INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

MODULAR COMPOSITION AND VERIFICATION OF TRANSACTION
PROCESSING PROTOCOLS USING CATEGORY THEORY

Vasudevan Janarthanan

A Thesis
In
The Department
Of

Electrical & Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science
in Electrical & Computer Engineering
at Concordia University
Montréal, Québec, Canada

March 2003

(©Vasudevan Janarthanan, 2003

i~

National Library

Bbliothéque nationale

of Canada du Canada
isitions and isitions et
aﬁm’t‘\sﬁc Services ::qrv‘llces brgﬁggraphiques
385 Wellington Street 395, rue Wi
Ottawa ON K1A ON4 Otawa ON K1A ON4
Canada Canada
Your Sis Votre réddrence
Our Sl Notre rildrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-77971-8

Canada

Abstract

Modular Composition and Verification of Transaction

Processing Protocols Using Category Theory
Vasudevan Janarthanan

Establishing the correctness of reliable distributed protocols supporting de-
pendable applications necessitates modular/compositional approaches to tackle the
inherent complexity of these protocols. Efforts involved in the specification and ver-
ification of these reliable distributed protocols can be considerably reduced if the
protocol is composed utilizing smaller components (building-blocks) possessing in-
dividual functionalities that are integral parts of the overall protocol operation. In
this thesis, we introduce techniques utilizing the concepts of category theory for the
modular composition of dependable distributed protocols. In particular, we show
how by defining external interfaces of basic modules, and morphisms linking two
different modules, a larger or more complex protocol can be formally composed and

verified. To illustrate the effectiveness of the proposed methodology for compositional

iii

specification and verification, in this thesis, we present a modular composition and
verification of a transaction processing protocol namely the non-blocking atomic three
phase commit (3PC) protocol using category theoretic concepts. Specifically. we il-
lustrate how the overall global properties of the protocol can be proved by utilizing
constructs of local sub-properties of the inherent building blocks of the 3PC protocol.
A key benefit of this modular approach is that these identified building blocks would
be helpful to system designers for their capability of specifying and facilitating rigor-
ously tested and pretested formal theory modules of required system and component

behavior, and also supporting system design decisions and modifications.

iv

Acknowledgments

[t has been a great privilege for me to work with Dr.Purnendu Sinha. an exceptional
researcher and teacher, who introduced me to real-time systems, distributed com-
puting, modular composition techniques and component-based design. He has been
extraordinarily patient and supportive. having been always available for discussion
and responding speedily to research reports. [would like to take this opportunity to
thank him for his continued encouragement and guidance throughout the course of
my research.

My sincere thanks goes to Professor Michael Barr of McGill University, Montreal,
Canada, for his valuable insights on Category Theory. Given his high profile stature
in the field of Category Theory, I feel highly honoured to mention his name in my
thesis.

[also thank Professor James McDonald and Mr.David Cyrluk of Kestrel [nstitute,
California, for their timely inputs about the SPECWARE tool. Their email responses
had been pretty helpful in the successful completion of this work.

This research has been a part of the NSERC, FCAR and FRDP grants awarded

to Dr.Purnendu Sinha. The project provided an excellent environment for acquir-
ing valuable academic and practical experience in distributed computing, modular
composition techniques and component-based design.

[extend my whole-hearted thanks to my parents for their encouragement. help
and constant drive throughout the entire period of the thesis. Finally [am grateful
to all my fellow colleagues in the research group for their valuable discussions during
this research.

Vasudevan Janarthanan, March 2003.

vi

[dedicate this work to my loving Dad and Mom

vii

Contents

List of Figures x4
List of Tables xiv
1 Introduction 1
1.1 Dependable Distributed System and Protocols 2
1.1.1 Inherent Properties and Features of Dependable Distributed

Protocols 4

1.1.2 Issues in design and analysis of Dependable Distributed Protocols 6

1.1.3 General Difficulties L. 8
1.1.4 Role of formal methods in alleviating these difficulties 10

1.1.5 Limitations of formal methods 12
1.1.6 Need for Modularization 13
1.1.7 Related Work oL 14

1.1.8 Motivation L 16

1.1.9 Category Theoretic Approaches for Modularization 17

viil

2 Category Theory
2.1 Modularization Lo
2.2 Module Specification using Category Theory
23 Composition

24 Specware Tool

3 Transaction Processing Protocols

3.1 Transaction Processing
3.2 Distributed Commit Protocols
3.3 Three Phase Commit Protocol
34 Assumptions. Lo
3.5 Inherent Building Blocks of the 3PC Protocol

3.5.1 Functionalities of the Various Building Blocks
3.6 Determining Dependencies among the Building Blocks of Three Phase

Commit Protocol

4 Formal Analysis of Three Phase Commit Protocol
4.1 Analysis of the Global Properties of 3PC
4.1.1 Analysis of Global Property-1: Serializability of Transactions

4.1.2 Compositional Verification of Global Property-1

ix

33

34

34

37

40

43

44

37

61

61

4.1.3

4.1.4

4.1.5

4.1.6

Analysis of Global Property-2: Consistent State Maintenance 78

Compositional Verification of Global Property-2 84
Analysis of Global Property-3: Roll-Back Recovery 91
Compositional Verification of Global Property-3 99

5 Compositional Specification and Verification of the Global Proper-

ties of 3PC Protocol using Specware 111
5.1 Specification of the Global Properties of 3PC. 111
5.1.1 Specification of Serializability of Transactions Property 111
5.1.2 Specification of Consistent State Maintenance Property 122
5.1.3 Specification of Roll-Back Recovery Property 129

6 Conclusion 143
6.1 Discussions and Conclusion, 145
Appendix I 148
Appendix II 154
Appendix III 160
Bibliography 169

List of Figures

3.3

3.4

3.5

4.1

4.2

4.3

4.4

4.5

Pushout of two morphismsfandg
Colimit Function L.
Module Interfaces oo oL

(a) Composition of Two Modules and (b) Composed Module

Distributed Transaction Execution
Three Phase Commit Protocol with the Co-ordinator and a Cohort

Global View of Modulated 3PC with Inherent Building Blocks
Modular Dependencies of Building Blocks based on Seq. Division-1 .

Modular Dependencies of Building Blocks based on Seq. Division-2 .

Serializability of Transactions: Dependencies on Sub-Protocol Properties
Composition of Sub-protocols to attain Serializability Property
Composition of Broadcast and Consensus Protocols
Composed Diagram of Controller Protocol

Composition of Controller and Undo/Redo Protocols

xi

38

41

16

4.6

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

Composed Diagram of PR, Protocol 68
Composition of PR, and 2 Phase Locking Protocols 69
Composed Diagram of PR, Protocol 69

Consistent State Maintenance: Dependencies on Sub-Protocol Properties 79

Composition of Sub-protocols to attain Consistent State Property . . 80
Composition of Broadcast and Consensus Protocols 81
Composed Diagram of Controller Protocol 81
Composition of Controller and Snapshot Protocols 82
Composed Diagram of PRs Protocol 82
Composition of PRs and Decision Making Protocols 83
Composed Diagram of PRg Protocol 33
Roll-Back Recovery: Dependencies on Sub-Protocol Properties 92
Composition of Sub-protocols to attain Recovery Property 92
Composition of Broadcast and Consensus Protocols 94
Composed Diagram of Controller Protocol 94
Composition of Controller and Undo/Redo Logging Protocols 95
Composed Diagram of PR, Protocol 95
Composition of PR, and Two Phase Locking Protocols 96
Composed Diagram of PRy Protocol 96
Composition of PR, and Checkpointing Protocols 97
Composed Diagram of PR3 Protocol 97

xil

4.27 Composition of PR; and Recovery Protocols

14.28 Composed Diagram of PR Protocol

xiii

List of Tables

3.1 Various Building Blocks of 3PC

xiv

Chapter 1

Introduction

This chapter addresses the issues related to dependable distributed protocols.
We begin by highlighting the growing importance of such protocols in distributed
computing and their inherent properties. We then look into the difficulties involved
in the design and analysis of these protocols, followed by the issue of application of
formal methods in solving some of these difficulties, and also highlight some of its
inherent limitations. After briefly discussing these issues, we next propose the idea of
modularization in order to simplify the specification and verification processes of these
protocols and the concept of category theory as a means to compose the modularized

components.

1.1 Dependable Distributed System and Protocols

In recent vears, there has been a considerable interest in the design and analy-
sis of distributed systems wherein users interact with processors that are networked
together with many other processors. A system that consists of a collection of two
or more independent computers which co-ordinate their processing through the ex-
change of messages is called as a distributed system. Distributed systems are now
commonplace like electronic mail systems, distributed databases, communication net-
works, office systems, banking systems and real-time control systems. One of the main
reasons for the increasing importance of distributed computing system is its ability
to provide dependable services. Distributed systems [6] tend to be more tolerant to
faults than traditional architectures: a distributed system may be constructed so that
it continues functioning despite the failure of some of its components.

Distributed systems are built of many processing units with a combination
of non-volatile and volatile memories, and are subject to various kinds of failures.
Processors can crash, losing the contents of their volatile memories, can proceed at
erratic speeds, or can simply stop without warning. The communication media in
distributed systems are also subject to failures, resulting in loss, reordering and du-
plication of messages. Distributed systems are complex in the sense that they have a
large number of components, many activities running concurrently, and components
might even fail independently. To help cope with this complexity, a variety of pro-

tocols have been formalized, ranging from protocols for communication among the

2

processors to their recovery in times of faults. Distributed systems offering fault-
tolerant features usually utilize the services of a group of protocols each having its
own inherent properties and operational activities. Protocols are the set of rules
that software components on different machines use to realize a given abstraction.
They work in tandem with different functionalities, ultimately helping in realizing
the global functionality of the system as a whole [5, 7, 30, 33|.

Distributed systems with dependability qualities have to basically satisfy the
reliability and availability properties in order to assure the fault-tolerant features. Re-
liability is the probability of a system functioning correctly over a given period of time,
whereas availability is the probability of a system functioning correctly at any given
time. The most difficult part of any distributed system is to organize the computa-
tions so that a correct result is found. Achieving reliability in a distributed system
is not an easy task. Communications between nodes and their operations must be
properly related. The main concerns with reliability are the effective coordination of
the various computational nodes and the message content, and proper organization
of data with the degree of replication. This requires a reliable network, as well as
reliable protocols for communication among the various nodes, diagnose and recover
faults in the system, help in reaching an uniform agreement (decision) among the var-
ious nodes and also terminate the process when need arises. A major strength of the
dependability concept is its integrative nature, which enables to put into perspective

the more classical notions of reliability, availability, safety, security, maintainability,

which are then seen as attributes of dependability. We define these terms in the next

section.

1.1.1 Inherent Properties and Features of Dependable Dis-
tributed Protocols

Any dependable distributed protocol would have in it some inherent prop-
erties symbolizing its overall functionalities. These properties ultimately form the
services offered by the protocol as a whole. Some of them are:

e Reliability: Ensures that the protocol is operational at a particular time instant.
i.e., continuity of correct service.

o Awvailability: Ability of the protocol to deliver its service at any given instant of
time.

e Safety: Safety property assures that something bad will not happen during the
protocol execution.

e Atomicity: Atomicity property ensures that either all the operations are per-
formed successfully or none of them are performed.

e Integrity: Prevention of unauthorized modification or the deletion or destruction
of system assets.

o Maintainability: Ability of the protocol to undergo modifications and refine-

ments.

e Stability: Stability implies that the protocol, in response to a transient fault,
converges to a legitimate state in finite time.

e Liveness: This property assures that eventually something good must happen
during the protocol execution.

o Serializability: This property ensures that the effect of executing a collection
of atomic actions is equivalent to some serial schedule in which actions are
executed one after another.

e Recoverability: The recoverability property makes sure that the external effect of
an atomic action is all or nothing, meaning that either all the state modifications
performed by the atomic action take place or none of them.

e Synchrony: This property helps the protocol to perform its intended function
within a finite and known time bound.

o Scalability: A distributed system is described as scalable if it remains effective
when there is a significant increase in the number of resources and the number
of users.

o Transparency: It is defined as the concealment from the user and the application
programmer of the separation of components in a distributed system, so that
the system is perceived as a whole rather than as a collection of independent

components.

Having defined the properties of dependable distributed protocols, we will

next discuss some of the issues in the design and analysis of such protocols.
5

1.1.2 Issues in design and analysis of Dependable Distributed
Protocols

Dependable distributed protocols are characterized by their fault tolerant
capabilities (i.e.) their ability to function normally in spite of failures in the dis-
tributed system. This is a major issue during the design of dependable protocols like
transaction processing, where the protocols must be designed to ensure consistent site
information in spite of failures in the distributed system. Failures in a distributed
environment, could be of different kinds. When components are executing on several
different machines, and are connected by computer networks, there could be network
related problems like delays or link failures or site crashes or even message losses.
Therefore determining the tolerance of dependable distributed protocols to failures in
the component is crucial for maintaining the dependability feature of such protocols.
Hence protocols designed for such dependable distributed systems. have to incorpo-
rate a methodology to assess the fault tolerance of the system to failures occurring in
its components.

Transaction processing is the software technology that makes distributed
computing reliable. Protocols utilized for transaction processing need to satisfy atom-
icity and non-blocking properties. The three phase commit protocol, which we have
considered in this thesis as a case study is a kind of transaction processing protocol
resilient to site failures, i.e., it does not block in the event of site failures. Modularity

allows for the decomposition of a large protocol into smaller components or sub-blocks

each having its own functionalities and properties. thereby helping in the reusability of
these decomposed sub- blocks (modules). Applying modular composition techniques
for decomposing the global 3PC protocol into sub-protocols (sub-blocks) results in
the protocol utilizing these decomposed sub-protocols (sub-blocks) in order to satisfy
the various properties of the protocol., henceforth making it simple to understand,
program and prove. However, the design and analysis of most transaction processing
protocols implicitly assume services rendered by these sub-protocols without much
regard to their interactions and their ability to provide a cohesive and consistent ser-
vice collectively. Conventional approaches to testing protocols are based on a static
paradigm of specifying the precise set of inputs and outputs of each test. Due to
unobvious subtleties in sub-protocol interactions and resulting large operational state
space, conventional simulation and prototyping techniques are limited in assuring the
correctness of the protocol level operations. Identifving dependencies among sub-
protocols is just one facet of the correct composition of a given generic protocol.
Another facet is to ensure that these decomposed sub-protocols are compatible, i.e,
they are based on the same set of assumptions.

Another fundamental issue in distributed computing is the problem of syn-
chronization among the various processors (sites) in the distributed system. Synchro-
nization is the regulation of the evolution of concurrent processors, and subsequently
of the occurrence of observable events, as a function of the history of events in the

system of processors [4]. Synchronization is required in order to provide concurrency

~I

and co-operation among the various processors in the distributed system.

e Concurrency: Individual processors, even those that belong to independent
applications, may need to enter a state of concurrency either to share access to
system resources or to control access to shared data.

e Co-operation: Processes that belong to the same application can co-operate for

proper execution of the application.

Hence while designing protocols for a fault-tolerant distributed environment.
issues like synchronization, concurrency and co-operation should be taken into ac-
count. Now that we have illustrated the issues in the design and analysis of depend-
able distributed protocols, we will next enumerate the difficulties in realizing those

issues.

1.1.3 General Difficulties

Dependable distributed protocols are extremely difficult to design and imple-
ment because of the unpredictability of message transfer delays, process speeds and
of failures. Hence system designers have to cope with these difficulties intrinsically
associated with the dependable protocols in the distributed system. They are also
hard to test in systems, since the deterministic testing requires considerable extra
communication among the distributed workload generation and fault-injection agents
for coordination purposes. This extra communication and the additional demands

on real-time schedulers result in perturbations to the natural behavior of the system,
8

whose observation becomes infeasible.

Failure handling is a crucial aspect while designing protocols for distributed
systems because of the impossibility of reaching an agreement among the various
components in the presence of an arbitrary (Byzantine) failure. Concurrency, which
helps in maintaining consistent scheduling of concurrent threads and also helps in pre-
serving their dependencies, is a tough scenario, and so the protocols designed should
take into consideration the issue of concurrency among the various components in the
distributed system. There is also a possibility of occurrence of deadlock and livelock
situations in distributed systems because of the large magnitude of components in
such systems. The protocols should be designed in such a way that it avoids the
occurrence of both these situations in the distributed system.

Another problem which is of fundamental importance in reliable distributed
computing while designing dependable distributed protocols is the issue of consensus
among the various components of the distributed systems. Arriving at a common
decision among the nodes in a distributed system requires the assistance of a number
of effective algorithms which at times could prove to be a costly and serious issue.
In transaction processing protocols, a standard set of ACID (Atomicity, Consistency,
Isolation and Durability) properties (See chapter 3) must be ensured by a combination
of concurrency control and recovery protocols. It has been argued that in the existing
literature, these protocols are often studied in isolation, making strong assumptions

about each other. The problem of combining them in a formal way is largely ignored.

In the following section, we project the role of formal methods in solving some of the

above mentioned difficulties.

1.1.4 Role of formal methods in alleviating these difficulties

Developing protocols that are targeted towards specific failure scenarios and
their handling mechanisms requires precise and accurate descriptions of specifica-
tions, designs and implementations. Formal specification and verification have long
been recognized as giving the highest degree of assurance [19, 20, 23]. It is widely
acknowledged that the adoption of formal methods, facilitates the writing of clear,
unambiguous, complete specifications, and makes it possible to provide an automatic
support to a variety of validation and verification activities. Specifically, formal spec-
ifications, being unambiguous mathematical objects, can be employved for generating
execution sequences, which constitute an useful starting point for validation and ver-
ification, in the form of testing. A formal semantic model can also help programmers
to reason carefully about the correctness of implementations of the distributed pro-
tocols, because they increase the clarity of requirements, identify hidden assumptions
that the system must operate on, and certify the consistency of requirements and the
correctness of designs among other benefit [9, 24, 29, 44].

In order to check the correctness of formal specification, two kinds of verifi-
cation techniques are employed in formal methodology:

1) Theorem Provers: The theorem provers are based on logic-based specification
10

languages and provide support to the proof of correctness properties, expressed as
logical formulas. The proofs of correctness offered by theorem provers are an im-
portant capability in the formal analysis of dependable distributed protocols. These
theorem provers help in finding the unobvious mistakes in the formal specification
and thereby giving the developers and designers a quick feedback about the various
problems in the design. There are two kinds of theorem provers, namely the one
which requires user interactions (proof strategy) at each step of the verification, and
second which carries out most of the basic proofs without much user interactions,
sometimes requiring proof strategies for some unobvious conjectures.
2)Model Checkers: A model checking specification consists of two parts. One
part is the model: a state machine defined in terms of variables, initial values for
the variables, and a description of the conditions under which variables may change
value. The state space is defined by the possible combinations of values for the
variables. The other part is temporal logic constraints over states and execution
paths. Conceptually, a model checker visits all reachable states and verifies that the
temporal logic properties are satisfied over each possible path, that is, the model
checker determines if the state machine is a model for the temporal logic formula.
We next illustrate the limitations of using formal methodologies in the spec-

ification and verification of dependable distributed protocols.

11

1.1.5 Limitations of formal methods

In literature. numerous dependable distributed protocols have been subjected
to specification and verification utilizing formal techniques and tools. But over our
studies in applying formal methods for specification and verification, we have observed
that formal analysis typically requires intensive effort for both specifying and verify-
ing each specific protocol. Further, the emphasis has been on the specification and
verification of that specific protocol itself without giving much regard to its concurrent
or future use in the overall system’s operation. Hence, much of formal specifications
and proof constructs cannot easily be reused to verify other protocols which employ
similar basic concepts. These facts limit wide acceptance of formal techniques in the
design and development of dependable distributed protocols. Model Checking is a
formal verification technique in which the entire reachable state-space of the system
is enumerated and checked for irregular behaviors. But this verification methodol-
ogy cannot be applied for verifying the correctness of models in a distributed system
because of the large system size and the non-deterministic nature of the state reach-
ability analysis of the system. Also it is believed that software development using
formal methods is a process of successive refinements from abstract specifications
into concrete specifications. Refinement rules may be used to demonstrate that the
concrete specifications satisfy the corresponding abstract ones. However, there are
serious limitations of the refinement rules in both theory and in practical applications.

The limitations include

12

e that the refinement rules are not sufficient to guarantee that a refined specifica-
tion (concrete specification) satisfies the user’s actual requirements if it satisfies
the abstract specification.

e that the existing refinement rules are not always applicable in theory during the
successive refinements.

e that the refinement rules are difficult to be applied effectively in practice due

to uncertainties and resource constraints.

In the next section, we discuss the necessity of modularization techniques in

simplifving the analysis of a complex protocol.

1.1.6 Need for Modularization

A good structure is important in large specifications for interpreting, testing
and managing changes. Furthermore, a well-chosen structure greatly facilitates un-
derstanding, modification and validation of a specification. Ideally, a specification
structure allows one to isolate changes within a small number of components of a
specification, and to reason about the impacts of a change on interconnected compo-
nents. In a large project, it is desirable to be able to mix specification and composition
steps such that at any particular moment in the process, we may have established
only some of the properties of the components, and some of the composition relations.

Modularization is a well-known technique for simplifying complex commu-

nication systems [31]. This technique allows the decomposition of a large block or
13

protocol into smaller components or sub-blocks each having its own functionalities
and properties [L6]. A component or sub-block is a body of code or specification that
is deliverable, independently deployable, and ready for integration in larger protocols.
In an ideal component world, a pool of interchangeable items is created, and protocols
are built by choosing components from several pools, adapting them, and connecting
them as desired [43].

The important aspect of such component-based protocol design and analysis
is the need to understand properties of the global protocol, their individual compo-
nents, and how they interact [L, 8, 10, 13]. The key requirement for the development
of robust, maintainable, and composable component modules is a mechanism for
specifying modules’ invariants and abstractions, and for ensuring that those invari-
ants and abstractions are respected [18, 26]. Moreover, the stronger the invariants
and abstractions that can be specified and enforced, the more robust the resulting
protocol design would be. We will next see some of the work that is related to our

topic of study.

1.1.7 Related Work

In [33], the author introduces the various problems in attaining an atomic non-
blocking commit protocol and derives a solution through a building-block approach.
Instantiations of the proposed NBAC protocol [33] use timeout mechanisms, reliable
multicast primitives and unreliable failure detectors as basic components, and follow

14

the modular approach introduced in [2].

In [16], the authors have advocated the idea that consensus can be viewed
as a basic building block for building fault-tolerant agreement protocols. Theyv have
illustrated the proposed modular approach utilizing the notion of consensus service to
build agreement protocols, such as non-blocking atomic commitment and synchronous
multicast protocols.

In [21], the authors show how to verify mechanically a transaction processing
system. In such systems, a standard set of ACID (Atomicity, Consistency, Isolation
and Durability) properties must be ensured by a combination of concurrency control
and recovery protocols. It has been argued that in the existing literature, these proto-
cols are often studied in isolation, making strong assumptions about each other. The
problem of combining them in a formal way is largely ignored. The paper [21] illus-
trates how to formally specify and verify a transaction processing system, integrating
strict two-phase locking, undo/redo recovery and two-phase commit.

In [36, 37], the authors had shown the initial approaches on developing
a framework based on the concepts of category theory for modular composition of
dependable distributed protocols. In [37], the hierarchical composition of the FDIR
protocol is shown using the attributes of constituent building blocks of a particu-
lar class of protocols namely the Redundancy Management protocols. In [36], the
authors first show the formulation of a group membership protocol, and then con-

structed a checkpointing protocol by utilizing the group membership function as one

15

of its building block.

1.1.8 Motivation

The idea presented in [21] is similar to what we have presented in this thesis.
However, we would like to emphasize that we provide a more rigorous formal frame-
work utilizing Category Theory [36, 37] that provides for a better compositional spec-
ification, verification and traceability of different attributes and operations. We argue
that category theory provides a precise and convenient conceptual language. and tool
to model complex systems since it provides a rich body of theory for reasoning about
objects and relations between them, namely specifications and their interconnections.
[t is also sufficiently abstract that it can be applied to a wide range of different speci-
fication languages. Furthermore, in order to relate to the actual operational behavior
of the 3PC protocol [2, 4, 15, 22, 27, 38, 39, 40|, we have incorporated an exhaustive
set of functionally supporting protocols in analyzing the correctness of the overall
3PC operation. However, we would like to reiterate here that the sub-blocks we had
identified were based on the basic understanding of the 3PC protocol operation, and
would work fine for the class of protocol (Transaction Processing) considered in this
thesis.

The extensions described in this thesis were motivated by the need to sup-
port the evolution of large specifications. We needed to consider how to adapt the
categorical framework to support the following requirements:

16

e Support for traceability as a specification evolves, by explicitly representing
the relationships between specification components, and between specification
and validation properties. The framework needs to support an ability to trace
these relationships to their rationales, and to support tracing of the impacts of
change.

e Support for compositional verification, so that global system (protocol) proper-
ties can be decomposed across the structure of a specification, and such that we
limit the number of proofs that have to be re-checked when a change is made.

e Support for the process of defining relationships (morphisms) between spec-
ification, with the ability to handle morphisms effectively across the various

compositional specifications of the system (protocol).

We next explain how our category theoretic approach helps in the modular

composition of complex dependable distributed protocols.

1.1.9 Category Theoretic Approaches for Modularization

Category theory [3, 11] has been used for a number of years as a framework
for composing formal specification based on composition of algebraic specifications.
But more recently [12] have developed an approach where each component of a
system is described by a theory in temporal logic and theories are interconnected by
specification morphisms. Category theory provides an excellent basis for providing

structure in formal specifications {17, 25]. The basic principle to specify a system
17

using this framework is to specify each component of a system separately and then
use the pushout or colimit to compose the specifications. It provides a coherent
and well-founded theoretical basis for representing structure in existing specification
languages, thus avoiding the need to add structuring primitives within each language.
Finally, category theory lends itself well to automation. so that, for example, the
composition of two specifications can be derived automatically. provided that the
category of specifications obeys certain properties.

In a large protocol, it is desirable to mix both specification and composition
steps such that at any particular moment in the process, we may have established
only some of the properties of the components, and some of the composition relations.
This reflects the reality of large-scale specifications constructed by a team of people.
But such specifications tend to be inconsistent for most of their life-cycle. As the
specification evolves, each change may introduce many inconsistencies. Since category
theory employs the “correct by construction” approach for the purpose of modular
composition, wherein components are specified, proved correct and then composed
together in such a way to preserve their properties {34, 42|, the inconsistencies that
might arise during the specification evolution would be eliminated before the change
is applied to the specification.

In this thesis, we demonstrate how the categorical framework can be adapted
for modularly composing the smaller components (sub-blocks or sub-protocols) into a

larger global protocol. There are three elements to our approach: (1)decomposition of

18

the complex protocol into sub-blocks based on the identified global properties. (2)the
ability to define and interpret various morphisms over composition, (3)compositional
specification of the sub-blocks, and (4)the integration of properties in the same frame-
work as the specifications. Our approach is supported by a tool (SPECWARFE) that
implements all the categorical concepts and operations needed for the definition of
modules. The tool can perform all the compositional operations defined on modules
and thus automatically build the specification of the global protocol from the speci-
fications of its sub-blocks. We summarize the contributions of this thesis in the next

section.

1.1.10 Contribution

Our aim in this thesis has been to apply our proposed category-theoretical
approach for protocol composition to a complex (and also a practical) transaction
processing protocol integrating all sub-protocols which are instrumental in achieving

the correct protocol level operations. Specifically, we

e identify building blocks of a transaction processing protocol namely the central-
ized non-blocking three phase commit (3PC) protocol,

e highlight their inter-dependencies and functionalities in order to achieve the
overall global properties of the protocol,

e apply concepts of category theory to compose the 3PC protocol utilizing the

sub-protocols and address issues involved in block interactions, and finally
19

e demonstrate how by breaking down complex protocol blocks into smaller sub-
blocks, it becomes relatively easy to verifyv the global properties of the protocol.
This is because. by verifying (and utilizing) the smaller sub-protocols, we can be
rest assured the correctness of the overall complex protocol as it is now formed

of inter-related sub-protocols.

1.1.11 Organization of the thesis

The rest of the thesis is structured as follows. In chapter 2, we introduce
the concepts of Category Theory and explain its role in modular composition. In
chapter 3. we discuss the non-blocking atomic three phase commit protocol as a
case study, identify various building blocks in the 3PC protocol and discuss their
functionalities and properties. Chapter 4 gives the formal analysis of the identified
building blocks with respect to the global properties of 3PC with colimit diagrams.
In chapter 5, we provide the specifications for the global properties of the 3PC using
Specware [28, 32, 41], and also discuss the proofs for those properties. Chapter 6
concludes with discussions, and a note on our ongoing and future work in modular

protocol composition and verification.

20

Chapter 2

Category Theory

In this chapter we explain a formal framework utilizing concepts of categorylthe-
ory to facilitate a rigorous and consistent composition out of system building-block
protocols. At first, we provide an overview of the modularization technique to formu-
late general principles, and to give an informal introduction into our algebraic concept
of modules (building-block protocols). Next we introduce the algebraic specification
of modules using category theory along with their interconnections. We then discuss
the mechanism of composition of these modules (sub-blocks or sub-protocols or com-
ponents) to form the required global composed module (protocol). Lastly we provide
details about the SPECWARE tool that we have used in this thesis for the purpose of
specifying and composing the decomposed sub-protocols of a dependable distributed

protocol.

21

2.1 Modularization

Modularization is one of the main principles in protocol development. The main
problem is to divide the protocol to be built and the workload appropriately so that
protocol development becomes rational and manageable. Modules (sub-blocks or sub-
protocols) can be seen as the basic building blocks being used for modularization. A

module mainly comprises of three components:

e Interface: The interface collects all resources (properties) and their inner
relationships, which are provided by the module to its outside environment. [t
also includes the resources (properties) and relationships that are taken from
the outside environment and used in the module.

e Construction: The construction of a module defines the individual functioning
and denotation of resources (properties). A module does not abstract from this
definition, but explicitly contains this definition as part of it. But in general
the construction is not provided in the interface.

e Behavior: The behavior represents the overall functioning of the module based
on its interface and construction. It also represents a particular semantic view

of the module.

These components of a module are to be given syntactically as well as se-
mantically, and form a conceptual unit. The components of a modular system are

primarily the following:
22

e Modules: Modules form the building blocks of a modular system. They repre-
sent particular system components that should be seen as an unit.

e Module Interconnections: Module interconnections define the way modules
interact with each other or how they are tied together. They form the architec-
tural structure of a modular system.

e Operations on Modules: Operations on modules define modules out of given
modules and module interconnections. In this way they change the view of the
architectural structure of a modular system. Like the components of 2 module
the components of a modular system, including module operation, are given

syvntactically and semantically.

