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Abstract

Fault Recovery in Control Systems: A Discrete Event System Approach

Mohammad Moosaei

Fault recovery is a challenging task that is crucial in achieving stringent reliability and
safety goals. In this thesis, the problem of fault recovery is studied in discrete-event

systems (DES), assuming permanent failures.

A diagnosis system is assumed to be available to detect and isolate faults with a bounded
delay. Thus, the combination of the plant and diagnosis system can be thought of having
three modes: normal, transient, and recovery. Initially the plant is in the normal mode.
Once a failure occurs, the system enters the transient mode. After the failure is diagnosed

by the diagnosis system, the system enters the recovery mode.

This framework does not depend on the diagnosis technique used, as long as the
diagnosis delay is bounded. As a result, the diagnosis and control problems are almost

decoupled.

In general, for each mode there is a set of specifications that have to be met. We propose
a modular switching supervisory scheme. The proposed framework contains one normal-
transient supervisor and multiple recovery supervisors each corresponding to a particular
failure mode. Once a fault is detected and isolated by the diagnoser, the normal-transient
supervisor is removed from the feedback loop and one of the recovery supervisors will
take sole control of the system. The issue of non-blocking is studied and it is shown that
essentially if the system under supervision is non-blocking in the normal mode, then it
will remain non-blocking during the recovery procedure. Supervisor admissibility is also
studied.

This approach is developed for untimed DES and then extended to timed DES. In the
process, previous results on supervisor design for untimed DES with partial observation
are extended to timed DES. Various examples from manufacturing and process control

are provided to illustrate the approach.
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Chapter 1

1.1 Introduction

Providing fault recovery is one of the true challenges in designing highly reliable
systems. It is important to maintain the performance requirements of systems even during
systems faults. This thesis studies the problem of fault recovery using discrete-event

models.

Information  systems, manufacturing systems, air-traffic ~management, and
communication protocols, are all examples of discrete-event systems (DES). It is
desirable to restrict the behavior of a given DES to comply with a given set of
specifications. Supervisors (controllers) are designed to enforce suitable restriction on the
behavior of the DES. For example, in the area of manufacturing, the supervisory control
involves the control and coordination of a number of interacting machines or groups of

machines and processes to ensure that the production proceeds according to some recipe



and that the system does not become trapped in a deadlock. This supervisory control may
be at the work-cell-shop-floor level or may be at the work-cell/production-line level. In
the area of communication protocols, supervisory control can be applied to regulate the

communication network behavior.

The system or process to be controlled is typically called the plant. We assume the plant
can be modeled as a Finite State Automaton (FSA). Each FSA specifies a desired
behavior (language). Fig. 1.1 shows a supervisor S in a control feedback position with the
plant G. The supervisor monitors the events unfolding in the plant and sends appropriate
commands to the plant to ensure the generated event sequence satisfies the design

specifications.

S(S) G 6162...6,= S

S {(_

Figure 1.1: Supervisory control loop

Since safe and reliable operation has always been of paramount importance in
engineering systems, fault detection, isolation, and recovery mechanisms are essential

components.

Any non-permitted changes in the behavior of a system leading to degradation in the
overall system performance for a bounded or unbounded period of time under specified

operating conditions is called faultr. In this thesis, the terms fault and failure have the



same meaning and they are used interchangeably. A fault may be the result of a
malfunction of an actuator or a sensor in the system, or a malfunction in a system
component. An example of failure in a component is a val%/e becoming stuck in its closed
position, not permitting the fluid to flow through. Other examples of failure include a

tank leaking or the failure of the power supply of a PLC.

Faults can be divided into two categories: permanent and nonpermanent. A fault is said
to be permanent if, after it occurs, the system remains in a faulty condition indefinitely.
Otherwise it is nonpermanent, and after occurring at a particular time, it stays in the
system for some period of time, and then disappears. An example of a permanent fault is
a broken shaft in a motor, and an example of a nonpermanent fault is a loose wire in an

electrical system.

For fault recovery in DES, a few frameworks have been proposed and some are in use
({11, (2], [3], and [8]).

In [1], the system DES model is analyzed in order to classify faults and failures
quantitatively and to find a “fault tolerant” event sequences which can take the system
from the initial state to a marked state despite the occurrence of faults. The proposed
approach has two steps: conducting failure analysis on the discrete-event model of the
system followed by constructing the fault-tolerant supervisor. The failures are modeled as
abnormal events leading to faulty states. The synthesis of the fault-tolerant supervisor is
based on the results of the previous failure analysis. A work procedure is called fault-

tolerable if a) the technique can find an event sequence that can reach a marked state, or



b) the technique can eliminate the path to the abnormal events. This approach does not
provide any solution if the specifications need to be changed after the occurrence of faults
and, also, does not address fault recovery directly. Moreover, this method does not
provide any solution if the proposed scheme cannot find an event sequence to marked

states.

Another approach to tackle the problem of uncertainty or subsystem failure is proposed in
[3]. The authors assume that the plant is a complex system composed of several
subsystems. If a subsystem fails, then a learning mechanism deletes the events that
pertain exclusively to the failed subsystem from the desired language. After that, it
applies a specific automaton repair algorithm in order to patch the desired language.
Finally, this approach computes a new supervisor aimed at restricting the behavior of the
remaining system to a new desired language. It seems that this approach is suitable for
cases in which the faulty subsystem is to be shutdown. However, if the recovery goal is to
replace the faulty subsystem by a backup subsystem or if the specifications are changed,

then this approach may not be applicable.

In [2], qualitative representations are developed in model-based reasoning and coupled
with the transition systems models underlying concurrent reactive languages. This
approach, which was used in NASA’s Deep Space 1 spacecraft, infers the current state of
the system from its knowledge of the previous state and from observations at the current
state. Then it considers actions that achieve the configuration goal within the next state.

In other words, they introduce a model-based configuration manager that uses a



specification of the transition system to compute the desired sequence of control
commands. This approach allows the system to move among desirable states satisfying
the specifications. However, the disadvantage of this methodology is that it only
estimates the next state of the system in each action, and it does not consider multiple

transitions. This may limit the efficiency of control and recovery procedures.

In [8], the authors present an integrated approach to control and diagnosis. They study the
active diagnosis problem in the framework of DESs. Since in this case, control and
diagnosis problems are integrated, the controller design has, in the worst case,

exponential complexity in the number of plant states.

In this thesis, we study the problem of the synthesis of recovery procedures in discrete-

event systems. An overview of the thesis is provided in the following section.

1.2 Thesis Outline

In Chapter 2, we briefly review supervisory control, in particular, the Ramadge-Wonham
Framework. We use this theory to formulate and solve supervisory control problems.
This chapter covers both untimed and timed discrete-event systems. Moreover, since we
are dealing with a supervisory control problem under partial observation, the concept of
observability, normality, and controllability are discussed in both timed and untimed
cases. Finally, some techniques proposed in the literature for fault diagnosis are briefly

reviewed.



It is assumed that the plant can be modeled as a finite state automaton describing the
system behavior in both normal and faulty conditions. We assume there are p permanent
failure modes, Fy, ..., Fp. For our work, the availability of models that accurately describe
the dynamics of system behavior in normal and faulty conditions is very crucial in the

synthesis of fault recovery procedures.

In Chapter 3, we present our framework for designing fault recovery procedures in
untimed DES. In our framework, a new block modeling the diagnosis system (diagnoser)
is added to the plant. It is assumed that the diagnoser detects and isolates events with a
bounded delay and then reports it to the supervisor. Thus, the system to be controlled
which consist of the plant and the diagnosis system will have three modes: normal,
transient, and recovery. In the normal mode, the plant is functioning properly. Once a
failure occurs, the system enters its transient mode. At this point, the failure has not been

diagnosed yet. Once the failure is diagnosed the system enters the recovery mode.

The diagnosis system is modeled as finite state automaton that generates a detection
event with some delay after a failure. One of the advantages of this approach is that the
diagnosis and control problems are almost decoupled. Note that in our work it is not
important what diagnosis technique is used by the diagnosis system as long as the

diagnosis delay is bounded.



In general, for each mode (normal, transient, and recovery), the system has a set of
specifications. We call the specifications of the normal, transient, and recovery modes

normal specifications, transient specifications, and recovery specifications, respectively.

Following a modular switching approach, we construct a specific supervisor (controller)
for each mode. Initially, all three supervisors are in the feedback loop but after the

detection and isolation of a fault, a recovery supervisor will take sole control of the plant.

We would like the plant under supervision to be non-blocking during its normal operation
and in case of failure, be non-blocking during the recovery procedures. Loosely speaking,
we show that if the system under supervision is non-blocking in normal mode, it will also

be non-blocking during the recovery procedure.

In the modular switching supervisory control approach used here, the resulting supervisor
may not be admissible even if all modules are admissible. We examine the problem of
supervisor admissibility and provide remedies in cases where the designed supervisor is
not admissible.

Examples are used to demonstrate the ideas and the procedures developed.

In Chapter 4, we extend our approach to fault recovery in timed DES. We add a clock

tick event to the plant event set and assume the plant can be modeled as a timed DES.



Since faults are assumed unobservable, the problem of finding suitable controllers for
fault recovery is an instance of the problem of supervisory control under partial
observation. In order to synthesize supervisors for these problems, we extend an existing
procedure in the literature for supervisor design using normal languages for untimed DES

to timed DES.

In Chapter 5, we apply our framework to a manufacturing system. Finally, in the last

chapter, we summarize the results of the thesis and discuss topics for future research.



Chapter 2

Background

2.1 RW Supervisory Control Theory

In [27] Ramadge and Wonham (RW) introduced a framework to model and construct
supervisory controllers for DES. In this framework, given a plant and a set of
specifications (both in the form finite state automata), the objective is to design a
supervisor (controller) for a plant so that the plant under control (the closed-loop system)
satisfies the specifications. Some advantages of using this theory are as follows:

1. It is structured. That is, to construct the controller one needs to obtain the plant
and specification finite automata and then input them to the RW algorithm. In
return, the algorithm generates a unique control structure which is non-
blocking and maximally permissive.

ii. It treats the open-loop plant and the controller separately where as other

approaches only deal with models of the closed-loop system.



i11. The method is general enough to cover different types of control

specifications.

The main challenge in this framework is the computational complexity for large-scale
systems. However, this problem may be mitigated by adopting such techniques as
decomposition and distributed modeling and control. Furthermore, the significance of
computational complexity problem is reduced due to the fact that all the necessary
calculation can be performed off-line. In this section a brief review of this theory is

provided. For details, the reader is referred to [26] and [27].

Finite State Automaton

It is assumed that the plant can be modeled as a finite state automaton (FSA)
G=(Q,2,6,9-,0m)

where Q is the set of states, 2’ = 2. ( 2, is the event set, where 2. and 2, are the sets of

controllable and uncontrollable events, respectively, with 2.3, = @. Jis the transition

partial function 6: 2 x Q — Q, g. is the initial state, and Q,, S Q is the set of marked

states. Let L(G)={s € 3| &(s, g.) is defined} be the uncontrolled language generated by

G over alphabet 2 or the “closed behavior” of G. L(G) is the set of all possible sequence

of events that take G from the initial state to some reachable state.

L(G) is the marked behavior generated by the uncontrolled process G; i.e., the set of all

possible sequence of events which take the initial state to some marked state in G. By

10



uncontrolled language, we refer to the behavior of G as an event generator when it is not
subject to any control. A controllable event is one that can be enabled or disabled at any
time by some means of control. Any event that is not controllable is considered

uncontrollable.

Synchronous and Parallel Products

In the study of DES, we often have to build complex models using the individual models
of system components. Two operations that are particularly useful in modeling the joint

operations of DES are “parallel product” and “synchronous product”.

Consider two DES G1 and G2 with alphabets 2; and 2, In parallel product, the two DES

synchronize the occurrence of their common events: ¢ € 2; N J; occurs if it is defined

and enabled in both G1 and G2. Events not in 2; N 2, are disabled.

In synchronous product, the DES synchronize on the common events (similar to parallel
product). However, each may execute its own private events without any
synchronization, that is events in 2; - 3, and 2, -%;. The reader may refer to [26] for

details.

TTCT is a software program which is used for analysis, synthesis, and verification of
supervisory controls. [22] provides a brief review of TTCT functionality and procedures.

Some of the TTCT procedures that are used in this thesis are reviewed in this chapter.
The TTCT sync procedure forms the synchronous product of G1 (with event set) and G2

(with event set 2,) to create G3. The event set G3 will be ;U 3.
G3 =sync(G1, G2).

11



The meet procedure forms the (reachable) parallel product of G1 and G2 to create G3
with 33 _23;N 3,
G3 = meet(G1, G2).

Non-blocking

Non-blocking is one of the important properties of DES. A DES is said to be non-

blocking if Zm(G) = L(G), where L m(G) is the prefix closure of Ly(G). In other words,
G is non-blocking if for any string t € L.(G), there is at least one string s such that ts €

L.,(G). This means that from every reachable state in G, there is a path to a marked state.

Specifications
Usually, we represent the desired behavior (or specifications) of the system in the form
finite state automata. Let E be such DES. Then L(G) N L(E) represents all of the system’s

legal or desirable (closed) behavior. L(G) N L(E) is called the legal behavior.

Supervisor

A supervisor is an agent that enables or disables controllable events such that the discrete
event system G generates a language that satisfies the specifications. In other words, it
prevents G from generating undesirable event sequences. In the cases of interest to us, the

supervisor S may be modeled as a finite state automaton

S=(X,2,9n,%x0,Xm)

12



where X is the state set, x. is the initial state, X ,, © X is the set of marked states, and

n : 2 x X— X is the transition function. A supervisor should never attempt to disable

uncontrollable events (because this is not possible by assumption).

It is assumed that S is a standard supervisor; X = X ,,, that is, all the supervisor states are
marked. Therefore, marking is done by the plant. Let L(S/G) denote the language

generated by G under supervision of S.

The Coupled Plant and Supervisor:

According to RW theory, the supervisor and the process are coupled to form a closed —
loop system. This feedback mechanism between S and G functions as follows. Suppose
the process is in state q; and the supervisor is in state X; at a given time. A subset of
events ¢ can occur in the uncontrolled process in state g;. This subset of events is fed into
the supervisor. In state x; (based on the specification language) only a subset of these
events may be permitted. Then the supervisor issues a control pattern such that the
controllable events are enabled if they are permitted at x; and disabled if they are not. The

idea is illustrated by Fig. 1.1, and the closed loop system under control is denoted by S/G.

The following languages generated by S/G are of interest.

i. The closed behavior of S/G which is defined by L(S/G) = L(G) N L(S).
L(S/G) consists of the sequence of events of uncontrolled process language that
survive under supervision.

ii. The marked behavior of S/G which is defined by Lp(S/G) = Lu(G) N Ly(S).

13



Ln(S/G) consists of the sequence of events that are marked by both G and S and

survive under supervision.

We have to ensure that the supervisor does not disable an uncontrollable event. This can

be described using the property of controllability.

A language K is said to be controllable with respect to IL(G) and Z, if 6 € 2, s € K,so

€ L(G) implies so €K .

There we always require that L(S/G) be controllable with respect to L(G) and 2.

The RW algorithm accepts the DES G and specification models, and generates a
minimally restrictive supervisor S. i.e., the language L(S/G) is the supremal controllable
sublanguage of L(H) (legal ‘behavior) which can be generated through the control

mechanism.

S is called a non-blocking supervisor if Zm(S/G) = L(S/G).

Computation of Supervisor:

Given a plant G and a specification automaton E, to obtain the proper controller
(supervisor), using the RW supervisory control theory, we compute the supremal
controllable sublanguage of the legal marked language Ln(H)=Ln(G) N Ln(E). This
computation can be done by the TTCT procedure supcon, which returns a trim
automaton representing the supervisor (S).

S = supcon(G, E)
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Verification of Supervisors:
We briefly review the procedure for verifying whether a given supervisor is proper and
that it satisfies the plant specifications [26]. We have to check the following four

conditions.

I. The supervisor is admissible: We have to see whether the closed behavior of the
supervisor L(S) and there L(S/G) = L(S) N L(G) is controllable with respect to the closed
behavior of the plant (L(G)) and the uncontrollable events (2;). This means that the

supervisor will not attempt to disable an uncontrollable event.

Condat is a TTCT procedure used to verify the admissibility of a supervisor.
SDAT = condat(G , S)

This procedure generates a list of supervisor states in which disabling occurs, together
with the events that must be disabled. If L(S) is controllable, then the list will include

only controllable events.

II. The plant under supervision is non-blocking:
The TTCT procedure used for investigating the non-blocking property is called

nonconflict.
nonconflict( G , S ) = true ?
If the answer is “true”, then S is a non-blocking supervisor, meaning that the plant under

supervision (S/G) is non-blocking.
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III. The supervisor is trim, i.e., all supervisor states must be reachable and coreachable.

To investigate this property, the following TTCT procedures are applied:

TRIMS =trim(S) ,  isomorph(S, TRIMS)

Trim is used to obtain the reachable and coreachable part of the DES, while isomerph is
used to check if two DES’s are identical up to renumbering of states. In this thesis, all

supervisor states are reachable and marked. Therefore, the supervisors are trim.

