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Abstract

Adaptive Polynomial Predistorters and low-PAR
circular APK Signaling Schemes for Systems Using
Non-linear Power Amplifiers

Thai Hoa Vo

In this thesis, adaptive polynomial predistortion techniques suitable for DSP
implementation at the baseband signals are introduced to counter-balance the AM/AM
and AM/PM nonlinear effects of the transmit power amplifier. The proposed polynomial
predistortion scheme is based on polar coordinate representation. Both LMS and RLS
concepts are used to derive the adaptive algorithms. An enhanced LMS-based algorithm
with fast convergence is proposed. For very fast convergence, a cascaded RLS-based
adaptive polynomial predistorter structure is introduced. The obtained results show that
the polynomial predistortion schemes can be used in M-QAM transmitters with power
amplifiers operating near saturation to achieve a highest power efficiency. The thesis also
presents a class of circular M-ary Amplitude-Phase Shift Keying (APK) signaling
techniques with high bandwidth efficiency and low peak-to-average power ratio (PAR)
suitable for systems using non-linear power amplifiers to achieve high power efficiency.
Based on bandlimited two-dimensional M-ary signals using circular constellations, a
search algorithm for optimum schemes for non-linear amplification in terms of minimum
PAR and maximum DPR is introduced. Optimum circular constellations for 8-, 16-, 32-,
64- and 128-APK signalling schemes are proposed. The analytical and simulation results

show that this class of circular M-ary APK signals outperforms the square and cross M-
ary QAM schemes.
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Chapter 1. Introduction

M-QAM has been considered to achieve high bandwidth efficiency for broadband
wireless communications. However, due to its envelope fluctuation, it exhibits large
spectral re-growth causing performance degradation when the transmit high power
amplifier (HPA) operates in a nonlinear region close to saturation in order to achieve the
high power efficiency. High power efficiency helps in reducing power consumption,
which is important and desired in many applications, especially in the case of portable
systems using battery.

The nonlinear characteristics of a transmit high power amplifier (HPA) can be
represented by their AM/AM and AM/PM effects, which indicate the non-linear
relationships between the output amplitude/phase-shift and input amplitude (or power).
Therefore, a modulated signal with a large envelope variation such as filtered M-QAM
suffers both amplitude and phase distortions when it is non-linearly amplified. As results
of these distortions, the receiver performance in terms of bit error rate will be degraded,
and the spectrum of transmitted signal will be spread to adjacent channels, causing
adjacent-channel interference. One approach to avoid this problem is to operate the HPA
at a large output backoff from its saturated power, in order to maintain the required
linearity at the expense of reduction in power efficiency.

Several HPA linearisation techniques have been proposed in order to achieve high
spectral and power efficiency. These techniques can be classified in three categories [1]:
i) Feed-Forward [2], ii) Cartesian Feedback [3] and iii) Predistortion.

Feed-forward linearizer uses two amplifiers. It is designed with the aim to have the
distortion of these amplifiers perfectly cancel each other. However, it can not be

controlled against the effects of HPA parameters variation due to the temperature,



component aging,... A rigorous analysis of adaptation behavior of a feed-forward
linearizer is presented in [4].

In [3] HPA linearisation by Cartesian feedback has been analyzed using a multiple
input multiple output model. It was shown that the Cartesian feedback can suffer from
stability depending on HPA nonlinearity characteristics and stability margin.

Predistortion techniques have been proposed as a potential solution to overcome the
non-linear distortion effects [5,6]. Basically, these techniques aim to introduce “inverse”
nonlinearities that can compensate the AM/AM and AM/PM distortions generated by the
nonlinear amplifier. In general, a predistorter can be implemented using analog or digital
circuitry. Namiki [7] introduced a simple automatic control technique for third-order
analog predistorter. However, digital predistorters have become more popular due to their
easy implementation and design. Two sub-categories of predistortion techniques have
been proposed depending on where the predistortion process is inserted. The first one is
based on pre-distorting the signal constellation in such a way that the distortion
introduced by the combination of the HPA nonlinearity and the channel memory is

cancelled [8,9,10]. This approach can be realized by various techniques, e.g., Volterra

series [11], artificial neural network [12], pth-order inverse of a Volterra series [13],
Hammerstein model for the predistorter [14]. These techniques require high
computational complexity and their convergence rate and steady-state performance
depend on the transmitted alphabet size. The second one uses a memoryless nonlinear
device placed between the shaping filter and the HPA. This nonlinear device can be
designed digitally using a mapping predistorter (with a look-up table) or a polynomial
function in Cartesian or polar representation. Nagata [6] has presented a two-dimensional
table look-up technique with adaptive digital feedback at baseband. This technique has
the advantage to perform any order of the non-linearity and any modulation technique.
Cavers [15,16,17] and Faulkner and Johansson [18] proposed one-dimensional table
look-up techniques with very promising results in Cartesian and polar representations,
respectively.

Several adaptive complex polynomial predistorters were proposed [19,20,21,22] with

the main objectives to increase the convergence rate and to reduce the complexity. In



[20], the predistorter polynomial coefficients are derived for minimum out-of-band inter-
modulation distortion (IMD). The third, fifth, and possibly seventh order components can
be suppressed, thus the optimization process does not guarantee the convergence to the
global minimum. In [21, 22], the authors proposed to adapt the predistorter coefficients
by using a post-distorter with an RLS algorithm. The presented simulation results
promise a distortion suppression of 45dB. However, this technique has a higher
complexity as compared to the previous solution. An evaluation of a predistortion
technique should take into account both its performance and complexity. Moreover, to
achieve a better performance, a higher sampling rate is preferred, and consequently, low-
complexity adaptive method is suggested [23].

In this thesis, we propose adaptive polynomial predistortion techniques in polar
representation and both LMS and RLS concepts. An enhanced LMS-based adaptive
polynomial predistorter algorithm with low complexity and fast convergence is
introduced. For applications requiring a very fast convergence, we develop the RLS-
based adaptive polynomial predistorter structures with relatively low complexity (e.g.,
lower than the one in [22]). The proposed predistortion techniques show that M-QAM
signaling can be used with a transmit power amplifier operating near saturation to
achieve a highest power efficiency, while its transmitted spectrum and performance are
maintained close to those in a linear channel. The convergence behavior of the adaptive
predistortion technique is analyzed. The spectral regrowth and performance of 16 and
64QAM system using a pre-distorter/HPA are evaluated using simulations. The effects of
polynomial order, quantization noise, and HPA parameter variations are studied.

With the use of HPA linearisation, several results reported in [15, 18, 24] indicate that
systems can operate with the peak power extremely close to the HPA saturation.
Therefore, a modulated signal with low peak-to-average power ratio (PAR) is desired to
increase the power efficiency. For bandlimited (modulated) signals, the PAR is
contributed by the filtering and the constellation. On the other hand, signals with high
squared minimum distance to average power ratio (DPR) will provide the best error

performance. Hence, it is desired to have a constellation with small PAR and high DPR.



Based on bandlimited two-dimensional M-ary signals using circular constellations,
we develop a search algorithm for optimum schemes for non-linear amplification in terms
of minimum PAR and maximum DPR and find the optimum circular constellations for 8-
, 16-, 32-, 64- and 128-APK signalling schemes. The effects of bandlimiting filter
sharpness on the PAR are examined and considered in the development.

The thesis is organized as follows. Chapter 2 presents the background. Chapter 3
describes the proposed predistorter structure and discusses its steady-state performances.
Chapter 4 presents the proposed adaptive algorithms based on both LMS and RLS
concepts and examines their behavior. Chapter 5 discusses the optimum circular APK
constellations and the proposed algorithm for seaching these constellations. Conclusions

are given in Chapter 6.



Chapter 2. Power Amplifier Non-linear
Characteristics and Linearization/Predis-

tortion Techniques

2.1 Bandwidth-efficient Multilevel Modulation and Transmission

Figure 2.1 depicts a basic block diagram of a transmitter.

Svmbol Pulse
Source — ymbo Shaping Modulator Amplifier
Encoder Filter

y
A
Y

Fig. 2.1: Basic block diagram of a transmitter

The source is a sequence of bit, which is converted to a sequence of symbols by the

symbol encoder. The symbol encoder operates at the rate of /= 1/T where

sym sym?>

T is the duration of a symbol. Each symbol is taken from an alphabet of M possible

sym

elements, where M is often chosen that M = 2k, and k is the number of bits per symbol.
For bandwidth-efficient modulation schemes, higher spectrum efficiency can be achieved
by increasing k, at the expense of an increase in signal-to-noise ratio to maintain the
same performance. The symbol encoder is sometimes referred as vector modulation,
because it maps a group of k bits to a symbol vector in a L-dimensional space. When
L=1, it is equivalent to PAM for baseband transmission or ASK for passband

transmission. The value of L equals to 2 is widely used in many practical systems. A
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symbol is denoted by a point ({,,0, ) in a 2 dimensional space made up by the in-phase

and quadrature-phase axis. A signal is then filtered and modulated to a specific carrier

frequency f,. The modulated signal is amplified to a required power level before being

delivered to the channel via an antenna.

In general, a modulated signal can be represented as,
x(t) = A(t)cos(2nf t + ¢(£)) (2.1)
where f_ is the carrier frequency. The bandwidth of the phase function ¢(#) and the
amplitude function A(¢) are in general much lower than the carrier frequency f,. Note

that the occurrence of the functions A(#) and ¢(¢) in the equation 2.1 implies that x(¢)
can represent both amplitude or/and phase modulation techniques. Consequently, x(¢) is

a passband signal with its spectrum concentrated around the carrier frequency f.. The
signal x(¢) can be rewritten as,
x(t) = x(t)cos(2nf 1) +xQ(t)sin(2nfct) (2.2)
where
x (1) = A(t)cos(¢(1))
x(1) = ~A(®)sin(0 (1))
represents the quadrature components. x(¢) is the in-phase (/) and xQ(t) is the

quadrature-phase () components. A simple way to generate RF signal is shown in

Figure 2.2.



A

cos(2aft) —

v x(t)
N O
i

Fig. 2.2: Modulator block

The in-phase and quadrature-phase components are affected by both amplitude and
phase functions. If the amplitude is constant and the phase varies, it is called M-ary PSK
(Phase Shift Keying) modulation technique. For fixed phase and varying amplitude, the
result will produce a M-ary ASK (Amplitude Shift Keying) modulation. When both
amplitude and phase are changed, it will form a M-ary APK modulation technique.
Quadrature Amplitude Modulation (QAM) is a special case of ASK where the in-phase
and quadrature-phase components are PAM signals. Some typical constellations of

different modulation schemes are shown in the figures 2.3 and 2.4.

Fig. 2.3: 8-PSK constellation Fig. 2.4: 16-QAM constellation

For bandlimited QAM modulation, the root raised cosine (RRCS) filter is often used
for spectrum shaping. In a linear channel with RRCS used in the receiver, zero
intersymbol interference (ISI) and optimum symbol-by-symbol detection in an additive
white Gaussian noise (AWGN) environment are achieved [25]. The rolloff factor of the
RRCS controls the occupied bandwidth of the transmitted signal. It is noticed that QAM

signal has a varying envelope due to transitions from one signaling element to another.



For example, there are 180-degree transition trajectories in 4-QAM (QPSK) shown in
Figure 2.5 representing 100% amplitude modulation. Large amplitude variation
introduces both amplitude and phase distortions when the modulated signal passes

through a non-linear amplifier.

Fig. 2.5: Transition trajectories of 4-QAM (QPSK)

2.2 Power Amplifier Characteristics

The efficiency of a power amplifier can be represented by the ratio of the operating
RF transmitted power to the DC supply power. In general, based on the design
approaches, power amplifiers can be classified into four general classes: A, B, AB, and C
[26]. Class-B, AB, and C power amplifiers operate in a non-linear manner to achieve
high power efficiency. They are applicable to constant-envelope modulated signals such
as FM, CPFSK. For multilevel APK and QAM, Class-A power amplifiers are often used
for QAM to achieve the required linearity at the expense of reduced power efficiency.

The input-output relationship of a class-A power amplifier is only linear for a small
range. As the input amplitude signal increases, the input-output relationship is no longer
linear and its nonlinear characteristics cause distortions in the modulated signal, leading
to performance degradation and further reduce the power efficiency. In the following sub-
sections, we will discuss the characteristics of the class-A power amplifiers and their

effects.