2.2 Module Specification using Category Theory

In this section, we outline the category theory based modular specification
framework. We first define some general terms of category theory which are used

in the remainder of the thesis.

Category

A category is composed of two collections:

e the objects of the category.

e the morphisms (arrows) of the category.
23

These two collections must respect the following properties:

e each morphism fis associated with an object A that is its domain and an object

B that is its codomain. Notation: f: A — B.

e for all morphisms f: A - Band g: B — C, there exists a composed morphism
go f- A = C and the composition law is associative, i.e., forall k- C — D, h
o(gof)=(hog)of.

e for each object A of the category, there exists an identity morphism id such that:

Vf: B— A,ido f=f

Vf: A > B, foid=f

Signature

A signature SIG = (S,0P) consists of a set S, the set of sort, and a set OP, the

set of constant and operation symbols.

Specification

A specification SPEC = (SIG,AX) consists of two parts: the signature SIG and
a set of axioms AX which describes the behavior of the system as well as constraints

on the environment.

24

Specification Morphism

A specification morphism m : SPEC! — SPEC2is a map from the sorts and
operations of one specification to the sorts and operations of ancther such that (a) ax-
ioms are translated to theorems, and (b) source operations are translated compatibly
to target operations.

Category theory provides a framework to describe links between objects. and
to manipulate them by means of operations. Here we describe one such operation

namely the pushout operation.

Pushout

A pushout of a pair of morphisms with same source f: A — Band g: A — C
in a category is an object D and a pair of morphisms p: B — D and ¢: C — D such
that the square commutes (figure 2.1):

fop=goq

and such that the following universal condition holds: for all objects D’ and all

morphisms p> B — D’ and ¢’z C — D’such that p’o f = ¢’ o g, there exists an
unique morphism u: D — D’such that uo ¢ = ¢’anduo p =p"

The second part of the definition ensures that the D chosen to construct

the pushout is the “minimal” such D amongst all the candidates D’. The generaliza-

tion of this operation to several objects and morphisms is called a colimit. Module

25

Figure 2.1: Pushout of two morphisms f and g

specifications are defined by utilizing the notion of push-out operation.

Colimit

For the treatment of structuring mechanisms for categorical construction, we
utilize the concept of colimit operation in category theory. In order to use the colimit
operation to combine specifications, the morphisms between the specifications have
to be first indicated. This is also called as the diagram of specifications. A diagram
is a directed multigraph whose nodes are labeled with specifications and whose arcs
are labeled with morphisms. The colimit operation is then applied to a diagram
of specifications linked by morphisms. The colimit contains all the elements of the
specifications in the diagram, but only elements that are linked by arcs in the diagram
are identified in the colimit. In Figure 2.2, for objects A; and A4;, and morphism a.,
the colimit is an object L and a family of morphisms I;, [; such that for each I; : 4;
=L, I; : Aj — L,and a; : A; = Aj, then [; 0o a; = [;.

Conceptually, the colimit of a set of specifications is the “shared union” of

those specifications based on the morphisms between the specifications. Moreover,

26

Figure 2.2: Colimit Function

these morphisms define equivalence classes of sorts and operations. For example, if a
morphism for specification A to specification B maps sort a to sort 3, then o and 3 are
in the same equivalence class and thus in a single sort in the colimit specification of A,
B, and the morphism between them. Therefore, the colimit operation creates a new
specification, the colimit specification, and a cone morphism from each specification
to the colimit specification. These cone morphisms satisfv the condition that the
translation of any sort or operation along any of the morphisms in the diagram leading

to the colimit specification is equivalent.

Constituent Parts of Algebraic Module Specifications

An algebraic module specification consists of components, called import, ezport,

parameter and body as shown in Figure 2.3.
A module specification MOD = (PAR, EXP, IMP, BOD, f, h, g, k) consists

of four specifications:

e PAR, called parameter specification

27

PAR —EXP

IMP ———k—éBO
Figure 2.3: Module Interfaces

e EXP, called ezport interface specification
e IMP, called import interface specification

e BOD, called body specification

and four mapping morphisms f, h, g, k such that the following diagram commutes

(i.e. foh=gok).

e Import Interface: The import interface is used to specify those resources
which are to be provided by other modules and used in the modules’ body for
construction of the resources to be exported. [t is an algebraic specification
consisting of a signature, which names and types the resources to be imported
and eventually lists properties of these resources, which form restrictions for the
import of actual resources and provide information for the use of these resources
in the body of the module. The explicit formulation of an import interface is
especially useful in the stepwise development of a modular system. It allows a
top down way of construction where resources are named and used, but only
later to be realized by other modules.

28

e Export Interface: The export interface contains those resources which are
realized by the module at hand to be used by other modules or an application
environment. In a module specification these resources are declared in the same
way as the resources of the import interface. It restricts sorts and operations
treated in a module to those which are visible for the user of the module. This
realizes hiding of resources, which serves the purpose of protection of resources,
abstraction from internal details, and independence from particular forms of
construction in the body of the module.

e Parameter Part: The parameter part is a part common to import and export,
and sometimes intersection of both. It can be seen as the parameter of the whole
module as it appears to the outside by its interface. Its useful in declaring all
those resources of the parameter of the full system, which concern this particular
module.

e Body Part: The body part of a module contains the construction of the re-
sources declared in the specification of the export interface. For this purpose,
the body may contain auxiliary sorts and operations which do not belong to
any other part of the module but depend on the particular choice of construc-
tion. The realization of sorts and operations declared in the specification of the
export interface is encapsulated in the module, not accessible to the user of the

module.

e Component Interconnection: The relationship between the various compo-

29

nents of the specification module namely the parameter, import, export and
body is established by mapping morphisms which consistently map the four
components. During modular composition of two individual module specifica-
tions, specification morphisms are used to map the parameter parts of the two
modules. In order to arrive at the final composed module specification based
on the two individual modules, colimit morphisms are used to map the body

parts of both the modules.

Interconnection of Module Specifications

Interconnections of algebraic module specifications are explicitly declared by
specification morphisms which express how resources in the interfaces and the pa-
rameter part are matched. Though such interconnections may be simple in many
cases, the expressiveness of interconnections based on specification morphisms allows
renaming and identification of resources. Besides that, the concept of specification
morphism guarantees that the matching of the corresponding components of the two
modules being interconnected, is consistent with the declaration in these components.
Since the result of the interconnection of module specifications is a new composed
module specification, each interconnection mechanism can be considered as an op-
eration on module specifications. These are operations on a higher level than those

considered within abstract data types and abstract modules.

30

2.3 Composition

To capture module interactions, our proposed composition scheme allows two
modules to be interconnected via export and import interfaces. The push-out of
the two modules is the resulting specification of the composed module. Figure 2.4
depicts the composition operation. In the figure. Modulel has four objects namely
Parameter(R,), Export(A,), Import(B,) and the pushout of these three objects giving
the Body(P;) which is the specification of Modulel. Similarly Module2 has R,. A,,
B and P, as its Parameter, Export, Import and Body respectively. In Figure 2.4(a),
Modulel imports via specification B, whatever Module2 exports via specification A4,.
The compatibility of the parameters (or semantic constraints) is governed by the
morphism ¢ Furthermore, the following property must be respected: g, o s =t o f,.
Basically, in category-theoretic terms, modules 1 and 2 are diagrams which commute
themselves individually by the specification morphism relationship of f| o h; = g,
o k; and f, o hy = go o ko and their colimit would produce the required composed
module, which would now commute by the relationship fi o hy o my = to go 0 ky o
m, as in Figure 2.4(b). Since the composed module also commutes, its specification
is proved correct thereby helping in the reusability of the module.

The module(P;,) got by composing the two sub-modules(l and 2) is also a
diagram with its Parameter as the parameter of modulel, Export as the export of
modulel, Import as the import of module2 and the Body as the union of bodies P,

and P, over the export of Module2. In this case, the resulting composed module Py, is

31

(R., A, Ba, P3), where Py, is the push-out of P\ and P, over B (See Figure 2.4(b)).

f

1 Ay :
where: : f
h R, and R Paramet . R 1 A
Bl Modulet ' p o B i —
A and Ay are Exports. B
t .
— 5[By and By are Impurts. ! tog, hl°"‘2

ky Piand P, arc Bodics.

fyhy gk are Morphisms. . B"—>Pl7_

s . = kyom
. 5 1
me o' by 2y ky are Morphusms.) <
R, fl my'mys.t are Morphisms. |
1 ? ¢ For commutation,
P 15 the Composed Module.
g Module2 h, : f[ohjomy =t ogyokyom
] D - -
2 Y P
ky ™
Fig.(a) Fig.chy

Figure 2.4: (a) Composition of Two Modules and (b) Composed Module

For complex protocols, a module may import parameters from several difter-
ent modules, and also the specification consisting of syntactic and semantic require-
ments may compose of several different small specifications. In general, protocols
utilize services rendered by other protocols, and extend their services to be used in
conjunction with other protocols to achieve the overall desired objective. In this re-
spect, specifications A and B can constitute interfaces of the module. Specification B
could declare attributes/operations that must be imported from other modules, and
similarly, specification A could declare attributes/operations that can be exported to
other modules B. In other words, specifications A and B correspond to guarantees and
assumptions, respectively. It is to be emphasized that interaction or relationship be-
tween the modules are expressed by means of morphisms, and categorical operations

assist constructing larger modules resulting from these interactions.

32

2.4 Specware Tool

Specware is an automated software development system that allows users to
precisely specify the desired functionality of their applications and to generate prov-
ably correct code based on these requirements. [t helps in the specification of large
and complex systems by combining small and simple specifications. and those sys-
tem specifications can be refined into a working system by the controlled stepwise
introduction of implementation design decisions, in such a way that the refined spec-
ifications and ultimately the working code is a provably correct refinement of the
original system specification.

Specware aids in expressing requirements as formal specifications without re-
gard to the ultimate implementation or target language. Specifications describe the
desired functionality of a program independently of such implementation concerns as
architecture, algorithms, data structures, and efficiency. This makes it possible to
focus on the correctness, which is crucial to the reliability of large software systems.
Using Specware, the analysis of the problem can be kept separate from the imple-
mentation process, and implementation choices can be introduced piecemeal, making
it easier to backtrack or explore alternatives.

Specware allows to articulate software requirements, make implementation
choices, and generate provably correct code in a formally verifiable manner. The
progression of specifications forms a record of the system design and development

that is invaluable for system maintenance.

33

Chapter 3

Transaction Processing Protocols

In this chapter 3, we discuss the process of transaction in a distributed database.
We then illustrate the importance of commit protocols for successful transaction pro-
cessing in a distributed environment. Next we introduce the non-blocking atomic
three phase commit protocol as a case study, identify various building blocks in the
3PC protocol by the modularity mechanism and discuss their functionalities and

properties.

3.1 Transaction Processing

A transaction is the fundamental unit of processing in a database management
system. Transfer of money from one account to another, reservation of train tickets,
filing of tax returns, entering marks on a student’s grade sheet, are all examples of

transactions. The primary feature of a transaction is that it is an atomic unit of work
34

that is either completed in its entirety or not done at all. The successful execution
of the transaction results in the transaction being committed, which means that
its effects on the database are permanent regardless of possible subsequent system
failures. If, for any reason, it is not possible to commit the transaction, all the effects
arising out of the partial execution of the transaction are removed from the database,
and the transaction is said to have been aborted. In short, a transaction is an “all or
nothing” unit of execution.

For a variety of reasons, many database applications store their data dis-
tributed across multiple sites that are connected by a communication network. In
this environment, a single transaction may have to execute at many sites, based on
the locations of the data that it needs to process. A potential problem associated
with distributed transaction execution is that some sites could decide to commit
the transaction while the others could decide to abort it, resulting in a violation of
transaction atomicity. To address this problem, distributed database systems use a
transaction commit protocol. A commit protocol ensures the uniform commitment of
the distributed transaction, that is, it ensures that all the participating sites agree
on the final outcome (commit or abort) of the transaction. Most importantly, this
guarantee is valid even in the presence of site or network failures.

Over the last two decades, a variety of distributed transaction commit pro-
tocols have been proposed. To achieve their functionality, these commit protocols

typically require exchange of multiple messages, in multiple phases, between the par-

35

ticipating sites. A commit protocol is said to be non-blocking if. in the event of a
site failure. it permits transactions that were being processed at the failed site to
terminate at the operational sites without waiting for the failed site to recover. With
blocking protocols, there is a possibility of transaction processing grinding to halt in
the presence of failures. Non-blocking protocols, on the other hand, are designed to
ensure that such major disruptions do not occur. To achieve their functionality. how-
ever, they usually incur additional messages than their blocking counterparts. The
three phase commit protocol that we have considered as a case study in this thesis is
a kind of non-blocking protocol.

A transaction is characterized by the following ACIDS properties namely:

e Atomicity: A transaction is an atomic unit of work, that is. effectively either
all or none of the transaction’s operations are performed. If all the operations
have been performed successfully, the transaction commits. If some operation
of the transaction fails, the partial results of the transaction are undone and
the transaction aborts. Thus, it gives an illusion that the transaction either
completed successfully or was not even started.

e Consistency: The consistency of a transaction means its correctness. An in-
dividual execution of a transaction must take the database from one consistent
state to another consistent state. It is usually the responsibility of application

programmer to ensure the correctness of the transaction.

e Isolation: An incomplete transaction cannot make its database modifications

36

visible to other transactions before its commitment. Violétion of this property
may lead to “cascading aborts” of the transactions.

e Durability: Once a transaction has committed, the system must guarantee
that the effects of the transaction will never be lost despite subsequent failures
of the system.

e Serializability: The concurrent execution of a set of transactions is equiv-
alent to some serial execution of the same set of transactions. Guaranteeing
serializability lets the transaction programmer write the transaction in its in-
dividuality without worrying about other transactions that may be executing

concurrently.

3.2 Distributed Commit Protocols

A distributed transaction executes at multiple sites. To ensure the atomicity
of the distributed transaction, all cohorts of the transaction must reach an uniform
decision (commit or abort). This guarantee is provided by the transaction commit
protocols. A common model of distributed transaction execution is shown in Fig-

ure 3.1.

At the site where the transaction is submitted, a master process is created
to coordinate the execution of the transaction. At a site where the transaction needs

to access data, a cohort process on behalf of the transaction is created. Usually, there

37

Master

Cohorts
Figure 3.1: Distributed Transaction Execution
is only one cohort on behalf of the transaction at each such site. The master sends
the startwork message to a cohort when some data at the site of the cohort is required
to be accessed. Depending on the transaction architecture, the master may send the
startwork messages to multiple cohorts without waiting for their responses, that is, the
cohorts of the transaction will execute in a parallel fashion. Or the master may send
the subsequent startwork message only after the previous cohort has completed the
work assigned to it, that is, the cohorts of the transaction execute one after the other
in a sequential fashion. A cohort, after successfully executing the master’s request,
sends a workdone message to the master. After receiving the workdone message, the
master may send more work to the same cohort, or may decide to send the next piece
of work to another cohort of the transaction.
The master may decide to conclude the transaction when all the work as-
signed to the transaction is completed. Or the decision may be necessitated at the
instance of the user submitting the transaction. In any case, the decision to commit

or abort the transaction must be uniform - the master and all cohorts must agree on

38

a common decision. It might seem that the fact that a cohort had sent a workdone
message means that the cohort was willing to commit the transaction. The prob-
lems here are these: First, the sending of the workdone message does not enforce any
binding on the cohort to agree on the decision. Due to reasons such as concurrency
control, performance, etc., the cohort could still be aborted even after the workdone
message was sent. Second, there can be failures - communication links may fail, or
some of the sites hosting the cohorts of the transaction may fail. Therefore, a commit
protocol is needed to ensure that all cohorts and the master reach an uniform deci-
sion - a decision that will be binding on all sites even if a failure occurs. A variety of
transaction commit protocols have been devised, the latest being the Three Phase

Commit Protocol, which we have considered as a case study in this thesis.

A Digression about Failures

Two points are worth mentioning before we start the description of the 3PC
protocol: First, how does a site know that a communication link or a remote site
has failed? And second, how are failures handled? Generally, a timeout mechanism
is used to address the first question. If the response to a message is not received
from the remote site within the timeout period, the local site assumes that either
the communication link to the remote site, or the remote site itself has failed. For
the second question, when a site recovers from a failure, it is handed over to the

recovery manager of the site. The recovery manager scans the log, and if it finds a

39

commit log record for a transaction, it knows that the transaction had committed
before the failure occurred. In the same way, if it finds an abort log record, it knows
that the transaction was aborted before the failure occurred. In these cases. the
recovery manager ensures that the effects of the committed transactions are redone
and the effects of the aborted transactions are undone. The only problem is for
the transactions about which neither a commst nor an abort log record is found. The
actions that recovery process need to take in this case depend on the commit protocol

being used.

3.3 Three Phase Commit Protocol

The three phase commit protocol is a kind of transaction processing protoccl
which is resilient to site failures, i.e, it does not block in the event of site failures.
For example, if the master fails after initiating the protocol but before conveying
the decision to its cohorts, these cohorts will become blocked and remain so until the
master recovers and informs them of the final decision. During the blocked period, the
cohorts may continue to hold system resources such as locks on data items, making
these unavailable to other transactions, which in turn become blocked waiting for the
resources to be relinquished, i.e., “cascading blocking” results. [t is easy to see that, if
the blocked period is long, it may result in major disruption of transaction processing
activity. To ensure that commit protocols are non-blocking in the event of site failures,

operational sites should agree on the outcome of the transaction (while guaranteeing
40

global atomicity) by examining their local states. In addition. the failed sites. upon
recovery must all reach the same conclusion regarding the outcome (abort or commit)
of the transaction. This decision must be consistent with the final outcome of the
transaction based solely on their local state (without contacting the sites that were
operational). We now explain the 3PC protocol by viewing the finite state automata
that illustrates the various scenarios of the three phase commit protocol with timeout

and failure transitions.

Co-ordinator Cohort:1 where:

" "

q" is the initial state.

Commit Req Received | "w" is the wait state.

Commit Req Rec.
Abort to coordinator

Agreed msg to
Commit Request coordinator
msg sent to all
cohorts

"p" is the prepare state.

F.T__: “a" is the abort state.

"c” is the commit state.

- /Abort msg from

One or more cohort coordinator
replicd abost

Abort msg (0
ail cohorts

all cohorts agreed | Prepare msg Subscript 1 is for co-ordinator.
4 conors Jgreed P p

Send prepare | _received
msg toall | Send Ack msg
cohorts | 1o coordinator:

s
‘Abort msg Subscript 2 is for cohort.

from coordinator

“FT "F" is for failure.

Abort to all cohorts

“T" is for timeout.

All cohorts sent
Ack msg

Send commit msg
to all cohorts

Commit msg from *Only one cohort is being considered

F ET coordinator for simplicity.

Figure 3.2: Three Phase Commit Protocol with the Co-ordinator and a Cohort

Initially the co-ordinator of the transaction (which is currently in initial state
ql) sends out a Commit request message to all cohorts and goes to the wait state wli.
Then if all the cohorts (which are in the initial state g2) receive this request message
from the co-ordinator, they either go to the abort state a2 (in which case the site has

already sent an abort message to the co-ordinator) or the wait state w2 (in which case
41

the site has sent an agreed message to the co-ordinator) or the initial state ¢2 itself
(in which case the site hasn’t received the request message from the co-ordinator).
If a cohort fails, the co-ordinator times out waiting for the agreed message from the
failed cohort. In this case, the co-ordinator aborts the transaction and sends abort
messages to all the cohorts. This is the first phase of operation of the three phase
commit protocol.

In the second phase, the co-ordinator sends a prepare message to all the
cohorts, if all the cohorts have sent agreed messages in the first phase. Otherwise, the
co-ordinator will send an abort message to all the cohorts. On receiving a prepare mes-
sage, a cohort sends an acknowledge message to the co-ordinator. If the co-ordinator
fails before sending prepare messages, i.e, in state wl, it aborts the transaction upon
recovery, according to the failure transition. The cohorts time out waiting for the
prepare message, and also abort the transaction as per the timeout transition.

In the third phase, on receiving acknowledgments to the prepare messages
from all the cohorts, the co-ordinator sends a commst message to all the cohorts. A
cohort, on receiving a commit message, commits the transaction. If the co-ordinator
fails before sending the commit message, i.e, in state pI, it commits the transaction
upon recovery, according to the failure transition from state pI. The cohorts time
out waiting for the commit message. They commit the transaction according to
the timeout transition from state p2. However, if a cohort fails before sending an

acknowledgment message to a prepare message, the co-ordinator times out in state p1.

42

The co-ordinator aborts the transaction and sends abort messages to all the cohorts.
The failed cohort, upon recovery, will abort the transaction according to the failure
transition from state w2. In the above explanation. the presence of state p (which
is the prepare state), ensures that no two concurrent states in the global state have
both the commit and abort states, which is the required condition for non-blocking in

commit protocol.

3.4 Assumptions

The overall correctness of the 3PC protocol depends on the following assump-
tions that are also the guiding factors in determining the inherent building blocks for

the three-phase commit protocol:

1. FIFO communication.

2. Reliable network without partitioning.

3. Synchronous state transition.

4. Logging always done on a stable storage medium.

5. No two local states which are concurrent have an abort and a commat state.
6. Synchronous timer mechanism on each site.

7. Reliable termination mechanism in times of failure.

8. Independent recovery.

9. Global state mechanism containing local states of all participants and co-ordinator.
43

10. Centralized commit protocol.

11. No crash when either co-ordinator or participants fail.

12. Site failure model: Failure transition sending a prefix message along with time
out messages.

13. Voting mechanism to elect backup co-ordinator when a co- ordinator fails.

14. Two way channel communication between co-ordinator and participants.

15. Sequential ordering of messages between co-ordinator and the participants.

16. Sertalizability and Recoverability.

17. No domino effect.

3.5 Inherent Building Blocks of the 3PC Protocol

In this section, we reason about the identification of the various building blocks
and the relationships between them in terms of the specific functionalities of each
of the building blocks. By rigorous analysis of the various functionalities, properties
and operations of the three phase commit protocol [7], we have identified different
protocols or sub-blocks which are needed for the normal global operation of the 3PC.
In order for formal techniques to be effective in validating the correctness of the
overall operation of dependable protocols, one needs to incorporate a broader view of
protocols’ interactions and their effect on the correctness of global properties. Thus

we feel that by decomposing a complex protocol like 3PC into smaller sub-blocks

44

based on their individual applications, each contributing to the overall operation,

would help the system designer in validating the correctness of the 3PC protocol.

Table 3.1: Various Building Blocks of 3PC

1. Controller Protocol 6. Checkpointing Protocol
1.1 Broadcast Protocol
1.2 Consensus Protocol
. Snapshot Protocol 7. Recovery Protocol

3. Voting (or) Election Protocol | 8. Decision Making Protocol

4. Undo/Redo Logging Protocol | 9. Termination Protocol

5. Two-Phase Locking Protocol | 10. Failure/Time-out Management Protocol

[AV]

Based on the different building blocks that we have identified, an important
step in composing a protocol is to describe the inter-dependencies of these building

blocks in the overall three phase commit protocol operation (See Figure 3.3).

In Figure 3.3, we show how the different sites (nodes) in the network interact
with each other for doing transactions using the three phase commit protocol. What
the diagram really illustrates is that, each of the sites shown, has a three phase
commit protocol running inside them and that the nodes use this protocol while
taking decisions during the transactions with each other. In the following section, we
reason about the identification of these building blocks and the relationships between

them in terms of the specific functionalities of each of the building blocks.

45

Site n

CHECKPOINTING REDO / UNDO TWO PHASE
. | LOCKING
PROTOCOL LOGGING PROTOCOL
PROTOCOL
VOTING /
ELECTION
RECOVERY PROTOCOL
PROTOCOL |> CONTROLLER
PROTOCOL SNAPSHOT
PROTOCOL
FAILURE/TIMER ‘
PKQ/‘O(%%E%L TERMINATION | |DECISION MAKING
< PROTOCOL [PROTOCOL
)

THREE PHASE COMMIT PROTOCOL

Figure 3.3: Global View of Modulated 3PC with Inherent Building Blocks

46

3.5.1 Functionalities of the Various Building Blocks

Controller Protocol

This protocol co-ordinates all the activities of the entire three phase commit
protocol. This protocol initially recognizes the various parties (participants or com-
ponents or sites) in the distributed system who are willing to do a transaction. After
all the participants involved in the transaction find out the leader (co-ordinator) and
the sub-ordinates (cohorts or participants) using the voting protocol, the controller
protocol in the co-ordinator sends out a multicast commit message to all the cohorts
with the help of the broadcast protocol. Finally this protocol helps the different par-
ticipants involved in the transaction to reach a common decision among them using
the consensus agreement protocol. The controller protocol depicted in Figure 3.3 has

both the broadcast and consensus protocols in it.
Requirements:

e If a participant fails, then rest of the participants must recognize the failure.

Should allow recovery from mid-commitment failure.

Should have reliable broadcasting mechanism between the participants or sites.

Should have uniform agreement procedure among the various participants.

Cause all actions to become permanent so that they cannot be undone in the

future.

Commitment must be executed at the end of a transaction.
47

e Should have sufficient provision for collecting the various local states of the
sites in the network and to store them as global state vectors in the snapshot

protocol.

Broadcast Protocol

This protocol is part of the controller sub-block in our design. The sending and
receiving of messages between the co-ordinator and the participants are considered
to be reliable and atomic. This means, to execute A-Broadcast m, a process simply
Reliable-Broadcast m, i.e., it sends m to all its neighbors in the system. When a
process R-delivers m, it schedules its A-delivery at local time (T + &) where A is the
time constant. If fis the maximum number of processes that may crash and ¢ is the

upper bound delay, then A = (f + 1)4.

Requirements:

Termination: If a correct process multicasts a message m to P, then some correct

process of P eventually delivers m or all processes of P are faulty.

e Validity: If a process p delivers a message m, then m has been multicast to a
set P and p belongs to P.

e Integrity: A process p delivers a message m at most once and there is no dupli-
cation.

e Uniform Agreement: If any process of P delivers message m, then all correct

processes of P deliver m.
48

e Timeliness: There is a time constant A such that if the multicast of m is initiated
at real time T, then no process delivers m after (T + A).
e Simple Agreement: If a correct process of P delivers a message m. then all

correct processes of P delivers m.

Consensus Protocol

This protocol is also part of the controller sub-block in our design. As the co-
ordinator sends a request message to commazt to all the participants, the non-faulty
participants form an agreement among themselves based on various information they
have about each other and finally decide to commit or abort. This way the non-faulty

participants in the system would reach a consensus among themselves.

Requirements:

e Termination: Every correct process (site) eventually decides some value.

Integrity: A process (site) decides at most once.

Validity: If a process decides X, then X was proposed by some process.

e Agreement: No two correct processes decide differently.

Uniform Agreement: No two processes decide differently.

Snapshot Protocol

The snapshot protocol gets activated as and when new local state transitions

take place thereby updating the global state which is basically the combination of all
49

the local states. This protocol helps the decision making protocol to check whether
no two local states in its global state vector has both the commit and abort states. If
a site crashes or fails after committing, its local states are still stored in the global
state vector as long as it gets recovered. But if a site fails before committing, its local

states are no longer present or kept in the global state vector.

Requirements:

Global state is always consistent, i.e., its state vector doesn’t have both a commat

state and an abort state.

Global state transition occurs whenever a local state transition occurs at a

participating site.
e Local state transitions are instantaneous and mutually exclusive events.

Exactly one local transition occurs during a global transition.

Voting (or) Election Protocol

At the start of a transaction, this protocol helps in assigning the co-ordinator
for the network and subsequently the other sites in the network as participants. But
when the assigned co-ordinator fails, then this protocol is used to elect a back-up
co-ordinator which then takes care of the transitions in the network. This protocol
uses the termination protocol to find out whether a co-ordinator has failed or not in

the network.

30

Requirements:

When the termination protocol is invoked due to a site failure. and if that site

happened to be the co-ordinator, then the voting/election protocol must be

invoked to elect the back-up co-ordinator.

e Once the back-up is chosen, it would base the commit decision only on its local
state.

e [f the concurrency set for the current state of the back-up co-ordinator contains
a commit state, then the transaction is committed, otherwise aborted.

e The back-up must issue a message to all sites to make a transition to its local

state. and then issues a commsit or abort message to each site.

e Should have the master (co-ordinator) protocol and slave (participants or co-

horts) protocol.

Undo/Redo Logging Protocol

This protocol is used in times of volatile loss of memory data units of the
transaction or in times of failure recovery when the last committed state should be
known for efficient recovery of the failed site. Initially an undo entry is done to undo
all the earlier data. Then just before committing the transaction, the site’s data
(state units) are redone in the stable log. This protocol is closely associated with
the checkpointing protocol which in turn helps in the recovery through the recovery

protocol. Undo and redo must function even if there is a second crash during recovery.
51

Requirements:

e Log must be kept in stable storage.

e Undo entry in stable log before writing into it.

e Redo entry in stable log before committing the transaction.
o Must write actions to log before actually taking them.

e Keep minimum number of values in the log at a time.

Two Phase Locking Protocol

This protocol helps in the proper logging of data during the active transaction.
The locking protocol allows a lock (shared resource log) to be acquired before the
transaction and then asks for unlocking once the transaction is over. This way,

serializability would be maintained while logging data onto the stable storage.

Requirements:

e Only one transaction at a time may write lock an object.

Write lock is implemented by a simple 1 bit write lock flag.

Write lock should enforce complete mutual exclusion on the object.

Multiple transactions may be read locking an object at the same time.

Read lock is implemented by using a read counter which holds the number of

transactions currently holding a read lock.

If an object is write locked, no read locks are allowed.

52

e Transaction must unlock all objects before finishing.

Checkpointing Protocol

When transient failures occur, rollback recovery takes place with the help of the
checkpointing protocol wherein the last successful or committed states of the sites
reside. The checkpoints are normally decided by the co-ordinating processes and
they use the logging mechanism to get the data items. Two checkpoints need to be
stored at any time, one called the permanent checkpoint which cannot be undone and

other called the tentative checkpoint which can be changed to a permanent one later.
Requirements:

e No domino effect.

e A set of checkpoints of different processes shouid form a consistent system state
(i.e) orphan and lost messages should not be present.

e Prior to establishing its K** checkpoint, a process should not consume any
message sent by a process after establishing its K** checkpoint.

o All co-operating processes checkpoint periodically, each with the same period

I which is > (8 +§).

Recovery Protocol

When a site fails by either failure transition or timeout transition, this protocol

gets invoked and uses the checkpointing protocol to get the last committed state of
53

the failed site. [t tries to recover the site from its transient fault by rolling back to
its checkpointed state. The recovered site then gets into the transaction process of

the active system.

