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ABSTRACT

Hardware Implementation of Non-binary Turbo Code for DVB/RCS

Yimin Du

Double binary convolutional turbo codes, using Circular Recursive Systematic
Convolutional (CRSC) codes as component codes, have been shown to outperform
binary turbo codes. These codes are adopted in the Digital Video Broadcasting — Return
Channel via Satellite (DVB-RCS) standard. The outstanding coding performance of
these codes intrigues the investigation of hardware implementation issues. In this thesis,
first a simplified Max_Log MAP algorithm is derived for the Non-binary
convolutional turbo code, and then different aspects of the implementation issues of the
decoder with VLSI are explored. In addition, a complete decoder VLSI design of non-
binary convolutional turbo code for DVB/RCS will be presented. After discussing
several quantization and normalization schemes, a new optimal renormalization
approach will be proposed. With this new approach, the decoder can be speeded up
considerably. In order to save area, a practical simplification method of branch metric
calculation is introduced, which makes the whole design much more efficient. From an
architectural point of view, an optimal full pipelined structure is designed with the
forward path metric and backward path metric recursive circuits being optimized for
speed and other functions including concise interleaver generation, data input, branch
metric calculation being optimized for area. In the last part of this thesis, another
pipelined area saving method is proposed. The design is modeled in Very high speed
integrated circuit Hardware Description Language (VHDL) and synthesized on a single
chip FPGA (Xilinx Virtex-E). According to the RTL level and gate level simulation
results and the in-chip test result, the decoder can work up to 7 Mbits/s data rate at 6

iterations with VirtexE FPGA.
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Chapter 1

Introduction

Digital communication is playing more and more important role in our daily life
with increasing demand for large scale, high speed and reliable data transmission in the
military, government, industry, education and private spheres. The rapid development of
computer technology and VLSI technology promote the development of digital
communication and enable the modern communication systems and devices providing us
powerful and convenient means to store and exchange information. In digital
communication engineering, a major concern of the designer is the control of errors so
that a high quality data transmission can be achieved. Thus, error control coding, channel
coding, becomes a fundamental element of any digital communication system. Until now
a great deal of efforts have been made on channel coding theory and methods to obtain
high reliability and high speed data transmission or data storage [1]. Many efficient and
practical encoding and decoding schemes have been invented and used in every
application domain, especially for deep space and satellite communication systems. In
this thesis, we concentrate on the hardware implementation issues of channel coding for

satellite communication.



1.1 Development of channel coding

The subject of channel coding, motivated by practical problems, covers several
disciplines, in particular mathematics, electronic engineering and computer science. In
the very beginning of the error-control coding history, Claude Shannon in 1948 proved
the existence of error-control codes. B y using these codes, under suitable conditions and
at rates less than channel capacity, error-free information could be transmitted for all
practical applications (2]. Unfortunately, Shannon's theory relied on random coding
argument and gave no indication of the structure of the codes that would have a
performance near channel capacity. Since this time, researchers and engineers in error-
control coding field have been attempting to find more effective error-control codes that
will provide near capacity performance. Thus far, there are two major techniques for
building codes, block codes and convolutional codes.

During the 1950s, coding research was emphasized on block code with algebraic
approaches. The first practical binary linear block code, Hamming code, was introduced
by Richard Hamming [3]. And in 1957, a kind of more powerful codes, cyclic codes,
were first studied by Prange [4]. These codes are attractive for two reasons: first, they are
easy to implement by using shift registers; and second, it is possible to find various
practical methods for decoding them. In principle, the decoding method devised by
Meggitt [5] applies to any cyclic code, but refinements were necessary for practical
implementation; this technique is known as error-trapping decoding. The practical error-
trapping decoding was realized independently by Kasami [6], Mitchell [7][8], and
Rudolph [9]. It is most effective for decoding single-error-correcting codes, some double-
error-correcting codes and burst-error-correcting codes rather than for long and high rate
codes with large error-correcting capability. The (23, 12) Golay code discovered by

Golay in 1949 [10] is the only known multiple-error-correcting binary perfect code which



is capable of correcting any combination of three or fewer random errors and it can be
easily decoded by Kasami's error-trapping technique.

Hocquenghem In 1959 [11], Bose and Chaudhuri in 1960 [12] independently
found a large class of multiple-error-correcting cyclic codes, called the BCH codes.
Generalization of the binary BCH codes to both binary and non-binary BCH codes
obtained by Gorenstein and Zierler in 1961 [15]. In addition, Reed and Solomon
independently found an extremely important and practical class of non-binary BCH codes
[13]. The Reed Solomon (RS) codes came into widespread use in many communication
and computer storage systems. The first decoding algorithm for dinary BCH codes was
devised by Peterson in 1960 [14], refined by Gorenstein and Zierler [15], extended by
Berlekamp [16], Massey [17], Chien [18], Fomey [19], and others. Among all these
algorithms, Berlekamp's iterative algorithm and Chien's search algorithm are the most
efficient ones.

In general, codes for correcting random errors are nor effective for burst errors.
The codes designed to correct burst errors is called burst-error-correcting codes. Cyclic
codes for single-burst-error correction were first studied by Abramson [20]. In the effort
to generalize Abramson's results, Fire discovered a large class of burst-error-correcting
cyclic codes [21], and these codes can be decoded with a very simple circuit.

The majority-logic decoder is another effective device for decoding certain
classes of cyclic block codes. In 1963 Massey was the first to present a unified treatment
for majority-logic decoding algorithms [22]. The maximum-length codes and the
difference-set codes are two small subclasses of one-step majority decodable cyclic
codes. Finite-geometry codes (Euclidean geometry codes and projective geometry codes)
have their own structure and rules of orthogonalization for the multiple-step majority
decodable codes. Rudolph investigated finite geometry codes which were extended and
generalized by many coding researchers [23].

Another remarkable achievement in the development of error correcting coding

theory was the discovery of convolutional codes. Convolutional codes were first



introduced by Elias [24] in 1955 as an alternative to block codes. Shortly thereafter,
Wozencraft proposed sequential decoding as an efficient decoding scheme for
convolutional codes 25] and Massey proposed a less effective but simpler-implement
decoding scheme called threshold decoding [26]. Since then, convolutional codes have
been used to digital communication over wire and radio channels. In 1967, Viterbi
proposed the Viterbi algorithm for maximum-likelihood decoding [27]. Later, Omura
and Forney proved that the Viterbi algorithm is the best maximum-likelihood decoding
algorithm for convolutional codes with shorter constraint lengths [28][29].

Another remarkable contribution of foney is that he proposed serial concatenated
codes which achieved a good trade-off between coding gain and complexity [30]. In
practical applications of this approach in space communication, the inner code uses
convolutional code and the outer code uses low redundancy RS code. As the inner code
decoder generates burst errors, an interleaver is typically incorporated between inner code
and outer code to decorrelate the received symbols due to burst errors.

Turbo Codes were developed with a similar idea of concatenated codes,
connecting two codes and separating them with an interleaver. But, in Turbo codes two
component codes that are usually identical are connected in parallel. The first Turbo code
was brought by Berrou et al. in 1993 [31] to the coding community. In his paper,
impressive simulation results were presented, achieving an Eb/No of 0.7 dB with a %
code rate. Since his astonishing work, a new generation of coding techniques and
schemes has begun to be researched and come into applications gradually. The MAP
algorithm, first presented by Bahl, Cocke, Jelinik and Raviv in 1974 [32], is normally
used as decoding algorithm of Turbo codes. The component codes of turbo codes can be
either convolutional codes which are called Turbo convolution codes (TCC) or block
codes which are called turbo block codes. Several decoding algorithms for both binary
TCCs and turbo block codes have been developed [33] including soft-output Viterbi

algorithm (SOVA), MAP algorithm, and Log-MAP algorithm.



To improve coding performance TCCs are also extended into non-binary forms,
for example, double binary Turbo convolution code. Since these codes are very flexible
and easily adaptable to a wide range of data block sizes and coding rates, they are
adopted in the DVB for Return Channel via Satellite (DVB-RCS), which places satellite
in a favorable position, especially as a necessary complement in countries where ADSL
and cable modem cannot economically cover more than 75% of the population [34].

There are two recent techniques adopted in this double binary convolutional turbo

coding so that the coding performance is improved compared to binary turbo codes:

® Parallel concatenation of circular recursive systematic convolutional (CRSC)

codes [35] makes convolutional turbo codes efficient for coding of blocks of data:

® Double-binary elementary codes provide better error-correcting performance than

binary codes for equivalent implementation complexity [36].

1.2 Implementation of channel codes with VLSI

The advancement in VLSI technology has dramatically impacted the development
of communication systems. Especially in the coding field, it provides us with cheaper
means to implement complicated coding algorithms. VLSI (Very Large Scale
Integration) refers to a technology through which it is possible to implement large circuits
in silicon. Normally, CMOS is the technology of choice to implement digital logic and
memory in VLSI circuit. Higher speed, lower power dissipation, and higher circuit
density are the critical consideration in choosing an implementation technology.

There are several design approaches used to generate physical representations of
circuits. They belong to two general classes: The full-custom design and the semi-custom
design. Current semi-custom design styles include gate-array design style, standard-cell
design style, Macro-cell design style, PLA (programmable logic array), and FPGA (field

programmable gate-array) [37]. Full-custom layout refers to manual layout design which



is only suitable to small design because it is a time consuming and difficult task. Gate
arrays, also called MPGAs (mask programmable gate array), consist of a large number of
transistors which have been prefabricated on a wafer in the form of a regular two-
dimensional array. Therefore, it takes a short time to get the chip fabricated, but it has
limitation on layout due to the limited amount of wiring space. Standard-call and Macro-
cell design styles are based on standard cell library which provides various kinds of logic
blocks. It offers more flexibility than MPGA, but it is more difficult to fabricate. PLA
provides a convenient way to implement two-level sum-of-products logic expressions.
PLAs are commonly used to implement the control path of a digital circuit or a
combinational circuit, rather than the data path of a circuit. Similar to MPGA, a FPGA
also consists of a two-dimentional array of logic blocks. The advantage of FPGA is that
both the logic blocks and the interconnects are field programmable, but their speed of
operations and the density become worse.

An ASIC (Application Specific Integrated Circuit), unlike a MICToprocessor, is a
circuit which performs a specific function in a particular application. It is often optimized
in the area and the performance for a special application. To reduce the time to market,
the technologies adopted by an ASIC are among Gate-array, standard-cell, and PLA.

When implementing a design, we often choose technology among ASICs, FPGAs
and DSPs. All of them can be used in implementation of error-control codes. A DSP
(Digital Signal Processor) is essentially a microcomputer having a specialized hardware
and instruction set that is designed to do real time processing functions. DSPs are highly
flexible because they can be easily programmed to perform any algorithm with assembly
language or a high-level language like C. They allow the fastest design cycles. The new
model DSP chip of TI, TMS32064, operating up to 4800 MIPS, has several coprocessors
for telecommunication application including Viterbi decoder and TCC decoder [38][73].
Implementing signal processing in a sequential manner reduces the data rate of the DSPs.
To obtain higher performance, FPGA or ASIC has to be used. Nowadays with a hardware

description language, VHDL or Verilog, a designer can easily design an application.



