INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Software Visualization

PeiLing Li

A Major Report

In
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University
Montreal, Quebec, Canada

March 2003

© PeiLing Li, 2003

l * l National Library sl?lioﬂ‘\éque nationale

of Canada
isiions and sitions el
%Mb Services ::qrv%es bu"bliggraphiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Otawa ON K1A ON4
Canada Canada
Your Sis Vowe réliverce
Our fia Notre rilérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. 1a forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-77917-3

Canadi

Abstract

Software Visualization

Peiling Li

Software visualization is a significant force in software engineering. As the sizes of
software systems are becoming larger and more complex, program comprehension is
becoming more difficult. The tasks of program comprehension involve implementation,
maintenance, testing, debugging, menta! model construction and verification. Software
visualization is one promised way to support the tasks of program comprehension.
Through software visualization, graphics and animations are built to help illustrate and
present the computer program. In recent years, many related visualization techniques
have been developed and used to build visualization tools. The major goal of

visualization tools is to support program comprehension.

TABLE OF CONTENTS

L INtrOdUCHION. .. e e e e e |
2.The background of visualization and program comprehension.......................... 3
2.1 Program Comprehension.oovuieiniiniiiiiiiii e 3
2.2 Cognitive MOdelS.oooiiiiii 6

2.2.1 Bottom-up program cOmprehensiON.oooviriiiiiimiiiiiiieieetereeeenanns 7
2.2.1.1 Shneiderman’s Model...........co i 7
2.2.1.2 Pennington’s Model.........cooiniiiii 9

2.2.1.3 Comparison of Shneiderman’s model and Penning’s model.......................... 10
2.2.2 Top-down program COmMPrehenSiON. oouiueiririiniiii e, 11
2.2.2.1 Brooks” Model.....coonuineiniiiii e 12
2.2.2.2 Soloway and Ehrlich’'s Model..........c..ooooiiiii 14
2.2.2.3 Comparison of Brooks’ Model and Soloway and Ehrlich’s Model.................. 16
2.2.3 Opportunistic Program Comprehension.............cooooiiiiiiiiiiin. 17

2.2.3.1 Letovsky’'s Model......coooeiiiiiiiiii 18

2.2.3.2 Comparison of Letovsky’'s Model............coiiiiiiiiii e 19

2.2.4 An Integrated Meta-Model of Program Comprehension...................coceeiiiine 20
2.2.4.1 Comparison of the Integrated Meta-Model..................oiiiiiilL 21
3. Software Visualization and Related Techniques.....cccceceviiiiaiiiiiiiiiicainciiionen 23
3.1 Reverse Engineering.......coooviniiiiiiiiiiiiiiiii e 23

3.2 Information Visualization Techniques.............cooiiiiiiiiiiiiiiie 26
TR0 U 5 17 51 (1€ S S 27

iv

3.2.2 Focus + Context (Fisheye VIEWS).......cooiriiiiiiiie e 29

3.2.3 Shading/ Color/ TEeXLUIE........ueuimitiniiieieeieie et e et 31
3.2.4 Dimension 2D Versus 3D......cooeiniiiiiiii e 33
KT T-N (1111111 o)« DO OSSR 35
3.3 Software Visualization............cooviiiiiniiiii e 37
3.3 StAC VIBW .o eininititiiie et ettt e eee e e b eeaas 38
3301 StUCIUTAL. ..ottt 38
3.3.1.2 Use Case Diagram.........ooouininiininiiiiiiiiie ettt 39
3.3.1.3 Class Diagram.c.ouninuiininiiiiiit et e 40
3.3.1.4 DFD (Data Flow Diagrams)..........ccooeiiiiiniiiiiiiiiiieie e 41
KT T BRI (=15 11 | S PP PTPSUR RS SPU 42
3.3.1.6 HyperboliC SPace.........ouiuimiieiiiiiiie e 44
3.3.2DyNamic VIBW.....ouiuiiininiiiiee et 45

3.3.2.1 Behavior — show dynamic system behavior from a forward engineering

013 65701610 1 46
3.3.2.1.1 Sequence Diagram..........coouiiiiiiiiiiiitiii 48
3.3.2.1.2 Collaboration Diagram..........cccoooeiiiiiiiiiiii 49
3.3.2.1.3 State DIagrami........cooouiiiiiiiiiii e 50

3.3.2.2 Program Executions - show program executions from a reverse

T4 b 11T 1 =0 PR PR 52
3.3.2.2.1 Sequence DIiagram.........coviniiriiniiiii e 53
3.3.2.2.2 Collaboration Diagram...........cccooiiiiiiiiniiiiiii e 54
4. Survey of Software Visualization Tools........cccceeeriaieniaieiainiecriiiaiiiecei. 56

4.1 Visualization Tools For Bottom-Up Program Comprehension........................... 56

4.1.1 VIFOR and VIFOR 2.t 57
G I2POLKA. ...t s 57
413 ANIMAL. ..o 58
B L8 SEESYS. et 59
4. 1.5 RatioNal ROSE...c.ciniiiiii i 60
4.1.6 Features of Visualization Tools Enhancing Bottom-Up Comprehension............. 61
4.2 Visualization Tools For Top-Down Program Comprehension........................... 65
B2 L Hy oot e 65
4.2.2Jambalaya.oconiniitii e 66
4.2.3 Rational ROSE.......ooeniniieinit it 67
4.2 .4 Features of Visualization Tools Enhancing Top-Down Comprehension............. 69
4.3 Visualization Tools For Opportunistic Program Comprehension........................ 71
B3 1 RiGi e e 71
B3 2 PUL oo e 72
4.3 3 FUJaba....ceiii e 73
4.34TImagix 4Do e 74

4.3.5 Features of Visualization Tools Enhancing Opportunistic

ComPrehension. ..ot e 74
5. SUMMATY.cccictiierioresierecesracerssesensessnsescacssassssssessnscsssasasssssssasssoscssosnnans 80
Refrences.ooiiit i s 81
APPENdiX........o.oiiini e 93

vi

LIST OF FIGURES

Figure I Program Creation..........coooiuiiiiiiiiii e eeee e, 5
Figure 2 Program Comprehension............o.oooiiiiiiiiiiiiiiiiiiecee e 5
Figure 3 Shneiderman’s Model..............c.oooiiiiiiii 8
Figure 4 Penning's Model.........ccoooiniiniiiiii e 10
Figure 5 Brooks’ Comprehension Model...................oo 14
Figure 6 Soloway & Ehrlich’s Model................oooi 16
Figure 7 Letovsky's Model.......cooiiiiii 19
Figure 8 Integrated Code Comprehension Meta-Model.......................o 20
Figure 9 Reverse Engineering Process...........cooooiiiiiiiiiiiiiie 25
Figure 10 A hypertext Document with Hyperlinks.................oo 29
Figurell An Example of Fisheye View...........oooiiiiii s 30
Figure 12 Simulating a Solid Object On a 2D Image Plane.....................ooiiiiis 34
Figure 13 An Example of Horizontal Cone Tree From InXight........................ 35
Figure 14 A Use Case Diagram for Renting and Paying Bill in A VideoRenting

3£ (=) 1 VR 40
Figure 15 A Class Diagram for Class Customer in A Video Renting System............. 41
Figure 16 Typical 3- Level Tree Structure with Numbers Indicating Size

of Each Leaf Node.......ccoiviiiiiiiiii e 43
Figure 17 Tree-Map of Figure 16...... ..o 44
Figure18 An Example of Hyperbolic Browser............c..oooiiiiiiiiiii 45
Figure 19 The Catalysis Specification and Design Micro-process................c.....c... 47
Figure 20 A Sequence Diagram for Renting Items in A Video Renting

3£ 1) ¢ o T 49
Figure 21 A Collaboration Diagram of Renting Item in A Video Renting

A3 () o T P PP 50

vii

Figure 22 An Activity Diagram for Use Case: Rent Item in A Video Renting

N0 £ o VU g P 52

viii

LIST OF TABLES

Table 4.1 Features of visualization tools that enhance bottom-up comprehension....... 62
Table 4.2 Features of visualization tools that enhance top-down comprehension.........69

Table 4.3 Features of visualization tools that enhance opportunistic comprehension....75

1. Introduction

Software visualization is a significant force in software engineering. As the sizes of
software systems are becoming larger and more complex, program comprehension is
becoming more difficult. The tasks of programming, understanding, and maintaining are
becoming more and more difficult because the size of software systems is increasingly
larger and complex. Software visualization (SV) is one promised way to support these
tasks. Software visualization consists of the use of computer graphical artifacts and
animation to help illustrate and present computer programs, processes, and algorithms.
Roman and Cox define program visualization as the mapping from programs to graphical
representations [RC92]. Software visualization is necessary because software is a textual
expression; it seems the only way to have a global view of the system by reading the
source code. When the information amount is large, the reader is overwhelmed with
information. Graphical representations have been recognized as having an important
impact in communicating from the perspective of both writers and readers [LW86]. The
use of software visualization for program understanding or comprehension is the act of
perceiving the meaning and structure of a program. Additionally, program comprehension
is also useful in program debugging and testing. Programmers must understand programs
to devise complete and comprehensive test cases and to locate bugs. The need for tools to
support program comprehension is well documented [Oman90]. Visualization tools
should support the user in the performance of program comprehension tasks during
implementation, maintenance, testing and debugging, to aid the user in the construction

of a mental model, and the performance of program strategies.

The remainder of this paper will be organized as follows: Section 2 discusses the
background of visualization and program comprehension, Section 3 discusses software
visualization and related techniques, Section 4 summaries visualization tools, Section 5

presents a summary.

2. The background of visualization and program comprehension

Software engineering is concerned with improving the productivity of the software
development process and the quality of the systems it produces. However, as currently
practiced, the majority of the software development effort is spent in maintaining existing
systems rather than developing new ones [Rug81]. Estimates of the proportion of the
resources and time devoted to maintenance range from 50% to 75%[Boe81, ST78].
Maintenance can be defined as the managing processes of system change [Boe81, ST78].
Maintenance is difficult and expensive for various reasons, such as, the original source
code writer leaving, documentation being lost, out of date, or incomplete. In fact,
maintenance occurs over the whole life cycle of software. The activities of maintenance
include fixing problems, adapting to the new environment, adding new features. However,
it is only in recent years that work on program comprehension has become an
independent discipline closely linked to the field of software maintenance. Program
comprehension activities have a destructive effect on the productivity of maintenance
programmers. Comprehension is estimated at 50% - 60% of the maintenance effort. In
fact available estimates indicate the percentage of maintenance time consumed on
program comprehension ranges from 50% up to 90%[Cor89, Sta84, LS94]. Hence, work
on program comprehension presents a tremendous potential for improvement in the

productive of maintenance programmers and reduction of overall software life cycle cost.
2.1 Program Comprehension

The field of software comprehension is summarized in Corbi90, [RBCM91]. Software
comprehension involves both software engineering and cognitive science. Rugaber

3

[Rug81] defined program comprehension as the process of acquiring knowledge about a
computer program. Programmers use programming knowledge, domain knowledge, and
comprehension strategies when trying to understand a program. For example, one might
extract syntactic knowledge from the source code and rely on programming knowledge to
form semantic abstraction [MWT94]. Shneiderman [RC92], defines syntactic and
semantic program knowledge. Syntactic knowledge is language dependent and concerned
with the statements and basic units in a program. Semantic knowledge is language
independent and is built in progressive layers until a mental model is acquired through
the chunking and aggregation of other semantic components and syntactic fragments of

text.

Brooks [Bro83] defined comprehension as the reconstruction of the domain knowledge
used by the initial developer. Domain knowledge is knowledge about a particular domain
such as operating systems or UNIX systems. In this theory, understanding proceeds by
recreating the mappings from the problem domain to the programming domain through
intermediate domains. The problem domain or application domain consists of problems
in the real world. Hence, comprehending a program requires recreating the mapping
between domains. Figure 1 and figure 2, taken from [CruO1], show the steps involved to

move from problem domain to application domain and some gaps between them.

Problem
Domain

Stepl

Step 2

D Koot

Algorithms

—

Step 3

Algorithms |
Implementat |

ion

Source Code

Step 4

Figure 1. Program Creation

Problem

Gaps

i

Source
Code

Figure 2. Program Comprehension

In order to map the different domains, program comprehension has to bridge different

concepts via gaps. The following five gaps were indicated in [Rug81]:

e The gap between a problem from some application domain and a solution to it in

some programming language.

e The gap between the concrete world of physical machines and computer programs

and the abstract world of high-level design descriptions.

e The gap between the desired coherent and highly structured description of a
system as originally envisioned by its designers and the actual system whose

structure may have disintegrated over time.

e The gap between the hierarchical world of programs and the associational nature

of human cognition.

e The gap between the bottom-up analysis of the source code and the top-down

synthesis of the description of the application.

In order to understand the process of program comprehension, cognitive models were

have been proposed in the literature.
2.2 Cognitive models

Cognitive models reference both existing and newly acquired knowledge to build a
mental model [MV94]. A mental model is a set of beliefs that you hold about how a piece
of software, or a software feature, works. A cognitive model describes the cognitive
processes and information structures used to form a mental model [MV95]. In the
literature, there are four accepted categories of theories that describe the cognitive
processes involved in program comprehension: bottom-up program comprehension, top-
down program comprehension, opportunistic program comprehension, and an integrated

meta-model of program comprehension [SFM99].