Requirements:

Must restore an earlier possible state of the failed process using a checkpoint

from a stable storage medium and also replay the logged messages.

recognize the set of processes whose states depend on lost states using the

dependency information and roll them back.

e Commit messages to the outside when it is known that the states that generated
the messages will never need to be undone.

o A site failure after committing, should after recovery through this protocol join

back with other non-faulty sites in the transaction.

Decision Making Protocol

Whenever a new transaction occurs or when new state transitions take place in
the network, the snapshot protocol updates its global state with new local states of
the sites in the network. The decision making protocol helps to check constantly the
global states for any inconsistency in the local states. This protocol also helps in the
termination of a transaction if the two rules of the three phase commit protocol are

not satisfied by the co-operating sites.

94

Requirements:

e Must check the global state to see if there exists any local state such that its
concurrency set contains both an abort and a commit state.

e Must make sure that the global state doesn’t have a non-committable local state
whose concurrency set contains a commail state.

e Should terminate the transaction using the termination protocol if any one of

the above two conditions fail.

Termination Protocol

When the failure protocol invokes the termination protocol with the failed site
as co-ordinator, the termination protocol gets involved in the process of choosing a
back-up co-ordinator using the voting protocol. This, the termination protocol would
do provided the other correct or non-faulty sites satisfy the conditions of the non-
blocking theorem. But if the decision protocol detects that the two conditions are
not satisfied by the global state of the network, provokes the termination protocol to

completely terminate the transaction.

Requirements:

e Must terminate the transaction temporarily if the current state of at least one
operational site obeys the conditions of the non-blocking theorem.
o If the two rules of the non-blocking theorem are not satisfied by any operational

site, then the entire transaction is permanently terminated by this protocol.
55

e Must aid in voting a back-up co-ordinator if the earlier assigned one fails.

Failure/Time-out Management Protocol

The model used in this protocol basically specifies the type of failure the network
would have, and the timer mechanism in it helps to timeout actions when a site failure
occurs. The timeout transition is then broadcasted to the entire network in order that
other non-faulty and operational sites know about the failure of the timed-out site.
This protocol is of utmost importance when a co-ordinator times out in the network.
Now when this happens. this protocol invokes the termination protocol which in turn

invokes the voting protocol to elect a back-up co-ordinator for the network.

Requirements:

e A site is operational if, in response to inputs, it behaves in a manner consistent
with the specification; if it behaves otherwise, it has failed.

e Must specify the failure model for the network.

o If a site has a local clock whose drift rate with respect to real time is p, then &
has to be replaced by (1 + p)d in timeout delays to compensate the worst drift
rate.

e If a participant P does not receive from @ a response to a message 24 time units
after its sending, then the result is that @ has crashed.

e In the above case, before being notified of the failure of @ by the timeout

mechanism, P will receive all the messages @ sent to it before crashing.
56

At this stage, we have identified the 3PC protocol building blocks and de-
scribed the high-level framework for protocol composition. We now illustrate how
these building blocks composed together via categorical operations help achieve in

satisfying the global properties of the 3PC protocol.

3.6 Determining Dependencies among the Build-
ing Blocks of Three Phase Commit Protocol

After having given brief description of each of the sub-protocols, in this
section we elaborate on their modular dependencies and in that respect, we have
divided the building blocks into two sets of sequential divisions, with each set of
sequence performing a part of the overall functionalities of the three phase commit
protocol.

& Sequential Division - I: The first set of sequential building blocks comprises of
the controller protocol, undo/redo logging protocol, two phase locking protocol, check-
pointing protocol and recovery protocol.

The overall functionality of the first sequence is to safely recover a failed
site which is basically what the recovery block (protocol) does. But for the successful
working of the recovery protocol, it needs the checkpointing protocol to inform about
the last successful state so that the recovery protocol can start the recovery from that
state. But the checkpointing protocol depends on a stable storage medium from where

it can get the state information, which is what the undo/redo logging protocol does.
57

But before the checkpointing protocol can verify the log for last state information. a
locking mechanism (two phase locking protocol) has to be applied on the log protocol
to make sure that at a time no site does the operation of both reading and writing
onto the log.

& Sequential Division - 2: The second set of sequential building blocks comprises
of the controller protocol, snapshot protocol, decision making protocol, termination
protocol, voting/election protocol and failure/time-out management protocol.

The global functionality of the second set of sequential building blocks is to
elect or vote a backup coordinator when the initially assigned one fails. Now this is
done by the voting/election protocol. But this protocol won’t get activated as long
as there is no termination call for the transaction. A call for termination is made
when the coordinator fails by either a failure transition or a timeout transition. Also
termination could take place due to non-satisfaction of the consistent state rule of
three-phase commit protocol. The decision making protocol checks for these two rules
and invokes the termination protocol if a site fails to satisfy the two rules. For all
this to happen, the snapshot protocol is needed to give complete information about
the local states of all the participating sites in the form of a global state.

In Figure 3.4, we show that by successively combining two sub-protocols
using the colimit operation and associated morphisms, one can come up with a final
(small) sub-protocol which would prove the global functionality of sequential division

1 of the three phase commit protocol.

58

SEQUENTIAL DIVISION - (

CONTROLLER
PROTOCOL
\ PR, l-\.
PRy \
v PR,
UNDO/REDO
LOGGING
FROTOCOL TWO PHASE PRy
LOCKING
PROTOCOL CHECKPOINTING
PROTOCOL RECOVERY
PROTOCOL

Figure 3.4: Modular Dependencies of Building Blocks based on Seq. Division-1

In Figure 3.4, initially we bring together the sub-protocols controller and
undo/redo log with interactions between them being over the co-ordinator and par-
ticipants information. By combining these two sub-protocols, we come up with a
sub-protocol named PR, as depicted in Figure 3.4. This new sub-protocol, called the
child sub-protocol, which is a conglomeration of two different sub-protocols (parent)
would now satisfy the properties of both of its parents which means that PR, would
both have information regarding the various components ready for transaction and
also log their state information onto a stable storage medium.

Then this sub-protocol PR, is combined with another sub-protocol namely
the two phase locking protocol. Now PR, and two phase locking protocol act as
parents to produce a single child sub-protocol called PR, with interactions between
them being over the transaction details of the various components involved. Next
sub-protocol PR, gets composed with checkpointing protocol with their common
morphism of site state data to arrive at sub-protocol PR3. PR3 gets combined with

recovery protocol due their common relationship of stored state information of all the

59

sites to form a new sub-protocol PRj,.

This way we composed two sub-protocols at a time based on their relation-
ship for all the sub-protocols in the sequential division 1 and finally came up with a
sub-protocol named PR;. Sub-protocol PR, would satisfy the global functionality

(which is the recovery of the failed site) of the sub-protocols in sequential division 1.

SEQUENTIAL DIVISION -2

CONTROLLER

e

PRy
SNAPSHOT
PROTOCOL DECISION PRy
MAKING
PROTOCOL FAILURE/ LY
TIMER TERMINATION PRq

PROTOCOL PROTOCOL 4

VOTING/
ELECTION
PROTOCOL

Figure 3.5: Modular Dependencies of Building Blocks based on Seq. Division-2

In Figure 3.5, we follow the similar steps as outlined in the case of sequential
division 1 and came up with the final sub-protocol PRy which would satisfy the global

functionality of the second set of sequential building blocks.

60

Chapter 4

Formal Analysis of Three Phase
Commit Protocol

In this chapter, we do the formal analysis of the three phase commit protocol
based on the building blocks identified in the previous chapter. [n particular, we show
how a global property of the three phase commit protocol could be decomposed into
sub-properties and subsequently provable by one of the composed protocols (building

blocks) for each of the sub-properties.

4.1 Analysis of the Global Properties of 3PC

In this section, we show how a global property of the three phase commit pro-
tocol could be decomposed into sub-properties and subsequently provable by one of
the composed protocols (building blocks) for each of the sub-properties. It is im-
portant to note that all these identified sub-protocols do not come into picture at
all time in the overall operation of the 3PC. Some of these sub-protocols are used

in satisfying specific requirements of the 3PC protocol operation. Given this fact,

61

we have identified three different modes in the overall operation of 3PC where the
sub-protocols have been utilized for meeting specific requirements. The three global

properties associated with these three modes are:

e Serializability of Transactions
e Consistent State Maintenance

e Roll-Back Recovery

In subsequent subsections, we show how a few specific sub-protocols can
be composed together to achieve each one of the three identified global properties
mentioned above, namely the Serializability of Transactions, Consistent State Main-

tenance and the Roll-Back Recovery.

4.1.1 Analysis of Global Property—1: Serializability of Trans-
actions

In a distributed system several users may read and update information con-
currently. If the operations of the various user transactions are not interleaved in a
correct fashion, several undesirable situations may arise, such as creation of incon-
sistent data or users receiving inconsistent information. Serializability enables the
coordination of concurrent accesses of data by the various transactions so that the
effect is the same as if the transactions ran one at a time.

The serializability property states that the effect of executing a collection of

atomic actions is equivalent to some serial schedule in which the actions are executed
62

one after another. The technique we have emploved for implementing serializability
is by two phase locking mechanism. In this scheme, a lock is associated with each
shared resource, with the requirement that a lock be acquired prior to any access of the
associated resource. In order for the locking to be employed, we need to have a stable
storage medium with undo and redo mechanisms, a procedure to achieve consensus

and a reliable communication among the various processors in the distributed system.

(Sub—Property:4) Reliable Broadcast or Multicast (Broadcast protocol)
mechanism
{Sub--Property:3) Reliable ag mechani (C protocol)

(Sub--Property:2) Storing the values that were produced | (Undo/Redo logging protocol)
due to a transaction.

Write & read transactional values .
2 2 locki: tocol
(Sub--Property:1) using resource locking mechanisms. (2 phase locking protacol)

Serialize the ransaction. (Main property of 3PC)

Figure 4.1: Serializability of Transactions: Dependencies on Sub-Protocol Properties

In Figure 4.1, for the main global property of serializability of transactions
to be true, sub-property: 1 must be true, i.e, write and read transactional values using
resource locking mechanism, which can be proved using the two phase locking sub-
protocol. Now for sub-property: 1 to exist, sub-property: 2 must be valid, i.e, store
the values that were produced due to a transaction, which can be verified using the
undo/redo logging sub-protocol. Again, to realize sub-property: 2, sub-property: 3 must

63

be true, i.e, a reliable agreement mechanism among the sites or participants, which is
provable by the consensus sub-protocol. Finally for all the above-said sub-properties
to be realized, sub-property: 4 must be absolutely possible, i.e, a reliable broadcast or

multicast mechanism, provable by the broadcast sub-protocol.

Controller protocol with
Consensus protocol and m
Broadcast protocol \

Undo/Redo Logging m,
Protocol b PR,
2 Phase Locking %
Protocol

Figure 4.2: Composition of Sub-protocols to attain Serializability Property

Figure 4.2 illustrates the dependency of the global property of serializability
of transactions on various sub-properties. In Figure 4.2, at first the controller and
undo/redo logging sub-protocols are modularly composed to come up with a new sub-
protocol PR,. PR, now has the properties of both the controller and undo/redo
logging sub-protocols. Next we modularly compose the PR, and two phase locking
sub-protocols to come up with the sub-protocol PR;. Now PR, would satisfy the
global property of serializability of transactions of the 3PC protocol. Next we give

the category-theoretic reasoning for this property using morphisms and colimits.

64

Processurs fl Agreeconsensus . where:

Pmc Dccl _— V.nllcons:nsus ' f1=Pn)c:sm —=AgreeBroad
by = AgreeBroat—e Reliable B
. ,i: Pr —C
. CoNSENSUS |5 ' e
proTocOL | =G

TermBroad Sptc Conscnsus . fp=Pr g

valiBoad g Chooa —

AgreeBroad | . |
Processors s / Broadcast g = Processors —*AgreeBroad
Messages Deliver : . k; = AgrecBroad— Consensus

.
Clockvalues £y Tct.mBmav.l ' my + t = Processors —Processors
BroadcastDelay -2 ValiBroad | : } s = TermBroad ~~TermBroa. ValiBroxt—~ValiBmad. Deliver —=
R erwork A . . Detiver, AgreeBroad —mg 1 Broad —R
BROADCAST o0 i + my = Reliable Broadeast —=Ci
82 D miy= —C,
* PROTOCOL hy Spec: Cuntroller : m5 = Consensus "“"ff"’n)

Time Reliable Broadcast | {20 b = Processors =g 30k
Faulure ——— - Spec: Reliable ~~-=~-=------ > Consensus .
Communicanon ky Broadcast my e + flohy =Processors —*Consensus =g | o ky

Model

Figure 4.3: Composition of Broadcast and Consensus Protocols

Modularly Composing the Sub-Protocols via Category Theo-
retic operations

In figure 4.3, each of the modules are depicted in the same way as figure 2.4
with the four sets of objects as parameters, export, import and body (spec) with
their corresponding morphisms. The Broadcast protocol has the processor informa-
tion, type of messages, clock value, network reliability assumption, delay and bound
features of broadcast as its parameters. [t imports the basic primitives like Time,
Failure, Communication and Model from previous specifications. The specific prop-
erties of this protocol are shown as the export entities, namely TermBroad defining
the termination property of the broadcast protocol, ValiBroad defining the validation
property, AgreeBroad showing the common agreement property and Broadcast and
Deliver illustrating the basic operations that are to be employed while defining the

above mentioned properties.

65

There are three kinds of morphisms in the figure, namely the specification
morphisms ¢, s, mapping morphisms f;, g\, hi, ki, f2. g2. ha and ky and colimit
morphisms m,;, my. The specification morphism ¢ relates the parameters of both the
composing modules. For example, in the figure, ¢ maps the parameters of consensus
protocol with the parameters of broadcast protocol. The mapping morphisms help in
the mapping of the four objects inside a module. For example, in the figure, f; maps
Processors in the distributed system to the property Agreeconsensus, meaning that
the property Agreeconsensus has processors in its property definition. This could
be clearly appreciated from the Specware specification wherein def Agreeconsensus
uses the information about the various processors in the distributed system for its
definition. The colimit morphisms help in mapping the final specifications of both
the modules. All other modules have also been specified in the same way as explained
above.

In Figure 4.3, the broadcast protocol and consensus protocol are modularly
composed to come up with the controller protocol. Composing two modules in the
way shown above is possible only if each of these two modules commute individually
through the specification morphism relationship.

Figure 4.4 shows the composed diagram (module) of the controller protocol.
Now controller block has the properties of both broadcast and consensus sub-blocks,
i.e, reliable in broadcasting and also uniform in decision-making (consensus). We can

see from the figure that the final composed module also commutes by the specifi-

66

where:

)
]
Processors fy Agreeconsensus '
Proc Deci ——— >Valiconsensus + £ =Processors ——>Agreeconsensus
-]
Reliable Network Decision ' h; o m, = Agreeconsensus —>Consensus
Proposal '
CONTROLLER i tog, =Processors —>Communication
h;o '
togy PROTOCOL e ' ky 0 m | =Communication —> Consensus
1
. . '
Time k. om Spec: Controller * £, oh; om, =Processors —>Consensus
Failure . _—2—1—> Reliable Broadcast !
Communication Consensus ' togsokyom| =Processors ——>Consensus
Model :
t

Figure 4.4: Composed Diagram of Controller Protocol

cation morphism relationship which proves the correctness of the composition and
also guarantees the proper working of the composed module if it is to be reused or
inherited elsewhere.

Note that, when this composed module is reused elsewhere for the purpose
of further composition with other modules, the morphism notations are renamed for
the purpose of simplicity and consistency in naming. For example, the composed
diagram of controller protocol in figure 4.4 has the morphisms fi, t o ga, hy o my and
k, o m,, whereas, when it is reused for composing with another module namely the
Undo/ Redo protocol (as shown in figure 4.5), the morphisms have been renamed as
fa, g2, he and ko. This has been done just for the purpose of keeping monotony in
the naming of morphisms in all the figures and that there is no change in the actual
morphism mappings. For example, Morphism f; (as in figure 4.4) = Morphism f, (as
in figure 4.5) = Processors — Agreeconsensus.

The controller protocol and undo/redo log protocol are modularly composed

to come up with a new protocol called PRy, as depicted in Figure 4.5. In the figure, the
67

Processors Storevalues

Transactions Undo .
f
Valstabstorage __ 1 Redo : where:
c"m“u“'::‘"’ ! f5=Processors —=Agreeconsensus
Newstateval : h" R
o UN hy ! g = Processors —~Communication
t ' &y = Communicanon—>Consensus
PROTOCOL 2
Agreeconsensus . Spec:Undo/Redor Log) . fl = Processars —Storevatues
Valiconsensus k‘ : T b =Storevalues —=tog
Decision ' o1
pasal : : 8l = Pro g
s ' : ky = Agreeconsensus ——"Log
f Agrecconsensus L m, + t = Processors —®rocessors
Pm.c_Du:l ——2__..Valiconsensus N « 3 = Valiconsensus —% aliconsensus. Deasion —*Deaision.
ReliableNetwork D::sm:' : : " Proposst —=Propasal
€ P ; N m =Consensus —=Log
pi CONTROLLER lh, Spec:PR T M= —
PROTOCOL - =P ma=bos Lot
Spec: Controller Retiable Broadcast ¢ fza "2 = Processors —*Consensus = ¢ 10 [39
Failure ot L Broadeacy ~TC T » Conscusus . -
———=Rcliablec Broadcast 1 = =
Communicatiocn ko Consensus s my Log . fioh) =Proccssors —~log=g ok
Mode!

Figure 4.5: Composition of Controller and Undo/Redo Protocols

parameter Valstabstorage in the Undo/Redo protocol is the stable storage medium

for the processor state values.

Processors f | Storevalues where:
Transactions ————> Undo f 1= Processors —>Storevalues
Valstabstorage Red hy; o m, = Storevalues —>Lo

4 1 2 g
Currentstatevalue -
Newstatevalue h; om, to g, =Processors —Communication

tog, l PR; PROTOCOL ky 0 m; = Communication ——>Log

s Spec: PR
T"_ne k om ;Pe'—l fi oh om, =Processors —> Log
Failure —2 1 . Reliable Broadcast -
Communication Consensus tog,0kyom, =Processors —>Log
Model Log - -

Figure 4.6: Composed Diagram of PR, Protocol

Figure 4.6 shows the composed diagram (module) of the PR, protocol. Now
PR, block has the properties of both controller and undo/redo log sub-blocks, i.e,
reliable in broadcasting, uniform in decision-making (consensus) and also store the

values of the transaction onto a stable storage medium.

68

Processors Writelock
Transactions Readlock
Valstabstorage ¢ Unlock '
Transaction 1d ;.anhng

bere:
Processors —Storevalues

-
)

CumeniData Read 1 by = Starevalues —=Log
PreviousData Write ' S; N c
! 2 PHASE LOCKING v oeEY -
] PROTOCOL by 1 ¥y =Comnmncaton=—Log
.
StoreValues Spec: 2 Phase Lockmng * fy = Processors ~—*Wneelock
Undo K [leck) 1 b = Watelock —Lock
o .
. s g =Processors —*Storevalues
Processors A v : 1
Transactions ' s k= Store values —*Lock
Valsabstorage f 5 Storevalues ‘o, Pt =Pr —ero T —T,
~Undo H : T s =Storevalues—Storevalues. Undo —%ndo.
Curtentstatevalue Redo ¢ : Redo—=Redo
‘zl PR, by SpecfR, } my =Log —>Lock
i PROTOCOL ... lcl:lublel:lsmadm H my = Lock — Lock
Faslure Reliable Broads '”;n----olng v fzohz:Pm«ssnrs ﬁlng:g:n k:
C 'S C t Lock .
Model s Log : flohl:Pmc:sson —*tock =g jo kg

Figure 4.7: Composition of PR, and 2 Phase Locking Protocols

Next we modularly compose the PR, protocol and two phase locking protocol

to arrive at PR, protocol (See figure 4.7).

Processors Writelock
Proc_dect Readlock
Valstabstorage £ ;| Unlock

Transaction id —>Locking

where:
f 1= Processors —Writelock

hl om, = Writelock —>Lock

'
]
'
CurrentData Read '
. ‘ '
Pfpviousbaa Wrife ! togy =Processors ——>Communication
om s
tog,| PR, PROTOCOL 1 °m o, = Conmuniaion —Lock
Spec: PR, . -
i — 1
Fane k,om Reliable Broad ' fy oh; om, =Processors ——>Lock
Failure 2 1 eliable Broadcast : 2]
Communication Consensus : _
Model Log ¢ togpokyomy =Processors —>Lock
Lock '

Figure 4.8: Composed Diagram of PR, Protocol

Figure 4.8 shows the final composed diagram of PR, protocol. Now the
composed PR, block has the locking properties in its final specification along with
the other properties which it is dependent on namely reliable broadcast, consensus
and logging. Since it has the locking mechanism, the PR, protocol would satisfy

the serializability property of the three phase commit protocol thereby ensuring the

69

coordination of concurrent accesses of data by the various transactions so that the
effect is the same as if the transactions ran one at a time.

By selectively identifving sorts and operations out of three sub-protocols.
namely controller protocol, undo/redo logging protocol. and two phase locking protocol
for different morphism definitions, we have essentially constructed a sub-protocol PR,

which satisfies the serializability of transactions property.

4.1.2 Compositional Verification of Global Property—-1

Serializability enables the coordination of concurrent accesses of data by the
various transactions so that the effect is the same as if the transactions ran one at
a time. The serializability property states that the effect of executing a collection of
atomic actions is equivalent to some serial schedule in which the actions are executed
one after another.

The formal representation of the serializability definition is given below:
V(p,q : Processors, m : Messages,t : Transactions, v,commit, abort : Proc.Decision)
V(T : Clockvalues, N : Transactionid, X : Transactionvalueinstablestorage)
V(y : Currentstatevalue, z : Newstatevalue,Y : Currentdata, Z : Previousdata) :
correct(p, T) A correct(q, T)A
if((Deliver(p, m,T) — Deliver(q, m,(T + v + d)))A

(Decision(p,v,T) — Decision(q,v,T))A

70

(Undo(t, abort, X, y) A Redo(t,commit, X, z) — Log(t, X.z))
then(=~(Write(T,Y, X)) A ~(Locking(N.Y)) A Unlock(N. Z))
— (Read(T.,Y, X) A Locking(N,Y))
else(—~(Read(T, Y, X)) A =~(Locking(N,Y)) A Unlock(N, Z))
— (Write(T, Y, X) A Locking(N.Y)))

where,

e 7 is the maximum broadcastdelay.

e § is the broadcastbound.

e Network is assumed to be a reliable one without partitions.

e correct(p,T): processor p is correct at clock value T.

e correct(q,T): processor q is correct at clock value T'.

e Broadcast(p,m,T): processor p broadcasts message m at real-time T
e Deliver(p,m,T): processor p delivers message m at real-time T.

In order to prove the above mentioned global property, we need to first
establish the sub properties which the global property is dependent on. So for the
purpose of a proper locking mechanism, a stable storage medium with a standard undo
and redo operation is needed which in turn depends on the properties of a consensus
procedure which is not possible without the properties of a reliable communication
among the various processors in the distributed system. Hence we need to first prove
the properties of the reliable broadcast mechanism.

The properties provided by the reliable broadcast are the following:

71

eTermination:- Every correct process eventually delivers some message.

SP1: TermBroad
A(p, m, T) : correct(p) A Broadcast(p,m,T) —

Y(q,7v) : correct(q) A Deliver(q, m, (T + 7))

eValidity:- If a correct process broadcasts a message m. then all correct processes
eventually deliver m.

SP2: ValiBroad
I(p.m.T) : correct(p) A Broadcast(p,m.T) —

Y(q,v,9) : correct(q) A Deliver(q,m.(T + v+ 3)) A (7 < d)

eUniform Agreement:- [f a process delivers a message m, then all correct processes
eventually deliver m.

SP3: AgreeBroad
3(p)V(m, T) : correct(p) A Deliver(p,m,T) —

V(q,v,9) : correct(q) A Deliver(q,m, (T + v + d))

Utilizing the following operational definitions, we state the various properties
of the consensus protocol:
e Decision(p,v,T): processor p arrives at a final decision v which is either to commit
the transaction or to abort it.
e Proposal(p,v,T): processor p proposes a decision v at real time T to either commit

or to abort the transaction.

72

The properties are:
eValidity:-If a process decides X, then X was proposed by some process.

SP4: Valiconsensus
Y(p,q, T)3(v) : Decision(p,v,T) — Proposal(q.v,T)

This means that if a processor p makes a decision v which could be an abort
or a commit, then that decision was initially made by another processor q.
eUniform Agreement:-No two processes decide differently.

SP5: Agreeconsensus
Y(p.q,v,T) : Decision(p,v,T) = Decision(q,v.T)

Here both the processors p and g make the same decision whether to commit
or abort.

Now that we have stated the properties of reliable communication medium
and a consensus procedure, we will next state the properties of the stable storage
medium with the undo/redo operation.

The various operational definitions are:

e Undo(t,v,X,y): Undo the current state value y taken during the transaction ¢
based on the processor decision v (abort) from the stable storage X before writing
into it.

e Redo(t,v,X,z): Redo the new state value z taken during the transaction ¢ based

on the processor decision v (commit) into the stable storage X before committing the

73

transaction.
e Log(t,X,z): Stores the new state value z of the processor got during the transaction
t onto the stable storage X.
The property to be satisfied is:
SP6: Storevalues
Y(p, q,t)¥(commit, abort)¥(y, z) : Undo(t, abort. X, y)A
Redo(t, commit, X, z) — Log(t, X, z)

Log is represented as a sequence of entries of the form [¢,X,|, where z is the
value that transaction ¢ wrote into data item X. Log also contains sets of committed
and aborted transactions. Each change to the database causes a log entry. Log has
initial and final states (or) initial and differential state transitions (or) initial and
operations performed. When volatile memory is lost in a system failure, the protocol
examines the log, finds the last committed values of all data items that have been
updated and restores them as new volatile values of these data items. Entry is undone
in the stable log before writing into it and redone before the transaction is committed.

Having stated the individual properties of reliable communication medium,
consensus and logging procedures, we can now establish the global property of “seri-
alizability of transactions”. This property allows a transaction to access a data item
only if it is currently holding a lock on that item. Hence we need a method to hold a
lock on an item (shared resource log). Note that the type of lock depends on whether

the transaction will read or write to the item.

74

The various operational primitives of a locking protocol are:
e Read(t,Y,X): Reads the current data Y of the transaction t from the stable storage
medium X.
e Write(t,Y,X): Writes the current data Y of the transaction t onto the stable storage
medium X.
e Locking(N,Y): Locks the current state value Y with N as the transaction id.
e Unlock(N,Z): Unlocks the previous state value Z with N as the transaction id.

The various properties are:

SP7: Writelock
VY(p,q,.t)¥(N.X.Y, Z) : ~(Read(t, Y, X)) A ~(Locking(N,Y)) AUnlock(N, Z)
— Write(t, Y, X) A Locking(N,Y)

Only one transaction at a time may write lock an item and it is implemented
by a simple 1 bit write lock flag. Write lock should enforce complete mutual exclusion
on the item. An item is write locked if the item is not currently read locked (resource)
and that the item had been already unlocked and free to be locked again.

Multiple transactions may be read locking an item at the same time. Read
lock is implemented by using a read counter which holds the number of transactions

currently holding a read lock.

SP8: Readlock

V(p,q,t)V(N,X,Y, Z) : ~(Write(t, Y, X)) A ~(Locking(N,Y)) A Unlock(N, Z)

75

— Read(t, Y. X) A Locking(N.Y)

An item is read locked if there are no current write locks on the item and
that the item is free to be locked again. This property helps in the proper logging
of data during the active transaction. The locking protocol allows a lock (shared
resource log) to be acquired before the transaction and then asks for unlocking once
the transaction is over. This way, serializability would be maintained while logging
data onto the stable storage.

As we have composed modules to get a composite protocol which satisfies
the Serializability property, it was of utmost importance that all the morphisms we
have defined along the way essentially ensure that all the necessary attributes and op-
erations from each individual building block protocols are carried on/included in the
composite specification. The fact that we have successfully composed the specification
which satisfies the specified requirements in turn guarantees that the morphisms have
been correctly defined. Through this strong mathematical framework, we have a ca-
pability to perform a backward propagation, i.e., essentially, we have the traceability

capability. We elaborate on this in our subsequent discussions.

Nuances of Morphisms in Compositional Verifica-
tion

In the formal representation of Serializability definition, the conditional

statement Deliver(p, m,T) — Deliver(q, m, (T+7v+0)) is satisfied by the AgreeBroad

property of the Reliable Broadcast protocol. The operation which extends this

76

AgreeBroad property gets mapped from the original Reliable Broadcast proto-
col block to the composite specification namely the PRy protocol via the morphism
s (figure 4.3) which is AgreeBroad — AgreeBroad meaning that the AgreeBroad
property of Reliable Broadcast protocol gets exported to the Consensus protocol
as its imported property and the morphism h, (figure 4.3) which is AgreeBroad —
Reliable Broadcast meaning that the AgreeBroad property ultimately maps it to the
final property in the specification. From here on, this final property namely the Re-
liableBroadcast in the specification gets carried on till the global composite protocol
PR, through the morphisms m, as labeled in figures 4.3, 4.5 and 4.7.

The next conditional statement in the definition namely Deciston(p,v,T) —
Decision(q, v, T) is satisfied by the Agreeconsensus property of the Consensus pro-
tocol. The operation which extends this Agreeconsensus property gets mapped from
the original Consensus protocol block to the composite specification namely the PR,
protocol via the morphism s (figure 4.5) which is Agreeconsensus — Agreeconsensus
meaning that the Agreeconsensus property of Consensus protocol gets exported to
the Undo/Redo protocol as its imported property and the morphism A, (figure 4.5)
which is Agreeconsensus — Consensus meaning that the Agreeconsensus property
ultimately maps it to the final property in the specification. From here on, this fi-
nal property namely the Consensus in the specification gets carried on till the global
composite protocol PR, through the morphisms m; as labeled in figures 4.5 and 4.7.

The third condition in the definition namely Undo(t, abort, X, y) A Redo(t,

"7

commit, X, z) = Log(t, X, z) is satisfied by Storevalues property of the Undo/Redo
protocol. The operation which extends this Storevalues property gets mapped from
the original Undo/Redo protocol block to the composite specification namely the PR,
protocol via the morphism s (figure 4.7) which is Storevalues — Storevalues meaning
that the Storevalues property of Undo/Redo protocol gets exported to Two Phase
Locking protocol as its imported property and the morphism h, (figure 4.7) which is
Storevalues — Log meaning that the Storevalues property ultimately maps it to
the final property in the specification. From here on, this final property namely the
Log in the specification gets carried on till the global composite protocol PR; through
the morphism m, as labeled in figure 4.7. Now if all these conditional statements
are satisfied, then the final property statement in the serializability definition would
be also satisfied by the fact that the Two Phase Locking protocol which helps in
concurrency of data transaction depends on the attributes of the Undo/Redo protocol

by importing its properties as shown in figure 4.7.