2.2.1 Input-output relationship and relevant parameters:
Figure 2.6 shows the typical input-output power relationship of a class-A power

8



amplifier with the input and output power presented in dBm or dBW. The dashed line
with slope of 1 represents the ideal linear relationship, i.e.,
output signal power(j, qgmj = input signal power;, gpm) + POWer gaing;, 4

The ideal linear relationship is close to the actual input-output power relationship for
a certain range of small input power. Howerver, beyond this range, the relationship
becomes non-linear with reduced output power. The I-dB compression point is defined
as the point at which the actual output power is reduced by 1dB as compared to the
expected value of the ideal linear relationship. As the input power continues to increase
beyond the 1-dB compression point, the output power slowly increases and reaches the
saturation point, indicating the maximum possible RF output power. The input power
corresponding to this point is called the saturated input power and the output power is
called the saturated output power. After this point, the output power will always remain

equal or less than the saturated output power with increased input power.

A

b5}

E

Q

=4

]

2

3 1M3 response 4//, Ideal linear

T / response
OIP3 | —— e e e e A# Saturation point
Satyration— ——— —— —— —— —— /
output 1dB
o /1
Real amplifier
ldB, / response
compressioy I
point /"
: L .
0 [IP3  Saturation Input power
input power

Fig. 2.6: Typical Input-Output Relationship of a Power Amplifier

The nonlinear input-ouput relationship of a memoryless power amplifier can be



expressed as a power series,
B 2 3
5,(8) = cyteps(B)+eys; () tegs; (B + ... 2.3)

where ¢, ¢, ¢y, ... are real value coefficient. s,(#), s (¢) are the instantaneous input

and output amplitudes at the time ¢.

When a single-carrier signal with a fundamental frequency f, is applied to the input,

the corresponding output contains a number of carriers at harmonic frequencies nf,.

These harmonic frequencies are undesirable to the system. However, they are out of the
frequency band of interest and can be eliminated by bandpass filtering.

The distortion in the desired output signal of a power amplifier can be observed by
substituting the single-tone input signal s,(f) = a;cos(2nf t+ ¢,) into Equation (2.3).

The output tone at the fundamental frequency is,

3c3a? 5c5af
S1,(1) = tcpa;+ 7 + 2 +...jcos(2nf t+¢,) (24)

The above equation indicates that only the odd coefficients contribute to the distortion
of the amplifier output.

The above equation only represents the amplitude distortion of the signal output of a
power amplifier. The signal output phase also varies and depends on the input amplitude.
This amplitude-to-amplitude (AM-AM) and amplitude-to-phase (AM-PM) distortion will

be discussed in detail in the next chapter.

If the input is the sum of two tones at the frequencies f; = f —f, and
fo = f.+f,, then the output of power amplifier contains the the two fundamental tones,

their harmonics at mf; and nf,, and tones at kf; £ pf, (called intermodulation products)

as shown in Figure 2.7. The intermodulation (IM) products are in the band of interest and

hence cannot be easily eliminated by filtering. The closest IM products are the third-order

ones at frequencies 2f| -f,= (f.—3f,,) and 2f,~f= (f,*+3f,), generated by the
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cubic term, c3sf( t) , in Equation (2.3). It follows that, for two equal-power inputs tones,

an increase of x dB in the input power results in an increase of x dB in the wanted output
signal power and an increase of 3x dB in the third-order IM products (IM3) as shown by
the dotted line, i.e., the IM3 response line with slope of 3 represents

IM3 output power[;y ggm] = 3.(signal input power)[in dBm] T {OIP3-3.(IP3)} (i dBm]
where OIP3 and IIP3 are the equivalent IM3 output power and signal input power at the
third-order intercept point (IP3).

In other words, the power ratio of the ouput signal to its third-order IM product is
reduced by 2x dB for an increase of x dB in the input power. This signal-to-IM3 output
power ratio can be calculated as the difference between the ideal signal response and /M3
response lines in Figure 2.6. For reference in calculation, the third-order intercept point
is introduced as a conceptual point at which this power ratio is zero, i.e., the output signal
power is conceptually equal to the power of its third-order IM product, OIP3. The third-
order intercept point provides a figure of merit to characterize the IM distortion (IMD)
performance of an amplifier. The higher the IP3, the higher the input level at which IMD

becomes significant. This will result in the lower the IMD at a given signal level.

<"'m

1.-3f 1431,
2626 | 2621,

-5, f,+51,,
2,4,

! .

first harmonic zone second harmonic zone

2441,

Fig. 2.7: Intermodulation products and harmonics

2.2.2 Nonlinear distortion effects on QAM signals

The amplitude to amplitude distortion distorts the symbol constellation, which make
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the system more vulnerable to noise as shown in Figure 2.8. In the figure, the cross points
are the un-distorted symbols. It can be seen that the symbols closer to the origin suffer
less distortion than the ones further away due to their lower amplitude.

Figure 2.9 shows the power spectrum density of the output signal of a power
amplifier for the case of linear (non-distortion) and AM-AM distortion. It is clear that the
AM-AM distortion introduces spectral regrowth, increasing the out-of-band emission that
may cause interference to adjacent channels.

Amplitude to phase distortion is the change in phase between the input and output
signal of the power amplifier according to the input amplitude. The phase distortion
makes the symbols on the constellation twist their angles as shown in Figure 2.10.
Similar to the AM-AM distortion, the symbols further away from the origin suffer more
distortion. Figure 2.11 shows the power spectrum density of the signal output for the case
of linear and AM-PM distortion.

In summary, both AM-AM and AM-PM nonlinearities create distortions in the signal

and spectral regrowth, and hence need some correction at the transmitter side.

4l N
3k + 1". ‘1- + .
® »
2L B
1l +‘. -~ » ot b
o E
s + 4 - - -, .
2k 4
") »
¥ w
<18 + + + + N
4l J

5 L
5 4 3 2 -1 o 1 2 3 4 5

Fig. 2.8: Constellation with AM-AM distortion
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Fig. 2.10: Constellation with AM-PM distortion
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2.3 Linearization techniques

Linearization techniques have been introduced to reduce signal distortions and out-of-
band emission while operating the power amplifier near saturation to achieve its highest
power efficiency. They can be categorized into two groups. The first group aims to cancel
or reduce the IMD generated by the power amplifier by using feedforward or feedback
techniques. The second group aims to transform the input signal to a specific format
before it can be applied to the non-linear power amplifier(s) so that the IMD cannot be

generated (e.g., LINC, CALLUM)

2.3.1 Feedforward linearizers

Figure 2.12 shows a transmitter using feedforward linearizer. It comprises the non-
linear power amplifier an the remaining linearization circuitry including an auxiliary

amplifier, four directional couplers, C;, C, C; C4, an attenuator A and two delay

14



elements T, T,. The auxiliary amplifier has a power handling capacity about ten times

less than the main power amplifier [2].

Main Amplifier

RF Input RF Output

Fig. 2.12: Transmitter using Feedfoward linearizer

A signal is fed to the main power amplifier via the coupler C;, a small sample of this
signal is also fed to the delay element T, and then to the coupler C,. A small sample of

the distorted output from the main power amplifier is fed to the attenuator via the coupler

C;. The attenuator reduces the signal power corresponding to the power of the output
signal coming to C, from the delay T;. The resulting output from the coupler C, is the

error signal. This error signal is applied to the auxiliary amplifier and removed from the
distorted output of T, at the coupler C,.

The disadvantage of this method is that it requires perfect gain match in the different
signal path. For high frequency application, the performance of this scheme is not only
dependent on the amplitude match but also on the phase/delay match along the parallel
signal arms to obtain perfect signal and distortion cancellation. Many other factors such
as component aging, temperature drift, etc.... cause variation that requires automatic
control of amplitude gain and phase matching network [2]. Assume the main power
amplifier is power efficient, the total power can still be drained due to the lost of power in
the coupler, delay and the auxiliary amplifier. It implies that a high power efficient
auxiliary power amplifier should be used. Moreover, it should be linear so no additional

distortion is introduced to the system.
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2.3.2 Feedback Linearizers

A basic negative feedback configuration is shown in Figure 2.13.

G —

B

Fig. 2.13: Transmitter with negative feedback linearizer
The distortion generated by the amplifier A is reduced by an amount equal to the
return different of feedback system, F = 1+ 3. For larger value of loop gain, B4, the
gain of this feedback system is approximately equal to 1/f3.

There are several feedback schemes. The most well known and widely used technique

is Cartesian feedback. Figure 2.14 shows the configuration of Cartesian feedback system

[3].

Baseband ALO___.’ Gain and
I + filter

- A

Baseband

+ + Gain and
Q ;‘ ) filter

Fig. 2.14: Transmitter using Cartesian feedback linearizer
Unlike the feedforward technique, the error signal in this scheme is computed before
the signal is fed to the amplifier. The output of the amplifier is synchronous demodulated
and compared with the source signal to produce the error signal. The error signal is then

fed to the loop filter and then modulated by the quadrature modulator block and finally it
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is passed to the power amplifier. The loop control characteristics are established by the
loop filter. The loop gain controls the reduction level of the intermodulation distortion,
and the compensation controls the stability and behavior of the system [3]. Before the
error signal is computed in baseband, the feedback needs to be demodulated. The forward
and feedback are synchronized to the same carrier. However due to the RF path different,
a phase adjust is to maintain a correct relationship between the input and feedback
signals.

The main disadvantages of this feedback scheme is that it is only conditionally stable
and the characteristic of the amplifier effectively degrade the gain phase margin of the

loop.

2.3.3 LINC/CALLUM

Both LINC (linear amplification with nonlinear components) and CALLUM
(combined analogue locked loop universal modulator) methods avoid the non-linear
characteristic of the power amplifier by feeding it with a constant envelope signal.

Figure 2.15 shows the diagram of LINC transmitter [27]

nonlinear power
amplifier

5,0

Jd
l/

Signal
s(t)—» component
separator

|
5,(8) '|

nonlinear power
amplifier

Fig. 2.15: LINC transmitter block diagram
The signal component separator splits the input signal into two constant amplitude but

phase modulated signals Sy, S,. The two phasor signals are then fed to two separated

power amplifiers and finally combined to form an output signal. Since the input signal to
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each amplifier has constant amplitude, no distortion is introduced to the system. The
main problem with this technique is the complexity of the signal component separator
and the difficulty to maintain the input signals to the power combiner to be identical in
order to avoid the power losses.

Similar to LINC, CALLUM also combines two constant-amplitude phasors to form
the output signal. However, instead of using signal component separator, CALLUM uses

feedback to generate the two constant-amplitude signals as shown in Figure 2.16.

Non-linear Power
vCO Amplifier

Baseband
SRR
( ) quadrature
Lo demodulator

vCO

s+, O

Q

Non-linear Power

Amplifier
Fig. 2.16: CALLUM block diagram
The CALLUM method is susceptible to instability when the magnitude of the input
signal becomes zero [28].
The disadvantage of both methods are the requirements of the two power amplifiers

and the need of the power combiner.

2.4 Predistortion Techniques

The predistortion technique has been proposed as a potential solution to overcome the
non-linear distortion effects [5,6]. Basically, these techniques aim to introduce “inverse
non linearities that can compensate the AM/AM and AM/PM distortion generated by the
nonlinear amplifier. Similar to the Cartesian feedback scheme, the correction is done to
the power amplifier input. The basic principle of the predistorter is to minimize the error
between the input to and the output from a non-linear power amplifier. The predistortion

techniques have been divided into two categories. The first one is based on predistorting
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the signal constellation in such a ways that the distortion introduced by the combination
of the high power amplifier (HPA) nonlinearity and the channel memory is cancelled
[8,9,10]. A realization of such technique can be made by using one the following
approaches: Volterra series [11], artifical neural network [12], pth order inverse of a
Volterra series [13], Hammerstein model for the predistorter [14]. The main problem of
these kind of techniques is the high computational complexity and the dependence of the
convergence rate and steady state performance on the size of the transmitted alphabet.
The second category uses a memoryless nonlinear device placed between the shaping
filter and the HPA. This type of predistorter can be implemented digitally using mapping
predistorter (lookup table) technique or polynomial functions based on Cartersian or

polar representation.

