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ABSTRACT

Exploring the development of graduate learners’ monitoring proficiencies and task
understandings in the context of a complex writing task
Vivek Venkatesh
This thesis study presents an exploration of the development of graduate learners’

monitoring proficiencies and task understandings in the context of a complex writing
task. Participants were seventeen students enrolled in a graduate Learning Theories
course, engaged in writing six, weekly learning logs; logs were based on the content
being covered in the course. Data was collected primarily using a self-assessment tool,
the Task Analyzer and Performance Evaluator, which accompanied each learning log.
Measures analysed included instructors’ performance assessments, students’ predicted
performances, students’ prediction confidence scores, independently scored performances
on the logs, criteria justification scores, and monitoring proficiencies, which included
bias and discrimination. Results suggest that learners showed improved monitoring
proficiencies as instruction progressed. Findings also reveal that while learners exhibited
signs of a general monitoring ability across the six logs, prediction confidence, bias and
discrimination abilities were mostly unrelated to one another. While learners showed
improved criteria justification scores as instruction progressed, there were no
relationships found between this measure of task understanding and monitoring abilities.
The findings are discussed in relation to recent research on the domain-generality of
monitoring and instructional features that promote self-regulation. Due to the exploratory
nature of this study and the small sample size, findings cannot be generalized and must be
treated with caution. Further research is needed to better characterize monitoring abilities

in adult learners engaged in complex, writing tasks.
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Preface And Overview

The idea for this thesis arose with my interest in the developmental and
instructional aspects of how individuals evaluate their own performance at learning tasks.
This thesis study explores the development of graduate learners’ monitoring proficiencies
and aspects of task understanding in the context of a complex writing task. Monitoring, or
learners’ abilities to evaluate their own performance on an academic task, has been
widely researched under the umbrella term of ‘metacognition’, mainly in the context of
reading comprehension, and recently, in multiple-choice test-taking situations.
Researchers have characterized graduate learners’ monitoring proficiencies as being a
phenomenon that varies from one individual to the next, with variations accorded to
factors such as task difficulty, affective states, feedback structures as well as the task
environment. Research has also shown that monitoring displays both domain-specific and
domain-general characteristics. Following from these current research issues, this thesis
study will investigate (a) how well graduate learners’ monitor their performance on a
complex writing activity, as well as (b) whether these monitoring abilities are specific to
each instance of the writing task or are generalizable across an entire period of
instruction.

Task understanding refers to learners’ perceptions of both the nature of an
academic task and the requirements for completing the task. Recent research has posited
that these perceptions of the task interact with a host of individual motivational and
affective variables. Research has also revealed that there is a lack of empirical evidence

of instructional features that promote learners’ task understanding in naturalistic, learning



environments. This thesis study will see the implementation of empirically supported
instructional features to attune students’ perceptions of the requirements of a complex
writing task, and match these perceptions with those of the instructor.

In chapter 1, I review the research on monitoring and task understanding, using a
theoretical framework provided by prior foundational research on seif-regulation and
metacognition. This literature review will guide the development of the research purpose
and ultimately, the research questions for the thesis study. In chapter 2, [ outline the
research methodology that I used to conduct my thesis study. This chapter includes
detailed descriptions of the research context, the instruments used and the scoring
procedures employed. Chapter 3 presents the results of the analyses conducted on the
measures of performance, monitoring and task understanding; these results will paint a
picture of how monitoring proficiencies and task understanding developed in the context
of the research. Chapter 4 then discusses the findings in light of the theoretical
framework that was introduced in the literature review. Finally, chapter 5 provides

concluding words to the thesis and possible directions for future research.

(RS



Chapter 1: Literature Review

Self-Regulation
What is Self-Regulation?

Academic self-regulation involves the strategic application and adaptation of
learners’ cognitive and metacognitive thought processes in influencing their own
behaviors while tackling academic tasks (Pintrich, 2000; Zimmerman, 1990, 1994, 2000;
Winne & Hadwin, 1998), taking into account their emotions (McCombs & Marzano,
1990) as well as motivational states (Pintrich, 2000; Pintrich & De Groot, 1991; Winne &
Hadwin, 1998) within a specific learning context or environment (Winne & Hadwin,
1998; Zimmerman, 2000). Models of self-regulated learning (SRL) have adopted various
perspectives, ranging from socio-cognitive (e.g., Schunk & Zimmerman, 1997,
Zimmerman, 2000), affective (e.g., McCombs & Marzano, 1990), motivational (e.g.,
Pintrich & De Groot, 1991; Rheinberg, Vollmeyer & Rollett, 2000), and context-specific
discussions of SRL constructs (e.g., goal setting, Latham & Locke, 1991). Other models
of SRL (e.g., Pintrich, 2000; Winne & Hadwin, 1998) acknowledge the need for
regulating all the five elements of cognition, affect, motivation, behavior and context in
explaining individual self-regulating processes. Most models of SRL promote goal-
setting, strategic planning and execution of plans, reflection, self-monitoring, self-
efficacy, and self-evaluation as essential skills to be developed by learners who engage
with complex tasks requiring resource management skills, individual and group analyses
of problem situations, as well as strategic use of feedback and contextually available

resources (Butler & Winne, 1995; Ertmer, Newby, & MacDougall, 1996; Paris &



Newman, 1990; Zimmerman, 1990, 1994, 2000). Of specific interest, in this thesis study,
is the exploration of learners’ monitoring proficiencies, or learner’s abilities to evaluate
their own performance, in the context of complex writing tasks.

Monitoring of Learning, Performance and Comprehension
Metacognition and Monitoring

Monitoring falls under the general umbrella term of metacognition;
metacognition, in turn, has been discussed within the theory of self-regulation. For
example, while self-regulated learning is conceived as including the processes of
monitoring, controlling and regulating cognition as well as motivation, affect, volition
and effort (Schunk & Zimmerman, 1994; Zimmerman, 1986, 2000; Zimmerman &
Schunk, 1989), these processes of monitoring, controlling and regulating are related to
and dependent on the metacognitive knowledge about self and cognition (Garcia &
Pintrich, 1994; Pintrich, Wolters, & Baxter, 2000).

Metacognition, put simply, is the ability of a learner to be an agent of one’s own
thoughts. Metacognition has been defined as “knowledge of cognition and monitoring
and control of cognitive activities” (Hacker, 1998, p. 2). Models of metacognition take
into account the interactions between constructs that include metacognitive knowledge,
metacognitive experiences, awareness, control, goals, strategies and regulation of
strategies (e.g., Brown, Bransford, Ferrara & Campione, 1983; Flavell, 1979; Hacker,
1998; Nelson & Narens, 1990; Paris & Winograd, 1990). Researchers such as Pintrich et
al. (2000), recognize and distinguish between three aspects of metacognition, including
(a) metacognitive knowledge, (b) metacognitive judgments and monitoring, as well as (c)

self-regulation and control of cognition. Metacognitive judgment and monitoring are



associated with the process of reflecting on one’s metacognitive awareness and other
metacognitive activities, as one is engaged with a learning task (Pintrich et al., 2000;
Nelson & Narens, 1990). These metacognitive activities include thinking about and
acting upon (a) judgments of task difficulty, (b) reactions to leaming and comprehension
monitoring, (c) feelings of knowing, and (d) confidence judgments (Pintrich et al., 2000;
Winne & Hadwin, 1998). In this thesis study, I will be focusing on the processes
associated with learning, performance and comprehension monitoring in graduate
learners in the context of complex writing tasks.
Definitions and Measurement of Monitoring

The generic definition of monitoring centers on the ability of learners to evaluate
their performance at a given point in time. Comprehension monitoring, long viewed
under the umbrella of metacognitive skills, empowers learners to not only evaluate but
also alter, and hopefully improve, their performance (Butler & Winne, 1995; Pressley &
Ghatala, 1990). Self-monitoring of metacognitive processes has been long considered as
a prerequisite for learners to assume and take control of their learning, as well as bridge
the gap between what learners know about their learning and performance and what they
do not know (Brown, 1989; Flavell, 1979, Pintrich, Wolters, & Baxter, 2000; Schraw &
Impara, 2000). However, the measurement of high-level processes in metacognition,
specifically, that of monitoring, is considered to be especially laborious, difficult, and
context-specific (Pintrich et al., 2000; Tobias & Everson, 2000). Some of the relevant
conclusions reached by Pintrich et al. (2000) in discussing the issue of assessing
metacognition within a framework of SRL are that (a) metacognition is measured in a

variety of ways, from think-aloud protocols to self-report surveys to observations; (b)



different measures of components of metacognition assess the same components in
different ways; (c) there is a lack of theoretical links between metacognition and SRL; (d)
the issue of domain-generality and domain-specificity of metacognition needs to be
further explored; and (e) performance assessments may help in measuring constructs
related to metacognition across and within domains.

In my thesis study, I will be focusing on learner’s abilities to calibrate their
performance (Glenberg, Sanocki, Epstein & Morris, 1987; Schraw, Dunkle, Bendixen &
Roedel, 1995; Schraw & Nietfeld, 1998; Schraw & Roedel, 1994). Calibration
specifically refers to learners’ abilities to evaluate performance upon immediate
completion of a task or test item. Following Schraw et al.’s (1995), lead, I use the general
term monitoring, throughout this thesis, as it is a term that is more familiar than the term
calibration, with readers. In the next section, [ briefly review the literature on monitoring
in test-taking situations. Note that [ use the term “test-taking” to signify an academic task
that undergoes an instructor-based evaluation and is assigned a grade or measure of
performance of some form.

Factors Influencing Monitoring in Test-Taking Contexts

Reviews of learners’ monitoring capabilities while taking tests have revealed that
generally, individuals are better able to evaluate their performance during or after a test,
than before it (see Baker, 1989, Pressley & Ghatala, 1990 and Schraw & Moshman,
1995, for recent reviews). Effective monitoring is dependent on constraints such as the
nature of the test, individual characteristics of the test taker as well as the test
environment. In discussing the nature of the test, research has focused on the difficulty

and format of the test. Prior research has demonstrated that difficult tests lead to poorer



monitoring because of a failure to adjust to performance expectations (Schraw & Roedel,
1994). Recognition tests lead to poorer monitoring than recall tests because the
recognition test-takers mistakenly accord themselves a higher level of mastery than those
taking recall tests (Ghatala, Levin, Foorman & Pressley, 1989). Monitoring proficiency
has been seen to improve when learners are tested on detailed information rather than
main ideas (Pressley, Ghatala, Woloshyn & Pirie, 1990).

Test-taking individuals possess characteristics that influence monitoring
capabilities, including familiarity with the domain, intellect, and dispositions. Research
investigating familiarity with domains has a mixed set of findings. While Glenberg &
Epstein (1987) found a negative relationship between expertise and monitoring, Morris’
(1990) research demonstrates that domain knowledge was unrelated to monitoring
proficiency even though it was related to the ability to answer questions effectively in
that domain. Schraw and Roedel (1994) reported that college students monitored their
test performance with equal accuracy in three domains once test difficulty was controlled.
Maki and Serra (1992) interestingly found that monitoring improved as individuals
acquired more information from the learning material that was being used during the
instruction.

A number of studies by Pressley and colleagues, cited in Pressley & Ghatala’s
(1990) review, reveal that learning ability does not necessary lead to high-skill levels of
monitoring. On the other side of this spectrum, Walczyk & Hall (1989a) discussed how
children’s ability to monitor was seriously affected by cognitive impulsivity. Slife and

Weaver (1992) found that depressed individuals monitored their comprehension less



effectively than non-depressed individuals and also showed less control of metacognitive
skills.

The environment in which the test is taken also affects monitoring skills. When
given incentives to monitor accurately, Schraw, Potenza and Nebelsick-Gullet (1993)
found that test-takers monitored more accurately than a control group who were not given
incentives. Moreover, test takers who were given a reward for normatively accurate
monitoring outperformed the control group. Elsewhere, Pressley, Snyder, Levin, Murray,
& Ghatala (1987) showed how perceived readiness for testing improved when additional
questions were included during study. Similarly, students who were provided with
feedback during testing showed improved monitoring skills (Glenberg, Sanocki, Epstein
& Morris, 1987; Walczyk & Hall, 1989b). In further support of the use of consequential,
engaging activities that promote processing during test-taking situations, Maki, Foley,
Kajer, Thompson, & Willert (199C) round that students who generated missing
information for text provided in a test, monitored more accurately than those who did not.

Schraw et al. (1995) propose four general characteristics of monitoring
proficiencies. First, monitoring proficiency is dependent on the timing of the confidence
judgments made during test-taking situations. Second, a high degree of domain
knowledge does not automatically qualify a learner to possessing superior monitoring
proficiencies. Third, monitoring proficiency is dependent on the nature of the test and the
instructions that accompany the test in aiding the learner to successfully complete the
test. Finally, monitoring proficiency seems to be unrelated to intellectual ability or
processing speed, but it might be affected by dispositional factors, such as mood,

impulsivity, and emotional states that a learner might possess.



As Schraw and his colleagues (Schraw et al., 1995; Schraw & Neitfeld, 1998)
observed, monitoring in test-taking situations is best characterized as an “idiosyncratic
phenomenon” (Schraw et al., 1995, p. 434), influenced by individual learner
characteristics and the nature of the test, as opposed to the general skill that the term
metacognition suggests. Thus, while monitoring skills might inherently exist or be
learned in a test-taker, there are likely to be a range of utilizations from person to person
due to the inherent eccentricities in the nature and mcasurement of monitoring. In fact,
investigations on college and adult learners’ monitoring of academic performance (e.g.,
see Schraw, 1994, 1997, 1998; Schraw et al., 1993), suggest that most adult populations
possess metacognitive knowledge about their learning even though a large proportion do
not use this knowledge to improve their on-line regulation of performance.

It should be noted, though, that most research on learning, performance and
comprehension monitoring has been primarily focused within the domain of reading
comprehension in a school-based population. My thesis will explore the development of
monitoring proficiencies in a different domain, namely, complex writing tasks, with
adult, graduate learners. Such research is necessary in further developing the notion of
monitoring proficiencies in various academic contexts as well as in exploring whether
monitoring is context-dependent or context-general. The issue of domain-specificity and
domain-generality of monitoring is, hence, discussed in the next section.

Domain Specificity versus Domain Generality of Monitoring

The literature seems to be divided in its description of the nature of

metacognition; metacognition has been described, on one hand, as a higher-order type of

knowledge that regulates comprehension and performance within a single domain, while
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on the other as a higher-order type of knowledge that regulates performance and
understanding across all domains (Pintrich et al., 2000; Schraw et al., 1995; Schraw &
Nietfeld, 1998). The two opposing views on metacognition lead to two competing
hypotheses on the nature of monitoring. The domain-specific hypothesis of monitoring
supports the notion that monitoring in one domain is unrelated to monitoring in separate,
distinct domains. Expert problem-solving subscribes mostly to the domain-specific
hypothesis (e.g., Bereiter & Scardamalia, 1993; Glaser & Chi, 1988; Voss, Green, Post &
Brenner, 1983; Voss, Wolfe, Lawrence, & Engle, 1991), in its propositions that experts
assess and rationalize problems, select strategies to tackle these problems, and evaluate
the validity of their solutions with greater accuracy than novices would. Central to the
domain-specific notion of monitoring is the assumption that monitoring proficiency is
dependent on the level of domain-related knowledge (Schraw et al., 1995). According to
the domain-specific view, high levels of monitoring can only be seen if domain-related
knowledge and domain-specific regulatory skills are simultanecusly present and interact.
On the other hand, the domain-general hypothesis subscribes to the notion that
monitoring in any one domain is dependent both on general metacognitive skills as well
as domain-specific knowledge and regulatory skills. Empirical findings of domain
knowledge bearing no relation to monitoring proficiencies, including Glenberg & Epstein
(1987), Morris (1990) and Schraw and Roedel (1994), lend support to the domain-general
hypothesis. Moreover, theories proposed by Borkowski, Chan and Muthukrishna (2000)
and Pressley, Borkowski and Schneider (1990), which look at metacognitive theories as
explaining the triumphs and the failings of strategy generalizations, lend support to the

domain-general monitoring theory. In the domain-general view, as Schraw et al. (1995)



11

explain, monitoring proficiency is determined more by domain-general metacognitive
awareness than domain-specific awareness; examples include evaluating the sufficiency
of domain-related knowledge, selecting and applying appropriate strategies in a given
situation, and assigning appropriate levels of cognitive and metacognitive resources
based on task demands. Schraw and his colleagues proposed that, given a set of
performance and monitoring scores across a variety of domains, the domain-general view
would be most strongly supported by uncorrelated performance scores and correlated
monitoring proficiency scores across all domains; this would suggest that a general
monitoring skill is present even when a performance skill is not. The domain-specific
view, however, would be best represented by a strong performance correlations and
unrelated monitoring scores across all domains, thereby suggesting that measures of
monitoring are unrelated even in the face of related performances.

Schraw et al. (1995) conducted two experiments to test the domain-specific and
domain-general assumptions by assessing students’ performance and confidence in
correctly answering eight sets of multiple-choice test. Each of the multiple-choice tests
reflected a different domain of knowledge, and required students to mainly recall
semantics from their long-term memories on factual information (e.g., U.S. presidents,
geography, etc.). The measures of performance and confidence yielded two measures of
monitoring proficiencies. The first is termed as discrimination, and refers to the ability of
students to assign an appropriate level of confidence to their performance on a test item.
Discrimination was calculated as the difference between confidence for correct items and
incorrect items (Lundeberg, Fox, & Puncochar, 1994). The second measure calculated

was bias (Keren, 1990; Yates, 1991), which measured the extent to which students were



over or under-confident for each of the eight tests. Bias was calculated by taking the
difference between the average confidence and average performance for each of the eight
test items. In experiment 1, Schraw and his colleagues found that performance and
discrimination accuracy were not correlated across the eight domains, lending support to
the domain-specific hypothesis because it suggested that feelings of confidence and
derived measures of monitoring proficiency were unrelated. However, in experiment 1,
confidence and bias were correlated, lending support to the domain-general hypothesis,
because this suggested that a general monitoring skill existed even when a general
performance skill did not exist. In experiment 2, after variability due to difference in
domains was eliminated on the eight tests, performance and confidence measures were
collected, and correlations were computed among performance, confidence and the two
measures of monitoring proficiency, discrimination and bias. Results from experiment 2
showed all four measures to be correlated across all or most domains; in addition,
confidence was correlated even after the effect of performance was removed. The results
of Schraw et al.’s (1995) two experiments show some support for the domain-general
argument on monitoring.

In a follow-up experiment, Schraw & Nietfeld (1998) tested adults’ performances
and confidences in drawing novel inferences on eight different measures (domains) of
fluid and crystallized ability as opposed to the simpler tests on retrieval of declarative and
factual knowledge seen in Schraw et al. (1995). Fluid ability measures the processes
underlying mental activity, whereas crystallized ability measures the sum of acquired
knowledge experience in learners (for more detailed descriptions see Schraw & Nietfeld,

1998, p. 237). In this study, monitoring proficiency was represented by discrimination (as
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described in Schraw et al., 1995) and accuracy, which represented the absolute value of
the difference between average confidence and average performance for each test.
Accuracy provided a measure of how far learners’ predictions of their performances were
from their actual performances, regardless of whether they overestimated or
underestimated their performance. Findings from Schraw & Nietfeld’s (1998) study
supported two main conclusions, the first being that monitoring scores were correlated
across multiple domains, and the second, that individuals may possess separate general
monitoring skills for fluid and crystallized tasks. Further, the data from Schraw &
Nietfeld’s (1998) study were best explained by domain-general theories of monitoring
proficiencies, as opposed to information-encapsulation theory (e.g., domain-specific
views on performance and monitoring accuracy) or a modular perspective (e.g., the belief
that biological structures support cognitive functions).
Monitoring Proficiencies in Complex Writing Tasks

In my thesis study, [ will extend Schraw and his colleagues’ exploration of the
nature of monitoring proficiencies in the context of a complex writing task for graduate
learners. I believe it is necessary for monitoring proficiencies to be investigated in
manner similar to Schraw et al (1995) and Schraw & Nietfeld (1998), but in a context
aside of multiple-choice test-taking situations. Complex writing tasks related to a specific
curriculum in a graduate learning environment provide a more representative, adult
learning context in which learners engage in consequential activities designed to promote
deep processing activities and higher-order thinking. My thesis study will explore
whether monitoring proficiencies for learners engaged in complex writing tasks develop

in a manner that is similar to those involved in multiple-choice test taking situations. In
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addition, [ will explore the domain-generality and domain-specificity of learners’
monitoring skills in the context of complex writing tasks.
Self-Regulation and Instructional Design

A secondary purpose of this thesis study is to explore the notion of learners’ task
understandings in the context of complex writing tasks. Specifically, through the use of
empirically supported instructional design (ID) principles, my thesis explores the
possibilities of attuning learners’ perceptions of the assessment criteria for a complex
writing task with the criteria laid out by the instructor.

Despite the widespread research on SRL-based instruction, there is a paucity of
experimental evidence of instructional methods that promote the various aspects of
learners’ academic self-regulation. Although Ley and Young (2001) have suggested
principles of instruction for self-regulation in classrooms, these principles are not
supported by empirical findings. This lack of research led to our conducting a review of
ID features that promote self-regulation (Venkatesh & Hadwin, 2002). In this review of
the literature on SRL-based instructional strategies, various strategies that emerged from
the literature were classified as one of three types. The first was coined as instructional
processes and referred to strategies that focused on the manner in which teachers
interacted with students while delivering instruction (e.g., modeling, scaffolding, teacher
questioning, etc.). The second was termed as classroom culture; these were strategies
aimed at influencing the environment in which learners applied themselves, (e.g.,
promotion of a supportive social environment, fostering positive attitudes towards
learning). Third, task structuring included strategies aimed at explaining how the task had

been designed (i.e., individual activity, collaborative, case-study, problem-based), what
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tools the instructor provided for completing the task (e. g., recording criteria-based
progress, recording performance, using planning sheets, aiding comprehension of the
task) as well as what type of feedback structure was being employed (e.g., teacher
feedback on performance, peer feedback, self-evaluations). While the three types of
strategies outlined relied heavily on the cognitive, metacognitive and behavioral aspects
of SRL., we acknowledged the role each design feature plays in shaping the motivational
and affective reactions of the learner. Of special interest, in the present investigation, is
the issue of how to explore and instructionally promote learners’ task understanding, that
is, how we can better instructionally promote task structuring in the context of complex,
writing tasks.
Task Understanding

Critical Components of Task Understanding

Task understanding draws on two distinct, but interacting elements; these include
individuals’ perceptions of the academic task, as well as of themselves as a learner within
a particular academic context (c.f., Winne & Hadwin, 1998). Learners’ perceptions of the
academic task include both the nature of the task, and the assessment criteria associated
with the task. Learners reflect on their perceptions of the nature of the task, including (a)
the rationale for performing the task; (b) the procedures that need to be undertaken to
perform the task and the required outputs; (c) the materials that are available to perform
the task; as well as (d) the contextual conditions under which the task has to be
performed. Learners also need to grapple with the assessment criteria that the instructor

will be using in judging their performance on the task. It is therefore clear that task
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understanding involves a close interaction between learners’ perceptions and the
instructor’s perceptions of the academic task.

In addition to the task-associated elements, task understanding is influenced by
the learner’s knowledge of “self-as-learner”. Such knowledge includes preferred learning
styles and learning needs, prior content and task-specific knowledge, current motivational
and emotional levels of anxiety and efficacy, as well as motivational and emotional levels
associated with a specific type of task environment (Lin, 2001; Randi & Corno, 2000;
Winne & Hadwin, 1998). Similar to the distinctions [ have made above in the
components of task understanding, Winne and Hadwin (1998) distinguish between the
task and cognitive conditions that influence students’ comprehension of an academic
task. Whereas task conditions refer to the nature and assessment criteria of a task,
cognitive conditions are the content-related strategies, prior knowledge and experiences,
affective states, beliefs and motivational attributes that affect the extent to which learners
develop accurate perceptions of the academic task.

Task Understanding as a Phase of Self-Regulation

Models of SRL have conceived of task understanding as either a phase or a key
element of a phase of self-regulation. Different researchers, though, have varying
conceptions of terms related to task understanding. For example, a triadic, socio-
cognitive model of self-regulation, which takes into account the personal, behavioral and
environmental effects on self-regulation (see Zimmerman, 2000), describes the three
cyclical phases of forethought, performance or volition control and self-reflection. The
first phase of forethought includes a component Zimmerman terms as task analysis.

However, task analysis is explained in terms of learner’s abilities to set goals and



17

strategically adopting a plan of action in achieving these goals. No mention of
comprehension of task requirements is made in the model. Zimmerman'’s socio-cognitive
model, however, does acknowledge the important roles of self-motivation beliefs,
interest, value placed by learner on the task, as well as goal orientation.

Elsewhere, Pintrich (2000) outlines four phases of self-regulation similar to
Zimmerman'’s (2000) model. In Pintrich’s (2000) model, the four phases of goal-setting,
monitoring, control and regulation processes each apply to the four areas of regulation of
cognition, motivation or affect, behavior and context. The first phase, goal-setting,
according to Pintrich, regulates (a) cognition, by activating prior knowledge; (b)
motivation or affect, by considering efficacy judgments and goal orientations; (c)
behavior, by accounting for time and effort management strategies; and finally (d)
context, by acknowledging that students develop perceptions of the context and the task
itself. In comparison to Zimmerman’s (2000) model, Pintrich’s first phase emphasizes the
importance of framing task understanding as an internal cognitive and affective activity,
as well as a regulation of external contextual factors.

