,,...,Bn} — X, Jv; such that v; is associated with 5(B;), where
e(v;) = false and e(wo) = true under truth(Q). It follows that, since w; =
wo A vj, then by theorem 8 e(w;) = false under truth(Q), where w; is the

source vector associated with t3(B;) of tuple t; in rs.

Now, t3@W € r; and YA;,, I}, € A, e(w;,) = e(w;,) = true under truth(Q), and
VA;,Bj, € B, e(w;,) = e(w;,) = false under truth(Q), we deduce that t's € r's,
where t'3 = COR(t3, W, Q). Therefore, ri*(Q) ¥ r2*(Q) C r3*(Q).

4.2.6 Extended Intersection is Precise

Theorem 22 (1 is precise) The extended relational algebra operation In-

terseciion is precise.

Proof: We would like to show that for all extended relations r; and r, we have:
rep(ry N ry) = rep(ry) N rep(rs), where
' is the extended intersection and N is the regular intersection operation.
Let S be the set of information sources, and Q@ C S. Let r3 = r; N r,. We will
show that
L. r3™(Q) En*(Q)Nr2*(Q)
2. n*(Q)Nr"(Q) € r3*(Q)

where r,*,r,*, and r3" are the functions represented by the extended relations
r1,r2, and r3, respectively.
(1). f¢' € r3*(Q), then there exist t and W such that t@W € r3, where e(wp) =
true under truth(Q) and t' = COR(t,W, Q). Let A = {A | t(A) # NULL} and
B={A|t(A) = NULL}. Now, since r3 = r; (V' r;, then there should exist I/ and
V such that tQU € r, and t@V € r;. Moreover, W = U /]\V (as previously defined)
and Vi = 0,...,n, w; = ug A vo AC(Sx), where e(w;) = true under truth(Q). It
follows that by theorcm 8 e(u;) = true, e(v;) = true, and e(C(Sx)) = true under
truth(Q). Now, we have tQU € r, where e(ug) = true under truth(Q) and YA; € A,
e(u;) = true under truth(Q). It follows that t' € r{*(Q), where t' = COR(t, U, Q).
Similarly, we have t@V € r,, where e(vg) = true under truth(Q) and VA; € A,

98

e(vi) = true under truth(Q). It follows that t' € r;*(Q), where ' = COR((,V, Q).
Hence t' € r;*(Q) N r2*(Q). Therefore, r3*(Q) C r1*(Q) N r2*(Q).

(2). ¥ € r™(@Q) Nr*(Q), then t' € r*(Q) and ' € ry*(Q). Since t' € r*(Q),
then there exist t and U such that t@QU € ry, where e(ug) = true under truth(Q),
and t' = COR(t,U, Q). Similarly, since t' € r;*(Q), then there exist ¢ and V such
that t@V € r,, where e(vo) = true under truth(Q), and ¢ = COR(t,V,Q). Let
A={A|t(A)# NULL)} and B = {A | t(A) = NULL}. Now, since r3 = r; V' 1y,
then tQW € r3, and W = U/I\V (as previously defined), and Vi = 0,...,n, w; =
up A vg A C(Sx), where e(up) = true under under truth(Q), e(vp) = true under
truth(Q), and ¢(C(Sx)) = true under truth(Q). Source vector uq is associated with
t in r; and source vector vy is associated with ¢ in r. It follows that by theorem 8
e(wo) = true under truth(Q), where wy is the source vector associated with ¢ in »,.
Now, t@W € r3, e(wo) = true under truth(Q) and VA; € A, e(w;) = true. We
deduce that t' € r'3, where t' = COR(t, W,Q). Therefore, ri*(Q) N r"(Q) C r3*(Q).

4.2.7 Extended Set Difference is Precise

Theorem 23 (-’ is precise) The extended relational algebra operation Set

Difference is precise.

Proof: We would like to show that for all extended relations r, and r; having the
same compatible extended relational schemes
rep(r1 —' r2) = rep(r) — rep(r;), where

~* is the extended set difference and — is the regular set difference operation.

Let S be the set of information sources, and Q C S. Let r3 = r; ~' r;. We will
show that

L r*(Q) € n™(Q) —"(Q)

2. 1"(Q) ~n*(Q) &€ r3°(Q)

where r*,r;*, and r3* are the functions represented by the extended relations

ry, 73, and r3, respectively.

99

(1). Ift € r3*(Q), then there exist ¢ and W € W such that t@W € r;, where
e(wo) = true under truth(Q) and ' = COR(¢,W, Q). Let A = {A|t(A) # NUL}
and B={A|t(A)= NULL}. Now, since r3 = r; ~' rp, then we have three cases to
look at.

e Case (a). In this case, t@W € r, and t does not appear in ry. we have e(wp) =
true under truth(Q), VA; € A, Jw; associated with ¢(A;) in ry, where e(w;) =
true under truth(Q), and VA; € B, Jw; associated with t(4;) in r;, where
e(w;) = false under truth(Q). It follows that t' = COR(t, W,Q) € r*(Q) and
t' g r2*(Q). Hence t' € r*(Q) — r2*(Q). Therefore, r3*(Q) € r*(Q) — r2*(Q).

e Case (b). In this case,

z = (V Awectors(U) A ~(\/ Alveetora(¥;)),

j=1 j=1

foo W € W, W = (wo,...,wy), then for all ¢ € {1,...,n»} w; = wy, where
wg € ¢, and e(z) = true under truth(Q). Hence by theorem 8

e(\p/ N(vectors(U;))) = e(-a(\q/ N(vectors(V;))) = true

j=1 j=1
under truth(Q).
Now, since e((A(vectors(U1))) V... V(A(vectors(Uy)))) = true under truth(Q),

then there exist at least one u = A(vectors(U)), forsome U € {U},...,U,}, such
that e(u) = true under truth(Q), where U = (uq, ..., u,). Now, by theorem 8,
Vi € {0,...,n}, e(u;) = true under truth(Q). It follows that e(up) = true
and VA; € A, 3u; such that e(y;) = true under truth(Q) and hence t' =
COR(t,U,Q) € r*(Q). Notice that in this case B = Q.

Similarly, by theorem 8, since e(-((A(vectors(V4))) V... V(A(vectors(V,)))) =
true under truth(Q), then Yo = A(vectors(V)), (V € {W,...,V,}), e(v) =
false under truth(Q), where V = (vo,...,v,). Hence, there exist at least

one v; € {vg,...,v,} such that e(v;) = false under truth(Q). Hence, AV ¢

100

{W,...,V;} such that YA; € A, e(v;) = true under truth(Q) and in this case
t' ¢ r*(Q).

Now, since t' = COR(t,U,Q) € r*(Q) and t' = COR(t,U, Q) ¢ r2°(Q), then
t' € r*(Q) — r2*(Q). Therefore, r3*(Q) C r1*(Q) — r2*(Q).

Case (c). In this case, tQW € ry, W = (wp,.. ,wyn), where there exists U and
V such that: tQU € ry, tQV € rp and wp = ug A u'1,A..., Ay, v/, = u; or

u'; = ~u; and at least one ¥/; = —u;, and Vi = 1,...,n w; = woAu;. Moreover,

1. Since e(wp) = true under truth(Q), where wp is the source vector associ-
ated with ¢ in r3, it follows that, by theorem 8 e(ug) = true under truth(Q),

where up is the source vector associated with % in ry.

2. YA; € A, Jw; associated with ¢(A;) of tuple t in r3 such that e(w;) = true
under truth(Q) and w; = wgAu;. It follows that by theorem 8 e(u;) = true
under truth(Q), where u; is the source vector associated with t(A;) of tuple
tin r;.

3. YA; € B, 3w; associated with t(A;) of tuplet in r3 such that e{(w,) = false
and e(wg) = true under truth(Q), where w; = wp A u,. It follows that by
theorem 8 e(u;) = false under truth(Q), where u, is the source vector

associated with 2(A;) of tuple ¢ in r,y.

Now, we have t@QU € ry, where e(up) = true, YA; € A, 3u, such that e(y;) =
true under truth(Q), and VA; € B, Ju; such that e(u;) = false under truth(Q).
Hence t' € r*(Q). Moreover, since in our model all NULL values are assumed

to be different then it is always true (In Case C) that t' ¢ ry*(Q). Therefore,
r3"(Q) € r*(Q) — r2*(Q).

(2). £t €r*(Q) —r2*(Q), then t' € r,*(Q) and t’ ¢ r”(Q). Now, since ' € r*(Q),
then there should exist a pure tuple t and U € U, associated with t in r;, such that
t@QU € ry, e(uo) = true under truth(Q), and ' = COR(t,U,r;). Let A= {A|t(A) #
NULL)} and B = {A | t(A) = NULL}. Moreover, since r3 = r; —'r; and t' ¢ r,*(Q)

then we consider the following cases:

101

e Case (a). In this case, tQU € r, and t does not appear in r;. We have e(ug) =
true under truth(Q), Since VA4; € A e(v;) = true under truth(Q), and VA€ A
e(u;) = false under truth(Q), it follows that t@QU € r3 and t' = COR(¢,U,r3).
Hence t' € r3*(Q). Therefore, r*(Q) —r*(Q) € r3*(Q).

o Case (b). In this case

e(\’,/lA(vectms(Uj))) = e(ﬂ('\q/l/\(vectors(V,-)))) = true

i= j=

under truth(Q), for W € W, W = (uy,...,w,), then for all i € {1,...,n}
w; = Wy, 8.t. wp € z. It follows by theorem 8 e(z) = true under truth(Q) and
there should exist at least one w € z such that e(w) = true under truth(Q)
and W = (wy,...,w,) such that Vi € {0,...,n} e(w) = e(w;) = true under
truth(Q). Hence t@W € r3 and e(wp) = true under truth(Q) and since VA; € A,
e(w;) = true under truth(Q), where w; is associated with ¢(A;) of tuple ¢ in r3,
then t! = COR(t, W,r3). Note that in this case B = 0. Hence, t' € r3(Q).
Therefore, r,*(Q) — r2* (@) C r3*(Q).

e Case (c). In this case, tQU € r;, and there exist V s.it. tQV € r,W =
(wo,..., wy), where wp = ug Aty A ... At'y,t'; = uj or u'j = —u; and at least

one v'; = —uj, and Vi=1,...,n, w; = wp A u;. Moreover,

1. since wy = upAu'yA. . . Au'y, and VA; € A, 3u; such that e(u;) = true under
truth(Q), where u; = u; similarly, VA; € B 3u; such that e(u;) = false
or e(—u;) = true under truth(Q), where -u; = u';. It follows that by
theorem 8 e(wp) = true under truth(Q).where wp is the source vector

associated with ¢ in rj3.

2. YA; € A, Ju,, associated with £(A;) of tuple t in ry, such that e(u;) = true
under truth(Q). Since w; = wo A u;, then by theorem 8 e(w;) = true under
truth(Q), where w; is the source vector associated with t(A;) of pure tuple

tin r3.

102

3. VA; € B, Ju;, associated with ¢(A;) of tuple ¢ in ry, such that e(u;) = false

under truth(Q). Since w; = woAu;, then by theorem 8 e(w;) = false under
truth(Q), where w; is the source vector associated with t(A,) of pure tuple
t in ra.
Now, we have t@W € rj, where e(wp) = true under truth(Q), and VA; €
A, 3w;, such that e(w;) = true under truth(Q), and VA; € B, 3w; such
that e(w;) = false under truth(Q). It follows that t' = COR(t, W, r,).
Therefore, ¢’ € r3*(Q) and r*(Q) — "(Q) C r3*(Q).

103

Chapter 5
Reliability Calculation Algorithms

We will use the Reliability Calculation Algorithms,
Presented by Sadri [18, 19], in our new model and
prove their correctness using the semantics of the
Alternate Worlds Model of our new frame work.

5.1 Reliability Calculation

Knowing the reliability of information sources that contributed to the data found in
the tuple in an extended relational database system, we can calculate the reliability

of answers to a query in the extended relational database.

Definition 30 The reliability of a source is defined as the probability that a tuple
coming from that source is valid. We designate the reliability of source j by re(s;).

Moreover, We assume that different information sources are independent.

Let r be an extended relation which is the result of some query and let R =
{A1,...,AnyS45,S4y5.--,S4,} be the extended relational scheme of r. Consider a
tuple t@U € r, where U = {U}. Let U = (uo,u1,...,un), Where ug is the source
vector associated with pure tuple ¢ and v,,...,u, are the source vectors associated
with the attribute values t(4,),...,t(Ay,) of pure tuple in r.

Given the reliability of the contributing source vectors, we would like to calculate

the reliability or the probability that tuple ¢ is in the answer to the query. Recall

that vectors(U) = {uo,%1,...,un}. Let v be the source vector obtained by taking

the conjunction of all source vectors in the set vectors(U) as follows:

v=\ vectors(U)

Now, we consider the sources s;,,...,$;, corresponding to the elements of v with
a value of 1. In other words, v(i;) = ... = v(ip) = 1, where Vi € {iy,...i,},
v(i) represent the i** element of the source vector v. Similarly, consider the sources
8jyy« -+ 8j, corresponding to the elements of v with a value of —1. In other words,
v(j1) = ... = v(j;) = -1, where Vj € {ji,...j,}, v(j) represents the j** element of
the source vector v. Given the reliability of source vectors s, ..., s, the reliability

of the pure tuple ¢ rel(t) is:

rel(tQU) = H re(sk) H(l —re(s1))

k=1 =5,
rel(t@U) indicates the probability or the reliability with which pure tuple ¢ exists in
7. In other words pure tuple ¢ exists in r provided that the sources s;,,...,s;, are

reliable (o1 correct) and the sources s,,,...,s;, are not reliable (or not correct).

Definition 31 Two source vectors u and v are said to be independent if for no source
3; both of them have a nonzero entry at the j** element of u and v. This definition
could be extended to define independence between sets of source vectors. A set of
source vectors {uy,...,un} is independent if the source vectors in {u,,...,u,} are

pair wise independent

Let tQU € r, where U = {Uh,...,U,} and let

z={v|v =\ vectors(U;),i =1,...,p}

If V is a set of independent source vectors, then the reliability of ¢ is calculated as

follows:

rel(t@U) = 1 — [J(1 — rel(t@v)).

vEx

105

5.1.1 Reliability Calculation Algorithms

In the previous section we defined the reliability of the pure tuple # when the set
z={v|v = Avetors(U;),i = 1,...,p} is a set of independent source vectors.
It is sometimes desirable, in some application domains, to calculate the reliability
of t when z is a set of dependent source vectors. In this section, we will calculate
the reliability of the pure tuple ¢ when the set £ has dependent source vectors. In
pursuing this line, we will use the reliability calculation algorithms introduced by
Sadri [18, 19].

In what follows we assume tQU € r, where U = {U},...,U,} is associated with
pure tuple ¢ in r. As usual, let z = {v | v; = A vectors(U;),i = 1,...,p} be a

dependent set of source vectors.

Algorithm 3 To calculate the reliability of the pure tuple t@zx, we proceed as follows:

K, = zp:rc(v,-)

i=1

)
Ky =) re(v; A vy)

=1 3>i

PP P
K; = EZZT&(U{ A v; Avg)

=1 3>i k>j

Then

re(t@ll) = K] —K2+K3—...+(—1)p~le (5.1)

Algorithm 4 Consider the expression for @z
P

e(tQz) = \/ e(t@u;)

i=1

106

This expression is in disjunctive form, (also called “sum-of-products”) where each
€(t@v;) is a conjunct. Convert this expression into disjunctive normal form (as in
Algorithm 2), i.e.

e(tQz) = \o/ e(tQu;)

i=1
where each ¢(t@Quw;) is a conjunct in which all variables fi, ..., fi (maybe negated)

appear. Note that the disjunctive form of a Boolean expression is unique (up to a

permutation of conjuncts). Then

re(t) = re(tQuy) + . .. + re(tQuw,) (5.2)

Example 19 Let 7 be an extended relation whose extended scheme is R = { Stud-
id, Stud-Address, Sa,,S4,,54,} and let t be the pure tuple (John, St. Paul). Let
1QU € r, where U = {(001,101, 001),(100,110,110)} In this case, = = {110,101},
where 110 = A vectors((001,101,001)) and 101 = vectors((100,110,110)). Moreover,
let the reliability of information sources be 60%, 80%, and 90%, respectively. We
calculate the reliability of ¢ using the two algorithms. Using Algorithm 3:

K, = re(t@(101) + re(t@(110) = 0.54 + 0.48 = 1.02

K, = re(t@(101) A (110) = re(t@(111)) = 0.432

re(t) = Ky — Ky = 1.02 — 0.432 = 0.588

Using Algorithm 4, first we convert e(z) to disjunctive normal form:

et)=hABYWVH AL =(hALALBV(ARA-LA[B)YV(HALAS)

obtaining t@({(111),(1 — 11),(11 —1)}). Now
re(t) = re(t@(111)) + re(t@Q(1 - 11)) + re(tQ(11 - 1))

re(t) = 0.432 + 0.108 + 0.048 = 0.588

107

5.2 Probabilistic Approach (Proof of Correctness)

Reliability calculation algorithms (1, 2) were proven correct by Sadri in [19] for the
case of IST model. In that approach the semantics of the alternate world model
was used to prove the correctness of the Reliability calculation algorithms. In this
section, a similar approach is used to prove the correctness of the reliability calculation
algorithms. We will justify that the reliability calculation algorithms in our case are
correct using the semantics of the alternate worlds model.

In the coming sections, we assume t@Y € r, where Y = {Us,..., Up} is associated
with pure tuple ¢ in 7. As usual, let z = {v | v; = A\ vectors(U;),i = 1,...,p} be a

dependent set of source vectors.

Definition 32 The reliability of correctness of an information source s; is called its

reliability , and is denoted by P,,.

Recall that the information content of an extended relation r is a function r*, where,
for a given QC §, (@) = { ' | ' = COR(¢,U,Q), where tQU € r and e(tQup) =
true under truth(Q). } However, in this particular case we have:

r(Q) = {t | t@U € r, and e(t@z) = true under truth(Q) }

With each Q C S, and with each r*(Q), we associate a probability P(Q) as follows:

P)=]I A II 0-PR)

5€Q 8,€5~-Q
(5.3)
In this way, we have associated with each (regular) relation 7*(Q) in the alternate
world set of r a possibility P(Q) which is the probability that r represents r*(Q)
(when the sources in Q are true and all the other sources are not true). In other
words, not only we know r represents r*(@Q); but we also have a quantitative measure

of the likelihood that r represents r*(Q).

Example 20 Consider the following extended relation. Assume the reliabilities of
the three sources are as follows: p; = 65%, P, = 70%, and P; = 90%. Then, the

108

probabilities attached to the regular relations in the alternate world of the given ex-
tended relation is, corresponding to the set 25 = {, {s,}, {s:}, {83}, {51,982}, {51,593},
{s2,33}, {s1, 2, 83}}, are 0.0105%, 0.0195%, 0.0245%, 0.0945%, 0.0455%, 0.1755%,
0.2205%, 0.4095%, respectively.

Sadri in [18, 19] defined the reliability of t to be the degree to which r represents
t. This, in turn, can be equated to the probability that f is present in the alternate

world of r. We will make this notion precise below.

Definition 33 The reliability of a pure tuple t, represented by an extended relation
r (i.e. QU € r for a set of source vectors z = {v | v; = A vectors(U;),i = 1,...,p}),

is

re(t)= Y P(Q) (5.4)

ter*(Q)

For the simple case, let us assume that z = {v}. In other words, when t@QU € r,
we have z is a singleton. Let v = (a;,...,a;). The set of information sources S could
be partitioned into three sets: S*(v),S™(v), and S°(v) as follows:

S*(w)={si|ai=1}, S (v) = {si | a; = -1}, and S%*v) = {s; | @; = 0}.

S*(v) is the set of information sources contributing positively to a tuple {Qv; S~(v)
is the set ~f information sources contributing negatively to tQu; and S°(v) is the set

of information sources not contributing to t@Qu.

Lemma 10 If {QU € r, and z = {v}, where v = A vectors(U), then the pure tuple

t appears in (regular) relations r*(Q), obtained from the alternate world of r, if and

only if S*(v) € Q € S*(v) U S°(v). Proof: Recall that
ew)= A f AN -f
#€St(v) #€S—(v)

Simply, e(t@v) = true under truth(Q) if and only if S*(v) C Q C S*(v) U S°(v).

109

Theorem 24 If tQU € r (t@QU is the only extended tuple in r corresponding to the
pure tuple t) then

re(t) = H P, H (1-F,) (5.5)

8,€5%(v) 25 E€S~(v)
where re(t) is the reliability of ¢.
Proof: By the definition of the reliability of a tuple (Equation 5.4), and lemma 10,

we have:

re(t) = > P(Q) (5.6)

5+(v)CQCS* (v)USO(v)
If we replace P(Q) by its expression from equation 5.3, and reduce Equation 5.6
obtain:
rety= [P JI (1-PR.)
5E€S+H(v) 8,€5-(v)
Let us, now, concentrate on a more general case, where t has a set of source
vectors associated with it. Two algorithms for reliability calculation were presented
in section 5.1.1 to calculate the reliability of . We will use Equation 5.4, which is

based on the alternate world model, to justify these algorithms.

Lemma 11 Assumet@U € r, whereU = {U,...,U,} andVU € U, U = (uo,. .., u,).
Let z = {v | v = A vectors(U;),i = 1,...,p}. Thent € »*(Q) if and only if
S*(v) € Q C S*(v) U 8%v;), for at least one i,1 < i < p.
Proof: Obvious from Equation 5.3, and the fact from Section 2.5.1
P
e(t@z) = \/ e(t@uv)
1=1
Now we can derive an expression, similar to Equation 5.6 for the reliability of a

tuple ¢, where z is the set of source vectors associated with ¢. Let

Q= {Qi| S*(v) € Qi € SH(vi) US°(v),i=1,...,p} (5.7)

110

then

re(t) = Y. P(Q) (5.8)

QeQ
where re(t@QlU) is the reliability of ¢ when t3U € r, and re(t@U) is the reliability of
t when only tQU; € r. This is because some of P(Q)’s in Equation 5.8 may be added
more than once when we sum up re(t@U;)’s. This observation led to the reliability

calculation algorithm presented earlier which we will summarize below.

5.2.1 Reliability Calculation Algorithms

Before we prove the correctness of algorithms 3 and 4, we first prove the following

lemma:

Lemma 12 Let Q = {Q;] S*(u;) C @; C S*(uw;)U S°%x;)}, i =1,2. Then

Y. P@=> P@+ 3 P@Q-) PQ (5.9)

QEQ1UQ: Qe QER2 QeQiN:

Proof: This lemma is based on the principle of inclusion and exclusion [14}. In-
tuitively, since, some of the Q’s may be repeated in the first and second summation
on the right hand side of Equation 5.9, we will deduct from the summation of the
first two terms on the right hand side the third summation on the right hand side of
Equation 5.9.

This lemma can be generalized to more than two sets. The generalization will
alternate adding and subtracting the effect of elements appearing in only one set, in

two sets, in three sets, etc ...

Theorem 25 Algorithm 3 correctly computes the reliability of a pure tuple t accord-
ing to Equation 5.4.

Proof of theorem 25: We obtained Equation 5.1 for the reliability of ¢ using
lemma 11, so we will show that the algorithm computes re(t) according to Equa-
tion 5.8.

111

In the light of Lemma 12, all we need to show is the following: Let Q; = {Q; |
S*(vi) € Qi € S*(vi) U S%vi)}, ¢ = 1,2. Then @ = @1 N Q; if and only if Q{Q |
St(v) C Q C 5*(v)U S%v)}, where v = v; A v,. This follows from Theorem 8. Since
(t@v;) = true under truth(Q;) if and only if Q; € Q, and e(tQ@v) = ¢(tQv,) Ae(tQu,)
is true if and only if both e(t@v,) = ¢(t@Qu;z) = true, if and only if @ € @; N Q,. The
generalization to the case of more than two source vectors is straight forward and we

omit it here.

Theorem 26 Algorithm 4 correctly compates the reliability of a tuple ¢ according
to Equation 5.4.

Proof: The observation to ake here is if e(¢@v;) is a conjunct in which all variables
J1s. .-+ fx (may be negated) appear, then S°(v;) = @ and the set @; = {Q; | S*(v;) C
Qi C S*(v;)} is a singleton. In other words, once converted to disjunctive normal
form, each t@Qu; makes t € r*(Q) for exactly one Q. Since there are no repetitions
in disjunctive normal form, Equation 5.2 correctly computes the reliability of t as

specified by Equation 5.8.

112

Chapter 6

Implementation

Architecture, subsystems/modules ...
Decisions made for the implementation, and justification.
Capabilities of the prototype.

6.1 Introduction

In this chapter we will introduce the environment under which we are implemeniing
our model. Define the capabilities of each tool used in that environment. We will
present the architecture of our design, list the functions of the system modules in use,
justification of our implementation, and the capabilities of the prototype. Towards
the end of this chapter we will point out some future enhancements so that the system

will be more and more updated to best serve the needs of users.

6.2 Environment and Tools Needed

In this prototype we will use the following major development tools: INGRES which is
a relational database system, Embedded SQL, which is an embedding of the database
INGRES/SQL into a procedural programming host language (in this prototype we
will use the C language), and the User Interface Motif Under X-windows (UIM/X),
which is a graphical users interface that helps in building user interfaces using Motif

libraries.

6.2.1 The Intelligent Database (INGRES)

INGRES is a relational database management system that allows any number of users
(end-users or application programmers or both) to access any number of relational
databases by means of either the SQL (“Structured Query Language”), the QUEL
(“Query Language”), or the ESQL Embedded SQL.

6.2.2 Embedded SQL (ESQL)

Embedded SQL (ESQL) is an embedding of the database language SQL into a pro-
cedural programming language, known in this context as the host language. The
statements in (ESQL) compose a superset of the statements found in interactive
INGRES/SQL. Embedded SQL allows the users to develop highly-interactive, forms-
based applications. These forms-based applications usually include statements that
manipulate database, although the users are free to create applications using the
forms capability without database access.

The ESQL statements are easily intermixed with the full range of host language
statements. Furthermore, host language variables may be used in ESQL statements to
represent many of the elements of database and form manipulation, such as database
expressions, from names, and so on.

ESQL statements are the same from one host language to another. This is an
advantage since if the user is familiar with the ESQL statements he can easily embed
the ESQL into the host language he knows best.

ESQL provides the application with full access to INGRES database. All state-
ments available in interactive SQL to manipulate and manage data are also available,

generally unchanged, in ESQL. ESQL can provide the application with the following:

e Manipulate data structures: ESQL statements allow the programmer to create,
destroy and modify the underlying tables dynamically. The programmer can

also use ESQL to create views on his database.

e Manipulate data: The data manipulation statements select, insert, update,

114

and delete can be used respectively to retrieve, append, update and delete data

from the database tables.

o Manage group of statements as transaction: By utilizing INGRES’s transaction
management statements, the programmer can process a group of database or
host language statements as a single transaction. Transaction management

includes the ability to abort a transaction, either in whole or in part.

o Perform a host of other database management functions: Among the other
INGRES/SQL features that the programmer can embed in his program are the
ability to create permits and integrities on tables, set INGRES run-time options
and copy data between tables and files. Because ESQL statements are nearly
identical to their interactive counterparts, the programmer can easily prototype

the database aspects of his application via interactive SQL.

ESQL provides the programmer a uniquely powerful set of forms-based applica-
tion statements that allow the programmer to utilize the INGRES Forms Run-time
System (FRS) to create a limitless assortment of forms-based applications. The pro-
grammer can create the form himself through INGRES/FORMS: Visual-Forms-Editor
(VIFRED). The forms can contain a mixture of forms and fields, into which data is
entered, either by the application or the users, and trim, which serves as explanatory
material. Once the form is created, ESQL/FORMS statements enable the program-

mer to manage the created forms. The functions of ESQL includes:

e Display of forms. The programmer can specify in his application that a partic-
ular form should be displayed. The user can also specify the movement from

one form to another within a single application

o Transferring of data into and out of a form. The user can move data from

database into a form and, conversely, from the form into the database.

o Operation Specification. The user can specify operations to perform on data in

the form. The operations can use any of the capabilities of the ESQL and the

115

host language. As part of the operation, the user can specify several methods
by which the application program can activate the operations -for example by
choosing a menu item, by pressing a control or function key or by leaving a

particular field in the form.

o Miscellaneous operations. ESQL/FORMS statements are available to validate
data, provide messages and help screens to the users, clear the screen and control
the user’s ability to enter information in the form, in addition to numerous other

useful capabilities.

One of the outstanding features of the INGRES Forms Run-Time System is the
table field. A table field is a form field that can display many columns and rows of data
at a time. Its tabular structure mirrors the nature of the relational database and is
suited to the display of large amount of data from a database. A form containing both
fields and simple fields presents a natural medium for the handling of master-detail
type applications.

The table field ordinary acts as a window to an underlying set of data usually data
retrieved from the database. This data set contain many more rows of data than can
be displayed at one time in the table field. Table field operations are available to
manage the display of data set, so that a user may scroll to rows that do not initially
appear in the window. The user can add, delete or update rows in the data set, with
the FRS handling the bookkeeping involved in tracking the changes until such time
as the changes are merged back into the database.

Status information is available to the programmer at all times by means of the SQL
communication area (SQLCA) and the inquire_frs statement of ESQL/FORMS. The
The SQLCA is a data structure included in the program. It contains information
concerning the status of the program itself, including the effect of data manipulation
statements on the database. Statementsin the application program can reference data
in the SQLCA to determine appropriate action. Information regarding the status of
the FRS and of the various form objects is easily accessed by means of the inquire frs

statements.

116

The Embedded SQL preprocessor converts the Embedded SQL statements in a
program into the host language source code statements. These statements call a run-
time library that provides the interface to INGRES. The host language statements
originally in the program are passed through the preprocessor without being altered.
Once the program has been preprocessed, it must be compiled and linked in the usual

fashion for the host language.

6.2.3 UIM/X

Well designed applications with iconic user interfaces have many advantages: they
are easy to learn, easy to use, and can provide users with the support needed to
efficiently work with the application.

UIM/X is a comprehensive, second-generation Graphical User Interface (GUI)
Builder. It enhances programmer productivity by enabling software developers to
interactively create, modify, test, and generate code for the user interface portion of
their applications. UIM/X can also create graphical interfaces for existing keyhoard-
oriented application, with no need to modify or restructure the underlying application.

The UIM/X is fully-integrated with the OSF/Motif toolkit. Developers use a
What You See Is What You Get (WYSIWYG) editor to graphically choose from any
of the OSF /Motif widgets (such as pushbuttons, scrollbars, popup menus, and so on)
and draw their interfaces.

The UIM/X also contains a built-in C interpreter. From within UIM/X, devel-
opers can create the C-code link between the user interface and their application.
UIM/X provides its own library functions for users. Moreover, UIM/X generates

high-performance, error free C or C+4 code, as well as a customizable main program
and makefile.

6.3 System Architecture

In this section we will quickly review the system architectural design. We will consider

an INGRES database system with different extended relations (tables) as we defined

117

in earlier chapters. In other words, we assume that the user created his/here tables
under INGRES before using our prototype.

The user interface part is developed using UIM/X and it is capable of reading the
database name and the query typed by the user. The reliability of the information
sources could be changed by moving the horizontal scales in the user interface left
and right adjusting the reliability of the information sources. For each query typed by
the user the system will show the query and the reliability of the information sources
before listing the answers to queries in the scrolled text of the interface.

Referring to Figure 6.1, the user should enter the name of the database (’said’ in
this case) and the query. The query syntax is the same as the INGRES SQL syntax.
Now, Given that the user entered the query, the button ’Connect to INGRES’ or the
icon above that button should be pressed. This establishes a connection to INGRES.
The Interface at this point will turn the color of the up arrows to red indicating
that the user can not change the database name and the query. At this point, the
system expects the user to press the ’Get Answers’ pushbutton or the icon above that
pushbutton. When the Get Answers’ pushbutton is pressed the interface will send
the arguments to INGRES by running a subprocess that is able to process the query
and display the answers in the scrolled text of the user interface.

The subprocess will accept the query and will perform the appropriate query
transformation to the query typed by the user. Having transformed the query, the
system will send the query to the INGRES Query Processor to bring the query answers
to the subprocess. The subprocess is responsibie of manipulating the source vectors
associated with the pure tuples and their attribute values. Processing of the source
vectors associated with the pure tuples and the attribute values in the answers to
queries is based on the correct semantics we presented in earlier chapters. In this
prototype we will show the answers as returned by the INGRES Query Processor,
the manipulated tuples, as well as the reliability of the each pure tuple as calculated
by the system. Remember that the reliability calculation is an optional step that the

user(s) will specify.

118

| UnceriahDatabase

Quary: “sslect & from o’

Informetion Sources Relisbilitiee:

PIS1) = $,0000, P(S2)} = 0,9000, P(S3) = 0.0000, P(S4) = 0,8000, P(SE) = 0,8000,
P(Q) = 0,6500, P(S7) = 90,9000, P(S8) = 0,0000, P(S3) » 0,8000, P(S10} = 0,9000,

Beliabilicy ef Imformation Sources

st 100
PSS) = 0000, P57)} 2 0 P Y T~
[13 anc _ [2] sneme 3] 20 4] sad (53 sa2 90
(1] 125 (2) Jou (37 1000100000 {4] 1100100101 (5] 100et41000 $2 -
[3) 0000001100 {4) 0000001111 [5) 1000001110
3 mooomo {4) 1011000000 (5) 1011100101 s3 L)
P Y~ Z
(3] 1000100000 (ll 1100100101 (!l 1ooomouo ©
3 0000001100 (43 0000001111 { $4
(37 3030000000 14) 3039000000 (81 1073200103 R Y S
Poomnis onit SO S ————
1000004111 0,5184
1011100301 0,3686 [
SE Y T
ST
e "5—
S — T —
10— T
Popup Queryditor | Popup Duery Arsvers | it ... | Losd Reltabilities | Swve Relisbilities | Halp ... |
Datadase : Connection to INGRES ...
SNE A
T " SOFTEXS RESTARCH LABORATORY
QI polect ® from s; Software KEgineering and Knowledge-base Systems
Depariment of Casputer Science
Query - Concordia iniveraity
f 3
R % 2
— sie_d + o
ot i
Connect to INGRES { Got Angvers ! Closs Connaction | . ben
Tahtes | Forse | cr..m |
Options

= = <&

Tnt Fort List | Palstte: Colors | . Reltabiltty Calculation

Walo

Figure 6.1: The Uncertain Database Management System.