4.1.3 Analysis of Global Property—2: Consistent State Main-
tenance

Let the system state at a particular time be defined as a history of events
constituting the set of all components (site) states at that time. Then, a system state

is said to be consistent if for every event corresponding to the receipt of a message in

78

(Sub—-Property:4) :{c:;:l::?mm;ic;s;: (Broadcast protocol)
(Sub—Property:3) Reliable C mechani (Cc protocol)
(Sub—Property:2) x;;“::: :‘ ilgf;:l;::cci‘;::& (Snapshot protocol)
Suoppryy | s 3 LA o ki
Consistent Global State
mechanism (Main property of 3PC)

Figure 4.9: Consistent State Maintenance: Dependencies on Sub-Protocol Properties

the state, the event corresponding to the sending of that message is also included.

As depicted in Figure 4.9, for the main global property of consistent state
maintenance to be true, sub-property: 1 must be true, i.e, no two concurrent states in
a global state should have both commit and abort states, which can be proved using the
decision making sub-protocol. Now for sub-property: 1 to exist, sub-property: 2 must
be valid, i.e, a global state should have local states of all participants, which can be ver-
ified using the snapshot sub-protocol. Again, to realize sub-property: 2, sub-property:
3 must be true, i.e, a reliable agreement mechanism among the sites or participants,
which is provable by the consensus sub-protocol. Finally for all the above-said sub-
properties to be realized, sub-property: 4 must be absolutely possible, i.e, a reliable
broadcast or multicast mechanism, provable by the broadcast sub-protocol.

Figure 4.10 illustrates the dependency of the global property of consistent

79

Controller protocol with
Consensus Protocol & m
Broadcast Protocol \

P

Snapshot Protocol d PR,
Decision Making /
8
Protocol

Figure 4.10: Composition of Sub-protocols to attain Consistent State Property

state maintenance on various sub-properties. Now in Figure 4.10. at first the con-
troller sub-protocol and snapshot sub-protocol are modularly composed to come up
with a new sub-protocol PRs. PRs; now has the properties of both the controller
and snapshot sub-protocol. Next we modularly compose the PR5 sub-protocol and
decision making sub-protocol to come up with the sub-protocol PRg. Now the new
sub-protocol PR would satisfy the global property of consistent global state main-
tenance of the three phase commit protocol. Next we give the category-theoretic

reasoning for this property using morphisms and colimits.

Modularly Composing the Sub-Protocols via Category Theo-
retic operations

For this property, the composition of broadcast and consensus sub-protocols
to form the controller sub-protocol is the same as that of the first global property.
However for the sake of continuous readability, we have again shown it here.

In Figure 4.11, the broadcast protocol and consensus protocol are modularly

composed to come up with the controller protocol. Composing two modules in the

80

Processors £ Agreeconsensus . where:

Proc_Dec: ! Valconsensus , fy=Processors —=AgreeBroad
ReliableNetwork D ' by = AgreeBroad— Reliable B
Propusal + gy = Processors —*C
. 21| consEnsus |, 2
i k=G — Relible B
PROTOCOL (a3

TermBroad Spec. Consensus « fy=Pn ad

Valifoad : ChozA —

AgreeBroad 1 N P U
Processors s / Broadcast ' : gI=Pmossms —*AgreeBroad
Messages Deliver : . ky = AgreeBroad—> Consensus
Clockvalues f TermBroad L omy it = Processors ~Processors
EW"V. —’——A("‘"B':"‘ . DT i s = TemBroad —=TermBroad, ValiBroad—=ValiBroad, Deliver —
FenamieTe tware " . . Deliver, AgreeBroad —greeBroad. Broadcs —= Broadcast

Deliver : i m = Reliable Broadcast —=C
82 BROADCAST s ¥ Conmol U ma=C -
PROTOCOL h2 Seec: Conmroller 72 o
Time Relable Broadcast | f29fa =P 3 bt =g 30k
Fatlure Spec: Reliable ----~--=----- - .
Consensus = —eC =

Comnwnication ky Broadcast my : fiehy = Processors onseasus =g o ky
Mode!

Figure 4.11: Composition of Broadcast and Consensus Protocols

way shown above is possible only if each of these two modules commute individually

through the specification morphism relationship.

)
T
Processors f Agreeconsensus ¢ where:
i f| =Pro ——>Agreeconsensus
Proc_Deci ————>Valiconsensus » 1y =rrocessors greeconsensu
Reliable Network Decision ¢ hy o0 m, = Agreeconsensus —>Consensus
Proposal s
CONTROLLER P : tog, =Processors ——>Communication
h,o m, ¢
togs PROTOCOL =2 ; k» 0 m | =Communication —> Consensus
1
. .]
Time k om Spec:Controller . ¢ { 9hj om, =Processors —>=Conscnsus
Failure 21> Religble Broadcast -
amumcallon Consensus ' togyokyom =Processors —>Consensus
e Ada)
[}
1

Figure 4.12: Composed Diagram of Controller Protocol

Figure 4.12 shows the composed diagram (module) of the controller protocol.
Now controller block has the properties of both broadcast and consensus sub-blocks,
i.e, reliable in broadcasting and also uniform in decision-making (consensus). We can
see from the figure that the final composed module also commutes by the specifi-

cation morphism relationship which proves the correctness of the composition and

81

also guarantees the proper working of the composed

inherited elsewhere.

%
Processors fa Valiconsensus
Reliable N ok g
:_Dect Decision
Proposal
'3 CONTROLLER
PROTOCOL 52
Ti Spec’ Controller
Failure .
Communication k Reliable Broadcast
Model Consensus

module if it is to be reused or

where.
Processors Globprocstateinfo f, Pro ——
Statestabstorage (| sending - _:
Chanael reception by Agreeconsensus Consensus
States record £) Pro —=C.
Nuj SNAPSHOT k4 Communication —=Consensus
PROTCCOL by =
£ [o —=Globp
Val nsus Spec Saapshot hy Globy fo ~Glob
Agrecconsensus . tGlobal State) gy Proceusors —=Agrecconsensus
1300 1 : A —eClL

Proposal kp Ag Gl

. t Processors == Processors

' s Val - val

Lm

Decision —> Dectaon. Proposal —=
Propasal
N my Consensus —= Globalstate
;Vcc PR 5 m, Globalstate —=Globalsuste
.................. » Relisble Broadcass [[y o by = Processors —=Consensus = ¢ y oky
my Consensus
Global State fyohy Processors ~~Decsion=g | ok

Figure 4.13: Composition of Controller and Snapshot Protocols

The controller protocol and snapshot protocol are modularly composed to

come up with a new protocol called PRs, as depicted in Figure 4.13.

Processors
States

Null

Channel
Statestabstorage

tog,
PRS PROTOCOL

Time
Failure
Communication k ,om

Model 1

Globprocstateinfo
reception

sending

record

hjomy

Spec: PR 5
Reliable Broadcast

Consensus
Globalstate

where,
f| : Processors —> Globprocstateinfo

hjom, : Globprocstateinfo —> Globalstate
tog, : Processors —> Communication
koom;: Communication — Globalstate

f| oh o m, : Processors —>Globalstate

tog,o0 k jom;: Processors —> Glabalstate

Figure 4.14: Composed Diagram of PRs Protocol

Figure 4.14 shows the composed diagram (module) of the P Rs protocol. Now

PRs block has the properties of both controller and snapshot sub-blocks, i.e, reliable

in broadcasting, uniform in decision-making (consensus) and information about the

82

local states of all participants.

Prcessun
Proc _Dexs
Dexsstae
Decistase

Staesiabuncage
DECISION
,'l MAKING
. PROTOCOL

sonstaemnto where,

1y Procewnrs —*= Globpmcitacmio
hy Globprucitatanto —= Glubalstate
[$3 Proceswrs = Commumcatun
&k, Commmacame —=Globslstae

1y Procesmes — Constacnio

Globprocumanlo . Spec. Decason by Gonststemin ~= Decrsion

sending
oo
/::
+
Processors Globprucstatewnto
Chaanel (weading
States recepuon
Nail recond
Stacstabiorge
hy
':l PR PROTOCOL o -
5 PR
Time =Ry
Failure Refisble Bromicast . _
Comawaicauon & Comsensus my
Model Globalste

¢ Pmceswrs = Gilnbprcstatewmfo
k; Globprocuatemto ~= Decuswn
[= Prox -

Statestabsiornge

. Gl —=G

wnding ~*~ending. recepion ——*vocepion,
recond ~* recond

@y Globalstue —=QOecrsma
my Drancs ~*Decison

£y a by 2 Procenons —~Globalstale =gy ok,

tyoby =Processors —*Oecimon =gy ok

Figure 4.15: Composition of PRs and Decision Making Protocols

Next we modularly compose the P Rs protocol and decision making protocol

to arrive at P Rg protocol (See figure 4.15).

Processors Constateinfo
Proc_Deci f 1 adjacent
Decistatel next
Decistate2
Statestabstorage hy om,
tog PR PROTOCOL
2 6 Spec: PR
Time Reliable Broadcast
Failure Consensus
Communication k2 omy Globalstate
Model Decision

where,
f i Processors — Constateinfo

hjomy,: Constateinfo —> Decision
to g, : Processors —>Communication

ky o m;: Communication —> PDecision

f 1 0 hl omy : Processors —> Decision

tog, ok, om : Processors —>Decision

Figure 4.16: Composed Diagram of PRg Protocol

Figure 4.16 shows the final composed diagram of PRg protocol. Now the

composed PRg block has the decision making mechanism in its final specification

along with the other properties which it is dependent on namely reliable broadcast,

consensus and participants’ local state information. Since it has the decision mak-

ing mechanism. the PRg protocol would satisfy the Consistent State Maintenance
property of the three phase commit protocol.

By selectively identifying sorts and operations out of three sub-protocols,
namely controller protocol, snapshot protocol, and decision making protocol for differ-
ent morphism definitions, we have essentially constructed a sub-protocol PRg which
satisfies the Consistent State Maintenance property.

4.1.4 Compositional Verification of Global Property—-2

This property ensures that the global state comprising of all the local states of
the processors in the distributed system is always consistent (i.e.) its state vector
doesn’t have both a commit state and an abort state.

The formal representation of the consistent state definition is given below:

Y(p,q : Proc.,m.M, N : Messages,v.commit, abort : Proc.Decision,c : Channel)
V(T : Clockvalues, Null : Messages, X : Statestablestorage, s, S : States)
correct(p, T) A correct(q, T)A
if ((Deliver(p,m,T) — Deliver(q,m, (T + v + 6)))A
(Decision(p,v,T) = Decision(q,v,T))A
((record(q, s, M, X) A record(q, s, Null, X))or(record(q, s, m, X)A
record(q, s, N, X) A (~(reception(q, M, c,p,T)))))
then((—(next(commit, abort))) A adjacent(—(commit), commit)))

where,
84

e 7 is the maximum broadcastdelay.

e § is the broadcastbound.

e Network is assumed to be a reliable one without partitions.

e correct(p,T): processor p is correct at clock value 7.

e correct(q,T): processor q is correct at clock value 7.

e Broadcast(p,m,T): processor p broadcasts message m at real-time 7.
e Deliver(p,m,T): processor p delivers message m at real-time T'.

In order to prove the above mentioned global property, we need to first
establish the sub properties which the global property is dependent on. For the
purpose of maintaining a consistent global state, a decision making protocol is needed
which contains the rules needed for satisfying the global property, which in turn
depends on the properties of a snapshot protocol containing the local states of all the
processors in the distributed system. Now this is not possible without the properties
of a consensus procedure and a reliable communication among the various processors
in the distributed system. Hence we need to first prove the properties of the reliable
broadcast mechanism.

The properties provided by the reliable broadcast are the following:
eTermination:— Every correct process eventually delivers some message.

SP1: TermBroad
A(p, m, T) : correct(p) A Broadcast(p,m,T) —

Y(q,v) : correct(q) A Deliver(q, m,(T + 7))

85

eValidity:- If a correct process broadcasts a message m. then all correct processes
eventually deliver m.

SP2: ValiBroad
J(p, m,T) : correct(p) A\ Broadcast(p,m,T) —
Y(q, v, 6) : correct(q) A Deliver(q,m, (T + v + 9)) A (v <)
eUniform Agreement:- If a process delivers a message m. then all correct processes

eventually deliver m.

SP3: AgreeBroad
(p)¥(m,T) : correct(p) A Deliver(p,m.T) —
Y(q,7.9) : correct(q) A Deliver(q,m.(T + v +9))

Utilizing the following operational definitions. we state the various properties
of the consensus protocol:
e Decision(p,v,T): processor p arrives at a final decision v which is either to commit
the transaction or to abort it.
e Proposal (p,v,T): processor p proposes a decision v at real time T to either commit
or to abort the transaction.

The properties are:
eValidity:-If a process decides X, then X was proposed by some process.

SP4: Valiconsensus
Y(p, q,T)3(v) : Decision(p,v,T) — Proposal(q,v,T)

86

This means that if a processor p makes a decision v which could be an abort
or a commit, then that decision was initially made by another processor q.
eUniform Agreement:-No two processes decide differently.

SP5: Agreeconsensus
Y(p,q,v,T) : Decision(p,v, T) — Decision(q,v.T)

Here both the processors p and ¢ make the same decision whether to commit
or abort.

Now that we have stated the properties of reliable communication medium
and a consensus procedure, we will next state the properties of the snapshot protocol
having the local states of all the processors in the distributed system.

The various operational definitions are:
e sending(p,m,c,q,T): This operator helps in sending a message m from processor
p to processor g through channel ¢ at real time T'.
e reception(q,m,c,p,T): Processor q receives the message m from processor p
through channel ¢ at real time 7.
e record(q,s,m,X): Processor g records state s and message m onto the stable stor-
age X.

The property to be satisfied is:

SP6: Globprocstateinfo

Y(p,q, T)V(m, M, N, Null)¥(c, s, S, X) : sending(p, M,c,q,T) Arecord(p, s, N, X)

87

A(—(sending(p, m, c,q, T+1))) — reception(q, M,c.p.T) — (i f(—~(record(q. s. M. X)))
thenrecord(q, s. M, X)Arecord(q, s, Null, X)elserecord(q. s, m, X)Arecord(q,s. N, X)
N(~(reception(q, M. c.p.T))))

This property ensures the recording of all the local states of the processors
in the distributed system based on the transactions among them.

Having stated the individual properties of reliable communication medium,
consensus and state recording procedures, we can now establish the global property
of “Consistent State Maintenance”. This property ensures that the global state com-
prising of all the local states of the processors in the distributed system is always
consistent (i.e.) its state vector doesn’t have both a commit state and an abort state.
In order to check this condition, a procedure containing the set of rules is needed,
which is what the decision making protocol has in our approach.

The various operational primitives of a decision making protocol are:

e next (commit,abort): This operation checks whether the decision next to the first
one(commit) is an abort or a commit.

e adjacent (commit,commit): This operation checks whether the decision adjacent
to the first one(commit) is a commit or an abort.

The property to be satisfied is:

SP7: Constateinfo
Y(p, q)V(commit, abort) : ~(next(commit, abort)) A adjacent(—~(commat), commit)

By this property, its clear that the global state can never have two consec-
88

utive local state decisions has a commit and an abort.

As we have composed modules to get a composite protocol which satisfies
the consistent state maintenance property, it was of utmost importance that all the
morphisms we have defined along the way essentially ensure that all the necessary
attributes and operations from each individual building block protocols are carried
on/included in the composite specification. The fact that we have successfully com-
posed the specification which satisfies the specified requirements in turn guarantees
that the morphisms have been correctly defined. Through this strong mathematical
framework, we have a capability to perform a backward propagation, i.e., essentially,
we have the traceability capability. We elaborate on this in our subsequent discus-
sions.

Nuances of Morphisms in Compositional Verifica-
tion

I[n the formal representation of Consistent state definition, the conditional
statement Deliver(p, m,T) — Deliver(q, m, (T+v+4)) is satisfied by the AgreeBroad
property of the Reliable Broadcast protocol. The operation which extends this
AgreeBroad property gets mapped from the original Reliable Broadcast protocol
block to the composite specification namely the PRg protocol via the morphism s
(figure 4.11) which is AgreeBroad — AgreeBroad meaning that the AgreeBroad
property of Reliable Broadcast protocol gets exported to the Consensus protocol

as its imported property and the morphism h, (figure 4.11) which is AgreeBroad —

89

Reliable Broadcast meaning that the AgreeBroad property ultimately maps it to the
final property in the specification. From here on, this final property namely the Re-
liableBroadcast in the specification gets carried on till the global composite protocol
PR through the morphisms m, as labeled in figures 4.11, 4.13 and 4.15.

The next conditional statement in the definition namecly Decision(p,v.T) —
Decision(q, v, T) is satisfied by the Agreeconsensus property of the Consensus pro-
tocol. The operation which extends this Agreeconsensus property gets mapped
from the original Consensus protocol block to the composite specification namely
the PRg protocol via the morphism s (figure 4.13) which is Agreeconsensus —
Agreeconsensus meaning that the Agreeconsensus property of Consensus proto-
col gets exported to the Snapshot protocol as its imported property and the mor-
phism h, (figure 4.13) which is Agreeconsensus — Consensus meaning that the
Agreeconsensus property ultimately maps it to the final property in the specifica-
tion. From here on, this final property namely the Consensus in the specification
gets carried on till the global composite protocol PRs through the morphisms m, as
labeled in figures 4.13 and 4.15.

The third conditional statement in the consistent state definition is satisfied
by the Globprocstateinfo property of the Snapshot protocol. The operation which
extends this Globprocstateinfo property gets mapped from the original Snapshot
protocol block to the composite specification namely the PRg protocol via the mor-

phism s (figure 4.15) which is Globprocstatein fo — Globprocstatein fo meaning that

90

the Globprocstateinfo property of Snapshot protocol gets exported to Decision
Making protocol as its imported property and the morphism h, (figure 4.15) which
is Globprocstatein fo — Globalstate meaning that the Globprocstateinfo property
ultimately maps it to the final property in the specification. From here on, this final
property namely the Globalstate in the specification gets carried on till the global
composite protocol PRg through the morphism m, as labeled in figure 4.15.

Now if all these conditional statements are satisfied, then the final property
statement in the Consistent state maintenance definition would be also satisfied
by the fact that the Decision Making protocol which helps in maintaining a consis-
tent state among the local states of all the processors depends on the attributes of

the Snapshot protocol by importing its properties as shown in figure 4.15.

4.1.5 Analysis of Global Property—3: Roll-Back Recovery

Roll-Back Recovery is used to maintain the atomicity of object operation
execution, to ensure that the states of all components (sites) remain consistent fol-
lowing failure. This is possible by checkpointing the entire state of a component (site)
periodically and to start from the most recent checkpoint when a failure occurs.

As depicted in Figure 4.17, for the main global property of roll-back recovery
to be true, sub-property: 1 must be true, i.e, checkpoint its last successful (non-failed)
state, which can be proved using the checkpointing sub-protocol. Now for sub-property:

1 to exist, sub-property: 2 must be valid, i.e, systematically log the values in a sta-
91

(Sub--Property:3)

Reliable Broadcast or Multicast
mechanism.

(Broadcast protocol)

(Sub--Property:3)

Reliabie agreement mechanism.

(Consensus protocot)

(Sub--Property:2)

{Sub--Property:1)

(Main property of 3PC)

Systematically log the values ina
stable storage during a transaction.

(Undo/Redo logging protocol)

Checkpoint its last successful
(non-failed) state.

(Checkpointing protocol)

Figure 4.17: Roll-Back Recovery: Dependencies on Sub-Protocol Properties

ble storage during e transaction, which can be verified using the undo/redo logging
sub-protocol. Again, to realize sub-property: 2, sub-property: 3 must be true, i.e, a
reliable agreement mechanism among the sites or participants, which is provable by
the consensus sub-protocol. Finally for all the above-said sub-properties to be real-

ized, sub-property: 4 must be absolutely possible, i.e, a reliable broadcast or multicast

Recover a failed site.

(Recovery protocol)

mechanism, provable by the broadcast sub-protocol.

Coutrolier Protocol with
Conscasus Prowcol &

Figure 4.18: Composition of Sub-protocols to attain Recovery Property

92

Protocol \x
0 PR, -&
-
UndoRedo Logging |/ © |* el N
Protocol
12
Twophm. ¢ PR, -
Locking &
Protocol -
Checkpointing C 7Y N PR,
Protoco!
Recovery | /™16
Protocol

Figure 4.18 illustrates the dependency of the global property of roll-back
recovery on various sub-properties. Now in Figure 4.18, at first the controller sub-
protocol and undo/redo log sub-protocol are modularly composed to come up with
a new sub-protocol PR,. PR, has the properties of both controller sub-protocol
and undo/redo log sub-protocol. Next we modularly compose the PR, sub-protocol
and two-phase locking sub-protocol to have a new sub-protocol PR,. PR, has the
combined properties of PR, and two-phase locking sub-protocol. This sub-protocol
PR, combines with checkpointing sub-protocol to come up with the sub-protocol P R3.
PR; has the properties of PR, and checkpointing sub-protocol. The sub-protocol
PR3 is next composed with the recovery sub-protocol to produce a new sub-protocol
PR,. Now the final sub-protocol P R4 would satisfy the global property of roll-back
recovery of the three phase commit protocol. Next we give the categoryv-theoretic

reasoning for this property using morphisms and colimits.

Modularly Composing the Sub-Protocols via Category Theo-
retic operations

For this property, the compositional steps till the formation of sub-protocol
PR, are the same as that of the first global property. However for the sake of
continuous readability, the compositional steps to arrive at sub-protocol PR, are
again shown in the following steps.

In Figure 4.19, the broadcast protocol and consensus protocol are modularly

93

Py s A . where:

f g
Proc_Dec __l_. Valiconsensus . f2= Processors —=AgreeBroad
ReliableNetwork Densmn thyzA Arynb—e Reliahie B
' = Pro s —=C
cousmsus £="
t 1 %y =G Qe liahte B
PROTOCOL]

TermBroad Spec Consensus . f!=:‘ Ay

ValiBroad K : L h o= Ag —,

AgreeBroad ' t
Processars s Broadcast : ' gl = Processors —*AgreeBroad
Messages Delnver : . k) = AgreeBroad—=Consensus
Clockvalues £ TermBroad v my ¢t = Processors —Processors
Err:iai?nit'mlay. __Jhllﬂt:x!) : | s = TermBroad —=TermBroad. ValiBroad—=ValiBrad, Dehiver ==
peAE Tereore Agree . X Deliver. AgreeBrowd ——greeBroad, Broadcast —= Broadcast

BROADCAST 51 i ;7 Retable Ao

£ PROTOCOL, hy Spec: Controlter : my = Conseasus ——=Conscasus
Time Reliable Broadcase | £19 B = Pmcessors —*Reliable Broadcast =g 5 0k,
Failure — & Spec: Reliable - ------<---- > Consensus '
Communication ky Broadcast m o + fpohy =Processors —*Consensus =g g o k)
Model

Figure 4.19: Composition of Broadcast and Consensus Protocols

composed to come up with the controller protocol. Composing two modules in the
way shown above is possible only if each of these two modules commute individually

through the specification morphism relationship.

Model

1
!
Processors f | Agreeconsensus 1 where:
Proc_Deci ———— >Valiconsensus : f| = Processors —>Agreeconsensus
Reliable Network Decision ' hj o m, = Agreeconsensus ——>€onsensus
Proposal !
CONTROLLER e , tog, =Processors ——>Communication
ho !
tog; PROTOCOL 1M ; ky o m =Communication ——> Consensus
1
- . '
Time k om Spec: Controller ¢ | ©h| om, =Pracessors ——>Consensus
Failure 21 > Reliable Broadcast E B
Communication Consensus + togyok;om; =Processors —>Consensus
T
1}

Figure 4.20: Composed Diagram of Controller Protocol

Figure 4.20 shows the composed diagram (module) of the controller protocol.
Now controller block has the properties of both broadcast and consensus sub-blocks,
i.e, reliable in broadcasting and also uniform in decision-making (consensus). We can

see from the figure that the final composed module also commutes by the specifi-

94

cation morphism relationship which proves the correctness of the composition and

also guarantees the proper working of the composed module if it is to be reused or

inherited elsewhere.

Processors Storevalues
Transactions ‘ Undo ,
Valstabstorage —L—.Redo ‘W X
Currentstatevalue Sty . us
Newstatevalue v 2 Processors Agreeconsens
. h=Ag —C
n UNDO/REDO hy ! gy = Processons. —Commumication
PROTOCOL : ky=Communication—=Conscnsus

Agreeconsensus — o Spec:Unda/RedorLog) ! 11

Valicopsensus kg
Dexcision

=

Processors ~——*Storevalues

Processors fy ° L my E t = Processors —Processors
Proc_Dect ——>—aValiconsensus B . 3 = Valiconsensus ~%aliconsensus. Deaision —*Decision.
ReliableNetwork D;:smn : ! At —Agr Proposal —~Proposal
ll ' i my =Consensus —=Log
d CONTROLLER |n, Socc PR " = Log —e
PROTOCOL 20 i e
Time Spec: Coatroller Reliabic Broadcast * fpo hy =Processors —=Consensus =g ; ok,
Failure oot bt Broadeag ~C T TC > Consensus . -
—— e '
C ; ky r“"nm my Log : fohy =Prcasors —=log=g ok,
Model

Figure 4.21: Composition of Controller and Undo/Redo Logging Protocols

The controller protocol and undo/redo log protocol are modularly composed

to come up with a new protocol called PR,, as depicted in Figure 4.21. In the fig-

ure, the parameter Valstabstorage in the Undo/Redo protocol is the stable storage

medium for the processor state values.

Processors f i Storevalues

Transactions —> Undo

Valstabstorage Red

Currentstatevalue

Newstatevalue hy om,
togy l PR, PROTOCOL

Time om Spec: PR

Failure —2 1, Reliable Broadcast

Communication Consensus

Model Log

where:
f[= Processors —>Storevalues

h; o m, =Storevalues —>Log
to g, =Processors ——>Communication

ky o m | =Communication——>Log
f; ohj omy =Processors —> Log

toggokyom; =Processors —>Log

Figure 4.22: Composed Diagram of PR, Protocol

95

Figure 4.22 shows the composed diagram (module) of the PR, protocol.
Now PR, block has the properties of both controller and undo/redo log sub-blocks.
i.e, reliable in broadcasting, uniform in decision-making (consensus) and also store

the values of the transaction onto a stable storage medium.

Processors Watelock
T Rezdlock ,
Valstabstorage ¢ Unlock t where
Transaction id ;.Lottmg : 12=Processors —%Storevalues
CurrentDuta Read .
= Storeval —
PreviousData Wate : :f L"" ues Log
! ¢, | 2 PHASE LOCKING L B2-p —c
! PROTOCOL hy . b;:Calmnumc.umu——u‘

Storelalues Spec: 2 Phase Locking * {| = Processors ——*Wniclock
g"‘b K DoiLecki 1 b =Watelock —>Lock
. . ‘l = Processors ——*Storsvalues

Processors A :
Transactions + k| = Store values ——=Lock
Xalsubsmr.:;: £, Storevatues ‘my ‘¢ =Pr —#ro T J—
3 *Undo . : s = Storevalues —*Storevalucs, Undo —%ndo.

Currentstatevalue i : Redo—Redo
lzl PR, Ry SpeciPR, » my=Log —=Lock

PROTOCOL Reliable Broadcast *

Spec: PR . = Lock — Lock
& F“_l Consensus . 2

Failue Relishle Broad "-Iu__-“bLog + f30hy = Processars —log=g,0k,
Communication ky Consensus t Lock ¥
Model - Log . lloh|=Pmcessm —lock =g 0 kl

Figure 4.23: Composition of PR, and Two Phase Locking Protocols

Next we modularly compose the PR, protocol and two phase locking protocol

to arrive at PR, protocol (See figure 4.23).

Processors Writelock
Proc_deci Readlock
Valstabstorage f | Unlock
Transaction id ———>Locking

where:
f | = Processors —>Writelock

]
]
]
:
]
CurrentData Read » by o my = Writelock Lock
PreviousData WriIeh | togy =Processors ——>Communication
to i o n|2)
gZ PR, PROTOCOL i ky om | =Communication—>Lack
Spec: PR, : -
Time _
Failure k om geliable Broadcast E f 10 hl omy = Processors —>Lock
Communication onsensus '
togyjok, om; =Processors —>Lock
Lock :

Figure 4.24: Composed Diagram of PR, Protocol

Figure 4.24 shows the composed diagram of PR, protocol. Now the com-

96

posed PR, block has the locking properties in its final specification along with the

other properties which it is dependent on namely reliable broadcast, consensus. and

logging.
Processors 1, Loggiag where,
—_—t §
:'::D"‘ Qheckpome fy Processors =+ Writelock
b Writelock —~={nck
.,l CHECKPOINTING |, 2 iy
PROTOCOL t 8y Processon Cormmusaication
Wruelock k, Commuaxcatws —= Lock
¢ Readlock 2
Unlock —————— Spec' Checkpuowating L Processars —= Chexkpomt
Lcking F1 : by Checkpou - Checkpoang
'
Read . 8 Processors —= Wrntelock
Wote .
. . k) Wrclock —=Checkponting
Processorns Watelck ‘@ my Lock— Checkpomung
Proc_Dect ¢ Reathck [
Valsahswoenge 2 Ualock . my Checkpntng == Checkpointung
Transactioaxt T Lockag : .
CuerentData Remd . t Processors. Processars.
PrevicusData Whe . Proc_Dec: —*Proc_Decs.
M Valsabstorage —=Valstabstorage
v
¢ PR, FROTOCOL |™ Spec PR 5 s Writelock ~~Wraelock, Readlock —=
Spdk PR, Relisble Broadcast ::";h U""'“w"uﬁtf“‘-’ -~
e~ Wnte, —
Time Reliable Broadcast E‘:’"“ Locking ad
Fashare ————aComsemmug oot ~ Lock fy0h, =Processors — Lock = 50 &y
Comammaicatoa & 5 Log ™y pg - .
Model Lock kpowting fyob; =Pro = Checkp =g ok

Figure 4.25: Composition of PR, and Checkpointing Protocols

In Figure 4.25, the PR, protocol and checkpointing protocol are modularly

composed to come up with the PR3 protocol.

