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ABSTRACT
Adaptive Resource Assignment along with Overload Control
for the GSM/EGPRS Networks

Zhengliang Zhang

Enhanced General Packet Radio Services (EGPRS) is one of the proposals for
third-generation (3G) wireless services. EGPRS is also the evolutionary path for GSM
and IS-136 standards towards their next-generation wireless systems. The 3G services are
categorized into the background, conversational, interactive and streaming services.
Therefore, GSM towards 3G is staged into two phases. The phase one of EGPRS to
provide Internet access services is known as General Packet Radio Service (GPRS). The
phase two of EGPRS to provide 3G services integrates with the Enhanced Data rates for
the GSM Evolution (EDGE).

To provide the various 3G services and to achieve more efficient utilization of the
frequency spectrum, our work is to focus on the evolution of the system capacity and
performance for the GSM/EGPRS networks. Therefore, an Adaptive Resource
Assignment along with Overload Control (ARAOC) algorithm has been developed while
integrating adaptive channel allocation, call admission control, frequency hopping and
new congestion control schemes. Our simulation results show that this algorithm can
greatly improve the system capacity and performance as well as the QoS for users. The
influence of the variable parameters of user data rates, channel buffer size, and channel

assignment parameter to the system capacity and performance, will be investigated.
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Chapter 1

Introduction

1.1 Overview

In recent years, the public desire for mobile communication, as evidenced by the
popularity of cellular phones, pagers, and laptop computers, has grown rapidly in demand
for Internet access. With over one billion mobile phone users estimated by the end of
2002, and packet-based multimedia services, including IP telephony, accounting for over
50 percent of all wireless traffic, it is only natural to increase more capacity in the mobile
network, and higher bandwidth in the radio link, radio access network, and core network
[1]. Presently, there are fundamentally two types of second-generation (2G) digital
networks: Time-Division Multiple Access (TDMA) and Code-Division Multiple Access
(CDMA). TDMA is applied in GSM, IS-136, 1S-54 and Personal Digital Cellular (PDC)
systems, whereas 1S-95 uses CDMA. Today, GSM is the mobile radio standard with the
highest worldwide penetration.

In the foreseeable future, more advanced services for 3G services will bring together,
current voice and low-data-rate services to the futuristic four basic categories
encompassing the background, conversational, interactive and streaming services, which
can also be divided into two main services: Real Time services (e.g., voice, video
conferencing, real-time image transfer, etc.), and Non Real Time services (e.g., database

applications, web browsing, email, streaming video and sound, etc.) [2].

To satisfy the marketing and service needs, the ongoing drafting on the definition of

third-generation (3G) mobile radio system (IMT-2000) in the America, Asia and Europe



[31 will result in the requiring technical standards. Wideband CDMA (WCDMA), also
known as International Mobile Telecommunications in 2000 (IMT-2000) or Universal
Mobile telecommunications system (UMTS), has emerged as one of the leading 3 G
standards. These proposed systems aim to support a wide range of bearer services from
voice and low-rate to high-rate data services with up to at least 384 kb/s in wide area

coverage, and 2 Mb/s in local areas coverage [4].

GSM system greatly successes towards 3G services accomplished by EGPRS
(Enhanced Global Packet Radio Service). The EGPRS concept is an evolution of GSM. It
uses a TDMA-based packet-switched radio technology with 200kHz channels, a time
frame structure similar to GSM, and an evolved, packet-switched GPRS core network.
The EGPRS specifications are to be developed in two phases. The first phase, which is
already specified, being GPRS [5-7], represents a packet switched-core network and an
air interface based on Gaussian Minimum Shift Keying (GMSK) modulation. GPRS is
designed for best-effort packet data services. The second phase of EGPRS specifications
introduces a new air interface, called Enhanced Data Rate for GSM evolution (EDGE), to
support higher-level rates. The EDGE concept of using a higher-level modulation, 8-shift
keying (8-PSK), supplementing to the traditional GMSK [8], with enhanced data rates for
existing cellular systems in existing spectrum being standardized for both GSM and
TDMA/136 (D-AMPS). Therefore, EDGE is a common evolution towards providing
third generation services in two major cellular standards.

The current mobile communication networks apply the following three major
multiple access techniques: Frequency Division Multiple Access (FDMA), Time Division

Multiple Access (TDMA) and Code Division Multiple Access (CDMA).



FDMA systems, for example, Advance Mobile Phone Service (AMPS), allocating
the entire spectrum to the service area is divided into channels of appropriate bandwidth,
carrying information for users.

TDMA systems, such as IS-136, GSM, DCS1800, IS-54, and PDC systems, divide
the radio spectrum into multiple frequency channels, each with several time slots, and in
each slot allowing only one user to either transmit or receive.

CDMA system, like IS-95, is based on spread spectrum transmission. All users
within a cell jointly share the same frequency band, and are separated by different
spreading codes assigned.

In the aforementioned mobile cellular networks, the cells are grouped into clusters.
The number of cells in a cluster must be determined so that the cluster can be applied
continuously within the coverage area of an operator. The typical clusters contain 3, 4, 7
or 12 cells. The smaller the number of cells per cluster is, the more channels per cell will
be. The capacity of each cell will therefore be increased. However, a balance must be
found in order to avoid the co-channel interference that could occur between
neighbouring clusters. This interference is produced by the small size of the clusters (the
size of the cluster is defined by the number of cells per cluster). In reducing interference,

a selective cell with coverage of 120 degrees, using a uni-direction antenna, is used.

Therefore, various channel allocation algorithms are utilized in order to reduce cell
cluster size and/or co-channel interference. Among these algorithms we propose static
resource assignment (SRA) and Dynamic Resource Assignment, and focus on Adaptive

Resource Assignment which combines the above two algorithms.



1.2 Objective of the Thesis

Future mobile communication networks aim to provide not only high quality voice
service but also integrated with various data services, such as voice conversation, file
transfer, web browsing and multimedia services. To support these integrated services, the
efficient use of the available resources (especially the spectrum resource) is a major issue.
Thus, we will firstly propose dynamic co-channel interfering algorithms to estimate
Signal-to-Interference Ratio (SIR) for each channel based on cell cluster size of 1 and 1/3,
and to actualize SIR based on measurement at the mobile terminal. Secondly, a dynamic
channel allocation and frequency hopping schemes, which is to be discussed in detail in
chapter 4, will be developed to reduce co-channels interferences.

We will also propose an adaptive resource assignment along with overload control
(ARAOC) algorithm, integrating schemes of channel allocation, call admission control,
frequency hopping and a new congestion control. The consideration of algorithms is not
only improving the capacity, but also lessening the quality deterioration of the on-going
calls and the call dropping rate and packet loss rate, caused by admitting new calls.
Finally, we will simulate the two algorithms of Static Resource Assignment (SRA) and
ARAOC in GSM/EGPRS systems, and discuss their performances and QoS.

Most recent mobile systems (such as IS-136 and GSM) provide voice services with
tolerable call dropping probabilities around 2%, speech rate at 13 kb/s, data rate up to 9.6
kb/s. In comparing these integrated data services with GSM, we assume the
characteristics and environment as similar as those in GSM system. For instance, channel

data rate of 13.0kb/s, modulation of 0.3 GMSK and call dropping probability of 2%, etc



[9]. Then we investigate the system capacity and performances both introducing various
services in SRA and ARAOC algorithms. Hence, we can infer that the system, which
uses different modulations (GMSK and 8-PSK) and channel data rates, can support
maximum user rate and system capacity.

The objectives of this thesis work are:
To investigate the relationship between the system capacity and the quality of service
in order to increase the utilization of radio resources;
To develop algorithms for system to manage the radio resource efficiently, and to
control call admission, overload and congestion, respectively;
To investigate the influence of various parameters with numerical insight results, such
as variable user data rates, several channel buffer sizes, and different channel
assignment parameters.

The simulations are programmed with Visual C++.

1.3 Outline of the Thesis

The thesis is organized as follows:

In chapter 1, we introduce current second-generation (2G) wireless system and the
requirements of 3G services, as well as the method of GSM evolution towards 3G
services. We then review the relationship between the cell cluster size and co-channel
interference. Having introduced a new adaptive resource assignment along with overload

control, we further describe the purpose, scope and organization of this thesis.



In chapter 2, a short review of GSM evaluation will be presented. We will
introduce the concept, system architecture, frame structure, logical channels and signal
processing of GSM.

Then, we will briefly describe the system architecture, radio resource management,
logical channel, service classes and coding schemes for GPRS in Chapter 3. In addition,
EDGE modulation, fast packet control channels and multiplexing capability of EGPRS
will also introduced in chapter 3.

In the first part of chapter 4, two algorithms of static resource assignment (SRA)
and Adaptive Resource Assignment along with Overload Control (ARAOC) are being
introduced for call admission and congestion control. In the second part of chapter 4, a
cellular network and model are being illustrated. Our work is focus on the performance
evaluation of users and the GSM/EGPRS systems employing ARAOC algorithm. A
comparable SRA algorithm is also being presented in this part. Finally, we show the
simulation results of the comparison of two algorithms, and discuss the performance of

systems and users.

Lastly, we summarize the conclusion of our thesis, and list the future work areas

as remarked in chapter 5.



Chapter 2
Overview of GSM Network

2.1 The evolution of GSM

In 1992, the Global System for Mobile communications (GSM) is introduced as
phase 1 standard to commercial service (i.e., telephone, short message). In the phase 2 of
the standard, GSM is published as a Pan-European digital cellular standard by ETSI. It
has completed original GSM design task, and established a framework for ongoing
technology enhancement. The GSM mainly supports speech service at the rate of 13.4
kbps, and variety of data services, rating up to 9600bps. Although existing GSM systems
do not support Internet access, high data rate, and video services, it is used as a
worldwide mobile communication standard over 200 GSM networks (including
DCS1800 and PCS '1900) in 110 countries. The number of subscribers worldwide is
expected to exceed one billion by the end of 2003.

In order to accomplish the requirements for 3 G services, which include background,
conversational, interactive and video streaming services, GSM evolution can satisfy 3G
service demands. The solution is the phase 2+ of GSM, called the General Packet Radio
Service (GPRS) and Enhanced GPRS (EGPRS). It is implemented in two steps.

The first step towards 3G is to choose Global Packet Radio Service (GPRS) by
introducing two IP components in their cellular networks, namely, the Serving GPRS
Supporting Node (SGSN) and the Gateway GPRS Supporting node (GGSN). The GPRS
can rate up to 171 kbps.

The next step is to increase data rate up to 384 kb/s by changing the modulation



~ scheme from Gaussian minimum Shift Keying (GMSK) to 8-PSK, while keeping the
GPRS core structures. This step is called the Enhanced GPRS (EGPRS) with enhanced
data rate for GSM evolution (EDGE) [22, 23]. With the introduction of the radio
spectrum, EDGE will support up to 2 Mb/s in low-mobility environments [10]. The
GSM/EDGE radio access network (GERAN) [20,21] will be able to offer the same

services as WCDMA by connecting to similar core network.

2.2 GSM System Architecture
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Figure 2.1 GSM system architecture and interfaces

The GSM System Architecture consists of three major interconnected subsystems
that interact between themselves and with the users through certain network interfaces.

The subsystems are the Base station Subsystem (BSS), network and Switching



Subsystem (NSS), and the operation Support Subsystem (OSS).

Figure 2.1 shows the block diagram of the GSM system architecture and interfaces.

The Mobile Stations (MS) communicate with the Base Station Subsystem (BSS) over the

radio air interface.

A. The Base Station Subsystem (BSS)

The BSS, also known as the radio subsystem, provides radio transmission paths
between the Mobile Stations (MS) and the Mobile Switching Centre (MSC). The BSS
also manages the radio interface between the mobile stations and all other subsystems of

GSM. It consists of BTSs (Base Transceiver Stations) and BSCs (Base Station

Controllers).

BTS (Base Transceiver Station)
The BTS corresponds to the transceivers and antennas used in each cell. Its
transmitting power defines the size of a cell. The BTS comprises the radio transmission

and reception devices, and also manages the signal processing related to the air interface.

Each BTS has between one and sixteen transceivers.
BSC (Base Station Controller)
The BSC controls a group of BTS and manages their radio resources. A BSC is

principally in charge of handovers, frequency hopping, exchange functions and control of

the radio frequency power levels of the BTSs.
B. The Network and Switching Subsystem (NSS)
The NSS, which includes several databases in order to store information about the

subscribers, is responsible for managing the communications between mobile users and



other users, and their mobility.

MSC (Mobile Switching Centre)

The MSC is basically an ISDN-switch, coordinating and setting up calls to and from
MSs. It performs authentication to verify the user’s identity and to ensure the
confidentiality of the calls.

HLR (Home Location Register)

The HLR database is used to store permanent data of subscribers beloriging to the
covering area of a MSC. It also stores service profiles, location area, and activity status.

The Authentication Centre (AuC)

The AuC database contains the subscriber authentication keys and the algorithm
required to calculate the authentication parameters to be transferred to the HLR.

The Equipment Identity Register (EIR)

The EIR database contains information about the capabilities and identity of the
mobile equipment. It prevents calls from unauthorized MSs.

VLR (Visitor Location Register)

The VLR database contains information from a subscriber’s HLR necessary in order
to provide the subscribed services to visiting users, to assure the subscribed services
without needing to ask the HLR when a communication is established. The temporary

information in VLR is cleared when the mobile station roams out of this service area.
GMSC (Gateway Mobile Switching Centre)

A GMSC is a gateway node interconnecting two networks, and the interface between
the mobile cellular network and PSTN networks. It is often implemented in same

machines as the MSC.
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C. Interfaces

=  Um: The radio air interface of GSM is also called Um. It is used for exchanges

between a MS and a BSS.

s Abis: The interface, which connects a BTS to a BSC, is called the Abis interface.
The Abis interface carries traffic and maintenance data, and is specified by GSM
to be standardized for all manufacturers. The Abis interface allows control of the

radio equipment and radio frequency allocation in the BTS.

= A: The A interface uses an SS7 protocol between the MSC and the BSS, as well
as network message between the individual subscribers and the MSC. The A

interface manages the allocation of suitable radio resources to the MSs and

mobility management.

= S8S7: SS7 protocol, called the Signalling Correction Control Part (SCCP), supports

communication between the MSC and other public network.

2.3 The GSM radio interface

The radio interface, one of the most important interfaces of the GSM system, is

the interface between the mobile stations and the BSS [11].

GSM uses a combination of TDMA scheme and FDMA scheme to provide base
stations with simultaneous access to multiple users. Two frequency bands of 25 MHz
apart have been reserved for GSM operation: 890-915 MHz for uplink, 935-960 MHz for
downlink. The total number of available channels within 25 MHz is 125 (assuming no

guard band) single carrier channels of 200 KHz width. In practical implementations, a
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guard band of 100 kHz is provided at the upper and lower end of the GSM spectrum, and
only 124 channels are implemented. There are a total of 992 traffic channels~within GSM
from each radio channel consists of 8 timeslots. GSM mainly provides telephone services
at the rate of 13.4 kbps, and supports up to 9.6kbps data services, and supplementary
ISDN services such as Short Messaging Services (SMS). A GSM mobile station uses the
same time slots in the uplink as in the downlink. A channel of GSM is permanently

allocated for a particular user during the entire call period. A detailed GSM air interface

specification is as shown in the Table2.1 [12]:

Table 2.1 GSM Air Interface Specifications

Parameter Specification
Reverse Channel Frequency 890-915 MHz
Forward Channel Frequency 935-960 MHz
Tx/Rx Frequency Spacing 45 MHz
Tx/Rx Time Slot Spacing 3 Time slots
Modulation Data Rate 270.833333kbps
Frame Period 4.615 ms
Users per frame (Full Rate) 8
Time slot Period 576.9us
Bit Period 3.692us
Modulation 0.3 GMSK
Channel Spacing 200 kHz
Interleaving (max. delay) 40 ms
Voice Coder Bit Rate 13.4 kbps

2.4 GSM Frame Structure

Each of 25 MHz widths is divided into 124 single carrier channels of 200 kHz. By
dividing each of the 200 kHz frequency channels, we have 8 TDMA channels
corresponding with 8 time slots (bursts). The 8 time slots in a carrier form a GSM frame.
Each time slot of GSM frame lasts for a duration of 156.25 bit times, which equals to

15/26 ms = 576.9 us; thus a frame takes 4.615 ms. A GSM mobile station use the same
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time slot in uplink as in the downlink. On top of the GSM physical channels, several
logical channels are defined to perform different functions.