2.2.1 Bottom-up program comprehension

Bottom-up comprehension permits low-level code to be generated first, in an attempt to
build up to the goal [Shn80]. Bottom-up theories are based on the notion that a
programmer understands a program by iteratively abstracting and connecting together
‘chunks’ of code. Chunks are pieces of code that have own meaning. The strategy of
chunking is, then the smallest chunks, the bigger, etc., until the whole program is

understood.
2.2.1.1 Shneiderman’s Model

Shneiderman proposed that programs are understood bottom-up, by reading source code
and then mentally chunking low-level software artifacts into meaningful, high-level
abstractions [Shn80]. These abstractions are further grouped until a high-level
understanding of the program is formed. The Shneiderman comprehension model is

shown in figure 3 [SM79].
Shneiderman’s view of the comprehension process consists of three levels:
e Low-level: Comprehension of the function of each line of code.

e Mid-Level: Comprehension of the nature of the algorithms and data, and high-
level: comprehension of overall program function. It is possible to understand
each line of code and not to understand the overall program function. It is also
possible to understand the overall program function and not to understand the
individual lines of code, not the algorithms and data. Mid-level comprehension

involves knowledge of the control structures, module design, and data structures,

which can be understood without knowledge at the other two levels. Thorough

comprehension involves all three levels of understanding.

High-Level: The programmer’s semantic and syntactic knowledge can help
programmers to get a high level abstraction of a given program, finally an internal
semantic form is built. At the highest level, the programmers know what program
does and how it does, even the low-level structures such as algorithms or data
structure. The internal semantic form represents the understanding of the program;

it is independent of and can be expressed in other languages or context.

Model of Comprehension — Shneiderman
Problem
Statement Internal Seman ties Program
Warkmg Memory
Shat-term High-Level f
— Meruory | Concepts v
————— Problemn
Low-Level
Program —— Staternent
l)
Long-Term Memory
High-Level Cancepls
eammee—— Fortran
Destgn §
Activity -
k- c
H
Campreherision g
Actaity 2 Pascal Other
e peprm ey p—
Sernantic Knowledgye Syntactic Knowiedie
shnnavman pod

Figure 3. Shneiderman’s Model

2.2.1.2 Pennington’s Model

Pennington [Pen87] also suggests that program comprehension is bottom-up. When the
source code is totally new to the programmer, a mental model called program model is
built first. A program model is a control flow abstraction that captures the sequential
behaviors of the program execution. Pennington uses text structure and programming
plan knowledge to explain the development of a program model. The text structure

knowledge consists of the control primes used to build the program model.

Programming plan knowledge, consisting of programming concepts, is used to exploit

existing knowledge during the comprehension task and to infer new plans for storage in

long-term memory. Chunking is the main activity in the comprehension process. When
more and new abstract program knowledge is then built by chunking code structures into
more abstract structures, a program model is built. After the program model, a situation
model is mentally developed. The development of a situation model requires the
knowledge of real-world domain, using program model to create a data-flow/functional
abstraction. The mechanism used for situation model is domain plan knowledge. Domain
plan knowledge is used to derive a mental representation of the code in terms of real-
world objects, organized as a functional hierarchy in the problem domain language. A
situation model encompasses chunked plan knowledge, and the program model consists
of a hierarchy-chunked components. Figure 4 [Pen87] is a graphical representation of
Pennington’s model, The right half illustrate the process of program model building, and

the left half describes the situation model construction.

Sdwee Thn

-

Oh pertunistic
Top-Down

Dectrens &
Cake

y

o‘

Mnm‘l
Stcrues

lhumm

Kiowledm

A TMMI"

/&7&%\

Wcmm:ﬂm-
A. Srasge Plns
L Tticnl Mans

C Impleneutdin le

Olam Knowled)

Rubsof Diswurse “0@'

Siuchees

Yotlam Damm\

Knowisdge
<R L. et Pt Fasl Weatd Kruewlo dam
S n ﬂu Kebdm A Fnetionsd
Aoesth
z (‘mvnl - Krowleca
Data-Strutures
Sygiies -LDu- Flow isliss
o o fan
‘::"; /\ & ulesol Thaowre
cn..h-})-
M-
Rwnam
Oppartunistic o
Bottmn-up
twupen | Syste matic| Systematic
e Bettom—up m

Figure 4. Penning’s Model

2.2.1.3 Comparision of Shneiderman’s model and Penning’s model

The cognitive structures of Shneiderman’s model are multileveled. Information from the

outside world , to which the programmer pays attention, such as descriptions of the to-be-

programmed problem, enter the cognitive system into short-term memory, a memory

store with a relatively limited capacity (Miller,1956, suggests about seven chunks), and

10

which performs little analysis on the input information. A short-term memory’s capacity

is limited. The programmer’s permanent knowledge is stored as long-term memory, with

unlimited capacity for organized information. Information from short-term memory and

existing concepts from long-term memory are integrated in a working memory

[Feigenbaum, 1974] which represents a store that is more permanent that short-term but
less permanent than long-term memory, and in which information from short-term and
long-term memory may be integrated into new structures. The result is used to generate a
solution, or as learning, is stored in long-term memory for future use. Thus,
Shneiderman’s model has a hierarchical organization of knowledge and separates it as
semantic and syntactic knowledge. Shneiderman’s model focuses on the form of mental
representation, but it lacks on the details of knowledge construction. For example, there

is no mechanism for abstraction.

On the contrary, Pennington’s model is more detailed and includes the implementation
mechanisms of cognitive process. The program model’s mechanisms are rext structure
and programming plan knowledge, and situation’s mechanisms are cross-reference and
chunking. The major drawback of Pennington’s model is the lack of higher level

knowledge structures such as design or application domain knowledge.
2.2.2 Top-down program comprehension

The theory of top-down comprehension is that the comprehension tasks start by gaining
an understanding of the overall goals of the program; each subtask is then viewed from
the perspective of how it relates to that goal. The programmer uses their own experience

and attempts to confirm their expectations.

11

2.2.2.1 Brooks’ Model

Ruven Brooks’ model deals with the comprehension of completed programs [Bro77,
Bro83]. A completed program means that the source code has been implemented.
Brooks’ model has its basis in areas outside of computer science, such as
thermodynamics problem solving, physics problem solving, and chess. The model was
initially created to explain four major source of variation observed in the act of program

comprehension.

1) The functionality of the program to be understood. Why do programs that perform

different computations vary in comprehensibility?

2) The differences in the program text. Why do programs that are written in different
languages differ in comprehensibility, even though the same calculation is performed

in each?

3) The motivation the understander has in comprehending the program. Why does the
comprehension process vary depending on whether the motivation is to debug the

program versus enhancing the program?

4) Individual differences between people ability’s in comprehending a program’s
purpose. Why does one person find a program easier to comprehend than does

another?

To account for these four areas of variation, Brooks created a model based on three main

ideas. There three ideas are:

1) The programming process is the construction of mappings from a task domain,

through one or more intermediate domains, to the programming domains.

12

2) The comprehension process of that program is the reconstruction of all or part of

those mappings.

3) The reconstruction process is expectation-driven by the creation, confirmation and
refinement of hypotheses. These hypotheses describe the various domains, and the

relationships between them.

Brooks [Bro83] suggests that the central strategy employed in top-down program
comprehension is hypothesis formation and evaluation. He starts from the assumption
that in the development of a program a programmer creates a mapping between the
application domain and the domain of programming. Comprehension involves the
reconstruction of this mapping, through several intermediate domains. This is an
iterative, hypothesis-driven process that begins with the formulation of a primary
hypothesis that expresses a global description of the program goal. Next, subsidiary
hypotheses are formulated to refine the primary hypothesis in a hierarchical faction.
Hypotheses are iteratively refined, passing through several knowledge domains, until
they can be matched to specific code in the program or some related document. For
example, a hypothesis may state that a particular equation (math domain) expresses
cost (accounting domain). A procedure name FCFS may generate the hypothesis that

a first-come-first serve algorithm is used for process scheduling.

Figure 5[4] illustrates Brooks’ model. Knowledge shown as triangles can be used
directly for hypothesis generation in the mental model or it can be matched from one

domain into another.

13

/m,,,\

Model of Comprehension — Brooks

A

»< wrcH

/\>

o/

/ Dum;un
Domain Sdlemns
External Rpresentation Exterici! Reamesenhition
Requirements Docirient atter ProgramCoce
Mscellaneass Docament s User's Mernals
¥ Proble Dommatn Matiemne Manrals
//4 Intermedue \
Domain Schemas \
Venly Verfy
miernzd sehe mas taterml scherm
agunst Exteraxl aganst Extern:
Represent atons Representatiors,
\ Venty Sepmg | ErrmiReprsentation]
wlermilschemigg TN\l Pretmizry & Datlt
aganst Exwrmal| Jesign Joanmemnts
epremutations)
Fypa hesisDrven b ¢ vpottiesss Hypithests
' 1 Drtvent Dwen ¥
[nternal Representatisn — Mental Maodel
Hypathesis & Subgoals
Hrooke | 77.80)

Figure 5. Brooks’ comprehension model

2.2.2.2 Soloway and Ehrlich’s Model

14

this way consists of a hierarchy of goals and plans. Rules of discourse capture

The Top Down program understanding model [SE84, SAE88] typically applies when the
code or type of code is familiar. In this case, the code can be decomposed into a hierarchy
of elements typical of that program type. For example, an expert of operating systems can
easily decompose a new operating system into standard components, such as a process

scheduler, a virtual memory manager, and a file system. The mental model constructed in

conventions of programming, such as algorithm and data-structure implementations and
coding standards, and are used to decompose goals into plans and plans into lower level
plans. Goals denote intentions, and plans denote techniques for realizing intensions. Plans
work as rewrite rules that convert goals into subgoals and finally into program code.
Program comprehension is defined as the process of recognizing plans in code,
combining these plans by reversing the rewrite rules to form subgoals, and combining the
subgoals into higher-level goals. The model includes three different types of plans:
strategic plans, tactical plan, and implementation plans. Strategic plans describe goal
strategy enacted in the program to accomplish its goal. Tactical plans are local strategies
for solving a problem. Implementation plans describe the characteristic of the language

and are used to implement tactical plans.

15

External
Reprsentations

Dacuments

Requremers Doc.
Destg Doctunent
Code

User Viamais
Reference Marmals
Mainenance

Mamals
Ml):f Related
oumerds

8 Ruksof Discourwe: {subset

varstpdiledame wayas
maLtad
- No dead code
A testfor 2 ondition means
the condittan must be
poterttally Lue
Dan'tdo double duty with
cocle tn 2 non-drpUswaN
-AnIF tsusei whena
statentent body (s quxrarnterd
to execite only onee: a
while 1s usel whenthe
statement nuy reve Lo be
exrcited repratedly

®

Rules
/ of Discourse\

Understa ndi\

Process
Mﬂdmu /

/5

Model of Comprehension — Soloway & Ehrlich

/:roe,nmml%

Plans
(Schzmas|

i\

Internal Representatinn

Current Mental Regresentatien

of Program
{Plans/ Schemas)

72 1\

A Pl
Strakgic: Glbal Staeges
Tactical: Lloal Stratvgles

[mpilementat orr LnQuage
Deprrulent

Figure 6. Soloway & Ehrlich’s Model

Figure 6, taken from [MV94] shows the model’s three major components: 1) The

triangles represent knowledge (programming plans or rules of discourse). 2) The diamond

represents the understanding process. 3) The rectangles illustrate internal representations

of the program.

2.2.2.3 Comparison of Brooks’ Model and Soloway and Ehrlich’s Model

Brooks’ model emphasizes the mappings between domains and their interrelations. All

levels of domain eventually meet the “ actual code” domain level; it is justified that a

16

larger effort be made in supporting this bottom level domain and the relationships. One
way to do this is to make the binding stage more explicit by showing the relationships
between an intermediate hypothesis and the code to which it has been bound. This could
also involve some sort of status to indicate if a given section of code has been bound at
all, or possibly even that it has been bound twice. Another issue is that the mental model
is constructed in one direction only, from the problem domain to the program domain.
The knowledge so structured is undefined. It would not be possible to switch from one

level abstraction to another going in an opposite direction.

A Knowledge base is required in Soloway’s model. The element of domain knowledge is
similar to Brooks’ domains. The highest-level abstractions in the mental model are
emphasized. But the relationships between high level domains (e.g. “invoicing” to
functional decomposition”) are not addressed by plans. This is a direct consequence of
the formal, rigid structure of plans: they have gained expressive power at the low level

domains by sacrificing the power needed to express high-level domain relationships.
2.2.3 Opportunistic Program Comprehension

Opportunistic theories are a mixture of the bottom-up and top-down processes where the
programmer uses an as needed, rather than a systematic, approach to understand the
actual code [MV93c]. Opportunistic comprehension is characteristic of experienced
programmers. Who apply their knowledge to formulate hypotheses, where possible, and

analyze code to identify chunks and other high level structures when necessary.

17

2.2.3.1 Letovsky’s Model

Letovsky [Let86] views programmers as opportunistic processors capable of exploiting
either bottom or top-down cues. There are three components to his model, the knowledge
base, mental model, and assimilation process. Knowledge base encode the programmer’s
expertise and background knowledge. Mental model encodes the programmer’s current
understanding of the program. Assimilation process describes how a mental model
evolves using the programmer’s knowledge base and program source code and
documentation. The mental model is organized into three different layers: the
specification layer, which describes the program goals, the implementation layer, which
expresses the lowest level abstraction, and the annotation layer, which links each goal in
the specification layer with its relationship in the implementation layer. Assimilation is
opportunistic and occurs either top-down or bottom-up depending on the programmer’s
initial knowledge base. Programmer’s Inquiry episodes are a key part of the assimilation
process. Such an episode consists of a programmer asking a question, conjecturing an
answer, and then searching through the code and documentation to verify or reject the

conjecture. Fiugre 7 [MV94] shows Letovsky’s Model.

18

Model of Comprehension — Letovsky

Jrat

Exemna
\ \ lepresentanons|
/ \ /Asslmu l:mo\n\ Documentatian
Knowledge Base P Process Code
Progr:rmeng Expertise (Top Downtor Manuals
Gaals Prooke Domutn Boltom up]
s
Rules of Dixourse
Internal Representaticn -~ Mental Representation
Lavers
Dungling 1. Specttication (Goals)
Purpase [E——P 2. Implementatton
3. Annotaifon ddication of hox each gl 1n Speatficaton biyer &
Avomplshed a:¢d by which parts of Lie implmenta pn kiyer)
Letovsky |86
Litman etali86)

Figure 7. Letovsky's Model

2.2.3.2 Comparison of Letovsky’s Model

beyond the statements that it occurs.