Processors fq Logging
Proc_Deci ————>Checkpoint
Valstabstorage
hl 0my
PR, PROTOCOL

togs } Spdc: PRy

2 :
Reliable Broadcast

Time k,0om; Consensus
Failure —— Log
Communication Lock
Model Checkpointing

where,

fy : Processors —> Checkpoint

h; om, : Checkpoint — Checkpointing
tog, : Processors —> Communication
ko m : Communication —> Checkpointing

fioh om, : Processors —> Checkpointing

togsy0 k2 omy: Processors —> Checkpointing

Figure 4.26: Composed Diagram of PR3 Protocol

Figure 4.26 shows the composed diagram of PR; protocol. Now the com-

posed PRj block has the properties of reliable broadcast, consensus, logging, locking

97

and checkpointing.

Processors £y Recover where,
Proc_Deci —— Rollback f4 : Processors —= Checkpoint
Valyab R.EE_'OVERY R h 5: Checkpont — Checkpainung
t L PROTOCOL hy g5 Processors > Communication
Chéckpaint k 5: Communication —> Checkpointing
Spec: Recovery 2
Logging ky , fy : Processors — Recover
s)
. h, : Recover — Recov
Processors fy Checkpoint 1M ! Y)
Proc_Deci ——— Logging ‘ g Processors — Checkpaint
Valstabstorage " ky: Checkpoint — Recovery
: Spec: PR, m : Checkpointing — Recovery
£, PRyPROTOCOL Secc:PRy Refiable Broadcast |, . Recovery —= Recovery
Reliable Broadcast Consensus t: Processors — Processors
Time " Consensus afk s : Logging—{ogging. Checkpoint —=Checkpotnt
Falure 2 Log ~ ------"- m. T = Checkpainting £ 0 hy =Processors — Checkpointing =g 5 0 k3
Communication Lock ! Recove f; oh; =Processors — Recovery =g jok
Model Checkpoinung 24 1M ey=819K

Figure 4.27: Composition of PR3 and Recovery Protocols

[n Figure 4.27. the PR3 protocol and recovery protocol are modularly com-

posed to come up with the PR, protocol.

Processors f Recover

> where,
Proc_Deci Rollback .
Valstabstorage Restore £y : Processors Recover
h; om, : Recover —> Recovery
hom, s I
to gz PR_‘ PROTOCOL s PR to g2 . Processors Communication
_pet.__4 kogomg: Communication —> Recovery
Reliable Broadcast | ~
Consensus
Time kyom, Log f, oh; omj, :Processors —> Recovery
1 —_—
Failure Lock tog, ok, om; : Processors —> Recovery
Communication Checkpointing <
Model Recovery

Figure 4.28: Composed Diagram of PR, Protocol

Figure 4.28 shows the final composed diagram of PR, protocol. Now the
composed PR, block has the properties of recovery in its final specification along with
the other properties which it is dependent on namely reliable broadcast, consensus,

logging, locking and checkpointing. Since it has the recovery mechanism, the PRy

98

protocol would satisfy the roll-back recovery property of the three phase commit pro-
tocol thereby helping in maintaining the atomicity of object operation execution, in
order to ensure that the states of all components (sites) remain consistent following
failure.

By selectively identifying sorts and operations out of the sub-protocols: con-
troller protocol, undo/redo logging protocol, two phase locking protocol, checkpointing
protocol and recovery protocol for different morphism definitions, we have essentially

constructed a sub-protocol P R4 which satisfies the Roll-Back Recovery property.

4.1.6 Compositional Verification of Global Property—-3

By roll-back recovery property, processor in error and other dependent pro-
cessors would be rolled back to a consistent state and then restarted.
The formal representation of the Roll-Back Recovery definition is given be-

low:
V(p,q : Proc.,m: Messages,t : Transactions, v, commit, abort : Proc.Decision)

V(T : Clockvalues, N : Transactionid, X : Transactionvalueinstablestorage)
V(y : Currentstatevalue, z : Newstatevalue,Y : Currentdata, Z : Previousdata)
V(e : MarimumClockSkew, S : C heckpointperiod,n : Indezx) :
correct(p, T) A correct(q, T)A

if((Deliver(p,m,T) — Deliver(q, m,(T + v +4)))A

99

(Decision(p.v.T) — Decision(q,v,T))A
(Undo(t,abort, X.y) A Redo(t,commit, X, z) — Log(t, X, z))A
((=(Write(T, Y, X)) A ~(Locking(N,Y)) A Unlock(N, Z)) —

(Read(T,Y, X) A Locking(N,Y))or
(=(Read(T,Y, X)) A =(Locking(N,Y)) A Unlock(N, Z)) —
(Write(T.Y, X) A Locking(N,Y))) A ((ckpt(p.T) A store(p, T)A
Pi(p,T) = n + 1)or(Ckpt(p, S) A Store(p, S) A PI(p,S) =n+1)))

then((ckpt(p, T)orCkpt(p, S)) — Rollback(n,T) — Restore(n.T))

where,
e v is the maximum broadcastdelay.
e § is the broadcastbound.
e Network is assumed to be a reliable one without partitions.
e correct(p,T): processor p is correct at clock value T'.
e correct(q,T): processor q is correct at clock value T'.
e Broadcast(p,m,T): processor p broadcasts message m at real-time T
e Deliver(p,m,T): processor p delivers message m at real-time T'.
In order to prove the above mentioned global property, we need to first
establish the sub properties which the global property is dependent on. For the roll-

back recovery property to hold true, a well defined checkpointing procedure has to be

100

first set forth which then depends on a resource locking mechanism for exhibiting its
functionalities. And for the purpose of a proper locking mechanism, a stable storage
medium with a standard undo/redo operation is needed which in turn depends on
the properties of a consensus procedure which is not possible without the properties
of a reliable communication among the various processors in the distributed system.
Hence we need to first prove the properties of the reliable broadcast mechanism.
The properties provided by the reliable broadcast are the following:

eTermination:— Every correct process eventually delivers some message.

SP1: TermBroad
3I(p,m,T) : correct(p) A Broadcast(p,m,T) —

Y(q,v) : correct(q) A Deliver(q,m, (T + 7))

eValidity:— If a correct process broadcasts a message m, then all correct processes

eventually deliver m.

SP2: ValiBroad
I(p,m,T) : correct(p) A Broadcast(p,m,T) —

V(g,7, 6) : correct(q) A Deliver(q,m,(T + v+ 8)) A (v < 6)
eUniform Agreement:- [f a process delivers a message m, then all correct processes
eventually deliver m.
SP3: AgreeBroad
3(p)V(m, T) : correct(p) A Deliver(p,m,T) —

101

Y(q,~.d) : correct(q) A Deliver(q,m,(T + v + 9))

Utilizing the following operational definitions, we state the various properties
of the consensus protocol:
e Decision(p,v,T): processor p arrives at a final decision v which is either to commit
the transaction or to abort it.
e Proposal(p,v,T): processor p proposes a decision v at real time T to either commit
or to abort the transaction.

The properties are:
eValidity:-If a process decides X, then X was proposed by some process.

SP4: Valiconsensus
Y(p,q,T)3(v) : Decision(p,v,T) = Proposal(q,v,T)

This means that if a processor p makes a decision v which could be an abort
or a commit, then that decision was initially made by another processor gq.
eUniform Agreement:-No two processes decide differently.

SP5: Agreeconsensus
Y(p,q,v,T) : Decision(p,v,T) = Decision(q,v,T)

Here both the processors p and ¢ make the same decision whether to commit
or abort.
Now that we have stated the properties of reliable communication medium

and a consensus procedure, we will next state the properties of the stable storage

102

medium with the undo/redo operation.

The various operational definitions are:
e Undo(t,v,X,y): Undo the current state value y taken during the transaction ¢
based on the processor decision v (abort) from the stable storage .X before writing
into it.
e Redo(t,v,X,z): Redo the new state value z taken during the transaction ¢ based
on the processor decision v (commit) into the stable storage X before committing the
transaction.
e Log(t,X,z): Stores the new state value z of the processor got during the transaction
t onto the stable storage X.

The property to be satisfied is:

SP6: Storevalues
Y(p. q, t)V(commit, abort)V(y, z) : Undo(t, abort, X, y)A
Redo(t,commit, X, z) — Log(t, X, z)

Log is represented as a sequence of entries of the form [¢,X,v], where z is the
value that transaction { wrote into data item X. Log also contains sets of committed
and aborted transactions. Each change to the database causes a log entry. Log has
initial and final states (or) initial and differential state transitions (or) initial and
operations performed. When volatile memory is lost in a system failure, the protocol

examines the log, finds the last committed values of all data items that have been

updated and restores them as new volatile values of these data items. Entry is undone

103

in the stable log before writing into it and redone before the transaction is committed.

Once the transaction values are stored in the stable storage medium, we
need a method to hold a lock on an item (shared resource log). Note that the type
of lock depends on whether the transaction will read or write to the item.

The various operational primitives of a locking protocol are:

e Read(t,Y,X): Reads the current data Y of the transaction ¢ from the stable storage
medium X.
eWrite(t,Y,X): Writes the current data Y of the transaction ¢ onto the stable storage
medium X.
e Locking(N,Y): Locks the current state value Y with NV as the transaction id.
e Unlock(N,Z): Unlocks the previous state value Z with N as the transaction id.
The various properties are:
SP7: Writelock
Y(p,q, t)¥(N, X,Y, Z) : ~(Read(t,Y, X)) A ~(Locking(N,Y)) A Unlock(N, Z)
— Write(t,Y, X) A Locking(N,Y)

Only one transaction at a time may write lock an item and it is implemented
by a simple 1 bit write lock flag. Write lock should enforce complete mutual exclusion
on the item. An item is write locked if the item is not currently read locked (resource)
and that the item had been already unlocked and free to be locked again.

Multiple transactions may be read locking an item at the same time. Read

lock is implemented by using a read counter which holds the number of transactions

104

currently holding a read lock.

SP8: Readlock
Y(p,q,t)V(N, X, Y, Z) : =«(Write(t, Y. X)) A =(Locking(N,Y)) A Unlock(N. Z)
— Read(t,Y, X) A Locking(N,Y)

An item is read locked if there are no current write locks on the item and
that the item is free to be locked again. This property helps in the proper logging
of data during the active transaction. The locking protocol allows a lock (shared
resource log) to be acquired beforfz the transaction and then asks for unlocking once
the transaction is over. This way, serializability would be maintained while logging
data onto the stable storage.

Once serializability is ensured. the processors in the distributed system could
then start checkpointing the values they obtained during the transactions, thereby
helping in the recovery process.

The various operational definitions are:

e log(p,m,T): Processor p logs message m at clock time T.

e ckpt (p,T): Processor p checkpoints at clock time T'.

e Ckpt(p,S): Processor p checkpoints at checkpoint period S.
e store(p,T): Processor p stores at clock time T'.

e Store(p,S): Processor p stores at checkpoint period S.

The property to be satisfied is:

105

SP9: Checkpoint
Y(p,m,n)V(e,S,T,7,d : Clockvalues) : S -6 —e < C(p,T)ANC(p.T) <=S —
(if(3(m) : log(p,m,T) AC(p,T) < 5)
thenckpt(p, T) A store(p,T) A Pi(p,T) =n + 1

elseCkpt(p, S) A Store(p,S) A PI(p,S) =n + 1)

After having stated the individual properties of reliable communication medium.

consensus, logging, locking and checkpointing procedures, we can now establish the
global property of “Roll-Back Recovery”. This property ensures that all faulty pro-
cessors and the processors dependent on these faulty ones roll back to the non-faulty
state for the purpose of recovery.

The various operational definitions are:
e CorrecttoFailure(p,T): Processor p becomes faulty at clock time T'.
e Rollback(n,T): Rolls back as many number of times as the index n at clock time
T.
e Restore(n,T): Restores to the previous non-faulty state of the processor based on
the index value n at clock time 7.

The property to be satisfied is:

SP10: Recover
V(p,m,n)V(e, S,T,7,6 : Clockvalues) : S —§ —e < C(p,T) AC(p,T) <= SA
CorrecttoF ailure(p, T)N\(ckpt(p, T)orCkpt(p, S)) — Rollback(n,T) — Restore(n.T)

106

As we have composed modules to get a composite protecol which satisfies the
Roll-Back Recovery property, it was of utmost importance that all the morphisms we
have defined along the way essentially ensure that all the necessary attributes and op-
erations from each individual building block protocols are carried on/included in the
composite specification. The fact that we have successfully composed the specifica-
tion which satisfies the specified requirements in turn guarantees that the morphisms
have been correctly defined. Through this strong mathematical framework, we have
a capability to perform a backward propagation, i.e., essentially, we have the trace-
ability capability. We elaborate on this in our subsequent discussions.

Nuances of Morphisms in Compositional Verifica-
tion

In the formal representation of Rol1-Back Recovery definition. the conditional
statement Deliver(p,m,T) — Deliver(q, m,(T+v+4)) is satisfied by the AgreeBroad
property of the Reliable Broadcast protocol. The operation which extends this
AgreeBroad property gets mapped from the original Reliable Broadcast protocol
block to the composite specification namely the PR, protocol via the morphism s
(figure 4.19) which is AgreeBroad — AgreeBroad meaning that the AgreeBroad
property of Reliable Broadcast protocol gets exported to the Consensus protocol
as its imported property and the morphism h, (figure 4.19) which is Agree Broad —
Reliable Broadcast meaning that the AgreeBroad property ultimately maps it to the

final property in the specification. From here on, this final property namely the Re-

107

liableBroadcast in the specification gets carried on till the global composite protocol
PR, through the morphisms m, as labeled in figures 4.19, 4.21, 4.23. 4.25 and 4.27.

The next conditional statement in the definition namely Decision(p,v,T) —
Decision(q, v, T) is satisfied by the Agreeconsensus property of the Consensus pro-
tocol. The operation which extends this Agreeconsensus property gets mapped
from the original Consensus protocol block to the composite specification namely
the PR, protocol via the morphism s (figure 4.21) which is Agreeconsensus —
Agreeconsensus meaning that the Agreeconsensus property of Consensus proto-
col gets exported to the Undo/Redo protocol as its imported property and the mor-
phism h, (figure 4.21) which is Agreeconsensus — Consensus meaning that the
Agreeconsensus property ultimately maps it to the final property in the specifica-
tion. From here on, this final property namely the Consensus in the specification
gets carried on till the global composite protocol PR, through the morphisms m, as
labeled in figures 4.21, 4.23, 4.25 and 4.27.

The third condition in the definition namely Undo(t, abort, X, y) A Redo(t,
commit, X, z) = Log(t, X, z) is satisfied by the Storevalues property of the Undo/Redo
protocol. The operation which extends this Storevalues property gets mapped from
the original Undo/Redo protocol block to the composite specification namely the PRy
protocol via the morphism s (figure 4.23) which is Storevalues — Storevalues mean-
ing that the Storevalues property of Undo/Redo protocol gets exported to Two Phase

Locking protocol as its imported property and the morphism h, (figure 4.23) which

108

is Storevalues — Log meaning that the Storevalues property ultimately maps it
to the final property in the specification. From here on. this final property namely
the Log in the specification gets carried on till the global composite protocol PR,
through the morphism m, as labeled in figures 4.23, 4.25 and 4.27.

The first part of the next conditional statement in the definition namely
((~(Write(T, Y, X))A—~(Locking(N, Y))AUnlock(N, Z)) — (Read(T,Y, X)ALocking
(N,Y)) is satisfied by the Readlock property of the Two Phase Locking proto-
col and the second part of the conditional statement namely (=(Read(T,Y, X)) A
—~(Locking(N,Y)) A Unlock(N, Z)) — (Write(T. Y, X) A Locking(N,Y)) is satisfied
by the Writelock property of the Two Phase Locking protocol. The operation which
extends this Writelock property gets mapped from the original Two Phase Locking
protocol block to the composite specification namely the PRy protocol via the mor-
phism s (figure 4.25) which is Writelock — Writelock meaning that the Writelock
property of Two Phase Locking protocol gets exported to Checkpointing protocol as
its imported property and the morphism h, (figure 4.25) which is Writelock — Lock
meaning that the Writelock property ultimately maps it to the final property in the
specification. From here on, this final property namely the Lock in the specification
gets carried on till the global composite protocol PR, through the morphism m; as
labeled in figures 4.25 and 4.27.

The last conditional statement in definition namely ((ckpt(p, T)Astore(p, T)A

Pi(p,T) = n + 1)or(Ckpt(p, S) A Store(p, S) A PI(p,S) = n + 1)) is satisfied by the

109

Checkpoint property of the Checkpointing protocol. The operation which extends
this Checkpoint property gets mapped from the original Checkpointing protocol
block to the composite specification namely the PR, protocol via the morphism s
(figure 4.27) which is Checkpoint — Checkpoint meaning that the Checkpoint prop-
erty of Checkpointing protocol gets exported to Recovery protocol as its imported
property and the morphism h, (figure 4.27) which is Checkpoint — Checkpointing
meaning that the Checkpoint property ultimately maps it to the final property in
the specification. From here on, this final property namely the Checkpointing in
the specification gets carried on till the global composite protocol PR, through the
morphism m, as labeled in figure 4.27.

Now if all these conditional statements are satisfied, then the final property
statement in the Roll-Back Recovery definition would be also satisfied by the fact
that the Recovery protocol which helps in rolling back processors in error and other
dependent processors to a consistent state and then restarting them depends on the
attributes of the Checkpointing protocol by importing its properties as shown in

figure 4.27.

110

Chapter 5

Compositional Specification and
Verification of the Global
Properties of 3PC Protocol using
Specware

In this chapter, we provide the specification and verification for the three global
properties of the three phase commit protocol discussed in Chapter 4 in terms of their

individual building block specifications using the Specware [28, 32, 41} tool.

5.1 Specification of the Global Properties of 3PC
5.1.1 Specification of Serializability of Transactions Property

The serializability property states that the effect of executing a collection of
atomic actions is equivalent to some serial schedule in which the actions are executed
one after another. The technique we have employed for implementing serializability
is by two phase locking mechanism. In order for the locking (two phase lock proto-
col) to be employed, we need to have a stable storage medium with undo and redo

mechanisms (undo/redo protocol), a procedure to achieve consensus (consensus pro-

111

tocol) and a reliable communication (reliable broadcast protocol) among the various
processors in the distributed system. This property could be realized by formalizing
each of the individual protocols with the help of Specware tool and then composing
them using category theory as illustrated in Section 4.1 in Chapter 4.

To begin with, some basic primitives like Time, Failure, Communication and
Configurational Model are needed to be specified for the specification of the reliable
broadcast protocol. We call these primitives as Basic Building Block primitives and

denote them as BBB. BBB is specified in Specware as:

BBB = spec

sort Clockvalues = Nat

sort LocalClockvals = Clockvalues

sort Processors

sort Index = Nat

sort Messages = {p:Processors, Tm:Clockvalues, Km:Index, No:Nat}
sort Procstate = {p:Processors, LC:Clockvalues, n:Nat}
op Correct : Processors -> Boolean

op InOrder : Messages—>Boolean

op Broadcast : Processors*Messages*Clockvalues->Boolean
op Deliver : Processors*Messages*Clockvalues->Boolean
endspec

The various parameters of the BBB are formalized as sorts and operations
using specware and are translated so that these parameters could be used by other

protocols for their functional specifications.

BBBtoALLTRANSLATION = translate(BBB) by
{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +-> Messages,

112

Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver}

By importing this translation. all the parameters of BBB in terms of its
sorts and operations would be made available for the formalization of the RELI-

ABLEBROADCAST protocol.

RELIABLEBROADCAST = spec

import BBBtoALLTRANSLATION

sort ReliableNetwork = Boolean

sort BroadcastDelay = Clockvalues

sort BroadcastBound = Clockvalues

op Clockdelay : Clockvalues*BroadcastDelay->Clockvalues

op Clockbound : Clockvalues*BroadcastDelay*BroadcastBound->Clockvalues
op TermBroad : Processors*Messages*Clockvalues->Boolean

op ValiBroad : Processors*Messages*Clockvalues—->Boolean

op AgreeBroad : Processors*Messages*Clockvalues->Boolean

Having specified the parameters needed for formalizing the RELIABLE-
BROADCAST protocol, we now provide the various attributes (properties) of the
protocol in terms of its axioms. It is important to note that we are formalizing
properties of RELIABLEBROADCAST protocol as axioms, as our goal is to utilize
these properties as is in establishing the correctness of the Serializability property.
This holds for other sub-protocols subsequently being used. For rigor, one would
attempt to specify and verify these individual building block protocols’ properties.

That aspect is beyond the scope of this thesis.

axiom Broadcast 1is
113

fa(p:Processors, m:Messages, T:Clockvalues)
~(Deliver(p, m, T)) & Broadcast(p, m, T)

axiom Deliver is
fa(p:Processors, m:Messages, T:Clockvalues)
~(Broadcast(p, m, T)) & Deliver(p, m, T)

axiom Termbroad is
ex(p, m, T) Correct(p) & Broadcast(p, m, T) =>
(fa (q, i:BroadcastDelay) Correct(q) & Deliver(q,m,(Clockdelay(T,i))))

axiom Valibroad is

ex(p, m, T) Correct(p) & Broadcast(p, m, T) =>

(fa (q, i:BroadcastDelay, j:BroadcastBound) Correct(q) &
Deliver(q, m, (Clockbound(T, i, j))) & i<j)

axiom Agreebroad is

ex(p) fa(m:Messages, T:Clockvalues) Deliver(p, m, T) =>
(fa (q, i:BroadcastDelay, j:BroadcastBound)

Deliver(q, m, Clockbound(T, i, j)))

endspec

The translation is done in the same way as before, but this time it would
have what BBB had translated, and the sorts, operations and properties of RELI-

ABLEBROADCAST protocol also.

RELBROADtoALLTRANSLATION = translate (RELIABLEBROADCAST) by
{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver,
ReliableNetwork+->ReliableNetwork,BroadcastDelay+->BroadcastDelay,
BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,
ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad}

Next we formalize the consensus protocol by first importing what the pre-
114

vious translation could offer, and then adding the parameteis needed for defining its

various properties.

CONSENSUS = spec

import RELBROADtoALLTRANSLATION

sort ProcDeci = Boolean

op Decision : Processors*ProcDeci*Clockvalues->Boolean

op Proposal : Processors*ProcDeci*Clockvalues->Boolean

op Valiconsensus : Processors*ProcDeci*Clockvalues->Boolean
op Agreeconsensus : Processors*ProcDeci*Clockvalues->Boolean

The various properties of Consensus protocol are given below as axioms:

axiom Proposal is
fa(p:Processors, v:ProcDeci, T:Clockvalues)
~(Decision(p, v, T)) & Proposal(p, v, T)

axiom Decision is

fa(p:Processors, v:ProcDeci, T:Clockvalues)

~(Proposal(p, v, T)) & Decision(p, v, T)

axiom Valiconsensus is

fa(p,q:Processors, T,i,j:Clockvalues, m:Messages) ex(v:ProcDeci)
ValiBroad(p, m, T) & Decision(p, v, T) => Proposal(q, v, T)
axiom Agreeconsensus 1s

fa(p,q:Processors, v:ProcDeci, T,i,j:Clockvalues, m:Messages)

AgreeBroad(p, m, T) & Decision(p, v, T) => Decision(q, v, T)

endspec

Now in order to compose the specifications of RELIABLEBROADCAST and
CONSENSUS, we first need to specify the various morphisms that link them. We

formalize the morphism between these two specifications in the following way:
115

RELBROADtoCONSENSUS = morphism RELIABLEBROADCAST->CONSENSUS
{Broadcast+->Broadcast ,Deliver+->Deliver,TermBroad +->TermBroad,
ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad}

We then define the diagram with RELIABLEBROADCAST and CONSEN-
SUS specifications as the nodes, and the morphism as the link between them. Finally
to construct the composite specification of these two modules, we take the colimit of

the diagram as shown below:

CONSEN = diagram {

a +-> RELIABLEBROADCAST,

b +-> CONSENSUS,

i: a->b +-> morphism RELIABLEBROADCAST->CONSENSUS
{Broadcast+->Broadcast ,Deliver+->Deliver,TermBroad+->TermBroad,
ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad}}

CONSENT = colimit CONSEN

The name CONSENT in the specification denotes the controller protocol as
depicted in Figures 4.3 and 4.4 in Chapter4. Now CONSENT has the properties
of both RELIABLEBROADCAST and CONSENSUS specifications, i.e, reliable in
broadcasting and also uniform in decision-making (consensus). The translation is

then done in the same way as before:

CONSENTtoALLTRANSLATION = translate(CONSENSUS) by

{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver,
ReliableNetwork+->ReliableNetwork,BroadcastDelay+->BroadcastDelay,

116

BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,
ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad,
Valiconsensus+->Valiconsensus,Agreeconsensus+->Agreeconsensus,
ProcDeci+—>ProcDeci,Decision+->Decision,Proposal+->Proposal}

The next protocol that is needed to be specified in order to verify the se-
rializability property is the undo/redo protocol. In Figure 4.5, we illustrated the
composition of the controller protocol and undo/redo protocol to come up with a new
protocol called PR,. But before that, we need to formalize the undo/redo protocol

which is done in the following manner:

UNDOREDO = spec

import CONSENTtoALLTRANSLATION

sort Transactions = Boolean

sort Valstabstorage = Boolean

sort Currentstatevalue = Nat

sort Newstatevalue = Nat

op Log : Transactions*Valstabstorage*Newstatevalue->Boolean

op Undo:Transactions*ProcDeci*Valstabstorage*Currentstatevalue->Boolean
op Redo : Transactions*ProcDeci*Valstabstorage*Newstatevalue->Boolean
op Storevalues : Transactions*Valstabstorage*ProcDeci->Boolean

axiom Undo is
fa(t:Transactions, a:ProcDeci, X:Valstabstorage, y:Currentstatevalue)
“(Redo(t, a, X, y)) & Undo(t, a, X, y)

axiom Redo 1is
fa(t:Transactions, a:ProcDeci, X:Valstabstorage, y:Currentstatevalue)
~(Undo(t, a, X, y)) & Redo(t, a, X, y)

axiom Log is

fa(t:Transactions, a:ProcDeci, X:Valstabstorage)
fa(y:Currentstatevalue, z:Newstatevalue)

~“(Undo(t, a, X, y)) & ~(Redo(t, a, X, y)) => Log(t, X, 2z)

axiom Storevalues 1is
117

fa(p,q:Processors) fa(T:Clockvalues,t:Transactions)
fa(commit,abort:ProcDeci)

fa(y:Currentstatevalue, z:Newstatevalue, X:Valstabstorage)
Agreeconsensus(p, commit, T) & Undo(t, abort, X, y) &
Redo(t, commit, X, z) => Log(t, X, 2z)

endspec

The morphism definition, diagram and colimit formations of the controller

and undo/redo protocols are done in the same way as before:

CONSENTtoUNDOREDO = morphism CONSENSUS->UNDOREDO
{Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensus,
Decision +-> Decision, Proposal +-> Proposal}

UNRE = diagram {

a +-> CONSENSUS,

b +-> UNDOREDO,

i: a->b +-> morphism CONSENSUS->UNDOREDO

{Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensus,
Decision +-> Decision, Proposal +-> Proposall}}

UNREDO = colimit UNRE

The name UNREDO in the specification denotes the PR, protocol as de-
picted in Figures 4.5 and 4.6 in Chapter4. Now UNREDO has the properties of
both Controller and undo/redo specifications, i.e, reliable in broadcasting, uniform in
decision-making (consensus) and also store the values of the transaction onto a stable

storage medium. The translation is then done in the same way as before:

UNREDOtoALLTRANSLATION = translate(UNDOREDO) by
{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,

118

Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver,

ReliableNetwork +-> ReliableNetwork, BroadcastDelay+->BroadcastDelay,
BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,
ValiBroad+->ValiBroad, AgreeBroad+->AgreeBroad,ProcDeci+->ProcDeci,
Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensus,
Decision+->Decision,Proposal+->Proposal,Transactions +->Transactions,
Valstabstorage+->Valstabstorage,Currentstatevalue+->Currentstatevalue,
Newstatevalue +-> Newstatevalue, Log +-> Log, Undo +-> Undo,

Redo +-> Redo, Storevalues +-> Storevalues}

The last component (protocol) that is needed for proving the global property
is the two phase locking protocol which can be formally specified using Specware in

the following way:

TWOPHASELOCK = spec

import UNREDOtoALLTRANSLATION

sort Transactionid

sort CurrentData

sort PreviousData

op Read : Tramsactions*CurrentData*Valstabstorage->Boolean

op Write : Transactions*CurrentDataxValstabstorage->Boolean

op Locking : Transactionid*CurrentData->Boolean

op Unlock : Tramsactionid#*PreviousData->Boolean

op Readlock : Transactions*CurrentData*Valstabstorage->Boolean
op Writelock : Tramsactions*CurrentData*Valstabstorage->Boolean

axiom Read is
fa(t:Transactions, Y:CurrentData, X:Valstabstorage)
“(Write(t, Y, X)) & Read(t, Y, X)

axiom Write is
fa(t:Transactions, Y:CurrentData, X:Valstabstorage)
“(Read(t, Y, X)) & Write(t, Y, X)

axiom Locking is
fa(N:Transactionid, Y:CurrentData, Z:PreviousData)
119

(Unlock(N, Z)) & Locking(N, Y)

axiom Unlock 1is
fa(N:Transactionid, Y:CurrentData, Z:PreviousData)
“(Locking(N, Y)) & Unlock(N, Z)

axiom Readlock is

fa(p,q:Processors) fa(t:Transactions, N:Transactionid, X:Valstabstorage)
fa(Y:CurrentData, Z:PreviousData, z:Newstatevalue) Log(t, X, 2) &
“(Write(t, Y, X)) & “(Locking(N, Y)) & Unlock(N, Z) => Read(t, Y, X) &
Locking(N, Y)

axiom Writelock is

fa(p,q:Processors) fa(t:Transactions, N:Tramsactionid, X:Valstabstorage)
fa(Y:CurrentData, Z:PreviousData, z:Newstatevalue) Log(t, X, z) &
“(Read(t, Y, X)) & “(Locking(N, Y)) & Unlock(N, Z) => Write(t, Y, X) &
Locking(N, Y)

By utilizing the various axioms provided by the individual specifications of
RELIABLEBROADCAST, CONSENSUS, UNDO/REDO and TWOPHASELOCK-
ING protocols, we formulate the theorem Serialize required for ultimately proving

the global property of Sertalizability of Transactions.

theorem Serialize is

fa(p,q:Processors, T:Clockvalues, m:Messages, t:Transactions)
fa(i:BroadcastDelay, j:BroadcastBound)

fa(v,commit,abort:ProcDeci, N:Transactionid, X:Valstabstorage)
fa(y:Currentstatevalue, z:Newstatevalue, Y:CurrentData, Z:PreviousData)
(

if ((Deliver(p, m, T) => Deliver(q, m, (Clockbound(T, i, j)))) &
(AgreeBroad(p,m,T) & Decision(p,v,T)=>AgreeBroad(q,m, (Clockbound(T,i,j)))
& Decision(q, v, T)) & (Agreeconsensus(p, commit, T) & Undo(t,abort,X,y)
& Redo(t, commit, X, z) => Log(t, X, z)))

then(Log(t, X, z) & (T(Write(t, Y, X))) & (" (Locking(N, Y))) &
Unlock(N, Z) => Read(t, Y, X) & Locking(N, Y))

else(Log(t, X, z) & ("(Read(t, Y, X))) & (~(Locking(N, Y))) &

Unlock(N, Z) => Write(t, Y, X) & Locking(N, Y)))

120

endspec

UNREDOtoTWOPHASELOCK = morphism UNDOREDO->TWOPHASELOCK
{Undo +-> Undo, Redo +-> Redo, Storevalues +-> Storevalues}

TPLOCK = diagram {

a +-> UNDOREDO,

b +-> TWOPHASELOCK,

i: a->b +-> morphism UNDOREDO->TWOPHASELOCK

{Undo +-> Undo, Redo +-> Redo, Storevalues +-> Storevaluesl}}

TPL = colimit TPLOCK

foo = print TPL

TPLtoALLTRANSLATION = translate(TWOPHASELOCK) by

{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver,

ReliableNetwork +-> ReliableNetwork, BroadcastDelay+->BroadcastDelay,
BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,

ValiBroad +-> ValiBroad,AgreeBroad +-> AgreeBroad,ProcDeci+->ProcDeci,
Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensus,
Decision +-> Decision,Proposal+->Proposal,Transactions+->Transactions,
Valstabstorage+->Valstabstorage,Currentstatevalue+->Currentstatevalue,
Newstatevalue +-> Newstatevalue,Log +-> Log,Undo +-> Undo,Redo+->Redo,
Storevalues +-> Storevalues, Read +-> Read, Write +-> Write,

Locking +-> Locking, Unlock +-> Unlock, Readlock +-> Readlock,
Writelock +-> Writelock}

We finally verify the global property by processing the above specification
along with the theorem in Specware with a built-in interface to Snark theorem prover.

