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ABSTRACT
Spectral Bounds and Comparison Theorems

for Schrodinger Operators

Qutaibeh D. Katatbeh, Ph.D.
Concordia University, 2003

One of the most important problems in quantum physics is to find the energy
eigenvalues for Schrodinger’s equation. This equation is exactly solvable only for a
small class of potentials. For one-particle problems numerical solutions can always
be obtained, but in the absence of exact solutions, the next best thing is an analytical
formula for an approximation, such as energy bound. In this thesis we use geomet-
rical techniques such as the envelope method to obtain analytical spectral bounds
for Schrodinger’s equation for wide classes of potential. Our geometrical approach
leans heavily on the comparison theorem, to the effect that V; < V5, = E; < Ej.
For the bottom of an angular-momentum subspace it is possible to generalize the
comparison theorem by allowing the comparison potentials Vi and V2 to cross
over in a controlled way and still imply spectral ordering E; < E;. We prove and
use these theorems to sharper some earlier upper and lower bounds obtained using
the ‘envelope method’. In chapter two we introduce the envelope method that is
used in the subsequent chapters. In chapter three we study the Hellmann potential
in quantum physics: we prove that discrete eigenvalues exist and we obtain formu-
lae for upper and lower bounds to them. In chapter four, we prove the existence
of a discrete spectrum for the cutoff-Coulomb potential, and we obtain upper and
lower-bound formulae. In chapter five we prove the monotonicity of the wave func-

tion 1(r) for the ground state in the case of attractive central potentials in N
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N spatial dimensions. By using this result we establish some generalized compari-
son theorems in which the comparison potentials intersect. We use these theorems,
together with the sum approximation, to improve the upper and the lower bounds
obtained earlier with the aid of the envelope method. In chapter six, we study the
representation P(q) for the eigenvalues E(q) of the operator H = —A + sgn(q)r?
defined by E(q) = minr>o{f%—)-i +-sgn(q)r?} . It had earlier been proved that P(q)
is monotone increasing. We strengthen this result for the ground state (and the
bottom of each angular-momentum subspace) by using the generalized comparison
theorems to prove that a new function Q(q) = Z(q)P(q) is monotone increasing,
where the factor Z(q) is monotone decreasing. Thus we know that P(q) cannot
increase too slowly: this in turn allows us to obtain same improved bounds for the
eigenvalues E(q) in N dimensions. In the last chapter we analyse bounds for the
Coulomb plus power-law potentials obtained by variational methods and the sum

approximation.
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Chapter 1

Preliminaries

1.1 Introduction

We study the Schrodinger differential equation H = Ev and regard the
Schrédinger operator H = —A + V as an operator in the Hilbert space L*(RN).
We now give a short synopsis of Hermitian, symmetric, and self-adjoint operators
in general Hilbert spaces. To this end we let H denote a Hilbert space with inner
product (-,-), where (-,-) : H x H — C satisfies the properties of linearity and
sesquilinearity with respect to the first and second variables. This is indeed the case

for H = L?*(RYN), where the inner product is given by (f,g) = [pn f(r)g(r)d¥r.

When dealing with bounded linear operators in Hilbert spaces, the bounded-
ness of these operators permits the extension of these operators to all of H . All we
need to do is to define these operators by continuity in the closure of their respec-
tive domains of definition, and zero on the complement of these closures, in case the
domain of definition fails to be dense in ‘H. Many of the linear operators of par-
ticular interest in quantum mechanics are unbounded. It follows that the domains
of definition of these unbounded operators cannot be the entire Hilbert space, as
is clearly indicated by theorem of “Hellinger-Toeplitz” [2] to the effect that if the

operator H is defined on all of H, then H is bounded.

Let < Hi,(,-)1 > and < Ha,(-,-)2 > be two Hilbert spaces, where it is un-
derstood that (-,-); and (-,-)2 are the inner products of H; and H; respectively.
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Let the operator T from Hilbert space H; into Hilbert space Hy be defined as
follows. The domain of definition of the operator T', denoted by D(T), is a lin-
ear manifold in H; and the transformation T : D(T) — ‘Hy is linear. In case
D(T) = Hy , we say the operator is a linear operator from H; into s, however,

D(T) C H; is the general situation.

Without loss of generality, we assume that H; = Hy = H, and we will define

some of the basic concepts for unbounded operators:

Definition: The graph of the linear operator T' in the Hilbert space H is the set

of all pairs
N(T) = {{y, Ty} | v € D(T)}

and is a submanifold of H x H.

An operator T is closed if its graph ['(T') is closed in the product topology of the
Hilbert space Hi X Ha . This means that if f, is a sequence in D(T'), such that
fn — f and T(f,) — g, then this implies that (f,g) is an element of the graph
[(T) and f is an element of D(T) and T(f) =g (i.e. I(T) = I'(T) = ['(T) ).
Definition: An operator T is formally-adjoint to S if (T'f,g) = (f,Sg) Vf €
D(T), g € D(S).

Due to the fact that there could be many operators S formally adjoint to T , we
are interested under what conditions does the operator have only one adjoint. This
is iff D(T) is densein Hj.

Definition: The adjoint T™ of the linear operator T in the Hilbert space H is

2



defined as
D(T*) = {3 € H: 34* € H satisfying (T¢,¥) = (¢,¥") V¢ € D(T)} and T* 4 = o™

Definition: An operator T in H is called Hermitian if D(T) ¢ D(T*) and
Top = T Vab € D(T).
Definition: An Hermitian operator T' of H is positive if (¢, T%) > 0V € D(T').

Definition: An operator T is symmetric if it is densely defined and (Tf,g) =
(9, Tf)V f, g € D(T).

Definition: An operator T in H is called self-adjoint if D(T) = D(T™) and
Tep = T* Vep € D. |

Now, let us combine a concept of self-adjointness with that of the closure T of an
operator T', namely we say that T is essentially self-adjoint if T is self-adjoint,
iie. T =T. Since we are dealing in this thesis with the symmetric operator H =
—A+V, we are interested in the spectrum o(H) of our operator H , in particular
the discrete o4(H) and continuous spectrum o.(H), where o(H) = oq(H)Uo.(H).
Nevertheless, in this thesis we shall be dealing with the discrete spectrum only, which
has significant advantages. Namely, we can easily write the spectral decomposition
of the operator provided a self-adjoint extention of it can be found. Moreover,
the arduous construction of the spectral projectors ranging over the continuous

spectrum is avoided.
Now, we define the discrete, continuous, and essential spectrum as follows:

Definition: A number E is called an eigenvalue of the operator T, if there exists

3



a non-zero v € D(T'), such that, T¢ = FE4.

Definition: The resolvent operator R(E,T) of T in H at E is R(E,T) =
(EI -=T)™',and p(T) = {E € C | R(E,T) € B(H)} is called the resolvent set
of the operator T, where B(H) denotes the Banach-algebra of bounded linear

operators.
Definition: The spectrum of the operator T is C \ p(T) .

Definition: The essential spectrum o.(T) , of a self-adjoint operator T is the set of
points in o(7T’) , that are either accumulation points of o(T") or isolated eigenvalues

of infinite multiplicity.

Definition: The complement of the essential spectrum in the spectrum space is

called the discrete spectrum, in other word oq(T") = o(T) \ 0(T) .

Definition: The ratio Q&’%l, where ¢y € D(T) is called the Rayleigh quotient.

Throughout this thesis we shall assume that the operator T' is semi-bounded below,
that is to say that, there exists k¥ € R such that % >k, Vi € D(T) . In another

words, the Rayleigh quotient is bounded below.

Definition: The function f is of bounded variation iff sup{} . ,|f(\:) —

F(iz1), P ={Xo,A1,...,An} is any partition of any finite interval of R } < oo.

In most cases in quantum mechanics the operators considered are at best sym-
metric on the appropriate Hilbert space H , in our case L2(RY). For spectral de-
composition to hold for such a symmetric operator T, we must have that T' posses
a self-adjoint extention, which extention we also denote by T again. Such a spec-
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tral decomposition of a self-adjoint T" means the following: There exists a unique A
parameter family of projections operators Py, increasingin A (u < A — P, < Py)
on the Hilbert space H satisfying limy—,—oo P» =0, limy— 400 Px» = I and P4 =
Py, in the strong sense VA € R, i.e. limg—g Prysf = Pof, Vf € H and V) € R.
Now the Stieltjes integral representation of T is T = fj;o AdPy. This represen-
tation is understood to mean (T'f,g) = f:r:: Adr(Prf,9), Yf € D(T), Vg € H,
where the function (in variable X ) of bounded variation acting as the integrator is
(Pxf,g). All this spectral decomposition presupposes, that the operator T posses
a self-adjoint extension . Because we are dealing with semi-bounded operators on
L*(RY), we are guaranteed the existence of a self-adjoint extension of 7' by means
of Theorem I.1. For a semi-bounded operator S with lower bound v we define
slf,g] = (Sf,g) for f, g € D(S), and H, is the completion of the domain D(S)
under the norm ||.||s defined by (f,9)s = (1=)(f,9)+slf, gl (Iflls = [I£I1) [I-lls
is compatible with the ||.|| in the sense of: if {f,}3°.; is a ||.||- Cauchy sequence
in D(S) with limu,—o||fn]l = 0, then limp—eo||fnlls = 0. This compatability
condition always exists for a semi-bounded operator, as guaranteed by Friedrichs’

extension theorem:
Theorem 1.1.: [1]

Let S be a semi-bounded symmetric operator with lower-bound « . Then there
exists a semi-bounded self-adjoint extension of S with lower-bound +. If we define
s(f,gl = (Sf,g) for f, g € D(S), and H; as above, then we have: The operator
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T defined by
D(T) =D(S*)NHs and T'f = S*f for f € D(T)

is a self-adjoint extension of S with lower bound ~. The operator T is the only

self-adjoint extension of S having the property D(T) C H,.
Now we are ready to introduce the min-max principle for the discrete spectrum.
1.2 Min-max principle and spectral characterization

The Rayleigh-Ritz theorem is the most notable method used to characterize
and approximate the discrete eigenvalues of a self-adjoint operator. It restricts the
operator of interest to a finite dimensional subspace, then the eigenvalues of the
original operator are approximated by eigenvalues of the constrained operator. Let
T be a self adjoint operator ‘semi-bounded below’ with eigenvalues {Ey, Ea, ...}
such that F; < F3 < .... We will explain how to use Rayleigh-Ritz method to find

upper bounds:

Theorem 1.2.: (Rayleigh-Ritz) [3]

For an arbitrary function ¢ in D(T) the expectation value (mean value) of
T in the state 7 is such that

_ ®,Tv)
¥, %)

where the equality holds if and only if % is the eigenstate of T' with the eigenvalue

E

> Fy, (1.2.1)

E;.
In the more general case the trial function is chosen as a linear combination of a
finite number of linearly independent functions ¢; :

6



b= cidi
=1

The restriction of the eigenvalue problem of T to the n-dimensional subspace D,
can yield interesting approximate solutions. If D,, = Span{¢;, ¢2,...,¢»} C D(T),
then in a sense, we reduce the problem to a matrix problem TC = £C where
T is the n x n matrix T;; = (¢;,T¢;) with eigenvalues {&1,&,...} such that

&1 <& ... <&,. We obtain upper bounds using the following:
Theorem I.3.: (Generalized Ritz Theorem) [3]
(1) E; < $i(n), i=1,...,n provided the E; exist.

(2) limy,— o0 &M Z E;, provided span{¢, : n € N} is densein D(H).

i
The min-max principle for the self-adjoint operators is a useful characterization
of the eigenvalues of the operator. In fact it is the foundation of the Rayleigh-

Ritz method for eigenvalue approximation. We state the min-max principle in the

following theorem:

Theorem 1.4.: [3]

Given a complex, separable Hilbert space H with norm (., .)% , we consider a
self-adjoint operator T' in ‘H bounded below with spectrum E,t, > E, (allowing
for multiplicities). If D,, denotes the family of all n-dimensional subspaces D,, of
D(T) ,let D+ be the orthogonal complement of D,, in D(T) . Then the eigenvalues
of {E.}nen can be characterized in the following ways:
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(v, Tp)

Eo — mi 1.2.2
B we (DD} (0, ) (t22)
En — sup (1/)1 T¢) (123)

2P yes Bbam© @ 9)
We are interested in the discrete spectrum of the Hamiltonian H = —A 4V, which
is known as a Schrodinger operator. The following example is an application of the
Rayleigh-Ritz method for Schrodinger operator in one dimension.

Example: (Harmonic Oscillator) Consider a one dimensional harmonic oscillator,

given by
d2

H = —d—x—j +w2$2,

we apply the Rayleigh-Ritz method to obtain a bound for its ground state eigenvalue

E;. Let o = e %" ¢ D(H), where a > 0, then for each o we have

= min

a>0 ("/’aa 'Qba)

thereafter we optimize over a the expression

Hy = 2ae™o (w?z — 4a2)x2e—°‘1‘2

now computing (¢¥a, Hq) we find that,

+o00
(Yo, Hpo) = / (6“0”52 (ZOze—az? + (W — 4a2)x26_a‘”2)d:c

00



w2—

4o
= 2o+ T)(iﬁaﬂ/)a)

and finally substituting into the Rayleigh-Ritz quotient we find that for a« =& = 7,
E) <&(a) =EWw/2) =w

We know that the eigenfunction for the ground state is ¥ = %" ¢ D(H) with
the eigenvalue w. Since in this case v = 1,/2, the trial set includes the ‘lowest’

eigenfunction, which is recovered by the minimization.

We shall make extensive use of the set C§°(RY) of infinitely differentiable func-
tions having compact support .A further utilized notion is that of local integrability

of a function, in particular L2 _(RY) = {f(r) measurableon RY : [, |f|?d"r <

loc

00, V compact subsets A of RV}. Their use is in the following useful theorems:

Theorem L.5.: [3]

For non-zero V € C§°(R), — j’;g +AV has a negative eigenvalue for all positive

A if and only if

+oo
/ V(z)dz < 0. (1.2.4)

—00

Theorem 1.6.: [4]

If VeL? (R) and satisfies

loc

a+1
/ |V (z)|*dz — 0, as |a| — oo, (1.2.5)

9



then the essential spectrum ae(—d—dg% +AV) =[0,00).

The spectrum of a self-adjoint operator is always a subset of R. However, because
the spectrum o(H) is a union of discrete spectrum and the essential spectrum (as
already stated), we would like to consider how the essential spectrum brings about

conditions on discrete spectrum as, for instance, the following:
Theorem 1.7.: [4]

If T is self-adjoint, g.(T) C [0,00) and there is a % € D(T) such that

(T,v) <0, then T has a negative eigenvalue.

For example if V(r) = —1/r%2 then 0.(T) = [0,00) and if we choose 1 = ~9-3"
then (9, (—A + V)¥)/(3,4) = —0.3621 < 0 this implies (using the previous theo-
rem) that the Hamiltonian Hv = —A —7r7%24 has a negative discrete eigenvalue.
Moreover, we know by the Rayleigh-Ritz theorem that this number is an upper
bound for the ground-state eigenvalue EX = —0.6297 . In chapters VI and VII we

discuss in detail how to compute upper and lower bounds for discrete eigenvalues

for the power-law potentials V(r) =sgn(q)r? in N dimensions.

Theorem 1.8.: [4]

For Vi, Vo € L2 (R) such that

loc

atl
sup/ [Vi(2)|?dz < oo (1.2.6)

and
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a1
/ IVa(2)|2dz — 0, as |a| — oo, (1.2.7)

we have

2
g

e(_ag + Vl + ‘/2) - Ue(*A + Vl)-

We note that if we add Va(r) = ¢|z|™, 0 < a < 3, to any Hamiltonian H =
—A + V1 the essential spectrum is unchanged because Va(x) satisfies (1.2.7).

Theorem 1.9.: [4]

If o.(H) C[0,00) and V(z) <0 for x> a, for some a > 0 with

/WV@Mx:—m, (1.2.8)

then H = — d—d;g + V has an infinite number of negative eigenvalues.

The quadratic form associated with Schrodinger operator H = —A +V is q(f) =
(=Af N+ VL, [), Vf € D(q). We look at the quadratic form as an entity which
yields a lower or upper bound of the operator if such bounds exists. This finds its

application in the following theorems:

Theorem I1.10.: [3] Let V be a locally bounded positive function with V(z) — oo
as £ — 00. Define —A+V as a sum of quadratic forms, then —A + V' has purely
discrete spectrum (e.g harmonic oscillator).
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Theorem I.11.: (3]

" Let V be a non-zero negative function in C$°(RY) (N = 1 or 2). Then
the Schrodinger operator —A + AV acting on L?(RY) has at least one negative

eigenvalue for all A > 0.
Theorem 1.12.: [3]

Let V € L}OC(RN ), be bounded from below and suppose that V — oo at

infinity. Then H = —A+V defined as a sum of quadratic forms has purely discrete

spectrum and a complete set of eigenfunctions.
Theorem 1.13.: [3]

If VelLl (RN) is positive and

loc

lim V(z) = oo, (1.2.9)

|| —0
then H = —A + V has nondegenerate strictly positive ground state.
Theorem 1.14.: (The Comparison Theorem [5,6,7,8,9])

If S, T are self-adjoint operators such that S < T, in the sense that D(S) C

D(T) and (v, Sv) < (¢, Tv¢) for all ¥ € D(S), then the eigenvalues of S are

not larger than the corresponding eigenvalues of T, i.e
En(S) < En(T), n=1,2,3, ..., (1.2.10)

where FE,(S) denotes the n-th eigenvalues of S in ascending order.

As a special case we have the following comparison corollary for our operator H =
-A+V:

12



Corollary I.1.: [5]

If S=-A+V;, T =-A+V, and V} < V5 (as in Figure 1.1), then
E.(S) < E,(T).
Theorem 1.15.: (Weyl’s Theorem for a Sum of Operators) [3,10,11]

If for the sum S + T of two self-adjoint operators § and T, defined on
D(S) 0 D(T), we denote by {Ex[S]}%2, and {Fi[T]}$°, the discrete eigenvalues

of § and T respectively, then
Exy1-1[S +T) > Ex[S] + E[T)]. (1.2.11)

This result is weak [12] for k,I > 1.
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Figure I.1 Consider H; = —A+V; and Hy = —~A + V5. The comparison theorem

implies that E,(H,) < E,(H), n=1,2,3,....
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Chapter I1
Geometrical methods

Many different approaches have been proposed to solve Schrodinger’s equation
approximately, such as the large-N approximation, and JWKB approximation and
the method of potential envelopes. The envelope method has advantages over other
methods because it provides simple and accurate formulas for upper and lower
bounds to the eigenvalues. The method of potential envelopes was first introduced in
1980 by Hall [1]. This method provides us with analytical bounds for the spectrum
of Schrodinger’s equation for wide classes of potential.

I1.1 Schridinger’s equation in N dimensions:

We consider a particle which movesin RY subject to a central potential V(r),

r =||r|] and is governed by Schrédinger’s equation

Hap = —Ag(r) + V(r)p(r) = Ey(r), r =||r|]| and r € RV, (IL.1.1)

We can separate the Laplacian operator into a radial and an angular part:

a 1 -
A=R- ;EL(HQ, .., 0N) (I1.1.2)
where
. 02 (N-1)0
k= or? t r or
and ﬁ(()g, ...,0n) is the angular momentum operator in N dimensions. We sep-

arate the radial and angular parts by substituting ¥(r) = R(r)Y (02,...,0n) to
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obtain,

r? . 9 Ly
ERR“{“T (E-V(r)) = v =L+ N-2) (I1.1.3)
where 17(02, ...,0n) represents the spherical harmonics in N dimensions. Now

we separate the radial part R(r) (where R € L*(R*,rN~ldr)) and the angular

momentum part Y to get

{——((,;?:2 n (Nr— 1) 5@;) L ﬂf:;’_“z) +V)IR() = ER()  (IL1.4)
and
LY (0s,...,08) = £(+ N —2)V(0s,...,0n). (I.1.5)

We note from equation (II.1.5) that the spherical harmonics in N dimensions are

A

eigenstates of the angular momentum operator L with eigenvalues £(¢ + N — 2).

We can reduce the radial part to simpler form by writing R(r) = 20— » > 0

N=1)/2 3

and ¢(0) =0, to obtain

€+ N/2—3/2)(£+ N/2 —1/2)

2

—¢"(r) +( + V(r)g(r) = E¢(r). (11.1.6)

The radial function ¢ € L%(R*,dr) is normalized according to 15 ¢(r)2dr = 1.
The eigenvlaue FE = E,ng in N > 2 spatial dimensions has degeneracy 1 for £ =0

and, for £> 0, the degeneracy is given [2] by the function A(N,¥¢), where

AN, &) = (6 + N =2)(¢+ N —3)/{8(N =2)1}, N>2, ¢>0. (ILL7)
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I1.2 Kinetic potentials:

We shall need some established results concerning ‘kinetic potentials’ {3] and
‘envelope theory’ [4, 5]; which rely strongly on the comparison theorem discussed
in chapter 1. In order to fix ideas and simplify the presentation, let us suppose that
E is a discrete eigenvalue at the bottom of the spectrum of H = —A+V in N
dimensions. It follows that E = inf(¢, Hy) where ¢ € D(H), and ||[¢| = 1. We
perform the total minimization in two stages: first we constrain the process by fixing
the mean ki_netic energy (¢, —Av) = s, and then we minimize over s > 0. The
mean potential-energy function under the constraint is called the ‘kinetic potential’

V(s) associated with the potential V(r). Thus we have

Vis) = %lgfm ¥, Vy) = Ezrg(r)l{s+V(s)}. (I1.2.1)
(¥, —Ay)=s

The variational definition of the kinetic potentials implies that (i) ¢V (s) = ¢V (s),
and (ii) V(l)(s) < V(z)(s) = FW < E@, Kinetic potentials can be defined [3] for
higher eigenvalues and they can then be reconstructed from ‘energy trajectories’,
the functions which describe how the eigenvalues vary with the coupling parameter

v > 0. We have in general for coupling v > 0
H=-A+vf(r) = Ene = Fre(v) (I1.2.2a)
and
s = Fpe(v) —vF.,(v), f.(s) = F,(v). (I1.2.2b)
The relationship F(v) < f(s) is essentially a Legendre transformation [6]
{v,F(v)} — {s,f(s)} since F(v) is concave and f(s) is convex, in fact we
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have [3] F”(v)f(s) = —1/v3. The main purpose for this two-step reformulation of
‘min-max’ is that certain spectral approximations are very effectively developed in

terms of kinetic potentials. We shall consider next the ‘envelope approximation’.

I1.3 Envelope method

We consider Schrodinger Hamiltonian of the form

H=-A+of(r), v>0, (I1.3.1)

where f is an attractive central potential and v a coupling constant. These eigenen-
ergies are ordered according to FEp¢ > Ene, n > n'. The method of potential
envelopes is a technique for approximating the energy trajectories of Schrodinger
equation (II.2.2a). Envelope theory relies on the envelope representation and vari-
ational characterization of the eigenvalues. Consider a smooth function f(r), any
tangent line to f can be expressed in terms of the linear potential » by the fol-

lowing: we define

fO@) = A+ Br, (I1.3.2)

where A, B are constants depending on the point of contact r =t¢. In fact,

A(t) = f(t) — tf'(t), and B(t) = f'(t). (I1.3.3)

As shown in Figure I1.1. We thus have an envelope representation for our potential,
namely,

f(r) = Envelope, {f®(r)}. (I1.3.4)
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Now, if f has definite convexity, say [ is convex (as in Figure I1.2), then each
tangential linear potential f(®)(r) will lie beneath f(r) and, by using the compar-
ison theorem, we see that —A 4 vf® (r) has eigenvalues which are lower bounds

to those of the required eigenvalue problem —A + vf(r).

Now, we can generalize this idea by using a change of variables as follows,

f(r) = g(h(r)) (IL.3.5)

where g is a smooth increasing transformation, and we shall assume that g is

concave (g” < 0). In fact, we will have

f(r) = g(h) = Envelope,{g‘?(h)} (I11.3.6)
as in Figure I1.3, and
g (h(r)) = A(t) + B(H)h(r) (11.3.7)
with
A(t) = g(h(?)) ~ h(t)d' (R(¢)), B(t) = g'(h(t)). (I1.3.8)

The min-max theorem implies

—A+vf(r) < ~A+v(A+ Bh(r)). (11.3.9)

Let Hp¢(v) be the exact eigenvalues of vh(r), then using the min-max principle
we will have
Ene < vA(t) + Hue(vB(1)). (I1.3.10)
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The best upper bound is given by
EU = min{vg(h(t)) — vh(t)g'(h(1)) + Hne(vg'(R(1)))} (11.3.11)

Now, we can state the following theorems which formulate spectral bounds based
on the approximation f(s) ~ g(h(s)):
Theorem I1.1.: [7]

Suppose that f(r) = g(h(r)) and g(h) is monotone increasing, then

(2) g(h) is convex = f(s) > g(h(s))

(b) g(h) is concave = f(s) < g(h(s)).
Theorem I1.2.: 7]

If g(h) convex = Epg > mingso{s +vg(hne(s))}.

If g(h) concave = E,n¢ < mingso{s + vg(hne(s))}.

Now we discuss well-known class of potentials; the power-law potentials in N
dimensions and see the connection between the kinetic potentials and a certain

function P which we shall study in this thesis.
II.4 Power-law potentials in quantum mechanics: P(q)

In this section we simplify the spectral representation by including the potential

f(r) itself in the formulae: we effect this by a change of variables f(s) = f(r).
Epne = m>i(r)1{s + v fne(s)} (11.4.1)
we will obtain new formulation for the energy in terms of the potential f(r),

Ene = min{ K7 (r) + vf(r)}, (11.4.2)
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where

KD ) = (F of)(r).