Using a synthesis tools, the design can be synthesized and configured into an FPGA. It
can realize high degree of parallelism compared to DSP, faster time to market compared
to ASIC, so FPGAs are most ideally suited for prototyping application. ASICs lead to the
fastest speed, more power efficiency and optimal resource saving, however, they require
a longer design cycle and are the most costly. Thus, they are not suited for prototype
products and products with small volume of production.

Recently many researchers are focusing on the issues of hardware implementation
of Turbo codes. Several papers have been published on the hardware implemetation
issues and effective architectures of binary TCC [39][40][41][42][43][44][45]
[46](47][48][49][50][51]. However, the papers on design architecture of non-binary turbo
code have not been published. The Turboconcept company has announced its products of

non-binary turbo code, but has not published its design in detail [52][53].
1.3 Overview of this thesis

This thesis is dedicated to hardware implementation issues of non-binary turbo
codes covering algorithm analysis, algorithm simplification, optimal architecture design
and RTL lever synthesis. It presents the VLSI design of a complete non-binary turbo
decoder for DVB/RCS application from high level to low level.

In Chapter 2, the background of turbo codes is presented. First, the binary turbo
codes are explained, followed by description of non-binary Turbo code for DVB/RCS
application. The DVB/RCS Turbo code standard is described in detail. The CRSC
(Circular Recursive System Convolutional) code, the component code of DVB/RCS
Turbo code, is also discussed. Then, the decoding algorithms for both binary Turbo codes
and non-binary Turbo codes are derived. These decoding algorithms include MAP

algorithm, Log-MAP algorithm and MAX-Log-MAP algorithm.



In Chapter 3, this thesis concentrates on several implementation issues, the system
level design including quantization, renormalization and metrics calculation
simplification. For the quantization issues, both input data quantization and inner data
quantization are discussed. After that, two renormalization schemes are addressed and a
new renormalization scheme is proposed. In this chapter, a new metrics calculation
reduction approach is also given, which bring a tremendous saving of chip area.

In Chapter 4, the architecture of DVB/RCS code decoder is designed, and the
optimal pipelined architecture has been achieved. The critical MAP algorithm component
is optimized in speed, while other components such as data reading, interleaver etc. are
optimized in area. All the optimized architecture of the design will be illustrated
component by component.

In Chapter 5, all levels simulation results and synthesis results for the decoder are
given. The results prove that this design for DVB/RCS non-binary turbo code decoder
obtains a great success. The performance of the decoder reaches up to 7 Mbits/s with 6
iterations, better than existing commercial products with the same technology family.

In Chapter 6, conclusion is drawn and suggestions for future work on this topic

are given.



Chapter 2

DVB/RCS turbo code and MAP

decoding algorithm

In this chapter, first the background knowledge of turbo codes is introduced, then
followed by the specification of non-binary convolutional code for DVB/RCS. Moreover,
various MAP decoding algorithms for both binary case and non-binary case are derived
in detail. Especially, Max-Log-MAP decoding algorithm, which is proved to be a good
trade off between decoding complexity and decoding performance, is explored and

chosen as decoding algorithm in this decoder design,.
2.1 Turbo code

Turbo coding is accomplished by the parallel concatenation of two or more
systematic codes. A generalized turbo encoder is shown in Figure 2.1, where Im
represents an interleaver. Each interleaver scrambles the information frames in a pseudo-

random fashion and feeds its output into a component encoder. For most applications,



only two such encoders are used. In general, the turbo coding issues include component
code design, interleaver design, trellis termination method and the choice of decoding

algorithm. In the following sections, all these design issues will be discussed in detail.
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Figure 2-1  Generalized turbo encoder

2.1.1 Encoder of the component code

Basically, any systematic code, either a block code or a convolutional code, can
be used as a component code of turbo codes, and if a block code is used as a component
code, this turbo code is called turbo block code (TBC); if a convolutional code is used as
a component code, the turbo code is called turbo convolutional code (TCC). In most
cases, a recursive systematic convolutional code (RSC) is chosen as the component code,
because the use of a convolutional code makes it possible for the decoder to utilize a
modified version of the Viterbi algorithm and the recursive code has better performance

than the non-recursive code [31].
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Figure 2-2  RSC encoder with memory 2 for rate 14

An RSC code can be constructed with a feedback register. Figure 2.1 shows an
RSC code for rate % with memory 2. The generator matrix of this code can be
represented as

g,(D)
GD) = e 2-1
® (1 go(D)J @b

where go(D) and g;(D) are feedback and feed-forward polynomials, respectively.

g(D)= 1+D +D?

gD)= 1+D’

To achieve a better performance of turbo codes, we should design an RSC
component code with maximum effective free distance which is a key factor determining
the decoding performance of the turbo code, especially when working in the region of

high SNR's. [54] [55]
2.1.2 Interleaver Design

Interleaving, a process of rearranging the ordering of an information sequence, is
used before the information data is encoded by the second component encoder. It plays a
fundamental role in turbo coding scheme, affecting the performance of turbo codes

considerably.

i1



In turbo coding, interleaver has several functions. First, it is used to construct a
long block code from small memory convolutional codes as long codes can achieve a
better coding performance. Secondly, it spreads out burst errors, changing uncorrectable
error pattern to correctable error pattern. Thirdly, interleave provides scrambled
information data to the second component encoder and decorrelates the inputs to the two
component decoders, as a result an iterative sub-optimum decoding algorithm based on
uncorrelated information data between the two component decoders can be applied.
Finally, interleave can effectively break low weight input sequences, thus increase the
code free distance or reduce the number of code words which have small distance in the
code distance spectrum.

An odd-even interleaver is a particular type of interleaver which maps even
position elements to even position and odd position elements to odd positions. In
interleaver design, choosing an odd-even interleaver is often necessary because this kind
of interleave can guarantee that error protection is uniformly distributed across the
information sequence.

Since interleaver design is essential to achieving high performance coding, it
intrigues many turbo code researchers. Till now, many interleaving strategies have been
proposed such as block interleavers, convolutional interleavers, cyclic shift interleavers,

S-random interleavers, code matched interleavers, etc.

2.1.3 Trellis Termination and Code Puncturing

Trellis termination means driving the encoder to all-zero state. By driving the
encoder to an all-zero state at the end of trellis, we can obtain a better distance property,
therefore, getting a better error correcting performance. Actually, there are two ways to
implement trellis terminate. One is to force the encoder to retum the all-zero state;

another approach is to initialize the encoder at the same state as it will end up with.

12



Obviously, the advantage of the second approach is that this approach does not require
transmission of the tail bits.

Puncturing is a process of removing certain symbols from the code words,
therefore, reducing the code word length and increasing the overall code rate. For
example, by puncturing the rate 1/3 turbo encoder various code rates such as 1/2, 2/3, 3/4,
5/6, 6/7 and so on can be acquired. When carrying out puncturing, we delete some output
bits of the encoder according to a chosen pattern defined by a puncturing matrix P. For
instance, a rate %2 turbo code can be obtained by puncturing a rate 1/3 turbo code. The

commonly used puncturing matrix is given by

av)

1}
O =
_— O

where the puncturing period is 2. According to the puncturing matrix, the parity check

digits are alternatively deleted.

2.1.4 Decoding of the Turbo Codes

Turbo codes can be decoded by MAP or ML decoding methods based on overall
code trellis, but these decoders could be too complex for large interleaver size. In
practice, iterative decoding methods are used instead, which are also an important feature
of turbo codes.

In the first paper on turbo code [31], Berrou et. al. proposed an iterative decoding
scheme based on soft output Viterbi algorithm (SOVA). The SOVA differs from the
Viterbi algorithm in the sense that it generates soft output and attempts to minimize the
error rate by estimating the a posteriori probabilities (APP) instead of by obtaining the
ML estimate of the transmitted code word. Nowadays, MAP algorithm or its modified

versions are often used. Because of the requirement of the iterative decoding scheme, the

13



decoding algorithm of the component code of turbo codes have to be in soft input soft
output version (SISO). Figure 2.3 shows an elementary SISO decoder.

For a general case, the turbo decoder consists of M elementary decoders. Each
elementary decoder generates a soft value for each received bit. After each iteration of
the decoding process, every elementary decoder feeds its soft output to next elementary

decoder. To get a satisfactory performance, 6 to 10 iterations are generally needed.

input log-likelihoods outputput log-likelihoods
A/
a priori values for S extrinsic values for
all information bits ,_r’ Soft-In " La(y 2! information bits
i Soft-Out P
channel valugs for ! ’f . Decoder : » & posterior values for
all code bits Loy v L(u) allinformation bits

Figure 2-3 Soft-in/Soft-out decoder

For the two elementary decoder case, the first decoder takes the received channel
values Lc*y and the a priori value L(u) ( for the first iteration it is set to zero; after the
first iteration, it comes from the extrinsic value of the second decoder) as inputs. The
decoder then generates a soft output L(x) on all information bits and an extrinsic
information Le(u) which contains the soft output information from all the other coded
bits. The two inputs to the second decoder are the channel values with the interleaved
information bits and the interleaved extrinsic information of the first decoder. The block
diagram is shown in Figure 2.4. The soft output of the information bits for any decoder

can be represented as [33]:

L@)=L, *y+Lu)+L, () (2-2)
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{ deinterleaver &

u
Le(u) L2(u)
L Decoder Decoder
1 2
Le* . L
y —> L Loty L2(u)

Interleaver

Figure 2-4 Iterative decoding procedure for two elementary codes

2.2 Non binary turbo code for DVB/RCS

DVB/RCS standard (EN 301 790 in ETSI) is a standard approved by the DVB
Committee for Return Channel via Satellite to provide two-way, full-IP, asymmetric
communications via satellite [56]. Since the convolutional turbo codes are very flexible,
easily adaptable to a large number of data block sizes and coding rates, they have been
adopted in the DVB/RCS standard. According to the standard requirement, the bit rate of
the transmission of data has to reach up to 2 Mbps. The component code of the turbo
code adopted by DVB/RCS standard is double binary circular recursive systematic
convolutional code (CRSC), which has better performance than ordinary binary turbo

code. This will be discussed later.
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2.2.1 Encoder of non binary turbo code for DVB/RCS

The encoder of double binary turbo code for the DVB/RCS is depicted in Figure
2.5. First, the data sequence is encoded, and then the permutated sequence is fed into the

component encoder.