2.4.1 Mapping (table lookup) techniques

Mapping predistortion technique uses memory to store the output corresponding to
the input. Typically, the input range of the amplifier is divided into a number of intervals
which are represented by the lookup table addresses. Obviously, smaller interval
corresponding to larger table size will give result higher accuracy. For every signal input,
there will be a corresponding output from the table. The output value from the table
combining with the input will eventually be fed to the power amplifier so that the total
effect is to produce a linear response output. The first successful work using a two-
dimensional lookup table technique with adaptive digital feedback at baseband was
proposed by Nagata [6]. Figure 2.17 shows the block diagram of the mapping
predistortion. The advantage of this technique is that it can correct any order of
nonlinearity and any modulation technique. However, the size of the lookup table made
the convergence time very long. Nagata [6] presented an experiment for a system with
10kHz modulation bandwidth, 128kHz sampling rate and 145MHz carrier frequency. The
table size is 2M words. The convergence time was reported to be about 10 seconds.
Cavers [15,16,17] has proposed to use one-dimensional lookup table using Catersian
coordinates and Faulkner et al [18] have presented a method based on polar coordinates

and one-dimensional lookup table.
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Fig. 2.17: Mapping predistorter block diagram

2.4.2 Polynomial predistortion techniques

In order to increase the rate of convergence and reduce the complexity of the mapping
technique, several adaptive polynomial predistorters have been proposed. The polynomial
predistorters operate with the assumption that the inverse response of the amplitude gain,
phase or I and Q components of the amplifier can be modelled as finite-order
polynomials. A polynomial predistorter, which operates on the amplitude gain and phase
of the amplifier is classified as polar polynomial predistorter. The other approach is based
on the complex (I,Q) gain. This is referred as complex gain or Cartersian polynomial
predistorter. The cartesian polynomial predistorter seems to have less complexity. The
approach presented in [20] estimated the predistorter polynomial coefficients by
minimizing the output of band intermodulation distortion. Ghaderi et al [21,22] proposed

a fast adaptive cartesian polynomial predistorter as shown in Figure 2.18.
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Fig. 2.18: Transmitter using polynomial predistorter

In this scheme, the authors proposed to adapt the predistortion coefficients by using a
post-distorter and the RLS algorithm. The presented simulation results promised 45dB
distortion suppression and about 50 iterations to converge, which is the best convergence
time for predistorter reported so far in literature. The disadvantage of this technique is the
high complexity comparing with other existing solutions. In [23], the polynomial polar
predistorter was presented. The result obtained was claimed to have superior performance
in comparison with other well-know predistortion structure with no substantial

aggravation in implementation complexity. However, the adaptivity was not discussed.
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Chapter 3. Polynomial Predistortion:
Proposed Structure and Steady-State Per-

formance

3.1. Structure

Figure 3.1 illustrates the block diagram of an M-QAM transmitter with the proposed
predistorter.

A

I I I
—>| Baseband S.R. Raised > Rotation [ Quad. ,
—» QAM Cosine Filter »R—P 5 Matrix | Mod. —
Q Q Q A

A h A

A 4 ¢ A\ A 4

Desired N
Model
RF
AMPD (€ Osc.
o o0s()
Phase PD "1 took-up T.
3 :
» Adaptation [€ Quad. |,
»  Process | Demod. |

Fig. 3.1: Block diagram of the proposed predistorter

Consider a transmit power amplifier that introduces amplitude and phase distortions
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depending on the input level. For an input voltage signal v;,
v, (1) = r(f)cos(w 1+ 6(1)) 3.1

the output of the power amplifier can be written as

v () = G(r(t))cos(o_ t +6(¢) + D(r(1))) 3.2)

where r(t)ej % s the complex envelope of the predistorted modulated signal (e.g.,
shaped M-QAM signal) and ®, represents the carrier frequency. G(.) and ®(.) denote
the amplitude and the phase transfer functions of the power amplifier.

The predistorter aims to provide its output signal predistorted in an inverse and

complementary manner to the distortion produced by the HPA.

Consider the filtered complex baseband signal:

) J9,,(H)
v, (t) = x,() +ij(t) =r,(t)e 33)

as the input of the predistorter. The predistorter produces the corresponding output

predistorted signal v ,(¢) = r(t)ej () where:

J(6,, () +¥(r, (1))
v, (t) = F(r,(t))e (3.4)

The functions F(.) and ¥ (.) are used in order to invert the nonlinearity introduced by

the power amplifier, i.e.,

{ G(F(r, (1)) = or, ()
(3.5)

W(r, () + OF(r,(2))) =0

where 6r, (¢) is the desired linear model.
By imposing the output power to be smaller than the amplifier saturated power, P__,

Equation (3.5) involves the inversion of a bijective function G in “working domain”.

Since G and its inverse are continuous and C (see Figures 3.2 and 3.3) in “working

domain”, the inverse function can be approximated by a polynomial expansion series of
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In other words, the amplitude and phase predistortion functions F(.) and ¥ (.) are

modeled by polynomials:
3 2L -1 T
F(ry = firtfy3r .4 fo, _yr =V Rf
3 2K -1 T (36
W(r) = Wty r+tyar e = PRy,
2L-1,T 2k-1,T

3 T
where R, = [r,r,..,r 1, R 1, V=10t ofor 4]

v o [Lr..,r

and P = [y, ¥y, co0s Wopr 1]T. Note that the even coefficients in the gain and phase

polynomial functions are set to zero to simplify the equations (except for the case of ),

because they have no effect on the intermodulation distortion [27, 29].
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Fig. 3.2: AM/AM characteristics of the amplifier, predistorter and predistorter-

amplifier
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By including the term vy, in the expression of W(r) (Eq. 3.6), we can cancel the

phase shift caused by the modulator/demodulator imperfection. It is quite difficult to

linearize the power amplifier up to its saturated output power P_,, [15]. Thus the
maximum output power of the linearized power amplifier is S- P ,, where 0 <S§<1.§
represents the peak backoff (PBO) of the power amplifier [15], i.e.,

PBO = —10log,(S) 3.7

We normalize the value of the input to the predistorter by imposing the input range

for the linear part of predistorter/power-amplifier as:
0<r<i (3.8)

Now, we can evaluate 3, defined in (3.5), by:
3= /S-Pg, 3.9
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In other words, the choice of & will determine the minimum PBO of the proposed

predistorter. The output backoff (OBO) in dB is defined by [15]:

OBO = 10log,y(Pg,,) — 10log 4(P) (3.10)

where P is the average power of the transmitted signal. Large OBO values will imply
inefficient operation.

Next, we will evaluate the steady-state performance of this predistorter structure in
terms of inter-modulation distortion and total degradation, and investigate the
predistortion-order and quantization effects. Note that the coefficients of the amplitude
and phase predistorter polynomial functions used in the simulations to evaluate the steady
state performance are obtained by the adaptive algorithms which will be discussed in
chapter 4. During these simulations, the coefficients are held fixed and the adaptation
process is turned off. The characteristics of the solid state power amplifier (SSPA) model

[30] used in the simulation are shown in the Figure 3.2 and 3.3.

3.2. Inter-modulation Distortion

The level of inter-modulation distortion (IMD) depends on the kind of the modulation
technique [27]. In general, HPA operating near saturation introduces more IMD. There
are two widely used techniques to measure the spectral purity of a transmitted signal. The
simple one is the one-tone test. In this test, a tone is applied to the transmitter and the
resulting IMD is measured. The second technique involves transmitting a modulated
signal and measuring the out-of-band power [27].

In Figure 3.4, we plotted the spectra of transmitted signal in the case of one-tone test.

The tone frequency is selected to be equal to the symbol rate, foupor
Fsam pling ~ 32fsy mbol)- Th€ power spectrum is normalized to have the maximum value
at the 0dB reference. Even with a large PBO = 10dB, the HPA introduces an IMD of
up to —40dB . Using the proposed predistorter with polynomial order of 7 (L = K = 4),

the IMD can be reduced to less than —60dB when the HPA operates near saturation with
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aPBO = 0.22dB.
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Fig. 3.4: IMD with one-tone test

Figure 3.5 shows the power spectra of the transmitted 64QAM signal in the cases
with and without predistorter and for several values of PBO. The roll-off factor of the
SRRC filter is 50%. The results show a significant improvement given by the proposed

predistorter in terms of out-of-band power level. for PBO of 0.084B: at an offset

frequency in the range of 1.0f

ymbol O I'stymb o1» the power spectral density with

predistortion is about 40dB lower than that without predistortion.
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Fig. 3.5: Power Spectra of filtered 64 QAM signals with and without predistorter

The noise-free signal constellations at the receiver in the cases with and without
predistortion are shown in Figures 3.6 and 3.7, respectively. Without predistortion and
PBO = 1.0dB, the constellation is severely distorted in both amplitude and phase. This
will definitely degrade the BER performance of the system. When the predistorter is
introduced, even with the PBO = 0.22dB, Fig. 3.7 shows a significant improvement,

and the constellation is very close to that in the linear region. Using simulation, we verify

that the degradation in BER performance is negligible.
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3.3. Total Degradation

Another typical performance measure to quantify the effects of nonlinear distortion in

a solid state power amplifier (SSPA) on the system performance is the total degradation

(TD) in dB defined by [23]:

TD = OBO+Agyp (3.11)

where Agyp represents the SNR degradation due to the non-linearity of the HPA, at a

given symbol error rate (e.g., SER = 10~4). The parameter Agyp is related to OBO.
An OBO close to 0dB leads to an infinite value of Ag, . On the other hand, for a very
high OBO, Agy, approaches zero and TD is close to OBO. In other words, there is an
optimum value of OBO, OBO opt corresponding to the minimum total degradation
TD,, ., The smalleris TD, . , the more efficient the predistortion technique is.

The total degradation versus OBO for 64QAM modulation is plotted in Figure 3.8.
For a roll-off factor (o) of 25%, the minimum total degradation in the cases with and
without predistorter are 8dB and 11.2dB, respectively. One can note that the

predistorter-HPA with OBO of 8dB can provide the same performance at SER = 10_4

as in the ideal linear case.

30



22 .

T T T T T T T
I 1 1 1 1 i I
t 1 1 t | i ' 1
1 1 1 ' I 1 1
Y S | T it T B e
' t ¥ 1 1 1 i
[ t t ' ) 1 1 1
¥ i t t | 1 i 1
18- — - - - HH -t - - - —— - I e e Y - RSy U 4 -4
1 l t 1 1 ) [ 1
] ¥ ] i 1 1 i 1
' [ i ' [ | 1
1 1 ¥ i ) 1 1
%16 _____ T - I D [ LY /4 B . S L S
c [ ' ' [ [ ' [ !
« i 1 ] i | 1 1
2 1 1 1 1 t 1 |
] 1 1 U 1 1
EM“"'“ h Tt T N D < [ [ S
g’ 1 1 1 1 t +
o i 1 1 1 i 1 '
E I 1 1 1 1 ] | b
SR AN WY - S | = HPALPD, a=0.25 TAeoo
I d I —+— HPA without PD, ¢=0.26 | ,
| 1 1 ' —4~ HPA+PD, 0=0.5 !
1 1 . = 1
0L - __ VY- A M _ |- HPAwithoutPD, =05 | | .
f | i ~@— HPA+PD, a=0.75 f
! ! ! —w— HPA without PD, ¢=0.75 | !
[ ! . : — Linear '
8 ~~~~ o (R Ih‘___r_____l ‘‘‘‘‘ T Y T
1 1 1 1 1 § 1
1 i 1 1 I 1 1 1
| 1 1 I I 1 1 1
6 1 L [ I L 1 1
4 6 8 10 12 14 16 18 20 22

080 indB

Fig. 3.8: Total degradation versus HPA OBO For SER=10"4, 64QAM

3.4. Effects of Predistortion Order

The effect of the non-linearity order on the steady-state performance of the
predistorter in terms of the mean-square error (MSE) is studied. We assume amplitude
and phase polynomials having the same order (L = K). Table 3.1 shows the MSE for
different polynomial orders and various filter roll-off factors. It is noted that the value of
MSE may also depend on the adaptive algorithm (discussed in chapter 4) in use. The
transmitted signal is 64QAM and PBO = 0.22dB. It is worth noting that for polynomial
order greater than 7, the proposed predistorter achieves a very small MSE. When the
order of polynomial is greater than 9, there is very little improvement of MSE.

