INCORPORATING COMPONENT-BASED DESIGN IN THE
CATEGORY-THEORETIC FRAMEWORK FOR
COMPOSITION OF FAULT-TOLERANT SOFTWARE

Anil Hanumantharaya,

A Thesis
In
The Department
Of

Electrical & Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science
in Electrical & Computer Engineering
at Concordia University
Montréal, Québec, Canada

August 2003

(©Anil Hanumantharaya, 2003

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-83866-8
Our file Notre référence
ISBN: 0-612-83866-8

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

Abstract

Incorporating Component-Based Design in the
Category-Theoretic Framework for

Composition of Fault-Tolerant Software
Anil Hanumantharaya

With the increasing use of software in many systems like telecommunications,
e-commerce, manufacturing, etc., and the need for reliable services in these systems,
there is an ever-growing demand for providing fault-tolerance. Generally, software is
built without concentrating much on the fault-tolerant aspect, and fault-tolerance is
| typically an additional feature to ensure reliability if ever a failure has been encoun-
tered. However, there are many legacy software systems that are being deployed in
highly critical applications where fault tolerance is inevitable. Various methods have
been put forth in the literature for designing fault-tolerance, including a component-
based methodology, wherein fault-tolerance is separated from the functionality, and

fault-tolerant components, such as correctors and detectors, are added to achieve

il

the desired reliability. Utilizing the concepts of the component-based design, we
propose a category theoretic framework for the composition of these fault-tolerant
components with a fault-intolerant program. We illustrate our proposed approach
to compose the fault-tolerant components with a fault-intolerant program to result
in a final fault-tolerant program through two case studies. In our first case study,
we show the feasibility of our approach by composing the fault-tolerant components
for a distributed mutual exclusion algorithm using our proposed approach. In the
second case study, we decompose the fault-tolerant Label Distribution Protocol and
prove the correctness of the design of the fault-tolerant components. Furthermore, the
formal specification and verification of these case studies has been conducted using
Specware. Some of the benefits of the proposed approach include (a) traceability of all
the sorts, operations and properties used to derive the composed program, (b) well-
defined interfaces, that allows components to interact in a well-specified behaviour,

and (c) reuse of specification for subsequent similar system design.

v

Acknowledgments

I am indebted to my supervisors, Dr. Purnendu Sinha and Dr. Anjali Agarwal, for
their guidance and constant support all through the course of this work. I would like
to acknowledge with thanks the financial support I received through my supervisors. I
would also like to thank Dr. Sinha for rescuing me when the maths seemed daunting.

I would also like to express my gratitude to my parents, brother and sister, for
their love, affection and confidence throughout the duration of my study in Montreal.

My sincere thanks goes to Professor Sandeep Kulkarni for answering all my ques-
tions regardless of how trivial they were. 1 would like to take this opportunity to
thank Dr. Kulkarni for giving me valuable insights and suggestions, which helped in
my understanding of the concepts of Detectors and Correctors. 1 would also like to
thank Mr. Adrian Farell for helping me understand the fault-tolerance additions in
the Label Distribution Protocol.

Finally, I thank all my friends in the Research group for many intellectual discus-
sions that we had for the past year. Specifically, I would like to thank Vasudevan for

helping me get a grip on Category Theory and all its abstract concepts.

Contents

List of Figures X

1 Introduction 1
1.1 Need for Fault-Tolerance in Software 1
1.2 Existing Approaches to Fault-Tolerance and their Limitations 3
1.3 Industrial Perspectives to Compose Software Components 5
1.4 Role of Formal Methods, 6
1.5 Observations and Suggestions 8
1.6 Proposed Category Theoretic Framework 10
1.7 Contributiono 12
1.8 Outline of the Thesis, 12

2 Preliminaries 14
21 Definitions L L e 14
2.2 Detectors e 17
2.2.1 Designing Detectors to achieve fail-safe tolerance 17

Vi

2.3 Correctors

2.3.1

2.4 A Formal Approach to Putting Components Together

24.1

2.4.2

243

2.5 Our Framework for Composing Software Components Together

2.6 Specware

Module Interfaces

Interconnecting Modules via the Union Operation

Designing Correctors to achieve non-masking tolerance

Composing Modules Together

Case Study 1: The Mutual Exclusion Algorithm

3.1 Brief Description of the Mutual Exclusion Algorithm

3.2 Fault-Intolerant Program (FIP)

3.3 Considering Fault Scenarios

3.3.1

3.3.2

3.3.3

3.3.4

Corrector for Rectifying the Parent Relation (C1)
Corrector for Rectifying the Holder Relation (C2)

Global Detector (D1)

Local Detector (D2)

3.4 Composing the FIP, Corrector and Detector using Category Theory .

3.4.1

3.4.2

3.4.3

3.44

Composing FIPand C1
Composing FIPCland C2
Composing FIP.C1.C2and D1
Composing FIP.C1.C2Dland D2

vil

18

19

22

22

23

26

27

29

30

31

34

34

36

37

39

3.5 Compositional Specification and Verification Using Specware 47
3.5.1 Composing the FIP and C1 specifications 53

3.5.2 Composing the FIP_C1 and C2 specifications 96

3.5.3 Composing the FIP_C1_C2 and D1 specifications 58

3.5.4 Composing the FIP_C1.C2_D1 and D2 specifications 62

4 Case Study 2: The Label Distribution Protocol 65
4.1 Need for fault-tolerance in LDP00 66
4.2 Identifying the Fault-Intolerant Program and Fault-Tolerant Components 67

4.3

4.4

4.5

4.2.1 Identifying the Fault Intolerant Program 67
4.2.2 Identifying the Faulty Scenarios 72
Proof of Correctness of Design of Detector and Corrector Components 79
4.3.1 Design of the Detector Components 79
4.3.2 Design of the Corrector Components 81

Composing the LDP, Detectors and Correctors using Category Theory 86

4.4.1 Composing the LDP with Dland D2 87
4.4.2 Composing the LDP D1 D2 with Cland C2 89
Compositional Specification and Verification Using Specware 92
4.5.1 Formal Specification of the Label Distribution Protocol 93
4.5.2 Composing the LDP with the Detector D1 101

4.5.3 Composing the LDP with the Detector D2 102

viil

4.5.4 Composing Corrector C'1 with the Composed Module of LDP,

4.5.5 Composing Corrector C2 with the Composed Module of LDP,

Dland D2 e 106

4.5.6 Role of Morphisms for Traceability 110

5 Conclusion 112
5.1 Contributions L 113
9.2 Experience 114
Appendix 116
Bibliography 129
Publications 132

ix

List of Figures

2.1

2.2

2.3

24

2.5

3.1

3.2

3.3

3.4

Colimit Function o oL 21
(a) Push-out and (b) Module Interfaces 22
(a) Composition of Two Modules and (b) Composed Module 24
Union Operation 25
Framework for composition. L. 26

(a) Composition of FIP and Corrector 1 (b) Composed diagram of FIP
and Corrector 1 40
(a) Composition of FIP, Correctors 1 and 2 (b) Composed diagram of
FIP.CI1.C2 i e 43
(a) Composition of FIP_C1.C2 and Detector DI (b) Composed dia-
gramof FIP.CI1.C2.D1 45

(a) Composition of FIP_.C1.C2.D1 and D2 (b) Composed diagram of

4.1

4.2

Composing the FIP with the Detector Components Using the Union
Operation e
Composing the LDP _D1.D2 with the Corrector Components Using the

Union Operation

xi

Chapter 1

Introduction

In this thesis, we illustrate the issues related to the design of software fault-tolerance,
and present an orderly way of designing fault-tolerant programs. We begin by address-
ing the need for fault-tolerance in software, followed by a brief summary of the current
approaches to developing fault-tolerant software and their limitations. We then ex-
plore some of the industrial approaches to composing software components followed
by the component-based approach to achieve fault-tolerance. Finally we provide a
short summary of the category-theoretic approach for composition, followed by the

contribution and an outline of this thesis.

1.1 Need for Fault-Tolerance in Software

Software has pervaded every facet of our society, affecting our everyday life in a

direct or indirect way, by influencing everything that we depend on, like, for example,

1

transportation, manufacturing, telecommunications, shopping, and many others. The
ever-increasing demand for ways of making every-day life easier has led to new and
better products and trying to improvise them has lead to further exploration in the
area of software systems. Many of these modern day utilities, which we take for
granted, would not have been possible without these continually evolving software
systems.

Although software is being increasingly used, it is far from perfect. An increasing
number of today’s computer systems consist of an intricate connection of hardware
and software components that are prone to malfunction or failure. The failure of such
components could lead to unforeseen and potentially disruptive failure behaviour,
eventually resulting in service unavailability in many systems, or lead to other catas-
trophic scenarios. It is expected that these systems continue to function even in the
presence of failures of the underlying computing platform. The escalating demand
on such well-defined and well-functioning computer systems has led to an increasing
demand for such dependable systems, which provide reliability by handling faults in
a complex computing environment [16]. Thus, with the growing use of software in
a variety of areas that include telecommunications, air and ground transportation,
defence, the need to provide continuous service in these areas has led to an increasing
demand for fault tolerance in software.

A fault-tolerant system can thus be defined as a system that has the capability

to recover from, or in some way tolerate faults and continue with its normal oper-

ation. This means that the system continues to function delivering a desired level
of functionality, even when exposed to an adverse environment. Developing systems
with such fault-tolerant characteristics is thus becoming increasingly important. Be-
cause of these requirements, the software for such fault-tolerant systems is generally
large and complex. The design of such complex fault-tolerant systems and the subse-
quent correctness establishment to ensure that they continually provide the desired
functionality despite the presence of faults tends to be a tedious effort.

The lack of techniques to ensure that software designs are free from design faults
has also led to the use of fault tolerance techniques as an additional layer of protec-
tion. Software fault tolerance is the use of such techniques to facilitate the sustained
delivery of services at an acceptable level of performance and safety, following the

activation of a design fault.

1.2 Existing Approaches to Fault-Tolerance and

their Limitations

There have been several methods proposed in the literature for designing fault-
tolerance. Some of these methods by which fault tolerance can be achieved are
replication [27], state machine approach [30], and checkpointing and recovery [21]. A
brief explanation of each of these methods follows: Checkpointing can be considered

as one of the early works in converting a Fault Intolerant Program (FIP) to tolerate

faults, and has primarily focused on correction mechanism [21]. Checkpointing in-
volves periodic saving of the state information that is being considered as a consistent
state of the system. Once the fault causes a system failure, the system is reinitialized
and resumes operation from that saved, valid state. The fault detection mechanism
in this case is usually provided by the hardware, which sets a boolean sort in the
event of a fault. A recovery procedure is then initiated on fault detection to handle
the fault. This approach assumes that software defects cause system failures only if
specific inputs occur with a particular timing. These defects are the most difficult to
find and repair during development, and the majority of software defects that remain
following the testing and deployment of a system are of this type [23]. In the state
machine approach, replication is used to achieve the desired goal of fault-tolerance.
In this method, crucial server processes are replicated, and responding to a request
involves establishing coordination among the processes as to what the response should
be. This approach deals with only fail-stop and Byzantine failures. The disadvantage
with the replication-based approach, which is also used in the state-machine, is that
replication requires operations to be deterministic on the replicas, meaning that the
response depends on the initial state and any previous operations performed. Many
a times, fault-tolerant systems have to be modified so that they can deal with new
types of faults that were not taken into account in the earlier design.

Liu [22] presents an approach for specifying and verifying fault-tolerant, real-time

programs by transformations. When a fault occurs, the redundancy operations that

help the system to recover to an error-free state results in an increase in the set of
transitions as compared to an intolerant program. In this approach, refinement is
used to obtain a program tolerant to faults from a FIP, and a number of refinement
conditions for fault tolerant verification are provided.

Another way of achieving software fault tolerance is by the use of software wrap-
pers. A wrapper is a piece of software enclosed around another component limiting
what that component can extend to other components or its environment. It achieves
this in a non-invasive way by affecting the functionality of the component without
modifying the component’s source code [35]. Wrappers monitor the flow of informa-
tion into and out of the component, and try to keep undesirable values from being
propagated. It is possible that any illegal output generated by an off-the-shelf compo-
nent that is not anticipated (not present in the component specification) may not get
detected by the wrapper, since the detection technique is based only on anticipated

faults.

1.3 Industrial Perspectives to Compose Software

Components

Component Based Software Engineering (CBSE), the branch of software engineer-
ing devoted to exploring and applying this paradigm of component-based software

is thus based on the premise of reusing components so that recurring actions need

not be written repeatedly. The difficulty in reuse of software is due to fact that de-
pendencies that are not so obvious cannot be described explicitly [13]. Some of the
component infrastructure technologies currently used in CBSE are EJB, CORBA,
and COM/DCOM. The component-based approach diminishes the cost of software
development, allowing systems to be assembled rapidly, and reduces the spiralling
maintenance burden associated with the support and upgrade of large systems. Some
of the advantages of CBSE approach thus include: less burden of reprogramming
commonly used operations, software reuse, and reduction in the time to market soft-
ware. On the other hand, identifying a component that suits the application needs
is a difficult task. Also reliability on unknown, third party black-box components

increases.

1.4 Role of Formal Methods

A major obstacle currently being faced in the development of software intensive sys-
tems result from the system and software specification being far from adequate. The
requirement documents, which are the starting point for any software process usually,
define much of the functionality of the software system under construction, but most
of the time, many of the details, which should have been expressed, clarified and
solidified, are not tackled. The consequence of these actions is that there are incon-
sistencies in the subsequent phases of design and coding, which may not be noticed

till a later stage. Rectifying these specification flaws detected at later stages in the

6

life-cycle is much harder than if the flaw were detected and fixed at the specification
stage [36]. This has resulted in a strong thrust to produce more precise and consistent
specifications.

The software engineering literature is filled with declarations on how to develop
software, for example, “Object-oriented development is the best way to obtain reusable
software”. Most of the time, these declarations are not augmented with either log-
ical or experimental evidence. This leads to the conclusion that much of software
engineering is based on a combination of anecdotal experience and human author-
ity [17]. Practitioners have begun to investigate fully the foundations on which soft-
ware engineering is based leading to research activities in the formal methods area.
Formal methods are the applied mathematics of computer systems engineering. The
mathematics of formal methods includes predicate calculus, recursive function theory,
lambda calculus, programming language semantics, and discrete mathematics. To this
mathematical base, formal methods add notions from programming languages such
as data types, module structure, and generics.

Currently, many software development methods use Data Flow Diagrams, Finite
State Machines, and Entity-Relationship Diagrams among other things to aid the
software engineer to develop better specifications. Wood [36] identifies the drawbacks
in these methods which include lack of precise detailed description of the specifica-
tion, inability in reasoning about the specification, a smooth transition to developing a

design and implementation, and mentions how formal specification methods can over-

come these basic objections. The reason being formal methods are detailed enough,
allow a specification to be reasoned about, and have a smooth path from specification
through design to implementation. Furthermore, [36] cites the successful application
of some of the formal methods to real-life, complex software system specifications, like
the CICS work at IBM [26], and the oscilloscope work at Tectronix [12], as some of the
reasons why formal methods should be considered for software system specification.
A specification represents the desired behaviour of the program. It consists of a set
of properties that are to be proved about the implementation model. The properties
in the specification need not be a complete specification of the desired behaviour but
the general behaviour of the system, for example, that a protocol doesn’t deadlock,

or that it guarantees mutual exclusion [24].

1.5 Observations and Suggestions

To overcome the limitations of the existing approaches to designing fault tolerant
software, Arora and Kulkarni [4, 5] proposed a component-based approach, where
the fault-tolerant mechanisms are developed as components. Thus to enhance an
existing fault-tolerant solution, a new fault-tolerant component is composed with it
to tolerate a new fault type. They also show that these components do not interfere
with the original program thereby reducing the risk of introducing new faults. In [19],
Kulkarni formulates that a fault tolerant program can be separated into a basic fault

intolerant program and a set of fault-tolerant components, namely, detectors and

8

correctors. The detector ensures that the safety predicate holds for the system state
and the corrector design depends on the correction predicate that is to be enforced
on the system state. Kulkarni [19] also shows that the use of detectors and correctors
is more general and that existing methods can be alternatively designed in terms
of detectors and correctors. There have been several approaches proposed in the
literature [5, 21, 22, 30] for achieving fault-tolerance, however, as per our observations,
there is a lack of rigorous methods to compose fault-tolerant software. This thesis
proposes a complementary approach for composing components based on category-
theoretic concepts. The advantage of our approach is that there is a traceability of
all the sorts and axioms used to derive the composed program, the interfaces are well
defined, and the specifications can be subsequently reused.

The reason for following the component-based approach is that the current trend
in software development is to build software systems as components, where the com-
ponent is a non-trivial, nearly independent, and replaceable part of a system that has
a clear function in the context of a well-defined architecture [8]. Component-based
software development focuses on constructing complex software systems using exist-
ing software components. In the initial days of software when storage (memory) was
a major factor, programmers came up with the concept of subroutines, which allowed
them to execute repeated actions by placing them in a subroutine, and invoking the
subroutine in place of those segments thereby saving space. This can be considered

as the beginning of software reuse. Subsequently software libraries came into being,

wherein a collection of commonly used routines were bundled together. These library
routines could have even been written by other programmers and the user would
invoke it just as it was another piece of code. The subroutine can thus be seen as
an atomic statement, i.e., a component, wherein the programmer is not concerned
with what algorithms or data structures have been used to write the subroutine, its
development history or about its storage management and so forth [10]. Just as sub-
routines freed the programmers from worrying about the details, Component-Based
Software Development (CBSD) places emphasis on composihg software systems rather
than writing (programming) software all over again. The basic foundation of this ap-
proach is that common functionality that reappears with sufficient regularity should
be written once, and these common systems should be assembled through reuse rather
than rewriting over and over again. Another advantage is that composing larger sys-
tems from smaller systems, which have been shown to be correct, helps in achieving
a higher degree of confidence in the correctness of the overall system. Furthermore
not having to recreate parts that others have already built means the user ends up

doing lesser work [7].

1.6 Proposed Category Theoretic Framework

We now give a brief overview of our proposed category theoretic framework. The
categorical framework has a well-suited structure for combining components. In this

framework, the interactions between objects are described by the morphisms of the

10

category. We have adapted the calculus of modules proposed in {14], which defines
a means of describing modules and modularity concepts like encapsulation or gener-
icity. Their approach is expressive and modular, expressive because of the use of
logic, which is necessary to specify complex systems. Modularity is maintained by
structuring the description of the system in terms of modules that allows very precise
description. There are three levels of description: [25]

- System Level : a system is described by modules that are interconnected by
morphisms and on which operations can be performed,

- Module Level : a module is composed of four specifications linked by specifica-
tion morphisms,

- Specification Level : each specification is a logical theory consisting of a signa-
ture that gives the vocabulary, i.e., attributes and methods and a set of formulae to
describe the behaviour.

We illustrate the applicability of our approach with two case studies. The veri-
fication of our approach is done using a theorem prover. A theorem prover is based
on logic, which is a set of axioms and inference rules based on which it is possible to
reason from premises to conclusion, thus proving the logic, which is usually a math-
ematical proposition. Using a theorem prover, we can reason at an abstract level
without going into the details about a system design before certain parameters have

been fixed (for example, an internet address or a process identifier).

11

1.7 Contribution

The aim of this work is to apply the concepts of category theory for the composition
of a FIP with fault-tolerant components leading to an overall fault-tolerant program.

Our specific contributions in this thesis are: we

1. apply the concepts of category theory for the composition of detector and cor-
rector components with a FIP,
2. decompose a fault-tolerant multimedia protocol into a fault-intolerant program

and detector and corrector components,
3. establish proof of correctness of detector and corrector components,

4. provide a rigorous and consistent composition of fault-intolerant program and

fault-tolerant components utilizing the category theoretic framework, and finally

5. realize the proposed composition approach, i.e., perform compositional speci-
fication and verification through Specware, a mechanized formal tool from the

Kestrel Institute.

1.8 OQutline of the Thesis

We proceed as follows: In Chapter 2, we give formal definitions of a program, prob-
lem specification, fault, and fault-tolerance and explain the approach of [4, 5] for
designing the fault-tolerant components. This is followed by an introduction to our

proposed category-theory based approach for composing software components. Chap-

12

ter 3 describes the first case study involving a distributed mutual exclusion program
with relevant failure scenarios. Chapter 4 describes the second case study involving
the fault-tolerant version of the label distribution protocol. In these case studies, af-
ter having identified the fault-intolerant program and fault-tolerant components, we
illustrate how concepts of category theory can be used to compose these software com-
ponents to derive a fault-tolerant program. The formal specification of the composed
module for the second case study, and its verification is presented in the Appendix.

Finally Chapter 5 concludes with discussions and future research directions.

13

Chapter 2

Preliminaries

In this Chapter, we present some of the definitions adapted from [19] and the theory
behind [4, 5] approach for designing fault-tolerant components and their composition
with the fault intolerant program. We then proceed to explain our category-theoretic
formal framework for composing these components with the FIP. Finally, we provide
a brief description of the SPECWARE tool that we have used for the purpose of

specifying and verifying the composition.

2.1 Definitions

We present some of the definitions that have been adapted from [19] for describing
the component-based approach of Kulkarni. In their work, a program is intuitively
denoted by state transitions, and a problem specification is indicated as a set of state

sequences. Based on the work of Arora and Gouda [3], faults are depicted as state

14

transitions which allows the representation of a rich class of faults followed by the
definition of fault-tolerance. Finally we list the definitions of detectors and correctors
and their design methodology.

Program :

Based on the work of Chandy and Mishra [9], a program, p is defined as a finite set of
actions over a set of variables. Each of these variables’ has a value from a predefined
non-empty domain. An action has the form:

< name > :: < guard > — < statement >, where name is the action name and
guard is a boolean expression over the variables of p.

State :

A state of p is defined by a value for each variable of p, chosen from the predefined
non-empty domain of the variable’s value.

State Predicate :

A state predicate of p is a boolean expression over the variables of p.

Invariant :

An invariant of p is a logical expression whose truth value is always true whenever
the program executes correctly [11}, i.e., it is a predicate that characterizes the set of
fault-free states reachable during the fault-free execution of p.

Problem Speci fication :

A problem specification is a set of sequence of states that is suffix and fusion closed.

Suffix closed means that if a state sequence ¢ is in that set, then so are all its suffixes.

15

If o and B are finite prefixes of state sequences, v and ¢ are suffixes of state sequences,
and z is a program state, then fusion closed means that if < a,z,v > and < 3,z,§ >
are in that set, then so are the state sequences < f,z,v > and < a,z,d >.

Closure :

A state predicate R is preserved for an action of p, if starting from any state of p
where R holds, and the guard of the action is true, executing the statement of the
action yields a state where R holds. R is closed in p iff each action of p preserves R.
Fault Actz'ons :

A fault can be represented by actions, called fault actions whose execution disturbs
the program state.

Fault — span :

Consider a set of fault actions F' that a program is subject to. The set of states that p
reaches when it executes in the presence of actions in F' is called fault-span predicate
of p with respect to F. It also holds at each fault-free state of p.

Fault — Tolerance :

During the normal execution of a program p, starting from any state where the
invariant S holds, an action of p results in a state where S continues to hold, whereas
executing an action from F', the set of fault actions, may result in a state where S
‘does not hold. However, in this state, T', the fault-span holds, subsequent actions
of p and F result in states where T" holds and when actions in F stop executing,

subsequent execution of actions of p alone eventually yield a state where S holds,

16

from which point normal execution is restored.
From the above definition it can be implied that if T, the fault-span is S itself, then

p is masking F-tolerant, else if T'#S, p is non-masking F-tolerant.

2.2 Detectors

A Detector is defined as a component that ensures that the safety property of the
distributed system is preserved. It does this by detecting if the safety predicate is
satisfied by the system state.

Detectors form the basis of fail-safe tolerant programs. To validate this state-
ment [19] has shown that detectors are sufficient to design fail-safe tolerant programs
and that detectors are necessary to design fail-safe fault-tolerance. Some of the tech-
niques used to design fail-safe tolerant programs are comparators, error detection
codes, consistency checkers, watchdog programs, alarms, exception conditions, which

are all instances of detectors.