19

Letovsky’s model produces either top-down or bottom-up comprehension depending on
the program'’s initial knowledge base; it is suitable for experienced programmers.

Letovysky’s model is the most general cognition model. The mental representation is
described in detail, but there is a lack of description of how the knowledge assimilation

process works or how knowledge is incorporated into the mental model representation

2.2.4 An Integrated Meta-Model of Program Comprehension

Von Mayrhauser and Vans [MV93a] combined the top-down, bottom, and opportunistic
approaches into a single metamodel. They propose an integrated cognition model that
combines features of several existing models, primarily Soloway and Ehrlich’s top-down
model [SE84, SAE88] and Pennington’s program and situation models [Pen87].
Understanding is built concurrently at several levels of abstractions by freely switching

between the three comprehension strategies.

Top-—Down

Setweuin (Plan)
p—— churrutne dicgs Currert Merknl
Process Representation
of Program
—=

i Tuctical Pisns

C Isupsmesitatian
Ptans

1 Cmnwro! Srinme

— K bocine |
O Flan Kecrwis dae Phosnt Woarid

Punctaing Knreledgs

Figure 8.Integrated Code Comprehension Meta-Model

20

The integrated code comprehension meta-model consists of four main components: a

program model, a situation model, a top-down model, and a knowledge base. The first

three components reflect mental representations of comprehension and the strategies used
to construct them. The fourth component refers to knowledge needed to perform the
process of comprehension. Each model component represents both the internal
representation of the code and the strategy to build this internal representation. The
knowledge base furnishes previously acquired information related to the comprehension
task. During comprehension, new knowledge is developed and stored into knowledge
base for future use. The top-down model of the integrated model is typical active if the
code or type of code is familiar within its application domain. If the programmers are
unfamiliar with the code, the programmers will switch to the bottom-up model. The main
feature of the integrated meta-model is that any of the three model components may be in
effect during the understanding process to accomplish a comprehension goal [MV93b,

MV93c].

Figure 8, taken from [MV93a], shows that each model component has its own preferred
types of knowledge. [MV93b, MV93c] contain thorough discussions of the integrated

meta-model and its component models.
2.2.4.1 Comparison of the Integrated Meta-Model

The integrated model combines the top-down understanding of {SE84, SAE88] with the
bottom-up understanding of [Pen87], opportunistic approach [Let86], recognizing that for
large systems a combination of approaches to understanding becomes necessary

[MV93a). Experiments showed that programmers switch between all three of these

21

comprehension models [MV93b, MV93c]. For example, during program model

construction a programmer may choose top-down when he recognizes a beacon

indicating a common task such as sorting. This leads to the hypothesis that the code sorts
something. A sub-goal is generated and the code for clues is searched and selected to
accomplish the sub-goal. If during the code searching, the programmer finds some codes
he doesn’t familiar with, he may come back to bottom —up. The structures of integrated
Meta model built by any of the three model components are accessible by any others.
However, each model component has its own features of knowledge. Compared to the
opportunistic approach, the integrated comprehension promises the understanding is
developed at several levels of abstractions by freely switching between the three
comprehension strategies, and opportunistic approach chooses either bottom-up or top-
down comprehension at the beginning depending on the programmer’s initiate

knowledge.

22

3. Software Visualization and Related Techniques

Program visualization is simply defined as the use of graphic artifacts to enhance the
understanding of programs [EO94, PBS93, RC92]. In a wider context, it is sometimes
also called software visualization [PB93]. Through software visualization, graphical
icons help building program understanding. Software visualization can be done at
different levels, such as at the abstract algorithm level, or the language level. For
example, SHriMP (Simple Hierarchical Multi-Perspective) supports for seamless
exploring software structure and browsing source code, with a focus on effectively
assisting hybrid program comprehension strategies [SWFM97]. SHriMP visualization
technique integrated the visualization techniques such as a nested graph, fisheye views or
focus + context, pan + zoom, hypertext links, animation etc. SHriMP can be used to
visualize source code of a complex software system. SHriMP can be combined with an

ontology editor such as Jambalaya for knowledge acquisition.
3.1 Reverse Engineering

Software systems that are developed specially for an organization have a long lifetime.
Some software systems developed many years ago are still in used using technologies
that are now obsolete. They are known as legacy systems [CC90] and have become
business-critical for many companies. These legacy systems need to be maintained and
evolved due to many factors, including error correction, requirements change, business

rules change, structure re-organization, etc. Legacy systems are difficult to understand

and are maintained because of their size and complexity as well as the history of their

evolution. Reverse engineering is one of promising approaches in program

23

understanding. Reverse engineering is the process of analyzing a subject system to
identify the system components and their interrelationships, and create representations of
the system in another form or in a high level abstraction [MWT94]. The goal of reverse
engineering is to extract information from the exiting software systems to better
understand them [LCCCLY95]. The information includes the underlying features of a

system, such as [Con87]:

e System structure — its components and their interrelationships, as expressed by

their interface;
¢ Functionality — what operations are performed on what components;

e Dynamic behavior — system understanding about how input is transformed to

output;

¢ Rationale — design involves decision making between a number of alternative at

each design step; and

¢ Construction — modules, documentation, test suites etc.

24

Figure 9. Reverse Engineering Process

The process of reverse engineering can be divided into four phases: Context Parsing,
Component Analyzing, Design Recovering and Design Reconstructing, as shown in

Figure 9 [Con87].

e Context Parsing Phase - Analyzing source code and extracting information from
the source code. An intermediate representation is created, such as the Abstract

Syntax Tree (AST), which can be accepted as input of the next phase.

¢ Component Analyzing Phase — The component’s artifacts are revealed. The

artifacts include: structure chart, variables’ attributes, functions’ information,

25

program slices, call graphs, data flow, definition- use graph and control

dependencies.

e Design Recovering Phase - To extract original requirements and/or design

knowledge from source code. a high-level view is obtained.

e Design Reconstructing Phase — A design model is generated from the last phase.
The design model offers not only functionality and system behavior, but aiso the

correct architecture.

During the reverse engineering process, the source code is not altered, although

additional information about it is generated [LCCCLY95].
3.2 Information Visualization Techniques

Information visualization, as opposed to scientific visualization, aims to visualize abstract
data that may have no natural visual representation. This data can be very complex,
containing a great number of elements structured hierarchically, in a network, linearly, or
even lacking structure. The use of information visualization, rather than using the raw

data, is done for several reasons, some of which are: [Knight98]:

e Being able to display a large amount of information in one view and thus provide

an overview.

e Being able to see correlations or patterns that may have otherwise been missed

had only the figures been used.

e Trying to display structural relationships and context that may be more difficult to

detect by individual retrieval requests (provided by Card et al.[CKM91]).

26

e Providing an effective way of going between overview abstractions and detail of

the data.

Numerous methods have been studied for graphically representing information within a
limited amount of screen space. There are several considerations that have be made in
choosing a particular technique [LM94]. The method must be suitable for the information
that you are going to display- some are dedicated to certain styles of information. In any
system that is required to support real time user interaction, good performance is
imperative. Other implementation issues must be considered, including the hardware
requirements (e.g., memory consumption, 3D acceleration), and the screen resolution
available to the interface. In the following section of this paper, I present several
implementation techniques which are hypertext, focus + context, shading/color/texture,

dimension 2D versus 3D, and animation.
3.2.1 Hypertext

Since the introduction of the World Wide Web, hypertext has become a very popular and
familiar technology. The basic tools such as the html language, browser, Java applets etc.
are widely available and understood by many programmers. The same technology can be
used in information visualization. Hypertext is a method of document navigation that
facilitates non-sequential document reading [Nie90, Nie95]. Traditional documents are
typically designed to be read from beginning to end in a sequential manner. In particular,
physical paper documents must be presented in this way (page 1 precedes page 2 which
precedes 3..). However, many paper documents are not intended to be read sequentially
(e.g., reference manuals, dictionaries). Non-sequential navigation including the content

list, index, page reference, and footnote. Although these techniques are effective, the

27

reader has to flip the pages to navigate. In a hypertext document, many sequential
restrictions can be lifted and new navigation methods can be implemented. Components
may act as links to other pages of the document. A link (also called an anchor) could be a
word, words or a figure. When a link is activated, the reader directly navigates to the
point in the hypertext that the link indicates. In a hypertext version of the document, each
word in the document glossary can be linked to each occurrence of that word in the
document. By selecting the obscure word in the text, the reader navigates the link directly
to the word'’s position in the glossary. To facilitate browsing documents on the world-
wide Web, browsers use a document formatting language called HTML (Hypertext
Markup Language) along with an addressing system consisting of the URL (Uniform
Resource Locator) to present and navigate hypertext documents. Many browsers based on
this standard are available, including Netscape Navigator [Nescape97], Microsoft Internet
Explorer [Microsoft97] etc. In addition to supporting the navigation of hypertext links,
they support a common model of navigation history, which preserves the reader’s
location as a link is followed. A hypertext document with hyperlinks is shown as figure

10 [JS91].

28

link back to documentation

documentation *
Target

} hyper-code [~ configuration

another
g\ version
3 \ links to
\ links to related components
hyper-code

Figure 10. A hypertext Document With Hyperlinks

3.2.2 Focus + Context (Fisheye views)

Fisheye views using focus + context techniques allow people to see both a focus region
and the surrounding context in the same window [GUTO2]. Interactive focus + context
techniques show both local detail and global context in the same view (e.g. [JRP95],
[YM94]). They provide a user-controlled focus point for indicating which part of the data
is to be shown in detail [GUTO02]. Although the computer screen is relatively small, focus
+ context techniques make it possible to display much information and details which

would completely overwhelm the user.

29

Figurell. An example of fisheye view

These techniques are a solution to the space problem in information visualization, and

allow more objects to be displayed than would be possible in an undistorted view

[GUTO02]. The inspiration for this style of display comes from the view through a fisheye

lens. The center of the display is visible in detail, but away from the center the display

gradually distorted and compressed. The results of display are similar. A number of
designs are applied to focus + context techniques, including the bifocal lens [YM94], the
DragMag magnifier [WL95], the rader view [SHH98] etc. An example fisheye system is

shown in Figure 11.

30

3.2.3 Shading/ Color/ Texture

Shading is a powerful technique for creating computer graphics and production
animation. Cook’s shade trees [Coo84] were the base of many later work on shading. He
turned simple expressions, describing the shading at a point on the surface, into a parse
tree that was interpreted. He introduced the name appearance parameters for the
parameters that affect the shading calculations. He also proposed an orthogonal
subdivision of types of programmable functions into displacement, surface shading, light,
and atmosphere [OL98]. In pattern recognition area, Marc Olano and Anselmo Lastrs
produced a shading language and shading language complier for their high end graphics
machine PixIFlow[OL98]. PixFlow is hardware, which consists a set of nodes. Each node
is essentially a complete computer. The shading ianguage is called phman. The advantage
of shading language for procedural shading is that the implementation details are hid
from shader-writer. Shaders that are written and compiled in their shading language, will

generate high quality images on the PixFlow.

Color is playing a dynamic role in the application of computer graphics to
experimentation and research in the Sciences as well as in the Arts. Major color theorists
such as Munsell and Ostwald have developed three-dimensional models that organize “all
possible colors” into a system, categorizing colors by three basic color characteristics;
hue, value and chroma [Tru81]. Hue refers to red, blue, green or yellow. Ostwald
describes hue as distinct color such as redness or blueness [Tru81]. Value refers to the
value of color such as lightness or darkness, chroma as the strength or weakness of the

color [MUNT71]. In information domain, color is a technique used to convey yet more

31

information. Color can be used to redundantly encode size, with the brighter colors

denoting larger components.

Specially, a perceptually uniform color spectrum [LH92] [LHMR92] is used to encode
information, and other spectrums with fewer, greater, or differing colors are used to make
distinctions between objects. In Tuceryan and Jain’s Texture Analysis [TJ98], we can
find several definitions of texture. Texture is difficult to define and the difficult is
demonstrated by the number of different texture definitions attempted by vision
researchers [TJ98].Coggins [Cog82]has compiled a catalogue of texture definitions in the

computer vision literature and we give some examples here.

e “We may regard texture as what constitutes a macroscopic region. Its structure is
simply attributed to the repetitive patterns in which elements or primitives are

arranged according to a placement rule.”[TYM?78]

e “ Aregion in an image has a constant texture if a set of local statistics or other
local properties of the picture function are constant, slowly varying, or

approximately periodic.”[Skl178]

Texture is formulated by different people depending upon the particular application and
there is no generally agreed upon definition. Texture has applications in image

processing, document processing and remote sensing. Details are discussed in [TJ98].

Applying in combination with 2D/3D and animation space, shading/color/texture it can
be used to display the static view of source and specifications. For example, in focus +
context tree, shading can be used to shading the relevant contexts around the focus. On
the other hand, shading/color/texture can be used to display the dynamic behavior of

program executions, e.g., to represent the couplings of different objects.
32

3.2.4 Dimension 2D Versus 3D

It is often said that a picture is worth a thousand words [Knight98]. A 2D picture or a 3D
picture containing much knowledge will aid visualization of knowledge. For many years
the focus of software visualization has been 2D dimension. In the early 1990s, Tyler and
Clarke (TC90) realized that a pair of random dot stereograms can be combined together,
the results being called “a simple version of Stereogram” (SIRDS), or more generally, an
autostereogram. This technique makes use of the brain fusing two images together to
present a three-dimensional image in a 2D printed page. It is achieved by using the
correlations of pixels in the horizontal direction. Using the correspondences between
pixels inhuman brains or computer algorithms, surfaces can be reconstructed from
autostereogram it became very popular. The Tree visualization technique with tree-maps
is a typical approach to display information in two- dimension (2D). For example, quad-
trees [NS84], XY-tree [GIS91] are applications of tree-map visualization; the graphs are
displayed in two dimensions. Figure 12. Simulating a solid object on a 2D image plane

[TIW94].