Finally, Winne and Hadwin (1998) explicitly introduce task understanding as the
first phase of self-regulation; the other three phases being "goal setting and planning’,
‘enactment of strategies’ and ‘evaluating and updating’. Task understanding in this
model, as explained earlier, is influenced by the task and cognitive conditions in a
specific academic context. Winne and Hadwin propose that learners cycle through the
four phases of self-regulation throughout their engagement with an academic activity, but
do not necessarily follow a specific order through the four phases. For example, a

student’s engagement with a strategy could result in a failure to achieve a goal. The
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student might then cycle back to rethink the goals set for the task, which in turn, could
affect a component of task understanding, including, for example, perceptions of task
difficulty level or motivation and anxiety levels. Therefore, task understanding might be
developed across the phases of self-regulation, as the learner interacts with the task in a
contextualized environment (Hadwin, 2000; Winne & Hadwin, [998).
Development of Task Understanding Across All Phases of SRL

While I acknowledge the importance of task understanding as a critical, first
phase of SRL, I agree with Hadwin (2000) that it is not very often that students develop a
complete perception of the academic task at the very beginning of their engagement with
the task. Just as the three models of SRL described above subscribe to a cyclical
development of self-regulation, [ agree with both Hadwin (2000) and Winne and Hadwin
(1998) that task understanding continuously develops as students cycle through the
various phases of self-regulation. For example, in the context of a complex academic task
often encountered in a graduate classroom setting, information contributing to students’
task understanding might include (a) the rationale for performing a task, (b) the
instructor’s assessment criteria, (c) the resources available in the given environment, and
(d) the prior knowledge and knowledge of “'self-as-learner™ that the student brings to the
task. The extent to which these elements interact to form an initial representation of the
task varies from student to student at the beginning of their engagement with the task.
Exploration of the task by performing a few preliminary activities. setting a few proximal
goals and trying to attain them, followed by feedback from the instructor on initial
progress on the task might help in building the students’ individual task understanding.

Moreover, in building an impression of oneself as a learner while engaging with the task,
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the student’s knowledge of “self-as-learner” is continuously developing to reflect changes
in task understanding, and in turn, influences the strategic engagement of the student with
the task (see Randi & Corno, 2000 for an innovative example of building learners
knowledge of “self-as-learner” through the development of metacognitive knowledge and
beliefs). Knowledge of “self-as-learner” interacts with, and is continually influenced by
the task conditions including the nature of the task, assessment criteria and rationale, as
well as the cognitive conditions imposed by the learner including prior knowledge,
metacognitive knowledge and awareness, beliefs, values and presuppositions.

Task understanding, therefore, does not necessarily develop as a first phase of
self-regulation. Rather, the cyclical nature of SRL demands that students revisit and
redefine the task as their knowledge of both the task and self are influenced and grow
over the time spent engaging with the task.

Instructional Principles in Promoting Task Understanding

Our review (Venkatesh & Hadwin, 2002) has revealed a lack of research on how
to improve learners’ task understandings. Therefore, while the concept of rask structuring
was exemplified mainly through explicit activities for students to set goals as well as plan
and execute strategies in achieving goals, very few researchers developed instruction
specifically to improve learners’ understanding of a specific academic task. In fact, our
review revealed that research studies that proposed SRL-based instruction very often
required students to jump into goal-setting and planning situations, without providing
students with an idea about what the academic task entailed, and without providing

support for developing the critical, metacognitive knowledge of “self-as-learner”.



Our review (Venkatesh & Hadwin, 2002), however, pointed to studies that
explicitly provided instruction to support learner’s task understanding; these included, for
example, Butler (1998), Englert, Raphael, Anderscn, Anthony, and Stevens (1991),
Ertmer et al. (1996), Perry (1998), Perry and VandeKamp (2000), and Perry,
VandeKamp, Mercer, and Nordby (2002).

Task understanding was addressed in Butler’s (1998) evaluation of the Strategic
Content Learning (SCL) approach to developing self-regulation in undergraduate
students with learning disabilities. Butler used one-on-one tutoring sessions, where
students were taught strategies to better comprehend the requirements of an academic
task in terms of existing knowledge and beliefs, set attainable and individualized goals
based on their unique needs, and implement strategies towards the attainment of these
goals. The tutors in Butler’s study helped students (a) choose learning areas that were
problematic, (b) set their own learning goals, (c) explicitly state and set assessment
criteria to judge their progress, and (d) choose strategies to achieve their goals. Students
were also taught to monitor their progress towards their goals, and adjust their approaches
based on perceptions of their progress.

Perry’s (1998) work in second and third grade classrooms using portfolio
activities provides a different exemplar of developing instruction to promote task
understanding and self-regulation. In her research with second and third-grade classroom-
based portfolios, Perry classified those classrooms as “high self-regulated” ones, where
students were provided with (a) choices in their writing activities (i.e., choice of what,
where, when to write and who to write about); (b) control over the amount of challenge

they experienced in the class; (c) opportunities for self-evaluation; and (d) instrumental



peer and teacher support. Perry found that classroom contexts affected student beliefs,
values, expectations and actions in the classroom, thereby highlighting the importance of
developing knowledge of “self-as-learner” throughout the phases of self-regulation.

Englert et al. (1991) developed an intervention called Cognitive Strategy
Instruction in Writing (CSIW) to improve the expository writing abilities of fourth and
fifth-graders. In their efforts to develop students’ perceptions of the rationale of
performing the writing task, teachers in Englert et al.’s study used scaffolding, modeling,
questioning and peer discussions as key instructional processes. During the writing
activities, students were given worksheets with queries directing students to plan their
writing (who am I writing for?; why am I writing this?; what do I [already] know?; how
can I group my ideas?; how will I organize my ideas?); similar worksheets were also used
to revise and edit students’ essays within groups of peers.

Finally, task understanding was addressed by Perry et al. (2002) and Perry and
VandeKamp (2000) in the context of complex reading and writing activities with students
from kindergarten to grade 3. Perry and her colleagues point to the use of instrumental
support from both instructor as well as peers in better developing an understanding of (a)
the nature of the reading or writing task and (b) the assessment criteria for the reading or
writing task, that students were engaged in. This instrumental support includes regular
feedback on learners’ progress in completing a task, clarifying the meaning and rationale
behind reading and writing assignments, discussing the assessment criteria with learners

and encouraging peer discussion of assignments.
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Exploring Task Understanding and Monitoring in Complex Writing Tasks

In this thesis study, I use a self-assessment tool, the Task Analyzer and
Performance Evaluator (TAPE), to develop a more accurate understanding of a complex
writing activity in graduate students. Specifically, the TAPE tool will help attune
students’ comprehensions of the writing task’s assessment criteria to match those of the
instructor.

The TAPE tool is designed keeping in mind the instructional principles that
emerged from our review (Venkatesh & Hadwin, 2002), including providing
instrumental, instructional support to help make students’ understandings of the task
criteria explicit and to provide feedback on students’ perceptions of the task criteria. [
acknowledge that [ have not included any questions in the TAPE tool that elicit the
motivational, affective or emotional states of students while they performed their self-
assessments. At the outset, therefore, I recognize the limited view of task understanding
that the TAPE tool provides; the learner’s perceptions of the assessment criteria for the
writing task are the only measures [ will be able to collect from students’ responses to
items related to task understanding. A second function of the TAPE tool is to assess the
development of monitoring proficiencies of learners as they tackled the learning log task;
to this end, the TAPE tool will be used to collect measures of performance prediction and
prediction confidence for the writing task that learners will engage in over the course of
instruction.

Purpose
Extending Schraw and his colleagues’ work on the development of monitoring

abilities, the main purpose of this study will be to explore the development of adult,



graduate learners’ monitoring proficiencies in the context of a complex writing task.
Given the current debate on the domain-generality and domain-specificity of monitoring
proficiencies (Pintrich et al., 2000; Schraw et al., 1995; Schraw & Nietfeld, 1998), a
second purpose of this study will be to explore the generality and specificity of learners’
monitoring abiliiies in complex writing tasks, and compare these trends with those that
Schraw and his colleagues have uncovered in the context of multiple-choice test taking
situations. Third, following from our review of SRL-based ID (Venkatesh & Hadwin,
2002), and extending Perry and her colleagues’ work in addressing task understanding
within a framework of self-regulation, this study will use empirically supported
instructional features to investigate the development and promotion of learners’ task
understanding in a complex writing task. Specifically, this study will attempt to shed light
on whether, and how learners’ perceptions of the assessment criteria may contribute to
the cyclical and recursive development of task understanding. Fourth, this study will
investigate the relationship between task understanding and monitoring proficiencies for
graduate learners tackling a complex writing task. The specific research questions [ will

be addressing are:

1. How do graduate learners’ monitoring proficiencies develop over the course of

instruction as they tackle a complex writing task?

1. Are learners’ abilities to meet the assessment criteria for a complex writing task

reflected in the instructor’s assessment of their performance?



L.

Are learners’ understandings and perceptions of the assessment criteria for a
complex writing task related to their monitoring proficiencies over the period of

instruction?



Chapter 2: Method

Research Context

Participants

Participants were 17 volunteers registered in a graduate Learning Theories course
conducted in the summer session of 2002 (May-June) at a large Eastern Canadian
University. The course ran for a period for a period of seven weeks. with two 2-hour
classes scheduled per week, except for the last week where only one class was held.
thereby yielding a total of 13 classes. Of the 17 participants. five were male. All but three
of the students were required to compulsorily complete the Learning Theories course as
part of the requirement for their graduate degree.
Research Context

Students enrolled in the Learning Theories course were expected to read a set of
readings for every week and subsequently prepare question-and-answer sets based on the
contents of the readings. These question-and-answer sets are termed as “learning logs™.
Three types of question-and-answer sets were outlined for this course: (a) multi-
structural, wherein students drew explicit connections between two or more related
concepts; (b) relational. wherein students drew implicit links between two or more
constructs; and (c) extended abstract, wherein students created and supported hypotheses
based on learning theories, or demonstrated and supported real-life applications of
learning theories. The three levels of question-and-answer sets are based on Biggs®
SOLO taxonomy (Biggs, 1991, 1996). Students were provided with a set of criteria for

the evaluation of a question-and-answer set for each of the three sets outlined above.



Please see Appendix A for an extract from the course outline describing each level and
the assessment criteria for the question-and-answer sets in more detail. Students were
also informed, by the instructor, that grades for the learning logs would reflect the
accuracy of the content written for cuch learning log and students’ growth in
demonstrating skills in tackling the learning log. Logs were submitted by students for
grading on a weekly basis; the instructor tried to provide feedback on every log before
the subsequent log was due. Due to the tight schedule within which the course was
conducted, feedback was sometimes delayed. Specifically, feedback for most or all
students on log 2, for half the students on log 3 and for two students on log 4, was
delayed. Students also received an extension on completing and submitting their sixth
and final learning log until after the final examination. The instructional aspects of the
course, and the structure of the learning logs were designed entirely by the instructor.
Learning logs. There were a total of six learning logs. Each of the first five logs
consisted of one multi-structural question-and-answer set and either a relational or
extended abstract question-and-answer set. For the sixth and final log, students were
required to produce one multistructural, one relational and one extended abstract
question-and-answer set. For log 1, students were provided with a multistructural and
relational question; students provided the answers to these two questions. For logs 2 and
4, students produced one multistructural and one relational question-and-answer set. For
logs 3 and 5, students produced one multistructural and one extended abstract question-
and-answer set. Each learning log contributed to six percent of the final grade, yielding a

total of 36%.



Instructional aids. Students were exposed to two types of instructional aids to
help them create their learning logs. The first was termed as “worked examples” of
question-and-answer sets, which consisted of completed learning logs from previous
years’ students of the same Learning Theories course, accompanied by the instructor’s
comments. The second was termed “question builders™; it consisted of a two-columned
table, one of which provided a set of terms and the other with the types of queries that
might help students with framing a question at the appropriate level (i.e., multistructural,
relational or extended abstract). Based on the results of a test of prior knowledge,
students underwent a matched random assignment into two groups to ensure group
equivalence in prior knowledge; one group had nine students while other had eight.
Students from either group did not receive any instructional tips for logs | and 6 (i.e., the
first and last week of the course). For the next two weeks of the course (i.e., logs 2 and
3), students in one of the groups received *“worked examples™ as an instructional aid for
their learning logs, whereas students in the other group received “question builders™. For
the latter two weeks of the course (i.e., logs 4 and 5), the instructional aids were switched
so as to allow all students in the course to benefit from both the instructional aids.

TAPE description. For the purposes of my thesis study, [ designed a self-
assessment tool, the Task Analyzer and Performance Evaluator (TAPE), to accompany
each learning log (the TAPE tool is described in the “Instruments” section of this chapter
and a sample can be seen in Appendix B). At the end of the seven-week course, students
produced six learning logs with six completed TAPES, one for each learning log.
Students wrote the answers to the questions posed in the TAPE only after they completed

their learning log for that week. All learning log question-and-answer sets as well as their
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accompanying TAPEs were required to be submitted online to a First Class® conference
space allocated for the course. Each TAPE contributed to one percent of the final grade.
It was expected that the instructor’s feedback on both the contents of the learning log, as
well as the students’ responses to the TAPE would enable students to (a) develop a more
accurate understanding of the task in terms of the task requirements and criteria for
assessment; and (b) improve the accuracy of their monitoring of academic performance
over the course of seven weeks of instruction.
Researcher Roles

Research was being conducted under the umbrella of the course instructor’s
research grant. As such, data were collected for the instructors’ research agenda as well
as for my thesis. While my thesis questions focused on the development of students” task
understanding and monitoring proficiencies, the instructor’s questions concerned the
effectiveness of the two instructional aids, “‘worked examples™ and “‘question builders™.
My responsibility was to design the TAPE tool, and coordinate the research aspects of the
course; [ was not involved in any of the instructional or evaluation activities. The
instructor and teaching assistant, facilitated all online and classroom activities of the
students in the course. All data collection procedures complied with guidelines set out by
the American Psychological Association. My thesis research was approved by the
Departmental Ethics Committee, while the instructor’s research agenda was approved by

the University Ethics Committee before any data were collected.



Research Procedures

Method of Recruitment

During the first class on the first week, I briefed all students about the nature of
the research being undertaken and how it related to the course activities. It was likely that
some of the students might have encountered the instructor, teaching assistant or myself
if they had already taken courses in the department where the course was being offered.
Students were then informed of the research purposes as outlined in the consent form (see
Appendix C). Students were informed that the research involved no additional
commitment beyond required course activities apart from optional interviews with me. I
explained that the three interviews of approximately 30 minutes each were oriented
toward understanding students’ reasons for choosing and writing a particular question-
and-answer learning log, the criteria the student used to self-assess their own
performance, and whether they found the online instructional scaffolds to be useful. The
interviews were NOT a required aspect of the course, and I emphasised the voluntary
nature of the interviews to the students. The instructor was on hand to answer any queries
related to the course and the research. Further, the instructor reiterated that participation
in the research would remain confidential until the final grade for the course was
submitted. Consenting participants chose to (a) allow access to their course work and
performance measures, and/or (b) be interviewed.

Students were informed that they would be allowed to withdraw their consent to
either aspect of the research by meeting with the Director of Graduate Programs at the

University. Our contact information was listed on the consent form. Should students have
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chosen to withdraw, their identities would not be disclosed to either the instructor or the
teaching assistant. All this information was clearly stated in the consent form.

Students were given two copies of the consent form. One was to be retained by
students for their own records. The other was filled out and signed to indicate willingness
to participate in the one of the following aspects of the research project: (a) consenting to
release their learning logs, self-evaluations, instructor assessment of the learning logs and
examination grades for research purposes, or (b) consenting to being interviewed as well
as releasing items listed in (a) for research purposes.

Research Design

A quasi-experimental, counter-balanced research design was employed for
between-subjects comparisons; the between-subjects factor was the type of instructional
aid received (i.e., “worked examples” or “question builders™). Measures of performance,
confidence, monitoring proficiencies (i.e., bias and discrimination), independent
performance scores, and justification scores were collected over the course of seven
weeks and were analysed using a repeated measures procedure. These measures will be
discussed in the subsequent sections on “Instruments™ and “Scoring Procedures”. Please

see Table | for a summary of the research design used in the study.



Table 1
Research Design

Timeline Event Breakdown of Type of Measures Collected
Activities Instructional
Aid*
Week | Test of 27 Multiple Choice None Performance on Test of Prior Knowledge
Prior Items on Learning
Knowledge Theory content
Week | Log | Muitistructural and None Performance Assessments, Performance Predictions,
Relational questions Prediction Confidence, Prediction Accuracy, Bias,
provided, students Discrimination, Independent Multistructural, Relational and
required to answer Overall Performance, Multistructural and Relational Answer
Justification Scores
Week 2 Log 2 Multistructural and Group [ WE  Performance Assessments, Performance Predictions,
Relational Questions A Prediction Confidence, Prediction Accuracy, Bias,
and Answers Group | QB Discrimination, Independent Multistructural, Relational and
B Overall Performance, Relational Question and Answer
Justification Scores
Week 3 Log 3 Multistructural and Group | WE Performance Assessments, Performance Predictions,
Extended Abstract A Prediction Confidence, Prediction Accuracy, Bias,
Questions and Answers Group | QB Discrimination, Independent Multistructural, Extended
B Abstract and Overall Performance, Extended Abstract
Question and Answer Justification Scores
Week 5 Log 4 Multistructural and Group | QB Performance Assessments, Performance Predictions,
(note: no logs Relational Questions A Prediction Confidence, Prediction Accuracy, Bias,
administered and Answers Group | WE  Discrimination, Independent Multistructural, Relational and
during Week 4) B Overall Performance, Relational Question and Answer
Justification Scores
Week 6 Log 5 Multistructural and Group | QB Performance Assessments, Performance Predictions,
Extended Abstract A Prediction Confidence, Prediction Accuracy, Bias,
Questions and Answers Group { WE  Discrimination, Independent Multistructural, Extended
B Abstract and Overall Performance, Extended Abstract
Question and Answer Justification Scores
Week 7 Log 6 Multistructural, None Performance Assessments, Performance Predictions,

Relational and
Extended Abstract
Questions and Answers

Prediction Confidence, Prediction Accuracy, Bias,
Discrimination, Independent Multistructural, Relational,
Extended Abstract and Overall Performance,
Multistructural, Relational and Extended Abstract Question
and Answer Justification Scores

*WE = Worked Examples; QB = Question Builder
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Instruments
Test of Prior Knowledge

Students’ prior knowledge on learning theories was measured via a 27-item
multiple choice test (see Appendix D). Results of the test of prior knowledge were used
to divide the students into two groups based on a procedure of matched random
assignment.

Task Analyzer and Performance Evaluator (TAPE)

As mentioned earlier in this chapter, for the purposes of my thesis study, [
designed a self-assessment TAPE tool, to accompany each learning log. Recall also that
the items in TAPE tool were designed, based on empirically supported instructional
features to promote task understanding and extract measures of monitoring proficiencies.
The TAPE tool (Appendix B) included six questions in total, querying students as to (a)
why a particular set was a relational or extended abstract question-and-answer (2 items);
(b) what grade they expect to score for their question-and-answer set (1 item), and how
well students thought they had performed in relation to their peers (1 item); (c) how
confident they were that the mark they have awarded to themselves is, in fact, what the
instructor would award them (1 item); and (d) how useful they thought the instructional
approach adopted (i.e., “worked examples™ or “question builders”) for the learning log
was (1 item). Not all the TAPE items were used in the analyses for this study, hence I
outline those that are relevant to the forthcoming analyses in the subsequent section

called “Scoring Procedures™.
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Scoring Procedures

This section outlines the scoring procedures used for each of the measures
collected and used in subsequent analyses. [ also provide variable names or labels for
each of the measures, so as to help the reader keep track of the variables being used in
this study. These variable names are summarized in table 9 at the end of this section.
Instructor’s Assessment of Performance on Learning Logs

The instructor assigned a grade to reflect students’ performance on each learning
log; these grades are termed as performance assessments for the purposes of this study.
The instructor made it clear that a single grade was assigned for each learning log, and
that each question-and-answer set contributed an equal weight to the final grade for a
learning log. Therefore, in log I, each of the two answers contributed equally to the grade
assigned (the questions were aiready provided); in logs 2, 3, 4 and 5, each of the two
question-and-answer sets contributed equally to the respective grades on the logs; in log
6, each of the three question-and-answer sets contributed a third of the final grade.
Grades assigned by the instructor ranged from A+ to C. For analyses purposes, predicted
grades were coded into the following numerical values: 7(A+), 6(A), 5(A-), 4(B+), 3(B),
2(B-), 1(C). Since there was no assigned grade of C+, [ assumed an equal-interval scale
for the scoring of all grades in this study. Grades were assigned based on how well
students had met the criteria for the levels of question-and-answer sets generated for a
particular log, the accuracy of the content in the learning logs, as well as how much

growth the students had demonstrated in writing their learning logs.
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Scoring of TAPE-Related Measures

Justifications of meeting assessment criteria. ltems 1 and 2 in the TAPE tool from
logs 1 to 5, and items | to 6 in the TAPE tool for log 6, were intended to draw out
students’ perceptions of the task requirements and assessment criteria. Students justified
why they thought their question and answer could be described as multistructural,
relational or extended abstract. Upon discussion with the instructor, I decided to limit
these items to a total of two per learning log for the first five learning logs, so as not to
make the self-assessment too tedious for the students. As a result, for logs 2 and 4, the
two items were related to the relational question and answer respectively, while in logs 3
and $, the two items were related to the extended abstract question and answer
respectively. In week 1, since two questions, the first multistructural and the second
relational, had already been provided for the students, item | asked the students to justify
why their first answer was multistructural, while item 2 asked students to justify why
their second answer was relational. In log 6, students were required to produce three
question-and-answer sets, one from each level. Hence, for this sixth and final log, I asked
students to respond to why they thought each question and each answer was at the desired
level (i.e., multistructural, relational, or extended abstract) yielding a total of six items. In
total, students responded to 16 items, over the course of six learning logs, justifying how
well they had met the criteria for their questions and answers at a particular level. In
answering these items, students justified meeting the criteria that the instructor had set
out in the course outline and reinforced in class for writing multistructural, relational and

extended abstract questions and answers. The instructor’s feedback to these responses



35

provided a measure of how accurate student’s perceptions of the task requirements in
relation to the instructor’s own, at a particular stage of the instruction.

To facilitate a quantitative analysis of each participant’s 16 responses to items that
required them to justify meeting the criteria for a particular level of question and answer,
I independently scored students’ answers to the first two items in logs 1,2,3,4 and 5 and
the first six items in log 6. A score of 0 was assigned to responses that did not mention
the proper criteria for the required level of question or answer (e.g., the student did not
succeed at all in justifying why the question written was relational); a score of | was
assigned to responses that partially succeeded in responding to the item (e.g., the student
gave an incomplete explanation for why a particular answer was multistructural); a score
of 2 represented a complete and correct response to the query posed in the item. Table 2,
provides a summary of the scoring for TAPE items related to students’ justifications of
meeting the criteria for writing a question and answer at the required level.

Table 2

Scoring of TAPE Items | and 2 (Justifying why question/answer meets criteria)

Scale Score  Criteria

Justification 0 Inappropriate criteria and/or incorrect explanation provided
of Meeting | Partially correct explanation provided

Criteria 2 Complete and correct explanation provided

Prediction of performance. Item 3 in the TAPE tool asked students to assign or

predict a grade, ranging from A+ to C, for their completed learning log; this measure is
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labeled as performance predictions. For analyses purposes, these predicted grades were
coded into the following numerical values: 7(A+), 6(A), 5(A-), 4(B+), 3(B), 2(B-), 1(C).
The range of grades is reflective of the range that the instructor assigned in the
assessment of students’ performance in the learning logs.

Accuracy in prediction. Students’ accuracy in predicting their grades for the
learning logs is the absolute value of the signed difference between the predicted grade
on a particular learning log and the instructor’s assessment of performance on the same
learning log. This measure is labeled as prediction accuracy. Integer values of prediction
accuracy ranged from 6 to 0. A value of zero represents a perfectly accurate prediction.
The larger the value of accuracy, the more inaccurate a student’s prediction. Note that
this calculation of accuracy does is not equivalent to the calculation of accuracy
performed in Schraw & Nietfeld’s (1998) study, who characterized accuracy as a
monitoring proficiency. Recall also that the only prediction participants made in Schraw
& Nietfeld’s (1998) study was for confidence in performing correctly on the multiple-
choice tests of fluid and crystallized abilities; in my thesis study, however, the difference
between predicted and actual performance represents accuracy in prediction, and does not
factor the value of confidence.

Confidence in self-assessment of academic performance. Item 4 asked students to
rate how confident they were about receiving the same grade they have awarded
themselves from the instructor; this measure is labeled as prediction confidence. Students
responded on a 4-point Likert-type scale, including, 4(“Very Confident”), 3(*Somewhat

Confident™), 2(“Not So Confident” ) and 1(*Not Confident At All”).
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Monitoring Proficiencies: Discrimination. The three measures of performance
predictions, performance assessments, and prediction confidence were used to calculate
two measures of monitoring proficiency. The first measure of monitoring proficiency
calculated was discrimination, which measured the degree to which learners could assign
an appropriate level of confidence to their predictions of the grade for each learning log.
Discrimination was calculated by taking the signed difference between the average
prediction confidence scores for accurate predictions and the average prediction
confidence scores for inaccurate predictions. Discrimination was calculated for each of
the logs, yielding a total of six discriminations scores over the course of instruction. The
value of discrimination ranged from —1 to +1. A negative value represents confidence for
inaccurate predictions, while positive values represent confidence for accurate
predictions. A discrimination value close to zero suggests that the learner was incapable
of discriminating between accurate and inaccurate predictions. This means that students
with a large, positive value of discrimination (i.e., close to +1) are very proficient in
monitoring as it suggests that they can assign a high value of confidence when accurately
predicting their grades on the learning log assignment. The closer the value of
discrimination to I, the more accurate was a student’s monitoring.