2.2.1 Designing Detectors to achieve fail-safe tolerance

The detector component ensures that the program does not deviate from its nor-
mal execution and that any bad state is detected by this component. Detectors are

designed with a given detection predicate.

17

2.3 Correctors

A Corrector is defined as a component that ensures that the liveness property of the
distributed system is preserved. It does this by detecting if the safety predicate is
satisfied by the system state and also correcting the system state in order to satisfy
that predicate whenever it is not satisfied.

Similarly [19] shows that correctors form the basis of nonmasking tolerant pro-
grams. To validate this statement, [19] has shown that correctors are sufficient to
design non-masking tolerant programs and that correctors are necessary to design
non-masking fault-tolerance. Some of the techniques used to design nonmasking tol-
erant programs are voters, reset procedures, rollback recovery, rollforward recovery,

which are all instances of correctors.

2.3.1 Designing Correctors to achieve non-masking tolerance

Arora [2] proposes a method for designing non-masking fault tolerance based on
which the corrector component is designed. It puts forth the following steps to design
a program that satisfies a given problem specification and is non-masking tolerant to

a given set of fault actions:

1. Designing a fault-span T, in which a state predicate T is constructed which is
weak enough so that the fault actions preserve it.
2. Designing the invariant S, in which a state predicate S is constructed which

is strong enough so that the safety properties of the problem specification are
18

met.

3. Designing program actions that achieve non-masking tolerance by ensuring that

T converges to S, meaning that each of these actions preserve 7' as well as S.

4. Designing program actions that satisfy the problem specification, which ensures
that the program specification is satisfied in all computations that start from

states where S holds.

2.4 A Formal Approach to Putting Components

Together

Algebraic specification deals with modelling system behaviour using algebras (a col-
lection of values and operations on those values) and axioms that characterize algebra
behaviour, and composing smaller specifications to result in larger specifications. The
specification building operations defined by category theory constructs are used for
the composition operation. In this section we give an overview of component (module)
composition utilizing the concepts of category theory. We begin with the definitions
of some of the terms in category theory that are relevant for our work.

Category theory is an abstract mathematical theory used to describe the external
structure of various mathematical systems [32] and is used in this thesis to describe
the relationship between specifications.

A category consists of a collection of C — objects and C' — arrows between objects

19

that respect the following properties:

1. There is a C' — arrow from each object to itself. This is called the identity
morphism.

2. C —arrows are composable, i.e., each morphism is associated with an object A
that is its domain and an object B that is its co-domain.

3. Arrow composition is associative.

e Signature: The structure of an algebraic specification is defined in terms of
sorts, an abstract collection of values, and operations over those sorts. This
structure is called a signature.

e Specification: A signature defines only the syntax of a solution. The seman-
tics are specified by extending the signature with axioms defining the intended
semantics of the signature operations. This extension of the signature with
associated axioms is called a specification.

e Specification Morphism: A specification morphism is a pair of functions
that maps sorts and operations from one specification to compatible sorts and
operations of a second specification such that a) axioms of the first specification
are theorems in the second specification and b) source operations are translated
compatibly to target operations. Intuitively, specification morphism defines how
one specification is embedded in another.

e Colimit: The colimit operation takes a specification diagram as input and pro-

duces a specification called the colimit of the diagram. In this operation, the
20

morphisms between the specifications have to be first indicated. A diagram of
specifications is a directed multi-graph whose nodes are labelled with specifi-
cations and whose arcs are labelled with morphisms. The colimit operation is
then applied to a diagram of specifications linked by morphisms. The colimit
contains all the elements of the specifications in the diagram, but only elements
that are linked by arcs in the diagram are identified in the colimit. For exam-
ple, any diagram containing objects A; and A;, and morphism a,, the colimat
is an object L and a family of morphisms I;, I; such that for each I; : 4; — L,

Ij : Aj — L, and Ay . A.L — Aj, then aonj = I;.

Figure 2.1: Colimit Function

Module specifications are defined by utilizing the notion of push-out operation
from category theory. Given specifications A and B, and a specification R describing
syntactic and semantic requirements along with two morphisms fand g, the push—out
operation gives the specification P which contains A and B.

Formally, given specification morphism f : R — A and ¢ : R — B, a specification
P together with specification morphisms h : A — P and k : B — P is called the
push—out (of f and g), provided that the module commutes, i.e., ho f = k o g, where

o denotes composition.
21

{(Resource provided
by this module)

Parameter E[por\
In!pon Body

{Resources provided
by other modules)

@ (O]

Figure 2.2: (a) Push-out and (b) Module Interfaces

2.4.1 Module Interfaces

Modules are expressed in terms of externally visible interfaces defining what services a
module provides and requires in order to be used in a system. We express these module
interactions by the exzport and import interfaces that are essentially specifications, and
their sorts and operations linked together via spec-morphisimns.

A module specification MOD = (PAR,EXP,IMP,BOD, f, h,q,k) consists of
four specifications (a) parameter specification (PAR), (b) ezport interface specifi-
cation (EXP), (c) import interface specification (IMP) and (d) body specification
(BOD), and and four mapping morphisms f,h, g, and k such that the following

diagram commutes, i.e., f o h = g o k (Figure 2.2(b)).

2.4.2 Composing Modules Together

Composition: To capture module interactions, our proposed composition scheme
allows two modules to be interconnected via the export and import interfaces. Their
push-out is the resulting specification of the composed module. Figure 2.3 depicts

the composition operation. In the figure, Module! has four objects namely Parameter

22

(Ry), Export (A;), Import (B;) and the pushout of these 3 objects giving the Body
(Py) which is the specification of Modulel. Similarly Module2 has Ry, Az, By and P,
as its Parameter, Export, Import and Body respectively. In Figure 2.3(a), Module1
imports via specification B; whatever Module2 exports via specification A,. The
compatibility of the parameters (or semantic constraints) is governed by the morphism
{. Furthermore, the following property must be respected: g, 0s = to f5. Basically, in
category-theoretic terms, Modules 1 and 2 are diagrams that commute individually
by the specification morphism relationship of fiohy =g 0k) and foohy = gy 0 k>
and their colimit would produce the required composed module, which would now
commute by the relationship f; o hy o my = t o g 0 k3 0o my as in Figure 2.3(b).
Since the composed module also commutes, its specification is proved correct thereby
helping in the reusability of the module.

The module (Py3) obtained by composing the two sub-modules (1 and 2) is also
a diagram with its Parameter as the parameter of Modulel, Export as the export of
Modulel, Import as the import of Module2 and the Body as the union of bodies P,
and P, over the export of Module2. In this case, the resulting composed module Py,

is (Ry, A1, By, Pjy), where Py is the push-out of Py and P, over Bi(Figure 2.3(b)).

2.4.3 Interconnecting Modules via the Union Operation

Many a times, two specifications derived from a common specification need to be

combined. The desired specification after combining should consist of parts unique to

23

whese:

) f
Ry and R, are Pasmmetsss. | R !

————)-A

Aqud AjscBpons. !

By wid By wo luports. togy Mg [Byomy
Pyand Py ste Bodis. {

70y gy K yare Morphisms. ¢ B P

rhE Ry : 2 Igom 12

{7 by gy ¥y wee Morpblomus. |

mymys, ¢ are Morphisms. E

+ For commutation,

Py is the Composed Module. §
: fiohjomy =t ogyo kyomy

Figure 2.3: (a) Composition of Two Modules and (b) Composed Module
the two specifications and some “shared part” that is common to both. As illustrated
in [14], the union operation in category theory provides an interconnection mechanism
between module specifications. Instead of taking the set theoretical union, the shared
part is designated, and the union construction thus identifies this shared subpart of
both module specifications and the disjoint union for all other parts. The connection
between the shared submodule and the other module specifications is given by a pair
of module specification morphisms. Given module specifications MOD; for j =0, 1,
2 and module specification morphisms f1 : MOD0 — MOD1 and f2 : MODO —
MOD?2, the union MOD3 of MOD1 and MOD2 via MODO and f1, f2, written as:
MOD3 = MOD1+opo,f1,;2)MOD2 is given by the construction below, and shown

in the Figure 2.4.

1. PAR3 = PARl+4psroPAR2
2. EXP3 = EXPl4+gxpoEXP2
3. IMP3 = IMP1+ppol M P2

4. BOD3 = BOD1+gopysBOD?2
24

The definitions of f3, g3, k3 and hz make use of the fact that f1 and f2 are module
specification morphisms such that all subdiagrams, except the diagram having f3, g,
ks and h; are already commutative. Hence the property to be respected to show the

correctness of the union construction is to prove that

PAR; — PAR3 — EXP3 = PAR; — EXP; — EXP3for j =1,2.

COMPOSITION PROOF
R1->R3->A3 =RI1->A1->A3

R2->R3->A3 = R2->A2->A3

A N N

g -_.\4 i '.‘ ..- °
‘Rg e Y ¢

Y

v

SN
B Moduled o
N Y
B3

Figure 2.4: Union Operation

All the above concepts are expressed and implemented in MetaSlang, the language

used in Specware.

25

2.5 Our Framework for Composing Software Com-

ponents Together

The specific goal of the proposed framework is to facilitate the construction of a de-
pendable program by composing a fault-intolerant program with fault-tolerant com-
ponents. The framework adapts the approach presented in [5] for transforming a
fault-intolerant program into a fault-tolerant one. The framework for our approach

is shown in Figure 2.5.

Fault-tolemant
. Cos
Algorithms (Detectors & correctors)

NS

Disuibuted Program/

Abstraction & formal
specification
l Refinement of the
composed
Catogory Theotitic spproachbs specification
for compasiag specificar
and vedfication
Software Synthesis
Inplementable
Fault wlerant
softwrare

Figure 2.5: Framework for composition

We first identify the failure scenarios of the algorithm or the fault-intolerant pro-
gram under study and construct the appropriate fault-tolerant components following
the guidelines proposed in [5]. The program along with the components are then spec-
ified in an abstract formal specification and then subsequently verified. After having

specified and verified these individual software components, we then utilize concepts

26

of category theory for composing the program and its fault-tolerant components to
result in a single composed program that is capable of handling specific types of fault.
The resulting composed specification of the fault-tolerant program is then verified to
ensure that the program satisfies that desired dependability requirements. Note that
the framework also allows for further refinement of the composed as well as individ-
ual component specification. This enables enriching the specification with additional
details in terms of data structures and operations. Each refinement step is subse-
quently subjected to verification to ensure that there are no inconsistencies. Through
software synthesis, for the given level of abstraction, we can obtain an implementable
code that would be fault-tolerant by the virtue of correct-by-construction approach.
The proposed approach has been realized with the support of Specware [33] tool
from Kestrel Institute. Once the specification has been refined into a suitable form,
Specware supports standard library components to be converted into components in

some executable programming language using a code generator.

2.6 Specware

In this section, we provide a brief overview of the Specware tool, which has been used
to specify and verify the concepts of our approach.

Specware is a system which aims to provide a formal support for specification
and development of software [34]. It allows users to precisely specify the desired

functionality of their applications and to generate provably correct code based on

27

these requirements. The foundations of Specware are category theory, sheaf theory,
algebraic specification and general logic. Using Specware, one can construct formal
specifications modularly and refine such specifications into executable code through
progressive refinement. The software development in Specware is characterized by

two tenets [34]:

e Description: A description is a collection of properties that we ultimately wish
to build. These descriptions are progressively refined by adding more properties,
till a model is reached which satisfies these properties.

e Composition: Complexity and scale are handled by utilizing the composition
operators which allow bigger descriptions to be put together from smaller ones.
The colimit operation from category theory is pervasively used for composing

structures of various kinds in Specware.

Adapting from the introduction presented in citemanual, the following discus-
sion describes Specware briefly. Specware aids in expressing requirements as for-
mal specifications without regard to the ultimate implementation or target language.
Specifications describe the desired functionality of a program independently of such
implementation concerns as architecture, algorithms, data structures, and efficiency.
This makes it possible to focus on the correctness, which is crucial to the reliabil-
ity of large software systems. Using Specware, the analysis of the problem can be
kept separate from the implementation process, and implementation choices can be

introduced piecemeal, making it easier to backtrack or explore alternatives.
28

Chapter 3

Case Study 1: The Mutual

Exclusion Algorithm

In Chapter 2, we introduced the basics for the construction of fault-tolerant compo-
nents and our category-theoritic based approach for modular composition. In this
chapter, we discuss the application of our approach with a case study based on the
fault-intolerant mutual exclusion program of Raymond [28] and Snepscheut [31]. This
has been subsequently used in [5] to introduce an approach to develop a fault-tolerant
program utilizing corrector and detector components. We proceed as follows: First
we briefly describe the mutual exclusion problem and the faulty scenarios that may
arise. This is followed by a description of the actions of corrector and detector compo-
nents. We then illustrate the compoéition of these components using category theory,

followed by their formal specification and verification using Specware.

29

3.1 Brief Description of the Mutual Exclusion Al-

gorithm

Consider a set of N processes executing concurrently with each process having critical
sections to be executed. The conditions to be satisfied before a process executes a

critical section are:

1. There must be only one process executing the critical section at any time. A

process can enter the critical section only if it possesses the token.

2. The algorithm should be non-blocking, i.e., when the process is in a critical
section, it never halts and if it does in a non-critical section, it does not interfere

with other processes.

3. There should be no deadlock, i.e., if a process tries to enter the critical section,

eventually it succeeds.

The algoﬁthm as such has no fault-tolerant features. To make the algorithm
fault-tolerant, [5] gives details of the composition of a corrector and a detector after
identifying the fault scenarios. Fault tolerance is needed to ensure that there are no
inconsistencies in the execution of the critical section and to ensure that at any time,
only one process executes the critical section.

Faults arise when one of the processes in the directed-tree fail-stops, which in

turn leads to inconsistencies in the parent and holder relationship (will be explained

30

shortly). If the failed process also had the token, then a new token must be generated.
The detector should ensure that such faults are detected and the corrector ensures
that the program not only detects but also recovers to a safe state on the detection
of such faults.

The algorithm is based on the token approach, wherein a unique token is circulated
between the processes, and entering a critical section is subject to a process having

the token. The following are the assumptions made in this algorithm.

1. All the processes are organized in a tree pattern.

2. Each process maintains a request queue, which stores the requests of those
neighbouring sites that have sent a request to the process, but have not yet

been sent the token.

3.2 Fault-Intolerant Program (FIP)

The normal working of the FIP consists of the following actions:

1. The program either makes or propagates a request to the holder process for

getting the token.

2. The program transmits the token to fulfill a pending request from the neigh-

bouring process.

3. The program accesses the critical section when it has the token.

31

The program includes the following sorts which are the basic data structures of

the FIP module:

e holder.z : holder for the node z, indicating the location of the token relative to

the node z itself.
e parent.z : parent of the node z, in the tree.
e using : indicates if the node has token or not (i.e., true or false).

The FIP module has the following operations:

o REQUEST-CS: This operation requests for a critical section by sending a re-
quest message to the holder process. REQUEST-CS acts on the holder.x vari-

able and the request queue. It performs the following actions:

1. To enter a critical section, the process sends a request to its holder process,

provided the token is not with the process itself and its queue is empty.

2. It then adds its own request to its request queue.

e RECEIVE-REQ: This operation does the processing of the Request message
received. RECEIVE — RE(Q operation acts on the holder.z variable and the

request queue. It performs the following action:

1. When the holder (i.e., the process in the path) receives this message and

it is not the process that has the token, it places the request message in

32

the request queue and sends a request message along the path, i.e., to its
holder. This is done if it has not already sent a request on its outgoing

edge (to its holder).

e FORWARD-TOKEN: This operation acts on the token variable and the holder.x
variable and is invoked after completion of execution of the critical section. It
performs the following actions:

1. It checks if the request queue is empty.
2. If the queue is empty, it holds the token till it receives a request.

3. Ifit is not empty, the entry at the top is removed and the token is forwarded

to that process.

4. Tt then sets its holder.x to that process.

e ENTER-CS: This operation is invoked when the process has to enter the critical

section. It acts on the token and request queue.

1. A process enters the critical section if it receives the token and its own

entry is at the top of its request queue.

2. The entry is deleted from the request queue and the process enters the

critical section.

33

3.3 Considering Fault Scenarios

In our discussion, the failure of a process is assumed to be fail-stop. The failure
of a process may lead to partitioning of the tree structure in the FIP leading to
inconsistencies in the parent and holder relationship. Furthermore, it may lead to loss
of the token being circulated, when the process having the token fail-stops. To mask
these failures, we need a corrector that corrects the parent tree, i.e., it reconstructs
the parent tree and another corrector that sets right the holder relationship of the
reconstructed tree. The consequence of these actions results in the holder relationship

being identical to the parent relationship and the root process being the token-holder.

3.3.1 Corrector for Rectifying the Parent Relation (C1)

When there is a failure in one of the nodes, it leads to program states where there
are multiple trees (because of the broken link) and unrooted trees [5]. We therefore
need a corrector that rectifies the parent tree in the event of a failure of one of the
nodes. The corrector merges the trees and eventually causes convergence to a state

where there is only one root for the entire tree. The corrector has the following sorts:

e colour.j : colour of the node j.

e holder.j and parent.j are imported from the FIP module.

The corrector has the following operations:

34

e CORRECT-UNROOTED (NT1): This operation involves the holder.z and

parent.z sorts and has the following steps:

1. When a node z detects that its parent.x is down or its colour.z is red, it

sets its colour to red.

2. When the leaf node gets coloured red, it separates from the tree and resets

its colour.x to green.

3. It then sets its holder.x and parent.x to SELF'.

e CHECK-COLOUR (NT2): This operation checks if the parent node is down or

its colour.x is red.

e MERGE (NT3): This operation involves modifications to the holder.z and

parent.xz sorts and has the following steps:

1. Node j merges into the tree of a neighbouring node k when root of j is less

than root of k.

2. After merging, j sets root of j to root of k, parent.j = k and holder.j = k.

e SET-COLOR: This operation sets the colour.z of the node to red.

When the faults stop occurring, if a process is coloured red, then all its chil-
dren are coloured red. The action NT'1 of the corrector eventually causes all pro-
cesses to reach a state where they are coloured green, leading to a state where

there are no more unrooted processes. Finally, the graph of the parent relation

35

forms a rooted spanning tree with the root values of all processes being identical [5].
The export operations after the addition of this corrector are modified versions of
REQUEST-CS, RECEIVE-RE(Q), FORWARD-TOKEN and ENTER-CS which are

named REQUEST-CS1, RECEIVE-REQ1, FORWARD-TOKEN1 and ENTER-CS1

respectively.

3.3.2 Corrector for Rectifying the Holder Relation (C2)
The holder relation may still remain inconsistent in one of these two conditions:

1. Holder of j may not be adjacent to 7 in the parent tree or

2. Holder of j may be adjacent to j in the tree but the holder relation forms a

cycle.

This corrector involves addition of predicates to satisfy the liveness property. The

actions performed by this corrector are:
1. When the condition (1) holds, C2 sets holder.z to parent.z, and

2. When the condition (2) holds and parent.k = j, holder.j=k and holder.k=j,

C2 sets holder.j to parent.j.

With the addition of C'2, the export operations are enhanced versions of REQUEST-
CS1, RECEIVE-REQ1, FORWARD-TOKEN1 and ENTER-CS1 which are named

REQUEST-CS2, RECEIVE-REQ2, FORWARD-TOKEN2 and ENTER-CS2 respec-

tively.
36

3.3.3 Global Detector (D1)

To enhance the tolerance of the program from non-masking to masking, two detectors
are added [5]. The actions of the first detector, explained in this section, affects the
state of all nodes, and is hence called the global detector. The second detector, called
the local detector since its actions are local to the node, is explained in the next
section.

When the corrector actions result in the node setting the holder to itself, it results
in the creation of a new token. The safety condition to be satisfied before a new token
is generated is that “no other process should have the token”.

The addition of the corrector results in a non-masking tolerant program, which
eventually converges to a state where the graph of the parent relation is a rooted tree,
and the holder of each node is its parent. Therefore, the safety predicate to be detected
is to observe if the program is in such a state. To achieve this, the node j initiates
a diffusing computation when the holder.j = SELF or the holder.j = parent.j,
i.e., when node j is the root node. Each node maintains a sequence number which
it increments for each diffusing computation that it initiates/propagates. The root
proliferates the computation to its children, which in turn propagate the diffusion
message to leaf nodes through intermediate nodes. When the leaf node receives the
diffusion message, it responds to its parent. The parent in turn, collects the results
from all its children and replies to its parent, informing whether a process in the

sub-tree has the token or not. The root on receiving the result from all its children,

37

decides if any node in the sub-tree has the token by inspecting the result. The sorts

defined by this module are:

e phase.j: phase of the node 7, can take values propagating, completed

e sequence.j : Sequence number for node j.

The following are the operations of D1:

e [NIT: This operation performs the following actions.

1. Increment the sequence.j.
2. Send the diffusion message to all children.
3. Set phase.j=propagating.
e PROP:
1. If sequence.j is different from sequence.(Parent.j) and j and Parent.j

are in the same tree, propagate the diffusion message.

2. If holder.j = Parent.j and phase.(Parent.j) = propagating, return result =

true.

3. Returns result = false, thus completing the diffusion process.

e COMPLETE: This operation is executed at all the nodes.

1. If all the children have responded with result frue, all neighbours have

propagated the diffusion computation and their result is true.
38

Completion of the diffusion computation with result frue ensures that the

safe predicate is satisfied and the root can generate a new token.

e ABORT: This operation completes the diffusion computation prematurely with

the result false.

With the addition of D1, the export operations are enhanced versions of REQUEST-
CS2, RECEIVE-REQ2, FORWARD-TOKEN2 and ENTER-CS2 which are named
REQUEST-CS3, RECEIVE-REQ3, FORWARD-TOKENS and ENTER-CS3 respec-

tively.

3.3.4 Local Detector (D2)

The safe predicate to be satisfied when the process is forwarding the token is that
it should not be participating in a diffusing computation. The FORWARD-TOKEN
operation is therefore enhanced to check that the phase.j = completed and only then
is the token forwarded. Similarly the operation ENTER-CS is modified to include
a check for phase.j = completed and only then can the process enter the critical
section. These two actions are performed by the local detector, D2.
With the addition of D2, the export operations are enhanced versions of REQUEST-

CS83, RECEIVE-REQS, FORWARD-TOKENS and ENTER-CS3 which are named
REQUEST-CS4, RECEIVE-REQ4, FORWARD-TOKEN/ and ENTER-CS/ respec-

tively.

39

3.4 Composing the FIP, Corrector and Detector

using Category Theory

In this section, we explain the conversion of the FIP into a FTP by composing it

with the corrector and detector modules utilizing the concepts of category theory, as

llustrated in Section 2.4.

4 REQUESTCS!
W RECENEREQL
e = FORNARD-TORENI |
Requestquese ENTERCS1 : where:
 f,: holderj-> ENTER-CS
g d & g, bolderj > bolderj
o by ENTER-CS-> ENT " :
RCEVEREG—— S &y holdecj > ENT ma;,j REQUEST 1 ! where:
. e B } foh =holderj > ENT =g 0k, PG iy | wgENT>FLENT
H - holderj-> ENTER-CS1 oken mfmm i oy FUENT > FI_ENT
! g -holderj > ENTER CS Tomam } f: olderj -> ENTERCS!
f vyl RRCl i hom, = ENTER-CS{->FT ENT
: + ki ENTER-CS-> FT_ENT B om, i byom, = ENTERCSE-> FT]
s i P > ' ! tog= hoker§ -> boldej
; { b ENTERGSL>FLENT ot U, | ¢ om =] > BT
. iy ; s:ENm‘{ACS»E?TER-CS 00 Wg{{"’ ¢ 4,0k om=holderj -> FT_ENT
m - ; + 4 : holder-> holderj meﬂm i tog,ok o =holderj -> FT_ENT
odj KRR : ! £ o =<bolderj > FT_ENT= gk, :
Rn;ulmm ENTERCS i 1 ENT Acoess 0 enles cifca seckion
FAULT : | FLENT :mmmmmmm
INTOLERANT ' iicel seckon
Rl R 1
Holder Spo FP i
parcst Spec: FIP_Ct
o " AT
Request quese T

@ ®

Figure 3.1: (a) Composition of FIP and Corrector 1 (b) Composed diagram of FIP
and Corrector 1

3.4.1 Composing FIP and C1

Figure 3.1(a) depicts the individual modules of FIP and CI1. For the composite
module FIP_C1, composed out of FIP and C1 to exist, it is necessary that these two

modules commute individually through the specification morphism relationship as

40

discussed in Section 2.4'. These relationships are shown next to the figure separated
by a dashed line.

