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Abstract
Daying Zhang

The objectives of the present work are: (1) to derive the non-linear finite element
formulation for the analysis of composite laminates based on the application of minimum
potential energy principle: (2) to study the deterministic progressive failure and stochastic
progressive failure of symmetric and unsymmetric laminates under the action of uni-axial
compressive load: (3) to study the deterministic progressive failure and stochastic
progressive failure of symmetric and unsymmetric laminates under the acticn of bi-axial
compressive load: (4) to study the deterministic progressive failure of symmetric and
unsymmetric laminates under the action of bi-axial compression combined with in-plane
positive shear load: and (3) to study the deterministic progressive failure of symmetric
and unsymmetric laminates under the action of bi-axial compression combined with in-

plane negative shear load.

The first-order shear deformation theory and the von Karman geometric non-linearity
hvpothesis are used to develop the finite element formulation. For the stochastic tailure
analysis. a stochastic finite element methodology based on the Monte Carlo Simulation is
used. For the case of uni-axial compression and bi-axial compression. the tensor
polynomial form of the maximum stress criterion is used to predict the failure of the
lamina. For the case of bi-axial compression combined with in-plane positive or negative
shear loadings. the tensor polynomial form of the 3-D Tsai-Hill criterion is used to
predict the failure of the lamina. The maximum stress criterion is used to predict the onset
of delamination at the interface between two adjacent layers. The influences of plate
aspect ratio. symmetric and unsymmetric lay-ups. and fiber orientations on the deflection
response. the first-ply failure load. the ultimate failure load. the failure mode and the
maximum deflection associated with failure loads are determined. In addition,
progressive failure of (£45/0/90)x. (#435)s and (0/90)s, laminates are analyzed. In the
case of stochastic material properties, the mean values and the standard deviation values

of tailure loads are calculated.
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Chapter 1

Introduction

1.1  The First-Order Shear Deformation Theory (FSDT)

Plate structures made of laminated composite materials are often modeled as an
equivalent single layer using classical laminate theory. in which the thickness direction
stress components are ignored. The classical laminate theory is a direct extension of
classical plate theory that is based on the Kirchhoff hypothesis for homogeneous plates.
This theory is adequate when the thickness is small. However, laminated plates made of
advanced composite materials, such as graphite-epoxy, are susceptible to thickness
effects because their effective transverse and shear moduli are significantly smaller than
the effective elastic modulus along the fibre direction. The first-order shear deformation
theory is a theory for plate analysis in which the transverse stresses are taken into
account. The first-order shear deformation theory is based on a displacement-based
theory in which the three-dimensional elasticity theory is reduced to a two-dimensional
laminate theory by assuming an approximation of the displacements through the

thickness [1].

1.2 The von Karman Theory for Geometric Nonlinear Analysis

The analysis of structures involves three basic steps: (1) satisfaction of equilibrium; (2)
use of material force-deformation or stress-strain relations; and (3) enforcement of

continuity and compatibility in the deformed structure. In most of the familiar types of



structures, it is sufficiently accurate to consider the equilibrium with respect to the
unstrained structures. The equilibrium is considered to be satisfied by assuming that all
the forces involved in the final stressed structure, are acting on the undeformed structure.
This is permissible since in such cases all deformations are small. Further if the material
stress-strain law is also linear, the result is that the structure’s behaviour and its analysis

are linear.

For some materials, however, the stress-strain characteristics are nonlinear, even though
they may be approximately linear for small strains. In such cases. even when the
deformations of the structure and the resulting strains can be considered small from the
point of view of equilibrium, the nonlinear nature of the stress-strain law is reflected in
the behaviour of the structure through the force-displacement characteristics of the
structure which are nonlinear. For these cases, even though it is still legitimate to
consider equilibrium with respect to the undeformed configuration of the structure, the
resulting analysis is nonlinear. In another class of problems, even though the stress-strain
characteristics of the material are linear, the structure deformations are not small enough
to allow the consideration of equilibrium in the undeformed configuration to be a valid
approximation. In such cases, satisfaction of equilibrium must be discussed with respect
to the final deformed configuration of the structure. Again the associated analysis is
nonlinear, the nonlinearity being geometric in nature. Geometric nonlinearity is

associated with large deflection and structural stability problems.

(RS ]



The von Karman assumption: u and v are small displacements and w is large

displacement. In the analysis. consider only the nonlinearity of w.

1.3 Progressive Failure Analysis of Laminated Composite Plates

[t is well known that the total failure of a laminated composite plate does not always
occur at the load corresponding to the first—ply failure. The plate failure in a broad sense
can be considered to have occurred when a structural element ceased to function
satisfactorily: thus the definition of failure varies from one case to another. The failure
characteristics of heterogeneous and anisotropic composite laminates are completely
different from that of the isotropic plates. The appearance of detectable cracks in metals
is generally considered to be unsafe since a slight amount of damage can rapidly progress
into a catastrophic fracture. However, this is not true in the case of composite materials.
although internal damage might appear very early, its propagation is arrested by the
internal configuration of the structure. Therefore, composite laminates can still sustain a
much higher load after the occurrence of localized damage such as matrix cracking, fiber
breaks or delamination. Hence the knowledge of the first—ply failure load and the
ultimate load of such structures is essential so that these plates can be designed efficiently
and economically by fully utilizing its post-initial-failure strength with appropriate
reliability and safety. Thus, to accurately predict the failure loads of such structures, the

progressive failure analysis has become an important subject of research.



1.4 Randommness in Failure Properties

The parameters of any mechanical or structural system possess a random variation as a
function of space and / or time. The randomness in failure parameters encompasses the
uncertainties involved at the design and manufacturing stages, as well as the uncertain
nature of the operating conditions. At the design stage, randomness is present in the test
data regarding material strength values, elastic constants, engineering constants. and the
material properties pertinent to the service life. The randomness in material properties
significantly affects the functioning of the mechanical component and is unavoidable

even with the best quality control measures.

Tests on a single material specimen or structure yield a definite value for each material
parameter such as the elastic constant, engineering constant, etc. But when a number of
specimens are tested, (1) the parameter values randomly fluctuate from specimen to
specimen; (2) within the same structure itself, the values of any parameter display an
uncertain spatial vanation: (3) due to environmental degradation the parameters have
uncertain fluctuations. The sample to sample variation, spatial fluctuations within the
structure, structure to structure variations, and variations due to environmental effects in
strength, deterioration and deformation parameters are particularly present in the case of
fiber reinforced composite materials. Variations in fiber size, fiber volume fraction, fiber
orientation, matrix properties, interfaces and thickness of lamina are always present and
unavoidable. As a result, the elastic constants, engineering constants and deformation

parameters of fiber reinforced composite materials possess a random variatio.