The advantage of 3D dimension is that 3D has one more dimension. 3D is more suitable
that 2D to visualize abstract data and the amount of information. Further more, the
success of the World Wide Web (WWW) has made available a vast amount of abstract
data that needs to be visualized. ConeTrees are a typical approach of 3D dimension
display. Robertson, el al. describe a 3D visualization techniques for the display of large
tree structures [MS02]. This algorithm arranges the tree nodes in 3D space, displaying the
structure in perspective. Displaying parent-child relations in the form of a cone makes the

graph layout in 3D space. The parent node is placed at the tip of the cone, and the node’s

33

children are distributed evenly around the circular end of the cone. The cones are either
arranged vertically (with the root node at the top) or horizontally (with the root node at
the left). The user is allowed to interact with the display by smoothly rotating the cones
around their axis of symmetry, allowing the cones to be viewed from all sides. From a
visual aspect, the 3D dimension display allows the user to pick any node and rotate the
cone tree so that the chosen node is brought into the front. An example of cone tree

displaying the images in 3D is in figure 13 [Knight98].

FAEXFETRXEELXIELL &
~EXXXAXICCXXLXIOCALL N .
¢ TEXXXXAXAXXX XIXX XX LXXLL A ...
P . R R R AR XXX XX L XXX XX LR L EIL .
€% XA AAAICK K X T ICX XXX IOCL AKX X XX 20

' RL

. Normal converyence

it on to image planc _—e s =
7
S Lines of convergence
e on to solid object

Figure 12. Simulating a Solid Object On a 2D Image Plane

34

Figure 13. An example of horizontal cone tree from InXight

3.2.5 Animation

In the early part of this century, the art and craft of animation was being refined. Much of
the best work was being done at Disney Studios. Frank Thomas and Ollie Johnston,
pioneering Disney animator and chroniclers of this area of Disney Animation in The
[llusion of Life: Disney Animation. The animators continued to search for better methods
of relating drawings to each other and had found a few ways that seemed to produce a
predictable result. They could not expect success every time, but these special techniques

of drawing a character in motion did offer some security. As each of these processes

35

acquired a name, it was analyzed and perfected and talked about, and when the new
artists joined the staff they were taught these practices as if they were the rules of the
trade. To everyone’s surprise, they became the fundamental principles of animation.

(Thomas and Johnston, 1984)

Thomas and Johnston (Tomas and Johnston, 1984) enumerated twelve “ principles of
animation” : squash and stretch, anticipation, staging, straight ahead action and pose to
pose, follow through and overlapping action, slow in and slow out, arcs, secondary
action, timing , exaggeration, solid drawing, and appeal. John Lasseter outlines the
principles of traditional animation, and how they apply to 3D computer animation, in

(Lasseter, 1987).

On a computer screen, once a new zoomed geometry is computed, it must be displayed to
the user. Changing the display suddenly from old geometry to the new geometry with an
immediate transition might place a heavy cognitive load on the user who tries to mentally
track the changing positions of the nodes. Animation, In contrast, excels at providing
enough information for the audience to follow the action without ever being startled and
confused by puzzling behavior. A critical function of the zoom display is that the
transitions between zoomed geometries be smoothly animated. Through the animation,
the focal node can be seen to grow, while the others shrink to accommodate the focus,
visually cuing the new locations of the various nodes. Animation provides the visual cues
necessary to understand what is happening before, during, and after the action. By now,
animation has been used in the work to illuminate change, for example, in data
visualization [MYE90, BOO91, FOR93], algorithm animation and program visualization

[LR94, CRM91, LM94].

36

3.3 Software Visualization

Software visualization can be seen a specialized subset of information visualization,
because information visualization is in the process of creating a graphic representation of
abstract, non-numerical, data [KNI98]. In the area of computer science, a better definition

is provided by Claire Knight. She defines:

“ Software visualization is a disciple that makes use of various forms of imagery to

provide insight and understanding and to reduce complexity of the exiting software

system under consideration.” [KNI98]

From that definition, we can describe the goal of software visualization is for
understanding of software system and reduce the complexity of software, because it has
been known the software itself is real complex. We can have many views from a

program. Myers calcifies them in [MYE90]:

Static code visualization

e Dynamic code visualization

e Static data visualization

e Dynamic data visualization

e Dynamic algorithm visualization

In this section, I apply a static and a dynamic view to category software visualization
technique. More specially, I distinguish between dynamic view from a forward

engineering perspective and dynamic view from a reverse engineering perspective.

37

3.3.1 Static View

For fully understanding software both static and dynamic views are necessary. A Static
view of a program is based on the static structure of the source code. There are often said
to be three primary aspects of a system apart from its identity. These are respectively
concermned with: a) data, objects and their structure; b) architecture or a temporal process;
and c¢) dynamics or system behavior. A static view refers to a) and b), there are software
artifacts and their relations. The particular visual constructs us:d to represent, for
example, classes, member functions, loops, and branching, are primary based on
empirical studies of programmers [FOR93] and widely accepted sources such as Booth
[BOO91, 93]. In Java, for example, such artifacts could be classes, interfaces, methods,
variables etc. The relations might include extending relationships between classes or
interfaces, method call between methods, containment relationships between classes and

methods or variables etc.
3.3.1.1 Structural

Software architecture [GS93] is the organization of a software system as a collection of
components, connections between the components, and the constraints on how the
components interact. In object-oriented methods aspects could include the object
structures, the structure of classes and their relationships, the structure of inheritance.
Object structures means how objects relate to each other. A class is a collection of a set of
objects and contains attributes and operations. The relationships describe the ways a class
interacts with other classes. Inheritance is one of the charactenistics of object-oriented

methods. In object-oriented programming, a class can create instances of itself in

38

memory. These instances ‘inherit’ exactly all the features of the class: its methods and
attributes. An instance can be a member of only one class. It is possible for classes to
inherit all the features of more general classes. For example, classes Cars and Cycles
specialization of the class of Vehicles. Inheritance can be single or multiple. Type
inheritance can be different from class inheritance, because in type inheritance only the

specification and no implementation are inherited.
3.3.1.2 Use Case Diagram

A use case is a goal-oriented collaboration between a system and an actor; where an actor
is a user adopting a role. A use case diagram shows a collection of use case and external
actors that interact with the system. A use case describes the interactions and behavior of
a system during an entire transaction that involves several objects and actors. Within a
use case model, relationships between use cases can be the model, i.e. a use case can
include other use cases as part of its behavior description. The specification of the
external behavior of a use case may be given by a state diagram. The implementation of a
use case diagram can be described by a collaboration diagram. Using use case diagrams,
the relationships between actors and use case diagrams within a system are tracked.

Figure 14 show a use case diagram for renting and paying bill in a video renting system.

39

/ \
-7 Rent Items
s "
pd | N —~
/1 <<include>> =
Ve ' \ A
. N\ VAERN
) N SN
/\ 'Primary Customer

e

—\/— Pay Bill \ @ &
L \ ////\::?\‘
Employee ™. N I

N ‘ = Customer T
~ N~ -
AN Retumn Items FEERN
\\\ Guest
R
-

Handling Penalty

Figure 14. A use case diagram for renting and paying bill in a video renting System

3.3.1.3 Class Diagram

A class diagram describes the static structure of a program system, consisting of a
number of classes and their relationships. It illustrates meaningful concepts (classes) in a
problem domain and identifies the relationships among them. Problem space is identified
as and decomposed into the comprehensible concepts (classes). These concepts together
clarify the vocabulary of the domain. The problem domain diagram provides a logical
view of the system. The subsystem diagram describes the classes included in each

subsystem and the relationships between the subsystems, as well as the relationships

40

between the classes within the same subsystem. The full class diagram gives an overall
view of the classes and relationships of the System, and the class description forms give a
detailed description about these classes. Class diagram shows classes and the
relationships between classes. Figure 15 show a class diagram for class customer in a

video renting system.

inquireltemLocation() ‘Customer (Subclass)

Customer
id
name
balance
credit 'Collaborator: BN
payBill() —— —_ ___ RentTransaction
rent() l ~ CardV alfidation
return() ‘ ‘StoreCollection
makeReservation() : "Employee
inquireRentRecord() ! Primary Customer (Subclass)

|

Figure 15. A class diagram for class customer in a video renting system

3.3.1.4 DFD (Data Flow Diagrams)

Data Flow Diagram (DFD) is a means of representing a system at any level of detail with
a graphic network of symbols showing data flows, data stores, data processes, and data
sources/destinations. The purpose of data flow diagrams is to provide a semantic bridge

between users and systems developers. The diagrams are:

e Graphical, eliminating many words;

e Logical representations, modeling WHAT a system does, rather than physical

models showing HOW it does;

41

e Hierarchical, showing systems at any level of detail; and

¢ Allowing user understanding and reviewing.

The goal of data flow diagramming is to have a commonly understood model of a system.
The diagrams are the basis of structured systems analysis. Data flow diagrams are
supported by other techniques of structured systems analysis such as data structure
diagrams, data dictionaries, and procedure-representing techniques such as decision

tables, decision trees, and structured English.
3.3.1.5 Treemap

Tree visualization technique with tree-maps is a typical traditional approach to display
hierarchy information. Johnson, el al. describe the visualization techniques which
supports the display of hierarchical trees, and maximizes the uses of the available screen
space [Shn91]. The original motivation for the technique was to display the complex
hierarchical file structure of a hard disk drive. Ben Shneiderman [Sam89] describes tree
structure as a rooted, directed graph with the root node at the top of the page and children
nodes below the parent node with lines connecting them, tree structure as shown in

Figure 16.

42

Figure 16. Typical 3- level tree structure with numbers indicating size of each leaf node

Research on relationships between 2D images and their representation in tree structures
has a focus on node and link representations of 2D images. This work includes quad-trees
[NS84] and their variants that are important in image processing. The goal of quad trees
is to provide a tree representation for storage compression and efficient operations on bit-
mapped images. XY-tree [GJS91] is a traditional tree representation of two-dimensional
layouts found in newspaper, magazine, or book pages. Typically, tree-maps are a
representation designed for human visualization of complex traditional tree structures:
arbitrary trees are shown with a 2-d space-filling representation [Sam89]. Figure 17 is the

tree-map of figure 16 [Sam89].

43

PI(IyY!) P2(x3yD)
* ¢

tawbbawibawiblowsbbwsbbmsbbomwibavibanibong
BN IR ICINISENASERUSI NI REINIRINIBINIBIWS
(XL IS AR FL RY T2 1] [] e "

[£ 15541154 115011 500 1 508 1508 L 5008 1 Sdal 3 dad |

‘pEswissEistwisiun’ .
sjsemisseisssissas. H-HHHH
lrel'rﬂ""‘llﬂnz r-~;vrn:v
'

SO LIEsE
IYT FR YL
rreggen
Fremsrrasgenigeat

sergeteIsnisILity
859835454310 88444

. Aa)ugsnuanuun]uuuuu.znn.n BEAIEEIAIIINIRY a.uu\s

';“ N “ bwpdboprbbymobombboypbbagpbbburibypbbaurbiopsbymstnmsin

b Hascareians AL EEINIRLAIEEDIIAIIINIIILANG

‘. .--‘-uur s chbwrebosebboesrbaumbs
BIF6NB4IDIBIAO LN BB

bopraepreb iy rbaes -

Esssanssis

Q20x1,y2)

Figure 17. Tree-map of Figure 16.

3.1.1.6 Hyperbolic Space

Lamping and Rao [LR94] describe a technique for displaying and manipulating large
hierarchies through the use of hyperbolic geometry. The hierarchy is represented on a
hyperbolic plane, and mapped to a circle on the Euclidean plane. The characteristics of
the resulting display are reminiscent of the view of a true optical fisheye lens: the center
of the circle is in detail, and the edges show minimal detail. The display also supports a
single focus, although a great deal of the hierarchy near the focus is also visible. The

technique also suffers from the corner screen space neglect that is characteristic of all

circular displays.

= | = T
= e SES—

-) "._ ' |§ :l'-
- _ A-~',~. I E:’:r;a I [! B

- -

fr ¢+ UMEA A s St AT & e > -

Figurel8. An Example of Hyperbolic Browser

Figure 16 [LR94] is an example of hyperbolic browser. The hyperbolic browser supports
interaction with larger hierarchies than conventional browsers with modest computational

requirement, it is more effective navigation around the hierarchy [LR93].
3.3.2 Dynamic View

Dynamic view refers to the run-time behavior of program. Programs can have wildly
different behavior over their run time, and these behaviors can be seen even on the largest

of scales (over the complete execution of the program). Dynamic view contains software

45

artifacts as well. In addition, it contains sequential information, information about

concurrency and code coverage, €tc.

3.3.2.1 Behavior — show dynamic system behavior from a forward
engineering perspective

Forward engineering, the obvious opposite of reverse engineering, is referred to, to
distinguish the traditional software engineering process from reverse engineering [CC90].
The direction of a forward engineering is from design to implementation. First, system
behavior is illustrated in a problem domain and the solutions are designed. Finally, the
solutions are implemented into a system by source code. In order to further understand
the behavior of a system, we focus on an object-oriented (OO) system. Catalysis
recommends the micro-process for system and component specification and design
illustrated in figure 19 [GrahO1]. The design can begin either with actions or with objects.
Post-conditions are written on the actions, and then the vocabulary that the type model
must clarify is teased out. Now the techniques of snapshot, sequence and state diagrams
are used to clarify and refine the models, leading to new and additional actions. Each
iteration, introducing more detail and eventually moving from a specification to a design

and implementation.

The important design principles that should be applied during the process are follows

[GrahOl1]:

e Assign responsibilities to objects evenly, trying to get objects of roughly similar

size.

¢ Ensure that all associations are directional.

46

Clarify invariants by using snapshots.

Avoid circularity and high fanouts.

Make sure that dependencies are layered.
Minimize coupling and visibility between objects.
Apply patterns throughout the design process.

Iterate until model is stable or deadline approaches.