Each of the modules (components) are depicted in the same way as Figure 2.3
with the four sets of objects as parameters, export, import and body (spec) with
corresponding morphisms and mappings. The FIP has the holder, request queue,
parent, root and token as its parameters. The properties of the FIP module are:
(a) to request access to a critical section (REQ), and (b) to enter a critical section
(ENT). Since FIP is the basic module, the import interface and parameter part of the
specification are equal: FIP.import = FIP.parameter [14]. The export entity consists
of the operations that achieve the mutual exclusion property, viz., REQUEST-CS,
ENTER-CS, and RELEASE-CS. In the Figure 3.1(a), fo maps the holder.j to the
ENTER-CS operation, i.e., ENTER-CS acts on the variable holder.j. The morphism,
hy maps the operation ENTER-CS to the ENT property in Spec:FIP since the opera-
tion ENTFER-CS provides the property of entering the critical section. The morphism,
ko, maps the variable holder.j to the property ENT, since this variable is being used
in providing the final property of entering the critical section.

The C1 module has the holder, request queue, parent, using and colour as its
parameters. The properties of the C1 module are: (a) fault-tolerant request to access

a critical section (FT_REQ), and (b) fault-tolerant access to enter a critical section

L At this stage, we feel that pictorial representation of a module and the definition of morphisms
placed adjacent to the module diagram would be much more effective. We will present formal
specification and verification in Section 3.5.

41

(FT-ENT). The morphism ¢ relates the parameters of the FIP with the parameters
for C1, since C1 also operates on the same parameters as that of FIP. The morphism
s maps the operations that are exported by FIP module and imported by the C17 for
its proper working. The internal operations of C7 are private to the €1 module and
as such will not appear in the EXPORT object of the composed module.

By using these specification morphisms (¢ and s), we can compose the two modules,
namely, FIP and C1 resulting in the final composed module of FIP_C1. The final
specification, Spec:FIP_C1 has the property of FIP, namely, ENT, since the morphism
m, maps the property ENT in FIP specification to FT_ENT in the final specification.
Since the final specification, Spec:FIP_C1 has the property of C1, namely, FT_ENT,
the morphism m, maps the property FT_ENT in C1 specification to FT_ENT in the
final specification.

Figure 3.1(b) shows the composed diagram (module) of the FIP composed with
C1. It has the properties of both FIP and C1 for (a) entering the critical section via
ENTER_CS! and (b) masking the fault by merging the tree back when the parent
relationship becomes inconsistent via NT3 operation.

In Section 3.3, we explained the features of the FTP and in Section 3.3.1,
we identified one of the correctors for the FIP. The overall composition of the FIP
and (1 provides: re-establishing the parent relationship in the case of a failure of a
node/process. With the addition of the C1, merging of the trees is done whenever

a process goes down, thereby combining multiple trees into one, and the parent re-

42

lationship among the remaining processes is reconstructed, thus solving the problem
of unrooted trees. The final export operations of the composed module are modified

versions of the operations exported by the FIP, but tolerant to faults that are masked

K‘aﬁ}] REQUEST.CY!
e f; RECHIVEREQ?
e, RWARD-TOKEN? |
et quene ENTERLS? | where
{ & bolderj > ENTERCS]
) 19 i gyt bolder -> holder
5 by: ENTERCSI-> FT_ENT
31 & ke -
:Egﬂv&xml Y e : Ky bolderj-> FT_ENT :
: e e e I) e
: i 1 boldorj-> ENTERCS2 g Samere 1 mFLENT>NMENT
: + g, bolder-> ENTERCS1 ke REQR : my NM_ENT->NM_ENT
4 : | £ ENTERCS» NMLENT ipae FORVEDIOEN. § e > ENTERCS2
: Rt L3 i hom, = ENTER-CS2 > NM_ENT
H : h,: ENTER-CS2-> NM_ENT by APCLC oy | tog= bolder; -> bolder
okt : ! 5 ;ENTERCS! > ENTERCS1 . ! k;om,= holderj->NVL_ENT
bk REQUEST-CSI i H oldet ¢ Ky
ity RECHVEREQI : it holderj > bolder | Lol SecFRCLE 3 foh) om =bolder->NM_ENT
hal] % FORWARDNTORENI : e oM AT i tog ok om =bolderj > NM_ENT
Regquat qucne ENTERL31 : ! foh=bolderj-> NM_ENT= g ok Requet quee o :
| NMLENT - Non-masking il tolerant
2 FIECE) H aocess {o ender a orlical
section
[® ¥ a
22} Spec:FRCL
m ! PR e L] {m
token BNT FI_BNT
Request quese EMT

®

Figure 3.2: (a) Composition of FIP, Correctors 1 and 2 (b) Composed diagram of

FIP_C1.C2

We have shown how the components, namely, FIP and the corrector CI can be

composed using the concepts of category theory, and the correctness is shown in

Figure 3.1(b). The composed module as shown in Figure 3.1(b) also commutes, and

hence the combined specification can be reused for subsequent composition.

3.4.2 Composing FIP_C1 and C2

In Figure 3.2(a), f maps holder.jto ENTER-CS1, hy maps ENTER-CS1 to Spec:FIP_C1

since it provides property of entering the CS even in the case of failure of the parent

43

relationship. The morphism, k; maps holder.j to property FT_-ENT in Spec:FIP_C1,
since it is used in providing the functionality of entering a CS in the event of faults.
The morphism, g, maps holder.j to holder.j inherited from the FIP module. The
C2 module provides the property of non-masking access to enter a critical section
(NM_ENT). The final specification Spec:FIP_C1_C2 has the property of FIP.CI,
namely, FT_ENT, since the morphism m; maps the property FT_ENT in FIP_CI
specification to NM_ENT in the final specification. The morphism m, maps the
property NM_ENT from C2 specification to NM_ENT in the final specification. Thus
the composed module shown in Figure 3.2(b) has the property of both FIP_CI and
C?2 and hence is non-masking tolerant.

At this stage, we have the composite module FIP_C1_C2 that is capable of toler-
ating failure in both the parent and holder relationship, when a process in the tree
fail-stops. The composed module FIP_C1.C2 is now tolerant to failure of any of the
processes in the tree, but if the process that failed also had the token, then a new to-
ken must be generated. A new token should only be generated when no other process
has the token. To detect this, the composite module FIP_C1_C2 is composed with

the detector D1, which is illustrated in the next section.

3.4.3 Composing FIP_C1_C2 and D1

Figure 3.3(a) illustrates the composition of the FIP_C1_C2 module and detector mod-

ule D1. The D1 module extends the support of non-masking access to enter a critical

44

‘;’?&j’] REQUEST-(S3
f&’;” > GRwa-T0kRS :
ga ENTERCS) 1 wher:
Vi ! Boldet > ENTER-CS? .
a u ‘1 gy holderj > halder o
{ hy: ENTERCS? - NM_ENT o b
N { y: holderj > NM_ENT ke e e
Ervmagea TET | Gohsiolij> NUENT =0k, w0 e | o> DELENT
t ENTER.CS! : :) %w BTRR (D y DET ENT>DETENT
: : fﬂm{-ﬂwﬁg : §; bater] > ENTERCS3
: Byt i ! byom = ENTERCS3 > DET BT
/ ; !k ENTERCS2-> DET_ENT b LI
3 { by ENTERCS?.>DET ENT & o | & m;:rj)
" o { s :ENTERCS2 > ENTERCS2 i RACH L bons hali) > DELENT
ﬂ}' REQUEST.CS? : + 1 :bolderj > holder W hom wpg ¢ ok om =holderj > DET ENT
W 5 owamwrm ‘ t foby=lolderj > DET_ERT =g ok, g LB ¢ tog;k on =bolker] > DELENT
‘{:“f“mw———’ ENTERST : a1 !
8 AECiC2 o
bolderj Spec: FIP CI T2 '
i A Spee: FCLCIDA:
m”] ﬁ;ﬁfﬁ L] VR B
ke e _EN
Rouest quosc gﬁﬂ"

Figure 3.3: (a) Composition of FIP.C1_.C2 and Detector DI {(b) Composed diagram
of FIP.C1.C2.D1

section by having an additional feature that satisfies the safety condition S1. This en-
hanced property provided by D1 is termed as DET_ENT. The resulting specification
(FIP_C1.C2_D1) has both the properties of FIP_C1.C2 and DI since the morphism
my maps the Spec:FIP_C1_C2 to Spec:FIP_.C1.C2.D1, i.e., the property NM_ENT is
present in the Spec:FIP_.C1.C2_D1. Since the final specification Spec:FIP_C1_C2.D1
has the property of DI, namely, DET_ENT, the morphism m, maps DET_ENT in
D1 to DET_ENT in the final specification. Figure 3.3(b) shows the composed dia-
gram of FIP_C1_C2 composed with D1. It has the properties of both FIP_C1.C2
and DI for (a) accessing the critical section via ENTER_CS2 and (b) detecting if any
other process has the token before generating a new one, via operations explained
in section 3.3.3. The composed module is thus able to detect and satisfy this safety

condition before a new token is created. Another condition that should be satisfied

45

for the composite module FIP_C1_C2.D1 to be converted to a FTP is that it should
not execute the diffusing computation when forwarding the token. This condition is
detected by composing FIP_C1_C2.D1 with the detector D2 to construct the overall

FTP as shown in the next section.

3.4.4 Composing FIP_C1_C2_D1 and D2

Figure 3.4(a) shows the composition of the FIP.C1_C2_DI module and D2. The
D2 module extends the features of FIP_C1.C2_D1 module by having an addi-
tional operation that satisfies the safety condition §2. The overall operation re-
sults in a masking access to enter the critical section. We call this property pro-
vided by D2 as MASK_ENT. The resulting specification (FIP_C1.C2.D1_D2) has
both the properties of FIP_.C1.C2.D1 and D2 since the morphism m; maps the
Spec:FIP_C1_C2_D1 to Spec:FIP_C1.C2_D1_D2, i.e., the Spec:FIP.C1_C2_.D1_D2 has
the property DET_ENT. Since Spec: FIP_C1_C2_.D1_D2has the property of D2, namely,
MASK_ENT, the morphism my maps MASK_ENT in D2 to MASK_ENT in the fi-
nal specification. Figure 3.4(b) shows the composed diagram of the FIP_C1_C2_D1
composed with D2. It has the properties of both FIP_C1.C2.D1 and D2 for (a) en-
tering the critical section via ENTER_CS/ and (b) ensuring that the process is not
participating in a diffusing computation when forwarding the token. This is done via
modifications to operation FORWARD_TOKENS resulting in the modified version

FORWARD_TOKEN/. The composite module thus obtained is the final fault-tolerant

46

program.

2] REQUEST-C34
pvenl P
] porw AR 0K
Ww ENTERCSt E whﬁﬂﬂ
§ 1y holderj > ENTER.CS3
L { gy holder - holder
o ENTER-CS3 > DET_ENT
31 D2 L i
mmz &J&K_EM { %z boldecj-> DET_ENT
FORWARD- . i f0 by =holderj->DET ENT =g ok
t ENTERCS3 : H 177
i ! §:holdezj > ENTERCS4
: i g, hokder > ENTERCS3
/ ; § k,: ENTERCS3 -> MASK_ENT
H | b, ENTERCS4 > MASK_ENT
e by {5 ENTERCS) > ENTERCS)
boldery REQUEECS) : ¢t < hoderj -> holder
B b roRaDTORR®
e BTRS3 ; | §,0h =bolderj >MASK ENT= g0,
2 Fie CL€2 E ; MASIENT - Masking acoass o ersr a
: | crlcal section
i SpeFIP.C1_C2 DI i
m.ﬁ OET_ENT Spec: FIP
ot} b BT El MASK_ENT
token T’I‘Aﬂﬂ‘ DET_ENY
Roguest quene: el W_ENT
on :
FT_ENT
BT

Figure 3.4: (a) Composition of FIP_C1_C2_D1 and D2 (b) Composed diagram of FTP

3.5 Compositional Specification and Verification

[0}

Using Specware

In this section, we provide the specification and verification of the properties for the
fault-tolerant mutual exclusion algorithm discussed in the previous section. We have
used Kestrel’s Specware tool [33] for the formal specification and verification of the
case study. Specware? is a refinement-based approach to software development that
supports rigorous and explicit modularity in the specification and development of soft-

ware components. There is also a provision for refinement of an abstract specification,

?Details can be found at http://www.specware.org.

47

364 a0
e
oolor
hokdr Y
e N RECEVEREQS
. FORWARD_TOKENS
Rogratqus ENTER CS1
‘Wl P J'\ﬂﬂn
old SpeTP
;‘}M . WX BN
om pETENT
B 7
qoene ot

[

| where:

1, DET_ENT-> MASK_ENT

i m, MASK_ENT > MASK ENT

i 1 holderj -> ENTER-CS4

¢ byom, = ENTBR-CS4-> MASK ENT

P pg= holderj -> holderj

ik om= holderj -> MASK_ENT

foh om =holderj > MASK ENT

1 tog,ok om =holderj -» MASK ENT

primarily done by refining algorithms and data structures. We emphasize that each
step in the refinement process is constrained to preserve correctness. We describe
the composition starting from the initial FIP and then composing the FIP with cor-
rector and detector components resulting in the final composed program for mutual
exclusion that is ‘masking’ fault-tolerant.
We initially specify the properties of the fault intolerant program associated with
the following actions of:
e making a request to the holder process for obtaining the token (Request_CS).
The property to be satisfied by a node for sending a request message to its
holder node include:

o the node should not have the privilege, i.e., , it should not be the holder.

o the node wants the privilege for itself or for others (i.e., request queue is

not empty),

o a request message should not have been sent prior to this.

This can be expressed formally as:

holder # self A —asked A (req_q # empty V j needs to access CS)

e transmitting a token to satisfy a pending request from a neighbour (Fwd_Token).

The property to be satisfied by a node for sending a privilege message include:

o the node should have the privilege, that is, it should be the holder.
48

o the node should not be using the critical section.
o the request queue of the node should not be empty, and

o the oldest request for the privilege must have come from another node.

This can be expressed in formal terms as:

holder = sel f A —using A req_q # empty A head(req_q) # sel f

e receiving a request for the critical section from a neighbouring node (Receive_Req).

o if the node is not the holder, it forwards the request to its holder if it has

not been sent previously.

e receiving the token from a neighbouring node {Enter_CS).

o if the node requested the token for itself, it enters CS, else it forwards the

token to the process at the top of its request queue.

The FIP module imports Address, Request) and CommonOperations as its basic
building blocks. The parameter of Address is formalized as sort using Specware
and translated so that it can be used by other modules for their specification. The

specification of Address module and the translation are specified below®:
Address = spec
sort address = Nat

endspec

ADDRESS_to_ALL_TRANSLATION = translate(Address) by {address+->address}

3Specware code for FIP and FT components and corresponding proof can be found at the URL
http://www.ece.concordia.ca/~sinha/specs/FTP.html.

49

The parameters of Request() are formalized as sorts and operations using Specware
and translated so that it can be used by other modules for their specification, the only
difference being the translation of this module consists of translations of the Address

module too. The specification of Request@) module is specified below:

Requestl] = spec
import ADDRESS_to_ALL_TRANSLATION
sort msg = Nat
sort req_q = List address
op empty : req_g —> Boolean
endspec

REQQ_to_ALL_TRANSLATION = translate(RequestQ) by { address +-> address,
req_q +-> req_q, empty +-> empty }

The CommonOperations specification provides the common functionality needed
by all the properties of the mutual exclusion algorithm for sending and receiving of

messages, enqueuing and dequeuing of messages.

CommonOperations = spec
import REQQ_to_ALL_TRANSLATION
op deq : req_q * address -> Boolean
op dequeue : req_q -> address
Op enqueue : req_q * address -> Boolean
op send : msg * address -> Boolean
op receive : msg * address -> Boolean
op self : address -> Boolean
endspec

The translation provided by this module is shown below:

COMOP_to_ALL_TRANSLATION = translate(CommonQOperations) by

{address +-> address, req_q +-> req_g, empty +-> empty, deq +-> deq,
dequeue +-> dequeue, receive +-> receive, enqueue +-> enqueune,

send +-> send, self +-> self}

Having specified the parameters and operations needed for formalizing the dis-

tributed mutual exclusion protocol, we now specify various attributes (properties) of
50

the protocol in terms of its axioms. The properties are expressed as axioms, since we
wish to extend these properties in a manner as to provide the same functionality, but
with fault-tolerant features, with the addition of correctors and detectors.

The formal representation of the FIP specification in Specware is shown below.
For clarity, only the sorts and axioms corresponding to the properties mentioned

above are illustrated :

FIP = spec
import COMOP_to_ALL_TRANSLATION
sort using = Boolean
sort holder = address
sort myPid = Nat
sort asked = Boolean
sort parent = Nat

If the current process is the holder and it is not executing the critical section and
there is a request in its queue, it dequeues the address in the queue and sets its holder

to that address and forwards the token to that address.

axiom assignPrivilege is fa(a:address,q:req_q,p:myPid,u:using,
ask:asked,h:holder,m:msg)
isHolder (h,getSelf(p),p,u) & ~(usingCS(u,h,getSelf(p))) &
“(empty(q)) => updateHolder(dequeune(q),h) & unsethsked(ask) &
if (isHolder(h,getSelf(p),p,u)) then setUsing(u)
else send(m,getAddress(h))

If the current process is not the holder and there is a request in its queue and
it has not previously sent a REQUEST message, it sends the REQUEST message,

adding it to its queue, and sets the asked sort to false.

axiom makeRequest is fa(h:holder,q:req_q,p:myPid,m:msg,a:asked,
u:using)
~(isHolder(h,getSelf(p),p,w) & ~“(empty(q)) & ~(gethAsked(a))) =>
send(m,getAddress(h)) & setAsked(a)
=> receive(m,getAddress(h)) & addRequest{(q,getSelf(p))

51

"The Request_CS operation adds the process’s request to its own request queue and
if this is the privileged node, then assignPrivilege will allow this node to enter the
critical section. If this is not the privilege node, makeRequest is invoked to send a

REQUEST message to obtain the privilege.

axiom Request_CS is fa(h:holder,q:req_q,m:msg,p:myPid,a:address,
b:asked,u:using)
if (isHolder(h,getSelf(p),p,u)) then
addRequest(q,getSelf(p)) & assignPrivilege(a,q,p,u,b,h,m)
else addRequest(q,getSelf(p)) & makeRequest(h,q,p,m,b,u)

If the process has finished executing the critical section and there is a request in
its request queue, it sets using to false and initiates assignPrivilege which updates
holder and subsequently forwards the TOKEN message to the process in the top of

the queue.

axiom Fud_Token is fa(a:address,q:req_q,u:using,m:msg,p:myPid,
h:holder,b:asked)
(u = true) & (done executing CS) => (unsetUsing(u) &
assignPrivilege(a,q,p,u,b,h,m))

axiom Receive_Req is fa(x:address,q:req_q,m:msg,u:using,p:myPid,
ask:asked,h:holder)
if(receive(m,x) & isHolder (h,getSelf(p),p,u))
then addRequest(q,x) & assignPrivilege(x,q,p,u,ask,h,m)
else addRequest(q,x) & makeRequest(k,q,p,m,ask,u)

axiom Enter_CS is fa(a:address,q:req_q,m:msg,u:using,p:myPid,
ask:asked,h:holder)
(receive(m,a) & updateHolder(getSelf(p),h) =>
assignPrivilege(a,q,p,u,ask,h,m))
endspec

The translation provide by the FIP module which will be used by the corrector

module for its operations is shown below.

FIP_to_ALL_TRANSLATION = translate(FIP) by { holder +-> holder,
Enter_CS +-> Enter_CS, Fwd_Token +-> Fwd_Token,
Receive_Req +-> Receive_Req, Receive_Token +-> Receive_Token }

92

3.5.1 Composing the FIP and C1 specifications

In the absence of any faults, the FIP with these actions results in the holder re-
lationship being a directed tree rooted at the holder process. The addition of the
correctors should ensure that the liveness property is satisfied. The liveness property
to be satisfied is that, when an intermediate node fails, eventually the parent tree is
reestablished and the holder relationship is also corrected in due course. Arora and
Kulkarni propose two correctors for solving this problem, one for correcting the parent
tree and the other for correcting the holder relation. This corrector also introduces

new sorts for its functioning. The properties of C'1 are given below:

NT1 ::V(k : address)
colour (k) = green A (Parent(k) # adj(k) V colour(Parent.k) = red) =

colour(k) = red.

NT2 ::¥(j,k : address)
colour(k) = red A (j € adj(k) A parent(j) # k) =

colour(k) = green; parent(k) := k; root(k) := k; holder(k) := k.

NT3 ::¥Y(j,k : address)
(4 € adj(k) Aroot(k) < root(j)) A colour(k) = green A colour(j) = green =

parent(k) := j; holder (k) := j; root(k) = j.

The formal representation of the C1 specification in Specware is shown below. For

clarity, all the sorts, operations and only the axioms corresponding to the properties

53

that are exported by this module are illustrated :

Cl = spec
import FIP_to_ALL_TRANSLATION
sort adjacent = List address
sort children = List address
sort pid = Nat
sort colour = Boolean %% GREEN -> true , RED -> false
op setRoot : address -> Boolean
op getRoot : address —> address
op setParent : address -> Boolean
op getParent : address -> address
op parent : address -> address
op getAddr : Nat -> address
op getStatus : address -> Boolean
op getColour : address -> Boolean
op setColour : colour * address -> Boolean

axiom NT1 is fa(c:colour,p:parent,a:adjacent)
(c & ("(isProcessinlist(a,getAddr(p))) or
~(getColour(getAddr(p))))) => setColour(“c,getAddress(p))

axiom NT2 is fa(c:colour,k:address,adj:adjacent,q:req_q,
p:myPid,h:holder)
(c & (fa (k) isProcessinlList(adj,k)) &
~(self(parent(k)))) => setColour(c,getSelf(p)) &
updateHolder(getSelf(p),h) & setParent(getSelf(p)) &
setRoot (getSelf (p))

axiom NT3 is fa(c:colour,k:address,h:holder,
adj:adjacent,p:myPid)
(fa(k) isProcessinList(adj,k)) &
{getRoot (getSelf(p)) < getRoot(k) & getColour(k) &
getColour (getSelf(p))) =>
setParent (k) & setRoot(getRoot(k)) & updateHolder(k,h)

axiom Request_CS1i is fa(h:holder,q:req_q,m:msg,p:myPid,
a:address,b:asked,u:using,c:colour,
pa:parent,adj:adjacent)
receive(m,a) & ~(send(m,a)) & Request_CS(h,q,m,p,a,b,u) =>
NTi(c,pa,adj) & NT2(c,a,adj,p,h) & NT3(a,h,adj,p) =>
("(getStatus(a)) & (a = getParent(getSelf(p))))

axiom Fwd_Tokenl is fa(a:address,q:req_q,u:using,m:msg,
p:myPid,h:holder,b:asked,pa:parent,
adj:adjacent,c:colour)
receive(m,a) & ~“(send(m,a)) & Fwd_Token(a,q,u,m,p,h,b) =>
NT1(c,pa,adj) & NT2(c,a,adj,p,h) & NT3(a,h,adj,p) =>
(" (getStatus(a)) & (a = getParent(getSelf(p))))

54

axiom Receive_Reql is f(a:address,q:req_q,m:msg,u:using,
p:myPid,ask:asked,h:holder,c:colour,
pa:parent,adj:adjacent)
receive(m,a) & ~(send(m,a)) & Receive_Req(a,q,m,u,p,ask,h) =>
NT1(c,pa,adj) & NT2(c,a,adj,p,h) & NT3(a,h,adj,p) =>
(" (getStatus(a)) & (a = getParent(getSelf(p))))
axiom Enter_CS1 is fa(a:address,q:req_g,m:msg,u:using,
p:myPid,ask:asked,h:holder,c:colour,
pa:parent,adj:adjacent)
receive(m,a) & ~(send(m,a)) & Enter_CS(a,q,m,u,p,ask,h) =>
NT1(c,pa,adj) & NT2(c,a,adj,p,h) & NT3(a,h,adj,p) =>

(" (getStatus(a)) & (a = getParent(getSelf(p))))
endspec

The translation is done the same way as before, but this time it would have what
FIP module had translated, and also the sorts, operations and properties of the C1

. module.
FIPCi_to_ALL_TRANSLATION = translate(C1) by { holder +-> holder,

Request_CS1 +-> Request_CS1, Fwd_Tokenl +-> Fwd_Tokeni,
Receive_Reql +-> Receive_Reql, Enter_CS1 +-> Enter_CS1 }

In order to compose the FIP and C1 modules, we have to specify the various mor-
phisms that link them. We formalize the morphisms between these two specifications

in the following manner:
FIP_TO_C1_MORPHISM = morphism FIPgm -> C1 { holder +-> holder,

Request_CS +-> Request_CS1, Fwd_Token +-> Fwd_Tokenl,
Receive_Req +-> Receive_Reql, Enter_CS +-> Enter_CS1 }

We then define the diagram with FIP and C1 specifications as the nodes, and the

morphism as the link between them.