1.5 Overview of Literature

Among the early investigations related to the failure of laminated plates are the works by
Turvey {2, 3]. in which analytical solutions for the first—ply failure load are presented for
symmetric and antisymmetric laminates with simply supported boundary condition under
the action of transverse loads. The finite element procedure for the prediction of linear
first-ply failure loads of composite laminates subjected to transverse and in-plane
(tensile) load was presented by Reddy and Pandey [4]. Another study by Reddy and
Reddy [5] used the first-order shear deformation theory in the finite element modeling to
conduct the linear and nonlinear failure analysis. Engelstad et al [6] investigated the
postbuckling response and failure characteristics of graphite-epoxy panels with and
without circular hole in axial compression using a progressive damage failure mechanism
in conjunction with a 3-D degenerated shell element. Lee and Hyer {7] studied
postbuckling failure characteristics of square, symmetrically laminated plate with a
circular hole under uni-axial compression using the maximum stress failure criterion.
Recently, Kam and Sher [8] studied the nonlinear behaviour and the first-ply failure
strength of centrally loaded laminated composite plates with semi-clamped edges using a
method developed from the von Karman-Mindlin plate theory in conjunction with the

Ritz method.

One of the early studies related to the shear postbuckling response of laminated plates is
the work of Kaminski and Ashton [9], who presented an experimental study on
rectangular boron/epoxy plates clamped on each edge. Kobayashi er al [10] also

presented an experimental study on graphite/epoxy laminated plates in which the ultimate



load was found to be considerably greater than the buckling load. Agrawal [11] examined
the postbuckling behaviour of multibay composite shear webs and studied the failure
modes typical of composite panels using a NASTRAN finite element model. The
investigation of Zhang and Matthews [12] on postbuckling analysis of anisotropic plates
under combined compression and shear loads revealed the importance of the direction of
applied shear force on the postbuckling behaviour of anisotropic laminates. Stein [13]
conducted the analysis of long orthotropic plates subjected to combined shear and
compression using the method developed in his earlier investigation [14] dealing with
longitudinally compressed plates. Prabakar and Kennedy [15] examined theoretically the
postbuckling behaviour of antisymmetric angle-ply laminates. Kosteletos [16] using the
stress function approach investigated the postbuckling response of thin, flat, rectangular
generally layered laminates with clamped edges under the action of shear and combined
in-plane loads. Lee and Hyer [17] studied the postbuckling failure characteristics of a
square symmetrically laminated plate with circular hole under uniaxial compression using
the maximum stress failure criterion. Singh er al/ [18] have presented a detailed study of
the progressive failure of square symmetric laminates subjected to uni-axial compression.
Singh et al [19], [20] have also presented a study of the progressive failure of symmetric

laminates under the action in-plane shear.

Stock et al [21], and Fukuda [22] carried out the probabilistic analysis of composite
strength and effective properties using the Monte Carlo simulation technique. The
simulation procedure required extensive computational resources for any new set of

structural parameters and properties of the constituents.



Composites have inherent scatter in elastic and strength properties. A probabilistic model
utilizing random material characteristic to predict damage evolution in orthotropic
laminated composites is presented by Dzenis er al [23], Joshi and Frantziskonis {24] and
Larder [25]. Cassenti [26] investigated the probabilistic static failure of composite
materials. Probabilistic failure strength analysis of graphite/epoxy cross-ply composite
laminates has been performed by Fukunaga and Chou [27]. This paper treats the failure
characteristics of (0/90/0) and (90/0/90) cross-ply laminate based upon the statistical
strength analysis. The stress redistributions at the failure of the 90" ply are analyzed using

a shear-lag model.

The well-known probabilistic theories for the tensile strength of unidirectional
composites have been proposed by Rosen [28] and Zweben [29] and further
developments have been reported in detail in Refs. [30, 31]. These models give us a
satisfactory strength estimation when the failure of the composite material is

predominantly affected by the stochastic strength distribution of reinforcement fibres.

The analysis of structures, whether subjected to random or deterministic external loads.
has been developed mainly under the assumption that the structure’s parameters are
deterministic quantities. In a significant number of circumstances, this assumption is not
valid, and the probabilistic aspects of the structure need to be taken into account. The
necessity to account for random effects in determining the response of a mechanical
system is due, in general, to three different sources: random external loadings, random

boundary conditions, and random material parameters. In the last twenty years the



powerful finite element method has undergone various new developments to incorporate
the randomness. and is now termed as Stochastic Finite Element Method (SFEM). The
developments in this field are reviewed by Contreras [32], Vanmarcke er al [33],
Benaroya and Rehak [34]. Yamazaki et al [35], Ostoja-Starzewshi [36]. and Vanmarcke
[37]. The stochastic finite element method is capable of dealing with random structural
properties described by random fields very efficiently. Recent developments. such as the
weighted integral technique [38] and [39]. provide an accurate and consistent transition

from continuous type random fields to discrete type stochastic finite elements.

Ramu and Ganesan [40] developed a new finite element method to analyze the structures
with more than one parameter behaving in a stochastic manner using the Galerkin
weighted residual method. The stochastic finite element analysis based on the local
averages of random vector fields is formulated by Zhu et al {41] for eigenvalue problems.
Jensen and Iwan [42] presented a method for the dynamic analysis of linear systems with
uncertain parameters to stochastic excitation. Liu et al [43] studied the application of the
SFEM in elastic/plastic dynamics with random material properties. Ghanem and Spanos
[44] proposed a new method for the solution of problems involving material variability.
The material property is modeled as a stochastic process. The method makes use of a
convergent orthogonal expansion of the process. Ganesan er al [45] developed a
stochastic finite element method to solve the more general non-self-adjoint eigenvalue
problems. Shinozuka et al [46] developed a method for the estimation of the structural
reliability when a structure is subjected to loads that can be idealized in terms of a

Gaussian random vector process. Ramu and Ganesan [47] analyzed the free vibrational



characteristics of a beam-column, which is having randomly varying Young's modulus
and mass density and subjected to randomly distributed axial loading. In their study,
Hamilton’s principle is used to formulate the problem using stochastic FEM. Ren et al
[48] proposed a new version of finite element method for the mean and covariance
functions of the displacement for bending of beams with spatially random stiffness based
on the variational principles. Sankar. Ramu and Ganesan [49] derived the sensitivities of
SIF and COD of cracked structural systems to fluctuations in material property values
and external loadings. In their study. a Taylor series expansion is used to express the SIF
and COD in terms of averaged values. Sankar, Ramu and Ganesan [50] described an
effective method for integrating the concepts of probabilistic structural mechanics with

the finite element analysis for dynamic systems.