To calculate discrimination, prediction confidence scores were first converted to
proportions; each score was divided by 4, which is the maximum possible value of
confidence. For log 1, if the students’ performance prediction was equal to the
performance assessment, then the converted prediction confidence score was assigned as
the discrimination score; if the prediction was inaccurate, the negative value of the

converted prediction confidence score was assigned as the discrimination score. For
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subsequent logs, discrimination was calculated by taking the average of the signed,
converted prediction confidence score (using the same procedures as described for log 1)
and the previous log’s discrimination score. This means that the score of discrimination
for log 2 represents the student’s ability to discriminate, based on predictions from both
logs 1 and 2. Discrimination scores for log 6 provide a measure of the students’ abilities
to discriminate, based on predictions from all six learning logs. Note that this procedure
for calculating discrimination does not mirror the procedure used in Schraw and his
colleagues’ studies (Schraw et al., 1995; Schraw & Nietfeld, 1998), since they did not
factor students’ predictions of performance in their procedures.

Monitoring Proficiencies: Bias. The second measure of monitoring proficiency
calculated was bias. Bias measured the degree to which individuals were over or under-
confident for each TAPE self-evaluation made. Bias was calculated by taking the signed
difference between the prediction confidence score and prediction capability. Like the
discrimination score, bias ranged in value from -1 to +!. A negative value of bias
indicated under-confidence, whereas positive values indicated overconfidence in
predicting grades; the larger the negative value of bias, the more under-confident the
learner, the larger the positive value, the more overconfident the learner in predicting
grades. This would suggest that students with a score of bias close to 0 have good
monitoring proficiency, as they assign an appropriate level of confidence to their
predictions. Bias was calculated for each log, giving each student six bias scores. To
calculate bias, the confidence scores were converted to proportions by dividing each
confidence score by 4. Prediction capability was calculated by taking the ratio of the

smaller of the two values of performance prediction and performance assessment with the
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larger of the two. Prediction capability hence measured how well the student had
predicted a grade for a particular learning log. For example, if a student predicted a B+
and received a B+ from the instructor, the value of prediction capability would be
calculated as the ratio of 4 to 4 ( 4 is the score for a grade of B+), yielding a score of 1,
suggesting 100% prediction capability. If the student overestimates performance and
predicts an A for the learning log, but, in fact receives a B, then prediction capability is
calculated as the ratio of 3 to 6 (3 and 6 are the scores for B and A respectively), yielding
a score of 0.5. This suggests that the student was able to predict only 50% of the actual
grade received, thereby yielding a score of prediction capability of 0.5. If the student
underestimates performance by predicting, for example, a B, but receiving an A- from the
instructor, the prediction capability was calculated as the ratio of 3 to 5 (3 and 5 being the
scores for B and A- respectively), which gives a score for prediction capability as 0.6.
This suggests that the student was able to predict 60% of the final grade received. This
procedure for calculating bias is different from the one used by Schraw et al. (1995) and
Schraw & Nietfeld (1998); Schraw and his colleagues’ procedures did not factor
predictions of performance into the calculation of bias.

It is important to acknowledge that the value of bias is influenced more heavily by
the converted prediction confidence scores than by the calculated prediction ability
scores. This is because the converted prediction confidence scores can only take one of
four values, with a fixed interval of 0.25. The values possible for converted prediction
confidence are 0.25, 0.50, 0.75 or l(i.e., the ratio of the integers 1, 2, 3 and 4 with 4).
However, the calculated prediction ability can take the value of any ratio of two integers

between 1 and 7, the smaller of the two integers being the numerator of the ratio except if
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the two integers are equal (which yields a ratio of 1). Obviously, there are opportunities
for intervals smaller than 0.25 to exist from one calculated score of prediction ability to
another. For bias to be equally influenced by prediction confidence and prediction ability
scores, I would have had to measure prediction confidence and performance assessments
on the same scale of measurement. Given that the grading scheme for the logs was
decided by the instructor, this would have meant trying to create a 7-point scale for
measuring students’ prediction confidence. However, such an exercise would have
provided too fine-grained a scale for measuring prediction confidence, and might have
proven to be tedious enough for the students that it would have resulted in them not
responding, or inaccurately responding, to the item in the TAPE. Therefore, my
calculation of bias is affected by the difference in the scales of measuring performance
and confidence; in order to get students to respond in as honest a manner as possible to
the items on prediction confidence, I was forced to measure it on a 4-point scale.
Independently Scored Student Performances on Learning Logs

While the instructor’s performance assessments on individual students’ learning
logs provided one measure of academic performance, these grades were not always the
sole indicator of students’ abilities to meet the criteria for writing each level of learning
log question-and-answer sets. Students were informed by the instructor that they would
be graded for an element of growth in their ability to write the learning logs; the grade
assigned to each log was not just a reflection of the student being able meet the
assessment criteria, but also of the student being able to demonstrate growth in
developing skills the instructor perceived was necessary in writing learning logs at a

graduate level of studies. Further, the grade gave a combined score of students’ responses
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to multiple question-and-answer sets; for example, it was not possible to discern, from
the final grade for a log, how well a student had performed in the multistructural level as
in comparison with the relational or extended abstract level. Therefore, in order to
represent students’ academic performances on each question-and-answer set of each
learning log, independent of growth across learning logs, [ scored each student’s learning
logs, at each of the levels (i.e., multistructural, relational and extended abstract), based on
the instructor’s criteria for evaluating the question-and-answer sets. The scoring scheme
was developed in close discussion with the instructor and teaching assistant of the course
to ensure that [ was, in fact, scoring for criteria that were integral to the assignment. This
scoring procedure helped me to develop a parallel set of independent multistructural
performance scores, independent relational performance scores, independent extended
abstract performance scores and independent overall performance scores.

Questions. All three levels of questions (i.e., multistructural, relational and
extended abstract) were scored on a scale of O to 2 for appropriateness in questioning
style (e.g., differences, compare-contrast, cause-effect, providing example, hypothesis
testing, evaluation, etc.) and appropriate choice of concept(s) for the desired level of the
question. A score of O represented inappropriate choice of concepts and inappropriate
questioning style (e.g., choosing a concept that is too simple for relational level, too
complex for a multistructural level or asking a complex hypothesis testing question at the
multistructural level). A score of 1 represented choosing inappropriate concepts for the
desired level (e.g., comparing one simple and one complex idea in a relational question,
or choosing a simple concept which is not explicitly detailed in the text for a

multistructural question) or inappropriate questioning style for the desired level. Finally,
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a score of 2 represented appropriate choice of concepts for the desired level of the
question and appropriate questioning style used for the desired level. Table 3 summarizes
the scoring scheme for the leaming log questions.

Table 3

Scoring of Multistructural, Relational and Extended Abstract Learning Log Questions

Scale Score  Criteria
Appropriate 0 [nappropriate concept(s) chosen AND inappropriate
Choice of questioning style for level of question
Concept and l Inappropriate concept(s) chosen for the type of question OR
Questioning inappropriate questioning style for level of question
Style 2 Appropriate concepts chosen AND appropriate questioning

style for level of question

Multistructural Answers. Students’ answers to their multistructural learning log
questions were scored for quality of explaining and linking concepts, measured on a scale
from O to 2. A score of O represented incorrect explanations of the concepts and lack of
linkage between the concepts, if and when a linkage is necessary (e.g., incorrect
definitions or explanations of concepts and no linkage between the concepts). A score of
1 represented either incorrect/unclear explanations of concepts or lack of linkage between
the concepts, if and when a linkage is necessary. Finally, a score of 2 represented a
cohesive and correct explanation of concepts as well as a linkage between concepts, when

necessary. Table 4 summarizes the scoring scheme for multistructural answers.



43

Table 4

Scoring of Multistructural Answers

Scale Score  Critena
Quality of 0 Incorrect explanation AND lack of linkage between
Explanation concepts (when necessary)
and Linkage | Incorrect/unclear explanation OR lack of linkage between
of Concepts concepts (when necessary)
2 Cohesive and clear explanations AND linkage between

concepts (when necessary)

Relational Answers. Students’ answers to their relational learning log questions
were scored for quality of explanation, measured on a scale from O to 2. A score of 0
represented incorrect explanations of the concepts (e.g., incorrect definitions or
explanations of concepts). A score of | represented an attempt at explaining the concepts
which falls short of being cohesive and clear. Finally, a score of 2 represented a cohesive
and correct explanation of concepts.

Relational answers were also scored for level of complexity employed in
explaining the link between concepts, measured on a scale of 0 to 2. A score of 0
represented an oversimplification of the concepts leading to weak linkages between the
concepts; or a lack of links drawn between concepts, sometimes offering disjointed
explanations of key terms and concepts raised in the question. A score of 1 represented a

higher level of complexity in links than a score of 0, however these links were explicitly



drawn from the text, or there was evidence of some implicitness in the links, but it was
not sufficiently explored. Finally, a score of 2 represented links that students had
implicitly generated, or had expanded substantially on material from the text. Table 5
summarizes the scoring scheme for relational answers.

Table 5

Scoring of Relational Answers

Scales Score  Criteria
Quality of 0 Incorrect explanation of concepts
Explanation l Partially clear or incomplete explanations of concepts
2 Cohesive and clear explanations of concepts
Level of 0 Weak linkages due to oversimplification of concepts or no
Complexity links drawn between concepts, only disjointed explanations
of Links 1 Explicit linkages between concepts drawn directly from text
or beginnings of implicit linkages seen but not explored
2 Student generates own implicit linkages or expands

substantially on material from text

Extended Abstract Answers. Students’ extended abstract answers were scored on
two scales. The first, quality of explanation, was the same as those used for relational
answers. The second scale, applicable only to extended abstract answers, measured, on a
scale from O to 2, the level of connection made in tying components of the extended

abstract answer to the theory being exemplified. A score of O represented an absence of
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or a minimal connection to the theory referred to in the extended abstract question (e.g.,
naming theoretical procedures or concepts in relation to the application). A score of |
represented the presence of a partial but insufficient connection to the theory; for
example, if an answer lacked an explanation of how the “nuts and bolts” of the theory fit
with the practical application or hypothesis. Finally, a score of 2 represented an
acceptable and relatively complete connection made to the theory, with an effort made at
explaining the “nuts and bolts™ of the theory that supports the application or hypothesis.
Table 6 summarizes the scoring scheme for extended abstract answers.

Table 6

Scoring of Extended Abstract Answers

Scales Score  Criteria
Quality of 0 Incorrect explanation of concepts
Explanation 1 Partially clear or incomplete explanations of concepts

2 Cohesive and clear explanations of concepts

Level of 0 Absence of or minimal connection to theory
Connection 1 Partial connection made to theory

Made to 2 Relatively complete connection made to theory
Theory

Match Between Question and Answer. For each level of question and answer
generated by students (i.e., multistructural, relational, and extended abstract), the match

between the question and answer was scored on a scale of 0 to 1. A score of O represented
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a complete mismatch between the levels of question and answer (e.g., if the question-and-
answer set was supposed to be multistructural: the question was multistructural in nature,
but the answer was more relational in its complexity). A score of | represented a match
between the levels of the question and answer (e.g., for an extended abstract log, the
author made an attempt to keep both question and answer at an extended abstract level).
Table 7 summarizes the scoring scheme for the match between levels of question and
answer.

Table 7

Scoring of Match Between Question and Answer

Scale Score  Criteria
Match 0 Mismatch between levels of question and answer
between
Levels of
1 Match between level of question and answer

Question and

Answer

Calculating Total Scores. For the multistructural level, the maximum total score
was 5 (2 from the questions, 2 from the answers and 1 for the match); the relational level
had a maximum total score of 7 (2 from the question, 4 from the answer and | from the
match); the extended abstract level had a maximum total score of 7 (2 from the question,

4 from the answer and 1 from the match). For each of the levels of questions, total scores
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can be easily compared within and across students. Table 6 summarizes the calculation of
maximum total scores discussed above.
Table 8

Calculation of Maximum Total Scores for Each Level

Level
Multistructural Relational Extended Abstract
Question 2 2 2
Max
Answer 2 4 4
Score
Match I l 1
Total Max. Score 5 7 7

All scoring underwent inter-rater reliability checks with the teaching assistant of
the course; 95% reliability was achieved. All disagreements were resolved through
discussion.

Facilitating comparison of total scores across logs. Using the scoring scheme
outlined in table 6, total scores were computed for each student on each of the 11
question-and-answer sets generated from leaming log 2 through learning log 6. For each
student, therefore, five independent multistructural performance scores (one each from
logs 2, 3,4, 5 and 6), three independent relational performance scores (one each from
logs 2, 4 and 6), and three independent extended abstract performance scores (one each
from logs 3, 5 and 6) were calculated. In addition, there was one multistructural answer

and one relational answer from log | (the questions were provided by the instructor). In
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order to make the scores from log | comparable with those from the other logs, all scores
were converted to a percentage.

An independent overall performance score was also calculated for each student
on each learning log; this overall performance score served as the counterpart to the grade
assigned by the instructor for each learning log (i.e., performance assessments).
Independent overall performance scores for learning log | attached an equal weight to the
independent multistructural performance score and independent relational performance
score for log 1; this meant taking the average of the independent multistructural
performance score and independent reiational performance score for log !. For learning
logs 2 and 4, the independent overall performance score was the average of the
independent multistructural performance score and independent relational performance
score for the respective logs. For learning logs 3 and 5, the independent overall
performance score was the average of the independent multistructural performance score
and independent extended abstract performance score for the respective logs. Finally, for
log 6, the calculated total score was the average of the independent multistructural,
relational and extended abstract performance scores from that log. Due to the nature of
the scoring scheme, [ acknowledge a discrepancy. Note that the independent
multistructural performance scores contain an equal weighting for the questions and the
answers, with maximum possible scores of 2 each. However, the independent relational
and extended abstract performance scores have unequal weighting for the questions and
answers, with maximum possible scores of 2 and 4 for questions and answers
respectively. Hence, independent relational and extended abstract performance scores

carry more weight for the answers than the questions, as opposed to the multistructural



49

level, where both question and answer carried equal weight. [ discussed this issue with
the teaching assistant of the course, and we came to an agreement that such a balance in
weighting made sense, because the relational and extended abstract answers were
expected to be more difficult to write than multistructural answers. The implicit linkages
that needed to be drawn in relational answers and the connections with theories that had
to be made for an answer to be considered at an extended abstract level were expected to
be more difficult to achieve than the direct and explicit comparisons that made an answer
multistructural.

Summary. Table 9 provides a summary of the measures described in this “Scoring
Procedures” section.
Table 9

Details of variable names/labels for measures collected or derived

Measure Variable Name/Label No. of Scores

Instructor’s assessments of performances Performance Assessments 6

Students’ predicted performances Performance Predictions 6
Students’ confidences in predictions Prediction Confidence 6
Students’ accuracies in predictions Prediction Accuracy 6
Students’ biases in predictions Bias 6
Students’ discriminations in predictions  Discrimination 6
Independently calculated scores for Independent Overall 6

overall performances Performance Score
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Measure Variable Name/Label No. of Scores
Independently calculated scores for Independent Relational 4
performances on relational level Performance Score
Independently calculated scores for Independent Extended 3
performances on extended abstract level ~ Abstract Performance Score
Independently calculated scores for Multistructural Question |
justifications of meeting criteria for Justification Score
creating multistructural-level question
Independently calculated scores for Multistructural Answer 2
justifications of meeting criteria for Justification Score
creating multistructural-level answer
Independently calculated scores for Relational Question 3
justifications of meeting criteria for Justification Score
creating relational-level question
Independently calculated scores for Relational Answer 4
justifications of meeting criteria for Justification Score
creating relational-level answer

Extended Abstract Question 3

Independently calculated scores for
justifications of meeting criteria for

creating extended abstract-level question

Justification Score
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Table 9 (continued)
Measure Variable Name/Label No. of Scores
Independently calculated scores for Extended Abstract Answer 3
justifications of meeting criteria for Justification Score

creating extended abstract-level answer




Chapter 3: A Description of Results and Findings

Results

Missing Values

Data were entered into a statistical analysis package, namely, the Statistical
Package for Social Sciences (SPSS), and were verified twice for errors. There were four
instances of missing TAPE data from four different students. Two of these were scores of
peer evaluation, one in log 1 and one in log 3, each with unique sources. The other
missing value was for a score for usefulness of instructional aid received in log 3 by a
student different from those who did not respond to the peer evaluation items. The fourth
case of missing data came from an individual who did not submit learning log 6 for
grading. This student, therefore, did not have any performance scores (both
independently calculated and the instructor’s assessments) for log 6. Missing values for
any variable resulted in the case in question being excluded from any analyses involving
the variable. Due to the small sample size and the small number of missing values, I
decided not to replace any missing data for fear of misrepresenting students’ responses to
the TAPE items and performance.
Establishing Group, Gender Equivalences

I confirmed both group and gender equivalence on the test of prior knowledge
before students received any instruction. Recall that grouping was based on order of
instructional aid received. One group of students received “worked examples” for logs 2
and 3 followed by “question builders” for logs 4 and 5 (M score for test of prior

knowledge=8.00, SD=2.00), whiie the other received “question builders” for logs 2 and 3
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and “worked examples” for logs 4 and 5 (M=8.67, SD=2.00). Since participants
underwent a random matched assignment to groups, no differences were expected in each
group’s mean performance on the test of prior knowledge. Independent-samples t-test
procedures indicated that there was no statistically detectable ditference between the
groups on their mean scores on the test of prior knowledge, 7(15)=.686, p=.50.Tused a
similar procedure to establish gender equivalence; there was no significant difference
between male (M=8.00, SD=3.39) and female (M=8.50, SD=1.17) performance on the
test of prior knowledge, #(4.40)=.32, p=.76.
Collapsing Groups

In order to conduct analyses on a single sample of the 17 consenting students, I
needed to provide sufficient evidence to collapse the two experimental groups, which
were based on order of instructional aid received, into one single group.

Independent sample t-tests were conducted between the two experimental groups,
on the list of dependent measures seen in table 9 (from the previous chapter).

Experimental group differences. The two experimental groups differed
significantly only on three scores from those described in table 9. Table 10 details the

scores wherein the group differences were found.
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Table 10

Observed differences between experimental group conditions for all measures

Measure Group® M SD t df p 95% confidence  Effect
interval for mean Size®

difference (MD)

Relational Answer Group A 1.88 .35 247 15 026 .089<MD<1.22 1.21

Justification Score for (n=8)

Log 2 GroupB 122 .67
(n=9)

Independent Group A 55.00 27.77 -220 15 044 -53.63<MD<-81 -1.07

Relational (n=8)

Performance for Log4 GroupB 8222 23.33

(n=9)

Prediction Confidence Group A 2.88 .35 -2.20 1434 045 -90<MD<-.013 -1.03

Score for Log 3 (n=8)

GroupB 333 .50

(n=9)

*Group A refers to between-groups condition in which students received “worked examples” for logs 2 and
3, and “question builders” for logs 4 and 5 as instructional aids. Group B refers to between-groups
condition in which the order of instructional aids was reversed.

® Effect size was calculated by taking the signed difference between the mean of the measure for group A
and the mean of the measure for Group B, and dividing the resultant difference by the pooled standard

deviation of the two samples.
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Although the effect sizes for the differences are rather large, this can be explained
by the small sample size; it would take only one outlier to increase the mean of any given
group, and hence increase the effect size. Furthermore, the fact that three out of 71 scores
(4.2%) showed significant differences between experimental groups can be attributed to
being an artifact of the experimental process; these differences can be attributed to
chance and not as a result of the order of instructional aids received.

Interaction effects. To test the significance of the interaction effect between the
order of instructional aids received and the various measures outlined in table 9, I
conducted a set of between-groups, repeated measures, analyses of variance. No
interaction effect was found between the order of instructional aid received and the
following set of repeated measures: performance assessments, performance predictions,
prediction accuracy, prediction confidence, bias and discrimination, F(30, 345)=.786,
p=.785, n’=.06. An interaction effect, was however found, between the order of
instructional aid received and the following repeated measures: independent overall
performance score and independent multistructural performance score, F(10, 140)=2.58,
p=.007, n*=.16. No interaction effects were found between the order of instructional aid
received and the repeated measures of independent relational performance score and
relational answer justification score, F(6, 84)=1.97, p=.08, 1°=.12. Finally, no interaction
effects were found between the order of instructional aid received and the independently
calculated repeated measures of independent extended abstract performance score,
relational question justification score, extended abstract question justification score,

extended abstract answer justification score, F(8, 52)=1.09, p=.38, m'=.14.
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The only interaction effect that was found to be significant can be accounted for
by one of the chance statistically significant differences noted in table 10: the order of
instructional aid received affected the independently calculated score for multistructural
level sets for log 4. Based on the lack of interactions in the other analyses conducted, I
decided to collapse the data for the two groups, and conduct all subsequent analyses on
one sample of 17 students.

Organization of Results

To answer the first research question, namely, how graduate learners’ monitoring
proficiencies develop over the course of instruction, I conducted analyses on the
measures of performance assessments, performance predicuons, prediction confidence,
prediction accuracy, bias and discrimination. For the second research question, namely,
whether learners’ abilities to meet the assessment criteria for the writing task were
reflected in the instructor’s performance assessments, [ performed analyses on the
independent scores of performance on the multistructural, relational, extended abstract
levels as well as overall performance, and compared these scores to the performance
assessments analysed for the first research question. For the third and final question,
which explores the relationship between students’ understandings of assessment criteria
and the monitoring proficiencies, I analysed the justification scores for relational,
extended abstract and multistructural questions and answers and explored their relation
with the monitoring proficiencies analysed for the first research question.

Each of the measures, identified above by the three research questions, underwent
most of the following analytical procedures: (a) within-group, repeated measures

analyses of variance, (b) trend analyses, (c) unrestricted, corrected pairwise comparisons
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analyses, and (d) correlational analyses. Given the complexity of the analyses involved, I
will be following Salovey’s (2000) suggestions about embedding discussion issues in my
results, as well as justifying the selection of statistical tests and procedures in the results
section. This way, the reader will get a clear picture of the rationale behind the use of
certain statistical analyses, and the answers to the research questions will emerge, piece
by piece, from the findings of each analysis. To help the reader navigate the resuits, I
include sections that provide a summary of the findings from the repeated measures,
trend and pairwise comparisons analyses for a particular set of measures (e.g.,
independent performance scores, justification scores). These summarized findings,
combined with the findings of the subsequent correlational analyses will provide the basis
for the contents of the discussion chapter.

The results section begins with descriptive statistics for the various measures
described in table 9. Next, the first category of measures, namely, the performance
assessments, performance predictions, prediction confidence, prediction accuracy, as well
as bias and discrimination undergo repeated measures, trend and pairwise comparisons
analysis. The findings related to these performance and monitoring proficiencies are then
summarized and briefly discussed. The second category of measures, namely, the
independent scores of performance on multistructural, relational, and extended abstract
levels, as well as those for overall performance undergo repeated measures, trend and
pairwise comparisons analysis. The findings related to the independent scores of
performance are then summarized. Finally, the justification scores undergo repeated
measures, trend and pairwise comparison analyses, which are then summarized. As

discussed earlier, through these three summaries, I hope to provide the reader with a
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general idea of how the analyses of the (a) performance and monitoring-related measures,
(b) independent scores of performance, and (c) justification scores, contribute to partially
answering of each of the research questions. Finally, I conduct a set of correlational
analyses for each of the three categories of measures, and provide a description of the
findings from each of these analyses. Together, the repeated measures, trend, pairwise

comparisons, and correlational analyses provide answers to the three research questions

posed.

Descriptive Statistics

Table 11 provides descriptive statistics (means and standard deviations) for
performance assessment, performance prediction, prediction confidence, prediction
accuracy, bias and discrimination, across the six logs. Table 12 provides descriptive
statistics for the independent scores of overall performance, as well as performance on
the multistructural, relational and extended abstract levels, in addition to the justification

scores for multistructural, relational, and extended abstract questions and answers.



Table 11

Descriptive statistics for Performance Assessments and TAPE-related Measures

59

Log

Performance | Performance | Prediction Prediction
Bias Discrimination
Assessments | Predictions | Confidence Accuracy
(range: -1 | (range: -l to
(maximum | (maximum | (maximum (range: 0
to 1) 1)
score: 7) score: 7) score: 4) to 6)
M SD M SD M SD M SD M SD M SD
406 66 |3.82 138300 .50 |-025 22| -3l 72 | 1.18 1.13
388 86 | 394 1.09 |288 .49 |-016 .26 -.088 .50 S53 .72
453 62 | 418 95 |3.12 .49 |-025 .23| -037 .56 59 71
482 64 | 447 101 [335 .61 |-055 25| -0l1 54 a1 92
524 75 | 476 .83 | 341 .51 [-.065 .18 Al .50 47 12
506 1.29 | 463 .89 |344 51 | .073 .16| -.047 45 94 93

Note. n for all logs was 17, except for log 6, where n was reduced to 16
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Repeated Measures Analysis for Performance, Confidence and Monitoring Measures
Performance assessment, performance predictions, and prediction confidence

showed statistically significant differences across the six logs, as evidenced by the main

effects reported in table 13. Bias, discrimination and prediction accuracy, on the other

hand, fluctuated according to chance across the six logs, as evidenced in the statistically

insignificant main effects revealed in table 13.

Table 13

Repeated measures, within-group one-way analyses of variances on measures of

performance assessments, performance predictions, prediction confidence, bias,

discrimination, and prediction accuracy.

Measure F df MSE p n Power Effect Size *
Performance 11.33 5 38 <001 .43 1.00 .87
Assessments

Performance 570 3.73® 122 001 .28 .96 .62
Predictions

Prediction 360 5 22 006 .19 91 48
Confidence

Bias 129 5 .03 .28 .08 43 .29
Discrimination 1.61 5 .18 17 .10 .53 33
Prediction 221 5 .56 .06 13 .69 .39

Accuracy
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3 Effect size is calculated using Cohen’s (1998) procedure for calculation of £, which is equivalent to

~

I where 1" is interpreted as the proportion of the total variability in the dependent variable that is

9 0

l-n~
accounted for by variation in the independent variable; I7° is the ratio of the between groups sum of squares
to the total sum of squares.

b Degrees of freedom was reduced using the Huynh-Feldt correction for violation of Mauchly’s test of

sphericity.