Figure 3.9 shows the effects of the polynomial order on the spectral performance of

64QAM signaling scheme using a predistorter. For a low-order polynomial (smaller than

5), the out-of-band emission of the output signal is about 104B worse than that of a 7%-
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order polynomial predistorter at an offset frequency Af = 1‘3fsymb o1 tO 3fsym bol -

However, the out-of-band emission of the 7%- and 9™-order polynomial predistorters are

almost the same. In other words, an order of 7 seems to be adequate.

MSE in dB

Polynomial order o = 025 o=205 o = 0.75
5 -47.40 -49.57 -47.64

7 -62.33 -63.62 -63.05

9 -66.83 -66.89 -66.41

Table 3.1: Effects of polynomial order on predistorter performance (64QAM,
PBO=0.22dB)

Fig. 3.9: Effect of polynomial order on spectral regrowth
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3.5. Quantization Effects

Several DSP implementations of predistorter linearizer systems have been reported in
literature [6],[19],[18]. With today 16 or 32 bits architectures, DSP implementation is
very easy to realize and provide sufficiently accurate calculation comparing with the
results obtained from the floating point simulation. A main disadvantage of DSP
implementation is low execution speed and high power consumption. ASIC devices
“improve these disadvantages” seen in the DSP implementation by optimizing the design
at very low level hardware. One of many issues in optimizing a design for ASIC
implementation is the number of bits (wordlength) to represent a number in the system.
For ASIC implementation, a designer have a freedom on choosing number of bits
(wordlength); while in DSP system, the wordlength is normally fixed. The choice of
wordlength directly relates to the complexity of the system, and therefore the power
consumption. Ideally, we want to have the wordlength as short as possible so that the
complexity of the system is reduced. However, shortening the wordlength will introduce
quantization noise to the system. This, in turn, will reduce system performance.

We examine the quantization effects to establish the relationship between the
wordlength and the system performance in term of out-of-band emission.

As shown in Figure 3.1, on the signal path of the predistorter (excluding the adaptive
processes), there are four main blocks: rotation matrix, amplitude gain predistorter, phase
predistorter and cosine look-up table. The rotation matrix can be done using cordic
algorithm. Quantization analysis of cordic algorithm was presented in [31]. Here, we will
not discuss the implementation of the cordic algorithm, nor its quatization effect on the
system performance. The rest of this section will present the analysis of the effect of
coefficient quantization for the amplitude gain and phase predistorter polynomials. The
effect of the look-up table size on the system performance in the polar to rectangular

conversion operation will also be discussed.
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3.5.1. Quantization Effects of Predistorter Phase Coefficients
Consider the phase of the signal at the output of the amplifier 0,
0,(r) = 0,(r) +¥(r) + ©(F(r)) (3.12)
where 0,(r) is the phase of the input signal to the predistorter, ‘¥'(r) is the predistorted

phase, and ®(F(r)) is the amplifier distorted phase.

When the phase predistorter function converges,
Y(r) +D(F(r))=0 (3.13)

Introducing a quantization error Ay in W(r), the phase of the signal at the output of

the amplifier becomes,
q —
0,(r) = 0,(r) +¥(r) + Ay + O(F(r)) 3.14)
The phase error of the output signal due to this quantization error Ay is

€0, ay(r) = 85(r)=0,(r)

(3.15)
At the steady state, the signal output becomes,
j(6.+e (r)
sT=sTry=8re ' P4V (3.16)
The signal output without any quantization error is,
J(8)
s, = s(r) = dre 3.17)

Therefore, the signal output error due to the quantization Ay at the time i can be

written as (to make the equation more readable, we drop the » parameter in the function
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expression).

J(O;eg Ay D J(6.)
= Srie R AL PP

70,7 Jeg aw. i
dre l(e ’ w’l—l)

j, .
Srie I(COS(ee’ Ay, i) +]Sln(89, Ay, l)—l)

es, Ay, i i

I

I

The absolute square error of e 5, Ay, i 18 expressed as,

2 2 2 . 2
|es’ Ay, l.| = (dr) ((cos(eq Ay, D17 +sin(eg Aw,i) )
2 2 . 2
= (8r) (cos(ee’ Ay, ) ~2cos(ee, A\y,i) +1+ sm(ee’ Aw,i) )

= (Sri)2(2—2cos(ee’ Av, p))

Since €0, Ay, i is small angle; therefore,

2
2 2 €9, Ay, i
R )

22
= (0r;) eg ay, i

(3.18)

(3.19)

(3.20)

Assume that the quantized coefficients of the phase polynomial function are

\Vg, \|I(11, cens \yg k—1- The quantized-coefficient phase predistorter polynomial function

becomes,

9oy = wi + vl 9.3 q 2K -1
Vi(r) = yotwyirtyyr +. .+, r

(3.21)

In order to compute the out-of-band power spectral density or out-of-band emission

(OBE), we need to calculate the SNR at the output of the power amplifier [32]. The phase

error of the output signal due to the quantization of the phase predistorter coefficients at
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the time L 18

o, Ay, i = €0, Aayr) = '{’q(”i)—‘l’(r,-)

q q q 3 q 2K-1
| (Wt tar G ) ’?
sl 2K -1 (3.22)
“(Wot Wit Wsr + ot e 1 )
3 2K -1
= + + D+ L+ )
ewo ewlrl ew3rl esz*lrl

where the ‘Pq(rl.) represents the phase predistortion polynomial with quantized

coefficients. Assume that e are independent random variables

e e ey €
Vo "V TV T Tk g

and uniformly distributed from ~A/2 to A/2 [33].

>~

A Ay X
2 2

Fig. 3.10: Uniform distribution of quantization error

2X
—_ m . .
where A = —2 7 X, is the absolute maximum value of {y, ¥, W3, ..., Wor_;} and

B is the number of bits used in the quantizer.

The average error power of the amplifier output is,
2 }

2
2 3 2K -1
= . + .+ S ;
(8r;) E{(e% “u i O T Ty (T ) }

2
Ges, Ay, i E{les’ Ay, i

(3.23)
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Because
Ele, 1 =0 (3.24)
and

E[e\lf,,e\lfj] =0 ifn#j, (3.25)

Therefore, the average error variance of the amplifier output at the time i is

) =0 . 3.26
es,Aw,i es, A\V(rl) ( )
_ 2 2.2 6 [ 2 2(2K-1)
= E[ewo}+r’.E[ewl:l+riE[eW3}+... +r; E[ Vo 1]
A2 22K-1)

i

2 2 6
1—2-(8ri) (L+r+r+ . +r;

)

Taking the modulation scheme into account, the total average power in the amplifier

output becomes,

2 I 2
Ges Ay N J’ pr(ri)ces Aw(ri)dri

A 8 2 (3.27)
fpr(r)r (1+r2+,,6+ 7, (2K~1))dr

i
where p (r) is the probability density function of the amplitude of the filtered signal

input to the predistorter. The signal to noise ratio is

i 2
o Gi Iopr(ri)ri “ (3.28)
A\|l= 2 = )
Ges,A\v A k3 IP ryrr(L+rr+ 9+ o+ 20 Dyg,

where 0' is the signal power. Eq. (3.28) indicates a small effect of K on SNR. The out-

of-band emission (OBE) level as compared to the power spectral density at the center

frequency due to the quantized coefficient error of the phase predistorter polynomial
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function is [32]

Fsymbol
OBE, = AL (3.29)
A
v fsampling ’ SNRA\]I
where f_ pling = 8f, ymbol is the sampling frequency in use.

To evaluate the SNR expressed in equation (3.28), we need to know the probability

density function of the filtered signal p (). Figure 3.11 shows the function p (r) for the

case of the 64 QAM signal, the filter is RRCS (root raised cosine filter) with

fsampling/fsymbol = 8, and roll-off factor (o) = 0.5.

Table 3.2 summarizes both analytical and simulation results on the out-of-band
emission for K = 4 (i.e., 7 order) and different wordlengths. The analytical results are
obtained from Egs. (3.28) and (3.29). In simulation, the out-of-band power and total
power are directly computed from the simulated signal for different wordlengths in order
to establish the SNR. The analytical and simulation results are in a good agreement with a
difference in out-of-band emission of less than 0.1dB . This confirms the accuracy of the
derived equations that describe the relationship between the wordlength and out-of-band
emission in Equations (3.28) and (3.29). Figure 3.12 shows the power spectra of the
64QAM signal for different wordlengths of the phase predistorter polynomial
coefficients. In the figure, the spectrum of the source signal (the output of the root raised
cosine filter) is plotted as the solid line. The results shown in Table 3.2 agree with the
results obtained in Figure 3.12. For a required out-of-band emission of —60dB at the

output of the amplifier, we need at least 7 bits to represent the coefficients of the phase

predistorter polynomial.
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Fig. 3.12: Power spectra of 64 QAM signals for different wordlengths of the phase

predistorter polynomial coefficients

3.5.2. Quantization Effects of Amplitude Gain Polynomial Coefficients

Let Arp ; be the quantization noise, due to the quantization of the coefficients of the
amplitude gain function where T i is the amplitude without noise at the output of the

amplitude gain polynomial function. r; is the amplitude of the input signal. The output
signal of the amplifier can be written as,

Jj(e;+ <I)(rp it Arp AT

s(rp’i+Arp’ D= G(rp,l.+A e ’ ’ (3.30)

¥ p,i
G(.) is the amplitude gain of the power amplifier, 0, is the phase of the input signal.

®(.) is the distorted phase produced by the power amplifier and W(.) is the predistorted
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phase.
Expanding the right-hand side of Equation (3.30) using Taylor’s series, we obtain,

' 1 2 1"
s(ry i *Ar, ) =s(r, )*Ar, s (ry, l.)+i(Arp’ DS, )+ (3.31)

D, D>

Introducing the quantization error Arp’i creates an error ey 4 r ; in the signal output

of the amplifier,
1 1 2 "
s, Afi = s, Ar, = Arp’ S(r ,i) + 2—'(Arp, ) (rp,i) +... (3.32)
where,
JO;+D(r, )+ ¥(r)
s'(r. ) = _a_(G(r e ! P ))
L A AL
i (3.33)
3 ' : j(9i+(b(rp, l.)+‘I‘(r,.))
= (G(r, )+ G(r, YO(r, )e
and
$'(r, ) = 22 (s(r, ) (3.34)
U PR '
D>l
2
= (G'(r, ) +2G(r, p@'(r, )+ G(r, Y)O"(r, )+ G(r, J(P'(r, )))
O+ B(r, )+¥(r)
e
where
G(r )= ___8 G(r, ), D'(r )= .____a O(r ) (3.35)
pi or_ . - pi” p,i or_ . i )
Y22 y
and
G"(r, )= 9 G(r ), d"(r, )= _8 O'(r_ ) (3.36)
psi arpi p, i’ pi arpi p.i )
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Consider only the first order terms of Taylor’s series expansion,

1 JO;+D(r, )+ W(r)

es, Af,i = Arp, i(G'(rp, i) + G(I"p’ l.)CI)'(rp’ i))e (337)
The absolute square error becomes,
1 ‘2 _ 2 \ 4 ' 2
e aril = (Br, ) (G(r, )+ G(r, YO'(r, ) (3.38)

Let f‘{ , jg, ey f‘zl 1 _ be the quantized coefficients of the amplitude gain polynomial

function. Arp ; can be expressed as,

>

B 3 2L 1 3 2L~ 1
Ar, ;= firitfari + o ari D=t fars + oy ry )
e r3+ +e rZL_l -39
TXERES

r.+ R
i D1

where efk = fZ—-fk.
Assume that e, e, ,e,, ..., e are independent random variables and uniformly
o WS o1

distributed from —A/2 to A/2 [33] as shown in figure 3.10. The average noise power in

the output signal of the amplifier is,

2 12
Ges, Afi - E{ s, A, il }
(3.40)
' ' 9 3 2L - 1)2
= (G'(r, ) +G(r, YP'(r, ) (E{(eflri+ef3ri”' T, i )
Since
E[efn] =0 341
and
P — 0 ifnei 3.42
[ef,,ej;-] ifn#j, ( )
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Therefore, the average error variance of the amplifier output at the time i is

o =g . 3.43
s, Af i e, Af(r’) ( )

o . 2( 2.2 6. 2 2Q2L-1) [ 2
= (G(rp’ i)+G(rp,i)(I) (rp’ l)) (rjE[efl}+riE|:ef3j|+ oo +ri E[efZL_lD

2
6 202L-1)
Fi

= %(’? trptet WG'(F(r)) + G(F(rl-))CD'(F(rl.)))z

Taking into account the modulation,

2 1 2
O-es’ Af = Iopr(ri)ces’ Af, idri
(3.44)

2Dy G (r)) + GE(r )P (F(r))) b,

2
A"l 2,6
= _I_Z_Io(p’(ri)(ri trt T+

where p (r) is the probability density function of the amplitude of the filtered signal

input to the predistorter.