As shown in the figure 2.2 TDMA/GSM frame structure, traffic channels are defined
using a group of 26 TDMA frames called a 26-Multiframe. In this 26-multiframe
structure, the traffic channels for the downlink and uplink are separated by 3 bursts.
However, a 51-Multiframe of control signaling includes 51 TDMA frames (235.365ms).
The frame rate is 270.833 kbps/1250 bits/frame. The 13™ or 26" frame is not used for

traffic, but for control purposes. The normal speech frames are grouped into multi-frames,

and multi-frames are grouped into super-frames.

Superfiame e 8125 > 51 Multiframes
ERERNRRNENR
o 120ms 26 Frame
Multi frarme
Frame *.__. 4.615 ns _____,l 8 Time slots
o|1|z2]3l4]l5]6]7
._....,--- - Ny
Normal < 156.25 bits

burst 3 57 1 26 1 57 31825

Tal Coded Stealing Midamble Stealing Coded Tal Guard
bit Data flag flag Data bit Perod

Figure 2.2 A TDMA/GSM frame structure

2.5 Logical Channels

There are two types of GSM logical channels, namely: traffic channel (TCH) and

control channel. TCH carries digitally encoded user speech or data and has identical
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functions and formats on both the foreword & reverse link. Control channels transmit
signaling and synchronizing commands between Mobile Station (MS) and Base Station.
A. Traffic Channels (TCH)

GSM traffic channels can transmit digital speech or user data at full rate or half-
rate. There are 7 traffic channels, which have 4 channels carried at 22.8 kbps for full-
rate TCH, and 3 channels carried at 11.4 kbps for half-rate TCH.

Full-rate TCH
e Full-rate Speech Channel (TCH/ES): It carries user speech digitized at 13 kbps.

e Full-rate Data Channel for 9600 bps (TCH/F9.6): it carries user data at 9600 bps.
e  Full-rate Data Channel for 4800 bps (TCH/F4.8): it carries user data at 4800 bps.
e Full-rate Data Channel for 2400 bps (TCH/F2.4): it carries user data at 2400 bps.

Half-rate TCH
e Half-rate Speech Cha‘mnel (TCH/HS): It carries user speech digitized at 6.5 kbps.

o Half-rate Data Channel for 4800 bps (TCH/H4.8): it carries user data at 4800 bps.
e Half-rate Data Channel for 2400 bps (TCH/H2.4): it carries user data at 2400 bps.
B. GSM Control Channel (CCH)

The CCH is divided into three major control channels: broadcast channel (BCH),
common control channel (CCCH), and dedicated control channel (DCCH). Only
random access channel 1s a reverse link channel within TS0, all other BCCH and
CCCH almost are forward control channels occupying TS0, as shown in Figure 2.3.

Broadcast Channel

e  Broadcast Control Channel (BCCH): To broadcast information and operating

characteristics of the cell within TSO.
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e  Frequency Correction Channel (FCCH): To synchronize MS internal frequency

standard to the exact frequency of the base station within TSO.

e  Synchronization Channel (SCH): To synchronize MS frame with BS within TSO.

Control Multiframe = 51 TDMA Frames (235)

01112314456 (7|9 |10]11 |13 20 | 21| 22 39 | 40 49 |50

FIS|IB{B!B|B{Ci{C|C{F |S |C F |S |C C |F C |1
F: FCCH burst (BCH) S: SCH burst (BCH) B: BCCH burst (BCH)
C: PCH/AGCH burst (CCCH) I. Idle

(a)

1 2 3 4 45 146 147 |48 |49 |50

=
]
]
e
=
!
s
=
=
=
=

Control Multiframe = 51 TDMA Frames (235 ms)

R: Reverse RACH burst (CCCH)
(b)
Figure 2.3 The control channel multiframe at TSO: (a) for Forward link,

(b) For reverse link

Common Control Channels (CCCH)

e Random Access Control Channel (RACCH): To originate a call, and to

acknowledge a page from the PCH by MS.
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e Access Grant Control Channel (AGCCH): To instruct MS to operate in
particular physical channel (time slot and ARFCN) with a DCCH.
e  Paging Control Channel (PCCH): To provide paging signals from BS to all MS

in the cell, and notifies a specific mobile of an incoming call which originates

from the PSTN.
Dedicated Control Channel (DCCH)
o  Stand-alone Dedicated Control Channels (SDCCH): To carry signalling data
following the connection of MS with the BS before a TCH is assigned.
e Slow Associated Control Channel (SACCH): It is always associated with a
traffic channel or a SDCCH, and maps onto the same physical channel.
e  Fast Associated Control Channels (FACCH): To carry urgent messages, and to
contain essentially the same type of information as the SDCCH.
2.6 Signal Processing in GSM
Figure 2.4 illustrates transmitter of the GSM operations from speech input to radio

output. The receiver runs the oppose direction in the signal processing.

. Channel . Burst R .
Speech coding coding Interleaving formatting —#+ Ciphering & Modulation
Air radio
transmissidn
Speech Channel | de- Burst de- De- .
decoding decoding interfeaving [~ | formatting |~ | ciphering | | demodulation

Figure 2.4 GSM operations from input speech to output speech
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Speech Coding

The GSM speech coder is based on the Residually Excited Linear Predictive Coder
(RELP). The coder provides 260 bits for each 20 ms blocks of speech, which yields a bit
rate of 13 kbps. By incorporating a voice activity detector (VAD) in the speech coder,
GSM systems operate in a discontinuous transmission mode (DTX).

Channel Coding: A half-rate convolution encoder is used to encode the data.

Interleaving: A total of 456 encoded bits are broken into 8*57 bits sub-blocks,
which are being spread over four consecutive TCH time slots.

Ciphering: It modifies the contents of 8 interleaved blocks through the use of
encryption techniques known only to the particular MS and BTS.

Burst formatting: It adds binary data to the ciphered blocks to help synchronization.

Modulation: GSM is modulated at 0.3 GMSK, where 0.3 describes the 3 dB
bandwidth of the Gaussian pulse-shaping filter in relation to the bit rate.

Frequency Hopping: In order to avoid important differences in the quality of the
channels, the slow frequency hopping may be implemented to combat the multipath
fading or the effects of co-channel interference. It changes the frequency with every

TDMA frame. The frequency-hopping algorithm selected is sent through the broadcast

control channels.
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Chapter 3
Overview of the GPRS &EGPRS Networks
3.1 Introduction to GPRS
The phase 2+ of GSM is called the General Packet Radio Service (GPRS) and the

Enhanced GPRS (EGPRS). GPRS is also called phase one of EGPRS. It is a packet

switching based system added on the existing GSM. GPRS can be implemented in

existing GSM systems using the same cell structure. It is embedded in the physical
channel of GSM frame structure. As a consequence, only minor changes will be required
to introduce GPRS 1n an existing GSM network.

3.2 GPRS functional groups

GPRS at function is categorized into 6 groups: network access, packet routing and
transfer, mobility management, logical link management, radio resource management,
and network management.

A. GPRS network access: It is responsible for the standard point-to-point data transfer
and anonymous access. It includes 6 functions: registration; authentication and
authorization; admission control to determine if the radio and network resources be
used for communication of an MS; message screening, which filters out unsought
messages; packet terminal adaptation, which automatically adjusts data transmission
across the GPRS network; and billing information collection for packet transmission
in GPRS and external networks.

B. Packet routing and transfer: It is responsible for routing the data between an MS

and the destination through the serving and gateway GPRS support Nodes (GSNs).

There are 5 main functions: Relay function that is used to forward packets between
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an MS and a SGSN by BSS, and also used to forward packets between a BSS and a
serving or gateway GSN by SGSN; Routing function that is used to determines the
destinations of packets; Address translation and mapping function that is used to
convert a GPRS network address to an external data network address and vice versa;
Encapsulation and tunnelling functions which encapsulate packets at the source of a
tunnel, deliver the packets through the tunnel and decapsulate them at the
destination; and domain name service functions that is used to resolve logical GSN
names to their IP addresses.

C. Logical link management: It is responsible for maintaining the communication
channels between an MS and the GSM network across the radio interface. It
consists of logical link establishment, logical link maintenance and logical link
release.

D. Radio resource management: It is used to assign radio resources, and to maintain
radio communication paths. Its functions include:

1) Um management: To determine the amount of radio resources to be allocated for
GPRS usage.

2) Cell selection: To select the optimal cell for radio communications of an MS

3) Um-tranx: To provide packet data transfer capability, such as medium access
control, packet multiplexing, packet discrimination, error detection and correction,
and flow control across the radio interface between the MS and the BSS.

4) Path management: To maintain the transfer paths between the BSS and the
SGSNE.

E. Mobility management: It is responsible to track the current location of an MS.
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F. Network management: It is used to provide mechanisms for supporting OA&M

functions related to GPRS.

3.3 GPRS Network Architecture

In order to integrate GPRS into the existing GSM architecture, modifications of the
GSM network are required. The MS, BSS, BSC/VLR and HLR in GSM network are
modified for GPRS networks. Some of the nodes already implemented in current GSM
systems can be shared between GPRS and GSM. A new class of network nodes, called
GPRS support nodes (GSN), has been introduced [8]. GSNs are responsible for the
delivering and routing of data packets between the mobile stations and the external
packet data networks (PDN). GSNs are divided into two new node types, called Serving
GPRS Support Node (SGSN) and Gateway GPRS Support Node (GGSN) [13].

Figure 3.1 illustrates architecture of GPRS. A GPRS MS consists of a Mobile
Terminal (MT) and a Terminal Equipment (TE). A TE can be a computer attached to the
MT. The MT is equipped with software for GPRS functionality. The user profile, the
current SGSN address, and the PDP address are stored in HLR for each GPRS user in the
Public Land Mobile Network (PLMN). In addition, the MSC/VLR may be modified with
functions that allow efficient coordination between packet switched (GPRS) and circuit
switched (GSM) services.

A SGSN is at the same hierarchical level as the mobile switching centre (MSC). It is
responsible to keep track of the location of the GPRS mobiles, and the delivery of data
packets from and to the mobile stations within its service area. It also performs security

checking, packet routing and transfer, mobility management, logical link management,
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and authentication and charging functions. The location information and user profiles of

all GPRS registered users are stored in location register of the SGSN.

A GGSN is used as inter-working node between the PLMN and external packet data
networks (PDN), and also as an interface by routing data between the GPRS backbone
network and the external packet data networks. In GGSN, the GPRS packets coming
from the SGSN are converted into appropriate packet data protocol (PDP) format, and
sent out on the corresponding packet data network. In the opposite direction, GGSN
converts PDP addresses of incoming data packets into the GSM address of the destination
user. The readdressed packets are sent to the responsible SGSN. For this purpose, the
current SGSN address of the user and his or her profile are stored in its location register

by GGSN. The GGSN also performs authentication and charging functions.

Figure3.1 also shows the interfaces between the new network nodes and the GSM
network. These interfaces are defined by ETSI in [24]. The communications between the
MS and the BSS are via the air Um air interface. The BSS and the SGSN are connected
by the Gb interface using frame relay. User data and signalling data are transmitted
between the GSNs via the Gn and Gp interfaces. The Gn interface will be used when
SGSN and GGSN are located in the same PLMN, whereas the Gp interface will be used
if they are located in different PLMNs. The Gi interface connects the PLMN with
external public or private PDNs, such as the Internet or corporate intranets. The existing
GSM D interface is used to connect between the HLR and VLR. Interfaces A, Gs, Gr, G,
and D are used for signalling, without involving user data transmission in GPRS. Note
that the A interface is used for both signalling and voice transmission in GSM. Interfaces

Um, Gb, Gn, Gp, and Gi are used for both signalling and transmission in GPRS.
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Figure 3.1 illustrate Architecture of GPRS with nodes and interfaces

3.4 Protocol Architecture

Figure3.2 illustrates the protocol architecture of the GPRS transmission plane [25],
which consists of a layered protocol structure for user information transfer and its
associated signalling, e.g., flow control, error detection, and error correction. GPRS-
specific protocols include SNDCP, LLC, RLC, MAC, BSSGP, BSSAP+, and GTP.
GMM/SM and MAP are modified to accommodate GPRS.TCAP, SCCP and MTP are

SS7 layers. The other protocols are standard data protocols [38-40].

GPRS backbone: The GPRS Tunnelling Protocol (GTP) tunnels the user data
packets and related signalling information between the GPRS support nodes (GSNs) [37].
In the transmission plane, GTP employs a tunnel mechanism to transfer user data packets.
In the signalling plane, GTP specifies a tunnel control and management protocol. The

signalling is used to create, modify, and delete tunnels.

In the GPRS backbone, user data packets are encapsulated through IP/X.25 - over

GTP - over UDP/TCP - over IP transport architecture.
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Figure 3.2 GPRS Transmission Plane.

The GPRS protocols for transmission planes include:

GTP (GPRS Tunneling Protocol) [26]: To be used to tunnel user data and signaling

between GSNs in the GPRS backbone network.

= TCP: To be used to carry GTP packet data units (PDUs) for protocols that need a

reliable data link (e.g., X.25)

UDP (User Datagram Protocol): To be used to carry GTP PDUs for protocols that

do not need a reliable data link (e.g..IP)

IP: It is a GPRS backbone network protocol used for routing user data and control
signaling.

SNDCP (SubNetwork Dependent Convergence Protocol) [27]: To be used to map
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network-level characteristics onto the characteristics of the underlying network. It is

used to transfer data packets between SGSN and MS. Its functionality includes:

— Multiplex of several connections of the network layer onto one virtual logical
connection of the underlying LLC layer.

— Compression and decompression of user data and redundant header information.

LLC (Logical Link Control) [28]: To provide a highly reliable ciphered logical link.

— Independent of the underlying radio interface protocols.

RLC/MAC layer [29] at the air interface includes two functions:

— RLC (Radio Link Contrel): To provide a radio-solution-dependent reliable link
between the MS and the BSS. It segments and reassembles LLC frames into RLC
data blocks and ARQ of uncorrectable codeword.

— MAC ((Medium Access Control): To control the access signaling (request and
grant) procedures for the radio channel, and mapping of LLC frames onto the
GSM physical channel.

Relay:

— In BSS, relays LL.C PDUs between Um and Gb interfaces.

— In SGSN, relays PDP PDUs between Gb and Gn interfaces.

BSSGP (Base Station System GPRS Protocol)[27]: To be used to convey routing-

and QoS-related information between BSS and SGSN.

NS (Network Service): To transport BSSGP PDUs and is based on the Frame Relay

connection between BSS and SGSN.

The protocol architecture of the signalling plane is defined in [25]. It includes:

GMM/SM (GPRS Mobility Management and Session Management protocol): To
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be used to perform functions such as GPRS attach/detach, security functions, PDP
context activation, and routing area updating between MS and SGSN above LLC
layer.

=  MAP (Mobile Application Part): To be used between SGSN and HLR as well as
between SGSN and EIR. It transports the signalling information related to location
updating, routing information, user profiles, and handovers.

= SS7(Signalling System #7) layers: include TCAP (Transaction Capabilities

Application Part), SCCP (Signalling Connection Control Part), and MTP layers.

3.5 Services
3.5.1 Bearer services and supplement services

The bearer services of GPRS support end-to-end packet switched data transfer.
GPRS services are divided into two categories: Point-to-Point (PTP) and Point-to-
Multipoint (PTM) services.

The PTP service [30] provides transfer of data packets between two users. Possible
PTP services include: data base access and information retrieval; the Internet; messaging
and conversational services from user to user; credit card validation, etc. It is offered in
both connectionless mode (PTP-CLNS: PTP connectionless network service) and
connection-oriented mode (PTP-CONS: PTP connection-oriented network service).

The PTM service provides transfer of data packets from one user to multiple users.
PTM services include: unidirectional distribution of information such as news and

weather reports, conferencing services between multiple users, etc. There exist two kinds

of PTM services [31]:
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s Multicast service PTM-M: Data packets are broadcast in a certain geographical
area. A group identifier indicates whether the packets are intended for all users or
for a group of users.

*  Group call service PTM-G: Data packets are addressed to a group of users

(PTM group) and are sent out in geographical areas where the group members are

currently located.
The PTM service can send SMS messages over GPRS. In addition, it can also
implement supplementary services, such as call forwarding unconditional (CFU), call

forwarding on mobile subscriber not reachable (CFNRc), and closed user group (CUG).