> [#]
Y 8
Q ..
Encoder g
A Permutation . aj
N=k/2 Puncturing 3

couples of data

Figure 2-5 DVB/RCS double binary turbo code encoder

The component code of the DVB/RCS standard is a double binary circular
recursive systematic convolutional code. The encoder, shown in Figure 2.6, is fed by
blocks of k bits (k = 2*N bits). N is a multiple of 4. The polynomials defining the
connections are presented in octal and symbolic notations as follows:

* for the feedback branch: 15, 1+D+D>;
* forthe Y parity bits: 13, 1+D*+D?;
* for the W parity bits: 11, 1+D°;

16



vy

A fu—#} S, + S, 'S,
B e
¢

l

+

w Y

Figure 2-6  Double binary turbo code encoder

The permutation is done on two levels, level 1 is inside the couples, level 2 is
between couples:
Set the permutation parameters Py, P;, P, and P;
J=0,...N-1
for level 1
If jmod. 2 = 0, let (A,B) = (B,A) (invert the couple)
For level 2

I=Po*j+P+l modN

* ifjmod4=0,thenP=0;
* ifjmod4=1,thenP=N/2+P,;
* ifjmod4=2thenP=P,;
* ifjmod4 =3, thenP=N/2 + P;;
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Table 2-1 Turbo code permutation parameters

Frame size in couples Py {P;, P5, P}
N =48 (12 bytes) 11 {24, 0, 24}

N =64 (16 bytes) 7 {34, 32, 2}
N =212 {53 bytes} 13 {106, 108, 2}
N =220 (55 bytes) 23 {112, 4, 116}
N =228 (57 bytes) 17 {116, 72, 188}
N =424 {106 bytes} 11 {6, 8,2}

N =432 (108 bytes) 13 {0, 4, 8}

N =440 (110 bytes) 13 {10, 4,2}

N = 848 {212 bytes} 19 {2, 16, 6}

N =856 (214 bytes) 19 {428, 224, 652}
N = 864 (216 bytes) 19 {2, 16, 6}

N =752 {188 bytes} 19 {376, 224, 600}

Table 2.1 gives the combinations of the default parameters to be used. The
interleaving relations obey the odd/even rule. This allows the puncturing patterns to be
identical for both encoders.

The encoders are initialed by the circulation state S, or S... The circulation states
Sci or Se; are calculated by the following steps.
* Initialize the encoder with state 0, and then encode the sequence in the natural order

for the determination of S, or encoded it in the interleaved order for the
determination of Sc.. In both cases, the final state of the encoder is denoted S?;

* According to the length N of the sequence, use the following correspondence Table

2.2to find S or Sc.
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Table 2-2 Circulation state correspondence table

S
Nmod7[ @ | L | 2 [ 3 | 4|5 |6 |7

1 Sc=0 | Sc=6 | Sc=4 | Sc=2 | S.=7 | S.=1 S=3 | S.=5

Sc=0 | Sc=3 | 8§=7 | Sc=4 | S=5 | S=6 | S.=2 S=1

Sc=0 | Sc=5]8=3 | S:=6 | S:=2 | S.=7 [ S=1 Se=4

Sc=0 | S¢=2 [ Sc=5 | Sc=7 | Sc=1 | S.=3 Sc=4 | S.=6

2

3

4 S=0 | Sc=4 | Se=1 | Sc=5 | Sc=6 | S.=2 | S=7 | S.=3
5

6

Sc=0 | Sc=7 | Sc=6 | Sc=1 | Sc=3 | Sc=4 | S.=5 | S.=2

Seven code rates are defined for the DVB/RCS turbo code: R=1/3,2/5, 112, 2/3,
3/4, 4/5, 6/7. This is obtained through puncturing (selectively deleting the parity bits).

The puncturing patterns of Table 2.3 are used.

Table 2-3 Puncturing patterns of DVB/RCS double binary turbo code
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Rate 1/3, 2/5, 1/2, 2/3 and 4/5 are exact ones, independently of the block size.
Rate 3/4 and 6/7 are exact ones onlyif Nis a multiple of 3. In other cases, the actual rates
are very slightly lower than the nominal ones. Depending on the code rate, the length of

the encoded block is presented in Table 2.4

Table 2-4 The length of the encoded block

Length of encoded block =2N+M =N+M
Code rate for R<1/2 forR>=1/2

R=1/3 M=N

R=2/5 M=N72

R=1/2 M=N

R=2/3 M=N72
M=N/3 ifNmod3=0

R=% M=(N-4)/3+2 ifNmod3=1
M=(N4)/3+2 ifNmod3=2

R =4/5 M=N/4
M =N/6 ifNmod.3=0

R =6/7 M=(N4)6+1 ifNmod3=1
M=(N-4)6+2 ifNmod3=2
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As for the transmission of the turbo code for DVB/RCS, two orders of
transmission are applied:
* In the natural order, all couple (A, B) are transmitted first, followed by all couples
(Y1, Y2), and then all couples (wl, w2).
* In the reverse order, the couples (Y1, Y2) are transmitted first, in their natural order,
followed by the couples (W1, W2, and then finally by the couples (A, B).

Each couple is mapped to one QPSK constellation point.
2.2.2 Circular Recursive Systematic Converlutional (CRSC) code

Convolutional codes are not originally suited for encoding information
transmitted in block form, because they have to be truncated at some point, which will
degrade the coding performance. Forcing the encoder state is one way to solve this
problem, but this scheme could degrade the spectral effeciency of the transmission.
Adopting circular coding {35] is a scheme that not only provides another solution for
above mentioned problem, but it also avoid the drawback of the scheme of forcing the
encoder state. With circular convolutional codes, the encoder retrieves the initial state at
the end of the encoding operation. The decoding trellis can therefore be seen as a circle
and decoding may be started everywhere on the circle.

For a recursive convolutional code, at time instant i the encoder state Siis a
function of the previous state S;.; and the input vector X;. Let G be the generator matrix,
the following recursive relation hold:

Si=G S, + X;. 2-3)

If k is the input sequence length, § « May also be expressed as a function of initial state S,
k
S, =G**S,+>G"?*Xx, (2-4)
p=l

It is possible to find a state S, such that S, = Sk=Sp
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k
S.=U+G)"' Y G*r#x, (2-5)

p=l
To determine S, we get §? by pre-encoding the data sequence from all-zero state.

k
Sp =).G¥Pxx, (2-6)

p=l

From ( 2-5), the value of S, can be linked to S ,? as follows:

S, =(1+G*)'s? (2-7)
After obtaining S, data sequence can be encoded starting from the circulation state.

When the circularly recursive codes are used for turbo code, there are two ways to
apply the circular code. One is calculating the circulation state S, for the whole sequence
of length 2k; another way is separating the two circular codes and calculating the
circulation state separately. Depending on the case, data encoding may be represented by
one or two circular trellises. When the MAP algorithm is used as the decoding algorithm,
decoding the sequence consists of going round the circular trellis anti-clockwise for the
backward process, and clockwise for the forward process. For both processes,
probabilities computed at the end of a turn are used as initial values for the next turn. In
practice, a prologue decoding step is exploited, performed on a part of the circle for a few
time units, to guide the process (both forward and backward) towards an initial state

which is a good estimate of the circulation state.
2.3 MAP decoding algorithm

Any turbo code including turbo block codes and turbo convolutional codes can be
presented by trellis. In general, there are two kinds of trellis based strategies for decoding
of linear codes: the maximum likelihood (ML) algorithm like Vitrbi algorithm and
maximum a posteriori probability (MAP) algorithm. When it comes to turbo codes, the

soft output Viterbi algorithm, improved version of Viterbi algorithm, is used instead of



Viterbi algorithm. The soft output Viterbi algorithm is a sub-optimal decoding algorithm,
producing a sub-optimal reliability measure for each received symbol, while the MAP
algorithm is an optimal decoding algorithm, producing an optimal estimate of the

received symbol [57].
2.3.1 MAP decoding for binary turbo code

From the trellis of a binary linear code, the log-likelihood ratio of the estimate of
bit uy is presented as [33]:

P(u, =+1/y)

L(u) = Lo
(1) 8 P, =17 y)

(s%.5)

Z p(s',s,y)
= Log (m\- (2-8)

the sum of p(s's,y) in the numerator or in the denominator is taken over all existing
transitions from state s’ to state s labeled with the information bit uy = +1 or with u =-1,
respectively. Over a memoryless transmission channel, the joint probability p(s';s,y) can

be written as:

PG5, )= (5", Y 1) P(S. Y, 15) - (Y 1 1 5)

=P Y,4) p(s'15)- (¥, 15,5")- p(Y 15 1 5)
| — g N— — - N—————

=&, (5') ¥ (s',5)- B (s) (2-9)
The forward and backward recursions are derived as

@, () =D ¥, (s,5) -2, (") (2-10)

Bia(s) =D 7,(s',5)- B, (s) (2-11)
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The forward and backward recursion are initialized with oy = 1 and By = 1. We express
the coded bits as x, v=2,...n, then whenever a transition between s' and s exists, the

branch transition probabilities are given by
Ve(s'.s) = p(y, /u,)- p(u,)

where

eiL(Ug)

u, =+1)=
P, ) l+e

*L(uy)

L(uy )12
_( € )eL("k)"k/2
- Luy)

l+e
- AkeL(uk)ukll (2_12)

p(y./u,)=B, exp( Ly u, += ZLcykvx,”) (2-13)

V"’

Because Ay and By are equal for all thansition, yx can be expressed as

A s)-exp[(—(L(uk)+L Ve i, +— ZLF VX, ] (2-14)
Ve (s',s)= eXP[(—(L(uk)+L Ve l)llk] 7(e) (2-15)

with

(t) (s S) exp[—z ylc vxk v

- ‘»—1

As a result, we obtain

(s'.5)

DV (5.9) @, (s")- B.(5)
(s'.5)

D ¥ (s.5) @ (s')- B, (s)

uy=-1

L(uz) = Log

(s%5)

DV 9) 2, (5) Bo(s)

uk-*l

Zr"’ (s',8)- @ () B (s)

u, =—1

=Ly, +L(u, )+ Log
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=Ly, +L(u)+ L(u)

The L, (zAu() is called the extrinsic value

(s".5)

D709 @, (5)- B, (s)
uy =+1

L (ux) = Log

(s'.5)
D709 @ (5 B (s)

up=~1

or

L (ue)=L(u)- Lu,)-L.y,

2.3.2 MAP decoding for non binary turbo code

The turbo decoding algorithm for codes based on binary trellis requires a single
Log-Likelihood Ratio(LLR). But, when it comes to non-binary codes, a multidimensional

LLR (MLLR) must be defined instead indicated as L(ux) and L°( uy), which include the

three following scalar LLRs:

P(u, =(0,0)/y)
P(u, =(01)/y)

L,(uc)=Log

P(u, =(00)/y)
P(u, =(L0)/y)

L,(u¢) = Log

P(u, =(00)/y)
P(u, =(L)/y)

Lc(ue) = Log

L(z:)z[L,,(z:k) Ly (ix) Lc(z:k)]

Similar to binary case, scalar LLRs can be written as
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(s"5)

X 2. p(s'.s,)
L, (ue) =Log% (2-21)

(s.5)

2. p(s's,y)

u, =(0.1)

(s's)
> p(s'.s,y)
A 1, =(0.0)
Ly(ui) = Log ————— (2-22)

(s.5)

Zp(s”s7y)

ug =(1,0)

(s'.5)
) D p(s'.5,y)
Le(ue) = Log * 2 — (2-23)

D p(s'.5,y)
uy =(LI)
where

P(S'ys,}’):P(S”yj«)'p(sv}’k/s')'P(yPk/5)

=P Y,4) p(s'5) p(y, /5,5") p(y I 5)
— ~ g N— —— s D Y ——

=, (5")7,(s",5)- B, (5) (2-24)

The forward and backward recursions are over 4 states where the transition exist:

& () =D 7, (5", 9) - & (s") (2-25)

Bt ()= 7,(s".5)- B,(s) (2-26)
The forward and backward path metrics are initialized with equal probability for all
states.

i ' l l =
7 (5"5) = expl(z Loy u, + 5}: L.y, x.,] Pu,) (2-27)
1 n
}’Zd (s',s)= exp[EZ Ly.x.] (2-28)

where i, ug, Yk, Xk € (00, 01, 10,11).
By putting (2-4) in (2-21) - (2-23), we acquired
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(s°.5)
A DV (5'.5) @ (s")- B, (s)
LA (uk ) - Log u, =(0.0)

(s".5)

Zyk (S',S)'a'k_‘ (S') ’ﬂk (S)

u; =(0.1)

(s'.5)

Zyk (S',S) 'ak—l (S') ',Bk (S)
+=(0.0)
(s'.5)

D V(s) (s B (s)

uy=(1,0)

LB(llk)= LOg .