FIP_Ci = diagram {a +-> FIPgm, b +-> C1, i: a->b +-> morphism
FIPgm -> C1 {holder+->holder, Request_CS +-> Request_CS1,
Fud_Token +-> Fwd_Tokenl, Receive_Req +-> Receive_Reql,
Enter_CS +-> Enter_CS1 }}

55

We finally construct the composite specification of the FIP and C1 modules by

taking the colimit of the diagram as shown below:

FIPC1 = colimit FIP_C1

3.5.2 Composing the FIP_C1 and C2 specifications

We formalize the Corrector C2 by first importing what the previous tranlation offers,
and adding the parameters needed for defining C2’s properties. The actions of the

second corrector are given below:

NH1 :VY(j : address)
holder(j) # j A holder(j) # parent(j) A (holder(j) & adj(7))V

parent(j) # jAholder(j) # parent(j)Aholder(parent(j)) # j = holder(j) := j

NH?2 ::V(j : address, k : address)

holder(j) = kAholder(k) = jAj # kAparent(j) = k = holder(j) = parent(j)

The formal representation of the C2 specification in Specware is shown below. For
clarity, all the sorts, operations and only the axioms corresponding to the properties

that are exported by this module are illustrated :

C2 = spec
import FIPC1_to_ALL_TRANSLATION

axiom NH1 is fa(h:holder,pid:myPid,c:child_q)
(("(h = getSelf(pid)) & ~(h = getParent(getSelf(pid))) &
“(member(h,c))) or (" (getParent(getSelf(pid)) = getSelf(pid)) &
“(h = getParent(getSelf(pid))) &
“(getHolder(getParent (getSelf (pid)))=getSelf(pid)))) =>
updateHolder(getParent (getSelf (pid)),h)

96

axiom NH2 is fa(h:holder,k:address,p:myPid)
((h = k) & (getSelf(p) = getHolder(k)) & “(k = getSelf(p)) &
(k = getParent(p))) => updateHolder{getParent(getSelf(p)),h)

(* holder=self & Request_CS1 => initiate NH1 & NH2 *)

axiom Request_CS2 is fa(h:holder,q:req_q,m:msg,p:myPid,
a:address,b:asked,u:using,c:colour,
pa:parent,adj:adjacent,cq:child_q)
h = getSelf(p) & Request.CS1(h,q,m,p,a,b,u,c,pa,adj) =>
NH1(h,p,cq) & NH2(h,a,p)

(* holder=self & Fwd_Tokenl => initiate NH1 & NH2 %)

axiom Fwd_Token2 is fa(a:address,q:req_q,u:using,m:msg,
p:myPid,h:holder,b:asked,pa:parent,
adj:adjacent,c:colour,cq:child_q)
h=getSelf(p) & Fwd_Tokeni(a,q,u,m,p,h,b,pa,adj,c) =>
NH1(h,p,cq) & NH2(h,a,p)

axiom Receive_Req2 is fa(a:address,q:req_q,m:msg,u:using,
p:myPid,ask:asked ,h:holder,c:colour,
pa:parent,adj:adjacent,cq:child_q)
h = getSelf(p) & Receive_Reql(a,q,m,u,p,ask,h,c,pa,adj) =>
NH1(h,p,cq) & NH2(h,a,p)

axiom Enter CS2 is fa(a:address,q:req_q,m:msg,u:using,
p:myPid,ask:asked,h:holder,c:colour,
pa:parent,adj:adjacent,cq:child_q)
h = getSelf(p) & Enter_CSi(a,q,m,u,p,ask,h,c,pa,adj) =>
NH1(h,p,cq) & NH2(h,a,p)
endspec

The translation is done the same way as before, but this time it would have what
C1 module had translated, and also the sorts, operations and properties of the C2

module.
FIPC1C2_to_ALL_TRANSLATION = translate(C2) by { holder +-> holder,

Request _CS2 +-> Request_CS2 , Fwd_Token2 +-> Fwd_Token2,
Receive_Req2 +-> Receive_Req2, Enter_CS2 +-> Enter_CS2 }

In order to compose the C1 and C2 modules, we have to specify the various mor-

phisms that link them. We formalize the morphisms between these two specifications
57

in the following manner:

FIP_C1_TO_C2_MORPHISM = morphism C1 -> C2 { holder +-> holder,
Request _CS1 +-> Request_CS2, Fwd_Tokenl +-> Fwd_Token2,
Receive_Reql +-> Receive_Req2, Enter_CS1 +-> Enter_CS2 }

We then define the diagram with C1 and C2 specifications as the nodes, and the

morphism as the link between them.

FIP_C1_C2 = diagram {a +-> Ci,b +-> C2,i: a~>b +-> morphism
Ct -> €2 { holder +-> holder, Request_CS1 +-> Request_CS2,
Fud_Tokenl +-> Fwd_Token2, Receive_Reql +-> Receive_Req2,
Enter_CS1 +-> Enter_CS2 }}

We finally construct the composite specification of the C1 and C2 modules by

taking the colimit of the diagram as shown below:

FIPC1C2 = colimit FIP_C1_C2

3.5.3 Composing the FIP_C1_C2 and D1 specifications

The corrector actions ensure that the parent and holder relationships are set right.
Once this is achieved, the detector actions come into play to ensure that there is a

unique token being circulated among the nodes. The actions of the first detector are

given below:

Ingt ::Y(j : address)

parent(j) = j = seq(j) = seq(j) + 1; result := true; phase(j) := false

Prop = ¥(j : address)root(j) = root(parent(j))A

seq(j) = seq(parent(j)) = seq(j) := seq(parent(j))A

o8

if (phase(parent(j)) A holder(j) = parent(j)) then
phase(j) := true; result := true

else result .= false

Abort :: Y(j : address)phase(j) := true A phase(j) := falsen

(parent(j) € adj(j)) = send(m, parent(j))

Complete :: V(j, k : address)

phase(§) A (k € adj(§) A (root(7) = root(k) A seq(j) = seq(k))

A(k € child(j) A —phase(k)) = result(j) = result(k); phase(j) := true;
if(parent(j) = j A —result(j)) then Init(y)

else result(j) := false

The formal representation of the D1 specification in Specware is shown below. For
clarity, all the sorts, operations and only the axioms corresponding to the properties

that are exported by this module are illustrated :

D1 = spec
import FIPC1C2_to ALL_TRANSLATION

axiom Init is fa(p:myPid,ph:phase,s:seq,r:result)
(getSelf (p)=getParent (getSelf(p))) => (newseq(s) &
(r = true) & (ph = false))

axiom Prop is fa(p:myPid,ph:phase,s:seq,r:result, h:holder)
((getRoot (getSelf (p))=getRoot (getParent(getSelf(p)))) &
(s=getSeq{getParent(getSelf(p))))) =>
setSeq(getSelf (p),getSeq(getParent (getSelf(p)))) &
(if (getPhase(getParent(getSelf(p))) &
(h=getParent (getSelf(p))))
then ((ph = true) & (r = true))
else (r = false))

39

axiom Abort is fa(ph:phase,r:result,m:msg,
adj:adjacent,p:parent)
setPhase(ph) & (r = false) &
isProcessinlist(adj,getAddress(p)) => send(m,getAddress(p))

axiom Complete is fa(ph:phase,r:result,s:seq,p:parent,
adj:adjacent,k:address,ch:child_q,pid:myPid)
(getPhase (getSelf(pid)) & isProcessinlist(adj,k) &
(getRoot (getSelf (pid))=getRoot(k)) & (getSeq(getSelf(pid))=getSeq(k))
& (member(k,ch)) & ~(getPhase(getSelf(pid)))) =>
(r = getResult(k)) & setPhase(ph) &
(if ((getParent(getSelf(pid))=getSelf(pid)) & (r = false))
then Init(pid,ph,s,r)
else (r = false))

It Request.CS2 results in holder and root to be self, then diffusion algorithm is
initiated since this process is the root, and if the algorithm is not aborted, it implies

that the diffusion completed successfully.

axiom Request_CS3 is fa(h:holder,q:req_q,m:msg,p:myPid,a:address,
b:asked,u:using,c:colour, pa:parent,
adj:adjacent,cq:child_q,ph:phase,
r:result,s:seq)
if (h=getSelf(p) & getRoot(getSelf(p))=getSelf(p)) then
Request_CS2(h,q,m,p,a,b,u,c,pa,adj,cq) & Init(p,ph,s,xr) &
~(Abort(ph,r,m,adj,pa)) => Complete(ph,r,s,pa,adj,a,cq,p)
else
Request_CS2(h,q,m,p,a,b,u,c,pa,adj,cq) & Prop(p,ph,s,r,h) &
~(Abort (ph,r,m,adj,pa)) => Complete(ph,r,s,pa,adj,a,cq,p)

axiom Fwd_Token3 is fa(a:address,q:req_q,u:using,m:msg,p:myPid,
h:holder, b:asked,pa:parent,adj:adjacent,
c:colour,cq:child_q, ph:phase,r:result,s:seq)
if (h=getSelf(p) & getRoot(getSelf(p))=getSelf(p)) then
Fud_Token2(a,q,u,m,p,h,b,pa,adj,c,cq) & Init(p,ph,s,r) &
“(Abort(ph,r,m,adj,pa)) => Complete(ph,r,s,pa,adj,a,cq,p)
else
Fwd_Token2(a,q,u,m,p,h,b,pa,adj,c,cq) & Prop(p,ph,s,r,h) &
“(Abort{ph,r,m,adj,pa)) => Complete(ph,r,s,pa,adj,a,cq,p)

axiom Receive_Req3 is fa(a:address,q:req_q,m:msg,u:using,p:myPid,
ask:asked,h:holder,c:colour,pa:parent,
adj:adjacent,cq:child_q, ph:phase,
r:result,s:seq)
if (h=getSelf(p) & getRoot(getSelf(p))=getSelf(p)) then
Receive_Req2(a,q,m,u,p,ask,h,c,pa,adj,cq) & Init(p,ph,s,r) &

60

~{Abort(ph,r,m,adj,pa)) => Complete(ph,r,s,pa,adj,a,cq.p)

else
Receive_Req2(a,q,m,u,p,ask,h,c,pa,adj,cq) & Prop{(p,ph,s,r,h) &
“{&bort(ph,r,m,adj,pa)) => Complete(ph,r,s,pa,adj,a,cq,p)

axiom Enter _CS3 is fa(a:address,q:req_q,m:msg,u:using,p:myPid,
ask:asked,h:holder,c:colour,pa:parent,
adj:adjacent,cq:child_q,ph:phase,
r:result,s:seq)
if (h=getSelf (p) & getRoot{getSelf (p))=getSelf(p)) then
Enter_CS2(a,q,m,u,p,ask,h,c,pa,adj,cq) & Init(p,ph,s,r) &
“(Abort(ph,r,m,adj,pa)) => Complete(ph,r,s,pa,adj,a,cq,p)
else
Enter_CS2(a,q,m,u,p,ask,h,c,pa,adj,cq) & Prop(p,ph,s,r,h) &
~(Abort(ph,r,m,adj,pa)) => Complete(ph,r,s,pa,adj,a,cq,p)
endspec

The translation of the D1 module is shown below.

FIPC1C2D1_to_ALL_TRANSLATION = translate(D1) by {holder +-> holder,
Request_CS3 +-> Request_CS53, Fwd_Token3 +-> Fwd_Token3,
Receive_Req3 +-> Receive_Req3, Enter_CS3 +-> Enter_CS3}

In order to compose the C2 and D1 modules, we have to specify the various mor-
phisms that link them. We formalize the morphisms between these two specifications

in the following manner:

FIP_C1_T0_C2_TO_Di_MORPHISM = morphism C2 -> D1 {holder +-> holder,
Request_CS2 +-> Request_CS3, Fwd_Token2 +-> Fwd_Token3,
Receive_Req2 +-> Receive_Req3, Enter_CS2 +-> Enter_CS3}

We then define the diagram with C2 and D1 specifications as the nodes, and the

morphism as the link between them.

FIP_C1_C2_D1 = diagram {a +-> C2,b +-> D1,i: a->b +-> morphism
C2 -> D1 {holder +-> holder, Request_CS2 +-> Request_CS3,
Fud_Token2 +-> Fud_Token3, Receive_Req2 +-> Receive_Req3,
Enter_CS2 +-> Enter_CS3}}

We finally construct the composite specification of the C2 and D1 modules by

taking the colimit of the diagram as shown below:
FIPC1C2D1 = colimit FIP_C1_C2._D1
61

3.5.4 Composing the FIP C1_C2_D1 and D2 specifications

The final module to be composed to obtain the masking fault-tolerant mutual exclu-
sion algorithm involves the addition of the detector D2. The detector action involves
addition of a predicate to ensure the phase sort is enabled. The formal representation

of the D2 specification in Specware is shown below.

D2 = spec
import FIPC1C2D1i_to_ ALL_TRANSLATION

theorem Request_CS4 is fa(h:holder,q:req_q,m:msg,p:myPid,
a:address, b:asked,u:using,c:colour,
pa:parent,adj:adjacent, cq:child_q,ph:phase,
r:result,s:seq)
if ((Request_CS3(h,q,m,p,a,b,u,c,pa,adj,cq,ph,r,s) & (ph = true)))
then (h = getSelf(p))
else “(h = getSelf(p))

theorem Fwd_Token4 is fa(a:address,q:req_q,u:using,m:msg,p:myPid,
h:holder,b:asked,pa:parent,adj:adjacent,
c:colour, cq:child_qg,ph:phase,r:result,s:seq)
if (Fwd_Token3(a,q,u,m,p,h,b,pa,adj,c,cq,ph,r,s) & (ph = true)) then
deq(q,getAddress(h))
else “(deq(q,gethAddress(h)))

theorem Enter_CS4 is fa(a:address,q:req_q,m:msg,u:using,p:myPid,
ask:asked,h:holder,c:colour,pa:parent,
adj:adjacent,cq:child_q,ph:phase,r:result,s:seq)
if ((Enter_CS3(a,q,m,u,p,ask,h,c,pa,adj,cq,ph,r,s) & (ph = true)))
then (h = getSelf(p))
else “(h = getSelf(p))

theorem Receive_Req4 is fa(a:address,q:req_q,m:msg,u:using,p:myPid,
ask:asked,h:holder,c:colour,pa:parent,
adj:adjacent,cq:child_q,ph:phase,r:result,s:seq)
if ((Receive_Req3(a,q,m,u,p,ask,h,c,pa,adj,cq,ph,r,s) & (ph = true)))
then (h = getSelf(p))
else “(h = getSelf(p))
endspec

The translation of the D2 module, which is the final export and can be used by

any other module whose requirement is to have a fault-tolerant mutual exclusion, is
62

shown below.

FIPC1C2D1D2_to_ALL_TRANSLATION = translate(D2) by {holder +-> holder,
Request _CS4 +-> Request_CS4, Fwd_Token4 +-> Fwd_Token4,
Receive_Req4 +-> Receive_Req4, Enter_CS4 +-> Enter_CS4}

In order to compose the D1 and D2 modules, we have to specify the various mor-
phisms that link them. We formalize the morphisms between these two specifications

in the following manner:

FIP_C1_TO_C2_TO0_D1_D2_MORPHISM = morphism D1 -> D2 {holder +-> holder,
Request_CS3 +-> Request_CS4, Fwd_Token3 +-> Fwd_Token4,
Receive_Req3 +-> Receive_Req4, Enter_CS3 +-> Enter_CS4}

We then define the diagram with D1 and D2 specifications as the nodes, and the

morphism as the link between them.

FIP_C1_C2_D1_D2 = diagram {a +-> Di, b +-> D2, i: a->b +-> morphism
D1 -> D2 {holder +-> holder, Request_CS3 +-> Request_CS4,
Fwd_Token3 +-> Fwd_Token4, Receive_Req3 +-> Receive_Req4,

Enter _CS3 +-> Enter_CS4}}

We finally construct the composite specification of the D1 and D2 modules by
taking the colimit of the diagram as shown below:
FIPCiC2D1D2 = colimit FIP_C1_C2_D1_D2

Utilizing the various axioms provided by the individual specifications of FIP, C1,
C2, DI and D2, we formulate the theorem Enter_CS4, Receive_Req, Request_CS4 and
Fwd_Token4 (as shown above), required for proving the final property of Entering the
CS, Receiving a request, Requesting a CS and Forwarding the token. We finally
verify the above mentioned property by processing the above specification along with
the theorem in Specware with a built-in interface to Snark theorem prover. The

statements for the proof of these two properties are as given below:
63

pl = prove Enter_CS4 in D2 using Enter_CS3 send receive

p2 = prove Receive_Req4 in D2 using Receive_Req3 send receive
p3 = prove Request_CS4 in D2 using Request_CS3 send receive
p4 = prove Fwd_Token4 in D2 using Fwd_Token3 send receive

In this Chapter, we have shown the feasibility of our approach through a case
study of the Mutual Exclusion algorithm. In the next Chapter, we illustrate an
additional case study and show the design of the detector and corrector components

for a multimedia protocol.

64

Chapter 4

Case Study 2: The Label

Distribution Protocol

In this chapter, we illustrate the application of our concepts with a case study of
the Label Distribution Protocol (LDP) [1] which is a part of the Multi Protocol
Label Switching (MPLS) [29] architecture. This Chapter is organized as follows:
Section 4.1 discusses the need for fault-tolerance in the LDP protocol. Section 4.2
describes the case study and gives a brief description of the FIP, corrector and detector
modules. Section 4.3 presents the proof of the design of the fault-tolerant components.
Section 4.4 details our approach of composing the FIP, corrector and detector for the
case study. Section 4.5 presents the formal specification and verification of the fault-

tolerant version of LDP using MetaSlang language of Specware.

65

4.1 Need for fault-tolerance in LDP

The significant presence and coverage of the Internet has led to an increasing number
of new real-time interactive services that are being offered or are still in their infancy.
A majority of these services involves communication between one or more computer
systems. Current communication protocols are built on existing transport layer pro-
tocols that provide both reliable and unreliable service for exchanging information.
Some of the faults that may occur in such a scenario are the failure of the transport
protocol stack. Recovery in such cases is worsened by the fact that some control
messages may have been lost during the failure, leading to inconsistency in the state
information at the communicating nodes.

MPLS is a fast switching technology in which the packets are forwarded based
on labels assigned to the packets. Since the forwarding is done based on labels, a
protocol is needed for exchanging this label information between the label switched
routers (LSRs). RFC3036 defines a set of procedures called the LDP for exchang-
ing label information by which LSRs distribute labels to support MPLS forwarding.
LDP uses TCP as the underlying protocol for communication with the neighbour-
ing LSRs. A failure in the TCP protocol stack could lead to a connection failure
between the communicating LSRs. RFC3479 proposes enhancements to the LDP to
achieve fault-tolerance. In our case study, we show that the final FT-LDP program
is masking tolerant because, in the presence of a communication fault, it still satisfies

its specification, by reopening a new TCP connection and recovering to a state from

66

where normal execution is restored.

4.2 Identifying the Fault-Intolerant Program and

Fault-Tolerant Components

Adding masking fault-tolerance to a FIP involves two tasks: (1) of ensuring that the
program recovers to states from where it satisfies both the safety and liveness specifi-
cation, and (2) of ensuring that the program does not violate the safety specification
during recovery. Below, we show that the fault-tolerant LDP can be designed by first
designing a fault-intolerant program, LD P, and then composing it with detector com-
ponents, followed by correctors. The subsequent sections propose a component-based

approach to adding fault-tolerant enhancements to LDP as suggested in [15].

4.2.1 Identifying the Fault Intolerant Program

The working of the Label Distribution Protocol' without any fault-tolerant features
is explained below:

The Multi—Protoéol Label Switching (MPLS) architecture proposes integrating
Layer 3 routing and Layer 2 switching functionalities [29] and is rapidly becoming a
key technology for use in core networks. It advocates the use of a short four byte label

to introduce connection-oriented features into the Internet Protocol (IP) by replacing

We shall call this module as LDP.

67

the routing of IP packets based on information in IP header with the light-weight
label. The approach presented in [1] defines a set of procedures for exchanging label
information by which LSRs distribute labels to support MPLS forwarding. A brief

definition of some of the terms needed to comprehend the protocol are given below:

Forward Equivalence Class (FEC): a group of packets having the same

forwarding treatment.

Label: a short fixed length identifier used to identify a FEC.

Label Switched Path: the path through one or more LSRs followed by packets

in a particular FEC.

LDP peers: any two LSRs which communicate with one another using LDP for
the exchange of label/FEC mapping are referred to as LDP peers with respect

to that mapping.

Some of the assumptions made for the working of this protocol are: A reliable and
ordered delivery of messages is assumed for the label distribution operation. TCP is
used to provide this service.

We explain only the basic operations of the protocol and the actions of the protocol
that are affected by faults. The operation of LDP can be described as consisting of

the following steps:

1. the initial discovery phase in which a LSR discovers potential LDP peers.
2. the session establishment and maintenance phase in which the LDP session is set

68

up between the peers, and label and address messages are exchanged between

the peers after successful setup, and,

3. finally session closure when the label space is no longer required.

Discovery Mechanism:

This process enables an LSR to discover its potential peers that can communicate
using LDP thereby avoiding the static configurations of an LSR’s peers. There are
two variants of this mechanism, the first one called the basic discovery mechanism
involves periodic multicasting of the Hello message to the “all routers on this subnet”
multicast address, thereby locating LSR neighbours that are directly connected at
the link level, the second involves sending a targeted Hello message and is called the
extended discovery mechanism to locate LSR neighbours not directly connected at
the link level.

Reception of a Hello message identifies a hello-adjacency with a potential peer that
can be reached on the interface, and the label space it intends to use for the interface
in the case of basic discovery mechanism. In the case of extended discovery, the
received Hello identifies a hello-adjacency with a potential peer reachable at network
level and the label space it wishes to use. The LSR receiving the targeted Hello may
choose to respond, and if it does so, it sends periodic targeted Hello messages to the

sender.

69

Session Establishment and Maintenance

Establishment of a hello-adjacency initiates the session establishment phase, which is
a two-step process. The first involves a transport connection establishment and the
second is session initialization.

Each LSR determines its peer LSR’s transport address either through the Address
Type, Length, Value (TLV) present in the Hello message or the source address of the
Hello message. If there is no session setup for the exchange of the label spaces in
the Hello message, a TCP connection is established with the LSR, whose address is
greater than the peer address, acting as the active LSR. The passive LSR waits for
the active LSR to establish the connection. After a TCP connection is established
between the two LSRs, they negotiate session parameters using the Initialization
message. Successful initialization results in a LDP session between the two LSRs.
The state machine diagram for the protocol operation is shown in [15]. The session
is setup successfully once the LSR’s reach Operational state and label messages can

then be exchanged between the two peers.