3.5.2 Simultaneous usage of packet switched and circuit switched services

Both circuit switched services (speech and data) and GPRS services can be used
simultaneously in a GSM/EGPRS network. Three MS operation modes were introduced
in [30]:

= Class A: A mobile station is allowed to use simultaneous operation of GPRS and
conventional GSM services.

s Class B: A mobile station is able to register with the network for both GPRS and
conventional GSM services simultaneously. In contrast to an MS of class A, MS
can only choose dynamically one of the two services at a time.

= (Class C: A mobile station only support packet-switched data service. An

exception is SMS messages, which can be received and sent at any time.

3.5.3 Quality of service

In order to satisfy the service requirements for various subscribers, UMTS has
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proposed four different traffic classes [14]: the background, conversational, interactive,

and streaming classes respectively. According to the requirements of QoS, they are also

being divided into two main classes: Real Time services (e.g., voice, video conferencing,

etc.), and Non Real Time services (e.g., database applications, web browsing, email,

streaming video and sound, etc.). The Quality of Service (QoS) requirements of typical

mobile packet data applications are very diverse. Support of different QoS classes, which

can be specified for each individual session, is therefore an important feature.

GPRS allows defining QoS profiles using the parameters precedence, reliability,

delay, and throughput classes [30]:

Precedence class: To specify three-transmission priority levels (i.e., high,
normal, and low). During congestion, the packets with lower priorities are
discarded.

Reliability class: To indicate the transmission characteristics required by an
application. Three reliability classes are introduced, which guarantee certain
maximum values for the probability of loss, duplication, mis-sequencing, and
corruption (an undetected error) of packets.

Delay class: To specify maximum values for the mean delay and the 95-percentile
delay. The latter is the maximum delay guaranteed in 95 percent of all transfers.
The delay is defined as the end-to-end transmission time between two
communicating MSs or between a MS and the Gi interface to an external packet
data network. This includes all delays within the GPRS network.

Throughput class: To specify the expected maximum data transmission rate and

the mean bit rate. Using these QoS classes, QoS profiles can be negotiated
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between the mobile user and the network for each session, depending on the QoS
demand and the current available resources. The billing of the service is then

based on the transmitted data volume, the type of service, and the chosen QoS

profile.

Table 3.1 lists these four traffic classes with their application, fundamental

characteristics, and QoS requirements.

Table 3.1 The Four (E) GPRS Traffic Classes

Traffic class Background | Conversational class | Interactive Streaming class
class class
Application -Background | Voice over [P -Web -Real-time video
download of browsing | - Non real-time
e-mail -Database | video
-File retrieval -Video conferencing
transfer
Fundamental -Preserve -Preserve time -Bounded | -Preserve time
characteristics | payload relation between response relation between
content entities making up time entities making up
the stream -Preserve | the stream
-Conversation based | the -Real-time
on pergeption payload -Non real-time
-Real-time content
Relevant QoS | -Low BER | -Low jitter -Low -Round delay time
requirements -Low delay jitter -Low BER

3.6 Mobility Management

3.6.1 Attachment and Detachment Procedure

The GPRS attach procedure establishes a logical link between the MS and the
SGSN. Before a mobile station can use GPRS services, it must register with an SGSN of
the GPRS network. To attach to the network, the MS provides its identity and indicates

which type of attach procedure is to be performed. Then, the system copies the user
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profile from the HLR to the SGSN, and assigns a packet temporary mobile subscriber
identity (P-TMSI) to the user. This procedure is called as GPRS attach. The GPRS detach

procedure is disconnection from the GPRS network, and is initiated by the MS or by the

network (SGSN or HLR).
3.6.2 Session Management

In order to exchange data packets with external PDNs after a successful GPRS
attach, a MS must apply for one or more addresses used in the PDN, e.g., for an IP
address in case the PDN is an IP network. This address is called PDP address (Packet
Data Protocol address). For each session, a PDP context is created, which describes the
characteristics of the session. It contains the PDP type, the PDP address assigned to the
MS, the requested QoS, and the address of a GGSN that serves as the access point to the
PDN. This context is stored in the MS, the SGSN and the GGSN. With an active PDP
context, the MS is “visible” for the external PDN and is able to send and receive data
packets. The mapping between the two addresses, PDP and IMSI, enables the GGSN to
transfer data packets between PDN and MS. A user may have several simultaneous PDP
contexts active at a given time.

The assignment of the PDP address can be static or dynamic. In the static case,
the network operator of the user’s home-PLMN permanently assigns a PDP address to
the user. In dynamic PDP address allocation, a PDP address is assigned to the user upon
activation of a PDP context; GGSN is responsible for the assignment and the

activation/deactivation of the PDP addresses. Figure3.3 illustrates the PDP context

activation procedure.
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Figure 3.3 PDP context activation

3.6.3 Location Management

Location management is mainly responsible to keep track of the user’s current
location for routing incoming packets to his or her MS. For this purpose, the MS has to
send location updating messages to its current SGSN. In order to know the MS in
accuracy of the routing area, and to decrease the consumption of uplink radio capacity
and battery power for mobility management, a good location management strategy must
be a compromise. For this reason, a state model shown in Figure 3.4 has been defined for
location management in GPRS [25]. There are 3 mobility management (MM) states
related to a GPRS subscriber, which each state describes the level of functionality and
information allocated; the location update frequency is dependent on the state of the MS.

In IDLE state the MS is not reachable, and not yet attached to the GPRS mobility
management (GMM), so that no location updating be performed. After successful GPRS

attach, the MS gets into READY state, and informs its SGSN of every movement to a
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new cell. In ready state, the MS can receive and send data for all relevant service types. If
the ready timer expires, the MS will move to the standby state, the MS is still attached to
the GMM and is known in the accuracy of the routing area. In standby state, if the MS
wants to send or receive data, a PDP context must be activated in advance. If the standby
timer expires, the MM contexts in both the MS and SGSN independently return to the

idle state. With a GPRS detach it may disconnect from the network and fall back to IDLE

Standby timer cxplrcd. Detach

ttach
Ready timer expired
< » [ Ready
PDU reception
/transmission

state. All PDP contexts will be deleted.

Figure 3.4 State model of a GPRS mobile station

3.7 Air Interface — Physical Layer
3.7.1 Multiple Access and Radio Resource Management
EGPRS uses the same frequency bands and frame structure as GSM, but the
channel allocation and multi-frames in EGPRS is different from the original GSM.
The recurrence of one particular time slot defines a physical channel. A GSM mobile

station uses the same time slots in the uplink as in the downlink [32].
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In GPRS, the channel assignment is different from the original GSM. A single
mobile station can transmit on multiple time slots of the same TDMA frame. This results
in a very flexible channel allocation: one to eight time slots per TDMA frame can be
allocated for one mobile station. Moreover, uplink and downlink are allocated separately,
which efficiently supports asymmetric data traffic (e.g., Web browsing) [41, 42].

In contrast to GSM, the channels in GPRS are only allocated when data packets are
sent or received, and they are released after the transmission. For bursty traffic this results
in a much more efficient usage of the scarce radio resources. With this principle, multiple
users can share one physical channel.

A cell supporting GPRS may allocate physical channels for GPRS traffic. Such a
physical channel is denoted as packet data channel (PDCH), which is taken from the
common pool of all channels available in the cell. Thus, all GPRS and non-GPRS mobile
stations located in this cell share the radio resources. The mapping of physical channels
to either packet switched (GPRS) or circuit switched (conventional GSM) services can be
performed dynamically (capacity on demand principle [33]), depending on the current
traffic load, the priority of the service, and the multislot class. A load supervision
procedure monitors the load of the PDCHs in the cell. According to the current demand,
the number of channels allocated for GPRS (i.e., the number of PDCHs) can be changed.
Physical channels not currently in use by conventional GSM can be allocated as PDCHs
to increase the quality of service for GPRS. When there is a resource demand for services
with higher priority, PDCHs can be de-allocated.

3.7.2 GPRS multiframe structure

The EGPRS multiframe is composed by 52 TDMA frames, instead of 51-frames like
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GSM ones. A multiframe structure is required for mapping the logical channel to the
physical channels. The mapping of logical channels onto physical channels has two
components: in frequency and in time. A multiframe structure for PDCHs consisting of
52 TDMA frames is shown in Figure3.5 [34]. Four consecutive TDMA frames form one
block (12 blocks, BO — B11), two TDMA frames are reserved for transmission of the
PTCCH, and the remaining two frames are idle frames. The mapping of the logical
channels onto the blocks BO — B11 of the multiframe can vary from block to block and is
controlled by parameters that are broadcast on the PBCCH.

In [34], it is defined that a logical channel may use some time slots. Besides the 52-
multiframe, which can be used by all logical GPRS channels, a 51-multiframe structure is

used for PDCHs carrying only the logical channels PCCCH and PBCCH and no other

logical channels.

Multiframe with 52 TDMA frames (240 ms)

BO Bl (B2 |{T|B3 B4 |B5 |X|{B6 |B7 |B8 |T|B9 | B10 | Bll | X

BO-B11: Four frames for each T: a frame for PTCCH X: an idle frame
Figure 3.5. GPRS multiframe structure with 52 frames

3.7.3 Logical Channels in GPRS

Table 3.2 lists the packet data logical channels defined in GPRS [33]. GPRS uses

similar logical channel structure as GSM. These logical channels are also being divided
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into 2 categories: traffic channels and signaling control channels. The packet data traffic
channel (PDTCH) is employed for the transfer of user data. It is assigned to one mobile
station (MS), and one MS can use several PDTCHs simultaneously. A series of logical
channels are defined on top of the physical channels to perform a multiplicity of
functions, e.g., signaling, broadcasting of general system information, synchronization,
channel assignment, paging, or payload transport. The signalling control channels include
packet broadcast control channel, packet common control channel, and packet-dedicated
control channels.

The packet broadcast control channel (PBCCH) is a unidirectional point-to-
multipoint signaling channel from the base station subsystem (BSS) to all GPRS mobile
stations for a cell. It is used by the BSS to broadcast specific information about the
organization of the GPRS radio network, and important system information about circuit
switched services, so that a GSM/GPRS mobile station does not need to listen to the
broadcast control channel (BCCH).

The packet common control channel (PCCCH) is a bi-directional point-to-
multipoint signaling channel. It is used by MSs to initiate packet transmission or respond
to paging messages. On this channel MSs transmit access bursts with long guard times.
On receiving access bursts, the BSS assigns a timing advance to each terminal. Packet
random access channel is the only uplink PCCCH. Other PCCCHs are downlink, sent
from the BTS to the MS. It consists of four sub-channels:

s Packet Random Access Channel (PRACH). Used by the mobile to request one
or more PDTCH, and to initiate uplink transfer for data or signaling.

s Packet Access Grant Channel (PAGCH). Used in the packet transfer
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establishment phase for resource assignment, which can allocate one or more
PDTCH to a mobile station.

= Packet Paging Channel (PPCH) Used by the BSS to find out the location of a
mobile station (paging) prior to downlink packet transmission.

= Packet Notification Channel (PNCH). Used to send a point-to-multipoint

multicast (PTM-M) notification to a group of MSs prior to a PTM-M packet

transfer.

The following packet-dedicated control channels (PDCCH) are defined in GPRS:
* Packet Associated Control Channel (PACCH). Conveys signalling information,
such as power control, resource assignment, and reassignment information. The

PACCH shares resources via PDTCHs.

= Packet timing advance control channel (PTCCH). Used for adaptive frame

synchronization.
Table 3.2 Logical Channels in GPRS
Group Channel Function Direction
Packet data traffic PDTCH Data traffic Downlink/uplink
channel
Packet broadcast PBCCH Broadcast control Downlink
control channel
Packet common PRACH Random access Uplink
PAGCH Access grant Downlink
control channel PPCH Paging Downlink
(PCCCH) PNCH Notification Downlink
Packet dedicated PACCH Associated control Downlink/uplink
control channels PTCCH Timing advance Downlink/uplink
(PDCCH) Control

3.7.4 GPRS channel management

There are two concepts for GPRS channel management: master-slave and capacity-
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on-demand.

In the master-slave concept, a master PDCH accommodates PCCCHs to carry all
necessary control signalling for initiating packet transfer. Other PDCHs serve as slaves
for user data transfer (PDTCH) and for dedicated signalling.

In the capacity-on-demand concept, PDCHs are dynamically allocated based on
actual amount of packet transfers. Also, the number of allocated PDCHs in a cell can be
increased or decreased according to traffic changes.

GPRS performs a fast release of the PDCH to share the pool of radio resources for

both packet- and circuit-switched services.

3.8 Channel Coding Schemes in GPRS

The channel coding schemes in GPRS are quite similar to the one employed in GSM.
An outer block coding, an inner convolutional coding, and an interleaving scheme is
used. Four different coding schemes are defined in [35] to be able to adaptively react to
current channel quality. Their parameters are listed in Table 3.3. The first coding scheme
1s used in GSM: 1/2-rate convolutional coding and a 40-bit fire code are applied. The
second and third schemes are punctured versions of the first one with rates of 2/3 and 3/4,
respectively. The fourth coding scheme does not use a convolutional coder. The latter
three schemes use a 16-bit frame check sequence for error detection. In order to speed up
decoding of USF, schemes CS-2 to CS-4 generate a 12-bit block USF code word. For
scheme CS-1, the entire block is coded, and USF must be decoded as part of the data. The
coding scheme is indicated by the GSM stealing bits of the four consecutive bursts that

belong to one block using an 8-bit block code with a Hamming distance of 5.
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Table 3.3 Channel Coding Schemes for logical traffic channels in GPRS

MCS User rate Code Rate Header Code
[Kbps] Rate
CS-4 (GMSK) 21.4 1.0 0.51
CS-3 -- 15.6 ~3/4 0.51
CS-2 - 134 ~2/3 0.51
CS-1 -- 9.05 172 0.51

For the coding of the traffic channel (PDTCH), one of the four coding schemes
(CS-1 to CS-4) is chosen, depending on the quality of the channel. Under very bad
channel conditions, the coding scheme of CS-1 with a data rate of 9.05 kbit/s per GSM
time slot is chosen for a very reliable coding. Under good channel conditions, the CS-4
without convolutional coding is chosen to achieve a data rate of 21.4 kbit/s per time slot.
With eight time slots, a maximum data rate of 171.2 kbit/s will be obtained. In practice,
multiple users can share the same time slot, resulting in a much lower bit rate available
to the individual user. After encoding, the codeword is put into a block interleaver of
depth 4. On the receiver side, the codeword is de-interleaved. The decoding is performed

using the well known Viterbi Algorithm (see, e.g., [36]).

3.9 Enhanced Data rate for GSM Evolution (EDGE)
3.9.1 Introduction to EDGE

With GSM radio technology, GPRS provides only limited data capacity. To increase
the GSM data rate, Enhanced Data Rate for GSM Evolution (EDGE), called as phase 2 of
EGPRS, was introduced with the same frame structure, carrier spacing (200 KHz),
symbol rate (271 Ksymb/s), burst format and spectrum as GSM. Phase 2 of Enhanced
GPRS (EGPRS) based on EDGE continues to use the GPRS core network. EGPRS

provides user data rates (up to 470 Kbps for indoor and 144 Kbps for outdoor) 2-3 times
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higher than GPRS, and spectrum efficiency 2-6 times higher than GPRS. These goals are
accomplished mainly by using a higher-level modulation-- 8-phase shift keying (8-PSK),
in addition to the traditional GMSK, and by adapting the user rate based on channel
quality. Thus, EGPRS can reuse GSM sits and frequency plan.

The Phase 2 of EGPRS needs to further enhance the air interface and the core
GPRS network. The functionality of the SGSN and GGSN needs to be enhanced to be E-
SGSN and E-GGSN respectively. There are many new features introduced to EGPRS
that result in higher data rates at link level as well as in spectral efficiency at system level.
The EGPRS data rates at link level are in the range of 8.8-59.2Kbps per time slot. This is
achieved through 9 coding schemes.

EDGE combines link adaptation and incremental redundancy. Link adaptation (LA)
provides dynamic switching between coding and modulation schemes based on link-
quality measurements. However, in addition to LA, a more intelligent link quality control
scheme, termed as incremental redundancy (IR), which enhances the performance at both
link level and system level, increases robustness for retransmission in EDGE.