Trends. Performance assessments, performance predictions, and prediction
confidence, each revealed a statistically significant, increasing linear trend (see table 14
for results of trend analyses and figures 1 to 3 for a visual representation). Prediction
accuracy, which showed no main effect for differences across the six logs, revealed,
however, a statistically significant quadratic trend, F(1, 15)=8.55, p=.01, n°=.36 (see
figure 6 for a visual representation). It is also interesting to note that the fluctuations in
performance assessment across the six logs revealed less, yet statistically significant,
quadratic, F(1, 15)=5.87, p=.03, 17°=.28; and cubic trends, F(1, 15)=15.37, p=.001,
1°=.51, as compared to the more significant (p values less than .001) linear trend shown

in table 14.
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Table 14
Main effects for trend analyses (linear) for performance assessments, performance

predictions, and prediction confidence scores

Measure F df MSE p m Power  Effect Size *
Performance 2540 1 12.64 <001 .63 1.00 1.30
Assessments

Performance 1433 1 2036 .002 49 94 98
Predictions

Prediction 920 1 343 008 .38 .81 .78
Confidence

* Effect size is calculated using Cohen’s (1998) procedure for calculation of £, which is equivalent to
2
n

I . where i* is interpreted as the proportion of the total variability in the dependent variable that is
-n

2

accounted for by variation in the independent variable: 17" is the ratio of the between groups sum of squares

to the total sum of squares.

Pairwise Comparisons For Performance, Confidence and Monitoring Measures

Choice of tests: Fisher and Tukey. In order to determine where the differences lay
for each of the measures of performance assessments, performance predictions,
prediction confidence, prediction accuracy, bias and discrimination, [ next conducted
unrestricted pairwise comparisons using two correction procedures, namely, the Fisher
test (also known as the protected Least Significant Differences [LSD] test) and the Tukey
test (for detailed explanations of how to conduct these two tests, see Keppel, 1982).

While the Tukey test maintains the family-wise alpha rate at the value of .05 for the



entire set of pairwise comparisons, the Fisher test exerts its control by conditionalizing
the decision to conduct pairwise comparisons on the significance of the omnibus F test.
The Tukey test is, therefore, more conservative than the Fisher test; if statistically
significant differences are found between a pairwise comparison using the Tukey test, the
same difference will be statistically significant using the Fisher test.

Another critical difference that between the two correction procedures worth
exploring is that the Fisher test for pairwise comparisons can only be conducted when the
omnibus F test is found to be statistically significant. The Fisher test, therefore, does not
involve any special correction once the omnibus F is found to be statistically significant.
The Tukey test however, employs a distinct correction procedure, and can be performed
on any of the aforementioned measures, regardless of whether the omnibus F test yields a
statistically significant value. With respect to my thesis study, in the case of the repeated
measures analyses explored so far, the Fisher test would be applicable only to the
instructor’s assessments of performance, students’ predictions of performance, and
students’ confidences at prediction.

[ decided to use two, separate correction procedures, following Keppel's (1933)
call for a procedure to allow for suspension of judgment (p. 163). Under such a
procedure, if the calculated difference found for a pairwise comparison exceeded the
uncorrected critical difference (i.e., the critical difference in the Fisher test) but does not
exceed the corrected critical difference (i.e., the critical difference found in the Tukey
test), then [ would decide to suspend judgment on whether a statistically significant
difference existed for the comparison. Only if the critical difference exceeded the

corrected critical difference from the Tukey test, then [ would be able to declare the
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difference as statistically significant at a p level of .05. By deciding to take no formal
action of rejection or acceptance of the null hypothesis, I would, therefore, avoid

committing either a Type I or Type II error.

The formula for calculating the critical difference for the Tukey test (d;) is

fMSE . . -
gr X ,|—— ; where g; refers to an entry in a table of the studentized range statistic under
n

v

the number of means being compared and the degrees of freedom associated with the
error term, MSE refers to the mean square error term from the omnibus F test, and n
refers to the number of participants contributing to each instance of the measure. The

formula for calculating the critical difference for the Fisher test (dg), once the omnibus F

- . 2xX MSE .
test has been shown to be significant, is X ,[————; where ¢ is the value of the -
n

distribution under the chosen value of alpha and the degrees of freedom associated with
the error term, MSE refers to the mean square error term from the omnibus F test, and n
refers to the number of participants contributing to each instance of the measure. Note
that the assumption [ am making in the calculation of both d; and dp is that the value of n
is equal in each instance of the measure being collected. This assumption is not violated
in the calculation; the value of n is 16 from a maximum possible value of 17, since all
data for the participant who did not complete log 6 and the accompanying TAPE have
been excluded from any repeated measures analyses.

Comparisons for performance assessments and performance predictions.
Performance assessments showed statistically significant differences only after students

had written their first three logs, while performance predictions showed statistically
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significant differences only across logs that were at least four periods apart (e.g., between
logs | and 5; see table 15).

Table 15

Pairwise comparisons for performance assessments (lower triangle) and performance

predictions (upper triangle)

Log | Log 2 Log 3 Log 4 Log5 Log6
Log | - -.19 -.50 =75 -1.06™ -1.317
Log 2 -.19 - -31 -.56 -.88° -1.137
Log 3 44 63° - -25 -.56 -81°
Log 4 757 94" 31 - -31 -.56
Log 5 1.25" 1.44" 81" .50° - -25
Log6 56 5" .13 -.19 -69" -

Absolute value of d; for performance assessments = .64

Absolute value of d for performance assessments = .44

Absolute value of d; for performance predictions = 1.02

Absolute value of d, for performance predictions= .69

Each entry in the table represents the mean difference calculated by taking the signed difference between
the measure for the row and the measure for the column. Non-asterisked entries represent non-significant
calculated mean differences.

* Suspend judgment on whether calculated mean difference is statistically significant, because calculated
mean difference was found to be greater than or equal to the uncorrected critical difference found by the
Fisher test, but less than the corrected critical difference found from the Tukey test.

** Statistically significant differences found between calculated mean differences, which is greater than or

equal to the corrected critical difference found from the Tukey test.
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Comparisons for prediction confidence and prediction accuracy measures.
Prediction confidence showed statistically significant differences between logs | and 5,
and logs 2 and 6, while prediction accuracy showed no significant differences across the
six logs (see table 16). The six measures of accuracy in predictions did not yield a
significant omnibus F value from the repeated measures analysis of variance, however, a
glance at pairwise comparisons between their means revealed some statistically
significant differences, without any correction for maintaining a family-wise alpha rate of
.05. Therefore, I decided to conduct a corrected, pairwise comparison for the six accuracy
measures, using only the corrected critical difference derived from the Tukey test, since

the Fisher test could not be used.



Table 16
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Pairwise comparisons for prediction confidence (lower triangle) and prediction accuracy

(upper triangle)
Log | Log2 Log3 Log 4 Log 5 Log 6

Log 1 - .63 .69 .50 .69 25
Log 2 -.13 - .06 -.13 .06 -38
Log 3 13 25 - -.19 0 -44
Log 4 31 44" .19 - .19 -25
Log 5 38 50" 25 .06 - -44
Leg 6 44° 56" 3l 13 .06 -

Absolute value of d; for prediction confidence = .49

Absolute value of d for prediction confidence = .33

Absolute value of d; for prediction accuracy = .78

Each entry in the table represents the mean difference calculated by taking the signed difference between

the measure for the row and the measure for the column. Non-asterisked entries represent non-significant

calculated mean differences.

* Suspend judgment on whether calculated mean difference is statistically significant, because calculated

mean difference was found to be greater than or equal to the uncorrected critical difference found by the

Fisher test, but less than the corrected critical difference found from the Tukey test.

** Statistically significant differences found between calculated mean differences. which is greater than or

equal to the corrected critical difference found from the Tukey test.

Comparisons between monitoring proficiency measures. Recall that no main

effects were found for either of bias and discrimination measures (see table 13 for results

of analyses, and figures 4 and 5 for visual representation). Further, unlike prediction
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accuracy, neither bias nor discrimination revealed any statistically significant,
uncorrected pairwise differences. Hence, I did not conduct any corrected test of pairwise
differences on bias and discrimination measures.
Plots Of Means Of Measures of Performance Assessments, Performance Predictions,
Prediction Confidence, Prediction Accuracy and Monitoring Proficiencies

In order to provide a graphical view of trends, both significant and non-
significant, in the repeated measures discussed thus far, Figures 1 to 6 show the estimated
marginal means for performance assessments, performance predictions, prediction

confidence, bias, discrimination and prediction accuracy, respectively.



Figure 1

Means for Instructor’s Performance Assessments Across Six Logs
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Figure 2

Means for Students’ Performance Predictions Across Six Logs
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Figure 3

Means for Students’ Prediction Confidence Across Six Logs
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Figure 4

Means for Students’ Bias Across Six Logs
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Figure 5

Means for Students’ Discrimination Across Six Logs
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Figure 6

Means for Students’ Prediction Accuracy Across Six Logs
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Findings Related to Performance, Predictions, Confidence and Monitoring
Following from the results reported in the preceding sections on descriptive

statistics, repeated measures analyses, pairwise comparisons and plots, I begin, in this

section, to paint a portrait of how students’ performance and monitoring proficiencies

varied across the six logs.

75
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Performance assessments. Performance assessments produced a main effect, F(5,
75)=11.33, p<.001, =43, and showed an increasing, linear trend, F(1, 15)=25.40,
p<.001, °=.63 (see tables 13, 14 and Figure 1). Apart from the performance dips in week
2 (as compared to week 1) and week 6 (as compared to both logs 5 and 4), from the
instructor’s viewpoint, students demonstrated improved performance when progressing
from the first to the sixth log. Despite the fact that statistically significant quadratic and
cubic trends are revealed in the performance assessments, it makes more sense to
interpret the data in light of the most significant, increasing linear trend. The quadratic
results can be explained by the dip in performance in log 6, as compared to logs 5 and 4,
while the cubic trend can be explained by the additional dip in performance in week 2, as
compared to week | (see Figure 1). Results from the pairwise comparisons for
performance assessments, also show that performance on logs 4 and 5 are each
significantly greater than each of logs | and 2, and that there is a significant increase in
performance from logs 3 to 5, and from logs 2 to 6 (see table 15). Note also that some of
the differences between adjacent logs almost reach statistical significance (i.e., p values
of .05 or less); in fact, I have suspended judgment on the differences seen between logs 2
and 3, and logs 4 and 5. Statistically significant differences in performance are not
present between logs 1, 2 and 3. In fact, there is a decrease in performance between logs
1 and 2, but this change is most likely a function of chance, as evidenced by the non-
significant difference reported in table 15. Subsequent improvements in performance as
students progressed from log 3 to 4, and from log 4 to 5, yield statistically significant
increases in performance when logs are compared across two periods (e.g., logs 2 and 4,

logs 3 and 5), three periods (e.g., logs 1 and 4, logs 2 and 5), and four periods (e.g., logs 2
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and 6; see table 15); note that [ use the term period to denote the passage of time from
one log to the next. Interestingly, students seem to have shown statistically significant
improvements in performance when tackling logs of similar structure; for example.
improvements in performance were recorded from log 2 to 4, both of which contained
multistructural and relational question-and-answer sets, and from logs 3 to 5, both of
which contained multistructural and extended abstract question-and-answer sets. The
significant decrease in performance between logs 5 and 6 can be attributed. in part,
perhaps, due to the fact that the posttest (final examination) for the course was conducted
after log 5 was submitted, and that an extension was granted for the submission of log 6.
Students’ performances in log 6, might have, therefore. been affected by their
disengagement from the course after having completed the posttest. Other factors include
the structure of log 6, which contained all three multistructural. relational and extended
abstract sets; this might have made log 6 more difficult to perform in than the other 5
logs, all of which contained only two of the three possible sets. Overall, students showed
a general improvement in performance, as judged by the instructor. over the first five
logs, but showed a statistically significant deterioration in their performance from the
fifth to the sixth, and final, log.

A possible explanation for statistically significant changes in performance
assessments could be the instructor’s criteria for evaluating the logs. While the
assessment criteria for each level were clearly stated in the course outline, recall that the
instructor had informed students that they needed to demonstrate growth across their
logs. This element of growth is subjectively judged by the instructor. and an

understanding for what criteria are being used for assessing growth, while not clear form
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the course outline, might have been implicitly co-constructed between individual students
and instructor. In learning situations that involve complex writing activities, like that of
the learning log, such implicit development of criteria for evaluation are, not uncommon,
and need to be factored into the analyses. Subsequent repeated measures analyses on the
independent scores of performance, and correlational analyses between performance
assessments and the independently scores of performance will shed more light on this
issue.

Performance predictions. Performance predictions produced a statistically
significant main effect, F(3.73, 56)=5.70. p=.001. °=.28, and followed a statistically
significant, increasing linear trend, F(1, 15)=14.33. p=.002. 7°=.49 (see tables 13. 14 and
Figure 2). For any given log. students’ consistently expected to score a better grade than
any of their prior predictions. Statistically significant differences between predictions
across logs are only evident, though. between logs that are at least four periods apart
(e.g.,logs 1 and 5, logs 2 and 6, logs | and 6). From table 13, notice also that [ suspend
judgment on the significance of the observed differences in predictions between logs 1
and 4, logs 2 and 5, as well as logs 3 and 6. It is therefore, interesting to note that despite
the steadily increasing predictions, differences in expected grades between adjacent logs
(e.g., between logs | and 2, logs 2 and 3, etc.), and across logs that are two periods apart
(e.g., between logs 1 and 3, logs 2 and 4, logs 3 and 5, and logs 4 and 6) are likely a
function of chance. Predictions showed statistically significant increases only after a
sufficiently lengthy period of time of engagement with the logs, namely, at least four to

five weeks.
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Prediction accuracy. One way of investigating accuracy in students’ predictions
across the six logs is to determine if there were any statistically significant differences
between each of the six pairs of scores of performance predictions and performance
assessments. Paired-sample t-tests between the six pairs yielded only one statistically
significant difference; performance predictions on log 5 (M=4.76, SD=.83) were found to
be significantly smaller than the performance assessments on the same log (M=5.24,
SD=.75), 1(16)=-2.704, p=.016. Overall, students seemed to demonstrate accurate
prediction abilities; while students generally underestimated their performances on logs
1, 3, 4 and 5, and overestimated their performances on logs 2 and 6, average differences
between predicted and instructor-assessed performances for the six logs ranged from -.47
on the lower end of the underestimation, to .059 to the upper end of overestimation.
However, such a measurement of accuracy in prediction can be misleading. The range of
values for the difference between predicted and instructor-assessed performance seem to
suggest that students’ accuracies in predictions were within a single grade of their
performance. Since the differences can take both positive and negative values, one
students’ overestimation cancels out another’s underestimation of the same magnitude,
thereby providing a misrepresentative view of accuracy in prediction. The absolute
difference between performance prediction and performance assessment, which [ have
labeled prediction accuracy in this thesis study, measured the degree to which the
students’ predictions matched their performance, regardless of whether students over or
underestimated their performances. The plot in Figure 6 illustrates that students’ average
predictions (M=1.19, §D=.29) were inaccurate by more than one grade for log 1. Between

logs 2 and 5, however, the average accuracies were lowered and remained within the
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range of .50 to .69 (SDs ranged from .18 to .24); this discrepancy can be explained by
chance fluctuations. The value for accuracy in prediction rose to a comparatively
inaccurate level of .94 with an SD of .23 for log 6, most likely, because students were not
highly engaged while completing the sixth and final log, since it was due for submission
after the final examination.

Predicrion confidence. Prediction confidence revealed a statistically significant
main effect, F(5, 75)=3.60, p=.006, 17°=.19 across the six learning logs, and produced a
statistically significant, linear trend, F(1, 15)=9.20, p=.008, rf=.38 (see tables 13, 14 and
Figure 3). Regarding pairwise comparisons, the only two statistically significant
differences in confidence lie between log 2 and 5, and log 2 and 6 (see table 16). Notice
also, from table 16, that I have suspended judgment on the differences observed between
log | and 5, log | and 6, as well as log 2 and 4. All other differences in confidence are
likely a function of chance. It is interesting to note that the only two statistically
significant differences involve the average value for confidence in prediction for log 2,
which happens to be the lowest average confidence recorded throughout the period of
instruction (M=2.88, SD=.125), as well as the only time when confidence in predictions
dipped (see Figure 3). A likely reason for the dip in confidence could be conjectured from
the students’ relatively inaccurate predictions for log 1. Subsequently increasing values of
confidence, until log 6, can be attributed to the relatively accurate predictions made from
logs 2 to 5. Despite the steadily increasing values of confidence from logs 2 to 6, note
that statistically significant levels of differences between scores of prediction confidence

were reached after engagement with the logs of at least three periods of time.
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Monitoring proficiencies. With regards to the calculated monitoring proficiencies
of discrimination and bias, the repeated measures analyses of variance did not reveal any
main effects (see table 13), suggesting that, across the six logs, students’ discrimination
and bias fluctuated in a manner that was most likely due to chance. The largely negative
values of average bias across the six logs show that, in general, students were
underconfident of their abilities (see table 11). Notice, from Figure 4, that the value for
bias becomes increasingly negative from log 3 to log 5, reflecting increasing levels of
underconfidence. The positive value of bias for log 6 reflects the overconfidence students
demonstrated in their prediction of a grade for the final log. Average discrimination
measures progress from being negative in log 1 (M=-.28, SD=.18), to becoming
increasingly more positive until log 5 (M=.11, SD=.13), before dipping back to a negative
value for log 6 (M=-.05, SD=.11; see Figure 5). The increasingly positive values of
average discrimination from log 1 to 5 represent students’ progressive abilities to assign a
higher level of confidence for accurate prediction (see Figure 5). Students’ average
discrimination plummeted in log 6, thereby bucking the increasing trend, perhaps due to
their inability to accurately predict their grade for the sixth, and final log.

Summary. In summary, an initial analysis of the measures of instructor-assessed
performance, predicted grades, confidence, and monitoring proficiencies yielded the
following findings. First, performance assessments, as gauged by the instructor, generally
improved by adopting a significant linear trend, from log | to log 6, statistically
significant improvements were seen only after students had engaged in writing their first
three logs. Second, performance predictions, like their performance, also demonstrated an

increasing, significant, linear trend from log 1 to log 6; statistically significant increases
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were observed only across logs that were at least four periods apart. Third, prediction
confidence, showed an increasing, statistically significantly linear trend; improvements in
confidence were statistically significant only across logs that were at least three periods
apart. Fourth, monitoring proficiencies, which included discrimination and bias in
predictions, fluctuated as a function of chance. Fifth, performance assessments dipped on
the final log, most likely due to the effect of writing of the posttest between the
submissions of logs 5 and 6; monitoring proficiencies fluctuated accordingly for log 6,
with students demonstrating overconfidence (relatively large, positive average bias) and
assigning a relatively higher level of confidence for inaccurate predictions (relatively
large, positive average discrimination).
Repeated Measures Analysis for Independent Multistructural, Relational, Extended
Abstract and Overall Performance Scores

Recall that the independently calculated scores of performance reflected the
extent to which students had met the assessment criteria for each level of question-and-
answer set in their learning logs. The independent relational performance scores and
overall performance scores revealed a main effect across the six logs, while the
independent multistructural and extended abstract performance scores did not reveal a

main effect (see table 17 for results of analyses).
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Table 17

Repeated measures one-way analyses of variances on independent scores of performance

Measure No. of F df MSE p n Power Effect

Scores Size *®

Independent 6 1.56 5 48951 .18 .09 .52 31
Multistructural
Performance

Score

Independent 4 13.19 3 44996 <001 47 1.00 .94
Relational
Performance

Score

Independent 3 266 2 292.80 .09 A5 49 42
Extended

Abstract

Performance

Score

Independent 6 520 5 216.25 <.001 .26 .98 .59

Overall
Performance

Score

" Effect size is calculated using Cohen’s (1998) procedure for calculation of f, which is equivalent to

2
n = . where 17° is interpreted as the proportion of the total variability in the dependent variable that is

1-n°
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accounted for by variation in the independent variable: 17° is the ratio of the between groups sum of squares

to the total sum of squares.

Trends. The independent overall performance scores on the logs revealed a
significant linear trend, F(1, 15)=9.90, p=.007, i°=.40, as well as a less, yet statistically
significant, quadratic trend, F(1, 15)=7.47, p=.02, m=.33. Similarly, the independent
relational performance scores also revealed a significant linear trend, F(1, 15)=17.41.
p=.001, 7°=.54, as well as a less, yet statistically significant, quadratic trend, F(1,
15)=13.26, p=.002, ’=.47.

Facilitating comparison between different levels of question-and-answer sets.
Recall that the instructor’s performance assessment consisted of a single grade for each
learning log, equally distributed between the multistructural and relational or extended
abstract level, depending on the levels required for any given log. Such a measure of
performance does not allow for comparisons to be made within and between different
levels of question-and-answer sets. However, the independent scoring of performance in
meeting assessment criteria for each level of the logs allow for such a comparison. For
example, table 17 reveals the results of tests of main effects of students’ scores within
each of the multistructural, relational and extended abstract levels. To facilitate a
comparison between the relational and extended abstract levels of questions and answers,
I conducted a repeated measures, within-group, one-way analyses of variance on the eight
independently calculated scores of performance on the relational (four scores) and
extended abstract (three scores) levels of question-and-answer sets. A statistically
significant main effect was found for the seven mean scores of performance on relational

and extended abstract levels, F(6, 90)=9.20, p<.001, °=.38. In addition, a statistically
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significant quadratic trend was revealed for the mean scores of performance on relational
and extended abstract levels, F(1, 15)=42.11, p<.001, i°=.74, along with a less
significant linear trend, F(1, 15)=7.96, p=.013, n’=.38.
Pairwise Comparisons for Independent Scores of Performance

Similar to the procedures employed earlier in the section on pairwise comparisons
of the measures related to instructor’s assessments of performance and the TAPE-related
monitoring proficiency measures, I conducted unrestricted pairwise comparisons using
the Fisher and Tukey tests, on all independent scores of performance which produced a
main effect in their omnibus F test. I calculated critical differences for both the Fisher
(dr) and the Tukey test (d;), for each measure undergoing the pairwise procedure, and
compared the calculated differences with the values of d, and d; . If the calculated
difference was lesser than the value of d;, [ rejected the null hypothesis that there were
statistically significant differences between the pair of measures being compared; if the
calculated value was greater than or equal to the value of d,-, but lesser than the value of
d;, I suspended judgment on making a decision as to whether the observed difference
was statistically significant or not; if the calculated difference was greater than or equal to
the value of d;, I rejected the null hypothesis and concluded that a statistically significant
difference did exist between the pair of measures being compared.

Independent overall performance score. Students’ independent scores of overall
performance showed statistically significant differences between logs 1 and 4, logs 1 and
5, and logs 1 and 6 (see table 18 for results). Between logs 2 and 6, the independent

overall performance scores fluctuated with chance.
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Table 18

Pairwise Comparisons for Independent Overall Performance Scores

Log 1 Log 2 Log3 Log 4 Log 5 Log 6
Log | -
Log2 13.15° -
Log 3 14.76 1.61 -
Log 4 16.90™ 3.75 2.14 -
Log 5 25.57" 1241° 10.80° 8.66 -
Log6 17.83" 4.67 3.07 .92 -1.73 -

Absolute value of dr for independently overall performance score = 15.24

Absolute value of d, tor independently overall performance score= 10.37

Each entry in the table represents the mean difference calculated by taking the signed difterence between
the measure for the row and the measure for the column. Non-asterisked entries represent non-significant
calculated mean differences.

* Suspend judgment on whether calculated mean difference is statistically significant, because calculated
mean difference was found to be greater than or equal to the uncorrected critical difference found by the
Fisher test, but less than the corrected critical difference found from the Tukey test.

** Statistically significant differences found between calculated mean differences, which is greater than or

equal to the corrected critical difference found from the Tukey test.

Independent relational and extended abstract performance score. The mean
independent relational performance score for log | was significantly lower than the mean

independent relational performance scores for each of the logs 2, 4 and 6 (see table 19),
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as well as lower than the mean independent extended abstract performance scores for
logs 3, 5 and 6 (see table 20).

Table 19

Pairwise comparisons for the Independent Relational Performance Scores for logs 1, 2, 4

and 6
Log 1 Log 2 Log 4 Log 6
Logl -
Log?2 30.89” -
Log 4 43.397 12.50 -
Log6 37.14" 6.25 -6.25 -

Absolute value of d; for independent relational performance score = 20.02
Absolute value of d; for independent relational performance score = 15.15
Each entry in the table represents the mean difference calculated by taking the signed difference between
the measure for the row and the measure for the column. Non-asterisked entries represent non-significant

calculated mean differences.

** Statistically significant differences found between calculated mean differences. which is greater than or

equal to the corrected critical difference found from the Tukey test.
Table 20

Pairwise comparisons for the means of the independent relational and extended abstract

performance scores across the six logs
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Mean Differences of Independent Relational and Extended Abstract Performance

Log 3: Log 5: Log 6:
Log I: Log 2: Log 4: Log 6:
Extended Extended Extended
Relational Relational Relational Relational
Abstract Abstract Abstract
Log I:
Relational
Log 2:
30.89” -
Relational
Log 3:
Extended 29.11™ -1.79 -
Abstract
Log 4:
43.39" 12.50 14.29° -
Relational
Log 5:
Extended 40.717 9.82 11.61 -2.68 -
Abstract
Log 6:
37.147 6.25 8.04 -6.25 -3.57 -
Relational
Log 6:
Extended 28.21" -2.68 -.89 -15.18° -12.50 -8.93 -
Abstract

Absolute value of dr for independent relational and extended abstract performance scores = 20.35
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Absolute value of d for independent relational and extended abstract performance scores = 13.39

Each entry in the table represents the mean difference calculated by taking the signed difference between
the measure for the row and the measure for the column. Non-asterisked entries represent non-significant
calculated mean differences.