The successful application of the mechanics of composites for achieving safer and
reliable designs is hindered by the inherent uncertain distributions of material and
geometric properties. In recent years. composite structures involving random material
properties have been studied by many researchers. Among them Liaw and Yang [51]
developed a 16-dof quadrilateral stochastic laminated thin-plate element. Ganesan and
Hoa [52] presented the stress analysis of composite structures with stochastic parameters.
Nakagiri, Takabatake and Tani [53] presented a methodology of stochastic finite element
method applied to the uncertain eigenvalue problem of linear vibration which arises from
the fluctuation of the overall stiffness due to uncertain variation of the stacking sequence
of composite laminates. Engelstad and Reddy [54] developed a probabilistic finite

element analysis procedure for laminated composite shells. In their study, a total



Lagrangian finite element formulation, employing a degenerated three-dimensional
laminated composite shell element with the full Green-Lagrange strains and first-order
shear deformable kinematics, is used. Chang and Yang [S5] formulated a geometrically
non-linear stochastic thin-plate finite element to study the reliability of fiber-reinforced
laminates made of advanced composite materials. The modeling involves two steps: a
micro-mechanical simulation of the degradation of a small cell of the composite and a

random-damage finite element simulation of material failure.

Studies on the reliability of the static strength of fibrous composites can be classified into
three groups: 1) studies that investigate experimentally the factors that effect the variation
or the scatter of the strength using a number of specimens. 2) studies that analyze the
variation of the strength theoretically using micro-mechanical models. 3) studies that
analyze the reliability of the strength of unidirectional and laminated composites using a
macroscopic failure criterion and fundamental data on the variations of the strengths
along the principal directions. The strength and stiffness of composite materials change
remarkably by changing the kinds, volume contents and orientations of the reinforcing
fibers and stacking sequences, therefore, the optimum material design can be performed
under a given loading condition. Mitsunori er al [56] have presented a method to evaluate
the reliability of unidirectional fibrous composites under any plane stress condition, and
the effects of various factors on the reliability are investigated. It has been found that the
orientation angle that results in the maximum reliability and the optimum angle that
corresponds to the design criterion vary with the variation in the applied stress in some

cases. It has been found that the optimum fiber orientations of unidirectional composite

10



materials under probabilistic loading conditions are found to be different from those
under deterministic loading conditions. Mitsunori er al [57] also proposed a simple and
intuitive method called the interior tangent ellipsoid (ITE) method for the optimum
design of composites under the action of loads with variations. Shaowen er al [58]
presented a discussion on the optimum design of multiaxially laminated fibrous
composites under probabilistic conditions of loads and material conditions. The first-ply
failure criterion is adopted for conducting the reliability analysis. Mitsunori er al [59]
have presented a discussion on the optimum fiber orientation angles of multiaxial
laminates based on reliability analysis. The probabilistic properties of the applied loads
and the elastic constants of the ply material are discussed from the viewpoint of reliability
and optimum design. The effects of the correlation between various random variables on
the reliability and reliability-based design of composite plates subjected to buckling have
been discussed by Nozomu et al [60], and the reliability have been maximised in terms of
the mean ply orientation angles. The study shows that reliability-based design ignoring
correlation is sometimes less safe than even a deterministic buckling load maximization
design when random variables are correlated. By viewing the composite lamina as a
homogeneous solid whose directional strengths are random variables, Thomas and
Wetherhold [61] proposed some physically plausible phenomenological rules for the
redistribution of load after a lamina has failed within the confines of a laminate. Using a
non-interactive criterion for demonstration purposes, laminate reliabilities are calculated
assuming previously established load sharing rules for the redistribution of the load as the
failure of the lamina occurs. Cohen [62] presented a composite vessel design approach

that is based on the reliability and the probabilistic failure strength distribution concepts.

1



This method is based on fiber strain-strength interference reliability theory. The fiber

statistical strength distribution is analyzed using the Weibull distribution function.

1.6  Scope and Objectives of the Thesis

In the present study. the principle of minimum potential energy is used to derive the
nonlinear finite element formulation. The finite element formulation is based on the first-
order shear deformation theory and employs a nine-node Lagrangian element having five
degrees of freedom (two in-plane displacements. one transverse displacement and two
rotational degrees of freedom) per node. The resulting nonlinear equations are solved
using the Newton-Raphson technique. Failure models based on the tensor polynomial
failure criterion are used in the progressive failure procedure, while the maximum stress

criterion is used for predicting the onset of delamination.

The objectives of the present work are: (1) to derive the non-linear finite element
formulation for the analysis of composite laminates based on the application of minimum
potential energy principle: (2) to study the deterministic progressive failure and stochastic
progressive failure of symmetric and unsymmetric laminates under the action of uni-axial
compressive load: (3) to study the deterministic progressive failure and stochastic
progressive failure of symmetric and unsymmetric laminates under the action of bi-axial
compressive load; (4) to study the deterministic progressive failure of symmetric and
unsymmetric laminates under the action of bi-axial compression combined with in-plane
positive shear load: and (5) to study the deterministic progressive failure of symmetric

and unsymmetric laminates under the action of bi-axial compression combined with in-



plane negative shear load. In all cases. the load-deflection curve is determined. One can
estimate the linearized buckling load from the load-deflection curve. The progressive
failure analysis is conducted until the ultimate failure is reached and thus encompasses

the post-buckling behavior of the laminate.

1.7  Organization of the Thesis

The present chapter provided a brief introduction and also. the scope and the objectives
of the thesis. In Chapter 2. the first-order shear deformation theory is described and the
corresponding finite element formulation is developed. The geometric nonlinearity is
incorporated into the formulation using the von Karman hypothesis. The Newton-
Raphson technique that can be used to solve the nonlinear algebraic equations is

described.

In Chapter 3, the details about the failure criteria are presented. The tensor polynomial
failure criterion, from which the maximum stress criterion and Tsai-Hill criterion are
derived, is used to predict the failure of the lamina. The maximum stress criterion is used
to predict the onset of delamination at the interface between two adjacent layers. The
progressive failure analysis procedure is described. Example applications are described.
Comparison of the results obtained in the present work with that given in relevant

reference works are given in this Chapter.



A detailed parametric study regarding the progressive failure of various types of

laminates subjected to different types of loads is described in Chapter 4.