The SNR and out-of-band emission are,

o,
SNRy, = —
s, Af
1 ) (3.45)
Iopr(ri)ri dr;
T2
A"l 2.6 2(2L—1 . 2
Tl @ rd s+ o+ TN G W) + GE )W (r)) b,
f:v bol
OBE,, = Lo (3.46)
ol fsampling'SNRAf

Equations (3.45) and (3.46) are evaluated for different values of the wordlengths and
L = 4. The results are shown in the second row (calculated) of Table 3.3. Note that the
value of L ( > 3) has a very little effect on the SNR as indicated by Eq. (3.45). The last
row of the Table 3.3 shows the results obtained from simulation. The differences between
the calculated and simulated values are about 1dB due to the first-order approximation of

the Taylor’s series in Equation (3.37). More accurate results can be obtained with higher-
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order approximation at the cost of more complicated derivations. Figures 3.13 shows the
spectra of the 64QAM signal for different wordlengths of amplitude gain predistorter

polynomial coefficients. The results indicates that to have the out-of-band emission

below ~60dB, we need at least 8 bits to represent the amplitude gain.

Word length 7 bits 8 bits 9 bits 10 bits
OBE (calculated) -55.2dB -61.2 -67.3 -733
OBE (simulated) -56.0dB -62.1 -68.1 -74.2

Table 3.3: Out-of-band emission with quantized polynomial coefficients (amplitude

gain predistorter)

Fig. 3.13: Power spectra of 64 QAM signal for different wordlengths of the

amplitude gain predistorter pelynomial coefficients
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3.5.3. Quantization Effects of Cos, Sine Look-up Tables

The output of the amplifier can be written as

JO,+¥(r) + (F(r))) JY;
s(r;) = G(F(r))e = G(F(r;))e 3.47)

where v, = 0, +¥(r,) + ®(F(r;)), and r;, 8, are the amplitude and phase of the input
signal respectively. ‘¥'(r,) is the predistorted phase output and ®(F(r,)) is the amplifier

phase distortion.

Let ¥ q(ri) be the predistorted phase with the consideration of quantized look-up
table. The signal output of the amplifier becomes

JO; +¥ (r) + O(F ()

M, ;
s1(r) = G(F(r))e = G(F(r))e * (3.48)

where Yoi = 9i+‘1‘q(rl.) +®(F(r;)). Note that the phase ¥(r;) does not affect the

distortion level introduced by the power amplifier. The error of the output signal due to

the quantized lookup table is,
_ g
e ar,i = S (r)=s(ry)
Myi I
= GEE( - (3.49)
I i =)
= G(F(r))e ’(e KA —1)

Because y 0, i~ Yis therefore

vy
e, ar i = GEEr)e (Y, 1) (3.50)

The absolute square error is,

Ies,AT, i|2 = GZ(F(ri))(Yq,i—Yi)z (3.51)

We define ey, AT, i = Yg,i~Y; 3 the predistorted phase error due to the quantized
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lookup table.

Il

ey ari = 0+ () + OF(r))) ~(8;+¥(r) + D(F(r)))
o (3.52)

Yi(r) - ¥(r)

Assume that €y, AT, i is a random variable having uniform distribution [33] as shown

in figure 3.10. The average noise power can be calculated as,

JAY

2

1 2
= ZI Ies,AT,i| de\u,AT,i
A

2
A
e ) (3.53)
A j G (F(ri))ew,AT,ide\y,AT,i

A

2

AZ

T2

2
s, AT, i

2
G (F(r)
When the amplitude gain and phase predistorter algorithm converge,

G(F(r) = Sri. Taking the modulation scheme into account, the total noise average

power becomes

2 2
2 &AL 2
Oy AT = Tjopr(ri)ri dr (3.54)

where p (r) is the probability density function of the input signal amplitude of the

predistorter.
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The SNR and out-of-band emission are,

1 2
2 j p (r)r dr
(6)
- s _ 0 r _ 12
SNR,r = 02 - 82 ) | ) 52 > (3.55)
€5, AT ——lg-jop (r)r dr A
r
f:v bol
OBE, . = ML (3.56)
ar fsampling'SNRAT

The simulation and analytical results on the out-of-band emission level for different

numbers of bits to represent the address of an entry of the sine and cosine look-up table

are shown in Table 3.4. An m-bit address corresponds to a table size of 2™. The spectra of

the 64 QAM signal for different look-up table sizes are plotted in Figure 3.14. It shows

that a table of size 64=2° is sufficient to obtain an out-of-band emission below -60dB at

the amplifier output.

Word length 5 bits 6 bits 7 bits 8 bits
OBE (calculated) -55.9dB -62.0 68.0 74.0
OBE (simulated) -56.6dB 62.7 68.1 73.9

Table 3.4: Out-of-band emission with quantized sine & cosine lookup tables
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Chapter 4. Adaptive Algorithms for Poly-

nomial Predistorters

Adaptive predistorters presented in the literature, are based on complex representation
of the distortion introduced by the power amplifier. In [21,22], the authors proposed to
use the RLS algorithm to compute the gains that they have to apply to the in-phase and
quadrature components, in order to linearize the power amplifier. While the presented
simulation results were encouraging, the adaptation approach requires a high
computational complexity. In this section, we propose two adaptive algorithms for the
proposed polynomial predistortion scheme. The first one is based on the least mean
square (LMS) concept for its simplicity. Its slow convergence rate can be improved with
a small increase in complexity. The second one is based on the recursive least square
(RLS) concept for its a very fast convergence rate with a complexity lower than that in

[22].

4.1. LMS-based Algorithm

The optimum coefficient vectors ¥ and P of the predistorter are determined in order

to minimize the two mean square error (MSE) functions defined by:

1) = E((3r- G 'RY))
(4.1)

Jy(P) = E(@(pr R) +PTRW)2)
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where V| ot is the optimal coefficient vector of the amplitude predistorter polynomial.

The least mean square (LMS) iterative algorithm related to J,(V)) can be derived as

follows:
Vie1 = V-0,V (V) = Vi + KR, (G( V,{Rf, (01— G( V,{Rf, o) 4.2)
where |, is a positive step size and G' denotes the derivative function of G
Since, G(r) is a crescent function in the working area, the scalar G'(V ,7;R o P IS
positive and one can simplify the recursive relation (4.2) to:
Visr = Vit Ry (3~ G(ViR, ) (4.3)

where 1, is a constant positive step size, selected to be sufficiently small to guarantee the
stability of the algorithm.

The phase predistorter aims to identify the opposite of the phase shift ®(F(r)). It is
much simpler than the amplitude predistortion problem. The Taylor’s series expansion in

r of the phase shift can be expressed by:

D(F(r)) = DV, R

)
= =g, TPt TP K

T
=~ Popr iRyt n

where n represents the truncation noise.

2L—1)+O(r2L+l) (4.4)

The vector P opt, k is time-varying, and depends on the convergence of the amplitude

predistorter ¥,. When the amplitude predistorter reaches the steady state, P opt, k

becomes a constant P opt

To cancel the phase shift, we have to identify P,. This can be done using the
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conventional LMS algorithm:

T
e ~D(F(r) ~ PR,

v, k
Pk+l - Pk+u\ue\u,kR\|l,k

(4.5)

where Hy is a positive step size.

In the next section, we will present the convergence analysis and discuss the

convergence rate of the proposed algorithm.

4.1.1. Convergence Analysis

In this section, we will focus first on the analysis of the amplitude predistortion. Exact
analysis of the algorithm given by (4.3) is complicated. To make the analysis tractable,

we introduce the following simplifying assumptions.

Assumption 1: The gain distortion G(r) can be expanded using Taylor series:

3 5 2N-1 AN+ 1
G(r) = g, +gr +gsr + ...+ gy 7 +O(r ) (4.6)

There exists Vopt, such that G( VZpIRf, P Srk+tk, where ¢, represents the

truncation noise. From the assumption 1, Equation (4.3) can be rewritten as:

T T
Vier = Vit R ((GV Ry ) — = G(Vi R, )
“4.7)

T i T i
Vet IR Zgi(( VopRi 1) — (Vi Rg k)) 4
i

i-2 i

Recalling that a —b' = (a—b)(@' '+d' 2b+..+5' ') and defining the

deviation vector D, = V, the behavior of the algorithm (4.3) can be described

- Vopt’

as:

T
Diyy = =1, (R Re DD~ R4ty (4.8)
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where L . is given by:

G(ViR )~ Gy, Ry )

_ opt
By = Ky T T
ViRe k= VopRrk
&3((VER )+t (Vo Ry ) ) 49)

T 2N T 2
Fgyy 1((Vka,k) (Ve R N)

From the Equation (4.8), we note that the proposed algorithm is an LMS algorithm
with variable step size [34]. In order to analyze the convergence of this LMS-based

algorithm, we will make the following additional assumptions:

Assumption 3: the truncation noise t,_is zero-mean and independent of R ke

. T T
Assumption 4: E(1,, ka’ ka, WLy = E,, ka, ka, WEDY)
This assumption, known as the independence assumption, can be viewed as a good

approximation for small step size.

Assumption 5: F(rp) = VzRﬁ € 10,41, where A is the input amplitude that
provides S - P, at the output of the amplifier.

This assumption is satisfied by setting F(r,) = min(4, V,{Rﬁ i) - It is worth noting

that for VZptR k€ [0,4,], Gisa C” function, so one can conclude that there exists a

real value y€ {0, 4], such that

By = 1,G0) (4.10)

Recall that in the working area (P, <S- Pg,,), the function G is monotone and its

max

derivative G' is a decreasing function (0 < G'(r) < G'(0) = gy ). It follows that

Osuv,ksuvgl
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Using the above mentioned assumptions, one can establish the recurrence between

E(D, ) and E(D,) by

E(Dy, 1) = U~EQ, (R, Ry DED)) @.11)

From Equation (4.11), one can determine the convergence conditions of the algorithm

by

maxt, < o 4.12)
)\'maxE(Rﬁ ka, k)
where A (R g kR; i) 1s the maximum eigenvalue of the matrix £ (Rf R fT 9
This condition leads to
2
B, < T (4.13)
E1 0 B Ry Ry )

Under the condition (4.13), the proposed algorithm converges to the optimum value.

The convergence of the phase predistorter depends on the amplitude predistorter. When

the condition (4.13) is satisfied, the optimum vector P, converges to P, ot and the

convergence analysis of the phase predistorter can be made. For small values of My We

. . . T
can use the independence assumption between the matrix (/; , | — uwa, kRW’ ©) and
P, where I, | is the identity matrix with dimension L + 1. Assuming n, is a zero-

mean process, the mean behavior of P, can be described by

E(Pyyy) = (g, ~ B ER, kR‘Z;,’ DEPY +u ER, kR\T,, OPoy  (414)

From Equation (4.14), the convergence of the phase predistorter to the optimal

solution is guaranteed if the step size My satisfies

L, < 2 (4.15)

v T
A E(R\Il, ka’ )

max
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If the conditions (4.13) and (4.15) hold, the proposed adaptive predistortion technique

converges. Furthermore, for a given set of root-raised cosine (SRRC) filter, predistorter
. . T T
orders, correlation matrices CR,v = E(Rﬁ Ich, o and C Ry E(R\l!, ka, K> We can

evaluate the rate of convergence.

Since the elements of vectors Rf, ¢ and R\If, ¢ Tepresent the power of r, the

eigenvalues of Cp | and Cp v are spreading. For a nonlinearity with order greater than

5, we can expect that:

A (C A (C
L(R’_V_) «1,and M «1 (4.16)
)“max(CR, v) )"max(CR, \|!)