119

From an architectural point of view, we realize from Figure 6.2 how the previous

steps in query answering are performed.

o Step I: The query is sent from the User Interface to the Subprocess.

o Between Step 2 and Step : The subprocess will identify the query by building a
structured query template, perform the appropriate query transformation, and
send the transformed query to INGRES. Of course, whenever an error (system
error) happens, the subprocess will not send the query to INGRES and in this
case, the user is prompted with the error message in the scrolled text area of the
interface. If there were no errors detected, the subprocess will send the query
to INGRES.

o Step 2: The transformed query is sent to INGRES Query Processor.

o Step 3: The INGRES Query Processor will calculate the answers to the query

and returns them to the subprocess.

o Step 4: The answers to users queries are returned back to the subprocess that
uses the embedded SQL to communicate with INGRES.

e Between Step 4 and Step 5: The subprocess will print the answers to the in-
terface without manipulation, perform the correct manipulation to the source
vectors associated with the pure tuples and their attribute values and send the
results to the scrolled text of the user interface. As a last step in the subprocess,
reliability of answers to users queries is performed based on the status of the

toggle button in the interface window.

6.4 Subsystems and Models

In this section we will explicitly clarify two subsystems: the User Interface and the

Subprocess.

120

Query: select sno, sal from sm;

Query: select s.3n0, s.sname, smudep, sm.sal from s, sm where (s.00 = smano);

~

Query: select ® from sm;

USER /\3
INTERFACE
Umx)
I Is
Query: select ® from s UNION select ¢ from ss;
SUBPROCESS
using ESQL

ﬁ] Extended relations

Figure 6.2: System Architecture.

121

6.4.1 'The User Interface

UIM/X is used to develop the user interface which consists of one main file called
‘QE.c” that uses other three sub models “QueryEditor.c”, “ScrolledText.c”, and “Un-
certainDatabase.c”. The last model is the interface shown in Figure 6.1. The code of
these models is included in the Appendix chapter.

“QE.c” declares the global variables and functions as well as creating the inter-
face of Figure 6.1. The “UncertainDatabase.c” model will communicate between
the user(s) and other models. For example, this interface will accept the query and
give control to the subprocess to execute the query, popup the “ScrolledText.c” and
“QueryEditor.c” interfaces. ‘QueryEditor.c” is not implemented in this prototype,
however, the interface exists as a code and does not perform any internal processing.
The “QueryEditor.c” interface is capable of displaying the answer to the last query
performed in a wider scrolled text window. Any future extensions to this project

should enhance the power of these two interfaces.

6.4.2 The Subprocess

During Step 2 the subprocess is given control by the interface by passing two argu-
ments: the database name and the query. The subprocess uses ESQL statements to
allocate a buffer that stores the query typed by the user. As a second step, the subpro-
cess creates a Structured QueryTemplate as pointed out in Figure 6.3. The Structured
Query Template is a data structure that stores the attribute names, number of at-
tributes required, number of tables needed, table names, the selection condition if
any, and the query type. Moreover, the subprocess will transform the typed query to
a query that includes all attributes of all mentioned tables in the query, the selecticn
condition will not be affected. At this point, the subprocess uses ESQL statements
that prepares and describes the transformed query that should be sent to the INGRES
query processor.

The INGRES query processor will act on the query and produce a set of answers to

be sent to the subprocess. Note that the subprocess and INGRES will communicate by

122

means of the SQLDA and the SQLCA as mentioned earlier in this chapter. When the
answers are sent from INGRES to the subprocess (Step 4), the subprocess branches to
the appropriate procedure to manipulate the answers given by INGRES. The branch
is based on the query type. For example, if the query is a “Cartesian Product”
the appropriate manipulation method for source vectors is applied which is based
on the semantics we proved in earlier chapters. The structured query template is
used during the manipulation to identify the needed attribute values and to test the
selection condition, when it is present, of the typed query. As noted before, the

answers are sent to the scrolled text area of the user interface.

8.5 Capabilities of the Prototype

This prototype is capable of answering queries that does not require more than one
extended relational algebra operation. In other words, a query that requires only a
Join is best served by this prototype. The prototype assumes a constant set of infor-
mation sources (10 information sources). The extended relations should be created
by the user using the “tables” utility of INGRES. Algorithm 3 is used to calculate
the reliability of the pure tuples in the answers to queries.

One important aspect that makes our model important is the capability of allowing
the same pure tuple to duplicate in an extended relation. Consider, for example, the
pure tuple ¢ that appears in the extended relation created by the user using the
“tables” utility of INGRES in Figure 6.4.

The pure tuple ¢t shows that the system is able to combine multiple supports of
the same evidence to find the reliability of the evidence itself based on the reliability
of the information sources who contributed to that evidence. This is a very important
aspect in many application domains like medicine and military systems.

A more interesting aspect to look at is the condition under which our new model is
equivalent to the IST model introduced by Sadri [18, 19]. In other words, as Figure 6.5
indicates, our new model is equivalent to the IST when the source vector associated

with each pure tuple in the extended relation is the same for all attribute values of

123

Query typed by the user(s)
m:::' ssname, sm.dep, sm.sal Structured Query Template:
where (s.s10 = sm.sn0); 4 “number of attributes required
Tramsformed Query: /\/ :mxmmb?dm "wed attribute names
rerra— number of 1ables reguir.
froms, sm 8, 8m ; table names
where (8510 = sm.3no); (8310 = smMaN0) ;: Join attribute names
(JOIN) : query type
Subprocess
INGRES
buffer
Communication
Display answers Area SN .
to Inteface (X333 —— M’ sm
Identify query type -
and manipulate
source vectors
\
Extended Extended Extended Extended Extended Extended Extended
Selection Projection Unjon Cartesian Join Intersection Set Difference
hvrucl
Display answers Reliability Display answers
to Inteface Calculation to Inteface

Figure 6.3: Subprocess Architecture.

124

‘ssloct ¢ from ¢°
lnfaamm Sources Retishilities
P(S1) = 1,0000, P(S2) = 0,9000, P(S3) = 0,8000, P(S4) = 0,8000, P(S5) = 0,8000,

P(SE) = 0,0500, P(S7 } = 0.9000, P(S3) = 0,9000, P(S9) = 0,8000, P(S10} = 0,9000, 51 10
The is a Selection, | . pmw]
117 sne [2) anawe (31 800 £4) sal (5] sa2)
{13 12845 [2] Jos (3] 1000100000 [4] 1100100101 (5] 1000111000 $2 IR
(1] 12346 12] Fady [3) 2000001100 (4] 0000001411 (5] 1000001110
[1] 12347 [2) Sendrs m 1010000000 [4] 1011000000 {5) 1011400101 $3 L
[1) 12045 [2] Joo 1 0000000010 (4] 0000001010 [5) 0000000011 = |
[4) 12348 [2) Jos m 1000000000 (4] 1100000000 [5] 1010000000 ®
112 12345 [2) Joo (3) 0100000000 (4] 0120000001 [53 0101000001 sS4
11 o [2) sneme =~ |
(1) 12345 £2) Jos [3) 1000100000 (4) 1300100101 {5) 1000111000 %
0 e) i E3] Sotooomoon 1o} ToaToreoss 16 1outa00tot .
{17 12347 [2) Sendre (3] 1010000000 [4] 1041000000 [5) 1011100101
11} 12345 [2) Joe 13 0000000010 {4] 0000001010 [5) 0000000011]
[11 12345 (2] Jos [3] 1000000000 14] 1100000000 (51 1010000000 SE R
(13 12345 (2] Joe (3] ©100000000 [4) 0110000001 (5) 0101000001 |
1) sno (2] snane N N 90
1235 Jos 000000011 09173 [T tarka I -|J]—_
06111000001 L
1110000000 S TABLE: 0
dooolits o.5184
1011100101 3606 Sno [Srume Sa0 Sad Sa2 [
1
12346 |Fady 0600C001 100]0000001111 | 1000001110 %
12347 [Sancra 1010000000(1011000000 1011100101
125! Jos 01 01010} 0000000011 i
12345} Joo 1000000009 1100000000} 1010000000
Popup QueryEditor | Popup Query Answ 12345 Jos 0100000000 |0110000001 { 0101000001 11abilities Halp ...
Datebase : s ...

= ‘Cll LABORATORY
Q' select ® from nd Knowledge-base Systams
Camputer Science
Qery: niveraity
Query(F1) Help(“1) EndiL9)

gl
Lonrect to INGRES l Get Answers l Close Connection | '{53
Tables J Reports

T S—

ke '
umJ

1w = || 2]

ik

Text Font List | Palette: Colors | Relisbility Caleulation B .

Figure 6.4: Reliability of Multiple Source vectors Supporting The Same Evidence.

125

the same pure tuple. In such situations the IST model is preferable to our new model
since our new model requires more space to be stored and more complicated source
vector manipulation to get the reliabilities of the tuples in the answers to queries.
Let us now consider the case when our new model is equivalent to the regular
relational model. Consider the situation where the information sources are all 100%
reliable. In this case, as in Figure 6.6, we have three tuples in the result of answers
to queries and the reliability of each is 100% which is always the case in the regular

relational model.

126

h"wm'":“,"m;&”mm Reliability of Imfermation Soarces
P(SL) = 1,0000, PIS2) = 0,9000, P(S3) = 0,000, P(S4) = 0,8000, P(S5 } = 0,000, 100
P(S6) = 0,850, P(ST) = 0,9000, P(S8) = 0,0000, P(S9) = 0,60, P(S10) = 0,900, s1
e Ts & Selection, . =
{11 o 21-\-.131..0(01-1(5)-& ®
11) 32345 12) J (3] 1100000000 {43 1100000000 (5] 1100000000 $2 . m=
(1] 4218 (2] Jou £31 0000000110 4] 000000110 (5] 0000000110
(4] 12345 £2) Joo [3) 0111000000 [4] 0113000000 {5) 0111000000 $3 L
1) 12346 [2) Fody £3) 0000001100 {4] 0000001100 (3] 0000001100 . o=~
(13 12347 (2] Sendra [3) 1030000000 [4] 1030000000 [8) 1010000000 ®©
£33 1267000000 {4) 1100000000 (5] 1100000000 54 m=_
[3) 0000000110 (4] 0000000110 (5] 0000000110 o5 ®
565 —:—""
0,540 ©
. taka ji_ﬂ—_
3;3..‘?? IST TARE ®»

A) ©
12345} Jon 10000001 10{00000001 1G, 0000000110
12345 Joa 0111000003{0111000000|0111000000
i) eeB S omo000000| 1030000000 101000600
Poe Qarditor | Popup Duery frsw * ettt | Wlp ...
Oatedase : ll “ee
= F
‘N LABORATORY
Q' smloct ® fron 157 nd Knowledge-base Systems
Computer Science
Query : niversity
Quary(F1) Halp*D) EndL9)
= L
i & i
Connect to INGRES | Got Anovers | Close Comaction i I
Tables bpu-uJ
Options
o = of ———"U
e Wwto . |
) Toxt Font List { Paletta: Colore | g meliabslity Calculation . .

Figure 6.5: Our Model and IST model (in this case they are the equivalent).

127

A L
-~ | UncertainDatabess {1
o, ’
Mv:u.mlmhmnum Beliadility of Informstion Sources
P51) = 1,000, P(R2) = 1,0000, P(S3) = 1,0000, P(54) = 1,0000, P(S6) = £,0000, w0
he) - x.mbsm } = 1,0000, P(SB) » 1.0000, (SO) = 1.0000, P(510) = 1,000, .
Ly}
(1] ow 12) seeme (3] 48 103 sa (5] w2 100
(1] 12368 12) Yoo 11000100000 (4] 1100100101, 15) 1000141000 S2 Y ~T]
111 12546 (2) Fady (31 dgeasotiss {47 0000001151 (5] 1000001110
11} 1247 (3] 1010000000 [4) 101100000 (5] 1011100101 63 1%
==
t
B3 idoomom (4} cioomeos 4] vionn St A—
[31 1000100000 (4] Liommooion (5} 1000111000 100
brersessi bt S5 Y
100
1 5] 101 SE o YT
0110000001 {51 0161000001 10
; - tata] —————— T
} S TABLE: 100
S0 [Sname S0 st s | 100
ke)
nuslmu mjoooaooun 1000001110 100
1207 Sancra 101000000011011000000 1041100101
17U5 | Joo "1 01016] 11
12345| Jos 1010000000/
Popy Queryfditor] Pop Quary A 12345) Joe 0100000000 0110000001 0101000001 blubnm- | Help ... |
Datadese IS e
= AV i
'H LABORATORY
" wict @ from & nd Knowledqe-base Systems
Comput.er Science
Owery: Wiversity
DarylFL) Helpt"D) Endiil®)
= o
) & 0]
£ g i [
Comect to I0Rs | Sot Arovers 1 Close Commction [} 2 EE =%
Tables | Reports_| Foms_ | traphs |
Options
g El Dﬂl o .. | !
) Taxt Font List 1 Palette: Colors] JRelssbiliey Caleulation =l —

Figure 6.6: Our Model and the Regular Relational Model (in this case they are

equivalent).

128

Chapter 7

Conclusion and Future Directions

In this work we extended the IST model presented by Sadri in [18, 19]. In this
new framework, the information sources or observers that provided the extended
relational database with the information can contribute to that information with more
flexibility. Any source vector can contribute to any attribute value in any tuple or
to the whole tuple. In pursuing this line, we concentrated on the extended relational
algebra operations and extended the concept of the “Alternate Worlds Model”, that
Sadri presented in [19], to prove the correctness of the extended .clational algebra
operations. Sadri in [18, 19] introduced and proved the correctness of two important
reliability calculation algorithms that calculate the reliabilitics of answers to querics
-done as a last optional step after query processing. In this regard, we extended these
reliability calculation algorithms so that they fit into our new model and proved that

the extended algorithms are correct using the semantics of the “Alternate World

Model".

7.1 IST and Our New Model

IST introduced by Sadri is a clean and effective model to handle uncertainty in rela-
tional databases. In Chapter 1 section 2.5, we presented the IST model and presented
the extended relational algebra operations that are based on a clean semantics which
is the alternate world model. Dependencies and independencies of information is

handled, manipulation of conflicting information, query processing, and reliability

calculations are all topics of high importance to any application domain that gathers
information from independent sources or observers and records the collected informa-
tion in an uncertain database implemented using the IST model.

If we take a closer look at the IST, we realize that the IST can capture a situation
where sources are contributing to the whole tuple as one unit. Consider for exam-
ple the following situation. Information sources s, s3, and s, informs the uncertain
database system that they are sure that “Mike” is living at “5453 Harvard Street”
and his phone number is ‘534 — 3234”. IST perfectly models this situation and stores

this information in an extended relation r as:
(Mike, 5453 Harvard Street, 534 — 3234)Q(1011) € r,

where (1011) is the source vector associated with the pure tuple

t = (Mike, 5453 Harvard Street, 534 — 3234)

and indicates that the sources sy,s3, and s4 are confirming positively to ¢.

Let us now consider a different situation where source s; confirms all the infor-
mation presented in the previous tuple, ie. s; confirms that “Mike” is living at
“5453 Harvard Street” and his phone number is ‘534 — 3234”. Let us assume that
source s; do not agree with the information that source s; is providing, i.e., source s
denies the fact that “Mike” is livingat “5453 Harvard Street” and his phone number
is ‘534 —-3234". We will, also, assume that source s3 agrees that the phone number of
“Mike” is ‘534 —3234” but do not know anything about his address. Moreover assume
that the information source s; did not know anything about the previous fact.

The IST model can not capture this situation. Our new model is able to capture

such a situation and store it in the extended relational database system as follows:

(Mike, 5453 Harvard Street, 534 — 3234)@(1 — 100,1 — 110,1 — 100,1 — 110) € r,

where 1y = 1 — 100 is the source vector associated with the pure tuple?, u; =1-110

is the source vector associated with the attribute value “Mikq”, uz =1 — 100 is the

130

source vector associated with the attribute value “5458 Harvard Street”, uz = 1~110
is the source vector associated with the attribute value ”534-3234".
Note that both situations, now, could be stored into the new model, which is an

extension of the IST model, as follows:

(Mike, 5453 Harvard Street, 534 — 3234)@(1011,1011,1011,1011) € r,

(Mike, 5453 Harvard Street, 534 — 3234)Q(1 — 10,1 - 11,1 —10,1 - 11) € r,

In this sense we realize a very important observation of our new model under
which our new semantic is equivalent to that introduced by Sadri [18, 19]. This
observation states that if all the source vectors associated with the attribute values of
any pure tuple ¢ in any extended relation 7 and the source vector associated with the
pure tuple ¢ are equal, then our semantics is equivalent to the semantics introduced
by Sadri [18, 19]. In other words, if we have a model where for any pure tuple ¢
Up = U; = ... = Uy in any r, where n is the number of regular attributes in the
extended relational scheme R of r as in section 3.1, then the semantics of our new
model is equivalent to the semantics of the IST model. In this context, the extended
relational algebra operations of section 3.3 are equivalent to the extended relational
algebra operations of the IST. Moreover, the reliability calculation algorithms are also
equivalent.

Note that when the previous observation is true, then our new model is less

preferable to the IST because of space consideration issues.

7.2 Conclusion and Future Work

Our future work is to consider a model where the set of information sources is dynamic
and discuss issues arising from introducing functional dependencies and aggregate op-
erations, to our new model. As for this model, we will also look at an important aspect
in query answering that provides partial information together with their reliabilities
as answers to queries. In such a work we need to define new algorithms that are able

to capture this concept. To enhance the power of the user interface in our framework,

131

we are looking forward to extend the syntax of query answering by letting the user
specify probabilistic arguments as part of the query syntax. In this sense, the query
processor will not only bring answers associated with their reliabilities, but will use
probabilistic theories based on our semantics to best serve queries. Of course, in any
of these future extensions a complete and sound semantics is always required.

Insertions, Deletions, and other utilities that should be present in an extended
relational database will constitute an important part of our research direction.

Another area of interest is to extend the work done by Lakshmanan and Sadri
[11]. In this regard, as done in {22] we will introduce uncertainty not only to facts and
rules as done in [11], but we will extend this concept to incorporate uncertainty to
the constants presented by the facts to introduce a language for uncertain deductive
databases. Based on the new language, we will extended the Herbrand Models as
an extended interpretation for the new language, look for an extended immediate
consequence operator to calculate the intended model of an uncertain database, define
the least fixed point model and prove that the least fixed point model intersects with
the extended immediate consequence operator.

Another interesting and promising area for future work is the uncertainty that we
will introduce in Object Oriented Databases.

Evidential independence should be studied more carefully. Kifer and Li [10] in-
troduced two kinds of evidential independence. A future work could look into other
types of evidential independence and apply them to our madel and study the behavior
of our system under each type of evidential independence.

As an implementation we are interested in implementing our models in the areas
of Medicine, Military, Pattern Recognition, Object Recognition, Artificial intelligence
and Expert Systems.

132

Bibliography

(1] K. R. Apt, H. Blair and QA. Walker, “Towards a Theory of Deduc-
tive Knowledge”. in Foundations of Deductive and Logic Programmning, J.
Minker, (ed.), Morgan-Kaufmann, 1988,89-148.

[2] J. F. Baldwin, “Evidential Support Logic Programming”, Fuzzy Sets and
System, 24, (1987), 1-26.

(3] J. F. Baldwin and M. R. M. Monk, “Evidence Theory, Fuzzy Logic and
Logic”, ITRC Tech. Rep. # 109, University of Bristol, UK, 1987.

[4] D. Barbara, H. Garcia-Molina, and D. Porter, “The Management of Prob-
abilistic Data”, IEEE Transactions on Knowledge and Data Engineering,
Vol., 4, No. 5, October 1992. 487-502.

(5] E. F. Codd “A Relational Model for large shared data banks”, Commun.
ACM, vol 13, no. 6, pp. 377-387, June 1970.

[6) C. Date, An Introduction to Database Systems, Vol. 1, Reading, MA:
Addison-Wesley, 4th ed., 1986.

[7] M. Gelfond, and Lifschitz, “The Stable Model Semantics for Logics for Logic

fa'g ramming.” Proc. Fifth Logic Programming Symposium, 1988, pp 1070-

[8] D. E. Heckerman and E. J. Horrovits, “On the Expressive Power of Rule-

Based Systems for Reasoning with Uncertainty”, Automated Reasoning,
1987, 121-126.

9] A. Kaufmann. Introduction co the Theory of Fuzzy Subsets, volume I. Aca-
demic Press, 1975.

(10} M. Kifer, and A. Li (1988), “On the Semantics of Rule-Based Expert Sys-
tems with Uncertainty”, 2"¢ International Conference on Database Theory
(LNCS 326), eds. M. Gyssens, J. Paredacus and D. Van Gucht, Springer
Verlag, Berlin Heidelberg New York, 102-117.

[11] V. S. Lakshmanan and F. Sadri, “Modeling Uncertainty in Deductive
Databases.” Technical report, Concordia University, May 1993.

[12] K-C Liu, and R. Sunderraaman, “Indefinite and Maybe Information in Re-
lational Data Bases.”, ACM Transactions on Database Systems, Vol. 15, No.
1, March 1990, pp 1-39.

133

[13] K-C. Liu, and R. Sunderraaman, “A Generalized Model for Indefinite and
Maybe Information.”, IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 3, No. 1, March 1991, pp 65-77.

[14] C. L. Lu, “Introduction to Combinatorial Mathematics”, McGraw-Hill,
1968.

[15] D. Maier, “The Theory of Relational Database.”, Computer Science Press
1993.

[16] T. C. Prsymusinski, “On the Deductive Semantics of Deductive Databases
and Logic Programs”, in Foundation of Deductive Databases and Logic Pro-
grcémming, J. Minker, (ed), Morgan-Kaufmann, Los Alotos, CA, 1988, 193-
216.

[17] R. Reiter, “A Sound and Sometimes Complete Query Evaluation Algorithm
ti?)rS élelational Databases with Null Values.”, ACM, Vol. 33, No. 2, Apr.

[18]) F. Sadri “Reliability of Answers to queries in Relational Database.”, IEEE

2Trgn2ssaction on Knowledge and data Engineering, Vol. 3, No. 2, June 91, pp
45-251.

[19] F.Sadri “Modeling Uncertainty in Databases.”, Proceeding of the 1991 IEEE
International Conference on Data Engineering, pp 122-131.

[20] F. Sadri “Information Source Tracking Method: Efficiency Issues.”
Manuscripl. December 1992. Submitted for publication.

[21] F.Sadri “Integrity Constraints in the Information Source Tracking Method.”
To appear in IEEE Transaction on Knowledge and Data Engineering.

[22] J. N. Said “Intelligent Computations in Managing Uncertainy in Deductive
Databases” Technical report Concordia University.

[23] E. Shapiro, “Logic Programs with Uncertainties: A Tool for Implementation
Rule-Based Systems”, IJCAI-83, 1983, 529-532.

[24] V. S. Subrahmanian, “On The Semantics of Quantitative Logic Programs”,
IEEE Symposium on Logic Programming, 1987, 173-182.

[25] A. Van Gelder, K. Roth, and J.S. Schilpf, “Unfounded Sets and Well
Founded Semantics for General Logic Programs.”, Proceedings of the 1988
ACM Symposium on Principles of Databases Systems, pp 221-230.

[26] M. H. van Emden, “Quantitative Deduction and its Fixpoint Theory”, The
Journal of Logic Programming, 1986, 47-53.

[27] J. D. Ullman, Principles of Database and Knowledge-Base Systems, Balti-
more, MD: Computer Science, 1988.

[28] L. A. Zadeh. Fuzzy sets. Information and Control. pages 338-353, 1956.

134

Chapter 8

Appendix

8.1

/

Code for The User Interface, ESQL, and Makefiles.

User Interface code

o¢ This is

SOS SR EINIIIISR RGNS Lol 1]] AT TIIIILII L DY ITITLA L A ITET I YT Y1)

the User Interface main program file QE.c

e esIsIIES e L1]

#include <UxLib.h>
include <X11/X1ib.h>

Fi)

¢ Insert application global declarations hare

*

o/

$itdef _BO_PROTO
main{argc ,argy)

int argc;

char *argv(l;

Selss

main(int argc, char sargv(])

Sendif /¢ _NO_PROIC =/
{
/e
s& Declarations.
*e The dafault identifier -~ mainIface will only be declared

*e
e
*e

if the interface function is global and of type swidget.
To change the identifier to a different name, modify the
string mainiface in the file “main.dat”. If “mainIface"

*s js declared, it will be used below where the return value

¢s of PJ_INTERFACE_.FUNCTION.CALL will be assigned to it.

e .o/
swidget muiniface;

/e

*s Interface function declaration

s/

swidget create_ UncertainDatabase();

(L LITTTLIILT Y Py Iy

svidget UxParent = BULL;

/e
¢¢ Initialize Program

L1 e/

$i2de? XOPRB_CATALOG
if (XSupportsLocale()) {
ItSetLanguageProc(NULL, (XtLanguageProc)NULL,JULL) ;
)
Sendif

UxInitCat();

UxTopLevel = XtAppInitialize(&UxAppContext, "QE*,
BULL, O, Bargc, argv, NULL, RULL, 0);

UxAppInitialize(“QE", Rargc, argv);

/e
ss Insert initialization code for your application here

se +/

/e
¢¢ Create and popup the first window of the interface. The

¢+ return value can be used in the popduwn or destroy functions.
%s The svidget return value of PJ_INTERFACE_FUBCTION.CALL will
*¢ be assigned to "mainIface from PJ_INTERFACE_RETVAL_TYPE.

" s/

mainIface ® create_UncertainDatabase(UxParent);

UxPopuplinterface(mainlface, no.grab);

/e

s¢ Enter the event loop

(1] ./

UxMaiaLoop() ;

}
/ * 80
¢¢ UncertainDatabase.c
e
oo Associated Header file: UncertainDatabase.h

” *0 (12] . *

8include <stdio.h’
®inclode "UxLib.h"
@include "UxLabelG.h"
@include "UxRowCol.h*
®include “UxTogB.h"
$include "UxScText.h"
@®include "UxScri¥.h\"
@include "“UxScale.h”
Sinclude "UxPushdd.h"
®include “UxSep.h"
®include “UxArcB.h"
®include "UxToxt.\"
Sinclude "UxLabel.h"

136

#include "UxForm.h"

#include "UxFrame.h"
#include "UxPushB.h"
$include “UxBboard.h"

Ie

L L Includes, Defines, and Global variables from the Declarations Editor:

L4

$include <UxLib.h>

8include "UxSubproc.h"

handle h;

extern swidget create_QueryEditor();
extern swidget create_ScrolledText();

/¢ extern swidget create_QueryAnswers(); s/

static svidget UncertainDatabase;
static svidget pushButtoni;
static swidget pushButton3;
static swidget frame$;

static swidget form3;

static swidget pushButton7;
static svidget pushButton2;
static swidget pushButtond;
static swidget label3;

static suidget labeld;

static swidget texti;

static swidget text2;

static swidget arrowButtoni;
static swidget arrowButton2;
static ssidget separatori;

static svidget pushButtonGadgetil;
static swidgat pushButtonGadgetid;
static svidget pushButtonGadgetih;
static svidget pushButtonGadget2i;
static swidget pushButtonGadget22;
static swidget pushButtoni2;
static swidget frame7;

static svidget form5;

static swidget frames;

static swidget scrolledWindowText2;
static swidget scrolledText2;
static svidget frame9;

static swidget formé;

static auidget scaleli2;

static swidget scalelill;

static swidget scaleli?;

static swidget scaleli6;

static svidget scalel8;

static swidget scalell9;

static swidget scalelid;

static swidget scalels;

static swidget scaleli3;

static svidget scaleliil;

static swidget label9;

static swidget labelil;

static svidget labelil;

static swidget labell2;

static swidget labell3;

static swidget labeli4;

static svidget labeli5;

static swidget labelis;

static swidget labell7;

static swidget labell8;

137

static swidget labelild;

static swidget pushButtoni3;
static swidget pushButtonid;
static swidget pushButtoni5;
static swidget frame10;

static svidget form7;

static swidget pushButtonis;
static swidget framei2;

static swidget label20;

static swidget pushButtoni?;
static swidget toggleButtoni;
static swidget pushButtonGadgeti2;
static swidget pushButtonGadget1é;
static swidget pushButtonladget26;
static swidget frameil;

static swidget forms;

static swidget scrolledWindow?;
static swidget form9;

static swidget frame13;

static swidget rowColumn2;

static swidget frameid;

static swidget rowColumn3;

static swidget pushButtonGadgetl;
static swidget pushButtonGadget2;
static swidget framei5;

static swidget rowColumnd;

static swidget frame1$;

static swidget rowColumn§;

static swidget pushButtondadget3;
static swidget pushButtondadget4;
static swidget frame19;

static swidget rosColumn8;

static swidget frame20;

static swidget rowColumn9;

static swidget pushButtonGadget?;
static swidget pushButtonGadget8;
static swidget framei?;

static swidget rowColumné;

static swidget framel8;

static swidget rosColumn?;

static swidget pushButtondadgets;
static swidget pushButtonGadgets;
static swidget frame2i;

static swidget rowColumnio;
static swidget frame22;

static swidget rosColumnii;
static swidget labelGadgeti;
static swidget pushButtonfadget2§;
static swidget frame23;

static swidget rosColumni2;
static swidget frame24;

static swidget rowColumnil;
static swidget pushButtonladget9d;
static swidget pushButtonGadget10;
static swidget separator?;

static swidget label2l;

static awidget separatord;

static swidget UxParent;

8define CONTEXT_MACRO_ACCESS 1
®include “UncertainDatabase.h
®undef CONTEXT_NACRO_ACCESS

Je

L4 The following are translation tables.