In Chapter 5. the analytical modeling of material properties as stochastic processes is
described. The Markov model is applied to stochastic finite element analysis. The
program that has been developed in Chapters 2 and 3 is extended so as to incorporate the
stochastic description of material properties and the stochastic finite element analysis.
The influences of randomness in material properties on the distribution of failure loads
are studied in Chapter 5. A stochastic finite element failure analysis procedure is

developed and described in this Chapter.

In Chapter 6. the conclusions of the present work and suggestions for the future work are

given.

14



Chapter 2

Finite Element Formulation and Analysis

2.1 The First-order Shear Deformation Theory

Plates are structural elements whose thickness (or height) is small compared to the other
two geometric dimensions. Plate structures made of laminated composite materials are
often modeled as an equivalent single-layer with anisotropic properties using classical
laminate theory, in which the thickness-direction stress components are ignored. In the

classical plate theory (the Kirchhoff hypothesis) holds that:
(1) Straight lines perpendicular to mid-surface (i.e.. transverse normal)
before deformation remain straight after deformation.

(2) The straight lines do not undergo axial deformation (i.e.inextensible).

(3) The straight line rotates such that they remain perpendicular to the

mid-surface after deformation.

The first two assumptions imply that the transverse displacement is independent of the
transverse (or thickness) coordinate and the transverse normal strain is zero. The third
assumption results in zero transverse shear strains. Thus, in the classical plate theory all
transverse stresses are neglected. The classical plate theory is adequate for many

engineering problems. However, laminated plates made of advanced filamentary



composite materials, whose elastic to shear modulus ratios are very large, are susceptible
to thickness effects because their effective transverse shear moduli are significantly
smaller than the effective elastic moduli along the fiber direction. These high ratios of
elastic to shear moduli render the classical theories inadequate for the analysis of thick or
composite plates. The first order shear deformation theory is a single-layer theory in
which the transverse shear stresses are taken into account. In this theory it is assumed that
the strain normal to the mid-plane of the plate is negligible when compared to the in-

plane strains (£, =0 ) and that straight lines normal to the plate mid-plane before

deformation remain straight but not necessarily normal to the mid-surface after

deformation.

The displacement field in the first-order theory is assumed to be of the form {1]

u(x,y,z) = uy(x,y) +2¢.(x,¥) (2.1)
V(x,y,2) = vo(x,y) +28,(x,y) (2.2)
w(x,y,2) = w,(x, ) (2.3)

where (u,,v,,w,)denote the displacements along the (x.y,z) directions of a point
(x,y,0) on the mid-plane, and (4,,8,)are the rotations (counter clockwise rotation is

+ve) of the transverse normal about Y and X axes, respectively.
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Figure 2-1 Geometry of deformation in the xz-plane for the (a) classical and
(b) first-order plate theories [1]

2.2 The Nonlinear Strain-displacement Relations

The von Karman assumption: the displacements u and v are small and the displacement
w is large. Correspondingly, the products and square of the in-plane displacement

gradients are neglected in the nonlinear strain-displacement relations.

17



The nonlinear strain-displacement relations [1]:

du 1(6u)2 (av)z (anz ou 1(aw)Z
E,=—+-||=—1| +|=| +|—]| |=—+=| — (2.4)
ox 2|\ & ox ox ox 2\ ox
1’(@)2 (6v)2 (aw)z' v 1fow)
£, =—+—|| — — — | |=—+=| — (2.5)
ox ox ox dv 2\ oy
r 2 2 2] ) 2
6‘-=@+l [@J +(_6_v_) +(Qw_) =@+l(-@ﬁ) =0 (2.6)
o0z 2|\ oz oz oz 0z 2\ oz
ou ovov owow oOv Ou Owow
Vo =—Ft—F——F——t——=—t —+—— 2.7
‘ xdy oxdy oxdy o&x dy Ox Oy
ow Ov Ouodu oOvdv Owow oOw oOv Owow
V=0Tt —t——t =+t —t——— (2.8)
oy 0z 0Oz0O 0Ozdy oOzoy Oy Oz Oz oy
Oow Ou Oudu 0Ovov owow Ow ou Owodw
VYe=—Ft—Ft——tFt——Ft——=—F+—+—— (2.9)
Ox 0z dOzox Ozxk Oz dx oOx Oz Oz Ox

Substituting equations (2.1-2.3) into the nonlinear strain-displacement relations (2.4-2.9)
referred to an orthogonal coordinate system, and retaining only those nonlinear terms that

involve the transverse deflection (i.e., the von Karman assumption), we obtain

gx=@+_1_(§!) O 00 LW ) o (2.10)
ax 20ax)  a o 2\ ax
2 d 2
gyz_aazJ,L(_a‘_v] o, ¢y+1(6w0] —e ek, e
o 2\ oy d 2\ %
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(2.12)

(2.16)

(2.17)

(2.18)

(2.19)

(2.21)
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2.3  Constitutive Equations

If the plate is made of several orthotropic layers, with their material axes oriented

arbitrarily with respect to the plate coordinates, the constitutive equations of laminated

plate can be derived by integrating the lamina relations through the thickness. The

constitutive relations for a linear elastic body are given by [1]

o, =C,E, (sum on j)
where
o,=0,, O,=0, 0,=0., OC,=T_,
§ =¢&, & =€, & =€, &, =2¢,,

and c, are the elastic constants of the material.

The stress-strain relations for an orthotropic material in its material coordinates are given

by (1]



(&) [0, G, 0 o0 o]z
EZ §21 @zz O 0 0 —2
1Gp=l0 0 O, 0 0 [{&; (2.25)
g, 0 0 0 0, 0|¢
55) L0 0 0 0 OjlE

where Q; are the plane stress reduced stiffness coefficients of the plate in its material
coordinate system, and (&,,Z, ) are the stress and strain components referred to material

coordinate system.

The coefficients QJ can be expressed in terms of the engineering constants as [1]

— E
Oy -l—VlV (2.26)
12V
7. = vi,E, vuE, 227
& l—vvy 1-vpvy 22D
0., = £ (2.28)
I e 1Y
0. =Gy (2.29)
Qs =Gy; (2.30)
ées = GIZ (2.31)



To determine the laminate constitutive equations, equation (2.25) should be transformed

to the plate coordinates. We have [1]

o, O O Olla
o.r=|0y On Ox{&
Cs Qo 9s: Qe &

o, _—Qu Oys || &s
o __Q4s Oss |&s

where

O, =0, cos* 8 +2(0,, +20,)sin’ fcos” § + 0, sin* &

0., =(0,, +0,, 40, )sin* Bcos’ 8+ Q,,(sin* 8 +cos* )

0,. =0, sin* 8 +2(Q,, +20,,) sin° §cos’ 8 +Q,, cos* 8

0, =(0,, -0.» —20,)sinfcos’ 8+(Q,. — 0., +20,,)sin’ Hcosd

Oss = (0, — 0,2 — 204, )sin’ Ocos 8 + (0, — 0, + 20, )sinfcos’ 4

Oy =0y, + 0y —20,, —20,,)sin” fcos® 6 + O (sin* 8 + cos* 6)
0., =0,,cos’ 8+Q,, sin’ 8
0., = (0,; —0,,)cosfsinf

Oss = éss cos’ 8+ Q“ sin’
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The angle 8 is measured counter-clockwise between the ¥, and x, axes.