An LLC packet data unit in EGPRS is broken into 20ms RLC data blocks in
accordance with link Adaptation (LA). A RLC data block contains the user data, which
defines the effective data rate per time slot. The RLC/MAC headers are then added to the

user data to form a RLC radio block.

Table 3.4 provides the details of the code rate together with the user data rate per
time slot for each coding scheme. In an EGPRS network, conventional circuit switched

services and EGPRS service can be used in parallel. Three classes of mobile station in the
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family have mentioned in section 4.5.2.

Table 3.4 EDGE Data and Code Rates [17]

MCS Channel rate [Kbps] | Code Rate | Header Code Rate | Family
9 (8-PSK) 59.2 1 0.36 A
8 -- 54.4 0.92 0.36 A
7 - 44.8 0.76 0.36 B
6 -- 29.6 0.49 1/3 A
5 -- 22.4 0.37 1/3 B
4 (GMSK) 17.6 1.0 0.51 C
3 - 14.8 0.85 0.51 A
2 - 11.2 0.66 0.51 B
1 -- 8.8 0.53 0.51 C

3.9.2 Fast Packet Control Channels

The phase two of EGPRS needs to further enhance the core EGPRS network. By
enhancing the GPRS RLC/MAC design to efficiently support in-session access, a set of
common control channels are needed to provide the additional capabilities for ongoing
calls. These channels are similar to the common control channels required for call set-up
with one vital difference: they are designed for in-session control. While in-session
control has a more stringent delay requirement than session set-up control, it also has

smaller signalling overhead, which makes it feasible to meet these delay requirements.

To accomplish in-session control purpose, two fast control channels are introduced.

Fast packet access channel (F-PACH) for the uplink

The structure of the F-PACH is similar to that of the PRACH in GPRS, in the sense
that messages are transmitted in individual bursts. The difference between the two is that
since the F-PACH is used exclusively for ongoing calls, the fast packet channel

requesting message carried in F-PACH contains information on the specific TBF being
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referenced (i.e., the uplink TFI assigned to the MS and other relevant information). Based
on this information, the base station can uniquely identify the MS and its specific
application, and therefore quickly assign the necessary uplink resource.

The F-PACH can be used either as a fast packet random access channel (F-PRACH)
for random access, or as a fast packet dedicated access channel (F-PDACH) for dedicated
access. The F-PRACH and F-PDACH can be time multiplexed on the same physical
channel (e.g., time slot 0) of some selected carriers. The characteristics of these channels
are as follow:

F-PRACH is designed to transmit single burst fast contention access messages for
fast random access, which carries the TFI and other identifying information of the
requesting application.

F-PDACH is designed for fast dedicated access. It permits the mobile to use
contention-free access and may be useful for applications that do not permit any delay
variability.

a. Fast packet control channel (F-PCCH) for the downlink

The F-PCCH serves two major functions: to transmit access grant and to poll
messages to specific mobiles. Thus, the F-PCCH is split into two logical channels: an F-
PAGCH and an F-PPCH. These two channels can be time multiplexed on the same
physical channel located on specific time slots (e.g.. time slot 0) of some selected carriers.
Each pair of F-PACH and F-PAGCH/F-PPCH may carry the fast uplink access request,
access grant, polling, and polling response messages for a set of carrier frequencies.

Fast packet access grant channel (F-PAGCH)
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The F-PAGCH is used to respond to access requests received on the F-PACH. This
response is a typical assignment message that specifies the channels, USFs, and other
parameters for a set of MSs.

Fast packet polling channel (F-PPCH)

It is used to poll different mobiles.If an MS has an ongoing downlink data transfer,
it is possible to use the PACCH to transmit control messages to the MS. Otherwise; the
BBS can use the downlink F-PCCH to communicate with the MS.

3.9.3 Multiplexing Capability

The EGPRS RLC/MAC layer is designed to efficiently support multiple data
streams on the same packet data traffic channel (PDTCH), and a given data stream on
multiple channel [19]. Data transfer in EGPRS is accomplished by using an entitled
temporary block flow (TBF). A TBF is a virtual connection that supports the
unidirectional transfer of LLC PDUs on packet data physical channels between an MS
and the BSS. Each TBF is identified by a temporary flow identifier (TFI). A TFI is 7 bits
long for the uplink and 5 bits long for the downlink. The TFI is assigned by the BSS and
is unique in each direction. RLC blocks destined to different MSs are distinguished by

their attached TFIs. After completion of the data transfer, the TBF is terminated and the

TFI is released.

Downlink multiplexing of multiple data streams on the same PDTCH is
accomplished by assigning each data transfer a unique TFI. Each MS listens to its set of

assigned downlink channels and only accepts RLC blocks with its TFI.

Uplink multiplexing is accomplished by assigning each data transfer a set of
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channels and a unique uplink state flag (USF) for each of these channels. Up to 8 mobiles

may be assigned to the same uplink traffic channel but with different USFs, which is 3

bits long. An MS listens to all the downlink traffic channels that are paired with the

uplink channels assigned. If its USF appears in the downlink channel, the MS uses the

corresponding uplink channel in the next logical frame.

3.9.4 Muitiple Access Procedure

The multiple access procedure is shown in Figure 3.6 [18 ]:

When a new call starts, the MS sends an access request to the BSS over the
normal PRACH. Using the initial access procedure (one- or two-phase), it
establishes a TBF and obtains a TFI, USF(s), and PDTCH(s). In addition, the BSS
can request the MS to send information like measurement reports by using the
packet polling channel (PPCH). The ongoing service doesn’t have link — level
retransmissions, others have link — level retransmissions. A close-ended TBF is
established for the background service, but open-ended TBF are used for other
service.

At the end of each active period (e.g., no more data to send): For the background
service, the MS release its TFI, USF(s), and PDTCH(s). For others service, the
MS only release its USF(s) & PDTCH(s), but keep its TFI. In addition, while it
does not have an ongoing downlink data transfer, the MS camps on the fast
downlink control channel.

At the beginning of each new period of activity: For the background service, the
MS goes through the entire PRACH access procedure. For other services, the MS

accesses the system using F-PRACH along with the service access probability and
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access procedure. The MS receives USF and PDTCH assignment through an

assignment message sent on the F-PAGCH or on a PACCH if it has an ongoing

downlink data transfer. In addition, the BSS can request the MS to send

information like measurement reports by using the fast packet polling channel (F-

PPCH). The polling schedule is determined by the BSS and can take into account

the current channel availability.
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Figure 3.6 EGPRS Block Diagram of Traffic Flow
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Chapter 4
An Adaptive Resource Assignment algorithm

along with Overload Control

4.1 Introduction

The third generation (3G) of wireless communications will be strongly dominated
by various services guaranteeing the Quality of Service (QoS). The required services
include voice conversation, Web browse, short messages, real time video, non-real time
video, and so forth. Current wireless systems with GSM/TDMA through GPRS towards
EGPRS aim to accomplish the various services of third generation wireless
communication. One approach is to integrate heterogeneous traffic types with robust
Medium Access Control (MAC) protocol, in order to achieve higher spectrum efficiency
and the requirements of QoS.

The purpose of this thesis is to investigate the system level performance of EGPRS
Phase I in GSM interfering limited cellular environments, and to propose a more efficient
assignment algorithms named Adaptive Resource Assignment along with Overload
Control (ARAOC) by combining various services into GSM/EGPRS systems to properly
guarantee the QoS for various traffic services. The proposed algorithm is designed to
include a variety of users with different rates and bursty levels. Our approach is to
allocate channels to users of random variable traffic rates during an active period of calls,
which is called a session, while the buffer size of users is allocated according to their
traffic class. A Static Resource Assignment (SRA) technique used similarly by current

GSM network will also be discussed in this thesis.



4.2 Cellular Network

4.2.1 Cell model

Sector-C

Figure 4.1 Cell model

A regular cell shape is needed for system design and performance analysis. We
adopt a hexagonal cell pattern with radius R equal to 3 kilometers. The hexagon is split
into 3 sectors, called A, B, and C, respectively. In Figure 4.1, a BS is located at the center
of the cell. It uses three direction antennas facing on to three different directions,
encompassing 120° within its sector. While users in the same sector cannot use the same
channel simultaneously, users in different sectors could share the same channel at the
same time. In general, a cell could use all channels in the whole spectrum though limited
by the SINR of each channel. In order to lessen the communication burden of
neighboring cells, as well as the burden of SINR calculation for each channel, the entire
124 carrier frequencies in a sector are being divided into three channel groups CF-A, CF-
B and CF-C, as specified in Sector-A, Sector-B and Sector-C, respectively. When each
sector assigns channels for an arriving call, it will first exhaust all appropriate channels

within its own group. If the channels of its group are insufficient, then it turns to free
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channels in the other two groups, and assigns suitable channels for this call, subsequently,
sends a message to nearby cells.
We can measure the average signal strength at any point following a power law of
the distance of BS and MS. The average received power Pr at a distance d from the
transmitting antenna is presented as [43]:

d
=P (—)" 4.
F, P°(d ) (4.1)

0

or

P (dBm) = F,(dBm)—10n log(g—) = P,(dBm)—10nlogd +10nlogd, (4.2)

0

where Po is the power received at a referenced point in the far field region of the antenna
at a small distance do from the transmitting antenna, d is the T-R separation, and # is the
path loss exponent. The value of n depends on the specific propagation environment [12].
We assume that n equals to 4 in shadowed urban cellular environment.

We investigate the inter-user interference on the downstream channel (from base
station to users) with static resource assignment, assuming that the propagation path loss
is proportional to the fourth power of the distance. To do this, we first consider the case,
where a user is located on the sector boundary in the direction of the nearest interference
sector (point of Q in Figure4.4), which employs the same frequency. Such a user is at a
distance DS from its home base station and at a distance Di from the near interfering base

station. From formula (4.1), the ratio of interfering power level coming from an

interfering sector nearby to signal power is:
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Di__,
PO(%) =(Dl.)__n
Ds (4.3)

Id_
S Ds
P g -n
O(dO)

where Id denotes the interfering power at a distance Di, S denotes signal power at a
distance Ds, Po denotes the power of reference point at a distance d0, and n denotes the

path loss exponent, which is 4 in a shadowed urban cellular environment.

The above propagation model is valid for the line of sight transmission. In reality,
the received signal level is random and distributed log-normally (dB) about the mean
distance-dependent value [44]:

Pd=Pr+x (4.4)
Here, Pr is the mean received power, and x is a zero mean Gaussian distributed random

variable (in dB) with standard deviation ¢ (in dB). Usually ¢ is chosen from 6dB to10 dB.

4.2.2 System model

A hexagonal cell pattern is commonly used in mobile radio systems. In GSM
systems, due to interference, the adjacent cells normally cannot use the same carriers,
therefore the smallest number of frequency reuse is 1, and a frequency reuse pattern of 3
or 4 is widely deployed. We assume that the system model consist of 19 cells as shown in

Figured.2. In order to increase system capacity, both cell cluster size of 1 and 1/3 will be

investigated.

To evaluate the interference problem for downlink, I only consider the 2 tiers
interferences from 18 nearby base stations. For cell cluster size of 1, the co-channel

interferences from 7 base stations of interfering sectors is considered into SIR calculation,
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i.e., a mobile station located in A-sector is affected only by other interfering A-sectors;
similarly, a mobile station located in B-sector is affected by other interfering B-sectors,
and so on. For the cell cluster size of 1/3, the co-channel interferences from 18 base

stations of interfering sectors is considered into SIR calculation.

Figure 4.2 A system patterns with19 hexagonal cells split into 3 sectors

If the clocks of different cells are mutually synchronized, then the interference
will be limited to users that share the common time slots. In the presence of clock
frequency offset, a given user will interfere all users of the affected cells. To proceed

further, we assume that all base stations transmit at the same signal level, and that the
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transmit power control in the upstream direction is perfect, enabling the base station to

receive the same signal level from all users in its cell.
4.2.3 Co-channe] interference at the worst case with cell cluster size of 1/3

We investigate a user located at the worst-case position with cell cluster size of
1/3, that means each sector using entire spectrum. If considering only 2 tiers interfering
situation on the downstream channel, the inter-user interference could be from 18
interfering cells, which employ the same frequency. A user located at the point Q in
Figure4.3 could have 18 co-channel interferences. The S/I ratio at the worst case with 18

co-channel interferences is:

CIR(18int erfering sec tors) = % -1 (4.5)
)4

1

I Mo

ui(—r—
14

where Ui denotes the status of co-channel in interfering i-th sector: the status of the used

channel is 1 and that of unused channel is 0; ¥ denotes the user distance from home BS;

and di denotes the distance from interfering i-th sector to the user.

From Figure4.3, reference sector-A in BSO is largely interfered by sector-C of

BS1 and sector-B of BS2, the interfering cell and distance are presented below:

BS1 & BS2: d5=d5’=R (4.6)
BS3, BS4 & BST: d6=d6’=d10=2R (4.7)
BSS, BS6: dl=dl’= (3R/2)* +(5R/2)* =+TR (4.8)
BS9, BS8: d9=d9’=/(\/3R)? + 2R)* =7R (4.9)
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BS10, BS11: d8=d8’=+/3v3R/2) +(R/2)* =R (4.10)

BS12, BS13: d2=d2'=J33R/2* +(5RI2)* =JyI3R  (4.11)

BS14, BS15: d7=d7’={(2{3R)? + (R)* =+13R (4.12)
BS16: d4= 4R (4.13)
BS17, BS18: d3=d3’={(3R)* + (4R)* =19R (4.14)
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Figure 4.3 a user at the worst case with cell cluster size of 1/3

Taking (4.6)-(4.14) into (4.5), we obtain
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-gmr LT LA LT AT (AT T L8] AT AT
o] a7 BT AT BB
L8] 8] AT [T M (&1 8] AR A5 ]
A AR A LT AT A A A

=2343 (4.15)

where Ui equals to 1 for T interfering sectors which use co-channel.

Thus, the S/1 ratio with 18 co-channel interferences at the worst case is concluded
to be 0.4268 or -3.7dB. The channel with this S/l ratio is not useful. Since higher
interferences exist from BS1-BS4, and BS10, in order to lessen these interferences, the
channels without co-channel interferences from BS1-BS4 and BS10 are used. Thus, from
(4.15), the SIR without co-channel interferences from BS1-BS4 and BS10, i.e., not using

the corresponding carriers by current user, is:

SIR = 5= ! = 6.43 > 8.08 dB (4.16)
4 2343 —2-3%0.0605

4.2.4 Co-channel interference at the worst case with cell cluster size of 1

In order to lessen the calculation and communication burden of neighbouring cells,
we consider a user located at the worst case with cell cluster size of 1. There is a

maximum interfering power only from all 7 capable interference sectors to a user,

situated on point Q in Figure4.4.

The interference power (normalized by the useful signal power S) from this
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particular sector in the worst case is:

4
la _ 7 IR :2[£_]4 +2[_1z_f *2[‘&}4 *[‘R“T
S 274, dI d2 d3 d4

=z[ﬂ2 + 2[7%}2 + 2[715]2 + BT =0.0621 (4.17)

where Ui equals to 1 for 7 interfering sectors which use co-channel

Thus, SIR=S/1d =16.1 or 12.1dB.

Note that the foregoing analysis holds when all the interfering sectors are using co-
channel with a cell frequency reuse factor of 1. The downlink S/I ratio of 12.1dB will be
valid only when the time slot assigned to the user is also simultaneously used in all of the
7 interfering sectors that employ the same frequency. Otherwise, the S/I ratio will be

larger than 12.1dB.
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Figure 4.4 a user at the worst case with cell cluster size of 1

.52



4.2.5 Co-channel interference at the average case with cell cluster size of 1/3

From the previous analysis, the S/I ratio of some users may be decreased to
12.1dB under the static resource assignment parameters. Here, we investigate the inter-
user interference on the downstream channel with dynamic resource assignment. Since
BSS will reassign channels at the end of four multi-frames, this function is equivalent to
the application of frequency hopping at every four multi-frames. Thus, users can avoid
the worst case. To investigate this, we focus on the location suffered from average

interference, when users are located in average distance point of M in Figure4.5.