(s’.5)

2. 7:(5'.5) e, (s)- B, (s5)
¢ =(0.0)
(s.5)

2 7(5',5) @ (s)- B, (s5)

Uy =(l.l)

Lc(ux) = Log

and the extrinsic values are,

(s'.5)

219 () B (s)

L (l:l; ) = Log 222

(s'.5)

270 9)  (s)- B, (s)

uy =(0.1)

(s'.s)

DN 9) e, () B, (5)

+ =(0.0)

Ly (uc) = Log “

(s'.5)

D 70(s.8) @, (5)- B (s)

u, =(1.0)

(s'.5)

D7) @ (5) - B (s)

¢ =(0.0)

LE (uv) = Log “

(s'.s)

27N 9) 4 (s) - B, (s)

uy =(1.1)
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2.3.3 Log-MAP decoding algorithm

To simplify the calculation, we can transform the MAP algorithm to Log domain,
then we obtain the Log-MAP algorithm. In Log-MAP algorithm, all the multiplications
are converted into additions, and also the Jacobian algorithm could be used to simplify
the caiculations. The decoding performance of the Log-MAP algorithm should be the

same as the MAP algorithm.
Log(e” +e™)=max(4,,68,) + Log(L+¢1%74])
=max(4,,9,) + £, (|6, - 6,)) (2-35)

where f_(-) is a correction function, which can be implement using a look-up table.

In the binary case, all expressions for Log-MAP algorithm can be written as:

i (s's) = Logly,(s',5)]

1 I g
=G L)+ Loy ug + EZ Leyesxe, (2-36)

v=2

v (s',s) = Log[y® (s', 5)]

l n
= EZ Lryk.vx/t.v (2-37)

& (s) = Logle, (s)]
= Logy ™ eta (2-38)
Bioi(s') = LogB, ,(s')

- Logzerlu'.wﬂt(s) (2-39)
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(s'.5) . L
Z et (s"s)+af_(s)+8Ls)
uy =+1

(s’.5) L
Zen (s"s)raf )+ B8E(s)

L(us) = Log

ug=-1

(s’.5)
— LOg Zen (s"s)+at_ (s)+BL(s) LOg Zen (s's)+al  (s)+BE () (2_40)

uy =+] uy ==1

(s5) (nL
Ze (s"s)+af  (7+BEs)

u, =+1
L, (m) Log .
Z er{”‘u s+al (s)+ 8 (5)

up =—1

= Log Zer{" (s"s)+af  (s1+BE(s) —Log Ze 7Ot ssval s+ BEs) (2-41)

uy =+l u=~1

In the non-binary case, all expressions for Log-MAP algorithm can be written as:

Vi (s',5) = Log[y! (s',5)]

l n
= %Lcyk.luk + EZ Ly.,x., +LogP(u,) (2-42)

x(:)L(s S) LOg[}’;(z)(s S)]

—_ZL ykvxkv (2_43)
o (5) = Loglar, (s)] = Log 3 e 1"+ 0t
erL-l (s = Logﬂk-l (s') = LogZe"‘!‘("")*’ﬂg‘m (245)
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the Max-Log-MAP algorithm. The Max-Log-MAP algorithm has a degraded
performance, so it is a sub-optimal algorithm, but the implementation compiexity is

greatly reduced. A quantized version of the Jacobian function can be added to

(s’.s)
Z e"" ("1t () BE(5)

L, (llk) Log T
Zen (ssraf s 1BEs

u, =01
(s°.3) 5'.5)
= LOg Zen (s'syrab ((s)+ B Log zen (s".s)+al_ (s)+8L(s) (2-46)
uy =00 a, =01
(s%.5)
L (lllc) = LOg Zey, (s"s)+af (514 8L (s5) LOg Zen (s"sy+af_((sI1+BELs) (2_47)
u, =00 u, =10
(s°.5) (s’
L. (llk) Log Zeh (s"s1rap ()+ L (s) ~ Log Zen (s"5)+apr  (s1+PE(s) (2-48)
u, =00 uy =11

.5) mL
Ze (s s)+af. s+ BE(s)

L, (uk) Log o
Ze Ot ssral ()4 8L i)

u, =01
.9 tert. (r)L L L
= Lag Zer, (ss)+af_ (s)+8E(s) Log Ze (s"syar_ ()+BLs) (7_49\
- J
u, =00 uy =01
e & YOt stral (+8L ) 7t s svatl s+ 8L ()
LB(uk)zLOg Zek e 4 LOg Zeg E-1 & 2- 50)
i, =00 uy =10
e & ri s syl Y+l ) rOt s vat sV BE(s)
Lo(ux) =Log Ze‘ T LogZe‘ ! t 2-51)
u, =00 ug =11

Max-Log-MAP decoding algorithm

Omitting the Jacobian correction function in the Log _MAP algorithm, we attain

compensate the loss. The resulting algorithm is the Max*_Log_MAP algorithm.
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In the binary case, the Max-Log-MAP al gorithm can be presented as:

J’LML (s',5) = (%(L(u,‘ Y+Ly, u, + %Zn: Ly.x., (2-52)
vOME(s',s) = —ZL Yo Xe, (2-53)
al*(s) = Ma.t[y L5, s) + ™ (s)] (2-54)
(s = Mar[r (s',5)+ B (5)] (2-55)

L(zu)— Max [}/ (s’,s)+a'“(s)+,5 (]

SJ)M =+{

- Max [y)* (s, s)+a) (s)+ﬂ (s)] (2-56)

(s"3)uy =-1

L (llk)— Max [y," (s, 5) + @t (s') + B (5)]

(s".5)uy =+1

~- Max [y (s, s)+als (s )+ BM(5)] (2-57)

(5" 5)ug=~1

In the non-binary case, the Max-Log-MAP algorithm can be depicted as:

rt(s',s) = —Ly, u, += ZL YenXe, + LogP(u,) (2-58)
yiom (o o) _—ZL YinXes (2-59)
@ (s) = Max{y ™ (s',5) + ™ (s")] (2-60)
e (s") = Mcu[y “(s',8)+ B ()] (2-61)

Lyu)= Max [7(s's)+ (s + B (5)]

- Max [y} (s',s) + a2} He )+ B (5)] (2-62)

(s".5)u =01
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L, (uk)- Max [}’ L(s, s)+at (s)+ﬂ (9]

- Max [y (s, s)+a'k_l(s)+,5 L)

(s7.5)u, =10
Le@)= Max [r(s',5) + o2 (s) + B ()]

- Max [y} (s',s)+a',‘ l(s)-i-,B (9]

(s'.$) =11

L, (uk)- Max [y"’“‘(s',s)«uaf,c_l (s + B (5)]

— Max [y (s',5) + @™ (s") + BM(5)]

(s'.5)u, =01

Ly (uk)- Max [J’"’ML(S',S)H!,‘ 1)+ B ()]

= Max [y"(s',5)+ @™ (s") + B (5)]

(5".5)u, =10

L. (uk)_ Max [y“"“(s )+l (s")+ B ()]

(s".5)uy =

= Max [y2"(s',5) + @™ (s') + B (5)]

(s'.5)uy =11

From following equations

L, = LogF, - LogF,
L} = LogP, — LogP,

L; = LogF, - LogP,

(2-63)

(2-64)

(2-65)

(2-66)

(2-67)

(2-68)

Pox = P(ux = 00), Pk =P(u = 01), Py = P(uy = 10), Py = P(uy = 11).

It is easy to get the probabilities approximately

LogP, = Min(L’,,Le;, L)
LogP, = Min(~L5, ~L, + Le% ~L, + L%.)

LogP, = Min(~L5,~L; + Le‘, ~L;, + %)
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LogP, = Min(-L¢ ~L%. + Le L. + L5,)
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Chapter 3

Implementation issues of DVB/RCS

code

In general, the most efficient hardware implementation of the DVB/RCS turbo
code means to reach the best performance in terms of speed, area, and low power
consumption without loss of error correction capability. But it seems impossible to get
both the best implementation performance and the best error correction capability an the
same time. Thus, the most efficient implementation is always the tradeoff between
hardware complexity and decoding ability. In order to achieve the expected performance,
simplifications must be attempted at different abstraction levels (e.g. system, architecture,
RTL, gate, transistor level). The simplifications of the two lowest levels are often made
with synthesis tools provided by specialized hardware device design companies, while
the simplifications related to the higher levels are implemented by the designers who
have deep knowledge of coding theory. In other words, Application knowledge can be
exploited to significantly simplify high-level design towards lower implementation

complexity. So in this thesis, we focus on the high-level issues. In this chapter, the top-
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most level (system level) issues are mainly discussed, while architecture level and RTL

level issues will be presented in Chapter 4.

3.1 Algorithm simplification

In hardware design, The MAP algorithm is too difficult to implement although it
has the best error correction performance. Basically the difficulties of implementation
with MAP algorithm include the numerical representation of probability, non-linear
functions and mixed multiplication and additions of these values. Converting the MAP
into the logarithmic domain and substituting the logarithms by Jacobian logarithms yields
the so-called Log-MAP algorithm. The Log-MAP avoids the numerical problems of the
MAP and the performance of the Log-MAP is equivalent to MAP [58]. So, from the
implementation point of view, the MAP algorithm should always be implemented in the
logarithmic domain. By omitting the correction term of the Jacobian logarithms, the Max-
Log-MAP algorithm is obtained. According to simulation result, the Max-Log-MAP is
similar to Log-MAP in decoding performance for DVB/RCS code [59]. This is the reason
why Max-Log-MAP is adopted in this report.

3.2 Quantization

All decoding algorithms including Max-Log-MAP are usually specified in the
floating-point domain. To get an efficient implementation, fixed-point number
representation has to be used, which implies transformation from floating-point to fixed-
point is mandatory for the decoder design. The primary goal of this transformation or
quantization design for hardware implementation is to find a fixed-point model that has
all bits-widths as small as possible under the condition of an acceptable degradation of
the coding performance. In hardware implementation, the reduction of data-path bit-

widths, control complexity and memory size leads to a reduction of area and power
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consumption and an increase of speed. The input data quantization and inner data
quantization have major influence on the control complexity and directly determine the
bit-widths of data-path and size of memory. The smaller the bit-widths of quantization,
the better the performance of the decoder in terms of speed, area and the energy
consumption. Obviously quantization also affects the decoding performance. Thus, the

optimized quantization is a key factor for the implementation cost.