The statement for the proof of the global property is as given below:

121

pl = prove Serialize in TWOPHASELOCK using Agreebroad Agreeconsensus
Storevalues Readlock Writelock

The other two global properties are specified and verified in a similar manner
utilizing the modular compositional techniques illustrated in Sections 4.1.2 and 4.1.4

in Chapter 4, and are discussed in subsequent sections.

5.1.2 Specification of Consistent State Maintenance Prop-
erty

A

%“Specification of the basic building block primitives

A

BBB = spec

sort Clockvalues = Nat

sort LocalClockvals = Clockvalues

sort Processors

sort Index = Nat

sort Messages = {p:Processors, Tm:Clockvalues, Km:Index, No:Nat}
sort Procstate = {p:Processors, LC:Clockvalues, n:Nat}
op Correct : Processors -> Boolean

op InOrder : Messages->Boolean

op Broadcast : Processors*Messages*Clockvalues->Boolean
op Deliver : Processors*Messages*Clockvalues->Boolean
endspec

A

#Translation of parameters to other blocks

A

BBBtoALLTRANSLATION = translate(BBB) by

{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver}

%
%#Specification of the RELIABLEBROADCAST protocol

122

%

RELIABLEBROADCAST = spec

import BBBtoALLTRANSLATION

sort ReliableNetwork = Boolean

sort BroadcastDelay = Clockvalues

sort BroadcastBound = Clockvalues

op Clockdelay : Clockvalues*BroadcastDelay->Clockvalues
op Clockbound : Clockvalues*BroadcastDelay*BroadcastBound->Clockvalues
op TermBroad : Processors*Messages*Clockvalues->Boolean
op ValiBroad : Processors*Messages*Clockvalues—->Boolean
op AgreeBroad : Processors*Messages*Clockvalues->Boolean

A

%Various properties of the RELIABLEBROADCAST protocol
%

axiom Broadcast is

fa(p:Processors, m:Messages, T:Clockvalues)
~(Deliver(p, m, T)) & Broadcast(p, m, T)

axiom Deliver is
fa(p:Processors, m:Messages, T:Clockvalues)
~(Broadcast(p, m, T)) & Deliver(p, m, T)

axiom Termbroad is
ex(p, m, T) Correct(p) & Broadcast(p, m, T) =>
(fa (q, i:BroadcastDelay) Correct(q) & Deliver(q,m, (Clockdelay(T,i))))

axiom Valibroad is

ex(p, m, T) Correct(p) & Broadcast(p, m, T) =>

(fa (q, i:BroadcastDelay, j:BroadcastBound) Correct(q) &
Deliver(q, m, (Clockbound(T, i, j))) & i<j)

axiom Agreebroad is

ex(p) fa(m:Messages, T:Clockvalues) Deliver(p, m, T) =>
(fa (q, i:BroadcastDelay, j:BroadcastBound)

Deliver(q, m, Clockbound(T, i, j)))

endspec

h
%Translation of parameters and properties to other blocks

%
123

RELBROADtoALLTRANSLATION = translate (RELIABLEBROADCAST) by
{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver,
ReliableNetwork+->ReliableNetwork,BroadcastDelay+->BroadcastDelay,
BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,
ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad}

/A

%“Specification of the CONSENSUS protocol

/A

CONSENSUS = spec

import RELBROADtoALLTRANSLATION

sort ProcDeci = Boolean

op Decision : Processors#*ProcDeci*Clockvalues->Boolean

op Proposal : Processors*ProcDeci*Clockvalues->Boolean

op Valiconsensus : Processors*ProcDeci*Clockvalues->Boolean
op Agreeconsensus : Processors*ProcDeci*Clockvalues->Boolean

h

%Various properties of the CONSENSUS protocol
h

axiom Proposal is

fa(p:Processors, v:ProcDeci, T:Clockvalues)
~(Decision(p, v, T)) & Proposal(p, v, T)

axiom Decision 1is
fa(p:Processors, v:ProcDeci, T:Clockvalues)
~(Proposal(p, v, T)) & Decision(p, v, T)

axiom Valiconsensus is
fa(p,q:Processors, T,i,j:Clockvalues, m:Messages) ex(v:ProcDeci)
ValiBroad(p, m, T) & Decision(p, v, T) => Proposal(q, v, T)

axiom Agreeconsensus is
fa(p,q:Processors, v:ProcDeci, T,1i,j:Clockvalues, m:Messages)
AgreeBroad(p, m, T) & Decision(p, v, T) => Decision(q, v, T)
endspec
h

124

%Morphisms linking RELIABLEBROADCAST and CONSENSUS protocols

%

RELBROADtoCONSENSUS = morphism RELIABLEBROADCAST->CONSENSUS
{Broadcast+->Broadcast,Deliver+->Deliver,TermBroad+->TermBroad,
ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad}

A

%Colimit diagram between RELIABLEBROADCAST and CONSENSUS protocols
h

CONSEN = diagram {

a +-> RELIABLEBROADCAST,

b +-> CONSENSUS,

i: a->b +-> morphism RELIABLEBROADCAST->CONSENSUS
{Broadcast+->Broadcast, Deliver+->Deliver,TermBroad+->TermBroad,
ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad}}

CONSENT = colimit CONSEN

h

“Translation of parameters and properties to other blocks

A

CONSENTtoALLTRANSLATION = translate(CONSENSUS) by

{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> In(rder,
Broadcast +-> Broadcast, Deliver +-> Deliver,
ReliableNetwork+->ReliableNetwork,BroadcastDelay+->BroadcastDelay,
BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,
ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad,

Valiconsensus +-> Valiconsensus, Agreeconsensus+->Agreeconsensus,
ProcDeci +-> ProcDeci, Decision +-> Decision, Proposal+->Proposal}

[/

4“Specification of the SNAPSHOT protocol

A

SNAPSHOT = spec

import CONSENTtoALLTRANSLATION

sort States

sort Channel

sort Null = Messages

sort Statestabstorage = Boolean

op sending : Processors*Messages*Channel*Processors*Clockvalues->Boolean

125

op reception : Processors*Messages*Channel*Processcrs*Clockvalues—>
Boolean
op record : Processors*States*Messages*Statestabstorage->Boolean

%

%Various properties of the SNAPSHOT protocol

%

axiom sending is

fa(p,q:Processors, M:Messages, c:Channel, T:Clockvalues)
~(reception(p, M, c, q, T)) & sending(p, M, c, q, T)

axiom reception is
fa(p,q:Processors, M:Messages, c:Channel, T:Clockvalues)
“(sending(p, M, c, q, T)) & reception(p, M, ¢, q, T)

axiom record is
fa(p,q:Processors, M:Messages, ¢:Channel, T:Clockvalues)
fa(s:States, X:Statestabstorage) record(p, s, M, X)

axiom Globprocstateinfo is

fa(p,q:Processors) fa(m,M,N,Null:Messages) fa(c:Channel,T,T’:Clockvalues)
fa(s,S:States, commit:ProcDeci) fa(X:Statestabstorage)
Agreeconsensus(p,commit,T) & sending(p, M,c,q,T) & record(p,s,N,X)

& ~(sending(p, m, ¢, q, T’)) => reception(q, M, ¢, p, T) =>

(if (" (record(q, s, M, X)))

then (record(q, s, M, X) & record(q, S, Null, X))

else (record(q,S,m,X) & record(q,s,N,X) & ~(reception(q,M,c,p,T))))

endspec

A

%Morphisms linking CONSENSUS and SNAPSHOT protocols

h

CONSENTtoSNAPSHOT = morphism CONSENSUS->SNAPSHOT

{Decision +-> Decision, Proposal +-> Proposal,

Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensus}

A

%Colimit diagram between CONSENSUS and SNAPSHOT protocols
A

SNAPS = diagram {

a +-> CONSENSUS,

126

b +-> SNAPSHOT,

i: a->b +-> morphism CONSENSUS->SNAPSHOT

{Decision +-> Decision, Proposal +-> Proposal,

Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensusl}}

SNAP = colimit SNAPS

A

%Translation of parameters and properties to other blocks

A

SNAPtoALLTRANSLATION = translate (SNAPSHOT) by

{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +—-> Broadcast, Deliver +-> Deliver,

ReliableNetwork +-> ReliableNetwork, BroadcastDelay+->BroadcastDelay,
BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,
ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad,

Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensus,
ProcDeci +-> ProcDeci, Decision +-> Decision, Proposal+->Proposal,
sending +-> sending, reception +-> reception, record+->record}

h

#Specification of the DECISIONMAKING protocol
A

DECISIONMAKING = spec

import SNAPtoALLTRANSLATION

op next : ProcDeci*ProcDeci->Boolean

op adjacent : ProcDeci*ProcDeci~>Boolean

op inconsistent : ProcDeci*ProcDeci->Boolean

%

“Various properties of the DECISIONMAKING protocol

%

axiom next is

fa(commit,abort:ProcDeci) ~(adjacent(”(commit),commit)) &
next (commit,abort)

axiom adjacent is

fa(commit,abort:ProcDeci) ~(next(commit,abort)) &
adjacent (" (commit) ,commit)

127

axiom inconsistent is
fa(commit,abort:ProcDeci) adjacent(commit,commit) &
next (commit ,abort)

axiom Constateinfo is

fa(p,q:Processors) fa(commit,abort:ProcDeci, s:States, M:Messages)
fa(X:Statestabstorage) record(q,s,M,X) & ("(next(commit,abort))) &
adjacent (" (commit) ,commit)

%

%Theorem to be proved

A

theorem CSM is

fa(p,q:Processors, T:Clockvalues, m,M,N,Null:Messages, ¢ :Channel)
fa(i:BroadcastDelay, j:BroadcastBound, s,S:States)
fa(v,commit,abort:ProcDeci, X:Statestabstorage)

(

if((Deliver(p, m, T) => Deliver(q, m, (Clockbound(T, i, j)))) &
(AgreeBroad(p,m,T) & Decision(p,v,T)=>AgreeBroad(q,m, (Clockbound(T,1i,j)))
& Decision(q, v, T)) & ((Agreeconsensus(p, commit, T) & record(q,s,M,X)
& record(q, s, Null, X)) or (record(q, s, m, X) & record(q, s, N, X) &
(" (reception(q, M, ¢, p, T))))))

then(record(q,s,M,X) & (" (next(commit,abort))) &
adjacent (" (commit) ,commit))

else(inconsistent (commit,abort)))

endspec

h

“Morphisms linking SNAPSHOT and DECISIONMAKING protocols

h

SNAPtoDECISIONMAKING = morphism SNAPSHOT->DECISIONMAKING

{sending +-> sending, reception +-> reception, record +-> record}

h

%Colimit diagram between SNAPSHOT and DECISIONMAKING protocols

h

DECMAK = diagram {

a +-> SNAPSHOT,

b +-> DECISIONMAKING,

i: a->b +-> morphism SNAPSHOT->DECISIONMAKING

{sending +-> sending, reception +-> reception, record +-> record}}

128

DECISION = colimit DECMAK
foo = print DECISION

A

%#Translation of parameters and properties to other blocks

%

DECISIONtoALLTRANSLATION = translate(DECISIONMAKING) by
{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver,

ReliableNetwork +-> ReliableNetwork, BroadcastDelay +-> BroadcastDelay,
BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,
ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad,

Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensus,
ProcDeci +-> ProcDeci, Decision +-> Decision, Proposal +-> Proposal,
sending +-> sending, reception +-> reception, record +-> record,
next +-> next, adjacent +-> adjacent}

h

%Proof of the consistent state maintenance property

A

p2 = prove CSM in DECISIONMAKING using Agreebroad Agreeconsensus
Globprocstateinfo Constateinfo inconsistent

5.1.3 Specification of Roll-Back Recovery Property
%

%“Specification of the basic building primitives

h

BBB = spec

sort Clockvalues = Nat

sort LocalClockvals = Clockvalues

sort Processors

sort Index

sort Messages = {p:Processors, Tm:Clockvalues, Km:Index, No:Nat}
sort Procstate = {p:Processors, LC:Clockvalues, n:Nat}
op Correct : Processors->Boolean

op InOrder : Messages->Boolean

op Broadcast : Processors*Messages*Clockvalues->Boolean

129

op Deliver : Processors*Messages*Clockvalues->Boolean
endspec

yA

%Translation of parameters to other blocks

%

BBBtoALLTRANSLATION = translate(BBB) by

{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver}

A

%Specification of the RELIABLEBROADCAST protocol

%

RELIABLEBROADCAST = spec

import BBBtoALLTRANSLATION

sort ReliableNetwork = Boolean

sort BroadcastDelay = Clockvalues

sort BroadcastBound = Clockvalues

op Clockdelay : Clockvalues*BroadcastDelay->Clockvalues
op Clockbound : Clockvalues*BroadcastDelay*BroadcastBound->Clockvalues
op TermBroad : Processors*Messages*Clockvalues->Boolean
op ValiBroad : Processors*Messages*Clockvalues->Boolean
op AgreeBroad : Processors*Messages*Clockvalues->Boolean

h

%Various properties of the RELIABLEBROADCAST protocol
%

axiom Broadcast is

fa(p:Processors, m:Messages, T:Clockvalues)
~(Deliver(p, m, T)) & Broadcast(p, m, T)

axiom Deliver is
fa(p:Processors, m:Messages, T:Clockvalues)
~(Broadcast(p, m, T)) & Deliver(p, m, T)

axiom Termbroad is

ex(p, m, T) Correct(p) & Broadcast(p, m, T) =>
(fa (q, i:BroadcastDelay) Correct(q) & Deliver(q,m, (Clockdelay(T,i))))

axiom Valibroad is

130

ex(p, m, T) Correct(p) & Broadcast(p, m, T) =>
(fa (q, i:BroadcastDelay, j:BroadcastBound) Correct(q) &
Deliver(q, m, (Clockbound(T, i, j))) & (i<j))

axiom Agreebroad is

ex(p) fa(m:Messages, T:Clockvalues) Deliver(p, m, T) =>
(fa (q, i:BroadcastDelay, j:BroadcastBound)

Deliver(q, m, Clockbound(T, i, j)))

endspec

yA

#Translation of parameters and properties to other blocks

%

RELBROADtoALLTRANSLATION = translate(RELIABLEBROADCAST) by
{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +—> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver,
ReliableNetwork+->ReliableNetwork,BroadcastDelay+->BroadcastDelay,
BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,
ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad}

h

%Specification of the CONSENSUS protocol

%

CONSENSUS = spec

import RELBROADtoALLTRANSLATION

sort ProcDeci = Boolean

op Decision : Processors*ProcDeci*Clockvalues->Boolean

op Proposal : Processors*ProcDeci*Clockvalues->Boolean

op Valiconsensus : Processors*ProcDeci*Clockvalues->Boolean
op Agreeconsensus : Processors*ProcDeci*Clockvalues->Boolean

%

%Various properties of the CONSENSUS protocol
%

axiom Proposal is

fa(p:Processors, v:ProcDeci, T:Clockvalues)
~(Decision(p, v, T)) & Proposal(p, v, T)

axiom Decision 1is

131

fa(p:Processors, v:ProcDeci, T:Clockvalues)
~(Proposal(p, v, T)) & Decision(p, v, T)

axiom Valiconsensus is
fa(p,q:Processors, T,i,j:Clockvalues, m:Messages) ex(v:ProcDeci)
ValiBroad(p, m, T) & Decision(p, v, T) => Proposal(q, v, T)

axiom Agreeconsensus 1s
fa(p,q:Processors, v:ProcDeci, T,i,j:Clockvalues, m:Messages)
AgreeBroad(p, m, T) & Decision(p, v, T) => Decision(q, v, T)

endspec

yA

%Morphisms linking RELIABLEBROADCAST and CONSENSUS protocols

%

RELBROADtoCONSENSUS = morphism RELIABLEBROADCAST->CONSENSUS
{Broadcast +-> Broadcast, Deliver +-> Deliver,TermBroad+->TermBroad,
ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad}

h

%#Colimit diagram between RELIABLEBROADCAST and CONSENSUS protocols
h

CONSEN = diagram {

a +-> RELIABLEBROADCAST,

b +-> CONSENSUS,

i: a->b +-> morphism RELIABLEBROADCAST->CONSENSUS

{Broadcast +-> Broadcast, Deliver +-> Deliver,TermBroad+->TermBroad,
ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad}}

CONSENT = colimit CONSEN

%

%Translation of parameters and properties to other blocks

%

CONSENTtoALLTRANSLATION = translate(CONSENSUS) by

{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver,
ReliableNetwork+->ReliableNetwork,BroadcastDelay+->BroadcastDelay,
BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,

132

ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad,
Valiconsensus +-> Valiconsensus, Agreeconsensus+->Agreeconsensus,
ProcDeci +-> ProcDeci, Decision +-> Decision,Proposal+->Proposal}

%

%Specification of the UNDOREDO protocol

h

UNDOREDO = spec

import CONSENTtoALLTRANSLATION

sort Transactions = Boolean

sort Valstabstorage = Boolean

sort Currentstatevalue = Nat

sort Newstatevalue = Nat

op Log : Transactions*Valstabstorage*Newstatevalue->Boolean

op Undo : Transactions*ProcDeci*Valstabstorage*Currentstatevalue->
Boolean

op Redo : Transactions*ProcDeci*Valstabstorage*Newstatevalue->Boolean
op Storevalues : Transactions*Valstabstorage*ProcDeci->Boolean

A

%Various properties of UNDOREDO protocol

h

axiom Undo is

fa(t:Transactions, a:ProcDeci, X:Valstabstorage, y:Currentstatevalue)
“(Redo(t, a, X, y)) & Undo(t, a, X, y)

axiom Redo is
fa(t:Transactions, a:ProcDeci, X:Valstabstorage, y:Currentstatevalue)
~“(Undo(t, a, X, y)) & Redo(t, a, X, y)

axiom Log is

fa(t:Transactions, a:ProcDeci, X:Valstabstorage)
fa(y:Currentstatevalue, z:Newstatevalue)

~“(Undo(t, a, X, y)) & “(Redo(t, a, X, y)) => Log(t, X, z)

axiom Storevalues is

fa(p,q:Processors) fa(T:Clockvalues,t:Transactions)
fa(commit,abort:ProcDeci)

fa(y:Currentstatevalue, z:Newstatevalue, X:Valstabstorage)
Agreeconsensus(p,commit,T) & Undo(t,abort,X,y) & Redo(t,commit,X,z) =>
Log(t, X, 2)

133

endspec

%

/#Morphisms linking CONSENSUS and UNDOREDO protocols

%

CONSENTtoUNDOREDO = morphism CONSENSUS->UNDOREDO

{Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensus,
Decision +-> Decision, Proposal +-> Proposal}

A

%Colimit diagram between CONSENSUS and UNDOREDO protocols

%

UNRE = diagram {

a +-> CONSENSUS,

b +-> UNDOREDO,

i: a->b +-> morphism CONSENSUS->UNDOREDO

{Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensus,
Decision +-> Decision, Proposal +-> Proposal}}

UNREDO = colimit UNRE

%

%Translation of parameters and properties to other blocks

%

UNREDOtoALLTRANSLATION = translate (UNDOREDQ) by

{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver,

ReliableNetwork +-> ReliableNetwork, BroadcastDelay +-> BroadcastDelay,
BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,

ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad, ProcDeci+->ProcDeci,
Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensus,
Decision +-> Decision,Proposal +-> Proposal,Transactions+->Transactions,
Valstabstorage +-> Valstabstorage,Currentstatevalue+->Currentstatevalue,
Newstatevalue +-> Newstatevalue, Log +-> Log, Undo +-> Undo,

Redo +-> Redo, Storevalues +-> Storevalues}

%

%Specification of the TWOPHASELOCK protocol
%

TWOPHASELQOCK = spec

134

import UNREDOtoALLTRANSLATION

sort Transactionid

sort CurrentData

sort PreviousData

op Read : Transactions*CurrentData*Valstabstorage->Boolean

op Write : Transactions*CurrentData*Valstabstorage->Boolean

op Locking : Transactionid*CurrentData->Boolean

op Unlock : Transactionid*PreviousData->Boolean

op Readlock : Transactions*CurrentData*Valstabstorage->Boolean
op Writelock : Transactions*CurrentData*Valstabstorage->Boolean

A

%Various properties of TWOPHASELOCK protocol

A

axiom Read is

fa(t:Transactions, Y:CurrentData, X:Valstabstorage)
“(Write(t, Y, X)) & Read(t, Y, X)

axiom Write is
fa(t:Transactions, Y:CurrentData, X:Valstabstorage)
“(Read(t, Y, X)) & Write(t, Y, X)

axiom Locking is
fa(N:Transactionid, Y:CurrentData, Z:PreviousData)
(Unlock(N, Z)) & Locking(N, Y)

axiom Unlock is
fa(N:Transactionid, Y:CurrentData, Z:PreviousData)
“(Locking(N, Y)) & Unlock(N, Z)

axiom Readlock is

fa(p,q:Processors) fa(t:Transactions, N:Transactionid, X:Valstabstorage)
fa(Y:CurrentData, Z:PreviousData, z:Newstatevalue) Log(t, X, z) &
“(Write(t, Y, X)) & ~“(Locking(N, Y)) & Unlock(N, Z) => Read(t, Y, X) &
Locking(N, Y)

axiom Writelock is

fa(p,q:Processors) fa(t:Transactions, N:Transactionid, X:Valstabstorage)
fa(Y:CurrentData, Z:PreviousData, z:Newstatevalue) Log(t, X, z) &
“(Read(t, Y, X)) & ~(Locking(N, Y)) & Unlock(N, Z) => Write(t, Y, X) &
Locking(N, Y)

135

endspec

%

%Morphisms linking UNDOREDO and TWOPHASELOCK protocols

%

UNREDOtoTWOPHASELOCK = morphism UNDOREDO->TWOPHASELOCK
{Undo +-> Undo, Redo +-> Redo, Storevalues +-> Storevalues}

%

%Colimit diagram between UNDOREDO and TWOPHASELOCK protocols
%

TPLOCK = diagram {

a +-> UNDOREDO,

b +-> TWOPHASELQCK,

i: a->b +-> morphism UNDOREDO->TWOPHASELOCK

{Undo +-> Undo, Redo +-> Redo, Storevalues +-> Storevalues}}

TPL = colimit TPLOCK

%

%Translation of parameters and properties to other blocks

A

TPLtoALLTRANSLATION = translate (TWOPHASELOCK) by

{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +—-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver,

ReliableNetwork +-> ReliableNetwork, BroadcastDelay +-> BroadcastDelay,
BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,

ValiBroad +-> ValiBroad, AgreeBroad +-> AgreeBroad,ProcDeci+->ProcDeci,
Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensus,
Decision+->Decision,Proposa1+—>Proposal,Transactions+->Transactions,
Valstabstorage+->Valstabstorage,Currentstatevalue+->Currentstatevalue,
Newstatevalue +-> Newstatevalue, Log +-> Log, Undo+->Undo,Redo+->Redo,
Storevalues +-> Storevalues, Read +-> Read, Write +-> Write,

Locking +-> Locking, Unlock +-> Unlock, Readlock +-> Readlock,
Writelock +-> Writelock}

h

%Specification of the CHECKPOINTING protocol
%

CHECKPOINTING = spec

136

import TPLtoALLTRANSLATION

op C : Processors*Clockvalues->LocalClockvals

op receive : Processors*Messages*Processors*Clockvalues->Boolean
op send : Processors*Messages*Processors*Clockvalues->Boolean
op log : Processors*Messages*Clockvalues->Boolean

op Ckpt : Processors*LocalClockvals->Boolean

op ckpt : Processors*Clockvalues->Boolean

op Store : Processors#*LocalClockvals->Boolean

op store : Processors*Clockvalues->Boolean

op Pi : Processors*Clockvalues->Boolean

op PI : Processors*LocalClockvals->Boolean

op Checkpoint : Processors*Clockvalues->Boolean

A

4Various properties of CHECKPOINTING protocol
h

axiom receive is

fa(p,q:Processors, m:Messages, T:Clockvalues)
“(send(p, m, q, T)) & receive(p, m, q, T)

axiom send 1is
fa(p,q:Processors, m:Messages, T:Clockvalues)
“(receive(p, m, q, T)) & send(p, m, q, T)

axiom log 1is
fa(p,q:Processors, m:Messages, T:Clockvalues)
receive(p, m, q, T) & log(p, m ,T)

axiom Ckpt is
fa(p:Processors, T:Clockvalues, S:LocalClockvals)
“(ckpt(p,T)) & Ckpt(p,S)

axiom ckpt is
fa(p:Processors, T:Clockvalues, S:LocalClockvals)
~(Ckpt(p,S)) & ckpt(p,T)

axiom Store 1is
fa(p:Processors, T:Clockvalues, S:LocalClockvals)
“(store(p,T)) & Store(p,S)

axiom store is
fa(p:Processors, T:Clockvalues, S:LocalClockvals)

137

~(Store(p,S)) & store(p,T)

axiom Pi 1is
fa(p:Processors, T:Clockvalues, S:LocalClockvals)
“(PI(p,S)) & Pi(p,T)

axiom PI is
fa(p:Processors, T:Clockvalues, S:LocalClockvals)
“(Pi(p,T)) & PI(p,S)

axiom Logging is

fa(m:Messages) fa(p,q:Processors)

fa(e,T:Clockvalues, S:LocalClockvals, i:BroadcastDelay, j:BroadcastBound)
fa(t:Transactions, Y:CurrentData, X:Valstabstorage)

Readlock(t, Y, X) & ~(Writelock(t, Y, X)) &

((s-i-e)<C(p,T)) & (C(p,T)<=(S+j+e)) =>

(receive(p, m, q, T) => log(p, m, T))

axiom Checkpoint is

fa(m:Messages) fa(p:Processors) fa(n:Index)

fa(e,T:Clockvalues, S:LocalClockvals, i:BroadcastDelay, j :BroadcastBound)
fa(t:Transactions, Y:CurrentData, X:Valstabstorage)

~“(Readlock(t, Y, X)) & Writelock(t, Y, X) &

(S-i-e)<(C(p,T)) & (C(p,T)<=S) =>

(if (ex(m) log(p,m,T) & (C(p,T)<S))

then (ckpt(p,T) & store(p,T) & Pi(p,T))

else (Ckpt(p,S) & Store(p,S) & PI(p,S)))

endspec

A

“Morphisms linking TWOPHASELOCK and CHECKPOINTING protocols

%

TPLtoCHECKPOINTING = morphism TWOPHASELOCK->CHECKPOINTING

{Read +-> Read, Write +-> Write, Locking +-> Locking,

Unlock +-> Unlock, Readlock +-> Readlock, Writelock +-> Writelock}

%

%#Colimit diagram between TWOPHASELOCK and CHECKPOINTING protocols
h

CKPOINTING = diagram {

a +-> TWOPHASELOCK,

138

b +-> CHECKPOINTING,

i: a->b +-> morphism TWOPHASELOCK->CHECKPOINTING

{Read +-> Read, Write +-> Write, Locking +-> Locking,

Unlock +-> Unlock, Readlock +-> Readlock, Writelock +-> Writelockl}}

CKPT = colimit CKPOINTING

A

%Translation of parameters and properties to other blocks

%

CKPTtoALLTRANSLATION = translate (CHECKPOINTING) by

{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,
Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver,

ReliableNetwork +-> ReliableNetwork, BroadcastDelay +-> BroadcastDelay,
BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,

ValiBroad +-> ValiBroad,AgreeBroad +-> AgreeBroad,ProcDeci +-> ProcDeci,
Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensus,
Decision +-> Decision,Proposal +-> Proposal,Transactions+->Transactions,
Valstabstorage +-> Valstabstorage,Currentstatevalue+->Currentstatevalue,
Newstatevalue +-> Newstatevalue,Log +-> Log,Undo +-> Undo,Redo +-> Redo,
Storevalues +-> Storevalues, Read +-> Read, Write +-> Write,

Locking +-> Locking, Unlock +-> Unlock, Readlock +-> Readlock,

Writelock +-> Writelock,receive +-> receive,log +-> log,Ckpt +-> Ckpt,
ckpt +-> ckpt, Store +-> Store, store +-> store, Pi +-> Pi, PI +-> PI,
Checkpoint +-> Checkpoint}

h

ASpecification of the ROLLBACKRECOVERY protocol
A

ROLLBACKRECOVERY = spec

import CKPTtoALLTRANSLATION

op CorrecttoFailure : Processors*Clockvalues->Boolean
op Rollback : Index*Clockvalues->Boolean

op Restore : Index*Clockvalues->Boolean

op Recover : Index*Clockvalues->Boolean

op rollback : Index*LocalClockvals->Boolean

op restore : Index*LocalClockvals->Boolean

op recover : Index*LocalClockvals->Boolean

A

139

%Various properties of ROLLBACKRECOVERY protocol
h

axiom CorrecttoFailure is

fa(p:Processors, T:Clockvalues)