Similarly, assuming the worst case with 18 co-channel interferences, we were
always able to find out channels with an average SIR to assign to users. The interference

powers (normalized by the useful signal power S) from this particular sector for the user

at the averaging interfering location is:

Z (R ),,_2{1?/2}4 N Z[R/Zr +2[R/2T +[R/2T s Z[R/ZT . Z[R/ZT
Mg 2 3| a4 d5 d6
4 4 4
r2V JR2T . JR/2Y [R/2
+2[ d7} +2[ d8} +2{ d9} J{de (4.18,

where Ui equals to 1 for 7 interfering sectors which use co-channel

Where dl=d]’= /(3R/2)* + (2R)* =+I9R/2

d3=d3’=BR)* + (TR12)* =+/61R/2

d2=d2’=|(33R12)* +(2R)> =/43R/2
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d4=7R/2, d10=5R/2

d5=d5’=/(3R)* + (R/2)* =4[13R/2

d6=d6"=+/(23R)* +(R/2)* =+[49R /2

d7=d7'=|3\3R12)* +(R)* =31R/2

d8=d8’= (BRI 2)? + (R)? =TR/2

d9=d9’=J(3R)? + 5R/2)* =3TR/2

Thus, (4.18) is changed to:
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R RS E RS IR RS FIRE EARE ERE )

[ ] [ } =0.007576 +0.0586 = 0.0662 (4.19)

where Ui equals to 1 for T interfering sectors which use co-channel.

Thus the average SIR under 18 co-channel interferences with cell cluster size of

1/3 is:

Average SIR (18 co-channel interferences) = S/Id = 1/0.0662 = 15.1 or 11.8dB

4.2.6 Co-channel interference at the average case with cell cluster size of 1

In order to improve SIR and hence probability of bit errors, we investigate the
inter-user interference which is from 7 interfering sector-As on the downstream channel

with frequency reuse factor 1, and the intended user is located on point M of Figure4.6.

From (4.18) and (4.19), The S/1 ratio with 7 co-channel interferences is shown as:

I 7
d R2T  JR/2 e
45 A A A s

where Ui equals to 1 for 7 interfering sectors which use co-channel

Thus, the average S/I ratio for the downlink is

SIR=S/Id = 132, or 21.1 dB. (4.21)
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Figure 4.6 A user in the average case with cell cluster size of 1

4.3 Description of System Parameters

4.3.1 Traffic Model

In the simulation, we consider five traffic classes according to the requirements of
different services. These traffic classes are background, conversational, interactive, and
streaming classes for real-time and non real-time services respectively. They can also be
divided into two main services: Real Time services (e.g., voice, video conferencing, etc.),

and Non Real Time services (e.g., database applications, web browsing, email, streaming

video and sound, etc.).

Table 4.1 describes each of these classes along with their characteristics:
We first define the rate range for each class according to the traffic character of

service types. Each traffic class is characterized by a set of QoS requirements that need to
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be satisfied in an end-to-end mode. Both the wireless part and the fixed subsystems of a

mobile communication system are responsible for providing and maintaining the required

QoS.
Table 4.1 The Five Traffic Classes in our simulation
Traffic Background | Conversational | Interactive Streaming Streaming
class class class | class class class
(real time) (Non-real
time)
Raterange | 2.5~10Kbit/s | 5~20Kbit/s 10~40Kbit/s | 20~80Kbit/s | 40~120Kbit/s
Variable Varies Varies Varies Varies Varies
Rate randomly randomly with | randomly randomly randomly with
with aniform | uniform with uniform | with uniform | uniform
distribution distribution distribution distribution distribution
Application | -Background | -Voice over IP | -Web -Real-time -Streaming
download of | -Real-time browsing video video and
e-mail -Database -Video sound
-File retrieval conferencing | -Non real time
transfer

4.3.2 Classic Quality of Service (QoS) attributes:

» The characteristics specified in term of bandwidth:

The peak rate (bit/sec),

= The minimum acceptable rate (bit/sec),

peak rate)

The average rate (bit/sec),

> The reliability requirements of the connection:

packets),
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The Bit Error Rate (BER) or Frame Error Rate (FER),

The maximum burst size (the maximum number of consecutive bits sent at the

The maximum loss ratio (the proportion of received packets to undelivered




» The delay requirements:
=  The maximum tolerated delay (ms),
= The maximum tolerated jitter (ms) (the variation in delay),
4.3.3 Description of Input Parameters
There are many input parameters that can be varied in order to analyse the
performance under various scenarios. As described above about Quality of Service, the
following input parameters are used in our simulation:
s Data rate for each time slot
To compare various performances of our simulated network with the existing
GSM network, we assume each channel data rate is 13.0 kbps, the same as GSM
system. To support higher data rates, the channel data rate can be increased when
higher-level modulation, i.e., 8-phase shift keying (8-PSK), is used.
= Normalized sector rate load (p):
It is defined as the ratio of the summation of average rate of all calls accepted

over system maximum transmission data rate in a sector.

Z Average rate of traffic classes of accepted call(i)

= 4.22
r 41 carriers * 8 slots * 13.0 Kbits/s slot rate ( )

Since the system maximum transfer data rate with 328 channels includes 21
channels for signalling transfer, the p equalling to 93.6% means that the whole sector
channels have averagely reached the full rate transmission.
®  Sector rate load threshold (SLT) for ARAOC:

We should set a sector load threshold (SLT) for dynamic resource assignment.

When the normalized sector rate load (p) is over a fixed value of SLT, BSS only
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holds the existing calls in the sector. All new arriving calls cannot have access to this

sector. As signalling data transmission uses 21 of 328 channels in each sector, the

value of SLT is set to 90%.

Sector rate load limit for SRA: It is set as call dropping probability of 2%, which
is the requirements of GSM systems.

Channel buffer size [packets]: Different buffer size of 4, 8, 16, 32 or 64 packets is
used to compare its influence on the performance. A fixed buffer size of 16

packets is used in other performance simulations to find the influence of other

parameters.

User’s Buffer size [packets]:

It is equal to channel buffer size multiplied by assigned channel number of user.
Static assignment parameter: it takes a value from 0.0, 0.25, 0.5, 0.75 and 1.0.

Resource allocation type: The allocation is dynamic. The resource is released if a

user’s packets transmission is finished.
Scheduling transmission algorithm: First in and first out.

All base stations and mobile stations transmit with the same power. Power control

is not considered.

4.3.4 Description of Qutput Parameters

There are many output parameters generated by the simulator. The parameters used in

this paper to analyse the performance under various scenarios are:

User Throughput
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The average network throughput is defined as the ratio of the number of packets
successfully transmitted in a long interval to the maximum number of packets that can be

transmitted continually on the channels [9]. The user throughput is defined as:

To tal Number of RLC Block delivered by user (i)

User Throughput (n; )= - - (4.23)
Total Number of RLC block could be delivered by user (i)
— 1 &
AverageUserThroughput : 1 = -I—V—Z 7} (4.24)
i=1
Variance of average user throughput:
4l =2
2@ =m?
ol = 4.25
, N1 (4.25)

Where N denote the number of user (i) existing in system.

= Queuing Delay:

The queuing delay is defined as the duration from the instant of the packets getting
into user’s buffer to the instant of these packets successfully getting out. The average
queuing delay is defined as the total number of packets in the buffer of all users during
certain iterations divided by the number of iterations, and by the number of accepted

users. By simulation model, we can write the queuing delay per user as:

M
Z buffer content of user(i) at iteration(j)

Di=-= 4.25
7 (4.25)

where M denotes the number of iterations for each user.

Average queuing delay:
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N
2D

D=1l 4.26
N (4.26)

Variance of average queuing delay:

N —
>.(D;-D)?
op = 4.27
? N-1 (+27)
where N denotes the number of accepted user (i) existing in system.

s Buffer overflow:
I define the buffer overflow as the number of packets dropped when a given threshold
(Maximum buffer size) is exceeded. The average buffer overflow of user i is defined as

the total number of times of user’s buffer size overflow divided by the number of users

(N), and by the number of iterations (M), i.e.

M
ZNumber of blocked packets of user(i) at iteration(j)

BO =271 4.28
i Iy (4.28)

where M denotes the number of iterations for each user.

Average Buffer Overflow:
N M
ZZNumber of blocked packets of user(i} at iteration(j)
Bo=111 (4.29)
N*M
Variance of average buffer overflow:
d s 2
> (BO, - BO)®
ol =+ 4.30
20 3 (4.30)

where N denotes the number of accepted users (i) existing in the system.

®* Network Utilization Efficiency:
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The network utilization efficiency is used to present the system capacity for packet
data traffic. To evaluate the system performance under different carrying load, its
definition is the ratio of the sum of all transmission rates used to the total of all full traffic
channels rates. To simplify, we assume 13.0 Kbit per second as the transmission rate for
each time slot. Usually, each sector uses 41 carriers, and each carrier has 8 time slots.
Total available time slots for each sector are 41*8=328, including 21 time slots for

signalling transmission. These 21 time slots are not used by user traffic. The network

utilization efficiency NE per sector is represented by:

N
Z transmission rate of user(i)

=l

Total rate of all channels per sector

N
Z transmission rate of user(i)

- i=]

41 carriers* 8 slots* 13.0 Kbitps per slot

(4.31)
When the network in the sector is fully loaded, NE only equals to 93.6%.

= Call dropping/blocking probability:

The call dropping probability is defined as the ratio of the number of forced
terminated handoff calls to the number of all arriving handoff calls in this sector. The call

dropping probability per cell is represented as:

Number of calls dropped
Total number of handoff calls arrived

(4.32)

drop =

The call blocking probability is defined as the ratio of the number of new calls

blocked to the total number of all arriving calls in this sector at a certain interval. The call

_ Number  of new calls blocked
Total number of arrival calls

Pyiock (4.33)

blocking probability per cell is represented as:
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4.4 Description of the SRA Algorithms

4.4.1 Statié Assignment parameter

The admission controller decides which channel resources meet QoS constraints thus
can be accepted into the available channel groups A connection request is accepted only
when sufficient resources are available to establish the call at its required QoS and
maintain the agreed QoS of existing calls. Thus, an important parameter, Assignment
Parameter (AP) greatly affects the performance of the system and users. It is introduced
into our simulation. AP varies within the scope from 0.0 to 1.0. When AP is increased,

the assigned time slots and transmission rate will also increase for all users.

>

Rmin Re Rv Ro  Rmax rate
Figure 4.7 illustrate the rate of traffic class with uniform distribution
To simplify in Figure4.7, we define five assignment parameters in the following:
1) Minimum assignment parameter: AP = 0.0, with min transmission rate (Ri);
2) Less assignment parameter: AP = 1/4 = 0.25, with less transmission rate (Re);
3) Average assignment parameter: AP = (.5, with average transmission rate (Rv);
4) Most assignment parameter: AP = 1/4 = 0.75, with most transmission rate (Ro);
5) Maximum assignment parameter: AP = 1.0 with max transmission rate (Ra).

4.4.2 Instant transmission rate
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In 3.3.1 section, five traffic classes have been defined. Their rates vary randomly with
uniform distribution in their variable scope. Thus, the instantaneous transmission rates
are [35]:

R =Rmin+ U (0,1) * (Rmax — Rmin ) (4.34)
While Rmin denotes the minimum capable transmission rate for each traffic class, Rmax
expresses the maximum transmission rate for each traffic class, and U (0,1) indicates
variable random from 0.0 to 1.0 according to uniform distribution.
4.4.3 Statically assigned transmission rate

As we have known, the transmission rates are random variables distributed uniformly
in their variable scopes. To evaluate the performance of system and users, we use the
above-mentioned five assignment parameters to allocate the transmission rates.

A general assignment rate is:
R = Rmin + AP * ( Rmax — Rmin ) (4.35)
While Rmin denotes the minimum transmission rate for the traffic class, Rmax expresses
the maximum transmission for the traffic class, and AP indicates the value of the
assignment parameter.

For different assignment parameters, possible assignment rates respectively are:

1) Ri=Rmin;

2) Re =Rmin + ( Rmax — Rmin ) / 4;

3) Rv=Rmin + ( Rmax - Rmin )/ 2;

4) Ro =Rmin + ( Rmax — Rmin ) * 3/ 4,

5) Ra=Rmax.

4.4.4 Static buffer size
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Another important parameter that affects the QoS of users is the buffer size of users.
The larger the user buffer size is, the buffer overflow will be smaller, but the delay would
be longer. Due to different traffic classes, which have different transmission rates and
large rate variation, the buffer size should be different according to traffic classes. In this
simulation, we consider making a fixed channel buffer size for each time slot assigned to
a certain user. The more time slots are assigned, the larger is the buffer size. The user’s
buffer size equals to:

User buffer size = channel buffer size * number of assigned channel of user

We should find out a suitable channel buffer size to balance the buffer overflow and
queuing delay in our simulation.

4.4.5 Loading limit

To improve the performance of system, we use an average call dropping probability
(CDP) to control call admission, and to balance call dropping probability and call
blocking probability. When the CDP is over the system requirement of 2%, a new call
admission will be controlled, and handoff call is not limited. The details are as follows:

*  When the call dropping probability is less than 2%, BSS will look for suitable

channels in resource pool to assign to arriving calls;

#  When the call dropping probability is larger than 2%, BSS first finds suitable

channel(s) in the whole channel group of the sector, which may accept user

request, then in other two channel groups only for an arriving handoff calls or a

new call, who require only less than 3 time slots;

4.5 Adaptive Resource Assignment along with Overload Control
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4.5.1 Introduction
With the increase in the demand on wireless/mobile communications and the

emergence of bandwidth-intensive multimedia applications, the link bandwidth of
wireless/mobile networks is becoming a bottleneck. The scarcity in wireless resources
motivates us to research on the adaptive channel allocation and SIR calculation algorithm
that can operate over a wide range of available bandwidth with small cell cluster size (see
the section of 4.2.1). In this algorithm, a hexagonal cell is split into 3 sectors, each with
its own channel group. The cell cluster size of 1 or 1/3 is used for each sector. A dynamic
co-channel interference algorithm can calculate the SIR of candidate channels depending
on cell cluster size of 1/3. However, BSS first assigns candidate free channels based on
cell cluster size of 1. In this case, each cell uses the entire spectrum bandwidth; otherwise,
only 1/3 was used in each sector with its own channel group. When the sector does not
have adequate free chahnels for an arriving call, the BSS will search from 2 other channel
groups. On the other hand, a new congestion control scheme is needed to guarantee that
the system is properly operated and the requirements for QoS in various data services
under overloading situation is satisfied. Therefore, we develop an Adaptive Resource
Assignment Algorithms along with Overload Control (ARAOC), which combines the
advantages of static and dynamic schemes to improve spectrum utilization efficiency, the
system performance, and to guarantee the requirements of QoS.
4.5.2 Call Admission Control Schemes of ARAOC (see Figure4.9)
a. Updating the resources condition and calculating C/I ratio for every 4 multi-frames:

»  First, there are two tables of resource and user information built up for each sector.

One holds user information and traffic status (like later Table 4.2). Another holds
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the resource information of local sector (see later Table 4.3), and 18 nearby
interfering sectors with channels used. The information is updated at every
iteration interval for resource table, at every four multi-frames (104 iterations) for
user table.

= To calculate the ratio of the signal power to interfering powers (S/1 ratio) for each
time slot, we search for co-channels interferences from the 18 nearby interfering
sectors (see Figure4.2 in section 4.2.3). The interfering powers from 18 nearby
interfering sectors should be calculated and updated into an interfering state table.

s Assume every BSS transmits at the same power. The S/I ratio at a channel is:

CIR(18int erfering sec tors) = Té——l-—__

T4
iglui( d,«)
Here, r is the distance from BS of the reference sector to the user, di is the
distance from the BS of interfering sector i to the user, and u: is a variable which
takes the value of 1 when a co-channel is used in an interfering sector, and 0
otherwise. The detail of calculating SIR was shown on the formula (4.18) — (4.21).
b. Dynamic resource allocation in each sector: The entire 124 frequency carriers (CF)
are being divided into three channel groups, called CF-A, CF-B, CF-C, which

corresponds to sector A, B, C, respectively.

These three channel groups are shown as:

The number of carriers in CF-A: 3* N (N=0,1,2, ... 40)
The number of carriers in CF-B: 3* N+1 (N=0, 1,2, ... 40)
The number of carriers in CF-C: 3* N+2 (N=0, 1,2, ... 40)

-67 -



I. We first assign free channel(s) from the sector’s own channel group, and then

IL

IIL

from the other two channel groups. Assigned number of channel(s) for each user
depends on the instant transmission rate at every 4 multi-frames. The channel
numbers in a frequency carrier can reach up to 8 timeslots.