The force and moment resultants N, and M, are defined as

Il
2 |

(Nl ’ ‘Mx ) g, (L Z)dz (iv_] = 19296) (2.43)
h

Similarly,

L
(0.0,)= j'(as,a,)dz (2.44)
h
Note that

h h

]dszdz = ]ag-dz =0 (2.45)

h h

The resultants (N, M,,0,) can be expressed in terms of the strain components using

equations (2.10-2.15), equation (2.32) and equation (2.33) in equation (2.43) and
equation (2.44). We obtain

0 . .
N, =4, +Bk, (i,j =1,2,6) (2.46)

0 O
M,=B,e"+Dk,  (i,j=126) (2.47)

3]
(7%}



0, =4,¢

4%

0
QZ =A5]€/

(j=45)

(J=45)

where 4,.8, and D, are the laminate stiffness coefficients.

NI

(4,.8,.D,) = IQ,](I,z,z:)dz .(i,j=1,2,6)
h

Written in matrix form

N,
N
M,
M,

M,
o,

<

(N

LO: |

Written in short form

{vi=[cle}

where [C]" =[C]

o o N N N
8233%825;1;

(=R

c oD DU m®

Qb l‘lb —D Om l‘w —w

o O

[} F —w
(-3 -

o o)
© <g gbsbs

(2.48)

(2.49)

_——
9
W
9]

A

For convenience, u,,v, and w, will be written as u, v and w respectively in the following
formulation. The strain matrix is decomposed into two parts:



[ ou
ax 3
il (1(aw)?
> | K2
P 2\ oy
a; Ow ow
{5}-{&}‘*{5\:}:* o9, r+q Oy Ox ¢ (2.53)
0
» 0
%, 9.
x oy 0
ow 0
y T3
Gl | o
ow
(+—
. oOx

24 Energy Formulation

Here, we consider the application of minimum potential energy principle to the analysis
of laminated plates. First of all, the equation for the total potential energy is set up so that

the strain energy of the laminated plate in element coordinate system is given by

2 [ felda =2 [V T o= [ ] felae (254)

If a distributed loading q (x,y) is applied on the plate, the potential energy of external

loads is

n

W = - [qwdxdy

Total potential energy is obtained as

88
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r=1f [lel [cYelda- fqwaa

N
D

- % J +e ) ICe }+ e Daaa- r!qwda

lje,_ VICHe, JdQ += jeL [CHey JdQ+= jg\ [Cle, }dQ+= j’ "[Che, Jaq - jqudQ

N
D

%5[ &} T[C]{“:L Q2 + ('1[{8L ¥ [C]{g.v JdQ + %6“{8‘\‘ 4 [C]{e.v }dQ - JquQ

=U,+U,,+Uy, +W

(2.56)
where the linear part is expressed as:
1
U, =5 e} [Cle Jan (2.57)
Q
Next we have nonlinear part 1:
Uy = [fe.} [CKey b (2.58)
Q
Nonlinear part 2 is:
1 -
Us: =5 [les} [Cley Ja@ (2.59)
Q
In equation (2.56), we consider:
1 1
3 I{“:L } ’ [C]{g N }dQ =§ I{é‘ v }T [C]{*‘:L }dQ (2.60)
Q Q
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25 Displacement Fields

The displacement field for a 9-node laminate element can be described as

Nu,

b
Mo _[leo iMe

u

£
I

(]
-
-

n
b4|o

9. P

~
"

[\4|o

¢_v = 1¢y1

1=

where N, (x, y)are the shape functions that are giveN below.

Cx-x,)(x-x3)(y-y ) (Y-Y,)

¥, -
(X = X)X =X )Y - Y Y, -Yy)

N oo X-x)x-x,)(y-y,) ¢-¥5)

2

P (X3 =X X5 =X )Y =Y )Y2-Y7)
No= XX)(X-X,)(y-y,)¢-¥s)

P (X3 =X)(X5 =X, Y3 =Y )Y3-Y5)

Foo X-X)X-X)(-y) ¢ -Yy)

T X)X X )Y - YO - )

¥ X-%) X-X)F-y) G -Y,)
(X - X,)(Xs - X, (Y5 - YOO s - Y1)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)



N, = (x-x)(x-%,) (¥-¥) ¥ -¥1) 2.71)
(X6 - X (Xg -X3)(Ys - Y)Y -y1)

N, = (x-%,)(x-%;) ¢ -y) ¢ -¥s) 2.72)
(X7 'xz)(x7 'x3)()'7 'yl)(Y7 'Y.:)

Na= (x'xx)(x'xs)()")'|)()")'4) (2.73)
(Xs 'xl)(xa 'xs)()’S 'YI)(yS 'Y4)

¥, o R X) 0 -7) 6 -) 07
(Xq =X M(Xq =X, )Y Y )Y -Ys)

In the above, x; and y; denote the i-th nodal coordinates in the element coordinate system

(Xe, Ye). The element is shown in Figure 2-1.

Ye
AR A
t ) 5 05*6 o

NP N—
1 2 3

Figure 2-2  The 9-node element

2.6 Finite Element Equations

This section is concerned with the principle of minimum potential energy: Let a body be

in equilibrium under the action of specified body forces and surface tractions. Of all
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displacements satisfying the given boundary conditions those which satisfy the

equilibrium equations make the potential energy an absolute minimum.