Session Closure

The request for a label or advertising a label to a peer is a local decision done by
an LSR, i.e., it requests for a label mapping when it needs one, or advertises a label
mapping when it wants the neighbour to use the label. When the LSR does not

wish to use the label space anymore it closes the LDP session by sending a Shutdown

70

message and closing the TCP connection after withdrawing the label. The basic sorts

of the protocol are:

e ldpid: an LDP identifier identifies a LSR’s label space and is a combination of
the LSR identifier and the label space the LSR wishes to advertise. An LSR
that advertises multiple label spaces uses different LDP identifiers for each label

space.
e peer: the address of the peer LSR.
e self: the address of this LSR.
e mode: active/passive LSR.
e Hello_msg: the sort representing the Hello message.
e Init_msg: the sort representing the Initialization message.
e Label msg: the sort representing the Label message.

e Notification.msg: the sort representing the Notification message.
The following are the basic operations of the protocol:-

e SEND_HELLO: send Hello message to all neighbours in case of basic dis-
covery, or else send the Hello message to a specific router in case of extended
discovery.

¢ RECEIVE HELLO: this operation is invoked on reception of the Hello mes-
sage.

e send: this is the basic operation used to send any LDP message.

71

receive: this is the basic operation used to receive any LDP message.

RX_KA _TO: this function is called on the expiry of the KeepAlive timer.

Idp_Init: initializes the LDP session.

Idp_state_mc: the function that handles LDP state machine.

close: closes the LDP session. All state information is discarded and the label

cross connects are discarded.

4.2.2 Identifying the Faulty Scenarios

MPLS is a technology that is to be deployed in core routers and as such, these systems
must have a low downtime. Thus these systems have to exploit the fault tolerant
hardware/software to provide high availability. LDP being one of the components
of MPLS, [15] identifies some of the issues (explained below) that make it difficult
to implement a fault tolerant LSR using the current LDP protocol, and has defined
fault-tolerant enhancements to the LDP specification.

Since TCP is used for reliable data transfer as explained in Section 4.2.1, a failure
of the TCP or LDP protocol stack will result in a connection failure between the peer
LSR’s.

Any detection and recovery mechanisms to detect these faults need changes only
to the control plane without disrupting the data plane. This is because many of the
current router architectures isolate the control plane from the data plane, and hence
traffic in the data plane can persist during the recovery of the control plane.

72

Providing a fault-tolerant implementation of TCP would involve saving all sent
and received messages, which is a tough proposition. Recovery from TCP connection
failure because of failure in TCP or LDP stacks is exacerbated by the fact that
LDP control messages may have been lost during the connection failure leading to
inconsistency in the state information at the LDP peers.

The assumptions we make for describing the fault tolerant components are:

e the LDP peers wish to use fault-tolerant (FT) enhancements and restore their
state on reconnection in case of a TCP connection failure.

e both the peers wait for the duration of the FT Reconnection timeout before
releasing state information, i.e., they set the “FT Reconnect” flag to one after

reconnection, and,

e the TCP connection is restored after a failure.

Identifying the Detector Components

The detector component ensures that the program does not deviate from its normal
execution and that any bad state is detected by this component. Observe that LDP
violates its safety specification from states where there is a connection failure between
the peers. Thus the safety condition to be identified is the failure of the TCP connec-
tion. We construct detectors that ensure that the safety specification is preserved. A

few ways in which the TCP connection failure can be detected? are:-

2We consider only the fourth and the sixth approach for detection.

73

e indication from the management component that a TCP connection or under-

lying resource is no longer active.
e notification from a hardware management component of an interface failure.
e sockets keepalive timeout.
e sockets send failure.

e new (incoming) Socket opened.

LDP protocol timeout.

Detector D1

The first detector throws an exception when the send operation fails due to a TCP
connection failure. When the TCP connection fails, the socket send operation that
invokes the TCP/IP protocol stack fails. This exception condition is used to set the

boolean sort tcp_cz_failure which indicates the TCP connection failure.

Detector D2

This detector is the watchdog timer function that is modified to indicate a TCP
connection failure. This exception also sets the boolean sort tcp_cz_failure which is
used to indicate the TCP connection failure. Furthermore a FT Protection TLV is

added to all messages thereby modifying those sorts that represent the LDP messages.

3In the case of the FIP, the session is closed on expiry of this timer.

74

Identifying the Corrector Components

The liveness property to be satisfied is that, on restoration of the TCP connection, the
protocol operation is restored to a state from where normal operation can continue.
On detection of the TCP connection failure, a “F'T Reconnection” timer is started and
the “hold” timer is stopped for the duration of the Reconnection timer. The active
LSR then initiates the recovery operation. RFC3479 proposes two ways to achieve
this, corrector C1, based on handshaking mechanism and C2, based on checkpointing.

The timer actions are common to both the correctors.

Corrector C1

Handshaking of the LDP messages is achieved through the use of acknowledgments
(ACKs). The original message and the ACK are co-related using a sequence number
carried in the FT Protection TLV and returned in the ACK. After restoration of
the TCP connection between the peers, any sequence numbered LDP messages that
were lost, are re-issued. On reception of a re-issued message, an LSR processes
it as if received for the first time. Any operations that were pending during the
connection failure must also be transmitted on restoration of the TCP connection.
The initialization messages exchanged on reinitialization of the session include the
ACKs for the last message each peer received and logged before the failure of the

TCP connection. Based on these, the LSRs determine the sequence number from

75

which messages have to be re-issued*.

This corrector adds the following sorts:

seq: sequence nurber of the message to be sent next by the sender.
ack_seq_no: sequence number of the last message received by the receiver.
rs: boolean sort set to true to indicate if the sender received an ACK for the
last message it sent.

rr: boolean sort set to true to indicate if the receiver received a message, but
has not yet sent an ACK.

msg_q: the 0 or 1 messages/ACKs in transit are indicated by this queue, we

have two instances of this queue to indicate the transmit and receive channels.

The operations of C'1 are given below:

sendLog: this operation modifies the mod_send operation and logs any message
after sending to the peer LSR.

startRecxTimer: this operation starts the F'T Reconnection timer on detec-
tion of connection failure.

reset_rx_hold_to: this operation stops the Hold timer. It is invoked when the
Reconnection timer is initiated.

Relnitialize: this operation reinitializes the LDP session. If this LSR is active

LSR it initiates a new T'CP connection to restore the LDP session. The sequence

We assume that the sender waits for an acknowledgment before sending the next message. For
ease of construction of the corrector, we are not considering the accumulation of Acks, which is
allowed by the FT-LDP as explained in [{15]

76

numbers from where the LSRs have not received ACKs are exchanged during
this operation.

e Reissue: this operation reissues all the messages on recovery of TCP connec-
tion, starting from the sequence number exchanged in the Relnit operation.

e send_msg: this operation sends a sequence numbered message to the receiver.

e rx_ack: this operation receives an acknowledgement from the receiver.

e rx_msg: this operation receives a message sent from the sender.

e send_ack: this operation sends an acknowledgement to the sender.

Corrector C2

Checkpointing is an operation that involves periodic logging of the program state so
that when a failure occurs, a program can be restored to a previous state based on the
logged messages. Checkpointing in LDP is achieved by using the KeepAlive messages
as checkpointing messages. In this method, when the C bit [15] in the FT Protection
TLV is set, it is an indication to use the checkpointing procedures. “Check-Pointing”
in the context of the fault tolerant LDP refers to the process of message exchanges that
confirm receipt and processing (or secure storage) of specific protocol messages [15].
On restoring the TCP connection, any LDP messages that were lost, are re-issued.
This is achieved by the recovery algorithm, which ensures that any lost messages
are resent. On reception of a re-issued message, an LSR processes it as if received

for the first time. Any operations that were pending during the connection failure

77

must also be transmitted on restoration of the TCP connection. The initialization
messages exchanged on reinitialization of the session include the sequence numbers

of the checkpointing message from where recovery has to be initiated.
This corrector adds the following sorts:

e kaseq.no: sequence number for the KeepAlive message.
o last_kaseq_no: last KeepAlive sequence number successfully acknowledged to

the peer.
The operations of C2 are given below:

e sendLog: this operation modifies the mod_send operation and logs any message
after sending to the peer LSR.

e startRecxTimer: this operation starts the FT Reconnection timer on detec-
tion of connection failure.

e reset_rx_hold_to: this operation stops the Hold timer. It is invoked when the
Reconnection timer is initiated.

e ft ldp_state_mc: this operation modifies the ldp_state_mc to flush the state on
the reception of a KeepAlive message.

o ft_ KA timer: this operation modifies the mod_KA_timer to initiate check-
pointing procedures.

e Relnit: this operation reinitializes the LDP session. If this LSR is active LSR
it initiates a new TCP connection to restore the LDP session. This operation

involves the exchange of the sequence numbers of the secured check-points.
78

e Recover: this operation initiates the recovery procedure to ensure that there

are no lost messages during the duration of the TCP connection failure.

So far, we have discussed the FIP, and the design of the detector and corrector
components for the FIP. Next we show the proof of correctness of the detector and

correctors presented above.

4.3 Proof of Correctness of Design of Detector and

Corrector Components

We now show the design of the detector and corrector components for the F'T-LDP

and present the proof of the design of these components.

4.3.1 Design of the Detector Components

Consider the LDP program p, where LDP messages are exchanged between the peers.
For ease of exposition, we will assume that the LSR has discovered its peer, initiated
the session, and the session is in Operational (op) state. Following this, there is
an exchange of LDP messages. The intolerant program for LDP, p, is shown below,
where state denotes the state of the session between the peers, hello_adj operation
is true if there is an hello adjacency between the two LSRs, no_of _pkts_rzed is the
number of messages received since the last KeepAlive was sent, rz_ka_to indicates the

expiry of the KeepAlive timer, send(i) = false and receive(j) = false denote the

79

failure of the send() and receive() operations.

p::true — Vi,j € processors,
(state = op A hello_adj () A rz_ka_to A (send (i) = true)) =

(receive (j) = true) A (no-of pkts_rzed > 0)

We consider the TCP connection failure, wherein the TCP connection between the
peers fails. In the presence of this fault, fail-safe tolerance can be achieved by the

following programs, d1 and d2.

dl :: Vi,j € processors,

(state = op A hello_adj () N —(send (i) = true) A ~(tep-cz_failure = true) =
=(receive (j) = true) — tep_cx_failure := true

d2 :: Vi, j € processors,

(state = op A hello.adj ()) A rz_kato) A —(tepcx_failure = true) =

—(no-of pktsrzed > 0) — tcp-cx.failure := true

From the definition of detector in [19], a detector is used to check whether the “detec-
tion predicate”, is true. The detection predicates of the two detectors are X1 and X2,
where X1 is =(send(i) = true)) and X2 is (no.of _pkts.rzed > 0). A detection predi-

cate, X, is one for which execution of an action in any state where X is true maintains

80

the specification. The witness predicate Z in these two cases is tepcz_failure = true.
Initially tep_cz_failure is false, to indicate that there is no failure. On detection of a
failure, namely, —(send(i) = true)) or (=(no-of_pkts_rzed > 0) A rz_ka_to), Z is set
to true to indicate the failure. It satisfies the conditions of Safety, since Z = X1 and
Z = X2, Progress, since at any state where X1 or X2 is true, Z is enabled either at
that state or somewhere in the future, i.e., the detector eventually detects the fault,
and Stebility is satisfied since Z remains true till the recovery procedure resets it. In
addition to this, the detection predicates mentioned above hold atomically, ie., by

executing at most one action of the detector.

4.3.2 Design of the Corrector Components

Problem Specification: For the handshaking procedure, the sender sends a sequence
numbered message to the receiver, which, upon receiving this message, sends an ac-
knowledgement, to the sender, which enables the sender to transmit the next message.
A message from the sender has to be sent, one message at a time to the receiver. The
sender and receiver communicate using a bidirectional channel (TCP connection)
that can hold one message in each direction at a time. The requirement is that each
message sent is received at the receiver in the same order as sent.

The message transfer is subject to faults that loose the messages in the channel.
Now, we have to design a corrector action which ensures that messages are not lost

in the event of a communication failure.

81

The actions of the program for handshaking includes sending an acknowledgement
to the sender, for each message received by the receiver. This can be indicated by

the following four actions.

send_msg :: rs = true — rs := false A mod_send() = appendtzch(seq)

By this action, the sender sends a message to the receiver. Since rs = true, the
sender can transmit a message, which is indicated by the mod_send operation, and
resetting the rs to false, which results in a message with sequence number seq_no

being appended in the transmit message queue.

rz_ack : —~(getrzch(msg_q)) — rs, seq := true, seq + 1 A assignrzch()

This action is executed at the sender when it receives a acknowledgement from the
receiver. —(getrzch()), means there is an acknowledgement sent by the receiver and
hence rs is set to true, assignrazch() updates the receiver queue, and the sequence

number seq, at the sender is incremented.

rr_msg :: ~(gettzch(msg-q)) — rr:= true A assigntzch() A setNR()

82

This action is executed at the receiver when it receives a message from the sender.
—(gettzch(msg-q)), means there is a message sent by the sender and hence rr is
set to true, the transmit queue is updated by assigntzch() and the ACK sequence
number, at the receiver is updated with the sequence number in the message sent by

the sender, using setNR().

send_ack :: rr = true — 77 = false A mod_send() = appendrzch(ack_seqno)

By this action, the receiver sends an acknowledgement to the sender. Since rr =
true, the receiver transmits the acknowledgement, which is indicated by the mod_send
operation, and resetting the rr to false, which results in an acknowledgement with
sequence number ack_seq_no being appended in the receive message queue.

Arora [2] proposed a method for designing non-masking fault tolerance based on
which we design the corrector component. It puts forth the following design steps to
design corrector actions so that the program satisfies the given problem specification

and is nonmasking tolerant®, to a given set of fault actions:

e Designing the invariant S, in which a state predicate S is constructed which
is strong enough so that the safety properties of the problem specification are

met.

e Designing a fault-span T, in which a state predicate T is constructed which is

5In our case study, since we are adding correctors to a program that is composed with detectors,
the resulting program will result in a masking tolerant program

83

weak enough so that the fault actions preserve it.

e Designing prograimn actions that achieve non-masking tolerance by ensuring that

T converges to S, meaning that each of these actions preserve T as well as S.

Invariant. When a message is received, seq = ack_seq_no is true, and remains so
until the sender receives an acknowledgement. On reception of an acknowledgement,
ack_seq_no = seq—1, and this remains true till the receiver receives the next message.
If the tranmit queue is not empty as indicated by —(gettzch(msg-q)), it consists of
exactly one message, with sequence number seq, and in any state, only one of the

four actions is enabled. Thus, the invariant of the program is, S;p, where

Srp = ((rr = true V #(getrzch(msg-q))) = ack_seq-no = seq) A
((rs = true vV #(gettzch(msg-q))) = ack_seq-no = seq — 1) A
((gettzch(msg_q)) V (gettzch(msg_q)) = seq) A

(gettzch(msg-q) + getrzch(msg.q) +rs +rr = 1)

Fault Actions : The fault action, in this case, failure of the communication chan-
nel, could cause the loss of a message sent from sender to receiver or an acknowledge-

ment sent from receiver to the sender. These actions are shown as:

o —(gettzch(msg-q)) — assigntzch()
o —(getrzch(msg.-q)) — assignrzch(), and

e tepcr_failure = true
84

The LDP program with handshaking deadlocks when a message or an acknowl-
edgement is lost because of the fault. To add non-masking fault-tolerance, we add a
corrector whose correction predicate is Syp. To achieve this correction, the corrector
retransmits the last message, when a message or an acknowledgement is lost. As
explained in Section 5.5.1 of [15], the receiver processes any re-issued message as if it
received it for the first time. Therefore the final action is that of the corrector, which
is executed when both the send and receive channels, are empty and rs and rr are
both false, and the tep_cx_failure is true, and it reinitializes the protocol by opening
a new TCP connection and retransmitting the message with sequence number, seq.

The corrector action is represented as:

Reissue :: (gettzch (msg_q)) A (getrzch (msg_q)) A (rs,rr = false) A

(tep-cz_failure = true) = Relnitialize() A appendtzch(seq)

Fault — span and Invariant: If a message or acknowledgement is lost, the pro-
gram reaches a state where transmit and receive channels are empty and rs and rr
are false. Also, in the presence of faults, if transmit channel is non-empty, it consists
of exactly one message whose sequence number is seq. Thus, the fault-span of the
non-masking program is
Tnp = (gettzch(msg_q)) V (gettzch(msg-q) = seq) A (gettxch(msg_q)+getrzch(msg_q)+

rs+rr < 1) A =(tepcz_failure = true)

85

and the invariant of the non-masking solution is the same as S;p, i.e.,

Snp=SIp.

Since we are adding the corrector to a fail-safe program (obtained after the addition
of Detectors D1 and D2), the resulting program after the addition of the corrector is
masking-tolerant.

Remarks : We have identified the fault-span predicate for the LD P program that
is preserved in the presence of TCP connection failure, followed by the design of the
invariant which ensures that the safety properties of the LD P specification are met.
Finally, we design the program actions that ensure that both fault-span predicate
and invariant are preserved, which certifies that the problem specification is fulfilled

in any computation that starts from a state where the invariant holds.

4.4 Composing the LDP, Detectors and Correc-

tors using Category Theory

In this section, we explain the composition of the FIP with the fault tolerant com-
ponents using the concepts of category theory explained in Section 2.4.3. Note that
composition is obtained via union operation as discussed before.

Figure 4.1 depicts the individual modules of LDP, D1 and D2. For the compos-
ite module LDP_D1_D2 composed out of LDP, D1 and D2 to exist, the individual

modules should commute through the specification morphism as discussed in Sec-

86

tion 2.4.3. These relationships are shown next to the figure separated by a dashed

line.

4.4.1 Composing the LDP with D1 and D2

g3° Label_msg > Label msg

£ 3: Label_msg -> send, Label msg > RX_KA_TO
&y Label_msg > LDP

by send -> LDP

hjo f3= Label_msg ->LDP

80 k Label_msg ->1DP

Sohgmmoky L
5 R _Label msg -> Label_msg
fy: ft_Laobel_msg ->mod_send
klz Label_msg > LDP_D1
hl: mod_send ->LDP_D1
10 hy=ft_Label_msg->LDP_DI
g0 k F ft_Label_msg -> LDP_D1
f ° h] =ggo Ky
78 ft_Label_msg > Lobel_msg
£ ft_Label_msg > RX_KA_TO1
&,: Label_msg -> LDP_D2
by: mod KA_timer ->LDP_D2
30 by=1:_Label msg ->LDP_D2
5o k 7 Label_msg -> LDP_D2
fphy=gek,
g : ft_Label_msg -> Label_msg
f : ft_Label_msg -> mod_send
k : Label_msg > LDP D1 _D2
b : mod_send -> LDP_D1_D2
foh=ft_Label_msg ->LDP_DI_D2
gok=ft_Label_msg >LDP_Di D2
foh =g ok

COMPOSITION PROOF

PAR1->PAR3->EXP3 = PAR1->EXPI->EXP3
ft_Label _msg->ft_Label_msg->mod_send =
ft_Label msg->mod_send->mod_send =>
ft_Label_msg->mod_send = it_Label_msg->mod_send

PAR2->PAR3->EXP3 = PAR2->EXP2->EXP3

ft_Label_msg->ft. Label_msg->RX KA_TOl
ft_Label_msg->RX_KA_TO1->RX_KA_TOI
fi_Label_msg->RX_KA_TO1=ft_Label_msg->RX_KA_TO1

N3 | owpkpigz B S

‘q.' R *, ’\
J
Label_side Spec: LDP_D1_D2
ks DetLabeiDist

v,

Figure 4.1: Composing the FIP with the Detector Components Using the Union
Operation

Each of the modules (components) are depicted in the same way as Figure 2.2
with the four sets of objects as parameters, export, import and body (spec) with cor-

responding morphisms and mappings. The property of the LDP module is: (a) if A
87

and B are LSR peers, then a Label or Address message sent by A is received at B and
vice-versa. Since LD P is the basic module, the import interface and parameter part
of the specification are equal: LDP.import = LDP.parameter [14]. The LDP module
has ldpid, peer, self, mode, Hello_msg, Init_msg, Label_msg and Notification_msg as its
parameters. The export entity consists of the operations that achieve the label distri-
bution property, viz., SEND_HELLO, RX_KA_TO, send, receive, RECEIVE_HELLO,
ldp_Init, ldp_state_mc and close. In the Figure 4.1, f; maps the Label_msg to the send
and RX_KA_TO operations, i.e., these two operations act on the Label_msg, either by
sending a Label message using the send operation or sending a KeepAlive message
when the RX _KA_TQO timer is triggered. The morphism, h3 maps the operation send
to the LabDist property in Spec:LDP since the operation send provides the property
of sending Label messages to the peer. The morphism, k3 maps the variable La-
bel_msg to the property LabDist, since this variable is being used in providing the
final property of communicating label messages between the peer LSRs.

The D1 module has the same parameters as that of the LDP module with the addi-
tion of the tcp_cx_failure and extending the send operation as mod_send. The prop-
erty of the D1 module is communication of label messages between peer LSRs with the
additional property of detecting the TCP connection failure (sendLabDist). The D2
module also has the same parameters as that of the LDP module with the addition of
the tep_cx_failure and extending the RX _K A _TO operation as RX KA TO1. The

property of the D2 module is communication of label messages between peer LSRs

38

with the additional property of detecting the TCP connection failure (KALabDist).
The morphisms of these individual modules and the final composed module are shown
in the Figure 4.1. The D1 and D2 modules enhance the existing operations of the
LDP module providing the additional functionality of detecting the TCP connection
failure. The proof of the composition is also shown in the Figure 4.1.

We have shown how the components, namely, LDP and the detectors D1 and D2
can be composed using the concepts of category theory, and the correctness is shown
in Figure 4.1. The composed module as shown in Figure 4.1 also commutes, and the
composition is correct. Hence the combined specification can be further reused for

subsequent composition.

4.4.2 Composing the LDP D1 D2 with C1 and C2

Figure 4.2 depicts the individual modules of LDP_D1.D2, C1 and C2. For the
composite module LDP_D1_D2_C1_C2 composed out of LDP_D1_D2, C1 and C2 to
exist, the individual modules should commute through the specification morphism as
discussed in Section 2.4.3. These relationships are shown next to the figure separated
by a dashed line.