When a sector is loaded under a designated threshold (DT), the BSS only
searches in its own channel group of the sector.

When a sector is overloaded, the BSS first searches suitable free channels in its
own entire channel group. If free channels are not found, the BSS will search
other channel groups. For instance, when a user accesses to the cellular network
from sector A, BSS of the sector A first searches for suitable free channels in
CF-A. If CF-A is not available for this user, the BSS will look for available
channels in CF-B and CF-C. If there are unavailable channels in resource pool
for this user, the BSS will block this call. Needless to say, a new call that will

cause the SIR of ongoing calls below threshold will be blocked.

1V. Adaptive Channel Assignment Strategy:

First, network average loading factor (0) and average dropping probability (Parop)

will be calculated at each iteration.

When an active period of an existing call with TFI along with identifying
applicable information requires fast access channels path, BSS looks for a suitable
assigned channel from the pool.

When the loading factor () in a sector is less than the designated threshold (see
section 4.3.2), the BSS uses dynamic assignment schemes in the sector, by

allotting time slots as much as possible according to the user’s instantaneous rate
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of each four multi-frames, and providing the best effort service. On the other hand,
when the loading factor (O) in a sector is larger than a loading threshold, the BSS
resorts to static assignment schemes. It assigns fixed time slots for each user
according to its traffic class and assignment parameter (such as: select AP=0.5).
When AP corresponds to satisfying the basic service for each traffic class. If the
loading factor O is less than loading threshold again, the BSS resorts to dynamic
assignment schemes.

When the loading factor is less than the designated threshold, and the average
dropping probability is less than 2%, the BSS will look for available channels
from the resource pool, and allocate channels to arriving calls. It still uses the
dynamic assignment scheme.

When the loading factor is less than the designated threshold, and average

dropping probability of a sector is larger than 2%, an arriving handoff calls, or a
new call, which only needs less than 3 time slots, is allowed to look for adequafe

available channel(s) from the resource pool.

When the loading factor is over the designated threshold, the BSS changes to

static assignment policy, which allocates fixed time slots to an arriving call

according to the traffic class and the system assignment policy. The BSS provides

acceptable basic rate. In the process, the BSS first searches suitable free channels

from its own channel group; if no free channel available, it continues searching

from the 2 other channel groups; finally, the BSS allots the channels chosen for

this arriving call. However, the BSS will reject all of the handoff and new calls if

all 3 channel groups are not available.
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4.5.3

Dynamic Borrow Resource Policy: As per the previous description of channel
groups in the section of 4.2.1, a hexagonal cell is split into 3 sectors. When a cell
cluster size is 1, the entire 124 carrier frequencies in a sector are being divided
into three channel groups CF-A, CF-B and CF-C, as specified in Sector-A,
Sector-B and Sector-C, respectively. When a sector assigns channels for an
arriving call, it will first exhaust all appropriate channels within its own group. If
its channel group proves to be insufficient, then it turns to the other two channel
groups. If the channels in the other two channel groups are available, the BSS will
borrow the channels from other channel groups for this arriving call. For each
four multi-frames, when its own channel group is available for the active calls, the
borrowed channels will be returned back; when its own group is unavailable for
active calls, the borrowed channels will be still used for the user. If the S/I ratio of
some resources satisfy the requirement of this call. BSS can assign the time slot(s)
to the user, and inform nearby interfering sectors. This means that BSS borrows
the resources from nearby sectors, and also implies full communications and

exchange of the reservation tables among BSSs.
Congestion Control Schemes

To improve the network utilization efficiency, we assume that users do not

operate at their peak rate values simultaneously. Since the traffic demands are

stochastic and unpredictable, congestion is inevitable. When congestion occurs, the

performance of queue delay, buffer overflow and packet loss may become very large in
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a short time. To secure the Qos of users, thus, congestion control is necessary, and the
following scheme is used:
a. Set two thresholds to detect congestion:

This new scheme is based on monitoring the user buffer occupancy. We set
two thresholds: assault threshold (Ta) and reduction threshold (Tr). When the user
buffer occupancy exceeds the assault threshold, a congestion assault message is
sent to the user via control channel. On the other hand, when the buffer occupancy
goes below another threshold (Tr), a congestion reduction message will be sent to
the user via control channel. Upon receipt of the congestion assault message, the
users are expected to reduce the traffic rate so as to yield speedy recovery from
congestion. In contrast, upon receipt of the reduction message, the user traffic will
be restored to pre-congestion levels.

As mentioned above in the section 3.9.2, the Signalling exchange between the
BSS and a MS uses two logical channels in EGPRS: a Fast Packet Access Channel
(F-PACH), a Fast Packet Control Channel (F-PCCH). In uplink packet access, the
fast packet channel requesting message carried in F-PACH) contains information
on the specific TBF being referenced (i.e., the uplink TFI assigned to the MS and
other relevant information). Based on this information, the BSS can uniquely
identify the MS and its specific application, and therefore quickly assign the
necessary uplink resource. The F-PACH with individual bursts messages is
transmitted into special physical channel (e.g., time slot 0) of some selected
carriers. In downlink channel assignment, the BSS transmits the access grant and

control messages to specific MS via F-PCCH. The F-PCCH is split into two logical
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channels: a Fast packet access grant channel (F-PAGCH) and a Fast Packet Polling
Channel (F-PPCH). These two channels can be time multiplexed on the samé
physical channel located on specific time slots (e.g.. time slot 0) of some selected
carriers. The F-PAGCH is used to respond to access requests received on the F-
PACH. This response is a typical assignment message that specifies the channels,
USFs, and other parameters for a set of MSs. F-PPCH is used to poll different
mobiles. If an MS has an ongoing downlink data transfer, it is possible to use the
PACCH to transmit control messages to the MS. Otherwise; the BBS can use the
downlink F-PCCH to communicate with the MS. Each pair of F-PACH and F-
PAGCH/F-PPCH may carry the fast uplink access request, access grant, polling,
and polling response messages for a set of carrier frequencies. In this thesis, we
consider the congestion only on the wireless uplink and down link, and impossible
congestion in the associated terrestrial Internet.
b. Automatic Adjust Assignment parameter:

When the loading factor is less than its loading threshold (light load), the
BSS will use the dynamic assignment scheme to assign channels as much as
possible according to user requirements. In this case, sectored system does not
face traffic congestion.

When a sector load is larger than its threshold (overloaded), traffic
congestion will develop. In order to control traffic congestion at the system level,
dynamic channel allocation is adapted to static channel assignment. The BSS will
limit the transmission rate of all existing calls at the basic fixed rate, which

depends on static assignment parameter (AP) and the type of traffic class. When a
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sector load becomes light, the traffic congestion will be eliminated. Static channel
allocation is adapted to the dynamic channel assignment; channels are assigned as

many as possible to meet the user’s request adequately.

4.6 Description of Simulations

The system level simulator, used to produce the results presented here, models the
transfer of data between the BSS and MS in the designated cell. This is achieved by
modelling comprehensively all the aspects of the data transactions as specified in the
RLC/MAC GSM specification. The following sub-sections remark the overall description,

simulation description of SRA and ARAOC presented in this thesis.
4.6.1 Overall Simulation Description

A cellular network described in Chapter 3.2 with 19 hexagonal cells, which are
being split into 3 sectors A, B, C, is simulated as the subject network model. Each sector
has a resource pool, including three channel groups: CF-A, CF-B, CF-C, used in sectors
A, B, C, respectively. Each channel group has 41 carriers, each with 8 time slots. Thus,
each sector has 307 channels for traffic channels, and 21 channels for signalling channels.
However, in ARAOC algorithms, when the channels in local sector group are not
available to a call, it will try to borrow channels from the two other channel groups.

The base time unit in the simulator is a radio link control (RLC) block; each RLC
block period is referred to as one program iteration. During the operation of the system, a
call is randomly generated with a handoff call probability of 30% and a new call
generation probability of 70% every 10 iterations. BSS also randomly releases a call

every 10 iterations with a uniform distribution because the user is being switched to other
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cells, or being terminated.

We first build up 2 tables about the user and resource information for each sector.
The user information table stores the number of user, user ID, instantaneous data rate,
rate type, as well as an amount of assigned time-slots with required SIR and relative
parameters (i.e., Table 4.2). The resource table stores the number of channels, its state
(used or unused) and situation (SIR), as well as their states of 18 nearby co-channel
interferences with user ID (i.e., Table 4.3).

Most recent mobile systems (such as IS-136 and GSM) provide voice service with
tolerable call dropping probabilities around 2%, speech rate at 13 kb/s, data rate up to 9.6
kb/s. To compare these integrated data services with GSM, we assume the characteristics
and environment as in the GSM system. For example: channel data rate of 13.0kb/s,
modulation of 0.3 GMSK and call dropping probability of 2%, etc. Then, we investigate
the system capacity and performance, and introduce various services in both SRA and
ARAOC algorithms. System using different modulations (GMSK and §-PSK) and
channel data rates can support different maximum user rate and system capacity.

There are six major parts in the simulations of both SRA and ARAOC algorithms. The
first one is the initialization part, which sets various input parameters. The second one

models calls and packet generator, which yields the call model with its service type and
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Table 4.2 A part of User Information Table for each sector

User | UserID |Data rate| Rate | TS No. Average| No. average
No. No. (Kbps) type | No. AP SIR (dB)|Run times|sentPicket|blockPicket
0 7206 |96.46571 b 6 |10.5 21 254 5.76402 | 0. 306248
1 10893 | 99.8062 | 5 6 10.5 21 798 5.9373 | 0.108037

2 25208 1 83.5334 | 5 6 |10.5 21 201 5. 39063 0. 36

3 9339 | 105.377 5 6 0.5 21 484 5.63179 | 0. 180602
4 9789 | 111.757 5 6 0.5 21 619 5.87041 | 0. 118668
5 3997 | 57.7391 5 6 0.5 21 493 5.7921 | 0.161507
§ 28934 | 100. 986 5 6 0.5 21 308 5.54927 | 0. 317339
7 3087 | 77.9824 5 6 0.5 21 119 5.41037 | 0. 468791
8 13385 | 89.8613 | 5 6 0.5 21 520 5.86049 | 0.16839
9 17794 | 58. 0911 5) 6 0.5 21 511 b. 74059 | 0. 189253
10 16679 | 97. 0341 5 6 0.5 21 130 5.14863 | 0.412791
11 | 23645 | 51.5393 | 5 6 {0.5 21 425 5.6331 | 0.183237
12 | 32246 | 61. 0692 5) 6 0.5 21 879 5.93028 | 0.095453
13 17690 | 69. 9976 5 6 0.5 21 624 5. 81521 | 0. 156007
14 | 24458 | 50.2435| 5 6 |10.5 21 303 5.62248 | 0.22195
15 | 27885 {43.0284 | 5 6 0.5 21 101 5.2751 | 0.542115
16 | 25077 | 58. 5283 5 6 0.5 21 476 5. 75128 | 0.176498
17 943 84, 4734 5 6 0.5 21 824 5. 84997 | 0. 119859
18 5613 | 63.6597 5 6 0.5 21 200 5.43656 | 0.392443
19 14160 | 88. 9357 5 6 0.5 21 753 5.84435 1 0. 107738
20 5109 | 102. 288 5 6 0.5 21 419 5.71612 | 0. 177425
21 | 24535 § 116. 223 5 6 0.5 21 600 5.7674 | 0. 167555
22 1 27008 | 73. 3247 5 6 0.5 21 599 5. 86207 | 0.136738
23 | 31305 | 47.6803 5 6 0.5 21 598 5.81022 | 0. 171772
24 | 13520 | 82. 3117 ) 6 0.5 21 685 5.82331 | 0. 136232
25 9725 53.519 5 6 0.5 21 142 5. 19592 | 0. 446058
26 | 28272 | 53.9252 5 6 0.5 21 597 5.86209 | 0. 129178
27 | 20475 | 80. 2472 ) 6 0.5 21 500 5.74709 | 0. 183637
28 | 14846 | 75.0517 | 5 6 0.5 21 213 5.48077 | 0. 334225
29 15954 | 113. 661 5 6 0.5 21 556 5.64078 | 0. 151611
30 14054 | 58. 6473 5 6 0.5 21 555 b. 75373 | 0. 187326
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Table 4.3 A part of Resource State Table for each sector

ChNo| Rate |stat] SIR | Userld | IS-0 | IS-1 | IS4 | IS-5 {IS-12} IS-13 |IS-16|IS-17]1S-18
0 13 | 1 ]21.206 1 0 0 |20710[14958[15316{ 672 |4139 (2682022457
1 {5.047] 1 121.206| 17149 | O 0 120710{14958i15316] 672 |4139 26820122457
2 125711121206 8068 | © 0 120710{14958{15316] 672 |4139 26820(22457
3 1432511 121.206] 16090 | © 0 [26990(28072/20896] 6785 {26431[27834/22726
4 16.345| 1 {21.206| 20838} O 0 11844[24991]9162| 1318 {31930}17881[23285
5 (7.55311121.206{20373 | O 0 111844{24991{9162 | 1318 |31930|1788123285
6 19.963| 1 121.206| 9161 0 0 121879|12705|28392) 21939 | 7616 |22891] 6808
7 13.5091 1 ]21.206| 5046 G 0 121879(1270528392| 21939 | 7616 {22891| 6808
8 0 |0 14.5358 0 0 (1440| O 0 0 0 0 Y 0
9 0 |0 ]4.5358 0 0 |1440] 0O 0 0 0 0 0 0
10 0 |0 /45358 0 0 |1440] O 0 0 0 0 0 0
11 0 1045358 0 G 22261 O 0 0 0 0 0 0
12 0 | 0145358 0 0 [1267] 0O 0 0 6 0 0 0
13 0 | 0 [4.5358 0 0 11267 0 0 0 0 0 0 0
14 0 | 0]4.5358 0 0 14389] 0 0 0 0 0 0 0
15 0 |0 14.5358 0 0 14389 O 0 0 0 0 0 0
16 0 |0]53387 0 |31180{ O 0 0 0 0 0 0 0
17 0 [ 053387 0 124492} 0O 0 0 0 0 0 0 0
18 0 |0 }53387 0  |28809| 0 0 0 0 0 0 0 0
19 0 | 053387 0 {77031 0 0 0 0 0 0 0 0
20 0 | 053387 0 28809] 0O 0 0 0 0 0 0 0
21 0 | 053387 0 28809, O 0 0 0 0 0 0 0
22 0 | 053387 0 121972} 0 0 0 0 0 0 0 0
23 0 | 053387 0  [21972] © 0 0 0 0 0 0 0
24 19.537] 1 {21.206( 5961 0 0 |[15257]11068|24348| 27416 {24801|16321| 2467
25 |2.852} 1 121.206] 32189 | O 0 [15257111068|24348] 27416 [24801116321{ 2467
26 14.183| 1 121.206| 517 0 0 {15257|11068{24348| 27416 {24801(16321| 2467
27 |7.289] 1 121.206 20307 | © 0 [15257]11068|24348] 27416 {24801[16321] 2467
28 12.948] 1 [21.206] 14907 | O 0 |15257|11068(24348] 27416 |24801{16321] 2467
29 {4.606| 1 (21.2064 5396 | O 0 [15257|11068|24348| 27416 [24801]16321| 2467
30 |5.1321 1 121.2061 12277 { O 0 15257111068[24348| 27416 [24801[16321| 2467
31 I8.1611 1 |21.206{ 5825 0 0 - |15257{11068[24348| 27416 [24801(16321| 2467
32 0 | 0]14.5358 0 0 119749 O 0 0 0 0 0 0
33 0 | 0 4.5358 0 0 19749 O 0 0 0 0 0 0
34 0 | 0]4.5358 0 0 19749 O 0 0 0 0 0 0
35 0 | 0{4.5358 0 0 [19749{ O 0 0 0 0 0 0
36 G | 0145358 0 0 119749 0O 0 0 0 0 0 0
37 0 | 0}14.5358 0 0 {19749 0O 0 0 0 0 0 0
38 0 | 0]4.5358 0 0 19749 © 0 0 0 0 0 0
39 0 | 0[4.5358 0 0 19749 0O 0 0 0 0 0 0
40 0 |0 453387 0 19339 © 0 0 0 0 0 0 0
41 0 | 053387 0 119339{ 0 0 0 0 0 0 0 0
42 0 | 053387 0 {19339 0O 0 0 0 0 0 0 0
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various requirements, as well as packet model with transmission rate and packet length.
The third one models the radio resource assignment algorithms, which decide call access
and / or renew an active period for an existing call. The fourth models the data
transmission part. The fifth part models the release of the TFI and PDTCH(s) of the MS,
which has either completed a call or has terminated a call by force. The final part is for
the computation of the performance statistics of various data, and print out some major
output parameters, such as: call dropping/blocking probability, network utilization
efficiency, average buffer overflow, average queuing delay, and etc.