What else
Do they do/ What happens?
Happens to them?, -tasks,jpbs,use cases
-draw statecharts,
sequence diagrams

Objects, Actions,
Attributes& operations
| Assosiations
who/what
What objects are thére? Is affected?
-things,concepts, relations -write post-conditions, look at terms

used action

Figure 19. The Catalysis specification and design micro-process [GrahOl]

47

3.3.2.1.1 Sequence Diagram

An interaction diagram shows an interaction, consisting of a set of objects and their
relationships, including the messages that may be dispatched among them [Booch90].
Interaction diagrams include sequence diagrams and collaboration diagrams. A sequence
diagram emphasizes the time ordering of messages [Booch90]. In addition, a sequence
diagram may show the lifelines of the objects involved in the interactions. An interaction
is a behavior that comprises a set of messages exchanged among a set of objects within a
context to accomplish a purpose [Booch90]. A message is a specification of a
communication between objects that conveys information with the expectation that
activity will ensure [Booch90]. Graphically, a sequence diagram is a table that shows
objects arranged along the X-axis and messages, ordered in increasing time along the Y-
axis.

A sequence diagram is developed on the basis of the use cases. Figure 20 shows a
sequence diagram for rent items in a Video Renting system. In a sequence diagram, a

message is being sent between objects.

48

:Scanner ! :Customer :Sto llection l :RentTransaction
{

|
1
' 1: Scan the items's bar-cod

l-':<

; 2: Rent items

| | |
°L | a

3: Set the items’'s status |
-

4: Record the transaction

<____.

t
I
1
i
|
, .
| i
H]
| i
i
} }
| |
! !

|
|
] |
| ! l
i i !

5: print the receipt

<

Figure 20. A sequence diagram for renting items in a video renting system

3.3.2.1.2 Collaboration Diagram

Collaboration diagram are a type of interaction diagrams that emphasizes the structural
organization of the objects that send and receive messages [Booch90]. Collaboration
diagrams depict objects and links between the collaboration of objects. Links visualize
the message flow between the corresponding objects. Messages may have an argument
list and a return value. Message ordering in the overall transaction is described by a
modified Dewey decimal numbering, specifying the sequential position of a message
within its corresponding thread. A composite object is an instance of a composite class

that implies an aggregation between the class and its part. Parameterized collaborations

49

represent design patterns that can be used repeatedly in different designs. Figure 21 is a

collaboration diagram of renting item in a video renting system.

2 2: Rent ttems
:Scanner [-Customer > :StoreCoIIection%
1: 1: Scan the items's bar-code i
'5: 5: print the receipt i ’
! e

4 4 Record the transaction //
—> P ~ -
v-'/f\\. // z
: - 3: 3: Set the items's status

| :RentTransaction

Figure 21. A collaboration diagram of renting item in a video renting system

3.3.2.1.3 State Diagram

State diagrams are based on the statecharts derived by Harel [Harel87]. They are similar
to the state-machine diagrams used in OOA/OOD and OMT. They describe the reaction
of an object, in reply to events received, in the form of responses and actions. State
diagrams basically consist of states and state transitions. A state represents a condition
during the existence of an object in which it waits for an event to be received, performs
some action or satisfies some condition. An event is an occurrence that may trigger a

state transition.

50

e State Transition Diagrams

State transition diagrams have been used right from the beginning in object-oriented
modeling. The basic idea is to define a machine that has a number of states (hence the
term finite state machine). The machine receives events from the outside world, and each
event can cause the machine to make a transition from one state to another. Thus you can
get a good sense of what events should occur, and what effect they can have on the
object. State Diagrams can be created for each of the classes and the events that will
change the states will be described and the appropriate operations that should be done
when an event is triggered. Also guard conditions for each event and the description of

internal operations for each state will be described.

e Activity Diagrams

Activity diagrams are a special case of state diagram that are to be used in situations
where most of the events represent the completion of internal-generated actions. Activity
diagrams are one of several ways to model the dynamics of a system. An Activity
diagram is basically a flow chart that describes the flow of control from one activity to
the next. One can show sequential and/or concurrent steps of a process, model business
workflows, model the flow control of an operation, or the flow of an object as it passes
though different states at different points in a process. Unlike interaction diagrams
(Sequence, Collaboration) that emphasize the flow of control between objects, Activity
diagrams emphasize the flow of control between activities. An activity can be described
as "an ongoing, non-atomic execution within a state machine" and the ultimate result is
some action that affects the state of the system or returns some value. The Scope of the

activity diagram depends on what we decide. We can decide to use a single use case, a
51

portion of a use case, a business process that includes several use-cases or a single

method of a class. Figure 22 shows an activity diagram for use case: Rent Item

Custmer Empbyee SomeColecton RenCmansacton
r/-\~
o 2
v 12

/7 Selectlem N\ 7 Scaniem / Change tem § \ ./ Recod N
; S ; >, saws T -"_ tansacton
N/ N—ee ./ Ne e N~ T/
7/~ Checkouttem ™\ _
N~

&

L)

Figure 22. An activity diagram for use case: Rent Item in a video renting system

3.3.2.2 Program Executions - program executions from a reverse
engineering viewpoint

Reverse engineering has many tasks. [TilleyTilley98] discusses several of the most
important: program analysis, plan recognition, concept assignment, redocumentation, and
architecture recovery. The first three tasks can be viewed as pattern matching at different

levels of abstraction.

e Program analysis: is for source code analysis and simple code restructuring
purposes. Abstractions could be done in different levels. For example, Ning
[Ning89] identified four levels of abstraction for reverse engineering:

implementation, structural, functional, and domain.

52

e Plan recognition: attempts to discover instances of abstract representations of

commonly used algorithms and/or data structures in the subject system.

e Concept assignment: is the task of discovering individual human-oriented
concepts and assigning them to their implementation-oriented counterparts in the

subject system.

Reverse engineering aides program understanding starting from the source code that
implements a system. Program executions are the dynamic behaviors of a system. The
direction of reverse engineering for program understanding is from implementation to a
design-level behavioral model. The gap in terms of abstraction between design-level
behavioral models and the source code that implements a system happens often. The gaps
can result in improper mapping from design to implementation. Sequence diagram and
collaboration diagram can record the dynamic behavior of a system during program
execution. By comparing the abstract behavior of a real system with the design level
information, these diagrams provide for a detailed analysis of the dynamic program

behavior.
3.3.2.2.1 Sequence Diagram

In a sequence diagram, objects are arranged along the X-axis, and messages are ordered
in increasing time along the Y-axis. During the program execution, sequences of
interaction between classes and objects reoccur. By comparing observed behavior and
designed behavior, a sequence diagram helps keep documents updated. For example, in
the Video Renting System we discussed before, the Sequence diagram for Rentltem have
objects: RentTransaction, Customer, StoreCollection. During the program execution of

Rentltem, related methods are:
53

o Related methods of Customer: Rent();
e Related methods of StoreCollection: Set();

¢ Related methods of RentTransaction: Set();

A Message is passed from one object to another, and related methods are called up. The

uses of sequence diagrams for software visualization are:

e Construct design-level behavioral models from low-level behavior of a system

during the program execution.

e Compare observed behavior and predicted behavior. The resuits will help validate

the design/implementation and help reengineering.

e Keep the behavioral model up to date with the respect to modification of a

system’s implementation.
3.3.2.2.2 Collaboration Diagram

Collaboration diagrams emphasize the structural organization of the objects that send
and receive messages. The order and frequency of execution of the various subroutines
can be observed. This information will help decide the order in which to study the piece
of code. In the design level, we just predict the behaviors of the system. In the
implementation level, we can validate the behaviors of the system. A collaboration
diagram is like a call graph, it is a compact representation of calling behavior that
summarizes all possible run-time activation stacks. Collaboration diagrams are dynamic
behaviors containing direct or indirect program executions. For example, in a for loop,

we can observe the run-time frequency of the loop execution and the other calls during

54

the loop execution. The analysis of results will help indentify design issues that may be

difficult to be observed.

55

4. Survey of Software Visualization Tools

The major goal of visualization tools is to extract abstractions from software
representations and transfer this information into the minds of software engineers for
software evolution purposes [MWT94]. Tilley suggests information exploration “ holds
the key to program understanding”. Some visualization tools show the animations of
algorithms and data structures; some show dynamic program executions for
understanding run-time behavior; some tools show textual representations of source code
and documentation. Of key importance is whether such a tool supports bottom-up
comprehension, top-down comprehension or some combination of two [SFM99]. Also
important, especially for large systems, is how the maintainer browses or navigates the

visualization [SFM99].
4.1 Visualization Tools For Bottom-Up Program Comprehension

Bottom-up strategies can be supported by providing direct access to the lowest level of
program details. The details are normally found at the statement level of the program
source code, which should be made accessible to the user. Through such tools, the uscrs
should navigate the source code of larger programs easily. According to Storey et al.
[SFM99], some features of visualization tools that enhance bottom-up comprehension

are:
¢ To indicate syntactic and semantic relations between software objects
e To reduce the effect of demoralized plans

e To provide abstraction mechanisms

56

4.1.1 VIFOR and VIFOR 2

VIFOR stands for Visual Interactive FORtran and is a software tool that is geared
towards maintaining Fortran 77 code [RDL90]. VIFOR offers multiple views of source
code either in a textual form of the code or a graph layout. The Layout mechanism of
graphs such as call graph and data dependency graphs attempts to be standard. VIFOR is
one representative of the software visualization tools developed in last ten years. Early
work of C program maintenance and comprehension tools are based on VIFOR. VIFOR
2 [RA96] is an extension of VIFOR, which is written in languages C and Fortran, and
HMS. VIFOR 2 combines two technologies: browsing and hypertext documentation.
VIFOR2 supports browsing PAS documentation, and help recording the understanding of
the system continually. The partitioned annotations of software (PAS) proved to be a

superior way to document software [RGD94].

4.1.2 POLKA

The POLKA (Parallel program-focused Object-oriented Low Key Animation) [SK93]
was created at Georia Tech, under the guidance of Dr.John Stasko. The system not only
allows students to watch algorithm animations that were created previously but also lets
them build their own animations. POLKA is a general-purpose algorithm animation
system that provides support for color, real-time, 2D/3D dimension smooth animations.
2D is implemented on top of the X Window System and 3D is implemented on top of
Silicon Graphics GL in C++. The POLKA is an object-oriented basis of visualization and
animation that includes high-level graphical object and motion primitives. Two features

of POLKA [SK93] are:

57

e True animation — POLKA offers smooth, continuous movements and actions, not

just blinking objects or color changing.

e Concurrent — POLKA offers overlapping animation actions that can properly

reflect the concurrent operations occurring in a parallel program.

The 3D version provides many default parameters and simplifications so that the
designers need not worry about the details of graphics. Programmers need not understand
3D graphics techniques like shading, ray-tracing etc., in order to create a 3D
visualization. POLKA provides its own high-levei abstractions to make animations easier

and faster to create.

4.1.3 ANIMAL

ANIMAL [RSF00] is a flexible and powerful algorithm animation tool, developed at the
University of Siegen worked. The main purposes of ANIMAL are to display the
animations of algorithms, data structures rather than using sliders and blackboards for
lectures. ANIMAL is written completely in Java using Java’s Swing library. ANIMAL
supports three separated approaches for generating animations: visually, by scripting, and
by API call [RF00]. The interface of ANIMAL is user friendly. Animation authors do
not need programming knowledge and can generate and edit the animations in a drawing
pane visually. ANIMALSCRIPT is a simple, line-based language driven by text

commands [RF00]. That means:

e Each command must be given on a single line. This also means that the lines may
become somewhat long, so that users should refrain from using auto wrapping in

their editors.

58

e All entries are provided as ASCII text,

e And each line starts with a unique command, making it easy for

ANIMALSCRIPT to parse the line.

The API generates animations files in ANIMALSCRIPT language. ANIMAL supports
the integration of both source/pseudo code and text descriptions into animations. Both
ANIMALSCRIPT commands and ANIMALGENERATOR API method calls are easily

accessed by the authors, and providing dynamic generation of program visualization.
4.1.4 SeeSys

SeeSys [BE94] is a visualization systemn that uses a space-filling technique to display
complex software system effectively. The technique of SeeSys is to visualize statistics of
program source in subsystems, directories, and files. User interaction, screen real estate,
spatial relationships and color are incorporated into systems to layer additional
information onto the base display. Interactively users can choose a particular subsystem
they want to look at by using their mouse. In the computer screen, rectangles are placed
next to each other so that 100% of the display area is utilized. Zoom-in is possible when
the subsystem is too small. Spatial relationships mean users with a slide bar can optimally
determine the number of rows used, and algorithm used to equalize heights of rectangles.
Finally, color is used to redundantly encode size. Three principles should be adhered

when creating visualizations of larger software systems [BE94]:

e The individual components can be assembled to form the whole. This allows the

user to easily see the relationships between them.

59

e Pairs of components can be compared to understand how they differ.

o The components can be disassembled into smaller components. This important
feature of the components allows the structure of the display to reflect the

structure of the software.

SeeSys scales up to complex software system and allows users to view the whole system,

providing information about the real problem of the system.
4.1.5 Rational Rose

The Unified Modeling Language [BRJ99] is a set of description techniques suited for
specifying visualizing and documenting an object-oriented system. It is UML’s intention
to produce a single, common, and widely usable modeling language for these methods
and, working with other methodologies, for other methods as well. The UML is an
evolution of general-purpose, tool-supported, standardized modeling language which has
features of Metamodel, graphic notation for visual representation, Extension Mechanisms
and so on. The UML specification consists of two interrelated parts that are UML
Semantics and UML Notation. UML Semantics is a mental model that specifies the
abstract syntax and semantics of UML object modeling concepts. UML Notation is a
graphic notation for visual representation of the UML semantics. The architecture of the
UML is based on a four-layer metamodel structure, which consists of the following
layers: user model, model, metamodel, and meta-metamodel. Like other software
engineering ‘methods’ UML provides a set of graphical and textual modeling techniques
that aim to be understood by system developers and customers. Each technique is used to

model the system from a number of different perspectives. For example, class diagrams

60

are used to model static(data) properties; sequence diagrams are used to model the data

flow of messages between objects.

