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Abstract

Discrete event dynamical systems (DEDS) are a class of man-made systems, which
are driven by a set of discrete events. Typical examples include queuing systems,
manufacturing systems, telecommunication networks, and so on. In the past two
decades. the modeling, simulation, and optimization of DEDS have received consid-
erable attention. The objective of this thesis is to apply the DEDS approaches to
study wireless personal communication systems. Two applications are studied: the
call request buffering problem and the mobile terminal location tracking problem.

In a personal communication service network, a set of channels is assigned to
every cell. When a phone call arrives and is assigned a channel, it consumes the
channel until the end of the conversation. If no channel is available, the call is
dropped/blocked. In many cases, some channels may become available shortly after
a call is dropped. Thus, if some buffering mechanism is used, a cell may accommodate
more phone calls and thus the channel utilization is increased. This is referred to as
call request buffering. The first part of this thesis develops an algorithm to estimate
the sensitivity of a Markov process using a single sample path of its uniformization
Markov chain, and uses a gradient algorithm to find a locally optimal parameter.
After that. a random call request buffering scheme is introduced, which is optimized
using the proposed algorithm.

In a wireless personal communication service system, in order to deliver a phone
call, the network has to track the mobile terminals’ locations from time to time.
The second part of the thesis proposes a mobile terminal location update model,
whose states consist of two components—the time elapsed since last call arrived and
the distance the mobile terminal has traveled since last registration. This model is
characterized as a Markov decision process. Using a Markov dynamical programming

algorithm, the optimal update strategy is computed. To implement the optimal

il



strategy, a new scheme is introduced to calculate the distance a mobile terminal
has traveled since its last registration. This part also develops a simulation- based
optimization algorithm for mobile location update, which can be implemented on-line.

Key Words: Personal communication service system, call request buffering, lo-

cation update/registration, Markov decision process, online optimization.
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Chapter 1

Introduction

1.1 Discrete Event Dynamical Systems

Discrete Event Dynamical Systems (DEDS) are a class of man-made systems,
which are driven by a set of discrete events that occur at discrete random instances.
Typical examples of DEDSs are queuing systems. manufacturing systems. computer
networks, personal communication service (PCS) networks, and so on. A DEDS
is governed by a set of artificial rules such as CPU scheduling rules, rather than
natural laws. Generally speaking. the state transitions of a DEDS are triggered by
a set of discrete event processes. such as interrupts in computer operating systems,
customer arrival and departure in queuing systems etc. These event processes may
be asynchronous and concurrent, and moreover, they may not be independent of each
other. Consequently. DEDSs can not be characterized by conventional differential
equations or difference equations: and thus new models have to be developed. In
the past two decades, a lot of DEDS models have been reported in the literature.
Roughly speaking, these models can be classified into three categories according to
their abstraction levels: untimed(logical). timed. and stochastic. The choice of the

appropriate level of abstraction depends on the objectives of the analysis.

¢ Untimed models: Petri nets and automata. In some contexts, we are interested

in the “logical behavior™ of the system. that is, in ensuring that a precise order-



[SV]

ing of events takes place which satisfies a given set of specifications; or we are
interested in checking whether a particular state of the system can be reached
or not, for example, “at a crossover. two sides have green traffic lights at the
same time”. In these cases, it suffices to consider only the logical behaviors of

the systems.

e Timed Models: Timed automata, timed petri nets, and Dioid algebras. Use
these models to deal with event timing. Typical questions to be answered
include: “how much time does the system spend at a particular state?” or
“how soon can a particular state be reached?” and so on. The most popular

performance indices for timed models are throughput and response time.

e Stochastic timed model-—Generalized semi-Markov processes (GSMP). GSMP
is the most general probabilistic model. When the life times of all the events
are exponentially distributed or geometrically distributed, a GSMP becomes
a Markov process. Here we provide an informal definition of GSMP given by
[11]. A more formal definition of GSMP can be found in [15], [6] and references

therein.

Let S be the state space which is a subset of nonnegative integers. Let E be the
(finite) set of all possible events in the GSMP. For each state x € S, [(z) will be used

to denote the feasible event subset associated with a particular state z. Also define
e t, € R*— the epoch of the nth state transition (or the nth event time).
® o, € £— the nth event.
e 1, € S—the nth state visited by the process z, = z(t,+).

e cy(a)—at t,, the time remaining until event o occurs, provided a € I (zn)-

cn(a) is called the clock reading or lifetime of event a.

With the above notations, {z,} can be recursively defined by the following equations:

tns1 = tn + min{c,(a) : a € I(z,)} (1.1)



tn1 = {a € [(zn) : ca(a) = min{ca (o) : @ € [(z,)}} (1.2)

Tpp1 = wn(-rm an+lr77n+l) (13)

where ¥, : Sx E'x R — S specifies the state transition mechanism and 7, is used to
denote possible stochastic state transition from z,, to z,,, according to the following

probability
i . A
P(In+l =Jlxn =1l.0pey = a) = pij,n+l(a)
The event clock reading is updated according to

C(O.’) - (tn+l - tn)r lf ac l—‘(-’l:n-f-l) N (F(xn)\{an+l})
Cn+l(a) = Y;1+l(a)e ifae (F(I"+1)\F(In)) U (F(IrH-l) n {an-i»l}) (14)
0, 1fa¢ F(.’En+1).

where Y}, (a) denotes the life span of a newly generated event a. The above equations
can be interpreted as follows: (1.1) and (1.2) state that the event with the shortest
lifetime happens first and thus is the next event. Equation (1.3) represents the state
transition caused by this triggering event. Once an event a,, occurs and the current
state is r,,, then the state switching is governed by v, given by (1.3). Equation (1.4)
is used to update the event lifetime. A GSMP evolves in the following way: Given
initial state zo (which sets initial clock Yg), (1.1) and (1.2) determine the next event
time and the next event. After that, (1.3) gives the next state. This is followed by
clock reading updating by (1.4). Then go back to (1.1), and so on.

To illustrate the concepts of GSMP and how it can be used to characterize a
queuing system, let us consider a G/G/1 system, in which customers arrive at a
queue, wait for service, and leave upon finishing service. In this system, there are two
events, customer arrival denoted by o, and customer departure denoted by 3. Let
be the system state designating the number of customers in the system. Then, we

identify this queuing system as a GSMP, with

E ={a.5}
S=1{0,1,2,---)



{a.3}, ifz>1,

)={{a}, frxr=0
-

[(z

1. ifj=i+1
pij.n(a .

0. otherwise
1, fi>landj=i-1

0. otherwise

pij,n(,a) = {

When all the life spans Y,(a).n > 0, € E are exponentially distributed or
geometricallv distributed. the above defined GSMP becomes a Markov process.

1.2 Thesis Goals

This thesis studies the problems of modeling and optimization of wireless networks
using DEDS approaches. Two applications are studied: call request buffering and
mobile terminal location tracking.

In a personal communication service network. channels are the most precious
resources. which are assigned among cells. When a phone call arrives and is admitted,
it occupies a channel until the termination of the conversation. If no channel is
available. the call is dropped. In many cases, channels may return shortly after a
call has been dropped. Thus. if some buffering mechanism is applied, a cell may
accommodate more phone calls and thus the channel utilization can be improved.
This thesis models the call request using a queuing system, and develops a random
call buffering mechanism. An online optimization algorithm is introduced to maximize
the channel utilization and guarantee the quality of service (QoS), which is represented
by restricting the call admission delay under a given constant with a large enough
probability.

In a wireless personal communication service system, in order to route a phone
to its destination, the network has to trace the mobile terminal’s location from time
to time. which is a very expensive task. The second part of the thesis addresses the
mobile terminal location update modeling and optimization problem.

The rest of the thesis is organized as follows: Chapter 2 develops a simulation-



based optimization algorithm for continuous-time Markov processes using uniformiza-
tion. As an application of the algorithm developed in Chapter 2, Chapter 3 studies
the call request buffering problem. Chapter 4 proposes a mobile terminal location
update model. A Markov dynamical programming algorithm is used to find the op-
timal strategy. Chapter 5 proposes an online location update algorithm. Chapter
6 is the epilogue of this thesis, which summarizes the thesis, puts forward a new
mobility model that is currently under investigation, and gives some further research

directions.



Chapter 2

Simulation-Based Optimization of

Discrete Event Dynamical System

DEDSs are event driven dynamical systems, whose state transitions are driven
by discrete events. e.g., packet arrival. phone call arrival in wireless communication
system. etc. Generally, DEDSs are large scale, complex and stochastic systems, which
make their design and performance evaluation full of challenges. Traditionally, there
are two kinds of powerful tools to handle complex systems—mathematical analy-
sis and computer simulation. Due to the complexity of DEDSs, neither traditional
mathematical tools nor computer simulation methods can work very efficiently to
deal with their performance evaluation and design optimization problems. The idea
of simulation-based optimization is to combine both mathematical tools and sim-
ulation techniques, and to implement the optimization by two steps: First, under
reasonable assumptions, construct a mathematical model and perform a mathemati-
cal derivation as much as possible. When mathematical derivation cannot go further
any more, do the remaining work using simulation. Studying results in this field show
that a little mathematical derivation can improve the simulation efficiency greatly.
In the past two decades, numerous achievements on this topic have been reported in
the literature [6].

Perturbation Analysis (PA) is a powerful optimization tool for DEDSs with con-

tinuous parameters. The idea of PA is to use a single sample path observation to



estimate the gradient of the system performance measure with respect to the design
parameter and then use a hill climbing algorithm to find the optimal design. Com-
pared to the traditional ones, PA has two main advantages: First, it saves a lot of
computation time because it needs only to simulate a single sample path. Second and
more importantly, PA can be implemented on-line. This optimization approach has
been successtully applied in many fields (see [6]).

The Markov process is a very popular model to characterize DEDS. Let A = (a;;)
be the infinitesimal generator of a Markov process. Since its infinitesimal character-
istics, a;;, are not only the system time parameters, but also the system structural
parameters, a very small perturbation to a;; will lead to change of the sojourn time
on state ¢ and the jump rate from state i to state j. Therefore, a single sample
path sensitivity analysis of Markov processes has received considerable attention in
the past two decades. This chapter is to implement the single sample path-based
sensitivity analysis estimation algorithm and develop a gradient-based algorithm. To
this end, let us give the definitions of continuous time Markov process and discrete

time Markov chain and their simulation methods.

2.1 Markov Processes and Their Simulation

2.1.1 Continuous-Time Markov Processes

Let (2. F, P) be a probability space, and let {X,,¢ > 0} be a stochastic process
defined on (€2, F, P) and taking values in state space S = {1,2,---}. Then, {X,,t > 0}
is said to be a Markov process with state space S if

P(X; = i|Xy:w < 5) = P(X, =] Xj)
holds for all 0 < s < tand i € S. For any ¢,j € S, let P,(s,t) denote the state
transition probability, i.e.,
Pj(s.t) = P(X, = j|Xs =1).
Matrix P(s,t) = (P;(s,t)),i.7 € S, is said to be the transition matrix. Under the

continuity condition lim,_,, P(s,t) = I, it follows that, for 0 < s < u < t, the



following hold:
Py(s.t) 20, i,j €S8
ZP,-]-(s,t) =1.i€8
j€s

Ri(sv t) = Z Pik(sv u)ij(u, t)y I“J €S.
kes

The last identity is usually referred to as the Chapman Kolmogorov equation. If
the transition probability P,;(s.t) depends only on t — s, {X,,t > 0} is said to be
stationary; otherwise, the process is nonstationary. In the sequel, we refer Markov
process as stationary Markov process for simplicity. For a stationary Markov process,

it can be shown [13] that the following hold

1— Pyt

lim ——(—)=ai <
t—0+ ¢

. Pj(¢) .
zl—lgi—T——aij<°o‘ Jj#i.

Obviously, a; = }_,; a;;- The parameter matrix A = (a;;),i,j € S with by conven-
tion, a; = —a;, gives the infinitesimal generator of the Markov process {X,,t > 0}
and a};s are called the infinitesimal characteristics. Let gg = (go(1),-- -, qo(k),---) be
the initial distribution of {X,,¢t > 0}, that is, q(i) = P(Xy = i), € S. Then evo-
lution of {X,,t > 0} is completely determined by gy and its infinitesimal generator
matrix A.

For any i € S, the time of { X}, t > 0} staying in state 7 is exponentially distributed
with parameter —a;;. Let {T,} denote the sequence of times at which {X,,t > 0}
changes its states. If {X,} is currently in state ¢, then at next instance {X,} jumps
to state j with probability a;;j/a;(j # i). A generic sample path of {X,} can be

generated using the following scheme.
Algorithm 2.1.1 (Markov Process sample path generation algorithm)

Step 1) Generate random number u ~ U[0, 1]. If

j-1 i
we [ Yol >a0())(go(0) =0), then Xo = j and Ty =0.
i=1 i=1



Step 2) If at clock T,,, {X,} reaches state i, generate random number u ~ U [0,1].
Denote
An= Il = u), Tasy = T + A,

P13

then, A, is a sample time of staying on state i, and Ty, is the nezt jump epoch.