This indicates a slow rate of convergence. Specifically, the coefficients of V. s and
P, affecting the high power order of r, will exhibit a very long time to converge to the

. . . . . —(172
optimum values. These rates can be improved by introducing the matrices I', = C R( v/ )

_ ~(172)
and Fw = C

Ry in the adaptation of ¥, and P:

Vir1 = Vit IR, k(ﬁrk_G(VlfRf, i) 4.17)
The algorithm given by Equation (4.17) is based on the self-orthogonalization
adaptive technique [35]. For given modulation scheme, SRRC filter roll-off factor, and

sampling frequency, we can evaluate C rv» CRr, v

I, and FW off-line, and use theses
values in the adaptation procedure. This will increase the complexity, but provide better
tracking capabilities. Compared to Equations (4.3),(4.5), the only difference in Equation

(4.17) is the additional components " and F\V’ Because I', and FW are computed off-
line, they are considered as constants in this equation. Therefore, the additional
complexity of the enhanced LMS-based algorithm given by Equation (38) is two constant
matrix multiplications in comparison with the one of L.MS-based algorithm given by

Equations (4.3,4.5). If we consider the complexity of a constant multiplication and a real
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multiplication is the same, and L is the length of the predistorter polynomial, then the
complexity of the LMS based adaptive algorithm for the predistorter expressed in term of

the number of multiplication is 2L + 1, while the complexity of the enhanced LMS based

adaptive algorithm is equal to 2 F2L+1.

The performance of the proposed predistorter evaluated by computer simulation will

be discussed in the next section.

4.1.2. Performance Evaluation

The performances of the LMS-based and enhanced LMS-based algorithms are

evaluated by simulation for a 64QAM system using a 7 order predistorter. The desired

model (3) is chosen to have S = 0.950, equivalent to PBO = 0.22dB.

Figures 4.1a-c show the evolution of V,, P;, and the normalized mean square error

(MSE) of the LMS-based adaptive predistorter, respectively. The step sizes are
n, =05, Ry = 0.1. The MSE between the desired and obtained models is defined as:

; 2
El6r - GRS PE +¥()
\rsE = l8r— G(F(r)) b i)

E(G(F(r))")

The MSE is determined by running Monte-Carlo simulations over 200 sequences.

By investigating the behavior of ¥, and P,, it seems that the algorithm has an

exponentially transient decrease, and the MSE converges to —44dB.
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Fig. 4.1: Behavior of the LMS-based algorithm (PBO=0.22dB)

The behavior of the enhanced LMS-based algorithm is depicted in Figure 4.2. The
adaptation step sizes are g, = 0.05, By = 0.05. The MSE of the enhanced LMS-based

algorithm given by Eq. (4.17) converges to —57dB, which is smaller than that of LMS-
based algorithm as expected. The LMS-based algorithm needs more time to converge to

the global solution due to the spreading eigenvalues in the matrices Cp |, and Cp v In

practice, we can improve the rate of convergence by setting an initial condition ¥, close

to the optimal one. However, due to its slow convergence, the LMS-based algorithm has

a poor tracking capabilities.
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Fig. 4.2: Evolution of MSE of the enhanced LMS-based algorithm (PBO=0.22 dB)

In order to demonstrate the tracking capabilities of the proposed predistorter, we
perturb the HPA characteristics by increasing the output power and phase shift by 10%.
Figure 4.3 shows the evolution of the MSE for the LMS-based and enhanced LMS-based
algorithms. The abrupt change occurs at iteration 100 (Figure 4.3). The MSE curve has a
large value at 100 iteration, and is slowly reduced. It indicates that the algorithm can
track the changes of the power amplifier. However, due to its slow convergence, the
LMS-based algorithm takes longer time to converge to the new value after the change.

The tracking capability can been improved when the enhanced LMS-based algorithm is
used. It can be seen from the Figure 4.3, at the iteration 3000th, the MSE of the LMS-
based is about —40d4B while that of the enhanced L.MS-based algorithm is below —-50d4B .

In overall, after 100t iteration, the MSE curve of enhanced LMS-based is steeper than
that of LMS-based algorithm. This implies that the enhanced LMS-based algorithm has
better tracking capability.
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Fig. 4.3: Tracking capabilities of the LMS-based and enhanced LMS-based algorithms

4.2. RLS-based Algorithm

For a very fast convergence rate, we consider the RLS concept. In many cases, if a

problem can be solved by using LMS based algorithm, a RLS based solution can also be
derived. However, in this case, the function of the amplitude gain G(.) and phase
distorter ®(.) of the power amplifier are not known at hand, it is not possible to derive
the RLS based solution using cost functions similar to Equation (4.1). To remove G(.)

and ®(.) in the error functions, we modify the input and output of the adaptive scheme

as shown in Figure 4.4. The cost error function of the amplitude and phase are redefined
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as:

L) = gn) = 3 A et

i=1

- (4.19)
L(P) = g,(m) = T Ay e, )]
g = 3 47 e
i=1
L anei T 2
= 2 AT, ) -V ()R, () (4.20)

i=1

]

XA ()= 2r, OV (R () + VT (R, (VR () V()

where "od is the amplitude of the signal after the predistorter (input signal to the

amplifier). R £ o is the input vector of the adaptation and is defined as

~

3 5 2L-1.T . .
1, where r , = 2 and r , 1s the amplitude of the

R € 5’

fo = [rog,rog,rog,...,rog
amplifier output signal. ¥ is the coefficient vector of the amplitude gain predistorter
function, and defined as ¥ = [f,fy>--fy; _ (1 -

Similarly, the error function of the phase predistorter is defined as

Ey(n) = 3 x;lf_i‘e\v(")lz

i=1

! n—i 2
= XA (PT(n)R‘,,,,,(i)+9d(n)) 4.21)

i=1
= 3 A, PTR, )Ry, o(DP(n)+26,(m)P (MR, (i) + ()

where 8, is the distorted phase produced by the power amplifier, and 6, = 6_— V-
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8, is the phase of the amplifier output signal, L is the sum of the input signal phase

and the predistorted phase. R\V , 1s the input vector of the adaptive phase predistorter and

3 5 2k-1.T . .
defined as R\lf, 0 = [l,rp &' pd ! pdr " pd ] , where Tpd 18 the amplitude of the

output signal of the predistorter (or the amplitude of the input signal to the amplifier).

P(n) is the coefficient vector of the phase predistorter at iteration n, and defined as

T
P = [WO"III’W3""’W2K—I]
Taking the gradient of e/(n) with respect to V' and ew(n) with respect to P, we

obtain

Vien) = ¥ X;_i(ZR’O(i)R,o(i)TV(n)—ZR’O(i)rpd(i))) (4.22)
i=1

Vee,(n) = 3 K;’,_i(ZRW’O(i)Rw,O(i)TP(n)+2Rw,o(i)9 Fo) (4.23)
i=1

The tap-weight vector F(m) reaches its optimum value, corresponding to

the minimum value of the cost function z—:/(n) of Eq. (4.20) when VVej(n) = 0.

Therefore, from Equation (4.22), we obtain,

[Z x;"iR’o(i)R’o(i)T} Vim) = % }»;—iR’O(i)rpd(i) (4.24)
i=1 i=1

or
Q(m)V(n) = Z(n) (4.25)

where
0(n) = ¥ MR, DR, ()
i=1

Zn) = ¥ x}"iRﬂ o7 (0)

(4.26)
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Assume that Q/(n) is positive definite and therefore nonsingular. Applying RLS
algorithm [33] to Equation (4.25), we obtain the following recursive equations,
-1

}"f Qj(n - 1R o)

-1,T
1+A Rﬁo(n)Q](n - l)Rﬁo(n)
gn) = 1, (n)- Vi (n- )R, (n) (4.27)
V(in) = V(n-1)+ k/(n)ej(n)

-1 -1 T

Qj(n) = 7Lf Qf(n - 1)—7Lf kj(n)R ,o(n)Qj(n -1)

kf(n) =

with

-1
Qj(O) = Sf I
V(0) = an arbitrary nonzero vector

Similarly, we can derive the following recursive equations for the phase,
-1
Ay Qy(n= DRy ,(n)
-1 7
1+A R\ll, o(”)Q\y(” - I)R\V, o)

e, (n) = 0 Jm+ P (n- DR, (1) (4.28)
P(n) = P(n—1) - k,(n)e,,(n)

0,1 = 10, (n— 1) =2k (MR, (MO, (n—1)

y(n) =

with
-1
0,(0) = 8,1
P(0) = an arbitrary nonzero vector

When the amplitude adaptive equation converges, V = Vopt and sj(n) = 0.

Therefore, from Equation (4.27), we obtain
VoptRf,o(n) = rpd(n)
or F(r, g) =T

The amplitude of the amplifier output is
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G(rp D=T,
or G(F(rog)) = G(F(r,/d) =r,
Therefore,
G(F(r())) = dr(1)
which satisfies the amplitude equation expressed in (3.5).

Similarly, when the phase adaptive algorithm converges, then P = P opt and

sw(n) = 0. From Equation (4.28), we obtain

T
ed+PoptR\y,o(n) =0

or

q>(prtRw,0(n))+prtRw, (n) =0 (4.29)

We can rewrite Equation (4.29) as

DF(r()) +¥(r() = 0 (4.30)
which also satisfies the requirement of the phase predistorter given by Equation (3.5).

In summary, we have shown that the proposed RLS-based algorithm produces the
amplitude and phase functions that meet the requirement of the predistorter in
compensating the distortion introduced by the power amplifier.

The performance of the predistorter system using RILS-based adaptive algorithm
given in (4.27) and (4.28) is shown in Figure 4.5. In simulation, the predistorter order is
setto 7 (L = K = 4). The power amplifier model is the same used in [22]. The peak
power backoff (PBO) is set to 2dB and the transmitted signal is 16QAM. The value of

forgetting factor (A) is always set to 1. Note that we have used all the same system

parameters as in [22] to make the comparison easier.

Figure 4.5 shows the spectra of the transmitted 16QAM signal with the root raised
cosine filter roll-off factor of 0.5 at various iterations, n. In this figure, the linear case
corresponds to distortionless signal. The signal spectrum without the predistorter has a

very high out-of-band level in the case of PBO = 2dB. As the number of iteration
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increases, the out-of-band level is reduced. After 30 iterations, the out-of-band level is
significantly reduced (below —80dB) and the improvement is more than 50dB compared
with the case of there is no predistorter. The similar result was reported in [22] requires
about 50 iterations. This indicates that the proposed technique converges faster than the
one proposed in [22].

There are 4L+ 3L and 4K+ 11K +7 multiplications are used in the recursive

equations of the amplitude and phase predistorters respectively. For the case of L = K,

the total complexity of the RLS adaptive algorithm for the predistorter, expressed in term

of the number of mulitplication, is 8L2+14L+7.
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Fig. 4.4: RLS adaptive predistorter
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Fig. 4.5: Power spectra of 16QAM signal with and without the RLS predistorter

4.2.1. Simplified Structure

The complexity of the RLS algorithm presented in (4.27) and (4.28) depends on the
computation of k(n) and Q(n) in the recursive equations. The error and weight updating

equations have much lower complexity. In the proposed scheme, we need both amplitude

and phase predistortion functions corresponding to two separated RLS adaptive blocks.
However, the recursive equations of k(n) and Q(n) depend only on the values of A and
R(n) . If we can make }"f = 7"‘!’ and R‘l’, o) = Rf, o(1), then k](n) , Q](n) and k‘v(n) ,
Q\II(") are identical in each iteration. As the result, instead of computing kf(n) , 0 j(n) ,

kw(n) , Qv(n) separately in each iteration, we need to compute only one of two pairs.