(I1.4.3)

This function is known exactly for certain potentials. For example, we consider

f(r) =sgn(q)r? pure powers in N dimensions, we find that [5]

K@ @) = (P(g)/r)?,

where

N e " Bt " s

2+q 2+4+q

Specifically, we have

Poe(=1) =(n+£€+ N/2-3/2), N >2,

and

Poe(2) =(@2n+€+NJ/2-2), N>2,

and in one dimension (keeping n = 1,2,3,...)

Pa2) = (n - %), N=1.

(I1.4.4)

(11.4.5)

(11.4.6)

(IL.4.7)

(11.4.8)

Therefore, we may represent the discrete spectrum of these Schrédinger operators

by means of the P function. In [4] it was proved, by writing one power-law potential

as a convex or concave transformation of an other and using envelope theory, that

P(q) is monotone increasing . Such results derived by envelope theory thus lean on
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the fundamental comparison theorem of quantum mechanics. Further analysis and
new results concerning the power law-potentials and the corresponding P function
in higher dimensions, one obtained in chapter VI: the new results are found by use
of a ‘refined’ comparison theorem in which the comparison potentials are allowed
to intersect in a controlled fashion; this leads to sharper estimates for the power

spectral function P(q).
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Figure II.1 The tangential potential V¥(r) = a(t) + b(t)h(r) to the potential V(r)

using the base potential h(r) =r, where a(¢) and b(t) are given in (I1.3.3).
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Figure I1.2 The family of the tangential potentials used in (I1.3.6) to obtain lower

bound to the exact eigenvalues.
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Chapter III
Spectral bounds for the Hellmann potential
In this chapter the method of potential envélopes is used to analyse the bound
state spectrum of the Schrodinger Hamiltonian H = —A + V(r), where V(r) is
the Hellmann potential given by V(r) = —A/r + Be ™" /r, A and C are posi-
tive constants, and B can be positive or negative. We established simple formulae

yielding upper and lower energy bounds for the energy eigenvalues.

I11.1 Introduction

The Hellmann potential V(r) given by
V(r) = —A/r + Be=°"/r (IT1.1.1)

has many applications in atomic physics and condensed-matter physics [1-11]. The
Hellmann potential, with B positive, was suggested originally by Hellmann [1-2] and
henceforth called the Hellmann potential if B is positive or negative. The Hellmann
potential was used as a model for alkali hydride molecules [4]. It was used also to
represent the electron-ion [5-6] and electron core interaction [7-8]. It has also been
shown that the main properties of the effective two-particle interaction for charged

particles in polar crystals may be described by this potential [9-11].

ITI.2 The discrete spectrum : Scaling

Many authors have studied the eigenvalues generated by the Hellmann potential
and have tried to estimate them [1-14]. For example Adamoski [3] used a variational
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framework to obtain accurate eigenvalues. Dutt, Mukherji and Varshni [12] and
Kwato Njock et al [14] applied the method of large-N expansion to approximate
the bound states energies. In this chapter we present simple upper- and lower-bound
formulae obtained by the use of the comparison theorem and the envelope method
[15-18].

We first show that discrete eigenvalues exist for the Hellmann potential for
all values of A > 0, B,and C > 0. This result allows us to transcend the limit
B < A assumed to be necessary in an earlier attempt at this problem by geometrical
methods [13]. Suppose that B < 0, then we immediately have that —(A+ B)/r <
V(r) < —A/r. Since both upper and lower bounds are Hydrogenic potentials with

discrete eigenvalues, the same follows for V(r).

Now we suppose that B > 0. In this case the concern is that, for sufficiently
large B, the positive term might dominate the Coulomb term. We see that this does
not happen by the following argument. The function re~¢" has maximum value
1/(eC). Hence, for B > 0, we have Be " /r < (B/eC)/r?, and we conclude that
—A/r < V(r) < —A/r+(B/eC)/r*. But the ‘effective potential’ for the Hydrogenic

Atom in a state of orbital angular momentum £ is given by
Verr(r) = —A/r + £(€+ 1) /r%. (I1L.2.1)

Hence, again, we see that V(r) is bounded above and below by Hydrogenic poten-
tials whose corresponding Hamiltonians have discrete eigenvalues. This establishes
our claim.
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If we denote the eigenvalues of H = —wA + A/r + Be™°" by £(w, A, B,C),
and consider a scale change of the form s = r/o, and choose the scale ¢ = 1/C,
then it is easy to show that,

A B

— (2 - T
E(w, A, B,C) = C*wE(, o0 ol 1). (111.2.2)

Hence, the full problem is now reduced to the simpler two-parameter problem

H=-A-afr+pe"[r, €£€=E,pB),a>0. (T11.2.3)

IT1.3 Energy bounds by the Envelope Method

The Comparison Theorem of quantum mechanics, discussed in the first chapter,
tells us that an ordering between potentials implies a corresponding ordering of the
eigenvalues. The ‘envelope method’ discussed in chapter II is based on this result
and provides us with simple formulae for lower and upper bounds [16-18]. We need
a solvable model which we can use as an envelope basis as shown in Figures I1I.1

and IIL.2. The natural basis to use in the present context is the hydrogenic potential
h(r) = —1/r. (I11.3.1)

The spectrum generated by the potential h(r) may be represented exactly by

the semi-classical expression (I7.4.1),
Ene(v) = m>j(r)1{s + vhpe(s)}, (111.3.2)

where the ‘kinetic potential’ hne(s) associated with the potential h(r) = —1/r is
given, in this case, exactly by hne(s) = —s2 /(n + ).
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If we now consider a potential, such as V(r), which is a smooth transforma-
tion V(r) = g(h(r)) of h(r), then it follows that a useful approximation for the

corresponding kinetic potential fn¢(s) is given by
frt(s) % g(hne(s)). - (111.3.3)

If g is convex in (I11.3.3), we get lower bounds (~=2>) for all n and ¢, and if g
is concave we get upper bounds ( ~=<) for all n and ¢ by Theorem I1.2. For the
Hellmann potential, if we use the potential h = —1/r as the envelope basis, then

the sign of ¢” depends only on the sign of B. An elementary calculation shows that
g"(h) = —BC2eC/M |n3 = BC?*r3e=C7, (I11.3.4)

Hence, g is convex if B > 0 or concave if B < 0. Thus in this application of the
envelope method explained in chapter 11, we obtain upper energy bounds for B < 0
and lower bounds for B > 0 and by substituting (I11.3.3) in (II1.3.2) and using

Theorems II.1 and I1.2, we find that
Eae & min{s + 9(s'?/(n+£))}, (I11.3.5)

which yields an upper bouhd if B <0 and a lower bound if B > 0. This can be

further simplified by changing the minimization variable s to r by the relation,
9(hui(s)) = g(=s"2/(n +€)) = V(r), (I11.3.6)

which, in turn, implies s = (n + £)2/r?. Hence we obtain finally the following

semi-classical eigenvalue formula involving the potential V(r) itself

Ene ~ min{(n + 02 /2 +V(r)}. (I11.3.7)
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III.4 Results

We now have a simple forrﬁula (I11.3.7) for lower and upper bounds to the eigen-
values for the Hellmann potential. In Fig.(IT1.3) we plot the ground-state eigenvalue
bound (full line) as a function of B for the case A =2, C = 1, along with the
corresponding point results of Adamowski [3] as hexagons, and some accurate nu-
merical values (dashed line). It is clear from this figure that the simple approxima-
tion formula gives an accurate estimate of the eigenvlues which is an upper bound

if B <0, and a lower bound when B > 0, as predicted by the theory.
If we fix A, B, and C and consider the Hamiltonian H = —A 4 vV (r), with

eigenvalues £(v) , then from (II1.3.7) we immediately obtain the following explicit

parametric equations for the corresponding energy curve {v,&(v)}, namely

B 2(n + £)?
N r3V/(r)
e o PV (IIL.4.1)
s - L0 20V

In Fig.(I11.4) we exhibit the corresponding graphs of the function £(v)/v? for B =
+1 and B = —1, again with A =2, and C = 1, along with accurate numerical
data shown as a dashed curve. The main point of this work is to show that by
elementary geometric reasoning one can obtain simple semi-classical approximations
for the eigenvalues. These results are complementary to purely numerical solutions
and have the advantage that they are expressed analytically and allow one to explore
the parameter space without having to attend to the arbitrary additional parameters
and considerations which necessarily accompany numerical approaches with the aid
of a computer.
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Figure III.1 The Hellmann potential V(r) = —2/r + exp(—7)/r represented as a

lower envelope curve of a family of potentials of the form —a/r +b.
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Figure 111.2 The Hellmann potential V(r) = —2/r — exp(—r)/r represented as an

upper envelope curve of a family of potentials of the form —a/r +b.
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Figure I11.3 The eigenvalues £(B) of the Hamiltonian H = —A — 2/r + Be ™" /r
for n =1 and € = 0. The continuous curve shows the bounds given by the formula
(I11.3.7), the dashed curve represents accurate numerical data, and the hexagons
are the results of Adamowski [3]. It is clear that the formula provides us with upper

bounds when B < 0 and lower bounds when B > (.
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Figure II1.4 The eigenvalue bounds (full-line) for &(v)/v?, where £(v) is the
ground-state eigenvalue of the Hamiltonian H = —A + vV (r),for A=2, C =1,
and B = +1,—1, together with accurate numerical data (dashed-line). The para-
metric equations (IIL.4.1) yield upper bounds when B < 0, and lower bounds when

B> 0.
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Chapter IV
Spectral bounds for the

cutoff Coulomb potential

The method of potential envelopes is used to analyse the bound-state spectrum
of the Schrédinger Hamiltonian H = —A —v/(r +b) , where v and b are positive
constant. We establish simple formulae yielding upper and lower energy bounds for

all the energy eigenvalues.

IV.1. Introduction

The cutoff Coulomb potential f(r) given by
f(r) = —v/(r +b) (IV.1.1)

is an approximation to the potential due to a smeared charge distribution, rather
than a point charge, and is appropriate for describing mesonic atoms [1]. Many
authors have studied the eigenvalues En¢,n =1,2,3,...,£ =0,1,2,... generated by
the cutoff Coulomb potential and have tried to estimate them. For example Ray
and Mahata, [2] applied the method of large- IV expansion to approximate the bound
states energies from n =1 to n = 4. Mehta and Patil [1]| rigorously analysed the

S-wave bound-state eigenvalues of this potential as a function of b.

In this chapter we offer an elementary proof that the cutoff Coulomb potential
has infinitely many discrete negative eigenvalues F,,,n = 1,2,3,...,4 = 0,1,2, ...
by using the comparison methods. We then use the comparison theorem [.13 and
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the envelope method discussed in chapter II and in [3-8] to obtain simple upper-

and lower-bound formulae for all the eigenvalues.

IV.2. The discrete spectrum : Scaling

The Hamiltonian for the problem is given by,

H=-A-v/(r+b), v, b>0. (Iv.2.1)

A concern might be that, for sufficiently small coupling v, the potential, like a
square well, might not have any discrete spectrum. However, the Coulomb tail averts
this problem. It has been proved [4] by general methods that for any potential,
like —v/(r +b), which is negative and decays at infinity slower than 1/r2~<, the
corresponding Hamiltonian operator has infinitly many negative eigenvalues. The
specific result for our problem may also be obtained by an elementary application
of the comparison theorem, as we now show by the following argument. We note

that the potential can be written

—v  vb vb?
fr)y = — 5 - —_7"2(7‘ b (Iv.2.2)
It therefore follows that
b
__<f(lr) < h_’_%)
and consequently
14 €+1 4+ 1 - AMA+1
=24 ( fetl) f()+(+) .}E+__(Tj).—_vu, (IV.2.3)
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where

A= ((£+ %)2 +vb)Z — (IV.2.4)

Do =

Hence, we see that the effective potential associated with f(r) is bounded above
and below by Hydrogenic effective potentials with discrete negative eigenvalues.

This implies that the potential V' has infinitely many negative discrete eigenvalues

E,¢ bounded by

—2 2

v
e < Bt € e (IV.2.5)
a(n+8) a(n+ )

These bounds are asymptotically close for large n. Another upper bound is provided

by the linear potential since f(r) < —% + 7. Hence,
Bre < =3 + (55)€e(1), (IV.2.6)

where £,¢(1) are the eigenvalues of the Hamiltonian —A + 7 for linear potential.
For the S-states the radial equation may be transformed into Whittaker’s equa-
tion which has known exact solutions [9]. The general solution is written [9] in terms

of the confluent hypergeometric functions M[z,y, 2] and Ulx,y, z] where,

1 o0
Ulz,y,2) = wl‘(x) /e’”tz‘l(l + )Yt = 27y o, 1+ —y; ~1/z] (IV.2.7)
0

and Mz,y,z] = 1Filz;y;2]. Mehta and Patil [1] used the bounded property

of the radial wave function and the boundary conditions to demonstrate that the

eigenvalues are determined by the equation

Ul —v/(2V—E), 2,207/ <E) = 0. (IV.2.8)
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As an alternative, we shall apply the envelope method to approximate all the eigen-
values. We first reduce the complexity of the problem by the use of scaling argu-
ments. If we denote the eigenvalues of H = ~wA — v/(r +b) by E(w,v,b), and
consider a scale change of the form s = r/o, and choose the scale ¢ = w/v, then
it is easy to show that,

2
E(w,v,b) = 3’55(1, 1, 3’;). (IV.2.9)

Hence, the full problem is now reduced essentially to the simpler 1-parameter prob-

lem

H=-A-1/(r+b), £=E&(®b),b>0. (IV.2.10)

IV.3. Energy bounds by the Envelope Method

As another application of the Comparison Theorem of quantum mechanics 1.14
and the ‘envelope method’ we obtain simple formulae for lower and upper bounds [5-
8] as explained above (in chapter II) for the cutoff Coulomb potential. We need a
solvable model which we can use as an envelope basis as shown in Figures IV.1 and
IV.2. The natural bases to use in the present context are the hydrogenic and linear

potentials
h(r) =sgn(q)r?, where q=—1,1. (IvV.3.1)
The spectrum generated by the potential h(r) may be represented exactly by the

semi-classical expression

Ene(v) = min{s + vhne(s)}, (IV.3.2)
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where the ‘kinetic potential’ h,¢(s) associated with the power-law potentials

(IV.3.1) are given by (IL.4.5) [8]
h(s) = 2/Q|gED /(2 + q)| (@t D/25~4/2, (IV.3.3)

and 87(:2) is the exact eigenvalue of —A +sgn(q)r?, that is to say, corresponding to
the pure-power potential with unit coupling. If we now consider a potential, such
as f(r), which is a smooth transformation f(r) = g(h(r)) of h(r), then it follows
that a useful approximation for the corresponding kinetic potential fre(s) is given
by

frne(s) = g(hne(s))- (IV.3.4)

If g in (IV.3.4) is convex, we get [5-8] lower bounds ( ~=2>) for all n and ¢, and
if g is concave we get upper bounds (~=<) for all n and £, by Theorem II.2.
For the cutoff Coulomb potential, if we use the potential h = —1/r as an

envelope basis, then g is convex. An elementary calculation shows in this case that

2vb
g"(h) =

S0 IV.3.5

And if we use the potential h = r as an envelope basis, then g is concave, in fact

g'(h) = (b;f:)—s <. (IV.3.6)

Thus in this application of the method we obtain upper energy bounds if we use
h = —1/r and lower energy bounds if we use h = r. Theorem II.1 and Theorem
I1.2 imply the following spectral inequality
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Ene(v) > va(t) + Ene(vb(2)). (Iv.3.7)

The op.timal lower bound thus obtained may then eventually [8] be re-written as
Epne > min {5+ g(hne(s))} - (IV.3.8)

In the complementary case where g is concave, the inequalities are reversed and one

obtains upper bounds.

For the power-law potentials h(r) = sgn(q)r® we can simplify (IV.3.8) by
changing the minimization variable s to r defined in each case by the equation
hne(s) = h(r) so that g(h(r)) = f(r) = 75 @and the minimization (IV.3.2),
which yields eigenvalue approximations for the Hamiltonian H = —wA + f(r),

where w > 0, can be expressed in the form

- P2(q) v
ne = i n — . V.3.
Ene e {w r2 (r+0b) } (IV.3.9)

We obtain a lower bound for Pn¢ = Pne(—1) = (n + £), an upper bound for
P = Pne(1), and a good approximation with the mean value Pne = PT% =
5(Pne(—1) + Pne(1)). These P-numbers are provided in Table IV.1.

A natural question to ask is whether there exists a set of numbers {Pne}
such that E,; = min,>g {Pr—'z@ + f (7")} exactly. We can see that the answer is
“no” by an argument based on the ‘concentration lemma’ [10], which provides us
with the relation between the concentration of the ground-state wave function and
the size of the coupling constant v. More precisely, the wave function becomes
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more concentrated near the origin as v increases. Since for large values of the
coupling v the “linear” upper bound (IV.3.9) is very accurate (concentration near
r = 0), if there were one “exact” Pjg, it would have to be the linear potential
value Pjo = Pio(1). But our upper bound is clearly above E,, for small values of

v . Hence there are no such “exact” Py,e.

IV.4. Conclusion

We have derived a simple formula (1V.3.12) for lower and upper bounds to the
eigenvalues for the cutoff Coulomb potential. In Figure IV.3 we plot the eigenvalue
when (n,¢) = (1,1) asa function of b for the case v = 1, accurate numerical values
(dashed line), and our approximation with the average value Pne = 3(Pne(—1) +

Pre(1)) as stars.

If we fix b and consider the Hamiltonian H = —A + v f(r), with eigenvalues
E(v) , then from (3.12) we obtain the following explicit parametric equations for the

corresponding approximate energy curve {v,€(v)}, namely

= 2(Pn€)2
)
e(y) = (Pn)? | 2P (r) (IV.4.1)
(v) =—5—+ S

These parametric equations yield upper bounds when Pn; = P,¢(1) lower bounds
when P, = (n+4£), and a good approximation when we use the arithmetic average
of Pne(—1) and P,e(1). It is interesting, perhaps, that all these curves are scaled
versions of any one of them; it is unknown if such a symmetry is true for the
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corresponding exact curves. In Figure IV.4 we exhibit the graphs of the function
E(v) for b=1 along with accurate numerical data shown as a dashed curve. The
main point of this work is to show that by elementary geometric reasoning one can
obtain simple semi-classical approximations for the eigenvalues. These results are
complementary to purely numerical solutions and have the advantage that they are
expressed simply and analytically and therefore allow one to explore the parameter

space of the problem.
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Table IV.1 The ‘input’ P-values PL, PY, and the mean PM = 2(Pne(—-1) +
P,¢(1)) used in the general formula (IV.3.9).

n 14 PL =n+¢ pPM PY,
1 0 1 1.18804 1.37608
2 0 2 2.59065 3.18131
3 0 3 3.99627 4.99255
4 0 4 5.40257 6.80514
5 0 ) 6.80911 8.61823
1 1 2 2.18596 2.37192
2 1 3 3.57750 4.15501
3 1 4 4.97650 5.95300
4 1 5 6.37850 7.75701
) 1 6 7.78204 9.56408
1 2 3 3.18509 3.37018
2 2 4 4.57067 5.14135
3 2 5 5.96455 6.92911
4 2 6 7.36257 8.72515
) 2 7 8.76298 10.52596
1 3 4 4.18461 4.36923
2 3 ) 5.56649 6.13298
3 3 6 6.95652 7.91304
4 3 7 8.35118 9.70236
) 3 8 9.74874 11.49748
1 4 5 5.18431 5.36863
2 4 6 6.56366 7.12732
3 4 7 7.95074 8.90148
4 4 8 9.34260 10.68521
) 4 9 10.73766 12.47532
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Figure IV.1 The cutoff Coulomb potential V(r) = —1/(r + 1) represented as a

lower envelope curve of a family of potentials of the form —a/r +b.
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Figure IV.2 The cutoff Coulomb potential V(r) = —1/(r + 1) represented as
upper envelope curve of a family of potentials of the form —a/r +b.
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Figure IV.3 The eigenvalues £(b) of the Hamiltonian H = —3A —1/(r +b) for
n = £ =1 (in atomic units h = m = 1). The continuous curves show the bounds
given by formula (IV.3.9), the dashed curve represents accurate numerical data, and
the stars are the ‘mean approximation’ Pp¢ = %(Png(—l) + Pne(1)).
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Figure IV.4 Eigenvalue bounds(full-line)for the ground-state eigenvalue &(v)
(n = 1,£ = 0)of the Hamiltonian H = —A 4+ vf(r) (in units h = 2m = 1)
for b =1, together with accurate numerical data (dashed curve). The parametric
equations (IV.4.1) yield upper bounds when Pp¢ = Pn¢(1), lower bounds when
Pre = Pne(—1) and good approximation when Py, = %(Pn[(—l) + Poe(1)), shown
as stars.
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Chapter V
Generalized comparison theorems

in quantum mechanics

This chapter is concerned with the discrete spectra of Schrédinger operators
H = —~A+V, where V(r) is an attractive potential in N spatial dimensions. Two
principal results are reported for the bottom of the spectrum of H in each angular-
momentum subspace: (i) an optimized lower bound when the potential is a sum of
terms V(r) = VI (r) + V@ (r) , and (ii) a generalized comparison theorem which
predicts spectral ordering when the graphs of the comparison potentials V(1) (r) and
V®(r) intersect in a controlled way. Pure power-law potentials are studied and an
application of the results to the Coulomb-plus-linear potenﬁal V(r) = —a/r + br
1s presented in detail: for this problem an earlier formula for energy bounds is

sharpened and generalized to N dimensions.

V.1 Introduction

'This chapter has two principal aspects: the potential-sum approximation, and
the generalization of the comparison theorem of quantum mechanics to cases where
the comparison potentials intersect. We study spherically-symmetric problemsin N
spatial dimensions. There is much interest in problems posed in arbitrary dimen-
sion [1-9] and the geometrical methods we use are insensitive to the dimension N,
which can usually be carried as a free parameter. We consider examples with Hamil-
tonians of the form H = —A+wv sgn(q)r® or with sums of such potential terms. We
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suppose that the Hamiltonian operators H = —A+ V(r), r = ||r||, have domains
D(H) C L*(RY), they are bounded below, essentially self adjoint, and have at least
one discrete eigenvalue at the bottom of the spectrum. Because the potentials are
spherically symmetric, the discrete eigenvalues E,, can be labelled by two quan-
tum numbers, the total angular momentum £ = 0,1,2,..., and a ‘radial’ quantum
number, n = 1,2,3,..., which counts the eigenvalues in each angular-momentum
subspace. Since the discrete spectrum may be characterized variationally [10], the
elementary comparison theorem 1.14 V(1) < V(2 = E,(:e) < E',(fe) immediately
follows. The generalization we shall study (in Section V.3) involves comparison
potentials whose graphs ‘cross over’ in such a way that spectral ordering is still

guaranteed.

In Section V.2 we shall use the envelope method (explained in chapter II) along with
the kinetic potential and the P -function representation for single power spectra, to
study the Coulomb-plus-linear potential V(r) = —1/r+Ar. This potential is clearly
at once a convex transformation of the Hydrogenic potential hA(r) = —1/r and a
concave transformation of the linear potential h(r) = r. We shall show that we
are also able to express both the upper and lower bounds for the entire discrete

spectrum in the form of an explicit rational function A = A(E,.).

The base potentials used for the Coulomb-plus-linear potential are both pure
powers. Thus we shall need to use the corresponding base kinetic potentials. In fact
is has been shown in general {12] that

55



>0 r

2
—A+sgn(q)r* = E=min { (Ege—@—)—) + sgn(q)rq} , (V.1.1)

where, for example, we find in N dimensions that PN(-1) = (n+£+ N/2 — 3/2)
and PY(2) = (2n+£€+ N/2—2). These P-numbers and the underlying eigenvalues
EXN, satisfy the relation EY, = Er%Jrze : this is generally true for central potentials
and is the content of Theorem V.2, which we prove in Section V.4. Numerical values
for PN(1) are given in Table V.1 for N = 2,...,12. It is interesting that the case
q = 0 corresponds exactly to the In(r) potential [13]. The expression in (V.1.1) is
derived by a change of variable s — (PN /r)? in the kinetic-potential formalism.
The application to the Coulomb-plus-linear potential is not our only interest in
these PY-numbers. They provide through (V.1.1) a nice representation for the
pure-power eigenvalues since the PY-numbers vary smoothly with ¢ thfough q=0
whereas the eigenvalues themselves do not [12]. We have proved [12] that P(q)
are monotone increasing in ¢ . This result was obtained by using envelope theory:
we considered one power ¢ as a smooth transformation of another p, and then

took the limit p — q.

In Section V.3 we prove Theorem V.1 which provides a lower bound for the
bottom of the spectrum in each angular momentum subspace using the sum approx-
imation. In Section V.4 we prove Theorem V.2, which establishes the invariance of
the eigenvalues with respect to changes in £ and N that leave the sum N + 2/
invariant. This allows us to restrict our considerations to the ground state in suf-
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ficiently high dimension N. We reformulate the refined comparison theorem
(Theorem 3 of Ref. {15]) which becomes Theorem V.3 here. We first prove the
monotonicity of the ground-state wave function in N dimensions; then we prove
Theorem V.4, which extends Theorem V.3 to N > 2 dimensions. Finally we prove
Theorems V.5, V.6, and V.7 which provide simple explicit sufficient conditions for
the application of Theorem V.4 under a variety of crossing schemes. In Section V.4
we apply Theorem V.5 to sharpen the envelope bounds already found in Section V.2
for the bottom of the spectrum F of H when V is the Coulomb-plus-linear po-

tential V(r) = —a/r + br.

V.2 Coulomb-plus-linear potential: an eigenvalue formula

The Coulomb-plus-linear potential V(r) = —a/r + br is of interest in physics
because it serves as a nonrelativistic model for the principal part of the quark-quark
interaction. First, we will use the envelope method to derive a simple formula, for
upper and lower bounds for all the eigenvalues Fn¢, n = 1,2,3,..., £ =10,1,2,...
Because the linear potential, rather than the harmonic oscillator, is used as a basis
for the upper bound, the new bounds are shaper than those of the earlier chap-
ter [16].