* Suspend judgment on whether calculated mean ditference is statistically significant, because calculated
mean difference was found to be greater than or equal to the uncorrected critical difference found by the
Fisher test. but less than the corrected critical difference found from the Tukey test.

* Statistically significant differences found between calculated mean differences. which is greater than or

equal to the corrected critical difference found from the Tukey test.

Plots for Independently Calculated Scores of Performance

Figures 7 to 1| provide a graphical view of the estimated marginal means for the
following measures, described in prior analyses: independent multistructural performance
scores across the six logs (figure 7), independent relational performance scores across
logs 1, 2, 4 and 6 (figure 8), independent extended abstract performance scores across
logs 3, 5 and 6 (figure 9), independent overall performance scores (figure 10), and
independent relational and extended abstract performance scores across the six logs

(figure 11).



Figure 7

Means of Independent Multistructural Performance Scores across six logs
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Figure 8

Means of Independent Relational Performance Scores across logs 1, 2, 4 and 6
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Figure 9

Means of Independent Extended Abstract Performance Scores across logs 3, 5 and 6.
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Figure 10

Means of Independent Overall Performance Scores across six logs.
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Figure 11

Means of Independent Relational (Reln) and Extended Abstract (EA) Performance Scores

across six logs.
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Findings Related to Independent Multistructural, Relational, Extended Abstract and
Overall Performance Scores
Based on the repeated measures analyses, pairwise comparisons and the plots, I
now paint a picture of how the various independent performance scores reveal how well
students met the assessment criteria that were laid out in the course outline.
Independent multistructural and extended abstract performance scores.

Independent multistructural and extended abstract performance scores fluctuated largely
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as a function of chance, as is seen from the non-significant main effects reported in table
17. This suggests that students met the assessment criteria, for both multistructural and
extended abstract levels, to the same extent across the six logs, despite the differences in
course content that served as sources of information for each log. Moreover, the
difference in structure of log 1 (question provided by instructor, answer generated by
student) as compared to the rest of the logs (question and answer generated by student),
did not affect students’ abilities to meet the assessment criteria for the multistructural
level to the same extent throughout all six logs. Even though students improved in their
ability to meet the assessment criteria for extended abstract levels from log 3 (M=74.11,
SD=21.01) to log 5 (M=85.71, SD=15.65), and showed reduction in this ability between
log 5 and log 6 (M=73.21, SD=18.72; see plot in Figure 9), these differences are accorded
to chance fluctuations. Note also that students, for the most part, were able to
successfully meet the assessment criteria for the multistructural level, as is evidence by
the high scores across the six logs (see values of Ms and SDs in table 12 and plot in figure
7, range of Ms: 67.50 to 87.50, range of SDs: 20.49 to 28.17).

Independent relational performance scores. A statistically significant main effect
was found for the independent relational performance scores for logs, 1, 2, 4 and 6, F(3,
45)=13.19, p<.001, ’=.47. The reported statistically significantly, increasing linear
trend, F(1, 15)=17.41, p=.001, n°=.54 (see Figure 8) prompted an exploration of where
exactly the differences in performance lay. Table 19 reveals that the average ability of a
student in meeting the criteria for relational levels for log | (M=45.00, SD=31.41) is
statistically, significantly lower than the average scores for each of the logs 2 (M=75.89,

SD=24.31), 4 (M=88.39, SD=14.95) and 6 (M=82.14, SD=23.04). There are, however, no
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other statistically significant differences among these four means. The pairwise
comparisons suggest that students’ abilities to meet the assessment criteria for the
relational level question-and-answer sets improved from log I to log 2, but subsequently,
their improved abilities to meet the criteria fluctuated with chance between logs 2, 4 and
6. Recall also that for log 1, students were given a relational level question, and were
required to answer the question, whereas for the other three logs, students were required
to generate their own questions and answers. This difference in the structure of the
learning log might account for the observed differences in students’ abilities to meet the
assessment criteria for the relational level.

Independent overall performance scores. Independent overall performance scores
revealed a main effect across the six logs, F(5, 75)=5.20, p<.001, 17°=.26 (see table 17);
the reported significant, increasing linear trend (see plot in Figure 10) resulted in further
explorations through pairwise comparisons seen in table 18. It is interesting to note that
despite the steadily increasing trend in the independently calculated students’ scores of
performance, mean differences reveal statistical significance only between logs 4 and 1.
logs 5 and 1, as well as logs 6 and 1. I suspend judgment on the significance of observed
differences between sets of adjacent logs in the first half of the course (e.g., logs 2 and 1,
logs 3 and 2), as well as between logs at least two periods apart, for example, logs 5 and
2, and logs 5 and 3. The results of the pairwise comparisons suggest that students’
abilities to meet the assessment criteria for the required levels of question-and-answer
sets improved significantly only after students had written their first four learning logs (as
evidenced by the significant differences observed between logs 4 and [, logs 5 and 1, and

logs 6 and ). However, notice that from log 2 through to log 6, students’ abilities to meet
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the assessment criteria for each of the logs were met, for the most part, to similar extents,
with any fluctuations accorded to chance. Therefore, no significant differences were
found for performances from log 2 through to log 6, with the exception of the two cases
of suspension of judgment, despite the differences in (a) the structure of the learning logs,
for example, logs 2 and 4 required relational levels, while logs 3 and 5 required extended
abstract levels of question-and-answer sets, and (b) the content of the course covered
from log 2 through to log 6.

Comparison of independent performance scores on relational and extended
abstract levels. As reported earlier, a statistically significant main effect was found for
the seven independently calculated scores of performance on relational and extended
abstract levels of question-and-answer sets across the six logs. In addition, a statistically
significant quadratic trend was also observed (see plot in Figure 11). Pairwise
comparisons, shown in table 20, reveal that all statistically significant differences involve
students’ performance in answering the relational level question for log 1. In fact,
students’ abilities to meet the assessment criteria for answering the relational level
question for log 1 (M=45.00, SD=31.41) is significantly lower than all the other measures
of abilities to meet assessment criteria for writing relational or extended abstract levels of
question-and-answer sets. Two other differences call for a suspension of judgment in
relation to their statistical significance; these include the improved ability to meet the
criteria for writing a relational level question-and-answer set for log 4 as compared to
writing, both at an extended abstract level for log 3 (mean difference of 14.29, standard
error of 4.88) and at an extended abstract level for log 6 (mean difference of 15.18,

standard error of 5.75). Apart from these two suspensions of judgment, all other
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differences did not reach statistical significance. The results suggest that students showed
sustained, improved performance on their relational and extended abstract level question-
and-answer sets when compared to their performance in answering a relational level
question for log 1. This improved performance fluctuated largely due to chance across the
relational and extended abstract levels of question-and-answer sets between logs 2 and 6.
Students’ performance in meeting assessment criteria peaked in their writing of a
relational level question-and-answer set for log 4. Subsequent dips in performance on the
relational level for log 6, and the extended abstract levels for logs 5 and 6 can be
accorded to chance, but help in explaining the statistical significant quadratic trend, as
observed in the plot in figure 11.

Summary. The repeated measures analyses, pairwise comparisons and plots of the
independent performance scores revealed the following findings. First, students met the
assessment criteria for the multistructural levels to the same extent across all six logs.
Second, students met the assessment criteria for the extended abstract level to the same
extent across logs 3, 5 and 6. Third, students showed an improved performance in
meeting the assessment criteria for relational levels from log | to log 2, however, across
logs 2, 4 and 6, students met the assessment criteria for relational levels to the same
extent. Fourth, students met the assessment criteria for relational and extended abstract
questions to the same extent from logs 2 to 6. Fifth, students’ overall performance in
meeting the assessment criteria for the logs improved significantly only after students had
written their first four logs; students’ overall performance at meeting assessment criteria

for the logs showed largely chance fluctuations from logs 2 to 6.
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Repeated Measures Analyses on Justification Scores

The justification scores for multistructural, relational, extended abstract questions
and answers (see table 12 for descriptive statistics, table 9 for labels) are based on
students’ responses to the first two items of each TAPE from log I to log 5, and the first
six items for the TAPE for the sixth and final log, asked students to explain why their
questions and answers were at a multistructural, relational or extended abstract level, as
the case may have been (see Methods section for complete description). Relational
question justification scores revealed a statistically significant main effect, F(1.58,
23.67)=4.34, p=.03, ’=.23; no other justification score revealed a main effect (see table
21). In addition, justifications for meeting relational question criteria displayed a

significant, quadratic trend, F(1,15)=20.59, p<.001, n°=.58.
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Table 21

Repeated Measures One-way Analyses of Variance on Justification Scores for Relational

and Extended Abstract Questions and Answers

Repeated No. of F df MSE p m Power  Effect

Measure Scores Size®

Relational 3 434 158 .47 .03 23 .63 .56
Question

Justification

Relational 4 1.58 3 .50 21 .10 .39 32
Answer

Justification

41 1 .02 .10 .14

[§9]

Extended 3 354
Abstract

Question

Justification

Extended 3 188 2 4l .64 .03 A2 .18
Abstract

Answer

Justification

? Effect size is calculated using Cohen’s (1998) procedure for calculation of f, which is equivalent to

2

—, where 17 is interpreted as the proportion of the total variability in the dependent variable that is

I-n
accounted for by variation in the independent variable: n* is the ratio of the between groups sum of squares

to the total sum of squares.
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® Degrees of freedom was reduced using the Huynh-Feldt correction for violation of Mauchly’s test of

sphericity.

Multistructural question and answer justification scores. There were only two
instances of justifications of meeting multistructural answers (i.e., TAPE items on logs 1
and 6, see table 12); their respective average, independently calculated scores were
compared using a paired-samples t-test procedure. The average score for the 16 valid
responses for justifications for meeting multistructural answer criteria for log 1 (M=1.31,
SD=.79) was significantly better than the score for log 6 (M=.75, SD=.93), #(15)=2.18,
p=.05.

Justifications of meeting question and answer assessment criteria. In order to
determine if there was a main effect of students’ scores for justification items on the
TAPE related to questions and answers, at all three levels (i.e., multistructural, relational
and extended abstract), I conducted two more within-group, repeated measures one-way
analyses of variance. Recall that over the course of six logs, students responded to seven
TAPE items asking for justifications of meeting criteria for relational, multistructural. or
extended abstract questions (one item each from the TAPEs for logs 2 to 5. and three
items from the TAPE for log 6); students also responded to a total of nine items related to
justifications for meeting criteria for multistructural, relational and extended abstract
answers (two items from the TAPE for log I, one each from the TAPEs for logs 2 to 5,
and three items from the TAPE for log 6). A statistically significant main effect was
revealed for scores on question-related justification items, F(6,90)=5.37, p<.001, 17°=.26:;
similarly, a main effect was also present for scores on answer-related justification items,

F(8,120)=2.46, p=.02, i’=.14.



Pairwise Comparisons for Justification Scores

Relational question justification scores. Students’ relational question justification
scores for log 4 were significantly higher than their scores on log 6, as seen from the
results of pairwise comparisons in table 22.

Table 22

Pairwise Comparisons for Relational Question Justification Scores for logs 2, 4 and 6.

Log 2 Log 4 Log 6
Log 2 -
Log 4 69" -
Log6 .19 -30 -

Absolute value of d for relational question justification scores = .68
Absolute value of d, for relational question justification scores = .56
Each entry in the table represents the mean difference calculated by taking the signed difference between
the measure for the row and the measure for the column. Non-asterisked entries represent non-significant

calculated mean differences.
** Statistically significant differences found between calculated mean differences. which is greater than or

equal to the corrected critical difference found from the Tukey test.

Justifications of meeting question and answer assessment criteria. Table 23,
below, reveals the results of the unrestricted pairwise comparisons of the averages of the
seven justification scores for questions at all three levels. across all six logs. Following
this, table 24, displays the results of the pairwise comparisons made on the means of the

nine justification scores for answers at all three levels. across the six logs.
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Table 23

Pairwise Comparisons of Justification Scores for Questions

Mean Differences of Justification Scores for Questions

Log 3: Log 5: Log 6: Log 6:
Log 2: Log 4: Log 6:
Extended Extended Multi- Extended
Relational Relational Relational
Abstract Abstract  structural Abstract
Log 2:
Relational
Log 3:
Extended 757 -
Abstract
Log 4:
.69° -.06 -
Relational
Log5:
Extended .88” 13 .19 -
Abstract
Log 6: Multi-
.13 -.63° -.56° =757 -
structural
Log 6:
.19 -.56 -.50° -.69° .06 -
Relational
Log 6:
Extended 94> .19 .25 .06 817 5" -
Abstract
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Absolute value of d; for justification scores for questions at all three levels= .72

Absolute value of d. for justification scores for questions at all three levels = .48

Each entry in the table represents the mean difference calculated by taking the signed difference between
the measure for the row and the measure for the column. Non-asterisked entries represent non-significant
calculated mean differences.

" Suspend judgment on whether calculated mean difference is statistically significant. because calculated
mean difference was found to be greater than or equal to the uncorrected critical difference found by the
Fisher test, but less than the corrected critical difference found from the Tukey test.

™ Statistically significant differences found between calculated mean differences. which is greater than or

equal to the corrected critical difference found from the Tukey test.
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Table 24

Pairwise Comparisons of Justification Scores for Answers

Mean Differences of Justification Scores for Answers

Log I: R 9. Log 3: . Log 5: Log 6: R Log 6:
Multi- R:lgﬁolr;al Re[‘l‘a’ﬁo"[; | Extended R;gﬁ;al Extended  Multi- R;ggoﬁ; . Extended
structural Abstract Abstract  structural Abstract
Log I:
Multi- -
structural
Log I: 13 )
Relational ’
Log 2:
Relational 19 06 )
Log 3:
Extended .06 -.06 -.13 -
Abstract
Log 4:
Relational 0 -13 -19 -06 )
Log 5:
Extended 25 13 .06 19 25 -
Abstract
Log 6:
Multi- -.56 -.69° -75° -.63 -.56° -81" -
structural
Log 6: . . 5
Relational =31 -.44 -.50 -.38 =31 -.56 25 -
Log 6:
Extended 25 13 .06 .19 25 0 81 .56 -
Abstract

Absolute value of d; for justification scores for answers at all three levels = .78
Absolute value of d, for justification scores for answers at all three levels = .49
Each entry in the table represents the mean difference calculated by taking the signed difference between
the measure for the row and the measure for the column. Non-asterisked entries represent non-significant

calculated mean differences.
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* Suspend judgment on whether calculated mean difference is statistically significant, because calculated
mean difference was found to be greater than or equal to the uncorrected critical difference found by the

Fisher test, but less than the corrected critical difference found from the Tukey test.

“* Statistically significant differences found between calculated mean differences, which is greater than or

equal to the corrected critical difference found from the Tukey test.

Plots For Justification Scores

Figures 12 to 17 provide graphical views of the estimated marginal means of the
justification scores for: relational questions across logs 2, 4 and 6 (figure 12), relational
answers across logs 1, 2, 4 and 6 (figure 13), extended abstract questions across logs 3, 5
and 6 (figure 14), extended abstract answers across logs 3, 5 and 6(figure 15), questions
from all three levels across the six logs (figure 16), answers from all three levels across

the six logs (figure 17).



Figure 12

Means of Relational Question Justification Scores across logs 2, 4 and 6
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Figure 13

Means of Extended Abstract Question Justification Scores across logs 3, 5 and 6
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Figure 14

Means of Relational Answer Justification Scores across logs 1, 2, 4 and 6
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Figure 15

Means of Extended Abstract Answer Justification Scores across logs 3, 5 and 6
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Figure 16

Means of Justification Scores for Questions from all three levels across six logs
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Figure 17

Means of Justification Scores for Answers from all three levels across six logs
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Findings Related To Justification Scores
Multistructural question and answer justification scores. Students’ multistructural
answer justification scores showed statistical significance in revealing lower scores for

log 6 (M=.75, SD=.93) as compared to log 1 (M=1.31,SD=.79). While the result can be
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interpreted as students being less able in providing reasons for why their answers were
multistructural in log 6 as compared to their ability to do the same in log |, there is a
possibility that a lack of practice in answering justifications related to multistructural
levels might have contributed to the reduced performance.

Relational question justification scores. As reported earlier, relational question
justification scores revealed both a main effect (see table 21) and a statistically
significant, quadratic trend (see plot in figure 12). Pairwise comparisons, seen in table 22,
show that students showed statistical significance in better relational question
justification scores for log 4 (M=1.44, SD=.73) as compared to log 2 (M=.75, SD=.93). In
addition, the reduced scores seen from log 4 to 6 (M=.94, SD=.68), explain the existence
of statistically significant quadratic trend.

Relational and extended abstract answer justification scores. Students’ relational
answer justification scores in logs 1, 2, 4 and 6 show a non-significant, decreasing trend,
(see plot in figure 12). However, the decrease in ability can only be explained as chance
fluctuations, as evidenced by the non-significance of the omnibus F-test in table 21. With
regards to the extended abstract level, students’ abilities to justify meeting the criteria for
creating extended abstract questions and answers shows an increasing trend (see plots in
figures 13 and 14); the differences can be accorded to chance, as is seen from the non-
significance of the omnibus F-tests in table 21.

Justification scores for questions from log 2 to log 5. Following from the main
effect found in the seven justification scores for questions at all the three levels, pairwise
comparisons between the seven scores are reported in table 23. Students’ relational

question justification scores in log 2 (M=.75, SD=.93) showed statistical significance in
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being smaller than the extended abstract question scores for log 3 (M=1.50, $D=.89) and
log 5 (M=1.62, §D=.62), and relational question scores for log 4 (M=1.44, $D=.73) and
log 6 (M=.94, SD=.68; see table 23). This suggests that, from log 2 through to log 5,
students’ abilities to justify meeting the criteria for creating questions showed a
statistically significant improvement between logs 2 and 3; however, any differences in
justification scores for questions between logs 3, 4, and 5 can only be attributed to chance
fluctuations. The relatively higher values of scores of abilities for log 3 (M=1.50,
SD=.89), log 4 (M=1.44, SD=.73) and log 5 (M=1.62, SD=.62) as compared to those for
log 2 (M=.75, §D=.93) also suggest that students were able to more correctly state what
made their question relational or extended abstract between logs 3 and 5 than they did in
log 2.

Justification scores for questions in log 6. Students’ multistructural question
justification log 6 was statistically, of a significantly lower ability, the extended abstract
question justification for log 5 (see table 23). This result is not surprising, given that
students had never been required to justify why their questions were of a multistructural
nature until log 6. Students’ relational question justification scores for log 6 (M=.94,
SD=.68)were lower than each of the justification scores for questions in logs 3, 4 and 5;
in fact, I suspend judgment on the significance of each of the following mean differences
for justification scores related to questions: log 6, relational and log 3, extended abstract
(M=1.50, SD=.89); log 6, relational and log 4, relational (M=1.44, SD=.73); log 6,
relational and log 5, extended abstract (M=1.62, SD=.62; see table 23). In fact, students’
ability to justify meeting the criteria for creating relational questions in log 6 was

comparable to that of relational questions in log 2 (M=.75, $D=.93). Note also that
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students’ extended abstract question justification scores in log 6 (M=1.69, SD=.70) were
significantly higher than those for the multistructural question in log 6 and relational
question in log 6 (see table 23); in fact, the mean extended abstract question justification
score for log 6 (M=1.69) is the highest mean of all seven justification scores related to
questions. The low mean score for relational question justifications in log 6 is surprising,
given that students had ample practice in conducting such a justification and receiving
feedback from the instructor in logs 2 and 4, and that their justifications of meeting the
criteria for creating relational questions had, statistically, improved significantly from log
2 to log 4. This low score may be attributed to the fact that log 6 was written after the
posttest, and hence, students might not have engaged in writing log 6 and its
accompanying TAPE to the same degree as they would for the previous logs. However,
note that the hypothesized lack of engagement in completing log 6 did not affect
students’ justification scores for extended abstract questions. Perhaps students found it
easier to understand how to justify criteria for extended abstract questions than relational
questions while completing their TAPEs for log 6, because the criteria for writing an
extended abstract question are more familiar to students than those for relational levels.
Whereas relational level questions try to integrate ideas across readings or chapters and
make implicit connections, extended abstract questions basically looked for “real-life”
applications of theories.

Justification scores for answers. The main effect revealed for the nine
justification scores for answers at all three levels (multistructural. relational and extended
abstract) across the six logs, prompted a procedure of pairwise comparisons, the results of

which have been detailed in table 24. For the most part, students’ justification scores
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between log 1 and log 5 showed fluctuations that can be explained as chance occurrences
(range of Ms: 1.31 to 1.56, range of SDs: .62 to .81). Moreover, the high values of the
means (the maximum possible score was 2) indicated that students were, for the most
part, correctly stating their justifications in meeting the criteria for creating
multistructural, relational and extended abstract answers. Students’ multistructural
answer justification scores for log 6 (M=.75, SD=.23) was statistically found to be
significantly lower than both the extended abstract answer justification scores in log 5
(M=1.56, SD=.18), and the extended abstract answer justifications in log 6 (M=1.56,
SD=.16; see table 24). The relatively low multistructural answer justification scores in log
6 is not surprising, given that students only justified meeting criteria for creating
multistructural answers twice over the course of the learning logs, once in log | and once
in log 6; the lack of experience in writing such justifications explains the reduced score.
Another set of relatively low scores to note is the relational answer justification for log 6
(M=1.00, SD=.20). Note from table 24 that I have suspended judgment on the difference
between relational answer justification scores in log 6 and those for relational answers in
log 2 (M=1.50, SD=.16), extended abstract answers in log 5 (M=1.56, SD=.18) and
extended abstract answers in log 6 (M=1.56, SD=.16); although these differences did not
reach statistical significance, the decision to suspend judgment indicates that the
justifications scores of meeting assessment criteria for relational answers in log 6 were
relatively low. A possible explanation for the dip in relational answer justification scores
in log 6 could be the disengagement of students in writing their sixth and final log, as it
was due for submission after the posttest was completed. However, similar to the

discussion on justification scores for questions in log 6, the relatively high scores for
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extended abstract answer justifications in log 6 (M=1.56, SD=.16) is not explained by the
hypothesized disengagement of students. Again, a possible explanation for this high score
is a better understanding and familiarity with the criteria for extended abstract answers,
which looked for applications of theories, as oppose to the more implicit connections that
were required in a relational level answer.

Summary. The repeated measures analyses, pairwise comparison procedures, and
plots revealed the following about students’ justification scores for multistructural,
relational, and extended abstract questions and answers. First, students’ multistructural
answer justification scores showed a statistically significant depressed performance when
measured twice (logs 1 and 6), possibly due to a lack of exposure to this type of
justification. Second, students showed non-significant improvement in their extended
abstract question and answer justification scores across logs 3, 5 and 6. Third, students
showed a non-significant depression in their relational answer justification scores across
logs 1, 2, 4 and 6. Fourth, students’ relational question justification scores for log 4 was,
statistically, significantly better than their ability to do so in both logs 2 and 6. Fifth,
students’ justification scores for questions, from log 2 to 5, showed a statistically
significant improvement from log 2 to log 3, and chance fluctuations between logs 3, 4
and 5. Sixth, students’ abilities in justifying meeting the criteria for creating answers
revealed chance fluctuations from log 1 to 5. Seventh, students’ extended abstract
justification scores in log 6 were, for the most part, statistically found to be significantly
higher than the both the multistructural and relational justification scores for log 6. This

seventh finding suggests that students were, perhaps, more familiar with and better
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understood the criteria for the extended abstract level than the relational or multistructural
level.
Relationships Between Performance Assessments and Prediction Confidence

As a starting point to investigating the nature of the monitoring proficiencies,
relationships between performance assessments and prediction confidences were
explored. Table 25 shows the intercorrelations between performance assessments (upper

triangle) and prediction confidence (lower triangle), across the six logs.

Table 25

Intercorrelations between Performance Assessments (upper triangle) and Prediction

Confidence (lower triangle)

Logt Log 2 Log 3 Log4 Log 5 Log 6
Log 1 - 46 .38 A8 22 .26
Log 2 52" - A7 42 24 .28
Log 3 -.26 .06 - .09 25 .36
Log 4 21 15 49° - .35 56
Log 5 0 21 .05 31 - .09
Log 6 0 -.03 .03 .39 62" -

"Computed correlation coefficients are significant at or below the .05 level

While the performance assessment scores were largely uncorrelated, except for
one statistically significant correlation between the grades assigned for logs 4 and 6

(r=.56, p=.02), confidence scores for three pairs of successive logs showed statistically
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significant correlations (see table 25). The relatively low and insignificant
intercorrelations for performance assessments seem to suggest that the topics covered
within the learning theory curriculum were, most likely, diverse in content and varied in
their relative difficulty. The uniformly insignificant intercorrelations between
performance assessments across the six logs might give reason to dispel the notion of a
log-general performance ability.

Investigation of intercorrelations between prediction confidence scores.
Prediction confidence scores showed statistically significant correlations between the
following three pairs of logs: logs 1 and 2, r=.52, p=.03; logs 3 and 4, , =49, p=.05; logs
5and 6, , r=.62, p=.01 (see table 25). No other pairs of intercorrelations were found to be
statistically significant. A possible explanation for the statistically significant
intercorrelations could be the structure of the logs and the timing of instructor feedback
on the quality of the log. Since logs 1 and 2 had similar types of question-and-answer sets
(multistructural and relational), it might be of no surprise that confidence scores
correlated between the two. Further, students had an opportunity to internalize feedback
on the quality of the answers received for log 1 while tackling their assignment on log 2;
students’ confidence in prediction for log 2 might have been influenced by their
performance feedback on log 1.

The lack of a statistically significant correlation between prediction confidence
scores for logs 2 and 3 might be explained by the difference in the structure of the logs;
log 3 consisted of one multistructural and one extended abstract question-and-answer set,
while log 2 had one multistructural and one extended abstract question-and-answer set. In

addition, some students had not received feedback from the instructor on log 2while



writing log 3, and probably had to contend with using the feedback on log 1 to predict
their grades for log 3. However, feedback on the relational level question-and-answer sets
in log 1 would, perhaps, not be very useful to the students in writing their question-and-
answer sets for log 3, because log 3 was of a different structure than logs I and 2.
Moreover, log 3 was the first occasion for students to tackle writing a question-and-
answer set at the extended abstract level. Therefore, a more likely explanation for the
unrelated confidence scores between logs 2 and 3 could be the fact that students were
tackling a new structure of learning logs for the first time when they were completing log
3.