There are three types of results to compare major performance in both SRA and
ARAOC algorithms. The first type of results is obtained by assuming assignment
parameter (AP) of 0.5, random selection for traffic class 1-5, and the variable values of
channel buffer sizes (CBS) of 4, 8, 16, 32 and 64 under the following assumptions. It is
used to analyze the influence on the performance of different channel buffer sizes, and to
find out the best values of channel buffer size for our simulation. Then, the second type
of results is attained by assuming a channel buffer size of 16, random selection for traffic
class 1-5, and the values of assignment parameter of 0.0, 0.25, 0.5, 0.75 and 1.0 with
some assumptions described afterwards. The final type of results is produced by
assuming a channel buffer size of 16, random selection for traffic class 1-5, different
traffic classes, and with the following assumption.

The following assumptions are made in both simulations:
» Data transfer: Downlink only
= Resource traffic type: data transmission to an MS on a packet-by-packet basis

»  C/(I+N) variation: Fixed during four multi-frames for each carrier
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4.6.2

Mobile motion: Static during four multi-frames

Time slot transmission rate: 13.0 Kbps, which is currently used in GSM.
Normalized sector rate load (p): We have defined the p in formula 4.22 in section
4.3.3. It is the ratio of summing average rate of all calls accepted with entire
sector maximum transmission data rate. If p is equal to 1, it means that all
channels of sector have reached to full rate transmission.

Scheduling algorithm: packet-based first in first out (FIFO) fashion

Traffic Class (TC): 5

All base stations transmit with the same power. Power control is assumed ideal.

There is perfect filtering between adjacent channels, so adjacent channels

interference can be neglected.

SRA algorithm

In this simulation, there are six major parts (see the section of 3.6.1). The third

part for resource assignment algorithms uses a static assignment algorithm, which

assigns some fixed number of channels for a user according to the assignment

parameter (AP) and user’s traffic class during whole call. We focus on the description

of resource allocation.

Figure 4.8 is the flow diagram of the channel allocation process in SRA algorithm.

The brief description is as follows:

When a new call or handoff call arrives through PRACH to access a cell, after the
initial access procedure, the MS sends a detailed resource request with temporary

logical link identifier (TLLI) and the requested service over a packet associated

control channel (PACCH) to the BSS of this cell.
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Figure 4.8 Block Diagram of SRA Channel Allocation
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4.6.3

If an arriving call is a new call, BSS first checks the dropping probability of
handoff call (CDP,of this sector whether it is less than 2%. If it is positive, the
BSS will try to find out an adequate free PDTCH(s) from its entire channel group
of local sector. If it fails, it will continue searching from two other channel groups.
The BSS assigns available PDTCH(s) for an arriving new call.

However, if it is negative, the BSS will look for and assign free PDTCH(s) with
less than 3 PDTCHC(s) in the same way as above.

BSS will reject a handoff call or new call if the channels in resource pool are not
available for an arriving call.

After BSS assigns certain channels to an accepted user, this user uses only those
channels to transmit data.

Simulation description of ARAOC

In this simulation, there are also six major parts (similar with SRA in the section

of 4.6.1). Except that the third part for radio resource assignment algorithms is very

different, the other parts are very similar with SRA algorithms. The major differences in

both SRA and ARAOC are static assignment algorithm for SRA, and adaptive

assignment algorithms for ARAOC. Therefore, We focus on the description of resource

allocation algorithms. The ARAOC algorithms provide the best effort service for users. It

adapts between dynamic resource assignment and static resource assignment depending

on the sector load factor. The BSS assigns channels according to the instantaneous

transmission rate of users every four multi-frames. A session is associated with a single

MS. Both the inter-arrival time and the active period follow exponential distributions.

Upon generating a new session with TFI, a search for suitable resource is made in
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accordance with the scheduling algorithm in operation. If the resource is found, the new

session is assigned to this resource. If the resource is not found, the session is simply

added to the session stack to wait for processing. In the following part, we will describe

the channel allocation process with ARAOC algorithms and data transmission.

A. First, we will describe the channel allocation process with ARAOC algorithms, of

which the flow diagram is shown in Figure 4.9:

When a new call or handoff call arrives through PRACH to access a cell. After
the initial access procedure, the MS sends a detailed resource request with TLLI
and the requested service over a packet associated control channel (PACCH) to
the BSS of this cell.

When BSS receives a request, it first checks whether the loading factor () of the
local sector is less than the designated threshold. When the factor () is less than
the designated threshold (e.g., 0.9), the BSS takes a loose assignment parameter,
which is called dynamic assignment policy. It establishes a temporary block flow
(TBF) and distributes a TFI, PDTCH(s), and packet uplink assignment message
over the packet access grant channel (PAGCH) to the BSS. The PDTCH(s) is, as
much as possible, and according to user instant rate required, provide the best
effort service to an arriving call.

When the sector dropping probability of handoff call (CDP, is larger than 2%,
the BSS will find the available PDTCH(s) in its entire channel group; if it is
unsuccessful, it will continue searching from other two channel groups for a
handoff call, or a new call with only less than 3 PDTCH(s). However, when the

CDP is less than 2%, the BSS will find a requested PDTCH(s) from resource
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pool for all arriving calls, including handoff calls and new calls.

®  When the factor O is larger than the designated threshold (i.e., 0.9), the BSS
adapts to a tight assignment policy, and uses static assignment algorithm. It
assigns the PDTCH(s) only according to the traffic class and the tight system
assignment parameter (i.e., AP=0.5), so that it only guarantees the basic rate for
all users. On the other hand, because BSS will calculate co-channel interfering
powers from thel8 nearest interfering sectors, the BSS can find suitable free
channels from two other channel groups for this arriving call. If adequate free
channels in a carrier can satisfy the SIR requirement of the user, the BSS will
borrow and assign these channels.

= BSS will reject all of the handoff calls and new calls if the three channel groups in
a resource pool are not available for them.

B. At the end of each active period (i.e., no more data to send): The BSS will detect the
content of every user buffer at each repetition. When the content is empty for 3
iterations consecutively, the MS releases only its PDTCH(s) and maintains its TFI. In
addition, when it does not have an ongoing downlink data transfer, the MS only uses
the fast downlink control channel.

C. At the beginning of each new period of activity: The MS accesses the system using its
TFI over F-PRACH along with the specific access probability and procedure. If the
BSS has a conditional ongoing downlink data transfer, it may receive a PDTCH
distribution via an assignment message sent on either the F-PAGCH or a PACCH. In

our simulation, we have assumed that all the above control channels are perfect.
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D. During the data transmission in progress, each MS, already assigned some PDTCH(s)
and a unique TFI, listens to its set of assigned downlink channels and only accepts
RLC blocks with its TFI. A packet generator can produce two types of packets, bursty
and streaming. When a set of packets is generated, the BSS puts the packets into the
user’s buffer. When the number of packets exceeds the user’s buffer size, the value of
buffer overflow is incremented by 1. When the buffer occupancy exceeds an assault
threshold (Ta), a congestion assault message is being sent to the user, and
subsequently, the BSS shuts down its transmission rate. When the buffer occupancy
declines below the reduction threshold (Tr), a congestion reduction message is being
sent to the user, and consequently, the BSS increases its transmission rate. The BSS
transmits packets to the MS through the assigned time slots. The number of packets
successfully sent will be counted as the user’s throughput; otherwise, the packets that
remain in buffer will be counted as its queuing delay. Therefore, the BSS can

communicate with a given MS on any of the channel assigned.
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4.7 Discussion on Smmulation Results in SRA and ARAOC algorithms

To investigate the system capacity and performance as well as the QoS of users, we
will now discuss the simulation results in different situations. In doing so, our simulation
is being divided into 3 parts. The first part is to analyze the influence brought upon by
different channel buffer sizes; the second part is to analyze the effect from different
assignment parameters; the last part is to discuss the influence of various traffic classes.

In all simulations, some fixed parameters are assumed: the channel data rate (CDR) is
13.0 Kbps; the call handoff rate (CHR) in all arriving calls is 30%; each sector rate load
threshold (SLT) for ARAOC is set at 90%; each sector load for SRA (SLL) is limited by
a call dropping probability (CDP) of 2%; For two thresholds of buffer occupancy: assault
threshold (Ta) is set at 80%, and reduction threshold (Tr) is set at 20%; the number of
the iteration program (NIP) is 104000 times; Required Minimum SIR (RMS) for SRA
reach above 12 dB; Capable Average SIR (CAS) for ARAOC can reach 21 dB; and each
sector (CFN) consists of 41 carriers.

4.7.1 Analysis of the influence of Channel Buffer Sizes on performance
In this simulation, there are 3 assumptions: assignment parameter is AP = 0.5; a
traffic class (Rtype) is generated randomly with uniform distribution. The influence of
different channel buffer sizes is discussed below:
Figure4.11 and Figure4.10 show that the Average Buffer Overflow (ABO) relates to
different channel buffer sizes and load. From observation of the above two Figures, the
bigger channel buffer size is assigned, the lesser is the ABO. The ABO in Figure4.11 is

under 2.5% when traffic load is less than 80%, whereas it is less than 4.5% when loading
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at 90% for all channel buffer sizes. Especially, when a channel buffer size is equal to 16,
ABO is less than 1.5% under 80% load, and less than 4% at 90% load. On the other hand,
Figure4.10 shows that ABO is large and of different value from 6.5% to 12% with

different channel buffer sizes. In particular, ABO is about 10% at a channel buffer size of

16.
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Figure4.12 and Figure4.13 illustrate that Average Queuing Delay (AQD) increases
as channel buffer size increases. Figure4.12 shows that AQD changes widely due to
channel buffer size over 16 (i.e., about 16 packets for a channel buffer size of 16, and
about 40 packets for a channel buffer size of 32). As in the similar case in Figure4.13,

AQD is about 18 packets for a channel buffer size of 16, and 40 packets for a channel

buffer size of 32.
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Figure 4.13 Average Queuing Delay in ARAOC vs. Load with CBS

Figure4.14 and Figure4.15 further demonstrate the relationship of average buffer
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overflow, channel buffer size and load. The Variance of average Buffer Overflow (VBO)
in Figure4.14 shows that VBO is approximately 0.016 for the channel buffer size in the
range of 4-32, and changes from 0.032 to 0.022 for a channel buffer size of 64; whereas,
the VBO in Figure4.15 is very small. It is less than 0.0006 at a load of 80%, separately
less than 0.0025 at 90% load for all channel buffer sizes. Especially, the VBO is equal to

0.0002 when a channel buffer size is 16 and the load is under 80%.
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In summary, from the observation of the above figures of SRA and ARAOC, the
bigger channel buffer size has resulted in a smaller ABO and a larger AQD. Especially,
when a channel buffer size exceeds 16, the ABO and AQD are changed quickly. Thus,
we should find a balancing point between ABO and AQD to satisfy the user requirements
of QoS for low packet loss rate and delay. From Figure4.10—Figure4.18, we have seen
that the value of channel buffer size 16 for ABO, VBO, AQD, VQD and AUT is the best
choice as a balanced point for both SRA and ARAOC algorithms. When a channel buffer
size is equal to 16, the AQD and VQD for the both algorithms have fewer differences,
whereas the ABO and VBO in ARAOC are much better in value than those in SRA.
Therefore, a channel buffer size of 16 is the best selection for the above mentioned
parameters, and the results of ARAOC are much better than those in SRA. For example:
for a channel buffer size of 16 with similar AQD and VQD, the ABO in ARAOC is less
than 1.5% in situation under 80% load, and less than 4% at 90% load; whereas, the ABO

in SRA is around 10% for various loads.

4.7.2 Analysis of the effect of assignment policy on performance

From the above analysing results for channel buffer size, we assume that channel
buffer size (CBS) is 16, and a rate type (Rtype) is obtained randomly by calling a
uniform distribution. The influence of different assignment parameters is analyzed.

Figure4.16 shows the dropping probability of handoff call (CDP) is 0.024, 0.035,
0.05, 0.055 loaded at 70%, 80%, 90%, and 100% respectively for an assignment policy of
0.75. To satisfy the system requirement of 2% CDP, a sector loads 65%, 68%, 93%,
100% for assignment parameters of 1.0, 0.75, 0.5, below 0.25, respectively. Thus, an

assignment parameter of 0.5 can satisfy the required system performance.
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Figure 4.16 Call Dropping Probability in SRA vs. Load with AP
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Figure 4.17 Call Dropping Probability in ARAOC vs. Load with AP
Figure4.17 shows that the CDP equals to zero for all assignment parameters if the
sector load is less than 70%. The CDP is less than 1.5% at 90% load for all assignment
parameters. The CDP is less than 2% at 93% load for an assignment parameter of 0.5.
Since a sector system does not count the 21 channels as signaling transmission, 93 % is

considered as a full load. Therefore, the ARAOC in CDP is much better than SRA.

-91-



CEN=at: CDRx13. Okbps //
CHR=30% N P=104000
o o8 Ta=80% Tr=20% CBS=18 A

RMB=12d8B; SLL: 2% COP;
F ype: randomgenarat @
0.05
/ e AP=0. 0 /
0.03

@ AP=(). 25
—#— AP=0, §
—— AP=0. 75
0.02 / e AP=1 o//
0.01 j
i . yd

10 20 30 a0 50 80 70 ;0 30 100
Load [ %]

Blocking probability
-]
4

Figure 4.18 Call Blocking Probability in SRA vs. Load with AP

CFN=41;CDR=13.0kbps ?
°2 Ml CHR=30%: NIP=104000

Ta=80% :Tr=20% :AP=0.5
RMS=21d8B; SLT=90% :
] Ritype:randomgenerate
—a~— AP=0. 0
- AP=0. 25
—#— AP=0.5
—&3— AP=0.75
~—— AP=1.0

/
4
RIS

Call blocking probability

Load [ %]
Figure 4.19 Call Blocking Probability in ARAOC vs. Load with AP
Figure4.18 and Figure4.19 illustrate that a blocking probabilities of a new call
(CBP) is escalating as assignment parameters increased and the sector load reached up to
a certain value. Figure4.18 shows that CBP values are 0.068, 0.048 and 0.0 at 80% load,
as well as value of 0.072, 0.062, 0.02 and 0.0 at 93% load corresponding to assignment
parameters of 1.0, 0.75, 0.5 and below 0.25. Thus, assignment parameters largely affect
the CBP. When an assignment parameter is 0.5, the CBP and load factor can satisfy the

system requirement. Figure4.19 shows that the value of CBP rises as the assignment
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parameter increases. The CBP for all assignment parameters are less than 0.005 at 80%
load, and less than 0.022 at 93% load. The sector load limited by CBP of 2% is up to 95%

for an assignment parameter of 0.5.
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Figure 4.21 Network Utilization Efficiency in ARAOC vs. Load with AP
Figure4.20 and Figure4.21 illustrate that increasing the sector load is raising the
value of Network Utilization Efficiency (NUE). Figure4.20 shows that an assignment
parameter of 0.5 can obtain the best NUE (up to 78%) in all assignment parameters, and

NUE rises as assignment parameter increases. The value of NUE in Figure4.21 can
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increase to 83%. Thus, the value of NUE in ARAOC is at least 5% higher than that of

SRA.
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Figure 4.23 Average buffer overflow in ARAOC vs. Load with AP
Figure4.22 shows that the value of Average buffer overflow (ABO) increases from 0
to 0.76 as assignment parameters decreased. When assignment parameter is at 0.25 or 0.0,
the value of ABO is very large, resulting in many packet losses or retransmissions. A

value of ABO less than 10% for an assignment parameter of 0.5 is acceptable. With an
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assignment parameter of 0.5, the ABO, as shown in Figure4.23, is very small, and less

than 0.02 under 80% load, and 0.05 at full load.
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Figure 4.25 Average User Throughput in ARAOC vs. Load with AP
Figure4.24 and Figure4.25 show the relationship along with Average User
Throughput (AUT), assignment parameters and load. From the above observations, the
value of AUT in Figure4.24 decreases as the AP increases. It rounds to 68% at AP of 0.5.