138

static char stransTablei = “Saugment\n\
<BtniDown>(2) :doubleclick()\n";

/e
s The following are Action functions.
s o/
static void action._doubleclick(UxWidget, UxEvent, UxParams, p.UslunParams)
Vidget UxWidget;
XEvent sUxEvent;
String sUxParans;
Cardinal ¢p_UxNunParams;
{
Cardinal UxNunParans = ep_UszBumParams;
swidget UxThisWidget;
UxThisWidget = UxWidgetToSwidget (Uxiidget);
{printf(“double click using most left button. \n");}
3}
/e --e-
The following are callback functions.
B o et o e o e D R . D O 8 R 0 Y 4 8 O e e O o/

static void activateCB_pushButtoni(UxWidget, UxClientData, UxCallbackArg)
Widget UxWidget;
XtPointer UxClientData, UxCallbackArg;

swidget UxThislidget;
UxThisWidget = UxWidgetToSwidget (UxWidget);

{

extern swidget QueryEditor;
create_QueryEditor (BO_PARENT);
UxPopuplnterface(QueryEditor, no_grab);

)
}

static void activateCB_pushButton3(UxWidget, UxClientData, UxCallbackArg)
Vidget UxWidget;
XtPointer UxClientData, UxCallbackArg;

swidget UxThislidget;
UxThisWidget = UxWidgetToSwidget(UxWidget);

{

/+ this should be declared as external */

/# since this is the interface function of »/

/% the interface to be poped up ¢/

extern swidget ScrolledText;

/¢ create the Contest Structure of the called interface and pass the ¢/

/* required arguments to it provided that these arguments have the same s/

/% names in the Property Editor of the corresponding Widgets and the Interfaces/
/¢ tunction of the popedup interface. ¢/

/* this instruction ensures that the Context Structure is created but not

139

/o displayed o/
create_ScrolledText(NO_PAREET, "Print ...", "Save ...");

/* this instruction ensures that the Interface is displayed to the screen o/
UzPopupInterface(ScrolledText, no_grabd);
}

)

static void activateCB_pushButton7(UzWidget, UzClientData, UxCallbackArg)
Widget UzWidget;
KtPointer UxClientData, UxCallbackArg;

{

swidget UxThisWidget;
UxThis¥Widget = UxWidgetToSwidget (UxWidget);
{
/% h is used by the UIN/X to identify the subprocess.s/
/¢ UxCreateSubproc initializes UIN/X to handle the proc.s/
/¢ first argument is the name of the application, the second argument ¢/
/e is the passed argument to the application NULL in this case, the third s/
/% argument is the function pointer to a function that handles output from the ¢/
/® subprocess. In this case the output is to be sent to a text widget ¢/
UxPutForeground(arrowButtont, "red");
UxPutForeground(arrowButton2, "red");
h = UxCreateSubdproc("Terminal", NULL, UxAppendTo);
/* the second call here identifiss the text widget to vhich the UxAppendTo o/
/* will send the output from the subprocess. First argument is the handle h ¢/
/* of the subprocess created by the function call UcCreateSubproc function. ¢/
/¢ the second argumant is the X widget pointer of the text widget s/
if (ERROR == UxSetSubprocClosure (h, UxGetWidget(scrolledText2))) {

printf(“Cannot Set subproc closure \n");

return;
}
/¢ this function call Runs the Subprocess. Argument are the subprocess handles/
/% and the argument that we vould like to pass to the subprocess s/
/# the function UxExecuteSubproc() could be used instead of UxRunSubproc(). s/
/+ The difference is that the second function force the subprocess to /
/* and start again in case his process wvas previously running s/
if (ERROR == UxRunSubproc(h, NULL)) {

printf("Cannot start the application \n");

return;
}
/® this code could bde included in the final code of some interface and the */
/7% code would be executed as soon as the interface is poped up in the scraen ¢/
/¢ to do this we will include this code in the final code of that interfaze ¢/
UxPutSensitive(pushButton7, "false");
}

}

static void activateCB_pushButton2(UxWidget, UxClientData, UxCallbackirg)
Widget Uxilidget;
XtPointer UxClientData, UxCallbackArg;
swidget UxThisWidget;
UxThisVWidget = UxWidgetToSuidget(UxWidget);

{
/¢ this vill release the handle given to the subprocess from the memory */

140

/® For applications that might be terminated and restarted again many ¢/

/+* times from the same interface, UxExecuteSubproc() function should be ¢/
/% used instead. In this case only a call to the UsRunSubproc() is needed ¢/
/* to restart it s/

UxDeleteSubproc(h);

UzPutForeground (arrowButtonl, "yellos");

UxPutForeground(arrowButton2, "yellow");

UzPutSensitive (pushButtond, “true“);
UxPatSensitive(pushButton?, “true™);

}
}

static void activateCB_pushButtond(UxWidget, UxClientData, UxCallbackArg)
Widget UxWidget;
XtPointer UxClientData, UxCallbackArg;

{
swvidget UxThisWidget;
UxThisWidget = UxWidgetToSwidget(UxWidget);
{
char stf128];
char s2[128];
/% if your process requires input from the terminal this is what you should do:¢/
/# create text widgets in the interface and £ill in the appropriate values ¢/
/% for those text widgets as if you are entering these values from the terminale/
/¢ and send them to the process one after the other. This simulates entering ¢/
/+* the values to through the terminal. o/
sprintf(s1, “%s", UxdetText(text1)); /¢ get the value from widget ¢/
/* used to send the command to the subprocess. In this case, the string sent o/
/* is formed by the command pop followed by the name of the country, which #/
/% is read from the text widget texti. Qutput would ba handled by UxAppendTo()e/
/% which would display the string in the Text widget text2 s/
UxRendSubproc(h, s1); /¢ send the value to the subprocess ¢/
UxPutForeground (arrosButtoni, "green");
/% after this line accept the other values from the widgets and send them to ¢/
/* the subprocess to be executed. »/
sprintf(s2, "%s", UxGetText(text2));
UxSendCabproc(h, s2);
UxPutForeground (arrowButton2, "green");
UzPutSensitive (pushButtond, "false");
}
}

static void activateCB_pushButtonGadget14(UxWidget, UxClientData, UxCallbackArg)
Widget Uxlidget;
XtPointer UxClientData, UxCallbackArg;

swidget UxThisVWidget;

UxThisWidget = UxWidgetToSwidget(UxWidget);

{

/% h is used by the UIN/X to identify the subprocess.s/

/% UxCreateSubproc initializes UIR/X to handle the proc.s/
/» tirst argument is the name of the application, the second argument s/

141

/¢ is the passed argument to the application NULL in this case, the third ¢/
/¢ aigument is the function pointer to & function that handles cutput from the »/
/¢ subprocess. In this case the output is to be sent tc a text widget o/
UxPutForeground(arrovButtoni, “red");
UxPutForeground(arrovButton2, “red");
h = UxCreateSubproc("Terminal®, WULL, UxAppendTo);
/% the second call here identifies the text widget to shich the UxAppendTo ¢/
/¢ vill send the output from the subprocess. First argument is the handle h ¢/
/¢ of the subprocess creatad by the function call UcCreateSubproc function, */
/¢ the second argument is the X widget pointer of the text widget ¢/
it (ERROR == UxSetSubprocClosure (h, UxGetWidget(scrolledText2))) {
priatf("Cannot Set subproc closurs \n");
return;
}
/% this function call Runs the Subprocess. Argument are the subprocess handles/
/¢ and the argument that we would like to pass to the subprocess */
/% the function UxExecuteSubproc() could be used instead of UxRunSubproc(). s/
/¢ The difference is that the second function force the subprocess to /
/¢ and start again in case his process was previously running ¢/
if (ERROR == UxRunSubproc(h, EULL)) {
printf(“'Cannot start the application \n");
return;

}
/¢ this code could be included in the final code of some interface and the */

/¢ code would be executed as soon as the interface is poped up in the screen ¢/
/¢ to do this we will include this code in the final code of that interface ¢/

UxPutSensitive(pushButton?, “false");

)
}

static void activateCB_pushButtonGadgeti5{ UxWidget, UxClientData, UxCallbackArg)
Widget UxWidget;
XtPointer UxClientData, UxCallbackArg;

{
svidget UxThiLvidget;
UxThisWidgot » UxWidgetToSwidget(UxWidget);
{
/¢ this will releass the handle given to the subprocess from the memory */
/+ For applications that might be terminated and restarted again many s/
/% times from the same interface, UxExecuteSubproc() function should be »/
/¢ used instead. In this case only a call to the UxRunSubproc() is needed ¢/
/* to restart it e/
UsDeletsSubprocCh);
UxPutForeground (arrovButtonl, "yellow");
UzPutForegiound (arrosButton2, "yellow");
UxPutSensitive(pushButtond, “true");
UxPutSensitive(pushButton?, "true");
$
}

static void activate(B_pushButtonGadget22(UxWidget, UxClientData, UxCallbackArg)
Widget UxWidget;
ItPointer UxClientData, UxCallbackArg;

swidget UsThisWidget;

142

}

UxThisVWidget = UxWidgetToSwidget(UxWidget);

{

char s1{128];

char s2[128];

/% it your process requires input from the terminal this is what you should do:e/
/% create text widgets in the interface and £ill in the appropriate values ¢/

/* for those text widgets as if you are entering these values from the terminale/
/¢ and send them to the process one after the other. This simulates entering o/
/¢ the values to through the command prompt. ¢/

sprintf(si, “Xs", UxGetText(text1)); /¢ get the value from widget ®/

/% used to send the command to the subprocess. In this case, the string sent ¢/
/# is formed by the command pop followed by the name of the country, which ¢/

/% is read from the text widget texti. Qutput would be handled by UxAppendTo()s/
/* which would display the string in the Text widget text2 e/

UxSendSubproc(h, s1); /¢ send the valus to the subprocess ¢/
UxPutForeground(arrowButtont, "green');

/¢ after this line accept the other values from the widgets and send them to ¢/
/* the subprocess to be executed. ¢/

sprintf(s2, "¥%s", UxGetText(text2));
UxSendSubproc(h, 82);
UxPutForeground(arrowButton2, "green*);

UxPutSensitive(pushButtond, “"false");

static void activateCB_pushButton12(UxWidget, UxClientData, UxCallbackArg)

}

Widget UxWidget;

XtPointer UxClientData, UxCallbackArg;
swidget UxThisWidget;

UxThisWidget = UxWidgetToSwidget(UxWidget);
{

oxit(0);
}

static void activataCB.,pushButton13(UxWidget, UxClientData, UxCallbackirg)

Widget UxWidget;
XtPointer UxClientData, UxCallbackArg;

suidget UxThisWidget;
UxThisWidget = UxWidgetToSwidget(UxWidget);

{

/e

o+ Prepars "options.rel" file to read in the reliabilities of information
¢ source vectors.

s/

FILE sifileptr;

int relFlag;

int reli, rel2, reld, reld4, relb, relé, rel7, rel8, rel9, relio0;

ifileptr = fopen(“options.rel”, "r");

143

tscanf(ifileptr, “Xd", BrelFlag); /e skip relFlag ¢/

facant(ifileptr, “%d,%d,%d,%d,Xd,%d,%d,%4,%d,%d" ,8rell ,Rrel2,Rrel3,krel4,Arel5,
2rel6,8rel7,8rel8,8re19,8r0110); /* read relFlag ¢/

fclose(ifileptr);

/e

se 8¢t the reliabilities of source vectors to the sppropriate widgets
./

UxPutValue(scalel2, rell); /e S &t ¢/
UxPutValue(scaleK3, rel2); /o 8 2 o/
UxPutValue(scalels, rel3); /¢ 8 3 o/
UxPutValue(scaleli4, reld); /¢ s 4 ¢/
UxPutValue(scaleH9, rel5); /e s 5 ¢/
UxPutValue(scalel8, rel6); /¢ s 6 o/
UxPutValue(scalel, rel7); /e s 7 o/
UxPutValue(scaleli?, rel8); /o s 8 ¢/

UxPutYalue(scaleH10, xel9); /e s 9 o/
UxPutValue(scalelil, rel10); /» s 10 ¢/

}

static void activateCB_pushButioni4(UxWidget, UxClientData, UxCallbackArg)

Widget UxWidget;
XtPointer UxClientData, UxCallbackArg;

swidget UxThisWidget;
UxThisUidget = UxWidgetToSwidget(UxWidget);

{

/e

®¢ Prepare “options.rel" file to read in the reliabilities of information
% gource vectors.

o/

FILE wifileptr;

int relFlag;

int rell, rel2, rel3, rel4, relb, rel6, rel7, rel8, rels, rell0;

I+

s¢ Open “"options.rel" file save the velflag (reliability Calculation Flag
*¢ 3nd close the “"options.rel" again.

o/

ifileptr = fopen("options.rel", "x");

facanf(ifileptr, "%d", RrelFlag); /e skip relFlag ¢/

fclose(ifileptr);

[e

s¢ Set the reliabilities of source vectors to the appropriate widgets
./

rell = UxGetValue(scaleN2); /» S 1 ¢/
rel2 = UxGetValue(scaleH3d); /o 8 2 ¢/
rel3 = UxQetValue(scalels); /¢ 8 3 »/
reld = UxGetValus(scalelit); /o s 4 o/
rel = UxGetValue(scalel9); /o s 5 ¢/
rel6 = UxGetValue(scalel8); /v s 6 ¢/
rel7 = UxGetValue(scalelig); /* s 7 o/
rel8 = UxGetValue(scaleli7); /o s 8 8/

rel9 = UxGetValus(scalel10); /» s 9 »/
rel10 = UxGetValue(scalelil); /e s 10 ¢/

Ie

¢¢ (psn the "options.rel" file and save the roliabilities of information
e® sources set by the user interface. Do not forget to save the reliability

144

e¢ calculation flag (relFlag) too.

./

ifileptr = fopen(“options.rel”, "a");

fprintf(ifileptr, "Xd\n", relFlag); /¢ do not change relFlag ¢/

fprintf(itileptr, “%d,%d,¥%d,%d,Xd,Xd,Xd,%d,%d,Xd\n" ,rell,rel2,rel3,reld,relk,
rel6,rel7,rel8,rel9,rel10);

fclose(ifileptr);

}
}

atatic void createCB_toggloButtoni(UxWidget, UxClientData, UxCallbackArg)
Widget UxWidget;
XtPointer UxClientData, UxCallbackArg;

{ swidget UxThisWidgaet;
UxThisWidget = UxWidgetToSwidget(UxWidget);
{

XtPointer UxClientData, UxCallbackArg;

{

swidget UxThis¥Widget;
UxThisWidget = UxWidgotToSwidget(UxWidget);
{

KtPointer UxClientData, UxCallbackArg;

¢ swidget UxThisWidget;
UxThisWidget = UxWidgetToSuidget(UxWidget);
{
}
}

static void armCB_toggleButton1(UxWidget, UxClientData, UxCallbackArg)
Widget UxWidget;
XtPointer UxClientData, UxCallbackArg;

suidget UxThisWidget;
UxThisWidget = UxWidgetToSwidget(UxWidget);

{

/e

*s pointer to file

*/

PILE sifileptr, ofileptr;

/e

¢s relFlag = 1 means reliadbility calculation is set (allowed).
¢+ relFlag = O means reliability calculation is not set.

s/

int relFlag;

int rell, rel2, rel3, reld, relb, relé, rel7, rel8, rel9, relil;

145

}

/s

#¢ opan “options.rel” file and switch the reliadbility

#» option. If the option was 1 change it to zero and if the

#s option was zero change it to 1.

+/

relFlag = O;

ifileptr = fopen(“options.rel”, “r");

fscant(ifileptr, "%d", SrelFlag); /¢ read relFlag s/

fscanf(ifileptr, “%d,%d,%d,%d,%d,%d,%d,%d,%d,Xd" ,8rell,8rel12,krel3,krel4, Rralb,
Rrel6,Arel7,8rel8,2rel9,8rel10); /¢ read relFlag ¢/

fclose(ifileptr);

12 (relFlag »= 0)

{ /¢ change the relflag to 1 ¢/
relFlag = 1;}

alse

{ /¢ change the relFlag to 0 ¢/
relFlag = 0;

}

/e
ve Save relFlag in the options file.
o/

ifileptr = fopen(“options.rel”, "e");

fprintf(ifileptr, “%d\n", relFlag); /¢ Save option s/

fprintf(ifileptr, “%d,%d,%d,%d,%d,%d,%d,%d,%d,%d\n" ,rell ,rel2,rel3,reld,relb,
rel8,rel7,rel8,rel9,xrell10);

fclose(ifileptr);

}

/e
e
.
L)

The ’build_ ! function crsates all the swidgets and X widgets,
and sets their properties to the values specified in the
Property Editor.

L L

static swidget _Uxbuild.UncertainDatabase()

{

/% Create the swidgets ¢/

/* Creation of UncertainDatabase »/
UncertainDatabasc = UxCreateBulletinBoard("UncertainDatabase”, UxParent);
UxPutDefaultShell(UncertainDatabase, "transientShell");

UxPutResizePolicy(UncertainDatabase, "resize_none");
UxPut¥idth(UncertainDatabase, 600);

UxPutHeight(UncertainDatabase, 900);

UxPutX(UncertainDatabase, 332);

UxPutY(UncertainDatabase, 416);

UxPutUnitType(UncertainDatabase, “pixels”);
UxCreatelidget (UncertainDatabase);

/* Creation of pushButtoni ¢/

pushButtoni = UxCreatePushButton(“pushButtoni”, UncertainDatabase);

UzPutX(pushButtoni, 12);

UxPutY(pushButtoni, 428);

UxPutTranslations(pushButtoni, transTablel);

UxPutLabelString(pushButtoni, * Popup QuaryEditor *);

UxPut¥idth(pushButtoni, 188);

UxPutFontList(pushButtoni, "-Nisc-Fixed-Medium-R-SemiCondensed--13-120-75-76-C-60~
1808859~1=FONTLIST_DEFAULT_TAG_STRING");

146

UxCreateWidget(pushButtoni);

UxAddCallback(pushButton1, XmBactivateCallback,
(XtCallbackProc) activateCB,.pushButtoni,
(XtPointer) FULL);

/¢ Creation of pushButton3 ¢/

pushButton3 = UxCreatePushButton("pushButton3", UncertainDatabase);
UxPutX(pushButton3, 200);

UxPutY(pushButtond, 428);

UxPatLabelString(pushButton3, “Popup Query Ansvers ");
UxPatWidth(pushButton3, 192);

UxCreateWidget(pushButton3);

UxAddCallback(pushButton3, XmNactivateCallback,
(XtCallbackProc) activateCB_pushButton3,
(XtPointer) NULL);

/* Creation of frame5 ¢/

frameS = UxCreateFrame(“frame5", UncertainDatabase);
UxPutWidth(frame5, 586);

UxPutHeight(frame5, 238);

UxPutX(frame§, 8);

UxPutY(frame5, 458);

UxCreateWidget(frame5);

/» Creation of form3 »/

fors3 = UxCreateForm("form3", frames);
UsPutWidth(form3, 578);

UxPutHeight(form3, 234);
UxPutResizePolicy(form3, "resize_none");
UxPutX(form3, 4);

UxPutY(form3, 2);

UxCreateWidget(form3);

/» Creation of pushButton7 ¢/

pushButton7 = UxCreatePushButton(“pushButton7", form3);
UxPutX(pushButton7, 4);

UxPutY(pushButton?, 204);

UxPutForeground(pushButton7, "black");

UxPutLabelString(pushButton?, * Connect to INGRES ")
UxPutSensitive(pushButton7, “true”);

UxPutWidth(pushButton7, 191);

UxCreateNidget(pushButton?);

UxAddCallback{ pushButton7, XmNactivateCallback,
(XtCallbackProc) activateCB_pushButton?7,
(XtPointer) NULL);

/+ Creation of pushButton2 s/

pushButton2 = UxCreatePushButton("pushButton2", form3);
UxPutX(pushButton2, 388);

UxPutY(pushButton2, 204);

UxPutForeground(pushButton2, "black");

UxPutLabelString(pushButton2, * Close Connection ");
UxPutSensitive(pushButton2, "true”);

UxPutWidth(pushButton2, 191);

UxCreateWidget(pushButton2);

UxAddCallback(pushButton2, XmNactivateCallback,

\XtCallbackProc) activatoeCB_pushButton2,
(XtPointer) NULL);

147

/% Creation of pushButtond s/

pushButtond = UxCreatePushButton("pushButton4", form3);
UzPutX({ pushButtond, 196);

UxPutY(pushButtond, 204);

UxPutForeground(pushButtond, "black");

UxPutLabelString(pushButtond, * Get Answers)
UxPutWidth(pushButton4, 192);

UxCreateVidget(pushButtond);

UxAddCallback(puahButtond, XaNactizateCallback,
(XtCallbackProc) activateCB_pushButtond,
(XtPointer) NULL);

/¢ Creation of label3 s/

label3 = UxCreateLabel("label3", form3);

UzPutX(label3, 108);

UxPutY(label3, 4);

UxPutForeground(label3, "black");

UxPutLabelString(label3, “Database :");

UxPutFontList(label3, "-adobe~helvetica-bold-o-norsal~~10-100-75-75-p-60-1808859-1");
UxPutWidth{ ladbell, 68);

UxCreateWidget(1abeld);

/¢ Creation of labeld ¢/

label4 = UxCreatelabel("labeld", form3);

UxPutX{ labeld, 88);

UxPutY(labeld, 120);

UxPutForeground(labeld, "black");

UxPutLabelString(label4, * Query :");

UxPutFontList(labeld4, “~adobe-helvetica-bold-o-normal--10-100~75-75-p~60-is08869-1");
UxPut¥idth(labeld, 68);

UxPutMeight(labeld, 15);

UxCreateWidget (Jabeld);

/¢ Creation of textl =/

texti ™ UxCreateText("text1", form3);
UxPutWidth(textl, 468);

UsPutX(textl, 108);

UxPutY(texti, 20);

UxPutText(textl, “said”);
UxPutForeground(textl, "black”);
UxPutHighlightColor(texti, "black");
UxPutHeight(textt, 47);
UxPutFontList(texti, "~adobe-haelvetica-bold-r-normal--14~140-75-76~p-82-i808859-1");
UxCreateWidget(textl);

/¢ Creation of text2 »/

text2 = UxCreateText("text2”, form3);

UxPutWidth(text2, 468);

UxPutX(text2, 108);

UxPutY(text2, 72);

UxPutText(textZ, "“select ¢ from s;");

UxPutHeight(text2, 47);

UxPutFontList(text2, “"~Nisc-Fixed-Medium-R-SemiCondensed--13-120-75-76-C~60-
1808859~1=FONTLIST _DEFAULT_TAG_STRING");

UxCreateWidget (text2);

/* Creation of arrowButtonl ¢/

arrowButtoni = UzCreateArrowButton(“arrowButtoni’, form3),
UxPutX(arrowButtoni, 68);

UxPutY(arrowButtonl, 20);

UxPutForeground{ arrowButtonl, "yellow");

148

UxPutBorderColor(arrosButtoni, "black");
UsPutBorderWidth(arrovButtoni, 0);
UxPutHeight(arrosButtoni, 48);
UxPutWidth(arrowButtoni, 40);
UxCreateWidget (arrouButtoni);

/¢ Creation of arrowButton2 o/

arrowButton? = UxCreateArrowButton("arrowButton2", form3d);
UxPutX(arrowButton2, 68):

UxPutY(arrowButton2, 72);

UxPutForeground(arrovButton2, "yellos");

UxPutHeight(arrosButton2, 48);

UxPutWidth(arrowButton2, 40);

UxCreateWidget (arrowButton2);

/¢ Creation of separatori s/

separatori = UxCreateSeparator(“separatori", form3);
UxPutWidth(separatori, 568);

UxPutHeight(separatori, 16);

UxPutX(separatori, 4);

UxPutY(separatorl, 132);

UxCreateWidget(separatort);

/* Creation of pushButtonGadgetii s/

pushButtonGadget1l = UxCreatePushButtonGadget(“pushButtondadgetii”, form3);
UxPutX(pushButtonGadgetil, 20);

UxPutY(pushButtonGadgetii, 20);

UxPutLabelString(pushButtonGadgetiy, "");

UxCreateWidget (pushButtonGadgetil);

/% Creation of pushButtonGadgetid »/

pushButtonGadget14 = UxCreatePushButtonGadget(“pushButtonGadgetid”, form3);
UxPutX(pushButtonGadgetid, 68);

UxPutY(pushButtonGadgeti4, 152);

UxPutLabelString(pushButtonGadgetid, “");

UxCreateNidget (pushButtonGadgetid);

UxAddCallback(pushButtonGadgeti4, XmNactivateCallback,
(XtCallbackProc) activateCB_pushButtonGadgetis,
(XtPointer) BULL);

/* Creation of pushButtonGadgatif ¢/

pushButtonGadget15 = UxCreatePushButtonGadget({ "pushButtonGadget16", form3);
UxPutX(pushButtonGadget15, 460);

UxPutY(pushButtonGadget1f, 162);

UxPutLabelString(pushButtonGadgeti5, "*);

UxPutWidth(pushButtonGadget15, 184);

UxCreateWidget (pushButtonladgetis);

UxAddCallback(pushButtonGadget15, XmNactivateCallback,
(XtCallbackProc) activateCB_pushButtonGadgetis,
(XtPointer) NULL);

/e Creation of pushButtonGadget21 */

pushButtonGadget2i = UxCreatePushButtonGadget(“pushButtonGadget21”, form3);
UxPutX(pushButtonGadget21, 20);

UxPutY(pushButtondadget2i, 72);

UxPutLabelString(pushButtonGedget2i, ");

UxCroateWidget { pushButtonGadget21);

/+ Creation of pushButtonGadget22 ¢/

pushButtonGadget22 = UxCreatePushButtonGadget{ “pushButtonGadget22”, form3);
UxPutX(pushButtonGadget22, 264);

UxPutY(pushButtonGadget22, 163);

149

UxPutLabelString(pushButtonGadgat22, "”);
UxCreate¥idget (pushButtonGadget22);

UxAddCallback(pushButtonGadget22, XmFactivateCallback,
(XtCallbackProc) activateCB_pushButtondadget22,
(XtPointer) BULL);

/* Creation of pushButtoni2 e/

pushBatton12 = UxCreatePustButton(“pushButtoni2", UncertainDatabase);
UxPutX(pushButtoni2, 392);

UxPutY(pushButtoni2, 428);

UxPotiidth(pushButtoni2, 192);

UxPutLabdelString(pushButton12, "Quit ...");

UzCreateVidget (pushButton12);

UxAddCallback(pushButtoni2, XmBactivateCallback,
(XtCallbackProc) activateCB_pushButtoni2,
(XtPointer) BULL);

/¢ Creation of frame7 ¢/

frame7 = UxCreateFrame("frame7", UncertainDatabase);
UxPutWidth(frame7, 578);

UxPutleight(frame7, 414);

UzPutX(frame7, 10);

UxPutY(frame7, 10);

UxCreateVWidget (frame7);

/% Creation of forms o/

form§ = UnCreateForm("form5", frame7);
UxPut¥idth(formS, 200);

UxPutHeight(formb, 200);
UxPutResizePolicy(formb, *“resize_none");
UxPutX(formb, 68);

UxPutY(formS, 128);

UxCreateWidget(formb);

/* Creation of frame8 »/

frame8 = UxCreateFrame("frame8", form5);
UxPut¥idth(frame8, 672);

UxPutHeight(frame8, 408);

UxPutX(frame8, 0);

UxPutY(frame8, 0);

UxCreateWidget(frame8);

/¢ Creation of scrolled¥indosText2 ¢/

scrolledW¥indowText2 = UxCreateScrolled¥indow("scrolledWindouText2", frame8);
UxPutScrollingPolicy(scrolledWindouText2, “application_defined");
UxPutV¥isualPolicy(scrolledW¥WindosText2, “variable");
UxPutScrollBarDisplayPolicy(scrollediindouText2, "static");

UxPutX(scrolledWindowText2, 28);

UxPutY(scrolledWindowText2, 16);

UxCreateNidget (scrolledWindowText2);

/® Creation of scrolledText2 ¢/

scrolledText2 = UxCreateScrolledText("scrolledText2", scrolled¥indowText2);
UxPut¥idth(scrolledText2, 200);

UxPutleight(scrolledText2, 200);

UxPutBditRode(scrolledText2, “multi_line_edit");

UxPutForeground(scrolledText2, “black");

UxPutBackground(scrolledText2, “$7e88ab");

UxCreateilidget (scrolledText2);

/¢ Creation of frame9 ¢/
frame® = UxCreateFrame("frame9', UncertainDatabase);

150

UxPut¥idth(frame9, 520);
UxPutHeight (frame9, 414);
UxPutX(frame9, 608);
UxPutY(frame9, 10);
UxCreateVidget (frame9);

/* Creation of form6 ¢/

form6 = UxCreateForm("form6", frame9);
UxPut¥idth(form8, 522);

UxPutHeight (formG, 410);
UxPutResizePolicy(form&, "resize_none");
UxPutX(form8, -4);

UxPatY(form8, 2);

UxCreatelidget (form6);

/* Creation of scalel2 o/

scalel2 = UxCreateScale("scalel2”, form6);
UxPutWidth(scaleli2, 448);

UxPutBeight (scaled2, 36);
UxPutOrientation(scaled2, “horizontal");
UxPutX(scaleM2, 58);

UxPutY(scaleH2, 40);

UxPutShouValue(scaleli2, "true”);
UxPutShadosThickness(scalel2, 3);
UxPutTitleString(scaleli2, "");
UxPutForeground(scaleli2, "black");
UxPutBottomShadouColor(scaleH2, "8$434686a");
UxPutValua(scalel2, 100);

UxCreateVidget (scalsaH2);

/* Creation of scaleli10 o/

scalel10 = UxCreateScale{ "scaleK10", formé);
UxPutVWidth{ scalel10, 450);

UxPutHeight(scaleliio, 36);
UxPutOrientation(scalsH10, "horizontal");
UxPutX(scaleH10, 58);

UxPutY(scaleHl10, 328);

U.PutShouValue(scaleH10, **true”);
UxPutShadowThickness(scaleK10, 3);
UxCreateWidget(scalei10);

/¢ Creation of scaleH7 o/

scaleli? = UxCreateScale("scaleH7", formé);
UxPutWidth(scalell7, 448);

UxPutHeight(scalel?, 36);
UxPutOrientation(scaled7, “horizontal");
UxPutX(scalel?, 58);

UxPutY(scalel?, 292);

UxPutShowValue(scaleH7, "true”);
UxPutShadowThickneas(scalel7, 3);
UxCreateNidget (scaleH7);

/¢ Creation of scaleH6 ¢/

scaleli8 = UxCreateScale("scaleH6", formé);
UxPut¥idth(scalel6, 448);

UxPutNeight{ scaleH6, 40);
UxPutOrientation({ scaled6, “horizontal");
UxPutX(xPutX(scalel6, 68);

UxPutY(scaleli8, 252);

UxPutShowValue(scalel8, “"true”);
UxPutShadowThickness(scaleK6, 3);
UxCreateWidget (scalelit);

/* Creation of scalal8 ¢/

151

scaleli8 = UxCreateScale("scalelB8', formé);
UxPutWidth(scalel8, 448);

UzPutHeight(scaleli8, 36);
UxPutOrientation(scale8, “horizontal”);
UxPutX(scalel8, 58);

UxPutY(scaleH8, 216);

UxPutShowValue(scaleN8, "true");
UxPutShadowThickness(scaleH8, 3);
UxCreateWidget (scalels);

/¢ Creation of scalel9 s/

scaleH9 = UxCreateScale("scaleHS", formé);
UxPutWidth(scalel9, 448);

UxPutHeight(scaledi9, 36);
UxPutOrientation(scaleH9, "horizontal");
UxPutX(scalel9, 58);

UxPutY(scaled9, 180);

UxPutShowValue(scaleH9, “true");
UxPutShadowThickness(scalel9, 3);
UxCreateWidget(scalel9);

/% Creation of scaleH4 */

scalel4 = UxCreateScale("scaleH4", formé);
UxPutV¥idth(scalel4, 448);

UxPutlleight(scalel4, 36);
UxPutDrientation(scalel4, "horizontal");
UxPutX(scalel4, 58);

UxPutY(scalel4, 144);

UxPutShowValue(scaleH4, “true”);
UxPutShadowThickness(scalel4, 3);
UxCreateWidget(scaleld);

/¢ Creation of scileHS »/

scalels = UxCreateScale("scalel§*, form6);
UxPutWidth(scaloH5, 448);

UxPutHeight (scalel§, 36);
UxPutOrientation(scalel5, "horizontal");
UxPutX(scalel5, 58);

UxPutY(scalell5, 108);

UxPutShowValue(scalel5, “trus");
UxPutShadowThickness(acaleis, 3);
UxCreateNidget (scalels);

/¢ Creation of scalel3 ¢/

scaleli3 = UxCreateScale("scalel3”, formé);
UxPutWidth(scalel3, 448);

UxPutheight(scalei3, 32);
UxPutOrientation(scaleH3, "horizontal");
UxPutX(scaleH3, 68);

UxPutY(scalel3, 76);

UxPutShowValue(scalel3, “true”);
UxPutShadowThickness(scaleli3, 3);
UxCreateWidget (scaleHd);

/® Creation of scaleHit ¢/

scalelil = UxCreateScale(“scalel11". form6);
UxPutWidth(scaleliti, 448);

UxPutHeight(scaleNil, 36);

UxPutOrientation{ scalelil, “horizontal");
UxPutX(scaleNii, 68);

UxPutY(scalelill, 364);

UxPutForeground(scalefi1, "black");
UxPutShowValue(scalelil, “true");
UxPutShadosThickness(acalekil, 3);

152

UxCreateWidget{ scalelil);

/¢ Creation of label9 ¢/

label9 = UxCreateLabel("label9", form6);

UxPutX{ label9, 56);

UxPutY(label9, 12);

UxPut¥Width(label9, 448);

UxPutHeight(label9, 25);

UxPutLabelString(label9, “Reliability of Information Sources");

UxPutFontList(label9, "~adobe-courier-bold-o-normal--17-120-100-100-w-100-is088569-1");
UxCreateWidget(label9);

/+ Creation of labeliO o/

labeliO = UxCreateLabel("label10", formS);
UxPutX(labell0, 8);

UxPutY(labeli0, 40);

UxPutHeight(label10, 36);
UxPutLabelStrirg(labelio, "S 1");
UxCreateWidget (1abel10);

/e Creation of labelil »/

labelll = UxCreateLabel("labelil", formé);
UxPutX(labelil, 8);

UxPutY(labelii, 76);

UxPutHeight(labelil, 32);
UxPutLabelString(labelii, "8 2");
UxCreateWidget (labelil);

/+ Creation of labeli2 »/

labell2 = UxCreateLabel(“label12", form8);
UxPutX(labell2, 8);

UxPutY(labeli2, 112);

UxPutHeight(label12, 32);
UxPutLabelString(labelt2, "'S 3");
UxCreateNidget (labeli2);

/e Creation of labell3 e/

label13 = UxCreateLabel("label13", formé);
UxPutX(labell3, 12);

UxPutY(labeli3, 148);

UxPutHeight(labeli3, 32);
UxPutLabelString(label13, "S 4");
UxCreateNia,at{ label13);

/¢ Creation of labelid ¢/

labell4 = UxCreatelLabel("labelid", form6);
UxPutX(labelid, 12);

UxPutY(labelid, 184);

UxPutHeight(labeli4, 32);
UxPutLabelString(labeli4, "S 5");
UxCreateWidget (labelid);

/* Creation of labelib e/

label15 = UxCreateLabel("label1s", formé);
UxPutX(label15, 12);

UxPutY(label15, 220);

UxPutHeight(label15, 32);
UxPutLabelString(labelif, "S 6");
UxCreateVWidget(labellb);

/* Creation of labelil o/

labeli6 = UxCreateLabel("“label16", formé);
UxPutX(labeli8, 12);

UxPutY(labeli6, 260);

153

UsxPutHeight(labelté, 32);
UsPutLabelString(labelis, "S 7");
UxCreateVidget(labelit);

/* Creation of labell?7 o/

label17 = UxCreateLabel(“labeli?", form6);
UxPutX(labeli?, 12);

UsPutY(label17, 296);

UxPutNeight(label17, 32);
UxPutLabelString(label1?, “S 8");
UzCreateliidget (ladbell?);

/® Creation of labeli8 ¢/

1abel18 = UxCreateLabel("labeli8", formé);
UxPutX(Yabel18, 12);

UxPutY(label18, 332);

UxPutNeight(labeli8, 32);
UxPutLabelString(lubeli8, "8 9");
UxCreateWidget(1abeli8);

/* ureation of labelld ¢/

1sbel19 = UxCreateLabel("labeli9", formé);
UxPutX(label19, 12);

UxPutY(labell9, 368);