Therefore, the complexity of the adaptive block of the predistorter is reduced
approximately by half. The cost functions of the amplitude gain and phase predistorter
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adaptive algorithm are redefined as,

" n—-i " n—i 2
eqn) = 3N e’ = X AT,y () -V (MR, () (4.31)
i=1 i=1
i n—i " n-—i 2
ey = TNy ey = T My (0,m) + P (MR,(i)) (4.32)
i=1 i=1

The recursive equations now can be rewritten as,

A (= DR (n)
1+X 'R (1)Q(n— DR, (n)

k(n) =

eln) = rpy- vi(n— 1R (n)
£y(n) = 0,(n) + PT(n— )R () (4.33)

V(n) = V(n- 1)—k(n)8f(n)
Pn) = P(n- 1)—k(n)ew(n)

0(m) = X' 0 - )= A" k(mR.(m)Q(n—1)

The structure of this simplified RLS algorithm is shown in Figure 4.6 and its

performance is shown in Figure 4.7. From the Equation (4.33), we can easily calculate

the complexity of this algorithm and it is equal to AL+ 13L+7 (assume L = K). The
simplified RLS adaptive algorithm has the same convergence rate of the RLS algorithm
discussed in the previous section. An improvement of more than 50dB in the out-of-band
level can be obtained only after 30 iterations. This technique uses only one set of
recursive equations and two polynomial functions (for phase and amplitude), while the
fast algorithm proposed in [22] requires one set of recursive equations, one update
predistorter coefficient block and four polynomial functions (I and Q for pre and post-
distorter). In summary, the complexity of the adaptive algorithm given by [22] is higher
than that of the proposed simplified RLS based algorithm by the update predistorter
coefficient block. Because each predistorter coefficient in the update predistorter

coefficient block of the algorithm in [22] is expressed as a polynomial of the cosine of the

66



phase shift, this block alone uses 2L2 + 2L multiplications. Therefore, the structure we

propose has smaller complexity than what proposed in [22] by 22 +2L multiplications,
it also provides faster convergence rate.

All the simulations were running on a floating point platform. We also note that RLS
is well known for its fast convergence rate; however there is a numerical instability
problem to be considered when RLS algorithm is implemented in finite-precision
arithmetic [33]. For this reason, in practice, an RLS algorithm is often used only at the
beginning to reduce the training time. Once the algorithm converges, a LMS will replace

the RLS algorithm for its low complexity and more stable due to the roundoff noise.
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Fig. 4.6: Simplified RLS adaptive predistorter
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Fig. 4.7: Power spectra of filter 16QAM signal with and without the simplified RLS adaptive
predistorter

4.2.2. Cascaded Structure

The convergence rate can be improved if we modify the phase error function so that it
does not depend on the convergence of the amplitude gain adaptive algorithm. This

modified structure (cascaded structure) is shown in Figure 4.8.
Instead of the amplitude r(#), we pass the output of the amplitude predistorter,
F(r(t)), to the phase predistorter. The phase predistorter equation is rewritten as
OF(r())) +Y(F(r(t))) =0 (4.34)

The phase predistorter now operates independently of the convergence of the
amplitude gain predistorter function. The cost functions of the amplitude gain and phase

predistorter adaptive algorithms remain unchanged. Hence, there is no change in the
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recursive equations except for the input vector of the phase predistorter function.

The signal spectra in different iterations plotted in Figure 4.9 show the improvement
in convergence rate of the cascaded structure: An out-of-band level below —804B can be
achieved with only 20 iterations. For the RLS and simplified RLS adaptive algorithms,
similar result can be obtain only after 30 iterations. This improvement is possible because
the predistorter phase and amplitude adaptive processes converge simultaneously at the
same time and independently of each other. While in the previously discussed RLS and
simplified RLS techniques, the phase predistorter adaptive process depends on the
amplitude and therefore converges only after the amplitude has converged.

The main disadvantage of this technique is that it has higher complexity (almost two
times) comparing with the simplified RLS predistorter.
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Chapter 5. Power and Bandwidth-Effi-
cient Circular M-ary APK Schemes with
low PAR

In the past, there has been a number of studies on signalling constellations for high
performance. Kernighan and Lin [36] suggested an algorithm to search for good
constellations to minimize the average error rate under a specified noise condition, using
a maximum-likelihood decoding scheme. To reduce the complexity of the optimal signal
design problem, their approach is to discretize the two-dimensional space under a peak
power constraint so that the problem can be formulated, programmed and solved on
computer. Their reported optimal circular (5,11) APK constellation in an additive white
Gaussian noise (AWGN) environment has been verified in [37, 38, 39]. An in-depth
investigation of M-ary APK constellations in [37] determined optimum designs for M = 4
to 128 in terms of symbol error probability bound for both average and peak SNR. Blyth
and Jones [40] proposed a method to design signal constellation based on hypercubes. An
iterative approach using polar quantization to design the signal constellation with
optimization criterion based on the quantization mean square error (MSE) [41] resulted in
an optimum 256-APK. Dabak and Johnson [42] proposed a new method for designing
signal constellations for non-Gaussian environment using geometry structure for
detection theory. In general, these studies focused on the minimum distance or SNR.

For systems using non-linear amplifiers, treating the squared minimum distance to
average power ratio (DPR) and the peak to average power ratio (PAR) separately does

not guarantee the optimum performance since a high DPR can offer a better detection
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performance but might imply also a high PAR and, consequently, require high output

back-off (OBO) of the power amplifier or poor transmit power efficiency.

5.1. Peak to Average Power Ratio (PAR) Consideration

Consider a M-ary APK transmitter shown in Figure 5.1.

M-ary { ;
I —» > RRCS [™ ™ Power
APK ; i i
Predistorter Modulator - Upconverter lifier

Q —» Mapper > Filter >

"

Fig. 5.1: Basic block diagram of a M-ary APK transmitter

Root raised-cosine filters (RRCS) are used for bandlimited transmission. The
complex baseband pre-distorter is an optional block used to compensate the AM/AM and
AM/PM distortion of the transmit power amplifier (PA) when the PA operates near
saturation for its highest power efficiency. Various reported pre-distortion techniques [15,

18, 24] indicate that the PA with predistorter can operate with the peak signal power
extremely close to saturation, i.e., the peak backoff (PBO) of the PA is close to 04B
(e.g., around 0.2dB). It follows that the average output backoff (OBO) of the PA can be
expressed as the sum of the PBO and PAR in dB. Since the OBO represents the loss in

power efficiency and PBO is close to 0dB, the peak-to-average power ratio (PAR) of the

filtered modulated signal is the dominant factor in determining the transmitter power

efficiency. For this, it is desired to keep a filtered modulated signal with low PAR.

5.2. Effects of Filtering on PAR

We consider digital signal processing applied to the baseband signals, i.e., signals are

processed as discrete-time samples. The output of the spectrum shaping filter can be
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written as,

oo

y(kT)) = 3 x,(nT)h((k—n)T,) 5.1

n = —oo
where y(') is the output signal, x () is the input signal and A( ) is the impulse response
of the spectrum shaping filter, and T'_ is the sampling frequency. Without confusion and

for simplicity, we drop T from the equation, i.e., Equation (5.1) becomes

oo

yIkl = Y x,[nlhlk-n] (5:2)

n = —oo
It is often chosen that T ymbo /T, = M, where T ymbol is the symbol period and M is

an integer greater than 1, i.e., the M-ary ASK symbols are up-sampled to produce x, [#].

In the m' symbol interval mT'_ among M samples x [n]} where n = mM +i and

ymbol’
i=20,1,2,...,M—1, we need only one to represent the M-ary ASK symbol

x[mT; mbol] Therefore,

x[mT I,n = mM
x,(n] = { symbol (5.3)
0 otherwise
It follows that,
ylkl = Y x[mlhlk—mM] (5.4)
m = —oo

The peak value of y[k] is approximately

Wl xS | | |h[ko—mM]| (5.5)

n = —oo

where k, is a selected value of k£ (0 <k, < M) such as the factor |h[ko - mM]! is

n=—oo

73



maximized, |xp| is the amplitude of the peak symbol of the complex-valued symbol

sequence x[n]. For a zero-mean symbol sequence, the above relation becomes an
equality if the constellation contains antipodal peak symbols x, and ~Xp» which is the
case for symmetric constellations.

Equation (5.5) indicates that the peak amplitude of the signal at the spectrum shaping

filter output is the product of the symbol peak amplitude and a factor 3,

B =3 |klk,—nM]| (5.6)

representing the filter effects. It follows that

P

peak_out =P peak_symbol + 201083 (5-7)

where Ppeakc out and Ppeak_symbot are the peak power (in dBm) of the filter output signal
and input symbol, respectively.

Consider a root raised-cosine filter (RRCS) [25] used for spectrum shaping, which is
the common case for bandlimited signals. Figure 5.2 shows the value of [ as a function

of the filter rolloff factor o and the offset k£, with the upsampling factor M = 16. The

bold line shows the maximum values B corresponding to different values of the filter

roll-off factor, o.
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Fig. 5.2: B as a function of o and offset £

The power spectral density of the output signal of the spectrum shaping filter is,

SN = SNHNI’ (538)

where S, (f) is the power density spectrum of the input signal and H(f) is the discrete

transfer function of the spectrum shaping filter. For RRCS spectrum shaping filter, from
the Nyquist’s criterion [25],

S X (k) =1 (5.9)
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where

l-o
<<
s (O—m‘ 2Ts)
T nT
_Jls s(ip 1-a (1—a< Jlta
X, (N = ; 2{1+cos[ " (m ZTS)]} T, << 2Ts) (5.10)
1+(x)
0 (> 2T,
Therefore,
Sy(f) = SN (5.1D)

The above equation implies that the input and output signals of the RRCS shaping filter
have the same average power. From equations (5.7) and (5.11), for a RRCS shaping

filter, we obtain

PAR,, = PAR__,  +20logP (5.12)

symbol

where PAR; and PAR 01 are the peak-to-average power ratios (in dB) of the RRCS

filter output signal and input symbol, respectively.

5.3. Optimum criterion for M-ary APK constellation for nonlinear
amplification

Consider the M-ary transmission in an additive white Gaussian noise (AWGN)
environment. It is well known that a constellation with a larger minimum distance yields
a better receiver performance in terms of error probability [25]. However, a larger
minimum distance may imply a larger average power requirement. Therefore, taking into
account the power efficiency, a good constellation must have a high squared- minimum-
distance-to-average-power ratio (DPR).

On the other hand, the power efficiency of the transmit power amplifier can be
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represented by

e __PT_ PTPsat (5.13)

T - - .
PDC PsatPDC

where P, P and Py are the average transmitted power, saturated power and

P
supply power, respectively. The ratio 34 i determined by the amplifier design
DC

L is related to the required average output
sat

technique and technology while the ratio

P
backoff (OBO) in dB as OBO = PBO+ PAR = ~IOlog10(P—TJ. The peak output

sa

backoff (PBO) and PAR are expressed in dB.
The above relations indicates that a transmitted M-ary APK signal with low PAR

allows the power amplifier to operate at low OBO for high power efficiency.
In consideration of the power efficiency of the overall system, it is desired to design

the M-ary APK constellations with the highest DPR and lowest PAR . Introducing the
normalized average power, P, defined as the ratio of the average power to the squared

minimum distance, it is obvious that P,,, = ﬁ The design objective can be

represented as an optimization problem to minimize the following cost function:

W = P,,,+PAR (5.14)

symbol

where PAR ; (in dB) represents the peak-to-average power ratio of the M-ary APK

symbo

constellation. Both W and P,,,, are also expressed in dB.

5.4. Best Circular M-ary APK Constellations

Based on the above defined cost function W, we developed an optimal constellation
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search algorithm and searched for a number of best circular M-ary APK constellations

5.4.1. Optimal Constellation Search Algorithm

We consider circular constellations for their general PAR requirement [36,40,39].
Furthermore, for simplicity, we limit the optimum search to circular constellation with
the following characteristics:

a) Constellation has elements on concentric circles.

b) The elements on the same circle are equally spaced.

c) Number of elements on the outer circle is equal or greater than that on the inner
circle.

d) Except the center, number of elements on a circle is greater than 1.

The proposed algorithm is based on exhausted search. However, the number of search
case is reduced due to the above rules. The rules a) and b) narrow the possibility of the
points on the [Q plane, which simplify in formulating the search problem. The rules ¢)
and d) are needed to early eliminate the cases that are not possible to lead to the optimal
constellations, which will reduce the search time. The search will start first with the set of
one level (one circle), then it goes on to the case of two levels, three levels, etc... until M
levels have been reached. The constellation has the smallest weight among these cases

will be the optimal one for M-APK signaling scheme. For every set of k levels, the total

number of points M will be placed on the k circles without violating the rules discussed

above. The radii of the circles are also adjusted such as the minimum distance between

two points on the constellation is not smaller than a constant d,_; and the average power

is minimized. The pseudo-code of the algorithm is given below:

/I Main program

Initialize current best set s, to NULL.

Initialize the current best weight w_ {0 «.

Initialize the level 1 to 1.

If 1 is equal to M/2 go to step 11, otherwise go to the next
step.

Inigalize the s, to NULL and w, to .

Call Recursive_Level_Search(l) function to find the best
candidate for the set having 1 level (w, and s, represent the
weight and the set found respectively).