3.2.1 Input data quantization

As mentioned before, quantization of the input data is very important for all kinds
of turbo decoders. What we are interested in is how various quantization schemes affect
the performance of the decoder. The simplest way to find the best quantization scheme is
simulation approach, in which the best choice is decided according to the simulation
result.

The uniform quantation is often adopted in decoder design. Other fancy
quantization methods will not be helpful to improve the quantization results for decoders.
Normally, q : f denotes a quantization scheme, in which q presents the total bits and f
presents the fractional part of the total bits. For binary turbo code the schemes such as
3:1, 3:2, 4:2, 4:1, 4:3, 5:2 and 5:3 for Max-Log-MAP algorithm have been investigated
[60][61]. From the simulation result it can be found that the difference between the 4:2
case and the 5:2 case is negligible within a wide range of BERs. However, the difference
between the 4:2 and the 3:1 quantization schemes is quite significant. Also the 4:1
scheme performs worse than the 4:2 scheme because the performance degradation due to
its lower precision is more significant than the performance improvement by its larger
dynamic range. Thus, the 4:2 scheme is the best scheme, which has the best tradeoff

between implementation complexity and code performance.

36



1.0E+00

1.0E-01 |

1.0E-02

w 1.0E-03

1.0E-04

1.0E-05

1.0E-06

Max_Log_MAP, Block size (53 bytes), 8 iterations

~—&—Code rate 6/7
—&— Code rate 4/5
—&—Code rate 3/4
——=—Code rate 2/3
—&—Code rate 1/2
—<—Code rate 2/5
—8—Code rate 1/3

£
._‘
\\\ ‘K ‘
-’-‘;
i e
Dashed lines are 4-bit Quantlzatlon
0 1 2 3 4 5 6

Eb/NO (dB)

Figure 3-1 The Frame Error Rate for ATM blocks, 8 iterations

As for DVB/RCS non-binary turbo code the simulation results are similar to

binary turbo code. Figure 3-1 and Figure 3-2

[59] show the simulation results of

DVB/RCS turbo code with the 4:2 case and no quantization case for Max-Log-MAP

decoder. It can be seen that the degradation of the code performance for the 4:2 scheme

compared to the one for no quantization case is very small. So, the 4:2 quantization

scheme is used in this report.
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3.2.2 Inner data Quantization

Inner data quantization refers to quantization of extrinsic information (L°), the
forward path metrics (o), the backward path metrics () and branch metrics (V). In order
to simplify the implementation of the decoders, in most cases the same bit width is
chosen for all the inner data if there is no big performance difference.

L® values are the a priori probability for the next iteration. In Log domain the
absolute value of L could be very large, which can be observed in the simulation. This
means a big bit width has to be chosen. Fortunately, when L® is very large, the probability
will be very close to 1.0. So, the effects on the next iteration could be expected to be very

small. Therefore, the bit width for L® turns out not to be so large that it can be a hurdle for
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hardware implementation. Various quantization schemes for L® such as 5:2, 5:1, 6:2, and
6:1 have been examined [60]. The 6:2 scheme is proved to be the optimal choice.

The bit widths of o and B are the most significant factors influencing the speed,
the area and the power consumption of the decoder implementation. Both an analytical
approach and a simulation approach can be used to explore the optimal quantization
scheme. As discussed before, o and B are accumulated and are recursively computed. To
prevent arithmetic overflow, the normalization schemes must be employed, which will be
discussed in detail in next section. For the Max-Log-MAP algorithm actually only the
difference values of all alphas and betas are needed so the normalization is made
possible. Till now many efforts have been made to obtain the best scheme [62][63]. For
the Log-MAP algorithm the single sized 9:4 scheme is the best choice and for the Max-
Log-MAP algorithm the single sized 8:3 scheme performs the best. Even both of these
two schemes are better than the corresponding infinite precision model slightly for five
and above five decoding iterations in decoding performance under the assumption of a
AWGN channel and a Rayleigh-fading channel.

In this thesis, for all the inner data we choose a double side 8:2 quantization
scheme, setting the maximum extrinsic information value to 2°° and for the input data we
choose the 4:2 quantization scheme. Roughly speaking according to above discussion this

practical quantization model will not degrade the decoding performance.

3.3 Normalization

The forward path metrics and the backward path metrics require periodic re
normalization to prevent arithmetic overflow because they can be accumulated without
bounds during Max-Log-MAP algorithm recursion. Basically there are two approaches
that can be used for renormalization: rescaling approach and modulo approach. In this

section, these two approaches will be introduced first, and then a new optimal
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normalization approach for DVB/RCS non binary code will be proposed, which
combines all advantages of the rescaling approach and modulo approach and overcomes

all the disadvantage of these two approaches.

3.3.1 Rescaling

For the Max-Log-MAP decoder the rescaling renormalization can be achieved by
subtracting the minimum path metric in each time step [61]. Since the useful information
is contained within the differences of the path metrics, the normalization does not cause
any change of the Max-Log-MAP algorithm. The advantages of this approach is as
follows:

* Rescaling can be easily combined with saturating the path metrics in order to
minimize bit widths. As stated above, the 8:2 quantization scheme can be employed
not causing the degradation of coding performance.

* From reliability point of view, it is easy to implement because saturation provide

more reliability.

The disadvantages of the rescaling approach include:

* Renormalization by subtracting the minimum metric causes a prolonged critical path
for a hardware implementation and therefore a degraded maximum decoding speed.
We cannot solve this drawback by pipelining the design because data hazards exist.
As we know, since a loop exists in path metric calculation, if we do not open the loop,
we cannot avoid these data hazards.

* Additional subtraction increases the area of the hardware implementation.
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3.3.2 Modulo Normalization

An altemative renormalization technique is modulo scheme, which uses tow's
complement arithmetic [64][65]. The key idea of modulo renormalization is not to invest
how to avoid overflow, but instead to accommodate overflow in such a way that it does
not affect the correctness of the result. In modulo renormalization the two properties of
the Max-Log-MAP algorithm are exploited:

* The useful information is contained within the differences of the path metrics.
* The difference between metrics is bounded [64].
In two's complement arithmetic the bit width c refers to the additive group over
-2, 121, 2o )
and in modulo renormalization the modulo operators are used instead of the normal
operators. It is obvious that the bit width ¢ has to be enough to allow the absolute value of
the biggest metric Ay, difference and satisfies
22 | Amay | (3-1)
Let B be an upper bound for the absolute values of the signed branch metrics:
Iyl <B (3-2)

For DVB/RCS turbo code m = k - 1 equals 3 being the memory order of a code
with constraint length k. The difference between any pair of forward path metrics (o) or
any pair of backward path metrics () is then bounded [28]:

| cwlsn) - outs) | < 6B (3-3)
|Bu(s) - Buts2) | <6B, si.s:€ . (34)
Similarly the candidate path metrics are upper bounded as follows:
lcwsn) +vi(s150) — (ou(s) +vics252) ) | < 8B (3-5)
S1, S2. 81, S € S.
Thus, the bit widths for the forward path metrics and the candidate path metrics can be

obtained:
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Cpm = 10g,6B + 1 (3-6)

Ccm =102:8B + 1 3-7
These upper bounds are not very tight for hardware implementation because we
want the bit width as small as possible. To get the smallest value for DVB/RCS code,
simulation has been done [59] and the results are presented in Table 3-1. It can be seen

the real bit width for this code should be 11, which is too big for hardware design.

Table 3-1 Bit width of inner data for DVB/RCS code

4 bit quantization

Iteration Num |Min vy [Min o | Min B Max Lu
1 Iteration -348 -348 626

2 Iteration -576 -576 1024

3 Iteration -688 -688 1344

4 Iteration -864 -864 1664

5 Iteration -992 -992 1920

6 Iteration -1152 -1152 2288

7 Iteration -1280 -1280 2544

8 Iteration -1392 -1392 2768
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3 bit quantization

Iteration Num | Min y |Min o [Min B Max Lu
1 Iteration -64 -96 -96 160
2 Iteration -112 -128 -128 240
3 Iteration -160 -176 -176 352
4 Iteration -192 -208 -208 416
5 Iteration -224 -240 -240 480
6 Iteration -240 -272 -272 544
7 Iteration -288 -304 -304 608
8 Iteration -366 -336 -366 664

From the above discussion the characteristics of modulo renormalization can be

concluded:

* Modulo renormalization avoids the major drawback of rescaling scheme,
renormalization by subtraction, because the metrics stay implicitly normalized.

* Without subtraction the hardware circuits can work at a higher speed, and the area for
subtraction is saved.

* The disadvantage of this approach is that the bit width needed is larger than rescaling
scheme. Normally, for high-speed MAP decoder one additional bit results in

approximately 25% decrease in speed and increase in area.
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3.3.3 New optimized normalization for DVB/RCS code

In order to get a better decoding performance a new renormalization approach,
based on the rescaling scheme, is proposed, which overcomes the disadvantages of both
the rescaling and the modulo renormalization.

If the bit width we choose is c, the biggest absolute value of the path metrics
should be 2°'. Let us assume the path metrics o4.i(s) < 22, then the candidate path

metrics for next time unit
Iak-l (RS A C AN NS )l <2 +B (3-8)

If we limit the extrinsic information within a proper value, the following inequality can
hold easily.

B <2°? (3-9)
Therefore,

LANCHPESACATANITS P31 (3-10)

If we further limit B < 2%, under the condition of the previous path metric ay., < 27, the

candidate path metrics for next time unit < 2°' -

As long as the candidate path metrics are less than 2° under the condition of the
path metrics of the previous time unit less than 27, the approach described by the
following steps can be used for renormalization instead of rescaling scheme:

* Ateach time instant, all path metrics are checked to see if any of the metrics is larger
than 22, If it is larger than 252, 2°2 is subtracted from all path metrics for all states at
this time unit, otherwise, all path metrics are kept as they are. In hardware
implementation a very simple combinational logic can be used to fulfill it. Using this
approach, we simplified the renormalization greatly compared to the rescaling
scheme renormalization; the speed of the decoder can be faster; the area of the

decoder can be reduced. But, compared to the modulo renormalization, this approach



still has to spend some time to implement the comparison of the path metrics with 2
and the subtraction of the path metrics with 2% So, it is not the optimized
normalization.

* To get rid of the compare part from the critical path in terms of time, the previous
path metrics is used instead of the present time unit path metrics. Of course, this
substitution could cause one unit time delay for the normalization. But according to
(3-8), (3-9), (3-10) this delay could not produce any error. And then, in hardware
implementation the compare circuit can be paralleled with the addition circuit of
ACS. Now in the timing graph the comparison disappears.

* The last hurdle left is the subtraction. To eliminate the subtraction from the critical
path we replace all path metrics with the corresponding candidate path metrics and
parallel the subtraction logic circuit with the compare circuit of the ACS. As the
subtraction logic is very simple, the execution time of the subtraction must be less
than the execution time of the compare circuit of the ACS.

Now the optimized renormalization has been achieved, which has the same bit
width as rescsaling scheme and the same length of datapath as modulo renormalization.

With this new optimized renormalization approach the decoder performance in terms of

speed can be improved by 30% to 40% compared to either scheme.