If we denote the eigenvalues of H = —wA — o/r + r by FE(w,a,3) and
consider a scale of change of the form ' = r/o , and if we further choose o = a/w

then it is easy to show that

2 -1 puw?
Ew,a,8) =a‘w™  E(1,1,)\), A= — (V.2.1)
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Thus it is sufficient to study the special case H = —~A — 1/r 4 Ar.

We need a solvable model which we can use as an envelope basis. The natural

bases to use in the present context are the hydrogenic and linear potentials
h(r) = sgn(q)rY, where q=-1,1. (V.2.2)

The spectrum generated by the potential h(r) is represented precisely by means of

the semi-classical expression (I1.2.1) as follows:

Ent(v) = mm{s + vhne(s)}, (V.2.3)

where the ‘kinetic potentials’ hy,¢(s) associated with the power-law potentials

(I1.2.1) are given [13] by

s~9/2 (V.2.4)

and Sr(;é) is the eigenvalue of —A + sgn(q)r? in N dimensions, that is to say,
corresponding to the pure-power potential with coupling 1. If we use the potential
h(r) = —1 as an envelope basis, then V(r) = —1 + Ar = g(—1) implies g is
convex. And if we use the linear potential h(r) = r as an envelope basis, then g is
concave. A weaker upper bound is provided by the harmonic oscillator h(r) = r?,
for which, again g(h) is convex.

For the power-law potentials h(r) = sgn(q)r? we can simplify (V.2.3) by
changing the minimization variable s to r defined in each case by the equa-

tion hne(s) = h(r) so that g(k(r)) = f(r) = —1+ Ar. The minimization on
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the other hand, which yields eigenvalue approximations for the Hamiltonian H =

—wA + f(r) (w > 0), can be expressed in the form

EY, ~ min {w (ifﬂ(ql)z _1 + /\r} , (V.2.5)

r>0 r
where
24q : 5
2 19| q |?
Ph(q) = lEf;) 2" [2 ~ q} iRk £0. (V.2.6)

We obtain a lower bound with PN(—1) = (n+ £+ N/2 — 3/2) and the harmonic-
oscillator upper bound (of Ref.[16]) with PY(2) = 2n+£+ N/2—2, and a sharper
upper bound with PN (1); the P (1)-numbers are provided in Table V.1 for N =
2,...,12. This table allows £ > 0 since PN = PN*2¢. it is clear that El,(—1) and
EN,(2), and the corresponding P-numbers, are invariant with respect to changes in
¢ and N, which preserve the sum 2¢+ N; this symmetry is also true for EN(1),
indeed for all eigenvalues generated by a central potential. This property is the
content of Theorem V.2, which we state and prove is Section V.4. We thus obtain

the following energy bounds

ggg{(’—ﬁff—l)f - +)\r)} < B < gg{(ﬁ%ﬂy - +)\r} (vV.27)

for n=1,2,3,..., £=0,1,2,.... Consequently, the energy bounds are given by the

parametric equations

1 3t
Ep=—-——+— 2.
¢ ot + 9 (V.2.8a)
t o Aut? N
1=— t=1rP =-1,1 V.2.
W + 2 ’ T (q) q )y Ly ( 2 8b)
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wherein the lower and upper bounds take the values v = p = PN(—1) and v =
p = PN(1) respectively. It is interesting that we can actually solve Egs. (V.2.8a)

and (V.2.8b) to obtain A as an explicit function of E = EY; the result namely is

né)

N {2(1/E)3 — vE? {(1 + 32E)s — 1]}

3 (V.2.9)
u [(1 +32E)S — 1]
with E > —2 (corresponding to A = 0 for the pure hydrogenic spectrum). We
emphasis that these bounds are valid for all the discrete eigenvalues in arbitrary
dimension N > 2. The bounds are weak for n > 1, but at the bottom of each
angulér momentum subspace n = 1 they are sharp and improve with increasing
¢,N, and A. The lower bound for the bottom of each angular-momentum subspace
(n = 1) can be improved by use of the ‘sum approximation’ ( {17] and Section V.3
below) in which v = PN(1) (Table V.1) and p = PN(-1) = (n+£+ N/2-3/2).

In Figure V.1 we exhibit these bounds for n =1, N =3, and £=0,1,2,3.

V.3 The sum approximation: lower bounds

We now consider potentials which are sums of terms. Since further generaliza-
_ tions easily follow, we first look at the problem of the sum of only two potential
terms. We assume that each potential vh{)(r) alone, when added to the kinetic-
energy operator —A, has a discrete eigenvalue E at the bottom of the spectrum
for sufﬁciently large coupling v. We note that the proof is unchanged if we restrict
the problem to a given angular-momentum subspace labelled by ¢; our claim then
concerns the bottom of the spectrum of H in such a subspace; in the more general
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case, all the kinetic potentials would be labelled by ¢. We express our result in

terms of kinetic potentials and prove (for the case £ = 0) the following:

Theorem V.1 If E is the bottom of the spectrum of the Hamiltonian H —
—A 4V, and the potential V is the sum V(r) = R()(r) + R (r), then it follows
that the sum of the component kinetic potentials yields a lower bound to V, that

is to say

V(s) > i (s) + E? (). (V.3.1)

We shall now prove this theorem, which is in effect an optimized Weyl lower

bound [18-20]. From the definition (I1.2.1) of kinetic potentials we have

V(s) = inf (Vo)) = inf (w, (h(1>+h<2>) 1,[)).

YED(H) YED(H)
(¥,9)=1 (¥, 9)=1
(¢, Kep)=s (¥, K¥)=s

But the latter minimum mean-value is clearly bounded below by the sum of the

separate minima. Thus we have

Vs> ol (5,h08) + int o (9,h@y) =E(s) + 5 (s),

YeD(H) YeD(H)
(W,)=1 (W, ¥)=1
(b, — D) =s (W, —Ag)=s
which inequality establishes the theorem. O

Another approach, which would eventually yield an alternative proof of the
theorem, exhibits the relationship between Theorem V.1 and the classical Weyl
lower bound [20-22] for the eigenvalues of the sum of two operators. Let us suppose
that ¥ is the exact normalized lowest eigenfunction of H = —A + V| so that
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HV = EV. If the positive real parameter w satisfies 0 < w < 1, then E =

(U, (—A + V)¥) may be written as follows:

E= w (\p (—A v h(l)(r)> q:) + (1= w) <q, (—A T h<2>(7~)> q;)
> w inf (1/), (——A +% h(l)(r)> zp)

YeD(H)
(¥, ¥)=1

+ (1—w) inf (w, (~A + i‘—l_w h<2>(r)> 1/)) .

YED(H)

That is to say, in terms of component kinetic potentials, we arrive at Weyl’s in-

equality for the lowest eigenvalue E of the operator sum H, where
H=-wA+hD + —(1-w)A+hr®,
and we conclude
E > wmin {s + L E(l)(s)} + (1 — w) min{s + L E(z)(s)} .
s>0 w >0 1—w

Since w is an essentially free parameter in the last expression, we may optimize
the Weyl lower bound with respect to the choice of w: this forces the individual
values of s at the minima, {s1(w),s2(w)}, to be related. More specifically we find

from the individual minimizations over s,
_ (1) —(2)
E > &(w) = wsy(w) + (1 — w)s2(w) + k" (s1(w)) + k" (s2(w)),

where

(1) = (2)
oh Oh
W= (s1{(w)), and 1-w= ~ 5 (s2(w)).
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The critical condition &£ (w) = 0 for the subsequent maximization over w then

yields s1(w) = sa(w). Thus the best lower energy bound is given by
. (1) (2)
E>min{s+k"(s) + R ()}

The kinetic-potential inequality of Theorem V.1 leads, of course, to the same en-
ergy lower bound: the optimization just performed above is therefore seen to be

automatically ‘built in’ by the kinetic-potential formalism.

It follows immediately from the above kinetic-potential comparison theorem
and coupling-parameter absorption that a lower bound to the lowest energy E of

the Hamiltonian H = —A + ¥, ¢;h@(r), {c; > 0}, is provided by the formula,

—  s>0

E > min{s+ ch‘“(s)}. (V.3.2)

i
Similarly we can extend this result to ‘continuous sums’ such as V(r) =
Ji2 e (r)dt.

Meanwhile, since the proof is identical, the bound is valid for the bottom of
each angular-momentum subspace. Thus, more generally, the fundamental inequal-
ity becomes

Vie(s) > B2 (s) +R(s), €=0,1,2,.... (V.3.3)

V.4 Generalized Comparison Theorems

The proof of our generalized comparison theorem (Theorem V.4) depends on
monotone behaviour of the wave function induced by the assumed monotonicity of
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the potential. We are able to establish this monotonicity for the lowest eigenfunction
in arbitrary many spatial dimensions N > 1. We shall then be able to apply our
eigenvlaue results to the case ¢ > 0 and n = 1 because of Theorem V.2 which
claims that E,’:'e = EN +2"’, this general result is then employed in the special case
n=1.

Theorem V.2

Suppose that H = —A + V(r), where V(r) is a central potential in N > 2
dimensions, has a discrete eigenvlaue EY, with n radial nodes in the angular-
momentum subspace labelled by £, then EN, = EN +2¢

Proof: We suppose that 9 is the eigenfunction corresponding to Eﬁ’e. We express
—A in spherical coordinates [1-9] and write the radial eigenequation explicitly as

(N o+ N 2)

) = YDy 4 () 1+ V(P)o(r) = ENglr).

If we now define the reduced radial function w(r) € L2(R") by o(r) =

w(r)yr~(N=1/2 >0, and u(0) =0, we obtain

WD N3 4 g0+ N —2)
7.2

u(r) = ENu(r). (V4.1)

—wvmi +V ()

If we consider the spherically-symmetric potential V' (r) in M dimensions such that
(M —=1)(M - 3)/4 =€+ N —-2)+ (N —-1)(N —3)/4, we find that M =2{+ N.

The eigenequation (V.4.1) then may be written equivalently
(M—1) (M—3)
-m%w+Liﬁzl—+vm
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It therefore follows immediately that EN, = EM = E25tN O

For the purpose of our comparison theory we may now consider the special
case n = 1, £ = 0 in arbitrary N > 1 spatial dimensions: the energy results
which we derive will then be applicable to the family of equivalent problemsin N’
spatial dimension with n = 1, £ > 0, and N = N’ + 2{. In order to prove an
appropriate extension of the comparison theorem in N dimensions, we shall first
need to establish an elementary monotonicity property for the ground-state . We

prove the following:
Lemma

Suppose ¥ = ¥(r), r=|r|l, r € RN, satisfies Schrodinger’s equation:
Hy(r) = (=A+ V(r)e(r) = Ep(r), (V.4.3)

where V(r) is a central potential which is monotone increasing, » > 0, and
lim,—orV (r) = v < co. Suppose that E is a discrete eigenvalue at the bottom of
the spectrum of the operator H = —A+V, defined on some suitable domain D(H)
in L?(RM). Suppose that 1(r) has no nodes, so that, without loss of generality,
we can assume (r) >0, r >0, then ¢/'(r) <0, r>0.

Proof: The proof for the case N =1 is given in Ref. [15], Eq.(V.2.2). Henceforth

we shall now assume N > 2. If we express —A in spherical coordinates in N

spatial dimensions, then we have

—AY 4V = Eip

T B
— " 5 v + V©u() = Bu().
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We now multiply by t¥~! both sides and integrate with respect to ¢, to obtain

W0 = [V - B

Since V is monotone increasing, it follows that there is one point # > 0 satisfying
V(#) = E. First, we prove that s(r) = [J[V(t) — E|y(t)t¥~1dt is monotone in-
creasing and bounded. For ¢ > #, [V (t) — Elp(t)t" ! > 0, because V() > E
and hence s(r) is increasing as r — oco. If there exists r; < oo such that
s(r1) = — [TV (£) — EJp(8)tN ~1dt, then [7[V(2) - El(¢)t"~1dt > 0, r > 71, and
¢/(r) > 0, r > r1 ; this contradicts the fact that the wave function (r) is positive
and belongs to L2(RYN). This means that f[j [V(t) — Elp(t)¢*~'dt < 0, Vr > 0.
Consequently /'(r) <0, Vr > 0. ]

We now consider two potentials Vi(r) and Va(r) both of the type described
above. We have two Schrodinger equations for the respective ground-states 11 and
1o and the corresponding discrete eigenvalues E; and E2 at the bottoms of the

spectra. Thus we have the following pair of eigenequations
(=A + Vi(m))y1(r) = Eighi(r) (V.4.4)

(—=A + Va(r)ih(r) = Eriha(r) (V.4.5)

The radial wave functions in the present chapter satisfy the normalization condition
I Y2 (r)yrN=tdr < oo, i =1,2. With this notation, and N =3, Theorem V.3 of
Ref. [15] becomes

Theorem V.3

k(r) = /0 "(VA() = Va(O)wi(8)2dt <0, ¥r > 0, i = Lor 2= Ey < . (V.A.6)
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We shall now generalize this theorem to general dimension N > 1. We first establish

a fundamental comparison formula (Eq.(V.4.7)) below.

By multiplying (V.4.4) by 92 and (V.4.5) by 41, and subtracting, we find

P1Ay — Yo Ay + [V1 — V2hiahy = [E1 — E2)9h192.

Integrating over RY and using the following identity,

V. (41 V) = Vb1 . Vo + 91 Vo,

we find that

V. [ Vapa — 1 Vapy |dVr +/ V1= V2lhreped™ r = [E1 — E2] PrepadNr.
RN

RN RN

Now by Gauss’s theorem [23] we find that the first term becomes a surface integral
which vanishes because v; € L?(RY). In the remaining integrals the angular factors

yield 27V/2/T(N/2). Hence we find

/N [
['(N/2) Jo

2vVTN

Va(r)=Va(nlihs (i (r)r™ ™" dr = fos

[E1—Es) /0°° 1 () (ryrN ~tdr, |

which implies
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s = / Vi = ValhrtporY “ldr = [Ey — Ex] / rapar™ ~Ldr. (V.4.7)
V] 0

Now we may state our generalization of Theorem V.3 to N dimensions:

Theorem V.4
k(r) = / (VA (t) = Vo)W (@)t¥ "dt <0, ¥r >0, i =1 or 2= By < Ey. (V.48)
0

Proof: For definiteness we assume that i = 1; the proof is just the same with the
other choice. We study the integral s on the left side of (V.4.7). Integrating by

parts we find that

5 = kW0l — | " k) (r)yr L dr (V.4.9)

Since k(0) = tp2(c0) = O, the first term vanishes, and s is therefore equal to
the negative of the integral of the right side of (V.4.9). But the integrand of this
integral is positive because k(r) <0, by hypothesis, and we know that Po(r) <0
by the above lemma. This proves that s < 0. Consequently, by (V.4.7), we obtain
E, < E,. O

It may be difficult to apply Theorem V.4 in practice. Thus it would be helpful
to establish some simpler sufficient conditions, depending on the number and na-
ture of the crossings over of the two comparison potentials. We treat three useful
cases: Theorem V.5, one potential crossing, with use of the wave function; Theorem
V.6, two crossings and the use of the wave function; Theorem V.7, two crossings
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and no wave function used. In these Theorems we shall assume that the integrals
f;’o (Vi(r) = Va ()i (r)rN—tdr, i=1,2, exists for the given problem, even though
we use at most one wave function factor.

Theorem V.5. If the potentials Vi(r) and Va(r) cross exactly once for 7 >0
at r =ry, with

() Vi(r) < Vao(r) (0<r < ry) and

(i) [o Va(t) — Va@®)le(t)t¥~'dt =0, i =1 or 2,

then
k(r) = /r[Vl(t) —Va@®)tN "l (r)dt <0, Vr >0, i =1 or 2, (V.4.10)
0

from which F; < E; follows, by Theorem V.4.

Proof: We choose i = 1 : the proof is identical for i =1 or 2 . First, we show
that s(r) = f:l [Vi(t) — Va(t)]yr ())tN ~1dt is monotone increasing. For ¢ > 7y,
s'(r) = Vi(r) — Va(r)|gr (r)r¥ =1 > 0, because Vi(r) > Vo(r); hence s(r) is
increasing on (ry,00). Moreover, (ii) implies that the maximum value of s(r) is

reached at r = oo; i.e s(r) < s(oo) we have therefore

/ooo[vl(t) — Vo) ()t ~1dt =

/ A0 - V@l @ T Vi(O) - Ve (8 1t =0

T1

and therefore
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Jim s(r) = — /0’1 [Vi(#) — Va(®)lepr ()¢ ~dt.

Now, we have the following two cases to consider

Case 1: for r < 1y, k(r) = [y [Vi(t) — Va(®)lgr (£)tV ~1dt < 0, since Vi(t) < Va(t)

for 0 <t <

Case 2: if r > r;, then

k(r) = /OT1 [Vi(t)—Va ()]t (t)tN"ldtJr/T Vi) -Va@)lr ()" ~1dt = s(r)—s(00) < 0.

r

Therefore, k(r) <0,Vr > 0. O
Theorem V.6. If the potentials Vi(r) and Va(r) cross twice for 7 > 0 at
r=ry,r=ry (rp <rg) with,

(1) Vi(r) < Va(r) for 0 <r <r; and

(i) Jo" (Va(®) = Ve@)u(OtN'dt =0, i =1 or 2,

then,
k(r) = / "(Vi(t) = Vo)) ()Y -1t < 0, Vr > 0, i = 1 or 2, (V.4.11)
0

from which E; < Fy follows, by Theorem V 4.

Proof: k'(r) = (Vi(r) — Va(r))rN "1y (r) , now k(0) =0, k'(r) <0, 0 <1 <ry,
implies k(r) < 0, 0 < r < 7. Next, k(rz) = 0, k'(r) > 0, 7 < 7 < 79,
implies k(r) < 0, r;1 < 7 < ro. Lastly, k(r3) = 0, ¥'(r) < 0, r > rp, implies
k(r) <0, r > rs. O
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Theorem V.7. If the potentials Vi(r) and V(r) cross twice for r > 0 at

r=ry, 1o (r1 <ry) with
(i) Vi(r) < Va(r) for 0 <r < r; and
(i) fo> (Va(t) — Va(@))t~dt =0

then,
k(r) = /r[Vl(t) — Vo) )tV "dt <0, Vr >0, i =1or 2, (V.4.12)
0 .

from which E; < E; follows, by Theorem V.4.

Proof: We choose i = 1: the proof is identical if i = 2. Define h(r) = [; (V1(t)—

Va(t)tN~1dt, the proof of Theorem V.3 shows that h(r) <0, 0 <r <ry. But
OR RUACRR OO
0

— Wy )] / " (e (1)
b0 ) - [ e O <0,

meanwhile, k'(r) <0, r > ry. Therefore, k(r) <0, Vr > 0. O

V.5 Application to the Coulomb-plus-linear potential

As an example, we employ the comparison theorems to improve the bounds
obtained in Section V.2 for the eigenvalues corresponding to the Coulomb-plus-
linear potential V(r) = —a/r+br, where a and b are positive coupling parameters.
For the upper bound we use as a comparison potential the shifted linear potential
h(r) = —a + Br, where a and 3 > 0. We allow the potentials V(r) and h(r) to
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cross over exactly twice, as illustrated in Figure V.2. Let A and B represent the
absolute values of the areas (or of the 1 -weighted areas) between the potentials.
We vary a and 3 so that A = B, and thereafter Theorems V.5 and V.6 imply
EY < E"M For simplicity of derivation of the upper-bound formula, we will use
Theorem V.7 (with no use of the wave function ¢ ). Thus we have two equations

to solve in this case,

e + br = —a+ Br,
T
/ [—5:-+bt+a—5t]t"’—1dt: 0,
0

where r = ry is the second crossing point. These reduce to the quadratic equations
(B—b)r* —ar+a=0,

N(N = 1)(b—B)r* + a(N — 1)(N +1)r —aN(N +1) =0,

with simultaneous solution r = 21(2]3—1-\{1) . Now the best upper bound is obtained

after minimizing with respect to r, giving

2
) 2aN (N+1a 3
EV = Y o S T e Ny 5.
?28{ ((N—l)r>+((N—l)r2+b> ¢ (1)} (V:5.1)
At the expense of further complication, the use of ¥;(r) (the Airy function) would

lower this upper bound.

Similarly, to improve our lower bound, we allow the Coulomb-plus-linear poten-
tial to intersect twice with the Hydrogenic potential h(r) = —2 + 3, with the exact
wave function solution ¥ = e=*/W =1 and the exact energy E* = f—a?/(N—1)3,
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where o and (3 are positive parameters. Again, let A and B represent the ab-
solute values of the areas (or of the 1 -weighted areas) between the potentials. We
vary a and 3 so that A = B, as illustrated in Figure V.3, and thereafter The-
orems V.5 and V.6 imply E* < EV. Subsequently, we obtain the lower bound

(without %) by solving the following three equations:
—a o
=2

t + t A

t_
/pﬁ+w+3—mﬂﬁm:o
0 T T

E" = min{f — (a/(N - 1))*}. (V5.2)

For the case a =1 and b = 1, we compare in Figure V.4 the upper and lower
bounds obtained by means of the classical envelope method and by the comparison

theorems introduced in Section V.3.

V.6 Conclusion

Our proof of the lower-bound for the bottom of the spectrum of the operator
H = —A + VO(r) + VA(r), based on kinetic potentials, is more compact and
direct than the original proof, and is valid in N dimensions; the principal steps of
the earlier proof are repeated because they show that the final result is equivalent
to an optimization of the classical theorem of Weyl. The generalized comparison
theorem is proved in the present chapter for all dimensions N, whereas, in its
original form, it required two distinct theorems, for N = 1, and N = 3. Moreover,
we are now able to apply the results to the bottom of each angular-momentum
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subspace since we have proved that this energy is identical to the lowest eigenvalue
of a higher-dimensional problem, in RN +2¢ Meanwhile, in order to be practical,
weaker sufficient conditions were sought which would guarantee in a simple way
that the comparison potentials cross over so as to imply definite spectral ordering.
These results greatly clarify the application of the generalized comparison theorem

to specific problems.

The Coulomb-plus-linear problem provides a convenient example on which to
test the effectiveness of the energy bounds. At the same time it offers an opportunity
to sharpen an earlier energy-bound formula for this problem, and to extend its
validity to all N > 2 dimensions. The energy bounds provided by this formula,
are remarkably accurate for the bottom of each angular-momentum subspace (n =
1), and, as we have shown, they become sharper with increasing N or £. If the
sum approximation is capriciously applied also to the higher discrete eigenvalues
n > 1, the resulting ad hoc approximation formula continues to give very accurate
estimates, which, however, are no longer bounds. What additional conditions might

guarantee bounds from such a formula is an interesting open question.
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Table V.1 The ‘input’ P-values P}(1) used in the general formula (V.1.1), for
N =2,3,...,12. The same data applies to ¢ > 0 since, by Theorem V.2, we have.

N . pN+2¢
Pnl!_PnO .

N n = n=2 n =3 n=414
2 0.9348 2.8063 4.6249 6.4416
3 1.3761 3.1813 4.9926 6.8051
4 1.8735 3.6657 5.4700 7.2783
5 2.3719 4.1550 5.9530 7.7570
6 2.8709 4.6472 6.4398 8.2396
7 3.3702 5.1413 6.9291 8.7251
8 3.8696 5.6367 7.4204 9.2129
9 4.3692 6.1330 7.9130 9.7024
10 4.8689 6.6299 8.4068 10.1932
11 5.3686 7.1274 8.9053 10.7453
12 5.8684 7.6253 9.4045 11.2744
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Figure V.1 The eigenvalues F()\) of the Hamiltonian H = —A — 1/r + Ar for
N =3 n=1, and £ =L = 0,1,2,3. The continuous curves show the upper
bound EUL given by the envelope formula (V.2.9) with v = p = P3(1), and the
lower bound ELS by the sum approximation given by the same formula but with

v = P3(1) and p = P?,(—1). The dashed curve EX represents accurate numerical
data.
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V(r}=—a/r+br
or h(r)=osf r i
B
V(r)
A
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__1 0 i 1 1
0 1 2 3 4

r

Figure V.2 The linear potential h(r) = ar+ 3 used to estimate an upper bound for
the eigenvalues of the Coulomb-plus-linear potential V(r) = —a/r+br. A and B
are the absolute values of the inter-potential areas (or v -weighted areas). We vary
a and B so that A = B, and thereafter Theorems V.5 and V.6 imply EY < E",
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h(r)=o-Bir <+— /

T V(nN=—alr+br

=2r

V(r)

-6

-8}

-12}

r

Figure V.3 The hydrogenic potential h(r) = —a/r + 8 used to estimate a lower
bound for the eigenvalues of the Coulomb-plus-linear potential V(r) = —a/r + br.
A and B are the absolute values of the inter-potential areas (or v -weighted areas).