I'V. The plant under supervision satisfies the specifications.
L(S/G) € L(Spec) , L,(S/G) € L,,(Spec)

For supervisors computed by the RW theory the satisfaction of the specification has
already been taken into account in the supervisory design procedure. Therefore, it is not
necessary to check this property. In other words, the design satisfies the specifications by

construction.

To verify the above equations by TTCT, the following equality can be checked:
trim( meet(S/G , complement(Spec,-- ))) = EMPTY

Here, complement is a procedure that produces an automaton whose marked language is
the complement of the marked language of Spec (The complement of a language L =5

is 3-L).
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Given a set of specifications, we can design a supervisor for each specification separately
and form a supervisor to satisfy all specifications by conjunction of smaller supervisors.
This is referred to as modular supervision design. The concept of nonconflicting

languages is often encountered in the study of modular supervisors.

Nonconflicting: Let L1, L2 be arbitrary sublanguages of 5. Then LI, L2 are

nonconflicting if

LINL2=L1 N L2
In TTCT, procedure nonconflict is a boolean function that verifies the nonconflicting

property for two languages. If nonconflict(G1,G2) = true , it means that every reachable

state of the product structure meet(G,,G;) is coreachable or Lm (G1)( Lm (G2)=

L(G1) N L(G>). Therefore, if G1 and G2 are non-blocking, then the procedure nonconflict

can be used to see if L,(G1) and L,(G2) are nonconflicting.

We may extend the definition of nonconflicting languages to multiple languages in the
following way.

Let L1, L2, ..., Lp be arbitrary languages. Then L1, L2, ..., Lp are nonconflicting if

LINL2N..NLp=L1 N L2N...NLp

Partial Observation
The word “observation” is used to describe the information flow from plant to controller.

Under a full observation policy, the controller should be able to observe all events
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generated by the plant and make the appropriate control decision after each observation.
A partial observation policy is referred to the situation when controller observes only part
of event set, and makes the appropriate control decision. After each observation, the
controller feeds back the prescribed control decision to the plant such that the plant
behavior is kept within the specification. It should be noted that such a policy must be

considered at design step as well if it is to be used in the implementation.

Lin and Wonham (LW) introduced the concept of observable and normal languages in
the study of control under partial observation [14]. They conclude that observability is the
essential and therefore, the minimum requirement for the existence of a controller with
partial observation. However, it is proven that the set of observable languages is not
necessarily closed under union. Moreover, they consider the normality as a sufficient
condition for the same purpose. Normal languages are closed under union and so they can
be used to derive a systematic algorithm for the controller design. Here, we briefly review

the main concepts in the theory of supervisory control with partial observations.

Natural Projection
Let 2, be the set of observable events. The natural projection P: 2* — 3*,is defined

according to

(P(e)=¢

P(o)=0¢ if c€ld,

2

P(o)=¢ if €223,

(_P(s0) = P(s) P(o) fors € S oex
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where ¢ is a null string. Thus, the effect of P on a string s is just to erase from s the events

that do not belong to %, leaving the order of Z,-events in s unchanged.

Let AEZ*, BEZ*O, It can be shown that

PA = PA ; P'B =P'B
The usual inverse image function of P is
P Pur(Z'5) = Pun(2)
where Py, is the power set.
Note that in supervisory control under partial observation, control decisions are based on
the projection of event sequences (P(s)). We expect that if two strings s and s’ have the
same projection (P(s) = P(s’)), then corresponding supervisory decisions be the same.

Such a supervisor is called “feasible”.

Observability and Normality

K is said to be (L, P)-normal or simple normal with respect to L, if K= L N P'IP(K). In
other words K is called normal if and only if it can be recovered from its projection along
with knowledge of the structure of L. An equivalent mathematical description of

normality is as follow:

seK,s’eL, P(s)=P(s’)=>s’€K

A language K is (G, P)~observable if for all s, s’ with P s =P s’, we have the following:
(Y o) so €EK & SEK & s’ € LG)=sc € K

SEKNLu(G) & SEKNLy(G) =>s’€K
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Suppose K € L(G) and K is closed, or K € L(G) and K= K N Ly(G), then K is (L(G),
P)-normal implies K is (G,P)-observable [14].

Let K € L,(G) and nonempty. The necessary and sufficient conditions for the existence
of a feasible supervisor control S for G such that L,,(V/G) =K are:

i)  KisLm(G)- closed (i.e., K=K NLy(G))
i1) K is controllable with respect to G

iii) K is observable with respect to (G, P)

Because the set of languages defined by the above conditions is not necessarily closed
under union, there is no an optimal (minimally restrictive) supervisory control. This

makes supervisor design based on observable languages difficult.

In [26], it is demonstrated that a subset of normal languages is closed under union.

Let E & Ln(G) be a specification language. The goal of the supervisory control and

observation problem (SCOP) is to find a non-blocking, feasible, and admissible

supervisor R such that
@ # Lp(R/G)S E
Let

S(E)=C(E)NN(E;Ln(G)) N N (E; L(G))
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where

C (E) ={ K ¢ E|Kis controllable with respect to G}
N(E; Ly(G)) = { K€ E | K is (Li(G), P)-normal}

N (B;L(G))={ K € E| K is (L(G), P)-normal}

Then S (E) is nonempty and closed under arbitrary unions. The following theorem has

been proved in [26] in order to find a solution for SCOP.

Theorem:

Let K#®andK € S(E).

Then define
R:L(G)—>T
with
>, U{oc €%|Psc)ePK} Ps €PK
R(s) =
pIN Ps € PL(G)-PK
Solves SCOP with

Ly(R/G): =L(R/G) N K

Furthermore, L,(R/G)=K.

LW Procedure for Computing Supervisor Under Partial Observation
Assume G is a non-blocking plant, and let E be the specification in the SCOP. Then the

following procedure can be used to compute a supervisor [26].
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0. Given G, E, and the list NULL of P-unobservable events
1. N =supnorm(E, G ,NULL)
2. NO = project( N, NULL)

3. GO = project( G, NULL)

4. KO =supcon( GO, NO)

5. KODAT = condat(GO , KO)
6. PINVKO = selfloop(KO , NULL)
7. nonconflict(G , PINVKO) = true ?
8. K=meet (G, PINVKO)

9

. K nonempty ?

Here, suphorm computes a DES N with L,(N) = supN (Ln(E) N Lin(G); Li(G)). If the
answers to questions 7 and 9 are “yes”, then PINVKO is a solution to the supervisory
control and observation problem (SCOP). The plant under supervision denoted by K is

the corresponding controlled behavior.

2.2 Timed Discrete Event Systems

In Timed Discrete Event Systems (TDES), the event set includes a tick event. The
occurrence of non-tick events is restricted by lower and upper time bounds.

The tick represents the progress of time on a global clock. This event has no lower or
upper time bound. A set of forcible events may be applied in order to preempt the tick
event. These events will be discussed later.

We use the theory of TDES described in [11]. This theory starts with a definition of the

Activity Transition Graph (ATG) model of a TDES. An ATG is modeled by a five-tuple
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GaCt = (A ’ Zact ,Sact y oy Am)
Here, A is the activity set, Z, is a finite set of events, dact: A x Z, — A is the activity

transition partial function, a, is the initial activity, and Ap is the subset of marked

activities. The events and the activities differ in that events are instantaneous, while
activities involve a time duration. Consider a and 6 € X, to be an activity and an event

of the above ATG. An event ¢ is enabled at a if 8,(a., 6) is defined.

In this framework, for each non-tick event ¢ there is a time interval [l us], where I, € N

and u;, € N U {0} denote the lower and upper time bounds, and I <u, (N = {0, 1,

2,...D.

The event set 2, is partitioned to two categories, prospective and remote. If 0 <u; € N

then the event is called prospective, while if us = o, then it is called remote.

Zact = Zrem U Zgpe
A prospective event cannot occur before 1, clock ticks but will occur before the (us+1)
clock tick (unless it is preempted by another event in 2,), while a remote event cannot
occur before 15 clock ticks but may occur any time after the 1,—th tick.

The timed events are defined as triples (o, 15, Us) and the set of these events is denoted by
Zﬁm.

Zim = {(0, L5, uc)| G EZaut}

23



Assume j, k € N with j < k. Define [j, k] as a set of integers between j and k. For each

event ¢ the timer interval (T,) is defined as follows:
[0,us] © prospective

Ts=
[0,1s] o©remote

For each event ¢ € X,, the default timer value associated with each o is

u; © prospective

l; o remote

where |; and u, respectively denote the lower and upper time bounds of o.

Suppose 6 € Z, becomes enabled in a &€ A. After each subsequent occurrence of the

tick, t; corresponding to event ¢ will be decremented by one. This will continue until
either ¢ occurs, ty reaches zero, or another event occurs and disables event 6. A remote
event can happen at any time if its t; becomes zero. In the case of a prospective event,
because 0 < t; < us , the delay of the occurrence of the event cannot be more than Ug.
Therefore, when timer t; becomes zero, then the prospective event ¢ may occur unless
another event from the activity event set occurs. We see that the state of the system is
described by its current activity and the current values of the timers. Transition among

states can be captured by the timed transition graph (TTG).

ATG models can be transferred into Timed Transition Graph (TTG) that represents a

TDES. The TDES automaton G, is defined as

Gr=(Q,, Z, 0, g, Qm)s
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where Q: = A x II{Ts| 6 € S} is the state set, I, = X, U {tick} is the event set, 8, :

Q: x Z; — Qr is the state transition partial function, q.=(a., {ts. | 6 € Zy}) is the initial

state, and Qp S Am X H{Tc] o € Z,t} is the subset of the marked states. TTG is simply

the graph of Gt.
Let q=(a, {t; | B € Zua}), 4=(@, {tp | B € Zacr}), and 6 € Zu. Then the formal

definition of the transition function & is as follows:
3:(q, o) is defined if aﬁd only if
1. o=tickand V B € X, t3>0;0r
2. 0 € Zge, Oui(a, 0)isdefined, 0<ts<us-1ls;o0r

3. 6 € Zem, Oula, o)is defined, t,=0.

Let q' € 0. (q, 0).
1. If o =tick, then a=a , and

ug if d.c(a, B) is not defined
If BEZepe, tp:=
tg—1  if Sa(a, P) is defined and tg> 0,

(Note that if tg = 0, then 8,(q, tick) in not defined)

1g if 8,ci(a, B) is not defined
If BESem tp:==< tg—1 if S,u(a, B)is defined and tg> 0
0 if O,ci(a, B) is defined and tg =0
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2. If 6 € Ty, then a = 8,i(a, ©), and
ug  if Oua’, B) is not defined
If B#0,BETpe tpi=
tg  if du(a’, B) is defined,
If B=06,0€Zp tpi=Us
lp if Sau(a, B) is not defined

If B#C,P E Zeem Upi=
tg  if dic(a, B) is defined ,

If P=0,0€Zem tp:=Is

Example 2.1: Given a simple DES with Z,. = {, B}, and

Gur = (A, Zacts 5acta &, Am)

witha. =0, A={0, 1}, An= {0}, and timed events (A, L, 1), (B, 2, 3), both prospective.

The ATG for this DES is
A
0 < > .
]

Figure 2.1: Example 2.1. A simple ATG model

Here, the activity transition function is

8:t(0, 1) = 1 and (1, B) = O.

Fig. 2.2 shows the constructed TTG model of the system (G,). The state set for G, is

Q:=1{0,1} x Tux Tg= {0, 1} x [0, 1] x [0, 3].
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Figure 2.2. Example 2.1. TTG

The event set X, = {A, B, t}, where t is the tick event, Qn = {(0, 1, 3)}, and the list of
timer intervals associated to both events A, f and corresponding to the states ({0, 1}, {ts,
tg}) of G; are as follows.
State (node of TTG): 0 1 2 3 4 5
Components [t,, tg]:  [1,3] [0,3] {1,3] (1,2] [1,1] [1,0]

In the theory of TDES, similar to untimed discrete event systems, the closed behavior of

the TDES G; is defined to be L(G;) = {s € Z:*| 3:(q., s) is defined}, while the marked

behavior of G, is Lin(G o) = {s € L(G;)| 8:(q-, $) € Qm}-

For the purpose of controllability analysis in TDES, the set of events Z; is partitioned into
two subsets: prohibitible (L) and uncontrollable (Z,,). The former can be disabled and
prevented from being in the current list of eligible transitions at a state q of the TDES
under supervision.

Zun = Zact - z:pro or X = Zspf: u (Zrem - Zpro)

It is assumed that a subset of events Zs,, & X, are forcible. An event is said to be forcible

if its occurrence can be forced by an external agent or controller to preempt the advance
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of time. Each controllable or uncontrollable event can be a forcible event, although we

cannot directly prevent the occurrence of an uncontrollable forcible event by disablement.

The controllable event set is defined as

ZC = ZT - Zuﬂ = Zpro U {thk}

Due to the nature of time, the tick event can be thought of as a controllable or
uncontrollable event. The important point is that only forcible events can preempt the tick

event.

If the TDES under consideration is a complex system consisting of several subsystems, it
is desirable to be able to build a TDES using an operation on the associated subsystems.
The usual synchronous product of TTG's forces synchronization of the tick transition as
it occurs in the component of TTG which may block the advance of time. This is clearly
not acceptable. Thus, the required operation, called composition product, is in general

different from synchronous product.

Consider two ATGs Gy acr and Goaer. Let Gyer be the result of the composition of Gy ¢ and
G2,act, With the event sets of 2 ,ec and 25 5. The transition structure of G, is determined

by the synchronous product of Gy ¢ and Gy 5t To obtain the time bounds of G, from the
time bounds of its sub-modules, we consider two cases. First, for an event ¢ & X ¢ N

21 .a1, the time bounds [lg, us] of ¢ in G, remain identical to those in the corresponding

28



ATG model. Second, for 6 €X 5t N 27401, the time bounds of ¢ in G, are affected by the

time bounds of Gy a5t and Gy et

Let li 6, U15, loo, and uy, be the lower and upper time bounds of ¢ in Gy and Gy .
Then we may use the following role to obtain 1, and u,, the time bounds of ¢ in G.

(lc s uc) = (max(ll,c ’ 12,0) s mjn(ul,o s uz,o))'
The above is acceptable if I, < us.

Otherwise, the composition product is assumed to be undefined.

After these ATGs are combined by the composition operator to build the ATG model of
the complex system, the ATG can be converted to TTG.
TTCT introduces the Comp procedure to form the composition. Assuming Glact and

G2act are ATG models of two subsystems, then their composition product (Gye) is:

Gt = cOmp((;lact ’ G2,0)

To transfer an ATG model to a TTG model, TTCT uses the procedure Timed-Graph*.
G. = Timed-Graph(G,)

G; is a TDES (* Note our notation for composition product is different to that used in

[12)).

Remark 2.1: Let Gy 5ot and Gy e be two ATG models with TDES models Gy ;and G;.. If

the intersection of X, and 2, is empty, then the TDES derived from the result of
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composition product of G, and Gy ace Will be the same as the synchronous product of

Gl,‘t and Gzyr.

Modular supervision:
In the analysis and design of modular supervisors, the issues of non-blocking and joint
coerciveness must be examined carefully. Joint coerciveness is related to the preemption

of the tick by forcible events (the feature of controllability).

A language K is said to be coercive with respectto Gif V s € K:

2k (8) N Zeor = @ and tick € Xy (s) = tick € Zk (s)
This simply means that tick can be preempted only by forcible events.
Also, languages K1, K2 € I(G) are jointly coercive with respect to G if K1 N K2 is

coercive with respect to G.

Supervisory Control With Partial Observations in Timed DES
In this section, the controllability concept is generalized to timed discrete-event systems.
The concepts of observability and normality remain the same. The definition of

controllability is as follows:

K < L(G) is said to be controllable with respect to L(G)if V s € K:

2 (8) N Zye € Zk ()

2k (8) N Zgor = D and tick € 2LG) (s) = tick € Zk (s)
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In the above definition, it is assumed that the tick event can be preempted by forcible

events.

The following can be shown [15].
Suppose K # @ and K< L(G). The existence of a non-blocking supervisor S is

guaranteed such that L,(S/G) = K if and only if:

i) K is controllable with respect to L(G);
ii) K is observable with respect to L(G); and

iii) K is Ly (G)-closed.

Similar to the untimed case, since observability is not closed under union, the concept of
normality is used. Thus, one way to synthesize a proper supervisor is to find the supremal

element of the normal and controllable sublanguages of the original legal language.

2.3 Fault Diagnosis Systems

In this thesis, a diagnoser is an agent used to detect and isolate faults in the system.
Considerable research effort has been and is being spent on the design and development
of diagnosis systems (see, e.g. [29]). A variety of methodologies, differing both in their
theoretical framework and in their design and implementation philosophy, have been

proposed.
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In our framework in this thesis, we assumed that the plant has some diagnosis systems
that can detect and isolate failures with (finite) bounded delay. The underlying
mechanism of diagnosis system is not important for us. Nevertheless, we here briefly
review some of the fault diagnosis techniques. Our discussion is certainly not exhaustive

and the reader is referred to [29] and the references therein for a more complete survey.