In this case the composed module obtained after the composition of LDP module
with D1 and D2 forms the base module for composing with the corrector components.
Figure 4.2 shows the correctness of construction for each module and the proof of

composition. The correctors add the property of restoring the program to its normal

89

state on detection of the fault.

g3: Label_msg -> Label_msg

f_; Label_msg -> send, Label_msg -> RX_KA_TO
k3: Label_msg > LDP

b3: send > LOF

Byo f3= Label_msg >LDP

g30 k 4= Label_msg ->LDP

Sphymgoks L
gy ft_Label_msg-> Label_msg

f. ¥ ft_Label msg -> mod_send

kl: Lsbel_msg > LDP_Di

hy: mod_send ->LDP_Di

10 by= fi_Label_msg > LDP_D1

gjok it Label msg ->LDP D1
fohy=gyok,

*
o

&' ft_Label_msg > Label msg
1 ft_Label_msg > RX_KA_TOt
kfl: Label_msg ->LDP_D2
by: mod_KA_timer -> LDP_D2
f pl h2= ft_Label_msg > LDP D2
)0 k 5 Label_msg ->LDP D2
fphy=gok
g : fi_Label_msg > Label_msg
{ : ft_Label_msg -> mod_send
k : Label_msg -> LDP_D1 D2
h : mod_send ->LDP_D1_D2
foh=1ft Label_msg > LDP D1 D2
K gok=ft Label msg->LDP Di D2
Spec: LDP_D1_D2iC¥ ob =g ok
s KALabelDist
", o, oy 5

. . Recover

. K *y send_Log

. . stop_HoldTimer
kY %, f Relnit

3 ka_seqno - startReCxTimer

. lm_ﬂ_seq‘m Oy ft_ldp_state_mc
. K s, FT_RX KA TO

-

ftals
Reisgue
startReCxTimer

»
o o e ma

», ,
*, >,
Labe " Spec: LDP_DI_D2(1
l_g:sg Y “{1LabeiDist ,

COMPOSITION PROOF

PARI->PAR3->EXP3 = PAR1->EXPI->EXP3
ft_Label_msg->ft_Label msg->mod_send =
ft_Label_msg->mod_send->mod_send =>

*, %, S Reissue”
* & ft_Label_msg->mod_send = fi_Label_msg->mod_send
", ", R

Recoveé
sethc(_& rg
seq_tia

™ ’ Iérwm ADD{LBL MSG"::
., ., >
%, last seqgo - f, \ﬂaigﬁ(gx’nmer' e
‘az' ka-s"q—“""v—-—;.*ft_ldp_staxe_mc s
" last+ka_seq:m‘)‘ S FLRKKATO
. N S
“, ‘.: LN R
“g3 | LopgipaRLCce (B3
., ‘.‘ kY
RS A A

Lab:I__ms’g $pec: LDP_D1D2_C1.C2

kq FIlLabelDist

PAR2->PAR3->EXP3 = PAR2->EXP2->EXP3
ft_Label_msg->ft_Label_msg->RX_KA_TO1
iit_Label_msg->RX_KA_TOI->RX_KA_TO1
ft_Label_msg->RX_KA_TO1= ft_Label_msg->RX_KA _TO1

Figure 4.2: Composing the LDP_D1 D2 with the Corrector Components Using the
Union Operation

The LDP_D1_D2 module has tcp_cz_failure, ft_Hello_msg, ft_Init_msg, ft_Label_msg
and ft_Notification.msg as its parameters. The export entity consists of the opera-
tions that achieve the label distribution property and detection of the failure, viz.,
mod_send and RX_KATQO1. In the Figure 4.1, g3 maps the ft_Label_msg to the
Label_msg since the former is a modified version of the Label_msg to provide the de-

tection ability, f3 maps the fi_Label msg to the mod_send since this operation acts on
90

the ft_Label_msg, by sending a FT Label message using the mod_send operation.

The morphism, hs maps the operation mod_send to the DetLabDist property in
Spec:LDP_D1_D2 since the operation mod_send provides the property of sending Label
messages to the peer, in addition to detecting the failure. The morphism, ks maps
the variable Label_msg to the property DetLabel Dist, since this variable is being used
in providing the property of communicating label messages between the peer LSRs,
in addition to detecting the failure.

The C'1 module adds the seq and ack _seq_no parameters to the existing parameters
imported from the LDP_D1_D2 module, in addition to the operations shown in the
Figure 4.2. The property of the C1 module is communication of label messages
between peer LSRs in addition to restore the program to its previous state in case of
a failure (C1LabDist). It achieves this with the Relnitialize and Reissue operations
which make use of the sorts mentioned before. The C2 module also has the same
parameters as that of the LDP_D1_D2 module with the addition of the ka_seg_no and
last_ka_seq_no parameters and extending the RX _K A TO1, ldp_state.mc in addition
to the operations shown in the Figure 4.2. The property of the C2 module is recover
the program to its normal state when a fault occurs, apart from the communication of
label messages between peer LSRs (C2LabDist). The morphisms of these individual
modules and the final composed module are shown in the Figure 4.2. The C'1 and C2
modules enhance the existing operations of the LDP module providing the additional

functionality of correcting the program state on detection of TCP connection failure.

91

The proof of the composition is also shown in the Figure 4.2. The final composed
module therefore has the property of detecting faults and restoring the program to a

correct state in addition to the original property of exchanging label messages.

4.5 Compositional Specification and Verification

Using Specware

In this section, we provide the specification and verification of the properties for the
fault-tolerant Label Distribution Protocol discussed in the previous section. We have
used Kestrel's Specware tool [33] for the formal specification and verification of the
case study. Specware® is a refinement-based approach to software development that
supports rigorous and explicit modularity in the specification and development of soft-
ware components. There is also a provision for refinement of an abstract specification,
primarily done by refining algorithms and data structures. We emphasize that each
step in the refinement process is constrained to preserve correctness. We describe
the composition starting from the initial fault-intolerant LDP and then composing it
with detector and corrector components resulting in the final composed program for

label distribution that is ‘masking’ fault-tolerant.

®Details can be found at http://www.specware.org.

92

4.5.1 Formal Specification of the Label Distribution Protocol

We initially specify the property of the label distribution protocol associated with the
following action of “exchanging Address or Label messages(EXCG-ADDR_LBL_MSG).”
For exchanging Address or Label messages, the following properties should be

met:

o the LDP protocol must be successfully initialized, i.e., the state must be operational,

denoted by the constant four, in our formal specification.

o an hello adjacency must exist with the peer with whom address or label messages

are to be exchanged,

o an Address or Label message sent must be received by the peer and vice-versa.
This operation is expressed formally as:

op EXCG_ADDR_LBL_MSG : msg * my_ldp_id * peer_ldp_id * tx_init * state * address
* address * interface * hello_adj_list * msg —-> Boolean
axiom EXCG_ADDR_LBL_MSG is fa(I:msg,idc:my_ldp_id,ids:peer_1dp_id,tx:tx_init,
s:state,peer:address,se:address,ifc:interface,
hl:hello_adj_list,m:msg)
ldp_Init(I,idc,ids,tx,s,peer,ifc) & hello_adj(hl,peer) &
(SEND_ADDR(m,peer) or SEND_LBL(m,peer))
=> (RECEIVE_ADDR(m,se) or RECEIVE_LBL(m,se)) & (s = 4)

A brief explanation of the sorts and operations used is given below:

sort interface = Nat %% the interface on which a packet is sent/received.
sort peer = address %% the peer address.
sort self = address %% the address of the node invoking the operation.
sort mode = Boolean %% the mode of the node "active™ means true,
%% "passive" means false.
sort my_ldp_id = Nat %% the LDP identifier of the node invoking the operation.
sort peer_ldp_id = Nat %/ the LDP identifier of the peer.
sort rxr_1ldp_id = Nat %% the LDP identifier received in the Initialization msg.

sort send_hello = Boolean %% if true => Hello message is to be sent.

sort h_time = Nat %% value of hold time.
sort msg = Nat %% General msg for simplicity is indicated by Nat.
sort cr = List msg %% Receiver channel indicated by a queue of messages.

93

sort cs = List msg %% append(cs,msg,seq_no) -> CS=CSo<NS>;assigncs(msg)
sort hello_ok = Boolean %% if true => Hello message received is acceptable.
sort allowed_peers = List address %% list of allowed peers.
sort if_config list = List interface %} 1list of interfaces configured for LDP op.
sort hello_adj_list = List address %% list of neighbours with whom there is

%% a hello adjacency.

sort state = Nat %% protocol state -~ 1-> INITIALIZED,2->0PENSENT,
%% 3->0PENREC,4->0PERATIONAL,5->NON_EXISTENT

sort tx_init = Boolean %% if true => Initialization msg is to be sent.

sort tx_KA = Boolean %% if true => KeepAlive message is to be sent.

sort no_of_pkts_rxed = Nat %% indicates number of packets received

sort send_ka_to = Boolean %% if true => Send KeepAlive timer expired.

sort rx_ka_to = Boolean %% if true => Receive KeepAlive timer expired.

sort no_of_pkts_sent = Nat %% indicates number of packets sent.
sort send_hold_to = Boolean %% if true => Send Hold timer expired.
sort rx_hold_to = Boolean %% if true => Receive Hold timer expired.

The send_hold_to and rz_hold_to sorts are set to true when the send Hold timer
and the receive Hold timer expire respectively. The following operations, namely,

SEND_HOLDTO and RECEIVE_HOLD TO, reset these sorts after the actions

related to the timer operations are done.

op reset_send _hold_to : send_hold_to -> Boolean
op reset_rx_hold_to : rx_hold_to —> Boolean

The send_ka_to and rx_ka_to sorts are set to true when the send KeepAlive timer
and the receive KeepAlive timer expire respectively. The following operations re-

set these sorts after the actions related to the timer operations are done, namely,

SEND_KATO and RX_KATO.

op reset_send_ka_to : send_ka_to -> Boolean
op reset_rx_ka_to : rx_ka_to -> Boolean

The send_hello sort is set to true, to indicate that a Hello message has to be sent.
It is reset following the transmission of the Hello message. The following operations

are used to set and reset the send_hello sort respectively.
94

op set_send_hello : send_hello -> Boolean
op reset_send_hello : send_hello -> Boolean

The sort mode is set to true, to indicate that the mode of operation of the protocol
is active. It is reset to indicate passive mode of operation. The following operations

are used to set and reset the mode sort respectively.

op setmode : mode -> Boolean
op resetmode : mode -> Boolean

The TCP_CX operation opens a TCP connection with the peer. This is similar

to the connect system call in socket programming.

op TCP_CX : address * address -> Boolean

The TCP_ACCEPT operation accepts an incoming TCP connection request from

a peer. This is similar to the accept system call in socket programming.

op TCP_ACCEPT : address * address -> Boolean

The SEND_NOTFN is used to send a Notification message.

op SEND_NOTFN : msg * address -> Boolean

The following operations are used to send and receive Address messages.

op SEND_ADDR : msg * address -> Boolean
op RECEIVE_ADDR : msg * address -> Boolean

The tx_init sort is set to true, to indicate that an Initialization message has to
be sent. It is reset following the transmission of the Initialization message. The

following operations are used to set and reset the tz_Init sort respectively.

op set_txinit : tx_init -> Boolean
op reset_txinit : tx_init -> Boolean

95

The following operation sets the state sort to the value specified by Nat. This is to
keep track of the current state of the protocol as it progresses from NON_EXISTENT

to OPERATION AL and back to NON_EXISTENT on completion of the protocol

operation.

op setState : state * Nat -> Boolean

The tx_K A sort is set to true, to indicate that a KeepAlive message has to be
sent. It is reset following the transmission of the KeepAlive message. The following

operations are used to set and reset the tx_K A sort respectively.

op set_txKA : tx_KA -> Boolean
op reset_txKA : tx_KA -> Boolean

The following operations are used to check if the message is a TCP Connect, Hello,

Initialization and KeepAlive message respectively.

op isConnect : msg -> Boolean
op isHello : msg -> Boolean
op islInit : msg -> Boolean

op isKA : msg -> Boolean

The close operation takes care of the closing of LDP session and all other cleanup

operations.

op close : my_ldp_id -> Boolean

The basic send and receive operations and their axioms are as shown below:

op send : msg * address * interface -> Boolean

axiom send is

fa(m:msg,a:address,ifc:interface)
“(receive(m,a,ifc)) & send(m,a,ifc)

op receive : msg * address * interface -> Boolean

axiom receive is

fa(m:msg,a:address,ifc:interface)
“(send(m,a,ifc)) & receive(m,a,ifc)

96

We now explain the various operations and axioms that implement the steps of
the Label Distribution Protocol as explained in Section 4.2.1.

The LDP program provides an interface for an application to initiate the LDP
stack using the ldp_start operation. This operation takes care of the Discovery mech-
anism explained in Section 4.2.1. This operation sends the Hello message to the peer,
and the same is received by the peer, when the send_hello sort is set and the peer

address is known. This is given as follows:

op ldp_start : send_hello * msg * address * interface -> Boolean
axiom ldp_start is fa(b:send_hello,H:msg,p:address,ifc:interface)
(b = true) & “(p = 0) => send(H,p,ifc) & receive(H,p,ifc)

The hello_acceptable operation ensures if a Hello message received on an interface
from a particular address is valid. If the Hello is acceptable, it sets the hello_ok sort

to true.

op hello_acceptable : if_config_list * interface * hello_ok * address *
allowed _peers —> Boolean
axiom hello_acceptable is fa(il:if_config_list,ifc:interface,ok:hello_ok,
a:address, ap:allowed_peers)
interface_config(il,ifc) & peer_allowed(ap,a) => (ok = true)

The Session Establishment phase mentioned in Section 4.2.1 is taken care of by the
ldp_state_mc operation. The explanation of the LDP state machine is given in [15].

This operation is formally given below:

op ldp_state_mc : msg * state * send_hello * my_ldp_id * tx_init % tx_KA *
peer_1dp_id * address * interface -> Boolean
axiom ldp_state_mc is fa (m:msg,s:state,sh:send_hello,myid:my_ldp_id,txi:tx_init,
txKA:tx_KA,peer:peer_ldp_id,addr:address,ifc:interface)
(if ((s=5) & isHello(m)) then
SEND_HELLO(sh,m,addr,ifc)
else if ((s=5) & isConnect(m)) then
SEND_INIT(m,txi,myid,peer,addr,ifc)

97

else
SEND_NOTFN(m, addr) & close(myid))
or
(if ((s=1) & isHello(m)) then
SEND_HELLO(sh,m,addr,ifc)
else if ((s=1) & isInit{(m)) then
SEND_INIT(m,txi,myid,peer,addr,ifc)
else
SEND_NOTFN(m,addr) & close(myid))
or
(if ((s=2) & isHello(m)) then
SEND_HELLO(sh,m,addr,ifc)
else if ((s=2) & isInit(m)) then
SEND_INIT(m,txi,myid,peer,addr,ifc)
else
SEND_NOTFN(m,addr) & close(myid))
or
(if ((s=3) & isKA(m)) then
EXCG_ADDR_LBL_MSG(m,myid,peer,txi,s,addr,self,ifc,hl,m)
else
SEND_NOTFN(m, addr) & close(myid))
or
(if ((s=4) & isKA(m)) then
SEND_HELLO(sh,m,addr,ifc)
else if ((s=4) & (isInit{(m) or isKA(m))) then
SEND_KA (m,txKA,addr,ifc)
else
SEND_NOTFN(m,addr) & close(myid))

The Session Closure phase is ensured by the close operation explained earlier. The
various operations and axioms needed for these three phases are explained below.

On receiving a Hello message, the RECEIV E_HELLQO operation resets the hold
timer and if a hello adjacency exists, and the peer address is lesser than this node’s
address, the mode is set to active and a TCP connection is opened with the peer.
If the peer address is greater, the mode is set to passive and the node waits for the
peer to initiate a TCP connection. If an hello adjacency does not exist, then an hello
adjacency is created and a Hello message is sent to the peer to acknowledge the hello

adjacency, and the mode is set as explained earlier.

98

op RECEIVE_HELLO : hello_adj_list * send_hello * address * address * interface *
hello_ok * mode * msg * send_hold_to * rx_hold_to -> Boolean
axiom RECEIVE_HELLO is fa (hl:hello_adj_list,b:send_hello,s:address,p:address,
i:interface,ok:hello_ok,m:mode,ms:msg,
sho:send_hold_to,rho:rx_hold_to)
receive(ms,p,1i) & reset_rx_hold_to(zho) &
(if (hello_adj(hl,p)) then
(if (s > p) themn
setmode(m) & TCP_CX(s,p)
else
resetmode(m) & TCP_ACCEPT(s,p))
else
(create_hello_adj(hl,p) & set_send _hello(b) &
(if (s > p) then
setmode(m) & TCP_CX(s,p)
else
resetmode(m) & TCP_ACCEPT(s,p))
=> SEND_HELLO(b,ms,p,1)))
=> rx_hold_timer (rho)

On initialization, the ldp_Init operation sets the tx_init sort, which inturn en-

sures that an Initialization message is sent to the peer and the state is set to

OPENSENT. This is represented formally as shown below:

op l1dp_Init : msg * my_ldp_id * peer_ldp_id * tx_init * state * address *
interface ~> Boolean
axiom 1dp_Init is fa (I:msg,idc:my_ldp_id,ids:peer_ldp_id,tx:tx_init,s:state,
a:address,i:interface)
((s = 1) & set_txinit(tx)) => SEND_INIT(I,tx,idc,ids,a,i) & setState(s,2)

On receiving an Initialization message, if the state is OPENSENT and the
LDP identifier received in the message is the same as that of the receiving node, then
a KeepAlive message is sent and the state is set to OPENREC'. If this is not true,

then a Notification message is sent and the state is set to NON_EXISTENT. The

formal representation of this operation is shown below:

op RECEIVE_INIT : msg * msg * msg * rxr_ldp_id * state * my_ldp_id * tx KA *
address * interface -> Boolean
axiom RECEIVE_INIT is fa (I:msg,N:msg,K:msg,id:rxr_ldp_id,s:state,idc:my_ldp_id,
ka:tx_KA,a:address,i:interface)

99

if { (s = 2) & (id = idc)) then

set_txKA(ka) => SEND_KA(K,ka,a,i) & setState(s,3)
else

SEND_NOTFN(N,a) & setState(s,5)

The operation SEND _K A is used to send a KeepAlive message to the peer. On
receiving a KeepAlive message, if the stateisOPENREC it is set to OPERATIONAL.

The formal representation of the send and receive operations is shown below:

op SEND_KA : msg * tx_KA * address * interface -> Boolean

axiom SEND_KA is fa(K:msg,b:tx_KA,a:address,i:interface)
(b = true) & send(K,a,i) => reset_txKA(b)

op RECEIVE_KA : msg * state -> Boolean

axiom RECEIVE_KA is fa(k:msg,s:state)
(s = 3) => setState(s,4)

We have two timers for the KeepAlive message, one for sending a KeepAlive
message if no message is sent for the KeepAlive period. This is represented by the
operation SEND_K A_TO. If the number of packets sent is zero and send KeepAlive
timer expires, a KeepAlive message is sent to the peer. The formal representation of

the send timer is shown below:

op SEND_KA_TO : msg * state * send_ka_to * no_of_pkts_sent * tx_KA * address *
interface -> Boolean
axiom SEND_KA_TO is fa (K:msg,s:state,to:send_ka_to,pkt:no_of_pkts_sent,tx:tx KA,
a:address,i:interface)
(pkt=0) & (to=true) =>
set_txKA(tx) & SEND_KA(X,tx,a,i) & reset_send_ka_to(to) & (no_of_pkts_rxed=0)

The RX_KA_TO operation is used to ensure that a message is received in the
KeepAlive time period, if not, it is assumed that the connection with the peer is lost
or the session no longer exists. If the receive timer times out which is indicated by
the rz_ka_to and if no packets were received during that interval the state is set to

NON_EXISTENT and session is closed. This is represented formally as:
100

op RX_KA_TO : msg * state * rx_ka_to * no_of_pkts_xrxed -> Boolean
axiom RX_KA_TO is fa(K:msg,s:state,to:rx_ka_to,pkt:no_of_pkts_rxed)
(to=true) & (pkt = 0) => setState(s,5) & reset_rx_ka_to(to)

The translation provided by the {dp module which will be used by other modules

for their operation is shown below:

LDP_to_ALL_TRANSLATION = translate(ldp) by
{ SEND_ADDR +-> SEND_ADDR, RECEIVE_ADDR+->RECEIVE_ADDR,
RX_KA_TO+->RX_KA_TO, send+->send, receive+->receive,
EXCG_ADDR_LBL_MSG +-> EXCG_ADDR_LBL_MSG,
no_of_pkts_rxed +-> no_of_pkts_rxed,state+->state }

We extend the ldp specification and add a new variable tcp_cx_failure that shall
be used by the detector modules which will be added to detect the TCP connection

failure. The translation of this new module called LDP_E X P is shown below:

LDPEXP_to_ALL_TRANSLATION = translate(LDP_EXP) by
{ tcp_cx_failure +-> tcp_cx_failure }

4.5.2 Composing the LDP with the Detector D1

The detector D1 enhances the send operation by setting the tcp_cx_failure to true,
if it sends a message and the peer does not receive it, and the state is operational
and a hello adjacency exists with the peer. The mod_send operation is represented
as:

op mod_send : tcp_cx_failure * msg * address * interface * state *
hello_adj_list * address -> Boolean
axiom mod_send is fa (cx:tcp_cx_failure,m:msg,a:address,ifc:interface,s:state,
hl:hello_adj_list,peer:address)
(cx=true) => (5=4) & hello_adj(hl,peer) & send(m,a,ifc) & ~(receive(m,a,ifc))

The translation provided by the D1 module is given below:
101

LDPD1_to_ALL_TRANSLATION = translate(D1) by { mod_send +-> mod_send }

The morphism between the LDP_E X P and the D1 specification is formalized as:

LDP_TO_D1_MORPHISM = morphism LDP_EXP -> D1 {send +-> send, state +-> state }

4.5.3 Composing the LDP with the Detector D2

The detector D2 enhances the RX _K A_TO operation and sets the tcp_cx_failure to

true to indicate failure.

op RK_KA_TO1 : msg * state * rx_ka_to * no_of_pkts_rxed * tcp_cx_failure *
hello_adj_list * address -> Boolean
axiom RX_KA_T01 is fa (m:msg,s:state,to:rx_ka_to,pkt:no_of_pkts_rxed,
cx:tcp_cx_failure,hl:hello_adj_list,a:address)
RX_KA_TO(m,s,to,pkt) & (s=4) & hello_adj(hl,a) & (pkt=0) =>
reset_rx_ka_to(to) & (cx = true)

The translation provided by the D2 module is given below:

LDPD2_to_ALL_TRANSLATION = translate(D2) by { RX_KA_TO1 +-> RX_KA_TO1 }

The morphism between the LDP_E X P and the D2 specification is formalized as:

LDP_TO_D2_MORPHISM = morphism LDP_EXP -> D2{RX_KA_TO +-> RX_KA_T0,state +-> state}

Union to Generate a Composition of LDP Module with Two
Dectectors
We then define the diagram with the LDP_EX P, D1 and D2 specifications as the

nodes and the corresponding morphisms as the links between them. This is formally

represented as:

102

1dp_D1_D2 = diagram {
A +-> LDP_EXP,
B +-> D1,
m: A ~> B +-> morphism LDP_EXP -> D1 { send +-> send },
C +-> D2,
i : A -> C +-> morphism LDP_EXP -> D2 { RX_KA_TO +-> RX_KA_TO }

We finally construct the composite specification of the LDP_EXP, D1 and D2
modules by taking the co-limit of the diagram, which gives the union of the three

specifications. The co-limit operation is specified as :

1dpD1D2 = colimit 1dp_D1.D2

The translation provided by the composed module which will be used by other

modules for their operation is shown below:

LDPD1D2_to_ALL_TRANSLATION = translate(1dpD1D2) by
{ mod_send +-> mod_send, RX_KA_TO1 +-> RX_KA_TO1 }

We extend the composed specification and add the common sorts that are to be
used by both the corrector modules (C1 and C2), namely, FTP tlv and ReCz_tlv.
These two sorts indicate the S-bit in the “FT Session TLV” if the fault-tolerant
operations are to be used and the “FT Reconnect Flag”, which denotes whether the
LSR has been able to preserve label state respectively. The translation of this new

specification called LDP_EX P is shown below:

LDPD1D2EXP_to_ALL_TRANSLATION = translate(LDPD1D2_EXP) by
{ FTP_tlv +-> FTP_tlv, ReCx_tlv +-> ReCx_tlv }

103

4.5.4 Composing Corrector C'1 with the Composed Module

of LDP, D1 and D2

The corrector C'1 adds the following sorts seq, for identifying the message to be
acknowledged, ack_seq-no, for the corresponding acknowledgement, and msg_g to
indicate the queue of channel messages, both at the sender and receiver.