The principle of minimum potential energy is applied to derive nonlinear algebraic
equations which will be solved using Newton-Raphson technique. This technique needs
the stiffness matrix and the tangent matrix which can be obtained respectively through
the first-order and second-order differentials of the elastic energy. Substitution of the

displacement interpolation into the strain-displacement relations leads to

{SL}z [EL ]{17} 2.79
where the element nodal displacement vector {ir} and matrix l§L J are given by
{E}z[“nvl9wl’¢ix9¢|y"“ v“99V9’W9’¢9xv¢9y}r (2.76)

lE,_ J"'HEL'] lELZJ I.EL9H (2.77)

N o o o o
ox
o M o o o
_ 9
N N, o
d ox _
. 0 0 O %?' 0
[BL‘ ]= o (2.78)
o 0 0 0 —/
_ ¥
0 0 0 @[_‘_ _a_N_‘
_ ox
o o M N,
%
0 0 N, N 0
L ox J




Linear part of the strain energy:

I &, [CHe. Jd

U, =3 -5 (I clB. ko
S AG A
) ([IB.F ][5 st
Nonlinear part 1 of the strain energy:

Up= L{“:L }T [C]{“:N }dQ

Uy, = La{gL }T [C]{"N }dQ + L5{3.v }r [Cl{gl. }dQ

50y, = [ 8le.) [chlesda+ [sle, Y [chle, Jaa+ [5* e} [CRe Jd0

First of all, derive equations for {&, },8{e, } and 6 {e, }.

o)) [a
2\ ox 2 &x
1(?2)2 0o ¥
2\ 3y 2%
Bwow | |Low Low|low
leut=y o o 1= 2y 2
0 0 o [l
0 0 0
0 0 0
o 0 0 |

(2.79)

(2.80)

(2.81)

(2.85)

30



5 S g
o < <
i
no Al
S— g
o o
—~—
.ﬂ.m ﬂ.w SENES
) o o
r - amw _amw/«mw _qu o o o o nnv. (e} (=]
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v fﬂww_m JERE
qm_am qW_.‘W,,{u\ ° °
N ——— + oo o o o
) w0 — o o
S8 &l &le g !
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-
i > dleglec =  Fzle
- — y ﬁW_.m o «W_aw,o © o o o i
Rk _ ) I
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w 3 = g =
o g

(2.89)

2045

0 0
0 0

oN,

oN,

-0 0
e 00




@) 0
ox
o 43
)43 3
ey} = gy gx J(aw) (2.90)
0 0 % )}
0 0
0 0
0 0

Let

{N L }s-l = [C]s's {5L }8'1

With equations (2.85), (2.86) and (2.90), parts of 6U,, and &°U,, are obtained as:

b it 45) 43

142 &) e

st { [Ty Ve ske)sta

Ia{e y'[clte, Jae

(2.91)

- [ IshleY c[B.plain - oy | ST (4T [cTB. b o

(2.92)



Jole.V [cle. Ja

= [(B.b@Y [cl#Isb{a}da = s [ B ]T[CIHIS}IQJ {ir}

Q

(2.93)
fstes el o
- [0 1@ [c1B.bekaa - ot | 5Tl 18, b o

(2.94)
sty
- (B (S sk jon-stey | L T el Isken o 259
Combining the above equations, 6U , and &°U ,, are written as below:
., olaf| 4 BV iclrlshno sl efB. b o 29%)

52Uy, = 5{17}’[( (!IELI’[CIHIS}@){ Qj[s]’ [HT [c]B, ]:IQ] ( L[S]’[N“ N“ J[S]dﬂﬂ

(2.97)

a1
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Nonlinear part 2 of the strain energy:

1
Uy, = 3 I{“:N }T [C]{SN }dQ (2.98)
Q

Uy, = jd{g.v }r [C]'{g‘v }dQ

- [0 s ic{ Isket oo - sty | T T T s

(2.99)

8Uy, = [6lee ) [Cley Ja+ [5% (e, } [CRey Ja@ (2.100)

where

[otesV [Cloley Jaa = [(HIsk @) [N H ISl

Q

. a{a}’( ﬂSF[H]’[CIHISkQ){ﬁ}

(2.101)
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‘.‘52 {5 Y } ' [C]{5 N }dQ = _[52 {“: N }T {N N }dQ

e fa e )
I[‘;(axJ 5(@)} NJ( 5(?;

ks

SN———~
+
=

&R

LR

- J stal'[sT [g:; :;:3 }[Sb{ﬁ}dg
=5{:7}T(QI[ S]T[;/r:: x:z][S]"Q}W} (2.102)

Therefore, 6°U ., can be expressed further as:

Ny

sy, = 5{5}’[( J[s]’ [HF[CIHIS]a’QJ +[ Qf[slr[x:; N‘\ZJ[S]dQ)J{zT} (2.103)

Finally, putting the linear part, the nonlinear part 1 and part 2 together, 5U and §°U are

obtained as:
sU = s{u} [K.Ju} (2.104)
oU = s{a¥ [K . P la} (2.105)

(V3 )
w



where the stiffness matrix is:

(e Tls -
k)| (3 fB.T R Iskal | sT(aTlo]E b

1 T Ry
(3 [Tt elelska)

J 45x45

(2.106)

The tangent stiffness matrix is:

BiA( AT
(k. )| [T @lelskno| IsT U218, b+ T[22 sk
( isF [T [alﬂlsldaj+( st J[S]dn]

J4545

(2.107)

Once the element stiffness matrix is obtained, equilibrium equations for the element can

oe expressed as

[k.Ka}=1{r.} (2.108)

Here subscript e denotes that the corresponding quantity is relevant to the element. {P.} is
the nodal force matrix corresponding to nodal displacement matrix {#}.

{1)e}=[j;l’-fvl’fwl’mlx’mly’ """ ’f.«o-.ﬁ9~fw9,m9x’m9_»-r (2.109)
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Numerical integration is applied to evaluate the stiffness matrix and the tangent stiffness
matrix using Gauss quadrature with (3x3=) 9 point rule or (2x2=) 4 point rule. Gauss

points are shown below:

3 4
o o [

7 8 9 ® o
o o o

¢ 8 o )
o o O

{ 2 3 ! :

Figure 2-3  Location of Gauss points in the element

2.7 Newton-Raphson Iterative Method
In the solution of linear problems by finite element method one always needs to solve a
set of simultaneous algebraic equations of the form

Ka=f (2.110)

Provided the coefficient matrix is non-singular the solution to these equations is unique.
In the solution of non-linear problems we will obtain a set of algebraic equations, these

are generally non-linear, in the form

w(a)=f—-Pla)=0 (2.111)

where a is the set of discretization parameters, f is a vector which is independent of

parameters and P is a vector dependent on the parameters. These equations may have



solution is achieved it may not necessarily be the solution sought. Physical insight into
the nature of the problem and, usually, small-step incremental approaches are essential to
obtaining realistic answers, Such increments are indeed always required if the
constitutive law relating stress and strain changes is path dependent or if the load-

displacement path has bifurcations or multiple branches at certajn load levels.