Step 3) Generate random number u ~ U|0, 1]. If

-1 J
a.. a..
ueE [ - ”7 E - U) (alﬂ - 0)1
= i = Qi

"YTvH-I = ]
Step 4) Let n =n + 1 and go to Step 2.

In the above algorithm. step 2 generates the sojourn time on a state, and step
3 generates a state transition; so a generic sample path of a Markov process can be
represented as {(s,, A,),n > 0}, where {s,,n > 0} is the sequence of state observed,

and A, is the time staying in state s,,.

2.1.2 Markov Chain Definition and Simulation

Let {Xn.n =0.1.--} be a sequence of random variables defined on (Q, F, P) and
taking values in S. If for any ig, ¢y, -, in_1.i.J € S, and for an arbitrary n > 0 the

following holds:
P(Xpi1 = j1Xn =6, Xpot = in_y, -, X1 = iy, Xo = 1dg) 2 Dijs (2.1)

then {X,} is said to be a Markov chain. Matrix P = (pij),1.J € S, denotes its one
step state transition probabilities, which, obviously, satisfies

pi;j=>0,4,7€8

Y pi=1Vies.

JES
The evolution of { Xy, n > 1} is completely governed by its initial distribution g and

transition probability matrix P.

The following algorithm generates a generic sample path of {Xn,n=0,1,---}.
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Algorithm 2.1.2 (Markov Chain sample path generation algorithm)

Step 1) Generate random number u ~ U0, 1]. If

7

ue [ Y ald, Y ) (@(0) =0), Xo =
=1 i=1

3

Step 2) Generate random number u ~ U[0, 1]. If

Jj-1 J
u€ [Zpijv Zpij)
k=0 k=0
Xns1 =1J.

Step 3) Let n =n + 1 and go to Step 2).

The above algorithm shows that a generic sample path of Markov chain can be
represented by only a sequence of states. So, generating a sample path of a Markov
chain is simpler than generating a sample path of a continuous-time Markov process.
The next subsection gives a relationship between continuous-time and discrete-time

Markov processes.

2.1.3 Relationship Between Continuous and Discrete Time

Markov Processes

Let {X,,t > 0} be a continuous time Markov process with infinitesimal generator
matrix A = (a;;), satisfying sup{—a;;,i € S} < A, where A is a positive constant. It
is easy to check that P =T + %A is a transition probability matrix, where [ is the
identity matrix. Then, there exists a version of process { X, t € [0,00)} (denoted by
{Xi,t € [0,00)} for notational simplicity) having the representation X, = Yy ,(see
(8] Th.(8.4.31)), where {N(t),t € [0,00)} is a Poisson process with intensity A and
{Y,,n > 0} is a Markov chain, which is governed by P = I + +A and independent of
{N(t).t € [0,00)}. Constant A is called the uniformization parameter and {Y,,n € 0}
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the uniformization Markov chain of {X,,t € [0,00)}. Let # = (x(, ™, - -) be a vector
satisfying

oc
Zﬂ'i= 1, and 7ri>0,i€S.
i=l

Then, mP = =, ie., ([ + +A) = =, which is equivalent to 7A = 0; so, {X,,t > 0}
and {Y,,n =0,1,---} have the same stationary distribution. Therefore, if consider
only stationary distribution involved performance, we can use {Y,,n = 0,1,---} to
take place of {X;,¢t > 0}. This is illustrated in the next section in case of computing

the sensitivity of the stationary distribution.

2.2 Single Sample Path Based Sensitivity Analysis

for Markov Processes

Let {X,,0 <t < oo} be an irreducible Markov process with state space S =
{L,2,---} and infinitesimal generator A = (a;;),i,j € S, where a;; > 0,i # j,a; < 0,
satisfying sup{—a;;.i € S} < o0, and Z;’i[ a;; =0, forall i €S. Let f(z):S - R
be a real function and # = (m,m,---) be the stationary distribution of {X,,t >

oc

0}. Then, under the assumption E(|f]) = > 2, m:[f({)| < oo, the steady state

performance measure is defined by
[o o]
n=E.(f) =) mf(D)- (2.2)
i=1

Let § > 0 be a small enough real number and @ = (g;;),7,7 € S be an infinite
matrix with Qe =0, where e = (1,1,---)T and 7 denotes the transpose operator of a
matrix. Then, the sensitivity(derivative) of 7, with respect to A, in the direction of

Q@ is defined by
O _ . n'—7m
3G, b5 (23)
where 1/’ is the steady state performance measure of a Markov process { X},0 < ¢ < oo}
with infinitesimal generator A’ = A + §Q. The following lemma gives the expression

for %



Lemma 2.2.1 ([7]) The directional derivative of n with respect to A is given by
9

—— =7QDTxT,

Q4

where D = (d;;).i.j € S, is the matriz of perturbation realization factors with
s(]x) i
dy =B [0 - e ). (2.4
0

Here {X].t € [0.00)} is @ Markov process with initial state j and infinitesimal gen-
erator matriz A. and S(ji) is the time at which {z]} first reaches state i, that is,
Sy =inf{t: X7 =i}.

From the previous section, we can study continuous-time Markov processes using
their uniformization Markov chains. The following lemma indicates how to use the
uniformization Markov chain to estimate the derivative of a Markov process. In par-
ticular. compared with Markov chain. Markov process has one more randomness. i.e.
the randomness of the sojourn times. By using the uniformization Markov chain, the
inter-event time of the Markov process is replaced by its mean, so using uniformization

can reduce the estimation variances greatly (see Liu and Tu [17]).

Lemma 2.2.2 (Liu and Tu [17]) Let X = {X,,t € [0,0)} be a Markov process with
infinitesimal generator A and with stationary distribution =. Let A > sup{—a;.i € S}
be a positive constant, and {Y,.n > 0} the uniformization Markov chain of X with
uniformization parameter A. Then, the sensitivity of the performance measure n of
{X.. t €[0,00)} in the direction of Q is
a 1
-6—657: = X‘:TQDTTTT,
where D = (d;;).i,7 € S is the matriz of realization factors of the uniformization
Markov chain {Y,,n > 0}, that is.
L

(1)

di =E | (f(¥H)-n) |, (2.

n=0

(8]
Ul
~—

where Y7 = {YJ,n > 0} is a Markov chain with Yj = j and with transition matriz

P=1+ i-l and L{i) =min{n; Y7 =i,n >1}.
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From above lemma. we have the following proposition.

Theorem 2.2.1 Let {X;,0 <t < oc} be an irreducible Markov process with infinites-
imal generator matriz A(8), where 8 is the system design parameter to be optimized.
Assume that A;;(),1,j € S, are differential in interval (a,b) and bounded by positive
constant A, then w(0) and n(8) = Zje f(G)7;(0) are differential with respect to 8 in
(a.b) and

3—;’ = iﬁ(e)i‘;éﬁDT(H)wT(G), (2.6)
where D(0) = (r;;(6)),1,j € S, is the matriz of perturbation realization factors of a

Markov Chain with transition matriz I + +A(6) and % = (ﬂj#)

Proof: Since {X,,0 < t < oc} is an ergodic Markov chain with state space
S = {1.2.---} and its infinitesimal characteristics a;j(8),i,j € S, are differentiable
with respect to the controlled parameter € (a,b). Gene and Meyer [19] proved that
mi(8).i € S are differentiable in (a,b). For any 4 € (a,b), when A8 > 0 is small
enough,

a(f + Af) = a(6) + AGA(8) + O(AF?).

with A(8) = (a;;(8)). Since 4(f)e = 0, and A()e = 0. A(6+A0) can be approximately
obtained by perturbating 1(6) by A@ in the direction of .—1(0). Thus the proof follows
directly from Lemma 2.2.2. Q.E.D.

The above theorem gives an estimator for the directive of n, where =, dA(8)/d6
are available, and r;; is an unbiased estimator of the perturbation realization factor.

The next section addresses how to optimize n based on the estimation of dn/d6.

2.3 Simulation-Based Optimization Algorithm for

Markov processes

The idea of simulation-based optimization algorithm is to use a single sample path

of a Markov process to estimate %g, and then use a gradient algorithm, that is,

01 = [[o(6e — Ct%g(ez)) (2.7)
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to find a local optimal 6, where
¢ O denotes the parameter space. which consists of all the possible parameters.

e [[g(+) is a projection to O, that is

z. ifre®
r) =
(=) {z’. fr¢go

where 1z’ is a point on the boundary of © that has the minimal distance to .

e {c;,t > 1} is a sequence of positive numbers, which denotes the step sizes of the
algorithm. In order for the algorithm to converge well, {c,, t > 0} is required to

satisfy

th=oo, Zc;"<oo (2.8)

t=1 t=t

In the above algorithm 2.7, performance index 7 has no closed-form expression,
so we have to estimate it by simulation. From (2.7), we conclude that the key task of
using the above algorithm (2.7) is to estimate d7/96. For this purpose, according to
(2.6), we have to obtain the stationary distribution 7. %ﬂ, and D(@). Since 7 can be
estimated directly and ‘%(091 is available, the difficulty lies in estimating D(#). There
are two methods to do this. First, simulate and record the sample path for a long
enough time, e.g. with 10° state transitions. Then, call a computing subroutine to
calculate d;;,4,j € S and 7. This method is direct and easy to implement. However,
it has two limitations: (i) it needs an array to record the sample path which consumes
a lot of memory. (ii) The simulation procedure and the computing procedure work
sequentially, which makes this algorithm not easy to be implemented due to the
following consideration: when implemented in a real system, the simulation procedure
is replaced by a procedure to observe the occurences of the discrete events, such as
call arrival and departure. In this case, when observing the system behavior, the
computing procedure has nothing to do. but when it starts computing, it has too

much work to process so that it may affect the observation of the system behavior.
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To overcome these drawbacks, in this thesis we develop an algorithm that distributes
the computing time. The algorithm need not use a long array to keep the sample
path; instead, it lets the computing procedure and simulation procedure work at the

same time in a way that once an event is observed, process it immediately.

2.3.1 Single Sample Path Based Estimators

Now, we proceed to construct the estimators needed to estimate %3. For this

purpose, we need to estimate 7, 7, D, which are denoted by 7, # and D, respectively.

1) 7, = 2 30, f(X;). It is easy to prove that lim,_oc 7, =7, w.p.1 (see [12]).

n =

2) #t; = 15, (i), where S,(i) denotes the times that state i is visited by X, X, - - -, Xn.
The asymptotical unbiasedness of #; follows by letting f(-) = d;(-), where 6;(-)

is the indicator function.

3) In order to construct an estimator of d;;, let us define two sets of random times

Lg;’),Sg‘), n > 1 as follows:
L,(-” = min{t, X; =i}, S(” =min{t:t > LU , and X, = j}.
Inductively, for n > 2

Lf]) =min{¢: ¢t > L(" Y and X, =1}, S(") = min{t: ¢ > L:;'), and X, = j}.

With {Lg-'), n > 1} and {Sg‘), n > 1} obtained, we can define df;‘) by
. l o~
di(n) = = & (2.9)
t=1
@
where e(t) [Zf(,, F(Xs) ﬁ,-,(Sf;-) - LE;))] with a = max{S'(n) i,j €S}

4) Lij(n) = L2 [SE) — L)) Obviously, limy_q, Lij(n) = B[Ly;], w.p.1.
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2.3.2 The Algorithm Design

A direct method is to simulate a sample of {X,,t > 0} long enough and then
use the observed sample path to estimate 7, 7, and further estimate 3—3. However,
in Monte-Carlo simulation. to estimate a parameter accurately, we have to simulate
very long time; therefore, we have to record the sample path of {X,,¢ > 0}, which
is memory consuming. To overcome this problem, let us consider the following fact:
Suppose {€,.n > 1} is a sequence of i.i.d. r.v.s with finite mean. Let S, = 15" ¢,

Then we have according to the strong law of large numbers
lim S, = E[§], w.p.l
n—oo
During the observation, instead of keeping a long track of §;, we can use

1 -1
Sn=—£n+n
n

Su_t. (2.10)

To design the algorithm, let us introduce several matrices: D = (cfij), E= {(é;), N =
(fij)s I= (zz’j), and L = (f.ij), where

e d,; is the estimator of d;;
e ¢;; is the estimator of e;;
¢ 7n;; denotes the number of terms of é;; recorded

) 'Z,-j denotes the status of counting é;;; at time ¢ if 2,-]- = 1, then there exists an
integer r satisfying Sf;) <t< Lg.), that is, f(X,) is counted and is added to é;;;
otherwise, clock ¢ satisfies Sf}”) <t< Lg."'“) for some integer w, which means

that term f(X,) is skipped when estimating é;;.

. [:,-j denotes the difference of S'i(]t.) and L,(-;.).