The main operations of the corrector C'1 are:

op send_msg : FTP_tlv * ReCx_tlv * rs * seq * tcp_cx_failure * msg * address *
interface * state * hello_adj_list-> Boolean
axiom send_msg is fa (ftlv:FTP_tlv,rtlv:ReCx_tlv,r:rs,ns:seq,tcp:tcp_cx_failure,

m:msg,a:address,i:interface,s:state,hl:hello_adj_list)
(ftlv = true) & (rtlv = true) & (r = true) =>

resetRxAck(r) & mod_send(ftlv,tcp,m,a,i,s,hl,a) => appendtxch(ns)

This operation is the action that takes place at the sender when it sends a message
to the receiver. If the sort rs is true, it implies that sender has received an acknowl-
edgement for the last message it sent, and hence it is reset and the next message is

sent which is indicated by appending the message to the transmit message queue.

op rx_ack : FTP_tlv * ReCx_tlv * rs * seq * msg_q * Nat -> Boolean

axiom rx_ack is fa(ftlv:FTP_tlv,rtlv:ReCx_tlv,r:rs,ns:seq,rx_q:msg_q,n:Nat)
(ftlv = true) & (rtlv = true) & ~(getrxch(rz_q)) =>
setRxAck(zr) & assignrxch(nth(rx_q,n)) & setNS(ms+1)

This operation is the action that takes place at the sender when it receives an
acknowledgement from the receiver for a message it sent. The sort rs is set to true
to indicate this, and the receive message queue is updated and the sender’s sequence

number is incremented, which is tagged with the next message to be sent.

op rx_msg : FTP_tlv * ReCx_tlv * rr * ack_seq_no * msg_q * Nat -> Boolean

axiom rx_msg is fa(ftlv:FTP_tlv,rtlv:ReCx_tlv,r:rr,nr:ack_seq_no,tx_q:msg_q,n:Nat)
(ftlv = true) & (rtlv = true) & ~(gettxch(tx_q)) =>
setTxMsg(r) & assigntxch(nth(tx_q,n)) & setNR(getAckSeq(hd(tx_q)))

104

This operation is the action that takes place at the receiver when it receives a
message from the sender. The sort rr is true, which indicates that the receiver has

received a message, and the transmit message queue is updated.

op send_ack : FTP_tlv * ReCx_tlv * rr * ack_seq_no * tcp_cx_failure * msg *
address * interface * state * hello_adj_list —> Boolean
axiom send_ack is fa (ft1v:FTP_tlv,rtlv:ReCx_tlv,r:rr,nr:ack_seq_no,
tcp:tcp_cx_failure,m:msg,a:address,i:interface,
s:state,hl:hello_adj_list)
(ftlv = true) & (rtlv = true) & (r = true) =>
resetTxMsg(r) & mod_send(ftlv,tcp,m,a,i,s,hl,a) => appendrxch(ar)

This operation is the action that takes place at the receiver when it sends a
acknowledgement to the sender, which is indicated by the sort rr being true. The
consequent actions reset this sort and the next message is appended in the receive

channel queue.

op Reissue : FTP_tlv * ReCx_tlv * rr * rs * seq * msg q * msg_q * my_ldp_id
~> Boolean
axiom Reissue is fa (ftlv:FTP_tlv,rtlv:ReCx_tlv,rl:rr,r2:rs,ns:seq,tx_q:msg_q,
rx_q:msg_q,mny:my_ldp_id)
true) & (rtlv = true) & gettxch(tx_q) & getrxch(rx_q) & (r1 = false)
false) => ReInitialize(my) & appendtxch(ns)

(ftlv
& (2

1}

l

This operation ensures that if the transmit and receive channels are empty and
the sorts rs and rs are false, then the sender retransmits the last message.

The translation provided by the C'1 module is given below:

LDPD1D2C1_to_ALL_TRANSLATION = translate(Cl) by
{ send_msg +-> send_msg,rx_ack +-> rx_ack,
rx_msg +-> rx_msg,send_ack +-> send_ack,
Reissue +-> Reissue }

The morphism between the LDPD1D2_EX P and the C1 specification is formal-

ized as :

LDPD1D2_TO_C1_MORPHISM = morphism LDPD1D2_EXP -> Cl1 {send +-> send,state +-> state}
105

4.5.5 Composing Corrector C2 with the Composed Module

of LDP, D1 and D2

The corrector C2 adds the following sorts kaseq_no, to indicate the current KeepAlive
sequence number, last_kaseq_no, to indicate the last sent KeepAlive sequence number,
record to indicate the information that is being flushed, and chkpt_tlv, to indicate if
checkpointing is to be used.

The operations of C2 are writeLog for logging sent messages, flush, for flushing

the log, Recover for recovering from the last checkpointed state.

op writelog : msg -> Boolean
op flush : record -> Boolean
op Recover : FTP_tlv * ReCx_tlv -> Boolean

The other operations and axioms of the corrector C'2 include:

op sendLog : FTP_tlv * ReCx_tlv * chkpt_tlv * tcp_cx_failure * msg * address *
interface * state * hello_adj_list -> Boolean
axiom sendlLog is fa (ft:FTP_tlv,re:ReCx_tlv,ck:chkpt_tlv,tcp:tcp_cx_failure,
m:msg,a:address,i:interface,s:state,hl:hello_adj_list)
if (ft & re & ck) then
writeLog(m) & mod_send(tcp,m,a,i,s,hl,a)
else
mod_send(tcp,m,a,i,s,hl,a)

This operation writes a message to the log before sending it, if the checkpointing

procedures are enabled.

op chkpoint : FTP_tlv * ReCx_tlv * chkpt_tlv * record -> Boolean
axiom chkpoint is fa(ft:FTP_tlv,re:ReCx_tlv,ck:chkpt_tlv,rec:record)
(ft = true) & (re = true) & (ck = true) => flush(rec)

This operation flushes the messages that have been logged.

106

op Relnit : FTP_tlv * ReCx_tlv * chkpt_tlv * last_kaseq no * tcp_cx_failure *
kaseq _no * msg * address * interface * state * hello_adj_list *
recx_to * rx_hold_to -> Boolean

axiom RelInit is fa (ft:FTP_tlv,re:Rer_tlv,ck:chkpt_tlv,lka:1ast_kaseq_no,

tcp:tepocx_failure,ka:kaseq_no,m:msg,a:address,i:interface,
s:state,hl:hello_adj_list,recx:recx_to,rxho:rx_hold_to)
if((lka < ka) & (tcp = true)) then
startReCxTimer (recx) & reset_rx_hold_to{rxho) & Recover(ft,re)
else
sendLog(ft,re,ck,tcp,m,a,i,s,hl)

This operation is invoked when a new TCP connection is opened and the failed
session needs to be restored. This operation takes care of reinitializing the protocol
to a state where there are no lost or unacknowledged messages. This is ensured by

the Recover operation.

op FT_RX_KA_TO : msg * state * rx_ka_to * no_of_pkts_rxed * tcp_cx_failure *
hello_adj_list * address * FTP_tlv * ReCx_tlv * chkpt_tlv =*
record -> Boolean

axiom FT_RX_KA_TO is fa (m:msg,s:state,to:rx_ka_to,pkt:no_of,pkts_rxed,

cx:tcp_cx_failure,hl:hello_adj_list,a:address,
ft:FTP_tlv,re:ReCx_tlv,ck:chkpt_tlv,rec:record)
RX_KA_T01(m,s,to,pkt,cx,hl,a) & chkpoint(ft,re,ck,rec)

This operation enhances the RX _K A_T'O1 operation by checkpointing when the

KeepAlive timer expires.

op ft_ldp_state_mc : msg * state * send_hello * my_ldp_id * tx_init * tx_KA =*
peer_ldp_id * address * address * hello_adj_list *
interface * FTP_tlv * ReCx_tlv * chkpt_tlv * record
-> Boolean
axiom ft_ldp_state_mc is fa (m:msg,s:state,sh:send_hello,myid:my_ldp_id,
txi:tx_ init,txKA:tx_KA,peer:peer_ldp_id,addr:address,
self:address,hl:hello_adj_list,ifc:interface,
f£1v:FTP_tlv,recx:ReCx_tlv,ckpt:chkpt_tlv,rec:record)
if((s=4) & (ftlv=true) & (ckpt=true) & (recx=true) & isKA(m)) then
chkpoint (ftlv,recx,ckpt,rec)
else
ldp_state_mc(m,s,sh,myid,txi,txKA,peer,addr,self,hl,ifc)

This operation modifies the ldp_state_mec such that when the state is Operational

and a KeepAlive message is received, the state information is checkpointed.
107

The translation provided by the C2 module is given below:

LDPC2_to_ALL_TRANSLATION = translate(C2) by
{ sendlog +-> sendLog, chkpoint +-> chkpoint,
Relnit +-> Relnit }

The morphism between the LDPD1D2_E X P and the C2 specification is formal-

ized as :

LDPD1D2_TO_C2_MORPHISM = morphism LDPD1D2_EXP -> C2
{ send +-> send, state +-> state }

Union to Generate the Final Composed Module of LDP with

both Detectors and Correctors

We then define the diagram with the LDPD1D2_EXP, C1 and C2 specifications
as the nodes and the corresponding morphisms as the links between them. This is

formally represented as:

1dpD1D2_C1_C2 = diagram {
A +-> LDPD1iD2_EXP,
B +-> Ci,
m : A -> B +-> morphism LDPD1D2_EXP -> C1 { send +-> send },
C +-> C2,
i : A -> C +-> morphism LDPD1D2_EXP -> C2 { RX_KA_TO +-> RX_KA_TO }

We finally construct the composite specification of the LDPD1D2 EXP, C1 and
C2 modules by taking the co-limit of the diagram, which gives the union of the three
specifications. The co-limit operation is specified as :

1dpDiD2C1iC2 = colimit 1dpD1D2_C1_C2

The translation provided by the composed module which will be used by other

modules for their operation is shown below:
108

LDPD1D2C1C2_to_ALL_TRANSLATION = translate(1dpD1D2C1C2) by
{ EXCG_ADDR_LBL_MSG +-> EXCG_ADDR_LBL_MSG }

The final theorem that is to be proved from the composed specification is:

theorem FT_EXCG_ADDR_LBL_MSG is fa (I:msg,idc:my_ldp_id,ids:peer_ldp_id,tx:tx_init,

s:state,peer:address,se:address,ifc:interface,

hl:hello_adj_list,A:msg,ftv:FTP_tlv,rec:ReCx_tlv,

ckpt:chkpt_tlv,rx:rs,seq:seq,txq:msg_q,n:Nat,
ack:ack_seq_no,rxq:msg_q,tcp:tcp_cx_failure,

ck:chkpt_tlv,recd:record,txm:rr,lka:last_kaseq_no,

kaseq:kaseq_no,recx:recx_to,rxho:rx_hold_to)
(" (EXCG_ADDR_LBL_MSG(I,idc,ids,tx,s,peer,se,ifc,hl,A)) & (tcp = true)) =>
(send_msg(ftv,rec,rx,seq,tcp,A,peer,ifc,s,hl) => rx_ack(ftv,rec,rx,seq,rxq,n)

=> rx_msg(ftv,rec,txm,ack,txq,n) => send_ack(ftv,rec,txm,ack,tcp,A,peer,ifc,s,hl)

=> Reissue(ftv,rec,txm,rx,seq,txq,rxq,idc)) or (ckpt = true) =>
(chkpoint (ftv,rec,ck,recd) &
ReInit(ftv,rec,ck,lka,tcp,kaseq,I,peer,ifc,s,hl,recx,rxho))

The theorem, FT EXCG_ADDR_LBL_MSG is the final FT exchange of Address
or Label messages, which states that if the EXCG_ADDR_LBL _MSG fails be-
cause of a TCP connection failure, it leads to the triggering of either corrector C'1
or C2 actions which ensures that a new TCP connection is opened and the pro-
gram is restored to a consistent state from which Address or Label messages are
again successfully exchanged. We finally verify the above mentioned property by
processing the above specification along with the theorem in Specware with a built-
in interface to Snark theorem prover. Reusability is shown by the fact that the
theorem FT_EXCG_ADDR_LBL_MSG uses axioms like send, receive, ldp_Init,
EXCG_ADDR_LBL_MSG, mod_send and Relnit from other modules for its proof

as shown in the statement below:

p=prove FT_EXCG_ADDR_LBL_MSG in ft_ldp using send receive 1ldp_Init
EXCG_ADDR_LBL_MSG mod_send Relnit

109

Note that we have axiomatize various properties of underlying protocols, however,
it is to be emphasized that these properties must be proven as a theorem in their

respective modules for an extensive formal analysis of the protocol under study.

4.5.6 Role of Morphisms for Traceability

In establishing a particular property, it is important to have an ability to trace all
the properties that are influencing it. In our framework, we can achieve traceability
through morphisms linking various modules and facilitating functionalities across the
composition. The role of different modules in establishing the correctness of “ex-
changing Address and Label messages” under different failure scenarios is explained
below.

The property of “exchanging Address and Label messages” is achieved by the
EXCG_ADDR_LBL_MSG axiom, which in turn uses the send, receive and ldp_Init
operations for its proper working. The property of the D1 module is to achieve the
detection of the TCP connection failure which is achieved by the mod_send opera-
tion. The mod_send operation which extends the send operation maps the original
label distribution property to the property of detecting TCP failures in addition
to label distribution. This mapping between the send and mod_send operations is
achieved through the morphism “a” as shown in Figure 4.1. The composed mod-

ule LDP_D1_D2 now combines the property of detecting the TCP failure either

through the failure of the send operation or the KeepAlive timeout. The mapping

110

of mod_send operation from D1 to mod_send operation in LDP_D1_D2 is shown
through the morphism “b” in Figure 4.1. Simlarly, the C1 module which provides
the correction property uses the Relnit operation for restoring the program to its
consistent state. This operation in turn uses the mod_send operation that the detec-
tor module added in the previous composition. This mapping from the LDP_D1_D2
to the C'1 module is shown by the morphism “¢” as shown in Figure 4.2. The final
operation that achieves the fault-tolerant property of exchanging label and address
messages uses Relnit for its operation. This mapping is shown by the morphism “d”
in Figure 4.2. From this discussion, it is clear that morphisms a, b, ¢ and d linking
the various modules help in precisely identifying properties that must be observed
across different modules, for e.g., when D1 gets composed with LDP, detection of
the TCP connection failure is achieved, and it gets carried over to the final composed
module, FT_LDP, which needs this property for satisfying the required operation of
detecting TCP failure. Through this discussion, we have illustrated that with prop-
erties being inherited through morphisms over successive module composition, one
can trace back all influential properties needed in establishing the correctness of the
resulting fault-tolerant program.

In this Chapter, we have shown the decomposition of the FT-LDP into a FIP and
fault-tolerant components and shown that these components can be built as detectors
and correctors. In the next Chapter, we make conclusions and list future research

directions.

111

Chapter 5

Conclusion

This thesis aims at the component-based construction of fault-tolerant software using
fault-tolerant components. The construction of these components is based on the
premise that any fault can be represented as a state perturbation. Kulkarni [19] has
illustrated this by case studies which deal with various classes of transient faults,
permanent faults, detectable and undetectable faults. We base our construction of
fault tolerant components on this approach because of the wide range of faults that can
be covered by this approach. Furthermore, this approach also shows that the fault-
tolerant components themselves are not faulty and do not interfere in the working of
the fault-intolerant program. In this Chapter, we first discuss some of the insights
obtained from the design of the corrector and detector components for the multimedia
protocol in terms of experience gained through their design and their formal proof

followed by the contributions of this thesis. Finally we put forth new directions for

112

further research.

5.1 Contributions

Our main contribution in this thesis has been to introduce an integrated frame-
work that incorporates the component-based design for fault-tolerance and category-
theoretic operations for composition through the correctness-by-construction approach.

Our specific contributions in this thesis include:

e we have illustrated our approach for composition using the case study in [5] (see
Chapter 3). We have shown the feasibility of our approach in this case study by
specifying the algorithm and the fault-tolerant components followed by a proof

of the composition of these components with the fault-intolerant program.

e we have shown this composition approach for the LDP (see Chapter 4). We first
established the correctness of the detectors and correctors designed using this
approach and consequently composed these components with the FIP using the

category theory approach to obtain the final FTP.

e we have also shown the formal specification for the protocol, which has been

written in an algebraic language, namely, MetaSlang.

We have made full use of the Specware [33] development system, which provides
for a rigor in establishing the overall correctness of the composition, and moreover,
facilitates further transformation into executable code. We emphasize the fact that

113

over the process of designing and formalizing fault-tolerant version of LDP [15] us-
ing the component-based approach, subtle intricacies in the design of fault-tolerant
components have been highlighted and incorporated in our formal treatment of the

protocol.

5.2 Experience

Our aim in this thesis has been to apply our proposed category-theoretical approach
for the composition of a fault-tolerant program by integrating a FIP with fault-
tolerant components, namely, detectors and correctors. These components are de-
signed to detect or correct a particular fault for a particular problem or algorithm
followed by composing them with the fault-intolerant program. We have shown that
the resulting composed solution is fault-tolerant to the faults that can be tolerated
by these fault-tolerant components. With our first case study, we show the feasibility
of our approach following which we design the detector and corrector components for
a multimedia protocol, and show their correctness, based on the work of Arora and
Kulkarni. We then show the composition of these components using category theory
constructs and show that the composed program does indeed preserve its property
even in the case of faults.

In order to achieve fault-tolerance we have shown the construction of these fault-
tolerant components in Chapter 4. In the development of reusable components, formal

methods can help to promote software reuse. Components that have been formally

114

specified and sufficiently well documented can be identified, reused, and combined in
a new system. Also, it is important to focus on the reuse of formally developed
specifications as well as formally developed code; as such reuse can improve the
generality versus specialization trade-off.

Our future research directions include finding a generic framework of fault-tolerant
components for a class of protocols like transaction processing protocols, network and
security protocols and so on. We would also like to explore a way of formally arriving
at the invariant for a given problem, which is a “creative process” as of now. We
also plan on utilizing the automated code-generation feature of the Specware tool by
converting the specifications we have written for our case studies into executable code
and verifying that the program is indeed fault-tolerant. We also plan to compare the
code generated with an implementation of these programs that have been written
without being formally specified. We would like to compare both the implementa-
tions in terms of code size, memory usage, performance and other factors, which
would enable us to get a better understanding of the code generated using automated

procedures.

115

Appendix

Specification of the composite fault-tolerant LDP ftldp along with the processing steps

Specware and proof results from Snark.

CL-USER(1): :cd Z:\Win2K_Profile\ldp
Z:\Win2K_Profile\ldp\

ftldp.sw
:/Win2K_Profile/1dp/ftldp#Address

CL-USER(2):

Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing

ISW
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec

at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

Z
C
C
C
C
C
C
C
C
C
C
C
C
C

Z

:/Program
:/Program
:/Program
:/Program
:/Program
:/Program
:/Program
:/Program
:/Program
:/Program
:/Program
:/Program
:/Program

Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.

0/Library/Base
0/Library/Base/Boolean
0/Library/Base/PrimitiveSorts
0/Library/Base/Compare
0/Library/Base/Functions
0/Library/Base/Integer
0/Library/Base/Nat
0/Library/Base/Char
0/Library/Base/String
0/Library/Base/List
0/Library/Base/Option
0/Library/Base/System
0/Library/Base/Show

: /Win2K_Profile/ldp/ftldp#ldp

translation at Z:/Win2K_Profile/1dp/ft1dp#LDP_to_ALL_TRANSLATION
spec at Z:/Win2K_Profile/ldp/ft1dp#LDP_EXP

translation at Z:/Win2K_Profile/1dp/ftldp
#LDPEXP_to_ALL_TRANSLATION
Processing spec at Z:/Win2K_Profile/ldp/ftldp#D1
Processing translation at Z:/Win2K_Profile/ldp/ftldp
#LDPD1_to_ALL_TRANSLATION
Processing spec morphism at Z:/Win2K_Profile/1dp/ft1dp#LDP_T0_D1_MORPHISM

116

Processing spec at Z:/Win2K_Profile/1dp/ft1dp#D2
Processing translation at Z:/Win2K_Profile/ldp/ftldp
#LDPD2_to_ALL_TRANSLATION
spec morphism at Z:/Win2K_Profile/ldp/ft1dp#LDP_TO_D2_MORPHISM
spec diagram at Z:/Win2K_Profile/ldp/ftldp#ldp_D1_D2

spec morphism at Z:/Win2K_Profile/ldp/ftldp#ldp_D1_D2

spec morphism at Z:/Win2K_Profile/ldp/ftldp#ldp_D1_D2

at Z:/Win2K_Profile/ldp/ftldp#1dpDiD2

Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing

#LDPD1D2EXP_to_ALL_TRANSLATION

colimit

spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec

at
at
at
at
at
at
at
at
at
at
at
at
at

e eoNeoNeo oo e Moo oo N @]

:/Program
:/Program
:/Program
:/Program
:/Program
: /Program
:/Program
:/Program
:/Program
:/Program
: /Program
:/Program
C:

/Program

Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.

0/Library/Base
0/Library/Base/Boolean
0/Library/Base/PrimitiveSorts
0/Library/Base/Compare
0/Library/Base/Functions
0/Library/Base/Integer
0/Library/Base/Nat
0/Library/Base/Char
0/Library/Base/String
0/Library/Base/List
0/Library/Base/Option
0/Library/Base/System
0/Library/Base/Show

translation at Z:/Win2K_Profile/ldp/ftldp
#LDPD1D2_to_ALL_TRANSLATION
Processing spec at Z:/Win2K_Profile/1dp/ft1dp#LDPD1D2_EXP
Processing translation at Z:/Win2K_Profile/ldp/ftldp

Processing spec at Z:/Win2K_Profile/ldp/ftldp#C1
Processing translation at Z:/Win2K_Profile/ldp/ftldp
#L.DPD1D2C1_to_ALL_TRANSLATION

Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing

spec

spec morphism at Z:/Win2K_Profile/ldp/ft1dp#LDPD1D2_TO_C1i_MORPHISM

spec at Z:/Win2K_Profile/1dp/ftldp#C2
translation at Z:/Win2K_Profile/ldp/ft1dp#LDPC2_to_ALL_TRANSLATION
spec morphism at Z:/Win2K_Profile/1dp/ft1dp#LDPD1D2_TO_C2_MORPHISM
spec diagram at Z:/Win2K_Profile/ldp/ftldp#1dpDiD2_C1i_C2
spec morphism at Z:/Win2K_Profile/ldp/ft1dp#1dpD1D2_C1_C2
spec morphism at Z:/Win2K_Profile/ldp/ftldp#1dpD1D2_C1_C2
colimit at Z:/Win2K_Profile/1dp/ft1dp#1dpD1D2C1C2
translation at Z:/Win2K_Profile/ldp/ftldp
#LDPD1D2C1C2_to_ALL_TRANSLATION
Processing spec at Z:/Win2K_Profile/ldp/ftldp#ft_ldp

117

sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort
sort

FTP_tlv = Boolean

HELLO = Nat

ReCx_tlv = Boolean

ack_seq_no = Nat

address = Nat

allowed_peers = List(address)
chkpt_tlv = Boolean

cr = List(msg)

cs = List(msg)

h_time = Nat

hello_adj_list = List(address)
hello_ok = Boolean
if_config_list = List(interface)
interface = Nat

kaseq_no = Nat

last_kaseq_no = Nat

mode = Boolean

msg = Nat

msg_q = List(msg)

my_ldp_id = Nat
no_of_pkts_rxed
no_of_pkts_sent
peer = address
peer_ldp_id = Nat
record = Nat

recx_to = Boolean

rr = Boolean

rs = Boolean
rx_hold_toc = Boolean
rx_ka_to = Boolean
rxr_ldp_id = Nat

self = address
send_hello = Boolean
send_hold_to = Boolean
send_ka_to = Boolean

Nat
Nat

seq = Nat
state = Nat
tcp_cx_failure = Boolean

tx_KA = Boolean
tx_init = Boolean

op EXCG_ADDR_LBL_MSG :
msg *

118

op

op
op

op

my_ldp_id *
peer_ldp_id *
tx_init *

state *

address *
address *
interface *
hello_adj_list *
msg -> Boolean
FT_RX_KA_TO :
msg *

state *

rx_ka_to ¥
no_of_pkts_rxed *
tep_cx_failure *
hello_adj_list *
address *
FTP_tlv *
ReCx_tlv *
chkpt_tlv *
record -> Boolean
RECEIVE_ADDR : msg * address -> Boolean
RECEIVE_HELLD :
hello_adj_list *
send_hello *
address *
address *
interface *
hello_ok *

mode *

msg *
send_hold_to *
rx_hold_to -> Boolean
RECEIVE_INIT -
msg *

msg *

msg *

rxr_ldp_id *
state *
my_ldp_id *
tx_KA *

address *

119

op
op
op
op
op

op

op
op
op

op
op
op
op

op
op

interface -> Boolean

RECEIVE_KA : msg * state -> Boolean

RECEIVE_LBL : msg * address —-> Boolean

RX_HOLD_TO : msg * rx_hold_to -> Boolean

RX_KA_TO : msg * state * rx_ka_to * no_of_pkts_rxed -> Boolean

RX_KA_TO1 :
FTP_tlv *

msg *

state *

rx_ka_to *
no_of_pkts_rxed *
tcp_cx_failure *
hello_adj_list *
address —> Boolean
ReInit :