Despite the difference in structure between logs 3 and 4, students’ prediction
confidence scores for these two logs show a statistically significant correlation (r=.49,
p=.05). This suggests that prediction confidence scores for logs 3 and 4 are independent
of the types of question-and-answer sets that students were required to answer in these
learning logs. In the case of log 4, students may not have relied on their confidence
ratings for a similarly structured learning log (e.g., log 2), but instead on the confidence
ratings for the most recently graded learning log (i.e., log 3). This can be seen from the
lack of a statistically significant correlation between the prediction confidence scores on
logs 2 and 4, both of which had the same structure, but instead a statistically significant
correlation between prediction confidence scores for logs 3 and 4, as noted above.

Interestingly, the prediction confidence scores between logs 4 and 5, two logs
which are differently structured, do not show a statistically significant correlation. A
plausible explanation for this could be the fact that some students did not receive their

feedback for learning log 4 until after they had submitted log 5. This lack of feedback, as
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seen in the case of the prediction confidence scores between logs 2 and 3, might have
resulted in insignificant correlations between prediction confidence scores for logs 4 and
5 (r=.31, p=.23) as well. The low, insignificant correlation between the prediction
confidence scores for log 3 and 5 (r=.05, p=.86) indicates that similarity in structure of
logs did not influence the prediction confidence scores. The prediction confidence scores
between logs 5 and 6 (r=.62, p=.01) show a statistically significant correlation, though;
this points again to the lack of dependence between log structure and prediction
confidence scores. Another possible avenue for explaining the strong correlation in
prediction confidence scores between logs 5 and 6 is the fact that, since log 6 was written
after the examination and students had already received their feedback on log 5, students
might have used their most recently received feedback to make their predictions and
confidence ratings for log 6.

Partial intercorrelations between prediction confidence scores. To better
investigate the within-log relationship between performance assessments and prediction
confidence, [ computed partial correlations for the prediction confidence scores across the
logs, by controlling for any variance attributable to performance assessments. These
partial correlations yielded two statistically significant coefficients. The first was
prediction confidence scores between logs 3 and 4, partial r=.76, p=.01, the second was
prediction confidence scores between logs 5 and 6, partial =.65, p=.04. Across the six
logs, all but one of the partial correlation coefficients represented an increase in
magnitude as compared to their counterpart simple, bivariate correlations reported earlier;
the only exception was the coefficient for prediction confidence scores between logs |

and 2, which showed a reduced, insignificant, partial correlation of .31 at a p level of .38.
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It remained now to explain why the partial correlation coefficient for prediction
confidence scores between logs I and 2 reduced in its significance, while those for all
other correlations increased. One possible explanation would be that the prediction
confidence scores for log | might show significant correlations with various values of the
performance assessments scores across the six logs. [ therefore computed
intercorrelations between the six performance assessment scores and six prediction
confidence scores (see table 26 below) and discovered statistically significant coefficients
between prediction confidence scores in log | scores with performance assessments on
logs 2, 4 and 5. These strong relationships help explain that some performance
assessment scores did in fact contribute to the variation in students’ prediction confidence
scores for log 1, thereby causing the reduction in partial correlation coefficients involving
prediction confidence scores for log I.

Domain-generality of confidence judgments. The general improvement in
significance of the partial correlation coefficients for prediction confidence scores when
the variance accounted for by performance assessments is removed suggest that, for the
most part, the prediction confidence scores on one log were related to prediction
confidence scores on another log over and above the instructor’s assessments of
performance. However, the lack of a uniformly statistically significant set of correlations
between confidence in prediction scores makes it difficult to support the domain-general
hypothesis; if the domain-general hypothesis were true, confidence judgments should
show statistically significant associations regardless of performance assessments. Given
the small sample size being investigated in this study, [ would conjecture that the

improved partial correlation coefficients between prediction confidence scores when



performance assessments are controlled for, is an encouraging finding. Moreover, the
explanations offered for the patterns of statistically significant intercorrelations and
improved partial correlations between confidence judgments, show that for each of the
pairs of logs | and 2, logs 3 and 4, as well as logs 5 and 6, confidence judgments were
strongly related regardless of performance on the tests. Therefore, three distinct
confidence abilities or patterns might have been operating, one each across the three pairs
of logs | and 2, 3 and 4, and 5 and 6. While this does not support the existence of a
general confidence ability, which would in turn, support the domain- general monitoring
hypothesis, the three sets of confidence abilities reveal that confidence was not a log-
specific ability. While confidence judgments might have been related more significantly
and uniformly in a more controlled environment, the results from these analyses show
how confidence judgments unravel in a realistic learning environment for a complex,
writing task.

Relationship between instructor-assessed performances and confidence in
predictions. The different patterns of correlations observed in the intercorrelations for
performance assessments and prediction confidence scores lead me to contend that
within-log performance assessment and prediction confidence are not strongly correlated.
The within-log correlations between instructor assessed performance and confidence in
predictions (table 26) were as follows: log 1, .38; log 2, .12; log 3, .19; log 4, .01 log 5, -
.27; log 6, .53. Only the coefficient calculated for log 6 was statistically significant at a p
level of .034. Therefore, within each log, except for log 6, prediction confidence scores
were unrelated to performance assessments. Students’ prediction confidence scores for

log 1 showed statistically significant relationships with the performance assessments for
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logs 2, 4 and 5, however, there does not seem to be any meaningful explanation for these
relationships. Results from table 26 also reveal that students’ prediction confidence
scores for any one log were, for the most part, unrelated to their performance assessments
on the previous log; this suggests that an increased performance on one log did not
necessarily translate to an improved prediction confidence on the next log.

Table 26

Correlations between Performance Assessments and Prediction Confidence scores across

six logs
Performance Prediction Confidence Scores
Assessment
Log 1 Log 2 Log3 Log 4 Log5 Log 6

Scores
Log 1 .38 41 -.02 57 A1 11
Log 2 58" 12 -.12 .33 -31 -02
Log3 .20 01 .19 A7 -.14 .10
Log 4 .59° 13 -.54° .01 24 .26
Log5s .50° 25 -25 -.06 -27 15
Log 6 0 -.26 -.34 24 34 537

‘Computed correlation coefficients are significant at or below the .05 level

Summary. This exploratory correlation procedure and its accompanying
discussion leads me to contend that, first, performance assessments across logs | to 6
were largely unrelated possibly due to varying levels of difficulty in the content of the

course, as well as possibly due to the inherent differences in the domains of the content
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covered on a weekly basis. Second, prediction confidence scores showed statistically
significant relations between two successive logs, possibly only when feedback on
performance on the earlier of the two logs was received by the student before the later of
the two logs was submitted. Third, students’ prediction confidence scores between each
of the three pairs of logs | and 2, logs 3 and 4, as well as log 5 and 6 were statistically
found to be significantly related regardless of the performance assessment, providing
support for the existence of three distinct confidence abilities or patterns, each acting
across a distinct pair of logs. Fourth, students’ prediction confidence scores on any one
log acted, for the most part, without any significant relation to the performance
assessment on both the same log and the previous log. Fifth, students’ prediction
confidence scores were largely unaffected by the changing structure of the learning log
assignment.
Relations Between Performance Predictions, Performance Assessments and Prediction
Confidence

Intercorrelations between performance predictions. | next ran procedures to
compute intercorrelations among the performance prediction scores for all six logs;
calculated correlation coefficients are shown in the lower triangle of table 27. Students’
predicted performance on their learning logs showed several statistically significant
intercorrelations, specifically, between logs I and 4, logs 2 and 4, logs 3 and 4, logs 3 and
5, logs 3 and 6, logs 4 and 5, as well as logs 5 and 6. This suggests that, possibly, as
instruction progressed, students’ predictions on a log were related to their predictions on
the two or three most recently completed logs, most notably, regardless of the difference

in structure of the logs. In support of this contention, note how predictions for log 4 are
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related to those on logs 1,2 and 3; predictions on log 5 are related to those on logs 3 and
4, while predictions on log 6 are related to those on logs 3, 4 and 5. It is interesting to
note that predictions on logs 1, 2 and 3 are unrelated to one another, suggesting that,
during the first half of the course (i.e., logs | to 3), students predictions might have been
influenced by factors other than their prior predictions. The largely uniform, significant
intercorrelations between logs 3, 4, 5 and 6 suggest the appearance of a general prediction
ability after the first two logs.

Table 27

Intercorrelations among Performance Predictions (lower triangle) and Partial

Intercorrelations among Performance Predictions, controlling for Prediction Confidence

(upper triangle)
Log 1 Log2 Log 3 Log 4 Log 5 Log 6

Log | - 43 .52 72 .50 .19
Log2 45 - .30 35 13 -.36
Log3 4l 31 - .50 .61 46
Log 4 69° 48" .56 - 54 .36
Log 5 34 33 61° Sl - .80°
Log 6 34 -09 547 33 .76° -

‘Computed correlation coefficients are significant at or below the .05 level

Relation between within-log performance predictions and prediction confidence
scores. To explore relations between prediction confidence scores and performance

predictions, partial intercorrelations were computed among performance predictions



across the six logs, controlling for variation due to prediction confidence (see upper
triangle in table 27). There were no clear patterns of increased or decreased partial
correlations in comparison with the simple, bivariate intercorrelations shown in the lower
triangle. This suggests that within-log prediction confidence scores and performance
predictions displayed a complex, yet mostly insignificant relationship, as confirmed by
the six non-significant computed intercorrelations between prediction confidence scores
and prediction performances (see table 28): log 1, .36; log 2, .22; log 3, -.04; log 4, .12;
log 35, -.20; log 6, .36. The non-uniformity of the signs of the correlations shows that
students’ prediction confidence scores did not always increase with higher performance
predictions.

Relation between performance assessments and performance predictions. | also
explored relations between within-log performance predictions and performance
assessments (see table 29); the computed within-log correlation coefficients were as
follows: log 1, -.19; log 2, .60; log 3, .46; log 4, .14; log 5, .59: log 6, .37. Within-log
correlations for logs 2 and 5 were statistically significant at the .05 level. From table 29,
the other statistically significant correlations are between (a) performance assessments on
log 2 and performance predictions on log 3 (r=.49, p=.05), (b) performance assessments
on log 2 and performance predictions on log 4 (r=.58, p=.02), as well as, (c) performance
assessments on log 6 and performance predictions on log 3 (=61, p=.01). The
statistically significant correlations between performance assessments and performance
predictions for logs 2 and 5 suggest that more students were accurate in their predictions
for these two logs than in the other logs. In fact, for log 2, ten out of the sixteen students

perfectly predicted their grades, while for log 5, eleven students showed perfect
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predictions. Students’ predicted grades on log 3 being related to their performance on log
2 is surprising, because half the students did not receive feedback on their performance in
log 2 until after they had submitted log 3, and were preparing for log 4. Further, log 3
was of a different structure than log 2 and students were tackling the extended abstract
level for the first time in log 3. The performance predictions on log 4 being related to the
performance assessments on log 2 suggests that the delayed feedback on log 2 might have
affected the students’ performance predictions while they were writing log 4; there is also
a possibility that the common structure between logs 2 and 4 might explain the strong
correlation. To explore the effect of performance assessments on students’ performance
predictions, I computed partial intercorrelations between predicted performances,
controlling for any variation in the performance assessments. No uniform pattern of
increased or decreased partial intercorrelations for performance predictions were
observed, suggesting that, for this sample, performance predictions and performance
assessments influenced each other in an indiscernible manner.

Overall, performance predictions and performance assessments seem to share a
complex relationship. Performance assessments on log 2 show statistically significant
relations to students’ performance predictions on the two subsequent logs, despite the
change in structure of logs and the difference in content being covered across the three
logs. Statistically significant within-log relationships between performance assessments
and performance predictions on logs 2 and 5 suggest increased number of students
making accurate predictions.

Effect of prediction confidence on relationship between performance predictions

and performance assessments. To better understand how performance predictions and
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performance assessments were related, [ decided to view their relationship controlling for
the variability in prediction confidence scores. Within-log, partial correlation coefficients
between performance predictions and performance assessments, removing the variation
due to prediction confidence were as follows, log [, .002; log 2, .62; log 3, .63; log 4, -
.23; log 5, .51; log 6, .47. While none of the partial correlation coefficients were
statistically significant at the .05 level, there is an increase in their values for logs 1, 2, 3
and 6 as compared to their counterpart simple, bivariate correlation coefficient (see table
28 for the intercorrelations between prediction confidence and performance predictions).
This result suggests that the within-log relationship between predicted performance and
performance assessments for logs 1, 2, 3 and 6 existed over and above students’
prediction confidence, to the point where the relationship was strengthened when
confidence was kept constant. While the partial intercorrelations between performance
predictions and performance assessments for logs 4 and 5 is lower than the simple,
bivariate correlations, note how the change in intercorrelations for log 4, from an r of .14
to a partial r of -.23, is more drastic than that for log 5, from an r of .59 to a partial r of
.51. A glance at the intercorrelations between performance assessments and prediction
confidence scores (table 25) and intercorrelations between performance predictions and
prediction confidence (table 28) reveals possible explanations for the reduction in partial
correlation between performance predictions and performance assessments for log 4.
Performance predictions on log 4 shows statistically significant correlations with
prediction confidence scores on log 1 with a coefficient of .50, at a p level of .04.
Performance assessments on log 4 display a statistically significant, positive correlation

with confidence in prediction on log 1 (»=.59) and a statistically significant, negative
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correlation with confidence in prediction on log 3 (r=-.54), both at a p level of .05. These
statistically significant correlations reveal the source for the anomalous behavior of the
partial within-log coefficient between predicted performance and instructor’s assessment
of performance for log 4, but, unfortunately, do not provide a likely explanation for the
phenomenon. Apart from this anomaly, the within-log relation between students’
performance predictions and the performance assessments was strengthened, for the most
part, when variability due to prediction confidences was controlled.

Table 28

Intercorrelations between Prediction Confidence Scores and Performance Predictions

across logs.

Performance Prediction Confidence

Predictions Logl Log 2 Log 3 Log4 Log 5 Log 6
Log! .36 -.13 13 .08 11 -.12
Log2 46 22 01 A3 .05 17
Log3 .13 -.36 -.05 -0l -.16 .18
Log4 50° -.01 01 12 -.16 -.06
Log 5 .30 -.07 -24 -32 -.20 21
Log 6 0 -.30 -.01 -.11 17 .36

‘Computed correlation coefficients are significant at or below the .05 level
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Table 29

Intercorrelations between Performance Assessments and Performance Predictions across

logs

Performance Predicted Performances

Assessments Log 1 Log 2 Log 3 Log 4 Log 5 Log 6
Log | -.19 27 -02 .05 -.32 -.39
Log2 35 .60° 49° 58" 31 .0l
Log3 .19 .23 46 .28 14 .20
Log 4 .03 .26 .26 .14 .39 .33
Log$s -.14 32 29 .34 .59° .20
Log 6 -.14 -.03 61° .07 A7 37

‘Computed correlation coefficients are significant at or below the .05 level

Summary. The exploration of the relationship between students’ performance
predictions, instructor’s performance assessments, and students’ prediction confidences
leads me to the following conjectures. First, student’ performance predictions are
revealed as a general ability only after the first two logs. Second, students’ performance
predictions share a complex relationship with the prediction confidence scores, with
higher confidences not always resulting in higher predictions. Third, the within-log
relationship between students’ performance predictions and instructor’s performance
assessments is strengthened when variation due to students’ prediction confidence scores

are controlled.



Intercorrelations Among Prediction Accuracy Scores

The lower triangle of table 30 reveals the intercorrelations between the scores of
prediction accuracy across the six logs. Recall that prediction accuracy was calculated for
each student on each log by taking the absolute value of the difference between the
performance assessment and performance prediction for that log. Prediction accuracy
scores for log 3 showed statistically significant correlations with those for log | (r=.77,
p=.001), and for log 2 (r=.51, p=.05). In addition, prediction in accuracy for log 5 showed
statistically significant correlations with those for log 2 (r=.57, p=.02) and for log 3
(r=.58, p=.02). No other intercorrelations were found to be significant. The pattern of
intercorrelations seen in the prediction accuracy is neither similar to those seen for
performance assessment nor performance predictions. The results suggest that for the first
three logs, students’ prediction accuracy followed a similar pattern. The difference in the
structure of logs 1, 2 and 3 did not seem to affect the pattern with which students were
developing their prediction accuracy. Note, however, that subsequently, for log 4,
prediction accuracy scores were not related to any of the other accuracy scores on other
logs. Prediction accuracy scores for log 5 revealed strong relations with those for logs 2
and 3, suggesting that students reverted to predicting their performance with the same
accuracy as they were doing earlier in the course. Accuracies for log 6 are not related to
any of the other accuracies, perhaps due to the disengagement of students in completing
the final log after their posttest.

Relation berween prediction confidence and prediction accuracy. To explore
whether students’ prediction accuracy scores were affected by their prediction confidence

scores, I calculated partial intercorrelation coefficients for prediction accuracy scores
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across the six logs, after removing variance accounted for by students’ prediction
confidence scores (see upper triangle of table 30). While there are no clear patterns of
increased or decreased partial correlations as compared to the simple, bivariate
correlations in the lower triangle, notice how the partial correlations for prediction
accuracy scores between logs | and 3 (partial =.80, p=.006), logs 2 and 3 (partial r=.51,
p=.14), as well as logs 5 and 2 (partial r=.62, p=.05) show an increase from the simple,
bivariate, statistically significant correlations discussed earlier. Only one of the
statistically significant intercorrelations between prediction accuracy scores, namely
between logs 5 and 3, showed a decreased partial correlation coefficient when prediction
confidence was kept constant.

Summary. The results suggest that, first, students” prediction accuracy showed
patterns of a general ability only in logs 1, 2, 3 and 5. Second, students’ prediction
accuracy was related between logs 1 and 3, logs 2 and 3, and between logs 2 and 5

regardless of students’ confidence in predictions.
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Table 30
Intercorrelations among Prediction Accuracy scores (lower triangle) and Partial

Intercorrelations among Prediction Accuracy scores after removing the effect of

Prediction Confidence (upper triangle)

Log | Log?2 Log 3 Log4 Log 5 Log 6
Log 1 - .28 .80° -.20 .24 .68°
Log2 34 - Sl 17 62° .38
Log3 a1 SU° - -.35 32 45
Log 4 .30 27 .06 - -46 .20
Log5 43 ST 58 -.05 - .20
Log6 .20 15 17 A3 -.05 -

‘Computed correlation coefficients are significant at or below the .05 level

Relationships Involving Monitoring Proficiencies of Discrimination and Bias

Table 31 provides the intercorrelations for the two derived monitoring
proficiencies; correlations across the six discrimination scores is in the lower triangle,
while those for bias are in the upper triangle. Recall that discrimination measured
students’ ability to assign an appropriate level of confidence for their predicted
performances, while bias provided a measure of over and under-confidence in students’

judgments of prediction.
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Intercorrelations among Discrimination scores (lower triangle) and Bias scores (upper

triangle).
Bias
Discrimination
Log 1 Log Log 3 Log 4 og5 Log 6
Log | - 28 .62° 53 25 33
Log2 67 - 52 32 58 17
Log 3 67 .80° - .58 45 .16
Log 4 .18 55° .59° - .30 15
Log 5 31 48 56 52° - .28
Log 6 .14 35 .26 27 .36 -

"Computed correlation coefficients are significant at or below the .05 level

Exploring relations between discrimination scores. The correlations revealed in

the lower triangle of table 31 suggest the existence of two discrimination abilities or

patterns across two sets of logs, the first being logs [, 2 and 3 and the second being logs

2, 3, 4 and 5. Discrimination scores for log 6 were not correlated to any of the other

scores, most likely, due to the disengagement of students in writing their sixth and final

log, after having completed their posttest. Only one of the intercorrelations of

discrimination scores between logs 2, 3, 4 and 5 is anomalous; the intercorrelation

between logs 2 and 5 almost reaches significance (r=.48, p=.054). Apart from this

anomalous correlation value, the uniform set of statistically significant correlations

between logs 1, 2 and 3, as well as between logs 3, 4 and 5 reveal two distinct sets of
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discrimination abilities. This would suggest that students’ ability to discriminate correct
and incorrect items, by assigning an appropriate level of confidence to each of their logs’
predictions, showed evidence of possessing two distinct patterns, one across logs 1 to 3,
and another across logs 3 to 5. This finding is further supported by the increase in the
values of all statistically significant correlations when partial intercorrelation coefficients
were computed for discrimination scores, after removing the variation due to the
performance assessments. This suggested that the observed patterns of discrimination in
predictions acted over and above the performance assessments.

Relations between discrimination scores, performance assessments, and
prediction confidence scores. To further corroborate the existence of the two
discrimination abilities across the six logs, I calculated correlations between (a)
discrimination scores and performance assessments (table 32), (b) discrimination scores
and prediction confidence scores (table 33). Results of the correlational procedures reveal
few statistically significant correlations; those that were statistically significant between
discrimination and prediction confidence lay between the values of -.50 to -.63 (see table
33), while the only significant correlation between discrimination and performance
assessment was of the value -.71. Moreover, a glance at tables 32 and 33 also reveal non-
uniformity in the valence (sign) of the correlations. This suggests that both the
relationships between discrimination and performance assessment, as well as between
discrimination and prediction confidence are idiosyncratic, varying from log to log with

no discernible patterns in both magnitude and sign.
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Table 32

Correlations between Discrimination Scores and Performance Assessments.

Performance Discrimination

Assessments Logl Log?2 Log3 Log 4 Log 5 Log6
Log 1 -32 -.18 -.26 -21 -71° -.05
Log2 - 17 21 .33 g1 11 34
Log3 -38 -04 -.14 -.06 -.15 22
Log 4 .29 .30 34 .19 15 27
Log 5 -.12 .02 .09 45 -.13 -.02
Log 6 14 0l .14 .04 .03 47

“Computed correlation coefficients are significant at or below the .05 level
Table 33

Correlations between Discrimination and Prediction Confidence scores

Prediction Discrimination

Confidence Logl Log?2 Log 3 Log 4 Log5 Log 6
Log 1 -.18 .25 .14 33 -01 0
Log 2 07 .15 -.10 -23 -.52° -.39
Log 3 -38 -.31 =31 -.37 -.30 -.07
Log 4 -.63" -.38 -42 -.37 -.50° -.03
Log 5 24 15 -.05 -.12 -.15 .05
Log 6 -.05 -.18 -.07 .05 -.02 .05

‘Computed correlation coefficients are significant at or below the .05 level
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Relationships between bias scores. The values of correlation coefficients in the
upper triangle of table 31 reveal intercorrelations between students” bias scores across the
six logs. The uniformly positive signs for the coefficients suggest that students’ tended to
be uniformly over or under-confident; from the descriptive statistics for the bias in
prediction scores (table 11), it is clear the students were, for the most part, under-
confident of their predictions. The statistically significant correlations between logs | and
3 (r=.62, p=.01), logs | and 4 (r=.53, p=.03), as well as logs 3 and 4 (r=.38. p=.02)
suggest that a bias ability or pattern exists between these three logs. However. across the
other sets of logs, there are only two other statistically significant correlations. namely.
between bias in predictions for logs 2 and 3 (r=.52. p=.03), and for logs 2 and 5 (r=.58.
p=.02). It is tempting to suggest that a bias pattern exists between logs 2. 3 and 5.
considering, in addition to the two significant correlations between bias in prediction
scores for logs 2 and 5 and logs 2 and 3, that the correlation between bias in predictions
for logs 3 and 5 almost reaches significance (r=.43, p=.07). Overall. the results suggest
two distinct bias patterns, one across logs 1, 3 and 4. and another, less evident one. across
logs 2, 3 and 5. This finding is further supported by the increase in the values of all
statistically significant correlations when partial intercorrelation coefficients were
computed for bias scores, after removing the variation due to the performance
assessments. This suggested that the observed patterns of bias in predictions acted over
and above the performance assessments.

Relationship berween bias scores, prediction confidence scores and performance
assessments. To better understand the nature of the bias patterns that emerged from the

results of correlational analyses seen in table 31. [ computed intercorrelations between
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bias scores and performance assessments (table 34), as well as between bias in prediction
scores and prediction confidence scores (table 35). The lack of statistically significant
correlations between bias and performance assessments, as well as the non-uniformity in
valence (sign) of the correlations (see table 34) show bias and performance assessments
to be related in an eccentric fashion, with unpredictable variation from one log to the
next, in both magnitude and sign. A glance at table 35 demonstrates that similar
suggestions can also be made about the relationship between bias and prediction
confidence scores due to the lack of significant correlations (only two of 36 possible) and
the non-uniformity in the sign of the correlations.

Table 34

Correlations between Bias scores and Performance Assessments

Performance Bias

Assessments Logl Log 2 Log 3 Log 4 Log 5 Log6
Log! -.16 .16 .10 -.07 .26 -44
Log2 0 22 31 .16 43 -.24
Log 3 -.40 15 0 27 -.17 -.40
Log 4 -.22 .39 .08 0 52 .14
Log5 -.34 -.05 -.09 .07 14 .09
Log 6 -42 .55° -.06 -.15 .18 -.18

‘Computed correlation coefficients are significant at or below the .05 level
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Table 35

Correlations between Bias and Prediction Confidence scores

Prediction Bias

Confidence Log | Log 2 Log 3 Log 4 Log5 Log6
Log1 15 .20 .39 25 Sl .03
Log2 27 07 21 .20 39 08
Log 3 .26 -.11 31 28 =23 11
Log 4 -.10 34 22 A7 .18 -.19
Log5 28 .56 .09 .16 A5 .08
Log 6 -.08 44 0 -.02 22 -.05

‘Computed correlation coefficients are significant at or below the .05 level

Summary. The results of the correlational analyses on discrimination and bias in
predictions, reveals the following. First, students’ discrimination and bias in predictions
were each related in complex, idiosyncratic, but insignificant fashion with instructor’s
assessment of performances and confidence in predictions, suggesting that both these
measures of monitoring proficiency were affected, but not to a large extent. by
performance assessment and prediction confidence scores. Second. discrimination scores
revealed two distinct patterns, one across logs | to 3, and the other across logs 3 to 3.
Third, bias also revealed two distinct patterns, the first was across logs 1, 3 and 4, while
the second was across logs 2, 5 and 6.