The main point of the single sample path-based sensitivity analysis is to estimate
all the perturbation realization factors d;;,i,j € S, through one sample path. For

example, Table 2.1 shows a sample path of length 10



Table 2.1: A Sample Path of A Markov Process

Tog | Xy | To | X3 | Ty | Z5 | X | T7 | T8 | Tg

0}l]1]1]2]3]0f112]31]4

So. zq.r; can be used to estimate dyg; Zg, ), T2, T3 can be used to estimate dog;
Ty, Ia. T3 used to estimate do;, and so on.
With the above notations given, we can now present the sensitivity estimation

algorithm as follows:
Algorithm 2.3.1 (Sensitivity Estimation Algorithm)

Step 1) Initialization. For alli.j € S, set cfij =0,€; =0,n; = O,f,-j =0, L= 0,

n=0.7 =0. and t = 0. Generate initial state zo with initial distribution qq.
Step 2) Denote r, = j.
o = f(j)/t+EL
o r=r+Eln andVi#j A = Ll

o Foralli.k €S, if iy = 1. set éy = éy + f(j), and L;; = L; +1;

Put Z,k = 1.Vk € S. (Change all the zeros of jth row to one);

Ly #0) and (7 # 0), Ay = Ay + 1 dyy; = 22 4 Bty

N,y Ny

[ J
g
3
=
=
m
ne
<,
<
N'\ﬂ\

Step 3) If the stop rule is satisfied, stop; otherwise, t = t + 1, generate a new state
Jor x,, and go to Step 2.

Example 2.3.1 To show how the above works, let us implement the above algorithm
using Matlab and work out a simple ezample. In the ezample, the Markov chain has

state space S = {0.1,2,3} with initial distribution qq = ( 0.1 04 03 0.1 ) and



state transition probability matriz

0.1 02 03 04
03 0 03 04
02 04 0 04
04 0 02 04

The cost function f(i) =i.i € S.

clear all;
c0=1; XX functional y=cOx*zt;
qo0=[.1 .4 .3 .1]; X% initial distribution

%% transition matric

PP = [0.1 0.2 0.3 0.4;
0.3 0 0.3 0.4;
0.2 0.4 0  0.4;
0.4 0 0.2 0.41;

len = length(PP);
nn=size(PP);

TR = zeros(nn);
iI = zeros(nn);
eE = zeros(nn);
nN = zeros(nn);
IL = zeros(nn); JZ estimate L=(L_{ij})

ell = zeros(nn); XY estimate E[L]

4% generate initial state
z0=getstate(q0);
eta=0;

for iter=1:10000
eta=cO*x0/iter + eta*(iter-1)/iter;
1I(z0+1,:) = 1; X% set zO-th row to 1

%% update eE
for i=l:nn

18
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for j=1:nn
if (iI(i,7)==1& j7=1 & 7 ~= z0+1)
eE(i,5) = eE(i,j)+ cO0%z0;
elL(%,7) = ellL(i,j)+1;
end
end
end

for i=1:len
if 1I(z,z0+1) =0
1I(%,z0+1) = 0;

aN(%,z0+1) = aN(i,z0+1) +1;
rR(7,z0+1) = eE(i,z0+1)/nN(i,z0+1)...

+ (rR(2,z0+1))*(nN(%,20+1)-1)/naN(%i,20+1);
IL(Z,20+1) = elL(i,z0+1)/nN(%i,z0+1)...

+(lL(%,20+1))*(nN(%,z0+1)-1)/nN(%,z0+1);
eE(7i,z0+1)=0;
elL(i,T0+1)=0;
end
end

z0=getstate(PP(z0+1,:));
end /% end of iter

nN
TR-etax*lL

With 10000 state transitions, the following matriz is the number of times that

estimators of d;; are observed

2645 1091 1370 1888
1091 1366 1114 1039
1369 1114 1986 1485
1888 1039 1486 4003

The estimated values of the perturbation realization factors are

0 -0.8056 -1.6796 -2.6573
0.8035 0 -0.8522 -1.8572
1.6797 0.8501 0 -1.0117
2.6558 1.8532 1.0109 0
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The above algorithm provides a procedure to estimate the derivative dn/86. With

the derivative estimated, we can optimize the system performance using the gradient

algorithm.
Algorithm 2.3.2 (Simulation-Based optimization algorithm for Markov processes)
Step 0) Choose initial parameter 8y arbitrarily, and set ¢ = 0.

Step 1) With parameter 6; given, simulate {X,.,t > 0} for a long enough period.

Based on the observation, estimate 2(6,).
Step 2) Update system parameter 6, = I1s (Gt - c,%’é(@,)).
Step 3) Let t =t + 1. If the stop rule is satisfied, stop; otherwise, go to Step 1.

To illustrate the usefulness of the above algorithm, let us work out an example.

Example 2.3.2 Consider a Markov chain with state space S = {0.1,2,---,7} and

state transition probability matriz

[(1-x xy2 0 N2 0 0 0 0
A3 1—=A M3 A3 0 0 0 0
M4 A4 M4 A4 0 0 0 1-Ax

0.1099 0.1445 0.0789 0.0155 0.1696 0.1548 0.1222 0.2046
0.0757 0.0665 0.1594 0.1972 0.0871 0.1441 0.1253 0.1447
0.1373 0.0159 0.0342 0.2316 0.2317 0.1515 0.0039 0.1939
0.0648 0.2483 0.0029 0.0073 0.2137 0.1326 0.2309 0.0995
\ 0.0240 0.1857 0.1223 0.0997 0.1298 0.0728 0.1475 0.2182 )

where \ € (0,1) is a design parameter. The cost function f(-) : S — R s defined by

z [01112[3[4]5[6]7
o143 251 2]3]1]0
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Figure 2.1: Performance function

The performance index considered is as defined by (2.2). The function n versus
design parameter A is plotted in Figure 2.1
To use the algorithm to find the optimal parameter A, we choose step size ¢, = 1/t.

Obviously, the direction of the derivative is given by

(-1 12 0 12000 0 )
1/3 -1 1/3 13000 0

1/4 1/4 1/4 1/4 0 0 0 -1

| o 0o 0o 0 000 0
9= 0O 0 0 0 000 0
0O 0 0 0 000 0

0 0 0 0 000 0

\ 0 0 0 0 000 0

For each step, to estimate d;;,i.j € S, 20000 state transitions are simulated. The
difference between the estimated performance indices of two successive steps less than
0.00051 s used as stop rule. With 0.25 chosen as the initial value, the procedure stops

after 25 iterations and generates the computing result: A = 0.5400, and n = 2.7664.
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2.4 Conclusions

This chapter developed a simulation-based optimization algorithm for Markov
processes. The proposed algorithm works as follows: First, use a single sample path
to estimate the gradient of the performance with respect to the design parameters,
and then with the gradient estimated, a hill climbing algorithm is used to optimize
the system performance. A numerical example shows the proposed algorithm works

very well.



Chapter 3

Call Request Buffering Strategies

and Their On-Line Optimization

In a personal communication services network, a set of channels is dynamically
or statistically assigned to every cell by some channel assignment algorithm. When
a phene call arrives and there are some channels available, it uses a channel until
the end of the conversation. If no channel is available, the call is dropped. In many
cases, immediately following a new call drop, a channel becomes available, which is a
waste of the network resources. Thus, if some buffering mechanism is introduced to
the channel allocation algorithm, a cell may accommodate more phone calls. This is
referred as call request buffering. In the literature there are two call request buffering
schemes available: the system-control scheme and the user-control scheme [16].

The system-control scheme. As the hardware used for setting up calls becomes
more and more powerful, the setup procedure can be made ever faster. However, as
long as the calls are being set up for human users, shortening the call-setup delay
below a few seconds becomes unobservable and irrelevant, to the user. In the system-
control scheme, the extra time available for setup is used to allocate channels more
efficiently. If no channel is available when a call arrives, the call is buffered in a queue
for a short timeout period 7 (the value is usually much less than the mean call holding
time). The timeout period for the system-control scheme is assumed to be either a

constant or a random variable with an exponential distribution.
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The user-control scheme. When someone (either a PCS subscriber or a person
attempts to call a PCS subscriber) fails to initiate a phone call (assume that the only
reason for call failure is that all channels are busy in a cell), the caller may redial
a few minutes later. The user-control scheme allows the caller to set up a time out
period 7. If a channel is available within 7, the system automatically connects the
phone call. Otherwise, the call is dropped. The caller decides in advance whether to
buffer the call request in a waiting queue. and specifies a timeout period 7.

In this chapter, a new system-control scheme is proposed: When a phone call
arrives and no channel is available, with a probability p buffer a call and with proba-
bility 1—p drop it. The objective is to maximize the channel utilization and guarantee
a certain quality of service that is represented by restricting the setup delay under a

given constant with a large enough probability, that is,

P :max P(no channel is idle)

s.t. P(call setup delay > D) < pq

where D is a constant denoting quality of service, and py is a very small probability,

e.g., 1075,

3.1 Call Request Modeling

Assume that the phone call arrival is Poisson distributed with arrival rate A,
and the base station has m channels to be allocated. Each phone call duration is
exponentially distributed with parameter u. Let z,,t > 0, denote the number of
customers in the system. Then {z,,¢ > 0} is a birth-death process with birth rate A,

and death rate p; given by

AM=XA k=0,1,2,---, (3.1)

px = min{kp, mu}
kp 0<k<m
mu m<k

(3.2)
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The infinitesimal generator of {z,.t > 0} is given by

[ —x A o 0 0 )
My —p— A A 0
0 s A= A0 .-
a=| " e T (3.3)
0 0 0 Uk —HE—AX A

Let ¢, & = 0.1,2,---, be the stationary distribution of {z:,t > 0}. Then, we

have the following(see [21]): when & < m.

k=1 k
A A 1
= —_ = -] —, (3.4
i ”°g(i+1)u o (u) ) (54
and. when & > m.
m—1 k-1 k
A A A 1 -
wem e = (2) s (33)
Let p = 2-. Combining (3.4) and (3.5), we obtain
(mp)*
o k<m
i ={ e (36)
o m'. k Z m

m—1 k mo)k -
={Z("]L£) +(T:!; (lip)} (3.7)

3.2 Call Request Buffering Optimization

This section considers the optimization problem of the call request buffering prob-

lem. For this purpose, we consider a performance index J()) as follows:

J(A) = f:co(m — i) + CP(W > D), (3.8)

i=0
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where Cy, Cy are two positive constants denoting the cost of a channel being idle and
the cost of a costumer waiting longer than a given D, which represents the quality
of service of the network. W is a random variable denoting the waiting time in the
system. Since r, < m means that some channels are idle, no waiting is involved, that

is. P(W" > D|z, < m) = 0, we obtain

oo
P(W >D)=) P(W > D,z =1)

1=m

=Y P(W > Diz, = i)P(z, = i)
=Y mP(W > D|z, = i) (3.9)

Direct computation gives: for i > m,

* mue ™= (mux) ™

P(W > Dlz, = i) = / dr (3.10)

D (i —m)!

which combined with (3.5

—

yields

'[\’18

POV >D)=Y mP(W > Diz, = 7

(A o e m,ue""“‘(m,ur)‘“”‘d
"\u/) mimkm (i —m)! *
- D .

/ i (5)k L e ) Ty,
D U

- mlmk-m (i —m)!

o ( m /oo Z m#e-mux(/\l.) —mdr

m Jp (k —m)!