Correct(p) & CorrecttoFailure(p,T)

axiom Rollback is
fa(n:Index, T:Clockvalues)
~(Restore(n,T)) & Rollback(n,T)

axiom Restore 1is
fa(n:Index, T:Clockvalues)
~“(Rollback(n,T)) & Restore(n,T)

axiom rollback is
fa(n:Index, S:LocalClockvals)
~(restore(n,S)) & rollback(n,S)

axiom restore 1is
fa(n:Index, S:LocalClockvals)
“(rollback(n,S)) & restore(n,S)

axiom Recover 1is

fa(p:Processors, n:Index) fa(e,T:Clockvalues)

fa(i:BroadcastDelay, j:BroadcastBound, S:LocalClockvals) Checkpoint(p,T)
& ((S-i-e)<C(p,T)) & (C(p,T)<=S) & CorrecttoFailure(p,T) &

(ckpt(p,T) => Rollback(n,T) => Restore(n,T))

axiom recover is

fa(p:Processors, n:Index) fa(e,T:Clockvalues)

fa(i:BroadcastDelay, j:BroadcastBound, S:LocalClockvals) Checkpoint(p,T)
& ((S-i-e)<C(p,T)) & (C(p,T)<=S) & CorrecttoFailure(p,T) &

(Ckpt (p,S) => rollback(n,S) => restore(n,S))

A

%Theorem to be proved

A

theorem RBR is

fa(p,q:Processors, T:Clockvalues, m:Messages, t:Transactions, n:Index)
fa(i:BroadcastDelay, j:BroadcastBound, S:LocalClockvals)
fa(v,commit,abort:ProcDeci, N:Transactionid, X:Valstabstorage)
fa(y:Currentstatevalue, z:Newstatevalue, Y:CurrentData, Z:PreviousData)

140

(

if((Deliver(p, m, T) => Deliver(q, m, (Clockbound(T, i, j)))) &
(AgreeBroad(p,m,T) & Decision(p,v,T)=>AgreeBroad(q,m, (Clockbound(T,i,j)))
& Decision(q, v, T)) & (Agreeconsensus(p,commit,T) & Undo(t,abort,X,y)

& Redo(t,commit,X,z) => Log(t,X,z)) & ((Log(t,X,z) & ("(Write(t,Y,X))) &
(" (Locking(N, Y))) & Unlock(N, Z) => Read(t, Y, X) & Locking(N, Y)) or
(Log(t, X, z) & ("(Read(t,Y,X))) & ("(Locking(N,Y))) & Unlock(N, Z) =>
Write(t,Y,X) & Locking(N,Y))) & (("(Readlock(t,Y,X)) & Writelock(t,Y,X) &
ckpt(p,T) & store(p,T) & Pi(p,T)) or (Ckpt(p,S) & Store(p,S) & PI(p,S))))
then(ckpt(p,T) => Rollback(n,T) => Restore(n,T))

else(Ckpt(p,S) => rollback(n,S) => restore(n,S)))

endspec

%

ZMorphisms linking CHECKPOINTING and ROLLBACKRECOVERY protocols

%

CKPTtoROLLBACKRECOVERY = morphism CHECKPOINTING->ROLLBACKRECOVERY
{receive +-> receive, log +-> log, Ckpt +-> Ckpt, ckpt +-> ckpt,
Store +-> Store, store +-> store, Pi +-> Pi, PI +-> PI,
Checkpoint +-> Checkpoint}

h

%Colimit diagram between CHECKPOINTING and ROLLBACKRECOVERY protocols
%

RCOV = diagram {

a +-> CHECKPOINTING,

b +-> ROLLBACKRECOVERY,

i: a->b +-> morphism CHECKPOINTING->ROLLBACKRECOVERY

{receive +-> receive, log +-> log, Ckpt +-> Ckpt, ckpt +-> ckpt,
Store +-> Store, store +-> store, Pi +-> Pi, PI +-> PI,

Checkpoint +-> Checkpoint}}

RECQ = colimit RCOV
foo = print RECO

%

%4Translation of parameters and properties to other blocks

%

RECOtoALLTRANSLATION = translate (ROLLBACKRECOVERY) by
{Clockvalues +-> Clockvalues, LocalClockvals +-> LocalClockvals,

141

Processors +-> Processors, Index +-> Index, Messages +-> Messages,
Procstate +-> Procstate, Correct +-> Correct, InOrder +-> InOrder,
Broadcast +-> Broadcast, Deliver +-> Deliver,

ReliableNetwork +-> ReliableNetwork, BroadcastDelay +-> BroadcastDelay,
BroadcastBound +-> BroadcastBound, TermBroad +-> TermBroad,

ValiBroad +-> ValiBroad,AgreeBroad +-> AgreeBroad,ProcDeci +-> ProcDeci,
Valiconsensus +-> Valiconsensus, Agreeconsensus +-> Agreeconsensus,
Decision +-> Decision,Proposal +-> Proposal,Transactions+->Transactions,
Valstabstorage +-> Valstabstorage,Currentstatevalue+->Currentstatevalue,
Newstatevalue +-> Newstatevalue,Log +-> Log,Undo +-> Undo,Redo +-> Redo,
Storevalues +-> Storevalues, Read +-> Read, Write +-> Write,

Locking +-> Locking, Unlock +-> Unlock, Readlock +-> Readlock,

Writelock +-> Writelock,receive +-> receive,log +-> log,Ckpt +-> Ckpt,
ckpt +-> ckpt, Store +-> Store, store +-> store, Pi +-> Pi, PI +-> PI,
Checkpoint +-> Checkpoint, Rollback +-> Rollback,

CorrecttoFailure +-> CorrecttoFailure, Restore +-> Restore,

rollback +-> rollback, restore +-> restore, Recover +-> Recover,

recover +-> recover}

A

%Proof of the Rollback Recovery property

A

p3 = prove RBR in ROLLBACKRECOVERY using Agreebroad Agreeconsensus
Storevalues Readlock Writelock Checkpoint Recover recover

142

Chapter 6

Conclusion

Our aim in this thesis had been to apply our proposed category-theoretical
approach for protocol composition to a complex (and also a practical) transaction
processing protocol integrating all sub-protocols which are instrumental in achieving
the correct protocol level operations. In order to obtain the overall global properties
of the protocol, we first identified the various building blocks of a transaction process-
ing protocol namely the centralized non-blocking three phase commit (3PC) protocol
highlighting their inter-dependencies and functionalities as shown in chapter 3. We
then applied the concepts of category theory to compose the 3PC protocol by utilizing
its various sub-protocols as shown in chapter 4. We also demonstrated in the same
chapter that how by breaking down complex protocol blocks into smaller sub-blocks,
it becomes relatively easy to verify the global properties of the protocol. This is be-
cause, by verifying (and utilizing) the smaller sub-protocols, we can be rest assured
the correctness of the overall complex protocol as it is now formed of inter-related
sub-protocols. In this chapter, we first discuss some of the insights we got from the

modular composition and verification of three phase commit protocol in terms of ex-

143

perience and viewpoints. We then provide details on our ongoing and future work in

modular protocol composition and verification.

Experience & Viewpoint

We highlight some of the observations we have made over our effort in modularly

composing the 3PC protocol.

e A major obstacle which we overcame was related to the process of identifying
the various sub-blocks for the three phase commit protocol and also their inter-
dependencies based on the overall functionality of the protocol. The difficulty
was due to the fact that for different functionalities of the 3PC, the relation-
ships between the sub-blocks vary widely and there is always a possibility of an
addition or deletion of an identified sub-block.

e Since we have followed the bottom-up approach in the proofs of the global prop-
erties of the three phase commit protocol, there is a high dependency of one
property on the other. For the final global property to be proved, it’s a must
that the base properties are first validated, and as we go up the hierarchy, it is
constrained that base properties are always maintained. This is a challenging
task in itself.

e With respect to the previous point, there is an imminent need for a technique
which would help us answer the following question: Which kind of protocol
verification properties can be decomposed, and which cannot? We believe that

an answer to this question necessitates development of a formal framework
144

which would facilitate mechanisms for managing and analyzing dependencies
among sub-protocols. We are currently investigating this aspect of modular
composition of protocols.

The morphisms that we had considered while proving the global properties of
the 3PC are different for different properties and also vary for different protocols.
We acknowledge that the sub-protocols we have identified probably would not
cover the entire class of transaction processing protocols. However, with this as
an initial stage, we are currently looking into coming up with a generic model
which could handle most protocols within this class of protocols.

It is possible that two initially non-conflicting sub-blocks may end up being
operationally conflicting at some arbitrary implementation details which are
not apparent at the high level of specification. Determining how much and how
often implementation details will be needed to capture all subtleties of sub-
block interactions is a challenging problem, and demands further research in

this direction.

6.1 Discussions and Conclusion

In this thesis, we have shown how a complex protocol like the three phase com-

mit protocol can be broken down into smaller sub-protocols by modularization. Given

our approach, it becomes easier for the protocol specification and design community,

since their task of specification and design is now confined to only smaller pieces of

a global protocol. Also by this methodology, the testing and validation of complex

145

protocols becomes simpler.

Through the case study of transaction processing protocol. our specific aim
in this thesis has been to illustrate the fact that our proposed category-theory based
formal framework serves as a design tool to systematically compose distributed de-
pendable protocols. As we have been emphasizing throughout this thesis, morphisms
linking different modules are effective means of highlighting any conflicts arising over
composition. They essentially pinpoint properties that must be observed across dif-
ferent modules. The key idea presented in this thesis is that we can decompose global
properties of the protocol level operations into small lemmas (local properties) prov-
able in different sub-protocols and translate these sub-properties along morphisms to
establish the desired properties.

We also emphasize that category-based formalization of basic building block-
protocols permit reusability of these basic formal modules. Moreover, for any con-
figuration of building blocks over a protocol composition, morphisms also provide a
direct capability of tracing desired feasible path of any variable, attribute, or action.

Regarding future work, we plan to expand the proposed category-theory
based approach for modular composition, and develop a general theoretical frame-
work where one can potentially plug-in formal theories of specific building blocks to
compose and verify the complex protocol level operations. Also we are exploring the
possibilities of coming up with a more generic methodology for the identification of

building blocks in a protocol, since the ones we had identified in this thesis for the

146

three phase commit protocol, have been done on an ad-hoc basis based on the overall

functionalities of the 3PC given in literature.

147

APPENDIX-I

Specification of the composite protocol PR, along
with processing steps of Specware and proof results
from Snark

CL-USER(1) : :sw /Progra~1/Specware4.0/Examples/speccodel

Processing spec at C:/Progra~1/Specware4.0/Examples/speccodel#BBB
Processing spec at C:/Program Files/Specware4.0/Library/Base
Processing spec at C:/Program Files/Specware4.0/Library/Base/Boolean
Processing spec at C:/Program Files/Specware4.0/Library/Base/PrimitiveSorts
Processing spec at C:/Program Files/Specware4.0/Library/Base/Compare
Processing spec at C:/Program Files/Specware4.0/Library/Base/Functions
Processing spec at C:/Program Files/Specware4.0/Library/Base/Integer
Processing spec at C:/Program Files/Specware4.0/Library/Base/Nat
Processing spec at C:/Program Files/Specware4.0/Library/Base/Char
Processing spec at C:/Program Files/Specware4.0/Library/Base/String
Processing spec at C:/Program Files/Specware4.0/Library/Base/List
Processing spec at C:/Program Files/Specware4.0/Library/Base/Option
Processing spec at C:/Program Files/Specware4.0/Library/Base/System
Processing spec at C:/Program Files/Specware4.0/Library/Base/Show
Processing translation at C:/Progra”1/Specware4.0/Examples/speccodel
#BBBtoALLTRANSLATION

Processing spec at C:/Progra~1/Specware4.0/Examples/speccodel
#RELIABLEBROADCAST

Processing translation at C:/Progra”1/Specware4.0/Examples/speccodel
#RELBROADtoALLTRANSLATION
Processing spec at C:/Progra~1/Specware4.0/Examples/speccodel#CONSENSUS
Processing spec morphism at C:/Progra”1/Specware4.0/Examples/speccodel
#RELBROADtoCONSENSUS
Processing spec diagram at C:/Progra”1/Specware4.0/Examples/speccodel

#CONSEN

Processing spec morphism at C:/Progra”1/Specware4.0/Examples/speccodel

148

#CONSEN

Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing

#UNRE

colimit

spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec

at
at
at
at
at
at
at
at
at
at
at
at
at

at C:/Progra”1/Specware4.0/Examples/speccodel#CONSENT

C:/Program
C:/Program
C:/Program
C:/Program
C:/Program
C:/Program
C:/Program
C:/Program
C:/Program
C:/Program
C:/Program
C:/Program
C:/Program

Files/Specware4.
Files/Specware4.
.0/Library/Base/PrimitiveSorts

Files/Specware4

Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.

0/Library/Base
0/Library/Base/Boolean

0/Library/Base/Compare
0/Library/Base/Functions
0/Library/Base/Integer
0/Library/Base/Nat
0/Library/Base/Char
0/Library/Base/String
0/Library/Base/List
0/Library/Base/Option
0/Library/Base/System
0/Library/Base/Show

translation at C:/Progra”1/Specware4.0/Examples/speccodel
#CONSENTtoALLTRANSLATION
Processing spec at C:/Progra”1/Specware4.0/Examples/speccodel#UNDOREDO
Processing spec morphism at C:/Progra”1/Specware4.0/Examples/speccodel
#CONSENTtoUNDOREDQ
Processing spec diagram at C:/Progra”1/Specware4.0/Examples/speccodel

Processing spec morphism at C:/Progra”1/Specware4.(0/Examples/speccodel

#UNRE

Processing colimit at C:/Progra”1/Specware4.0/Examples/speccodel#UNREDO
Processing translation at C:/Progra”1/Specware4.0/Examples/speccodel
#UNREDOtoALLTRANSLATION
Processing spec at C:/Progra”1/Specware4.0/Examples/speccodel#TWOPHASELOCK
Processing spec morphism at C:/Progra~1/Specware4.0/Examples/speccodel
#UNREDOtoTWOPHASELOCK
Processing spec diagram at C:/Progra”1/Specware4.0/Examples/speccodel

#TPLOCK

Processing spec morphism at C:/Progra~1/Specware4.0/Examples/speccodel

#TPLOCK

Processing colimit at

spec
sort BroadcastBound = Clockvalues
sort BroadcastDelay = Clockvalues
sort Clockvalues = Nat

sort CurrentData

sort Currentstatevalue = Nat

149

C:/Progra~1/Specware4.0/Examples/speccodel#TPL

sort Index = Nat

sort LocalClockvals = Clockvalues

sort Messages = {Km:Index, No:Nat, Tm:Clockvalues, p:Processors}
sort Newstatevalue = Nat

sort PreviousData

sort ProcDeci = Boolean

sort Procstate = {LC:Clockvalues, n:Nat, p:Processors}
sort Processors

sort ReliableNetwork = Boolean

sort Transactionid

sort Transactions = Boolean

sort Valstabstorage = Boolean

op
op
op
op
op
op
op
op
op
op
op
op
op
op
op

op
op
op

op
op
op
op
op

AgreeBroad : Processors * Messages * Clockvalues -> Boolean
Agreeconsensus : Processors * ProcDeci * Clockvalues -> Boolean
Broadcast : Processors * Messages * Clockvalues -> Boolean
Clockbound : Clockvalues * BroadcastDelay * BroadcastBound->Clockvalues
Clockdelay : Clockvalues * BroadcastDelay -> Clockvalues

Correct : Processors -> Boolean

Decision : Processors * ProcDeci * Clockvalues -> Boolean

Deliver : Processors * Messages * Clockvalues -> Boolean

InOrder : Messages —> Boolean

Locking : Tramsactionid * CurrentData —> Boolean

Log : Transactions * Valstabstorage * Newstatevalue -> Boolean
Proposal : Processors * ProcDeci * Clockvalues -> Boolean

Read : Transactions * CurrentData * Valstabstorage -> Boolean
Readlock : Transactions * CurrentData * Valstabstorage -> Boolean
Redo

Transactions * ProcDeci * Valstabstorage * Newstatevalue -> Boolean
Storevalues : Transactions * Valstabstorage * ProcDeci -> Boolean
TermBroad : Processors * Messages * Clockvalues -> Boolean

Undo

Transactions * ProcDeci * Valstabstorage * Currentstatevalue->Boolean
Unlock : Tramsactionid * PreviousData -> Boolean

ValiBroad : Processors * Messages * Clockvalues -> Boolean
Valiconsensus : Processors * ProcDeci * Clockvalues -> Boolean
Write : Transactions * CurrentData * Valstabstorage -> Boolean
Writelock : Transactions * CurrentData * Valstabstorage -> Boolean

axiom Read is

fa(t : Transactions, Y : CurrentData, X : Valstabstorage)
“(Write(t, Y, X)) & Read(t, Y, X)

axiom Write is

fa(t : Transactions, Y : CurrentData, X : Valstabstorage)

150

“(Read(t, Y, X)) & Write(t, Y, X)
axiom Locking is
fa(N : Transactionid, Y : CurrentData, Z : PreviousData)
Unlock(N, Z) & Locking(N, Y)
axiom Unlock 1is
fa(N : Transactionid, Y : CurrentData, Z : PreviousData)
“(Locking(N, Y)) & Unlock(N, Z)
axiom Readlock is
fa(p : a, q : Processors)
fa(t : Transactions, N : Transactionid, X : Valstabstorage)
fa(Y : CurrentData, Z : PreviousData, z : Newstatevalue)

(Log(t, X, 2) &
(“(Write(t, Y, X)) & (" (Locking(N, Y)) & Unlock(N, Z)))) =>
(Read(t, Y, X) & Locking(N, Y))
axiom Writelock is
fa(p : a, q : Processors)
fa(t : Tramsactions, N : Transactionid, X : Valstabstorage)
fa(Y : CurrentData, Z : PreviousData, z : Newstatevalue)

(Log(t, X, 2) &
(“(Read(t, Y, X)) & (" (Locking(N, Y)) & Unlock(N, Z)))) =>
(Write(t, Y, X) & Locking(N, Y))
theorem Serialize is
fa(p : Processors, q : Processors, T : Clockvalues, m : Messages,
t : Transactions)
fa(i : BroadcastDelay, j : BroadcastBound)
fa(v : ProcDeci, commit : ProcDeci, abort : ProcDeci,
N : Transactionid, X : Valstabstorage)
fa(y : Currentstatevalue, z : Newstatevalue, Y : CurrentData,
Z : PreviousData)
if (Deliver(p, m, T) => Deliver(q, m, Clockbound(T, i, j))) &
(
((AgreeBroad(p, m, T) & Decision(p, v, T)) =>
(AgreeBroad(q, m, Clockbound(T, i, j)) & Decision(q, v, T))) &
(
(Agreeconsensus(p, commit, T) &
(Undo(t, abort, X, y) & Redo(t, commit, X, z))) => Log(t, X, z)))
then

(Log(t, X, 2z) &
(“(Write(t, Y, X)) & (" (Locking(N, Y)) & Unlock(N, Z)))) =>

151

(Read(t, Y, X) & Locking(N, Y))
else

(Log(t, X, 2) &
("(Read(t, Y, X)) & (" (Locking(N, Y)) & Unlock(N, Z)))) =>
(Write(t, Y, X) & Locking(N, Y))
axiom Storevalues is
fa(p : Processors, q : Processors)
fa(T : Clockvalues, t : Transactions)
fa(commit : ProcDeci, abort : ProcDeci)
fa(y : Currentstatevalue, z : Newstatevalue, X : Valstabstorage)

(Agreeconsensus(p, commit, T) &
(Undo(t, abort, X, y) & Redo(t, commit, X, z))) => Log(t, X, 2)
axiom Log is
fa(t : Transactions, a : ProcDeci, X : Valstabstorage)
fa(y : Currentstatevalue, z : Newstatevalue)
(" (Undo(t, a, X, y)) & “(Redo(t, a, X, y))) => Log(t, X, 2)
axiom Redo 1is
fa(t : Transactions, a : ProcDeci, X : Valstabstorage,
y : Currentstatevalue) ~(Undo(t, a, X, y)) & Redo(t, a, X, y)
axiom Undo 1is
fa(t : Transactions, a : ProcDeci, X : Valstabstorage,
y : Currentstatevalue) ~(Redo(t, a, X, y)) & Undo(t, a, X, y)
axiom Agreebroad is
ex(p : Processors)
fa(m : Messages, T : Clockvalues)
Deliver(p, m, T) =>
fa(q : Processors, i : BroadcastDelay, j : BroadcastBound)
Deliver(q, m, Clockbound(T, i, j))
axiom Valibroad is
ex(p : Processors, m : Messages, T : Clockvalues)
(Correct p & Broadcast(p, m, T)) =>
fa(q : Processors, i : BroadcastDelay, j : BroadcastBound)
(Correct q & (Deliver(q, m, Clockbound(T, i, j)) & (i < j)))
axiom Termbroad is
ex(p : Processors, m : Messages, T : Clockvalues)
(Correct p & Broadcast(p, m, T)) =>
fa(q : Processors, i : BroadcastDelay)
(Correct q & Deliver(q, m, Clockdelay(T, i)))
axiom Deliver is

152

fa(p : Processors, m : Messages, T : Clockvalues)
~(Broadcast(p, m, T)) & Deliver(p, m, T)
axiom Broadcast is
fa(p : Processors, m : Messages, T : Clockvalues)
~(Deliver(p, m, T)) & Broadcast(p, m, T)
axiom Proposal is
fa(p : Processors, v : ProcDeci, T : Clockvalues)
~(Decision(p, v, T)) & Proposal(p, v, T)
axiom Decision is
fa(p : Processors, v : ProcDeci, T : Clockvalues)
~(Proposal(p, v, T)) & Decision(p, v, T)
axiom Valiconsensus is
fa(p : Processors, q : Processors, T : Clockvalues, 1 : a,
j: Clockvalues, m : Messages)
ex(v : ProcDeci)
(ValiBroad(p, m, T) & Decision(p, v, T)) => Proposal(q, v, T)
axiom Agreeconsensus 1is
fa(p : Processors, q : Processors, v : ProcDeci, T : Clockvalues,
i : a, j : Clockvalues, m : Messages)
(AgreeBroad(p, m, T) & Decision(p, v, T)) => Decision(q, v, T)
endspec

Processing translation at C:/Progra™1/Specware4.0/Examples/speccodel
#TPLtoALLTRANSLATION
Processing prove at C:/Progra”1/Specware4.0/Examples/speccodel#pl
Processing spec at C:/Program Files/Specware4.0/Library/Base/ProverBase
pl: Theorem Serialize in TWOPHASELOCK is Proved!

Snark Log file: C:/Progra”1/Specware4.0/Examples/snark/speccodel/pl.log

153

APPENDIX-II

Specification of the composite protocol PR; along
with processing steps of Specware and proof results
from Snark

CL-USER(1): :sw /Progra~1/Specware4.0/Examples/speccode?2

Processing spec at C:/Progra”1/Specware4.0/Examples/speccode2#BBB
Processing spec at C:/Program Files/Specware4.0/Library/Base
Processing spec at C:/Program Files/Specware4.0/Library/Base/Boolean
Processing spec at C:/Program Files/Specware4.0/Library/Base/PrimitiveSorts
Processing spec at C:/Program Files/Specware4.0/Library/Base/Compare
Processing spec at C:/Program Files/Specware4.0/Library/Base/Functions
Processing spec at C:/Program Files/Specware4.0/Library/Base/Integer
Processing spec at C:/Program Files/Specware4.0/Library/Base/Nat
Processing spec at C:/Program Files/Specware4.0/Library/Base/Char
Processing spec at C:/Program Files/Specware4.0/Library/Base/String
Processing spec at C:/Program Files/Specware4.0/Library/Base/List
Processing spec at C:/Program Files/Specware4.0/Library/Base/Option
Processing spec at C:/Program Files/Specware4.0/Library/Base/System
Processing spec at C:/Program Files/Specware4.0/Library/Base/Show
Processing translation at C:/Progra~1/Specware4.0/Examples/speccode2
#BBBtoALLTRANSLATION

Processing spec at C:/Progra~1/Specware4.0/Examples/speccode2
#RELIABLEBROADCAST

Processing translation at C:/Progra”1/Specware4.0/Examples/speccode2
#RELBROADtoALLTRANSLATION
Processing spec at C:/Progra”1/Specware4.0/Examples/speccode2#CONSENSUS
Processing spec morphism at C:/Progra~1/Specware4.0/Examples/speccode?2
#RELBROADtoCONSENSUS
Processing spec diagram at C:/Progra”1/Specware4.0/Examples/speccode2

#CONSEN

Processing spec morphism at C:/Progra”1/Specware4.0/Examples/speccode2

154

#CONSEN

Processing colimit at C:/Progra~1/Specware4.0/Examples/speccode2
#CONSENT

Processing spec at C:/Program Files/Specware4.0/Library/Base
Processing spec at C:/Program Files/Specware4.0/Library/Base/Boolean
Processing spec at C:/Program Files/Specware4.0/Library/Base/PrimitiveSorts
Processing spec at C:/Program Files/Specware4.0/Library/Base/Compare
Processing spec at C:/Program Files/Specware4.0/Library/Base/Functions
Processing spec at C:/Program Files/Specware4.0/Library/Base/Integer
Processing spec at C:/Program Files/Specware4.0/Library/Base/Nat
Processing spec at C:/Program Files/Specware4.0/Library/Base/Char
Processing spec at C:/Program Files/Specware4.0/Library/Base/String
Processing spec at C:/Program Files/Specware4.0/Library/Base/List
Processing spec at C:/Program Files/Specware4.0/Library/Base/Option
Processing spec at C:/Program Files/Specware4.0/Library/Base/System
Processing spec at C:/Program Files/Specware4.0/Library/Base/Show
Processing translation at C:/Progra”1l/Specware4.0/Examples/speccode2

#CONSENTtoALLTRANSLATION

Processing spec at C:/Progra”1/Specware4.0/Examples/speccode2#SNAPSHOT
Processing spec morphism at C:/Progra™1/Specware4.0/Examples/speccode2
#CONSENTtoSNAPSHOT

Processing spec diagram at C:/Progra™1/Specware4.0/Examples/speccode2
#SNAPS

Processing spec morphism at C:/Progra”1/Specware4.0/Examples/speccode2
#SNAPS

Processing colimit at C:/Progra”1/Specware4.0/Examples/speccode2#SNAP
Processing translation at C:/Progra”1/Specware4.0/Examples/speccode2
#SNAPtoALLTRANSLATION

Processing spec at C:/Progra~1/Specware4.0/Examples/speccode2
#DECISTONMAKING

Processing spec morphism at C:/Progra~1/Specware4.0/Examples/speccode?2
#SNAPtoDECISIONMAKING

Processing spec diagram at C:/Progra”1/Specware4.0/Examples/speccode2
#DECMAK

Processing spec morphism at C:/Progra™1/Specware4.0/Examples/speccode2
#DECMAK

Processing colimit at

spec
sort BroadcastBound = Clockvalues
sort BroadcastDelay = Clockvalues

sort Channel

155

C:/Progra~1/Specware4.0/Examples/speccode2#DECISION

sort Clockvalues = Nat

sort Index = Nat

sort LocalClockvals = Clockvalues

sort Messages = {Km:Index, No:Nat, Tm:Clockvalues, p:Processors}
sort Null = Messages

sort ProcDeci = Boolean

sort Procstate = {LC:Clockvalues, n:Nat, p:Processors}

sort Processors

sort ReliableNetwork = Boolean

sort States

sort Statestabstorage = Boolean

op AgreeBroad : Processors * Messages * Clockvalues -> Boolean

op Agreeconsensus : Processors * ProcDeci * Clockvalues -> Boolean
op Broadcast : Processors * Messages * Clockvalues -> Boolean

op Clockbound : Clockvalues * BroadcastDelay * BroadcastBound->Clockvalues
op Clockdelay : Clockvalues * BroadcastDelay -> Clockvalues

op Correct : Processors -> Boolean

op Decision : Processors * ProcDeci * Clockvalues -> Boolean

op Deliver : Processors * Messages * Clockvalues -> Boolean

op InOrder : Messages -> Boolean

op Proposal : Processors * ProcDeci * Clockvalues -> Boolean

op TermBroad : Processors * Messages * Clockvalues -> Boolean

op ValiBroad : Processors * Messages * Clockvalues -> Boolean

op Valiconsensus : Processors * ProcDeci * Clockvalues -> Boolean
op adjacent : ProcDeci * ProcDeci -> Boolean

op inconsistent : ProcDeci * ProcDeci -> Boolean

op next : ProcDeci * ProcDeci -> Boolean

op reception :

Processors * Messages * Channel * Processors * Clockvalues->Boolean
op record : Processors * States * Messages * Statestabstorage->Boolean
op sending :

Processors * Messages * Channel * Processors * Clockvalues->Boolean
axiom next is

fa(commit : Boolean, abort : ProcDeci)

~(adjacent(~ commit, commit)) & next(commit, abort)
axiom adjacent is

fa(commit : ProcDeci, abort : ProcDeci)

“(next(commit, abort)) & adjacent(~ commit, commit)
axiom inconsistent is

fa(commit : ProcDeci, abort : ProcDeci)

adjacent(commit, commit) & next(commit, abort)
axiom Constateinfo is

156

fa(p : a, q : Processors)
fa(commit : ProcDeci, abort : ProcDeci, s : States, M : Messages,
X : Statestabstorage)
record(q, s, M, X) &
(" (next(commit, abort)) & adjacent(” commit, commit))
theorem CSM 1is
fa(p : Processors, q : Processors, T : Clockvalues, m : Messages,
M : Messages, N : Messages, Null : Messages, c : Channel)
fa(i : BroadcastDelay, j : BroadcastBound, s : States, S : States)
fa(v : ProcDeci, commit : ProcDeci, abort : ProcDeci,
X : Statestabstorage)
if (Deliver(p, m, T) => Deliver(q, m, Clockbound(T, i, j))) &
(
((AgreeBroad(p, m, T) & Decision(p, v, T)) =>
(AgreeBroad(q, m, Clockbound(T, i, j)) & Decision(q, v, T))) &
(
(Agreeconsensus(p, commit, T) &
(record(q, s, M, X) & record(q, s, Null, X))) or
(record(q, s, m, X) &
(record(q, s, N, X) & ~(reception(q, M, c, p, T))))))
then
record(q, s, M, X) &
(" (next(commit, abort)) & adjacent(” commit, commit))

else inconsistent(commit, abort)
axiom Globprocstateinfo is
fa(p : Processors, q : Processors)
fa(m : Messages, M : Messages, N : Messages, Null : Messages)
fa(c : Channel, T : Clockvalues, T’ : Clockvalues)
fa(s : States, S : States, commit : ProcDeci)
fa(X : Statestabstorage)

(Agreeconsensus(p, commit, T) &
(sending(p, M, ¢, q, T) &
(record(p, s, N, X) & “(sending(p, m, ¢, q, T’))))) =>
(reception(q, M, ¢, p, T) =>
if “(record(q, s, M, X))
then record(q, s, M, X) & record(q, S, Null, X)
else
record(q, S, m, X) &
(record(q, s, N, X) & ~(reception(q, M, c, p, T))))
axiom record is

157

fa(p : Processors, q : Processors, M : Messages, ¢ : Channel,
T : Clockvalues)
fa(s : States, X : Statestabstorage) record(p, s, M, X)
axiom reception 1is
fa(p : Processors, q : Processors, M : Messages, c¢ : Channel,
T : Clockvalues) ~(sending(p,M,c,q,T)) & reception(p,M,c,q,T)
axiom sending is
fa(p : Processors, q : Processors, M : Messages, ¢ : Channel,
T : Clockvalues) ~(reception(p,M,c,q,T)) & sending(p,M,c,q,T)
axiom Agreebroad is
ex(p : Processors)
fa(m : Messages, T : Clockvalues)
Deliver(p, m, T) =>
fa(q : Processors, i : BroadcastDelay, j : BroadcastBound)
Deliver(q, m, Clockbound(T, i, j))
axiom Valibroad is
ex(p : Processors, m : Messages, T : Clockvalues)
(Correct p & Broadcast(p, m, T)) =>
fa(q : Processors, i : BroadcastDelay, j : BroadcastBound)
(Correct q & (Deliver(q, m, Clockbound(T, i, j)) & (i < j)))
axiom Termbroad is
ex(p : Processors, m : Messages, T : Clockvalues)
(Correct p & Broadcast(p, m, T)) =>
fa(q : Processors, i : BroadcastDelay)
(Correct q & Deliver(q, m, Clockdelay(T, i)))
axiom Deliver is
fa(p : Processors, m : Messages, T : Clockvalues)
~(Broadcast(p, m, T)) & Deliver(p, m, T)
axiom Broadcast is
fa(p : Processors, m : Messages, T : Clockvalues)
~“(Deliver(p, m, T)) & Broadcast(p, m, T)
axiom Proposal is
fa(p : Processors, v : ProcDeci, T : Clockvalues)
~(Decision(p, v, T)) & Proposal(p, v, T)
axiom Decision is
fa(p : Processors, v : ProcDeci, T : Clockvalues)
~(Proposal(p, v, T)) & Decision(p, v, T)
axiom Valiconsensus is
fa(p : Processors, q : Processors, T : Clockvalues, i : a,
j : Clockvalues, m : Messages)
ex(v : ProcDeci)
(ValiBroad(p, m, T) & Decision(p, v, T)) => Proposal(q, v, T)

158

axiom Agreeconsensus 1is
fa(p : Processors, q : Processors, v : ProcDeci, T : Clockvalues,

i : a, j : Clockvalues, m : Messages)
(AgreeBroad(p, m, T) & Decision(p, v, T)) => Decision(q, v, T)
endspec

Processing translation at C:/Progra~1/Specware4.0/Examples/speccode2
#DECISIONtoALLTRANSLATION
Processing prove at C:/Progra~1/Specware4.0/Examples/speccode2#p2
Processing spec at C:/Program Files/Specware4.0/Library/Base/ProverBase
p2: Theorem CSM in DECISIONMAKING is Proved!