Technically, these approaches can be divided into two groups: model-free and model-

based approaches.

Model-Free Approaches
Model-free methods are particularly useful in cases where it is hard to obtain a model for

the plant. In the following, we briefly discuss two of these techniques.

- Hardware redundancy
In this technique multiple sensors are used to measure a given plant variable. The outputs
of sensors measuring the same variable are compared to determine the plant variable and

to detect sensor failures.

- Expert systems

In these methods, experience and knowledge of experts is stored as a set of rules and an

inference engine is used for failure diagnosis. Some of these approaches are based on
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statistical hypothesis testing and signature analysis. In cases in which it is hard to find a

model for the plant, these approaches are useful.

Model-Based Techniques

Model-based fault detection methods use a mathematical model of the plant for fault
detection. In these methods, the observed behavior of the plant is compared with that
expected from the plant model. Based on this comparison an inference is made about the
condition of plant (normal or faulty). They can be based on differential and difference
equations, e.g., parity relations and unknown input observers [2]. Some of these

approaches are described below.

- Fault trees methods

These methods, which have been studied in detail by reliability engineers, provide a
pictorial display of the system that can be easily read and understood [23]. These
approaches are model-based techniques, and the observed behavior of the plant is
compared with that expected from the plant’s model. Based on this comparison, an

inference is made about the condition (normal or faulty) of the plant.

- Artificial intelligence (AI) model-based reasoning schemes
An example of this type of scheme is the system which was used in NASA’s Deep Space
1 spacecraft [2]. It couples the transition system models with the qualitative

representation developed in model-based reasoning.
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- Discrete event system approaches

These schemes for failure diagnosis are applicable not only to systems that have a
discrete nature, but also to systems that traditionally are treated as continuous-variable
dynamic systems (such as differential or difference equations) but for diagnosis purpose

can be modeled as DES.

In one approach to fault diagnosis, the timed event sequence generated by the DES under
supervision is compared to a set of specifications for normal operation called templates.
This method is applicable for systems such as high-speed manufacturing lines, in which
the plant can be modeled as a set of an unspecified number of timed automata operating

parallel to and independent of each other [25].

In some approaches, finite state automata are used for fault diagnosis of discrete event
systems. For example, state-based approach is a technique in which it assumed the
system state set can be partitioned according to the condition (faulty state) of the system.
In this approach, the objective of fault diagnosis is to determine the condition to which
the state belonged upon arrival of the last measurement (sensor reading). Both off-line
and active and passive on-line diagnoses have been investigated by researchers [24], [28].
In our work on fault recovery, we too use the assumption of the partition of state set

according to failure status.

Event-based is another kind of DES approach [6,7,8]. In this scheme, based on observed

events, inferences are made regarding the occurrence of unobservable failure events.
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In the above approaches, a failure is called diagnosable if it can be detected after a

bounded number of events.
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Chapter 3

Fault Recovery in Untimed Discrete Event Systems

3.1 Overview

In a control system, component failures could potentially reduce the controller’s ability to
properly control or observe the plant behavior. Without careful supervision, the behavior
of the plant under supervision may no longer satisfy the design specifications. In order to
guarantee that the system is operating safely and reliably, the controller should perform
fault recovery. This may include replacing faulty components with spare parts or

reconfiguration of the control system.

This thesis studies a control structure that provides fault recovery in discrete event
systems. In this chapter we focus on fault recovery in systems that can be modeled as

untimed discrete event system. Timing issues will be discussed in chapter 4.
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Given the complex interactions among components, sub-systems, and processes, system
failure is considered to be inevitable and an inherent characteristic of systems. In order to
model a failure, it may be added to the DES automaton of the system (plant) as an

unobservable event. Once a failure occurs, the plant enters a faulty-state.

The event set of the plant includes fault events and possibly recovery events. Fault events
are uncontrollable events that represent occurrence of faults in the system. It is assumed
that these events are unobservable and therefore cannot be detected by the supervisor. In
our framework, we assume the system is equipped with a diagnoser which detects the
fault events with some (finite) bounded delay. After the detection of a fault, the diagnoser
generates an observable detection event. Upon observing the detection event, the

supervisor can make a decision regarding failure recovery.

Recovery events can occur in the recovery mode of the system. These events represent
the actions that the system can take to recover from faults. For example, when a
command “OPEN VALVE” is sent to a stuck-closed valve, and it does not open, the

recovery procedure can be “Replace with redundant valve”.

The control problems involved in designing a recovery procedure can be considered as
instances of supervisory control problem under partial observation since some of the
events, in particular, failures, are unobservable. Thus, the concept of partial observation
comes into play to help us in the computation of suitable controllers for the system under

consideration. We discuss the design of supervisors to meet system’s design
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specifications for normal operation and recovery from faults. This design may be done

based on the RW framework.

3.2 Recovery Framework

Our framework for fault recovery in untimed discrete event systems will be explained in
this section. An extension of this approach to timed discrete event systems will be

explained in the next chapter.

Recovery procedures typically reconfigure the system. When a fault occurs in a system, it
may be possible to shut down the system, or to operate the system at a lower level of
conformation to specifications. In some occasions, depending on the fault, these may be
the only alternatives. The aim of this approach is to build into the design of the controller,
a priori knowledge on how to reconfigure itself when failures occurs in real time. To this
end, we seek to compute all feasible solutions to control the plant under various faults.
For each such solution we synthesize a control logic that satisfies the corresponding

specifications. Each of these solutions can be implemented by a controller.
Initially, when the plant starts, a set of controllers is engaged. Upon the detection of a

failure in the plant the controller is replaced with a recovery controller corresponding to

the particular fault detected. This latter controller is called the recovery controller.

38



3.2.1 System Modes and Control Structure

Suppose the plant can be modeled as a DES and this model describes the system behavior
in both normal and faulty situations. We assume that there are p failure modes F, ..., Fp.
Here, F; is the i™ failure mode and each failure mode corresponds to some kind of failure
in a component of the plant or a combination of such failures. We also assume that only
one failure event may occur at any time. In other words, there are p+1 conditions
(N(normal), Fy, ..., Fp) and that the system can be in only one of them. This is called
single-failure scenario and it should not be confused with single-failure mode situation in
which the system has only one failure mode, i.e., p=1. In addition, we assume that all
failure modes are permanent. Fig. 3.1 shows single-failure scenario with permanent

failure modes. Recovery failures are shown by dot lines.

QFI

fault

Q~

recovery

QFP

Figure 3.1: Single-failure scenario with permanent failure modes
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The condition set of the plant is denoted by K={N, Fy, ..., Fp}. It is assumed that the state

[

set Q can be partitioned according to the condition of the system: Q = Qn U Qm U ..

U Qrp. Here U denotes disjoint union.

In our framework, we assume that a diagnosis system, or simply diagnoser is available
that detects the fault events of DES and reports them to the supervisory controller. The

new control system is shown in Fig. 3.2.

Figure 3.2: Modified supervisory control loop

Here the plant, supervisor, and diagnoser are designated by G, S, and D, respectively.

The diagnosis system detects and isolates failure modes with bounded delay; for
example, 3 to 5 events (or 3 to 5 clock ticks in timed models). The diagnosis system
could be based on any techniques, as long as time bounds for diagnosis delay are
available. In general, these time bounds are functions of fault type, plant dynamics and

diagnosis techniques.

One of the advantages of our modified supervisory control loop is that it separates

supervisory algorithms and diagnosis techniques. By this way, the diagnosis problem and
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control problem are almost decoupled. Another advantage is the reduction in the
complexity of supervisory control and the recovery procedures (Details will be discussed
in the next section).

Of course, in our framework, we need the time bounds for diagnosis delay. Also, our
model for diagnoser may be somewhat conservative. For example, let us assume that the
system to be controlled has two cycles. In the first cycle, a fault event can be detected
within one event delay whereas in the second cycle, detection can be done within three

events delay. Our model considers the worst case (three events delay) in both cases.

In contrast, an alternative method is discussed in [8]. There, the authors present an
integrated approach to control and diagnosis. They study the active diagnosis problem in
the framework of DESs. Since in this case, control and diagnosis problems are integrated,
the controller design has, in the worst case, exponential complexity in the number of

plant states.

In our modified supervisory control loop, the combination (synchronous product) of the
plant and the diagnosis system constitutes the system to be controlled (the system under
supervision). This system is denoted by GD in Fig. 3.2.

We can see that the system under supervision has three modes: normal, transient, and
recovery.

The normal mode describes the system under supervision before the occurrence of a
fault in the system. In this situation, the system operates properly and the plant is in its

normal mode.
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The second mode of the system under supervision is called transient. Upon occurrence
of faults in the system, the system goes into transient mode. In this mode, the plant is in

one of its faulty modes, and the diagnosis system has not detected the fault yet.

In the recovery mode of the system under supervision, the plant is in a faulty condition

and the diagnosis system has detected the fault.

The time between the occurrence of a fault and its diagnosis is called the transient time.
The transient time depends on the type of fault, the type of diagnosis system, and the time
the failure occurs. This means that the transient time varies from one diagnoser to another

and also from one fault to another.

In the RW supervisory control theory, the goal of the supervisory control is to restrict the
behavior of the system to a language that satisfies the specifications. In our recovery
control problem, since we have three modes for the plant and diagnoser (GD), three sets
of specifications can be defined: normal specifications, transient specifications, and

recovery specifications.

Here, we should mention that transient specifications are typically less restrictive than the
normal specifications since as a result of fault, some sensors or actuators are lost.

Recovery specifications describe the required recovery actions. An example of these
actions is shutting down the faulty equipment or replacing the faulty equipment with a

backup.
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As an example, consider temperature control of a power plant. The normal, transient, and

recovery specifications could be as follows:

Normal specification: The temperature (T) must be between 80°C and 120°C.

Transient specification: The temperature must be between 60°C and 140°C.

Recovery specification: Shut down the plant while maintaining 50 < T < 150.

As we can see, temperature lower and upper bounds are more relaxed in transient and
recovery modes.

Fig. 3.3 demonstrates the relationship among the modes. It says that if a failure event
occurs in the system under supervision, then the system goes from normal mode to the
transient mode. In addition, upon detection of a fault or occurrence of the detection event

the system enters the recovery mode.

Failure . detection
events . events
Transient

Normal Recovery

Figure 3.3: The relationship among the modes

In order to restrict the system’s behavior to the specifications in different modes, the

following controllers (supervisors) have to be computed.
Normal Controller (Sn): A controller for the normal mode based on normal
specifications.

Transient Controller (St): A controller to enforce transient specifications.
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Recovery Controller (Sr): A controller based on recovery specifications.

We consider modular switching supervisory control as an effective design alternative to a
centralized controller (monolithic supervisor) for the following reasons.

- Modular design is a generally suitable approach for solving complex problems.

- The resultant controller can be more easily updated in case a subtask is modified.

- It is more easily synthesized.

- In our problem, where the number of controllers can be high (depending to the number

of faults), a modular approach simplifies the computation of the controllers.

In a modular approach, each controller is assigned to handle a subtask independent of
other subtasks and controllers. Therefore, we must make sure that the controllers do not
conflict.

Another issue is to ensure smooth transfer from transient mode to recovery mode. This

will be addressed in the following section.

3.2.2 Modeling and Problem Formulation

3.2.2.1 Plant Model

Let G denote the plant. It is assumed that this system can be modeled as a finite state

automaton defined by a 5-tuple

G=(Q’ ZG: 5} QO, Qm)s
where 2g is the set of events, Q is the finite set of states, g, is the initial state, Q,, is the

set of marked states, and 6: Q X 2 — Q is the transition partial function. Some of the
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events in 2 are uncontrollable (2,.), i.e., their occurrences cannot be prevented by the
* controller, while others are controllable (2;). In this regard, 2 can be partitioned to 2.
and 2, with 2. n %, = @. We may also partition Z; according to 25 =2, U 2y U X,
where 2rand 3, are the sets of fault, and recovery events, respectively. The remaining set

of events is denoted by 2.

The plant model describes the system behavior in both normal and faulty situations.
Suppose there are p failure modes: Fy, ..., Fp. Here, F; is the i™ failure mode and
2¢={fy, ..., fp}. Each failure mode corresponds to some kind of failure in a component of
the plant. We assume that the event set 2; contains failure events and only that one
failure event may occur at any time. In other words, there are p+1 conditions: N(normal),
Fy, ..., Fp. This is called single-failure scenario and it should not be confused with single-
failure mode situation in which the system has only one failure mode, i.e., p=1. In
addition, we assume that all failure modes are permanent. Fig. 3.4 shows single-failure

scenario with permanent failure modes.

fault

recovery

Figure 3.4: Plant G in single-failure scenario with permanent failure modes

45



Let the condition set of the system be K={N, Fy, ..., Fp}. Also, with Udenoting disjoint

union, the state set Q can be partitioned as follows: Q = Qy U Qri U..u Qe

The normal mode, denoted by Gy in Fig 3.4, describes the behavior of the system in the
normal situation (i.e. the system is functioning properly). Technically speaking, Gy is the
sub generator of G that contains Q. Similarly Gg, ..., Gpp describes the plant’s behavior

in the faulty modes Fy, ..., Fp.

3.2.2.2 Model for Fault Diagnosis System

In this thesis, a diagnoser is simply an agent that signals the control system when a fault
is discovered and indicates the type of the fault. The type of diagnoser and the
methodology used by the diagnoser do not play any role in the synthesis of recovery

procedures. It is assumed that diagnosis involves a bounded delay.

In our framework, we use an automaton, which we call the diagnostic delay model
(DDM), to model the diagnoser.

The DDM is defined as a finite state automaton

D= (Y,Zb,g,)’O, Ym)

where Y is the state set, ygp is the initial state, ¥,, S Y is the set of marked states,

€ :Y X 2p — Yis the transition partial function, and 2p - 25 U 2 in the event set

including all the plant events and detection events. The detection events represent the
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signals sent by the diagnosis system to notify the supervisor of the detection and isolation

of failures. The detection events are thus assumed observable.

In the finite detection delay model of the diagnosis system, some events from the event
set 2 can occur in between the occurrence of a fault and the occurrence of the detection
events. In other words, after the occurrence of a fault in the system, the plant can still
generate a sequence of events. This continues until the diagnoser detects the fault and
generates a detection event. Fig. 3.5 shows the proposed DDM of the diagnoser for

untimed DES, assuming single-failure scenario.

2p-{&HU %}

Figure 3.5. Proposed DDM for a diagnoser

In this figure, 2'; = 2'p - {di} and Fy, F3, ..., Fp are fault events, and dy, d, ...., dp are
detection events. Here, d; is an event signifying the detection and isolation of F, and d;

signifies the detection and isolation of F;, and so on.
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The model indicates that at the initial state Y, all members of the event set X; are
enabled. This state corresponds to normal condition. If a non-faulty event occurs, the
finite state automaton will still remain in the same state (Yy). On the other hand, if a fault
event (e.g. fault F;) occurs in the system, then the finite state automaton will go to a state

corresponding to that fault.

If the diagnoser does not detect the fault before another event occurs, upon the
occurrence of the event, the current state of D will change. This repeats until the fault is
detected, and the detection event ( d; ) is generated by the diagnoser. Occurrence of this
last event will take the finite state automaton to state Yg. After this the diagnosis system

remains in Yg (unless it is initialized).

It is assumed that a lower and upper bound for the detection delay of each fault is

available. For example, in Fig. 3.5, F is diagnosed in between 1 to 3 events.

Modular models can be used for simple representation of a DDM. In order to simplify
analysis and implementation of the DDM, dividing the model into modules could be very
useful. It is possible to build each of these individual modules and use them concurrently.

In other words, the equivalent DDM will be the synchronous product of these modules.

DDM’s for two faults with lower and upper bounds of O and 3 events are shown in

Fig. 3.6.
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2; - {Fi} 2-{F,}

Figure 3.6. DDM’s for two faults with lower and upper bounds of 0 and 3 events

3.2.2.3 The System to Be Controlled: GD=sync(G,D)

The system to be controlled (the system under supervision) is the synchronous product of

the plant (G) and the diagnosis system (D).
GD =sync(G , D)

The result is shown in Fig. 3.7.

GDy; P GDg

GDN >

Figure 3.7. The system to be controlled in different modes, GD=sync(G,D)
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Let 2= 25 U 2p = 25 U Z; denote the event set of GD. GDy is the synchronous product
of the plant and the diagnoser in the normal mode (GDy =sync(Gn , Dn)) where Gy
includes only the normal condition of the plant G. Dy is illustrated in Fig. 3.8 where 2py

=25 —(2 U %) (2, is the set of recovery events).

&0 DN

Figure 3.8. Diagnoser in the normal mode

2pw

GDnri1, ..., GDn1p describe GD in the transient modes corresponding to Fy, ..., Fp,
respectively. Moreover, GDnr denotes GD in normal and transient modes. Also, GDntr

(=GD) describes the system in all normal, transient, and recovery modes.

3.2.2.4 Specification Models

In general, for each mode (normal, transient, and recovery), the system has a set of
specifications. We call the specifications of the normal, transient, and recovery modes
normal specifications (En), transient specifications (Er), and recovery specifications (Ey),

respectively.