We vary o and B so that A = B, and thereafter Theorems V.5 and V.6 imply
E" < EV.
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Figure V.4 We compare the bounds for E()\), where E(X) is the ground-state
eigenvalue (n = 1, £ = 0) of the Hamiltonian H = —A — 1/r + Ar. The upper
bounds (full-line) are by harmonic-oscillator tangents EUHO, linear tangents EUL,
linear chords EUC, and linear chords with the wave function EUCW. The lower
bounds (lower full-lines) are by hydrogenic tangents ELHY, Hydrogenic chords ELC,
and Hydrogenic chords with the wave function ELCW. The dashed curve ELS
represent the lower bound given by the sum approximation. Accurate numerical
data (dotted-curve) EX is shown for comparison.
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Figure V.5 Bounds on the eigenvalues Ef}(\) corresponding to the Coulomb-plus-
linear potential V(r) = —1/r +Ar in N dimensions. Upper bounds EUC by the
generalized comparison theorem, lower bounds ELS by the sum approximation, and
accurate numerical data (dashed-line), for n =1, £=0, and N = 3,4,...7. By

Theorem V.2 we know that the same curves apply also to £ > 0 since Ef, = E{\[)‘Lze.
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Chapter VI
Semiclassical energy formulas for power-law and

log potentials in quantum mechanics

We study a single particle which obeys non-relativistic quantum mechanics in
RN with Hamiltonian H = —A + V(r), where V(r) =sgn(q)r®. If N > 2, then
g > —2, and if N = 1, then ¢ > —1. The discrete cigenvalues FE,, may be
represented exactly by the semiclassical expression En¢(g) = miny>o{Pne(q)?/m* +
V(r)}. The case q =0 corresponds to V(r) = In(r). By writing one power as a
smooth transformation of another, and using envelope theory, it has earlier been
proved that the P,¢(g) functions are monotone increasing. Recent refinements to
the comparison theorem of QM, in which comparison potentials can cross over,
allow us to prove for n = 1 that Q(q) = Z(q)P(q) is monotone increasing, even
though the factor Z(g) = (1-+¢/N)? is monotone decreasing. Thus P(q) cannot
increase too slowly. This result yields some sharper estimates for power-potential

eigenvlaues at the bottom of each angular-momentum subspace.

VI1.1. Introduction

In this chapter we study a certain representation, the P-representation, for the
Schrodinger spectra, generated by the power-law potentials f(r) = sgn(q)r® in N
spatial dimensions. Considerable interest has been shown in the Schrodinger spectra
generated by this elementary class of potentials [1-15]. The Hamiltonian H is given
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explicitly by
H = —A + v sgn(q)r?, where r = ||r|| and v > 0, and q # 0, (VI.1.1a)

where ¢ > —1 for N =1, and ¢ > —2 for N > 2. Corresponding to the case

q =0 we have

H=-A+vln(r), v> 0. (VI.1.1b)

It is certainly possible to include the log potential as a limiting case of the power
potentials if in place of the potential family f(r) = sgn(q)r, we use V(r,q) =
(r1—1)/q whose limit as ¢ — 0 is V(f, 0) = In(r). However, we have chosen instead
to leave the power-potentials themselves in their simplest form and incorporate the
g — 0 limit smoothly in the spectral domain by means of the P-representation.
This limit will be discussed again in this section, after the P-representation has been
introduced. As with Eq.(VL.1), our policy of favouring simple powers will again lead

to two equations instead of one at various points in the development.

The operators H have domains D(H) C L?(RY), they are bounded below,
and essentially self adjoint. For the most part we shall be concerned with the cases
N > 2, but we may also include N =1 provided ¢ > —1. The one-dimensional
hydrogen atom (N =1, ¢ = —1) has been extensively studied [16-22] but requires
special side conditions not consistent with the class of problems we consider in this
chapter. For the operators we consider, the essential spectrum is in [0,00) and, by
using a normalized Gaussian trial function ¢, it is easy to select a scale so that
(¢, Hp) < 0, thus estalishing the existence of a discrete eigenvalue; for g > 0, the
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entire spectrum is discrete by Theorem 1.12 in chapter I. The eigenvalues EN, for
the power-law potential can be labelled by two quantum numbers, the total angular
momentum ¢ =0,1,2,..., and a ‘radial’ quantum number, n =1,2,3,..., which
represents 1 plus the number of nodes in the radial part of the wave function. These
eigenvalues satisfy the relation E,I:/e < E,Ixe, n < m. With our labelling convention,

the eigenvlaue EN,(q) in N > 2 spatial dimensions has degeneracy 1 for £ =0

and, for £ > 0, the degeneracy is given [24] by the function A(N,#¢), where

A(N,€) = (20+ N —2)((+ N —3)1/{&(N —2)1}, N>2 £>0. (VLL2)

We first review some general elementary results for the power-law eigenval-
ues [2]. Nieto and Simons [6] have proved that the eigenvalues F, = E}; for the
power-law potentials in one dimension increase with the quantum number n at a
higher rate when q is greater. However, for any ¢, this increase never attains n?,
i.e., lim,—e0 En/n? =0, q¢ < co. In general, the dependence of the eigenvalues Ef:’e

on the coupling parameter v may be established with the aid of elementary scaling

arguments in which r is replaced by or, where o > 0. We find that

EN(v) = v @t EN (1), (VL.1.3)

Thus, without loss of generality, we may limit further discussion to the case of unit
coupling, v = 1. We shall henceforth let expression such as FE(q) represent the
dependence of an eigenvalue of unit coupling on the power q.
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We do have some exactly solvable potentials in N dimensions. For example,
for the well-known hydrogenic atom and the harmonic oscillator potentials we have

for n =1,2,3,....

EN(=1) = —[2(n+ £+ N/2 -3/2)] 7%, N >2, (VI.1.4)
and

ENE@)=4n+20+ N -4, N>2, (VI.1.5a)
and in one dimension (keeping n =1,2,3,...)

E.2) =2n—-1, N=1. (VL1.5b)

Analytical solutions are also possible for the linear potential in one dimension, and
for the S states in three dimensions. For N = 1 and N = 3 the repulsive 1/r?
term in the ‘effective potential’ Veg(r) = (N — 1)(IV — 3)/4r?, obtained using the
transformation ¥(r) = ¢(r)/rM—1/2 'is zero. The exact solution in these cases is
in terms of the zeros of Airy’s function Ai(r) in three dimensions and the zeros of

the first derivative Ai’(r) of Airy’s function in one dimension. We have

EL(w) =virny1, Al(=rn1) =0, n=0,1,2,.... (VL1.6)
and

E3,(v) = vir,, Ai(-rn) =0, n=123,.... (VI.1.7)

Unfortunately, for N =2 or N > 3, and for higher angular momenta £ > 0 gener-
ally, exact solutions are unavailable at this time. However, by using Theorem V.1 25,
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Theorem 2] we have for N > 2 the general correspondence EN = ,%+2£. In Fig-

ure VI.1 we exhibit the graphs of the eigenvalues E3,(¢q) for n = 1...5. In the
limit ¢ — co the problem is equivalent to an infinite square well with width 1 in
N dimensions. Thus we have limy_,o |E3,(g)| = (nm)?. For small values of g, the
|E(q)| curves are asymptotically like |E(q)| ~ Clq/2|%? and have infinite slopes
in the limitqg — 0 [2,26,27].

The approach in the present chapter is to study a representation for FEn¢(q)
which is smoother and easier to approximate than the ‘raw’ eigenvalues themselves.
We shall write many of our equations for the case N > 2: they are also valid for
N =1 provided ¢ > —1. In both cases we keep the convention n = 1,2,3,...).

We have:

and
2
EN, = min { (—]ﬁ@) + 1n(r)} . (VI.1.8b)

The form of this representation, in which the kinetic energy is represented by P?/r?
and the power-potential is represented by itself, is what leads us to use the term
‘semiclassical’ in the title of the paper: the two parts of the quantum-mechanical
problem are replaced by simple real functions of r, scaling as the classical terms
would scale, and their sum is exactly equal to the quantum-mechanical energy.
This is a quite different use of the term ‘semiclassical’ from that describing a refor-
mulation of the quantum-mechanical problem itself. Such a method is the JWKB
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approximation which has been applied to estimate the pure-power spectra [12,13]
and could in principle therefore be employed to approximate PN(q) : however, this
approach would not yield exact analytical information about the P-functions, such
as bounds or convexity. The existence of this representation P(q) for E(q) is guar-

anteed because the functions

9(Pra) = min{ (2 +sgn(q>rq} = st (1+5) (57 T s 2 ar0,

r>0 Iql
(VI.1.9a)
and
P\’ 1
g(P,0) = rrrg(r)l { (7> + ln(r)} = 5(1 +In(2)) + In(P). (VI.1.9b)
are monotone increasing in P . Indeed we find
2
99 _ pot [ ld )T
aP(P,q)_P (ZP >0, ¢>-2,q#0 (VL.1.10a)
and
Jg 1
From (VI.1.4) and (VI.1.5) we find:
PN(-1)=(n+€+Nj2-3/2), N>2, (VL.1.11)
and
PY(2)=(2n+£+ N/2—-2), N>2, (VI.1.12a)
and in one dimension (keeping n =1,2,3,...)
1
P.(2)=(n-=), N=1L1 (VI.1.12b)

2
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In Table V.1 we exhibit some numerical values for PX(1). The case q = 0 corre-
sponds ezxactly to the In(r) potential [26]. In this chapter we shall usually denote by
E(q) and P(q) the ground-state eigenvalues and P-functions in N dimensions.
We now return briefly to the question of considering the log potential as the
limit of the family V(r,q) = (r?—1)/q, as ¢ — 0, where we define V (r,0) = In(r).
A useful feature of the P-representation is that, for a given eigenvalue, only one
P-number is required to determine the eigenvalue £ corresponding to the ‘scaled’

power potential A+ Bsgn(q)r®, B > 0. Thus, we may write (exactly)

N 2
EN(A,B,q) = min{ (—I—Dﬂ@) + A+ Bsgn(q)rq} , ¢>-2,q#£0, B>0.

r>0 r
(VL1.13)
In particular, with A = —1/q, B = 1/|q| we have
N 2 a_1
Vi =(-1/a = ENa) = ggg{ (2d2) = } 4> 2,040
(VL.1.14)

Provided P(q) is continuous, it follows immediately from (VI.1.14) that

V(r) =In(r) = &Y= rrn>igl{ (%)2 + ln(r)} : (VL.1.15)
As we mentioned above, the continuity (in fact, monotohicity) of PN(q) was proved
in Ref. [2]. It is our opinion that the advantage of accommodating this limit easily
does not justify the concomitant complication of having to work, for example, with
a harmonic oscillator having the form V(r,2) = (r? —1)/2.

For N > 2, the P-numbers and the underlying eigenvalues Ef:/e satisfy the

relation PT‘% = P,%Jr% . This result is obtained using the following theorem
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Theorem VI.1. [25, Theorem 2| Suppose that H = —A + V(r), where V(r)

is a central potential in N > 2 dimensions, has a discrete eigenvalue E‘,’L\Q, then
N+2¢

EN, =

no - This theorem expresses the invariance of the eigenvalues with respect

to changes in £ and N that leave the sum N + 2{¢ invariant.

The advantage of the P-representation is illustrated by comparing Figure VI.
1 with Figure VI.2 which show, respectively, the eigenvalues F,.(q) and the cor-
responding P-representations Ppe(q) for the case N = 3. The P-functions of
Figure VI.2 are evidently monotone increasing. This property has been proved
mathematically by means of envelope theory [2]: one power ¢ was written as a
smooth transformation of another p, and then the limit p — q was taken in the
P-picture. The infinite slopes of E(q) at ¢ = 0, mentioned above, are not visible
in Figure VI.1 because the approach of the slopes to infinity is very slow for such
functions: if , for example, we consider [27] the function f(q) = |q|?, then, although

J/(0) = —oo, we have f/(107°) ~ —10.51.

The principal result of the present chapter is Theorem V1.4, to the effect that
for N> 1, Q(q) = Z(q)P(q) is monotone increasing, where Z(q) = (1 + q/N)7 :
this result is stronger than the monotonicity of P(q) because the factor Z(p) is
decreasing; thus we know more about P(q) than we did. This theorem is proved in
Section 2 and principally concerns the power-law potentials, but also treats the log
case by the use of the limit ¢ — 0 and continuity. As consequences of Theorem V1.4
we shall be able to derive some specific formulas for upper and lower bounds for the
power-law energy eigenvalues, by using nearby comparisons. However, it should be
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clearly emphasized at this point that the main purpose of the present chapter is to

strengthen our knowledge of the monotone function P(q).

Theorem VI.4 has been made possible by the emergence of generalized com-
parison theorems that allow comparison potentials to cross over and still predict
spectral ordering. In Section 2 we restate the generalized comparison theorem (The-
orem V 4, of Ref. [25]) which becomes Theorem V.2 here, and we state Theorem V1.3
(Theorem V1.7, of Ref. [25]), which provides explicit sufficient conditions for the
application of Theorem VI.3 under a variety of potential crossing schemes. Theo-
rem VI.3 allows us to prove our main result, Theorem VI.4. In Section 3, we use
Theorem VI4 to prove Theorem VI.5 which sharpens the envelope bounds found
earlier in Ref. [2]. The earlier result used ‘envelope theory’ based on the ‘standard’
comparison theorem, which may be written Vi < Vo = E[Vj] < E[V3]. As an illus-
tration of Theorem V1.5 we apply it to generate spectral bounds for the bottom of

the spectrum of —A + % in dimensions N =3... 10.

VI.2. Power-law potentials and generalized comparison theorems

We discussed the generalized comparison theorems which we shall apply to
obtain our main result in the previous chapter. We consider the two eigenproﬁlems
(=A+Vi(n))dhi(r) = E[ViJ¢(r) and (=A+ Va(r))ye(r) = E[Valtpa(r) in N >1
dimensions, where 9;(r), ¢ = 1,2, are the respective ground states (or the bottoms
of angular-momentum subspaces labelled by a fixed £ > 0).
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Theorem VIL.2. {25, Theorem 4]

k(r) = /OT[Vl(t) Vo) ()N dt < 0, Vr > 0, i =1 or 2= E[Vi] < E[Val.

(VL.2.1)

We stated this theorem (and the following theorem) with strict inequalites: the
proofs are essentially the same as given in chapter V and in Ref. [25]. It may be
difficult to apply Theorem V1.2 in practice since the positivity of the function k(r)
depends on the detailed properties of the comparison potentials. Thus it is helpful
to have simpler sufficient conditions, depending on the number and nature of the
crossings over of the two comparison potentials. In particular we shall employ the
case of two crossings, and sufficient conditions not involving the wave function. Thus

we have:

8@AﬁéBp@pb@hﬁpﬁ&W&?@&?5‘8i)z}éléélslﬂ'ﬂﬁxﬂﬁ:nlm.x.z..lm\ JEUNNE T 3 0 20 WU N SO S



2 P-4
L IICULCILIL V 1.9, ng??ﬁ&nUlli ] 1L vie puLcLiLians Vl\'l} atiu V2\7) ClLudSd LWILC tuL

r>0at r=ry, ro (ry <ry) with
(i) Vi(r) < Va(r) for 0 <r <r; and
(i) J*IVA(E) - Va(O)tdt = 0

then,

k(r) = / Vi(t) — Va(t) s ()N ~1dt <0, Vr >0, i =1 or 2, (VI.2.2)
0

from which E[V;| < E[V;] follows, by Theorem VI.2.

Now we shall use the generalized comparison theorems to prove the monotonic-
ity of a new function Q(q), which does not ‘vary’ so much as the function P(q).
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As a consequence we shall be able to derive specific formulas for upper and lower

bounds for the power-law energy eigenvalues. We are able to prove the following:

Theorem VI.4. P(q) represents via (VI.1.8) the bottom E(q) of the spectrum
of H = —A +sgn(q)r?, where ¢ # 0, and ¢ > -2, in N > 2 dimensions (or
q> -1 for N =1). Define Q(q) = (1+¢/N)/?P(g), and Q(0) = limg—0 Q(q) =
el/N P(0), then Q(q) is monotone increasing for N > 2, ¢ > -2 (or N =1, ¢>

~1).

Proof: Let p > q, p,g> -2 for N > 2 and p,q > —1 for N = 1. We shall
first suppose p # 0 and q # 0. Our goal is to prove that Q(p) > Q(g). Assume
that Vi(r) = A+ B sgn(p)r® and Vi(r) = sgn(q)r?. Now, we choose A and B
so that the potentials Vi(r) and Va(r) cross over exactly twice, as illustrated in
Figure VI.3. Let A; and B; represent the absolute values of the areas between
the potentials. We vary A and B so that Ay = B;. Then Theorem V1.3 implies
E{Vi] € (2)E[V2] depending, as r increases from zero, on which potential lies
beneath the other when they first differ. Without loss of generality, we will assume,
in this sense, that V) starts above V; this leads to an upper bound. Since V;(r)
is designed to intersect Va(r) exactly twice, we shall have two equations to solve

to provide sufficient conditions for a bound.

Vi(R) = Vo(R) = A+ B sgn(p)RP = sgn(q)R? and (V1.2.3a)

k RN Rp+N RatN
/0 Vi(r) = Va(»)|r¥ldr =0 = ATV—— +B sgn(p)p TN Sgn(q)q+ 5= 0,

(V1.2.3b)
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where R is the second potential intersection point. We let ¢ = RP/4 and, solve

(2.3a) and (2.3b) for A(t) and B(t), to find

A@t) = Sgn(qﬁ\g;i/;()p —9) (V1.2.4)
B(t) = — 1P+ N) (VL.2.5)

IpI(IV + q)ta/rlr=a)
Without loss of generality, we may consider only the case when p and q > 0, since

the proof of the other cases is exactly similar. Theorem IV.3 thus implies that
min{ A(t) + B(t)® E(p)} > E(q) (VI.2.6)

Optimizing the left side over ¢, we find the critical point as follows. We define

, @/p(p _ 2
PO = A® + (BE)F=B) = Lo Co (LI )T )
(VL.2.7)

We now simplify the equation to find the critical point in terms of p and q. We

. define the following:

n = ¢*/p,

q 2
m= =(p— — 1,

Jp ®<2+p>

and
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Thus we have

F(t) - alt" + blt—m

F'(t) = aynt™™ ! —bymt~™!

1

for which the minimum occurs at = [%‘1—'2—] e Meanwhile, the minimum value

F(#) is given by
bym ) ™= bym]  wEm
F@~al[ 17:] + b [_177_%}
ay

ain

a; —

a7t (2]
n

—:'% + 1] > E(q)-

By substituting F(£) and E(p) given by (VL.1.9) in (VL.2.6), we find that

WAE 253
(M=) [ emy (22 (2ry ) 2,
2B ) a2 )y

By simplifying this expression, we find eventually that Q(q) = (14 ¢/N)Y1P(q) is

monotone increasing, that is to say

Q(p) > Q(q). (V1.2.9)

Now for N > 2, P(q) is continuous, ¢ > —2, (or for N =1, ¢ > —1), and, if we
define Z(0) = limg—o Z(q) = /N, then Q(0) = Z(0)P(0). It follows immediately
that Q(q) = Z(q)P(q) is continuous and monotone increasing ¢ > —2 (or for
N=1, ¢>-1). O
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The three functions P(q), Z(q), and Q(q) are illustrated for N = 3 in
Figure VI.4: Theorem V1.4 states that in all dimensions N > 1, Q(q) is a monotone

increasing function of q.

VI.3. Application

By using the monotonicity of the function ((q), we now prove a special com-
parison theorem (a corollary to Theorem VI.4) for the comparison of eigenvalues
generated by power-law potentials.

Theorem IV.5. Consider the power-law potentials V;(r) = sgn(q;)r%, q; > —2,
(i > —1, for N = 1), i = 1,2, where ¢1 < q2. Let Z(q) = (1 + ¢q/N)V/1,
Z(0) = limg— Z(q) = N, Q(q) = Z(q)P(q), and g(P,q) be given by (VL.1.9a)
and (VI.1.9b), then

@) EWi] < B = g(P(a2), 1),

(ii) E[Vz] > Ef = 9(P(q1), q2),

(ili) EVi] < EY =g (gg’;gql) < EY,
Tag) > P

Proof: We first establish the upper bound (iii). We note that the function Z(q) =

(v) EVal > BE = g (

(14 q/N)'/4 is decreasing. Thus ¢ < q2 , implies Z(g2) < Z(q1), and by using
the monotonicity of the functions P(q) (2] and ¢(P,q), we may conclude that
Pq1) < Z(2)P(g2)/%(q1) = Qa2)/Z(q1) < P(g2) , which, in turn, implies E[V;] <
EY < EY . This proves (i) and (iii). After a reversal of the inequalities, the proofs
for the lower bounds (ii) and (iv) follow similarly. | O
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We note that Theorem IV.5 includes applications to the log potential. For

example, if g1 =0 and g2 = g > 0, then we have from Theorem IV.5 (iv)

E(q) > r1p>151 { (ZQ(%))—);> + sgn(q)rq} , q>0. (VL.3.1)
Example: V(r) =r3

We illustrate Theorem IV.5 by applying it to the potential V(r) = r% in
N > 3 dimensions. We first use the linear and the harmonic oscillator problems
to obtain upper and lower bounds by envelope theory. That is to say, we first use
Eq.(VIL.1.9a) to give the envelope lower bound ELP given by ¢(P(1),3/2), and the
envelope upper bound EUP given by ¢(P(2),3/2). Then we use Theorem IV.5 (iv)
to generate the improved lower bound ELQ gi‘ven by ¢(Q(1)/Z(3/2),3/2),
and Theorem IV.5 (iii) to generate the improved upper bound EUQ given by
9(Q(2)/Z(3/2),3/2). These results are shown in Figure VL5, along with accurate
numerical data EX, for N = 3...10 : they illustrate the improvement obtained

in the approximation when @ is used rather then P in the semiclassical energy

formulas.

VI1.4. Conclusion

The eigenvalues F(q) of H = —A +sgn(q)r?, q > —2, ¢ # 0, may be
conveniently represented by the functions P(q), which are known [2] to be posi-
tive, continuous, and monotone increasing. In the proof of the earlier result, each
g-potential was written as a smooth transformation of a p-potential with definite
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convexity, and then ‘envelope theory’ was applied. The envelope method, in turn, de-
pends on the ‘standard’ comparison theorem of quantum mechanics. In the present
chapter we use a stronger comparison theorem, valid for node-free states in N di-
mensions, and we are able thereby to learn more about P(q) for the bottom of each
angular-momentum subspace (n = 1). If N > 1 and ¢ > 0, we use the equiva-
lence EY, = E3"N. We have shown for all these problems that Q(q) = P(q)Z(q)
is monotone increasing, where the factor Z(q) = (1 + ¢/N)'/? is decreasing. This
immediately leads to some sharpened spectral inequalites concerning pairs of power-

law Hamiltonians.

The P(q) functions are important for an established general lower bound for
potentials which are sums of powers. Thus if V(r) = 3" a(g)sgn(q)r? + a(0) In(r),
then we have [1, 31| for the bottom of each angular-momentum subspace in N > 2
dimensions:

Ef; > min {%2 + Y a(g) sgn(q) (Pl()r)” +a(0)In (PTe(O)r)} :
q
This formula, which is easily extended to smooth mixtures defined by an integral, is
exact whenever the non-negative ‘weight’ a(q) is concentrated on a single term. The
lower bound is preserved if the P-numbers are replaced by lower bounds to them.
Thus any information concerning these fundamental numbers for the power-law
potentials immediately has application to this general lower bound. These numbers
have yielded useful energy bounds also for the many-body problem [32], and for

relativistic problems [33, 34].

In spite of the simplicity of the power-law potentials and the attractive scaling
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properties of the corresponding Schrédinger eigenvalues, general results concerning
the unit-coupling eigenvalues E(q) seem to be difficult to obtain. One might expect
that the results of the present chapter would extend to all the excited states, but we
know of no way at present to prove such general results. Even more ellusive seems
to be a proof of the apparent concavity of all the P(q) functions, some of which are
illustrated for N = 3 in Figure VL.2. The establishment of concavity of P(q) (or
better, Q(q) ) would immediately yield a large number of new spectral inequalities

arising from the use of tangents and chords to the corresponding graphs.
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Figure VI.1. The first 30 eigenvalues En¢(q), 1 <n <5, 0 < £ < 5, corresponding
to the power potential V(r) = sgn(q)r® in N = 3 dimensions. For q > 0, the
eigenvalues increase with ¢ from 1 to Fn¢(2) =4n+2¢—1; for q < 0, they
decrease (as g increases) from E,(—1) = —[2(n + £)]72. to —1. Both sets of

curves increase with n and 4.
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Figure VI.2. In the P -representation, the same set of 30 eigenvalues shown in
Fig.(1) now lie on monotone smooth curves. The log-power theorem states that
the P values for the log potential are precisely Pn¢(0). As ¢ increases from —1
to 2, the degeneracy of the Coulomb problem Pp¢(—1) = n + £ evolves into the

degeneracy of the harmonic oscillator Pne(2) = 2n+£ — 3.
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Figure VL.3. The shifted linear potential Vi(r) = A + BrP used to estimate an
upper bound for the eigenvalues corresponding to the potential Va(r) = 7. A;
and B, are the absolute values of the inter-potential areas. We vary A and B so
that A, = B, where R is the second intersection point. Thereafter, Theorem VI.3

implies that E[V,] < E[V;]. This result is used to prove the monotonicity of Q(q) .
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Figure VI.4. The functions P(q), Z(q), and Q(q) = P(q)Z(q) for the ground
state in dimension N = 3. Theorem V1.4 states that for the ground state in all

dimensions N > 1, Q(q) is monotone increasing with g.
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Figure VL5. Bounds on the eigenvalues Efj(v) corresponding to the power po-
are obtained by harmonic-oscillator tangents EUP, and linear tangents ELP (The-
orem VL5 (i),(i1)). The dashed curves EUQ and ELQ represent respectively the

improved upper and lower bounds (Theorem VL5 (iii),(iv)). Accurate numerical
data (dotted curves) EX are shown for comparison.

tential V(r)
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Chapter VII
Coulomb plus power-law potentials
in quantum mechanics
We study the discrete spectrum of the Hamiltonian H = —A + V(r) for the
Coulomb plus power-law potential V(r) = —1/r + 3 sgn(q)r?, where 8> 0, q¢ >
—2 and q # 0. We show by envelope theory that the discrete eigenvalues FE,¢ of
H may be approximated by the semiclassical éxpression Erne(q) = minyo{1/r? —
1/(ur) + sgn(q)B(vr)2}. Values of pu and v are prescribed which yield upper and
lower bounds. Accurate upper bounds are also obtained by use of a trial function of
the form, 9(r) = r‘tle=(""  We give detailed results for V(r)=-1/r+pr1, q=
05,1,2 for n =1, £=0,1,2, along with comparison eigenvalues found by direct

numerical methods.

[ Note: Section VIL.3 of this chapter is joint work with Dr. Hakan Ciftci of Ankara,

Turkey].