[
3

I
gk

i
g 3

B

0

~

® I

m
T (A muy oc
=—F eA-mulz gy
m! D

ol = mipy
— (") eAr—mu)D (3.11)
m!(A — mu)

So, the performance function J()) becomes

Zco m — i) + CiP(W > D)
i=0



m—1 ; a ™
_ . (mp)lﬂ'o To (I‘) my (A=mu)D 9
= ; Co(m = i)*——+Ci O] (3.12)

The optimization problem is to find an optimal arrival rate A such that J(A) in (3.12)
is minimized. The control on arrival rate can be achieved by deleting some arrivals
from the original arrival process, which is called thinning. For this purpose, we need
an important property of Poisson process as follows: Let {r,,¢ > 0} be a Poisson
process with arrival rate A, and let 6 € [0, 1] be a constant. If {r,,t > 0} is thinned
with rate 1 — @, that is, when a new event arrives, with probability 8 admit it and
with probability 1 — @ drop it, then the thinned process is also a Poisson process with
arrival rate 6.
So. the optimization problem can be given by

P, : 02?(1)3] J(6)) (3.13)

In optimization problem P,, the thinning parameter @ is applied to all states.
Obviously. if we apply a state feedback control. that is, let the thinning rate depend
on the state of r,, the system performance can improved a lot. Let 6,0 < k < 0o
denote the the thinning rate when z; = k. Then the arrival rate of z, when z, = k is

At = AGi. The infinitesimal generator of {z,,t > 0} is given by

(<2 o 0o 0
g1 —p— A A 0
0 U —A =y Ay 0 r
A=] 2 : _ _ _ (3.14)
0 0 0 Bk —Hk — M Ak

\ z : s : )

For this system, the stationary distribution = of {z,,¢ > 0} can be given directly (see
[21]). When k < m,

A
me=m|] = ; (3.15)
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when £ > m,

k-1

m—1
by A
T = , -~
£ IJO (1+1)uj1=—lmmu
N | kY
= ot (3.16)
Combining (3.15), (3.16) and the fact that Y2 m; = 1 yields
1

o T,

= m—1 nk—,-l/\x oc nk_ .
L+ 2000 T8 + it ity
Let 8 = (69,61, -- .0k, --) € [0, 1] and denote the performance index by J(8). Then,

the optimization problem is

min J(0) (3.17)

2 :
8x€[0,1],0<k<oc

Let us define f(-) as follows:

fO)=Co) (m—z+1)53()+Ct > pab.(i) (3.18)
=0 r=m+1

where p, = P(W > D|z, = z). Then the cost function becomes

1 T = _
J(0) = Th_rgg TE [/0- f(x,)dt} = ;m-f(z). (3.19)
The dynamical programming equation for optimization problem (3.17) can be
given by
v+h(i) = min [f (i) + Jzé; aijh(J)J (3.20)

Therefore, if there exists a constant v and a bounded function h(3),7 € S, satisfying
(3.20), thea v is the optimal cost J(8*) with 6* denoting the optimal parameter.
Equation (3.20) is the optimality equation for the optimization problem P,. Noting
the special structure of (3.18), we find (3.20) is

v+ h(i) = min [7(0) = (ki) - (i = 1) + X8, (hGE + 1) = ()
= [£(0) = (k@) hi = D)) + min PO(AG+1) = h(@)] (3:21)



from which it follows that the optimal 6; is equal to either 0 or 1, that is,

1, ifh(i+1)<h(:
6, = iTAG+1) < A0 (3.22)
0, otherwise

Therefore, optimization problem P is equivalent to

P min J(6)
0,€{0,1},0<k<cc

3.3 Simulation-Based Optimization

This section focuses on the simulation-based optimization of the call request
buffering. To this end, we need to derive a single sample path-based estimator of
on/d6.

The following theorem provides the single sample path-based estimator of 3.J(6) /4.

Theorem 3.3.1 Let J(8) be the performance indez defined by (3.19). Then its gra-

dient with respect to 6 is given by

aJ@) A . s oo
R /\+mudlag(ﬂ')QD T

where D is the perturbation realization factor matriz of a Markov chain with transition

matrizc P=1+ —1—A

A+mu™
(-1 1 00 0 )
0 -1 1 0 0 .
) 0 0 -11 0 --- '
Q= : : N (3.23)
0 0 0 0 -1 1
\ L)
(7% O 0 0 \
0 T 0
dlag(ﬂ'): B U (324)
0 0 e Tk
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Proof: Note that 0 < —a; < mu + A, so we can choose the uniformization

parameter as mu + A. According Theorem 2.2.1, we have

dJ@) 1 dA6) 1 -

p— T | .2
B, mpra g DT (3:25)
Direct computation gives
(0 0 o 0 0 )
dA(6) - 0 -2 A0
a8, 9T
0 0 0 0 0 O

R

That is, all elements of Q,- are zeros except its i-th row, which is denoted by ;. So,

we have
dJ(8) 1 T
By~ mpgareel m
dJ(8) 1 T
d0| mu /\nlalD T
aj@e) 1
By, mpraneD T
from which follows the proof of Theorem 3.3.1. Q.E.D.

Example 3.3.1 Consider a base station with 5 channels. The call arrival rate is
A = L. Each call lasts a random time with ezponential distribution with parameter
1 =10.3. Set the upper bound of waiting time D = 4 seconds. Assume Cy = 1,C, =
10, that 1s. a call request waiting time exceeding D costs 10 times as a channel being
idle. With theses parameters, the probabilities of waiting time exceeding D are

i 0 1 2 3 4 5
P(W > D|z, = i) | 0.0000] 0.0000| 0.0000] 0.0000 | 0.0000| 0.0001
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6 7 8 9 10 11 12 13
0.0010 | 0.0026 0.0045| 0.0063 | 0.0081 | 0.0097 | 0.0113 | 0.0128

14 15 16 17 18 19
0.0141| 0.0154 | 0.0167 | 0.0178 | 0.0189 | 0.0199

Using the algorithm 2.5.2, the following results are obtained

g = 1, I S 9
0, otherwise

and the optimal cost J = 0.2969.

Remark 3.3.1 In the above ezample, the optimal strategy can be implemented by
simply setting a buffer with size 4. When a new phone call arrives, if there are some

[ree space, buffer it; otherwise, drop it.



Chapter 4

Mobile Terminal Location Tracking

Management

4.1 Introduction

A personal communication network consists of a wired network and mobile termi-
nals. Each mobile terminal (MT) communicates with the network through a nearby
base station. In order to route incoming calls to a destination mobile terminal, the
network must keep track of the location of each mobile terminal from time to time,
which is called MT location tracking. Mobile terminal location tracking is based on

two elementary events: paging and location update (or registration).

e When a new phone call arrives, the network has to search the network to find

where the MT is so that it can deliver the call, which is called paging.

e By update, the MT sends a message to the network to report the network about
its current location so that the network can update its locations in the Location

Information Databases (LIDs).

There is a trade-off between the frequency of location update and the number of
cells paged in order to track down a mobile terminal. If an MT updates its location

immediately once it moves to a new cell, the network always keeps the precise location
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of the MT; however, the network has to waste a lot of time to process updates. On the
other hand, if the MT doesn't update frequently, when a call arrives, the network has
to page a large area, which wastes radio bandwidth. Therefore, the central problem
of location management is to devise an algorithm that minimizes the overall cost of

location update and paging.

4.1.1 Registration/Paging Schemes Used in Current Real Sys-

tems

At present, there are two commonly used standards: the EIA/TIA Interim Stan-
dard 41 (IS41) in North America and the Global System for Mobile Communications
in Europe (GSM). In the two systems, the network coverage is partitioned into a
number of location areas (LA), each consisting of a group of cells. When an MT en-
ters an LA, it reports to the network the information about its current new location.
When an incoming call arrives, the network simultaneously pages the mobile terminal
in all cells within the LA where the mobile terminal is currently registered. In these

standards, the LA coverage is fixed for all users.

4.2 Literature Survey

Due to its great importance, the MT location tracking problem has been exten-
sively studied in the past ten years. [.F.Akyildiz, J. McNair, et. al. [31], and V. Wong
and V. Leung [32] provided comprehensive surveys of this topic. Roughly speaking,
location update algorithms can be divided into two groups: static and dynamic.

In a static algorithm, location update is triggered based on the topology of the
network. Examples include the conventional location area(LA)-based scheme used
in GSM and IS-41. The network coverage area is partitioned into a number of LAs,
each having an LA ID. All base stations within the same LA broadcast the LA ID
of their LA periodically. Each MT compares its registered LA ID with the current
broadcasted LA ID. Location update is triggered if the two IDs are different. Upon a

call arrival for a particular mobile terminal, all cells within its current LA are polled
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simultaneously, ensuring success within a single step.
In a dynamic algorithm, location update is based on the user’s call and mobility

patterns. In the literature, a lot of dynamic algorithms have been reported.

o Selective LA update [28]. Obviously, in the LA-based update scheme that is
currently in use, the MTs that reside at the boundary of an LA and cross the
boundary frequently have to update their locations frequently, which causes
a lot of network resource waste. To overcome this drawback, Sen et. al [28]
introduced a selective LA update scheme. They established an analytical model
in which the interconnections of the LAs are characterized by a graph model
and a Markov movement model is used. In this scheme, instead of performing
location update whenever an MT crosses a new LA, the update process at

certain LAs can be skipped.

e Profile-Based scheme [24]. In this scheme, the network maintains a profile for
each MT, including a sequential list of the LAs the user is most likely to be
located at in different time periods. This list is sorted from the most to least
likely LA where an MT can be found. When a call arrives, the LAs on the
list are paged sequentially. As long as the mobile terminal moves between LAs
within the list, no location update is necessary. Location update is performed
only when the mobile terminal moves to a new LA not on the list. The list may

be derived from the user’s movement history.

o Movement-Based Update Scheme. Amotz Bar-Noy et. al. [5] first introduced
a movement-based update strategy, in which the MT counts the number of
cell boundaries it has crossed and performs update once the counted number
reaches a predefined threshold. The threshold is a system design parameter.
Akyildiz et. al. [1] introduced an analytical model to determine the optimal
movement threshold. The model is applicable for mesh and hexagonal cell con-
figurations under the assumptions of a general cell residence time distribution

and symmetric random walk movement pattern.

e Time-based update scheme. Amotz Bar-Noy et. al. [5] first studied a time-
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based update strategy, in which a timer is set immediately after an update.
The MT is prompted to perform another update once its timer times out. Rose
[26] proposed an analytical model which assuries Gaussian distribution of user
location probability and Poisson call arrival. The optimal update period that

minimizes the cost of location update and paging is derived.

Z. Naor and H. Levy [20] introduced a variation of the time-based scheme called
the adaptive threshold scheme. The MT updates its location every T time slots,
where the parameter T is not a constant, but varies with the current signaling

load on the uplink control channel of the base station.

Distance-based scheme. Amotz Bar-Noy et. al. [5] first introduced a distance-
based update strategy, by which an MT calculates the distance (measured by
the number of cells rather than Euclidian distance) it has traveled from its last
registered cell, and performs update whenever the distance it traveled reaches
a predefined threshold, which is a system parameter. Amotz Bar-Noy et. al.
(5] first introduced time. movement, and distance-based strategies and declared
that the distance-based strategy has better performance than the other two
types of strategies; however, the distance-based scheme requires that the MT
has some knowledge about the network topology so that it can calculate the
distance traveled, which makes its implementation much harder than the other
two kinds of strategies. Among these strategies, time-based strategy is the
easiest one to implement, but it is the least accurate one. After the work of
Amotz Bar-Noy et. al. [5], distance-based strategies have been extensively
studied.

~ U. Madhow et. al.[18] considered a one-dimensional linear model and sym-
metric random walk movement patterns. In this model, they formulated
the distance-based update scheme as an optimization problem that mini-

mizes the expected total cost for update and paging.

— Liang and Haas {22] introduced a variant of distance-based scheme called

predictive distance-based scheme, in which the MT checks its position peri-
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odically and performs update whenever its distance exceeds the threshold
distance measured from the predicted location. It reports both its location
and velocity during the update process. Based on the reported information,
the network determines the probability density function of the mobile’s lo-
cation. which is used to predict the mobile terminal’s location in the future
time. Upon a call arrival. the network pages the mobile terminal starting
from the predicted location and outwards, in a shortest-distance-first order,

until the mobile terminal is found.

— Interactive Scheme. Naor {30] proposed an interactive scheme which is
based on the distance the mobile terminal has moved since its last update

and the time elapsed since its last update.

— Adaptive Distance-Based Scheme [23]. W.S. Wong and C.M. Leung [23]
proposed a stochastic model to compute the optimal update boundary for
the distance-based location update algorithm. The model allows that the
cell residence time can follow general distributions which captures the fact
that the mobile user may spend more time at certain locations than others,
and the model also incorporates the concept of a trip in which the mobile
user may follow a particular path to a destination. The objective is to
minimize the expected paging and update cost, which is done by solving a

Markov decision problem.

e State-Based Update Scheme [25]. Rose [25] introduced a state-based update
scheme, where the system state includes the current location and the time
elapsed since the last update. A time-varying Gaussian process is used to model
the user’s movement. A suboptimal solution for the average cost of location
update and paging under no paging delay constraint is obtained by a greedy
method.

At the same time, there are a lot of paging schemes available in practical networks
and literature. Blanket polling paging strategy is currently used in real networks, and

a lot of paging strategies are proposed in the literature: terminal paging, shortest-
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distance first, sequential paging based on a user’s location probability, velocity paging,
ensemble polling and so on.

This chapter proposes a Markov model that subsumes the time elapsed since
last call arrival, the distance from the mobile’s last registration, and call interarrival
time estimation. Using Markov dynamical programming, the optimal state-feedback
(state: time and distance) control is obtained. In order to implement a distance-
involved mobile location update strategy, the MT has to learn the topology of the
network so that it can calculate the distance it has traveled. For this purpose, we
also introduce a scheme for an MT to compute the distance it has traveled.

The rest of this chapter is organized as follows: Section 3 presents the mobile
movement models in one-dimensional and two dimensional systems. Section 4 solves
the optimal control strategy using the algorithm of Markov decision processes. Section
5 addresses the implementation issues and proposes a traveled distance computation

scheme. Section 6 studies the distance-based strategies and their time-based invariant.

4.3 System Models

In this chapter, one dimensional and two dimensional MT movement models are
considered. With some mathematical processing, the two kinds of models have the

same structure and thus can be handled by the same manner.

4.3.1 One-Dimensional Model Description with Interarrival

Time Estimation

Assume that an MT moves on a straight line, e.g., on a highway, as shown in

Figure 4.1.