3.4 Simplification of branch metrics Calculation

Unlike the alpha and the beta calculation, the branch metric gamma calculations
for the Max-Log-MAP algorithm do not affect the speed of the decoder in hardware
implementation. But, it does affect the area of the decoder and the power consumption as
well. Therefore, the calculation simplification of gamma is necessary for hardware

implementation.
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3.4.1 Gamma calculation of DVB/RCS turbo code

For Max-Log-MAP algorithm the branch metric Yi(s.:, S) depends on the
received symbols and the extrinsic information, and the extrinsic branch metric ¥(sy..,

sx) only depends on the coded information:

l n
Yi(sk1. ) = L, +§Z L*y,, *x, G-11)
v=]
l n
Yi(e)(sk-lv Sk) = 5’;} L‘- * Yerw *xk.v (3-12)

For DVB/RCS non binary code,
i€ {00,01,10, 11}
sx € {000, 001,010,011, 100, 101, 110, 111}
The state vecter S;, input vecter X; and matrix G are given by

S|

i

Si=|sy |3
S3i
At'*‘Bi
Xi= B N
B:
1 0 1
G=[1 0 0};
010

the state transfer function can be inferred as:
Si = GSi-l + X; (3-13)

Further more, if the output vector Yi and metric G1, G2 are expressed as,

Y= H ;
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I 0
1= 10 g_
I 1
C2= D 0 g_ '
Table 3-2 State transfer and encoder output
Current | Input Next | Output Current | Input Next | Output
State bits State YW State bits State YW
000 00 000 00 100 00 110 11
000 01 111 11 100 01 001 00
000 10 100 11 100 10 010 00
000 11 011 00 100 11 101 11
001 00 100 00 101 00 010 11
001 01 o1t 11 101 01 101 00
001 10 000 11 101 10 110 00
001 11 111 00 101 11 001 11
010 00 001 10 110 00 111 01
010 01 110 01 110 01 000 10
010 10 101 01 110 10 01!l 10
010 11 010 10 110 11 100 01
011 00 101 10 111 00 011 01
011 01 010 01 111 01 100 10
0I1 10 001 01 111 10 111 10
011 11 110 10 111 11 000 0l
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the output of the encoder is:

Yi =GiXi + G:S; (3-14)
From (1-13) (1-14), state transfer and encoder output table can be obtained in Table 3-2.
This table is very useful for Gamma calculation simplification, which will be discussed in

the next section.

3.4.2 Proposed reduction approach for Gamma calculation

Even though the Max-Log-MAP algorithm is used, a lot of calculations are still
involved to obtain the gamma values. In order to reduce the number of calculations, the
author proposes a simple but effective approach for calculation simplification, which is
much like the method to reduce Boolean functions with ROBDD (reduced ordered binary
decision diagram)[66][67]. |

* First, we present the calculations of (3-11) (3-12) graphically. For example,
formula Y = X;* X, + X; * X, can be presented in Figure 3-3. '
* If we check the gamma calculation presented in this kind of graph, many

identical subtrees can be found. Figure 3-4 is an example.

Figure 3-3 Diagram of A*B + C*D
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g(000,00)

4(000,01)

Figure 3-4  Diagram of part of gamma function

* If these redundant parts are eliminated, i.e, identical trees are represented only

once like Figure 3-5, the reduced gamma calculation results. Figure 3-6 shows the

reduced gamma calculation graph for DVB/RCS code.

g(000,00) g(000,01)

Figure 3-5 Simplified diagram of part of gamma function
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Figure 3-6  Simplified gamma Function

From the reduced gamma calculation graph it can be seen that all the gamma
values come from only 8 values:

Coo = R(¥c01€00) + R(yc1 |€10)

Co1 =R(yc01€00) + R(yc1 [c11)

Cio=R(ycolcol) +R(yc1]€10)

Co1 =R(Yeo[col) + R(ycr Ic11) (3-15)
Soo = R(¥io1100) + R(yi111,0)

So1 = R(¥io [160) + R(yit |i11)

Si0=R(yioliol) + R(yi11i,0)

S11=R(yiollol) + R(yi1ii1)

50



. 1 . . .
where R(y | i) = 5 * 1, and y; refers to the received value of information bit; y.

refers to the received value of parity bit; i is a hypothetical value; cg0 means the
hypothetical value of ¢p is 0.

Rey li) is implemented with either multiplication circuits or lookup tables. An
alternative is obtaining C and S directly with lookup tables, but the lookup tables for C
and S are 8 bits input and 8 bits output, while those for R(y | i) are 4 bits input and 7 bits
output. Thus, in terms of area calculating R(y | i) should be better.

It is noticed that the C and S are independent of the decoding iteration so these
values can be performed only once prior to other calculations and can be reused in each
MAP iteration. Also using this method the total memory size does not increase as the pre-
calculated intermediate terms just replace the received symbols.

A dedicated circuit is implemented for the gamma values of the DVB/RCS turbo
decoder. With this proposed calculation reduction approach, the total area for gamma

calculation can be reduced by about 60% and the power consumption can also be reduced

greatly.

3.5 Effect of correction coefficient

Max_Log MAP algorithm degrades the coding performance due to omitting the
Jacobin correction function. In the case of binary codes, the correction function is

Log(1+e™ ™) (3-16)
the degradation of the performance is about 0.4 dB [34]. In the case of non-binary codes,

the correction function is

Log(1+e™ + e 4 o7y (3-17)

51



where -[a], -|b| and -|c| are the three values among X-max(x,y,z,w), y-max(x,y,z,w), z-

max(x,y.z,w), w-max(x,y,z,w). The degradation of the performance is less than 0.1 dB,
less significent than in the case of binary codes [34].

In hardware implementation, a simplified correction approach, the
Max*_Log MAP algorithm, is some time used. This approach chooses a one-bit
approximation for the correction term. With a look-ahead implementation circuit, adding
this kind of correction function will not degrade the performance in terms of speed and
will only increase the area of the decoder by 5%-10%.

For double binary CRSC code, the simulation results show that the one-bit
Max_Log MAP algorithm has very similar coding performance to the Log MAP
algorithm [59]. In hardware implementation, if we keep the same speed performance of
the decoder, the area use will increase by 5%-10%, while if we keep the same area use,

the speed performance will degrade by about 5%.



Chapter 4

Hardware architecture of the decoder

In this thesis, the DVB/RCS non-binary turbo decoder is implemented according
to DVB/RCS standard [56], and the decoding algorithm is Max-log-MAP algorithm. This
decoder can support various block sizes (from 96 bits to 1728 bits) and coding rates (7
coding rates) to suit DVB/RCS applications as this kind of applications need the coding
scheme to be flexible. This implementation outperforms almost all other commercially
realizable codes, so it can also be used for many other communication applications.

By using a top-down approach, the author makes extensive use of hierarchy,
regularity, modularity and locality strategies to make the design more effective and to
reduce the design complexity. The DVB/RCS decoder is a complex system, so the
adoption of highly structured design methodologies is definitely necessary. In structure
the decoder is designed to be composed of many models and sub-models; the lowest level
models directly employ the Xilinx Cores such as block memory and arithmetic, which
have the best performance for Xilinx technology. Figure 4-1 shows the model structure of

this design.
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Figure 4-1 Model structure of the decoder design

4.1 General description and design partition

The first step in the system design phase involves hierarchically partitioning the
system into a set of cooperating units, which is a crucial design step that will have a
major influence on both the system cost and performance. Generally, it is favorable to
partition the design in such a way that interoperation between units is minimized, since a
data transfer between two units requires control logics to synchronize the processes.
According to this principle the decoder is mainly partitioned into 4 parts, which are Input
control (Read data), Output control, MAP algorithm, and Interleaver because they are
comparatively independent of each other. Figure 4-2 provides a basic architecture block
diagram of the decoder. All these 4 units are working parallel to keep the decoder having

a high decoding speed. Because the execution time of the Read data part and the MAP
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part is longer than the execution time of the Interleaver part or the Out-data part, and
because the 4 units are independent, the decoder can be easily scheduled to achieve
optimal area at the same time. Figure 4-3 gives the general timing diagram of the

DVB/RCS decoder.

Input control Extrinsic buffer (¢— Output control
Sample buffer Map decoder » Output buffer
7\

\ 2 v
Alpha buffer Beta buffer
v
Interleave Gen — Interleave buffer

Figure 4-2 Decoder structure

Time ¢
Execution
order

[ Read data ﬂ [ Read data 2 ] [ Read data 3 l [ Read data 4 l

Data buffer 2 Data buffer 2

<

Figure 4-3

l

MAP 1

|| map2

I

MAP3 |

Interleave G

| Outdata1 | [ Outdata2 |

Timing diagram of DVB/RCS decoder
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In normal operation, sampled data is first input into a sample buffer. The sample
buffer performs double buffering, allowing the next frame to be input while the decoder
processes the current frame. The decoded result is stored in out-data buffer and the out-
data circuit controls the output procedure. The interleaver between the component
convolutional codes is precalculated based on algebraic laws according to the frame size
used, avoiding the use of a lot of look-up tables for every frame sizes. MAP decoder is
the most complex part of the design. It is optimized in both speed and area by using

pipeline technique and algorithm optimization.

4.2 Max-Log-MAP decoder

The DVB/RCS turbo decoder is based on the Max-Log-MAP algorithm. A
successful design of implementing this algorithm is the key to achieve an optimal
decoding performance for the decoder. Although the Max-Log-MAP has been greatly
simplified compared to MAP algorithm, it still is a memory intensive and
computationally intensive algorithm. This is primarily because there are a lot of
computations of the gamma function, the alpha and beta functions and the LLR functions.
The case for DVB/RCS code is even worse than for binary turbo code since there are
more computations for DVB/RCS code. The problems of the gamma function have been
discussed in the previous section. The alpha and beta functions, as we know, are
recursive operations, which begin at opposite ends of the received sequence. In hardware
design, loop calculations are normally the critical paths that limit the performance of the
design in terms of speed. For the DVB/RCS decoder the alpha and beta calculations are
the only crucial issue for us to improve the decoder speed. To solve this problem we have
two options which are either simplifying the data path of the alpha and beta calculation as
much as possible or opening the calculation loop. The slide windows algorithm can be
used to open the loop [68], but this algorithm could degrade the decoding performance of

the DVB/RCS code although it works very well for the binary turbo code. As for how
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worse it could be, there has not yet been anything published in the open literature. If we
want to speedup the decoder further, maybe the second option should be considered.
Since the MLLR functions are dependent on both the alpha and the beta, at least one of
the alpha and beta values has to be stored in memory before the sigma functions are being
calculated. The memory requirement cannot be reduced by modifying scheduling or
resource sharing since the alpha and beta functions are recursive and begin at opposite
ends of the trellis.

The design of the sigma functions should be focused on saving the area as it does
not affect the speed of the decoder significantly in a pipeline structure, which can be seen
in the following scheduling discussion. Depending on the architecture for the hardware
implementation, we can choose either to store both the alpha and the beta or to store the
MLLR in memory. But, the MLLR is preferred because it needs less memory.