VI1.1. Introduction

In this chapter we derive upper and lower bound formulas for the spectrum of
a single particle in three dimensions that obeys non-relativistic quantum mechanics

and has Hamiltonian
H = —-wA — A/r+ Bsgn(q)rY, w, A, B>0, andq#0, q> —2. (VIL1.1)

The Coulomb plus power-law potential is of interest in particle physics where it
serves as a non-relativistic model for principle part of the quark-quark interac-
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tion. This class of potentials has been well studied and much work has been done
to approximate the eigenvalues, with or without the Coulomb term necessitated
by QCD [1-14]. Our goal in this chapter is to provide simple formulas for upper
and lower energy bounds for this class of potentials. Firstly, we use the ‘envelope
method’ [15,16] to obtain upper and lower bound formulas for all the discrete eigen-
values. We also use a Gaussian trial function and the ‘sum approximation’ [17,18]
to improve the bounds for the bottom of each angular-momentum subspace. The
energy bounds so far discussed may all be expressed in terms of the following semi-
classical energy formula:

& ~ min {wl— _A + Bsgn(q)(l/r)q} (VIL.1.2)

r>0 2 ur

for suitable choices of the parameters p > 0 and v > 0. We also apply a variational
method used earlier [19] which is based on the exact Coulomb wave function and
yields accurate upper bounds for the bottom of each angular momentum subspace.
We compare all these results with ‘exact’ eigenvalues computed by direct numerical

integration.

For the class of potentials studied some exactly solvable cases exist for suitable
values of the couplings w, A, B, and the power q. For example, for the well-
known hydrogenic atom and the harmonic oscillator potentials we have explicitly
for n =1,2,3,...

AE

IR

(VIL.1.3)
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and

q=2 = FEp=(wB)i(dn+20~1). (VIL1.4)

For £ = 0, exact solutions are also available for the linear potential ¢ = 1. We
can simplify the coupling problem in general by the use of scaling arguments. If, for
each fixed q, we denote the eigenvalues of H = —wA — A/r+ Br? by £(w, A, B) ,
and consider a scale change of the form s = r/o, and choose the scale ¢ = w/A,

then it is straightforward to show that,

Ew,A,B) = (%i) £0,1,8), B= (;,B‘> (;’7)”2. (VIL.1.5)

Hence, the full problem is now reduced to the simpler one-parameter problem

H=-A-1/r+Bsgn(qr?, E=EQ@) =E1,1,8), 8> 0. (VIL1.6)

VIL.2. Energy bounds by the envelope method and the sum approxima-

tion

We use again the ‘envelope method’ [15, 16] explained in the previous chapters
to analyse the spectrum for the Coulomb plus power-law potentials. In Table VII.1
we exhibit some numerical values for Pnf(%) and Ppe(l). We have found the ex-
act eigenvalues for the linear potential in terms of the zeros of the Airy function,
but those for q = % have to be computed numerigally: this use of some isolated
numerical input is justified since, for each {n, ¢} pair, the resulting approximation
formulas include all the potential parameters but depend only on a single ‘numeri-
cal input’. Envelope theory [12, 17] shows that the eigenvalues of the Coulomb plus
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power-law potential may be approximated by the following semiclassical expression,

1 1
~mind — — — 4 : 2.
£ rrrgg{rz pr + 3 sgn(q)(vr) } , where y, v >0 (VIL.2.1)
Since V(r) = g(h(r)) is at once a convex function of h(r) = —1/r and a concave

function of h(r) = sgn(q)r9, the spectral representation Pphe(q) allows us to specify
upper and lower bounds formulas as follows. If p = v = P,e(—1), then &£ is a
lower bound for FEye, and if g = v = P,(q), then £ is an upper bound. We
may improve the lower bound for the bottom of each angular momentum subspace
by using the sum approximation (17,18], which is equivalent to the choice p =
Pr(—1) = (£ +1) and v = Pi¢(q). For the bottom of the spectrum we can also
improve the upper bound by using a Gaussian trial function and minimizing over

scale: this is equivalent [12] to using the parameter values

p=v=P= (g)é [W} % . (VI1.2.2)

We note that the same parameters p and v which guarantee that (VIL.2.1) yields
various energy bounds may also be used in the ‘full’ semiclassical formula (VII.1.2),
including all the original Hamiltonian parameters {w, A, B}. In Section VIL3 we
apply (VIL2.1) to the explicit cases V(r) = —1/r + 8 74 for £ = 0,1,2, where

q=1,2, and 0.5.
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VI1.3. Variational method

The second approach in this chapter is to use a trial function explored in
previous work [19] to obtain accurate upper bounds for the bottom of each angular

momentom subspace. We start with Schrodinger’s equation

H(r) = (=8 = 1+ 6 560(@i) 90) = BulBU0), 470, 4> -2 (VILZD

This problem is solvable if 3 = 0, and the corresponding wave function ¥(r) is
given by

P(r) = r' e L2 (22r). (VIL3.2)

In order to obtain an upper bound for the bottom of each angular momentum

subspace Fj, for fixed power ¢ we choose 9(r) to be of the following form
P(r) = rttie=(@n) (VIL.3.3)

and define £ by £(83,z,d) = %’Q, where = and d are variational parameters.
Now, we minimize £ with respect to x and d. The necessary conditions for a
9E

critical point are 2 =0 and 2 = 0. Consequently, using (VIL3.1) and (VIL.3.3),

we obtain the following upper bound formula for the eigenvalues F¢
E1e(8,d, x) = a13* — aox + azz ™, (VIL.3.4)

where a;, az and ag are as given below

2-24 (204 1)(2¢ +d + D (35H)
o)

(11:2
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By using (VII1.3.4) we derive the following equation for z

grt? - 22 gert 9B (VIL3.5)
2(11 2(11

After solving Eq.(VIL.3.5) to obtain z, from the numerical solution of 2—2 =0 we

find d for n =1 and ¢ = 0, and then we use the same d value for all £.

VI1.4. Conclusion

We have found general semiclassical energy formulas (VIL.1.2) and (VII.2.1)
for the eigenvalues generated by the Coulomb plus power-law potentials. Specific
values for the parameters u and v are given which guarantee that the formulas
yield bounds for all the discrete energies. By using a more finely tuned wavefunction,
we have also derived an improved upper bound (VII.3.4) valid for the bottom of
each angular momentum subspace. We may rewrite (VI1.2.1) in the form of a pair

of parametric equations for the curve {3, E(B)}. For fixed ¢ > —1 we obtain:

7 iy (i)

1+2/q 1+1/q
72 ur

(VILA.1)

E(B) =

By envelope theory, we know that these parametric equations yield a lower bound
if p=v = Phe(-1)=(n+{), and an upper bound when p =v = P,¢(q). For the
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bottom of each angular momentum subspace the prescription p = Pye(—1) = (£+1),
v = Pue(q) yields an improved lower bound. An improved upper bound for the
bottom of the spectrum is given by using the ‘Gaussian’ P-numbers (VIL.2.2). In
Figures 1, 2, and 3, we plot the function E(3) for n =1,£=0,1,2 for the Coulomb

plus harmonic oscillator (¢ = 2), Coulomb plus linear (¢ = 1), and Coulomb plus

7“0’5

potentials, along with the corresponding accurate variational bounds using
VIIL.3.4) (dashed line), and some comparison numerical values represented as stars.
p P

The advantage of the semiclassical formulas is that they describe in approximate

analytical form how the eigenvalues depend on all the parameters of the problem.
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Table VII.1 The ‘input’ values Png(%) and Pne(1) to be used in the gen-
eral formula (VIL.2.1) for the energies corresponding to the potential V(r) =
~1/r + B sgn(q)rd. These P-values yield upper bounds when ¢ < %, or ¢ < 1,
respectively.

Pnl(%) Pe(1)
1.30266 1.37608
2.97387 3.18131
4.65440 4.99255
6.33742 6.80514
8.02149 8.61823
2.29747 2.37192
3.93966 4.15501
5.60154 5.95300
7.27194 7.75701
8.94679 9.56408
3.29535 3.37018
4.92261 5.14135
6.57089 6.92911
8.23022 8.72515
9.89619 10.52596
4.29424 4.36923
5.91240 6.13298
7.55077 7.91304
9.20118 9.70236
10.85929 | 11.49748
3.29352 5.36863
6.90560 7.12732
8.53658 8.90148
10.17964 | 10.68521
11.83110 | 12.47532

ol mlwlmwlmlalalw| vwl—=|olslw|vo|=lole]lw{o]—]o] || -] S
wlal el salw|lwlwlwlwl ||| ~l~rlmrlmrl~lolo|loilolol s
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Figure VIIL.1 the eigenvalues E(8) of the Hamiltonian H = —~A — 1/r + Br? for
N =3, n=1, and £ = 0,1,2. The continuous curves show the upper bound
EU given by the envelope formula (VII.2.1) with v = p = P1,(2), for £ = 1,2
and the lower bound ELS by the sum approximation given by the same formula
but with v = Pi4(2) and pg = Pi¢(~1). The upper bound for £ = 0 is calculated
using v = P{(2) and p = P{,(—1) in formula (VIL.2.1). The dashed curve EC
represents the upper bound by formula (VII.3.4). The stars EX represent accurate
numerical data.
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Figure VIL2 the eigenvalues E(B) of the Hamiltonian H = —A — 1/r + pr for
N =3, n=1, and £ =0,1,2. The continuous curves show the upper bound EU
given by the envelope formula (2.5) with v = g = P1¢(2), and the lower bound
ELS by the sum approximation given by the same formula but with v = Pye(1)
and g = Pp(—1). The upper bound for £ = 0 is calculated using v = P;(1)
and p = P5(—1) in formula (VIL.2.1). The dashed curve EC represents the upper

12

10

3

EU /
——— EC
ELS
{ i
2 25
p

bound by formula (VII.3.4). The stars EX represent accurate numerical data.
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Figure VIL.3 the eigenvalues E(8) of the Hamiltonian H = —A — 1/r + 8r%° for
N =3, n=1, and £ =0,1,2. The continuous curves show the upper bound EU
given by the envelope formula (VIL.2.1) with v = g = P;(0.5), and the lower bound
ELS by the sum approximation given by the same formula but with v = P;¢(0.5)
and p = Pye(—1). The upper bound for ¢ = 0 is calculated using v = P{;(0.5)
and g = PY(—1) in formula (VIL.2.1). The dashed curve EC' represents the upper
bound by formula (VII.3.4). The stars EX represent accurate numerical data.
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Conclusion

In this thesis we have studied a collection of interesting spectral problems in
quantum mechanics. We have obtained a spectral bounds for wide classes of po-
tential V in Schrodinger operators of the form H = A 4 V. We have used the
comparison theorem to prove that discrete eigenvalues exist for the Hellman and
cutoff-Coulomb potentials . We then employed the envelope method to obtain sim-
ple formulae for upper and lower bounds for these eigenvalues. We have generalized
the comparison theorem in N dimensions to allow for intersecting comparison po-
tentials and angular momenta ¢ > 0. Moreover, we are able to obtain bounds for
the bottom of each angular-momentum subspace since we have proved that this
energy is identical (Theorem V.2) to the lowest eigenvalue of a higher-dimensional
problem in RN*2¢, We study the representation P(q) for the eigenvalues E(q) of
the operator H = —A + sgn(q)r® defined by E(q) = minr>o{£%)—2— + sgn(q)rd} .
It had previously been proved that P(q) is monotone increasing. We strengthen
this result for the ground state by utilizing the generalized comparison theorem to
demonstrate the monotonicity of a new function Q(q) = Z(q)P(q) , where Z(q) is
specified and is monotone decreasing. Thus we know that P(q) cannot increase too
slowly: this in turn allows us to obtain improved bounds for the eigenvalues F(q)
in N dimensions. Finally we find energy bounds for the Coulomb plus power-law
potential be means of the envelope method, a variational method, and the sum ap-
proximation. In future it is hoped to improve these analytical results, for example
by proving the concavity of the function P(q) (so far known only numerically) and
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by more narrowly bounding its rate of increase. An interesting class of unsolved
problems is to extend some of our results to the excited states. The ‘refined’ com-
parison theorem and the sum approximation in their present forms are both limited

to states at the bottom of an angular-momentum subspace.
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Abstract

The method of potential envelopes is used to analyse the bound state spectrum of the Schrodinger Hamiltonian H =
—A + V(r), where the Hellmann potential is given by V(r) = —-A/r + Be=C"/r. A and C are positive, and B can be positive
or negative. We established simple formulas yielding upper and lower bounds for all the energy eigenvalues. © 2001 Elsevier

Science B.V. All rights reserved.

PACS: 03.65.Ge: 03.65.Pm: 31.15.Bs: 02.30.Mv

1. Introduction

The Hellmann potential V (r) given by

V(r)=—=A/r+Be " /r (L.1)

has many applications in atomic physics and condens-
ed matter physics [1-11]. The Hellmann potential,
with B positive, was suggested originally by Hell-
mann [1,2] and henceforth called the Hellmann poten-
tial if B is positive or negative. The Hellmann potential
was used as a model for alkali hydride molecules [4].
It was used also to represent the electron-ion [5,6] and
electron core interaction {7,8]. It has also been shown
that the main properties of the effective two-particle
interaction for charged particles in polar crystals may
be described by this potential [9-11].

* Corresponding author.
E-mail address: rhall@mathstat.concordia.ca (R.L. Hall).

2. The discrete spectrum: scaling

Many authors have studied the eigenvalues gener-
ated by the Hellmann potential and have tried to esti-
mate them [1-14]. For example. Adamowski [3] used
a variational framework to obtain accurate eigenval-
ues. Dutt, Mukherji and Varshni [12] and Kwato Njock
et al. [14] applied the method of large-N expansion to
approximate the bound states energies. In this paper
we present simple upper- and lower-bound formulas
obtained by the use of the comparison theorem and
the envelope method [15-18].

We first show that discrete eigenvalues exist for
the Hellmann potential for all values of A > 0, B,
and C > 0. This result allows us to transcend the
limit B < A assumed to be necessary in an earlier
attempt at this problem by geometrical methods [13].
Suppose that B < 0, then we immediately have that
—(A = B)/r <V(r) < —A/r. Since both upper and
lower bounds are hydrogenic potentials with discrete
eigenvalues, the same follows for V(r). Now we
suppose that B > 0. In this case the concem is
that. for sufficiently large B. the positive term might

0375-9601/01/S — see front matter © 2001 Elsevier Science B.V. All rights reserved.

PI: S0375-9601(01)00497-2



184 R.L. Hall, Q.D. Katatbeh / Physics Letters A 287 (2001) 183-186

dominate the Coulomb term. We see that this does
not happen by the following argument. The function
re~C" has maximum value 1 /(eC). Hence, for B > 0,
we have Be " /r < (B/eC)/r?, and we conclude
that —A/r < V(r) < —A/r + (B/eC)/r%. But the
‘effective potential’ for the hydrogenic atom in a state
of orbital angular momentum ¢ is given by

Vet(r) = —A/r + 00+ 1) /1. .1

Hence, again, we see that V(r) is bounded above and
below by hydrogenic potentials whose corresponding
Hamiltonians have discrete eigenvalues. This estab-
lishes our claim.

If we denote the eigenvalues of H = —wA+A/r +
Be=€r by E(w, A, B, C), and consider a scale change
of the form s = r/o, and choose the scale ¢ = w/A,
then it is easy to show that,

2 A B
E(w, A, B,C)=CwE 1,—,——,1). (2.2)
wC oC
Hence, the full problem is now reduced to the simpler
two-parameter problem

H=~A—a/r+Be " /r, E=E(a. B),
o >0. 2.3)

3. Energy bounds by the envelope method

The comparison theorem of quantum mechanics
tells us that an ordering between potentials implies
a corresponding ordering of the eigenvalues. The
‘envelope method’ is based on this result and provides
us with simple formulas for lower and upper bounds
[16—-18]. We need a solvable model which we can use
as an envelope basis. The natural basis to use in the
present context is the hydrogenic potential

h(r)y=—1/r. (3.1)

The spectrum generated by the potential £ (r) may
be represented exactly by the semi-classical expres-
sion

(V) = mig[s + vl—z,,g(s) } 3.2)

where the ‘kinetic potential’ e (s) associated with the
potential #(r) = —1/r is given, in this case, exactly by

Bne(s) = —s'72/(n + £). If we now consider a poten-
tial, such as V(r), which is a smooth transformation
V(r) = g(h(r)) of h(r), then it follows that a useful
approximation for the corresponding kinetic potential
Fue(s) is given by

Jnt(8) % g(hne(s)). (3.3)

If g is convex in (3.3), we get lower bounds (~=>) for
all n and ¢, and if g is concave we get upper bounds
(==<x)forall n and ¢.

For the Hellmann potential, if we use the potential
h = —1/r as the envelope basis, then the sign of
g" depends only on the sign of B. An elementary
calculation shows that

g'(hy=—BC*\“/M/p3 = BC3e=Cr, (3.4)

Hence, g is convex if B > 0 or concave if B < 0.
Thus in this application of the method we obtain
upper energy bounds for B < 0 and lower bounds
for B > 0. The following remarks explain briefly how
these results are obtained.

We suppose for definiteness that the transformation
g(h) is smooth and convex, i.e., g” > 0, then each
tangent to g is an affine transformation of / of the form

VO (ry=a(t) + b(n)h(r). (3.5)

where the variables a(r) and b(r) are chosen such that
the graph of the potential V (r) lies above the graph of
the potential h(r), but it is tangential to it at a point,
say r =t. That is to say

V(ty=a(t) + b(t)h(t) and (3.6)
V() =b@)h'(1). 3.7

This means that the ‘tangential potential’, V(')(r), and
its derivative agree with V(r) at the point of contact,
r=t.

Thus, by substituting (3.3) in (3.2), we find

Snisnﬁg[s +8(s'2/(n + 0)), (3.8)

which yields an upper bound if B < 0 and a lower
bound if B > 0. This can be further simplified by
changing the minimization variable s to r by the
relation,

g(hni(9)) = g(=s"2/(n + 0) = V), 3.9

which. in turn, implies s = (n + £)2/r>. Hence we
obtain finally the following semi-classical eigenvalue
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formula involving the potential V (r) itself

Ene & mig{(n + 0+ V() (3.10)

4. Results and conclusion

We now have a simple formula (3.10) for lower
and upper bounds to the eigenvalues for the Hellmann
potential. In Fig. 1 we plot the ground-state eigenvalue
bound (full line) as a function of B for the case A =2,
C =1, along with the corresponding point results
of Adamowski [3] as hexagons, and some accurate
numerical values (dashed line). It is clear from this
figure that the simple approximation formula gives an
accurate estimate of the eigenvalues which is an upper

T T TT

-5

T T T

LABAL AL A e B B S Mt S Mt

Fig. 1. The eigenvalues &E(B) of the Hamiltonian
H=-A-2/r +Be"/r for n =1 and £ = 0. The contin-
uous curve shows the bounds given by the formula (3.10), the
dashed curve represents accurate numerical data, and the hexagons
are the results of Adamowski [3]. It is clear that the formula pro-
vides us with upper bounds when B < 0 and lower bounds when
B >0.

bound if B < 0, and a lower bound when B > 0, as
predicted by the theory.

If we fix A, B, and C and consider the Hamiltonian
H = —A 4 vV (r), with eigenvalues £(v), then from
(3.10) we immediately obtain the following explicit
parametric equations for the corresponding energy
curve {v, £(v)}, namely

_2n+0)?
- r3V’(r) ’
+62 2+ 0%V
tw="1Y s .0

In Fig. 2 we exhibit the corresponding graphs of the
function £(v)/v? for B = +1 and B = —1, again with
A =2,and C = 1, along with accurate numerical data
shown as a dashed curve. The main point of this work
is to show that by elementary geometric reasoning one

0

-0.5

(3]
wn

Fig. 2. The eigenvalue bounds (full-line) for £(v)/v7, where £(v) is
the ground-state eigenvalue of the Hamiltonian H = —~A + vV (r),
for A =2 C =1 and B = +1,—1. together with accurate
numerical data (dashed-line). The parametric equations (4.1) yield
upper bounds when B < 0, and lower bounds when B > 0.
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can obtain simple semi-classical approximations for
the eigenvalues. These results are complementary to
purely numerical solutions and have the advantage that
they are expressed analytically and allow one to ex-
plore the parameter space without having to attend to
the arbitrary additional parameters and considerations
which necessarily accompany numerical approaches
with the aid of a computer.
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Abstract

The method of potential envelopes is used to analyse the bound-state spectrum of the Schrédinger Hamiltonian H =
—A —v/(r +b), where v and b are positive. We established simple formulas yielding upper and lower energy bounds for
all the energy eigenvalues. © 2002 Elsevier Science B.V. All rights reserved.

PACS: 31.15.Gy: 31.15.Pf; 03.65.Ge

1. Introduction

The cutoff Coulomb potential f(r) given by

f)y=—v/(r+b) (1.1

1s an approximation to the potential due to a smeared
charge distribution, rather than a point charge, and is
appropriate for describing mesonic atoms {1]. Many
authors have studied the eigenvalues E,s, n = 1, 2,
3,...,€=0.1,2,..., generated by the cutoff Cou-
lomb potential and have tried to estimate them. For
example, Ray and Mahata (2] applied the method of
large- N expansion to approximate the bound states en-
ergies from n = | to n = 4. Mehta and Patil [1] rigor-
ously analysed the S-wave bound-state eigenvalues of
this potential as a function of b.

In this Letter we offer an elementary proof that the
cutoff Coulomb potential has infinitely many discrete
negative eigenvalues E,p, n = 1,2,3,..., £ =0,1,

* Corresponding author.
E-mail address: thall@mathstat.concordia.ca (R.L. Hall).

2...., by using comparison methods. We then use the
comparison theorem and the envelope method [4-8] to
obtain simple upper- and lower-bound formulas for all
the eigenvalues.

2. The discrete spectrum: scaling

The Hamiltonian for the problem is given by

H=-A-v/(r+b), v,b>0. 2.1)

A concern might be that, for sufficiently small cou-
pling v, the potential, like a square well, might not
have any discrete spectrum. However, the Coulomb
tail averts this problem. It has been proved [5] by gen-
eral methods that for any potential, like —uv/(r + b),
which is negative and decays at infinity slower than
1/r*~¢, the corresponding Hamiltonian operator has
infinitely many negative eigenvalues. The specific re-
sult for our problem may also be obtained by an ele-
mentary application of the comparison theorem, as we
now show by the following argument. We note that the

0375-9601/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
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potential can be written

( )_~v+vb vb? 2.2)
fin)= r r2 r2r+b)’ ’
It therefore follows that
v —-v vb
~2 < fr) <+
r r r
and, consequently,
v L+ 1) L+ 1)
‘/l =——+ b < f(r) + 2
r r= r
— AA+1
S G VO
r r=
where

1 2 1/2 1
A= ((3 + 5) + Ub) — 5 2.4)

Hence, we see that the effective potential associated
with f(r) is bounded above and below by hydrogenic
effective potentials with discrete negative eigenvalues.
This implies that the potential V has infinitely many
negative discrete eigenvalues E,¢ bounded by

2 2
Vi -V

- (Ey § ———.
4(n + £)? 4(n + )2

These bounds are asymptotically close for large n. An-

other upper bound is provided by the linear potential
since f(r) < —v/b -+ (v/b)r. Hence,

(2.5)

b b?

where £,¢(1) are the eigenvalues of the Hamiltonian
— A + r for linear potential.

For the S-states the radial equation may be trans-
formed into Whittaker’s equation which has known
exact solutions [3]. Some closed-form results have
also been obtained for £ > 0 [9,10]. The general so-
lution is written [3] in terms of the confluent hyperge-
ometric functions M{x, y, z] and U[x, y, z], where

v v\
Epp < —=+ (—) Ene (D), (2.6)

oo
1 z 0y
U(x,y,z):m/e—kttx—l(l_*_t))_x_ldt
0

=z Fx, L+x—y; ;-1/z2] 2.7

and M[x,y,z] = | Fi[x; y;z]. Mehta and Patil [1]
used the bounded property of the radial wave function
and the boundary conditions to demonstrate that the

eigenvalues are determined by the equation
U[l —v/(2v=E).2,2bv/-E] =0. (2.8)

As an alternative, we shall apply the envelope method
to approximate all the eigenvalues. We first reduce the
complexity of the problem by the use of scaling argu-
ments. If we denote the eigenvalues of H = —~wA —
v/(r +b) by £(w, v, b) and consider a scale change of
the form s = r/o, and choose the scale o = w/v, then
it is easy to show that

2 b
E(w, v, b) = ”—5(1, L, 3-). (2.9)
(03] w

Hence, the full problem is now reduced essentially to
the simpler |-parameter problem

H=-A-1/(r+b), E£=EG), b>0. (2.10)

3. Energy bounds by the envelope method

The comparison theorem of quantum mechanics
tells us that an ordering between potentials implies a
corresponding ordering of the eigenvalues. The ‘en-
velope method’ is based on this result and provides
us with simple formulas for lower and upper bounds
[6-8]. We need a solvable model which we can use
as an envelope basis. The natural bases to use in the
present context are the hydrogenic and linear poten-
tials

h(r) =sgn(g)r?, whereqg=—1,1. 3.1

The spectrum generated by the potential #(r) may be
represented exactly by the semi-classical expression

Ene(v) = minfs + vhne(s)}, 32

where the ‘kinetic potential’ e (s) associated with the
power-law potentials (3.1) are given by [8]

o) = Q/plaED 1@+ | P74, (33

and S,(,‘é) is the exact eigenvalue of —A + sgn(g)r?,
that is to say, corresponding to the pure-power po-
tential with coupling 1. If we now consider a poten-
tial, such as f(r), which is a smooth transformation
f(r) = g(h(r)) of h(r), then it follows that a useful
approximation for the corresponding kinetic potential
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f_,,g(s) is given by

fat(5) = g(ne(s)). (3.4)

If g is convex in (3.4), we get [6-8] lower bounds
(>~ =2>) for all n and ¢, and if g is concave we get
upper bounds (=~ = <) for all n and £.