Let 7, be the time elapsed at time ¢ since last call arrival and z, be the distance
traveled from the cell in which last update is performed (it is the MT’s current location

in the LIDs). In next time slot ¢ + 1 with p the mobile terminal will stay in the same
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States: distance traveled since last update/paging
Parameters: p, g=1-p

Figure 4.1: The One Dimensional Movement Model

cell and with probability ¢/2(g = 1 — p) move to a cell with distance z, +1 or £, — 1,
that is,

Iy, with probability p
Ity = § I+ 1,  with probability ¢/2 4.1)
z, — 1, with probability q/2

Remark 4.3.1 Note that parameter p is determined by the cell size and mobile speed.
Let L be the distance between the mobile’s current location and the exit point. Then,
p=P(L<vA)= %—. where v is the MT moving speed and A denotes the time slot
length.

Let ¢,,n > 1 be the sequence of observed interarrival times. The next arrival time
is estimated by

Ansr =aty, + (1 - Q)An + Waits

where a € (0, 1) is a given parameter, {W,,n > 1} is a sequence of random variables
with zeros mean and variance o2. Let en,; = E[A,,] be the estimated mean of next

call interval time, then,
en+1 =ty + (1 — a)e,. (4.2)

If we further assume that {I¥,} has Gaussian distribution, the interarrival time dis-

tribution function F(r,t) is given by

t 1 z-e0)?
Fle,t) = / \/2_7me"(_2?5')—dx (4.3)

Define stochastic process y; = (e, 7;, z), t > 0, where e, is the estimated mean of

the next call arrival time which remains constant between two call arrivals, 7; denotes
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the time elapsed since last call arrival, and the distance z, is the distance from its
last update location. Then, {y;, ¢ > 0} is a Markov process. If the system current

state is (e, t. k), a new call arrival switches the first component of the system state to
at + (1 — a)e,

according to (4.2), and resets the elapsed time 7, and z, to zeros. Note that the
arrival of a new phone call is independent of the mobile’s position. The uncontrolled

system state transition probabilities

A
Py = (€.t K )|y = (e.t,k)) = Die,t.k)(e ' k)

are given by: if k # 0,
Flet+1)—F(e.t
D(e.t.k)(at+(1-a)e,0,0) = Hedrl)-Hel) f_p)(e‘,)(e ), (a new call comes)

1—F(et+1
D(etk)(et+1k+1) = %ﬁﬁl7 (no call, moves far)

1-Fet+1 (4'4)
Pletk)et+l k—1) = %Tﬁ‘e_(:T)l’ (no call, moves back)
Pletk)et+l k) = p%%l, (no call, stays in the same cell)
while &£ = 0.
, _ Flet+)~F(et) )
D(e,t0)(at+(1-a)e,0,0) = effp(e‘t)“ . (a new call comes)
1= Flet+1
Pletoletit) = I g2, (no call, moves far) (4.5)
1-F(e,t+1)

Plet0)et+1,0) = P T—pieg s (no call, stays in the same cell)

All other state transitions are of probability zero.

One objective of this chapter is to find a state feedback control law f:y, — A =
{0, 1} that optimizes the system performance, where 0 means no update and 1 means
update.

For a given state (e, t, k). if f(e, ¢, k) = 1, the mobile should update its location
when state (e, ¢, k) is reached, which switches the system state to (e, t + 1,0) with

probability one.
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Stochastic Process:

Y1) = (@®). =) ),

7(t): time since last call amval

x(t): distance traveled
\_//" \

Figure 1.2: The state transition diagram

Note that the state component e, of y, changes only when a new call arrives which
occurs much less frequently than that of the changes of 7, and r,. When we study
the optimal control on (7, ;). we can consider e, to be a constant. In the sequel of
this chapter. system component e, is not included in the system state. We assume

that the interarrival time has a general distribution, with distribution function F(-).

Remark 4.3.2 If the interarrival times are assumed to be independent and identi-
cally distributed, with geometric distribution, then the above model degenerates to a

distance-based model.

4.3.2 Two-Dimensional Model Description

Let us consider a hexagon cell model as shown in Figure 4.3. After current time
slot, the mobile with probability p stays in the same cell, and with probability ¢/6
(g = 1 — p) moves to one of its neighbor cells. As show in Figure 4.3. the cells are

marketed with

S = {(0,0).(1.0),(2.0),(2,1),(3.0), (3. 1). (4.0), (4, 1), (4,2), (5.0). (5. 1), (5,2),-- -}
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where (¢, k) denotes a cell which is ¢ cells away from its last updated location.

345, P32 = gi6
PRI =26, P3Z = 2906

Figure 4.3: Hexagon Model

To develop a unified model with one-dimensional system, let us simplifv the above

model. Let py = (ax. 3k, V) be a probability vector. where

7 = P(on ring k-1 at t+1 |on ring k at t)
3x = P(on ring k at t+1 |on ring k at t)
ax = P(on ring k+1 at t+1 | on ring k at t)
The ring of distance k from the last update location has 6k cells, among which six

cells are marked as k0 as shown in Figure 4.3. The state transition probability p; at

these points is:
(a-pf6 1-20-p)/3 30-p)/6 )

The other 6k — 6 cells have transition probability vector:

(20-p)/6 1-20-p)/3 20-p)6 )
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Therefore, we have

7 = P(on ring k-1 at t+1 | on ring k at t)

= EP(on ring k-1 at t+1 | on ring kO at t)

6k
6k — 6 . .
+ T P(on ring k-1 at t+1 | on ring k but not k0 at t)
_1-p _ 1-p
E 6k

Similarly,

o = P(on ring k+1 at t+1 |on ring k at t)

= EP(on ring k+1 at t+1 | on ring kO at t)

6k
6k — 6 . .
o P(on ring k+1 at t+1 | on ring k but not kO at t)
l-p 1-p
3 6k

The state space of the simplified two-dimensional movement model is much smaller
than the original one. Moreover, the simplified model has the same structure as one
dimensional model, so one-dimensional and two-dimensional models can be processed

by the same manner.

4.4 Optimal Strategy

Process {y, = (73, z,),t > 0} is a Markov process, with state space S = {(n,d),0 <
n < 0,0 <d < oo}. When a new call arrives and the network pages, (7, ;) switches
to (0,0). and an update action makes the system state switch from (¢, k) to (¢t +1,0).
The difference between paging and updating lies in whether 7; being reset to 0.

In the sequel of this section, we consider the process y, = (1, z,),t > 0. Assume all
interarrival times are i.i.d. having distribution function F(t). Denote by P((t,z.) =

s'l(r.z;) = s) 2 pss¢ the state transition probability. For a free system, the transition
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Plcke+1r=af3 + ¢(6k) Plek-1)=¢/3 - g/(6k)
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Figure 4.4: Simplified Hexagon Model

L.

o
.

probabilities are given by: if k > 0

P(exy0.0)(0) = ﬂ‘;’_‘%ﬁl, (a new call comes)

1-F(t+1
Per)e+1k+1)(0) = %_IT(?Wl’ (no call, moves far)

—F(t (4.6)
P(ekye+1,6-1)(0) = %ll—(-fpt(—’t’)u, (no call, and moves back)
P(eky(e+1.4(0) = ple—(F'(‘:)'l, (no call, stays in the same cell)
while £ =0,
P.oy0.0)(0) = f-“r_—l,),?gm, (a new call comes)
Peoye+1.)(0) = qlff—,(,‘(:)ll, (no call, and moves far) (4.7)
Poye+1.0(0) = pl;f ;.‘(J:)”, (no call, stays in the same cell)
On state ({, k), if the mobile terminal takes action 1, i.e., update its location,
Prye+10)(l) =1 (4.8)

All other transitions are of probability zero.
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Definition 4.4.1 A function f(-) : S — A = {0, 1} is said to be a stationary strat-
egy. Let F be the set of all the stationary strategies.

Let pss.s. s’ € S denote the transition probability of {(7, z),t > 0} and p.s(f) =
P((Tes1. Zes1) = §'|(7e,z¢) = s, f(s)) be the controlled transition probability under

strategy f. Then p,¢(0) is the same as in (4.5)- (4.7), and

poo(l) = { 1, §'(2) = 0 and s'(1) = s(1) + 1, (4.9)
0, otherwise

Let U be the cost of each update and V be the paging cost unit. Then, when

the mobile is k cells far away from its last call arrival location, the paging cost is

(2k + 1)V" The objective is to find an optimal strategy in F, that is, to solve the
following optimization problem:

oo
I}lell{} vp(s) =Ef l:; Ye(ye, Year)Yo = s (4.10)
where E represents the conditional expectation given that the strategy f is employed,

¥ > 0 is the discount factor, and c((7~, z,-1), (7, Z:)) denotes the cost incurred by

transition y,—, — y,, namely, ¢(s,s’) = 0 except
c((t. k), (0,0)) = V(2k + 1),
c((t. k), (¢ +1,0)=U.
Remark 4.4.1 Since (0,0) i a regenerative point of {y:.t > 0}, we can formulate

the optimization problem in another way by considering only one cycle. First, let us
define cost functions C(s,a):Sx A — R, and h(s): S — R by

U a=1

0. otherwise

C((t. k), a) = {
h((t. k) = (2k + 1)V

Let T denote the epoch of the next call arrival. With these notation, we can consider

the following optimization problem

T—1
minv(s) = E [ Y Clye, f(ye)) + h(y(T))Iyo = 8}

€F
4 t=0
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In the above equation, T is a random variable; with some mathematical manipulation,
the above optimization problem can be transformed into a standard Markov decision

problem with infinite time horizon and discounted cost.
Let the optimal value function be defined by
= mi ,VseS 4.11
o(s) = miny(s). Vs € (4.11)
Then we obtain the following

Theorem 4.4.1 The value function v(s),s € S defined by ({.11) satisfies the follow-
ing equations

F(t+1) — F(t)
1— F(

v(t.k) = min {U + vu(t + 1,0); [(2k + 1)V + vv(0,0)]

—F(t+1)
1- F(t)

[re(t + 1, k)]}, if k>0 (4.12)

[yv (t+1k+1]+

l1-F(t+1)
%——”— frut + 1,k — 1)

F(t)
1—F(t+1)
1-F(t)

F(t+1) - F(1)

¢(t, k) = min {U +ve(t + 1,0); [(2 + 1)V + (0, 0)]

1—F(D)
e+ Lk 1)
lzf#;(;l)[w(t + l,k)]}, ifk=0 (4.13)
Or, in another ezpression,
v(s) = min {gspssl(a) [e(s,5") + 7‘0(8')]} (4.14)

Proof: Let f(-) be an arbitrary strategy and the initial action a is chosen with

probability r,, then

vp(s) =D ra |Ele(yo, 1)lyo = s + E; (Z Ye(Ye, Yer)lyo = S)]

a€EA

=Y ra | pawla)e(s,s) + D paw(a)Ey (Z 7 (e Yer )y = 8')}

acA Ls'€ES s'eS t=1
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> EgB [Z Pss(a)e(s,s') + Z Pss'(a)U(SI)J

s'€S s'eS
= right hand side of (4.14), (4.13)

implying

) > mm {Z pss'(a) [c(s,s') + "/7«'(5’)]}

s'es

because of the arbitrariness of f.

On the other hand, let aq satisfy

Zp“ (aq) sy +vu(s)] = ng [Z pss'(ao) [c(s, §") + 'yv(s')]} (4.16)

s'€S s'€S
Let f be a strategy that chooses ag as the first step and then following another
strategy g. If the next state is s, then view the process starting from s’ with strategy

g. By definition of v(s), we can choose g such that

ve(s") L v(s') +¢

where = > 0 is an arbitrary small constant. Therefore,

vr(s) = Zpss’(GO)(C(S, ') + yuy(s'))

s'eS

T <) parla0)(c(s, s') +yu(s) +7e
s'€S

=L%i£{zpss )(c(s, ) +7v(8))}+7e‘

s'€S

which combined with v(s) < vs(s) yields

v(s) < min {Zpss'(a) [e(s,s') + */v(S’)]} + e (4.17)

s’€S

completing the proof of Theorem 4.4.1. Q.E.D.
Theorem 4.4.1 provides a characterization of the optimal value function by using

a set of function equations. Next, we proceed to solve these functional equations. For



47

this purpose, let us define C(S) = {uju : S — R} be a functional space with norm
defined as [lu]| = sup,cg |u(s)|, and let us define an operator T on C(S) by

(Tu)(s) {Z Psr(a)(c(s, s") + yu(s ))} (4.18)

s'€S
then Theorem 4.4.1 implies (Tv)(s) = v(s), which means that the optimal value
function v(-) is a fixed point of T.

Theorem 4.4.2 Operator T defined by (4.18) is attractive.