UxPutHeight(label19, 32);
UxPutLabelString(labeli9, "8 10");
UxCreatelidget(labelid);

/% Creation of pushButtoni3 e/

pushButton13 = UxCreatePushButton("pushButtoni3", UncertainDatabase);
UxPutX(pushButton13, 612);

UxPutY(pushButtont3, 428);

UxPutWidth(pushButtoni3, 172);

UxPutLabelString(pushButton13, "Load Reliabilities”);
UxCreate¥Vidget (pushButtoni3);

UxAddCallback(pushButton13, XmEactivateCallback,
(XtCallbackProc) activateCB_pushButtoni3,
(XtPointar) BULL);

/* Creation of pushButtonid ¢/

pushButtoni4 = UxCreatePushButton("pushButtoni4", UncertainDatabase);
UxPutX(pushButtonid, 784);

UxPutY(pushButtoni4, 428);

UxPutWidth(pushButtonid, 172);

UzPutLabelString(pushButtoni4, “Save Reliabilities");
UxCreateWidget (pushButtoni4);

UxAddCallback(pushButtoni4, XaBactivateCallback,
(XtCallbackProc) activateCB_pushButtonid,
(XtPointer) NULL);

/® Creation of pushBu.toni5 ¢/

pushButtonis = UxCreatusPushButton("pushButtoni5", UncertainDatabase);
UxPutX(pushButtoni5, 956);

UxPutY(pushButtonib, 428);

UxPutWidth(pushButtonib, 168);

UxPutLabelString(pushButtonib, "Help ...");

UxCreate¥idget(pushButtonib);

/¢ Creation of frameiC o/

framel0 = UxCreateFrame("frame10", UncertainDatabase);
UxPutWidth(frame10, 682);

154

UxPutNeight(framei0, 146);
UxPutX(frame10, 10);
UxPutY(frame10, 715);
UxCreatsWidget(framei0);

/% Creation of form7 */

foxrm7 = UxCreateForm{ “"fora7", frameio);
UxPutiidth(form7, §78);

UxPutHaight(form7, 142);
UxPutResizePolicy(form7, "resize_none");
UxPutX(form7, 2);

UxPutY(form7, 3);

UxCreateWidget(form7);

/® Creation of pushButton16 */

pushButtoni6 = UxCreatePushButton("pushButton16", form7);
UxPutX(pushButtonié, 192);

UxPutY(pushButtonis, 112);

UxPut¥idth(pushButtoni6, 188);

UxPutLabelString(pushButton16, “Palette: Colors”);
UxCreateWidget (pushButtont8);

/* Creation of framel2 /

framei2 = UxCreateFrame("framei2", fora?7);
UxPutWidth(framei2, 572);

UxPutHeight(framei2, 40);

UxPutX(framei2, 4);

UxPutY(framei2, 4);

UxCreateWidget(framei2);

/* Creation of latel20 o/

label20 = UxCreatelabel ("label20", framel2);

UxPutX(label20, 12);

UxPutY(label20, 12);

UxPutFontList{ label20, "-adobe-courisr-bold-o-normal-~14-140-75-75-m~90-1808669-1");
UxPutLabelString(label20, “Options”);

UxPutWidth(label20, £52);

UxCreateWidget (1abel20);

/* Creation of pushButtoni? s,/

pushButtoni? = UxCreatePushButton(“pushButtoni?", form7);
UxPutX(pushButtoni7, 4);

UxPutY(pushButtoni?, 112);

UxPutiidth(pushButtoni7, 188);

UxPutLabelString(pushRButton17, “Text Font List");
UxCreateWidget(pushButioni?);

/¢ Creation of toggleButtont ¢/

toggleButtonl = UxCreateToggleButton{ "toggleButtonl”, form?);

UxPutX(toggleButtonli, 396);

UxPutY(toggleButtoni, 112);

UxPutlabelString(toggleButtonl, "Reliability Calculation”);

UxCreateWidget (toggleBuitoni);

createCB_toggleButtonl (UxdetWidget(toggleButtoni),
(XtPointer) NULL, (XtPointer) NULL);

UxAddCallback(toggleButtoni, XmNaraCallback,
(XtCallbackProc) armCB_toggl.Buttoni,
(XtPointer) NULL);

/* Creation of pushButtonGadgeti2 ¢/

pushButtondadgeti2 = UxCreatePushButtonGadget (“pushButtonGadgeti2”, form7);
UxPutX(pushButtondadgeti2, 260);

UxPutY(pushButtonGadgeti2, 56);

155

UxPutLabelString(pushButtonGadgeti, "");
UxCreate¥idget(pushButtonGadgeti2);

/% Creation of pushButtonGadgeti® #/

pushButtonGadget16 = UxCreatePushButtonGadget (“pushButtonGadgetis”, form7);
UxPutX(pushButtonGadget18, 68);

UxPutY(pushButtonGadget16, 56);

UxPutLabelString(pushButtonGadgeti®, "');

UxCreateVidget{ pushButtonGed:ati6);

/¢ Creation of pushButtonGadget26 ¢/

pushButtonGadget26 = UxCreatePushButtonGadget (“pushButtondadget26", form?);
UxPutX(pushButtonGedget26, 452);

UxPut¥(pushButtonGadget26, 56);

UzPutLabslString(pushButtonGadget26, “*);

UxCreate¥idget(pushButtonGadget26);

/* Creation of frameii ¢/

framell = UxCreateFrams("frame11", UncertainDatabase);
UsxPutWidth(frameil, 520);

UxPutHeight(frameil, 404);

UxPutX(frameil, 606);

UxPutY(framelg, 466);

UxCreateVidget(frameil);

/* Creation of form8 ¢/

form8 = UxCreateForu("form8", frameil);
UxPutWidth(form8, 200);

UxPutHeight(form8, 200);
UxPutResizePolicy(form8, "resize_none");
UxPutX(form8, 162);

UxPutY(form8, 112);

UxCreateVidget(formd);

/* Creation of scrolled¥indow2 ¢/

scrollediindow2 = UxCreateScrolledWindos(“scrolledWindouw2", form8);
UxPutScrollingPolicy(scrolled¥indow2, "automatic");

UxPutWidth(scrolled¥indow2, 510);

UxPutHeight(scrolledWindow2, 351);

UxPutX(scrolledWindow2, 2);

UzPutY(scrollediindow2, 34);

UxCreateNidget(scrollediWindow2);

/¢ Creation of form9 s/

form® = UxCreateForm("form9", scrollediindow2);
UxPut¥Width(forms, 508);

UxPutHeight(Torm9, 348);

UxPutResizePolicy(form9, “"resize_none");
UxPutX(form9, 4);

UxPutY(form9, 7);

UxCreateNidget(forn9);

/e Creation of framei3 e/

framel3d = UzCreateFrame(“framei3*, fors9);
UxPutWidth(frame13, 110);

UxPutHeight(frameld, 98);

UxPutX(frame13, §);

UxPutY(frame13, 134);
UxPutShadowThickness(frame13, 3);
UxPutShadowType(framei3, “shadow_out");
UxCreateVNidget(framei3);

/¢ Creation 0f rosColumn2 ¢/
rowColumn2 = UxCreateRowColumn(“rowColumn2", frameid);

156

UxPutWidth(rowColumn2, 106);
UxPutHeight(rosColumn2, 94);
UxPutX(rowColumn2, 2);
UxPutY(rewColumn2, 2);
UsCreateWidget(rowColumn2);

/¢ Creation of frameld ¢/

framei4 = UxCreateFrame("frameid4", rosColuan2);
UsPutWidth(frameid, 98);

UzPutHeight(frameid, 85);

UsPutX(frameis, 3);

UxPutY(frameid, 3);

UxPutShadoeType(framei4, *shadow_out");
UxPutShadowThickness(frameid, 3);
UsCreateVidget(frameid);

/¢ Craation of rowColumnd »/

rowColumn3 = UxCreateRovColumn("rosColumnd”, frameid);
UxPutWidth(rowColumn3, 64);

UxPutHeight(rowColumn3, 79);

UxPutX({ rowColumn3, 12);

UxPutY{ rowColumn3, 0);

UxCreatelidget (rowColumn3);

/* Creation of pushButtonGadgeti */

pushButtondadgetl = UxCreatePushButtonGadget("pushiuttonGadgeti”, rowColumn3);
UxPutX{ pushButtonGadgeti, O);

UxPutY(pushButtonGadgeti, 0);

UxPutHeight(pushButtonGadgett, 46);

UxPutShadowThickness(pushButtonGadget1, 1);

UxPutAlignment { pushButtonGadgeti, "alignment_center");

UxPutWidth(pushBuctonGadgeti, 469);

UxPutLabelString(pushButtonGadgets, ™");

UxCreateWidget (pushButtonGadgeti);

/* Creation of pushButtonGadget2 ¢/

pushButtonGadget> = UxCreatePushButtonGadget(“pushButtonGadget2", roaColumn3);
UxPutX(pushButtonGadget2, 3);

UxPutY(pushButtonGadget2, 52);

UxPutLabelString(pushButtonGadget2, ™ Tables *);

UxPutWidth(pushButtonGadget2, 44);

UxCreataWidget (pushButtonGadget2);

/¢ Creation of framei15 s/

framel5 = UxCreateFrame("frameis", form9);
UxPutWidth(frame15, 110);

UxPutHeight(frame15, 98 };

UxPuzX(frame15, 122);

UxPutY{ framei5, 135);
UxPutShadowThicknaas(framei5, 3);
UxPutShadowTypa(frameib, *“shadow_out”);
UxCreateWidget (framei5);

/¢ Creation of rowColumnd ¢/

rosColumnd = UxCreateRowColumn(“rowColumnd”, frameib);
UxPutWidth(rowColumnd, 106);

UxPutHeight(rowColumnd, 94);

UxPutX(rowColumnd, 2);

UxPutY(rowColumnd, 2);

UxCreateWidget (rowColumnd);

/¢ Creation of Trameit o/

framel16 = UsxCreateFrame(“frame16"”, rowColumnd);
UxPut¥idth(framet6, 98);

157

UxPutHeight(frame1é, 86);

UxPutX(framei6, 3);

UxPutY(framei6, 3);

UsPutShadowType(framei8, "shadow ovt”);
UxPutShadowThickness(framei6, 3);
UxCreateWidget(framels);

/% Creation of rowColumnt ¢/

rovColumn5 = UxCreateRowColumn(“rowColumn6”, framei6);
UxPut¥idth(rewColumns, 64);

UxPutHeight(rowColumnS, 79);

UszPutX(rowColumn, 12);

UxPutY(rowColumnS, 0);

UxCreateWidget (rowColumns);

/¢ Creation of pushButtonGadget3 ¢/

pushButtonGadget3 = UxCreatePushButtonGadget("pushButtondadget3", rowColumns j;
UxPutX(pushButtonGadget3, 0);

UxPutY(pushButtonGadget3, 0);

UxPutHeight(pushButtondadget3, 46);

UsPutShadowThickness(pushButtonGadget3, 1);

UsPutAlignment(pushButtonGadget3, "alignment_end");

UxPut¥idth(pushButtonGadgset3, 469);

UxPutLabelString(pushButtonGadget3, "*);

UxCreateWidget (pushButtonGadget3);

/* Creation of pushButtonGadget4 ¢/

pushButtondadget4 = UxCreatePushButtonGadget("pushButtonGadget4", rosColusns);
UxPutX(pushButtonGadgetd, 3);

UxPutY(pushButtonGadgetd, 52);

UxPutLabelString(pushButtonGadget4, ™ Reports *);

UxPutWidth(pushButtondadgetd, 86);

UxPutHeight(pushButtonGadget4, 32);

UxCreateWidget(pushButtonGadgetd);

/¢ Creation of frame19 ¢/

framei9 = UxCreateFrame("frane1¢”, form9);
UxPutWidth(frame19, 110);

UsPutHeight(frame19, 98);

UxPutX(framel9, 241);

UxPutY(frameid, 134);

UsxPutShadowThick ess{ framei9, 3);
UxPutShadowType(framei9, "shadow_out" };
UxCreateWidget(framel9);

/¢ Creation of rowColumn8 ¢/

rovColumn8 = UxCreateRonColumn("rovCalumns", frameis);
UxPutWidth(rowColumn8, 106);

UxPutHeight(rouColumn8, 84);

UxPutX(rowColumn8, 2);

UxPutY¥(rowColumn8, 2);

LxCraateWidget(rowColumns);

/¢ Creation of frame20 ¢/

frame20 = UxCreateFrame("frame20", rowColumn8);
UxPutWideh(frame20, 98);

UxPutHeight(frame20, 85);

UxPutX(frame20, 3);

UxPutY(frame20, 3);

UxPutShadowType(frame20, “shadov.out”);
UxPutShadowThicknass(frame20, 3);
UxCreateMidget(frame20);

158

/# Creation of rowColumn9 s/

rowColsan® = UxCreateRosColumn(“rosColumn9", frame20);
UxPat¥idth(rowColumng, 64);

UxPutNeight(rosColumn9, 79);

UxPutI(rosColumn9, 12);

UxPutY(rowColumn9, O);

UsCreateWidget(rowColumn9);

/¢ Creation of pushButtonGadget7 o/

pushButtonGadget? = UxCreatePushButtonQadget(“pushButtonGadget7", rouColumnd);
UxPutX(pushButtonGadget?, 0):

UxPutY(pushButtonGadget7, 0);

UxPutNeight(pushButtonGadget?, 46);

UxPutShadowThickness { pushButtonGadget7, 1);

UxPutAlignment (pushButtonGadget7, “alignment_end");

UxPut¥idth(pushButtonGadget?, 469);

UxPutLabelStrxing(pushButtonGadget7?, "");

UxCreateWidget (pushButtonGudget?);

/¢ Creation of pushButtonGadget8 e/

pushButtonGadget8 = UxCreatePushButtonGadget(“pushButton@adget8", rowColumnd);
UxPutX(pushButtonGadget8, 3);

UxPutY(pushButtonGadgets, 52);

UxPutLabelString(pushButtonGadgets, " Foras ");

UrPatiidth(pushButtonGadgets, 44);

UxCreateWidget (pushButtonGadgets);

/* Creation of framei7 o/

framei7 = UxCreateFrame("framel7", form9);
UxPut¥idth{ framel7, 110);

UxPutNeight (frame17, 98);

UxPutX(framei?7, 357);

UxPutY(framei?7, 134); 1
UxPutShadouThickness(frame17, 3);

UxPutShadouType(framel17, “shadow_out"); }
UxCreateWidget(framel?); |

/¢ Craation of rosColumné »/

rowColunn6 = UxCreateRowColumn(“rowColumné”, framei?);
UxPut¥idth(rowColumné, 104);

UsPutNeight (rowColumné, 97);

UxPutX{ rowColumng, 3);

UxPutY({ rowColumné, 3);

UxCreateWidget (rowColumné);

/+ Creation cf frame18 s/

franei8 = UxCreateFrame(“frame18", rowColumnt);
UxPut¥idth(frame18, 98);

UxPutlleight (frame18, 85);

UxPatX(framel8, 3);

UxPutY{ framei8, 3);

UxPutShadowType(frame18, “shadow_out");
UxPutShadowThickness(framei8, 3);
UxCreateWidget(framei8);

/¢ Creatisn of rowColumn? ¢/

roxColumn7 = UxCreateRowColumn(“riyColumn7", frame1s);
UxPutWidth(ronColumn?, 64);

UxPatNeight(rouColuxn?, 79);

UxPutX(rowColumn?, 12);

UxPutY(rowColumn?7, 0);

UxCreateWidget(ro.Column?);

/¢ Creation of pushButtonGadgets s/

159

pushButtondadgets = UxCreatePushBattonjadgat(“pushButtonGadget5”, rowColumn?);
JxPutX(pushButtonGadgat§, 0);

UxPutY(pushButtonGadget5, 0);

UxPutNeight (pushButtonGadgets, 46);

UxPutBhadowThickness(pushButtondadgets, 1);

UxPutAlignment (pushButtonGadgetSs, “alignment_end”);

UzPutWidth(pushButtondadgets, 469);

UxPutLabeldtring(pushButtonGedgets, "*);

UxCreatellidget (pushButtonGadgets);

/¢ Creation of pushButtonGadgaeté ¢/

pushButtonG dget8 = UxCreatePushButtonGadget("pushButtonGadget8"”, rowColumn?);
UxPutX(pushButtonGadget6, 3);

UxPutY(pushButtonGadget8, 62);

UxPutLabelString(pushButtonGadget6, " draphs”);

UxPutWidth({ pushButtonGadgets, 86);

UsPutHeight (pushButtonGadget6, 32);

UxCrenteWidget(pushButtonGadgets);

/¢ Creation of frame21 ¢/

freme2i = UxCreateFrame{ "frame21”, fora9):
UxPutiiidth(frame21, 470);

UxPutHeight(frame21, 116);

UxPutX(frame21, 22);

UxPutY(frame21, 8);

UxPutShadowThickness(frame21, 3);
UsPutShadowType(frame21, “shadow_out”);
UxCreateiWidgot(frame2i);

/¢ Creation of rowColumni0 »/

rowColumniO = UxCreateRowColumn("rowColumn1O", frame21i);
UxPuiWidth(rowColumniO, 464);

UxPutHeight(rowColumnio, 109);

UxPutX(rowColumni®, 3);

UxPutY(rosColumniO, 4);

UxCreataWidget(rowColumni0);

/% Creation of frame2?2 ¢/

Zrame22 = UxCreateFrame("frame22", rowColumniO);
UxPutWidth(frame22, 458);

UxPutNeight (frame22, 99);

UxPutX(frame22, 3);

UxPutY(frame22, 3);

UzPutShadowType(frame22, “shadow_out");
UxPutShadowThickness(frame22, 3);
UxCreateVidget(frame22);

/¢ Creation of rowColumnii ¢/

rowColumnii » UxCreateRowColumn(“rowColumnii", frame22);
UxPutiidth(rowColumnii, 452 };

UxPutHeight(rowColumnii, 93);

UxPutX(rowColumnii, 3);

UxPutY(rowColumnt1, 3);

UxCreateWidget(rouColumnit);

J® Creation of labelQadgeti s/
labeldadgetl = UxCreatelLabelGadget("labelGadgeti”, rowColumnit);
UsPutX(labelQadgeti, 3);
UxPutY(labelGadgeti, 3);
UxPutLabelString(labelGadgeti, “\n SOFTEKS RESEARCH LABORATORY \n
Software Engineering and Knowledge~base Systema \n
Department of Computer Sciance \n
Concordia University \n\n
Implemented \n

160

b’ \nu
Joseph Said. \n);
UxPutFoniList(labelGadgeti, "-adobe-courier-bold-o-normal--14-140-75-76-4-80-is08869-1");
UxPutHeight(labelGadgett, 99);
UxPutAlignment (1abeldadgetl, "alignment_center”);
UxCreateVidget(labelGadgett);

/¢ Creation of pushButtonGadget25 ¢/

pushButtonGadget25 = UxCreatePushButtonGadget("pushButtondadget25", rosColumnii);
UxPutX(pushButtonGadget25, 6);

UxPutY(pushButtonGadget26, 30);

UxPutLabelString(pushButtonGadget25, ");

UxCreateMidget(pushButtonGadget25);

/* Creation of frame23 ¢/

frame23 = UxCreateFrame(frame23", form9);
UxPut¥Width(frame23, 110);

UxPutHeight(frame23, 98);

UxPutX(frame23, 6);

UxPutY(frame23, 243);
UxPutShadouThickness(frame23, 3);
UxPutShadowType(frame23, "shadow_out"”);
UxCreateWidget(frame23);

/* Creation of rouColumni2 ¢/

rowColumni2 = UxCreateRosColumn(“rowColumni2", frame23);
UxPutWidth(rouColumni2, 104);

UxPutHeight(rouColumn12, 97);

UxPutX(rowColumni2, 3);

UxPutY(rowColumni2, 3);

UxCreateWidget (rowColumni2);

/% Creation of frame24 s/

frame24 = UxCreateFrane("frame24", rowColumni2);
UxPutWidth(frame24, 98);

UxPutHeight(frame24, 85);

UxPutX(frame24, 3);

UxPutY(frame24, 3);

UxPutShadowType(frame24, "shadow_out" };
UxPutShadowThickness(frame24, 3);
UxCreatelidget (frame24);

/® Creation of rowColumni3 ¢/

rowColumni3 = UxCraateRouwColumn("rowColumni3", frame24);
UxPvtWidth(rowColumni3, 64);

UxP -theight(rouColumni3, 79);

UxPutX(rowColumnid, 12);

UxPutY(rouColumni3, 0);

UxCreateWidget(rowColumn13);

/* Creation of pushButtonGadget9 e/

pushButtondadget9 = UxCreatePushButtonGadget(“pushButtonGadget9”, rowColumni3);
UxPutX(pushButtonGadget9, 0);

UxPutY(pushButtonGadget9, 0);

UxPutHeight(pushButtonGadget9, 46);

UxPutShadowThickness(pushButtonGadget9, 1);

UxPutAlignment (pushButtonGadget9, "alignment._end”);

UxPutWidth(pushButtonGadget9, 469);

UxPutLabelString(pushButtonGadget9, ");

UxCreateNidget (pushButtonGadget9);

/+ Creation of pushButtonGadgeti0 »/

pushButtondadget10 = UzCreatePushButtonGadget(“pushButtonGadget10”, rowColumni3d);
UxPutX(pushButtonGadgeti0, 3);

161

UxPutY(pushBut-onGadget10, 62);

UxPutLabelString(pushButtonGadgeti0, " Help...");
UxPutWidth(pushButtonGadgeti0, 86);

UxPutHeight(pushButtonGadget10, 32);
UxCreateWidget(pushButtonGadget10);

/¢ Creation of separater2 ¢/

separator2 = UxCreateSeparator("“separator2”, form8);
UxPutWidth(separator2, 220);

UzPutHeight(separator2, 20);

UxPutX(separator2, 288);

UxPutY(separator2, 8);

UxCreateVWidget (separator2);

/¢ Creation of label2t s/

label21 = UxCreateLabel(“label2t”, form8);

UsPutX(label2l, 64);

UxPutY(label2i, 8);

UxPutLtbolString(label21, "Connection to INGRES ...");

UxPutFontList(l1abel21, "~adobe~courier-bold-r-normal--14-100-100-100-m~90-is088569-1");
UxCreate¥idget(label21);

/* Creation of separatord s/

ssparator3 = UxCreateSeparator("separator3”, form8);
UxPutWidth(separator3, 56);

UxPutHeight (separator3, 20);

UxPutX(separator3, 4);

UxPutY(separator3, 8);

UxCreateWidget(separatord);

UxDelayUpdate(pushButtonGadgetil);

UxPutArmPixmap(pushButtonGadgetli, "workingD.xpm");
UxPutLabelPixmap(pushButtonGadgetii, "udbms.xpm");
UxPutLabelType(pushButtonGadgetil, "pixmap");
UxUpdate(pushButtonGadgetil);

UzDelayUpdate(pushButtonGadgetid);

UxPutArmPixmap(pushButtonGadgeti4, “workingD.xpm”);
UxPutLabelPixmap(pushButtonGadgeti4, “connect.zpm");
UxPutLabelType(pushButtonGadgetid, “pixmap");
UxUpdate(pushButtonGadgeti4d);

UxDelayUpdate(pushButtonGadget1s);

UxPutArmPixmap(pushButtonGadgeti5, "workingD.xpm”);
UxPutLabelPixmap(pushButtonGadgeti5, "connect.xpm”);
UxPutLabelType(pushButtonGadgetib, "pixmap");
UxUpdate(pushButtonGadgeti5);

UxDelayUpdate(pushButtonGadget2t);

UxFutArmPixmap(pushButtonGadget21, "workingD.xpm");
UxPutLabelPixmap(pushButtonGadget21, "query.xpa”);
UxPutLabelType(pushButtonGadget21, “pixmap");
UxUpdate(pushButtonGadget21);

UxDelayUpdate(pushButtonGadget22);

UxPutArmPixmap(pushButtonGadget22, "werkingD.xpm®);
UxPutLabelPixmap(pushButtonGadget22, “scrltext.xpm”);
UxPutLabelType(pushButtonGadget22, "pixmap");
UxUpdate(pushButtonGadget22);

UxDelayUpdate(pushButtonGadgeti2);

UxPutArmPixmap(pushButtonCadgeti2, "workingD.xpm");
UxPutLabelPixmap(pushButtonGadget12, “cviev.xpm”);
UxPutLabelType(pushButtonGadgeti2, “pixmap");
UxUpdate(pushButtonGadgeti2);

UxDelayUpdate(pushButtonGadgetis);

UxPutArmPixmap(pushButtonGadget16, "workingD.xpm'");
UxPutLabelPixmap{ pushButtonGadget16, “fview.xpm");
UxPutLabelType(pushButtonGadget18, “pixmap");

162

}

™

UxUpdate(pushButtonGadget16);

UxDelayUpdate(pushButtonGadget26);

UxPutAraPixmap(pushButtonGadget28, "workingD.xpm");
UxPutLabelPixmap(pushButtonGadget26, "relcal.zpa”);
UxPutLabelType(pushBut tonGadget26, “pixmap");
Uxtpdate(pushButtonGadget26);

UxDelayUpdate(pushButtonGadget!);

UxPutAraPixmap(pushButtonGadgeti, “workingD.xpm");
DxPutLabslType(pushButtondadget1, "pixmap");
UxPutLabelPixmap(pushButtonfadgeti, "action.xpe");
UxUpdate(pushButtonGadgett);

UxDelayUpdate(pushButtonGadget3);

UxPutArsPixmap(pushButtonGadget3, "workingD.xpm");
UxPutLabalType(pushButtonGadget3, "pixmap");
UxPutLabelPixmap(pushButtonGadget3, "bboard.xpe");
UxUpdate(pushButtonGadget3);

UxDelayUpdate(pushButtonGadget?);

UxPutAraPixmap(pushButtonGadget7, "workingD.xpm");
UxPutlabelType(pushButtonGadget7, “pixmap");
UxPutLabelPixmap(pushButtonGadget?, “text.xpm');
UxUpdate(pushButtonGadget7);

UxDelayUpdate(pushButtonGadget5);

UxPutArmPixmap(pushButtonGadgets, "workingD.xpa");
UxPutLabelType(pushButtonGadget5, “pixmap");
UxPatLabelPixmap(pushButtonGadgets, “unknown.xpm");
UxUpdate(pushButtonGadget5);

UxDelayUpdate(pushButtonGadget25);

UxPutAraPixmap(pushButtonGadget25, "workingD.xpm");
UxPutLabelType(pushButtonGadget25, “pixmap*);
UxUpdate(pushButtonGadget25);

UxDelayUpdate(pushButtonGadget9);

UxPutArmPixmap(pushBut tonGadget9, “workingD.xpm");
UxPutLabelType(pushButtonladget?d, "pixmap" };
UxPutLabelPixmap(pushButtonGadget9, "informD.xpm");
UxUpdate(pushButtondadget9);

/* UxRealizeInterface creates the X windows for the widgets above.

UxRealizeInterface(UncertainDatabase);

return (UncertainDatabase);

./

[14
**e
0
o

Py
s

The following is the ’Interface function’ which is the
external entry point for creating this interface.

This function should be called from your application or from
a callback function.

suidget create UncertainDatabase(.UxUxParent)

{

swidget .UxUxParent;

suidget rtrn;
static int _Uxinit = O;

UxParent = _UxUxParent;
ir (¢ _Uxinit)
{
static XtActionsRec _Uxactions[] = {
{ "doubleclick", (XtActionProc) action_doubleclick }};

XtAppAddActions(UxAppContext,

163

JUxactions,
XtNumber(_Uxactions));

Uxinit = 1;
)

{

printf(" 1 am in the initial code of the bulletinboard popup...\n");

rtrn = _Uxbuild_UncertainDatabase();

print?("I am in the Final code of the bulletinboard popup \n");

return(rtrn);

}
}
[090000006080000000400008800080090 080000802004 *
ESD OF FILE
Y11 'Y] "YT /
/esseensecsense sene s . see
*¢ QueryEditor.c
e
L4 Associated Header file: QueryEditor.h
'y 6004000008088 0s PASUISIESENREE IR 08/

8include <stdio.h>
#include "UxLib.h"
#include "UxCascB.h"
8include "UxSep.h"
8include "UxPushB.h"
#include "UxRowCol.h"
#include "UxLabel .h"
®include "UxComm.h"
®include "UxFsBox.h"
8include "UxMain¥.h"

static svidget fileSelectionBoxi;
static swidget commandl;
static suidget labell;
static svidget menui;

static swidget menui_pl;
static svidget menui_pi_b1;
static swidget menui_pi_b2;
static svidget menul_pi_b4;
static swidget menul_pi_b5;
static swidget menul_p1.b8;
static swidget menui_p1_b7;
static svidget menui_p1_b9;
static swidget menui_top_bl;
static swidget UxParent;

8define COPTEXT_WACROU_ACCESS 1
Sinclude “QueryEditor.h"
Sundef COBTEXT_NACRO_ACCESS

swidget QueryEditor;

/e
The following are callback functions.

164

static void activateCB.mer.1_pi_b5(UxWidget, UxClientData, UxCallbackArg)
Widget UxWidget; '
XtPointer UsClientData, UxCallbackArg;

{
swidget UxThisWidget;

UxThisWidget = UxWidgetToSwidget(UsWidgat);

{
FILE smyfileptr;
FILE enesfileptr;
int inchar;

myfileptr = fopen("myfile.qry", "r");
newfileptr = fopen("newfile”, "w");
while ((inchar = getc(myfileptr)) != EOF)
{
putc(inchar, newfileptr);
}
fclose(myfileptr);
fclose(neufileptr);
}
}

static void activateCB_menui_pi_b6(UxWidget, UxClientData, UxCallbackArg)
Vidget UxWidget;
XtPointer UxClientData, UxCallbackirg;

{
svidget UxThisWidget;

UxThisWidget = UxWidgetToSwidget(UxWidyet);

{
FILE smyfileptr;
FILE snewfileptr;
int inchar, i, n;
char qryf[600];

myfileptr = fopen('myfile.qry”, "r");
newfileptr = fopen('neufile", "w");
i=0;
vhile ((inchar = getc(myfileptr)) != EOF)
{
it (inchar != ’\n?)
qry(i++] = tolower{inchar);
else
{
qry[i++] = tolower(’,?);
qryli++] = tolower(? ?);

putc(inchar, nesfileptr);
}

qry[i-2] = tolower(’\0);
n= i-2;
for (i = 0; 4 ¢ n; i+e)

printf("%c*, qry[i]);
UxPutListItenCount (commandl, 2);
UxPutListItems(commandl, qry);

fclose(mytileptr);
fclose(newfileptr);

165

}
}

static void activateCB_menui_p1.b9(UxWidget, UxClientData, UxCallbackArg)
Widget UxWidget;
XtPointer UxClientData, UxCallbackArg;

{
swidget UxThisWidget;

UxThisWidget = UxWidgetToSwidget(UxWidget);

{
extern swidget QueryEditor;
UxPopdownInterface(QueryEditor, no_grad);

}

}

Lad The *build_’ function creates all the swidgets and X widgets,
L0 and sets their properties to the values specified in the

L4 Property Editor.