For the cutoff Coulomb potential, if we use the po-

tential & = —1/r as an envelope basis, then g is con-

vex. An elementary calculation shows in this case that
M 2vb

g (h)= (3.5)

——-——(b/r e > 0.

And if we use the potential & = r as an envelope basis,
then g is concave, in fact

—2v
"(hy = —"—= <. 3.6
g =G < (3.6)
Thus in this application of the method we obtain upper
energy bounds if we use h = —1/r and lower energy

bounds if we use h = r. The following remarks explain
briefly how these results are obtained.

We suppose for definiteness that the transformation
g(h) is smooth and convex, i.e., g’ > 0, then each tan-
gent f)(r) to g is an affine transformation of 4 satis-
fying

FOy =a@) +b(h(r) < f(r), (3.7)

where the variables a(r) and b(t) are given by solving
the contact equations :

f&) =a()+b)h() (3.8)
and
f @)y =bOh @), (3.9)

which mean that the ‘tangential potential’, f(r), and
its derivative agree with f(r) at the point of contact,
r = t. The potential inequality (3.7) implies the spec-
tral inequality

Ene(v) 2 va(t) + Eae(vb(1)). (3.10)

The optimal lower bound thus obtained may then

eventually (8] be rewritten

Ene > min{s + g (hine (9))}- 3.11)
5>

In the complementary case where g is concave, the in-
equalities are reversed, and one obtains upper bounds.

Table 1
The ‘input’ P-values PnLe,P,%, and the mean P"Ag = (1/2) x
(Ppe(—1) + Ppg(1)) used in the general formula (3.12)

n ¢ PL=n+e pM PY,

1 0 1 1.18804 1.37608
2 0 2 2.59065 3.18131
3 0 3 3.99627 4.99255
4 0 4 5.40257 6.80514
5 0 5 6.80911 8.61823
| 1 2 2.18596 237192
2 1 3 3.57750 4.15501
3 | 4 4.97650 5.95300
4 1 5 6.37850 7.75701
5 1 6 7.78204 9.56408
1 2 3 3.18509 3.37018
2 2 4 4.57067 5.14135
3 2 5 5.96455 6.92911
4 2 6 7.36257 8.72515
5 2 7 8.76298 10.52596
1 3 4 4.18461 4.36923
2 3 5 5.56649 6.13298
3 3 6 6.95652 7.91304
4 3 7 8.35118 9.70236
5 3 8 9.74874 11.49748
1 4 5 5.18431 5.36863
2 4 6 6.56366 7.12732
3 4 7 7.95074 8.90148
4 4 8 9.34260 10.68521
5 4 9 10.73766 12.47532

For the power-law potentials h(r) = sgn(q)r9 we
can simplify (3.11) by changing the minimization vari-
able s to r defined in each case by the equation
hue(s) = h(r) so that g(h(r)) = f(r) = —v/(r +b),
and minimization (3.2), which yields eigenvalue ap-
proximations for the Hamiltonian H = —wA + f(r),
where w > 0, can be expressed in the form

Ph@ v
r2 (r+b )

We obtain a lower bound for P,y = Pye(—1)=n+¢,
an upper bound for P,y = Py,¢(1), and a good approx-
imation with the mean value P,, = P,:”E’ = (1/2) x
(Pue(—1) + Pue(1)). These P-numbers are provided
in Table 1.

A natural question to ask is whether there exists a
set of numbers {P,¢} such that £, = min,>(){PnZe/r2
+ f(r)} exactly. We can see that the answer is ‘no’ by
an argument based on the ‘concentration lemma’ [11},
which provides us with the relation between the con-
centration of the ground-state wave function and the

E. %min{w (3.12)

r>0
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E(b)*p?

Fig. 1. The eigenvalues £(b) of the Hamiltonian H = —(1/2)A —
1/(r +b) forn = £ =1 (in atomic units 5 = m = 1). The continuous
curves show the bounds given by formula (3.12), the dashed curve
represents accurate numerical data, and the stars are the ‘mean ap-
proximation’ P,y = (1/2)(Pye(—~1) + P (1)).

size of the coupling constant v. More precisely, the
wave function becomes more concentrated near the
origin as v increases. Since for large values of the cou-
pling v the ‘linear’ upper bound (3.12) is very accu-
rate (concentration near r = ), if there were one ‘ex-
act’ Py, it would have to be the linear potential value
Pig = Pyp(1). But our upper bound is clearly above
E,¢ for small values of v. Hence there are no such
‘exact’ Ppe.

4. Results and conclusion

We have derived a simple formula (3.12) for lower
and upper bounds to the eigenvalues for the cutoff
Coulomb potential. In Fig. | we plot the eigenvalue
when (n,£) = (1, 1) as a function of b for the case
v = 1, accurate numerical values (dashed line), and
our approximation with the average value P, =
(1/2)(Pue(—1) + Pue(1)) as stars.

E(v)

\\ ) 3,
\\ N N .
-35k N, 4
AN
N\,
AN
-4 N
45 1 I L L L £ i
1 2 3 4 5 [ 7 8 9 10

Fig. 2: Eigenvalue bounds (full line) for the ground-state eigenvalue
EW) (n =1, £ =0) of the Hamiltonian H = —A + vf(r) (in
units i = 2m = 1) for b = 1, together with accurate numerical data
(dashed curve). The parametric equations (4.1) yield upper bounds
when P,¢ = P,¢(1), lower bounds when P,,; = £,;(—1), and good

approximation when P,y = (1/2)(P,¢(=1) + P,¢(1)). shown as
stars.

If we fix b and consider the Hamiltonian H =
— A+ vf(r), with eigenvalues £ (v), then from (3.12)
we obtain the following explicit parametric equa-
tions for the corresponding approximate energy curve
{v, £(v)}, namely

__Z(PnE)z
ERETIOK

C(Pa)? | 2P f() :
£ =— EEa (4.1)

These parametric equations yield upper bounds when
Ppe = Pye(l), lower bounds when P,y =n + €, and a
good approximation when we use the arithmetic aver-
age of Pyy(—1) and P,e(1). It is interesting, perhaps,
that all these curves are scaled versions of any one of
them; it is unknown if such a symmetry is true for the
corresponding exact curves. In Fig. 2 we exhibit the
graphs of the function £(v) for b = 1 along with ac-
curate numerical data shown as a dashed curve. The
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main point of this work is to show that by elemen-
tary geometric reasoning one can obtain simple semi-
classical approximations for the eigenvalues. These re-
sults are complementary to purely numerical solutions
and have the advantage that they are expressed simply
and analytically and therefore allow one to explore the
parameter space of the problem.
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Abstract

This paper is concerned with the discrete spectra of Schridinger operators
H = —A +V, where V(r) is an attractive potential in N spatial dimensions.
Two principal results are reported for the bottom of the spectrum of H in
each angular-momentum subspace H;: (i) an optimized lower bound when
the potential is a sum of terms V(r) = V(r) + V@ {(r), and the bottoms
of the spectra of —A + V(r) and ~A + V@ (r) in H, are known, and
(ii) a generalized comparison theorem which predicts spectral ordering when
the graphs of the comparison potentials V"(r) and V@(r) intersect in a
controlied way. Pure power-law potentials are studied and an application of the
results to the Coulomb-plus-linear potential V(r) = —a/r + br is presented in
detail: for this problem an earlier formula for energy bounds is sharpened and
generalized to N dimensions.

PACS number: 03.65.Ge

1. Introduction

This paper has two principal aspects: the potential-sum approximation, and the generalization
of the comparison theorem of quantum mechanics to cases where the comparison potentials
intersect. We study spherically-symmetric problems in N spatial dimensions. There is much
interest in problems posed in arbitrary dimension N [1-9], rather than specifically, say, for
N =1, or N = 3. References {1, 4] are useful for technical results such as the form of the
Laplacian in N-dimensional spherical coordinates; the other papers are concerned with solving
problems such as the hydrogen atom [3, 7] and the linear, harmonic-oscillator, hydrogen atom,
and Morse potentials [8] in higher dimensions than N = 3. The geometrical methods we use
in this paper are independent of dimension, which can usually be carried as a free parameter N.
We consider examples with Hamiltonians of the form H = — A + v sgn{¢)r? or with sums of
such potential terms. We suppose that the Hamiltonian operators H = —A + V{(r), r = {|r{,

0305-4470/02/418727+16$30.00 © 2002 IOP Publishing Ltd  Printed in the UK 8727
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have domains D(H) € L*(RV), they are bounded below, essentially self-adjoint, and have
at least one discrete eigenvalue at the bottom of the spectrum. Because the potentials
are spherically symmetric, the discrete eigenvalues ¥,; can be labelled by two quantum
numbers, the total angular momentum ¢ = 0, 1,2,..., and a ‘radial’ quantum number,
n =1,2,3,..., which counts the eigenvalues in each angular-momentum subspace. Since
the discrete spectrum may be characterized variationally [10, 12], the elementary comparison
theorem VO « V@ = Lf,'z) < Ff,? immediately follows. The generalization we shall study
(in section 3) involves comparison potentials whose graphs ‘cross over’ in such a way that
spectral ordering is still guaranteed.

Before we study the generalized comparison theorem, we shall need some established
results conceming ‘kinetic potentials’ {13] and ‘envelope theory’ [14, 15]. In order to fix
ideas and simplify the presentation, let us suppose that E is a discrete eigenvalue at the bottom
of the spectrum of H = —A + V in N dimensions. It follows that E = inf(yr, Hy¥) where
yr € D(H) and ||| = 1. We perform the total minimization in two stages: first we constrain
the process by fixing the mean kinetic energy (¥, —Ay} = s, and then we minimize over
s > 0. The mean potential-energy function under the constraint is called the ‘kinetic potential’
V{s) associated with the potential V(r). Thus we define

- — . 7 — - V . .
V(s) we‘%fm W, Vy)y = E xlx))lg(H ()} (L.1)
¥ ¥)=1
(¥, —A¥)=g

The variational definition of the kinetic potentials implies that (i) cV(s) = cV(s) and
(ii) Vm(s) < 7(2:’(3') = EM  ED. Kinetic potentials can be defined {13] for higher
eigenvalues and they can then be reconstructed from ‘energy trajectories’, the functions which
describe how the eigenvalues vary with the coupling parameter v > 0. We have, in general,

for coupling

H=—-A+vf{r) - Epg = Fpe(V) (1.2q)
and

5 = Fe(v) — vF,(v) Faels) = Fip(v) (1.2b)
where E, is the nth eigenvalue in the angular-momentum space labelled by £ and F,,(v)
describes how this eigenvalue depends on the coupling v > 0; the corresponding kinetic
potentials may then be defined by (1.2h). The relationship F(v) < f(s) is essentially
a Legendre transformation [16]: for the ground state (or the bott(_)m E ¢ of each angular-
momenturmn subspace) F{v) is concave [11-13] and consequently f(s} is convex; it follows
{17} immediately from (1.2b) that F"(v) f*(s) = —v™> < O whenever F*(v) # 0; thus
in general F(v) and f{(s) have opposite convexities almost everywhere. For the important
class of examples i/ = —A + vsgn(g)r?, corresponding to pure powers ¢ > —2, we know
that F(v) is concave for every (discrete) eigenvalue since, by scaling arguments, we have
Fre(v) = Fap(1)v™, and sgn(Fne(1)) = sgn(q).

The main purpose for this two-step reformulation of ‘min-max’ is that certain spectral

approximations are very effectively developed in terms of kinetic potentials. We shall consider

first the ‘envelope approximation’, which in its most succinct form can be summarized as
follows:

Fry=3g(r)) = fuls) ~ g(hae(s)). (1.3)

Here f(r) is a smooth transformation of a ‘base’ potential h(r). We suppose that the
transformation g is monotone increasing and, if it also has definite convexity, the following
important conclusions may be drawn: if g is concave, we get an upper bound ~ = <; and,
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Table 1. The ‘input’ P-values P,;X(l) used in the general formula (1.4), for N = 2,3,...,12. The
same data apply to £ > 0 since by theorem 2 we have P,;“’ = P,ﬁ,’u.

N n=1 n=2 n=3 n=4

2 0.9348 2.8063 4.6249 6.4416
3 13761 3813 49926 6.805¢
4 18735 3.6657 54700 7.2783
5 23719 41550 59530 7.7570
6 2.8709 4.6472 64398 8.2396
7 33702 51413 6.9291 8.7251
8 3.8696 5.6367 7.4204 9.2129
9 43692 6.1330 79130 9.7024
10 4.8689 6.6299 8§.4068 10.1932
11 53686 7.1274 89053 10.7453
12 58684 7.6253 9.4045 11.2744

if g is convex, we obtain a lower bound ~ = 2> . These results may also be derived by the use
of families of upper and lower ‘tangential’ potentials [18]. In section 2, we shall apply this
result to study the Coulomb-plus-linear potential V (r) = —1/r + Ar which is clearly at once a
convex transformation of the hydrogenic potential 4{r) = —1/r and a concave transformation
of the linear potential 4(r) = r. We shall show that we are also able to express both the upper
and lower bounds for the entire discrete spectrum in the form of explicit rational functions
L = A(Ene)-

The base potentials used for the Coulomb-plus-linear potential are both pure powers.
Thus we shall need to use the corresponding base kinetic potentials. In fact, we have shown
in general [14] that

N I A0
—A+sgn{g)r? = E"l-,:ml{]l - +sgn{g)r? 1.4

where, for example, P,;\é(—l) =n+£+N/2-3/2) and l’;}'(Z) =2n+L+N/2-2).
These P-numbers and the underlying eigenvalues EY, satisfy the relation E, = EN*: this is
generally true for central potentials and is the content of theorem 2, which we prove in section 4.
Numerical values for P} (1) are givenin table I for N = 2, ..., 12. It is interesting that the
case ¢ = 0 corresponds exactly to the In(r} potential [15]. The expression in (1.4) is derived
by a change of variable s — (P¥/r)? in the kinetic-potential formalism. The application to
the Coulomb-plus-linear potential is not our only interest in these P¥-numbers. They provide
through (1.4) a nice representation for the pure-power eigenvalues since the P -numbers vary
smoothly with ¢ through ¢ = 0 whereas the eigenvalues themselves do not {14). We have
proved [14] that PY%(q) are monotone increasing in ¢. This result was obtained by using
envelope theory: we considered one power ¢ as a smooth transformation of another p and then
took the limit p — q.

In section 3 we prove theorem 1 which provides a lower bound for the bottom of the
spectrum in each angular-momentum subspace using the sum approximation. In section 4 we
prove theorem 2, which establishes the invariance of the eigenvalues with respect to changes
in £ and N that leave the sum N + 2¢ invariant. This allows us to restrict our considerations
to the ground state in sufficiently high dimension N. We reformulate the refined comparison
theorem (theorem 3 of [19]) which becomes theorem 3 here. We first prove the monotonicity
of the ground-state wavefunction in N dimensions; then we prove theorem 4, which extends
theorem 3 to N > 2 dimensions. Finally, we prove theorems 5-7 which provide simple



8730 R L Hall and Q D Katatbeh

explicit sufficient conditions for the application of theorem 4 under a variety of crossing
schemes. In section 4, we apply theorem S to sharpen the envelope bounds already found in
section 2 for the bottom of the spectrum E of H when V is the Coulomb-plus-linear potential
V(r)= —a/r +br.

2. Coulomb-plus-linear potential: an eigenvalue formula

The Coulomb-plus-linear potential V(r) = —a/r + br is of interest in physics because it
serves as a nonrelativistic model for the principal part of the quark—quark interaction. First,
we will use the envelope method to derive a simple formula for upper and lower bounds for
all the eigenvalues Enz,n = 1,2,3,...,¢£ =0,1,2,.... Because the linear potential, rather
than the harmonic oscillator, is used as a basis for the upper bound, the new bounds are sharper
than those of the earlier paper [20].

If we denote the eigenvalues of H = —wA — «/r + fr by E{w, ¢, 8) and consider a
scale of change of the form r' = r/o, and if we further choose o = «/w, then it is easy to
show that

E(w,a,B) =a*o VE(1, 1,1) L= @n
[

Thus it is sufficient to study the special case H = —A — 1/r +Ar.
We need a solvable model which we can use as an envelope basis. The natural bases to
use in the present context are the hydrogenic and linear potentials

h(r) = sgn(qg)r? where ¢ = -1, L. 2.2)

The spectrum generated by the potential h(r) is represented precisely by means of the semi-
classical expression (1.1} as follows:

Enr(v) = min(s + viine(s)) 23)

where the ‘kinetic potentials’ &,(s) -associated with the power-law potentials (1.1) are given
(15] by

a1

_ 2 5(4)
hae(s) == 9
q

-4/2 o)
Ttq 5 24)

and 5:‘? is the eigenvalue of —A + sgn(g)r7 in N dimensions, that is to say, corresponding to
the pure-power potential with coupling 1. If we use the potential #(r) = —} as an envelope
basis, then V{(r) = —} +ir= g(—- rl) implies g is convex. And if we use the linear potential
h(r) = r as an envelope basis, then g is concave. A weaker upper bound is provided by the
harmonic oscillator #{r} = r2, for which again g(h) is convex.

For the power-law potentials /1(r) = sgn(g)r? we can simplify (2.3) by changing the
minimization variable s to r defined in each case by the equation Fiae{s) = h{r) so that
gh(r))y = f(ry = —} + ir. The minimization on the other hand, which yields eigenvalue
approximations for the Hamiltonian H = —wA + f(r) (w > 0), can be expressed in the form

PR N L
F:'L’«Yrmn{w(—ﬂr—i)—) —;+kr] 2.5)

r>0
where
uro2 e
2+¢q

Pl(g) = {ES

(2}
n
4

q#0. 2.6)
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We obtain a lower bound with Pn’%(——l) = (n + £+ N/2 — 3/2) and the harmonic-oscillator
upper bound (of [20}) with P¥(2) = 2a+ £+ N/2—2, and a sharper upper bound with PR (1);
the P:{,(l)-numbexs are provided in table 1 for N = 2,.. ., 12. This table allows £ > 0 since
PY = PN+ it is clear that E}y{~1) and EX{(2), and the corresponding P-numbers, are
invariant with respect to changes in £ and N which preserve the sum 2¢ + N; this symmetry is
also true for EN(1), indeed for all eigenvalues generated by a central potential. This property
is the content of theorem 2, which we state and prove in section 4. We thus obtain the following
energy bounds:

Ni_1yy\ 2 pN 2
mm{(M> - l+)~r] \<‘E,,g<min{(—[1'ﬂ> - £+lr} Q.7
r>0 r r r>0 r r

forn = 1,2,3,...,£ = 0,1,2,.... Consequently, the energy bounds are given by the
parametric equations

1 3t
= 2.8
E,; 2ot + 2 (2.8a)
3
1= L (=rPlg)  g=-1,1 (2.8h)
2w 2 )

wherein the lower and upper bounds take the values v = g == P (~1)and v = u = PJ(1),
respectively. It is interesting that we can actually solve equations (2.8a) and (2.85) to obtain
A as an explicit function of £ = E,’,"e, the result namely is

[200EY — vE2[(1+ 32E)* — 1]
u[(1+3u2E)} 1P
withE > — # (corresponding to A = 0 for the pure hydrogenic spectrum). We emphasis that
these bounds are valid for all the discrete eigenvalues in arbitrary dimension N 2> 2. The bounds
are weak for n > 1, but at the bottom of each angular-momentum subspace n = 1 they are
sharp and improve with increasing £, N and A. The lower bound for the bottom of each angular-
momentum subspace (n = 1) can be improved by the use of the ‘sum approximation’ ([21]
and section 3 below) in which v = Pﬁ(l) (table 1) and & = P,:g(—l) =(n+f+N/2-3/2).

In figure 1 we exhibit these bounds forn =1, ¥ =3and{ =0, 1,2, 3.

2.9)

3. The sum approximation: lower bounds

We now consider potentials which are sums of terms. Since further generalizations easily
follow, we first look at the problem of the sum of only two potential terms. We assume that
each potential vi™ (r) alone, when added to the kinetic-energy operator —A, has a discrete
eigenvalue E at the bottom of the spectrum for sufficiently large coupling v. We note that the
proof is unchanged if we restrict the problem to a given angular-momentum subspace labelled
by £; our claim then concerns the bottom of the spectrum of H in such a subspace; in the more
general case, all the kinetic potentials would be labelled by £. We express our result in terms
of kinetic potentials and prove (for the case £ = 0) the following:

Theorem 1. If E is the bottom of the spectrum of the Hamiltonian H = —A + V, and the
potential V is the sum V (r) = kD(r) + K9(r), then it follows that the sum of the component
kinetic potentials yields a lower bound to V, that is to say

Vis) 2 1) + 7% (5. 3.0
We shall now prove this theorem, which is in effect an optimized Weyl lower bound [22-24].
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L

16 T T T T

Figure 1. The eigenvalues E(}) of the Hamiltonian # = ~A —1/r+ir for N =3, n =l and
¢ =L =0,1,2,3. The continuous curves show the upper bound EUL given by the envelope
formula (2.9) with v = p = P‘Jt(l), and the lower bound ELS by the sum approximation given by

the same formula but with v = P, (11and & = P}, (—1). The dashed curve EX represents accurate
numerical data.

Proof. From the definition (1.1) of kinetic potentials we have
V= inf @ Ve = inf 0 G+ ).

veD(H; <D(H)
(F.gr=1 (f)=1
WK i=s (¢.Kyy=s

But the latter minimum mean value is clearly bounded below by the sum of the separate
minima. Thus we have

Visr>  inf @ ADW e inf k2w = E ) + 1)
weD(H)

: FeD(H)
W.yi= P.¥=1
W, - Ag)=s (§,—Ai=s
which inequality establishes the theorem. a

Another approach, which would eventually yield an alternative proof of the theorem,
exhibits the relationship between theorem 1 and the classical Weyl lower bound [24-26] for
the eigenvalues of the sum of two operators. Let us suppose that ¥ is the exact normalized
lowest eigenfunction of H = —A + V, so that HW¥ = EW_If the positive real parameter w
satisfies 0 < w < 1, then E = (W, (—A + V)¥) may be written as follows:

E=w (w, (—-A+ -l—h”)(r)\) w) +(1—w) (w, (—A + ! hm(r)) \u)
w J Y 1-w y

Loy )
>w inf {v, {-a+—=2"( )y
.. (v( A ok (r))v)

Chy)=1

1 !
—w inf . I A 1| y
+(1 —w) gt (¢, ( A+ g wh (r)) y/) .

=1
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That is to say, in terms of component kinetic potentials, we arrive at Weyl's inequality for the
lowest eigenvalue E of the operator sum H, where

H=—wA+hD+(—(1 —w)A +h®)

and we conclude

1 13
EZwmin[s+——F(“(s)}+(1~w)min[s+ Fz)(s)}.
>0 w s>0 1
Since w is an essentially free parameter in the last expression, we may optimize the Weyl lower
bound with respect to the choice of w: this forces the individual values of s at the minima,
{s1(w}, s3(w)}, to be related. More specifically, we find from the individual minimizations
overs,

E > Ew) = wsy(w) + (1 — w)sa(w) + 7 (5 (w)) + B (sp(w))

where
Al =@
w=-—-—(s{w)) and l-w=—= (52(w)).
as s

The critical condition £'(w) = 0 for the subsequent maximization over w then yields
51(u2) = 52(w). Thus the best lower energy bound is given by

E > mins + ) + B2 (s)).

The kinetic-potential inequality of theorem 1 leads, of course, to the same energy lower bound:
the optimization just performed above is therefore seen to be automatically ‘built in’ by the
kinetic-potential formalism.

It follows immediately from the above kinetic-potential comparison theorem and coupling-
parameter absorption that a lower bound to the lowest energy E of the Hamiltonian
H=—-A+Y,c;h¥(r}, {c; > 0} is provided by the formula

E > min {s + Zcﬁ”)(s)} . (3.2)

Similarly, we can extend this result to ‘continuous sums’ such as V(r) = f,: (RO () dr.
Meanwhile, since the proof is identical, the bound is valid for the bottom of each angular-
momentum subspace. Thus, more generally, the fundamental inequality becomes

Viels) 2RO+ 0(s)  £=0,1,2,.... (3.3)

4. Generalized comparison theorems

The proof of our generalized comparison theorem (theorem 4) depends on monotone behaviour
of the wavefunction induced by the assumed monotonicity of the potential. We are able to
establish this monotonicity for the lowest eigenfunction in arbitrary many spatial dimensions
N > 1. We shall then be able to apply our eigenvalue results to the case £ > Oandn = 1
because of theorem 2 which claims that EY, = E ,‘:{,*25;’ this general result is then employed in
the special case n = 1.

Theorem 2. Suppose that H = —A + V(r), where V(r) is a central potential in N > 2
dimensions, has a discrete eigenvalue EY, with n — I radial nodes in the angular-momentum
subspace labelled by ¥, then EY, = EXF*.
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Proof. We suppose that ¥ is the eigenfunction corresponding to EJ,. We express —A in
spherical coordinates { 1-9] and write the radial eigenequation explicitly as

; N-1 L(E+N -2
vy = Dy Ry s vowe) = Bl

If we now define the reduced radial function u(r) € L2(R*) by 4r(r) = a(ryr— =012 r 5 0,
and u{0) = 0, we obtain

W=1) (N=3)
_u”(r)"'[ TS AN -2)

72

r?