The general problem should always be formulated [1] as the solution of

Yo =¥(a,.) = .., - Pa,, )=0 (2.112)
which starts from a nearby solution at
a=a

n* Wn = O? f = ./;y
and often arises from changes in the forcing function f, to

o =1, +AY, (2.113)

The determination of the change A £, is performed such that

a,,=a,+Aa, (2.114)

will be the objective and generally the increments of A S will be kept reasonably small so

that path dependence can be followed. Further, such incremental procedures will be
useful in avoiding excessive numbers of iterations and in following the physically correct

path.



It is possible to obtain solutions in a single increment of f only in the case of mild non-

linearity (and no path dependence), that is with
/. =0
Afp=toa =S (2.115)

The Newton-Raphson method provides the most rapidly converging solutions for

problems in which only one evaluation of y is made in each iteration. Of course. this

assumes that the initial solution is within the zone of attraction and, thus, divergence does
not occur. Indeed, the Newton-Raphson method is the only process described here in

which the asymptotic rate of convergence is quadratic.

In this iterative method we note that, to the first order, equation (2.112) can be

approximated as
i+l i 51(/ : t
W(@,) =¥(@,.) + () da, =0 (2.116)
Here the iteration counter i/ usually starts by assuming
a,,=a (2.117)

in which a, is a converged solution at a previous load level or time step. The Jacobian

matrix (or in structural mechanics terms the stiffness matrix) corresponding to a tangent

direction is given by

oP oy
k. =% __ 2.118
T fa da ( )



Equation (2.116) gives immediately the iterative correction as

Kida, =y,., (2.119)
or
da, =(K.)'v.., (2.120)

A series of successive approximations gives

a,, =a,, +da,, =a,+A4a, (2.121)
where
Aa, =Y da (2.122)

The process is illustrated in Figure 2-3 and shows the very rapid convergence that can be

achieved.
f s
Af;: ?’ln-7 7"’",3 WJ"-,LP
St TR -
n A o n+|
K'r o :
Q/%1a' B Eda",.f
...... A S ¢ "E 3 '
S " N
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L Ad,
—>
! J > da
! 2 ajn'l

an a n~1 a‘n*l

Figure 2-4 The Newton-Raphson method
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The Newton-Raphson iterative process, despite its rapid convergence, has some negative

features:

1. A new K matrix has to be computed at each iteration;

2. If direct solution for equation (2.120) is used the matrix needs to be factored at
each iteration;

3. On some occasions the tangent matrix is symmetric at a solution state but unsymmetric
otherwise (e.g. in some schemes for integrating large rotation parameters or in the case
of non-associated plasticity). In these cases an unsymmetric solver is needed in

general.

Some of these drawbacks are absent in alternative procedures, although generally then a

quadratic asymptotic rate of convergence is lost.

2.8 Failure Analysis Methodology

The finite element formulation is based on the first order shear deformation theory with
the nine-node Lagrangian element having five degrees of freedom per node. Geometric
nonlinearity based on von Karman’s assumptions has been incorporated. The nonlinear
algebraic equations are solved using Newton-Raphson technique. The calculation of
stresses is done at the Gauss points for the cases of uni-axial compression and bi-axial
compression. The calculation of stresses is done at the nodal points in the case of
combined in-plane loads (bi-axial compression and shear). All the six stress components
are calculated at the Gauss point or nodal point. However, to predict the failure of a

lamina only five stress components (three in-plane stresses and two transverse shear

4]



stresses) are used in the selected failure criterion. To predict the onset of delamination,
two transverse shear stress components and one transverse normal stress component are
used in the maximum stress failure criterion or Tsai-Hill criterion. Delamination at any
interface is said to have occurred when any of the transverse stress components in any of
the two layers adjacent to the interface becomes equal to or greater than its corresponding
strength. Ply failure is said to have occurred when the state of stress at any point within
the lamina satisfies the selected failure criterion. The first-ply failure refers to the first
instant at which one or more than one plies fail at the same load. After the first—ply
failure, the progressive failure analysis is carried out using progressive failure procedure
appropriate to the selected failure criterion. Tensor polynomial form of the maximum
stress criterion is used in the case of unj-axial compression and bi-axial compression. The
tensor polynomial form of the Tsai-Hill criterion is used in the case of combined bi-axial
compression and shear. Tangent stiffness coefficients are obtained by numerical
integration. The order of the Gauss quadrature used is based on the selective integration
rule, i.e. the 3x3 rule is used for terms associated with membrane and bending action
while the 2x2 rule is used for terms associated with transverse shear behavior. The
convergence tolerance used for computations is 0.001. A shear correction factor of value
K1=K2=5/6 is used. The laminate dimensions employed in the analysis are 279 mmx279
mmx2.16 mm. Since the laminate under consideration is symmetrically disposed with
respect to mid-surface, a very small lateral load is applied to create initial deflection in
order to calculate the tangent stiffness coefficients and residual forces for the increment

of loading applied as a first guess.



Chapter 3

Progressive Failure Analysis

3.1 Introduction

Failure of a mechanical component can be defined as the inability of the component to
carry any further load. Failure of composite materials is complex. and studies of failure
are a ongoing activity. There are many issues and controversies surrounding the subject

of failure of composite materials.

Clearly. we must consider many mechanisms when studying failure, for failure is often a
combination of several of these mechanisms. or modes. Failure can simply be the final
event in a complex and difficult-to-understand process of damage initiation and
accurnulation within the material. A structure consists of multiple layers of fiber-
reinforced material, and there are multiple fiber directions and a range of load levels and
load types. Thus even with a single layer of material, the issues can be quite complicated.
As a result, there have been many studies of failure. In the interest of utility. a failure
criterion should be reducible to a level that can provide a means of judging whether or
not a structure is safe from failure by knowing that a particular stress or combinations of

stresses, or combination of strains, is less than some predetermined critical value.
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The failure criterion should be accurate without being overly conservative, it should be
understandable by those using it, and it should be substantiated by experiment. A number
of criteria have been proposed. Some are rather straightforward and some are quite
involved. The maximum stress criterion accounts for interaction among the stress
components. This is because of the physical bases that underlie this criterion. In addition.
many of the other criteria are simple variations of this criterion. and the variations are

based on experimental observations.

A review of the tensor polynomial failure criterion, with its various degenerate cases. has
been presented by Reddy and Reddy [5]. and Singh er al [18]. Here. because of its
simplicity. the tensor polynomial form of the maximum stress failure criterion is used for

the cases of uni-axial compression and bi-axial compression.