FTP_tlv *
ReCx_tlv *
chkpt_tlv *
last_kaseq_no *
tep_cx_failure *
kaseq_no *

msg *

address *
interface *

state *
hello_adj_list *
recx_to *
rx_hold_to -> Boolean

Relnitialize : my_ldp_id -> Boolean
Recover : FTP_tlv * ReCx_tlv -> Boolean

Reissue :

FTP_tlv * ReCx_tlv * rr =*
SEND_ADDR : msg * address
SEND_HELLO : send_hello *

SEND_HOLD_TO :

msg * send_hold_to * send_

SEND_INIT :

rs * seq * msg.q * msg_q * my_ldp_id -> Boolean
~> Boolean
msg * address * interface -> Boolean

hello * address * interface -> Boolean

msg * tx_init * my_ldp_id * peer_ldp_id #* address * interface -> Boolean
SEND_KA : msg * tx_KA * address * interface -> Boolean

SEND_KA_TO -

msg * state * send_ka_to * no_of_pkts_sent * tx_KA * address * interface ->

Boolean

120

op
op
op
op
op
op
op
op
op
op
op
op
op

op
op
op
op

op
op
op
op
op
op
op
op

SEND_LBL : msg *
SEND_NOTFN : msg
TCP_ACCEPT : addr
TCP_CX : address
appendrxch : seq
appendtxch : seq
assignrxch : msg
assigntxch : msg

chkpoint : FTP_tlv * ReCx_tlv * chkpt_tlv * record -> Boolean

close : my_ldp_id
create_hello_adj
flush : record ->
ft_ldp_state_mc :
nsg *

state x*
send_hello *
my_ldp_id *
tx_init *

tx_KA %
peer_ldp_id =*
address x*

address *
hello_adj_list =*
interface *
FTP_tlv *
ReCx_tlv *
chkpt_tlv *
record -> Boolean

address —-> Boolean

* address -> Boolean

ess * address —> Boolean
* address -> Boolean

-> Boolean
-> Boolean
-> Boolean
-> Boolean

-> Boolean

: hello_adj_list * address -> Boolean

Boolean

getAckSeq : msg —> ack_seq_no
getrxch : msg_q -> Boolean
gettxch : msg_q -> Boolean
hello_acceptable :

if_config_list *

hello_adj : hello_
inc_no_of_pkts_rxed

interface_config

interface * hello_ok * address * allowed_peers -> Boolean
adj_list * address -> Boolean

: no_of_pkts_rxed -> Boolean

: if _config_list * interface -> Boolean

isConnect : msg -> Boolean
isHello : msg -> Boolean

isInit : msg -> Boolean
isKA : msg -> Boolean
ldp_Init :

msg * my_ldp_id *

peer_ldp_id * tx_init * state * address * interface ->

Boolean

op ldp_start : send_hello * msg * address * interface -> Boolean
op ldp_state_mc

msg *

state *

send_hello *

my_ldp_id *

tx_init *

tx_KA =

peer_ldp_id *

address *

address x

hello_adj_list =*

interface —> Boolean
op mod_send :

FTP_tlv x

tcp_cx_failure *

msg *

address *

interface *

state *

hello_adj_list *

address —-> Boolean
op peer_allowed : allowed_peers * address —> Boolean
op receive : msg * address * interface -> Boolean
op resetRxAck : rs -> Boolean
op resetTxMsg : rr -> Boolean

op reset_rx_hold_to : rx_hold_to -> Boolean

op reset_rx_ka_to : rx_ka_to -> Boolean

op reset_send_hello : send_hello -> Boolean

op reset_send _hold_to : send_hold_to -> Boolean

op reset_send_ka_to : send_ka_to -> Boolean

op reset_txKA : tx_KA -> Boolean

op reset_txinit : tx_init -> Boolean

op resetmode : mode -> Boolean

op rx_ack : FTP_tlv * ReCx_tlv * rs * seq * msg_q * Nat -> Boolean
op rx_hold_timer : rx_hold_to -> Boolean

op rx_msg : FTP_tlv * ReCx_tlv * rr * ack_seq_no * msg_q * Nat -> Boolean
op rxch : msg_q -> Boolean

op send : msg * address * interface -> Boolean

op sendlLog :

122

op

op
op

op
op
op
op
op
op
op
op
op
op

FTP_tlv *

ReCx_tlv *

chkpt_tlv *
tcp_cx_failure *

msg *

address *

interface *

state *

hello_adj_list -> Boolean
send_ack :

FTP_tlv *

ReCx_tlv *

Ir *

ack_seq_no *
tecp_cx_failure *

msg *

address *

interface *

state *

hello_adj_list -> Boolean

send_hold_timer : send_hold_to -> Boolean

send_msg :

FTP_tlv *

ReCx_tlv *

rs *

seq *

tep_cx_failure *

msg *

address =*

interface *

state *

hello_adj_list -> Boolean

setNR : ack_seq_no -> Boolean
setNS : seq -> Boolean

setRxAck : rs -> Boolean

setState : state * Nat -> Boolean
setTzMsg : rr -> Boolean
set_send_hello : send_hello -> Boolean
set_txKA : tx_KA -> Boolean
set_txinit : tx_init -> Boolean
setmode : mode —-> Boolean
startReCxTimer : recx_to -> Boolean

123

op txch : msg_q -> Boolean
op writeLog : msg —-> Boolean
axiom send_msg is
fa(ftlv : FTP_tlv, rtlv : ReCx_tlv, r : rs, ns : seq, tcp : tcp_cx_failure,
m : msg, a : address, i : interface, s : state, hl : hello_adj_list)
((ftlv = true) & ((rtlv = true) & (r = true))) =>
((resetRxAck r & mod_send(ftlv, tcp, m, a, i, s, hl, a)) => appendtxch ns)
axiom rx_ack is
fa(ftlv : FTP_tlv, rtlv : ReCx_tlv, r : rs, ns : seq, rx_q : msg_q, n : Nat)
((ftlv = true) & ((rtlv = true) & ~(getrxch rx_q))) =>
(setRxAck r & (assignrxch(nth(rx_q, n)) & setNS(ns + 1)))
axiom rx_msg is
fa(ftlv : FTP_tlv, rtlv : ReCx_tlv, r : rr, nr : ack_seq_no,
tx_q : msg_q, n : Nat)
((ftlv = true) & ((rtlv = true) & ~(gettxch tx_q))) =>
(setTxMsg r & (assigntxch(nth(tx_qg, n)) & setNR(getAckSeq(hd tx_qg))))
axiom send_ack is
fa(ftlv : FTP_tlv, rtlv : ReCx_tlv, r : rr, nr : ack_seq_no,
tcp : tcp_cx_failure, m : msg, a : address, i : interface,
s : state, hl : hello_adj_list)
((£t1lv = true) & ((rtlv = true) & (r = true))) =>
((resetTxMsg r & mod_send(ftlv, tcp, m, a, i, s, hl, a)) => appendrxch nr)
axiom Reissue is
fa(ftlv : FTP_tlv, rtlv : ReCx_tlv, r : rr, r : rs, ns : seq,
tx_q : msg_q, rx_q : msg_q, my : my_ldp_id)

((ftlv = true) &
((rtlv = true) &
(gettxch tx_q & (getrxch rx_q & ((r = false) & (r = false)))))) =>
(ReInitialize my & appendtxch ns)
axiom ft_ldp_state_mc is
fa(m : msg, s : state, sh : send_hello, myid : my_ldp_id, txi : tx_init,
txKA : tx_KA, peer : peer_ldp_id, addr : address, self : address,
hl : hello_adj_list, ifc : interface, ftlv : FIP_tlv,
recx : ReCx_tlv, ckpt : chkpt_tlv, rec : record)
if (s = 4) & ((ftlv = true) & ((ckpt = true) & ((recx = true) & isKA m)))
then chkpoint(ftlv, recx, ckpt, rec)
else ldp_state_mc(m, s, sh, myid, txi, txKA, peer, addr, self, hl, ifc)
axiom FT_RX_KA_TO is
fa(m : msg, s : state, to : rx_ka_to, pkt : no_of_pkts_rxed,
cx : tcp_cx_failure, hl : hello_adj_list, a : address, ft : FTP_tlv,
re : ReCx_tlv, ck : chkpt_tlv, rec : record)

124

RX_KA_TO1(ft, m, s, to, pkt, cx, hl, a) & chkpoint(ft, re, ck, rec)
axiom Relnit is
fa(ft : FTP_tlv, re : ReCx_tlv, ck : chkpt_tlv, lka : last_kaseq_no,
tcp @ tep_cx_failure, ka : kaseq_no, m : msg, a : address,
i : interface, s : state, hl : hello_adj_list, recx : recx_to,
rxho : rx_hold_to)
if (1ka < ka) & (tcp = true)
then
startReCxTimer recx & (reset_rx_hold_to rxho & Recover(ft, re))

else sendLog(ft, re, ck, tcp, m, a, i, s, hl)
axiom chkpoint is
fa(ft : FTP_tlv, re : ReCx_tlv, ck : chkpt_tlv, rec : record)
((ft = true) & ((re = true) & (ck = true))) => flush rec
axiom sendLog is
fa(ft : FTP_tlv, re : ReCx_tlv, ck : chkpt_tlv, tcp : tcp_cx_failure,
m : msg, a : address, i : interface, s : state, hl : hello_adj_list)
if ft & (re & ck)
then writeLog m & mod_send(ft, tcp, m, a, i, s, hl, a)
else mod_send(ft, tcp, m, a, i, s, hl, a)
axiom mod_send is
fa(ftlv : FTP_tlv, cx : tcp_cx_failure, m : msg, a : address,
ifc : interface, s : state, hl : hello_adj_list, peer : address)
((ftlv = true) & (cx = true)) =>
((s = 4) &
(hello_adj(hl, peer) &
((send(m, a, ifc) = false) & (receive(m, peer, ifc) = false))))
axiom RX_KA_TO1 is
fa(ftlv : FTP_tlv, m : msg, s : state, to : rx_ka_to,
pkt : no_of_pkts_rxed, cx : tcp_cx_failure, hl : hello_adj_list,
a : address)

((ftlv = true) &
(RX_KA_TO(m, s, to, pkt) & ((s = 4) & (hello_adj(hl, a) & (pkt = 0)))))
=> (reset_rx_ka_to to & (cx = true))
axiom create_hello_adj is
fa(hl : hello_adj_list, a : address) hd(insert(a, hl)) = a
axiom hello_adj is
fa(hl : hello_adj_list, a : address) ("(hl = []) & member(a, hl)) => true
axiom interface_config is
fa(il : if_config list, i : interface)
("(1i1 = [1) & member(i, il)) => true

125

axiom peer_allowed is

fa(ap : allowed_peers, a : address) (“(ap = []) & member(a, ap)) => true

axiom receive is
fa(m : msg, a : address, ifc : interface)
“(send(m, a, ifc)) & receive(m, a, ifc)
axiom send is
fa(m : msg, a : address, ifc : interface)
“{receive(m, a, ifc)) & send(m, a, ifc)
axiom hello_acceptable is
fa(il : if_config list, ifc : interface, ok : hello_ok, a : address,
ap : allowed_peers)
(interface_config(il, ifc) & peer_allowed(ap, a)) => (ok = true)
axiom ldp_start is
fa(b : send_hello, H : msg, p : address, ifc : interface)
((b = true) & “(p = 0)) => (send(H, p, ifc) & receive(H, p, ifc))
axiom SEND_HELLO is
fa(b : send_hello, m : msg, a : address, ifc : interface)
((b = true) & send(m, a, ifc)) => reset_send_hello b
axiom RECEIVE_HELLO is
fa(hl : hello_adj_list, b : send_hello, s : address, p : address,
i : interface, ok : hello_ok, m : mode, ms : msg,
sho : send_hold_to, rho : rx_hold_to)

(receive(ms, p, i) &
(reset_rx_hold_to rho &
if hello_adj(hl, p)
then
if s > p
then setmode m & TCP_CX(s, p)
else resetmode m & TCP_ACCEPT(s, p)

else

(create_hello_adj(hl, p) &

(set_send_hello b &

ifs>p

then setmode m & TCP_CX(s, p)
else resetmode m & TCP_ACCEPT(s, p))) => SEND_HELLO(b, ms, p, i)))
=> rx_hold_timer rho
axiom ldp_Init is

fa(I : msg, idc : my_ldp_id, ids : peer_ldp_id, tx : tx_init,
s : state, a : address, i : interface)

126

((s = 1) & set_txinit tx) =>
(SEND_INIT(I, tx, idc, ids, a, i) & setState(s, 2))
axiom SEND_INIT is
fa(h : msg, b : tx_init, idc : my_ldp_id, ids : peer_ldp_id, a : address,
ifc : interface) (b = true) => (send(h, a, ifc) & reset_txinit b)
axiom RECEIVE_INITcs is
fa(l : msg, N : msg, K : msg, id : rxr_ldp_id, s :@: state,
idc : my_ldp_id, ka : tx_KA, a : address, i : interface)
if (s = 2) & (id = idc)
then set_txKA ka => (SEND_KA(K, ka, a, i) & setState(s, 3))
else SEND_NOTFN(N, a) & setState(s, 5)
axiom SEND_KA is
fa(K : msg, b : tx KA, a : address, 1 : interface)
((b = true) & send(X, a, i)) => reset_txKA b
axiom RECEIVE_KA is fa(k : msg, s : state) (s = 3) => setState(s, 4)
axiom RX_KA_TO is
fa(K : msg, s : state, to : rx_ka_to, pkt : no_of_pkts_rxed)
((to = true) & (pkt = 0)) => (setState(s, 5) & reset_rx_ka_to to)
axiom SEND_KA_TO is
fa(K : msg, s : state, to : send_ka_to, pkt : no_of_pkts_sent,
tx : tx_KA, a : address, i : interface)
((pkt = 0) & (to = true)) => (set_txKA tx & (SEND_KA(K, tx, a, i)
& (reset_send_ka_to to & (pkt = 0))))
axiom SEND_HOLD_TO is
fa(H : msg, hto : send_hold_to, tx : send_hello, a : address, i : interface)
(hto = true) => (set_send_hello tx &
(SEND_HELLO(tx, H, a, i) & reset_send_hold_to hto))
axiom RX_HOLD_TO is
fa(H : msg, to : rx_hold_to) (to = true) => reset_rx_hold_to to
axiom ldp_state_mc is
fa(m : msg, s : state, sh : send_hello, myid : my_ldp_id,
txi : tx_init, txKA : tx_KA, peer : peer_ldp_id, addr : address,
self : address, hl : hello_adj_list, ifc : interface)

if (s = 5) & isHello m
then SEND_HELLO(sh, m, addr, ifc)
else
if (s = B5) & isConnect m
then SEND_INIT(m, txi, myid, peer, addr, ifc)
else SEND_NOTFN(m, addr) & close myid or
(
if (s = 1) & isHellom

127

then SEND_HELLO(sh, m, addr, ifc)
else
if (s = 1) & isInit m
then SEND_INIT(m, txi, myid, peer, addr, ifc)
else SEND_NOTFN(m, addr) & close myid or
(
if (s = 2) & isHello m
then SEND_HELLO(sh, m, addr, ifc)
else
if (s = 2) & isInit m
then SEND_INIT(m, txi, myid, peer, addr, ifc)
else SEND_NOTFN(m, addr) & close myid or
(
if (s = 3) & isKA m
then EXCG_ADDR_LBL_MSG(m, myid, peer, txi, s, addr, self, ifc, hl, m)
else SEND_NOTFN(m, addr) & close myid or
if (s = 4) & isKA m
then SEND_HELLO(sh, m, addr, ifc)
else
if (s = 4) & (isInit m or isKA m)
then SEND_KA(m, txKA, addr, ifc)
else SEND_NOTFN(m, addr) & close myid)))
axiom EXCG_ADDR_LBL_MSG is
fa(I : msg, idc : my_ldp_id, ids : peer_ldp_id, tx : tx_init,
s : state, peer : address, se : address, ifc : interface,
hl : hello_adj_list, m : msg)

(1dp_Init(I, idc, ids, tx, s, peer, ifc) &
(hello_adj(hl, peer) & (SEND_ADDR(m, peer) or SEND_LBL(m, peer))))
=> ((RECEIVE_ADDR(m, se) or RECEIVE_LBL(m, se)) & (s = 4))

endspec

Processing prove at Z:/Win2K_Profile/ldp/ft1dp#p5
Processing spec at C:/Program Files/Specware4.0/Library/Base/ProverBase
p5: Theorem FT_EXCG_ADDR_LBL_MSG in ft_ldp is Proved!
Snark Log file: Z:/Win2K_Profile/ldp/snark/ftldp/p5.log
CL-USER(3):

128

Bibliography

[1] L. Andersson, P. Doolan, N. Feldman, A. Fredette and B. Thomas, “LDP Spec-
ification”, RFC3036., Jan 2001.

[2] A. Arora, Efficient Reconfiguration of Trees: A Case Study in Methodical Design
of Nonmasking Fault-Tolerant Programs, Science of Computer Programming,
1996.

[3] A. Arora and M. G. Gouda, “Closure and Convergence: A Foundation of Fault-
Tolerant Computing,”. IEEE Transactions on Software Engineering, 19(11),
(1993) 1015-1027.

[4] A. Arora and S. Kulkarni, ” Component Based Design of Multitolerant Systems”,
IEEE Transactions on Software Engineering, vol. 24(1), pp. 63-78, January. 1998.

[5] A. Arora and S. Kulkarni, “Designing Masking Fault-tolerance via Nonmasking
Fault-tolerance,” IEEE Transactions on Software Engineering, 24(6), (1998)
435-450.

[6] F. Babich and L. Deotto, “Formal Methods for Specification and Analysis of
Communication Protocols”, IEEE Communications Surveys and Tutorials., Dec
2002.

[7] Grady Booch, “Software Components with Ada : Structures, Tools, and Subsys-
tems,” (Benjamin/Cummings Pub. Co., 1987)

[8] A.W. Brown, K. C. Wallnau, “The Current State of CBSE,” IEEE Software,
(1998) 37-46.

[9] K.M.Chandy and J.Misra, Parallel Program Design: A Foundation., (Addison-
Wesley, 1988).

[10] Paul C. Clements: ”From Subroutines to Subsystems: Component-Based Soft-
ware Development”, Software Engineering Institute, Carnegie Mellon University
(Pittsburgh, Pennsylvania).

[11] Neville Dean, The Essence of Discrete Mathematics, (Prentice Hall, 1997).
129

[12] N. Delisle and D. Garlan, ”Formally Specifying Electronic Instruments”, Fifth
International Workshop on Software Specification and Design, pp.242-248, 1989.

[13] S.H. Edwards, D.S. Gibson, B.W. Weide, S. Zhupanov, “Software Component
Relationships,”

http:/ /www.umcs.maine.edu/ftp/wisr /wisr8/papers/edwards/edwards html

[14] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 2, Module Spec. and
Constraints, (Springer-Verlag, Berlin 1990).

[15] A. Farrel, “Fault Tolerance for the Label Distribution Protocol”, RFC 3479.,
Feb 2003.

[16] Felix C. Gartner: ”Fundamentals of Fault-Tolerant Distributed Computing in
Asynchronous Environments”.

[17] C. Michael Holloway, ”Software Engineering and Epistemology”,Software Engi-
neering Notes, vol 20(2), pp. 20, April 1995.

(18] Kestrel Institute, “Specware 4.0 Tutorial,”
http://www.specware.org/documentation/4.0/tutorial /Specware Tutorial .html.

[19] S. Kulkarni: ”Component Based Design of Fault-Tolerance”,Ph.D Dissertation,
The Ohio State University, 1999.

[20] S.S. Kulkarni and A. Arora, “Once-and-Forall Management Protocol(OFMP)”,

Proceedings of the Fifth International Conference on Network Protocols., Oct
1997.

[21] Z.Liu, M.Joseph, “Transformation of Programs for Fault-Tolerance,” Formal As-
pects of Computing, 4(5), (1992) 442-469.

[22] Z. Liu, M. Joseph, “Verification of Fault Tolerance and Real Time,” FTCS5-26,
(Sendai, Japan, 1996), 220-229.

[23] David McKinley: ”Open Fault Tolerance through System Directed Checkpoint-
ing,” White Paper, RadiSys Corporation, Nov 1999.

[24] K. L. McMillan, “Fitting Formal Methods into the Design Cycle,” Proc. 31st
Design Automation Conference, (1994) pp. 314-19.

[25] Pierre Michel and Virginie Wiels, “A Framework for Modular Formal Specifi-
cation and Verification”,Proceedings of FME’97, no. 1313 in LNCS, Springer-
Verlag, 1997.

[26] C. J. Nix and B. P. Collins, "The Use of Software Engineering, including the
7 Notation, in the Development of CICS”. Quality Assurance 74 (September
1988).

130

[27] L.L. Pullum, Software Fault-tolerance Techniques and Implementation, (Artech
House, Boston, 2001).

[28] K. Raymond, “A Tree Based Algorithm for Mutual Exclusion,” ACM Transac-
tions on Computer Systems, 7, (1989) 61-77.

[29] E. Rosen, A. Viswanathan and R. Callon, “Multiprotocol Label Switching Ar-
chitecture”, RFC38031., Jan 2001.

[30] F.B. Schneider, “Implementing Fault Tolerant Services using State Machine Ap-
proach : A tutorial,” ACM Computing Surveys 22(4), (1990) 299-319.

[31] J.L.A. van de Snepscheut, “Fair Mutual Exclusion on a Graph of Processes,”
Distributed Computing, 2(2), (1987) 113-115.

[32] Y. V. Srinivas, “Category Theory Definitions and Examples,” Technical Report,
Dept of Information and Computer Science, University of California, Irvine, Feb
1990. TR 90-14.

[33] Y.V. Srinivas and R. Jullig, “Specware(TM): Formal Support for Composing
Software”, Proc. of the Conference on Mathematics of Program Construction.,
B.Moeller, Ed. LNCS 947, Springer-Verlag, pp. 399-422, 1995.

[34] Y. V. Srinivas and J. L. McDonald, “The Architecture of SPECWARE, a Formal
Software Development System,” Technical Report, Kestrel Institute, 1996.

[35] J. Voas, “Certifying Off-the-Shelf Software Components,” IEEE Computer,
31(6), (1998) 53-59.

[36] William G. Wood, ” Application of Formal Methods to System and Software
Specification”, Software Engineering Institute. Department of Carnegie Mellon
University, Proceedings of the ACM SIGSOFT International Workshop on For-
mal Methods in Software Development. Napa, California, May 9-11, 1990.

131

Publications

e A. Hanumantharaya, P. Sinha, “On the Use of Category Theory for Component-
Based Fault-Tolerant Software Development,” Proc. of International Confer-
ence on Information Technology, India, Dec. 2002 (Awarded “the Best Paper

Award”).
e A. Hanumantharaya, P. Sinha, A. Agarwal, “A Component-Based Design of a

Fault-Tolerant Multimedia Communication Protocol,” Proc. of IEEE Multime-
dia Software Engineering (MSE 2003), Taiwan, Dec. 2003.

e A. Hanumantharaya, P. Sinha, A. Agarwal, “A Component-Based Design and
Compositional Verification of a Fault-Tolerant Multimedia Communication Pro-
tocol,” a special issue on Software Engineering in the Journal of Real-time

Imaging, Academic Press, July 2003.

132