L 1]

static swidget _Uxbuild QueryEditor()

{
/% Create the swidgets ¢/

/* Creation of Querykditor o/
QueryEditor = UxCreateMainNindow("QueryEditor”, UxParent);
UxPutDefaultShell(QueryEditor, “transientShell”);

UxPutWidth(QueryEditor, 400);
UxPutHeight(QueryEditor, 700);

UxPutX(QueryEditor, 689);

UxPutY(QueryEditor, 176);
UxPutUnitType(QueryEditor, "pixels");
UxPutForeground(QueryEditor, “white");
UxCreateWidget (QueryEditor);

/* Creation of TileSelectionBoxi */

fileSelectionBoxl = UxCreateFileSelectionBox("fileSelectionBox1", QueryEditor);

UxPutApplyLabelString(fileSelectionBoxl, "Filter Files");

UxPutButtonFontList(fileSelectionBoxi,
“~adobe-helvetica-bold~o-normal=--13-180-75-76-p-104-i808859~1");

UxPutCancelLabelString(fileSelectionBox1l, “Cancal Selection");

UxPutDirListLabelString(filaSelectionBox1, "Directories Availadble");

UxPutFileListLabelString(fileSelectionBoxi, "Query Files");

UxPutForeground(fileSelectionBoxi, "white");

UxPutHelpLabelString(fileSelectionBoxi, "Help ...");

UzPutListLabelString(fileSelectionBox1, “Query Files”);

UxPutNoMatchString(f£ileSelectionBox1, * [WO MATCH] ");

UxPutOkLabelString(fileSelectionBoxi, "0K Selection ");

UxPutTextFontList(fileSelectionBoxt,

vemisc-fixed-madium-r-semicondensed--13-100-100-100-c-60~is08869-1");

UxPutWidth(fileSelectionBoxt, 500);

UxPutLadelFontList(fileSelectionBoxi,
"~adobe-helvetica-bold-o-normal--17-120-100-100-p-92-is08869-1");

UxPutDirNMask(fileSelectionBoxi, "e.qry");

UxCreateWidget (fileSelectionBoxl);

166

/¢ Creation of commandi s/
commandi = UxCreateCommand("commandi”, QueryEditor);
UxPutButtonFontList(commandi,
“~adobe-helvetica-bold-o-normal--18-180-76-75~p-104-1808859-1") ;
UxPutForeground(commandi, “shite");
UxPutLabelFontList (commandi,
*-adobe~helvetica-bold-o-normal--14-140-75-75-p-82-1808859-1") ;
UxPutPromptString(commandi, ">Enter a New Query or Select a Previous One ...");
UxPutTextFontList (commandi, "-misc-fixed~bold-r-normal--13-120-75-75-c-80-1i8088569-1*) ;
UxPutListItemCount(commandi, 2);
UxPutTextString(commendi, "");
UxPutHistoryItemCount(commandi, 0);
UxPutListLabelString(commandt, ");
UxPutCommand(commandi, "");
UxPutListItems(commandi, "Item 1, Item 2");
UxCreateWidget(commandi);

/* Creation of labell #/
labell = UxCreateLabel("labell", QueryEditor);
UxCreateWidget(labell);

/* Creation of menul s/

menul = UxCreateRowColumn(“menui", QueryEditor);
UxPutRowColumnType (menui, “menu_bar");
UxPutMenuAccelerator(menui, "<KeyUp>F10");
UxCreateWidget(menui);

/% Creation of menui_pi ¢/

menui_pi = UxCreateRowColumn("menui_pi", menut };
UxPutRowColumnType(menui_pi, "menu_pulldown");
UxCreateWidget (menui_p1);

/* Creation of menui_pi b1 »/

menul_pi_bi = UxCreateFushButton(“menul_pi_b1", menui_pt);
UxPutLabelString(menui_pi_bi, "New Query File");
UxPutBnemonic(menui_pi b1, "E");

UxPutForeground(menui_pi_bi, "white");

UxCreateWidget(menul_pi b1);

/* Creation of menui_pi_b2 ¢/

menui_pi_b2 = UxCreatePushButton(“menul_p1.b2", menul_pi);
UxPutLabelString(menui_pi_b2, "Open Query File");
UxPutNnemonic(menui_pi_b2, "0");

UxPutForeground(menul_p1.b2, "white");

UxCreateWidget(menul_p1. b2);

/* Creation of menui_pi_b4 ¢/

menul_pi_b4 = UxCreateSeparator(“menui_pi_b4", menul_p1);
UxPutl-'orogronnd(menui_pl_b4, “white");

UxCreateWidget(menui_pi_bd);

/¢ Creation of menui_pi_b5 »/

menui_pi_bS = UxCreatePushButton(“menui_p1_b5", menul_p1);
UxPutLabelString(menul_p1.b5, “Save Query File");
UxPutMnemonic(menul_pi_b5, “8");

UxPutForeground(menul_pi_bS, “white" };

UxCreateWidget (menui_pi.b5);

167

UxAddCallback(menui_pi_b5, XsBactivateCallback,
(XtCallbackProc) activateCB_menui_pi b5,
(XtPointer) NULL);

/¢ Creation of menui_pi_b8 ¢/

menui_pi_b8 = UxCreatePushButton(“menui_pi_b6", menui_p1);
UxPutLabelString(menui_p1_b8, "Save Query Flle As ...");
UzPutBnemonic(menui_pi_b6, “A");

UxPutForeground(menui_p1_ b8, "white");

UxCreateWidget(menui_ p1_ b6);

UxAddCallback(menui_pi_b6, XmBactivateCallback,
(XtCallbackProc) activateCB_menui_pi_b6,
(XtPointer) BULL);

/¢ Creation of menui_pi_b7 ¢/

menui_pi_b7 = UxCreateSeparator("menul_p1_b7", menui_p1);
UsPutForeground(menui_pt_b7, "white");

UxCraateWidgot (menui pt_b7);

/* Creation of menul.p1_b9 ¢/

menul_p1_b9 = UxCreatePushButton(“menui_p1._b9", menul_p1);
UxPutLabelString(menui_p1_b9, “Exit Query Editor”);
UxPutBnemonic(menui_p1_d9, "E");

UxPutForeground(merul_p1._b9, "white");

UxCreateVidget (menuf.pi_b9);

UxAddCallback(menul_p1_b9, XmlactivateCallback,
(XtCallbackProc) activateCB.menui_p1_b9,
(XtPointar) BULL);

/¢ Croation of monui_top_bi #/

menut_top.bi = UxCreateCascadeButton("menul_top_bl", menul);
UxPutLabelString(menui_top_bi, "QueryFiles");
UxPuttinemonic(menui_top_bi, “F");

UxPutForeground(menul_ top_bi, "shite");

UxPutSubRenuld(menul_ top_b1, "menui_pi");

UxCreateWidget (menui_top. bl);

UxMainWindowSetAreas(QueryEditor, menut, commandi,
BULL_SW1DGET, BULL_SWIDGET, fileSelectionBoxi);
UsNainWindowSetMessageWinrdou(QueryEditor. labell);
return (QueryEditor);

/e

o The following is the 'Interface function’® which is the

oo external entry point for creating this interfacs.

. This function should be called from your application or from
(1] a callback function.

./

0

swidget create_QueryEditor(_UxUxParent)
swidget _UxUxParent;

{
swidget rtre;

UxParent = _UxUxParent;

168

rtrn = _Uxbuild_QueryEditor();

return(rtmm);

}
/»

[1] EID OF FILE

Py
e

~

208098 *"s []

L0 8crolledText.c
*e

" Associated Header file: ScrolledText.h

0040000000000

#include <stdio.h>
$include "“UxLib.h"
¢include “UxPushB._h"
$include "UxRowCol.h"
Sinclude "UxScText.h"
8include "“UxScriW.h"
$include "UxLabel.h"
$include "UxFrame.h"
$include "UxForm.h"
$include "UxApplSh.h"

static swidget formi;

static swidget form2;

static swidget framei;
static swidget label2;
static swidget frame?2;
static swidget frame3;
static swidget scrolledWindowTexti;
static swidget scrolledTextl;
static svidget framed;
static swidget rouColumni;
static swidget pushButton9;
static swidget pushButton5;
static swidget pushButton§;
static swidget UxParent;
static char #labelil;

#define CONTEXT_MACRO_ACCESS 1
$include "ScrolledText.h"
Sundef CONTEXT._MACRO_ACCESS
swidget ScrolledText;

I‘

The following are callback functions.

o

static void activateCB.pushButton6(UxWidget, UxClientData, UxCallbackArg)
Widgat UxWidget;
ItPointer UxClientData, UxCallbackArg;

169

»/

{
swidget UxThisVidget;

UxThisNidget = UxWidgetToSeidget(UxWidget);

{
extern swidget ScrolledText;
UxPopdosnInterface(ScrolledText, nou.grab);

}

}

L L The ’build.’ function creates all the swidgets and X widgets,
e and sets their proparties to the values spacified in the

s Property Editor.

o9

atatic svidget _Uxbuild_ScrolledText()

{
/% Create the swidgets s/

/* Creation of ScrolledText */
ScrolledText = UxCreateApplicationShell("ScroliciText", UxParent);

UxPutWidth(ScrolledText, 583);
UxPutHeight (ScrolledText, 550);
UxPutX(ScrolledText, 320);
UxPut¥(Scrollediext, 16);
UxCreateWidget(ScrolledText);

/* Creation of formi ¢/

forml = UxCreateForm{ "formi", ScrolledText);
UxPut¥Width(formi, 581);

UxPutHeight(forml, 446);
UxPutResizePolicy(formi, "resize_none"
UxPutX(formi, 28);

UxPutY(formi, 36);

UxPutUnitType(forml, "pixels”);
UxCreateNidget(formi);

-

/* Creation of form2 »/

form2 = UxCreateForm("form2", forml);
UxPut®idth(form2, 576);

UxPutHeight (form?, 33);
UxPutResizePolicy(1 0rm2, "resizs_none");
UxPutX(form2, 4);

OxPutY(form2, 6);

UxCreateWidget(form2);

/* Creation of framel »/

framel = UxCreateFrame("framet’, form2);
UxPutWidth(framei, 675);

UxPutHeight(framei, 31);

UxPutX{ framel, 0);

UxPutY(framei, 1);

UxCreateNidget (framel);

/% Creation of label2 s/
label2 = UxCreatelabel("label2", framel);

170

UxPutX(labell, 2);

UxPutY(label2, 2);

UxPutHeight (label2, 27);

UxPutWideh(label2, 672);

UxPutForeground(label2, “white");
UxPutLabelString(label2, “Query Ansvers");
UxCreateWidget (label2);

/¢ Creation of frame2 ¢/

frame2 = UxCreateFrame(“frame2", formi);
UxPutWidth(frame2, 676);

UxPutHeight (frame2, 408);

UxPutX(frame2, 4);

UxPutY(frame2, 40);

UxCreatelidget frame2);

/* Cresti-a of frame3 »/

fram~ . .watuFrame(“frame3", frame2);
UxPut¥W.dth(frame3, 200);

UxPutHeight (framed, 192);

UzPutX(frame3, 36);

UxPutY(frame3, 312);

UxCreatelidget (frame3);

/* Creation of scrolled¥indowTextl »/

scrollediWindowTextl = UxCreateScrolled¥Windonw("scrolledWindowTexti", frame3);
UxPutScrollingPolicy(scrolledWindowText1, “"application_defined");
UxPutVisualPolicy(scrolledWindowText1, 'variable");
UxPutScrollBarDisplayPolicy(scrolledWindouText1, "static");

UxPutX(scrolledV¥WindowTextl, 8);

UxPutY(scrolledW¥WindowTexti, 8);

UxCreate¥Nidget (scrolledWindowTextl);

/® Creation of scrolledTexti s/

scrolledTextl = UxCreateScrolledText("scrolledTexti", scrolledWindouTextl);
UxPutWidth(scrolledTexti, 200);

UxPutHeight (scrolledTexti, 200);

UxPutEditMode(scrolledTexti, "multi_line_adit");

UxPutText(scrolledTexti, “Hello \nAnother Hello");

UxCreateWidget (scrolledTexti);

/* Creation of framo4 ¢/

framod = UxCreatoFrame("framed"”, formi);
UxPutWidth(frame4, 576);

UxPutHeight(framed, 96);

UxPutX(framed, 4);

UxPutY(frame4, 452);

UxCreateWidget(framed);

/* Creation of rowColumni */

rowColumni = UxCreateRowColumn(“rowColumni®, framed);
UxPur¥idth(rowColumni, 554);

UxPutHeight (rowColumni, 92);

UxPutX(rosColumni, 2);

UxPutY(rowColumni, 2);

UxCreateWidge (rouColumni);

/% Creation of pushButton9 /

171

pushButtond = UxCreatePushBut ton(“pushButtond", rowColumni);
UzPatX{ pushButton9, 66);

UxPutY(pushButtond, 2);

UxPatForeground(pushButton9, "white");

UxPutLabelString(pushButton9®, labdelt);

UxCreatelidget (pushButtond);

/% Creation of pushButtons ¢/

pushButton5 = UxCreatePushButton("puskButtons", rosColumni);
UxPutX(pushButtonb, 66);

UxPutY(pushButton5, 30);

UxPatPoreground(pushButton5, "white");

UxPutLabelString(pushButton5, "pushbutton5");

UxPutHeight (pushButtonb, 26);

UxCreateWidget (pushButton6);

/® Creation of pushButtong ¢/

pushButtong = UxCreatePushButton("pushButton6", rowColuani);
UxPutX(pushButtons, 4);

UxPutY(pushButtong, 60);

UxPutLabelString(pushButtons, “Bxit”);

UxPutFPoraground{ pushButton6, "white");

UxPutNeight (pushButtoné, 30);

UxCreateiidget (pushButtoné);

UxAddCallback(pushButton8, XmBactivateCallback,

(XtCallbackProc) activateCB_pushButtons,

(XtPointer) BULL);

UxDelayUpdate(pushButton$);

UxPutPositionIndex(pushButtonb, 1);

UzUpdate(pushButton5);

/¢ UxRealizeInterface creates the X windows for the widgets above. */

UxRealizeInterface(ScrolledText);

return (ScrolledText);

}

/e

*” The following is the ’Interface function’ which is the

" external entry point for creating this interface.

.e This function should be called from your application or from
L1 a callback function.

swidget create.ScrolledText(_UiUxParent, _Uxlabell)
svidget _UxUxParent;
char ¢_Uxlabell;

{
swidget rtrn;

UxParent = _UxUxParent;
labelt = _Uxlabell;

rtrn = _Uxbuild_ScrolledText();
/¢ to print in the text field you have to concatenate strings together ¢/
UxPutText(scrolledText1, ");

/* you can not say multi Uxputs ¢/
/® UxPutText(scrolledText1, “\n This is the second line entered using UxPutText...\n"); »/

172

return(rtrn);

}
/

END OF FILE

8.2 Include files

/ SIS0 4R0400CEAEIOLEEELEREEIPEISS .
*” QueryEditor .h

s This header file is inclided by QueryEditor.c

E L)

" L4 "

#ifndef _QUERYEDITOR._INCLUDED
8define _QUERYEDITOR_INCLUDED

#include <stdio.h>
ginclude "UxLib.h"
#include "UxCascB.h"
#include "Ux3ep.h"
ginclude "UxPushB.h"
8include "UxRouCol.h"
$include “UxLabel.h*
#include “UxComm.h"
#include "UxFsBox.h"
$include "UxMainW.h"

extern swidget QueryEditor;

/ e Se0esatteete " sseseses see
. Declarations of global functions.

FYYY Y

suidget create_QueryEditor();

Sendif /¢ _QUERYEDITOR_INCLUDED ¢/

s/

/ . " "
e ScrolledText.h

. This header file is included by ScrolledText.c

ss

#ifndef _SCROLLEDTEXT.IBCLUDED
$define _SCROLLEDTEXT.INCLUDED

#include <stdio.h>
$include "UxLib.h"
#include "UxPushB.h"
sinclude “UxRowCol.h"
#include “UxScText.h"
#include “UxScri.h"
ginclude “UxLabel.h"
#include "UxFrame.h"
#include "UxForm.h'
8include "UxApplSh.h*

173

s/

extern svidget ScrolledText;

Jene .] .
.o Declarations of global fuactions.
0009080008 200800 s /

swidget create_ScrolledText();

Sendif /» _SCROLLEDTEXT_INCLUDED ¢/

/oen sene L IT 1
L] UncertainDatabase.h

e This header file is included by UncertainDatabase.c

.

oses . /

$ifndef _UNCERTAINDATABASE_INCLUDED
8define _UNCERTAINDATABASE_INCLUDED

$include <stdioc.h>
sinclude "UxLidb.h"
#include "UxLabelG.h"
8include "UxRowCol.h"
®include “UxTogB.h"
$include "UxScText.h"
8include "UxScri.h"
@include "UxScale.h”
#include UxPushBG.h"
®include "UxSep.h"
#include “UxAxrB.h"
#include "UxText.h"
$include *UxLabel.h"
$include "UxForm.h"
$include "UxFrame.h"
8include "UxPushB.h”
#include “UxBboard.h"

/_‘-_ e ad 'Y a0

e Declarations of global functions.

sodeneee o s/

swidget create_UncertainDatabase();

Sendif /e _URCERTAINDATABASE_INCLUDED »/

8.3 ESQL code

$include <stdio.h>
¢include <ctype.h>

/e

¢s defined values for Structured Query Template

s/

8define MAXATIR 200 /* maximum number of regular attributes ./
8define ATTNIDTH 20 /* maximum width of an attribute name */

174

8define MAXTABLES 200
$define TABWIDTH 20
8define NAXCONJ 200
8define CONJVWIDTIH 100
#define NAXVEC 3
8define NAXSOURCES 10
8define NRONS 100
8define WIDTH 50
Sdefine NAXDIH 60
Sdafine NAXCON 50
Sdefine NAXLIRE 300
$defina BAXTUPLES 1000

/e

/e
/e
/e
/*
/e
/e
/*
/e
/e
Il
/*
/e

maximum number of tables
naximum table width name
maximum number of source attributes

maximum width of a source attribute name

./
o/
o/
o/

maximum number of source vectors for Algorithm 1 ¢/
Naximum number of sources in the prototype */

number of tuples in an answer to a query

vidth of an attribute value
maximum number of disjunctions
maximum number of conjuncts

maximum line width

Haximum number of tuples to sort

#¢ Declare the SQLCA structure and the SQLDA typedef

s/

EXEC SQL
EXEC SqQL

IECLUDE SQLCA;
INCLUDE SQLDA;

EXEC SQL DECLARE stmt STATEMEET; /# Dynsmic SQL Statement s/
EXEC SQL DECLARE csr CURSOR FOR stmt; /¢ Cursor for dynamic AQL statement */

/e

#s Declare of result columns for a dynamic SELECT. If a SELECT
¢ statement returns more than DEF_ELEAMS, then a newv SQLDA will be allocated.

o/

& define
8 define
2 define
8 define
8 defins
8 define

/*

DEF_ELENS 6
DATE_SIZE 25
SQL_NOTFOUND 100
DBEANE_MAX 50
IBPUT_SIZE 266
STHT_HAX 1000

*s Qlobal SQL variables

o/
IISQLDA

rel

*sqlda = (IISQLDA #)0;

/e
/e
/e
/e
/e

/e

Size of a DATE string variable

The SQL code for the NOT FOUED condition

Raximum Database name

Nax input line size

Max SQL statement length

Pointer to the SQL dynamic area

#« Result storage buffer for dynamic SELECT statement

s/

struct {
int
char

/e

res_length; /¢ Size of meme_data ¢/
sres_data; /# Pointer to allocated rasult buffer */
} res_buf = {0, NULL};

*¢ Structured Query Template

o/

struct
int
char
int
char
int
char
int

}ary;

{

nattr;

attr [MAXATTR] (ATTVIDTH] ;
ntbls;

tbls [MAX.ABLES] [TABWIDTH] ;
ncnd;

cnd [MAXCONJ] [CONJIWIDTH] ;
qtype;

175

/e
/e
/e
/e
/e
/e
/e

./
o/
*/
o/
o/

./
./
o/
*/
o/

o/

number of attributes read ¢/

attribute list s/
nunber of tables read ./
tables list s/
number of conjuncts o/
conjuncte list o/
is the query type ./

/e

¢¢ array that defines the type of esch attribute name.

o/
int t{MAXATIR];

/e

oo count the number of duplicate rows in any set of query answers.

o/

int drows;

/e

os Reiiability of source vectors
¢/

float re[MAXSOURCES];

/e

¢+ Define the Query Syntax
o/

char slcti7]);

char m[5];

char whr(6];

char un[6];

/e

os functions and procedure needed

o/

void Run_Application();

void Init_Sqlda();

void Print_Schema();

void Print_Tuples();

vold Print_Error();

void Conjunction();

void ExtendedSelection();
void ExtendedProjection();
void ExtendedUnion();

void ExtendedProduct();

void ExtendedJoin();

voi4 ExtendedIntersection();
vo & ExtendedDifference();
void RelCalculation();

void SortFile();

char eRead_Query();

char eAlloc_Mem();

char ecalloc();

char ¢FillStructuredQueryTemplate();
char ¢QueryTransformation();

int CmpSourceVectora();

int EqualStrings();

int Exectute_Query();

float Algorithmi();

float SourceVectorReliability();
double strlfit();

/e
/»
/e
/e

/e
/*
/e
/»
/*
/e
/e
/e
/e
/e
/e
/e
/*
/e
/e
/e
/e
/e
/e
/e
I
/e
/®
/e
/e
/e

select
form
where
union

Run SQL Monitor

Initialize SQLDA

Print SELECT column header

Print SELECT Row values

Print a user error

w=u /\v

Extendad Selection

Extended Projection

Extended Union

Extended Cartesian Product
Extended Join

Extended Intersection

Extended Set Differencs
Reliability of single source vector
Sort lines in file in increasing oxder
Read statesent from terminal
Allocate memory

C allocation routine

Read statement from terminal
Extended model Query Transformation
Compares two source vectors

Test if two strings are equal
Execute Dynamic Salect

Reliability Calculation algorithm 1
reliability of a single source vector
String to float conversion

*/
s/
*/
./

./
*/
./
./
./
+/
./
s/
*/
./
./
s/
./
»/
./
o/
s/
+/
./
./
./
./
./
./
./
./

/-

s¢ Procedurs : main

9¢ Purpose: Rain body of SQL Nonitor application. Prompts for database
L name and connect to the database. Run the monitor and

L disconnect from the database. Before disconnecting roll

L1 back any pending updates.

176

¢ Parameters: None
L1 -/
main()
{
/e
% pointer to the "options.rel"” file that contains the information
#*¢ gources reliability.
./
FILE eifileptr;
/e
e+ In the ’options.rel” file there is the reliability calculation flag
s+ integer variable and we would like to have it unchanged. by this
*¢ proceédure. Skip this variable and read the information source
¢ reliabilities.
s/
int relFlag, i;
int reli,rel2,rell3,rel4,rol5,rel6,rel7,re16,rel19,rel10;

EXEC SQL BEGIN DECLARE SECTION;
char dbname [DBNARE_MAX +1]; /+ Database name o/
EXEC SQL EBD DECLARE SECTION;

/e

#¢ Initialization of query Syntax (Select ... From ... Where ...)
o/

slct1] = ’s?; slct[2] = ’'e’; slct{3] = '17; slct(4] = ’e’;
slct{8] = *c?; slctl6] = 't?; slce(7] = '\O?;

1] = 2£7; fm[2] = 'r?; Im[3] = 0’; fm[4] = 'm’; fm[E] = °\O’;

whrl1] = ’w’; whr[2] = ’h?; whr[3] = 'e’;
whr{4] = ’r’; whr[5] = 'e’; whr(6] = '\0;

an{1] = *u?; un(2] = ’n?; unl3] = ’4i?;
unf4] = ?0?; un{B] = ’n’; un[6] = *\0’;

/e

s+ (pen the ’options.rel’ file and read the reliability calculation
#¢ flag as well as the reliability of information sources.

./

ifileptr = fopen(“options.rel", "r");

/=

¢e gkip relFlag (reliability calculation flag).

»/

fscanf(ifileptr, “%d", 2relFlag);

facanf(ifileptr,"¥%d,%d,%d,%d,%d,%d,%d,%d,Xd, Xd" ,&rell ,&rel2,krel3,Arel4 ,krel6,
&rel6,2rel7 ,rel8,krel9,Arell10);

fclose(ifileptr);

re[1] = rell ¢ 0.01; re[2] = rel2 * 0.01; re(3] = rel3 » 0.01;

ref4) = reld » 0.01; re[5] » rel5 = 0.01; re[6] = rel6 ¢ 0.01;

re[7] = :el7 » 0.01i; re[8] = rel8 » 0.01; re[9] = rel9 * 0.01;

re{10” = rel10 » 0.01;

/e
#% Prompt the user for database name - could be command line parameir
#¢ printf(“SQL Database name:");
es fgets : reads the next input line (including the newline) from the stdin
ss into the character array dbname declared before. at most
s¢ DBNARE_MAX characters vill be read. The resulting line is terminated by
#s a BULL string. On end of file or error, fgets returns NULL.
s/
if (fgets(dbname, DBNAME_NAX, stdin) w»= NULL)
exit(1);

177

/e

s/

Treat connection errors as fatal.

EXEC SQL WHEBEYER SQLERROR STOP;
BXEC SQL COREECT :dbname;

/e
'Y
'

o/

Call Run_Application() which accepts all typed queries by the users
and sends them to INGRES.

Run_Application();

BXEC SQL WHENEVER SQLERROR CONTINUE;

pr

intf(“SQL: Exiting program.\n");

BEEC 8SQL ROLLBACK;
RXEC SQL DISCONRECT;
} /+ End main ¢/

ro-

#% Procedure : Run_Application
¢¢ Purpose: Run the SQL monitor Initialize the first SQLDA with the

"
L L]
"
..

default size (DEF._ELENS ’sqlvar’ elements). Loop while
prompting the user for input, and processing the statement.
if it is not a SELECT statemsnt then execute it, othervise
open a cursor to process a dynamic SELECT statement.

s Parameters: None

Py
e

void Run_Application()
{

/

.
o ESQL declarations

s/

EXEC SQL BEGIN DECLARE SECTION;

char stmt_buf [STHT_MAX + 1] ; /+ SQL statoment input buffer
char trans_buf [STHT_NAX + 1) ; /* SQL statement input buffer
EXEC 8QL END DECLAJE SECTION;

i
i

nt stmt_num; /¢ SQL statement number
nt rows; /* Rows affected

/e

¢ Allacate a new SQLDA

/
nit_Sqlde(DEF_ELENS);

/e
se Accept input until a Cntrl+D is prassed. Cntrl+D signals the

¢ ond of file.

./
for (stmt_num = 1 ;; stut_numé+)

{

drows = O;

/

oo Prompt and read the next statement. If Read_Query
¢e returns NULL then end-of-file = Cntrl+D was detected.
se Send the statement nunber and the statement buffer declared by the

178

s/
*/

*/
~/

¢» ESQL at the beginning of this procedure to be filled up by the Read_Query()

*¢ function. STAT_NAX in the maximum characters that could be accepted into the
¢+ declared buffer area stat_buf. The function will exit if the returned type was
s¢ NULL = Cntrl + D is entered by the user. Calling this way, by using the if

#s gtatement, is batter than calling the Read_Query() alone since wa will control

*% errors in a better way.

s/

it (Read_Query(stmt_num, stat_buf, STAT_NAX) == NULL)
braak;

/e

ss After veading the statement call Queryldentification() to identify which

¢ Relational Algebra Operation (RAD) is needed.
./
FillStructuredQueryTemplate(stmt_num, stmt_buf, STAT_NAX, trans_buf);

I/
** Given the Structured Query Template, we can, now, decide shich
*» rolational algebra operation is required. An RAD is identified and

s¢ transformed into another query depending on the query typed by the user.

8¢ The transformed query is stored in trans_buf and the typed in query
*s is stored in stmt_buf.

s/

QueryTransformation(stmt_num, stmt_buf, STHT_MAX, trans_buf);

/e

s¢ Errors are non Fatal from here on out since the returned value by the
»s Read_Query() was not BULL. So we are ready to send the buffer stmt_buf to

s¢ INGRES and get the ansvers to the querins. Before we send the buffer

to

¢¢ INGRES we have to prepare the stmt FROM :stmt_buf; and describe the stmt

s+ into the sqlda area (8ql dynamic area).
o/
EXEC SQL WHENEVER SQLERROR GOTO Stmt_XZcr;

/e

s+ Prepare and describe the statement. If we cannot fully describe
¢+ the statement (our SQLDA is too small) then allacate a new one
¢¢ and redescribe the statement.

s/

EXEC SQL PREPARE stwmt FROM :trans_buf;

EXEC SQL DESCRIBE stmt INTO :sqlda;

if (sqlda->sqld > sqlda->sqln)

{

Init,_Sqlda(sqlda->sqld);
/e
#+ redescribe the statement again into :sqlda; so that
¢+ the accepted statement can fit into the new :sqlda.
*/
EXEC SQL DESCRIBE stmt INTO :sqlda;

}

it (sqlda->nqld == Q)
¢ EXEC SQL EXECUTE stat;
rows = gqlca.sqlerrd[2];
:ll. /* SELECT »/
¢ ;ou = Exectute.Query();
.

#¢ After the selection is exocuted, we will read the "query.ans" file

and

#¢ perform the correct processing based on the query entered by the user.

#¢ At this point we have the answers to the query vith source vectors

& properly manipulated. We will use the reliability calculation algorithm 1

179

o9 to find the reliability of answers to users queries bases on the reliability
os of the information sources contributing to the tuple as a shole. In this
#¢ protuiype we vill calculate the reliability of the whole tuple, i.e.,
#e ghen the information is complete. Reliability of partial information is
se pot implemented in this prototype.
o/
switch (qry.qtype)
{ /¢ begin switch on query type */
case O:
case 1:
ExtendedSelection();
break;
case 2:
ExtendedProjection();
break;
case 3:
ExtendedUnion();
break;
case 4:
ExtendedProduct();
break;
casse b:
ExtendedJoin();
brsak;
case 6:
ExtendedInterssction();
break;
case T:
ExtendedDifference();
break;
defrult:
print2();
} /» end switch on query type o/
}
printf("[%d row(s)]\n", rovs - drows);
.

¢ gkip error handler and return to accept another query from the prompt
se after displaying how many rous were affected with the executed statement
./

continue;

Stat _Err:
EXEC SQL WHENEVER SGLERROR CONTINUE;
/e
s Print error message and continue
./
Print_Brror();
} /¢ For each statement ¢/

} /¢ Run_Application ¢/

Py

¢ Procedure : Init_Sqlda

¢® Purpose: Initialize SQLDA. Free any old SQLDA's and allocate a new
.. one. Set the number of ’sqlvar’ elements.

¢¢ Parameters: num_elems - Number of elements.

void Init_Sqlda(num_elens)
int num_elems;
{
/e
¢% Free the old SQLDA
o/

180

it (sqlda)
free({char ¢)sqlda);

/e
os Allocate a new SQLDA
o/
sylda = (IISQLDA ¢) Alloc_Mem(IISQDA_HEAD_SIZE + (num_elems ¢ IISQDA_VAR_SIZE), "new SQLDA");
sqlda-?sqln = num_elems; /¢ set the size ¢/
} /¢ Init_Sqlda ¢/

fomm-

¢ Procedure : Exectute_Query

s Purpose: Run a dynamic SELECT statement. The SQLDA has already been
L described. Accumulate the number of rows processed.

*¢ Parameters: non

L] Returns: Humber of rows processed.

int Exectute_Query()
{
int rows;
FILE *fileptr; /* pointer to file
FL
*¢ Print the result column names, allocate the result variables,
e¢ and setup the types. Save the returned answers in a file for
#¢ future manipulation.
./

fileptr = fopen(“query.ans”, "v");

/s

#+ Display the attribute names and source attributes associated with
s+ the corresponding attributes.

./

Print_Scheme(fileptr);

/e

%¢ In case of errors

./

EXEC SQL WHERNEVER SQLERROR GOTO Close_Csr;

/e

s+ Open the dynamic cursor

o/

EXEC SQL OPEN csr FOR READONLY;

/e
¢+ Fetch and print each row
o/
rows = 0;
vhile (sqlca.sqlcode == 0)
{
EXEC SQL FETCH csr USING DESCRIPTOR :sqlda;
if (sqlca.sqlcode == 0)
{
rows++; /® count the rows
Print_Tuples(fileptr);
}
} /¢ while there are mors rows »/
fclose(fileptr);

Close_Csr:

Fil

#¢ print the error message

181

o/

o/

}

fommmmnm

s/
it (sqlca.sqlcode < 0)
Print Crror();

EXEC 3QL WHENEVER SQLERROR CONTINUE;
EXEC SQL CLOSE csr;

return rows;
/% Execute Select o/

¢¢ Procedure : Print_Scheme
¢s Purpose: A statement has been defined to set up the SQLDA for

L result processing. Print all the column names and allocate

L a result buffer for retrieving data. The result buffer is

L 1] one buffer (whose size is determined by adding up the results

" column sizes).

¢ Parameters: none

" ¢/

void Print_Scheme(fileptr)

FILE efileptr;

{
int {; /* Index into ’sqlvar’ o/
IISQLYAR »sqv; /® Pointer to ’'sqlvar’ o/
int base_type; /* Base type w/o nullability o/
int res_cur_size; /% Result size required o/
int round; /* For alignment ./

fprintf(fileptr, "%d\n", sqlda->sqld);

/e

¢ gqlda~>sqld: is the number of attributes involved in the

o¢ nelect statement. If the query is select ¢... then

** gqlda->sqld = number of attributes in the extended relation.
#s 1IN this case we will save the involved number of attributes
¢ of “he given query in a file to treat it later.

¢/

/e

¢¢ Initialize the array that contains the type of each attribute

¢¢ in the query. Wse will assume the integer, long integer, money, and
e¢ float point (types of ingres) have the type code of '0°’,

#¢ The array t[] will work as attributes types.

os This is needed since when we match the disjunct of a selection ve
% we should know if we are comparing integers or strings.