When the sector load exceeds 80%, the value of AUT in Figure4.25 rounds to 75% for all
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assignment parameters, it decreases as AP increases.

From Figure4.20 to Figure4.25 above, we find that assignment parameters in SRA
algorithm have a significant influence on the system performances and QoS, whereas the
influence on ARAOC algorithm is not obvious when loading is less than 80%.

In SRA algorithm, when the assignment parameter goes up, CDP and CBP will
increase, but the ABO, AQD and AUT will decrease. In order to satisfy the system
requirement for a CDP of 2%, the sector loads 65%, 68%, 93%, and 100% by an
assignment parameter of 1.0, 0.75, 0.5 and below 0.25 respectively. Thus, an assignment
parameter of 0.5 can bring us the following results: the sector load of 93%; a CBP of
2.5%; best network utilization efficiency (i.e., up to 78%); average buffer overflow about
10%; average queuing delay around 12 packets, and AUT about 63%.

In contrast to SRA, ARAOC has a much better system performance and QoS.
Under the condition of CDP of 2%, the ARAOC, with assignment parameter 0.5, can
achieve up to 93% for the sector load, 2% for the CBP, 84% for the NUE, 3.5 % for the
ABO, 14 packets for the AQD, and 72% for the AUT.

In conclusion, all the above parameters excluding AQD in ARAOC are superior to
those in SRA. Furthermore, in order to obtain the best results, the value of assignment

parameter of 0.5 will be chosen in the following simulations.

4.7.3 Discussion of the influences of traffic classes on performances
From the analysis above, we choose channel buffer size 16, and assignment

parameter 0.5 in the simulations of this part. The influence of various rate types (traffic

class) is discussed below.
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A. Discussion on the influence of different traffic classes to system performance
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Figure 4.27 Call dropping probability in ARAOC vs. Load with Rate type (Rtype)

Figure4.26 and Figure4.27 show that the call dropping probability increases when
the sector loading goes above a certain value in the two algorithms. In Figure4.26, for
traffic class 1, 4 and 5, the CDP is separately 5.5%, 3.5% and 5% at 80% load, separately
5.7%, 6% and 7.8% at 94% load. We can see that the CDP of ARAOC in traffic classes
of 2-5 is far less than that of SRA, and less than 2% requirement at 95% load. However,

video streaming users for class 4 and 5 in SRA are dropped to 6%-8%.
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Figure 4.28 Call Blocking Probability in SRA vs. Load with Rate type (Rtype)
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Figure 4.29 Call Blocking Probability in ARAOC vs. Load with Rate type (Rtype)
Figure 4.28 and Figure 4.29 in ARAOC indicate that the best balancing point
between call dropping probability and call blocking probability. That is to satisfy the

system requirement for CDP of below 2% at full load, and to make the CBP as small as

possible.
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In contrast, both CDP and CBP in SRA for streaming class are larger than 6%. Since a
traffic class of 1 takes low transmission rate between 2.5 Kbps and 10.0 Kbps, its average
rate is 6.75 Kbps lower than the channel rate (13.0Kbps). Thus, the CDP/CBP of traffic

class 1 in both algorithms are large.

0. 08 ‘ ‘

CFN=41; CDR=13.0kbps
o 08 CHR=30% NI P=104000
Ta=80% Tr=20%
CBS=16: RMS=12dB;
AP=0.5; SLL:2% COP

\

\

A

A\N /

A\
N

0. 02 / —3E—| cad=0.7
—2r-| ond=0, 8

8-} pad=0._5

0.0t \r—-r/ / B~ oau=1.0
3

1 2

Galt diopping probstility
o
o
4

trattic ciass
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In addition, Figure4.30 and Figure4.31 clearly illustrate that CDP changes with the
traffic class. The values of the CDP in ARAOC are much better than those in SRA.

Consequently, both CDP and CBP in two algorithms are affected greatly by the rate
types of 1,4 and 5. In addition, the ARAOC can greatly lower both CDP and CBP for the
traffic classes of 2-5, and improve the system capacity.

B. Discussion of the influence of traffic classes on system performance
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Figure 4.35 Network Utilization Efficiency in ARAOC vs. Traffic with Load

Figure4.32 to Figure4.35 show the comparison of the Network Utilization
Efficiency (NUE) in SRA and ARAOC. Clearly, the values of NUE for all classes
increase when the sector load increases, and the values in ARAOC are better than those
in SRA. Here, a curve is obtained by loading only a traffic class. Since a traffic class of 1
takes low transmission rate between 2.5 Kbps and 10.0 Kbps, its average rate is 6.75

Kbps lower than channel rate (13.0Kbps). Thus, NUT of class 1 could not exceed 50%.
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C. Comparison of the Average User Throughput (AUT) in both SRA and ARAOC
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Figure 4.37 Average user throughput in ARAOC vs. Load with Rate type (Rtype)
Figure4.36 - Figure4.39 show the comparison of Average User Throughput (AUT)
vs. load with various traffic classes in both SRA and ARAOC. The AUT is not
influenced by loading factor, but it rises as traffic class increases. The average rate of

traffic class 1 is less than the transmission rate in each time-slot; consequently, the AUT
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of class 1 is low in both SRA and ARAOC. In ARAOC, since the assigned number of
channels is based on the user data rate, the AUT rises as the traffic class increases. It is
equal to 30%, 65%, 88%, 98% and 100% for traffic classes of 1- 5 respectively. In
contrast, the AUT in SRA is fixed at 30%, 80% and 100% for traffic classes of 1, 2-4 and
5 respectively. Since a traffic class of 1 takes low transmission rate between 2.5 Kbps and
10.0 Kbps, its average rate is 6.75 Kbps lower than the channel rate (13.0Kbps).

Therefore, the AUT of traffic class 1 for the both is very small.
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Figure 4.39 Average user throughput in ARAOC vs. Traffic class with Load
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D. Discussion of the influence of traffic classes on user performance in both algorithms
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Figure 4.41 Average buffer overflow in ARAOC vs. Load with Traffic class

Figure4.40 to Figure4.41 show the comparison of Average Buffer Overflow
(ABO) vs. Load in both SRA and ARAOC respectively. When ABO and VBO increase,
they result both in bigger error ratio for real-time call, and in larger retransmission ratio
for non real-time traffic. When the sector load increasesv in SRA, the ABO is around

12.5% for class 1 to 4, and around 15% for class 5. In ARAOC, when the sector load
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increases up to 80%, the ABO increases slightly to 1.5% for class 1 to 4, and 4% for class
5. When the sector reaches its full load (94%), the ABO is below 4%, 5%, and 7.5% for
traffic class 2 & 4, 3, and 5, respectively. Therefore, ARAOC is much better than SRA in

satisfying the requirements for packet loss and error rate.
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Figure 4.42 Average buffer overflow in SRA vs. Traffic class with Load

£
o CFN=41;  COR=13. Okbps ~&—10ad = 0. 1
CHA=30% 18 P=104000 —o~load = 0,4
0.08 {1 Ta=80% Tr =20% -
BS=16; RVB=21dB; ~¥—load = 0.7
SLT=90%  AP=0.5 —5~1oad = 1.0
0.07

o
a
k3

Average buffer overflow
o o
&
E<

N
\

0.02 / /

0. 01 k/ e o .—d

1 2 3 4 E
Fate type

Figure 4.43 Average buffer overflow in ARAOC vs. Traffic class with Load
Figure4.42 and Figure4.43 show the comparison of Average Buffer Overflow

(ABO) vs. traffic class in both SRA and ARAOC, respectively. From the observation, the
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ABO of ARAOC is much better than that that of SRA. Especially, when the sector load is
below 80% for ARAOC, the ABO is under 2% for traffic class 1 to 4, as well as 4.5% for
the class5. The ABO can satisfy the requirements of the system performance.

E. Discussion of the influence of traffic classes on user QoS
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Figure 4.44 Average queuing delay in SRA vs. Load with Rate type (Rtype)
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Figure 4.45 Average queuing delay in ARAOC vs. Load with Rate type (Rtype)
Figure4.44 to Figure4.47 show the comparison of the variance of the average

queuing delay (VQD) & average queuing delay (AQD) vs. Load in both SRA and
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ARAOC. The AQD & VQD for both the algorithms are unchanged by the sector load;
but they increase as the traffic rates escalate. When the traffic class is equal to 5, the
AQD & VQD of SRA is less than those of ARAOC. In the ARAOC, the AQD of traffic
class 2 for ongoing voice call is about 2 packets (equal to 2*4.615ms = 9.23 ms), and the
AQD of traffic class 4 for ongoing video call is about 22 packets or 101.52 ms. The

values are acceptable as a real-time call.
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Figure 4.46 Variance queuing delay in SRA vs. Load with Rate type (Rtype)
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Figure 4.47 Variance queuing delay in ARAOC vs. Load with Rate type (Rtype)
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However, the AQD & VQD of ARAOC in traffic classes of 2 & 3 are better than

those of SRA. It satisfies the requirements of QoS for real-time services.
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Figure 4.49 Average queuing delay in ARAOC vs. Traffic class with Load
Figure4.48 and Figure4.49 show the comparison of average queuing delay vs.
Traffic classes in both SRA and ARAOC. Clearly, when the traffic class increases from 4
to 5, the AQD of SRA increases more slowly than that of ARAOC. However, the AQD
of ARAOC in traffic classes of 1, 2 and 3 also increases much slowly than those of SRA.

The AQDs in ARAOC for traffic classes of 2 and 4 are corresponding to 2 and 22 packets.
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From the observation of Figure4.26 to Figure4.49, we analyze the influence of
various traffic classes on the performance.

The CDP of ARAOC in traffic class 2 to 5 are far less than that of SRA, and less
than 2% requirement at 95% load. Similar effects with CDP also apply to the CBP: the
ARAOC can greatly lower both CDP and CBP for the traffic classes of 2-5. Thus it can
improve the system capacity.

The NUE of SRA at 94% load is 50%, 65%, 68%, 76% and 80% for traffic class of 1,
4, 5, 3 and 2 respectively. Hence, the traffic class of 1, 4 and 5 will deteriorate system
performance. Compared with the NUE of SRA, the NUE of ARAOC has a higher value.
At a load of 94%), it can reach up to 47%, 80% and 84% for a traffic class of 1, 5, as well
as 2, 3 and 4. Therefore, ARAOC can greatly improve the system performance.

The ABO of SRA has bigger values of 12% and 15% corresponding to the traffic
classes of 2 - 4 and 5. The larger ABO results in more data error rate for ongoing calls,
and a larger retransmission rate. In contrast, when the sector load increases up to 80%,
the ABO of ARAOC is below 1.5% for class 1 to 4, as well as 4% for class 5. Otherwise,
it is below 4%, 5%, and 7.5% at 94% load for traffic class 2 & 4, 3, 5, respectively.
Therefore, ARAOC is much better than SRA in satisfying the requirements for packet
loss and error rate.

When the traffic class increases from 4 to 5, the AQD of SRA increases more slowly
than that of ARAOC. However, the AQD of ARAOC in traffic class of 1, 2 and 3 also

increases more slowly than that of SRA.
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Chapter 5

Summary and Future Work

5.1 Conclusion

The first objective of this thesis is to investigate the relationship between the
network capacity and the quality of service in order to increase the utilization of radio
resources. The second objective is to develop algorithms for system to manage the radio
resource efficiently, and to control call admission, overload and congestion. The final
objective is to investigate the influence of various parameters, such as various traffic rates;
several channel buffer size, and different channel assignment parameters.

In order to accomplish the research objectives of this thesis, we have proposed
dynamic co-channel interference algorithms to estimate Signal-to-Interference Ratio (SIR)
for each channel based on cell cluster size of 1 and 1/3 and actualize SIR based on
measurement at the mobile terminal. Furthermore, a dynamic channel allocation and
frequency hopping schemes for every four multi-frames were developed to reduce co-
channels interferences.

We have also proposed an adaptive resource assignment along with overload
control (ARAOC) algorithm, and developed a new congestion control scheme. Finally,
we have shown the results simulated by both SRA and ARAOC algorithms and
investigated the performance of the system and the QoS of users.

In the proposed dynamic co-channel interference algorithms for the downlink, the
cell cluster size and co-channel interferences were considered. When cell cluster size is

1/3, the fixed channel allocation algorithm is not available, but the dynamic channel
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allocation and frequency-hopping algorithm is available because it almost can avoid the
worst case. When cell cluster size is 1, both the fixed and dynamic algorithms are
available. Moreover, the dynamic algorithm can support higher modulation scheme and
data rate due to better SIR.

In the proposed ARAOC algorithm, a new congestion control scheme has been
developed to control user data rates, packet loss rate as well as real-time call delay. The
consideration of algorithms can not only improve the capacity, but also decrease the call
dropping rate, packet loss rate and the quality deterioration of the on-going calls possibly
caused by admitting new calls.

In order to investigate system performance and the QoS of users, we apply both
SRA and ARAOC algorithms to implement simulation results in GSM/GPRS systems.

By the simulation results of probability of cail dropping and blocking in ARAOC
algorithm, we can see that the call dropping probability achieves under 2% at full load,
and call blocking probability is reduced to 4.5% for traffic classes 2-5. Both CDP and
CBP in ARAOC are much better than those in SRA algorithm. Thus, ARAOC can greatly
increase system capacity.

Simulation results of network utilization efficiency (NUE) show that NUE achieves
above 80% on traffic classes 2-5 for user data transmission, in addition to 6.4% for
signalling transmission in ARAOC algorithm. NUE in ARAOC is higher in value than
that in SRA. Therefore, ARAOC can improve the system performance.

From the average buffer overflow (ABO) observation, we can find that ABO of
ARAOC is 10 times lower than that of SRA when the load is less than 80%. Especially,

ABO of ARAOC is under 4% at full load (94% of load) for real time traffic classes 2 and
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4. The simulation results of average queuing delay (AQD) show that AQD of ARAOC in
traffic classes 1,4 and 5 is not better than that in SRA, but AQD of ARAOC inclass 2 &
3 is much better than that of SRA. Specially, the AQD of ARAOC in class 2 (real time
voice) is about only 2 packets (2*4.615ms=9.23ms). Therefore, ARAOC can greatly
improve the QoS of users and systems for real-time services and it can guarantee the
required QoS for all traffic services.

By the above comparisons and discussions, we can conclude that the ARAOC
produces higher system capacity, as well as better performances of users and the system.
Especially, when the major traffic in the system is bursty data traffic, network
performance should be much better. We use new schemes to control congestion. Our
study indicates that adaptive assignment algorithm for various traffic services may
significantly improve the performance of the network.

Most recent mobile systems (such as IS-136 and GSM) provide voice service with
tolerable call dropping probabilities around 2%, speech rate at 13 kb/s, data rate up to 9.6
kb/s. To compare these integrated data services with GSM, we assume that their
characteristics and environments are similar to those of GSM systems, such as channel
data rate of 13.0kb/s, modulation of 0.3 GMSK and call dropping probability of 2% etc.
Then we investigate the system capacity and performances introduced by various services
in both SRA and ARAOC algorithms. Therefore, we can infer that the system, if uses

different modulations (GMSK and §-PSK) and channe! data rates can support higher user

rates and system capacity.
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5.2 Future work

In the proposed dynamic co-channel interference algorithms along with frequency
hopping and channel allocation, the modeling of adjacent co-channel interferences is
based on a homogenous network with regular hexagonal cells. In reality, the cell
geometry and the cell size in the practical network might not be the same for all cells. It
would be interesting and useful to model the effect of channel allocation with different
cell geometry and cell size.

Even though the co-channel interference for each channel has been estimated in
both the worst and average cases for downlink, the measurement of its actual SIR has not
been modeled. For a complicated metropolis radio network, it is necessary to model
various environment including multi-path loss, fading etc.

In the proposed ARAOC algorithm, variability of transmission rate for each user
has been considered, but both incremental redundancy (IR) and link adaptation (LA)
between coding and modulation schemes have not yet been considered. ARAOC
algorithm results in low system capacity and high dropping rate for a traffic class with
low data rate. Hence, it is necessary to do link adaptation in order to improve the system
performance.

In our simulation, only downlink performance is investigated. Since the
environments in downlink may not be exactly the same as those in uplink, it is necessary

to simulate both uplink and downlink in the future.
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