UML is a tool-supported language that has the ability to visualize and express the
system’s structure and behavior at many different levels of abstraction. For example,
Ration Rose [Ratinal00] supports reverse engineering of, e.g., C++ and Java software
systems. When reverse engineering a Java program, Rose constructs a tree view that
contains classes, interfaces, and associations found at the highest level. Methods,
variables etc. are nested under the owner classes. Rose also constructs (on demand) a
class diagram representation of the extracted information and generates a default layout
for it. Additionally, Rose automatically constructs a package hierarchy as a tree view.
Rose is able to reverse engineer the information from source code (.java files), byte code
(.class files), jar files, or packed zip files. Java reverse engineering module can be given

instructions on files, directories, packages, and libraries to be examined.

4.1.6 Features of Visualization Tools Enhancing Bottom-Up Comprehension

Bottom-up comprehension is based on chunking. The bottom-up strategy of program
understanding is to start from the smallest chunks until chunks of the program big enough
emerge. In this section, we summarize some features of visualization tools that enhance

bottom-up comprehension. A comparison table is shown below.

61

Multiple | Decomposition | Provide Navigation
Views Abstraction
Mechanisms
VIFOR Yes No Yes Yes
and Text form, Partitioned Hypertext
VIFOR2 | graph Annotation of | links,
layout Software browser
(PAS)
POLKA | Yes No yes No
View of Properly
data reflecting the
structure, concurrent
view of operations
algorithm that occurring
animation in a parallel
program
ANIMAL | Yes No Yes No
Animation Three
of approaches to
algorithms, generate
data animation
structures
SeeSys | No Yes Yes Yes
By using moose By comparing | Zoom into
pairs of see a small
component subsystem,
a slide bar
determine
spatial
relationships
Rational | Yes Yes Yes Yes
Rose UML UML diagrams UML diagrams | UML
diagrams diagrams

Table 4.1 Features of visualization tools that enhance bottom-up comprehension

(Continue)

62

Usability Source License
Code
Analysis
VIFOR and Yes Hypertext Shareware
VIFOR2 Hypertext links , | documentation
browser
POLKA Yes Algorithm Open source
3D version animation
providing default
parameters and
simplification
ANIMAL Yes Algorithm Freeware
ANIMALSCRIPT [animation
SeeSys No Decomposition | Commercial
Rational No Yes Commercial
Rose User has to UML diagrams
learn before
using

Table 4.1 Features of visualization tools that enhance bottom-up comprehension
Multiple Views: Multiple Views, source code view and graphic view

Decompeosition: Decomposition, a complex system can be decomposed into

subsystem

Provide Abstraction Mechanisms: Provide abstraction mechanisms, individual

components can be chunked to form the whole system
Navigation: Navigation, reducing the effects of decomposition

Usability: Usability, providing both novice and invoice and experienced programmer

easier access

Source Code Analysis: Source code analysis, using techniques such as parsing,

slicing, data-flow analysis or querying etc. to analyze the source code

License: License, such as freeware, shareware, open source, and commercial

63

VIFOR is one typical representative of the software visualization tools developed in the last
ten years. VIFOR provides multiple views of the source code; Partitioned Annotation of
Software (PAS) is used as abstraction mechanism. VIFOR2 is an extension of VIFOR. Two
new technologies of browsing and hypertext document are combined in VIFOR2, which
makes it user friendlier to use. POLKA and ANIMAL are two powerful algorithm
animation tools. Animation tools are used to visualize source code, and the resulting
visualization is straightforward. The differences between POLKA and ANIMAL are that
POLKA is parallel program-focused reflecting the concurrent operations and ANIMAL
uses three approaches to generate animation. POLKA is open source and ANIMAL is
freeware. SeeSys is a visualization tool that uses a space-filing technique to display
complex system, and decomposition of source code is provided by visualizing code in
subsystems, directories, and files. VIFOR / VIFOR2, POLKA and ANIMAL do not
provide support for the decomposition of source code. SeeSys uses zooming and a slide bar
to navigate the source code to reduce the effect of decomposition. Rational Rose supports
visualization of e.g., C++ and Java software systems by using only UML diagrams to
visualize the source code structure. Rational Rose provides support for multiple views,
decomposition, abstraction mechanism, navigation and source code analysis. Based on its
wide spread use in forward engineering, Rational became also a major player in bottom up
visualization of source code. It should be mentioned that all of these tools suffer from
limitations in reverse engineering certain language constructs. For example they have
problems in identifying aggregation constructs. All of the current tools have also

limitations with respect to the scalability and their layout algorithms to present large

64

systems/amount of data. Additionally, these tools do not provide the user not necessarily

with adequate levels of abstractions and are limited to 2D visualization.

4.2 Visualization Tools for Top-Down Program Comprehension

In Top-down program comprehension, a hypothesis is created by program experts and
then refined until the comprehension process is completed. Visualization tools that
enhance top-down program comprehension will support hypothesis construction and
verification, then provide a method documenting and linking hypothesis to the relevant
parts of source code or document. Some features of visualization tools that enhance top-

down comprehension are [SFM99]:
e Support goal-directed, hypothesis-driven comprehension

e Provide an adequate overview of the system architecture at various levels of

abstraction
4.2.1 Hy+

The Hy+ system is a generic visualization tool for visualizing objects and relationships
among them [MS95]. Hy+ supports a novel visual language called Grapglog [MS95].
Grapglog is used for querying database. This is a traditional way of using database
queries: the newly defined relationship either gives a direct answer to a user question, or
it provides a new view on the existing data. Applications of the tool can be found in
identifying design pattern [GHJV95] in the code. Design patterns are high-level design
descriptions in object-oriented code. Hy+ has the feature of hypothesis-driven

comprehension. Hy+ provides a user interface with extensive support for visualizing

65

structural (or relational) data as hygraphs (Consens et al., 1994), an extension of graphs
inspired by Harel’s higraphs (Harel, 1988). It provides a number of browsers and
graphical editors to display and create the graphical presentations and extensively uses
color and icon symbols to improve the generated visualizations [HMV95]. Additionally,
in Hy+, filtering mechanism can be used to decide what to show. Hy+ makes use of
fisheye display techniques [MS95]. The derived data is presented in a graph where nodes

represent objects and arcs represent the relations of objects.

Hy+ can be in interfaced with a modified web browser Mosaic 2.0 for web visualization
[HMV95]. Web documents are written in HTML (HyperText Markup Language) and
provided by Web servers. The modified Mosaic 2.0 with Hy+ visualization will give

users graphical overviews of his or her browsing.
4.2.2 Jambalaya

Jambalaya [SMSBEFNO1] is a knowledge acquisition environment. Jambalaya integrates
an interactive user interface SHriMP [SWFM97] plug-in with protégé. The protégé
environment has been developed as Stanford University over the past 16 years [Protégé,
MFGNCGO00, NSDCFMO1]. Protégé is an ontology editor supporting knowledge
acquisition for computer experts in many knowledge domains. Ontology has become an
increasing important research topic and has shown its usefulness in application areas such
as intelligent information integration, information brokering, or knowledge-based
systems, to name but a few [SMO00]. Ontology is as a set of definitions of formal
vocabulary. Ontology is a description (like a formal specification of a program) of the
concepts and relationships that can exist for domain experts. The purposes of ontology

are to enable knowledge sharing and reuse, and provide an agreement of a domain

66

understanding. SHriMP (Simple Hierarchical Multi-Perspective) is visualization for
seamless exploring software structure and browsing source code, with a focus on
effectively assisting hybrid program comprehension strategies [SWFM97]. A nest graph
is used to visualize the structure of software, both pan + zoom and fisheye view
approaches are for exploring a nested graph. Program code can be further explored by
following hypertext links in the codes or by the pan + zoom technique in order to create

multiple views at different levels of abstraction and perspective.

Jambalaya integrated SHriMP plug-in with Protégé, further technical details are available
on the website at [ShriMP]. A knowledge base consists of an ontology and a set of
instances. A nested directed graph is used to display the knowledge base visually. Nodes
represent the instances and corresponding class. Different colors are used to distinguish
instance nodes and class nodes. Arcs represent slot dependencies between classes and
instances in the knowledge base. Using Jambalaya during knowledge acquisition, the

structure of large knowledge bases are understood or maintained.
4.2.3 Rational Rose

Rational Rose [Ratinal00] is a graphical software-modeling tool. Rational Rose uses the
Unified Modeling Language (UML) as its primary notation. The Unified Modeling
Language (UML) is a general-purpose visual modeling language used specifies,
visualize, construct and document the artifacts of a software system. The UML unifies
object-oriented analysis and design techniques and their associated diagrams into a
common model. The language is based on a small number of core concepts that most
object-oriented developer can easily learn and apply. The core concepts can be combined

and extended so that expert object modelers can define large and complex system across

67

a wide range of domain. The UML specification consists of two interrelated parts that
are UML semantics and UML notation. UML semantics that is a mental model that
specifies the abstract syntax and semantics of UML object modeling concepts. UML
notation which is a graphic notation for visual representation of the UML semantics,
include class diagram, sequence diagram, collaboration diagram, statechart diagram etc.,
UML software visualization deriving forward engineering visualization software may
include all diagrams and views. Diagrams and views of UML provide two key benefits to
the developer. The first is the ability to visualize and express the system structure and
behavior at many different levels of abstraction. UML allows user to construct more
abstract concepts from more primitive ones and deal with the system at any level of
abstraction that we find convenient. The other key benefit is the ability to look at
different aspects of the system. We can, for example, look at the requirements, the
structural aspects, or the behavior aspects. Each UML diagram has its own advantages
that allow focusing on some particular aspect. For example, to abstract structural aspects,
we focus on how objects are distributed through the system and the policies, procedures,
and structures used to allow them to collaborate. Or, we can focus instead on the large-
scale organization of the subsystems and components. Or we can look at how
concurrency is managed in the system and analyze it for schedule ability. This is also

scarcely possible for source-code based systems.

68

4.2.4 Features of Visualization Tools Enhancing Top-Down Comprehension

The strategy of top-down comprehension argues that the program experts develop a

hypothesis, and then the experts use their experience to confirm or reject the hypothesis.

In this paper, we summarize some features of visualization tools that enhance top-down

software comprehension. A comparison table is shown below.

Support Different Relational Usability
Hypothesis- Levels Of Views
Driven Abstraction
Comprehension
Hy+ Yes Yes Yes No
Graphlog Filtering Hygraph
supports mechanism textual
database decides what to | browsing of
querying show, and source code
hygraph
Jambalaya Yes Yes Yes Yes
Protégé is an Nested SHriMP Protégé editor
ontology editor interchangeable | Class is user friendly
supporting views hierarchy view
knowledge is shown on
acquisition the pane of
Protégé editor
*Rational Rose | Yes Yes Yes No
UML semantics | UML graphical | UML graphical | User hasto
notations notations learn before
using it

Table 4.2 Features of visualization tools that enhance top-down comprehension

(Continue)

69

Data Extract UML Diagrams License
Format Support
Hy+ GXL Yes Commercial
Jambalaya GXL Yes Open source
*Rational Rose GXL Yes Commercial

Table 4.2 Features of visualization tools that enhance top-down comprehension
¢ In many cases, Rational rose is used for forward engineering, and top-down

comprehension

Support Hypothesis-Driven Comprehension: Support hypothesis-driven

comprehension
Different Levels Of Abstraction: Different levels of abstraction

Relational Views: Relational Views, indicate interrelationship of program component,

such as class diagram, sequence diagram, collaboration diagram
Usability: Usability, providing both invoice and experienced programmer easier access

Data Extract Format: Data extract format, such as GXL (Graph exchange Language),

XML (Extensible Markup Language), XMI (XML Metadata Interchange)
UML Diagrams Support: UML diagrams support

License: License, such as freeware, shareware, open source, commercial

In Hy+ system, a novel visual language called Grapglog is used to query database. In
Jambalaya, an ontology editor called Protégé is used to support knowledge acquisition.

Ontology is a description of concepts and relationships and provides an agreement of a

70

domain understanding. In particular, Jambalaya supports for mapping domain knowledge
to code and switching between mental models would be useful. Rational Rose uses UML
semantics to support hypothesis driven comprehension. Comparing these two
technologies, the UML semantics is closer to the program behavior and more
straightforward from a typical user perspective. Hy+, Jambalaya and Rational Rose all
support UML diagrams. However, Hy+ and Jambalaya only support parts of the UML
notation, compared to Rational that provides support for the complete set of UML
diagrams. In Jambalaya and Hy+, a better navigation method called SHriMP (Simple
Hierarchical Multi-Perspective) is used that encompass meaningful orientation cues and
effective presentation is used for exploring complex software structures. Rational lacks
orientation cues for switching form one view to another, making its navigation and

context switching less intuitive.