./

for (4 = O; i < MAXATIR ; i++) { t{i] = 0;}

for (res_cur_size » 0, { = 0; i < sqlda->sqld; i++)
{
/e
#* Print each column name and its number
o/
sqv = &sqlda->sqlvar{i]l;
printf("[¥%d] X.es ”, 141, sqv->sqlname.sqlnamel, sqv->sqlname.sqlnamec);
fprintf(fileptr, "%.¢s""' ,sqv->sqlname.sqlnamel,sqv->sqlnanse .sqlnamec);
/e
s¢ Find the base-type of the result (non-nullable)
¢/
i ((base_type = sqv->sqltype) < 0)
base_type = ~base_type;
/e
s¢ Collapse different types into INT, FLOAT or CHAR

182

o/
svitch (base_type)
{

case IISQ_INT_TYPE:

/e

s¢ Always retrieave into a long integer

s/

res_cur.size 4= sizeof(long);

sqv->sqllen = gizeof(long);

rel

¢¢ If gqry.type = 1, then we have a selection. Store
t" the type of each attribute name of the scheme of
¢v the extended relation.

o/

t[i] = 0;

break;

case 1ISQ_MEY_TYPE:

/e
*s Always retrieve into a double floating point
o/
if (sqv->sqltype < 0)
sqv->sqltype = -II18Q.FLT_TYPE;
else
sqv->sqltype = I1SQ.FLY_TYPE;
ro8_cur_size += gizeof(double);
sqv->sqllen = sizeof(double);
t{i] = 0;
break;

case IISQ_FLT_TYPE:

/e

#¢ Always retrieve into a double floating point
./

res_cur_size += sizeof(doudle);

sqv->sqllen = sizeof(double);

t{i} = 0;

break;

case I1SQ.DTE_TYPE:

sqv->sqllen » DATE_SIZE;
/¢ Fall through the handle 1ike CHAR o/

case IISQ_CHA_TYPE:
case II8Q_VCH_TYPE:

} /e
/e

/e
*¢ Assume no binary data is returned from the CNAR typs.
¢¢ Also allocate ore extra byte for the null terminator.
o/
res_cur_size += sqv->sqllen + §;
I
s Always round off to aligned data boundary
o/
it (round = res_cur_size % 4)
res_cur_size += 4 ~ round;
it (aqv->sqltype < 0)
sqv->aqltype = ~IISQ_CHA_TYPE;
else
sqv->aqltype = 11SQ.CHA_TYPE;
tii] = 1;
break;
switch on base type ¢/

save away space for the null indicator

183

o/
it (sqv->sgltype <0)
res_cur_size += gizeof(short);
} /¢ for each column #/

fprintf(fileptr, "“\n");
print£("\n");
/oprintf ("\n<fd>\n", res_cur_size);e/

/*
¢s At this point we’ve printed all column headers and converted
¢+ all types tc one of INT, CHAR or FLOAT, Now we allocate
¢® single result header buffer, and point all the result column data
¢ areas into it.
..
¢+ If we have an old result data area that is not large enough then
¢ free it and allocate a new one. Othervise we can reuse the last
*¢ one that was created shen the last statement (SQL query) was
¢¢ entersd by the user.
s/
if (res_buf.res_length > O &R res_buf.res_length < res_cur_size)
{
free(res_buf.res_data);
res_buf.res_length = O;
}
/e
% the first time we run this program the res_buf.res_length
#¢ has the value zero. So the coming lines are executed
o/
if (res_buf.res_length == 0)
{ /e
s res_cur_size contains the size of the area to be created.
*+ calculated this wshile ve were printing the headers that were
*¢ involved in the query given to the system.
./
res_buf.res_data = Alloc_Nem(res_cur_size, "result data storage area");
res_buf.res_length = res_cur_size;

/e
% After processing the values of sqltype and sqllen, you should allocate
*o storage for the variables that will contain the result of the select
#¢ statement. Do this by pointing the sqldata at a host language variatle
s¢ that vill contain the result data.
#¢ Now for each column now assign the result address (sqldata) and
ss indicator address (sqlind) from the result data area.
./
for (res_cur_size = 0, 1 = 0; i < sqlda->aqld; i++)
{7/
*¢ here if the number of columns involved in the
#s query is k, then this for loops k times to allocate
#s gpace for the k columns attribute values
o/
sqv = ksqlda->sqlvar[i]);

/s
¢ Find the base-type of the result (non-nullable)
./
if ((base_type = sqv->sqltype) < 0)
base_type = -base_type;

/e

184

¢s Current data points at current offset

o/

sqv->sqldata ® (char ¢)eres_buf.res_datafres_cur_size];
res.cur_size 4% gqv->sqllen;

it (base_type == IISQ_CHA_TYPE)
{

res_cur_sizes+; /% Add one for null s/
it (round = res_cur_size % 4) /* Round off to aligned boundary s/
res_cur_size += 4 - round;
}
/e
¢¢ Point at result indicator variable
o/

i (sqv->sqitype < 0)
{

sqv->sqlind = (short ¢)&res_buf.res_data[res_cur_size];
res_cur_size += sixeof(short);
}
else
{
sqv->sqlind = (short ¢)0;
} /¢ if type is nullable ¢/
} /e for each column ¢/
} /¢ Print_Scheme o/

/e

¢ Procedure : Print_Tuples

®¢ Purpose: For each element inside the SQLDA, print the values. Print
L L] its column number too in order to identify it with a column
L1 name printed earlier. If the value is NULL print 'B/A".

*¢ Parameters: none
L) s/

void Print_Tuples(fileptr)
FILE ofileptr;

{
int i; /¢ Index into ’'sqlvar’ s/
1ISQLVAR esqv; /* Pointer to 'sqlvar’ s/
int base_typs; /® Base type w/o nullability »/
/e

¢¢ For each column, print the column number and the data.
e¢ JULL column print as “N/A".

o/

for (1 = 0; 1 < aqlda->sqld; i++)

{

/e

¢¢ Print each column value with its number. the variable i tells us the
os column number being processed.

74

sqv » asqlda->sqlvar(i];

printe("[¥%d) », i+1);

it (eqv->sqlind &R *sqv->sqlind < 0)
{

printf(" N/A ");

)}
else /* Either not nullablae, or nullable but not null #/
{

/e

#s Find the base~type of the result (non-nullable)

s/

185

}

if ((base_type = sqv~>sqltype) < 0)
base_type = -base_type;
switch (base_type)
{
case IISQ_INT_TYPE:

V]
s¢ All integers were retrieved into long integers
o/
print£("%d ", »(long ¢)sqv->sqldata);
fprintf(fileptr, “Xd", e(long ¢)sqv->sqldata);
break;

case 1ISQ_FLT_TYPE:
/e
¢ All floats were retrieved into doubles
*/
printf("%g ", *(doudble ¢)sqv->sqldata);
fprintf(fileptr, "ig", #(double ¢)sqv->sgldata);
break; .

case IISQ._CHA_TYPE:
/e
ss All characters were null terminated
st
printf("%s ", (char #)sqv->sqldata);
fprintf(fileptr, "is", (char s)sqv->sqldata);
break;
} /¢ switch on base type »/
} /¢ if not null ¢/
fprintf(fileptr, "~");
/* for each column ¢/

printf(" \n");
fprintf(fileptr, "\n");
} /% Print_Tuples »/

8
L2
*%
L 2

Procedure : Print_Errorx
Purpose: SQLCA error detected. Retrieve the error message and
print it.
Parameters: none

Py

void Print_Exrror()

{

/e

¢s Embedded SQL declaration

*/

EXEC S{iL BEGIN DECLARE SECTION;

char error_buf[150]; /# For error text retrieval

EXEC SQL EBRD DECLARE SECTION;

EXEC SQL IBQUIRE_SQL (:error_buf = ERRORTEXT);
printf(“\nSQL Error:\n ¥%s\n", error_buf);

} /¢ Print_Error ¢/

'S

o/

Procedure : Read_Query
Purpose: Reads a statement from standard input. This routine prompts

the user for input (using a statement number) and scans input

tokens for the statement delimiter (semicolonmn).
- Continues over new-lines.

186

o ~ Uses SQL string literal rules.
¢ Parameters:
L4 stat_num ~ Statement number for prompt.
L L] stat_buf - Buffer to fill for input.
se stat_max - Nax size of statement.
¢ Returns:
o A pointer to the input buffer. If NULL then «nd-of-file was
L L typed in; EOF = Cntrl+D.
o o/
char *Read_Query(stmt_num, stmt_buf, stmt_max)
int stmt_num; /% current statement number o/
char stmt_buf{l; /* pointer to buffer for input statement ./
int stat_smax; /% maximum size of input statement »/
{
char input_buf[1NPUT_SIZE + 1]; /* Terminal input buffer ./
char *icp; /* scans input buffer ./
char ¢ocp; /¢ to output (stmt_buff) ./
int in_string; /¢ For string handling ./
ocp = stat_buf; /* Pointer operation s/
in_string = 0;
/e
e¢ fgets reads a line and the new line from stdin into characters array input_buf
*¢ at most INPUT_SIZE characters are read into input_buf resulting line is terminated
¢s with a ’\O’ NULL character. Returns input_buf, or NULL when EOF or error
o/
while (fgets(input_buf, INPUT_SIZE, stdin) ‘= BULL)
for (icp = input_buf; eicp 22 (ocp - stmt_buf < stmt_max); icp++)
{ /e
*¢ read all characters in buffer and filter them out
s Jot in string ~ check for delimiters (;") and new lines
./
if (Yin_string)
{
if (eicp == ?;?) /¢ done since we read all the statement »/
{ /e
¢¢ insert a NULL character at the end of the
¢¢ read string and return the read statement
¢s to the caller. The returned value by this
®¢ procedure is a pointer to a buffer of characters
¢¢ that contains the filtered statement to be
s¢ described and executad.
*/
sacp = '\0’; /* terminate the string with a null character s/
return stmt_buf; /¢ return the pointer to stmt_buf ./
}
else if (eicp m= ’\pn!) /* a new line is encountered o/
{
/s
*s New line outside of string is replaced with blank
#s and the pointer is incremented aftsr wards so that
¢¢ ocp will point to the next location in stmt_buf to
¢s £i11 it up with the appropriate values.
./
socpés =) 1, /¢ replace a \n by a space o/
break; /* exit for loop and read next line o/
}
else if (eicp == \») /% Entering string »/
{
in_string++;
}
/e

¢+ transform one character at a time from the input buffer

187

}

s¢ that were used by the fgets() to the buffer (stmt_buf),
#% pointed to by ocp, and was passed as an argument from the
*s calling procedure. Increment the pointer of the stmt_buf
s 30 vvat it points to the next location in stmt_buf. Note that
e icp is not incremented since this is taken care by the for loop
*/
socp++ = #icp;
}
olse
{
if (eicp == '\n’)
{ /e
s¢ Jew-line entered in string is ignored;
#¢ break from the for loop and read the
*¢ second line input.
./
break;
}
else if (sicp == 1\??)
{
if (o(icp+l) == 1\ 1) /* Escaped Code 7
so:spt+ = sicpte;
else
in_string--;
}
/*
*s transform one character at a time from the input buffer
¢+ that vere used by the fgets() to the buffer (stmt_buf),
#¢ pointed to by ocp, and was passed as an argument from the
s¢ calling procedure. Increment the pointer of the stmt_buf
#s g0 that it points to the next location in stmt_buf. Note that
#s jicp is not incremented since this is taken care by the for loop
*s socp is incremented after the assignment statement is done.
o/
socp++ = sicp;
} /¢ if instring s/
/* for all character ir buffer */

if (ocp - stmt_buf >= stmt_max)

{

}

/e

s Statement is too large; ignore it and try again

#+ until the users enters a line whose length is less

s than or equal to stmt_max

*/

printf(” SQL Error: Maximum statement length (%d) exceeded. \n",
stat_max);

ocp = stmt_buf;

in_string = 0;

else

{

}

/e

ss Break on new line - print continue sign
¢¢ and read another line input after going
s¢ back to the while loop

+/

printf(*»");

} /» while reading from standard input »/

/*

#¢ gince users pressed Cntrl+D = EOF marker.

s/

return NULL;

188

o/

} /¢ Read_Query() ends here ¢/

/e
#¢ Procedurs : Alloc Mem
¢¢ Purpose: Qeneral purpose memory allocator. If it can not allocate
L 14 enough space. It prints a fatal error and aborts any
o0 pending updates.
-9
¢¢ Parameters:
. nen_size ~ size of space requested.
e error.string - Error message to print if failure.
¢¢ Returns:
. Pointer to newvly allocated space.
L 7
char ¢Alloc_Nem(mem_size, error_string)
int men_size;
char serror_string;
{
char emem;
mem = calloc(l, mem.size);
i7 (mem)
return mem;
/e
#¢ Print an error and roll back any updates
./
printf(SQL Fatal Error: Cannot allocate ¥s (%d bytes).\n",error_string, mem_size);
printf(“Any pending updates are being rolled back.\n");
EXEC SQL WHEBEVER SQLERROR COSTINUE;
EXEC SQL ROLLBACK;
EXEC SQL DISCONENECT;
exit(-1);
} /¢ Alloc_Rem ¢/
/e
®¢ Procedure: Conjunction()
¢¢ Purpose: Performs the conjunction betveen two source vectors
L and returns the answer as an argument to the calling
Ll procedure.
.o return: the result of conjunction.
./
woid Conjunction(ui, vi, wi)
char ul [NAXSOURCES + 1]; /* neutral source vector »/
char v1[WAXSOURCES + 1]; /* the read source vector o/
char w1{NAXSOURCES + 1]; /* the result source vector »/
{
iat c;
int 4, §;
/e
#¢ Calculate wi = ut /\ vi.

*/

for (4 = 0; i < MAXSOURCES + 1; i++)

{

if (u1[i) == \0?)

{

it (vif4) == "\0’) {

wi[i] = *\0’; break; }

else

189

{

for (§ = 1; § < MAXSOURCES + 1; j++)
wilj] = vi[3]; break;

}

}

else

{

{

it (va[i] == '\0?)

for (j = i; j < RAXSOURCES + 1; j++)
#1[j] = ui(jl; break;

}

else

{

if ((ui(i) ==
wii] = *1;
if ¢ (ui(i) ==
wifi] = *1>;
if ((ui[i] ==
wi[i] = 17,
if ((ui[i] ==
w1[0] = T?;

it ¢ (u1[i] ==
wi[i] = 217
it ((u1[i] ==
wi[i] = 10;
if (C(ui[i] ==
wif[i] = '=?;
if ((ui[i] ==
wili] = 172,

if ¢ (uifi] ==
wi[i] = T
if ((u1(i] ==
wi[i] = 1=>;
if ((uili] ==
w1[i] = =23
if ((u1[i] ==
wif0] = 'T?;

1) &g (vi[i] == 1?)
continue;}

117) gk (vi[i] == 10?)
continue;}

117) a& (vi[i] == ?=2)
wif1] = '\0’; break;)}
117) &g (vi[i] == 'T?)
wif1] = '\0’; break;}

10?) &k (vi[i] ==
continue;}
107) 2& (vi[i] ==
continue;)}
10?) &g (vi[i] ==
continue;}
10°) && (vi[i] == 'T?)
wil[1] = ’\O’; break;}

1)
'0?)

’-!)

1-7) g (vi[i) == 11?)
wi[1] = '\0’; break;}
1-1) gk (vi[i] == 20?)
continue;}

1-1) a8 (vi(i] == ’-?)
continue;}

1~1) gk (vi[i] == 'T?)
wi1] = '\Q’; break;}

if (u1[i] == 'T?) {

wili] = 7,

}

}

} /% for o/

}

fo--

e

wi1] = "\0’; break;}

) {
{
X {
¢

Y {
) {
) {
) {

e
)y {
) {

Procedure :

FillStructuredQueryTemplate()

¢¢ Purpose: Fill up the Structured Query Template by the number of

. attributes, attribute names, number of tables, table names,
L4 selection condition (conjuncts).

L Relational algebra operations are: Selection, projection,
L union, cartesian product, join, intersection, set difference.
*s Parameters:

*s stat_num - Statement number for prompt.

b stmt_buf - Buffer that contains the query to be identified.
L L stut_max - Max size of statement.

es Returns: return the Structured Query Template information in qry

e

190

char sFillStructuredQueryTemplate(stmt_num, stmt_buf,
int stat_num; /e
char stat_buf{]; /e
chksr irens_butll; /*

int stmt_max; /»
{

char ¢icp; /e
char socp; I+
int in_string, i, §; /e
int f1g;

/e

stmt_max, trans_buf)

current statement number

pointer to buffer of input sti wment
pointer to buffer of transformed statement
maximum size of input statement

scans the stat_buf fu'l buffer
to output (trans_buf) Empty buffer
For string handling

s¢ Initialization of ull required variables, pointers

¢¢ and structures. ClearStructuredqueryTemplate ...

s/
/e

ocp = trans_buf;
in_string = 0;

flg = 0;

qry.nattr = 0;
qry.ntbls = 0;
qry.ncnd = 0;
qry.qtyps = 0;

for (1 = 0; 1 < MAXATIR ; i++)

¢ for (§J = 0; j < ATTNIDTH; j++)
! qry.attr[i][j]1 = "\0*;

} }

for (1 = 0; 4 < NAXTABLES ; i++)

¢ for (j = 0; § < TABWIDTH; j++)
¢ qry.tbls(i]J(§] = *\0’*;

; }

for (1 = 0; 1 < HAXCON); i++)

¢ for (J = 0; j < CORIVIDTH; j++)
¢ qry.cnd{i][j] = *\o’;

}

/e

e Clear the buffer before use.
s/

ocp = trans_buf;

Pointer to empty buffer trans_buf

for (ocp = trans_buf; socp &k (ocp - trans_buf < stmt_max); ocps+)

{

socp = ’\0’;

ocp = trans_buf;

for (icp = stmt_buf; eicp &2 (ocp ~ trans_buf < stmt_max); icp++)

Socpt+ = sicp;
} /¢ for all characters in stmt_buf ¢/
/e

191

s/
+/
s/
»/

*/
*/
s/

s* Now, we have a copy of the query entered by the user we will scan it

s¢ and identify the RAC. Once the RAQ is identified we will transform the

#¢ Query into a form that will include the source vectors associated with the
*¢ tuples and the required attributes based on the RAO.

s/

for (icp = trans_buf ; eicp; icp++)

j=0;
/e
¢* Read the ’select’
o/
if ((eicp++ == glct(1])) &R (eicp++ == slct[2]) &k (eicp++ == glct(3]) &8
(sicp++ == glct[4]) & (eicp++ == glct[5]) &k (sicp++ =m s)ct[6]))
{
vshile (eicp == » 1){
sicp++;)
/e
¢¢ at this point we have the attribute names
+/
while (1){ /# read all attributes */
while (!(eicp == 7,?) & !(sicp == !)){
/e
¢ get attribute after attribute
./
qry.attrlqry.nattr] [j++] = eicp;
sicp++;
} /+ while get attribute after attributes/
/*
¢+ put JULL string at the end of attributes
s/
qry.attriqry.nattrl(j++] = *\0’;
qry.nattre+; /% add number of attributes
j=o0;
it (sdcp == 2) {
sicptt:
break; } /* means finish reading attributes
/% when you exit because of ',’ you still expect attributes ¢/
sicpt+;
/*
s skip spaces
./
while (sicp == ') {eicp++;)}
}/+ read all attributes ¢/

/e

s read the *from’

*/

if ((eicpt+ == fu[1]) && (eicp++ == fa[2]) 22
(sicp++ == fn(3]) &k (sicps+ == tm[4]))

{

j=o0;
vhile (eicp == * 1){ sicp++;}
vhile (1){ /¢ read all table names ¢/
while (!(eicp == ?,7) &R !(sicp == * ?) &R (eicp == *\0’)){

/e
*s gave the tables names in the array of tables
./
qry .tbls[qry.ntbls] [§j++] = eicp;
sicp++;
} /+ while get table after table ¢/
/e
¢ put BULL string at the end of attributes
o/

192

o/

./

qry.tblslqry.ntbls][je+] = *\0*;
qry.ntblas+; /* add number of attributes ./
j=o0;
/e
¢¢ ond of query
s/
it (eicp == *\0?) {break;}
/e
o¢ expect to read the ’shere’ selection condition
o/
it (edcp == 2 1) {
eicpe+;
break; }
/e
¢¢ when you exit because of ?,’ you still
*¢ expect more tablie names
o/
sicpe+;
while (eicp == * ?){ eicp++;)
} /¢ read all tables ¢/
} /¢ read from o/

/*
*¢ at this point we have the attributes and the tables in the query
74

jmo0;

/e

¢ read the ’'where’

o/

if ((eicp++ == whr(1]) & (sicp++ == whr[2]) 2
(eicp++ == yhr([3]) a2 (sicp++ == whr[4]) &t
(sicp++ == ghr(5)))

{

while (sicp == 7 ?){ sicp++;) /% discard apaces o/
while (sicp == >(7){ eicp++;} /® every conjunct should start with a '(? o/
wnile (sicp == ' *){ sicps+;) /% discard spaces ./
/e

¢+ read all conjuncts (F1 /\ ... /\ F1)

./

while (1){

while (!(eicp == 2)7)){
qry.cndlqry.ncnd] [j++] = eicp;
eicp++;

} /+ while get one conjunct after the other ¢/

sicp++;

/e

o¢ discard spaces

./

while (eicp == * 1) { sicp++;)

it (sicp+s == 19?)

if (eicpt+ um ’p7)

{

qry.cndlqry.ncnd] (j++] = *\0’; /* put NULL string at thc end of attributes »/
qry.ncnd++; /* increment the number of conjuncts s/
j=o0;

while (eicp == ' 1){ sicpe+;)

while (eicp m= 2 (7){ eicpe+;) /* evary conjunct should start with a '(? s/
continue;

}

else

{

193

/*
#¢ Syntax error ’r’ is missed abort operation
s/
}
)}
else
{/
4¢ test for semicolon to terminate
./
12 (sicp == 1\0?)
{ /¢ terminate ¢/

qry.nend++; /¢ increment the number of conjuncts o/
break;
}
3}

} /¢ read all conjuncts s/

} /* vead where o/

} /¢ read selact ¢/
} /# for end of buffer ¢/
}
** Procedure : QueryTransformation()
#* Purpose: Use the Structured Query Template to identify which relational
L4 algebra operation is required.
L0 Relational algebra operations are: Selection, projection,
L union, cartesian product, join, intersection, set difference.
¢ Parameters:
s stat_num - Statement number for prompt.
LA stmt_buf - Buffer that contains ths query to be identified.
L L stat_max - Max size of statement.
L2 qry = is the Structured Query Template.
e+ Returns: pointer to a character string
L4 trans_buf - pointer to transformed query.
. o/
char sQueryTransformation(stmt_num, stmt_buf, stmt_m¢x, trans_buf)
int stmt_num; /* current statement number o/
char stmt_buf(]; /* pointer to buffer for input statement ./
char trans_buf(]; /e pointer to buffer for transformed statement ¢/
int stmt_max; /* maximum size of input statement ./
{

int i, j;

char socp; /+ to output (trans_buf) Empty buffer 74

FILE sifileptr;

int relFlag;
int reli,rel2,rel3d,reld,rel5,rel6,rel7,rel8d, rel9,relio;

f®
s
L]

o/

Print the query typed by the user before transforming it to another
form printing the ansvers.

print2("Query: '¥Ys’\n", stmt_buf);

/e
[
1]
L L]
e

Open the file that contains the reliabilities of information sources
read the reliability of information sources and print to the users
the reliability of information sources. This is done for each query
typed in by vhe user.

194

s/
ifileptr = fopen(“options.rel”, “r");
fscanf(itileptr, "%d", RrelFlag);
feacanf(ifileptr,”¥%d, %d,%d ,%4,%d,Xd,%d,Xd,Xd,%d" ,&rell ,Arel2,Rrel3,Areld, Arel5,
8rel6,4rel7 ,&relB, &rel9,8xe110);

fclose(ifileptr);
i2 (relFleg 1= 0)
{ /e
os Reliability calculation is allowed
o/
ref1] » rell ¢ 0.01; ref2] = rel2 ¢ 0.01; rel3] = rel3 ¢ 0.01;
re[4) = reld ¢ 0.01; re(6] = rel5 ¢ 0.01; re[6] = rel6 ¢ 0.01;
re(7] » rel7 ¢ 0.01; rel8) = rel8 ¢ 0.01; ref9) = rel9 ¢ 0.01;
re[10] = rel10 ¢ 2.01;
printf("Information Sources Reliabilities:\n");
printf("P(S1) = Y6.4f, P(32) = %6.4f, P(S3) = %6.4f, P(84) = %6.4f, P(35) = %6.41,",
rel1], re[2], rei3], ref4], rels]);
printf("\n");
printf(“P(36) = %6.47, P(S7) ~ %6.47, P(88) = ¥6.4f, P(S9) = %6.4f, P(S10) = ¥8.4f.",
re[6], zel7], re[8], rel9], re(101);
printf("\n");
}

/e
oo Testing for selection: ’¢’ as an attribute value,
¢¢ one and only one extended relation, and zero or
*¢ more conjuncts in the selection condition.
o/
it ((qry.rattr == 1) 28

(qry.attr{0][C] == ’e?) AR

(qry.ntbls == 1) ¢

(qry.ncnd >= 0))

printf("The Query is a Selection...\n");
qry.qtype = 1; /e selaction type */

/e
o¢ Testing for Projection: Ono or more attribute(s), one table name
*¢ and no selection condition (no arguments for the ’'shere’).
o/
it ((qry.mattr >= 1) 4t
(qry.attr[0][0] != ’e?) a2
(qry.ntbls == 1) 22
{qry.acnd == 0))

qry.qtype = 2;

printf(“The Query is a Projection...\n");

/e

¢¢ Do the proper query transformation to include the

ss corresponding source vectors associated with the

¢¢ named attridutes. Replace the attribute names

oe with a ’e’ to retrieve all attributes.

./

ocp = trams_buf; /* point to bdeginning of trans_buf ./
for (ocp = trans_buf; *ocp &% (ocp - trans_buf < stmt_max); ocp++)

j=o0;
if ((socp++ == s1ct(1]) 82 (socp++ »= slct[2]) &R (socp++ == slct(3]) &
(socp+: == glct[4]) &k (vocp++ == slct[5]) &k (socp++ == glct[6]))

while (socp =» ' ?){eocp++;)

/e
oe iasert a '¢’ instead of the attribute names

195

of
Socpts = '),
/e
#s at this point we have the attribute names
o/
while (1)
/e
¢ replace attributes by a ’e?
*/
while (t(eocp == 2,1) aRk !(socp®=s *))
{/
se get attridbute after attribute
s/
socpte = 1),
} /+ while get attribute after attridutee/
it (eocp == 1 1)
{
Oocpﬁ;
break;
} /¢ means tinish inserting ’ ' instead of attributes ¢/
/s
#*¢ vhen you exit because of replace the comma by a space and
s¢ koep on replacing attributes by spaces
o/
.ncpﬂ =) 2.
shile (®ocp == * ?){socp++;}
} /¢ replace attributes by a e? s/
/s
*¢ vhen you exit fr.m here you keep reading until you expect another
os gelect statement. This is helpful when we have a UNIOER. In this
*s prototype we have the UBION is treated under selection.
o/
}
}
}

/e

s+ Testing for a Union: In this model the Union is exactly
s the sume as the union in the regular case. So to perform
s+ a Union the query is sent directly to INGRES and

#+ use the reliability calculation algorithms to find

¢¢ the reliability of answers to user’s queries.

s/

/e
s Testing for a Cartesian Product: Cartesian Product is
e¢ identified by having non zero numbers of attributes,
¢+ more than two extended relations (tables) and no
#s gelection condition (no arguments for the ’wvhere’.
s/
if ((qry.nattr == 1) &g

(qry.attr[0] (0] == re?) g&

(qry.ntbls >= 2) 2

(qry.ncnd == 0))

printf(“The Query is a Cartesian Product...\n");
N qry.qtyps = 4;

1

s Testing for a Join: Join is identified by having

*% non zero number of attributes,more than two extended
#¢ rolations (tables) and arguments for the 'whers’

196

o

¢s clause. Note that the ’where’ have EXACTLY one
s conjunct.
s/
12 ((qry.mattr >= 1) AR
(qry.attrf0] (0] != ’s’)aa
(qry.ntbls >= 2) &k
(qry.acnd != 0))

printf("The Query is a Join...\n");
qry.qtype = §5;

/s
»¢ Replacing attributes by ’¢’ to get all the source attributes
o¢ associated with the corresponding regular attribute values.

s/
ocp ® trans_buf; /* point to beginning of trans_buf
for (ocp = trans_buf; socp &R (ocp - trans_buf < stmt_max); ocp++)
{
}=0;

17 ((socp++ == glct[1])) &2 (socp++ == glct{2]) &k (eocp++ == glct[3]) &k
(sacp++ »= slct{4]) &R (socp++ == s1ct[5]) &R (eocp++ == glct[6]))
{
while (socp == * ") {socp++;} /* skip all spaces
/e
s insert a ’s’ instead of the attribute names
s/
socpes = o)
/e
o¢ at this point we have the attribute names
o/
shile (1)
{/
*¢ replace attributes by a ’»?
74
while (!(eocp »= 7,?) && 1(socp == ?))
{ /* get attribute after attribute »/
.ocp0+ = ? ';
} /¢ while get attribute after attributes/
it (eocp »= ?)
{

vsocpet;
break;
} /¢ means finish inserting ' ' instead of attributes ¢/
4
¢¢ ghen you exit because of a comma, replace the comma by a
s gpace and keep on replacing attributes by spaces
./
.ocpM -) l;
while (eocp == ' ?){ /e gkip spaces »/
socp++;)
}/* replace attributes by a ¢’ ¢/

}
}

/e

ee Testing for Intersection: Intersection is a special Join
#e¢ yhere the join attributes form a set that is equal to the
e gchemes of both extended relation given in the query.

./

Je

o Testing for Set Difference:
L]

197

./

/e

it (
(qry.ntbls == 2) &&
(qry.ncnd == 0))

printf("The Query is a Set Difference...\n");
qry.qtype = 7;

./
}

es Procedurs: ExtendedSelection();

#s Purpose: Reads a file and prints the heading,
[L attribute values, and the reliability
[1] of each attribute.

L4 return: Non

void ExtendedSelection()

{
typedef struct conjunct {
char opt [ATTWIDTH]; /® attribute
char opf3]; /* operation
char op2[ATIVWIDTH]; /% attribute
} con;

FILE sifileptr, sofileptr, srelfileptr;
int inchar, j, i, i1, k, 1, relFlag;
int numattr, regattr, srcattr;

char u[NAXSOURCES + 1] ; /* neutral source vector

char ui [MAXSOURCES + 1];

char v[NAXATTR][MAXSOURCES + 1]; /* the read source vector

char c{WIDTH); /® current read value

char h[MAXATTR][ATTUIDTH]; /* names of regular attributes

char r{NAXATTR][WIDTH]; /* attribute values

con F[MAXDIS] [MAXCOX] ; /* holds the selection condition
int pos[MAXATTR]; /* needed to keep temporarily flags
int pIMAXATTR]); /* needed to keep flags for all conjuncts
int simple; /* tlag

char opri[WIDTH]; /* First Operand for a conjunct
char opr2[WIDTH]; /¢ Second Operand for a conjunct

int satisfaction;
int opritype, opr2type;
float rel;

/e

¢ Initialixze the arrays of source vectors, attribtute names, and

*¢ attribute values.

s/

for (1 = 0; i <= MAXSOURCES + 1; i®+) {uli) ='\0’; v{41[0] = *\0’;u1[i] =’\0’;)}

for (1 = 0; 1 <= WIDTH ; i++) {c[i] ='\0?; opri[i] = *\O?; opr2[i] = *\0’;

for (i » 0; 4 <= MAXATIR ; i++) {h[1][0] =>\O*; r{11[0] = *\O’; pos{i) = 0; p[i) = 0;}

/e

¢s Initialize the two dimensional array that represents the selection
s¢ condition. Every row in this array is a conjunct.

./

for (i = 0; 1 <= MAXDIS ; i++)

{

198

o/
o/
»/

o/

o/
o/
o/
o/
o/
o/
o/
¢/
o/
o/

for (§ = 0; J <= FAXCOR; j++)
{

rLil[§].0pI0]) = '\O?;
i3] .opl1] = \O?;
rlil(§) .op[2] = '\O?;
PL11(5) .op[3] » \O*;
for (k = O; k <» ATTWIDTH; k++)
{
FI1103] .opi[x) = *\0’;
F1103] . op2(k] = "\0';
}
}
}
im0;j=0; k=0; i1 =0, 1=0;

relflag = 0;

satisfaction = 0;

eprityps * 0; /s by default the operand type is an integer ¢/
oprityps = 0; /v intecger by default ./

ifileptr » fopen('query.ans”, "r");
efileptr = fopen("query.rel", “u");

fecanf(ifileptr, “%d", &numattr); /* read number of attributes ./

fprintf(ofileptr, "{d\n*, numattr);
regattr » (numattr - 1)/ 2; /% Calculate the number of regular attritutes &/

inchar » getc(ifileptr); /¢ to skip the <cr> characters L 74
inchar = getc(ifileptr);

/e

®s print the regular attributes names only

./

=1

i =0;

printe("[¥d] *,§);

while (j <= regattr)

if (inchar = 1)
A[j-1][i++] = inchar;

else
{ /e
* increment j towards the number of regular attributes
¢/
jtei
h(§-21L4] = \0?;
fprintf Cofileptr, “¥%s°*, h[j~-2]);
peinte(*%e *, hj=-21);
i=0;
it (§ <= regattr) {printf(“ [%d] ",3);}
}
incher = getc(ifileptr);

/e .

®s Skip the name of source attributes by reading
*e until & '\m’ is reached.

./

shile ((inchar = getc(ifileptr) = \n?)) {;}
fprintf(ofileptr, "\n");

i wo;

I

199

#¢ Read the Structured Query Template and store the

¢¢ disjuncts into an array. The rows of this array

#¢ represent the disjunction of the seluction condition.
*¢ the columns of this array represent conjuncts.

#¢ where each conjunct is a simple formula (explained
o¢ in the thesis).

s/

i=0; /* runs over the attribute names, operatiors, and attribute values ¢/
j=0; /% Tuns over the number of disjuncts o/
k=0; /® runs over the number of conjuncts in one disjunct o/

while (qry.cnd[j1[1] != *\0*)
{ /¢ mhile not end of conjunct ¢/
while (1)
{
/®
% read the first attribute name, operations, and second
s+ attridbute name (the second operand might be a constant).
s/
1 = O; /¢ runs over the first operand ¢/
while (qry.cnd[j1[i) != * ?)
{ /e
ss ghile there is no space read and save attribute name
./
FL3I(x1.op1[1] = qry.cnd[jI[1i];
i+e;
14
}
FLj10x).opt[1] = *\0’;
/®

s+ gkip spaces
o/
while (qry.cnd[§I[i] == 2) {i++;}

/e

¢s Read the operations ¢, >, =, <=, >= i=,
./

1 = 0; /¢ runs over the opsration ¢/

while (qry.cnd[j1[i] '= * ?)

{

FLj1ik].op[1) = qry.cnd[jI1[1];
144
1++;

}
F{310x].op[1] = \0’;

/e

se Skip spaces.