Exploring Relationships Between Performance Assessments And Independent

Multistructural, Relational, Extended Abstract and Overall Performance Scores.
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In order to determine whether the performance assessments across the six logs
took into account how well students’ had met the assessment criteria for creating their
learning logs, I computed within-log correlations between the instructor’s assessments of
performance and the independent overall performance scores; these correlations were as
follows: log 1, .56; log 2, .67; log 3, .33; log 4. .73; log 5, .57; log 6, .85. Apart from the
coefficient for log 3, all other correlations between instructor’s assessment of
performances and independently calculated scores of performance were significant at a p
value of .02 or less. [t remained now to see whether there were any relationships between
the independent multistructural, relational, or extended abstract performance scores and
the performance assessments.

Relations between independently calculated scores for multistructural level sets
and instructor’s assessments of performance. Within-log correlation coefficients between
the independent multistructural performance scores and performance assessments across
the six logs were as follows: log 1, .37; log 2, .20; log 3, .13; log 4, .51; log 5, .22; log 6,
.15. Apart from the coefficient for log 4, which was significant at a p value of .04, all
other correlations were insignificant.

Relations between independent relational and extended abstract performance
scores and performance assessments. Recall that students created relational level
question-and-answer sets only for logs 1, 2, 4 and 6, while extended abstract level
question-and-answer sets were created for log 3, 5 and 6. I computed within-log
correlation coefficients between the independent relational performance scores with the
performance assessments for logs 1, 2, 4 and 6; the correlation coefficients, all

statistically significant at a p value of .02 or less, were as follows: log 1, .58; log 2, .63;
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log 4, .63; log 6, .63. Finally, within-log correlation coefficients between independent
extended abstract performance scores and performance assessments for logs 3, 5 and 6
were as follows: log 3, .38; log 5, .69; log 6, .79; apart from the coefficient for log 3, the
other two correlations were significant at a p level of .01 or less.

Summary. The correlational procedures employed to determine the nature of the
relationship between the independent performance scores and the performance
assessments across the six logs revealed the following. First, performance assessments
showed strong and statistically significant within-log correlations with the independent
overall performance scores. Second, independent multistructural performance scores
showed no significant relation with the performance assessment, however, the
independent relational and extended abstract performance scores showed significant
correlations with the instructor’ assessment of performance, except for log 3. This second
finding suggests that the instructor’s performance assessment on the log seemed to be
based solely on the criteria that were set for the relational and extended abstract level
question-and-answer sets, and not on the criteria set for multistructural level question-
and-answer sets.

Relation Between Justification of Meeting Criteria for Creating Learning Log
Questions/Answers And Monitoring Proficiencies

The final set of analyses pertains to the issue of whether, across the six logs,
students’ understanding of the assessment criteria had any relation with the monitoring
proficiencies of discrimination and bias. The TAPEs from each of the logs attempted to
measure students’ understandings of assessment criteria by asking them to justify how

they had met the criteria in creating, for the most part, their relational and extended
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abstract learning log questions and answers. To investigate whether students’ justification
scores for questions and answers at the relational and extended abstract levels was related
to their monitoring proficiencies, I conducted a set of correlational analyses, which are
detailed in this section. [ do not include students’ justifications of meeting criteria for
multistructural level questions and answers, because students had limited opportunity to
write such justifications; in fact, the justification for meeting criteria for creating
multistructural question was required only in log 6, while those for multistructural
answers were conducted twice, namely, log 1 and 6. On the other hand, from logs 1 to 5,
students were asked to justify meeting the criteria for creating their relational or extended
abstract level set, and in the case of log 6, students were asked to justify meeting the
criteria for creating both relational and extended abstract sets. It therefore, makes more
sense to determine the associations between students’ justifications for the relational and
extended abstract level of questions and answers with their monitoring proficiencies;
table 36 details these relevant correlations. Note also that bias and discrimination were
both measured on a scale of 1 to —1, while the justification items were measured on a
scale of O to 2.

Relation between justifications of meeting criteria for questions and bias scores.
Justification scores related to questions reveal a pattern in their within-log correlations
with bias across the six logs (table 36). Correlations begin with a small, insignificant
positive value of .06 (relational question for log 2) and steadily increase till a value of .33
(relational question for log 4) before dropping back to finally reach a small, negative
correlation of -.02 (relational question for log 6) and small, positive correlation of .10

(extended abstract question for log 6). Note, from table 11, that as students moved from
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logs 2 to 5, their scores for bias become increasingly negative, suggesting that students’
became progressively more under-confident in their predictions. From table 12, notice
that there is a steady increase in scores from logs 2 to 5, in students’ abilities to justify
meeting the criteria for question-related TAPE items. Bias scores for log 6 show students
to be relatively overconfident, while their justification scores for question-related items
vary significantly between the relational question for log 6 (M=.94, §D=.68) and the
extended abstract question for log 6 (M=1.69, §D=.70), as seen from the results of
pairwise comparisons conducted earlier.

The descriptive statistics from tables 11 and 12 and correlations reported between
the question-related justification items and the scores for bias in table 36 reveal that, first,
while students’ bias scores were at their most proficient during log 2, as understandings
of the assessment criteria for relational and extended abstract levels improved, students’
under-confidences increased. Second, while the correlations between the measure of
understanding the assessment criteria for questions and bias improved from logs 2 to 4,
they still remained insignificant, suggesting that bias and understanding of criteria for
questions are not strongly related. Third, the decrease in the significance of correlations
from logs 4 to 6 reveal that while students showed more variation in their understanding
of assessment criteria for questions (SDs for justification of criteria for questions from
logs 4 to 6 ranged from .68 to .72) , their scores of bias were more clustered (SDs for bias
in predictions from logs 4 to 6 ranged from .16 to .25). Fourth, for the most part, the
relation between bias in predictions and understandings of assessment criteria did not

seem to be affected by the changing structure of the logs; as noted from table 36, the
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within-log correlations showed an increase, peaking at log 4, subsequently decreasing
regardless of log structure.

Relation between justifications of meeting criteria for questions and
discrimination scores. Recall from table 11 that between logs | and 5, students showed
improved abilities to discriminate, that is, as logs progressed from log | to 5, students
were better able to assign an appropriate level of confidence to their predictions. A
distinct pattern emerges for correlations between students’ understandings of criteria for
questions and discrimination scores. Table 36 shows that, except for log 4, within-log
correlations between justifications of criteria for questions and discrimination are
negative and insignificant. These negative correlations range from -.19 to -.03, while the
only positive correlation is a small, insignificant value of .11. The results indicate that
discrimination and understanding of assessment criteria for questions are for the most
part, not related to one another across the six logs; however, the largely negative values
of the correlations suggests that increased understandings of criteria for questions do not
necessarily translate into improved abilities of assigning appropriate confidence levels to
predictions made.

Relation between justifications of meeting criteria for answers and bias scores.
Results from table 12 show that from logs | to 5, students’ justification scores for
answers showed slight fluctuations (range of Ms: 1.29 to 1.59, range of SDs: .62 to .80);
improvements were seen from log 1 to 2, after which, a slight depression in performance
occurred through logs 3 and 4, followed by an improvement in performance in log 5. In
log 6, results from the pairwise comparison conducted earlier show that there was a

significant difference between students’ abilities to justify meeting criteria for the
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relational question (M=1.00, SD=.82) and the extended abstract question (M=1.56,
SD=.63).

Correlations between justifications of meeting criteria for answers and bias did
not show any clear pattern. There were moderate correlations between justifications for
the relational answer in log | and bias for log 1 (r=.42, p=.09), and between justification
for the extended abstract answer in log 3 and bias for log 3 (r=-.42, p=.08). Overall,
however, the relationship between students’ bias scores and their understanding of the
assessment criteria for relational and extended abstract answers is log specific; the
difference in the valences across the six logs, as well as the insignificance of all the
correlations reveal the relationship to be, for the most part, idiosyncratic and weak.

Relation between justifications of meeting criteria for answers and discrimination
scores. Results from table 36, show that within-log correlations form logs | to 6, between
students’ understandings of assessment criteria for answers and their discrimination
scores are insignificant and fluctuate in their valence. This suggests that, while
discrimination scores showed improvement from logs 1 to 5, and students’
understandings of assessment criteria for relational and extended abstract answers
showed an overall improvement between logs [ and 5, the relationship between
discrimination and justification of criteria for answers was, mostly, a log-specific
phenomenon.

Summary. The results of the correlational procedures between the monitoring
proficiencies and the justifications for meeting the question and answer criteria revealed
the following. First, the relationship between students’ bias scores and their relational and

extended abstract question justification scores showed increasing associations from logs 2
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to 4, and decreasing associations between logs 4 and 6, despite differences in the
structure of the logs. Second, all other relationships between monitoring proficiencies and
justifications related to questions or answers were insignificant and for the most, part log-

specific phenomena.



Table 36 Within-log Correlations Between Justifications of Meeting Assessment Criteria and Monitoring Proficiencies
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Justifications of Meeting Assessment Criteria

Relational Wn_m::w:s_ Relational _N“MM__M”_ _wﬁ“ﬁ.__mw xn_m%:..__ wa_éo:s_ WWMMMM“_ _NMMMM”_ Wn_aiza Relational —Wﬂmmmm_ Wmﬁﬂmw
Answer Question Answer . Question Answer . Question Answer .
Log | Log 2 Log 2 OMnm:o: Answer Log 4 Log 4 Question Answer Log 6 Log 6 Question  Answer
og3 Log3 Log 5 Log 5 Log 6 Log 6

Bl 42 - - - - - - - - - - - .
DI -03 - - - - - - - - - - - -
B2 - .06 0 - - - - - - - - - -
D2 - -10 .26 - - - - - - - - - -
B3 - - - | -44 - - - - - - - -
D3 - - - -.19 .03 - - - - - - - -
B4 - - - - - 33 -.14 - - - - - -
D4 - - - - - A1 -.26 - - - - - -
BS - - - - - - - 22 07 - - -
D5 - - - - - - - -.08 -.03 - - - -
B6 - - - - - - - - - -02 A2 10 -.05
D6 - - - - - - - - - -.06 43 -.13 24

Note. n for all the logs was 17, except for log 6, where the n was reduced to 16. B denotes bias, D denotes Discrimination, the numerals 1 to 6 denote log
numbers (e.g., B represents bias score for log 1). No correlations were found to be significant. Dashes denote no correlations were calculated between scores
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Chapter 4: Discussion

Interpretation of Findings

Overview

One of the purposes of this study was to explore the development of monitoring
proficiencies of graduate learners in the context of a complex writing task; the writing
task, in this case, was a set of six weekly learning logs in the context of a graduate
Learning Theories course. Monitoring proficiencies included (a) discrimination, or
learners’ abilities to assign an appropriate level of confidence to their predictions of
grades on their learning logs, and (b) bias, or the degree to which learners were over or
under-confident in their predictions of grades on their learning logs. A second purpose of
this study was to explore the domain-generality and domain-specificity of graduate
learners’ monitoring abilities as they engaged with the learning log task. The domain-
general hypothesis contends that learners use context-general as well as context-specific
monitoring skills while completing learning tasks, while the domain-specific hypothesis
subscribes to the notion that learners’ monitoring skills are tied down to the context and
vary from one learning task to the next. Third, this study aimed to explore whether
learners’ performance on the learning log task was an accurate reflection of the extent to
which they were meeting the assessment criteria for the task. The fourth and final
purpose of this study was to explore the relationship between learners’ task understanding

and their monitoring proficiencies. Specifically, this study investigated the relationship
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between learners’ perceptions of the assessment criteria for the learning log task and their
monitoring abilities, as measured by discrimination and bias.

The discussion chapter of this thesis is organized in terms of the research
questions; these questions are directly related to the purposes of the study, which have
been restated above. The first of these questions explores how graduate learners’
monitoring proficiencies developed over the course of the instruction in the context of a
complex writing task. The second asks whether learners’ abilities to meet the assessment
criteria for a complex writing task are reflected in the instructor’s assessments of their
performances. The third and final question asks whether a relationship exists between
learners’ understandings of the assessment criteria for a complex writing task and their
monitoring proficiencies.

How do graduate learners’ monitoring proficiencies develop over the course of
instruction as they tackle a complex writing task?

Support for domain-generality of monitoring hypothesis. The results of this study
point to some interesting facets of graduate learners’ monitoring proficiencies in the
context of a complex writing task. While the performance assessments were, in large part,
a log-specific phenomena, with performance on one log mostly unrelated to performance
on another log, prediction confidence scores revealed three distinct abilities or patterns
across three successive pairs of logs. The three confidence patterns observed were
between logs | and 2, logs 3 and 4, and logs 5 and 6. In addition, the three pairs of
confidence scores for logs | and 2, logs 3 and 4, and logs 5 and 6, were related to one
another, over and above the performance assessments. This provides some support for the

presence of a general confidence ability, which manifested itself in the form of three
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unique patterns. While it is tempting to suggest that the results lend some support to the
domain-general hypothesis of monitoring, the discovery of three patterns of confidence,
cannot be taken to imply that there is a general confidence, and hence, a general
monitoring ability across the logs. Further research is necessary in determining the nature
of and the relationship that exists between distinct confidence abilities in the context of
complex writing tasks.

The partial support for a general confidence ability in adult learners engaging in
varying levels of difficulty with a complex writing task, mirrors, to a small extent, some
of the results revealed in Glenberg et al. (1987), Schraw et al (1995), Schraw & Nietfeld
(1998) and Weaver (1990). These researchers suggest that unrelated performance
measures and uniformly related confidence measures point towards domain-generality of
monitoring. Schraw and his colleagues’ examined the notion of domain-general
confidence and monitoring abilities in the context of tasks composed of multiple-choice
questions. My study provides encouraging evidence of such general confidence abilities
existing in a different context and points to the need to further explore how confidence
and monitoring abilities develop in the context of a set of complex writing tasks which
vary in their relative difficulty.

The results also suggested that learners’ prediction confidence scores on any one
log was not necessarily bound to their performance assessments on that log, which was
consistent with the results seen in Glenberg et al. (1987), Schraw et al. (1995) and
Schraw & Nietfeld (1998). Further analyses also revealed that prediction confidence on
any one log was related neither to performance assessment on the previous log nor to

performance assessment on logs of a similar structure. In other words, not only was there
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some evidence of a general confidence ability, which acted over and above performance
assessments, but also, prediction confidence scores and performance assessments were,
for the most, part unrelated across the six logs, in any meaningful way.

My resulits also suggest that prediction confidence develops as a unique pattern
across successive logs when feedback was available for the earlier log; this contention
needs to be further explored in future research within a framework of the nature and type
of feedback that promotes confidence and improved monitoring skills (see Butler &
Winne, 1995 for a review of feedback in the context of self-regulation).

Factoring the notion of performance predictions. An important aspect of my
thesis study is the investigation of the notion of performance predictions, and its relation
to the instructor’s performance assessments and students’ prediction confidence scores.
Neither of Schraw and his colleagues’ recent investigations (Schraw et al., 1995; Schraw
& Nietfeld, 1998) dealt with the notion of students’ performance predictions and how
these predictions might be related to their actual performance and confidence. Schraw
and his colleagues investigated monitoring in the context of multiple-choice questions,
and hence, students did not predict how correct their responses were, rather they stated
their confidence that their answers were correct. In fact, in Schraw and his colleagues’
studies, students’ were implicitly predicted perfect performance. Further, in these studies,
monitoring proficiencies were calculated using performance and confidence scores. In
my study, the notion of performance predictions adds a new dimension to measuring
monitoring proficiencies. Both the measures of monitoring proficiencies, namely,
discrimination and bias, take into account performance predictions, performance

assessments, and prediction confidence. I have shown that monitoring of performance in
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the context of complex writing activities needs to take into account students’ performance
predictions. I propose that when performance is not gauged simply in terms of “right”
and “wrong” answers, but is instead, mostly graded on a scale, then students’ monitoring
abilities need to account for any over or under-estimation of performance before
considering the effect of their prediction confidence.

Performance prediction, performance assessment and prediction confidence: A
complex relationship. Findings in my study indicate that as the logs progressed, students’
consistently predicted higher grades and had greater confidence in their predictions.
However, the relationship between prediction confidence and performance predictions
was highly log-specific, with no discernable patterns across logs.

One reason why both the instructor’s performance assessments and students’
performance predictions did not seem to have an effect on the learners’ prediction
confidence could be the fact that the content covered for the course may have varied
largely in its levels of difficulty. Recall that this difficulty factor also seems to have
played a large role in the log-specificity of the instructor’s assessment of performance.
Despite the fact that the students were performing the same task (learning log writing),
learners’ prediction confidence in their grades may have been guided by a factor such as
content difficulty or, even by a general monitoring ability, and not by their levels of
performance prediction or performance assessment. Put simply, an increase in
performance assessment or performance prediction did not necessarily prompt an
increase in prediction confidence. Interestingly, students’ performance predictions
seemed to develop into a general ability or pattern after the first two logs. This result

suggests the performance prediction behaved very differently from the instructor’s
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performance assessments. While performance assessments were log-specific, findings
suggest that performance predictions developed, after some engagement with the first two
learning logs, as a pattern, which acted across the remaining four logs. More research is
needed to reveal how performance predictions and performance assessments vary in the
context of complex writing tasks.

My findings also show that the within-log relationship between performance
predictions and performance assessments, though complex, acted over and above the
learners’ prediction confidence scores. The relationship between predicted and instructor-
assessed performance is for the most part, log-specific, variable in valence and
insignificant. The increased association between performance predictions and
performance assessments when variation due to confidence in predictions is removed,
supports the notion that measures of students’ performance need not necessarily, be
affected or, in turn, affect, their measures of confidence as they engage in complex
writing tasks.

Prediction accuracy pattern. Prediction accuracy, which was measured as the
absolute difference between performance prediction and performance assessment on any
particular log, showed signs of developing into a general ability or pattern across logs I,
2, 3 and 5. While the mean accuracy for log | was relatively high, between logs 2 and 5,
students’, on the average, were able to predict their performance to within a grade of
accuracy. These findings suggest that students’ possessed an ability to accurately predict
their grade across the four logs 1, 2, 3, and 5, regardless of the structure of the log and the
content covered in the course. Moreover, the increased association between the majority

of these four prediction accuracy scores when any variation due to confidence in
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predictions was removed, further supports the notion of a general accuracy ability or
pattern in graduate learners engaged in a complex writing task. This accuracy pattern
mirrors the prediction pattern discussed earlier, because it stands in stark contrast to the
log-specific performance ability.

Discrimination in predictions. Results suggest that students showed an increased
ability to discrimination, that is, as the logs progressed students were better able to assign
an appropriate level of confidence to their performance predictions. Findings from my
thesis study reveal the possible existence of two distinct discrimination patterns in
graduate learners engaged with complex writing tasks; the first pattern was found across
logs 1, 2, and 3, while the second was found across logs 3, 4 and 5. These results oppose
those that are found in Schraw et al.’s (1995) study, where discrimination was a domain-
specific phenomenon. One possible reason for this discrepancy is that the manner in
which discrimination was calculated for Schraw et al.’s study was very different from
that used in this thesis study. While a unique discrimination was calculated for each
individual multiple-choice test taken by learners in Schraw and his colleagues’ work,
discrimination for any one log, in the context of my thesis study, was related to
discrimination abilities calculated for previous logs. Given the difference in the context
which I was investigating, namely, complex writing tasks, I had decided to adapt the
calculation procedures for the measure of discrimination to take into account (a) the
progressive nature of the learning log task, (b) students’ performance predictions, (c)
instructor’s performance assessments, and (d) students’ prediction confidence scores. The
existence of two patterns of discrimination in students engaged in a complex writing task,

and the absence of a general discrimination ability in students engaged in semantic
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memory recall-based, multiple-choice tests for different domains reveal that students’
abilities to assign an appropriate level of confidence for their performance predictions
might vary from one type of academic task to the next. Thus, while my results support the
existence of two log-general patterns of discrimination, the differences observed in these
results with those of Schraw et al. (1995), suggest that discrimination ability might be
context-specific, and might vary with fluctuations in task difficulty. Due to the
exploratory nature of my thesis study, further research is necessary in exploring the
validity of comparing cross-contextual discrimination measures, some of which account
for learners’ predictions in performance and others, which do not.

Discrimination also revealed a complex relation with both prediction confidence
scores and performance assessments in terms of magnitude and valence, however, these
relations were mostly insignificant. Significantly correlated discrimination scores showed
improved association, over and above the instructor’s assessments of performance,
lending weight to the proposition that a general discrimination, and hence a general
monitoring ability was acting across the six logs. However, the lack of association
between confidence and discrimination, despite findings that supported the existence of
unique confidence and discrimination patterns, seem to diminish the support for the
domain-general hypothesis. If a general monitoring skill was apparent across the logs,
students’ abilities to appropriately assign a confidence level to predictions
(discrimination) should be associated with their prediction confidence. Similar
insignificant associations between discrimination and confidence are reported in Schraw
et al.’s (1995) study, however, they are unable to explain the reason behind this

occurrence. In the context of this thesis study, the difference in patterns of
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intercorrelations between confidence and discrimination offer a possible explanation for
the lack of relationship between the two measures; while confidence revealed three
distinct patterns between logs 1 and 2, logs 3 and 4, and logs 5 and 6, discrimination
abilities were revealed across logs I to 3 and across logs 3 to 5. This finding suggests that
discrimination and confidence develop independent of one another, at different stages,
across the six logs.

Bias in predictions. Results of analyses on bias scores revealed that students,
were, for the most part, under-confident of their performance. The results also suggest
that a general bias ability may exist across the logs and may manifest itself as two unique
patterns, one across logs 1, 3 and 4, and the other across logs 2, 5 and 6. This notion of a
general bias ability was supported by the increased association between significantly
correlated bias scores when variation due to the performance assessments was removed.
The findings mirror, to a small extent, those observed in Schraw et al. (1995) and Schraw
& Nietfeld (1998), where a general bias ability was found to be acting across different
domains of multiple-choice tests. However, in contrast to Schraw and his colleagues’
findings, bias and confidence did not show strong intercorrelations. The weak
associations between confidence and bias measures suggest that confidence and bias
patterns acted across a different set of logs. While confidence patterns were seen between
logs 1 and 2, logs 3 and 4, and logs 5 and 6, bias patterns were evident across logs 1,3
and 4, and to a smaller extent, between logs 2, 5 and 6. Bias and confidence abilities,
therefore, develop independent of one another, at different stages, across the six logs.

Investigating monitoring proficiencies in the context of complex writing tasks.

The above discussion provides a picture of how monitoring proficiencies developed in
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seventeen graduate learners across the six logs. The exploratory procedures employed in
the analyses provide preliminary evidence that learners’ monitoring proficiencies showed
a propensity towards being a general phenomenon across the logs, as opposed to being
specific to each log. While the measures of prediction confidence, performance
prediction, prediction accuracy, discrimination and bias, each revealed one or more
patterns that spanned across a set of logs, successful performance, as gauged by the
instructor, was the only variable that retained an essence of being specific to each
learning log. Support for the domain-general hypothesis would have been strongest if
performance measures were uncorrelated, and confidence, discrimination and bias were
uniformly correlated across the logs. Such a pattern of correlations would mean that
student prediction confidence and monitoring abilities were related across the logs
despite performance being a unique phenomenon to each log. The absence of such
uniform correlations suggests that the generality of monitoring proficiencies needs to be
further explored in the context of complex writing tasks.

The naturalistic context of this study makes it difficult to study whether any
domain-specific features of monitoring were present across the logs because (a)
performance feedback was not consistently timed with some students receiving delayed
feedback on logs 2 and 4, and (b) the difficulty level of the content varied across the six
logs. Further, the difference in the difficulty of the content being covered proves to be a
stumbling block in investigating the role that co-varying performance plays in the
variability seen in monitoring proficiencies like discrimination and bias. Future research
should control for these above-mentioned factors in an effort to develop a clearer picture

of monitoring abilities in the context of complex writing tasks.



159

Contribution to theory and practice. One of the purposes of this study was to
explore the development of monitoring proficiencies in graduate learners in the context of
a complex writing task. In achieving this purpose, I set out to determine whether the
results provided support for a domain-general or domain-specific monitoring skill.
Traditional modular theories have viewed cognitive skills as domain-specific (Fodor,
1983, Gardner, 1983, Glaser & Chi, 1988; Hirschfeld & Gelman, 1994), while
information-processing theorists have proposed and found support for the existence of
more domain-general skills (Borkowski & Muthukrishna, 1992; Paris & Bymes, 1989,
Brown, 1987; Pressley et al., 1987; Schneider & Pressley, 1989). Studies by Schraw and
his colleagues (Schraw et al., 1995; Schraw & Nietfeld, 1998) have supported the
existence of both domain-specific and domain-general types of monitoring skills; these
studies have been conducted mostly in the context of tests involving multiple-choice
questions that required recall of information from semantic memory or those that tested
fluid and crystallized ability, in college learners. My thesis study explores monitoring
proficiencies in the context of a more complex writing task with adult, graduate learners.
While monitoring ability has been shown to be a complex phenomenon in this study, the
results from analyses point towards the existence of a general monitoring ability that
spans across the writing task, namely, the six learning logs. It is also interesting to note
that confidence, discrimination and bias each reveal patterns across a different set of logs.
suggesting that monitoring ability might manifest itself in different types of proficiencies
depending on contextual factors such as difficulty of content being covered, nature and
timing of feedback, or structure of the writing task. It must be noted, however, that the

small sample size used in this study poses a stumbling block in making generalizations
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about the nature of learners’ monitoring proficiencies in complex writing tasks; future
research must therefore investigate this phenomenon with a larger sample.