Proof: For any u;,us € C(8S), let @ be the action satisfying

S p(@(cls, o) +7u(s) {Zpss (a)(c(s S)+7u(8'))}

s'eS €S

Then, we have

(Tuy)(s) = (Tua)(s) = min {Zpssl (s, §') + yui (s’ )]}

acA
Ies

— Egg {Z pss:(a) [C(S, S,) + ')’U.'_)(S,)]}

s'€S
/Zpss (ul(] - u?(]))
s’'es
< 7w (G) = wa (G| (4.19)
from which follows the proof of Theorem 4.4.2. Q.E.D.

Theorem 4.4.2 and Theorem 4.4.1 imply that u(s) is the unique fixed point
of T; therefore, by the Fixed Point Theorem, it follows that for any u € C(8),
limp_o T"u = v. With the optimal value function obtained, the following theorem

gives a method to find the optimal strategy.

Theorem 4.4.3 Let v(s),s € S be the value function. Let f(-) be a strategy satisfying
for any s € S,

Zpqs (f(5)) [c(s.5") +yu(s")] = mln {Zpss (a) [c(s,s") + vu(s’ )]} (4.20)

s'eS s'eS

then f(-) is optimal.
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Q.E.D.

Proof: The proof can be adapted from that of Theorem 6.3 of [27].

Example 4.4.1 Consider a system as described above. The system parameters are

as follows: The interarrival times have normal distribution with mean 5 and variance

0.4 stays in the same cell. The update cost U = 10,

0.5, the mobile unth probability p

paging one cell costs V = 2, and discount rate v = 0.95. With this set of data, the

optimal update strategy is represented by an updating curve as plotted in Figure 4.5.
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Figure 4.5: Optimal Update strategy, 0: not update, 1: update
Figure 4.5 shows that when the distance is less than 5, no update is needed. For any
given d, the update strategy is a threshold control, that is, there is a time threshold

value, once the elapsed time reaches this threshold location update is performed. For

a given elapsed time, the optimal update strategy is also a threshold control with

respect to the distance that the mobile terminal has moved since its last update.

More precisely, if at point (¢, k), it should be updated, then at all the points (¢, k')

with ¢ > ¢ and

k' > k it should also be updated.
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Figure 4.5 reveals that there exists a convex function ¢t = y(d) to characterize the
relationship of mobile’s distance from its last updated location and the time elapsed
since last call arrives, and the optimal update strategy is of the following structure:

1 (update) , t > y(k),

ftk) = { 0 (no updage) . t<y(k) (4.21)

This particular structure of optimal control is very useful to represent the optimal
strategy, and to develop suboptimal control and heuristic algorithms.

[nstead of representing the optimal strategy using a huge matrix, we can denote
the optimal strategy by a sequence of times T = {¢,¢,, - - -} satisfying t; > t, > --- >
tp > 0, where ¢; is the threshold that the mobile user should update its location once
it has traveled i cells away from its last update cell. For example, in the above

numerical example:
T = {oc, 00,00,00,21, 14,11,7,6,6,5,4,4,4,3,3,3,3,2,2,2,2,2,1. 1,1, 1, 1}.

Let D and T be the upper bound of distance and time considered. Then the
original strategy space has 2T*D strategies. However, the class of strategies with
structure (4.21) has D7 strategies. So, restricted within the class of strategies with

structure (4.21) can reduce the search task greatly.

4.5 Implementation Issues

4.5.1 Implementation Scheme

For any strategies, only if distance is involved, we have to calculate or estimate
the distance the mobile terminal has moved since its last update. For a given network
topology. from our bird eyes it seems a trivial task; however, a mobile is totally blind
in the wireless network. In order to be able to calculate the traveled distance, an MT
must learn the topology of the network. For this purpose, we introduce a concept of
chain code, which is used in pattern recognition to represent the contour, skeleton,

etc. of patterns. At any movement, the MT’s six possible moving directions are
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denoted by ‘1, 2, 3, 4, 5, 6°, which are called chain code. The trace of an MT is
recorded by a sequence of chain codes, as shown in Figure 4.6. The sequence is said

to be the chain code of the mobile terminal’s trace.

Darzeaca dehuuuca Chae code 1.2.3.1.2

201

Figure 4.6: Mobile Movement Directions Definition

In Figure 1.6, (a) denotes the mobile movement direction. In (b), c0,cl, - - -, c6 are
cell IDs. Cell 0 periodically broadcast its own cell ID c0 and the list of its adjacent
cell IDs ordered by (cl,c2,---,c6). (c) is a sample path of a mobile terminal moving
from cell A to cell B. So, using the direction defined in (a), this trace can be coded
as 1 —2-3-1-2.

The chain code is used to calculate the distance that the MT has traveled. The

distance tracking mechanism consists of two elements:

e Each cell has a unique ID for measuring the distance traveled by the mobile

terminal. Each cell periodically broadcasts its cell information
CellInfo{cellI D,listO f Ajacency}

where cellID is its own cell ID, and listof Ajacency is the list of its adjacent
cell IDs. The list of the adjacency cell IDs has a fixed order and orientation, as
shown in Figure 4.6.
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e Each mobile terminal maintains a set of information denoted by mobileIn fo:

mobilelIn fo{timeSinceLLastCall,preCellI D, currCellD,

trace Array, updateTimeList}
where

— timeSinceLastCall records the time passed since last call arrival

— preCellD is the last visited cell ID

currCellD is the ID of the cell the mobile is presently in

— traceArray is a list of chain code the mobile has traveled

updateTimeList is an array that represents the optimal strategy described

previously.

Each time the MT receives a broadcast message from its current base station,

the MT does the following:

— Step 1) Checks the broadcast cell ID.

if (currCellD == cellnfo.cellD ) // stay in the same cell as last time slot
break;
else
preCelID = currCelID;
currCelID = cellnfo.CellD;
directCode = 1; // chain code to be added to traceArray
end_if
// while loop to find the direction just moved
while (preCellID != cellnfo.adjacentList(directCode))
directCode++;
end_while
traceArray.AddLast(directCode);
end_if

— Step 2) Computes the distance traveled since last update by calling a sub-
routine that implements the Distance Computation Algorithm to operate
on its traceArray. Let curDistance be the calculated distance from its

last update.



w
[N

— Step 3) With curDistance obtained in Step 2. the MT does the following

looks up its updateTimneList(cur Distance),

if updateTimeList(cur Distance) < timeSinceLastCall, update;
else no update:

end._if

4.5.2 Distance Computation Algorithm

Once the chain code of an MT trace obtained, its traveled distance can computed
as follows:

First, let code pairs (1,4), (2,3). and (3. 6) cancel each other and delete them from
the traceArray. Since 1 and 4 are opposite, if traceArray has a code 1 and a code
4. their contribution to the distance is canceled. so delete them from traceArray.
Repeat this procedure until either all 1s or 4s or both are deleted from traceArray.
The same procedure is done for code pairs (2,5) and (3.6).

After code cancelation. at most three different codes are left, denoted as codel. code?,
and code3, and denote their quantities by code Numberl, code Number2, code N umber3.

Without loss of generality, we assume
codeNumberl > code Number2 > code Number3.

Note that in the remaining code, there may exist cycles, for example. there are two
cycles in traceArray = {1 -3 ~-5—-3—5—1—3}. So, the next step is to check
if codel, code2, code3 can form a cycle. If the angle between codel and code2, and
the angle between codel and code3 are 27/3, a cycle is formed. In this case, remove
all code3 and delete code Number3 codels and code2s from the traceArray. After
cycles deletion, the sum of the number of codel and the number of the one that has
angle 7/3 from it is the distance to be calculated. If the angle between codel and
code2, denoted by Z(codel, code2), and the angle between codel and code3, denoted
by Z(codel.code3). are /3, then the distance is code Numberl + code Number2 +

code Number3.

Algorithm 4.5.1 (Distance Computation Algorithm)
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Step 1) Code cancelation. Code pairs (1,4), (2,5),(3,6) cancel each other and delete
the canceled codes from the traceArray. Denote the remained codes as codel,
code2, codel (if three codes are left, otherwise, denoted as codel, code? if two
codes are left) and denote their quantities by codeNumberl, code Number2,
codeNumber3. Without loss of generality, let us suppose codeNumberl >

code Number2 > code Number3.

Step 2) Cycle deletion.
if (£(codel, codel) == 2xw /3 && L(codel, code3) == 27 /3)
delete code Number3 codels, code2s and code3s from traceArray

end_if

Step 3) Distance computation.

if (£(codel, code?) == 27/3 && Z(codel, code3) == 27 /3)
curDistance = code Numberl + code Number3;

else if (Z(codel, code3) == 27 /3 && Z(codel, code?) == 2r/3)
curDistance = code Numberl + code Number?2;

else curDistance = code Numberl + code Number2 + code Number3;

end_if

To see how the above algorithm works, let us see an example

Example 4.5.1 Consider a traceArray of length 10: traceArray = {2,1,6,4,6,2,2,
3.4,3,6}. After first code cancelation, the remained trace is traceArray = {2,2,2, 4, 6}.
Since 2,4,6 form a cycle, at the cycle deletion step delete 4, 6, and one 2. The left

traceArray is {2,2}, so the distance is 2.

4.6 Distance-Based Model and Its Variants

If the interarrival time is assumed to be of geometric distribution, the model
becomes a distance-based model since the geometric distribution is memoryless. This

section addresses the distance-based optimal strategy and its time-based invariant.



4.6.1 Distance-Based Optimal Strategy

Let us assume the interarrival times are independent and identically geometrically
distributed with parameter A. Define the system state z, € S = {0,1,2,---} as the
distance the MT has traveled since last registration. As before, let p denote the
probability of an MT staying in the same cell as the previous time slot, then the
transition probabilities are given by:

Pat =q(1 =), poo=1-q(l-A) ifk=0

pro=1-%(1-XA)—-(1-Ap, pa=%1-A), pu=(L—-Ap, ifk=1(422)

Pro = A Prk—1 = 1= A), pe = (1 = N)p, prr—r = (1 = A), ifk>1

That is, P has the following structure.

( Po P« 0 O O O O --- \
Po Pu P2 0 0 0 O
Po Pau P2 p3 0 0 O
po 0 O pp pm pu O
Po 0 0 0 pi3 pu Pus

\Por )

Obviously, in this case, we cannot distinguish between a new call arrival triggered

state transitions and a location update triggered state transitions. So, we have to
distinguish the state transitions in the cost function by considering the following
cost:

o

v(d) = E [Z “/’tC(f(t)vl‘z,-’EzH)IIo = d] )

t=0
where c(a, i, j) = 0 except ¢(0,:,0) = V(2{ + 1) (the paging cost), and ¢(1,¢,0) = U
(update cost).

Let v(d) = infscr vy(d) be the value function. Then we have the following theorem.

Theorem 4.6.1 The optimal value function v(d),d € S is the unique solution to the

following equation:

mm{Zp,J ) [e(a,i,j +7v(])]} (4.24)

acA
JE€S
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Theorem 4.6.2 For the above discussed distance-based model, the optimal updating

strategy is a threshold control, that is, there exists an integer i* such that
. 0, : <
f60) = { =t
1, 1>
Proof: First, let us prove that v(i), i € S, is increasing with respect to 7. To this

end, let us define a set of functions v(i, d) as follows:
v(i,1) = min{c(1,7,0), pV'(2i + 1)},

which is, obviously, increasing in i. For k& > 1, define

v(i,k) = min {Zp,-j(l)[c(l, i, J) +vu(j k- 1)]; Zpij[c(O, ,7)+vv(j, k — 1)]}

J=0 =0

= min {U + 700,k — 1); A[(6i + 1)V +~0(0, k — 1)]

- -
+ (1(1—9_)—:,@('1; — ]_,IL - 1) + (1 _ /\)Iryl_‘(lk _ 1) + q\l - A

)*/v(i+1,k—1)}

By assumption, v(j, k — 1) is increasing in j. Direct comparison gives

a6 oG
Zpiju(j’k -1) - ZpiHjU(j,k —-1)
=0 i=0
=pii—v(i — Lk — 1) + puu(i. b — 1) + puniv(i + 1Lk = 1)
—Pis V(i bk — 1) = picpinv(@ + Lk = 1) = pioipav(i + 2,k — 1)
-
_ q(l‘) )[U(z— —Lk=1) vk =D+ (1= Nplo@i.k—1) —v(i+ 1,k ~1)]

4(12—’\_)[U(i+ Lk—1)—v(i+1,k—1)]

<0

Combining the above two equations yields that v(i, k) is increasing with respect to i
for any k. Noting that v(i) = lim_ v(i, k) proves that v(i) is increasing.
Define

i* = max {i s A[(6¢ + 1)V + yv(0)] + q(l—;/\lﬂ/v(i -1)
q(1-A)
2

&

+(1 = \pyu(i) + yo(i+1) < U + ~,'u(0)}



Since v(7) is increasing, from (4.6.1) we have

Al(67 + 1)V + v (0)] + 1”—,,_—5171'(1' ~1)
v(i) = + (1= Npre@i) + L+ 1), i<
U + ~v(0), i>1"

which means that the strategy with threshold i* is optimal by Theorem 4.6.1. Q.E.D.