+ V(r)} u(r) = ENu(r). @.1)

If we consider the spherically-symmetric potential V(r) in M dimensions such that
(M — DM —3)/4 = E+N=-2)+{(N — 1N — 3)/4, we find that M = 2£ + N.
The eigenequation (4.1) then may be written equivalently as

(M—1) (M-3)
—u"(r) + [-———2 = I+ V(r)] u(r) = ENu(r). 42)
It therefore follows immediately that EY, = EM = E 2N, O

For the purpose of our comparison theory we may now consider the special case
n = 1,£ = 0 in arbitrary N > 1 spatial dimensions: the energy results which we derive
will then be applicable to the family of equivalent problems in N spatial dimensions with
n=1,¢>0and N = N +2¢. In order to prove an appropriate extension of the comparison
theorem in N dimensions, we shall first need to establish an elementary monotonicity property
for the ground state Y. We prove the following:

Lemma. Suppose ¥ = y(r), r = §rll, v € RY, satisfies Schrodinger's equation

Hy(r) = (=M +V(r)y(r) = EY(r) 4.3)
where V(r) is a central potential which is monotone increasing for r > 0. Suppose that E is
a discrete eigenvalue at the bottom of the spectrum of the operator H = —A + 'V, defined on

some suitable domain D(H) in LY R™). Suppose that \r(r) has no nodes, so that, without loss
of generality, we can assume yr(r) > 0,r > 0. Then §'(r) < 0,r > 0.

Proof. The proof for the case N = 1 is given in [19], equation (2.2). Henceforth, we shall
now assume N 3 2. If we express — A in spherical coordinates in N spatial dimensions, then
we have

1 9 a
—AY +Vy = Ey e — T V() + V(O = EYit).
b +Vy = EY t"‘“&r( BI)W) (DY) = Eyir)

We now muitiply both sides by t¥~! and integrate with respect to  to obtain
Yy =1/r"h f (V1) — Elr(ye™ " dr,
0

Since V is monotone increasing, it follows that there is one point 7 > 0 satisfying V(#) = E.
First, we prove that s(r) = f;{V(t) — E]#(1)t"~" dr is monotone increasing and bounded.
Fort = #, [V(t) — ElW()t"~"' > 0, because V{1} > E and hence s(r) is increasing
as r — oo. If there exists ry < oc such that s(ry) = —f;[V(t) — Elg(n¥ ' dr,
then fj(V(r) — Ely(@x¥'dt > 0,r > r and ¥'(r) > O,r > ry; this contradicts
the fact that the wavefunction ¥(r) is positive and belongs to LY*(R¥). This means that
L V(@) — ERg(e)"~ ' dr <0, ¥r > 0. Consequently y'(r) < 0,¥r > 0. O
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We now consider two potentials Vi(r) and V5(r), both of the type described above.
We have two Schidinger equations for the respective ground states ¥, and ¥ and the
corresponding discrete eigenvalues Ey and £ at the bottoms of the spectra. Thus we have the
following pair of eigenequations:

(=A+ Vi) () = Evdn(r) “44)
(—=A+ V2 (r)vnalr) = Erga(r). 4.5)

The radial wavefunctions in the present paper satisfy the normalization condition
Jo° wAr)r¥='dr < 00, i = 1, 2. With this notation and N = 3, theorem 3 of [19] becomes

Theorem 3.

k(r):/ Vi) = Vi)W (D2de €0 ¥r>0 i=lor2 = E<Ey. (46)
)

. We shall now generalize this theorem to general dimension N > 1. We first establish a
fundamental comparison formula (equation (4.7)) below.
By multiplying (4.4) by yr, and (4.5) by ¥, and subtracting, we find
YAy — A + [V — al¥nt = [E; — Exlvn .
Integrating over R™ and using the following identity:
V- (01 V) = Vi - Vi + 9, V2
we find that

/ RATACE AL f Y~ Ve d¥r = [y — Bl / i
R R¥ R

Now by Gauss’s theorem {27] we find that the first term becomes a surface integral which
vanishes because ¥; € L2(RY). In the remaining integrals the angular factors yield 2x%/2/
I'(N/2). Hence we find

2N @
T(N/2} /0 Vitr)y — Vz(’)]\[fl(’)'l"z(f)f‘v_’ dr
27N g
= _[E ~E N-lg
I‘(N/Z)[ 1 2]/U Y (rira(rir r
which implies
oo oC
5= f Vi — Valvor" ' dr = [E, — Ey) [ Yy~ dr. 4.7
0 JO

Now we may state our generalization of theorem 3 to N dimensions:

~ Theorem 4.
k(r):f (Vi(t) = Vv (¥t < 0 Yr>0 i=lor2 = E <E;.
0
4.8)

Proof. For definiteness we assume that/ = 1; the proof is just the same with the other choice.
We study the integral s on the left side of (4.7). Integrating by parts we find that

s = [k(rya(nly’ — [) k(ryiyryr¥ . 4.9
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Since £(0) = ¥ (oc) = 0, the first term vanishes, and s is therefore equal to the negative of
the integral of the right side of (4.9). But the integrand of this integral is positive because
&(r) € 0, by hypothesis, and we know that y;(r) < 0 by the above lemma. This proves that
s < 0. Consequently, by (4.7), we obtain E; < E,. (]

It may be difficult to apply theorem 4 in practice. Thus it would be helpful to establish
some simpler sufficient conditions, depending on the number and nature of the crossings of
the two comparison potentials, We treat three useful cases: theorem §, one potential crossing,
with the use of the wavefunction; theorem 6, two crossings and the use of the wavefunction;
theorem 7, two crossings and no wavefunction used. In these theorems we shall assume that
the integrals fum(V, (r) — Va(r))¥; (r}yr¥="dr, i = 1,2, exist for the given problem, even
though we use at most one wavefunction factor.

Theorem 5. If the potentials Vi(r) and Vo(r) cross exactly once for r > Q atr = ry, with,

() Vi(r) < Va(ry (0 <r < ry)and
(ii) [ Vil — @@ dr < 0.0 = Lor 2,

then
kir) = [)r[vl(r) ~ VO ' iryde <0 Vr>0 i=lor2 (4.10)
from which E| < E, follows, hy theorem 4.
Remark. The best bound is obtained with the equality in hypothesis (i1).

Proof of theorem 5. We choose i = 1: the proof is identical for i = | or 2. First, we
show that s(r) = frrl[Vl (t) — Va{t)]¥ (1) ~" dr is monotone increasing. For ¢ > r),
s'(r) = [Vi(r) — Vair)[yn (7)r¥ ! > 0, because Vi (r} > Va(r); hence s(r) is increasing on
(ry, 00). Moreover, (ii) implies that the maximum value of s(r} is reached at r = o, i.e.
s(r) € s(oc); we have therefore

o
f Vi(e) = Vool (0¥ dr
0

= / tvVi(r) - Vz(t)]u"x(f)f“"_'df‘f/ Vi) = o l¥n (¥ ' dr < 0
O "
and therefore

i s(r) < - [ 10 = Va0 (o dr.
0

=00

Now, we have the following two cases to consider:

Case 1. Forr < ri, k(r) = fj[Vi(t) — Va(O)l()r¥ =" dr < 0, since V(1) < Va(¢) for
0 <t <r.
Case 2. If r > ry, then

k(r) = f '[ () — V) (e~ de + j Vi) = Va@) (o)~ dr
()] T
=s(r) —s{oc) < 0.

Therefore, k(r) < 0,vr > 0. a

Theorem 6. [fthe potentials Vi(r) and Va(r) cross twice forr > Qatr =ry,r =ry (r; <ry)
with ‘

(i) Vilr) < Va(r) for0 < r < ryand
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(i) f3(Vi(r) = Va@)y (¥~ dr € 0.0 = lor 2,
then
k(r) = /r(V, (1) = Vot (0t 1dr < 0 Yr>0 i=1lor2 @.11)
from whigh E, € E, follows, by theorem 4.
Remark. The best bound is obtained with the equality in hypothesis (ii).

Proof of theorem 6. We choose i = 1; the proof is the same if { = 2. K'(r) =
Vi) — Var e =1y (r), now k(0) = 0, K'(r) < 0,0 < r < r, implies k(r) < O,
0 <r < ry.Next, k(r) =0,k(r) > 0,1 <1 <ryimplies k(r) < 0,r; <r < r,. Lastly,
k(r)) = 0,k'(r) <0.r > ryimpliesk(r) < 0,r > r;. ]

Theorem 7. If the potentials Vi(r) and V3(r) cross twice forr > 0 atr =ry.r; (n < raj
with

(i) Vilr) < Vo(r)for0 < r < r;and
(ii) [ (Vi(1) — Vo)V =1 de <0

then
k(r)= f'[Vl(t) — Vo)W ()t 1 de < 0 Vr>0 i=1or2 4.12)
from whi(:‘h E) < E; follows, by theorem 4.
Remark. The best bound is obtained with the equality in hypothesis (ii).

Proof of theorem 7. We choose i = 1: the proof is identical if i = 2. Define h(r) =
fO'(V1 (1) — Va(1))eN 1 dr, the proof of theorem 3 shows that i(r) £ 0,0 < r < r. But

K(r) = f Vit — Vo) (O de
Q
=Ul(f)1lf1(t)]6—f h(r)yyi(r) dr
4]

= h(rWn(r) —/ Ry (N dr <0
0

meanwhile, k'(r) < 0, r > r,. Therefore, k(r) <0, ¥r > 0. ]

5. Application to the Coulomb-plus-linear potential

As an example, we employ the comparison theorems to improve the bounds obtained in
section 2 for the eigenvalues corresponding to the Coulomb-plus-linear potential V(r) =
—~a/r + br, where a and b are positive coupling parameters. For the upper bound we use as
a comparison potential the shifted linear potential #{r) = —« + 8r, where wand 8 > 0. We
allow the potentials V (r) and &(r) to cross over exactly twice, as illustrated in figure 2. Let
A and B represent the absolute values of the areas (or of the ¥-weighted areas) between the
potentials. We vary « and £ so that A = B, and thereafter theorems S and 6 imply £V < E*.
For simplicity of derivation of the upper-bound formula, we will use theorem 7 (with no use
of the wavefunction y). Thus we have two equations to solve in this case,

a roa N1
—7+br=—a+ﬂr [—’—+br+a—ﬁr]r dt=0
[
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V(r)=—a/r+br
()= —owfe

V(n

-5 E

r

Figure 2. The linear poteatial Air) = ar + f used to estimate an upper bound for the eigenvalues
of the Coulomb-plus-linear potential V(r) = —a/r + br. A and B are the absolute values of
the inter-potential areas (or y-weighted areas). We vary @ and 8 so that A = R, and thereafter
thearems 5 and 6 imply £Y < £*.

where r = r; is the second crossing point. These reduce to the quadratic equations

B-byrt—ar+a=0 NN - Db~ +aN —DIN+Dr—aNN+1) =0

N

with the simultaneous solution r = =~

minimizing with respect to r, giving

Now the best upper bound is obtained after

. C 2aN (N + Da 3 % ]
U _ (N + 1) N
g _rrr%li ((N—l)r)+((N——l)r2+b) ¢ (1"}~ CRY!

At the expense of further complication, the use of ¥, (+) (the Airy function) would lower this
upper bound.

Similarly, to improve our lower bound, we allow the Coulomb-plus-linear potential to
intersect twice with the hydrogenic potential A(r) = —% + f, with the exact wavefunction
solution ¥ = e~*/'¥~1 and the exact energy E" = § — o2/(N — 1)?, where « and 8 are
positive parameters. Again, let A and B represent the absolute values of the areas (or of the
yr-weighted areas) between the potentials. We vary « and  so that A = B, as illustrated in
figure 3, and thereafter theorems 5 and 6 imply E* < EV. Subsequently, we obtain the lower
bound (without yr) by solving the following three equations:

— e ]
abr=-21p f[—‘i+br+5—ﬁ]r"-‘dr=o
H ! o r r

EL = min(f — (o/ (N — 1)) (52)

For the case ¢ = 1 and b = 1, we compure in figure 4 the upper and lower bounds obtained
by means of the classical envelope method and by the comparison theorems introduced in
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h(r)safir

V{(r}=—a/rebr

-2

vin

Figure 3. The hydrogenic potential k(r) = —a/r + f used to estimate a lower bound for the
eigenvalues of the Coulomb-plus-linear potential V(ry = —a/r + br. A and B are the absolute
values of the inter-potential areas (or y-weighted areas). We vary « and 8 so that A = B, and
thereafter theorems § and 6 imply £* < EY.

7 T T T T

Figure 4. We compare the bounds for E{L), where E(1) is the ground-state eigenvalue
(n = 1, £ = 0) of the Hamiltonian H = —A — 1/r + xr. The upper bounds (full lines) are
by harmonic-oscillator tangents EUHO, linear tangents EUL, finear chords EUC and linear chords
with the wavefunction EUCW. The lower bounds (lower full lines) are by hydrogenic tangents
ELHY, hydrogenic chords ELC and hydrogenic chords with the wavefunction ELCW. The dashed
curve ELS represents the lower bound given by the sum approximation. Accurate numerical data
(dotted curve) EX are shown for comparison.
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Figure 5. Bounds on the eigenvalues £ i\(')\)' } corresponding to the Coulomb-plus-linear potential
V(r) = —1/r + kr in N dimensions. Upper bounds EUC by the generalized comparison theorem,

lower bounds ELS by the sum approximation and accurate numerical data (dashed line) forn = 1.
¢=0and N =3.4,...,7. By theorem 2 we know that the same curves also apply to ¢ > 0 since
EN = Ef%.

1 10

section 3. Generalizations to cases where there are large numbers of potential crossings are
discussed in [37].

6. Conclusion

Our proof of the lower bound for the bottom of the spectrum of the operator H =
—A+ V@O (r) + VO(), based on kinetic potentials, is more compact and direct than the
original proof, and is valid in N dimensions; the principal steps of the earlier proof are repeated
because they show that the final result is equivalent to an optimization of the classical theorem
of Weyl. The generalized comparison theorem is proved in the present paper for all dimensions
N, whereas, in its original form, it required two distinct theorems, for N = 1 and N = 3.
Moreover, we are now able to apply the results to the bottom of each angular-momentum
subspace since we have proved that this energy is identical to the lowest eigenvalue of a
higher-dimensional problem, in R¥*2¢, Meanwhile, in order to be practical, weaker sufficient
conditions were sought which would guarantee in a simple way that the comparison potentials
cross over so as to imply definite spectral ordering. These results greatly clarify the application
of the generalized comparison theorem to specific problems.

The Coulomb-plus-linear problem provides a convenient example on which to test the
effectiveness of the energy bounds. At the same time it offers an opportunity to sharpen
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an earlier energy-bound formula for this problem, and to extend its validity to all N > 2
dimensions. For most of the parameter space of the problem, the energy bounds provided
by this formula for the bottom of each angular-momentum subspace (n = 1) are accurate
to a few percent and, as we have shown, they become sharper with increasing N or . If
the sum approximation is capriciously applied also to the higher discrete eigenvalues n > 1,
the resulting ad hoc approximation formula continues to give very accurate estimates, which,
however, are no longer bounds. What additional conditions might guarantee bounds from
such a formula is an interesting open question.
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Abstract

We study a single particle which obeys non-relativistic quantum mechanics
in ®Y and has Hamiltonian H = —A + V(r), where V(r) = sgn(g)rv.
IfN > 2, theng > -2, and if N = 1, then ¢ > ~—1. The discrete
eigenvalues E,;, may be represented exactly by the semiclassical expression
Enz(q) = min,,o{Pae(q)?/r? + V(r)}. The case ¢ = 0 corresponds to
V(r) = In(r). By writing one power as a smooth transformation of another,
and using eavelope theory, it has earlier been proved that the Pyz(q) functions
are monotone increasing. Recent refinements to the comparison theorem of
QM in which comparison potentials can cross over, allow us to prove for
n = 1 that 0(q) = Z(g) P(g) is monotone increasing, even though the factor
Z{g) = (1 +g/N Y174 is monotone decreasing. Thus, P(g) cannot increase
too slowly. This result yields some sharper estimates for power-potential
eigenvalues at the bottom of each angular momentum subspace.

PACS number: 03.65.Ge

1. Introduction

In this paper we study a certain representation, the P-representation, for the Schrodinger
spectra generated by the power-law potentials f(r) = sgn(g)r? in N spatial dimensions.
Considerable interest has been shown in the Schridinger spectra generated by this elementary
class of potentials [1-15}. The Hamiltonian H is given explicitly by

H = —A+vsgn(g)? where r=|{rf and v>0 and ¢g#0 (1.1a)
where ¢ > ~1 for N =1, and g > —2 for N 2> 2. Corresponding to the case g = 0 we have
H=-A+vin(r) v>0. (1.1b)

It is certainly possible to include the log potential as a limiting case of the power potentials
if in place of the potential family f(r) = sgn(q)r?, we use V(r,q) = (r? — 1)/q whose
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limit as ¢ — 0 is V(r,0) = In(r). However, we have chosen instead to leave the power
potentials themselves in their simplest form and incorporate the g ~» 0 limit smoothly in the
spectral domain by means of the P-representation. This limit will be discussed again in this
section, after the P-representation has been introduced. As with equation (1), our policy of
favouring simple powers will again lead to two equations instead of one at various points in
the development.

The operators H have domains D(H) < L*(RV), they are bounded below, and essentially
self-adjoint. For the most part we shall be concerned with the cases N > 2, but we may also
include N = 1 provided g > —1. The one-dimensional hydrogen atom (N = 1, = —1)
has been extensively studied [16-22] but requires special side conditions not consistent with
the class of problems we consider in this paper. For the operators we consider, the essential
spectrum is in (0, o) and, by using 2 normalized Gaussian trial function ¢, it is easy to select a
scale so that (¢, I{¢) < 0, thus establishing the existence of a discrete eigenvalue; for q >0,
the entire spectrum is discrete [23]. The eigenvalues E,ﬁ. for the power-law potential can be
labelled by two quantum numbers, the total angular momentum = 0, 1, 2, ..., and a ‘radial’
quantum number, n = 1,2, 3,..., which represent 1 plus the number of nodes in the radial
part of the wavefunction. These eigenvalues satisfy the relation EY, < EY,, n < m. With our
labelling convention, the eigenvalue EY(g) in N > 2 spatial dimensions has degeneracy ! for
£ =0and, for £ > 0, the degeneracy is given [24] by the function A(N, £}, where

AN, Ey=Q28+N -2)(t+ N = 3)/{e(N -1} N22 ¢>0. (1.2)

We first review some general elementary results for the power-law eigenvalues [2]. Nieto
and Simons [6] have proved that the eigenvalues E, = E), for the power-law potentials in one
dimension increase with the quantum number n at a higher rate when q is greater. However,
for any g, this increase never attains n?, ic., lim,_ o E, / n? =0, q < cc. In general, the
dependence of the eigenvalues £%, on the coupling parameter v may be established with the
aid of elementary scaling arguments in which r is replaced by or, where o > 0. We find that

EN(v) = v D EN (1), (1.3)

Thus, without loss of generality, we may limit further discussion to the case of unit coupling,
v = 1. We shall henceforth let an expression such as E(q) represent the dependence of an
eigenvalue of unit coupling on the power q.

We do have some exactly solvable potentials in N dimensions. For example, for the well-
known hydrogenic atom and the harmonic oscillator potentials we have forn = 1,2,3, .. ..

EN(—1) = —[2(n+ £+ NJ2 —3/2)]2 N22 (14)
and

ENQ)=4n+2¢+N -4 Nz2 (1.5a)
and in one dimension (keepingn = 1,2,3,...)

E,2Q)=2n-1 N=1 (1.5b)

Analytical solutions are also possible for the linear potential in one dimension, and for
the § states in three dimensions. For N = land N = 3 the repulsive 1/r? term in the
‘effective potential’ Veg(r) = (N — 1)(N — 3)/4r2, obtained using the transformation
Yr(r) = ¢(r)/r®" =12 is zero. The exact solution in these cases is in terms of the zeros
of Airy’s function Ai(r) in three dimensions and the zeros of the first derivative Ai'(r) of
Airy’s function in one dimension. We have

E\v) = vir, Ai(=rp)=0  n=0,1,2,.... (L6)
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Figure 1. The first 30 eigenvalues E,¢(¢),1 < n < 5,0 € ¢ < S. comesponding to the power
potential V(r) = sgn(g)r? in N = 3 dimensions. For g > 0, the eigenvalues increase with g from
110 Eye(2) = 4n + 2L -1; forq < 0, they decrease (as q increases) from E,¢(~1) = —[2(n+(}]‘z
to —1. Both sets of curves increase with n and £,

E)() = vir, Ai(=r,) =0 n=123,.... (1.7)

Unfortunately, for N = 2 or N > 3, and for higher angular momenta ¢ > 0 generally, exact
solutions are unavailable at this time. However, by using theorem 1 [25, theorem 2] we have
for N 2 2 the general correspondence EY, = E,f{)*zﬁ In figure 1 we exhibit the graphs of
the eigenvalues Ejo(g) forn = 1,...,S. In the limit ¢ — oo the problem is equivalent to an
infinite square well with width 1 in N dimensions. Thus we have lim,_  |E2y(q)! = (a7)2.
For small values of q, the | E(g)]| curves are asymptotically like [E(g)| ~ C|q/2|%/* and have
infinite slopes in the limit ¢ — 0 [2, 26, 27].

The approach in the present paper is to study a representation for E,(q) which is smoother
and easier to approximate than the ‘raw’ eigenvalues themselves. We shall write many of our
equations for the case N > 2: they are also valid for N = 1 provided ¢ > —1. In both cases

we keep the conventionn = 1,2,3,.... We have

By = min [ (5@)2 ”8“((1)”} q>-2 q#0 (1.8a)
and

Efz:r,njg{(P—’ﬁ;@)Zln(r)}. - (1.8b)

The form of this representation, in which the kinetic energy is represented by P2/r2 and the
power potential is represented by itself, is what leads us to use the term ‘semiclassical’ in the
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title of the paper: the two parts of the quanturn mechanical problem are replaced by simple real
functions of r, scaling as the classical terms would scale, and their sum is exactly equal to the
quantum mechanical energy. This is a quite different use of the term ‘semiclassical’ from that
describing a reformulation of the quantum mechanical problem itself. Such a method is the
JWKB approximation which has been applied to estimate the pure-power spectra {12, 13} and
could in principle therefore be employed to approximate Pn"é (g): however, this approach would
not yield exact analytical information about the P-functions, such as bounds or convexity. The
existence of the representation P(q) for E(q) is guaranteed because the functions

/P2 2P2\ %
g(P,q) = ggg{(;) +sgn(q)r"} = sgn(g) (1 + %) (Iq—l> g>-2 qg#0

(1.9a)
and
P\? 1
g(P,0) = mi(r)l { (—) +ln(r)} = 5(1 +1n(2)) + In(P). (1.95)
r> . r

are monotone increasing in P, Indeed we find

dg o (lg\™

—(P,q)=P% | — -2 .

aP(P q) P‘v(zp) >0 q > qg#0 (1.10q)
and

g i

—(P,0) = — > 0. .

aP( ,0) P>0 (1.10b)
From (1.4) and (1.5) we find

Po(-1)=(n+2+N/2-3/2)  N>2 (L1D)
and

Pl =Q@Qn+2+N/2-2) N22 (1.12q)
and in one dimension (keepingn = 1,2,3,...)

PQ)=(n-1) N=1 (L.12b)

In table 1 we exhibit some numerical values for PJ}(1). The case ¢ = 0 corresponds exactly
to the In(r) potential {26]. In this paper we shall denote by E(g) and P(g) the ground-state
eigenvalues and P-functions in N dimensions.

We now return briefly to the question of considering the log potential as the limit of the
family V(r, ) = (rY — 1)/q, as ¢ — 0, where we define V (r, 0) = In(r). A useful feature of
the P-representation s that, for a given eigenvalue, only one P-number is required to determine
the eigenvalue & corresponding to the ‘scaled’ power potential A + B sgn(q)r?, B > 0. Thus,
we may write (exactly)

r>0

PA@\
EN(A, B, q) = min (J—‘;-—) + A+ Bsgn(g)r? g>-2 g#0 B>0.

(1.13)
In particular, with A = —1/q, B = 1/|q| we have

N 2 _
Ve =0T -Djg = eu“z(q):ggg{(f"jﬂ)ﬂ”q ‘} 452 q#0.

(1.14)
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Table 1. The ‘input’ P-values Pn’;’,(l) used in the general formula (1.8), for N = 2,3, ...,12. The
same data apply to ¢ > 0 since, by theorem 1, we have P, u’: = P,ﬁ’)’uA

N n=1l n=2 n=3 n=4

2 09348 2.8063 4.6249 6.4416
3 13761 31813 4.9926 6.8051
4 18735 3.6657 54700 7.2783
5 23719 4.1550 5.9530 1.7570
6 28709 4.6472 6.4398 8.2396
7 33702 51413 6.9291 8.7251
8 38696 56367 7.4204 9.2129
9 43692 6.1330 7.9130 9.7024
10 48689 6.6299 84008  10.1932
11 53686 7.1274 89053 10.7453
12 5.8684 7.6253 9.4045 11.2744

Provided P(q) is continuous, it follows immediately from (1.14) that

N 2
V(@E)=In(r) = 5:2 = min { (5@) +ln(r)} . (1.15)

r>0

As we mentioned above, the continuity (in fact, monotonicity) of P,ﬁ (g) was proved in [2].
It is our opinion that the advantage of accommodating this limit easily does not justify the
concomitant complication of having to work, for example, with a harmonic oscillator having
the form V(r, 2) = (r* - 1)/2.

For N > 2, the P-numbers and the underlying eigenvalues E,’:{Z satisfy the relation
PN = PN+ This result is obtained using the following theorem.

Theorem 1 (25, theorem 2). Suppose that H = —A + V(r), where V (r) is a central potential
in N > 2 dimensions, has a discrete eigenvalue EY,, then EY, = EN'. This theorem
expresses the invariance of the eigenvalues with respect to changes in £ and N that leave the
sum N + 2¢ invariant.