To represent the specifications, we construct suitable automata. We also use the meet

procedure of TTCT to calculate the intersection of the specifications in each mode.
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Ex is constructed based on the normal specifications that the plant under supervision

should be confined to. It does not include the fault, detection, and recovery events.

Er is defined for the transient time. The transient specifications are defined in order to
control the behavior of the system as much as possible. Transient specifications are
typically less restrictive than normal specifications; Er may allow the system to work
with a degraded functionality. That is because some components of the system have

become faulty and do not function properly in the transient mode.

Eg is used in computing recovery control actions for faults. It may contain some recipes
for shutting down the faulty system, repairing a subsystem, or replacing an instrument

with its backup.

3.22.5 Example 3.1: Transfer Line

An industrial transfer line consists of two machines (M1 and M2) linked by a buffer (B).

The configuration of the transfer line is shown in Fig. 3.9.

o B : 02 B2
G

Figure 3.9: Example 3.1. Transfer line
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Machine 1, processes workpieces and deposits them into the buffer. Machine 2 removes
workpieces from the buffer and processes the workpieces. The DES’s representing the

machines are displayed in Fig. 3.10.

o oy B2

M2
M1

Figure 3.10: Example 3.1. DES models of machines 1 and 2

Let us assume that M1 has a sensor that signals machine’s deposit operation (event ;). If
this sensor becomes faulty (event 1;), it stops sending signal about deposit operation
(event vy, signifies workpiece deposit without sensor information). So we assume that all
events in the transfer line are observable except A; and ;.

The transfer line operates as follows: Initially the buffer is empty. M1 either becomes
faulty and enters C (event X;), or takes a workpiece (event ;) from an infinite input bin
and enters W. Subsequently, M1 either becomes faulty and enters D (event L), or
successfully completes its work cycle, deposits the workpiece in the buffer, and returns
to I (event B,). In faulty state C, M1 either can take another workpiece and enters D
(event a,), or gets repaired and returns to I (event W;). In D, M1 completes it processing
operation in a faulty mode and enters C (event vy;), or gets repaired and returns to W

(event ).
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M2, takes its workpiece from the buffer (event ay) and deposits it when finished, in an

output bin (event B,). We assume that M2 always works properly.

The specifications for admissible operation are:

Normal specifications:

1. The buffer must not underflow.

2. There should be no more than one workpiece in the buffer (buffer capacity for the
normal mode = 1).

3. Recovery event must be disabled in normal mode.

4. The system under supervision must be non-blocking.

Transient specifications:

1. The buffer must not underflow.

2. There should be no more than two workpieces in the buffer (buffer capacity for the
transient mode = 2).

3. Recovery event may not be used in transient mode.

Recovery specifications:

1. Machine 1 should not take new workpieces.

2. There should be no more than three workpieces in the buffer (buffer capacity for the
recovery mode = 3)

3. Machine 2 should finish the work on workpieces known to be in the buffer.

4. The system under supervision must be non-blocking.
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The plant of the transfer line is
G =sync(M1, M2)

In the normal mode, machines 1 and 2 are:

M1y M2y

Figure 3.11: Example 3.1. Normal models of machines 1 and 2

In the Fig. 3.11, it can be seen that events A, y; and p;, which are related to the faulty
condition of M1, are deleted from the original structure of the machine. In other words,
the events that illustrate the behavior of the machine after fault occurs are not part of the

normal mode of the system.

To construct the normal DES model of the transfer line, the synchronous product (TTCT

sync procédure) 1s used.
IGy = syne( M1y, M2y)

The result of this procedure is shown in Fig. 3.12.
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B1

IGn

Figure 3.12: Example 3.1. Normal model of the transfer line

As explained in the following section, to design supervisors to enforce transient
specifications, system’s model in normal-transient and normal-transient-recovery modes

(GDnr and GDnrr in Fig. 3.20) are required. In this example, models can be computed as

explained in the following.

[15] Ba

M2y

Figure 3.13: Example 3.1. Transient models of machines 1 and 2

Let M1t and M2t be the machines 1 and 2 in Fig. 3.13. Now let

IGNT = sync( MIT ’ MZT )
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Note that all states in IGnr are marked. This is because non-blocking property is not
among the transient specifications. This issue will be discussed in more detail later.

Consider M1g and M2y given in Fig. 3.14.

! ay B2

M2g
Mlg

Figure 3.14: Example 3.1. Recovery models of machines 1 and 2

It can be seen that these models are the same as the original structure of these machines.
Using synchronous product, the complete model of the small factory can be constructed

as follows.
IGntr = sync(Mlg, M2g)
Now, let us construct the model of the diagnoser assuming the detection delay is between

one and two events. The DDM for a minimum delay of one event and a maximum delay

of two events is shown in Fig. 3.15.

Zg-{M}

ZG

Figure 3.15: Example 3.1. DDM with delay between 1 and 2 (Dg)
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where X = {ay, 02, B1, P2, A1, Y1, M1 }-

Let 26, = 26 - {1t1}. The DDM of the diagnoser used in the calculation of the normal-
transient mode is displayed in Fig. 3.16.
It should be noted that recovery events are control actions used in the recovery mode

only. Therefore, we do not consider them in the normal and transient models.

z:G,r ‘{)\‘1 }

(e

Figure 3.16: Example 3.1. DDM with delay between 1 and 2 for the transient mode (D)

The system to be controlled in each mode is as follows:

Normal mode: IGDN=1IGy
Normal-Transient mode: IGDxt= sync(IGnt, D)
Normal-Transient-Recovery mode: IGDntr= sync(IGntrs DR)

The normal, transient, and recovery specifications are built as follows:

Normal specifications (IEn):

P1

4—0@0—» SelfLoop {01, B2}
IEN

(L5)

Figure 3.17: Example 3.1. Normal specifications for the transfer line
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Transient specifications (IEr):

B, V1 Pr
00/‘_\0__} SelfLoop {ay, Bz,?q}
IE+ V\—az/ )

Figure 3.18: Example 3.1. Transient specifications for transfer line

Recovery specifications (IE g):

d
HF
IERI % E SelfLoop {02, B1, B2, Y1, A1, 1}
o d
BI’ Y1 Bl’ Y1 BI’ Y1
o KT R e
\_/
Q Qo (0]
IER2 i i SCIfLOOp {(11, B2 , }\,1 s s d}
B B B1
e
v
IER3 ' p) ) (7)

SelfLoop {a1, B2, A1, wi, Y1 -d}

Figure 3.19: Example 3.1. Recovery specifications for transfer line

Combining the recovery specification languages we find the equivalent recovery

specification.

IER = meet( IEg; s | O N IERs3)
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3.2.3 Recovery Procedure and Supervisor Design

This section describes the design procedure proposed in this thesis. First, we consider the
case of single permanent fault (p=1), and then in the next step, the procedure will be

explained for multiple failures.

3.2.3.1 Single Failure (p=1)

GDnrr

GDnr

F ; d
GDN GDT }—{ GDR J

Figure 3.20: GD in different modes for single failure case

Fig. 3.20 illustrates the plant under supervision in different modes. Using this figure, we
bring in the following definitions:

GDx (which is isomorph to Gy) represents the system to be controlled in the normal
mode. GDyr is the system containing plant and diagnoser in both normal and transient
modes. GDnrr represents the entire plant from the normal to the recovery mode. The
combined model (synchronous product) of the system containing the plant and the DDM

of the diagnoser in transient and recovery modes are designated by GDt and GDx.

Ex and Sy represent the normal specifications and supervisor for the normal mode,
respectively. The transient specifications and supervisor are denoted by Er and St. Syt
denotes the synchronous product of the normal and transient supervisors

(Snt=sync(Sn,S1)).
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Er and Sy represent the recovery specifications and recovery supervisor synthesized for

the faulty mode F.

The event set 2p is defined to be Zop=26U 2p =3p U 2 U 3, U 2.
Here, 2, is the set of recovery events and 2p is the set of typical plant events, excluding
fault, detection, and recovery events.

Now, we are ready to compute the required controllers for the purpose of fault recovery.

Table 3.1 contains a list of automata that are constructed in order to compute the
controllers for the case of single failure. It also contains the event sets over which the

DESs are defined.

Table 3.1. Useful automata for recovery procedure in single failure case

Plant Specification Supervisor Event Set

GDy Ex SN 2
GDnr Er St 2, +H{F.d}
GDn~rr Er Sk 2, +{F.d,r}
- - SNt 2, +{F.d}

Note that the design of Sn, St, and Sg can be based on the RW theory or any other
method. In addition, in designing Sr, all states of GDnr are marked since blocking is not

considered in transient mode.
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The diagram of the recovery procedure at implementation time is shown in Fig. 3.21.
This diagram illustrates the plant model and the controllers used in different modes of the
system.

At the beginning of the implementation, in the normal mode of the system, the
conjunction of the Syr and Sgr controls the plant in a supervisory feedback loop. Sr is
involved with the system from the beginning to ensure that later, in case of failure,
recovery specifications can be met. In many cases, Syt is more restrictive than Sy and it
controls the plant directly, and Sy follows the event sequences generated by the plant

under the supervision of Snr.

GD
< NTR >
< GDNT >
F d
Svr____._.__. . Sve__
[
" N GO .
i
I S ' I S I
:_?_T_.._—_J__: :__h_'m._—JT______:
— o )
SR SR
— SR
< P> <€ > <« >
tN tT tR

Figure 3.21. The diagram of the recovery procedure in the single failure case
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If a fault occurs, the system enters the transient mode. During the transient time Syt (or
Sntr=meet(Snt , Sr)) continues its supervision until the diagnoser detects the fault and
generates the related detection event (d). Upon occurrence of the detection event, Snr is

disabled and the recovery supervisor (Sr) continues to control the system alone.

As mentioned above the synchronous product of Sy and St (i.e. Snr) is used in this

procedure, and we display Sy and St separately in the timed diagram for clarity.

In the normal or transient modes, Sg usually only follows the events happening in the
plant. In some cases, it may have to restrict plant behavior in normal or transient modes
so that Er can later be met during recovery. This will be discussed in more detail in

section 3.2.4.

3.2.3.2 Multiple Failures

In order to discuss the recovery procedure for the multiple failures, we use the same

model displayed in Fig. 3.7.

[ @ ) N
< NTiRi >

GDNTi

< >
Fi ; di

Figure 3.22: GD in different modes for multiple failures case

62



As before, GDy, which is isomorph to Gy, represents the system to be controlled in the
normal mode. GDyr models the system (plant and diagnoser) in both normal and

transient mode.

In Fig. 3.22, GDnrir; represents the entire plant from normal to transient and to recovery
in the case of fault i. St is the transient supervisor that is constructed to enforce the
transient specifications (Er). Eg; and Sg; denote the recovery specification and controller

for fault i. The conjunction of Sg;’s is called Sg, or Sg = meet(Sgi, ..., Srp).

Table 3.2 lists the useful automata that should be constructed. It also gives the event sets

based on which each supervisor should be designed.

Table 3.2. Useful automata for recovery procedure in the case of multiple failures

Plant Specification Supervisor Event Set
GDn En SN z
GDnr Er St 2 U2U 2%
GDnriri Eg; Sri SLUZU% U2z
- - SNt U %5U %

Similar to the case of single failure, the conjunction of the supervisors (meet (Snt, Sr)) is

in the feedback loop.
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After the detection of fault i, Syt and p-1 recovery supervisors (Sg;, for all j#i) stop
controlling the system (i.e., removed from the feedback loop) and only the recovery
supervisor corresponding to fault i (Sg;) will control the system. Fig. 3.23 shows the

diagram of the recovery procedure in the case of multiple failures.

GDuriri
< NTiRi >
< GDnry >
Fi di
SNT SNT
5 l Sn : : Sn l ;
(s ) i s ]
| o T m— AR | ) o m—m—————l i
> > <« > « >
tN tT tR

Figure 3.23. The diagram of the recovery procedure for the case of multiple failures

Remark 3.1: Before the occurrence of a fault in the system, the normal supervisor
controls the plant; then, until detection of the fault, the transient supervisor should control
the plant. Because faults are unobservable, Sy, St (thus, Sxr=sync(Sn, St)), and Sg will

be in feedback with the plant in both normal and transient modes.



3.2.3.3 Example 3.1 (cont’d)

Now, we design supervisors for the transfer line using the RW framework. We let the
plant determine the marking of the states. Therefore, in this thesis, we mark all of the
states of the supervisors. In other words, the closed and marked behaviors of DES models

of these supervisors are the same.

Normal Mode
For the transfer line, the normal supervisor can be computed as:

ISy = supcon(IGDy, IEy)

oy
«> ’%\

B

B2
ay
0« B.

ISy .

17

Bl »

Figure 3.24: Example 3.1. Normal supervisor

Note that in this example, the events in the normal mode are observable. If some of those
events are unobservable, the theory of the RW supervisory control problem under partial

observation can be used to compute an admissible supervisor for the system.
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Transient and Recovery Modes

Since the transient and recovery modes include fault events, and since these events are

unobservable, designing St and Sy can be considered as cases of supervisory control

problem under partial observation. One way to compute the supervisors is to use the

framework of Lin-Wonham (LW) discussed in chapter 2. This method is a step-by-step

design that can be implemented using TTCT procedures.

The transient and recovery supervisors, using LW procedure, are computed as follows.

Transient Supervisor (ISt)

Since we do not need to investigate the non-blocking property for this mode, we mark all

of the states of IGDnr. Therefore, we eliminate step 7 (nonconflict(JGDnr, ISt) = true ?)

from the LW procedure.

N A U R W N -

8

ITN = supnorm( IEy , IGDNT,NULL) , NULL={\; 11}
ITNO = project( ITN , NULL)

ITGO = project( IGDnr, NULL)

ITKO = supcon( ITGO , ITNO)

ITKODAT = condat(ITGO , ITKO)

ISt = selfloop(ITKO , NULL)

ITK = meet( IGDnt , IST)

ITK nonempty ?

As expected the result of condat procedure (Fig. 3.25) shows that no uncontrollable event

is disabled by ISt. The answer to step 8 is “yes”. Thus, ISt is an admissible supervisor for

1GDnr.
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ITKODAT

Control data are displayed as a list of supervisor states
where disabling occurs, together with the events that must
be disabled or forced there.

control data:

0: 5 1: 5
7: 1 9: 5
14: 1 15: 1

Figure 3.25: Example 3.1. Results of condat procedure

The supervisor Snr is the synchronous product of Sy and St or
ISnt = syne( ISy , IST)

Recovery Supervisor (ISg)

In order to compute the recovery supervisor (ISg), following a modular approach, we
intuitively design two supervisors for the first and second recovery specifications, and
use the LW method for designing the third supervisor based on the third specification.
ISgr will be the conjunction of these supervisors.

In order to satisfy the first and second recovery specifications, it can be verified that the

proper supervisors for IGDytr, are the following:

d
SelfL A
ISy elfLoop {02, B1, B2, Y1, M, mi}
[0 5] d

B1, 11 P 11 B 11 Bi, 11
i
@ X
v
ISk %2 *2 "

SelfLoop {1, B2 A1, 11, d}

Figure 3.26: Example 3.1. Supervisors for first and second specifications
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To compute the third recovery supervisor (ISg 3), we use the LW method:

IRN = supnorm( IEg3 , IGDNtr , NULL) , NULL={}; v}
IRNO = project( IRN , NULL)

IRGO = project(IGDnrr , NULL)

IRKO = supcon( IRGO , IRNO)

IRKODAT = condat(IRGO , IRKO)

ISy 3 = selfloop(IRKO , NULL)

nonconflict(IGDyrr , ISg 3) = true ?

IRK = meet(IGDntr , ISr3)

IRK nonempty ?

O 0 N9 R W N

The answers to questions 7 and 9 are “yes”. The obtained recovery supervisor, ISg 3, has
88 states and 413 transitions. The result of step 5, which is given in Fig. 3.27, illustrates
that ISg 3 is an admissible supervisor for IGDytr. ISk 3 is a non-blocking supervisor for

IGDntR-

IRkKODAT

Control data are displayed as a list of supervisor states
where disabling occurs, together with the events that must
be disabled or forced there.

control data:

0: 5 1: 5
2: 5 5: 5
6: 5 8: 5
13: 5 14: 5
25: 5 39: 5
41 1 53: 1
66: 3 68: 1
76: 1 83: 1
84: 1 86: 1

Figure 3.27: Example 3.1. Resuits of condat procedure
ISR is computed as follows:

ISk = meet (ISg 1, ISk 2, ISk 3)
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Remark 3.2: In the transfer line example, the detection delay of the diagnoser was, at
most, two events. In practice, this delay has lower and upper bounds. If the upper bound
is too high, then the design procedure will not be able to produce an answer (in fact, the
supervisory control problem may not have a solution). The design procedure may be
repeated for increasing values of diagnosis delay, to find the maximum value for which a

solution is available.

3.2.4 Decoupling Condition

In the normal and transient modes, the conjunction of Syt and Sy is controlling the plant.
Sg may have to disable some events to ensure recovery specifications will be satisfied
later.