Example 4.6.1 The following table 4.1 shows the optimal strateqy versus call arrival

rate A and movement rate p.

Table 4.1: Optimal Distance-Based Strategies

A=01(02]03]|04]05}06]|0.7/08]0.9

p=0.1 10 7 6| 3| 5 4| 4| 4| 4
0.2 10 7] 6] 5| 5| 4] 4| 4 4
0.3 91 7| 6| 5| 5f 4] 4| 4 4
0.4 9] 7| 53] 5| 4| 4] 4| 4 4
0.5 91 6| 5| 3| 4 4] 4| 4 4
0.6 9] 6| 5| 5| 4| 4 4] 4 4
0.7 91 61 5| 5| 4| 4| 4 4 4
0.8 9] 6| 5| 5| 4 4| 4] 4 4
0.9 91 6] 5| 5| 4| 4] 4 1 4

4.6.2 Time-Based Strategy

Although time-based strategy is not efficient as distance-based and movement-
based strategies, due to its simplicity of implementation, it is of a lot of interests
and importance. This section converts the optimal distance-based strategies into
time-based strategies.

Let dy be the threshold of the optimal distance-based optimal strategy. We define
a time threshold T as the time at which the MT most likely first reaches dj, in other

words. Tj is the solution of the following optimization problem:

max P(z, first reaches distance d;)
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~]

Let P be the state transition probability matrix of the distance-based model. Then,
the probability of MT first reaching distance d is:

P(MT first reaches distance dq at time t) = P(z; = dg, 2, # dg.0 < s <t —1) 2 p(t).

Since the points where p(t) reaches maximum may be not unique, we take the smallest

one as our optimal threshold value, that is,
To = min{¢ : p(t) > p(s),1 < s < x}.

Let Fy/4,- be a row vector obtained from P by deleting the dy—th element from the
0-th row of P. and P,, be the column vector obtained by deleting dg-th element in
the do-th column of P. Define matrix Pdo to be a matrix obtained by deleting dg-th

row and dg-th column from P. Then. we have

t

1: p(1) = pog,
t>2:p(t) = Pojay [13;0-2} Py,

Example 4.6.2 Using the above scheme. the distance-based optimal strategies are

converted into time-based strategies. which are shown as in the following table.

Table 4.2: Optimal Time-Based Strategies

X=01]02]/03]04]05]06]07]08]09
p=01 29 12| 7 4| 2| 1| 1| 1| 1
p=02 3214 9| 6| 6] 3| 3| 3| 3
p=03 29 16| 11| 7| 7| 3] 3| 3| 3
p=04 34| 19| 8| 8| 4| 4| 4| 4| 4
p=05 1016 10| 9] 5] 5] 5| 5| 4
p=06 19 19 12| 11| 6] 6| 6] 5] 5
p=07 62| 25 15| 14| 8| 7] 7| 6] 6
p=03 85| 31| 21| 18| 10| 9] 8| 7| 6
p=09 100 52| 31| 26] 14| 13| 11| 9| 8




58

Chapter 5

On-Line Location Update

Optimization

This chapter develops a simulation-based optimization algorithm for the MT lo-
cation update problem. For this purpose. we treat the system under one strategy
as the normal system and the another one as a perturbated system. The idea is to
observe the trajectory of the normal system. use the observed trajectory to construct
a trajectory of the perturbated system, and thus estimate their performance indices.
That is. use a single sample with respect to a given strategy, e.g., fi, to construct a
sample path of another strategy, e.g. fa. by which the performance difference between
/1 and another one fs is estimated. If the estimated result reveals that f; is better,
continue using strategy f; and compare it with another one, f3. On the other hand,
if the simulation reveals f, is better than f,, switch the strategy f; to f,. Let the
system evolve according to f, and estinate its performance difference with a new one,

and so on. until no improvement can be made any more.

5.1 Sample Path Construction Algorithm

To illustrate the idea of how to construct a sample path of a different stochastic
process based on the observed sample path of a given process. let us see a simple

example.
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Example 5.1.1 Let {z;,t > 0} is a Markov process with state space S = {1,2,3} and

0.2 03 0.5
state transition matriz P = | 04 0.4 0.2 |, and {z},t > 0} is another Markov
04 05 0.1
02 03 0.5
process with state space S and state transition matriz P, = | 0.4 04 0.2 |. Next,
1.0 0 O

we proceed to construct a trajectory of z, based on the observation of ;.

Note that P differs from P, only in the 3rd row, so the trajectory of z} may deviate
from that of z; only when state 3 is visited. Since z, and z; are Markov processes,
they are also regenerative processes and state 3 is one of their regenerative point.
So, we construct the trajectory of z; from that of r, piece by piece. The following

algorithm is to cut pieces of , trajectory, and paste them to r/ trajectory.
Sample Path Construction Procedure:

Step 1) Simulate z, until it reaches state 3 and record the observed path as a sample

path of zj.

Step 2) Record state 3 for ; and continue simulation without adding to the path of

z, until state 1 is reached.

Step 3) Continue observing z, and concatenate its trajectory to that of z; until state

3 is reached.

Step 4) Go to Step 2.

Observed Sample path of x_t with 11 cycles
mcp=
Columns 1 through 12

3 1 3 3 2 2 2 2 2 2 1 3
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Columns 13 through 24
2 3 2 1 3 2 2 2 1 3 2 1
Columns 25 through 36
2 2 3 3 2 1 2 2 2 1 2 2
Columns 37 through 48
2 1 3 2 2 1 2 2 1 1 3 2
Columns 49 through 57

2 1 2 1 2 3 2 2 1

Constructed path of x’_t

mcpl =

Columns 1 through 12

3 1 3 1 3 1 3 1 3 1 2 2
Columns 13 through 24

3 1 2 2 2 1 2 2 2 1 3 1
Columns 25 through 35

2 2 1 1 3 1 2 1 2 3 1

In order to check the constructed trajectory is a sample path of a Markov pro-
cess with transition matrix P}, we need the following important property of Markov

process.

Proposition 5.1.1 Let {z;,t > 0} be a Markov process with state space S and transi-

tion matriz P = (p;;),i,j € S. Let Sp(i,7) and S,(i) be the number of the occurrence
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of pair (i, j) and the number of occurrence of state i in zg,x\,---,z,. Then, we have
. Sa(t,7)
im ——=— =p;;, w.pl
ne () Lo WP

To verify that the above constructed path truly has transition matrix P,, an
experiment with 4000 cycles of simulation is performed. The observed path of z, and
constructed path z; are of 16108 and 11246 steps lengths, respectively.

The observed path estimates the transition probability matrix Pest of z, and the

estimation errors Pest — P are

Pest =
0.1945 0.2928 0.5127
0.4096 0.3940 0.1964

0.3960 0.5112 0.0928

Pest-P =
-0.0055 -0.0072 0.0127
0.0096 -0.0060 -0.0036

~-0.0040 0.0112 -0.0072

Using the constructed path estimates the transition probability matrix of z; and

the estimation errors

Pestl =
0.1945 0.2928 0.5127

0.4078 0.3912 0.2010



1.0000 0 0

Pestl1-P1 =
-0.0055 -0.0072 0.0127
0.0078 -0.0088 0.0010

0 0 0

The above experiment shows that the constructed trajectory has transition matrix
Py. Let us proceed to see how to construct a path of z, based on an observed sample

path of z;.

Definition 5.1.1 Let f,g € F be two stationary strategies. |f| is defined as the
number of states s € S such that f(s) = 1. The number of positions in which the
corresponding binary values of f and g are different is said to be the Hamming

distance between f and g, denoted by H(f,g).

In the sequel of this chapter, a controlled Markov process with control strategy
[ is denoted by {y(t, f),t > 0}. Let f and g be two stationary strategies satisfying
H(f.g) = 1. Suppose f(sg) =0 and g(sg) = 1. Denote by s, be the state reachable
from 5o under strategy g. Using the following algorithm, a sample path of Markov
process with control g, denoted by {y(¢.g),t > 0}, can be constructed from that of

process y(t, f).
Algorithm 5.1.1 (Sample Path Construction Algorithm 1)
Step 1) Observe y(t, f) and add the observed states to y(t, g) = s until sq is reached.

Step 2) Record state sq on y(t, g), and observe y(t, f) without adding states to y(t, g)

until sq is observed.

Step 3) Continue observing y(t, f) and add its trajectory to y(t, g) until sq is reached.
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Step 4) Go to Step 2.

The above algorithm constructs a sample path of y(¢,g) from observed sample
path of y(¢, f). However, construction of a sample path of y(¢, f) from an observed
sample path of y(t,g) is more complicated, as shown in the following Sample Path
Construction Algorithm 2.

For this purpose, let us first introduce some notations. Let states i;,---,i, €S be
the states reachable from sq in one-step under a strafegy f that does not update at
So, that is, psi; > 0,7 = 1,---,7. Let py, be the probability that sq occurs in a cycle

of y(¢, f) with length greater than 1, then

oc
- - -1
Psq = Pso- [Z Pstoso} D-so = Pso- [[ - Psusn] D.sq
t=1

where pg,. is the row vector obtained from the sgo-th row of the transition matrix
P(f) by deleting its so-th column, p.q, is the column vector obtained from the sg-th
column of the transition matrix P(f) by deleting its so-th row, and P,,,, is the matrix
obtained from P(f) by deleting its so-th row and so-th column. Since the cycle of
y(t. f) is longer than y(t. g), we have to add some segments to the sample of y(¢, g)
so that it becomes a path of y(t, f). The set of state segments to be used are denoted
by

pad(il)’pad(iQ)a T 7pad(ir)7

and
padc(il), padc(ig), T padc(ir)'

They are small pieces of states copied from the observed sample path of y(t, g). pad(i;)
is a string of states copied from a piece of the sample path of y(¢, g) that starts with i;
and ends with s, without including sg, e.g., if {1a) - - - ay,s} is a piece of sample path of
y(t, g), define pad(i,) = i\ - - - am; padc(i;) is a string of states copied from a piece
of the sample path of y(t, g) that starts with ; and ends with sq without including sq,
e.g., if 1jay - - amsq is a piece of sample path of y(¢, g), define padc(i;) = i1a; - - - @
When necessary, we choose a pad from pad(i;), - - -, pad(i,), and insert it between sq

and sp; and choose one from padc(i,), - - -, pade(i,) and insert it into a 1-step length
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cycle, that is, insert it between the possible state pair sgsg. Once a pad is used, it

will be refilled in the following cycles.

Algorithm 5.1.2 (Sample Path Construction Algorithm 2)

Step 0) Compute probability ps,, and find iy, s, - - -, ir;
initialize pad(i,), pad(is), - - -, pad(i,), padc(i,), pade(ia), - - - , padc(i.)

Step 1) Simulate y(t, g) until state sq is reached, add the observed states to y(t, f)’s

path under construction;

Step 2) With probability p,, do the following: select one state ig from iy, - - - , i, with
probability py,,- - -, Pseir, and add padc(ip) to y(t, f).

Step 3) Generate a random integer R, using geometric distribution with parameter

Psoso: 20d add a string sg- - - so with length R, to y(¢, f).

Step 4) With probability distribution psg;,, - - -, Psyi,. choose a state ig from i, - - - , i,
add pad(ig) to y(t, f)-

Step 5) Let NertState = next state of y(¢, g), and let CurrentState = NeztState.

while CurrentState == s;
Add CurrentState to y(¢, f);
CurrentState =next state of y(¢, g);
end_while

Step 6) Set Indicator Ind(i;) = 0,5 = 1,---,r; Initialize pd(i,), - - - , pd(i,).

while CurrentState! = sy && CurrentState! = s,
if Ind(CurrentState) == 0
Ind(CurrentState) = 1;
end_if
if Ind(Current) ==
Add CurrentState to pd(CurrentState);
Add CurrentState to y(t, f);
end_if
CurrentState = Next state of y(¢, g);
end_while



Step 7)

if (CurrentState == s;)
for (i =Li<=r;i++)
if (pad(i;) is used)

pad(i;) = pd(i;)
end_if
end_for

else

for (i =l;i<=rii++)
if (padc(i;) is used) padc(i;) = pd(i;)
end_if

end_for

end.if

Step 8) if the stop rule is satisfied, stop; otherwise go to Step 2.
To see illustrate the Algorithm 5.1.2, let us see the following example.