In the Max-Log-MAP algorithm for the DVB/RCS code, the gamma function is

defined in (3-11) (3-12); the alpha and the beta functions are defined by the recursion

a, (s)= A:[gx(a,‘_, (s +y.(s'.s) 4-1)
Bi(5) = Max(B, () + 7, (s',9)) 4-2)

where the summation is over all 4 states where the transition exist.
For the non-binary turbo codes, a multidimensional LLR (MLLR) must be used

indicated as L(u;) and L*( uy). The vector L(uy) include the three following scalar LLRs:

Ly = Max (@, () +7.("9))+ () -
Max (@, ,(s") +7,(s",9) + B, (5)) (4-3)
Ly = Max (@, (s') +7,(s",5) + B (s) -
:’sMua;rm(a"" () + 7. (s",5)) + B, (5)) (4-4)
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Le = Max (@, (s)+7, (s, s) + B (s)) -

SJJ‘

’%‘gl(ak-l (s)+ Ve (s, s+ ﬂk () (4-5)

and for the vector L°(uy) we have,

Ly = Max (@, () +7{(s' )+ B (s)-

:%a:‘f)l(ak_[ (5 )+y/¢ (S 13))+ﬂk (S)) (4'6)
Ly = S%ax (@ () +Yi (s )+ B, (s) -

Max (@, (s") +7{(s',5)) + B (5) 4-7)

IJM

L, = Max (ak (S +Y () + B (s) -

x:u

Max (ak (8 +Yi(s, N+ B.(s) (4-8)

SJ‘X‘

Hence, the MLLR is defined as:
L(ux) = [La(ux) La(ue) Le(ug) ]

LnP, = Min(L:,,Lej,, L%) (4-9)

LnP = Min(-L, ~L, + Lej,~L + LZ.) (4-10)
LnP, = Min(-L; ,~L; + Le, ~L, + L..) (4-11)
LnP, = Min(-L ~L; + Le§ ,—L. + L) (4-12)
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Figure 4-4  Data dependency graph of the decoder architecture

With the above calculation formulas in mind, now we move to the questions of
the scheduling. The purpose of the scheduling is to distribute all the process in time so
that the specified performance is met and the amount of resources required is minimized.
Minimizing the amount of hardware will also minimize the power consumption. As the
partitioning has been done, it is possible to perform a static scheduling, which is easier to

achieve an optimal architecture. In terms of resource, we manage to treat the scheduling
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of the design as a resource adequate scheduling problem because resource limited
scheduling is much more complex than resource adequate scheduling.

Figure 4-4 presents the architecture diagram of the MAP decoder. Since the
DVB/RCS non-binary code is a circular code, in the case Max-Log-MAP algorithm is
applied, decoding the sequence consists of going round the circular trellis anti-clockwise
for the backward process, and clockwise for the forward process [35], during which data
are decoded and the extrinsic information is built. To guide the process towards an initial
state the decoding process is preceded by a prologue decodin g step, performed on a part
of the circle. By doing this the initial state can be set to a good estimate of the circulation
state. The computations of the alpha and beta recursions are carried out in parallel so that
the decoder can speedup effectively. In the middle of the trellis, the MLLR functions can
be computed as both alpha and the beta are ready. Therefore, one decoding sub-iteration

can be implemented in the trellis length time unites.

4.2.1 Full Pipeline architecture

According to the Max-Log-MAP algorithm, a simple top level functional
structure of the data flow of the decoder is shown in Figure 4-5. The blocks within the
decoder in the data path are the gamma function, the alpha and beta function, the
interleave function and the MLLR function. If all the input data are executed sequentially
as shown in Figure 4-6, the basic MAP decoder structure is built. While the advantages of
this structure are the minimum use of area and the simplicity of the design of the control
unit, the decoding speed of the decoder is very low and cannot meet the requirement of
typical applications. By putting the data path in parallel, the speed of the decoder can be
improved greatly, but this is not an efficient way because the parallel structure will cost a
lot of area. Therefore, in this thesis we design a full pipelined structure which is optimal

in both area and speed.
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Pipelining is an implementation technique which is an efficient method of
increasing the throughput of a sequential algorithm [69][70]. A pipeline with n stages
allows n computations to be processed concurrently and attains a speedup of n over
sequential processing. Under ideal condition, the time between output data in the
pipelined structure is equal to

Time interval (pipelined) = Time interval (nonpipelined) / Number (pipe stages)

As throughput is the inverse of the longest critical path, ideally we should break
the critical path into paths of equal length to achieve the best pipeline result. For non-
recursive algorithm, in principle, the throughput (the maximum input data rate) could be
“infinite”, if only the critical path is divided into infinitesimally small pieces. Thus, the
decoder speed will be infinite. However, the alpha and beta functions of the Max-Log-
MAP algorithm are recursive, so there is no way to obtain an “infinitive” performance.
Since the pipeline technique is only applicable to the computations which are not inside a

recursive loop, the alpha and beta functions cannot be further pipelined

Time C —
Execution
order
Alpha
[- &ﬁ Gamma | and | MLLR
Beta
Alpha
Eeﬁ Gamma | and | MUR
Beta
Data
J\] Fetch

Figure 4-6  Timing diagram of sequentially executed MAP decoder
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Figure 4-7 is an optimized pipelined structure for Max-Log-MAP decoder and
Figure 4-8 is the data path of the optimized pipelined structure for Max-Log-MAP
decoder of the DVB/RCS code. The pipelined structure overcomes the drawbacks of
both sequential structure and the parallel structure; it almost has the same speed as the
parallel structure and the same area as the sequential structure. But correspondingly the
design complexity of the control units is much higher than the other structures. Pipeling
also increases the latency and one should be careful that latency does not exceed the
requirements of the given application.

For this design, from Figure 4-8 we can see that the data path is divided into 9
stages and the gamma function and the sigma function are divided into 3 stages
respectively. According to the above discussion, the performance in terms of the speed is

improved 9 times compared to the sequential structure.

4.2.2 Alpha and beta recursion update structure

The basic limitation of the MAP decoder in terms of the speed of decoding is the

alpha and beta recursion because this circuit cannot be pipelined as we discussed above.

a0k) — |
gok) — +
arky —
gty —
i Normali- a (k+1)
zation
a2k) — |
g2(k) +
By — +

Figure4-9  The basic circuit of the alpha update
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In general, all the computations for all states in the trellis must be completed
before the next recursion starts. To improve the performance, first, we must try to
simplify the computation logic of the alpha and beta function as much as possible.
Secondly we use the dedicated resource binding strategy in this part of this circuit.
Actually we sacrifice the area here for a better performance. In addition, as the alpha
calculation and the beta calculation are independent, the computation of the alpha and the
beta are done in parallel. This requires a separate circuit for alpha and beta recursions.
The parallel computation of the alpha and beta functions doubles the decoding speed of
the decoder.

Figure 4-9 presents the basic alpha recursion update circuit. The beta circuit is the
same as the alpha circuit. The gamma values are the only inputs for the alpha or the beta
update circuit and the update function for the alpha or beta recursion are ACSs (Addition,
Compare and Selection). Thus, a lot of adders, comparators and selectors are needed.
From the discussion in previous section we know that a normalization circuit is a must
for the implementation of the alpha and beta functions. The effective new
renormalization approach proposed in Section 1.3.3 is realized in Figure 4-10.

Since the transitions of the alpha and beta in the trellis are different, there is a
slight difference between the optimized alpha circuit and the optimized beta circuit. In
order to further save area with resource sharing technique, we prefer to make a common
circuit which can be used for both alpha function and beta function. This will be

discussed in detail in the following section.
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Figure 4-10  Alpha update circuit with the proposed normalization

4.2.3 Extrinsic value calculation structure

As stated before the extrinsic values are computed with the alpha values, the beta
values and the gamma(e) values, using Equation (4-3 ) - (4-12). The inputs of the sigma
calculation unit are the alpha, the beta and the gamma(e) and the outputs are extrinsic
values or the decoded values depending on the iteration; if the iteration is the last one, the
outputs are the decoded value and the gamma input should be used.

Since the alpha and the beta recursions begin at opposite ends of the trellis, the
necessary information will not be available to compute the MLLR values until each
recursion is half finished. From this point on, two MLLR values can be computed at the

same time so the MLLR calculation can finish right after the alpha and the beta
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calculations finish, which means that roughly every subiteration needs only the same time
units as the length of the trellis.

The MLLR calculation is not recursive, therefore pipeline technique can be used
to increase the throughput. In our design 3 pipeline stages are used, resulting in the same
throughput as the alpha and beta circuits. Figure 4-11 shows the MLLLR implementation

circuit.
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Figure 4-11 The MLLR implementation circuit

4.2.4 Further area reduction with resource sharing

Area, the resources needed, is another important performance measure for the
decoder, affecting the cost of the implementation. The amount of the resources can be
minimized by letting the computations that do not overlap in time share resources. The
number and type of resources are determined from the operation schedule. Usually, the
largest number of concurrent computations determines the number of resources required.

Especially, the number of resources required in the pipelined implementations depends
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on the clock frequency; the higher the frequency the larger is the number of operations

executing concurrently, therefore, larger is number of required resources.

cct ® 0y
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cC4a CHRC ® 3305 (O Alpha Calculations
ccs @ 3

ccs CHONE, 3 325
cc7 CHC 3 3

ccs ® & 3 3
cc9 ONO) 33

{:} Beta calculations

Figure 4-12  Operation schedule of the MAP decoder

Resource reduction problems can be solved by using clique partitioning, which
provides an effective way of determining which computations can share resources (71].
In addition, there are many scheduling algorithms to improve a design such as the ASAP
(As Soon As Possible), ALAP (As Late As Possible), Critical path list scheduling, Force-
directed scheduling, etc [71]. Normally, ASAP and ALAP scheduling are used to

determine the time range in which the operations can be scheduled, and then force-
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directed scheduling or other algorithms can be used to obtain the optimized scheduling to

achieve the minimized resources.
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Figure 4-13  Operation schedule with pipelined resources

For pipelined structure, pipelined resources scheme is also an excellent approach
to save the area of the design further and the list scheduling algorithm can be extended to
handle pipelined resources by allowing the scheduling of overlapping computations with
different start times and no data hazards. In the design of the DVB/RCS non-binary code
decoder, this approach can be used in all computation units like gamma, alpha, beta and
MLLR. The normal scheduling for alpha and beta functions presented before is shown in

Figure 4-12. After using pipelined resource scheme, pipelining the alpha and beta circuit
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further, we gain the new scheduling presented in Figure 4-13. From the scheduling
diagram, it can be easily found that the alpha function and the beta function can share the
same resources, saving almost half of the original resources. This approach is also
applicable to the gamma and the sigma circuits. In general, with this area reduction
scheme proposed for the DVB/RCS decoder, the area of the whole design should be

saved by over 40% for FPGA implementation.

4.3 Read data block design

The functions of the read data block include Synchronizing the input signals,
transforming the input data with different frame size and different code rate into a
uniform data structure, dividing the input data into system part, code 1 part and code2
part and storing them into corresponding memories. This block works in parallel with
other blocks, exchanging data only through memory.

When the Set signal is valid, the read data block takes the code rate and the frame
size signal as the decoder parameters, keeping and using them until next valid Set signal.
With different code rates, the input data have been punctured according to the puncturing
map of the DVB/RCS code, thus the read data block has to recover the data after
receiving this data and then stores them into the memory.