In some cases, Sgr simply follows the plant throughout the normal and transient modes.
Therefore, Syt and Sy are effectively decoupled in time: Syt influences the plant during
the normal and transient modes and Sy during the recovery mode. Decoupling occurs if

and only if
L (Snxr/GDxr) € L (Sgri/ GDnr)

We call this condition the decoupling condition.

The above decoupling condition means that the portion of the closed language of the
transient blant under supervision of the normal-transient supervisor, which is generated
before the controller switches to recovery mode, should be a subset of the closed
language that would have been generated by the transient plant under the supervision of

the recovery supervisor.
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Example 3.1 (Cont’d): To verify the decoupling condition for the transfer line, we must

examine:
L( ISnt/IGDnr) € L(ISg/IGDyy)

Since all of the states of ISnt, ISg, and IGDyt are marked, their closed and marked
behaviors are equal. Therefore, using TTCT procedures, the verification procedure is as
follows:

1. ISRIGDNTCO = complement( ISg/IGDnr, --)
2. trim( meet( ISNt/IGDnt , ISRIGDNTCO )) = EMPTY ?

The answer to step 2 is “yes”, and this means that the decoupling condition is satisfied by

ISg and ISnT for the transfer line.

3.2.5 'The Issue of Non-Blocking

In problems in which blocking properties are studied, we would like the plant under
supervision to be non-blocking during its normal operation and in case of failure, be non-

blocking during the recovery procedures.
Let us assume that Sy is non-blocking for GDy (i.e., S\/GDy is non-blocking), and Sg; is
non-blocking for GDnriri (i=1, ..., P) (i.e., Sri/GDnriri 18 non-blocking).

In the normal mode, the plant under supervision meet(Snt,Sr)/GDxn should be non-
blocking, or

nonconflict(GDy , meet(Snt, Sg)) should be true. &)
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This is a modular supervisory control problem. It can be shown that [11] if Sgi’s and Snr
are admissible and non-blocking supervisors for GDy, and Ly(Sn/GDy) and
Ln(Sri/GDnN)’s are nonconflicting, then meet(Snyt, Sr)/GDy will be non-blocking. This
means that the normal plant under supervision of the equivalent supervisor meet(Snt, Sg)
will be non-blocking.

If the decoupling condition is satisfied then the equivalent supervisor in the normal mode

is Snr. In this case, to verify the non-blocking property, we can see if the following holds:

nonconflict(GDy , Snt) = true

In the transient mode, non-blocking is not part of the specifications of the plant under
supervision. This is reasonable until the fault is detected and a recovery supervisor takes

sole control of the plant.

In the recovery mode, only one of the recovery supervisors is in the feedback loop. In

the normal and transient modes, however, the conjunction (meet) of the supervisors (Snt

and Sgi’s) is in control. Therefore, the language generated by the plant under the

equivalent supervisor is a sublanguage of the plant under the recovery supervisor or

L( meet(Snt, SRV/GDnr) € L( Sr/GDnr) i=1, ...,p (*%

Let us formulate the non-blocking condition for the recovery mode. We start with the

case of single failure shown in Fig. 3.20.
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First we construct a supervisor S nt that behaves similar to Syt in the normal and

transient modes and that becomes idle during the recovery mode. We build S Nt by

adding a dump state (Xq) to all states of Syr, and mark Xy. We also attach a transition
(X4, o, Xq) for each event o € 2 at this state. In addition, we remove all d transitions in
Snr and add a transition (q , d , Xg) from every state q in Syt to the dump state (Xq) (Fig.

3.28). If coupled with the system GD, S nr would behave similar to Snr during the
normal and transient modes and after failure detection (after it enters Xy), it would stop

disabling events and effectively it would be out of the control loop.

Figure 3.28: S NT

Let Sntr be Sntr = meet( S Ny, Sr). We can think of Syrr as the supervisor that

controls the system under supervision for the entire time from normal more to recovery.

Now, the non-blocking condition for the recovery mode will be as follows:

Sntr/GDxN1rR is non-blocking, if and only if

Zm( SNTR/ GDNTR) = L( SNTR/ GDNTR)
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Theorem 3.1 Suppose Sy is a non-blocking supervisor for GDyrgr. If meet(Snt, Sg) is a

non-blocking supervisor for GDy, then Sntr is a non-blocking supervisor for GDnrr.

Proof: The sequences in L{Sntr/GDntr) can be partitioned into three groups:

(a) The sequences that keep GD in the normal mode and thus do not contain failure or
detection events.

(b) The sequences that take GD to the transient mode and thus contain at least one failure
event and have no detection event.

(c) The sequences that take GD to the recovery mode and therefore contain at least one

detection event.

In case (a), since by assumption Sntr/GDy is non-blocking, from any normal state in
Sntr/GDnrr there is a path in the normal mode to some marked states in the normal

mode.

In case (c), from equation (**) (page: 69) we conclude that any sequence s= Gy, ..., Opd
(0; # d) in L(Sntr/GDnrr) that takes GDyrr to some state x and Sy to some state y, will
also take GDnrr to X and Sg to y in Sg/GDnrr. Note that x is the state immediately after
detection. Since Sr/GDnrr is non-blocking, there is a sequence of events s’ to take

Sr/GDntr to a marked state. After detection the action of Sg and Syrr are identical. Thus,

the same sequence takes Sntr/GDntr to the same marked state. In other words, ss’&

Lu(SnTR/GDNTR)-

It can be seen that the aforementioned argument applies to any s = oy, ..., 6pds; (o;# d).
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In case (b), for any sequence s€L(Sntr/GDnrr) that includes a failure f but does not
includes d , there exist s’ such that ss’d € L(SNTR/GDNTR) (because the diagnosis system

detects the failure with (finite) bounded delay). By (c), there exist s” such that ss’ds”&
Ln(Sntr/GDN1r).
Therefore, L(SntR/GDntr) & L m(Sntr/GDntr).  Since L m(Sntr/GDnmr) S

L(Sntr/GDnrR) is always true, we conclude that

L w(Sntr/GDn1R) = L(SnTR/GDN1R)-

In other words, Sntr is a non-blocking supervisor for GDyTr. i

For multiple failures, we define Sytg; as follows:

Sntri= meet(meet(S NTy S Rip +ees S Ricls S Ritls ++os S RP)y S Ri)
Here, S NT» S Ris -+ S Ri-l» S Risls +-+5 S rp are respectively extensions of Snt, Sgi,
vevs SRi-1> SRisls ---» Srp, and must be calculated using the same procedure explained

above for obtaining S NT.

We extend the non-blocking condition for the recovery mode corresponding to a fault f;

as follows:
Sntri/GDyriri is non-blocking, if and only if

Zm( SNTRi/ GDNTiRi) = L( SNTRi/ GDNTiRi)

The following theorem is an extension of Theorem 3.1.
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Theorem 3.2 Suppose Sg; is a non-blocking supervisor for GDyyg;, with 1 <1 <p. If
meet(Snt, Sr) is a non-blocking supervisor for GDy, then Snrg; is a non-blocking

supervisor for GDyriri. [

If the non-blocking condition holds for all i = 1, 2, ..., p, the fault recovery supervisor is

a non-blocking supervisor.

3.2.6 Supervisor Admissibility

As usual, suppose Sy and St are admissible for GDy and GDnr, respectively. It is
important that the normal supervisor (Sy) be an admissible controller for GDnr as well. In
other words, care must be taken that Sy not disable any uncontrollable event in both
normal and transient modes.

To verify the admissibility of Sy with respect to GDnr, the condat procedure may be

used.
STDAT = condat(GDxt , Sn1)

STDAT displays a list of supervisor (Snt) states in which the disabling of events may
occur. If any uncontrollable event is disabled by Syr, then Syt will not be an admissible
supervisor for GDnr. Note that by assumption, St is an admissible supervisor for GDnr
and therefore does not disable uncontrollable events. Thus, disablement of uncontrollable

events, if any, is done by Sy.

In order to prevent Sy from disabling uncontrollable events in the transient mode, the

following procedure may be performed.
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Let 2yc € Xpdenote the uncontrollable events.

1. Add a dump state (Xg) to Sy and mark it.
2. For any state of Sy, q, and 6 € Zyc such that o is not defined at q in Sy, add a
transition (q , o , Xg) from q to the dump state.

3. Attach a transition (X4, o , Xg) for any event a € Xp U 2 U 35 at this state.

Call the modified supervisor Sxm. Snm never disables an uncontrollable event. The
transitions added in step 2 may only occur during the transient mode, after which Sym
enters its dump state and is effectively taken out of the control loop. Therefore,

L(Sn/GDy) = L(Snw/GDy) and Lip(Sv/GDx) = Lin(Snm/GDn), i-e., Sy and Sny have

the same effect on the plant during the normal mode.

From now on, we assume that whenever Sy is not admissible for GDnr, it is replaced by

Snm. In those cases, for simplicity, we drop M and denote the resulting supervisor by Sy.

In the case of multiple failures (p>1), Sg; is designed based on GDyriri. Therefore, we
have to verify that Sg; is admissible for GDnr and if the condition is not satisfied, the

above mentioned procedure must be applied to Sg; to render it admissible.
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Example 3.1 (Cont’d): We verify that ISt and ISg are admissible supervisors, and the

resulting modular switching supervisor is non-blocking

1. Admissibility property
ISNTGDNTDAT = condat( IGDnr , ISnt)
ISRGDNTDAT = condat( IGDyr , ISR)
The result of ISNTGDNTDAT and ISRGDNTDAT are shown in Fig. 3.29. It can be seen
that in both cases, every disabled event is controllable. Thus, both supervisors are

admuissible for IGDnr.

ISNTGDNTDAT
Control data are displayed as a list of supervisor states
where disabling occurs, together with the events that must

be disabled or forced there.

control data:

0 5 1 1 5
2 1 5: 1
7 5 8: 1
11 1
ISRGDNTDAT

Control data are displayed as a list of supervisor states
where disabling occurs, together with the events that must
be disabled or forced there.

control data:

0: 5 1: 5

5: 5 24: 5
52: 1 122: 1
137: 1

Figure 3.29: Example 3.1. Results of condat procedure
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2. Non-blocking

nonconflict( IGDy , meet(ISnt, ISR)) = true ?

The answer to the above question is “yes”, therefore, the conjunction of ISxt and ISk is a
non-blocking supervisor for IGD.

so meet(ISnt, ISR) is a non-blocking supervisor.

We also use the following nonconflict procedure for IGDntg and ISg, and find that ISy is
a non-blocking supervisor for IGDnTr.

nonconflict( IGDntr , ISR) = true ?

Finally, for the transfer line, since meet(ISnt , ISg) is a non-blocking supervisor for
IGDy, and ISy is a non-blocking supervisor for IGDntr, by Theorem 3.1, we conclude

that ISntr is a non-blocking supervisor for IGDntr.

In conclusion, the modular supervisor is a non-blocking supervisor.

3.2.7 Example 3.2: Tank-Valve System

In this example, we demonstrate the application of the framework developed in this thesis
to the design of recovery controllers for a tank-valve system. The example involves two
faults and illustrates recovery in systems having redundant components. The system (Fig.

3.30) consists of a tank (Tank), two control valves (V1,V2), and one mechanical valve
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(V3). Valve V2 is redundant. When valve V1 is in the normal (non-faulty) condition,

valve V2 is in standby mode and not in service.

V3
L <>

Figure 3.30: Example 3.2. Tank-Valve System

We assume that the liquid level in the tank is initially in the low range, below level low
point (L). Valve V3 is open to supply liquid to another process. If the liquid level goes
below the point L, then valve V1 is opened and the liquid fills the tank until it reaches
point H. At this point, valve V1 is closed, the level drops to below L and the cycle is

complete. Following this, another cycle starts.

It is assumed that the system is equipped with a level sensor that can read one of the two
possible values: level low and level high. Furthermore, it is assumed that valve V2 works
properly and never fails. Furthermore, valve V1 has two failure modes, a ~“stuck-open™
failure mode and a “stuck-closed " failure mode. Valve V1 can get stuck-closed only

when it is closed, and it can get stuck-open only when it is open.
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In this system, the controller is responsible for opening and closing the valve when the

liquid level goes below L or above H.
The automata for valves V1 and V2, tank, and controller (Ctrl) are depicted in Fig. 3.31.

03 @1, 01

¢1 0 01 3:\ 8y

0y
(173 0 P2 Q
02
91, 0 w o 2
i “—
02
Vi * ”

V2
0
1

Tank

Ctrl

Figure 3.31: Example 3.2. DES models of valves V1 and V2, tank, and controller

To find a DES model for the interlock between tank and valves, first the synchronous
product of the valves is computed. Then this product is modified by adding selfloops of
events level low () and level high () to the states corresponding to valves open or stuck-
open, and valves closed or stuck-closed, respectively. The DES structure of the interlock

between valves and tank is displayed in the next subsections.
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Another element in this plant is the emergency shut down system. 1t is assumed that if
valve V1 gets STUCK-OPEN then the system must be shut down. This could be simply
closing an emergency valve upstream. The DES model of the emergency shut down

system (ESM) is shown in Fig. 3.32.

0

H/\‘o—» ESM

Figure 3.32: Example 3.2. DES model of the emergency shut down system

Table 3.3: Example 3.2. Events and their description

Event Description C/oC
01 VALVE_V1_OPEN C
v VALVE_V1_OPEN UcC
¢1 VALVE_V1_CLOSE C
T VALVE_V1_CLOSED UuC
O1 VALVE_V1_STUCK_OPEN UC
G VALVE_V1_STUCK_CLOSED UcC
X1 VALVE_V1_STUCK-OPEN_DETECTED ucC
o VALVE_VI1_STUCK-CLOSED_DETECTED UcC
02 VALVE_V2_OPEN C
V2 VALVE_V2_OPEN ucC
02 VALVE_V2_CLOSE C
T VALVE_V2_CLOSED ucC
1 TANK-LEVEL_LOW ucC
0 TANK-LEVEL_HIGH UC
Q SHUT_DOWN C
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A complete list of events is given in Table 3.3. In this table C and UC denote controllable

and uncontrollable, respectively. Moreover, in this example, the list of recovery events is

Zr = {1)29 027 (p27 Tz7 Q}'

The objective of the above problem is to compute recovery controllers in order to

reconfigure the system in case of V1 faults. The design procedure is as follows.

Normal Mode
Let NV1 and InterlockN (shown in Fig. 3.33) respectively be the normal model of valve

V1 and its interlock with the tank. IIGy, the normal model of the plant, is constructed as

follows.
01 01,9
01 (/\ 0 Q 01 G " Q
01 01
T v T A1
(5]
91
el Oy
o 0y 01,0 i
NV1 InterlockN

Figure 3.33: Example 3.2. Normal models of valve V1 and its interlock with the tank

TCIN = sync(Tank , Ctrl , InterlockN)

IIGDy = sync(NV1, TCIN)
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The normal specification, which is formalized as IIEy in Fig. 3.34, is the following.

1. V1 should be active.

0

IIEN HQ_p SelfLoop {vy, 71, 1 0}

(41

Figure 3.34: Example 3.2. Normal specification

Finally, the normal supervisor displayed in Fig. 3.35 is IISy where

IISy = supcon(IIGDy , IIEy).

0
01 0
T1 v
—
IISn k o
n

Figure 3.35. Example 3.2: Normal supervisor

Normal-Transient Subsystem
The following models are considered for valve V1 and its interlock with the tank for

building IIGDnr.

TCIT = syne(Tank , Ctrl , InterlockNT)

HGny = sync(TV1, TCIT)
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TV1

@1, 01

01, 0 @1, 01, 0

¢ 0 91 Q\ 81

InterlockNT

P1, 01, M

P, M

Figure 3.36: Example 3.2. Models for valve V1 and its interlock with the tank

We assume that the detection delay of the diagnoser in this example is at most one event.

The DES models of these diagnosers are depicted in Fig. 3.37.

Zae-{ &} Zs1e-{01}

(et i m, [ptobee

4
Dty D751

y

Figure 3.37: Example 3.2. Modular DDM in transient mode

Here
Zee=2 U Z U{l={vy, 01, o1, 71, &1, 81, %1, 1, 0}

s10= 2 U ZrU{o}= {v1, 01, @1, T1, G1, 81, @1, 1, 0}
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The diagnoser IIDny will be syne( XDtz 5 1Dy 51 ).

The combined model of the plant and diagnoser for the normal and transient modes is:
IIGDyy = syne( IIGny, IIDNT)

In the transient mode, we assume the same specification as in the normal mode. The
automaton model of this specification in the transient mode is IIEy selflooped with the

fault and detection events.
IEy = selfloop(IIEy , {&1, 81, o1, 11})

The procedure for computing the transient supervisor is as follows:

IITN = supnorm( IIEt , IIGDny , NULL) , NULL={(; 6}
IITNO = project( IITN , NULL)

IITGO = project( IIGDnt, NULL)

IITKO = supcon( IITGO , ITNO)

IITKODAT = condat(IITGO , IITKO)

IISt = selfloop(IITKO , NULL)

IITK = meet(IGDny , IIST)

IITK nonempty ?