4.3 Visualization Tools For Opportunistic Program Comprehension

In opportunistic program comprehension, opportunistic comprehension and top-down
comprehension are often is switched. Typically, some features of visualization tools that

enhance opportunistic comprehension are: [SFM99]:
e Construction of multiple mental models (domain, situation, program)

¢ Cross-reference mental models
4.3.1 Rigi

Rigi [MWT94] is a reverse engineering system developed to extract, navigate, analyze,

and document the structure of evolving software systems (to aid software maintenance

71

and reengineering activities). The first phase of Rigi is extraction, which is automatic and
involves parsing the software and storing the extracted artifacts. Rigi has parsers for
several imperative languages, including C and COBOL. The results of first phase are a
flat resource-flow graph that can be manipulated using the Rigi editor. A fisheye view
technique is used to represent the large pools information. As the name applies, the
fisheye technique emulates the behavior of a fisheye lens. The information at the center
of the view is magnified, whilst that at the periphery is reduced in size. Also nested
graphs are used for the display of software structures. The nesting nodes repiesent the
hierarchical structure of the software. The next phase is semi-automatic; a mental model
of the structure of system is made on the flat graph. Rigi depends on heavily on the
experience and domain knowledge of the software engineer using it. The user makes all
important decisions [MWT94]. To manage the complexity of large software systems, the
second phase involves pattern-recognition skills and features subsystem-composition
techniques to generate multiple, layered hierarchies of high-level abstractions
[MOTU93]. Rigi supports a scripting language that allows users to customize, combine,
and automate reverse engineering activities in novel ways [MWT94]. Efforts are
proceeding to make user interface and configuration settings more user-customizable
[Tilley95]. This approach permits the analyst to tailor the environment to better suit their
needs, providing a smooth transition between automatic and semi-automatic reverse

engineering [TWSM94].
4.3.2 PUI

PUI (Program Understanding Implement) [CM97] is a simple browsing tool that allows

maintainers to recover information as they browse through the various HTML pages. PUI

72

tool supports program comprehension at the top-down comprehension, bottom-up
comprehension, and a combination of both. The PUI tool visualizes program elements
and program relations in a smooth manner. Typically, a C program may include program
elements such as types, variables, expression, statements, functions and files. Program
relations include the control flow relations and the calling relations. PUI tool also
provides different viewpoints. Viewpoints have different emphases on the program
elements and relations and so can bring various parts of the program to the maintainers’

attention [CM97]. The initial viewpoints are [CM97]:
e Information display
e Listing
e Control panel

The maintainer can choose different viewpoints since different viewpoint form different

level of abstraction.
4.3.3 Fujaba

Fujaba [RH98] is a freely available software and was developed at the University of
Paderborn in 1998. Fujaba is a UML based CASE-tool that supports code generation
from class diagrams as well as activity diagrams, statecharts and collaboration diagrams.
This allows the use of UML as a kind of visual programming language for the
development of full fledged applications without any manual coding. The primary goal of
the Fujaba project and environment is Round Trip Engineering with UML, SDM (Story
Driven Modeling), Java and Design Patterns [RH98]. That means if some developer tools

(e.g. a version control system) modify the generated code and if these stick to certain

73

coding standards, then the Fujaba environment is able to analyze the changed code to (re)
create the corresponding UML specification. Fujaba is written in Java and contains

almost 700 classes. The Fjaba version under examination was 0.6.3-0.

4.3.4 Imagix 4D

Imagix 4D [Imagix4D] is a reverse engineering tool that now features software
documentation capabilities. The product offered by Imagix Corporation (USA) provides
software developers with high-performance program understanding tools for C and C++.
Using information located in its database and in the designer's source code, it documents
each software component. This includes all files, classes, functions, and variables. Imagix
4D features a control flow analysis tool that analyzes the sequences and conditions of
function calls and variable usages in the code. Developers also have control over the
representation of the data, choosing where to insert cross-references and chart graphics
into the documentation. The new release of the software development tool Image 4D
constitutes an interesting example for the application of knowledge-based exploration and
information visualization technologies. It helps to reverse engineer and document
software that is complex, large, or unfamiliar. Knowledge-based graphics, as they are
employed in Imagix 4D, provides a broad range of linked and synchronized displays, that

go far beyond traditional call graphs and class hierarchies.
4.3.5 Features of Visualization Tools Enhancing Opportunistic

Comprehension

The strategy of opportunistic comprehension requires that the programmer mix bottom-

up theory and top-down theory during the program comprehension when it is necessary.

74

Thus, opportunistic comprehension has both features of bottom-up and top-down. In this
section, we summarize some features of visualization tools that enhance opportunistic

comprehension. A comparison table is shown below.

Multiple Views | Decomposit | Navigation | Support Hypothesis-
ion . .
Driven Comprehension
Rigi Yes Yes Yes Yes
Source code A parsing Hypertext A scripting language
view, and subsystem links
higher-level
raphical view
PUI Yes No Yes Yes
Source view, Hypertext Different viewpoints
and HTML links link to the
document corresponding
implement
Fujaba Yes No No Yes
UML class Design pattern
diagram and
behavior
diagram, story
SDM diagram,
generated
source code
Imagix Yes No Yes Yes
4D Providing a Linked Knowledge-based
broad range of display graphics generation
links and
synchronized
display

Table 4.3 Features of visualization tools that enhance opportunistic comprehension

(Continue)

75

Different Relational Cross- Usability
Views Reference
Levels Of Multiple
Abstraction Mental
Models
Rigi Yes Yes Integration | Yes
Subsystem | Graph of source User
composition | nodes and code view interface is
arcs in graphical | user-
views customizable
PUI Yes Yes Yes Yes
viewpoints | viewpoints HTML By selecting
document different
and source | parameter of
code views | viewpoint,
are shown there have
together different
contents of
HTML
document
Fujaba Yes No Yes No
Combine Combine
with class with class
diagram, diagram,
UML UML
behavior behavior
diagram, diagram,
SDM story SDM story
diagram diagram
Imagix4D | Yes Yes Yes No
A control Graph Looking at
flow nodes and information
analysis arcs database,
and source
code

Table 4.3 Features of visualization tools that enhance opportunistic comprehension

(Continue)

76

Source Data UML license
Analysis Extract Diagram
Format Support

Rigi Slicing, GXL Yes Open
parsing, source
Data flow
analysis

PUI UML GXL Yes Commercial
diagram

Fujaba UML GXL Yes Open
diagram, source
SDM

Imagix 4D | Querying, | GXL No Shareware
control
analysis
tool

Table 4.3 Features of visualization tools that enhance opportunistic comprehension

Multiple Views: Multiple Views, source code view and graphical view
Decompoeosition: Decomposition, a complex system can be decomposed into subsystem
Navigation: Navigation, reducing the effects of decomposition

Support Hypothesis-Driven Comprehension: Support hypothesis-driven

comprehension
Different Levels Of Abstraction: Different levels of abstraction

Relational Views: Relational Views, indicate interrelationship of program component,

such as class diagram, sequence diagram, collaboration diagram
Cross-Reference Multiple Mental Models: Cross-references multiple mental models

Usability: Usability, providing both novice and experienced programmer easier access

77

Source Analysis: Source analysis

Data Extract Format: Data extract format, such as GXL (Graph exchange Language),

XML (Extensible Markup Language), XMI (XML Metadata Interchange)
UML Diagrams Support: UML diagrams support

License: License, such as freeware, shareware, open source, commercial

Tools enhancing opportunistic comprehension have both the features of enhancing
bottom-up software comprehension and top-down software comprehension. Comparing
the four tools included in this survey, Rigi and Imagix 4D provide immediate and visible
access to the lowest units such as the program code. The relational views indicating the
interrelationship of the program component are presented in the form of a graph where
nodes represent software objects and arcs show the relations between the objects. PUI
uses viewpoints to bring various parts of the program to the users’ attention. One key
feature of tools enhancing top-down software comprehension is the support of hypothesis
driven comprehension. A scripting language as provided by Rigi, is used to record the
hypotheses in novel ways for future maintenance. This approach allows user to tailor the
environment to better suit their needs. The approach provided by Rigi, supporting
hypothesis-driven is more customizable comparing with the three of others. As a tool
enhancing opportunistic comprehension, Rigi has many advantages towards an effective
interface for software visualization. The customizability, and flexibility of Rigi’s
scripting language is one of the main reasons, for its wide-spread use (at least in terms of
comprehension tools). Rigi, at the current state-of-the-art is the comprehension tool, other

tools have to compare and compete with. Nevertheless, this is not say that Rigi is perfect.

78

Rigi is missing support for advance visualization techniques (2/3D), layout algorithms are

limited and the integration of source code analysis techniques could be further enhanced.

79

S. Summary

This paper presents a categorization for software visualization. This categorization entails
and describes some important concepts. Firstly, program comprehension is an important
issue in software maintenance. However, program comprehension is not solely a
maintenance issue, and it is also a significant task during implementation, testing and
debugging. There are four accepted categories of theories that describe the cognitive
processes involved in program comprehension: bottom-up program comprehension, top-
down program comprehension, opportunistic program comprehension, and an integrated
meta-model of program comprehension. Several models are discussed and compared. The
evaluated models are Shneiderman’s model, Pennington’s model, Brooks’ model,

Soloway and Ehrlich’s model.

Software visualization is a subset of information visualization. Through software
visualization, computer graphics are built to represent program comprehension. The
related visualization techniques are used to build visualization tools. Supporting the user
in the performance of program comprehension tasks is a major goal of visualization

tools.

The contribution of this paper is the review and category of software visualization tools.
The report categories the tools based on their supported comprehension strategies: top-

down, bottom-up and opportunistic.

To conclude, we believe program comprehension is a difficult and important issues in
software engineering. Software visualization is an effective way to support the program
comprehension tasks. Support should be provided to aid the user in the construction of

mental models, and the performance of program comprehension strategies.

80

References

[BE94] Baker, M.J., and Eick, S.G. (1994) Space Filling Software Visualization, Journal

Languages and Computing, Vol.6, pp 119-133, 1994.
(Boe81] Boehm, B.W. (1981) Software Enginerring Economics. Prentice Hall, 1981.

[BOO91] Booth, G (1991) Object-Oriented design with applications.

Benjamin/Cummings Inc, California,1991.

[Bro77] Brooks, R. (1977) Towards a theory of the Cognitive Processes in Computer

Programming. International Journal of Man-Machine Stidies,9(6):737-741,1977.

[Bro83] Brooks, R. (1983) Towards a theory of the Cognitive Processes in Computer

Programming. International Journal of Man-Machine Studies, 18:543-554,1983.0

[BRJ99] Brooch, G, Rumbaugh, J., and Jacobson, L. (1999) The Unified Modeling
Language User Guide], by Grady Booch, James Rumbaugh, Ivar Jacobson, 1999

Addison Wesely.

[CC90] Chkofsky, E.J., Cross, J.H., (1990) Reverse Engineering and Design Recovery: A

Taxonomy. [EEE Software,7(1), pp.13-17,Jan.1990.

[CM97] Chan, P-S., Munro, M. (1997) PUI: A Tool to Support Program Understanding.
Published in the 5" International Workshop on Program Comprehension 1997(IWPC’97).

May 28-30, 1997 in Dearborn, Michigan,USA.

[Cog82] Coggins, J.M. (1982) A framework for Texture Analysis Based on Spatial

81

Filtering. PhD. Thesis, Computer Science Department, Michigan State University, East

Lansing, Michigan, 1982.

[Con87] Conklin, J. (1987) Hypertext : An Introduction And Survey . [EEE Computer.

20(9): 17-41. 1987.

[Co084] Cook, R.L. (1984) Shade Trees. Proceedings of SIGGRAPH 84 (Minneapolis,
Minnesota, July 23-27,1984). In Computer Graphics, v18n3. ACM SIGGRAPH, July

1984. pp223-231.

[Cor89] Corbi, T. A., (1989) Program Understanding: Challenge for the 1990s, IBM

System Journal, 28(2):294-306(1989).

[Cor90] Corbi, (1990) T.A., Program Understanding: Challenge for the 1990s, IBM

System Journal, Vol 28.

[CRM91] Card, S.K., Robertson., GG, Machkinlay, J.D. (1991) The Information
Visualizer: An Information Workspace Xerox Palo Alto Research Center, Palo Alto,

California 94304, 1991.

[Cru01] Crumpton, J. (2001) Towards a theory of the comprehension of computer

program, spring 2001.

[FOR93] Ford, L. (1993) How programmers visualize programs. Research Report271,

Department of Computer Science, University of Exeter, Exeter, U.K.,1993.

[GHJV95] Gamma, E., Helm, R., Johnson, R., and Vlissides, John. (1995) Design

Patterns: Elements of Resuable Object-Oriented Software. Addision-Wesley, 1995.

82

[GJS91] George, GR., Jock, D.M., and Stuart, K.C. (1991) Cone Trees: 3D Animated 3D
Visualizations of Hierarchical information. In Proceedings of ACM CHI'91 Conference
on Human Factors in Computing Systems and graphics Interface, ACM SIGCHI, pages

189-194, New York, NY, USA 1991. ACM Press.

[Grah01] Graham, Ian. (2001) Object-Oriented Methods. Principles & Practice 3

edition.

[GS93] Garlan, D., and Shaw, M. (1993) An introduction to Software Architecture. In
Advances in Software Engineering and Knowledge Engineering (Ambriola V. Tortora G,

Eds) World Sciencetific Publishing Company, 1993.

[Imagix4D] Imagix 4D . Imagix Corporation. http://www.imagix.com/index.html

[JS91] Johnson, B., and Shneiderman, B. (1991) Treemaps: a space-filling approach to
the visualization of hierarchical information structures. In Proceedings of the Ieee

Visualization’91, page 284-291, San Diego, CA, October,1991.

[Knight98] Knight, C. (1998) Visualisation for Program Comprehension: Information

and Issues. Report 12/98.

[KS94] Kraemer, K., and Staskko, J.T. (1994) Issues in Visualization for the
Comprehesion of Parallel Programs. College of computing, Georgia Institute of

Technology, Atlanta, GA 30332-0280 , E-mail:{ stasko,Eileen}@cc.gatech.edu. 1994.
[LA94] Leung, Y., Apperley, M, (1994) A Review and Taxonomy of Distortion-

Orientation Presentation Techniques, ACM Transaction on Computer = Human

83

interaction 1 (2), 1994, 126-160.

[LCCCLY95] Lu, C.W.,, Chu, W.C, Chang, C.H., Chung, Y.C, Liu, X,, and Yang, Y.
(1995) Reverse Engineering. Department of Information Engineering, Tunghai University,
Taichung, Taiwan, chu@ csie.thu.edu.tw. School of Computing , Napier University,
Edinburgh, Scotland. Department of Computer Science , De Montfort University,

Leicester, England.

[Let86]) Letovsky, S. (1986) Cognitive processes in program comprehension. In

Empirical studies of programmers, pages 58-79. Ablex Publishing Corporation,1986.

[LH92] Levkowitz, H., and Herman, GT. (1992) Color scales for image data. [EEE

Computer Graphics and Applications, 12(1): 78-80, 1992.