Metacognition and monitoring are generally understood to be domain-general
phenomena (Brown, 1987; Pintrich et al., 2000; Schraw et al., 1995; Schraw & Impara,
2000; Schraw & Nietfeld, 1998; Tobias & Everson, 2000), however, it should be
reiterated that domain-general monitoring skills, while independent of domain-specific
monitoring skills and knowledge, generally complement them. Future research in the
investigation of monitoring of learning and performance in complex writing tasks should,
therefore, investigate which types of domain-specific monitoring abilities are, in fact,
present and are utilised by learners in such contexts. Moreover, it would be interesting to
test the existence of two types of general monitoring skills, one related to fluid and one
related to crystallized ability (c.f., Schraw & Nietfeld, 1998) in learners engaged in
complex writing tasks as opposed to tests of multiple-choice questions. Future research
should also investigate the relationship between discrimination and bias, and whether
these two proficiencies co-exist across similar types of tasks, or work independently of
one another. An important reason for investigating the existence of domain-specific
monitoring abilities is that effective self-regulation depends on proficient monitoring
(Pintrich, 2000; Winne & Hadwin, 1998; Zimmerman, 2000); if evidence exists that
monitoring proficiencies are linked with specific domains or contexts of learning, then
educators need to cater their instruction to improving monitoring proficiencies within
these domains in addition to encouraging the development of general monitoring abilities.

The resuits of this study also provide a strong platform for the investigation of the

developmental aspects of general monitoring knowledge and skills, an area of research
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that is currently being investigated by Schraw and his colleagues (see Schraw & Impara,
2000). Further research is needed to verify the possibility that monitoring in
contextualized domains is progressively generalized until it becomes a metacognitive
skill that spans cognitive domains. This developmental sequence has been well
researched over the past decade and a half as the good information-processing model,
after being initially proposed by Pressley et al. (1987), it has been elaborated by
Schneider and Pressley (1989), as well as Borkowski and Muthukrishna (1992), and most
recently applied to measurement issues in metacognition by Borkowski et al. (2000). In
short, the good information processing model contends that learners with higher-order
cognitive skills (a) initially attain strategy knowledge within a particular domain of
learning, (b) use this strategy knowledge to develop conditional metacognitive
knowledge of when and how to use specific strategies, and (c) build a repertoire of
general metacognitive and metastrategy knowledge for application across domains.
Further research with students engaged in complex writing activities should explore
whether and how monitoring proficiencies become more domain-general or domain-
specific in nature. For example, if the propositions from the good information processing
model are held to be true, then learners who are engaged in writing learning logs across
different graduate classroom settings might develop a general monitoring proficiency
after sufficient exposure and engagement with that specific type of writing task, across
different learning contexts, with each context varying in its level of difficuity.

The present study has provided some evidence of general monitoring abilities.
However, more research is needed to better describe the nature of these proficiencies and

their relation to one another. The small sample size for this study makes it hard to find
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moderately high correlations (e.g., values of .20 to .40) that are significant. Perhaps a
larger sample size might help in better pinpointing the behavior of the monitoring
proficiencies characterized in this study. Moreover, the inherent difficulties in using
different scales of measurement for performance, confidence, discrimination and bias
also pose serious threats to finding significant associations between the mentioned
measures. Since my thesis study’s investigations were conducted in a naturalistic,
graduate classroom environment, the difference in the scales of measurement is a
reflection of my adapting the instruments used in the study to the instructional protocol
developed by the instructor of the class. Further investigations of monitoring skills in
learners tackling complex writing tasks across a variety of academic contexts needs to
take into account this hurdle in the development of its scales of measurement.

Are learners’ abilities to meet the assessment criteria for a complex writing task reflected
in the instructor's assessment of their performance?

Learners’ performances on their six learning logs were graded by the instructor,
and they were also independently scored for the extent to which each of the question-and-
answer sets had created for the learning logs matched the assessment criteria outlined by
the instructor. The results revealed some interesting relationships and differences
between the instructor’s performance assessments and the independent overall
performance scores across the six logs. Both these measures of performance showed
statistically significant, increasing linear trends, indicating that overall, students’
performance on the learning logs improved as instruction progressed, whether
performance was assessed by the instructor or was independently scored. When

performance was assessed by the instructor, students’ performances showed significant
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differences between successive logs after the completion of log 3. In addition, the
instructor’s performance assessments on log 4 were significantly greater than each of
those on logs | and 2, while performance assessments on log 5 was significantly greater
than each of those on logs 1, 2 and 3, indicating that students’ performances rose sharply
after log 3. In comparison, when overall performance was independently calculated,
students’ performance between logs 2 and 6 showed chance fluctuations. The only
significant differences in independent overall performance scores that analyses revealed
were between logs 1 and 4, logs 1 and 5, and logs | and 6. Therefore, while the
independent overall performance scores on logs indicated that students were meeting the
assessment criteria, for the most part, to the same extent between logs 2 and 6, the
instructor’s assessment suggested that students’ performed significantly better once they
had completed their third log. One reason for the difference in observed trends could lie
with the fact that the instructor was assessing the students on more than just the explicit
assessment criteria; the element of growth that instructor intended to assess across the
learning logs was not clearly described in the course outline, and was perhaps, implicitly
constructed between the instructor and individual student as the instruction progressed
(see McCaslin & Good, 1996 for a related theoretical discussion on co-regulated
learning). This analysis would best be triangulated with qualitative data in the form of
interviews with the instructor and student; such a discussion is beyond the scope of this
thesis, but remains an avenue to be explored in the future.

Another reason for the observed difference in trends between the performance
measures can be found in the results of the correlational analyses between the instructor’s

performance assessments and the independent multistructural, relational and extended
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abstract performance scores. Recall that each of the logs | to 5 consisted of two question-
and-answer sets, one was multistructural, while the other was either relational or
extended abstract (log 6 consisted of all sets from all three levels). The final grade for any
given log intended to reflect the student’s overall performance on log, with an equal
weighting applied to each question-and-answer set. For the independently calculated
scores, the overall performance on any one log for any one student was the average of the
scores for the individual levels required for that log. Strong within-log correlations were
mostly observed between the instructor’s performance assessments and the independent
overall performance. Interestingly, though, performance assessments were not correlated
with the independent multistructural performance scores, but were strongly associated
with the independent relational and extended abstract performance scores. This indicates
that the instructor’s performance assessments seemed to be based mostly on the criteria
for relational and extended abstract levels and very little on those for the muitistructural
level. This discrepancy can account for the observed differences in trends between the
two measures of performance, namely, instructor’s assessments of performances and the
independently calculated scores of overall performance on the logs. This finding can be
best triangulated with qualitative interview data with the instructor as well as with the
learners. Future research should explore how an understanding of the assessment criteria
was developed among the learners.

The preceding discussion of whether the instructor’s performance assessment
takes into account learners’ ability to meet the assessment criteria is related to the
development of students’ understanding of academic tasks. In as much as ability to meet

assessment criteria is dependent on learner’s understanding of assessment criteria, the
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results suggest that students’ understandings of the criteria for the learning log task
played a role in their performance. In my thesis study, I measured students’
understanding of the assessment criteria for creating questions and answers, mostly at the
relational and extended abstract level. I explicitly asked students to respond to questions
such as, “Why do you think your question/answer is relational/extended abstract?”; these
questions were embedded in the self-assessment TAPE tool for every learning log.
Students’ showed, for the most part, a good understanding for the criteria for creating
answers across logs | to 5, regardless of whether the answers were relational or extended
abstract; this measure of understanding showed only chance fluctuations between logs |
and 5. Similarly, students’ understanding of the criteria used for creating relational and
extended abstract questions was also good, and showed chance fluctuations between logs
3 and 5. However, these measures of understanding of assessment criteria are insufficient
in explaining how students’ performance assessments showed significant improvements,
as revealed by the analyses, across logs 1 to 5.

As put forward by Hadwin (2000), as well as Winne and Hadwin (1998), I
subscribe to the notion task understanding involves not just learners’ perceptions of the
assessment criteria for the task, but also their “knowledge of self-as-learner”, which
includes their prior content and task-related knowledge. motivational and affective beliefs
as well as emotional states. Students’ task understandings develop dynamically as
instruction progresses, and hence, a static measure of students’ understandings of
assessment criteria, which does not take into account the “knowledge of self-as-learner”,
does not accurately reflect how students’ understandings of the learning log task

developed. The encouraging result, however, is that students’ understanding of the
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assessment criteria for both questions and answers was maintained at a relatively high
level for most of the logs; this provides evidence for the use of an instructional feature
that explicitly asks students for their perceptions of the assessment criteria for the
academic task (Butler, 1998; Perry, 1998, Perry et al., 2002; Perry & VandeKamp, 2000;
Venkatesh & Hadwin, 2002). It is important, however, to reiterate that a qualitative
analysis of interview data with the students will help better paint a picture of students’
task understanding; the interview data will help trace the various aspects of the
“knowledge of self-as-learner” that develop alongside the perceptions of the assessment
criteria for the task. Such a discussion, however, is beyond the scope of this thesis, but
should be considered as ideas that can be implemented for future research.

Are learners’ understandings and perceptions of the assessment criteria for a complex
writing task related to their monitoring proficiencies over the period of instruction?

The results of analyses involving the relational and extended abstract justification
scores and the monitoring proficiencies do not suggest more than the existence of a log-
specific relationship between monitoring ability and understandings of assessment
criteria for the learning log task. At the present time, to the best of my knowledge,
research has not focused on how monitoring abilities are affected, or in turn, affect
learners’ changing understandings of an academic task. Further research is necessary to
explore the relationship, if any, between task understanding and monitoring ability in the
context of complex writing activities; perhaps, qualitative methodologies can shed light

on their relationship.



167

Chapter 5: Conclusion

The findings from this study lend some support towards the existence of a general
monitoring ability in the seventeen graduate learners across the six learning logs.
Learners’ performances on their logs were a log-specific phenomenon, most likely due to
the differences in the difficulty level of the content being covered from one log to the
next. Prediction confidence, predicted performance, discrimination, bias and prediction
accuracy each displayed propensities towards a general ability and manifested itself as
cne or more unique patterns spanning across a set of logs. The results also pointed to a
discrepancy between observed trends in the instructor’s performance assessments and the
independent overall performance scores, indicating that the instructor might have
assessed learners’ performances on the logs based on more than just the explicit
assessment criteria outlined. Findings also revealed that learners’ understandings of the
assessment criteria were not related to their monitoring proficiencies.

Future research needs to explore the generality of the monitoring abilities
investigated in the context of complex writing activities. Research should also address the
extent to which learners use context-specific monitoring skills so as to better equip
instructors in improving both domain-general and domain-specific monitoring skills.
While the small sample size for this study hinders the generalizability of the findings, this
study provides a platform for future studies investigating monitoring proficiencies and
task understandings in naturalistic environments. Formal, systematic and longitudinal

investigations of key self-regulatory processes is essential in (a) finding empirical support
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for developmental issues in self-regulation and (b) implementing instructional features

that promote self-regulation in learning environments.
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Appendix A — Description of Multistructural, Relational and Extended Abstract Levels
and Criteria for Assessment of Learning Logs

LEARNING L 60% Due weekl
6 logs (36%) + weekly self assessment (6%) + growth over semester (8%)

The learning logs consist of 2 parts. They are designed to help you: (a) prepare for class,
(b) understand the material, (c) remember the material, and (d) evaluate your
understanding

Part 1: Generate and answer questions at each of the following levels. Answers should be
submitted to Firstclass® using the assignment form provided in your conference.
Questions and answers should be printed and brought to every class because they will be
central to class discussions. You will hand in your learning logs for grades 6 times over
the semester. Each log will be worth 6 percent of your overall grade, for a total of 36%.

Part 2: For each question, you will include a self-assessment using the form available in
your first class conference. This assessment will require you to identify: (a) your
interpretation of what you think you are supposed to do, (b) your confidence in your
answer, (c) the criteria you think will be used to grade your question and answer, and (d)
a letter grade. Collectively these self-assessments will constitute 6 percent of your overall

grade

Growth: I do not expect you to master question and answer logs immediately. I will also
be looking for growth over the semester. That is, through this course I expect you to learn
to ask better questions and provide more sophisticated answers. Growth may be
demonstrated in the form of mastery across logs, or revising logs, or writing a reflective
piece about your own growth at the end of the semester). This will constitute 8 percent of

overall grade.

Learning Log I: Answer a multistructural, relational, and extended abstract
questions I provide

Learning Log 2: Generate and answer | multistructural + | relational question
Learning Log 3: Generate and answer | multistructural + | extended abstract
Learning Log 4: Generate and answer | multistructural + | extended abstract
question

Learning Log 5: Generate and answer | multistructural + | relational question
Learning Log 6: Generate and answer a multistructural, relational, and extended

abstract question

Level of Explanation Examples
Question Depth
Multistructural Questions that test your knowledge of * Provide an example
relationships between ideas in the text. of important
These questions require you to select concepts.
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important ideas that are interrelated. Often
the interrelationship between these ideas
is made explicit in the text.

* explain cause-and-

effect relations.

e compare and contrast

alternative concepts

and claims
Relational Questions that require you integrate ideas analyze
across chapters and/or with prior assumptions

knowledge. These questions require you
do more with the material than is currently
stated explicitly in the text, or to make
connections that are implicit in the text.

underlying a
theory or a debate.
summarize models
and systems that
explain behavior.
evaluate the
quality or validity
of a hypothesis
and give evidence
to support your
view

Extended Abstract

Questions that require you to extend and
apply ideas from the text. These questions
require you to go beyond ideas presented
in the text while simultaneously
demonstrating your understanding of
those ideas and the content presented in
the text.

* apply principles to

real world situations
and explain how
they work.

invent new
hypotheses to
explain a situation
and justify how
those hypotheses
might be valid.

* generate and

evaluate alternative
solutions to
scientific or social
debates.

Criteria for grading learning logs

Logs will be assigned a letter grade as follows.

e Excellent thought-provoking questions that match the level of

depth

Challenges me or gets me thinking

Thoughtful answers that match the level of depth
Correspondence between questions & answers
Demonstrates exceptional understanding of course concepts

Above and beyond expectations —challenges course content
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Variations of some of the above

B+

Good questions that match the level of depih
Thoughtful answers that match the level of depth
Correspondence between questions and answers
Demonstrates some understanding of course concepts

Variations of some of the above

Weak questions that do not match level of depth
Weak answers that do not match level of depth
Mismatch between question and answer

Weak or inaccurate understanding of course concepts
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Appendix B - Task Analyzer and Performance Evaluator

Note: The Task Analyzer and Performance Evaluator (TAPE) will be administered for
each relational and extended abstract question-and-answer set students write in their
learning logs. At the end of the course, students will have 6 TAPEs. TAPEs will be typed
out in a FirstClass® message and students will submit their TAPEs online. TAPEs will
be completed after the students have written the relational or extended abstract question-

and-answer set for a particular week.

[. [s your question relational/extended abstract (as the case may be)? Why do you

think so?

1. Is your answer relational/extended abstract (as the case may be)? Why do you

think so?

. What grade do you think you will be awarded by X for your relational/extended

abstract question and answer set? (Choose one from A+, A, A-, B+, B, B-or C)

1. How confident are you that X will award you the grade you have selected in

question 3?7 Choose from one of the following options:

(a) Very Confident

(a) Somewhat Confident
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(a) Not so Confident

(a) Not Confident At All

1. In comparison to your classmates, how well do you think you have performed on

this relational/extended abstract question-and-answer set?

{(a) Much Better
(a) Somewhat Better
(a) Somewhat Worse

(a) Much Worse

1. How useful did you find the worked example/ question stem in producing this

question and answer set? Choose from one of the following options:

(a) Very Useful
(a) Somewhat Useful
(a) Not so Useful

{a) Not Useful At All

Note: Question 6 will be asked only in weeks 2, 3, 5 and 6. Questions will be rephrased

for subsequent TAPEs, depending on how students respond to them.
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Appendix C: Consent Form

CONSENT FORM TO PARTICIPATE IN RESEARCH

This is to state that I agree to participate in a program of research being conducted by

Vivek Venkatesh, X and Y of the Z University.

A. PURPOSE

I have been informed that the purpose of the research is as follows:

1) To explore the changing interpretations, assessments, and self-assessments in
graduate students’ understanding of an academic task (viz., learning logs) over the
period of a course.

2) To test and evaluate a dynamic assessment tool used in conjunction with
instructional approaches aimed at helping graduate students (a) better understand
the academic task (learning logs), (b) better evaluate their own performance, and
ultimately (c) improve their academic performance in authentic learning
environments.

3) To evaluate the effectiveness of two instructional scaffolds to improve learning

log performance.

B. PROCEDURES

» Participation in this research does not involve any additional work beyond course

requirements (with the exception of an optional interview described below). All
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students, regardless of their participation in the research, will have to meet all the

requirements, as described in the course outline, to successfully complete the course.

You will be assigned to one of two tutorial group for the duration of the course. Your
group will be managed by either X or Y. Over the length of the course, both of the

groups will be receiving similar instructional scaffolds to help complete the required

assignments.

For students who also agree to participate in the interview portion of the research,
interviews will be held three times at your convenience, over the course of 7 weeks.

The total time involved will be three hours maximum.

The research project you are consenting to participate in is concerned with your
understanding of and performance in learning log component of the class and your

subsequent performance in the examination.

Only Vivek Venkatesh will be aware of who has consented to participate in the
research. X and Y will not be made aware of the identities of any of the participants
until after the final submission of grades. This means that if you consent to participate
in this project, your materials (i.e.. the learning logs, self-assessments. X's assessment
of your logs and examination grades and interviews) will be made available to the

research team only AFTER the final submission of grades
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Reporting of results will maintain confidentiality. That is, only the researchers will
know the identity of the persons participating in the project. Your materials will be
used solely for the purpose of the stated research, and no names will be revealed

during the course of the writing of the report.

Names will be removed from the datafile of grades and from assignments themselves.
This will ensure that your fellow graduate students do not know your individual
grades. One exception to this is that students who are interviewed by Vivek

Venkatesh will be discussing their grades as part of the interview.

If you have any questions or concerns about the research, please direct your enquiries

to Vivek Venkatesh before signing this consent form.

If you wish to withdraw your consent to participating in the research at any time,
please contact Vivek Venkatesh (e-mail: vivek.venkatesh @education.concordia.ca,
phone: 739-9067) or W (Graduate Program Director). You are free to discontinue at

any point in time during the course.

CONDITIONS OF PARTICIPATION

Please check off all the boxes that apply to your chosen level of participation in the

research:

] I consent to release my learning logs, self-evaluations, X's assessments of my

learning logs, tests and performance for the purposes of the research.

AND
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[ I consent to participate in interviews three times over the course. These interviews
will focus onmy self-assessments and performance on the learning log component of

the Learning Theories course

* I understand that I am free to withdraw my consent and discontinue my participation

at anytime without negative consequences by contacting either W or Vivek

Venkatesh

¢ [T understand that my participation in this study is CONFIDENTIAL (i.e., the

researcher will know, but will not disclose my identity)

* T understand that the data from this study may be published.
[ HAVE CAREFULLY STUDIED THE ABOVE AND UNDERSTAND THIS
AGREEMENT. [ FREELY CONSENT AND VOLUNTARILY AGREE TO

PARTICIPATE IN THIS STUDY.

NAME (please print)

SIGNATURE

WITNESS SIGNATURE

DATE




Student ID no.
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Appendix D — Test of Prior Knowledge

1. When Robert’s classmates no longer showed approval of his clowning, his clowning
behaviour occurred less frequently. The concept best exemplified by Robert’s change in
behaviour is

(A) extinction

(A) discrimination
(A) generalization
(A) transfer

(A) learning set

2. A child who is frightened by a dog and develops a fear of dogs is exhibiting which
principle of learning

(A) negative transfer

(A) behaviour shaping
(A) stimulas generaliztion
(A) cognitive dissonance
(A) discrimination

3. George Miller’s research finding that humans can process seven plus-or-minus two
pieces of information applies to which type of memory?

(A) long-term

(A) episodic

(A) sensory register
(A) short-term

(A) implicit

4. Making the amount of time a child can spend playing video games contingent on the
amount of time the child spends practicing the piano is an illustration of

(A) primary reinforcement
(B) law of association

(C) aversive conditioning
(D) classical conditioning
(E) operant conditioning

5. Which of the following is a secondary reinforcer?

(A) food
(B) warmth
(C) water
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(D) money
(E) sex

6. According to information processing theory, information is progressively processed by

(A) long-term memory,short-term memory,and then sensory memory
(B )sensory memory,short-term memory,and then long-term memory
(C) sensory memory,semantic memory,and then long-term memory
(D) short-term memory,semantic memory,and then long-term memory
(E) short-term memory,long-term memory,and then sensory memory

7. In an approach-avoidance conflict,as the person nears the goal, the levels of attraction
and aversion change in which of the following ways?

(A) both increase

(B) both decrease

(C) attraction increases and aversion decreases
(D) attraction decreases and aversion increases
(E) both are extinguished

8. A young child breaks her cookie into a number of pieces and asserts that ‘‘now there is
more to eat.”” In Piaget’s analysis, the child ’s behavior is evidence of

(A) formal logical operations
(B) concrete logical operations
(C) conservation

(D) preoperational thought
(E) sensorimotor analysis

9. Anxiety over performance can positively motivate school achievement in children as
long as the degree of anxiety is

(A) very high
(B) high

(C) moderate
(D) low

(E) very low

10. According to Jean Piaget, cognitive development begins with which of the following?

(A) preparations

(B) concrete operations
(C) intuitive thought

(D) sensorimotor activities
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(E) formal operations

1 1. If reinforcement is to be most effective in learning, it should be

(A) provided as sparingly as possible

(B) used on a regularly scheduled basis

(C) used primarily with high achievers

(D) delayed until the end of the learning period

(E) provided soon after the desired behavior occurs

12. The recall memory of an older child is generally better than that of a younger child
because the older child

(A) has better perceptual abilities

(B) can organize information better

(C) engages in concrete thinking

(D) does not have to categorize information
(E) recognizes information more easily

13. In situated cognition procedural knowledge (knowing how) and declarative
knowledge (knowing that) should be taught in what order?

(A) procedural, and then declarative

(A) declarative, and then procedural

(A) procedural only (i.e., you can’t teach declarative knowledge)
(A) declarative only (i.e., you can’t teach procedural knowledge)
(A) declarative and procedural simultaneously

14. According to Ausubel, instructional materials should be sequenced from the general,
broad topics to the specific pointing out finer distinctions. This is based on his idea of

(A) shaping

(B) progressive differentiation
(C) integrative facilitation
(D) differential reinforcement
(E) prompting and fading

15. Bruner's stage of development that is most similar to Piaget's formal operation stage
is the .
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(A) symbolic stage
(B) abstract stage
(C) iconic stage

(D) operational stage
(E) enactive stage

16. Which of the following educational ideas was developed by Bruner?

(A) learning hierarchies

(B) programmed instruction
(C) spiral curriculum

(D) mastery learning

(E) all of the above

17. Memory schemas, or "schemata,” serve as representations of our:

(A) innate knowledge.
(B) specific knowledge.
(C) generic knowledge.
(D) episodic knowledge.
(E) iconic knowledge

18. According to schema theory, having a broader understanding of a situation or story:

(A) always improves memory by providing context.

(B) always hurts memory by confusing new events with old information.
(C) both improves and hurts, for the above reasons.

(D) does little to affect the quality of memory.

(E) does little to affect the quantity of memory

19. Which of the following is not true of constructivist teaching?

(A) The teacher allows the students to have more control over what they do in the

learning process.
(B) It is important to respect what students already know before they ever enter the

classroom.

(C) Students are encouraged to select projects based on their own interests.

(D) Effective constructivist teachers spend more time giving information to passive
students.

(E) Students are encouraged to collaborate with others.

20. Bandura calls the learners’ confidence in their abilities to learn specific content

(A) self-mastery
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(C) internal reinforcement
(D) self-efficacy

(E) self-concept

21. According to Bandura we can learn in classrooms through observation of others by a
process called

(A) indirect integration

(B) vicarious reinforcement
(C) process recall

(D) independent cognition
(E) situated cognition

S8
[§8]

. For Vygotsky the zone of proximal development refers to the

(A) student’s level of maturation

(B) difference between the student’s stage of development and the instruction

(C) area in which the student will learn without reinforcement

(D) area benveen what the student can learn alone and can learn with help from a
teacher or more competent peer

(E) region of the brain that develops when children are able to do formal operations
tasks

23. Which of the following is NOT one of the five types of learning trajectories

(A) peripheral
(A) inbound
(A) insider
(A) boundary
(A) proximal

24. According to situated cognition theories, semiosis is be defined as:

(A) a process whereby knowledge of the world is mediated through signs, symbols
or indexes

(A) a process whereby inforr.:auon is stored by the human processing system

(A) a process whereby knowledge becomes increasingly abstract

(A) a process whereby an individual engages in cognitive apprenticeship
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all of the above

25. Vygotsky differs from Piaget in that Vygotsky

(A)
(B)
©
(D)
(E)

has 3 developmental stages rather than 4

thinks teachers can accelerate cognitive growth
sees learning as a passive acquisition of knowledge
accounts for learning solely by maturation

all of the above

26. According to constructivist theory, which method of instruction would NOT promote
deep learning

(A)
(B)
(©)
(D)
(E)

collaborative learning
hypermedia
problem-based learning
role plays

none of the above

27. Which of the following best illustrates metacognition

(A) Memorizing terms and definitions from the textbook
(B) Monitoring one's comprehension while reading

(C) Listening to the radio and studying at the same time
(D) Retrieving information from short-term memory

(E) Retrieving information from long-term memory