S N L A

IISnr, the synchronous product of the normal and transient supervisors, is:

IISNT = sync(IISN ’ IIST)

b4 0, *
* 1

p6! 01
T1 1
* n E% 0
IISNT i)_l 1B, * N

Figure 3.38: Example 3.2. Normal-transient supervisor

* = selfloop{{; 01}
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Recovery Mode
Since we assume that there are two faults in this system, two different recovery
supervisors must be computed, one for recovery from the stuck-closed fault, and the other

for recovery from the stuck-open fault.

For the case of “VALVE_V1_STUCK_CLOSED” fault, in order to find the plant’s
recovery model, RV1 and V2 are considered to be the models for valves V1 and V2,
respectively. To model the interlock (InterlockNT1R1) among the valves (V1 and V2)
and the tank, first, the synchronous product of RV1 and V2 is computed. Next the
selfloops of events TANK-LEVEL-LOW and TANK-LEVEL-HIGH are added to states

corresponding to valve open, and valve closed or stuck-closed, respectively.

03 02
) (} 92 Q
02
T2 v,
P2
02
P31, 01 (pz 0,
V2

RV1

Figure 3.39: Example 3.2. Models for valve V1 and V2 for the recovery mode

In addition, in this case, we consider one controller for each valve (V1 and V2). These

models are depicted in Fig. 3.40.

Finally, we construct the following automata:

CtrIR = sync(CtriR1 , CtriR2)
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TCIR1 = sync(Tank , CtriR , InterlockNT1R1)

IIGNTIRI - sync(RVl ’ V2 ’ TCIRI)

CtrIR1 CtrIR2

Figure 3.40: Example 3.2. Controllers for V1 and V2 in recovery mode

For the case “VALVE_V1_STUCK_OPEN “ fault, in order to find the plant’s recovery
model, we model V1 by RV2 (shown in Fig 3.41). Also, to model the interlock
(InterlockNT2R2) among valve V1, the emergency shutdown system, and the tank, first,
the synchronous product of V1 and ESM is computed. Next the selfloops of events
TANK-LEVEL-LOW and TANK-LEVEL-HIGH are added to states corresponding to

valve open, stuck-open, and emergency-shutdown-on, valve closed, respectively.

91, 01

0
(U] G 1 :;\ 5,

RV2

01

Figure 3.41: Example 3.2. Model for valve V1 in the recovery mode
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TCIR = syne(Tank , Ctrl , InterlockNT2R2 , ESM)

IIGNT2R2 = sync(RVZ ’ TCIR)

In the recovery mode, the models of the diagnosers is like that in the transient mode,
except that we add the selfloops at detection states and modify the events sets by adding

recovery events to X¢cand Zg ;.
Yy = U S U{n U Z = {vy, 01, 01, 11, C1, 61, 31, M, 6, 02, 02, P2, T2, Q }

Zs10 =2 U ZU{o1}U 3 = {vy, 01, 01, 1, §1, 81, @1, 1, 0,2, 02, 92, T2, Q }

Za-{G) Z 510-{01}

D G Zyr D Jt 2 51
?——H f

Wy z
(0] / X1
/7 z 8l

IIDR,gl IID R,51

Figure 3.42: Example 3.2. Modular DDM in recovery mode

Finally, in the recovery mode, the combined model of the plant and diagnosers (the

system to be controlled) corresponding to faults {; and 6, are as follows.

IIGDyrir1 = syne( IGNt1RI S IIDR,QI)

IIGDnr2r: = syne( IIGnrzra, 1IDg 51)
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The specification considered for recovering the system from the fault
VALVE_V1_STUCK_CLOSED is

» If valve V1 gets stuck-closed then the recovery controller must send open and close
commands to valve V2, which replaces V1.

This specification is formalized in Fig. 3.43.

. @ o
01, 01 %\O—-} SelfLOOP {1)17 T1y C.:I’ 1, potRI 0, vy, TZ}
¢2

ITER;

Figure 3.43: Example 3.2. First recovery specification

Another specification used in recovery mode is the one considered for recovery from the

fault VALVE_V1_STUCK_OPEN. This specification (Fig. 3.44) states that

« If valve V1 gets stuck-open then the system must be shut down. In other words, the

controller must stop sending commands to valve V1 (no command to valve V2).

X1

01, P1, 02, P2 Q
W SelfLoop {vy, 1, &1, 61, 01, 1, 0, V2, T2}
Eg,

Figure 3.44: Example 3.2. Second recovery specification

The procedure of computing the recovery supervisor corresponding to fault {; is as

follows:

1. IIRN1 = supnorm( I1Eg; , IGDnt1r1 , NULL) , NULL={{;}
2. IIRNOI1 = project( IIRN1, NULL)
3. HIRGOL1 = project(IGDnt1r1 , NULL)
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® X Ss 0 s

IIRKO1 = supcon( IIRGO1 , IIRNO1)
IIRKODAT1 = condat(IIRGO1 , IIRKO1)
IISg; = selfloop(IIRKO1, { {;  8:})
nonconflictIIGDytir1 , IISgry) = true ?

IIRK1 = meet(IIGDNTlRl ’ IISRl)

10. ITRK1 nonempty ?

The same procedure can be used to compute the second recovery supervisor

corresponding to fault §;. This procedure uses IIEg, (the second recovery specification)

instead of IEgR;.

$E A, R W DN

IIRN2 = supnorm( IIEg; , [IGDN12gr2 , NULL) ,

ITRNO?2 = project( IIRN2 , NULL)
ITRGO2 = project(IIGDnt2rz , NULL)
ITIRKO?2 = supcon( IIRGO2 , IIRNO2)
ITRKODAT?2 = condat(IIRGO2 , IIRKO2)
IISg: = selfloop(IIRKO2 , { {;  8;})
nonconflict(1IGDxt2r2 , IISgr2) = true ?
ITRK?2 = meet(IIGDnr2g: , [ISgr2)

IIRK2 nonempty ?

NULL={ &1}

Both of the above supervisors, IISg; and IISg,, are admissible and non-blocking with

respect to their plants, [IGDnrir; and HGDy12r2.

Decoupling Condition

In this example, the decoupling condition is verified for the two recovery supervisors.

Because the verification procedure is the same as the transfer line example, for brevity,

we only include the results of the verifications.
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L ( IISNT/ IIGDNT) c L ( IISR1/ IIGDNT) = true

L (IISny/ TIGDNy) € L (1ISg:/ HIGDny)) = true

This means that the decoupling condition is satisfied for both recovery supervisors.

Supervisor Verification

The aim of this section is to verify whether or not the produced normal, transient and
recovery supervisors (IISnt, IISg;, and IISg;) are admissible and that the system under

supervision is non-blocking. We begin with admissibility property.

1. Admissibility property
Here, we need only to perform the following computations.

IISNTGDNTDAT = condat( IIGDnt , IISnT)

HSR1GDNTDAT = condat( IIGDnr , IISg;)

IISR2GDNTDAT = condat( IIGDyr , IISgr2)
Since ISNTGDNTDAT, IISRIGDNTDAT, and ISR2GDNTDAT do not contain any
state in which the uncontrollable events are prevented from occurrence by the
supervisors, IISxt, IISgr;, and IISg; are admissible with respect to IIGDyr.
2. Non-blocking property
In order to check this property, we use the nonconflict procedure and find that the answer
to the following question is “yes”. Thus, IISyTr is a non-blocking supervisor with respect
to IIGD.

nonconflict( [IGDy , meet(IISnt , IISgry, IISg2)) = true ?
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The recovery supervisors are IISg; and IISg,. Let

USnri= meet(meet(IT S nT, ILS R2), IS &)

Sntro= meet(meet(ILS nt, I1S r1), IS r2)

Since

i. meet( IISnt , IISgy, IISg;) is a non-blocking supervisor for IIGDN

ii. IISg; and IISg, are non-blocking supervisors for IIGDnrir1 and IIGDnrare,
respectively

then IISytr1 and IISnrr: are non-blocking with respect to IIGDnriri, IIGDnr2r2,
respectively. Then by Theorem 3.2 the modular switching supervisor for the Tank-Valve

system is a non-blocking supervisor.

In this example, after recovery, Valve 2 receives the open and close commands in order
to fill up the tank. It does the same job as valve 1 was doing before. In this case, the
system can be considered to be in the normal mode again. Let us assume valve 2 may
fail. Then there could be two consecutive faults in tank-valve system. In this case, we
could add another normal, transient, and recovery modes to the system model. Fig.3.45

shows the relations among the modes.

GDN(I) and GDT(I) respectively indicate the system in the normal, transient, and recovery
modes corresponding to the first fault. GD4?, and GDR? respectively denote the system

in the transient, and recovery modes corresponding to the second fault. GDg" describes
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the condition of the system after recovering from the first fault and before the occurrence

of the second fault. Therefore, we may refer to it as GDN?, as well.

R
GDRa)

GDy® GD» |—> GDy GDy?

(GDN®)
—_

Figure 3.45: Example 3.2. Tank-Valve system for two consecutive faults

In order to model the system under supervision and design controllers, the same

procedure can be repeated. This is further explored in the following.

Remark 3.3: Return to Normal Mode
Let us consider a recovery problem in which after recovery the plant returns to its normal
mode. We assume that after the occurrence of a recovery event (Fr), the plant goes to one

of its normal states. This second normal mode is designated by GDy.

The timing diagram in Fig. 3.46 displays the recovery procedure. For simplicity, we
assume a single failure system (p=1). Sn- is a controller that is synthesized in order to
restrict the behavior of GDyy; that is, to confine it to a modified version of normal
specifications (to be explained later). This controller is another modular supervisor that is
added to the control system, and it performs a role similar to what the recovery supervisor
does during the normal, transient, and recovery modes. In other words, Sy follows the
sequence of events generated by the plant under control of other supervisors. In general,

it may restrict the plant behavior to make sure that the normal specifications can be met
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after recovery. When the recovery event happens in the system, then S will take sole

control of the plant.

Sw Sn
— > > (>

Figure 3.46. Timing diagram of the developed recovery procedure

Fig. 3.47 shows how to construct GDy. It is composed of GD and GDy connected with
recovery events. The recovery transitions to normal states depend on the type of the fault
as well as the plant behavior. For example, after recovery, a component may return to its
initial state while another component may resume its operation which might have been

interrupted due to fault.

P N\/—\ e ~\\
e T g N
! GD —, GDn )
\\ . \\ ’,
Il R T Il O
r

Figure 3.47: GDy
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Chapter 4

Fault Recovery in Timed Discrete Event Systems

4.1 Overview

In this chapter, we extend our fault recovery approach to timed discrete event systems.
TDES models can be used in many real-time computer systems and control engineering
problems where a methodology to ensure the correctness of the operation of real-time
systems is important. These modules can be composed together to produce multipart
systems. Therefore, they are useful in modeling complex systems. An important feature
of our framework, namely the delay model for the diagnoser, becomes more useful and

significant in problems involving timing.
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42 Recovery Framework

Our recovery framework for TDES basically uses the same methodology presented in the
previous chapter with the exception that the formalism of TDES models is used to
analyze the plant and control systems. In this study, the clock tick is considered as an
extra event. The definitions of the normal, transient, and recovery modes are the same as
those in chapter 3. For the computation of the supervisors, the theory of supervisory
control of timed discrete—event systems in [12] and its extension to supervisory control of
TDES under partial observation presented in [15] are used.

Our discussion in this chapter will be limited to single failure case; the result can be

generalized to the case of multiple failures as in chapter 3.

4.2.1 Plant Model

The plant under supervision is assumed to be a timed discrete event system (TDES).

Specifically, the plant under supervision is defined to be a 5-tuple

GT = (Qr ’ ZT 761: ’ q"’ Qm)7

where Q., 2., q., and Q,, are the finite state set, the set of events, the initial state, and

the set of marked states, respectively. &, : Q; x £, —Q, is the state transition partial

function.

In this study, X is partitioned into the following four subsets: Z, = {tick} UZ, U Z, U X,.
2rand X, are the sets of fault and recovery events, respectively. The set of the remaining

non-tick events is denoted by %,
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G describes the system behavior in both normal and faulty conditions. It is assumed that
G, contains P permanent failure modes Fj, ..., Fp. We define K={N, Fy, ..., Fp} as the

condition set. The state set of G; can be partitioned according to the condition of the

system: Q=Qnx UQw U ... U Qe

We assume that the timed transition graph (TTG) of TDES model of G; is obtained from

an activity transition graph (ATG), Gy, with

Gact = (A, Zaet ,Sact , @, Ap)

where A is the activity set, 2, is a finite set of events, 8, : A x Zaet — A is the activity

transition partial function, a. is the initial activity, and A, is the set of marked activities.

It should be mentioned that we assume that the tick event is observable, and it cannot be
disabled by supervisors, but it can be preempted by forcible events. We should also

mention that from now on, 1 is used to denote the tick.

4.2.2 Model for Fault Diagnosis System

In this section, the model presented in the previous chapter for fault diagnosis system is
extended to the timed discrete event systems. Similar to the untimed case, we define a
diagnostic delay model (DDM) for the diagnosis system. For TDES, instead of using

events to represent the delay of the diagnoser, we use the time bounds in ticks to measure
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and represent diagnosis delay. These time bounds are simply the lower and upper time

bounds of the detection events.

The ATG of DDM is a 5-tuple

Dact = (A, Zpact ; Opacts D> Ap.m),
where Ap is the activity set, Zp, is a finite set of events, Opact : Ap X Zpact — Ap is the
activity transition partial function, ap. is the initial activity, and Apn is the set of marked

activities. Zpact = 2gact U 24 consists of the plant and detection events. Fig. 4.1 displays a

general DDM.

2pace - {ZFU 2} 5
Z D,
) 1 P 4
d F, F; dy
(N
A
1 Bl AI \\‘ BP IKP

D act I

Figure 4.1: A general DDM in TDES

where 21 = Zpaei-{di}, ..., Zp = Zpact - {dp}; F1, Fa,..., F, are unobservable fault events and
dj, dy,.... , d, are the corresponding detection events, with time bounds (lai, ug1) , (laz,
Ug2), .., (lap, Ugp). The upper bounds ug are assumed finite (ug < o). In other words, the

detection events are prospective. Otherwise, the failures may not be diagnosed at all.
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The DDM model functions as follows. Initially, when the plant is in its normal states, the
DDM is in A;. If a fault, say, F, happens in the system, then the diagnoser goes to its next
state, Bp. At this state, either the diagnoser detects the fault and generates the detection
event d,, or the plant continues to generate other events from its set of events. Eventually
before ugy+1 clock ticks, the diagnoser detects the fault and enables the detection event

and goes to the next state Ap.

The modular models of DDM for two faults F; and F, are shown in Fig. 4.2. These

models can also be developed for more faults similarly.

P b
5-{F) 5, KR 5
Dlact Dzact

Figure 4.2: Modular DDM in TDES

The equivalent DDM for the system in Fig. 4.2 is

Dyt = comp( Dlact ’ D2,et)

The TTG of the TDES can be obtained from

D = Timed-Graph( D,)
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423 The System to Be Controlled

The combined model of the plant and diagnoser (the system to be controlled) is the
composition of the plant (G) and the diagnosis system (D). It should be mentioned that

for the composition of TDES, we follow the notation described in chapter 2.

GDact = comp( Gact ’ Dact)

and
GD = Timed-Graph( GD,)
GDnrr=GD
< >
F ‘ d
GDy GDy J————P[ GDx J
<

GDnr

Figure 4.3: GD has three modes (assuming single failure, p=1)

Let 2= 25 U 2p = 25 U 3, denote the event set of GD. GD has three modes: normal,
transient, and recovery (Fig. 4.3). Gpy is the plant and the diagnoser in the normal mode.
GDnr describes the plant in normal and transient modes. GDyr denotes the plant in

normal, transient, and recovery modes.

424 Example 4.1: Small factory

A small factory includes two machines and a buffer with one slot. The arrangement of the

small factory is shown below:
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0 B (V%) B2
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Figure 4.4: Example 4.1. Small factory

MACH]1, BUF, MACH2 illustrate machine 1, buffer, and machine 2, respectively.

The ATG models of the machines are shown in Fig. 4.5.

ySlli

MACHi
W;

Figure 4.5: Example 4.1. DES model of machines 1 and 2

The operation of the small factory is as follows. Initially the buffer is empty. With the
event a;, MACHI1 takes a workpiece from an infinite input bin and enters Wj.
Subsequently MACHL1 either breaks down and enters Dy (event A;), or successfully
completes its work cycle, deposits the workpiece in the buffer, and returns to I (event
B1). MACH2 operates similarly, but takes its workpiece from the buffer and deposits it
when finished, in an infinite output bin. Upon repair, a machine returns to its initial state.

Moreover, when a machine is in its work positions (state W;), it can be reset (event Kj) to

its initial position (state I; ).

The informal specifications for admissible operation are:

1. The buffer must not overflow or underflow.
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2. If both machines break down, then MACH2 must be repaired before MACHI.
3. A machine can be reset from work state to ideal (event K;) if the other machine has

broken down.