Snark Log file: C:/Progra"l/Specware4.0/Examples/snark/speccodeZ/p2.log

159

APPENDIX-III

Specification of the composite protocol PR, along
with processing steps of Specware and proof results
from Snark

CL-USER(1): :sw /Progra”1/Specware4.0/Examples/speccode3

Processing spec at C:/Progra”1/Specware4.0/Examples/speccode3#BBB
Processing spec at C:/Program Files/Specware4.0/Library/Base
Processing spec at C:/Program Files/Specware4.0/Library/Base/Boolean
Processing spec at C:/Program Files/Specware4.0/Library/Base/PrimitiveSorts
Processing spec at C:/Program Files/Specware4.0/Library/Base/Compare
Processing spec at C:/Program Files/Specware4.0/Library/Base/Functions
Processing spec at C:/Program Files/Specware4.0/Library/Base/Integer
Processing spec at C:/Program Files/Specware4.0/Library/Base/Nat
Processing spec at C:/Program Files/Specware4.0/Library/Base/Char
Processing spec at C:/Program Files/Specware4.0/Library/Base/String
Processing spec at C:/Program Files/Specware4.0/Library/Base/List
Processing spec at C:/Program Files/Specware4.0/Library/Base/Option
Processing spec at C:/Program Files/Specware4.0/Library/Base/System
Processing spec at C:/Program Files/Specware4.0/Library/Base/Show
Processing translation at C:/Progra”1/Specware4.0/Examples/speccode3
#BBBtoALLTRANSLATION

Processing spec at C:/Progra~1/Specware4.0/Examples/speccode3
#RELIABLEBROADCAST

Processing translation at C:/Progra™1/Specware4.0/Examples/speccode3
#RELBROADtoALLTRANSLATION
Processing spec at C:/Progra~1/Specware4.0/Examples/speccode3#CONSENSUS
Processing spec morphism at C:/Progra”1/Specware4.0/Examples/speccode3
#RELBROADtoCONSENSUS
Processing spec diagram at C:/Progra™1/Specware4.0/Examples/speccode3

#CONSEN

Processing spec morphism at C:/Progra”1/Specware4.0/Examples/speccode3

160

#CONSEN
Processing
#CONSENT
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing
Processing

colimit

spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec
spec

at
at
at
at
at
at
at
at
at
at
at
at
at

at C:/Progra~1/Specware4.0/Examples/speccode3

Qoo aaqaan

:/Program
:/Program
:/Program
:/Program
:/Program
:/Program
:/Program
: /Program
:/Program
:/Program
:/Program
:/Program
C:

/Program

Files/Specware4
Files/Specware4

Files/Specware4.
Files/Specware4.
.0/Library/Base/Functions

Files/Specware4

Files/Specware4.
Files/Specware4.
Files/Specware4.
Files/Specware4.
.0/Library/Base/List

Files/Specware4

Files/Specware4.
Files/Specware4.
Files/Specware4.

.0/Library/Base
.0/Library/Base/Boolean

0/Library/Base/PrimitiveSorts
0/Library/Base/Compare

0/Library/Base/Integer
0/Library/Base/Nat
0/Library/Base/Char
0/Library/Base/String

0/Library/Base/Option
0/Library/Base/System
0/Library/Base/Show

Processing translation at C:/Progra”1/Specware4.0/Examples/speccode3
#CONSENTtoALLTRANSLATION
Processing spec at C:/Progra™1/Specware4.0/Examples/speccode3#UNDOREDO
Processing spec morphism at C:/Progra™1/Specware4.0/Examples/speccode3
#CONSENTtoUNDOREDQO
Processing spec diagram at C:/Progra”1/Specware4.0/Examples/speccode3

#UNRE

Processing spec morphism at C:/Progra~1/Specware4.0/Examples/speccode3

#UNRE

Processing colimit at C:/Progra~1/Specware4.0/Examples/speccode3

#UNREDO

Processing translation at C:/Progra~1/Specware4.0/Examples/speccode3
#UNREDOtoALLTRANSLATION
Processing spec at C:/Progra”1/Specware4.0/Examples/speccode3
#TWOPHASELOCK
Processing spec morphism at C:/Progra~1/Specware4.0/Examples/speccode3

#UNREDOtoTWOPHASELQOCK

Processing spec diagram at C:/Progra”1i/Specware4.0/Examples/speccode3

#TPLOCK

Processing spec morphism at C:/Progra~1/Specware4.0/Examples/speccode3

#TPLOCK

Processing colimit at C:/Progra~1/Specware4.0/Examples/speccode3#TPL
Processing translation at C:/Progra~1/Specware4.0/Examples/speccode3
#TPLtoALLTRANSLATION
Processing spec at C:/Progra”1/Specware4.0/Examples/speccode3
#CHECKPOINTING

161

Processing spec morphism at C:/Progra™1/Specware4.0/Examples/speccode3
#TPLtoCHECKPOINTING

Processing spec diagram at C:/Progra~1/Specware4.0/Examples/speccode3
#CKPOINTING

Processing spec morphism at C:/Progra~1/Specware4.0/Examples/speccode3
#CKPOINTING

Processing colimit at C:/Progra™1/Specware4.0/Examples/speccode3#CKPT
Processing translation at C:/Progra”1/Specware4.0/Examples/speccode3
#CKPTtoALLTRANSLATION

Processing spec at C:/Progra™1/Specware4.0/Examples/speccode3
#ROLLBACKRECOVERY

Processing spec morphism at C:/Progra”1/Specware4.0/Examples/speccode3
#CKPTtoROLLBACKRECOVERY

Processing spec diagram at C:/Progra™1/Specware4.0/Examples/speccode3
#RCOV

Processing spec morphism at C:/Progra™1/Specware4.0/Examples/speccode3
#RCOV

Processing colimit at C:/Progra™1/Specware4.0/Examples/speccode3#RECO

spec
sort BroadcastBound = Clockvalues

sort BroadcastDelay = Clockvalues

sort Clockvalues = Nat

sort CurrentData

sort Currentstatevalue = Nat

sort Index

sort LocalClockvals = Clockvalues

sort Messages = {Km:Index, No:Nat, Tm:Clockvalues, p:Processors}
sort Newstatevalue = Nat

sort PreviousData

sort ProcDeci = Boolean

sort Procstate = {LC:Clockvalues, n:Nat, p:Processors}

sort Processors

sort ReliableNetwork = Boolean

sort Transactionid

sort Transactions = Boolean

sort Valstabstorage = Boolean

op AgreeBroad : Processors * Messages * Clockvalues -> Boolean
op Agreeconsensus : Processors * ProcDeci * Clockvalues —-> Boolean
op Broadcast : Processors * Messages * Clockvalues -> Boolean

op C : Processors * Clockvalues -> LocalClockvals

op Checkpoint : Processors * Clockvalues -> Boolean

162

op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op
op

op
op
op
op
op
op

op
op
op
op
op
op
op
op
op
op
op
op
op

Ckpt : Processors #* LocalClockvals -> Boolean

Clockbound : Clockvalues * BroadcastDelay * BroadcastBound->Clockvalues
Clockdelay : Clockvalues * BroadcastDelay -> Clockvalues

Correct : Processors -> Boolean

CorrecttoFailure : Processors * Clockvalues -> Boolean

Decision : Processors * ProcDeci * Clockvalues -> Boolean

Deliver : Processors * Messages * Clockvalues -> Boolean

InOrder : Messages —-> Boolean

Locking : Transactionid * CurrentData -> Boolean

Log : Transactions * Valstabstorage * Newstatevalue -> Boolean

PI : Processors * LocalClockvals -> Boolean

Pi : Processors * Clockvalues -> Boolean

Proposal : Processors * ProcDeci * Clockvalues -> Boolean

Read : Transactions * CurrentData * Valstabstorage -> Boolean
Readlock : Transactions * CurrentData * Valstabstorage -> Boolean
Recover : Index * Clockvalues -> Boolean

Redo

Transactions * ProcDeci * Valstabstorage * Newstatevalue->Boolean
Restore : Index * Clockvalues -> Boolean

Rollback : Index * Clockvalues -> Boolean

Store : Processors * LocalClockvals -> Boolean

Storevalues : Transactions * Valstabstorage * ProcDeci -> Boolean
TermBroad : Processors * Messages * Clockvalues -> Boolean

Undo

Transactions * ProcDeci * Valstabstorage * Currentstatevalue->Boolean
Unlock : Transactionid * PreviousData -> Boolean

ValiBroad : Processors * Messages * Clockvalues -> Boolean
Valiconsensus : Processors * ProcDeci * Clockvalues -> Boolean
Write : Transactions * CurrentData * Valstabstorage -> Boolean
Writelock : Transactions * CurrentData * Valstabstorage -> Boolean
ckpt : Processors * Clockvalues -> Boolean

log : Processors * Messages * Clockvalues -> Boolean

receive : Processors * Messages * Processors * Clockvalues->Boolean
recover : Index * LocalClockvals -> Boolean

restore : Index * LocalClockvals -> Boolean

rollback : Index * LocalClockvals -> Boolean

send : Processors * Messages * Processors * Clockvalues -> Boolean
store : Processors * Clockvalues -> Boolean

axiom CorrecttoFailure is

fa(p : Processors, T : Clockvalues) Correct p & CorrecttoFailure(p,T)

axiom Rollback is

fa(n : Index, T : Clockvalues) ~(Restore(n, T)) & Rollback(n, T)

163

axiom Restore is
fa(n : Index, T : Clockvalues) ~(Rollback(n, T)) & Restore(n, T)
axiom rollback is
fa(n : Index, S : LocalClockvals) ~(restore(mn, S)) & rollback(n, S)
axiom restore 1is
fa(n : Index, S : LocalClockvals) ~(rollback(n, S)) & restore(n, S)
axiom Recover is
fa(p : Processors, n : Index)
fa(e : Integer, T : Clockvalues)
fa(i : BroadcastDelay, j : BroadcastBound, S : LocalClockvals)
Checkpoint(p, T) &
((((8 -1i) -e) <C(p, T)) &
((Cp, T) <=9) &
(CorrecttoFailure(p, T) &
(ckpt(p, T) => (Rollback(n, T) => Restore(n, T))))))
axiom recover is
fa(p : Processors, n : Index)
fa(e : Integer, T : Clockvalues)
fa(i : BroadcastDelay, j : BroadcastBound, S : LocalClockvals)
Checkpoint(p, T) &
((((s -1) -e) <C(p, T)) &
((C(p, T) <= 89) &
(CorrecttoFailure(p, T) &
(Ckpt(p, S) => (rollback(n, S) => restore(n, §))))))
theorem RBR 1is
fa(p : Processors, q : Processors, T : Clockvalues, m : Messages,
t : Transactions, n : Index)
fa(i : BroadcastDelay, j : BroadcastBound, S : LocalClockvals)
fa(v : ProcDeci, commit : ProcDeci, abort : ProcDeci,
N : Transactionid, X : Valstabstorage)
fa(y : Currentstatevalue, z : Newstatevalue, Y : CurrentData,
Z : PreviousData)
if (Deliver(p, m, T) => Deliver(q, m, Clockbound(T, i, j))) &
(
((AgreeBroad(p, m, T) & Decision(p, v, T)) =>
(AgreeBroad(q, m, Clockbound(T,i,j)) & Decision(q,v,T))) &
(
(
(Agreeconsensus(p, commit, T) &
(Undo(t,abort,X,y) & Redo(t, commit,X,z))) => Log(t,X,z)) &
(
(

164

(
(Log(t, X, 2) &
(“(Write(t, Y, X)) & (“(Locking(N, Y)) & Unlock(N, 2)))) =>
(Read(t, Y, X) & Locking(N, Y))) or
(
(Log(t, X, 2) &
("(Read(t, Y, X)) & ("(Locking(N, Y)) & Unlock(N, Z)))) =>
(Write(t, Y, X) & Locking(N, Y)))) &
(
(“(Readlock(t, Y, X)) &
(Writelock(t,Y,X) & (ckpt(p,T) & (store(p,T) & Pi(p,T))))) or
(Ckpt(p, S) & (Store(p, S) & PI(p, S)))))))
then ckpt(p, T) => (Rollback(n, T) => Restore(n, T))

else Ckpt(p, S) => (rollback(n, S) => restore(n, S))

axiom Checkpoint is
fa(m : Messages)
fa(p : Processors)
fa(n : Index)

fa(e : Integer, T : Clockvalues, S : LocalClockvals,

i : BroadcastDelay, j : BroadcastBound)

fa(t : Transactions, Y : CurrentData, X : Valstabstorage)

(“(Readlock(t, Y, X)) &
(Writelock(t, Y, X) & ((((S - i) -e) <C(p, M) &
(C(p, T) <= 8)))) =>

if ex(m : Messages) log(p, m, T) & (C(p, T) < S)
then ckpt(p, T) & (store(p, T) & Pi(p, T))
else Ckpt(p, S) & (Store(p, S) & PI(p, S))
axiom Logging is
fa(m : Messages)
fa(p : Processors, q : Processors)
fa(e : Integer, T : Clockvalues, S:LocalClockvals, i:BroadcastDelay,
j : BroadcastBound)
fa(t : Transactions, Y : CurrentData, X : Valstabstorage)

(Readlock(t, Y, X) &
("(Writelock(t, Y, X)) &
((((S -1) - e) <C(p, T)) & (C(p, T) <= ((S + j) + e))))) =>
(receive(p, m, q, T) => log(p, m, T))
axiom PI is
fa(p : Processors, T : Clockvalues, S : LocalClockvals)

165

“(Pi(p, T)) & PI(p, S)
axiom Pi is
fa(p : Processors, T : Clockvalues, S : LocalClockvals)
“(PI(p, S)) & Pi(p, T)
axiom store 1is
fa(p : Processors, T : Clockvalues, S : LocalClockvals)
“(Store(p, S)) & store(p, T)
axiom Store 1is
fa(p : Processors, T : Clockvalues, S : LocalClockvals)
“(store(p, T)) & Store(p, S)
axiom ckpt is
fa(p : Processors, T : Clockvalues, S : LocalClockvals)
“(Ckpt(p, S)) & ckpt(p, T)
axiom Ckpt is
fa(p : Processors, T : Clockvalues, S : LocalClockvals)
“(ckpt(p, T)) & Ckpt(p, S)
axiom log is
fa(p : Processors, q : Processors, m : Messages, T : Clockvalues)
receive(p, m, q, T) & log(p, m, T)
axiom send is
fa(p : Processors, q : Processors, m : Messages, T : Clockvalues)
“(receive(p, m, q, T)) & send(p, m, q, T)
axiom receive 1is
fa(p : Processors, q : Processors, m : Messages, T : Clockvalues)
“(send(p, m, q, T)) & receive(p, m, q, T)
axiom Storevalues is
fa(p : Processors, q : Processors)
fa(T : Clockvalues, t : Transactions)
fa(commit : ProcDeci, abort : ProcDeci)
fa(y : Currentstatevalue, z : Newstatevalue, X : Valstabstorage)

(Agreeconsensus(p, commit, T) &
(Undo(t, abort, X, y) & Redo(t, commit, X, 2))) => Log(t, X, z)
axiom Log is
fa(t : Transactions, a : ProcDeci, X : Valstabstorage)
fa(y : Currentstatevalue, z : Newstatevalue)
(“(Undo(t, a, X, y)) & “(Redo(t, a, X, y))) => Log(t, X, 2z)
axiom Redo 1is
fa(t : Transactions, a : ProcDeci, X : Valstabstorage,
y : Currentstatevalue) ~(Undo(t, a, X, y)) & Redo(t, a, X, y)
axiom Undo is
fa(t : Transactioms, a : ProcDeci, X : Valstabstorage,

166

y : Currentstatevalue) ~(Redo(t, a, X, y)) & Undo(t, a, X, y)
axiom Agreebroad is
ex(p : Processors)
fa(m : Messages, T : Clockvalues)
Deliver(p, m, T) =>
fa(q : Processors, i : BroadcastDelay, j : BroadcastBound)
Deliver(q, m, Clockbound(T, i, j))
axiom Valibroad is
ex(p : Processors, m : Messages, T : Clockvalues)
(Correct p & Broadcast(p, m, T)) =>
fa(q : Processors, i : BroadcastDelay, j : BroadcastBound)
(Correct q & (Deliver(q, m, Clockbound(T, i, j)) & (i < j)))
axiom Termbroad is
ex(p : Processors, m : Messages, T : Clockvalues)
(Correct p & Broadcast(p, m, T)) =>
fa(q : Processors, i : BroadcastDelay)
(Correct q & Deliver(q, m, Clockdelay(T, 1i)))
axiom Deliver is
fa(p : Processors, m : Messages, T : Clockvalues)
~(Broadcast(p, m, T)) & Deliver(p, m, T)
axiom Broadcast is
fa(p : Processors, m : Messages, T : Clockvalues)
~(Deliver(p, m, T)) & Broadcast(p, m, T)
axiom Proposal is
fa(p : Processors, v : ProcDeci, T : Clockvalues)
~(Decision(p, v, T)) & Proposal(p, v, T)
axiom Decision is
fa(p : Processors, v : ProcDeci, T : Clockvalues)
~(Proposal(p, v, T)) & Decision(p, v, T)
axiom Valiconsensus is
fa(p : Processors, q : Processors, T : Clockvalues, i : a,
j : Clockvalues, m : Messages)
ex(v : Procbeci)
(ValiBroad(p, m, T) & Decision(p, v, T)) => Proposal(q, v, T)
axiom Agreeconsensus is
fa(p : Processors, q : Processors, v : ProcDeci, T : Clockvalues,
i : a, j : Clockvalues, m : Messages)
(AgreeBroad(p, m, T) & Decision(p, v, T)) => Decision(q, v, T)
axiom Read is
fa(t : Transactions, Y : CurrentData, X : Valstabstorage)
“(Write(t, Y, X)) & Read(t, Y, X)
axiom Write is

167

fa(t : Transactions, Y : CurrentData, X : Valstabstorage)
“(Read(t, Y, X)) & Write(t, Y, X)
axiom Locking is
fa(N : Transactionid, Y : CurrentData, Z : PreviousData)
Unlock(N, Z) & Locking(N, Y)
axiom Unlock is
fa(N : Transactionid, Y : CurrentData, Z : PreviousData)
~(Locking(N, Y)) & Unlock(N, Z)
axiom Readlock is
fa(p : a, q : Processors)
fa(t : Transactions, N : Transactionid, X : Valstabstorage)
fa(Y : CurrentData, Z : PreviousData, z : Newstatevalue)

(Log(t, X, 2) &
(“(Write(t, Y, X)) & (" (Locking(N, Y)) & Unlock(N, Z)))) =>
(Read(t, Y, X) & Locking(N, Y))
axiom Writelock is
fa(p : a, q : Processors)
fa(t : Transactions, N : Transactionid, X : Valstabstorage)
fa(Y : CurrentData, Z : PreviousData, z : Newstatevalue)

(Log(t, X, 2) &
(“(Read(t, Y, X)) & (" (Locking(N, Y)) & Unlock(N, Z)))) =>
(Write(t, Y, X) & Locking(N, Y))

endspec

Processing translation at C:/Progra”1/Specware4.0/Examples/speccode3
#RECOtoALLTRANSLATION
Processing prove at C:/Progra”1/Specware4.0/Examples/speccode3#p3
Processing spec at C:/Program Files/Specware4.0/Library/Base/ProverBase
p3: Theorem RBR in ROLLBACKRECOVERY is Proved!

Snark Log file: C:/Progra”1/Specware4.0/Examples/snark/speccode3/p3.1log

168

Bibliography

[1] A. Arora, S. Kulkarni, “Component Based Design of Multitolerance,” [EEE
Trans. on Soft. Engg., 24(1), pp-63-78,1998.

[2] O. Babaoglu, S. Toueg, “Non-blocking Atomic Commitment,” Distributed Sys-
tems, Ed. S. Mullender,Adisson Wesley,1993.

[3] M. Barr, C. Wells, Category Theory for Computing Science, Second Edition,
Prentice Hall, 1990.

[4] P.A. Bernstein, E. Newcomer, Principles of Transaction Processing, Morgan
Kaufmann Publishers, 1997.

[5] N.T. Bhatti, R.D. Schlichting, “A System for Constructing Configurable High-
Level Protocols,” Proceedings of SIGCOMM, pp.138-150, August 1995.

[6] D. Cerutti, D. Pierson, ‘Distributed Computing Environments, McGraw-Hill Se-
ries on Computer Communications, 1993.

[7] F. Cristian, “Understanding Fault-Tolerant Distributed Systems,” Comm. of the
ACM, 34(2), pp.57-78, Feb.1991.

[8] R. De Prisco, et al., “Building Blocks for High Performance and Fault-
Tolerant Distributed Systems.” Details available at http://www.lcs.mit.edu
/research/projects, 1999.

[9] M. Doche, C. Seguin, V. Wiels, “A Modular Approach to Specify and Test an
Electrical Flight Control System,” Proc. of FMICS (Formal Methods for Indus-
trial Critical Systems) Trento, Italy, 1999.

[10] N. Durgin, J. Mitchell, D. Pavlovic, “Protocol Composition and Correctness,”
Kestrel Institute Technical Report KES.U.00.1, January 2000.

[L1] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 2, Module Specifica-
tions and Constraints, Springer-Verlag, 1990.

169

[12] J.L. Fiadeiro, T. Maibaum, “Temporal Theories as Modularisation Units for
Concurrent System Specification,” Formal Aspects of Computing, 4(3), pp-239-
272, 1992.

[13] T. Fine, “A Framework for Composition,” Proc. of the Eleventh Annual Confer-
ence on Computer Assurance, Maryland, US, pp.199-212, June 1996.

[14] B. Garbinato, R. Guerraoui, “Flexible Protocol Composition in BAST,” Proc.
of Int. Conf. on Distributed Computing Systems-18, pp.22-29, 1998.

(15] R. Guerraoui, A. Schiper, “The Decentralized Non-Blocking Atomic Commit-
ment Protocol,” [EEE Symposium on Parallel and Distributed Systems, San
Antonio, TX, pp.2-9, 1995.

[16] R. Guerraoui, A. Schiper, “Consensus Service: A Modular Approach for Building
Agreement Protocols in Distributed Systems,” Proc. of the 26th [EEE Sympo-
siumn on Fault-Tolerant Computing Systems, Sendai, pp.168-177, June 1996.

[17] J. Guo, “Using Category Theory to Model Software Component Dependencies,”
Proc. of the Ninth Annual IEEE Int. Conference and Workshop on the Engineer-
ing of Computer-Based Systems (ECBS’02), Lund, Sweden, April 2002.

[18] M.A. Hiltunen, R.D. Schlichting, “An Approach to Constructing Modular Fault-
Tolerant Protocols,” Proceedings of the 12th IEEE Symposium on Reliable Dis-
tributed System, pp.105-114, October 1993.

[19] J. Hooman, Specification and Compositional Verification of Real-Time Systems.
LNCS 558, Springer Verlag 1991.

[20] J. Hooman, “Verification of Distributed Real-Time and Fault-Tolerant Pro-
tocols,” Proc. of AMAST Conference, (Springer-Verlag, Sydney, Australia),
pp-261-275, 1997.

[21] J. Hooman, D. Chkliaev, P. Van Der Stok, “Mechanical Verification of Transac-
tion Processing Systems,” 3rd IEEE International Conference on Formal Eng:-
neering Methods, pp.89-97, 2000.

[22] P. Jalote, Fault Tolerance in Distributed Systems, Prentice Hall, 1994.

[23] E. Juan, J.J.P. Tsai, “Compositional Verification of High Assurance Systems,
Kluwer Academic Publisher, 2000.

[24] I. Keidar, R. Khazan, N. Lynch, A. Shvartsman, “An Inheritance-Based Tech-
nique for Building Simulation Proofs Incrementally,” ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), PP.1-29, January 2002.

170

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

R. Li, L.M. Pereira, “Application of Category Theory in Model-Based Diagnos-
tic Reasoning,” Proc. of 8th Florida Artificial Intelligence Research Symposium,
Melbourne (FL.US), pp.123-127, 1995.

X. Liu, et al., “Building Reliable, High-Performance Communication Systems
from Components.” Operating Systems Review, 34(5), pp.80-92, Dec.1999.

N. Lynch, M. Merritt, W. Weihl, A. Fekete, Atomic Transactions, Morgan Kauf-
mann Publishers, 1994.

J. McDonald, J. Anton, “SPECWARE - Producing Software Correct by Con-
struction,” Kestrel Institute Technical Report KES.U.01.3., March 2001.

P. Michel, V. Wiels, “A Framework for Modular Formal Specification and Veri-
fication,” Proc. of Formal Methods Eng., 1997.

S. Mishra, R.D. Schlichting, “Abstractions for Constructing Dependable Dis-
tributed Systems,” Technical Report TR 92-19, CS Department, University of
Arizona, 1992.

S. Mishra, L.L. Peterson, R.D. Schlichting, “Modularity in the Design and Imple-
mentation of Consul,” Proceedings of the First IEEE Symposium on Autonomous
Decentralized Systems, pp.376-382, March 1993.

D. Pavlovic, D.R. Smith, “Composition and Refinement of Behavioral Specifica-
tions,” Kestrel Institute Technical Report KES.U.01.6, July 2001.

M. Raynal, “Fault-Tolerant Distributed Systems: A Modular Approach to the
Non-Blocking Atomic Commitment Problem,” INRIA, TR-2973, Sept.1996.

D.E. Rydeheard, R.M. Burstall, Computational Category Theory, Prentice Hall,
1988.

M. Singhal, N.G. Shivratri, Advance Concepts in Operating Systems, McGraw-
Hill, 1994.

P. Sinha, N. Suri, “On Simplifying Modular Specification and Verification of
Distributed Protocols,” Proc. of HASE-6, pp.173-181, Oct.2001.

P. Sinha, N. Suri, “Modular Composition of Redundancy Management Proto-
cols in Distributed Systems: An outlook on Simplifying Protocol Level Formal
Specification and Verification,” Proc. of Intl. Conf. on Distributed Computing
Systems-21, pp.253-263, 2001.

D. Skeen, “Non Blocking Commit Protocols,” Proc. of the ACM SIGMOD Intl.
Conf. on the Management of Data, pp.133-142, May 1981.

171

[39]

[40]

[41]

[42]

[43]

[44]

D. Skeen, “A Quorum-Based Commit Protocol,” in Berkeley Workshop on Dis-
tributed Data Management and Computer Networks, pp.69-80, Feb.1982.

M. Stonebraker, D. Skeen, “A Formal Model of Crash Recovery in a Distributed
Syvstem,” [EEE Transaction on Software Engineering, May 1983.

Y.V. Srinivas and R. Jullig, “Specware(TM): Formal Support for Composing
Software,” Proc. of the Conference on Mathematics of Program Construction, B.
Moeller, Ed. LNCS 947, Springer-Verlag, pp.399-422, 1995.

V. Wiels, S. Easterbrook, “Management of evolving specifications using cate-
gory theory,” Proc. of Automated Software Engineering Conference, [IEEE Press,
pp-12-21, 1998.

P.T. Wojciechowski, S. Mena, A. Schiper, “Semantics of Protocol Modules Com-
position and Interaction,” Proc. of COORDINATION 2002, pp-389-404.

P. Zhou, J. Hooman, “Formal Specification and Compositional Verification of an
Atomic Broadcast Protocol,” Real-Time Systems, 9(2), pp.119-145, 1995.

172