The advantage of the P-representation is illustrated by comparing figure 1 with figure 2
which show, respectively, the eigenvalues E,,(g) and the corresponding P-representations
Poe(q) for the case N = 3. The P-functions of figure 2 are evidently monotone increasing.
This property has been proved mathematically by means of the envelope theory [2]: one power
g was written as a smooth transformation of another p, and then the limit p — g was taken
in the P-picture. The infinite slopes of E(g) at ¢ = 0, mentioned above, are not visible in
figure 1 because the approach of the slopes to infinity is very slow for such functions: if , for
example, we consider [27] the function f(g) = |g|%, then, although f'(0) = —oc, we have
f/(107%) =~ ~10.51.

The principal result of the present paper is theorem 4, to the effect that for N 2 1, Q(g) =
Z(q) P(q) is monotone increasing, where Z(q) = (1 +¢q/N )%: this result is stronger than
the monotonicity of P(g) because the factor Z(p) is decreasing; thus we know more about
P(q) than we did. This theorem is proved in section 2 and principally concerns the power-law
potentials, but also treats the log case by the use of the limit g — 0 and continuity. As
consequences of theorem 4 we shall be able to derive some specific formulae for upper and
lower bounds for the power-law energy eigenvalues, by using nearby comparisons. However,
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Figure 2. In the P-rcprescniation, the same sct of 30 cigenvalucs shown in figurce (1) now lic on
monotone smooth curves. The log-power theorem states that the P-values for the log potential
are precisely P,((0). As g increases from —1 to 2, the degeneracy of the Coulomb problem
Poe(—1) = n + € evolves into the degeneracy of the harmonic osciliator Py (2) =2n + £ — %

it should be clearly emphasized at this point that the main purpose of the present paper is to
strengthen our knowledge of the monotone function P(g).

Theorem 4 has been made possible by the emergence of generalized comparison theorems
that allow comparison potentials to cross over and still predict spectral ordering. In section 2
we restate the generalized comparison theorem (theorem 4, of [25]) which becomes theorem 2
here, and we state theorem 3 (theorem 7, of {25]), which provides explicit sufficient conditions
for the application of theorem 3 under a variety of potential crossing schemes. Theorem 3
allows us to prove our main result, theorem 4. In section 3, we use theorem 4 to prove
theorem 5 which sharpens the envelope bounds found carlier in [2). The earlier result used
‘envelope theory’ based on the ‘standard’ comparison theorem, which- may be written as
Vi < V2 = E[Vi] < E[V3]. As an illustration of theorem 5 we apply it to generate spectral
bounds for the bottom of the spectrum of —A + r? in dimensions N = 3... 10.

2. Power-law potentials and generalized comparison theorems

We now discuss the generalized comparison theorems which we shall apply to obtain our
main result. We consider the two eigenproblems (—A + Vi{r)yn(r) = E[Vi]¥(r) and
(—A + Vo(r))ba(r) = E[Valyn(r) in N = 1 dimensions, where v;(r),i = 1,2, are the
respective ground states (or the bottoms of angular momentum subspaces labelled by a fixed
£=0).

Theorem 2 (25, theorem 4).
k(r) = /r[% ) — Va@O i@tV 1dr <0 Yr >0
J0
i=1 or 2= E[V] < E[W]. 2.1
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We have stated this theorem (and the following theorem) with strict inequalities: the proofs
are essentially the same as given in [25]. It may be difficult to apply theorem 2 in practice
since the positivity of the function k(r) depends on the detailed properties of the comparison
potentials. Thus, it is helpful to have simpler sufficient conditions, depending on the number
and nature of the crossings over of the two comparison potentials. In particular we shall
employ the case of two crossings, and sufficient conditions not involving the wavefunction.
Thus, we have

Theorem 3 (25, theorem 7). If the potentials Vi(r) and Va(r) cross twice for r > 0 at
r=ry,r(r <n)wih

() Vi(r) < Va(r)for0 <r <ryand
(ii) [y Vi) — Va1 =0

then,

k(r) = f Vi(t) = Va1 (V1 dt <0 Yr >0 i=1lor2 2.2)
0

Sfrom which E[V1] < E[V4] follows, by theorem 2.

Now we shall use the generalized comparison theorems to prove the monotonicity of a
new function Q(gq), which does not ‘vary’ so much as the function P(g). As a consequence,
we shall be able to derive specific formulae for upper and lower bounds for the power-law
energy eigenvalues. We are able to prove the following:

Theorem 4. P(q) represents via (1.8) the botom E(q) of the spectrum of H =
—A + sgn(q)r9, where ¢ # 0, and q > =2, in N 2> 2 dimensions (or ¢ > —1 for
N = 1). Define Q(q) = (1 +¢/N)"/? P(g), and Q(0) = lim,...0 Q(q) = €'Y P(0), then
Q(q) is monotone increasing for N 2 2,q > -2 (orN = 1,9 > —1).

Proof. letp > q,p.q > —2for N 2 2 and p,qg > -1 for N = 1. We shall first
suppose p # 0 and ¢ # 0. Our goal is to prove that Q(p) > Q(g). Assume that
Vi(r) = A + Bsgn{p)r” and Vo(r) = sgn(g)r’. Now, we choose A and B so that the
poteatials Vy(r) and V5(r) cross over exactly twice, as illustrated in figure 3. Let Ay and By
represent the absolute values of the areas between the potentials. We vary A and B so that
A; = B;. Then theorem 3 implies E[V;] < (2)E[V,] depending, as r increases from zero,
on which potential lies beneath the other when they first differ. Without loss of generality. we
will assume, in this sense, that V; starts above V3; this leads to an upper bound. Since Vi(r)
is designed to intersect Vy(r) exactly twice, we shall have two equations to solve to provide
sufficient conditions for a bound

VI(R) = V,(R) = A+ Bsgn(p)R" =sgn(q)RY (2.3a)
and
R v v . ]d 0 RN p+N Rq&-N
—_ - = A— - e -
[ o -t e =0 = A% B sy =0

(2.3b)
where R is the second potential intersection point. We let ¢ = RPM and, solve (2.3a) and
(2.3b) for A(¢) and B(t), to find

sgn(q)Nt*' /P (p — q)
Al =
© plg+N)

(24)
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Figure 3. The shifted linear potential V|(r) = A + Br? used to estimate an upper bound for the
eigenvalues corresponding to the potential Vy(r) = r?. A; and By are the absolute values of the
inter-potential areas. We vary A and B so that Ay = By, where R is the second intersection point.
Thereafter, theorem 3 implies that E[V,] < E[V}]. This result is used to prove the monotonicity
of O(q).

B() = fql(p + N)

= 2.5
|PI(N + q)te/rlo—4} 23)

Without loss of generality, we may consider only the case when p and g > 0, since the proof
of the other cases is exactly similar. Theorem 3 thus implies that
min {A®) + BOTTE(p)} > E(q) 2.6)

Optimizing the left-hand side over ¢, we find the criticat point as follows. We define

- S NP —q) g(p+N)  \*
F(t) = A(Q) +(BO))~ E(p) = G+ M) + (p(N+q)t‘l/"(f’“‘”) E(p). 2.7)

We now simplify the equation to find the critical point in terms of p and q. We defioe the

following:
2 9. 2 _ N(p—-4q)
n=aip m=, q)(2+p) al—(p(q+N))

a(p+N)\™
by = — E(p).
‘ (p<N+q>) )

and

Thus we have
F@)=ait" +bit™™ F'(t) = ajnt®™ ' — bymt="
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Figure 4. The functions P(g), Z(q) and Q(g) = P(g)Z(q) for the ground state in dimension
N = 3. Theorem 4 states that for the ground state in all dimensions N 2> 1, Q(q) is monotone
increasing with q.

1
for which the minimum occurs at { = [%’:]ﬁ. Meanwhile, the minimum value F(7) is
given by

b e b e x a -z
= 2] oo L] o (22 2] 0
an a\n n n

By substituting F(7) and E(p) given by (1.9) in (2.6), we find that

Up-q) 3 f—%’;{_’-:
(N(p—q))fw% (q(N+p))ﬁ(p+2)(2P<p>2)ﬁf i
.pl@g+N) plg+N) 2, P
y [q(p+2)} [p(q +2)] . (q+2> (ZP(q) ) ‘ 2.8)
2p-q) q(p+2) 2 q

By simplifying this expression, we find eventually that Q(q) = (1+¢/N)"/* P(¢) is monotone
increasing, that is to say '

2(p) > Q(9). (2.9)
Now for N = 2, P(q) is continuous, ¢ > —2, {or for N = 1,q > —1), and, if we dcfinc
Z(0) = limy,_0 Z(g) = e!/¥, then Q(0) = Z(0)P(0). It follows immediately that Q(g) =
Z(q) P(q) is continuous and monotone increasingq > —2(orfor N = 1,g > —1). a

The three functions P(q), Z(q) and Q(g) are illustrated for N = 3 in figure 4: theorem 4
states that in all dimensions N > 1, Q(g) is a monotone increasing function of q.

3. Application

By using the monotonicity of the function Q(g), we now prove a special comparison theorem
(acorollary to theorem4) for the comparison of eigenvalues generated by power-law potentials.
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Figure 5. Bounds on the eigenvalues Eﬁ’,(u) corresponding to the power potential V(r) = vrt

in N dimensions. The upper and lower bounds (full fines) are obtained by harmonic oscitlator
tangents EUP, and linear tangents ELP (theorem 5 (i), (ii)). The dashed curves EUQ and ELQ
represent, respectively, the improved upper and lower bounds (theorem 5 (iii), (iv)). Accurate
numerical data (dotted curves) EX are shown for comparison.

Theorem 5. Consider the power-law potentials V;(r) = sgn(g:)r%, qi > -2, (i > —1,
for N = 1), i = 1,2, where q1 < qu. Let Z(q) = (1 +q/N), Z(0) = lim,, Z(g) =
eV, 0(g) = Z(q)P(q) and g(P, q) be given by (1.9a) and (1.9h), then

(i) EIVi] < EY =g(P(q2).q1)
(ii) E[V;] > Ef = g(P(q1), 92)

(iii) E[Vi] < EY = ¢ (gz;l?;,(p) <EY

. Q)
> Ef = ( —_—, ) > EL.
(iv) E[V2] > Ey = ¢ Z@)' E
Proof. We first establish the upper bound (iii). We note that the function Z(g) = (1+¢q/N e
is decreasing. Thus q; < ¢, implies Z(g;) < Z(q), and by using the monotonicity of
the functions P{(q) {2] and g(P, q). we may conclude that P(q;) < Z(g2)P(q2)/Z(q1) =
O(q2)/ Z(q1) < P(q2), which, in turn, implies E{V;] < Eéj < Ef’. This proves (i) and
(iii). After a reversal of the inequalities, the proofs for the lower bounds (ii) and (iv) follow
similarly. 0

We note that theorem 5 includes applications to the log potential. For example, if g; =0
and g; = g > 0, then we have from theorem 5 (iv)

ooy . .
E(g) > 1:1)1(1)1[(-—2-—(:1—)?’ +sgn(g)r } q>0. 3.1
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Example: V(r) = r}. We illustrate theorem 5 by applying it to the potential V(r) = riin
N > 3 dunensions. We first use the linear and the harmonic oscillator problems to obtain
upper and lower bounds by envelope theory. That is to say, we first use equation (1.9a) to give
the envelope lower bound ELP given by g(P(1), 3/2), and the envelope upper bound EUP
given by g(P(2),3/2). Then we use theorem 5 (iv) to generate the improved lower bound
ELQ given by g(Q(1)/Z(3/2),3/2), and theorem 5 (iii) to generatc the improved upper
bound EUQ given by g(Q(2)/Z(3/2), 3/2). These results are shown in figure 5, along with
accurate numerical data EX, for N = 3,..., 10: they illustrate the improvement obtained in
the approximation when Q is used rather then P in the semiclassical energy formulae.

4. Conclusion

The cigenvalues E(g) of H = —A +sgn(g)r',q > 2,4 # 0, may be conveniently
represented by the functions P(gq), which are known [2] to be positive, continuous and
monotone increasing. In the proof of the earlier result, each g-potential was written as a
smooth transformation of a p-potential with definite convexity, and then the *envelope theory”
was applied. The envelope method, in turn, depends on the ‘standard’ comparison theorem
of quantum mechanics. In the present paper we use a stronger comparison theorem, valid
for node-free states in N dimensions, and we are able thereby to learn more about P{q) for
the bottom of each angular momentum subspace (n = 1). If N > 1 and £ > 0, we use the
equivalence E f; = Elz(‘;"‘"’ . We have shown for all these problems that Q(q) = P(q)Z(q) is
monotone increasing, where the factor Z(q) = (1 +q/N /4 is decreasing. This immediately
leads to some sharpened spectral inequalities concerning pairs of power-law Hamiltonians.

The P(q) functions are important for an established general lower bound for potentials
which are sums of powers. Thus, if V(r) = Zq a(q) sgn(g)r? + a(0) In(r), then we have
{1, 31] for the bottom of each angular momentum subspace in N > 2 dimensions

EN > min :12- +Y a(g) sga(@) (P (@)r)" +a@ In{PLO)r) .
4

This formula, which is easily extended to smooth mixtures defined by an integral, is exact
whenever the non-negative ‘weight’ a{q) is concentrated on a single term. The lower
bound is preserved if the P-numbers are replaced by lower bounds to them. Thus, any
information concerning these fundamental numbers for the power-law potentials immediately
has application to this general lower bound. These numbers have yielded useful energy bounds
also for the many-body problem [32], and for relativistic problems [33, 34].

In spite of the simplicity of the power-law potentials and the attractive scaling properties
of the corresponding Schridinger eigenvalues, general results concerning the unit-coupling
eigenvalues E(g) seem to be difficult to obtain. One might expect that the resuits of the
present paper would extend to all the excited states, but we know of no way at present to prove
such general results. A proof of the apparent concavity of all the P(gq) functions seems to be
even more elusive some of which are illustrated for N = 3 in figure 2. The establishment of
concavity of P(q) (or better, Q(g)) would immediately yield a large number of new spectral
inequalities arising from the use of tangents and chords to the corresponding graphs.
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Abstract

We study the discrete spectrum of the Hamiltonian H = —A + V(r) for
the Coulomb plus power-law potential V(r) = —1/r + Bsgn(g)r?, where
B >0,g9>-2and g # 0. We show by envelope theory that the discrete
eigenvalues E,¢ of H may be approximated by the semiclassical expression
Ens(q) = min, o{1/r? — 1 /(ur) + sgn{q)A(vr)¥}. Values of u and v are
prescribed which yield upper and lower bounds. Accurate upper bounds are
also obtained by use of a trial function of the form, ¥ (r) = r*! ¢~ We give
detailed results for V(r) = —1/r + Ar4, g=0512forn=1,£=0,1,2,
along with comparison eigenvatues found by direct numerical methods.

PACS number: 03.65.Ge

1. Introduction

In this paper we derive upper and lower bound formulae for the spectrum of a single particle
in three dimensions that obeys non-relativistic quantum mechanics and has Hamiltonian

H = —wA - A/r + B sgn(g)r’ @, A, B>0 and ¢ #0,q>-2. (L.1)

The Coulomb plus power-law potential is of interest in particle physics where it serves as
4 non-relativistic model for the principal part of the quark-quark interaction. This class of
potentials has been well studied and much work has been done to approximate the eigenvalues,
with or without the Coulomb term necessitated by QCD [1-14]. Our goal in this paper is
to provide simple formulae for upper and lower encrgy bounds for this class of potentials.
Firstly, we use the ‘envelope method’ [15, 16] to obtain upper and lower bound formulae for all
the discrete eigenvalues. We also use a Gaussian trial function and the ‘sum approximation’
{17, 18] to improve the bounds for the bottom of each angular-momentum subspace. The
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energy bounds discussed so far may all be expressed in terms of the following semiclassical
energy formula:

& ~ min [a)~l-2— — A— +B sgn(q)(ur)"] (1.2)
r>0 r uwr

for suitable choices of the parameters 4 > O and v > 0. We also apply 4 variational method
used earlier [19] which is based on the exact Coulomb wavefunction and yields accurate upper
bounds for the bottom of each angular momentum subspace. We compare all these results
with ‘exact’ eigenvalues computed by direct numerical intcgration.

For the class of potentials studied some exactly solvable cases exist for suitable values of
the couplings @, A, B, and the power g. For example, for the well-known hydrogenic atom
and the harmonic oscillator potentials we have explicitly forn = 1,2, 3, . ..

AZ

=-1 Epg= ——— 1.3
1 = ¢ doin + £)? (13
and
g=2 =  Enq=(0B)@n+2¢—1). (14)

For £ = 0, exact solutions are also available for the linear potentialg = 1. We can simplify the
coupling problem in general by the use of scaling arguments. If, for each fixed q, we denote
the eigenvalues of H = —wA — A/r + Br? by £(w, A, B), and consider a scale change of
the form s = r/o, and choose the scale o = w/A, then it is straightforward to show that

Al B +2
Ew, A, B = (-) LB B= (_) (_“i)" . (L3)
) w/) \A
Hence, the fuil problem is now reduced to the simpler one-parameter problem
H=—-~A—1/r+Bsgan(g)r* E=E@BI =118 B >0. (1.6)

2. Energy bounds by the envelope method and the sum approximation

The comparison theorem tells us that an ordering between potentials implies an ordering
between the corresponding eigenvalues. The ‘envelope method’ {15, 16] is based on this
theorem and establishes upper and lower bound formulae for a wide class of attractive
spherically-symmetric potentials. We need a solvable model —A + h(r) which provides
an ‘envelope basis® for the study of the problems of the form —A + g(h(r)), where the
transformation function g is monotone increasing and of definite convexity: when g is convex,
we obtain lower bounds; when g is concave, the theory yields upper bounds. The natural basis
in this context is a single power-law potential. The spectrum of a Hamiltonian of the form

H = —A +sgn(g)r? where ¢ > ~2 and ¢ #0 @.1)
may be represented exactly by the following semiclassical expression [11, 16]:
{1
Eqe = min { a3t sgn(q)(Pr.x(q)r)"} (2:2a)
L
g\ {2Pu(@)*\ ™
=sgn(g)(l+ = (——— . (2.2h)
q ( 2) Iq]

The function P = P,¢(q) is known as the P-representation, for the Schrodinger spectra
generated by the power-law potentials. It is convenient to use the P function to study and
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Table 1. The ‘input’ values P,,[(Ji) and Pne(1) to be used in the general formula (2.5) for the
energies comesponding to the potential V(r} = —1/r + § sgn(q)r?. These P-values yield upper
bounds when g < % or g < 1, respectively.

X
3

Pae(H) Pae(1)

1.302 66 1.376 08
297387 3.18131
4.65440 4.99255
6.33742 6.805 14
8.02149 8.61823

Wob W
[~~~ ]

1 1 229747 2371192
2 1 3.93966 4.15501
31 5.601 54 5.95300
4 1 727194 7.75701
5 1 8.94679 9.564 08
o2 3.29535 337018
2 2 492261 5.14135
3 2 6.57089 6.92911
4 2 8.23022 8.72515
5 2 989619 1052596
1 3 429424 4.36923
2 3 591240 6.13298
3 3 7.55077 7.91304
4 3 9.201 18 9.70236
5 3 10.85929 1149748
1 4 529352 5.368 63
2 4 6.905 60 712732
3 4 8.536 58 8.901 48
4 4 1017964 10.68521
5 4 1183110 1247532

analyse the spectra of these problems mainly because it is known [11] that P,;(g) is monotone
in g and it is also smoother than Ejy¢ as a function of g; the case ¢ = 0 corresponds exactly to
the log potential. From (1.3) and (1.4) we find, in particular, that

Pue(-1)=n+¢ 2.3)
and

Pie(2)=2n+2+1/2. Q4)

In table 1 we exhibit some numerical values for P,.g(%) and P,¢(1). We have found the exact
eigenvalues for the linear potential in terms of the zeros of the Airy function, but those for
q= % have to be computed numerically: this use of some isolated numerical input is justified
since, for each (n, £} pair, the resulting approximation formulae include all the potential
parameters but depend only on a single ‘numerical input’. Envelope theory [12, 17] shows
that the eigenvalues of the Coulomb plus power-law potential may be approximated by the
following semiclassical expression:

R 1
€ # min 5 - + Bsgn(g)(vr)? where p,v > 0. (2.5)
r>0 | r ur
Since V(r) = g(h(r)) is at once a convex function of A(r) = —1/r and a concave function

of h(r) = sgn(g)r?, the spectral representation Pn,(g) allows us to specify upper and lower
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bound formulae as follows. If 4 = v = P,(—1), then & is a lower bound for E,., and
if £ = v = Pnpe(q), then £ is an upper bound. We may improve the lower bound for the
bottom of each angular momentum subspace by using the sum approximation [17, 18], which
is equivalent to the choice & = Py(—1) = (£ + 1) and v = Py;(q). For the bottom of
the spectrum we can also improve the upper bound by using a Gaussian trial function and
minimizing over scale: this is equivalent [12] to using the parameter values

3\ [2r B +9)/2) ¢
) 7]
We note that the same parameters ;2 and v which guarantee that (2.5) yields various
energy bounds may also be used in the ‘full’ semiclassical formula (1.2), including all the
original Hamiltonian parameters {», A, B}. In section 3 we apply (2.5) to the explicit cases
V(iry=—1/r+Brifort =0,1,2, whereq=1,2and 0.5.

p,:.u:P,‘{,:( 2.6)

3. Variational method

The second approach in this paper is to use a trial function explored in previous work [19] to
obtain accurate upper bounds for the bottom of each angular momentum subspace. We start
with Schrédinger’s equation

‘ 1 .
Hy(r) = (—A - +ﬂsgﬂ(4)r”> Y(r) = E.(B)¥(r) g#0 q>-2 3.H

This problem is solvable if 8 = 0, and the corresponding wavefunction ¥r(r) is given by
1/,(’.) = r£+1 e—erIZ'i:H(zxr). (3.2)

In order to obtain an upper bound for the bottom of each angular momentum subspace E,; for
fixed power g we choose ¥ (r) to be of the following form

W(r) = ritl et 3.3)
and define £ by £(8,x,d) = %Y\l. where x and d are variational parameters. Now, we

minimize £ with respect to x and d. The necessary conditions for a critical point are g—f =0
and g% = 0. Consequentially, using (3.1) and (3.3), we obtain the following upper bound
formula for the eigenvalues Ey¢

EieB,d, x) = ajx? —arx +azx~? 3.4)
where ay, a; and a3 are as given below

53 2+ DRE+d + I)I‘(%’:d-’-!-)

“s (&)
ot T
2 = 28 s
ye
r(umﬂ)
a3 = sgn(q)p27 =L 1
r(¥%?)

By using (3.4) we derive the following equation for x:
TR T R L
* 2a 1 x 20] )

After solving (3.5) to obtain x from the numerical solution of g—; =0wefinddforn =1 and
£ = 0 and then we use the same d value for ali 2.

3.5)
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Figure 1. The eigenvalues E(#) of the Hamiltonian H = —A — 1/r + frlfor N =3, n =1, and
¢ =0, 1, 2. The continuous curves show the upper bound EU given by the envelope formula (2.5)
with v = p = P(¢(2), for £ = 1, 2 and the lower bound ELS by the sum approximation given by
the same formula but with v = P:(2) and & = Py;(—1). The upper bound for £ = 0 is calculated
using v = PY(2) and = P(—1) in formula (2.5). The dashed curve EC represents the upper
bound by formula (3.4). The stars EX represent accurate numerical data.

4. Results and conclusion

We have found general semiclassical energy formulae (1.2) and (2.5) for the eigenvalues
gencrated by the Coulomb plus power-law potentials. Specific values for the parameters p
and v are given which guarantee that the formulae yield bounds for all the discrete energies.
By using a more finely tuned wavefunction, we have also derived an improved upper bound
(3.4) valid for the bottom of each angular momentum subspace. We may rewrite (2.5) in the
form of a pair of parametric equations for the curve {8, £(8)). For fixed ¢ > —1 we obtain

1 2 1 _1+2/g 1+1/q
p= lgl(vry? <r2 ur) By = 2 o @.n

By envelope theory, we know that these parametric equations yield a lower bound if
uw=v = Pu(-1) = (n+¢£), and an upper bound when u = v = P,¢(g). For the bottom
of each angular momentum subspace the prescription & = Pj,(—1) = (£ + 1), v = Pi;(q)
yields an improved lower bound. An improved upper bound for the bottom of the spectrum
is given by using the ‘Gaussian’ P-numbers (2.6). In figures 1-3, we plot the function E(3)
forn =1,¢ =0, 1, 2 for the Coulomb plus harmonic oscillator (¢ = 2), Coulomb plus linear
(g = 1) and Coulomb plus 7% potentials, along with the corresponding accurate variational
bounds using (3.4) (dashed line), and some comparison numerical values represented as stars.
The advantage of the semiclassical formulae is that they describe in approximate analytical
form how the eigenvalues depend on all the parameters of the problem.
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EQ®

Figure 2. The eigenvalues E(8) of the Hamiltonian H = ~A —1/r+8rfor N =3,n =1, and
¢ =0, 1, 2. The continuous curves show the upper bound EU given by the envelope formula (2.5)
with v = g = Py(2), and the {ower bound ELS by the sum approximation given by the same
formula but with v = P,(1) and p = Py (—1). The upper bound for ¢ = 0 is calculated using
V= PILL' (1) and p = Pl’“'(— 1) in formula (2.5). The dashed curve EC represents the upper bound
by formula (3.4). The stars EX represent accurate numerical data.

EP)

0 0s 1 5 2 25 3 35 4

Figure 3. The eigeavalues £(f) of the Hamiltonian H = ~A ~1/r + r%5 for N =3,n = 1
and ¢ = 0, 1, 2. The continuous curves show the upper bound EU given by the envelope formula
(2.5) with v = p = Py¢(0.5), and the lower bound ELS by the sum approximation given by the
same formula but with v = Py,(0.5) and . = Py,(—1). The upper bound for ¢ = 0 is calculated
using v = P,‘f (0.5) and p = P{f(-l) in formula (2.5). The dashed curve EC represeats the upper
bound by formula (3.4). The stars EX represent accurate numerical data.
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