The corresponding activity events for small factory are as follows:

MACHIL: (01,0, (B:1,1,2) (A,0,0) (,1,0)  (x1,0,0)
MACH2: (23,0, (B2, 1,1) (22,0,0) (uz,1,0)  (k2,0,0)

Let the set of forcible events be X¢, = {0, a2, 1 , K2, K; , K2} and the set of prohibitible

events be equal to the set of forcible events (Zpro = Ztor).

MACHIN

Figure 4.6: Example 4.1. Normal model of machines 1 and 2

The models of the DDM to be used are as follows:

»
Sge-{A1) it Shos-(A2 ) 121 -
Zatr !
D) Bl
IDR,M,act ID R,\2,act

Figure 4.7: Example 4.1. Modular DDM for recovery mode

where A, and A; are breakdown faults respectively for machines 1 and 2; p; and p2, the

detection events corresponding to A; and A;, are two activity events with (p;, 1,3) and
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(P2, 1, 3). Zh1rs Za2r » and DRyt (IDRace iS the equivalent DDM) are as follows:

T =2 U U{p2}U 2 ={ay, 02, 1, B2, ki, K2, Ap Ag, i, M2, P2}
2= U ZU{p1}U 2 ={ay, a2, B1, B2, K1, K2, A1, A2, pui, W2, p1}

IDRact = comp( ID R,\l,act » IDR,M,act)

Normal Mode: 1GDy
The ATG models of the machines in normal mode are illustrated in Fig. 4.6. Using the
above description, the combined ATG and corresponding TDES models of the plant are

constructed (Fig. 4.8).

IGDnaet = comp(MACHIN, MACH2N)

IGDy ; = Timed-Graph( IGDyy,c)

IGDNact

Figure 4.8: Example 4.1. Equivalent ATG for machine 1 and 2 in normal mode
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Normal-Transient Model: IGDnT
After including the fault events (A; and A;) in the small factory, we obtain the ATG

models of the machines used for computing GDnr (Fig. 4.10).

The model of the diagnoser used in the construction of normal-transient model is
obtained by removing selfloops in the detection state and removing recovery events from

the event set in the IDrjjact. The resulting model is denoted by IDrye.

2oy =2 U U {p2} = {a1, a2, B1, P2, K1, k2, A1, A2, P2}
22 =2 U ZU{p1} = {ay, 02, B1, B2, K1, K2, A1, A2, p1}

ID1y= comp( IDT,).I,act ’ IDT,).Z,act)

2
Zare-{Ar1} it Zaze-{A2} 22
e Lt E% 7
ID T, 1,act IDT,XZ,act

Figure 4.9: Example 4.1. Modular DDM for transient mode

The normal-transient model of the system is the result of the following computations.

IGNTact = comp(MACHIT, MACH2T)
IGDNTact = comp (IGNT,act ’ IDTact)

IGDnrt; = Timed-Graph( IGDyr,c)
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MACHIT

IGNTact

Figure 4.11: Example 4.1. Equivalent ATG for machines 1 and 2 in transient mode

Normal-Transient-Recovery Model: IGDnr

Using the same model shown in Fig.4.5 for the ATG models of the machines, we can

obtain the ATG model of the plant (designated by IGnTRract):

IGntRa: = comp(MACHIR, MACHZ2R)
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Fig. 4.12 illustrates the IGNTRact Where iy , up are the recovery events.

-

Figure 4.12: Example 4.1. Equivalent ATG for machine 1 and 2 in recovery mode

IGNTRact
M1

Finally, We have

IGDnrract = comp( IGnTRact s IDRact)

IGDNTR,T = Timed-Graph( IGDxtRract)

This example was given to illustrate modelling in our framework. A complete design
example based on a workcell in a manufacturing line will be discussed in the next

chapter.
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4.2.5 Supervisor Design

In this section, we extend the untimed design procedure to the timed DES to construct

supervisors for the three modes of the system. As before, we denote the normal, transient,

and recovery supervisors by Sx, St , Sy, respectively.

Normal Supervisor: Sy

Without loss of generality, we assume that in the normal mode, all of the events are
observable and we use the supcon procedure to compute Sy. If there are any

unobservable events in the normal mode, then the theory of supervisory control of timed

DES under partial observation can be applied.

Transient and Recovery supervisors: St, Sg

As the supervisors in the transient and recovery modes may not be able to observe the
occurrences of fault events, the problem of finding a suitable controller for fault recovery
are cases of supervisory control under partial observation. In order to synthesize a
supervisor under partial observation using normal languages, we extend the LW
procedure (chapter 2) to timed DES. The procedure steps are identical to the untimed
case except for the difference in the concept of controllability in timed and untimed

cases.
Let G=(Q,2,d,qo, Qn) be a TDES and P: X'— X, be the natural projection

defined over 2. Now consider G , to be defined over the alphabet 2, as an “observer’s

local model of G”.
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Lu(Go) = P Ly(G) ; L(G,)=PL(G)
The controllable and uncontrollable event subsets in G, are:
Zo={c€X| Po=cl=XNJ%,
Zo=2N 2%,

ForE,< 3,,let C,(E,) = { K, S E,| K,is controllable wrt G ,}.

Let the specification language be E S %’, and consider the following definitions.

N, = P sup N(E; L(G)),

Ko=sup Co(Ny)

J =P'K,

K =LyGyNJ

In addition, as mentioned before, we assume that the tick event (t) is observable. The
following theorem is an extension of theorem 6.5.2 in [14]. Note that the timed version of
SCOP is the same as its untimed version (with, of course, the difference in the concept of

controllability in timed and untimed cases).

Theorem 4.1: Assume G is non-blocking, i.e.zm(G) = L(G). If (Ln(G) , ) are

nonconflicting and K # @, then SCOP is solvable with L, (V/G) =K.

Proof: First we show that K is normal and belongs to S(E). The proof of this statement is
similar to the proof given in [14] and we give the details here for completeness.

Let N =sup N (E ; Ln(G)). Then we see
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K S Lo(G) NP,

= Ln(G) N P(PN)
= N (normality properties)
cE

By definition

K =Lu(G) NP K,,
This means that K is (L,,(G) , P)-normal, i.e.
K EN(E; Ly(G)).
Since L,(G) and J are nonconflicting,
K = Lm(G)NJ
=Lm(G)NJ

=G NP K,

i.e. K is (L(G), P)-normal. In other words K € N (E;L(G)).

In the second step, we show that K is controllable.

We have to show that fors € K

i 2 () N2, € Zk(s)

it. Zx (8) N Zgr = P and tick € Zy ) (s) = tick € Zk (s)
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To show (i), we verify that no uncontrollable events are disabled. Or for ¢ € 2, and

50 € L(G) then so € K. Again the proof of (i) is similar to the proof of controllability

in [14]. We provide details for completeness.

If Po = o, then
(Ps)o =P(so) € P(L(G)) =L(G,) .
Ps € EO and from G, -controllability of Eo, we have P(sc) € f{—o ie.
ss LG NP (K,) =K .
If Po =g, then
P(sc)=Ps € Eo
which means
sseL(GNP(K,)=K

as required. Therefore, (i) is satisfied.

For (ii) we verify that the tick event cannot be disabled in the absence of forcible events.
For simplicity, in the following, let T denote tick. Suppose s €K and st € L(G). We

have Prt=r1and
se K

STEL(G) 2 st K

2K (S) n z"for =0
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By contradiction, we show that if st & K, then Zg () N Zgor # D .

Assume st € K then
st ¢ P! E,,

P(s)t & EO
Since
(Ps)t = P(st) € P(L(G)) = L(Gy,)

From G, -controllability of Eo ,thereis o € Z¢r N 2, such that

P(s)a:P(sa)ef(,

Also,
(Ps) o = P(sa) € K, < L(G,) = P(L(G))
Therefore

sa € PPL(G)).

Since s € L(G) and a € 2,
sa € L(G)

In conclusion,
sae L(GNPI(K,) =K

which implies Xk (s) N Zgor # D.

By (i) and (ii) K is controllable with respect to L(G).

The rest of the proof is similar to the untimed case.
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Based on the above theorem, we extend the LW method as follows:

Given G, E, and the list NULL of P-unobservable events
GC = convert( G, tick, &)

EC = convert( E, tick, &)

NC = supnorm (EC, GC, NULL)
NCO = convert( NC, &, tick)

NO = project (NCO, NULL)

GO = project (G, NULL)

KO = supcon ( GO ,NO)

KODAT = condat (GO , KO)
PINVKO = selfloop (KO , NULL)
10. nonconflict ( G , PINVKO) = true ?
11. K = meet ( G , PINVKO)

12. K nonempty ?

A AR L S o o

In the first and second steps, the procedure convert is used to exchange the tick event
with an arbitrary uncontrollable event & & Z. This is done so that supnorm procedure can

be used in the presence of the tick event. We exchange & with the tick event at step four.

The construction of the proposed supervisor is performed in steps nine and ten. K will

denote the plant under supervision if the answer to question twelve is true.

Remark 4.1: To investigate the effects of the normal supervisor (Sy) on the transient
plant (GDnr), we follow a procedure similar to that of the untimed case. Specifically, we

verify the admissibility of Sy using the condat procedure.

112



STDAT = condat(GDnt R SnT)

If STDAT contains at least one state in which Syt attempts to disable any uncontrollable

event, then Sy should be disabled or modified (the complete procedure of modification is
described in chapter 3). Furthermore, during the transient mode, if the tick is preempted
by an unforcible event, then at that point, Sy must be disabled and be removed from the

control loop.

42.6 Supervisor Verification

In order to verify the supervisor, we follow a procedure similar to that of the untimed
case, except that care must be taken to ensure that, the tick event is not preempted except
by forcible events. In other words, the marked behaviors of the plant under supervision of

supervisors should be jointly coercive (chapter 2):

Lm(S 1 /GDn1R) » Lm(Sr/GDnr1r) must be jointly coercive with respect to GDnrrg.

Here, the procedure of construction S ~t in TDES is similar to the un-timed DES.

The above condition can be verified using condat:

condat( meet( S nt, Sr) » GDn1R)

To have a jointly coercive conjunction supervisor, the results of the above condat
procedure must be acceptable. In other words, the tick event should not be prevented

from occurring unless it is preempted by a forcible event.
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It should be mentioned that since in the recovery mode only Sg controls the system, it is
sufficient to check the joint coerciveness property for the normal-transient system
(GDnr). In other words, we may verify the following:

Ln(Snt /GDNr) 5 Lis(Sr/GDnr) must be jointly coercive with respect to GDny.

We use procedure condat to verify the above condition.

condat( meet(Syt , Sr) , GDnt)
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Chapter 5

An Illustrative Example: Manufacturing Cell

5.1 Overview

This chapter demonstrates the results from previous chapters (and in particular, partial
observation and modular switching control) using a manufacturing system as an example.
It provides an example of handling two simultaneous failures by reducing it to a single
failure case (p=1). That is suitable for the cases where recovery procedures for faults are

related.
We use an example from [13] and discuss modeling of the plant using TDES, building a

DES model for the diagnosis system, and then computing the supervisors. Finally, we

examine the supervisors in order to verify whether they are proper supervisors.

115



5.2 Manufacturing Cell

The Manufacturing Cell which, for simplicity we call MC, is shown in Fig. 5.1. This cell
contains two numerically controlled machines (MACH1 and MACH2) and two
conveyors (CONV1 and CONV2) as input and output ports of MC. CONV1 is used as an
incoming infinite source of workpieces and CONV2 functions as an outgoing infinite
sink. The machines take two parts from CONVI1 and after processing, send them to

CONV2.

There are two types of workpieces that each machine may process, pl and p2. Transfer
of parts between machines is considered as inside machine operations. Moreover, if a

machine breaks down, then it may be repaired.

MACH1 MACH2
P
4----------- - Pl;: ———
R
\\:<:,’
’,,' ~.. P2: -~ --.
—> —>
CONV1 CONV2

Figure 5.1: Manufacturing Cell

The ATG models of the machines (MACH1, MACH2) and the conveyors (CONV) are

displayed in Fig. 5.2. Both of the conveyors are set to ON (or OFF) simultaneously.
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CONV

v
Figure 5.2: ATG models of machines and conveyors

The description of the events is as follows.
a; MACH: starts work on a Pj-part
B; MACHI finishes working on a Pj-part
A MACH: breaks down
wi  MACHi is repaired
o CONVI1 and CONV2 are turned on

v CONV1 and CONV?2 are turned off

The following timed events are considered for MC.

MACHI: (o4;,1, ) (B11,3,3) (a2, 1, ) (B12,2,2)
(A1,0,3) (11,1, )

MACH2: (a1, 1, ) (Ba1,1,1) (a2, 1, ) (B22,4,4)
(A2,0,4) (12,1, 0)

CONV: (0,0, ) (v, 1,00)
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The upper time bound of event %; could be any large number including o, but because
breakdown may occur only when the machine is working, the upper time bound assigned
to A; need not exceed the upper time bound B for completion of the corresponding work
cycle. Thus, for simplicity, we used the above values for the upper time bounds of the
events A;.
The set of uncontrollable events (D unc), forcible events (3 fr), and prohibitible events
(2 pro) are as follows:
Sune = {Xi, By pil ,ij=1,2}
Dofor = { 011, 12, G21, O22, 1, M2, 0,0 }
2opro = X for
Here, p; and p are detection events which will be defined latter.
In each production cycle, the behavior of MC under control must satisfy the following
specifications:
1. Logic-based specifications
i. A given part can be processed by just one machine at a time.
ii. A pl-part must be processed first by MACHI and then by MACH?2.
iii. A p2-part must be processed first by MACH2 and then by MACHI.
iv. One pl-part and one p2-part must be processed in each production cycle.
v. If both machines are down, MACH?2 is always repaired before MACHI1.

vi. Conveyors should be started prior to the machines.

2. Temporal specification
i. In the absence of breakdown/repair events, a production cycle must be completed

within 10 time units.
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3. Quantitative optimality specification

1. Subject to 2, production cycle time is to be minimized.

5.3 System Model

In this section, the activity transition graphs (ATG) as well as the timed transition graphs

of the system in different modes (normal, transient, recovery) are discussed.

Plant

In this example, we have:

2p=1 ou1, a1z, 021, 022 B, Piz, P21, P2z, 0, v}

2= {A1, Az}
>a={p1,p2}
2= {u, w2}

Normal Mode

In the normal mode, the ATG model of the machines and conveyor are shown in Fig 5.3.

P :
X > e

P CONV
NMACH; i=1,2

Figure 5.3: Machines and conveyors in normal mode
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Applying TTCT composition procedure to these ATG’s to get the equivalent ATG

model, we have:

Gnact,1 = comp( NMACH1, NMACH2, CONV)

Normal-Transient Modes

In order to built the normal-transient ATG model of the system we compute

Gnract = comp( TMACH]1, TMACH2, CONV)

where TMACHI1, TMACH2, and CONV (Fig. 5.4) are the ATG models of machinel,

machine2, and conveyor, respectively, fully marked and without the repair events.

/-\ o
HO—»
v
BlZ
CONYV
/

A

TMACH;, i=1,2

Figure 5.4: Machines and conveyors in transient mode

Normal-Transient-Recovery Modes

For this case, the ATG model can be constructed by applying the composition procedure
to RMACHI1, RMACH2, and CONV, which denote the ATG models of machinel,

machine2, and conveyor, respectively. These models are displayed in Fig. 5.5.
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Gnrrace = comp( RMACH1, RMACH2, CONV)

01 Uiz
/\ TN
(0]
N ~—

" : o

Mi v

2N

RMACH;, i=1,2

CONV

Figure 5.5: Machines and conveyors in recovery mode

DDM for the Diagnoser

The modules of the DDM’s for the diagnoser (Dr,) used for constructing the normal-
transient model of the system are given in Fig. 5.6. p; and p, are the detection events

corresponding to A; and A,, respectively. We assume the following lower and upper time

bounds for these events:

(p171>3) ’ (p2’173)

by
Sa1a-{A1) It Ziae-(A2) 22

A P >? ¥ P2 ’?

D Tact,A1 D Tact,A2

Figure 5.6: Modular DDM for the transient mode
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In the above figure:
T =2 U 2 U{pa} ={ oup, oz, 021, 022, Bt 5 Piz, P21 Pz, M Ao, p2, 0,0 }

Yoo =2 U S U{p1} ={ aur, oz, aa1, 022 Bir, Pz, Bar s B2z, A, A2, pr,0,0 )

The required diagnoser model will be

Dract= comp( DTact,M ’ DTact,kZ)

The DDM for the diagnoser for the normal-transient-recovery mode (Dgac) is designed as

shown in Fig. 5.7 with

2y =2, UL U{p2}U 2 ={ou1, oz, d21, 022 Bu1, Bz, Bai s P2 My Aoy P2y i, M2, 0, 0}

Zm,r=2}; u A‘}U{PI}U 2r={ou1, o2, 021, a2 P11, Piz, [321 B2z, Ay A2, prs i, M2,y 0,0}

Finally,
Dract= comp( DRact,M ’ DRact,m)

b3 2x

I -{M} ALr Tr-{A2}) :
s 22x
(=gt L=
'
DRact,M DRact,lZ

Figure 5.7: Modular DDM for the recovery mode

Remark 5.1: In this example, in order to ensure that the system under control completes

only one cycle, we consider the following ATG’s to be combined with the plant.
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(V351
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\{ﬂ ' Limiter2

Figure 5.8: Limiterl and Limiter2

In addition, for simplicity, we assume each fault can occur only once in a cycle.