*/

while (qry.cnd[j1[i] == ? ?) {i++;)

/e
** Read second operand that could be an attribute or a
#s a constant.
./
1= 0;
while ((qry.cnd[jI[1] != * ?) &k (qry.cnd[j1[i] = \0O?))
{ /+ while theres is no space read save attribute name ¢/
F[3)(x].op2[1] = qry.cnd[§1[1];
i+e;
144;

}
F[310x1.0p2(1] = *\0?;

200

if (qry.cnd[§I[i] == ’\0’) {break;})

/e

s Skip spaces

./

while (qry.cnd[31(i] == * *) {ie+;}

/e
®e At this point we expect to continue reading the conjuact or we expect
%e to read ’\0’ which means that the conjunct is terminated. In case
s there are more attributes and operators to read in the same
¢¢ conjunct we will loop again until a ?)’ is read.
./
it (qry.cnd[jJ1[1] == *\0?)
{ /% read another conjunct expect to read an ’or’ or a ';’s/
Ao d
break;
}
else
{
/*
s Skip the 'and’ logical operator and prepare another
s storage for a new conjunct.
s/
1= 443;
/e
»» Skip spaces
e/
while (qry.cnd[j1[1] == * *) {i++;)
k++;
continue;
}
}
Jj*+; /% get another conjunct ¢/
i = 0; /* set the beginning of the conjunct »/
k= 0;
}

/e
¢¢ print the regular attribute values and
¢+ perform the reliability calculation for
s the whole tuple.
o/
inchar = getc(ifileptr);
while (inchar != EOF)
{ /* not EOF ¢/
while (inchar != '\n’)
{ /e "\n* o/
/e
eo clear the array that contains the attribute values
./
J=1;
i=0;
while (j <= mumattr)
{ /e
es gsave regular attribute values and their
¢ corresponding source vectors
¢/
if (inchar = ’-?)

{
£03-11[i++] = inchar;
)

olse

201

{1/

o/

J+

rl

increment j towards the number of regular attributes

§-21[4] = "\o’;

i=0;

}

inchar = getc(ifileptr);
} /¢ print regular attribute values s/

/e

s+ Given h[J[], the array of regular attribute names,

s r[101

s the array of attribute values with the corresponding

*¢ gource vectors, and the F[1[], the array that represents

os the s

election condition (disjunctive normal form), we want

*s to calculate the source vector associated with each tuple.

L 74
j=0;
k =0;
while

{/
22 Re
s¢ in
*s by
*s be
9 an
*® Cco

»/

€ ($(FLJI[X].op1(0] == 2\0’) &&
1(F[31[x).op[0] == *\O*) &a
'(FL31[x].op2[0] == °\0?)) || (qry.ncnd s= 0))

ad one conjunct at a time and test if the tuple stored

r(1[] satisfy any conjunct. For every conjunct satisfied

a tuple in r{][] perform the appropriate conjunction operation
teeen the source vector associated with the tuple in r(1[]

d the source vectors associated with the attributes found in the
njunct satisfied by the tuple rfl{)

i=0;
k= 0;
while ((!'(F(j1[x].op1[0] == '\0’) &

1(FL3]1(k].op[0] == *\0*) &k

1(F[jI1[x).op2[0] == °\0’) > || (qry.ncnd == Q))
{
/e
*¢ read every simple condition in a given conjunct and test if
#s it i{s satisfied by the tuple in r(1{]. If the simple conditioen
#s is not satisfied by the tuple, then there is no need to continue
s testing other simple conditions.
o/
i=0;
while (!(h[i][0] == "\0"))
{
it ('(EqualStrings(h{i], F[j1(x].o0p1)))
{ /e
¢¢ the first operand in the selection condition is equal to
*s one of the attribute names in the array h[J[]. Save the
#s position of that attribute in the array pos(].
s
o/
pos[i] = 1;
}
i
}
/e
*¢ Consider the second operand in the current conjunct. Search
o¢ in h[J[] end try to find a match. If a match was not found
o+ in h(1[], then the second operand is a constant. If a match
¢¢ was Tound, then the second operand is an attribute and in this
ss case set the appropriate flag pointer in pos{].
s/

202

i=0;
while ¢ t(h[i]J[0] == *\0’))
{

it (1 (BqualStrings(h(il, FLJ1[x]).0p2)))

{
/¢ printf("%s = %s 7 %s \n", h{i], r[i], FL3I[K]).op2); o/

pos[i) = 1;
simple = 1; /¢ case when there are two attributes in a conjunct ¢/

i+e;
}
/e
o Based on the ’simple’ flag we will test if the conjunct is
¢¢ satisfied by the tuple in r[J[]. In both cases read the attribute
*s value of the first operand.
¢4 Got the attribute value to opri[] after initializing it.
s/
i=0;
while (1(n([1][0] == 2\0'))
{

it (pos{i] == 1)
{

/e
s gsave the attribute type
./
opritype = t[il;
1=0;
while (!(r[i][1] == *\0*))
{
opri1] = r[i101);
144;

}

opri[l] = ’°\0o’;
i+e;

break;

i++;

}

if (simple == %)

¢ /¢ printf("simple = ¥d " ,simple);*/
f: get the attribute value for the second opsrand
:1':11. (t(h[i1[0] == '\0))
¢ :f (pos[i] == 1)

l=0;
while (t(r[1][1] == >\0"))
{

opr2[1} = r[il[1];
) S H

}
opr21} = "\0?;
)
i+
)
}

else

{1/

*¢ the second operand is a constant and should be read from
os F[J1Ix).opl] and stored in opr2[]}

203

o/

i=0;

while € 1(F[jI1(k].op2[i]l == *\0’))
{

opr2[i] = F[JI1[k].op2[1];
144

}
opr2[i] = N\0';
}

/e
#s read the operation and perform the appropriate test

»/

/¢
»+ Testing ’C’
s/
it ((FL33[x]).op[0] == *¢*) && (F[j1(k].op[1] t= *m>2))
{ /o Test if operation is <’ »/
it (Copritype == 1))
{ /* bagin if opritype o/
for (1 = 0; (opri[i) »= opr2{il) && (oprili] ¢= *\0?) && (opr2[i] = "\0'); i++);
if C Copri[i]l == 1\0) && Copr2(i] == 1\0?))}
{ /* no chance to have one less than the other e/
satisfaction = O;
}
else
{ /¢ test if less by subtracting one from the other ¢/
if Copri[i] -~ opr2[il < 0)
{ /* then opri[] is less than opr2{[] ¢/
satisfaction = {;
}

else

{

}
}
} /* end if opritype ¢/
else
{
it (str2flt(opri) < str2fle(opr2)))
/% operand 1 and operand 2 are equal ¢/
satisfaction = 1;
else
satisfaction = 0;
}

} /o end test <’ o/

satisfaction = 0;

/e
*¢ Testing >’
o/
it ((PL3)Ix1.oplo] ==) &e (F{j1Ix].op[1] I=» *=>))
{ /¢ Test if operation is >? =/
it (Copritype == 1))
{ /+ baegin if oprityps ¢/
I
#¢ compare the two operands opril] and opr2[] to see it
o¢ tuple r(J{] satisfy the cperation.
o/
for(i = 0; (opr1[i] == opr2[i]) && C(opri[i] != *\0') &k Copr2[i] t= ’\0’); ies);
it C (opri[i] == 1\0?) && (opr2[i] == 1\0?))
{ /* no chance to have one greater tihan the other ¢/
satisfaction = O;

}

204

olse
{ /¢ test if greater by subtracting one from the other s/
it (opri[i] - opr2lil > 0)
{ /» then opri{i] > opr2[i] and satisfaction is 1 (true) o/
satisfaction= 1;
}
else
{
satisfaction = O;
}
)
}
olae
{
it ((str2f1t(opri) > str2flit(opr2)))
/¢ operand § and operand 2 are equal s/
satisfaction = 1;
else
satisfaction = 0;
} /o end if opritype »/
}

/o

os Testing '=’

.
it (P[j1{k].op[0] == *=?)
{

if ((opritype == 1))
{ /» begin i opritype »/
for(i = 0; (opri[i] == opr2[i]) 2% (opri1{i] != *\0’) &t (opr2[i] t= '\0?); i++);
it ((opri[i] == *\0?) &k (opr2[i] == *\0?))
satisfaction = §;
alse
satisfaction = 0;
}

elne
{
it (t(str2flt(opr1) = str2flt(opr2)))
/% operand 1 and operand 2 are equal &/
satisfaction = §;
else
satisfaction = O;
} /e end if opritype =/
}

/e
*s Testing '¢<=?
*/
it ((F{§1I[x]).op[0] == 2<?) ak (FL[j1(k]).op[1] == ’'=?))
{ /¢ Test if operation is <’ ¢/
if ((opritype == 1))
{ /+ begin if opritype s/
for (1 = 0; (opri[i] == opr2[i]) &k fopri[i] != '\0’) && (opr2[{i] t= *\0?); i++);
it ((opri[i) == '\0?))
{ /% they are equal o/
satisfaction = 1;
}
eolse
{ /* test if opri[i] is less opr2[il by subtracting one from the other ¢/
if (Copri(il - opr2{i] <=0))
{ /¢ then oprill] is less than opr2[] ¢/
satisfaction = 1;
}

olse

205

{
setisfaction= O;
}
)}
}
else
{
it ((str2flt(opri) <= str2flt(opr2)))
/® operand 1 and operand 2 are equal s/
satisfaction = {;
else
satisfaction = 0;
} /e end if opritype is txue ¢/
} /® end test <’ »/

/*
*¢ Testing "=’
s/
it ((F[j1x).op[0] == *>*) a& (FLj1(k].op[1] == 1=?))
{ /% Test if operation is ’>’ o/
it ((opritype == 1))
{ /% begin if opritype »/
for (i = 0; Copri(i] == opr2[i]) a2 (oprifi] != '\0') && (opr2[i] I= ’\0’); i++);
it ((opr2(i] == '\0’))
{ /* they are aqual »/
satisfactior = 1;
}
else
{ /* test if opri[i] is less opr2[i] by subtracting one from the other o/
it (Coprt(i] - opr2{il »= 0))
{ /* then opri[] is less than opr2{] #/
satisfaction = 1;
}
else

{

}
}
}
else
{
it ((str2flt(opri) >= str2flt(opr2)))
/% operand 1 and operand 2 are equal */
satisfaction = 1;
alae
satisfaction = 0;
} /* end test opritype o/
} /¢ ond test ’°<? o/

satisfaction = 0;

/e
¢¢ Testing i=’
o/
if ((F[j1[x).op[O] == *t7) as (F[j1(k].op[1] a= ’m?))
{ /* Test if operation is *>’ o/
if ((opritype == 1))
{ /* begin if opritype »/
for (i = 0; (opri[i] == opr2[i]) 22 (opri[i] != '\0?) && (opr2[i] t= *\0?); i++);
if ((opri[i] == '\0’) &k (opr2[i] == ’\0’))
{ /# they are equal »/
satisfaction = 0;
}
else
{ /¢ test if opri(i] is less opr2(i] by subtracting one from the other ¢/
if ((opri[i] - opr2{i) 1= 0))

206

{ /¢ then opri[] is less than opr2[] ¢/
satisfaction = §;

}
vilse
¢

| satisfaction = O;

|)

| }

|)

‘ else

| {

|

|

if ¢ (etr2flt(opr1) != str2flt(opr2)))
/% operand 1 and operand 2 are equal ¢/
satisfaction = 1;
else
satisfaction = O;
}/¢ end test opritype ¢/
} /¢ end test <’ o/
if (qry.ncnd == 0) {break;}
ke
for (1 = 0 ; i < RAXATTR ; i#+)
{
it (p[i] == 0)
{ /¢ this prevents overwriting the ’1’ values of p[] ¢/
p[i] = pos(id; /¢ array that kesps track of all attributes
‘ read in one conjunct s/
|
|
|

pos[i] = 0; /¢ temporary array to keep f'lags s/

} /¢ tinish reading conjuncts ¢/
/e
*s At this point we have the tuple stored in the array r{if].
s He need to calculate the source vector associated with the
#s tuple in the answer to t he query. We calculate the source
#¢ by taking the conjunction between the source vectors associated
*¢ with the attribute values that satisfy one of the conjuncts
s from the array F[1[].
o/
it ((satisfaction == 1))
{ /e

| ®¢ then the tuple satisfies the selection condition

*e that we stored in F[J[]. Based on that we will

#e calculate the conjunction of those source vectors

es Initialize the source vector ul}

./

for (i = 0; 1 < RAXSOURCES + 1; i++) { uli] = ’\0o*;}

for (i = 0; 1 < numattr; i++)
{ /¢ for begins ¢/

it (p[1] == 1)

{

Conjunction(u, rlitregattrs1], u);

)}
} /o for ends ¢/
Conjuaction(u, rlregattrl, u);
/e
es We now can display the values of the regular attributes
s and the source vectors associated with those attribute
¢s values.
o/
printf(“\n");
for (1 = 0;: 1 < regattr; i++)
(/e

#¢ print regular attributes

207

s/
print£("[¥%d] %s ", i+1, r[i]);
tprintf(ofileptr, "Ys°", rlil);

}
printf£("[Xd] Xs **, i+, u);
fprintf(ofileptr, "Ys°", u);

/e
s¢ Print the source vectors associated with ths corresponding
*¢ attribute value
*/
for (i = 0; { < MAXSOURCES + 1; i+) { ui[i] = \0o’;}
for (i = regattr + 1; i < numattr; i++)
{ /e
#¢ print regular attributes
./
Conjunction(u, r[il, u1);
printf("[¥%d] s ", i+, ul);
fprintf(ofileptr, "¥s"", ul);
for (i1 = O; it < MAXSOURCES + 1; 11++) { uifi1] = '\0’;}
}
fprintf(ofileptr, "\n");
}
/e
s If the selection condition has zero attridbutes, then save
¢+ the tuples in a file and call the Reliadbility Calculation
*¢ procedure to sort the data, eliminate duplications, and
#¢ calculate the reliability of tuples.
o/
it (qry.ncnd == Q)
{

/e
s¢ read the attribute values from the array r[]
#¢ and print the attribute values as well as the
¢¢ the source vectors associated with those attributes.
¢/
printf("\n");
for (i = 0; i < numattr; i++)
{ /e
#* print regular attributes
+/
print2("[%d]} ¥Xs ", i+1, r[i]);
fprintf(ofileptr, "%o°", rlil);
}
fprintf(otileptr, "\n");
break;
}
b d
k=0;
for (i =0 ;i <MAXATIR ; i++) { p[i] = 0;)
} /¢ finish reading disjuncts o/
/e
»¢ Initialize the source vector again
*/
i=0;
while (u[i] != \0?) {u[i++] = \0’;)}

inchar = getc(ifiluptr);
} /¢ end EOF o/
priatf("“\n");
fclose(ifileptr);
fclose(ofileptr);
ifileptr = fopen("options.rel™, “r");
facant(ifileptr, "%d", &relFlag); /¢ read relFlag ¢/

208

fclose(itileptr);

it (rel¥lag 1= 0)

{ /e
oo Reliability calculation is allowed
./
RelCalculation();

}

}

/e
es Procedurs: ExtendedProjection();
¢ Purpose: Reads a file and prints the heading,

L4 attribute values, and the reliability

[1] of each attribute.
L L] return: Non
oo o/
void ExtendedProjection()
{

FPILE ¢iffileptr, sofileptr;

int dimcher, j, 1, k, relFlag;

int awmattr, regattr, srcattr;

char u[NAXSOURCES + 1]; /* neutral source vector ./
char v[NAXSOURCES + 1]; /% the read scurce vector ./
char a[NAXATTR][ATTWIDTH]; % names of regular attributes s/
int pos(MAXATTR]; /* array of flags indicating that attributes a[i] are needed ¢/
char cIATTWIDTH]; /% contains the attribute value read ./

float rel;

Fi)

o¢ Initialize the arrays of source vectors

»/

for (i = 0; 1 <= MAXSOURCES + 1; i++) {uli) ='\0’; v[i] = "\0’;}
im0; j=o;

/e

®¢ get all positions to xero and then shenever you find out that the
o® attributes in the structures query template are fovud among the
#o attributes rexd in the array a[l[], set the corresponding position
®s to one. This is needed to manipulate the source vectors later.

o/

for (i = 0; i <= RAXATIR; i++) {pos{i] = 0;}

ifileptr = fopen(“query.ans”, “r*);
ofileptr = fopen(“query.rel”, “w");

facanf(ifileptr, "Xd", &numattr); /* read number of attributes ./
fprintf(ofileptr, "Yd\n", (qry.nattr ¢ 2) ¢ 1);
regattr = (nwmattr -~ 1)/ 2; /* Calculate the number of regular attributes ¢/
inchar = getc(ifileptr); /* to skip the <crd characters ./
inchar = getc(ifileptr);
/e
¢¢ print the regular attributes names that were typed in by the user
o¢ when entering the query. The attribute names are found in the Structured
¢¢ Query Template.
./
j=1;1=0;
while (§ <= regattr)
{
if (inchar = 1)
{ /e

®¢ £il1 an array that represents the regular scheme of qry.tbls(]

./

af§=1]{i++] » inchar;

209

)}
else
{ /e
s+ gsave the attribute name
./
alj-11(1] = "\o’;
i=0;
joes /® increment j towards the number of regular attributes e/
}
inchar = getc(ifileptr);

alj-11{0] = \o*;
L

¢¢ gxit from the previous loop with a[]l[] filled
s¢ with attridbute names of the extended relation
o+ used for projection.

*/

printf(“\n");

/e
s+ Given the array a[](] of all regular attributes
¢+ read the Structured Query Template and select the
es appropriate attributes needed from the array all1(].
s/
j=0;
k=0;
shile (j < gry.nattr)
{

i=0;

while (a[i][0] t= '\O’)

{ /% compare and set positions ¢/

if ('(EqualStrings(qry.attr(jl, ali1)))

{/+
#¢ the needed attribute is found save its position
./
pos[i] = &; /» tlag indicating that qry.attr{j] = a[i] is needed ¢/

printf("[¥.) %s », i+1, afi]);

fprintf(ofileptr, “%s~", alil);

/e

¢+ whenever an attribute name is needed, assume that the
¢s the attribute names are unique.

./
144}
break; /* and do not look for other attribute names s/
}
144,
} /* compare and set positions ¢/
Ao g
}
/¢ printf(“\n"); o/
/e

s¢ Skip the name of source attributes by reading
*s until a '\n’ is reached.

s/

shile ((inchar = getc(ifileptr) != *\n*)) {;}

fprintf(ofileptr, \n"); /¢ skip a line to print attribate values. o/
printf(“\n"); /% skip a line on the screen o/
inchar = getc(ifileptr); /¢ skip the ’\n’ o/
/e

s¢ print the regular attribute values and
os perfor: the reliability calculation for
e¢ the shole tuple.

210

o/
while (inchar {= EOF)
{ /+ not EOF ¢/
while (iachar != "\n?)
{ /e '\n* o/
=1
{=0;
cli] = '\o’;
i=0;
shile (§ <= regattr)
{/
¢+ priat regular attribute values corresponding to
os to the attributes typed in by the user. Th: attributes
¢ typed in by the user are found in the Structured Query
o Template.
o/
if (inchar = *"?)
{ /¢ print the characters ¢/
c(1) = inchar;
ite;
}
else
{/
#¢ if position of i in array pos[] is 1 then this attribute
¢ value is needed to be printed. Print it and increment
#¢ to read another attridbute value.
s/
it (pos[j-1) == 1)
{
cli] = "\or;
printf("[Xd] %z ",j, ¢);
fprintf(ofileptr, “%s~", ¢);
}
i=0;
jres /* increment j towards the number of regular attributes s/
}
inchar = getc(ifileptr);
} /o print regular attribute valss ¢/
/e
®¢ Read the source vectors for every tuple
#¢ Do the source vector conjunction for all
#¢ gource vectors wvhose attribute names are
s¢ needed by the user (Projection). To know
¢+ these sources we will use the pos[] array
*s with a displacement to get the sources.
»/
=1
i=0;
srcattr » numattr - regattr;
while (j <= srcattr)
{ /* start reading source vectors ¢/
if (inchar s ??)
{ /¢ print the characters
putc{inchar, ofileptr);e/
/e
4¢ store the source vector bit by bit, then increment i
*/
vii++] = inchar;
/* putchar(v[i++));e/
}
alse
{

h Lol /¢ increment j towards the number of regular attributes ¢/

/e

211

*¢ Call the conjunction procedure passing ull, and v[]
o* the answer should be returned in u[]

s/
if ((§ >= 3) ok (poslj-3]) == 1) || (j == 2))
{7/
¢¢ the source vactor is needed based on pos[j-2]
o/

Conjunction(u, v, u);
fprintf(ofileptr, "%s°", v);
printf("Xs ", v);
}
for (i = O; i <= NAXSOURCES + 1; i++) {v[i] = ’\0';}
i = 0; /¢ prepare for the second source vector */
}
inchar = getc(ifileptr);
} /¢ end reading source vectors ¢/
} /¢ \n’ o/
printe(® “);

/e

*# print the source vector that show the
¢s contributing source vactors to the whole tuple
./

putchar(’\n’);

putc(’\n?, ofileptr);

inchar = getc{ifileptr);

/e

es Initialize the source vector again
./

i=0;

while (uli) != '\0’) {uli++) = "\0*;)
} /¢ not EOF o/
fclose(ifilepts);
fclose(ofileptr);

relFlag = 0;

ifileptr = fopen("options.rel”, "r");

fscanf(ifileptr, “%d", &relFlag); /+ read relFlag o/

fclose(ifileptr);

it (relFlag !=0)

{, /* Reliability calculation is allowed ¢/
RelCalculation();

}

¥

s¢ Procedure: ExtendedUnion();

es Purpose: Reads a file and prints the heading,
[14 attridbute values, and the reliability
L L of each attribute.

L] return: Non

Py

void ExtendedUnion()

{
/e
*s Not Separately implemented. Union is treated is selection.
./

}

212

s Procedure: ExtendadProduct();

®¢ Purpose: Reads a file and prints the heading,

L1 attribute values, and the reliability

LA of each attribute.

L1 retura: Jon

. s/
void ExtemdedProduct()

{
/e
¢ Open the query.ans file name and read in the result of the query

®s typed by the user. isclate the values for regular attributes

®¢ and source if each relation. r{][] is the array that reapresents
o¢ the firat extended relation and s[1{] is the array that reprasents

¢¢ the sscond extended relation.

./

FILE sifileptr, ®sofileptr; /% pointers to input and output files ./
int inchar, §, 4, k, relFlag;

iat awmattr, regattr, srcattr;

char w[MAXSOURCES + 1]; /¢ neutral source vector */
char v[NAXSOURCES + 1]; /¢ the read source vector */
char a(FAXATTR) [ATTWIDTH) ; /% names of regular attributes ./
int pos{MAXATTR]; /¢ array of flags indicating that attridutes a[il are needed ¢/
chor c[ATTWIDTH] ; /¢ contains the attribute value read temporarily ./

char riERGUS] [¥IDTH]);
char s{BRONS] INIDTH];
char h[BRONS]VIDTH]);

int hiterc,numsrcvec;
int srcettri, regattri, nattribi;
int srcattr2, regattr2, nattrid2;

float rel;
relFlag = O;

rel = O; k = O; numattr = O; regattr = 0; srcattr = O;

hitsrc = O; numsrcvec = 0;

srcattri & 0; regattrt » 0; nattribl = 0;
srcattr2 = O; regattr2 = 0; nattrib2 = O;

r L]

es Initislize the arrays of source vectors to have null values

o/

for (i = 0; i <= MAXSQURCES + 1; i++) {u[i] =>\0’; v[i] = '\0?;}

iw0; j=o0;
/e

¢¢ set all positions to zerc and then vhenever you find out that the
*¢ attributes in the structures query template are found among the

*s attributes read in the array all[], set the corresponding position
#¢ to one. This is needed to manipulate the source vectors later.

U

for (1 = 0; i <= NAXATTR; i++) {pos[i] = 0;)}

/e

¢¢ Initialize the arrays that should contain the tuples and sources

./

for (i = 0; 1 <= EROVS; i++)

{
r[ERONS]I[0] = *\0’;
s[(FROUS][0] = *\0’;
ai{ERONS] [0] = *\0’;

}

/e

o+ Open files of input/output

213

»/
ifileptr = fopen(‘’query.ans”, "r");
ofileptr = fopen(‘'query.rel”, "v");

/e
#¢ got the number of columns in the answer to the query
»/
fscanf(ifileptr, *%d", Snumattr); /¢ read numder of attributes o/
inchar = getc(ifileptr); /* skip the ’\n’ character o/
/e
#* read the attridbute names until the end of line
s/
j=o0;
i=0;
inchar = getc(ifileptr);
while (j < pumattr)
{
if (inchar t= »=)
{

h[j1{i++]) = inchar;
}

else

h[jI[1] = *\o¥;
i=0;
I+ /#* increment j towards the number of regular attributes »/
}
inchar = getc(ifileptr);

/e

¢s Now, it is the time to read the attribute values and the source vactors

¢s to ONE array r[](]. During the reading process we will gather information

¢ about the number of attributes of the first extended relation and the

s+ gecond extended relation.

./

j=0;

i=o0;

inchar = getc(ifileptr); /¢ skip ’\n’ charscter o/
while (j < numattr)

if (inchar = *-?)
{
r[jI{i++] = inchar;
if (inchar == 0" || inchar == ’1? || inchar == *=?)
{
hitsrc++;
}
}
else
{
regattrits;
r{j1[4i] = *\o?;
if (hitsrc == NAXSOQURCES)
{
regattri--;
hitsrc = O;
i=0;
h Ao
break;
)}
hitsrc = Q;
i=0;
J++; /* increment j towards the number of regular attributes ¢/

214

}
inchar = getc(ifileptr);

}

/e

o¢ hen break is executed we have to read till the end of the
#»¢ tuple. The values for regular attributes of the first extended
s¢ relation and the source vector associated with the tuple are

#¢ read and stored in r[J[]. Read the rest.
o/

inchar = getc(ifileptr); /¢ skip '\n’ character s/

while (j < numattr)
{
if (inchar =)
{
r[§1(i++] = inchar;

else

r[3204] = *\O?;
i=0;

}
inchar = getc(ifileptr);

jees /¢ increment j towards the number of regular attributes s/

/e

es At this point we have the number of regular attributes of the first

s extended relation and the number of source attributes of the first

os extendad relation too. We will calculate the number of regular attributes
s and the number of source attributes of second relation.

o/

srcattrl = regattri ¢ 1;
nattribi = regattri ¢ srcattri;
nattrid2 = numattr - nattridi;
regattr2 = (nattridb2 - 1) / 2;
srcattr2 = regattr2 + 1;

/e

¢4 gave the number of attridbutes and the attribute names

o/

fprintf (ofileptr, "%Xd\n", nattribi + nattrid2 - 1);

/e

¢¢ print the attribute names in the file

./

for (i = 1; 1 <= regattrl; i4++)

{
fprintf(ofileptr, “%s~", hli-1]);
printe("[Xd] %s , i, K[i-1]);

}

for (i = nattribl; i < nattribt + regattr2; i++)
{

fprintf(ofileptr, “%s"", h{iD);
printf£("[%d] %s ", 1 - srcattri + 1, h{i));

tprintf(ofileptr, "\n");
printf(“\n");

while (inchar != EOF)

{

/e

215

¢+ print the tuple and the source vectors
o/
for (i = 1; 1 <= regattrl; i++)
{
printe("{¥Xd] %s *, &, r(i-1]);
fprintf(ofileptr, "Xs~", rli-1]);
}

for (i = nattribl; i < nattribl + regattr2; ies+)

printf(*[Xd] Xs *, i - srcattri + 1, r[il);
fprintf(ofileptr, "is~", r[il);
}

/e

¢+ Perform the conjunction between the source vectors associated with
s+ the tuples in each extended relation. The answer will be in ufl.
./

Conjunction(r(regattri], rinattribi+regattr2], u);

printf("¥s ", u);

fprintf(ofileptr, "Ys"%, u);

/e

s Print source vectors associated with the attribute values of
*s the first extended relation.

./

for (i = regattrt + 1; i <= nattribi - 1; i++)

Conjunction(u, rfi], v);

printe (s *, v);

fprintf(ofileptr, “¥%s"", v);
}

/e
s+ Print source vectors associated with the attribute values of
% the second extended relation.
s/
for (i = nattribl + regattr2 + 1; i <= nattribl + nattrid2 - 1; i++)
{
Conjunction(u, r[il, v);
printf(“%s ", v);
fprintf(ofileptr, "Ys~", v);

/s

*+ read another tuple from the file

o/

=0

i=90;

inchar = getc(itileptr); /o skip ’\n’ character ¢/
while (j < numattr)

{
it (inchar (= *=?)
{
r[j1[1++] = inchar;
}
else
{
r{j1{i] = 2\o*;
i=0;
h Lo /* increment j towards the number of regular attributes ¢/
inchar = getc(ifileptr);
}
i=0;

216

im=0;

fprintf (ofileptr, "“\n");

printe(*\n");
} /e xead, manipulate, and print tuples s/

fclose(ifileptr);
fclose(ofileptr);

/e

¢¢ Open "options.rel” file and read the relFlag.

#¢ if the relFlag = 1, then calculate the reliability
¢ of anavers to users queries.

./

relFlag = 0;

itileptr = fopen(‘‘options.rel”, "r");
facanf(ifileptr, “%4", ArelFlag); /¢ read relFlag ¢/

fclose(ifileptr);

it (relflag != 0)

(/e
#s Reliability calculation is allowed
*/
RelCalculation();

}

}

/e

*¢ Procedure: Extendedloin();
*¢ Purpose: Reads a file and prints the heading,

L L] attribute values, and the reliability
.o of each attribute.
*» return: Non
L L ./
void ExtendedJoin()
{
/e
8¢ Open the query.ans file name and read in the result of the query
¢¢ typed by the user. isolate the values for regular attributes
*o and source attributes of each relation. r[][]) is the array that represents
os the first extended relation and s(][] is the array that represents
¢ the second extended relation.
o/
FILE sifileptr, sofilaptr; /* pointers to input and output files */
int inchar, j, i, Kk, relFlag, equalFlag;
int numattr, regattr, srcattr, numattrinx;
char u[RAXSOURCES + 1); /* neutral source vector ./
¢har v[RAXSOURCES + 1); /% the read source vector o/
char a{MAXATTRI[ATTNIDTH]; /* names of regular attributes s/
int pos(MAXATTR]; /% array of flags indicating that attributes ali] are needed s/
char c[ATTVIDTH); /* contains the attribute value read temporarily ¢/
char x[MAXATTR] [ATTWIDTH] ; /* is the set of common attributes */
char r{3R0¥S] (WIDTH];
char s[WROWS] [WIDTH];
char h{EROWS] (WIDTH]; /* array for the heading names s/

int hitsrc, numsrcvec;
int srcattri, regattri, nattridi;
int ercattr2, regattr2, nattrid2;

float rel;
equalFlag = O;
Aumattriax = 0;
relFleg = 0;

217

rel = 0; k = 0; nusattr = 0; regattr = 0; sxrcattr = 0;
hitsrc = O0; numsrcvec = O;

srcattrl = 0; regatirl = 0; nattribi = 0;

srcattr2 = O; regattr2 = 0; nattrib2 = 0;

/e

#¢ Initialize the arrays of source vectors to have null values
./

for (i = 0; 4 <= RAXSOURCES + 1; i++) {u[i] ='\0’; v[i) = »\0*;}
i=0; j=0;

/e

o set all positions to zero and then whenever you find out that the
s¢ attributes in the structured query template are found among the

»s attributes read in the array a[J[], set the corresponding position
#s to one. This is needed to manipulate the source vectors later.

./

for (1 = 0; i <= MAXATTR; i++) {pos[i) = 0; x[i)[0] = *\0?;}

/e
¢¢ Initialize the arrays that should contain the tuples and sources
./
for (i = 0; i <= FRONS; i++)
{
r[WROWS] [0] = *\o0’;
s[3ROWS] [0] = *\O’;
hsRows] [0] = *\0’;
}

YLl

ee Qpen files for input/output

s/

ifileptr = fopen(”query.ans”, "r'");
ofileptr = fopen("query.rel”, "u");

/e

s+ get number of columns in the answer to the query

./

fscanf(ifileptr, "%d", &numattr); /¢ read number of attributes »/
inchar = getc(ifileptr); /¢ skip the '\n’ character s/

/e

#¢ Find the set of joining attributes

s/

k =0;

i=0;

while (1)

{ /+ Finding the set of joining attributes ¢/
/e
¢ Since the extended Join requires common attributes. We will read the
s+ common attributes from the Structured Query Template and isolate the
s¢ attributes that form the Join. Read until an equal sign is raached.
o/
vhile ((qry.cnd[0][i] != '=?) g& (qry.cnd[0][i] != '\0?)){i++;}
if (qry.cnd[0)[i++] == ’\0’){break;}

/e

e¢ Yhen an equal sign is reached, read until a dot ’.’ is reached
./

while (qry.cnd[0][i++] != 7. 2){;}

/e

es At this point, the first chatecter of the attribute needed is found
e¢ right after the dot '.’ found. Read the atiribute and store its name

218

es in an array for future use. The attribute name will end as soon as

¢e a space is reached.
o/
j=0;

while ((qry.cnd[0}[i] t= * ?) &g (qry.cad[0][i] != °\0?))

{1/
e¢ save the attribute name in x[1[]
»/
x{k]1{j] » qry.cnda[0][i);
iee;
Joes
)}
aumattrinx++;

x{k][j] = '\0o*;
/*

#¢ Read until an ’'=' is reached or an ’'\0’ is reached.