Example 5.1.2 Suppose there are two Markov processes: {z;,¢ > 0} and {z},t > 0}

with state space S = {1.2,3,4}. Their transition probability matrices are

0.2 03 02 03 0.2 03 02 03
0.4 02 0.2 02 04 02 02 02
P = . P[ = (5.1)
04 03 0.1 01 04 03 0.1 0.1
0 03 04 03 1 0 0 o0

Using Algorithm 5.1.2, an experiment is performed and the results are listed as follows:
With 500 periods simulated, we get a sample of z} with length 5432 steps, using
Algorithm 5.1.2 a sample of z, with length 8033 steps is constructed. From the

simulated sample path, the estimated transition probability matrix for Ty is

Pestl =
0.2004 0.3034 0.2012 0.2950

0.4163 0.2034 0.1982 0.1821



0.2974

1.0000

P1-Pestl =

-0.0004

-0.0163

0.0026

Pest =

0.1997

0.4637

0.3397

P-Pest =

0.0003

-0.0637

-0.0397

.4944

.0034

.0034

.0056

.3171

.2057

.4830

.3158

.0171

. 0057

.0170

.0158

.1029

.0012

.0018

.0029

.2157

.2170

.1202

.4036

.0157

.0170

.0202

.0036

.1083

.0050

.0179

.0053

. 2675

L1136

.0671

. 2806

.0325

.0864

.0429

.0194

66
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5.2 Location Update Online Optimization Algo-

rithm
In order to present the online optimization algorithm, let us give a definition.

Definition 5.2.1 Let f € F be a stationary strategy. A neighborhood of f, denoted
by 8(f), is the collects of all the stationary strategies that has Hamming distance 1
with f. that is.

6(f)={glg € F.H(f,g) =1}. (5.2)

In order to design an on-line algorithm, let us consider the average cost function,

that is.

: I~ -
Jy = limsup B, [;Zc(yt,ym,n} (53)
n-——oc t=0

We need the following properties of regenerative processes (see Ross [27]).

Proposition 5.2.1 Assume {y(t, f),t > 0} is ergodic. Let y(0, f) = sq and (&t >

1}, with & = 0. be the sequence of times at which state sq is visited. Then, we have

i LS ety ptea 1y [t cly(t. ).yt +1.)] 0
m - c YL, s + 1 = - 9.
n—oc N P y E[El]
with probability one, and
E/ | Tiocylt /).yt + 1.1)]
1 j [ t=0 c y L] y '
lim E; | =) c(y(¢, f),y(t + 1, = 5
Jim Ej [ng (t+1,/)) B )
From the above proposition, we have the following theorem
Proposition 5.2.2
. ?:l [Zfl:-fll_l c(yh yt+11 f)] . % ?:l [Zfl:—fll_l C(yh Ye+1, f)J
lim "¢ -~ = lim S =.J; (5.6)
n—oo i=1 Si n—oo n i=1 i

with probability one.
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The similar estimation technique (2.10) is used to estimate
E[ & c(y(t. )yt + 1, f))]. The following algorithm estimates J; and J, based

on observation of y(t, f).

Algorithm 5.2.1 (Performance Estimation Algorithm)
Step 1) Initialization: Set error bound s, C; =C, =T; =T, = 0:
Step 2) Observe y(t, f) until state sq is reached; set i = 1.

Step 3) Set Cf =Cg =Tf =Tg =0:

while y(¢. f) # so
Cr=Cp+c(Ye-Yes1):

szTf+1.'
t=t¢t+1:
end

while y(t. f) # 5o
Cf = Cf + C(yt? yt?l);

Tf = Tf +1;
Cy = Cq + c(Ys: Yt-1):
T, =T, +1;
t=¢+1:

end

i=1+1;

Cre 2 1C; + 51Cy

Step 4) If max{|Cre — Cyl,|Tse = T1},|Cpe — Cyl. | Tpe = T,|} > e,
Cr=Cre.Ty =T}e,Cy = Cye. T, = Tye, and go to Step 3:
= c C. C C.
Stepa}sz;jﬁ, Jg=7F andJ/—Jg=#—7rf-.
Algorithm 5.2.1 shows how to estimate the performance indices of strategies f and
g based on observation of sample path y(¢. f) without recording the sample paths of
y(¢, f) and y(t,g). By the same way, we can estimate the performance indices of f, g

based on observation of sample path y(t, g).
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For any two stationary strategies f, g € F satisfying H(f, g) = 1, Algorithm 5.1.1
constructs a sample path of y(¢, g) based on observation of y(t, f), and Algorithm
5.1.2 constructs a sample path of y(t, f) based on observation of y(t,g). So, using
these two algorithm all sample paths corresponding to strategies in the neighborhood
of a given strategy can be constructed. The following algorithm can find a suboptimal
strategy.

Let vV = [S], then for a given strategy there are N strategies in its neighborhood.

Algorithm 5.2.2 (Strategy Optimization Algorithm)
Step 1) Choose initial strategy f

Step 2) Let §(f) = {fi,---. fn}. Observe y(t, f). Based on observation of y(t, f),

for i=I:N

if | f:| > |fl, estimate J(f;) using Algorithm 5.1.2
end_if

if | f:| < |f|, estimate J(f;) using Algorithm 5.1.1
end._if

end_for

St(:‘p 3) if J(f) = mln{'](fl)v J(fN)}r stop;
else if J(f;) = min{J(f1),---.J(fx)}, f = f; go to Step 2.
end_if

Example 5.2.1 To illustrate Algorithm 5.2.2, let us work an ezample. Consider a
system with movement rate p = 0.35, call arrival rate A = 0.65, U =7,V = 2. Set
initial strateqy with threshold dy = 30. Algorithm 5.2.2 yields the optimal strategy with
threshold dy = 7.

5.3 Online Implementation

To implement the above algorithm, we suppose the same implementation mech-

anism as that of optimal update strategy proposed in Section 4.5. We assume each
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Start: choose tmutial £

Observe a trajectory of ‘£,
construct paths of strategies in 5(f)

' 1s the best?

No, f=the best one

Figure 5.1: On-Line Optimization Algorithm Diagram
base station maintains its own cell information as described in Section 4.5. Each
mobile terminal maintains a set of information denoted by mobileln fo:

mobileIn fo{timeSinceLastCall, preCelI D, currCellID, traceArray, preState,

currentState, currentStrategy, listO f Per formance}

where

e timeSinceLastCall, preCell D, currCell D, trace Array are as described in Sec-

tion 4.5
e preState is the system state (time and distance) in last time slot
e currentState is the current system state

e currentStrategy is the strategy in use, which is represented by a matrix

listO f Per formance records the estimated performance values for all the strate-

gies in the neighborhood of the currentStrategy
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Receiving the broadcasted cellIn fo, the MT does the following to seek an subop-

timal strategy.

Step 1) When the MT receives the broadcasted cellIn fo, it checks the cellIn fo, com-
putes the distance traveled by the same way described in Section 4.5, calculates
the new system state. and sets preState = currentState and currentState =

the new state.

Step 2) Looks up the currentStategy to decide whether to update:

If currentStrategy(currentState) == 1, update; otherwise, no update.

Step 3) Uses Algorithm 5.2.1 and Algorithm 5.2.2 to update the estimated values of

listO f Per formance.

Step 4) If the observation is long enough, the MT switches the currentStrategy
to the one that has the best performance value in listO f Per formance, and

initializes the listO f Per formance.
Remark 5.3.1 If we consider the distance model, the MT maintains

mobileln fo{preCell D, currCell D, traceArray, preState,

currentState, currentStrategy, listO f Per formance}

where currentStrategy is represented by a binary vector.
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Chapter 6

Epilogue

6.1 Summary of this thesis

This thesis applied the discrete event dynamical systems theory and methods to
wireless communication systems, which consists of two parts. Part I studied continu-
ous parameter optimization problem of continuous-Markov process using uniformiza-
tion. An algorithm to estimate the sensitivity of the system performance of a Markov
process with respect to its design parameters is proposed and a gradient-based algo-
rithm is used to optimize the system performance; as an application of this algorithm,
Chapter 3 studied the call request buffering problem in wireless communication sys-
tems.

Part II studied the mobile location tracking problem. The phone call arrival,
mobile movement, and location registration are characterized using Markov decision
processes, and the optimal location update strategies are solved using the Markov
dynamical programming algorithm. The model considers the distance the MT has
traveled since last registration and time elapsed since last call arrival. To implement
the proposed update scheme, an interactive implementation scheme was proposed. In
this scheme, the network broadcasts its cell information, based on which the mobile
terminals learn the topology of the network and calculate the distance they have trav-
eled. For this purpose, a new scheme to compute the traveled distance was proposed,

which is useful for any distance-involved update models. Finally, a simulation-based
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optimization is developed to optimize the update strategies.

In this thesis. we have studied the optimal update strategy, distance-based strat-
egy, time-based strategy, and an online algorithm. Among them, the optimal strategy
is, of course, the best one, and is also the most difficult one to implement; the distance-
based strategy is easier to handle because of the assumption of geometric distribution
of the call interarrival times; the time-based strategy is the easiest one to implement,
but it is not as efficient as the first two because it is converted from the optimal
distance-based strategy. The online optimization algorithm can be implemented on-

line, but it can only produce a local optimal strategy.

6.2 A New Markov Movement Model

In the previous chapters, the mobile terminal’s mobility was modeled by a random
walk model. that is, at each time slot, a mobile terminal with the same probability
enters one of its neighbor cells. Its movements at different time slots are independent.
Obviously. this is an average case. Intuitively, the moving direction in next time slot
is dependent on its current moving direction. In this section we propose a new model
which models the MT’s moving direction by a Markov process. That is, its next step
moving direction depends only on its current moving direction. For this purpose, let

us label the six directions by 0,1, 2.3, 4, 3, as shown in Figure 6.1

3, 2
Naval

/f

4

>

5 0

Figure 6.1: The Movement Direction Definition
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Let S = {0,1,2,3,4,5} and p;,i = 1,---,4 be four nonnegative constants satis-
fyving Zle p; = 1. p; designates the probability of keeping the same direction, p»
moving at a direction with angle 7/3 with current direction, p; moving at direction
with angle 27/3, and p; moving at the opposing direction. Let r, denote the direction

at which the MT is moving at epoch ¢t. Then,

(D ifj=1i

o o ifj=li+1lsorj=[i+5
P(rt-l=]lrt=2)épij=< p2 o [T ]6 ) [ ]6 (6.1)
py, if j=[i+2Jgorj=[i +4]s

pa, if j=[i+ 3]s

\

where [-]¢ is the operation of taking mode 6. Obviously, it is inadequate to make
update decision according the current moving direction. So, we need more information
to comprise of the system state. Let Z. = {0,1.2.---} be the set of nonnegative
integers and put S = Z% x S. Then define a stochastic process r,,t > 0 with z, € Z8,

where r,(7) denotes the number of steps the MT has traveled in direction i. Define

Qi(I-Il) = P(xy4y = Ill-rt =I.r =1)

q. ifr'=z+e¢
=< 1—gq, ifr=z (6.2)
0, else

where e; € Z$ with all elements being 0 except its ith element. With these notations
given, we define stochastic process y; = (z;,7;).t > 0. Then {y,,t > 0} is a Markov

process with transition probability given by

P(yeey = (2, 1)y = (2,1)) = pwrqi(z, Z'). (6.3)

Let 7 be a random time denoting the next phone call arrival time and f(-): S —
{0.1} be a strategy with 0 meaning no update and '1’ update. And let F be the set

of stationary strategies. Then the optimization problem is

=1

min J(f) 2E | D _clye f(w)) + h(y:) (6.4)

t=0
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where c(y. 1) is the cost of update when reaching state y, c(y,0) = 0; and h(y,) is
the paging cost. This is a standard Markov decision problem that can be solved
using Markov dynamical programming algorithm, such at successive value iteration
or policy improvement.

However, the challenge of solving the optimization lies in its large state space. A
direct method to handle this is to aggregate all the states with the same distance and
develop a distance based algorithm. This algorithm is heuristic since the process with
aggregated state is not a Markov process any more. To develop an efficient algorithin

for the above optimization problem is still under investigation.

6.3 Future Research Directions
Finally, we point out some future research directions:

o Continuous flow models and simulation-based optimization for telecommuni-
cation networks. Queuing system models for high speed telecommunication
networks may be daunting because of the prohibitive computing requirements.
This is due to the fact that in the packet-switching network, packets arrival
and departure from a node constitute discrete events, and a simulation pro-
gram processes a sequence of such events. For instance, in ATM networks, the
packets consisting of 53 bytes are transmitted over lines operating at rates of
hundreds of megabits per second; therefore, there could occur millions of events
per second at each node. To handle this problem, we can model packets arrival
and departure as continuous flows by the same way of modeling the job arrival

and departure in flexible manufacturing systems.

e For digital communication systems, the received signal fading, caused by the
propagation conditions of a mobile radio channel, leads to transmission errors.
The occurrence of errors is greater during the signal fading. To represent ade-
quately the error distribution in a real digital communication channel, Gilbert

has proposed [14] an error generation model based on a two-state Markov chain
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with two states {E}, E»}. The first state E; represents a binary symmetri-
cal channel with a zero error probability p, while the second state indicates a
binary symmetrical channel having a crossing probability p,. The errors gen-
eration process is determined by the transition probabilities p;; from a state
to the subsequence state. This model has been justified by many authors (see

[33, 34] and references therein).

Combining the Markov channel model and the continuous flow model leads to
Markov jump systems [2], so using Markov jump systems to model telecommu-
nication networks is a promising research direction. Especially, the stochastic
systems with time-delay can be used to characterize the delay in the telecom-

munication networks.
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