Therefore, we combine the following automaton with the entire plant under supervision

(GDN1R).

/QZ -{M)
2 -{A1, A2} |
QT
< ()

M\\?%{l v Limiter3

b '{}\’19 }\'2}

Z-{A2)
Figure 5.9: Limiter3
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System to Be Controlled

In normal mode,

Gnact = comp(Gnyer 1 , Limiter], Limiter2)
GDn: = Timed-Graph(GDnyet) = Timed-Graph(Gact )
(States: 1202, Transitions: 2531)

The TDES models of the combined plant and the diagnoser in normal-transient are as

follows:
GDnrace = comp( GNract s Dract, Limiter1, Limiter2)
GDyr: = Timed-Graph(GDyra:) 3 (States: 3206, Transitions: 10010)
It should be mentioned that since non-blocking is not among the transient specifications,
in the construction of GDNTae, all states of limiter]l and limiter2 are marked.
Finally, the normal-transient-recovery model of the system will be
GDnrtRact = comp(Gyrract s DRacts Limiterl, Limiter2 , Limiter3)

GDnrr,r = Timed-Graph(GDnrract) ; (States: 20918, Transitions: 67872)

5.4 Specification Models

In this section, we formalize the specifications of each of the system modes.

Normal Specifications
1: A given part can be processed by just one machine at a time.
2: A pl-part must be processed first by MACHI and then by MACH2.
3: A p2-part must be processed first by MACH2 and then by MACHI.

4: One pl-part and one p2-part must be processed in each production cycle.
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5: Conveyors should be started prior to the machines.
6: In the absence of breakdown/repair events, a production cycle must be

completed within 7 time units ( production cycle time is to be minimized).

11 21
a“&@x/ )
SelfLoop {T , 012, P12, 022, P22, 0,0}
SPpeCN11 Bu B2

012 05%)
o2 22

specn12 B12 § B2 SelfLoop {7 , t11, Br1, 021, B21, 0,0}

Py I Bu SelfLoop {7 , @12, P12, 022, P22, 0, v}
(053]
Specn2 621
22
e
022 &

|

[312 | Bzz SelfLoop {1, 011, [311 , 021, [321 ,0,0}

Figure 5.10: Normal specifications
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SelfLoop {T, B 11, B2, 11,012,021 ,022,0,0}

K Spe€Cne
? < (Timer 7)

*= {01, 01z, 021, 022 P11, P12, P21, P22, 0,0}

SPeCna
0
.
4—{ ** = (T, g, W2, 021, 022, Bur s Biz, Par, Baz }
JT / sx
Specns
* * * T
> O O OO
<—&:‘ SLIENY RPN Y w‘»
A S
K |
E |

Figure 5.11: Normal specifications (Cont’d)
Specifications 1, 2, and 3 are formalized as SPeCni1, SPECN12, SPECN2, and Specys; the

last three specifications are formalized as TDES SpecCns, SpecCns, and SPecCne,

respectively.

As a result, the normal specification is the conjunction of the above specifications.

EN;: = meet( Specn11, SPECN12, SPECN2, SPECN3, SPECN4s SPECNs, SPECNG)

(States: 585, Transitions: 2001)
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Transient Specifications
In this mode, the specifications are the following:
1: A given part can be processed by just one machine at a time.

2: A pl-part must be processed first by MACHI and then by MACH2.

w

. A p2-part must be processed first by MACH2 and then by MACHI.

Y

: One pl-part and one p2-part must be processed in each production cycle.

wn

: Conveyors should be started prior to the machines.

The TDES of the first four specifications, are obtained through the following selfloops:

specri; = selfloop( Specnir, { A1, A2, pl, p2})
specriz = selfloop( Specniz , { A1, A2, pl, p2})
specr; = selfloop(specnz , { A1, A2, pl, p2})
specy; = selfloop(specns, { A1, A2, pl, p2})
specr4 = selfloop(Specng , { A1, Az, pl, p2})

SpecCrs ¢ 'g:

** = (T, 041, 012, 021, 022, Bur, Biz, Bar s Bz, A1, Az, pl, p2 )

Figure 5.12: The sixth transient specification

The transient specification is computed as
E1,: = meet( spect11, Specr1z, Specrz, Specrs, Specrs, Specrs)
(States: 65, Transitions: 498).

Note that the transient specifications are more relaxed (or less restrictive) than the

specifications of normal operation.
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Recovery Specifications

The following are the recovery specifications:

1:

2:

3:

A given part can be processed by just one machine at a time.

A pl-part must be processed first by MACHI1 and then by MACH?2.

A p2-part must be processed first by MACH2 and then by MACHI.

One pl-part and one p2-part must be processed in each production cycle.
Conveyors should be started prior to the machines.

If both machines are down, MACH?2 is always repaired before MACHI.

After detection of faults in the system, the first command should be the shutdown‘

of conveyors, next machine repairs, and then finishing the production cycle.

: Production cycle must be completed in at most 30 time units.

The recovery specifications are more restrictive than transient specifications, since they

involve some recovery control actions to accommodate faults. However, in this example,

some of the recovery specifications are more relaxed compared with normal

specifications. That is because the plant is faulty and it cannot work as efficiently as in

the normal mode.

The TDES models of the first three specifications are formalized as follows:

SpecCri; = selfloop(Specri , { pl , p2})
SPecCg;: = selfloop(specriz, { ul , u2})
specg: = selfloop(specr., { ul , u2})

Specgs = selfloop(specrs , { pl, u2})

The fourth specification is constructed as:

Specgq = selfloop(specrs , { pl, p2} )
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The TDES of the last four specifications are shown in figures 5.13 and 5.14.

SPECRs

** = {T, A, A2, 021, 022 ,B11, Bz, Bar s B2 s A1, A2, 0}

p2
ul SelfLoop {T , 011, Q2. 021, 022, Bur 5 P12, P21 5 P22 s A1y Az, pl,0, v}
2
g SP€Crs
k%
@
pl 2
v o,
O
E
;/o Fok e 'S
sk

P2 / P1 ®k

v ul

SpecCry

*={T, 011, Oz, 021, 022, B11, Biz, P21, P2z s M5 A2, 0}
** = (T, Bi1, P12, Ba1» P2, M, A2 }

Figure 5.13: Recovery specifications
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Figure 5.14: Recovery specifications (cont’d)

Finally, we get
ER = meet(specri1, SPECR12, SPECR2, SPECR3, SPECR4,

SPECRrs, SPECRgs SPECR7, SPECR3)

(States: 18432, Transitions: 95808)

5.5 Supervisor Design

In order to compute the supervisors in different modes, we start with the normal

Supervisor.

Normal Supervisor

The normal supervisor with respect to all the normal specifications is enforced by

SN,z = supcon(GDn ., En.) ; (States: 25, Transitions: 29)
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Transient Supervisor (St ;)

The transient supervisor is computed as follows:

1. TGC = convert( GDnr,, tick, &)
2. TEC = convert( E . tick, &)

3. TNC =supnorm( TEC, TGC,NULL) , NULL={\ X}
4. TNCO = convert( TNC, &, tick)
5. TNO = project (TNCO , NULL)
6. TGO = project ( GDntr, NULL)
7. TKO = supcon ( TGO , TNO)

8. TKODAT = condat( TGO , TKO)
9

St,; = selfloop( TKO , NULL)
10. TK = meet (GDnr,7 , S1,0)
11. TK nonempty ?

The computed supervisor (St,;) has 163 states and 722 transitions.

Remark 5.2: The normal-transient supervisor (SNT,T) is the synchronous product of Sy

and Stz

SNT,‘r = Sync(SN,r ) ST,T)

Following Remark 4.1, we compute

SNTDAT, = condat(GDyr,:y SnT,1)
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It can be seen that SNT,T tries to preempt the tick with non-forcible events in some states.
This is done by Sn;. Modifying Sy will give us a new supervisor (Snm,;) Which is an
admissible supervisor for GDnr.. Thus, the modified normal-transient supervisor is

c.omputed as follows:
SntM« = syne(Snm,r» St,2) 5 (States: 196, Transitions: 892)

Here, we replace Snt,r by Sntm,r and use the same notation Syr,; (in place of Snrm,r)

for simplicity.

Recovery Supervisor (Sr,;)
In this example, since the number of states and transitions are very large, we may run out
of computer memory to perform the design. That is why we implement the following in

two-step procedure.

First, we compute the supervisor Sg;; based on GDnrr; (the plant) and the conjunction of
the first seven specifications (Egr;) (the specifications). Second, we compute the
supervisor Sr,r based on Sg as the plant and the last remaining specification (Specgs) as

the specification.

It should be mentioned that in the case of untimed controllable sub languages, using this
two steps procedure for computing supervisors gives an optimal supervisor [10].
However, in the case of this example (using controllable and normal sub languages), at

least, we know that the obtained supervisor is sub optimal and satisfies the specifications.
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The recovery supervisor is synthesized using the following procedure.

0. ER,1 =meet(specgi1,SPeCr12,SPECR2,SPECR3;SPECR4, SPECRs, SPECRe; SPECR7)

RGC1 = convert(GDnrr ¢ , tick, &)

REC1 = convert(Eg  , tick, &)

RNC1 = supnorm (REC1,RGC1,NULL) , NULL={A; A}
RNCO1 = convert(RNC1, &, tick)

RNOL1 = project (RNCO1 , NULL)

RGO1 = project(GDnrgr,r , NULL)

RKO1 = supcon (RGO1 , RNO1)

Sgr,1 = selfloop(RKO1, NULL)

Sl A Al o B O

9. RGC2 = convert(Sg 1, tick, &)

10. REC2 = convert(Specgs , tick, &)

11. RNC2 = supnorm (REC2 , RGC2 ,NULL) , NULL={}; A;}
12. RNCO2 = convert(RNC2, &, tick)

13. RNO2 = project (RNCO2 , NULL)

14. RGO2 = project(Sg,; , NULL)

15. RKO2 = supcon (RGO2 , RNO2)

16. Sg; = selfloop(RKO2 , NULL)

17. GDNTRSRDAT = condat(GDnrr,z » Sr1)
18. nonconflict(GDnrtr, Sr,2) = true ?

19. RK = meet(GDnrr,r, Sr 1)

20. RK nonempty ?

The produced supervisor, which has 10401 states and 38844 transitions, is admissible and

non-blocking with respect to GDnrr .
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5.6 Decoupling Condition

In this example, the decoupling condition is written as follows.

L( Snt:/ GDnr2) E L( Sk / GDnr,t)

or

trim( meet( Snt,:/GDnr,: , complement( Sg;/GDnt;z 5 --))) = EMPTY ?

where Snt/GDnt: and Sgr,/GDnr,: are the meet (product) of transient and recovery

supervisors with the transient plant, respectively.

The reader can verify that the answer is “yes”. In other words, the decoupling condition is

satisfied for the ménufacturing cell.

5.7 Supervisor Verification

The objective of this section is to verify whether the normal-transient and recovery

SUpervisors are proper.

1. Admissibility property
For the normal-transient modes, the condat procedure is used to check the admissibility
property:

ISNTTGTDAT = condat(GDnr,r, Snt,2)

ISNTTGTDAT illustrates that the supervisor is admissible with respect to GDnr,e.
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2. Jointly coercive

In order to check this property, we find the result of the following condat procedure.

SNTSRGDNTR = condat( meet( S xTyz » Sryo) » GDNR)

SNTSRGDNTR does not include any state in which the conjunction supervisor must
preempt the tick event with a non-forcible event. As a result, both supervisors are jointly

coercive.

Note that we can also use the following procedure to verify if SNT,T and Sg,, are jointly

coercive:

SNTSRGDNT = condat( meet(Snt+, Sry) » GDn1)

3. Non-blocking

Using nonconflict procedure to check this property, we find that the answer to the
following question is “yes”. In other words, the conjunction of Sny,; and Sg; is a non-
blocking supervisor with respect to GDnyye-

nonconflict(GDx,: , meet(Snr,: , Sr.7)) = true ?

Now, since Sg; is a non-blocking supervisor with respect to GDnrryr, also meet(SNT,T R

Sr) is a non-blocking supervisor for GDy;, we can conclude that fault recovery

problem for the manufacturing cell is non-blocking (according to the Theorem 3.1,
chapter 3).
In conclusion, the above verifications illustrate that the modular switching supervisor is a

proper supervisor.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, a fault recovery scheme is developed based on discrete-event systems. We
first present our recovery framework for untimed DES. We assume that the plant can be
modeled as a finite state automaton. Also, we assume a dignosis system is available to
detect and isolate unobservable faults with a finite delay. This diagnoser, generates a
“detection” event in order to notify the supervisors about a fault occurring in the system.
We use a finite state automaton to model detection delay of the diagnoser. This is

essentially an abstraction of the diagnosis system.
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The combination of the plant and diagnoser has three modes: normal, transient, and
recovery. In general, there are different sets of specifications for each mode. We propose
a modular switching approach for the synthesis of supervisor. We study the issues of non-
blocking and supervisor admissibility. We also examine the effects of the controllers

modules of each mode on other controllers and also on the plant in each mode.

We extend our scheme to timed discrete-event systems. Timing information can be used
to improve the speed of diagnosis and, consequently, to improve the fault recovery. We
introduce a timed model for the diagnoser and also present a framework for designing

recovery procedures.

We illustrate our approach using various examples from process control and

manufacturing systems. In particular, apply our technique to a manufacturing cell.

In this thesis, the fault diagnosis system can be any agent that informs the supervisors of
the occurrence of faults in the system. No assumption is made about the methodology
used to design the diagnoser. Thus, the technique studied in this thesis is not limited to
any particular type of fault. It can potentially handle fault recovery problems in all types
of applications in the automated systems such as autonomous systems and industrial
control systems.

In this thesis, the diagnosis and control problems are separated and decoupled that allows
simpler solutions for both problems. Also, use of a modular approach contributes to the

simplicity and transparency of the control solution.
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This approach is useful for systems that have built-in redundancy or systems that after
recovery are allowed to continue with a degraded performance or shutdown completely.
Our approach is also useful for the cases in which the faulty component can be repaired

and the system as a result, can return to its normal mode.

We have not addressed transient faults. More study should be performed to deal with the
recovery problems involving this type of fault. Furthermore, in this research, we have not
studied the faults induced by operational changes (For example, changing the plant

control philosophy, or changing the goals of production line).

6.2 Future Work

In the following, we describe some topics for the continuation of our research:

* In our thesis, we assumed that faults are not simultaneous. However, in practice,
several faults can occur at the same instance. An external controller is needed to
supervise the plant and its control system (controllers) and to give the necessary
information to the sub controllers and also to set up a priority-based scheduling for

recovering from faults.

* We assume that faults are the results of component failure and we model them as

unobservable events in the system. What if the sequence of events has been changed not

as the result of faults but as a consequence of operational changes? The operational
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changes may include a change in objective criteria or a change in the production plan.
This problem also can be considered as a problem of handling dynamic specifications or,
at a higher level, can be called failure accommodation. One practical way of applying our
approach to this problem is to define a new controllable event in the system, and enabling
that event to perform a switch to the desirable supervisor which in turn, will apply a

control logic to confine the plant behavior to the new set of specifications.

» Extending our recovery framework to decentralized discrete-event systems is another
subject for future work. Here, the question is how to extend the approach to cases where
we have a complex system with several subsystems that should be controlled separately

(or with some interaction among subsystems)

* A software could be developed for the synthesis of recovery procedure. Two important
issues are as follows. First, for large-scale systems, the computational complexity
involved in using the RW theory will be a significant challenge that should be dealt with.

Second, efficient user-friendly software procedures should be developed.

* In this study, our approach to fault recovery was linguistic and event-based and the aim
of the supervisory control was to restrict the uncontrolled plant behavior in order to
generate a desirable sublanguage. Another way to study the same concept is to use a
state-based approach to the problem. Thus, the goal of the controllers would be to restrict
the state of the plant to a set of desirable states. The main idea is that the controllers

should prevent the plant from getting into those states that could lead to the violation of
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some given constraints. An advantage of this method is that in this setup, it might be
casier to deal with the problem of initiating supervisors after recovery since the control

action would be a function of plant state.

* Another potential research topic is to extend our methodology to hierarchical discrete-
event systems. Using a hierarchical DES approach, could improve the speed of active
fault diagnosis. Applying hierarchical schemes to the fault recovery problem, in our
framework, may improve the fault recovery procedure by reducing the complexity of the

control problems.

* In this thesis, we did not study transient faults. Transient faults start at a particular time,
remain in the system for some period and then disappear. This kind of fault can be caused
by radiation particles e.g. by high-energy neutrons in aircrafts at high altitudes, or in
spacecrafts by heavy-ions. In dealing with transient faults, the control system has to be
more conservative when switching from normal to recovery controller. This problem

requires further work.
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