9 if an end of line is reached there are no more attributes
®e to abstract. If an ‘=’ is reachsd loop again to abstract
#¢ another attribute and store it in x[1(3.

o/

| 3o

printf("set of common attributes: <¥s>\n", x[k-1]);
} /¢ end finding the set of common attributes */

/e

s¢ read the attribute names from the file pointed to by ifileptr

#¢ until the end of line is reached.
./

j=o0;

i=0;

inchar = getc(ifileptr);

while (j < numattr)

{
if (inchar != ’"?)
{
h[j1{i++] = inchar;
eloe
{
hj101] = *\o’;
i=0;
h A ad
}
inchar = getc(ifileptr);
}
/e

/* increment j touards the number of regular attributes s/

¢s Bow, it is the time to read attribute values and the source vectors
*¢ to OBE srray r[)[]. During the reading process we will gather information
¢ about the number of attributes of the first extended relation and the

¢ gecond extended relation.
o/

J=0;

i=0;

inchar = getc(ifileptr); /¢ skip ’\n’ character o/

while (j < numattr)
{
i? (inchar = ')
{
r[§1[i++] = inchar;

if (inchar == 0’ || inchar == 11’ || inchar == '=?)

{

hitsrcee;

219

}
}
else
{
regattrivt;
r[3104] = \O’;
it (hitsrc == NAXSOURCES)
{
regattri--;
hitsrc = 0;
i=0;
e+
break;
}
hitsrc = 0;
i=0;

g+ /¢ increment j towards the number of regular attributes ¢/

inchar = getc(ifileptr);

/e

¢ When break is executed we have to read till tho end of the
¢e¢ tuple. The values for regular attributes of the first extended
#s relation and the source vector associated with the tuple are

os read and stored in r{][]. Read the rest.
./
inchar = gotc(ifileptr); /¢ skip ’\n’ character ¢/
while (j < numattr)
{
if (inchar != 77?)
{ /% print the characters
putc(inchar, ofileptr);
putchar(inchar);»/
r[j1[i#++] = inchar;
}
else
{
r[31[4] = \0*;
i=0;

J++; /* increment j towards the number of regular attributes ¢/

inchar » getc(ifileptr);
}

/®

ss At this point ve have the number of regular attributes of the first

os goxtended relation and the number of source attributes of the first

os extended relation too. We will calculate the number of regular attributes
¢+ and the number of source attributes of second relation.

./

srcattrl = regattri ¢ 1; /e
nattribl = regattri + srcattri; TAd
nattrib2 = numattr - nattridbi; /e
regattr2 = (nattrib2 - 1) / 2; /e
srcattr2 = regattr2 + i; /e
/e

source attributes in ist relation
attributes in first relation
attributes of second relation
regular attributes in second relation
source attributes in second relation

*s save the number of attributes and the attribute names

s/

fprintf(ofileptr, "Xd\n", nattridbl + nattrib2 - numattrinx - pumattrinx - 1);

/e

s+ print and save the attribute names of the first extended relation

220

o/
¢/
o)
o/
o/

o/

for (1 = 1; i <= regattri; i++)

{
fprintf(otileptr, "%s"", h[i-11);
priatf("[%d] %s *, i, h[i-1]);

}

/e
oe Print and save the attribute names of the second extended relation.
#s Remember that attribute names that are in the set of joining attributes
es ghould not be printed again.
s/
for (i = nattridl; i < nattribi ¢ regattr2; i++)
{
/e
#¢ before printing the attribute name we have to make sure that
#¢ the attribute name is not in the set of joining attributes.
o/
equalflag = 0;
k=0;
while (x[k][0] t= \O?)
{
if (t(EqualStrings(x[k], h(i1)))
{
equalFlag = 1;
break;

ke+;
)}
if (equalFlag != 1)
{
fprintf(ofileptr, “¥s~*, h[i));
print£("[%d] %s ", i - srcattrl + i, R[i]);

}

fprintf(ofileptr, "\n");
printf("\n");

while (inchar != EOF)
{/* read, manipulate, and print tuples */
/e
e# print the tuple and the source vectors of the first
ee oxtended relation. Soms of the attributes are
¢e in the set of Joining attributes.
./
for (i = 1; i <= regattri; i++)
{
print2("[%d] %s *, 1, rli-1]);
tprintf(ofileptr, "¥s~", rli-11);
}

/e

es Print and save the attribute values of the second

s extended relation.

s/

for (i = mattribl; i < nattribl + regattr2; i++)

{
/e
e» before printing the attridute values we have to make sure that
¢e the attribute value is not in the set of joining attributes.
o/

equalFlag = 0;
h=0;

221

shile (x[x][0] t= *\O*)
{
it (¢(EqualStrings(x[k], h[il)))
{
equalFlag = 1;
break;
}
| T2 H
}
if (equalFlag != 1)
{

printf(“[Xd] %s ", i - srcattri +1, r(i]);
fprintf(ofileptr, "%s~", r[i));

}

}

I

#s Perform the conjunction between the source vector associated with

e¢ the tuple in the first extended relation, the source vector associated
s with the tuple of the second extended relation and the source vectors
®s associated with the joining attributes. The answer will be in ul].

./

Conjunction(r[regattri], rlnattridi+regattr2], u);

/e
*¢ Look for source vectors associated with the joining attribute values
ss of the first extended relation.
o/
for (§ = 1; i <= regattri; i++)
{
equalFlag = 0;
k= 0;
while (x[k][0] != *\0O')
{

if (EqualStrings(x[x], h[i-1]))
{

equalFlag = 1;

break;

k++;
}
if (equalFlag != 1)
{ /¢ perform conjunction ¢/
Conjunction(u, rlregattri + i], u);
}
)}

/e
e+ Look for source vectors associated with the joining attribute values
es of the second extended relation.
o/
for(i = nattribl; i < nattridl + regattr2; i++)
{
equalFlag = 0;
k=0;
while (x{x][0] t= *\O")
{

if (EqualStrings(xikl, n[i)))
{
equalFlag= 1;
break;
}
k++;

}

222

if (equalflag != 1)
{ /¢ perform conjunction s/
Conjunction(u, rlregattr2 + i + 1], u);
}
)
printf("¥%s ", u);
fprintf{ofileptr, "¥%s"", u);

ry

#¢ Priat source vectors associated with the attribute values of
¢ the first extended relation.

o/

for (i = regattrl + 1; i <= nattribl -~ 1; i+s)

Conjunction(u, ri), v);

printe("¥s “, v);

fprintf (ofileptr, "Xs™", v);
}

'y

#¢ Print source vectors associated with the attribute values of

¢ the second extended relation. Remember to skip the source vectors
¢¢ that are associated with the values of the joining attributes.

o/
for (i = nattribl ¢+ regattr2 + 1; i <= nattridbi + nattrib2 - 1; i++)
{
equalFlag = 0;
k=0;
shile (x[x1[0] t= *\0')
{
it (1(EqualStrings(x([k], h[i-regattr2-11)))
{
equalFlag = 1;
break;
}
kee;
}

it (equalFlag != 1)

{ /¢ perform conjunction ¢/
Conjunction(u, r(il, v);
printe("%s ", v);
fprintf(ofileptr, "%s~", v);

}

}

/e

¢ read another tuple from tha file

o/

j=o;

i=o0;

inchar = getc(ifileptr); /# skip '\n’ character ¢/
while (j < aumattr)

if (inchar = 1-?)
r{3]1[1++4] » inchar;

else
{
r[§1[i] = "o,
i =0;
L /¢ increment j towards the number of regular attributes s/
}
inchar = getc(ifileptr);

223

}
j=o;
i=0;
fprintf(ofileptr, "\n");
printf("\n");
}/* read, manipulate, and print tuples ¢/

fclose(ifileptr);
fclose(ofileptr);

/e

*¢ Open “options.rel" file and read the relFlag.

¢¢ if the relFlag = 1, then calculate the reliability
*# of answers to users queries.

o/

relFlag = 0;

ifileptr = fopen(“options.rel", "r");
fscanf(ifileptr, "Xd", &relFlag); /+ read relFlag ¢/
fclose(ifileptr);

if (relFlag != 0)

{ /* Reliability calculation is sllowed »/

RelCalculation();
}

} /* end procedure ExtendedJoin() ¢/

/e
¢¢ Procedure: ExtendedIntersection();

¢ Purpose: Reads a file and prints the heading,
Lad attribute values, and the reliability
[1] of each attribute.

L L] return: Non

et

void ExtendedIntersection()
{
/* Jot implementad separately. It is a special Join #/

/s
*¢ Procedure: ExtendedDifference();

*¢ Purpose: Reads a file and prints the heading,
L attribute values, and the reliability
L] of each attribute.

(44 return: Non

Py
e

void ExtendedDifferenca()
{
/¢ Bot Implemented ¢/

/e
*s Procedure: Algorithmi();
se Purpose: pass an array of source vectors associated with a pure

s tuple in the answer to a query. This Procedure will
s calculate the reliability of the resulting array.

L1 One restriction in this ilgorithm is that we assume
s no more than a fixed length array should be passed.

[4] return: Non,

Py

L L4

224

float Algorithai(x)

char x[MAXTUPLES] [NAXSOURCES + 1]; /* passed array of source vectors
{

char ui [NAXSOURCES + 11;

char uj{MAXSOURCES + 1];

char uk [MAXSOURCES + 1];

char ul [NAXSOURCES + 1] ;

char um[MAXSOURCES + 1] ;

char un[WAXSOURCES + 1];

char uo [NAXSOURCES + 1];

char ap[MAXSOURCES + 1];

/ begin Algorithmi ¢/

int numvec; /* number of source vectors in set
int 4, j, k, 1, m, n, o, p;
float K, K1, X2, K3, K4, K5, K6, K7, K8, rel;

/¢ Initialization ¢/

i, Jju2;, k=3; 1=4; n=5§;

I=0; Kt =0; k2=0; K3 =0; k4 = O;

K6 =0; X6 = 0; K7 = 0; K8 = 0; rel = O;

/¢ example source vector

x[1100] = *0*; x{1](1] = »17; x(1172] = r0*; x([1]1(3] = *1'; x[1]1[4] = *1’;
x[11£56] = *0’; x[1]1[6] = *0?; x[11[7] = '1?; x[1](8) = *0°; x[11[9] = ’1’;
x[11[10]) = "\0’;

x[2100] = '17; x[2][1] = >1’; x[2][2] = *0’; x(2][3] = *1*; x[21[4] = 10’;
x[2)[5] = ’0*; x[2])[6] = *1°; x(2]1[7] = '1’; x[21[8] = *0’; x[2}[9] = ’1’;
x[2]1{10] = "\0*;

x[33[0) = '0’; x[3](1] = '0’; x[3][2] = '0'; x[31[3] = *1’; x[3]1[4] = '0’;
x[3}[6] = '0’; x[3][6) = *1’; x[3][7] = '0’; x[3][8] = *0*; x[3][9) = 0’;
x[31[10) = *\0’;

x[41[0] = \0*; x[4][1] = *\0’; x[4][2] = '\0*; x[4][3] = *\0’; x[4]1[4] = "\0O*;
x(4](5] = "\0'; x[41[6] = *\0*; x[4]1[7] = *\0’; x[41(8] = *\o’; x[4]1(9] = *\0*;
x[4][10])= *\O’;
o/
I*
s¢ Browse the array and check if thare are duplicates among the
¢¢ source vectors sent. The result array should not have any duplicates.
s/
i=0;
vhile C (x(11{0] != *\0’) && (x[i+11[0] = *\0*))
{
it (!(CmpSourceVectors(x[i], x[i+1])))
{
/e
** they axe equal then keep one of them and remove the other one.
#s Search the end of source vectors and switch with the last. DO
se¢ forget to overvrite the last source vector with ’\0’. Since
®s Jater we need to count the number different sources we have.
o/
Jmie2;
while (x(j++1(0] = '\0’){;)
I=i-%
/¢ swap the two source vectora ¢/
k=0,
widle (x[JI[k] t= \0?)
{

x[11[x] = x[§1(x]1; /» swap */
x(j1{x] = *\0*; /¢ overurite s/
ke

}

225

s/

s/

144
}
/¢ count the number of source vectors sent ¢/
i=0;
shile (x[1][0] != *\O’){i++;}
aumvec = i;
for (41 = 0; 1 < numvec; i++)
{ /o begin i loop o/
/¢ calculate the reliability of x[i] ¢/
rel = SourceVectorReliability(x[il);
/¢ accumulate ki ¢/
Ki = K1 4+ rel;
for (j = i+1; § < numvec; j#+)
{ /# begin j loop ¢/
Conjunction(x[i}, x[j1, uj);
rel = SourceVectorReliability(uj);
/% accumulate K2 ¢/
K2 = K2 + rel;
for (k = j#1; k < numvec; k++)
{ /# begin k loop */
/¢ uj = x[i] /\ xLj] /
Conjunction(uj, xfk), uk);
rel = SourceVectorReliability(uk);
/* accumulate X3 s/
K3 = K3 + rel;
for (1 = k+1; 1 < pumvec; l++)
{ /¢ begin 1 loop ¢/
Conjunction{uk, x[1}, ul);
rel = SourceVectorReliabilitv(ul);
/* accumulate X4 ¢/
K4 = K4 + rel;
for (m = 141; m < numvec; m++)
{ / begin m loop */
Conjunction(ul, x[m], um);
rel = SourceVectorReliability(um);
/¢ accumulate K5 ¢/
K5 = K6 + rel;
for (n = m+i; n < numvec; n++)
{ /% begin n loop ¢/
Conjunction(um, x[n], un);
rel = SourceVectorReliability(un);
/* accumulate X6 s/
K6 = K6 + rel;
for (0 = né4l; 0 < numvec; o++)
{ /* begin o loop ¢/
Conjunction(un, x{o], uo);
rel = SourceVectorReliability(uo);
/* accumulate K7 ¢/
K7 = K7 4 rel;
for (p = o+1; p < numvec; p++)
{ /¢ begin p loop »/
Conjunction(uo, x{pl, up);
rel = SourceVectorReliability(up);
/¢ accumulate X7 ¢/
K8 = K8 + rel;
/* accumulate X6 »/
} /¢ end p loop #/
} /¢ end o loop ¢/
} /% end n loop o/
} /¢ end m loop ¢/
} /* end 1 loop &/
} /* end k loop »/
} /¢ end j loop ¢/

226

} /¢ end i loop ¢/
E=K1-K2¢ K3 -%K44+K5~168+ K7 ~-1I0;
/® printf(" K = %1, K); ¢/
return K;
}/% end Algorithai ¢/

/e
¢¢ Procedure: SourceVectorReliability()
#¢ Purpose: Given & source vector, this procedure calculates the

s reliability of the given source vector and returns

L the reliability. Reliability of source vectors is to ba
e read from a file.

L4 return: the reliability of the source vector of type float.

L4 float rel;

L 1

float SourceVectorReliability(ut)
char ui[NAXSOURCES + 1];
{

int §;

/e

¢ the reliabilities of information sources is be read from a file.
#e the file name is "options.rel'. Ve sssume that we keep track of
*® one file and save in it the reliabilities of informaion scurces.
./

float rel;

V4l

*s Relisdbility Calculation for a single
®® gource vector only.

./

i=0;

rel = 1;

while (ut[i] ¢= N0’)

{

if (uili] == »11)
{
rel = rel ® refi+1];

else
{
it (u1[1) == 2-2)
{
rel m rel o (1 - reli+i1]);
}
)
1ee;
}

return(rel);

Py
.

*¢ Procedure: CmpSourceVectors().

L 1]
** Purposs: Compares two character arrays amd returns zero if they

s are equal else returns a non zero if they are not equal.

e return: integer number indicating vhether the tvo characters arrays
L g are equal or not.

227

P

e cenneyf

int CmpSourceVectors(s, t)
char s[MAXSOURCES + 1];
char t[RAXSOURCES + 1]:
{

int i;

for(i = 0; (s[3] == t[1]) & (s[i] != "\O?) && (t[i] = *\0?); i++);
if ((s[1] == '\0?) 2 (t[i] == 1\0?))
return O;
return s[i} - t{i];
}

*

¢¢ Procedure: EqualStrings().

..
¢¢ Purposse: Compares two character arrays and returns zero if they
” are esqual else returns a non xero if they are not equal.
144 return: integer number indicating whether the two characters arrays
*” are equal or not.
L 2] */
int EqualStrings(ai, a2)
char ai([MAXSOURCES + 1];
char a2(MAXSOURCES + 1);
{
int §;
for(i = 0; (a1(i] == a2[i)) && (a1li] != *\O’) && (a2[i] != *\0’); i++);
it ((a1f1) == '\O?) && (a2[1] == '\0?))
return O;
return ai[i] - a2[il];
}
s¢ Purpose: Opens a file for input, read tuples, perform the
e source vector conjunction operation for all sources
e associated with the tuples, and finds the reliability
L] of the pure tuples. The tuples are displayed to the
e screen of the user together with the reliabilities
L associated with the pure tuples.
se
*¢ return: Non.
" ./
void RelCalculation{)
{
typedef struct tuples {
char pure[MAXLINE]; /¢ pure tuple s/
char vec[MAXSOURCES+1]; /* source vector ¢/
} tup;
FILE sifileptr, sofileptr;
int inchar, j, 1, k, 11, i2;
int numattr, regattr, srcattr, nuatnples, lastentered;
char u[MAXSOURCES + 1}; /+ neutral source vector »/
char v[MAXSOURCES + 1]; {* the read source vector o/
char c[VIDIH]; /¢ maximum width of a column ./
tup arr[MAXTUPLES]; /¢ array to hold read tuples o/
char set [NAXTUPLES] [NAXSOURCES+1] ; /¢ set of source vectors associated with t o/
float rel;

228

/e

s¢ Initialization

o/

4% 0; j=0; inchar = 0; numattr » O;
regattr = 0; srcattr = 0; k =0; i2 » O;

/e

¢ Initialixze the arrays of source vectors

s/

for (1 = 0; 4 <= NAXSOURCES + 1; i++) {u[1] =2\0’; v[i] = *\0’;}
for (1 = 0; 4 <= WIDTH; i++) { clz] = *\0*;}

for (1 = 0; 4 <= NAXTUPLES; i++)

{
arr[i).pure[0] = *\0’;
arr[i]l.vec[0] = *\O’;
set[i][0] = "\O’;

}

i=0; §j=0;

/e

s+ Call the SortFile() procedure to sort the tuples that are
#¢ the answers to the users query.

s/

SortFile();

ifileptr = fopen(“query.rel", 'r");

fscant(ifileptr, "%d*, Rnumattr); /* read number of attributes
regattr = (numattr - 1)/2;

inchar = getc(ifileptr); /® to egkip the <cr> characters
inchar = getc(ifileptr);

/e
#¢ print the regular attributes names only
o/
=
i=0;
while (j <= regattr)
{
37 (inchar = '7?)
{ /¢ print the characters
putchar(inchar) ;*/
c[i++] = inchar;
}
else
{
c[i] = "\o’;
printe(*[Xd]l %s ", §, ©);

./
o/

J*+; /* increment j towards the number of regular attributes ¢/

i=0;
}
inchar »= getc(ifileptr);

priatf("\n");

numtuples = O;
lastentered = numtuples;

inchar = getc(ifileptr);

while (inchar = EOF)

{ /* not BOF ¢/

k » 0; /* counts the number of tuples read »/
while (inchar != \n?)

229

/e \nr o/
=y
i=0;
while (j <» regattr)
{ /e
¢¢ print regular attribute values
s/
if (inchar {= '°?)
{
c[i++] = inchar;
}
else
{
c{i++] = inchar;
jHe; /% increment j towards the number of regular attributes ¢/
}
inchar = getc(ifileptr);
} /¢ print regular attribute values */

/n
#s Read the source vectors for every tuple
#¢ Do the source vector conjunction for all
#s gource vectors found to get one source
*s vector that represents the contributing
*¢ gources to that tuple.
s/
=1
i=0;
srcattr = numattr - regattr;
while (§ <= grcattr)
{ /» start reading source vectors ¢/
if (inchar t= ?°?)
{ /¢ print tha characters
putc(inchar, ofileptr); ¢/
/e
#s store the source vector bit by bit, then increment i
o/
v[i++] = inchar;
}
else
{
jves /* increment j towards the number of regular attributes »/
YL
¢s Call the conjunction procedure passing ul[], and vl
#¢ the answer should be returned in ul]
s/
Conjunction(u, v, u);
for (i = 0; 1 <= MAXSOURCES + 1; i++) {v[i] = "\0*;}
i = Q; /¢ prepare for the second source vector ¢/
}
inchar = getc(ifileptr);
} /¢ end resding source vectors s/

/e

o before reading another line of input from the sorted file

¢¢ gcan the array ar[J[1[] ans test if the nesly read tuple

¢s i3 previously stored in it.

s/

it ¢ ((EqualStrings(c, arr[lastentered].pure)) ||
(EqualStrings(u, arr[lastentered].vac))))

{

/e

¢¢ save tho purs tuple and the source vector associated with
s¢ it to the array arr{]

230

s/

i1 = 0;
while (cli1] = "\0?)
{
arr[numtuples] .pure{i1] = c[i1]; /* save pure tuple ./
i14+;
}
arr{nuntuples] .pure[i1++] » "\0’;
it = 0;
shile (ul41] t= *\0!)
{
arr{numtuples].vec{i1] = u[it]; /¢ its source vector »/
i144;
}
arr[numtuples].vec{ii++) = 2\O’;
lastentered = numtuples;
aumtuples++;
}
} /e \n2 o/
k++;
inchar = getc(ifileptr);
/e
¢¢ Initialize the source vector again
./
i1 = 0;
shile (uli1] = *\0’) { ulit1++] = *\0*;}
}/¢ not EOF o/
fclose(ifileptr);
/e
#¢ Read the array arr[] selecting one tuple at a time. A pure tuple
*¢ could have a set of source vectors associated with it. We would
s like to calculate the reliability of the pure tuple t using
*e Algorithmi().
./
is=0; /* runs over the pure tuples in arr{] s/
while ((arr[i].pural0] t= *\0’) &8 (arr[i].vec[0] != *\O0’))
{
/e
ss compare the ith and the (i+1)th pure tuples. In case they are equal
*s add the source vector associated with the (i+1)th tuple to the array
o¢ set(]. net[] represants the set of source vecters associatad with the
¢+ pure tuple being read. Before any comparison happens, save the first
#¢ gource vector associated with the pure tuple t into set{].
o/
j=o0; /® counts ths number of source vectors in array set[) =/

k= 0;
while (arr[i).vec{x] != *\0*)

set[JI(k] = arr(i].vec[k];
| Lo H

}
set{j1[k] = ’\0’;
Ao d

i1 = §;
while (tEqualStrings(arr[i1].pure, arr[is+1].pure))

drows = drows + 1;

/e
¢¢ Print spaces instead of duplicating the pure tuple.

231

k = 0;
while (arr[i1+1].pure[k] != '\0?)
{
printf(” *);
| SoH
3}
./
[e

#¢ print the source vector
print?(" %s*, arr(i1+1].vec);e/

V4

®¢ add the source vectors associated vith arr{i+1].pure to set(j]
./

k = 0;

while (arr[i1+1].vec[k] != *\0?)

{

set[§1[x] = arr[i1+1] .vec(k];
k++;

}
set{j1[k] = *\o’;
h R d
144
}

/s
s+ at this point ve have the pure tuple in arx[] stored at the ith
#¢ position and the set of source vectors set[] contains K+i sources
#s associated with the pure tuple. Call the reliability calculation
#+ algorithm Algorithmi() to find the reliability associated vwith the
s pure tuple.
+/
rel = 0;
Tel = Algorithmi(set);
/e
s before printing the attribute values filter out the field delimiters\
*/
12 = 0;
while (arr(i].pure[i2] t= 1'\0*)
{

if (arr[i].pure{i2] == =)

arri].pure[i2) = * ?;
1244

}
printf("Ys Xs %8.4f \n",arr[i].pure, arr[il.vec, rel);

12 = {;
while (set[12]1[0] t= *\0?)
{
/e
¢+ print spaces instead of the pure tuple
./
k = 0;
while (arr[i]).pure(k] != '\0?)
{
printe (" *);
| S B
) 4
/e
##% print the source vector associated vith the
** pure tuple.
./

232

printf (" ¥s\n", set[i2]);

i2¢¢;

}
i=41;

/e

s Initialixze the array that contains the set of source vectors
e¢ set[] associated with a single pure tuple.

./

for (k = 0; k <v NAXTUPLES; k++)

set[x][0] = *\0’;

k=0;
iee;

}
}
/»
#¢ Procedure: str2flt()
se Purpose: Convert a ssring into a float. All the elements of the
Ll passed string must be digits between O and 9.
.. return: a nusber that represents the float of the passed
. string.
.
e Hote: It is the responsibility of the calling function to
L1 to pass a string shose elements are not characters.
.. ./
double str2flt (s)

ch
{

d
i

4

s
i

b {
i

k4

T

}

ar s[WIDTH + 1];

ouble val, power;
nt i, sign;

or (1 » 0; isspace(s[i)); i++) /» skip spaces ¢/

ign = (3[i] == 1=1) ? =1 : 13

1 (s[1) == 247 || s[i] == 1-?)
ite;

or (val = 0.0; isdigit(s[i]); 4i++)
val = 10.0 ¢ val + (s[i] - 0?);

f (s[i) == 2 ?)
i+

or (power = 1.,0; isdigit(sfi]); i++) {
val = 10.0 » val + (s[i] - ’0?);
power = 10.0;

eturn sign ¢ val / power;

L L]
*e
.0
L]
..

Procedure: SortFile()
purpose: Sort a file of records. The file contains the answers
to users queries after a query is presented to the system.
We need to sort such a file bacause we want to have all
the source vectors associated with a pure tuple to find

233

L1 the reliability of the pure tupls.

void SortFile()

{
char 1n{RAXTUPLES] [MAXLINE];
char temp[MAXLINE];
int 1, j, i1, k, satisfaction;
FILE sifileptr;
int inchar;

ifileptr = fopen(“query.rel", “r*);

for (1 = O0; i < MAXTUPLES; i++){2n([i](0] = *\0’;}
for (i = 0; i < NAXLINE; i++){temp[i] » *\0?;}

i=20; j=0; i1 =0; X = 0; satisfaction = O;
inchar = getc(ifileptr);
while (inchar != EOF)
{ /¢ read until end of file ¢/
=0
while (inchar != '"\n’)
{ /* read until end of line ¢/
In[iJ[j] = inchar;
/» putchar(In[il[j]); e/
Jae;
inchar = getc(ifileptr);

}
In[i1(3] = *\o?;
/e

printe(“¥%s*, 1n[il);
printf("\n"); ¢/

inchar = getc(ifileptr);
j=0;

144,

}
fclose(ifileptr);

/e

¢+ Sort the array read from the file.
./

i=2;

j=o;

while (An{i]f0] != "\O’)

{

k=0;
i1 = 0;
while (1n[i][i1] != ?\0?)
{1/
*s gave In[i] in a temporary array tem[] (as a pivot)
»/
temp[i1] = 1n[i1[11];
11443
}
tenpfil] = "\0';
j=i+1;
while (An[jI[0] != *\O’)
{1/
*¢ read the rest of the array and try to find who i»
s+ the smallest among the tuples
s/
for (i1 = 0; (temp[i1] »= 1n[jI(11]) 82
(temp[i1] != *\0’) &8
(An(31[i1] '= *\0?); i14+);

234

if ((zemp[i1] == "\0O’))
{ /¢ they are less or equal ¢/
satisfaction = 1;

else
{1/
oo test if opri(i] is less than opr2[i] by sudtracting one from the other
s/
if ((temp(i1]) - In[jI[11] <= 0))
{ /e
se thon opri[] is less than opr2(]
o/
satisfaction » 1; /¢ 1n[i)[i1] is less than 1n[jI[i1] ¢/

else
{ /o
#¢ we need to keep a pointer to 1n[j][i1)
s/
satisfaction= O;
/e
% save the value of j in k

ee copy 1n(j1(11] to temp[])
o/

i1 = 0;
shile (In(jl1Li1] 1= '\0?)
{

temp(i1] = In[jI[i1);
i14e;

}
temp(i1] = *\O’;
}
}
o
} /¢ end while j o/
/e
¢¢ He need to swap the ith and the kth tuples
#¢ in the array In[){] provided that k t= i.
o/
if ((k == 0))
{

/e
®¢ Swap the ith and the kth tuples in the array In[])[]
./
i1 = 0;
while (in(k][i1] 1= \0O’)
{
templit] = 1n(k](i1];
itee;
)}
temp(i1] = \0?;

i1 = 0;
while (In[i)[i1] != *\0?)
{

In{k]{11] = 1nli][12];
i144;

}
in[x][11] = "\0*;

i1 =0;
while (tempfi1) 1= 1\0))

235

{
In(1)(i1]) = temp(il);
i1e+;

}
1n[i1[i1] = *\o’;
}
iee;
} /¢ end while i ¢/

/e

oe at this point the tuples are sorted and are ready

o¢ to be saved in the file from shere they were obtained.
s¢ Open the file for write and then srite the sorted

*¢ array back to it.

./

ifileptr = fopen(“query.rel", *“w");

i=0; § =o;
while (An{4](0] != *\0)
{ /¢ read until end of array o/
i1 = 0;
for (j = 0; j < MAXLINE; j*+)> { temp[j] = \0’; }
while C 1n[i)[i1] = '\0?)
{
templit) = 1n(i] [i1];
i144;
}
fputs(temp, ifileptr);
fputs(\n", ifileptr);
i
}
fclose(ifileptr);

3

8.4 Makefiles

4

MAKEFILE FOR STABD-ALOBE UX CODE APPLICATION.

4

 J EXECUTABLE is the name of the executable to be created

s BAIN is the .c tile containing your main() function
INTERFICES is a 1ist of the interfa-es C code files

s APP_0B25 is a (possibly empty) list of the object code
t files that form the non-interface portion of

] your application

]
S85550800889810088808 8800100888 5L15140088081 01555808 088010080 80081081088
EXECUTABLE = (E

WAIN = QE.c

IBTERFACES = UncertainDatabase.c \

QueryEditor.c \

ScrolledText.c
LABGUAGE = KR-C
APPL_0BJS =

UX_DIR = /pkg/uimx

236

UX_LIBPATN = $(UX_DIR)/1ib
I_LIBS = -1Xm ~1Xt -1X11

K_LIDPATN = -L/pkg/X11/1idb
ROTIF_LIBPATN = ~L/pkg/X11/11b
X_CFLAGS = -1/pkg/X11/include
MOTIF_CFLAGS = -1/pkg/X11/include

8 For sund KRR cc

IR “°C = cc

ER_c/LAGS = ~D_RO_PROTO
SR_LDFLAGS = ~Bstatic

¢ Por Centerline KRR cc

8 ER_CC = clcc ~traditional
8 ER_CFLAGS =

¢ KER_LDF_AGS = -Bstatic

8¢ For GHU KR cc

8 IR_CC = gcc

8 KER_CFLAGS = ~traditional -D_NQO_PROTO
¢ KER_LDFLAGS = -X1linker -Bstatic

¢ For Centerline ansi cc
8 ANSI_CC » clcc

8 ABSI_CFLAGS =

8 ANSI_LDFLAGS = -Bstatic

8 For GNU ansi cc

ABSI_CC = gcc

ABSI_CFLAGS = -ansi
ANSI_LDFLAGS = ~X1linker ~Bstatic

8 For Centerline ce¢

8 CPLUS_CC = CC

8 CPLUS_CFLAGS =

8 CPLUS_LDFLAGS = -Bstatic

For GEU c++

CPLUS_CC - gce
CPLUS_CFLAGS = =xc++
CPLUS_LDFLAGS = ~X1linker ~Bstatic

CFLAGS = -I$(UX_DIR)/include $(X_.CFLAGS) \
$(NOTIF_CFLAGS) -DXOPEN_CATALOG -I/usr/xpg2include

KOPEN_LIBS = -1lxpg

LIBPATH = $(X_LIBPATH) $(MOTIF_LIBPATH) -L$(UX_LIBPATH) \

=1 /usr/xpg2lid

LIES = =1lvimx $(X_LIBS) -1m $(LD_FLAGS) -lc $(XOPEN_LIBS)

O0B)S = S(MAIN:.c=.0) $(IBTERFACES:.c=.0) $(APPL_OBJS) $(EXTRA_.0BJS)
$(EXECUTABLE) : $(0BJS)

Gecho Linking $(EXECUTABLE)

$(LD) $(0BJS) $(LIBPATH) $(LIBS) -0 $(EXECUTABLE)
Gecho "Done"

SUFFIXES:
SUFFIXES: .0 .c .c

237

.€.0°¢

Qecho Compiling $< [$(LARGUAGE)] [UX-CODE]
$(CC) ~c $(CFLAGS) $< -0 $@

«€.0:

@echo Compiling $< [$(LANGUAGE)] [UX-CODE)
$(CC) -c $(CFLAGS) $< -0 $@

cC =\

e¢if ["S(LABGQUAGE)" = "C++"]; then echo $(CPLUS_CC) $(CPLUS_CFLAGS);fi¢ \
‘42 ["$(LANGUAGE)" = “ANSI C”]; then echo $(ARSI_CC) $(ANSI_CFLAGS); £i°¢\
‘if [“$(LANGUAGE)" = “ER-C"]; then echo $(XR_CC) $(ER_CFLAGS); £i°¢

LD =\

Q‘if [“$(LABGUAGE)" = "C++"]; then echo $(CPLUS.CC);fi¢ \
¢4f ["$(LANGUAGE)" = “ABSI C"]; then echo $(ANSI_CC); £if\
‘it ["$(LARGUAGE)" = "KR-C"]; then echo $(KR_CC); fi°

LD_FLAGS = \

‘42 ["$(LANGUAGE)" = “C++"]; then acho $(CPLUS_LDFLAGS);fi‘\
‘it ["$(LANGUAGE)" = "ANSI C"]; then echo $(ANSI_LDFLAGS); fi‘\
‘4f [“$(LANGUAGE)" = "KR-C"]; then echo $(KR_LDFLAGS); #i‘

238