S ; ALNh=R
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7.

8.
9.

10.

11.

12.

13.
14.
15.

16.
17.

18.

20.
21.

22.
23.

24.

25.

26.
27.

28.
29.
30.

31.

32.

33.

34.
35.

36.

Ifthe w, is larger or equal to the current best weight w_, go to

step 9, otherwise go to the next step.
Set s, to s, and w, to w,.

Increment 1.
Go to step 4.
Report the the best set s,

End main program.

/I Recursive_Level_Search(current_level) function

If current_level is equal to 1, go to step 21, otherwise go to
the next step.

Compute the maximum number of point allowed for this level
(max_nb_cur).

Set the max_nb_point to the minimum of max_nb_cur and
the number of point allocated for the level of current_level+t.

Initialize i to 2.

If i is equal to max_nb_point, go to step 22, otherwise go to
the next step.

Call Recursive_Level_Search(i+ 1 ) function.

Increment i.

Go to step 17.

Compute the number of point of this level (the innermost
level): nb_point.

If nb_point is greater than 10, go to step 27, otherwise go to
the next step.

If nb_point is greater than the number of point allocated for
the level of (current_level+1) go to 27, otherwise go to the
next step.

Call N_level() function to arrange the set constellation for a
smallest weight w,, corresponding with the set s,.

If the w, is larger or equal to the current best weight w,, go to
step 27, otherwise go to the next step. (s, is the current best

set and its weight is denoted as w, for level 1)
Set s, tos; and w, to w,.
End of Recursive_Level_Search function.

il N_level() function

Initialize i to 1.

If i is equal to the highest level+1, go to step 38.

Calculate the smallest radius r, with respect to the minimum

distance. D_MIN given number of point of the level i*.
If r, is greater or equal to the radius of the inner circle (r;_,)

plus D_MIN, go to step 35, otherwise go to the next step.
Rotate the points (placed symmetrical on the circle) until the
smallest radius r, is found (r_, <r,_,+D_MIN).

Setr tor,.

Go to step 36.
Set r; to ry-

Increment i
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37. Goto step 29
38. End of function N_level

5.5. Optimal constellations for 8-,16-,32-,64-,128-APK schemes

Using the search algorithm presented in the previous section, we searched for M-ary
APK constellations with M=8, 16, 32, 64, 128. The case of M=4 is trivial as the classical
4PSK (or 4QAM) constellation is the best one.

5.5.1. Circular (7,1)APK

With M=8, the number of concentric circles can be up to 4. The best constellation
denoted as (7,1)APK, has one element at the center and seven on one circle as shown in
Figure 5.4. Table 5.1 summarizes the normalized average power and the peak to average
power ratio. The performance of this (7,1)APK is compared with that of the popular
(4,4)APK shown in Figure 5.3. The result represented by the difference between the
values of the weight indicates an overall improvement of 1.48dB. Note that the (4,4)APK
constellation was found in the search was already eliminated since the (7,1)APK has a

better performance.
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Constellation set I_)a e (dB) PAR (dB) W (dB)
(4,4)APK 0.73 1.98 2.71
(7,HAPK 0.65 0.58 1.23

Table 5.1: Performance comparison between (4,4)APK and (7,1)APK constellations

In the search algorithm, the union bound is used for simple and fast calculation of the
weight . We also use simulation to evaluate the symbol error rate performance of the
two constellation sets for verification. The simulation result in Figure 5.5 shows that the
advantage in the normalized average power of the (7,1)APK over the (4,4)APK
constellation is 0.39dB, instead of 0.08dB obtained from the union bound. Therefore, the

overall gain of the (7,1)APK over the (4,4)APK is 1.79 dB.
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Fig. 5.5: Symbol error rate of (4,4)APK and (7,1)APK

5.5.2. Circular (11,5)APK

For M=16, the obtained optimum constellation, (11,5)APK, has 11 elements on the
outer circle and 5 on the inner circle as depicted in Figure 5.7. Kernighan and Lin [36]
also found this (11,5)APK constellation to be optimal in AWGN environment. The
performance of this (11,5)APK is compared to that of the popular square 16QAM (Figure
5.6). Results summarized in Table 5.2 show the (11,5)APK has slightly higher
normalized average power but lower peak to average power ratio than the square
16QAM. The overall weight W indicates an overall gain provided by the (11,5)APK of
about 1.19dB.
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3 e . . . 15
Fig. 5.6: Square 16QAM constellation Fig. 5.7: (11,5)APK constellation
Constellation set P,,,(B) PAR (dB) W (dB)
Square 16QAM 3.98 2.55 6.53
circular (11,5)APK 4.11 1.23 5.34

Table 5.2: Performance comparison between square 16QAM and circular (11,5)APK

The exact symbol error rate versus signal to noise ratio curves (Figure 5.8) show that
the (11,5)APK has a slightly better performance of around 0.12dB as compared to the
square 16QQAM. Based on the simulation results, the overall advantage of the (11,5)APK
over the square 16QAM is about 1.44 dB.

One disadvantage of the circular M-APK constellation is that it requires higher
complexity at the demodulator comparing with that of square M-QAM constellation. For
the case of square M-QAM, the inphase and quadrature phase of a signal can be
demodulated independently, and it is very simple to implement the detector. However,
this cannot be done for circular M-APK, since the shapes of the decision boundary are
not rectangle and more complicated. Because the points on the circular M-APK

constellation vary both amplitude and phase, it would be simpler to implement the
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detector in polar format. In other words, a signal is converted from IQ to polar format and
then fed to the detector. Basing on the amplitude and phase of the received signal, the
detector will make the decision on which region the received signal falling in and

therefore the closest point on the constellation.
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Fig. 5.8: Symbol error rate of square 16QAM and (11,5)APK

5.5.3. Circular (17,10,5APK

Figure 5.10 depicts the optimal (17,10,5)APK constellation for M=32 with 17, 10,
and 5 elements on the outer, middle, and inner circles, respectively. Its performance is
compared to that of the popular cross 32QAM (Figure 5.9). The cross constellation shape
can provide low PAR. The results summarized in Table 5.3 indicate that the
(17,10,5)APK has higher normalized average power and slightly lower peak to average
power ratio than the cross 32QAM. The overall gain of the (17,10,5)APK is only 0.44 dB
as compared to the cross 32QAM.

Exact SER curves plotted in Figure 5.11 show that the (17,10,5APK and cross
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32QAM have almost the same performance although their normalized average power
difference is about 0.13dB. Based on the simulation results, the overall advantage of the

(17,10,5)APK over the cross 32QAM is about 0.58dB.
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Fig. 5.9: Cross 32QAM constellation Fig. 5.10: (17,10,5)APK constellation

Constellation set Pave (dB) PAR (dB) W (dB)
Cross 32QAM 6.99 2.30 9.29
(17,10,5APK 7.14 1.71 8.85

Table 5.3: Performance comparison between cross 32QAM and (17,10,5)APK
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Fig. 5.11: Symbol error rate of cross 32QAM and (17,10,5)APK

5.5.4. Circular (25,19,13,6,1)APK

The obtained optimum constellation for M=64 is the (25,19,13,6,1)APK shown in
Figure 5.13. Table 5.4 compares the normalized average power and peak to average

power ratio of (25,19,13,6,1)APK and square 64QAM (Figure 5.12). The
(25,19,13,6,1)APK has slightly lower P,,, and much lower PAR than the square

64QAM with an overall gain of 1.66dB. The exact symbol error rate curves plotted in
Figure 5.14 indicate that the (25,19,13,6,1)APK outperforms the square 64QAM by
0.2dB. Taking into account the PAR, the overall advantage of the (25,19,13,6,1)APK
over the square 64QAM is about 1.79dB.
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Fig. 5.12: Square 64QAM constellation

Fig. 5.13: (25,19,13,6,1)APK

constellation

Constellation set Pave (B) PAR (dB) W (dB)
Square 64QAM 10.21 3.68 13.89
(25,19,13,6,1) APK 10.14 2.09 12.23

Table 5.4: Performance comparison between square 64QAM and (25,19,13,6,1)APK
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5.5.5. Circular (37,30,24,18,12,6,1)APK

For M=128, the search results in the optimal (37,30,24,18,12,6,1)APK constellation
with one element at the center and others located on six circles as shown in Figure 5.16.
The popular cross 128QAM (Figure 5.15) is used for performance comparison. The
results summarized in Table 5.5 show that the performance of the
(37,30,24,18,12,6,1)APK is better than that of the cross 128-QAM by about 0.87dB. The
exact SER curves (Figure 5.17) indicate that the (37,30,24,18,12,6,1)APK has a better
performance than the cross 128QAM by about 0.18dB. This provides an overall
advantage of the (37,30,24,18,12,6,1)APK over the cross 128QAM of about 0.97dB.
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Table 5.5: Performance comparison between cross 128QAM and
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Fig. 5.16: (37,30,24,18,12,6,1) APK

constellation

Constellation set

P, (dB) PAR (dB) W (aB)
Cross 128QAM 13.11 3.17 16.28
(37,30,24,18,12,6,)APK 13.03 238 15.41

(37,30,24,18,12,6,1) APK
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Chapter 6. Conclusions

In this thesis, polynomial predistorters based on polar structure suitable for M-QAM
systems using nonlinear power amplifier are presented. For adaptive algorithms, we
developed both LMS-based and RI.S-based algorithms. The LMS adaptive structure has
low complexity and slow convergence rate. A faster LMS-based algorithm can be
achieved with an increase in complexity. However, for applications requiring a very fast
convergence rate, RLS-based algorithms are the better choices. We proposed a cascaded
adaptive predistorter structure for further enhanced convergence rates.

The analysis of quantization effects indicates that a wordlength of 9 bits to represent
the coefficients of the amplitude and phase predistorter polynomials and the lookup table
can provide a performance close to that in the case of floating-point computation. The
equivalent predistorter-amplifier operating at low PBO can offer both performance and
transmitted spectrum similar to the ideal linear case.

Both analytical and simulation results indicate good transient and steady-state
performance. They show that power amplifiers can operate with the peak power backoff
(PBO) of 0.22dB (i.e., near saturation) while the bandlimited M-ary QAM signals can
preserve the same spectra and BER performance as in a linear channel. The average
output power backoff (OBO) depends on the peak-to-average power ratio (PAR) of the
modulated signal. For further increase in power efficiency of the transmitter, OBO can be
reduced with low-PAR modulated signal.

The overall PAR of a modulated signal was shown to have two parts: one due to the
sharpness or the roll-off factor of the spectrum shaping filter, and the other is related to
the designed constellation. This gave the motivation to search for bandwidth-efficient

multilevel modulation schemes with good performance in AWGN and suitable for
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transmitters using nonlinear power amplifiers. We focus on modulated signals with
circular constellations and aim to minimize their PAR and to maximize their squared-
minimum-distance-to-average-power ratio (DPR).

A search algorithm based on two criteria, DPR and PAR, was proposed to find the
optimum circular constellations M-APK signalling schemes suitable for non-linear
amplification. The results showed that the sets (7,1), (11,7), (17,10,5), (25,19,13,6,1),
(37,30,24,18,12,6,1) are the optimal sets for 8-,16-,32-,64-,128-APK constellations
respectively. They were verified by simulation and by comparing the SNR of the optimal
APK constellations with the popular M-ary QAM constellations. Both analytical and
simulation results showed that the optimal APK constellations outperform the cross,
rectangular M-ary QAM constellations. It suggests that these optimal APK sets can be
used to improve the performance of a system using non-linear power amplifiers to
achieve high power efficiency.

Further works could be carried out to study the performance and complexity of a
predistorter scheme that combines the polynomial and lookup table techniques. When the
lookup table size increases, the order of the polynomial decreases and vice versa. It is
expected that given power amplifier characteristics, there will be optimal values of the
polynomial order and the table size such that it gives the best performance and low
complexity.

Trellis-coded modulation schemes specifically designed to operate on fading channels
have shown great potential. Bandwith-efficient modulations with operate effectively in
the presence of fading are of particular interest for mobile communications systems. The
further study of the work reported in this thesis and trellis-coded scheme may improve
the system performance. The following subjects can be carried out for further studies:

a) Trellis-coded schemes with low-PAR circular APK constellations.

b) Combined predistortion and trellis-coded schemes with low-PAR circular APK

constellations.
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