[LHMR92] Levkowitz, H., Holub, R.A., Meyer, GW., and Roberson, P.K. (1992) Color
vs black and white in visualization. [EEE Computer Graphics and Applications, 12(4):

20-22, 1992.

[LM94] Leung, Y.K., Apperley, Mark D.(1994) A Review and Taxonomy of Distortion-
Oriented Presentation Techniques. ACM Transactions on Computer-Human Interaction,

1(2):126-160, June 1994.

[LR94] Lamping, J., Rao, R. (1994) Laying out and Visualizing Large Trees Using a

Hyperbolic Space. Nov 2-4, 1994.

[LRP95] Lamping, J., Rao, R., Pirolli, P. (1995) A Focus + Context Technique Based on

Hyperbolic Geometry for Visualizing Large Hierarchies. Proceedings of ACM CHI

84

1995,401-408.

[LS94] Livadas, P. E.,, and Small, D. T.,, (1994) Understanding Code Containing
Preprocessor Constructs. In: Proceedings of the 3 Workshop on Program
Comprehension, Washington, DC, [EEE Computer Society Press, Los Alamitos, CA,

1994, pp.89-97.

[LW86] Lyle, J., and Weiser, M. (1986) Experiments on slicing-based debugging tools.

Proc. Of the 1th Conf. On Empirilcal Studies of Programming, pp.187-197,6/1986.

[MBCCK93] MORRISON, R., BAKER, C., CONNOR, R.C.H., CUTTS, Q.I, and
KIRBY, GN.C. (1993) Approaching Integration in Software Environments. Department
of Mathematical and Computational Sciences, University of St Andrews, North haugh, St

Andrews, 1993.

[MFGNCGO00] Musen, M.A., Fergerson, R.W., Grosso, W.E., Noy, N.F., Crubezy, M.,
and Gennari, J.H. (2000) Component-based support for building knowledge-acquisition
systems. Proceedings of the Conference on Intelligent Information Processing (IIP 2000)
of the international Federation for Information Processing Sixteenth World Computer

Congress (WCC 2000), Beijing, China, August, 2000, pp.18-22.

[Microsoft97] Microsoft Corporation. Redmond — WA. Internet Explorer, November

1997. Online http:// www.microsoft.com

[MOTU93] Muller, H.A., Orgun, M.A., Tilley, S.R., and Uhl, J.S. (1993) A reverse

engineering approach to subsystem structure identification. Journal of Software

85

Maintenance: Research and Practice, 5(4):181-204, December 1993.

[MS95] Mendelzon, A., and Sametinger, J. (1995) Reverse engineering by visualizing

and querying. Software- Concepts and Tools, 16:170-182, 1995.

[MS02] Matteo, C., Sergio, m. (2002) Information Visualization and Usage a Perspective.

June 14,2002.

[MUN71] Munsell, A.H. (1971) A color Notation (12lh Edition). Munsell Color

Company, Baltimore, Maryland, 1971.

[MV93a] Mayrhauser, A.V., and Vans, A.M. (1993) Comprehension Process During
Large Scale Maintenance. Research Paper. Dept. of Computer Science Colorado State

University Fort Collins, CO 80523.1993.

[MV93b] Mayrhauser, A.V., and Vans, A.M. (1993) From Program comprehension to
Tool Requirements for an Industrial . In: Proceedings of the 2 Workshop on Program

Comprehension, Capri, Italy, pp, 78-86, July 1993.

[MV93c] Mayrhauser, A.V., and Vans, A M. (1993) From Code Understanding Needs to
Reverse Engineering Tool Capabilities, In: Proceedings of the 6" International Workshop

on Computer-Aided Software Engineering (CASE93), Singapore, pp:230-239,July 1993.

[MV94] Mayrhauser, A.V. and Vans, A.M. (1994) Program Understanding- A Survey.

Technical Report CS-94-120, August 23, 1994. Colorado State University.

[MV95] Mayrhauser, A.V. and Vans, A.M. (1995) Program comprehension during

software maintenance and evolution. [EEE Computer, pages 44-45, August 1995.

86

[MWT94] Muller, H.A., Wong, K., Tilley, S.R. (1994) Understanding Software Systems
Using Reverse Engineering Technology. Department of Computer Science, University of

Victoria. P.O. Box 3055, Victoria, BC, Canada V8W 3P6. 1994.

[MYE90] Myers, B A.(1990) Taxonomies of visual programming and program

visualization. Journal of Visual Languages and Computing, 1(1): 97-123,1990.

[Netscape97] Netscape Communications. Mountain View. CA. Netscape Navigator.

November 1997. Online http:// www.netscape.com

[Nie90] Nielsen, J. (1990) The Art Of Navigation Through Hypertext. Communications

of the ACM. 33(3): 296-310, may 1990.

[Nie95] Nielsen, J. (1995) Multimedia And Hypertext: The Internet And Beyond.

Academic Press Inc., 1995.

[NS84] NAGY,G, AND SETH, S. (1984) Hierarchical representation of optically
scanned documents”. In Proceedings of the IEEE 7 International Conference on Pattern

Recognition (Montreal, Canada,1984, pp.347-349.

[NSDCFMO01] Noy, EN., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., and
Musen, M.A. Creating Semantic Wen contents with Protégé- 2000. IEEE Intelligent

Systems, 16(2): 60-71, 2001.

[OL98] Olano, M., Lastra, M. (1998) A Shading Language on Graphics Hardware: The
Pixelflow Shading System. Proceedings of SIGGRAPH 98, Orlando, Florida, July 19-

24,1998.

87

[Oman90] Oman, P. Maintenance tools. IEEE software, 7 (3): 59-65, May, 1990.

[Pen87] Pennington, N. (1987) Stimulus structures and mental representations in expert

comprehension of computer programs. Cognitive psychology,19:295-341,1987.

[Protégé] Protégé project, Stanford University, http://protégé.stanford.edu.

[Rational] http://www.rational.com/

[RA96] Rajlich, V., Adnapally, R. (1996) VIFOR 2: A Tool for Browsing and
Documentation, [EEE International Conference of Software Maintenance, pp 296-300,

1996.

[RBCM91] Robson, D.J., Bennett, K.H., Corelius, B.J., and Munro, M. (1991)
Approaches to Program Comprehension. Journal of Systems and Software 14 (1991), 79-

84.

[RC92] Roman, G.-C., Cox, K. C. (1992) Program Visualization: The Art of Mapping
Programs to Pictures. Proc. of the International Conference on Software Engineering,

Association of Computing Machinery, 1992.

[RDL90] Rajlich, V., Damaskinos, N., and Linos, P. (1990) VIFOR: A Tool for software

Maintenance, Software Practice and Experience, Vol.20, No.1, pp67-77, January 1990.

[RF00] RoBling, G, Freisleben, B. (2000) Program Visualization Using

ANIMALSCRIPT.

[RGDY4] Rajlich, V., Gudla, R., Doran, J. (1994) Layered Expianations of Software: A

Methodology for Program Comprehension, In: 1994 IEEE Workshop on Program
88

Comprehension, 46-53.

[RH98] Rockel, L., and Heimes, F. (1998) Fujaba-Homepage.

http://www.uni-paderborn.de/cs/fujaba/

[RSF00] RoBling,G., Schuler, M., Freisleben, B. (2000) The ANIMAL Algorithm

Animation Tool.

[Rug81] Rugaber, S. (1981) Program Comprehension. Georgia Institute of Technology,

May 4, 1995.

[SAES88] Soloway, E., Adelson, B., and Ehrlich, E. (1988) Knowledge and Processes in
the comprehension of Computer Programs, In: The nature of Expertise , Eds. M. Chi, R.

Glaser, and M.Farr, 1988, Alawrence Erlbaum Associates, Publishers, pp.129-152.

[Sam89] SAMET, H. (1989) Design and Analysis of Spatial Data Structures. Addision-

Wesley Publishing Co., Reading, MA,1989.

[SE84] Soloway, E., and Ehrlich, K. (1984) Empirical Studies of Programming
Knowledge, In: [EEE Transaction on Software Engineering, September 1984, Vol. SE,

No. 5, pp. 595-609.

[SFM99] Storey, M.-A.D., Fracchia, F.D., Muller, H.A., 1999) Cognitive Design
Elements to Support the Construction of a Mental Model during Software Visualization.
School of Computing Science Simon Fraser University, Bumaby, BC , Canada,

Department of Computer Science , University of Victoria, BC, Canada. 1999.

[SHH98] Smith, R., Hixon, R., Horan, B. (1998) Supporting Flexible Roles in a Shared
89

Space, Proceedings of ACM CSCW’98, 197 — 206.

[Shn80] Shneiderman, B. (1980) Software Psychology: Human Factors in Computer and

Information Systems. Winthrop Publishers, Inc.,1980.

[Shn91] Shneidreman, B. (1991) Tree Visualization with Tree-Maps: 2-d Space-Filing

Approach. University of Maryland, 1991.

[ShriMP] ShriMP Views project, University of Victoria,

http://www.csr.uvic.ca/shrimpviews/protégé.html

[SK93] Stasko, J. T., Kraemer, E.. (1993) A methodology for building application-
specific visualizations of parallel programs. Joural of Parallel and Distributed Computing,

18(2): 258-264, June "993.

[SKk178] Sklansky, J. (1978) Image Segmentation and Feature Extraction. [EEE

Transactions on Systems, Man and Cybemetics, SMC-8, pp.237-247,1978.

[SM79] Shneiderman, B., and Mayer, R. (1979) Syntactic/ Semantic Interactions
iProgramer Bahavior: A Model and Experimental Results, In: International Journal of

Computer and Information Sciences, 1979,Vol.8, No.3,pg.219-238.

[SM00] Staab, S., and Maedche, A. (2000) Ontology Engineering beyond the Modeling

of Concept and Relations.

[SMW95] Storey. M-A.D., Muller, HA., Wong, W. (1995) Manipulating and
Documenting Software Structures Using ShriMP Views, proceedings of ICSM’95, pp

275-284, October 17-20,1995.
90

[Som95] Sommerville, I. (1995) Software Engineering. Fifth edition, Addison-Wesley

Publishing Co. Inc., Wockingham, England,pp.700-712,1995.

[SMSBEFNO01] Storey, M-A., Musen, M., Silva, J,, Best, C., Emst N., Fergerson, R,
Noy, N. (2001) Jambalaya: Interactive visualization to enhance ontology authoring and

knowledge acquisition in Protégé.

[ST78] Swanson, B.L.E., and Tompkins, GE. (1978) Characteristics of Application

Software Maintenance. Communications of the ACM, 21(6), June 1978.

[Sta84] Standish, T. A., (1984) An Essay on Software Reuses. [EEE Transactions on

Software Engineering, SE-10(5): 494-497(1984).

[SWFM97] Storey, M-A.D., Wong, K., Fracchia, ED., Muller, M.A. (1997) On

Integrating Visualization Techniques for Effective Software Exploration.

[TC90] Tyler, C.W. and Clarke, M.B. (1990) The autostereogram. SPIE Stereoscopic

Display and Applications 1258: 182-196.

[Tilley95] Tilley, S.R. (1995) Domain-retargetable reverse engineering II: Personalized
user interfaces. In international Conference on Software Maintenance (Icsm’94),
(Victoria, BC; September 19-23, 1994), page 366-342. IEEE Computer Society Press

(Order Number 6330-02), September 1994.
[TJ98] Tuceryan, M., and Jain, A.J. (1998) Texture Analysis.

[TMY78] Tamura,H., Mori, S., and Yamawaki, Y. (1978) Textural Features

Corresponding to Visual Perception. IEEE Transactions on Systems, Man and

91

Cybermnetics, SMC-8, pp.460-473, 1978.

[Tru81] Truckenbrod, T.R. (1981) Effective Use Of Color in Computer Graphics.

Department of Art Northern Illinois University Dekalb, Illinois.

[Tuf90] Tufte, E. (1990) Envisioning Information, Graphics Press, 1990.

[TWSM94] Tilley, S.R., Wong, K., Storey, M.-A. and Muller, H.A. (1994) Programmable
reverse engineering. To appear in the International Journal of software Engineering and

Knowledge Engineering, 4(4), December 1994.

[WL95] Ware, C.. Lewis, M. (1995) The DragMag Image Magnifier. Video Proceedings

of ACM CHI'95, 1995, vol.2, p.407-408.

92

Appendix

Diagrams in the UML:

Class diagram - Shows a set of classes, interfaces, and collaborations and their
relationships. This is the most common type of diagram used when modeling OO

systems.

Object diagram - Shows a set of objects and their relationships. Can be thought of as an

instance of a Class diagram.

Use case diagram - Shows a set of use cases and actors and their relationships. These
types of diagrams drive the whole development process since they describe the

requirements of the system.

Sequence diagram - Shows an interaction, consisting of a set of objects and their
relationships, including the messages that may be dispatched among them. Emphasizes

the time ordering of messages.

Collaboration diagram - Shows an interaction, consisting of a set of objects and their
relationships, including the messages that may be dispatched among them. Emphasizes

the structural organization of the objects that send and receive messages.

Statechart diagram - Shows a state machine, consisting of states, transitions, events, and

activities.

93

Activity diagram - Special kind of a Statechart diagram that shows the flow from
activity to activity within a system, and they are very similar to flowchart diagrams

except that concurrency may be modeled in Activity diagrams.

Component diagram - Shows the organizations and dependencies among a set of

components.

Deployment diagram - Shows the configuration of run - time processing nodes and the

components that live on them.

94

Views in UML:

Use case view — Encompass the use cases that describe the behavior of the system as

seen by its end users, analysts, and testers

Design view - Encompass the classes, interfaces, and collaborations that form the

vocabulary of the problem and its solution

Process view - Encompass the threads and processes that form the system's concurrency

and synchronization mechanisms

Implementation view — Encompass the components and files that are used to assemble

and release the physical system

Deployment view - Encompass the nodes that form the system's hardware topology on

which the system executes

95