In the DVB/RCS standard, the order of transmission is in the order of systematic
bits, Y1 and Y2 bits and W1 and W2 bits. Following this order, the read data block is
designed being composed of 3 stages: systematic read stage, Y read stage and W read
stage. The stage diagram is shown in Figure 4-14. Having read and stored the whole
frame of data, the read data block will read the next frame immediately and store the data
into the second memory. Meanwhile, the MAP decoder will work with the memory that
the read data block is not using. Whenever it finishes a frame of data, the read data block

will also give a finish signal that could start the MAP decoder to work.
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Num < N1

Figure 4-14  State diagram of the read data block

As for the timing and the format of reading the input data, please refer to the

decoder interface section, Section 4.6.

44 Interleaver generation block design

The interleaver of the DVB/RCS code is done in two levels. The first level is
inside the couples, invert the couple every other couple; the second one is between the
couples:

[=P0* +P +1 mod N (4-13)

* ifjmod4=0,thenP=0;

* ifjmod4=1,then P=N/2 +PI;

* ifjmod 4 =2, then P =P2:

* ifjmod 4 =3, then P =N/2 + P3;



The combinations of the default parameters to be used are provided in Table 2-1.

For the interleaver design, we focus on area saving under a certain speed
constraint given by the read data circuit. To acquire a concise design, we always have to
change a process into a recursive form. This is applicable to both software design and
hardware design. Equation (4-13) can be modified into

in1= in+Po modN (4-14)

io=P+1

It can be seen that not only does the multiplication disappear, but the addition
computations of Equation (4-14) are also simpler than Equation (4-13).

The interleaver generation function will be conducted right after the frame size
signal is available and should finish before the MAP decoder starts to work. The
generated interleaved data is stored in a memory, called interleaver table, which can be
used anytime needed. In this design, only the interleave table is needed since we
successfully avoid using de-interleave table in the MAP decoder by managing the

schedule of reading and writing the inner data.

4.5 Out data block design

All the decoded data is placed in the data output buffer by the MAP decoder
circuit. Out data block is responsible for transforming the decoded data into a form the
user required, outputting them to its user and synchronizing the output interface of the
decoder with other circuits. This block works independently, but it cannot start before the
time that the decoder done signal of the MAP decoder and cannot finish later than the
time next decode data become available.

The detailed design of this part of circuit should be according to the customer's
requirements. A temporary design has been implemented. The data format and the output

timing refer to the interface section.
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4.6 Interface of DVB/RCS decoder

Decoder signal pin-out

Table 4-1 shows the pin-out of the decoder. These are normal input and output

signals used for the decoder.

Table 4-1 Decoder signal pin-out

Signal name | I/O Pin Description

Reset Input Reset of the decoder

Enable Input Enable decoder operation

Code_rate Input Selects the code rate

Clock Input Decoder clock

Frame_size Input Select the frame size

Num_its Input Number of decoder sub-iterations

Set Input Set signal for decoder parameter

Frame_start | Input Indicates the start of the turbo frame

Datain Input [ & Q data input

Datain_v Input Valid signal for corresponding I & Q data inputs

Dataout_req | Input Request for data output

Dataout Output | Output data

dataout_v Output | Indicates valid data is on the dataout pin
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Data input format and timing

The decoder receives QPSK in-phase and quadrature samples. Both I and Q
sample inputs are 4 bits in width (signed 2's complement) with 2 bits as fractional part.

Figure 4-15 shows the input timing.

| Aese 47900 47500
o [ e
P DES_DONE [
> _P:ADDR_NUMG0) 000 | 001 J 002 T 003 [ cos [ wos [ ons | o7 | 08 | coo ENEIES
-P:DATAOUT_RE
> P DATAOUTU.G) 2 ]
P-DATAQUT v |
PNE u i
> _PACOR(GU; 000 [001loozlum]m[ms]uos[om[«m]ooo]-m]oos
> PDINTO )
> PLTOTALOG e
/home/ym_du/Synopsys/Code/DVB_TB.kolmogorov.10679.ow
16/4/2002 21:40:20 Page 1,1 of 1,1

Figure 4-15  Input timing of the decoder
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Data output format and timing

The data output circuit is driven by Dec-done signal from MAP decoder

component and Dataout_req signal. If a frame is ready for output and if an output request

is made, data is output in I&Q format like input data. The data output timing diagram is

provided in Figure 4-16. If other format is needed, such as in bytes, we can change the

decoder output to other formats.
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Figure 4-16  Output timing of the decoder
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Decoder Parameters
This decoder implements the full DVB-RCS standard including 12 frame sizes

(from 96 to 1728), 7 code rates (1/3, 2/5, 1/2, 2/3, 3/4, 4/5, 6/7) and any choice of

iteration number. All these parameters can be altered at run time.

Table 4-2 Code rate setting

Parameter | 000 | 001 | O10 | O11 | 100 | 101 | 110

Coderate | 1/3 | 2/5 | 172 | 2/3 | 314 | 4/5 | 6/7

Table 4-3 Frame Size Settings

Parameter 0000 | 0001 | 00i0 | OOLl | 010G | Ol0i | OllO

Frame Size byte 12 16 53 55 57 106 108

Frame Size bit 96 128 424 440 456 848 864

Parameter 0111 1000 | 1001 1010 1011

Frame Size byte | 110 188 212 214 216

Frame Size bit 880 1504 { 1696 1712 1728

Latency

The MAP decoder will start to process once a complete frame has been received.

The delay of processing depends on the frame size and the number of iterations.
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Approximately the processing delay (in number of cycles) can be calculated using the

following formula:

Delay = ( Framesize / 2 + 9 ) * ( number of subiterations )

Maximum throughput (data rate) = Clock frequency / number of iteration

For Virtex-E device (43MHz), if iteration number is set to 4, the data rate can

reach about 10Mbits/second.

Whatever the case is the MAP decoder should finish before the next frame input

ends. Also, the data output should complete before the last subiteration of the next MAP

calculation begins.
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Chapter 5

Simulation and synthesis results

The simulation and synthesis of the design follow the general procedure shown in
Figure 5-1. First, the design is modeled with VHDL in RTL level and then the RTL level
simulation is performed. This simulation concentrates on checking the functionality of
the design. The block diagram of the DVB/RCS code simulation is presented in Figure 5-
2, where the functions in the dashed block are implemented in Matlab. A test bench for
this design has been designed. During simulation, this test bench is used to exercise the
functionality of the design of the decoder until the design's output signals match the
expected waveform. For the RTL simulation, we use Synopsys's simulation tool,
VHDLsim. For simulation in other levels we also use the same tool and the same test

bench.
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Figure 5-1 General design procedure
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Figure 5-2  Block diagram of DVB/RCS simulation

After satisfying the functionality of the design, we synthesize the design with
Design Compiler of Synopsys tools. When all constraints are met, the synthesis result, the .
netlist file, is passed to the place and route tools. For place and route. we use the Design
Manager of Xilinx tools. This place and route result has to be verified again with gate
level simulation. Unlike RTL simulation, the gate level simulation will check both
functionality and timing. The synthesis result with Xilinx Virtex XCV1000E-8 FPGA is
shown in Figure 5-3. It can be seen that the clock frequency can reach as high as 43MHz,
corresponding to about 7 Mbits/second information bit rate with 6 iterations, much better
than TurboConcept’s TC1000 product, 4Mbits [52].

To perform the in-chip test for the design, a Virtex-E development kit (ADS-
XLX-VE-DEV) made by AVNET is used [72]. A new test bench is designed because it
has to be written into the FPGA chip along with the whole decoder and the input data
needed for decoding. In the end, the in-chip test of the decoder obtains the same result as

the gate level simulation.
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Release v3.3.08i - Par D.27

Tue Jul 30 04:58:44 2002

Constraints file: dvb_topfk.pcf

Loading design for application par from file

/var/tmp/xil_AAAOPNWnH. "Synopsys_edif" is an NCD, version 2.35, device
xcv1000e, package £g1156, Finished resolving physical constraints.
Device utilization summary:

Number of External IOBs 33 out of 660 5%
Number of BLOCKRAMs 64 out of 96 66%
Number of SLICEs 7517 out of 12288 61%

(set by user)
{set by user)

Overall effort level (-ol): 5
Placer effort level (-pl): 5
Placer cost table entry (-t): 7
Router effort level (-rl): 5 (set by user)
Generating PAR statistics.
The Delay Summary Report
The Score for this design is: 8417
The Number of signals not completely routed for this design is: 0
The Average Connection Delay for this design is: 1.966 ns
The Maximum Pin Delay is: 11.825 ns
The Average Connection Delay on the 10 Worst Nets is: 10.594 ns

Asterisk (*) preceding a constraint indicates it was not met.

TS_clock TIMEGRP"clock"23 nS | 23.000ns | 23.123ns | 23

HIGH 50.000 % | | |

TS_mlgp FROM TIMEGRP "ucon" TO | 46.000ns | 37.543ns I 26
TIMEGRP "FFS" TS_clock * 2.000 | |

1l constraint not met.

Dumping design to file ../pl.dir/S5_5_7.ncd.

All signals are completely routed.

Total REAL time to PAR completion: 1 hrs 33 mins 41 secs

Total CPU time to PAR completion: 54 mins 23 secs

Placement: Completed - No errors found.

Routing: Completed - No errors found.

Timing: Completed - 8 errors found.

PAR done.

Figure 5-3 Synthesis result with Xilinx Virtex XCV 1000E-8 FPGA
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Chapter 6

Conclusion and future work

This thesis presents a VLSI implementation design of DVB/RCS non-binary code
decoder and describes several related issues of the hardware implementation. The optimal
pipelined architecture of the DVB/RCS decoder with Max-Log-MAP algorithm proposed
in this thesis is proved to be very efficient, making the decoder achieve a very good
performance. Several quantization schemes for the received bits and the extrinsic
information are exploited and the best choice considering the tradeoff between the
hardware complexity and the performance are discussed. After discussing a number of
existing renormalization schemes, a new optimal renormalization approach is proposed
and used in this design, which improves the decoder performance in terms of speed
greatly. A practical simplification method of the gamma function computation design in
this thesis contributes a lot to the reduction of the decoder area and power consumption.
In this design, the alpha and beta recursion circuit, the performance limiting part, is
optimized in speed to allow the hardware implementation with a high data rate; a concise

interleave generation circuit is realized and optimized in area. At last, a further area
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reduction method for pipelined structure is proposed, which could tremendously save the
area of the DVB/RCS decoder by 30%-40%.

The whole design has been implemented and verified by both simulation and in-
chip test with Xilin Virtex FPGA. By slight modification, this design can be easily
mapped into other more advanced technologies. As a result, the performance of the

DVB/RCS decoder will be improved considerably.

Future work

Although this design has been proved to be successful, there is still room for
improvement. First, there are many details in this design that can be refined to improve
the performance, especially the area. Secondly, currently this design is implemented in
Virtex-E technology, thus to improve performance mapping this design into an advanced
ASIC technology is necessary. Thirdly, till now the whole design has not considered and
optimized the power consumption aspect. For some applications, power consumption is a
main concern so we should further improve this design to save power consumption, for
example, by using iteration early stop criterion. Finally, in some cases where higher
speed is needed, sliding window algorithm should be exploited because with this

algorithm the decoding speed could be increased greatly [68].
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