A detailed review of various failure criteria used for the prediction of failure loads of
laminated composite plates for the case of in-plane shear has been made by Singh er al.
[19] and [20]. It was observed that the difference in failure loads predicted by various
failure criteria is strongly dependent on plate lay-up and boundary conditions. It was also
observed that the Hashin criterion and the tensor polynomial form of the maximum strain
criterion give the most inconsistent results as compared with other criteria. Moreover. the
difference in failure loads predicted by tensor polynomial form of the Tsai-Hill criterion
and Tsai-Wu criterion is small. Owing to lack of experimental data, it is not possible to

say which criterion is best for the prediction of failure loads. Here, the tensor polynomial



form of the 3D Tsai-Hill criterion is used as one of the failure models for a lamina failure

in the case of in-plane shear.

[n contrast, the maximum stress criterion s used to predict the onset of delamination

because of its simplicity.

3.2 Tensor Polynomial Failure Criterion

The most general polynomial failure criterion 1s expressed as [63]

Fo, +F,0,+F,0,+2F,0,0,+2F.00,+2F,,0,0,+

F 0l +F,,0: +F,0; +F,0, + F,0! + F,0; +--21 3.1)

In the above expression G 6> and o are the normal stress components. G Gs and Ge are
the shear stress components in the principal material directions (the subscript 1 refers to
the fiber direction). Particular cases of the above criterion differ from one another by
their strength tensors F,. Hence, various degenerate cases of the tensor polynomial
criterion can be obtained by substituting the appropriate tensor strength factors F;, in the
equation (3.1). Tensor strength factors appropriate to the various polynomial criteria are

given below:

(a) Maximum stress criterion [64]:
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X, X,
Fo=a-l (3.3)
r T
Fo=a 1 (3.4)
Z, Z
F, = ' (3.5)
X, X,
Foo_| (3.6)
2Tyy
F,. = ' (3.7)
Z.Z
l
Fi = l, (3.9)
S
I
F%=F (3!0)
Fu=-F"Fl (3.11)
F F,
F’l3=—+ (3.12)
E, =-5F (3.13)
- )

The remaining strength tensor terms are equal to zero.

In the above expressions X, and Y, are the tensile strengths of the lamina in the fiber

direction and in the direction transverse to it, respectively: X. and Y. are the
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corresponding compressive strengths: Z, and Z. are the tensile and the compressive

strength, respectively. in the principal direction 3 of the lamina. R and T are the shear

strengths of lamina in planes 2-3 and [-2 respectively. The shear strength in plane 1-3 is

designated as S.

(b) Tsai-Hill criterion [65]:

F,=F,=F, =0
|
Fn'—-?f
vaz—lT
=
l
Fn=?‘
1
Fu:F
l
Fss=‘§?
1
F“:F
I B
F,= S\ xTtyr T
It 11
Fo==slor+—s-57
AVARD Gl 4
0 T T
et e

3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.2

(3.22)

(3.23)
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The values of X. Y and Z are taken as either X,,Y, and Z. or as X.. Y. and Z, depending

upon the sign of 6| G2 and ©;

3.3 Failure of the Lamina

Lamina failure in the cases of uni-axial compression and bi-axial compression is said to
have occurred when the state of stress at any Gauss point with in the lamina satisfies the

tensor polynomial form of the maximum stress criterion.

Lamina failure in the case of bi-axial compression combined with in-plane shear loading
is said to have occurred when the state of stress at any nodal point within the lamina (at
mid-thickness) satisfies the tensor polynomial form of the Tsai-Hill criterion in which the

terms associated with the normal stress component in the third principal material

direction are omitted.

3.4 Onset of Delamination

Delamination at any interface between two adjacent layers is said to have occurred when
any of the three transverse stress components (adjacent to the interface) in any of the two
layers becomes equal to or greater than its corresponding allowable strength (the

transverse interlaminar normal strength is taken to be the tensile strength of lamina in

principal material direction 3).
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3.5 Progressive Failure Analysis

At each load step. Gauss point stresses are used in the maximum stress criterion in the
cases of uni-axial compression and bi-axial compression. The nodal point stresses are
used in the Tsai-Hill failure criterion in the case of bi-axial compression combined with
in-plane shear loading. When failure occurs at a Gauss point according to the maximum
stress criterion in the cases of uni-axial compression and bi-axial compression. and when
fatlure occurs at a nodal point in a layer in the case of bi-axial compression combined
with in-plane shear loading. a reduction in the appropriate lamina moduli is introduced
everywhere in the lamina as per the mode of failure, which causes the change in overall

laminate stiffness. Following terms are used to determine the failure modes.

H, =Fo, +F 0/ (3.24)
H,=F,0,+F.0?} (3.25)
H,=F,0; (3.26)
H, = F0: (3.27
H,=F,0; (3.28)

Terms in the above expressions are defined in the section 3.2 (Tensor Polynomial Failure

Criterion).
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The largest H; term is selected to correspond to the dominant failure mode and the
corresponding modulus is reduced to zero. H, corresponds to the modulus E;; H. to E.:
Hs to Ga3: Hs to Gy3 and He to Gyo. Here E; and E; are, respectively, the moduli in the
fiber direction and in the direction transverse to it; G .G23 and Gy are the principal shear

moduli in planes 1-2, 2-3 and 1-3, respectively.

The failure analysis procedure can be described as follows:

(1) After iterative convergence is achieved in the nonlinear analysis, calculate the stresses
at the middle of each layer and at its interfaces with the adjacent layers at each Gauss
point in the case of uni-axial compression and bi-axial compression. or at each nodal

point in the case of bi-axial compression combined with in-plane shear loading.

(2) Transform the stresses to principal material directions.
(3) Compute failure indices, H,. Ha, .... He.

(4) If failure occurs reduce the appropriate lamina moduli and recompute laminate

stiffness and restart nonlinear analysis at the same load step.
(5) If no failure occurs, proceed to the next load step.

(6) Final failure is said to have occurred when delamination occurs or when the plate is

no longer able to carry any further load because of very large deflection.
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3.6 Numerical Examples and Verification

A square laminate consisting of (0/90) plygroups and subjected to a uniformly distributed
loading is considered. The plate has simply-supported boundary conditions. The sides of

the plate a and b are taken to be 243.8 cm and thickness h to be 0.635 cm.

The material properties of the laminate are:
E\/E:= 24 E»=7.031x10° N/cm®

G.y/E2=0.2 via=0.25

The boundary conditions are given below:

u=w=06,=0 at x = *a/2
v=w=0,=0 aty =*a/2
v=0,=0 aty=0
u=6,=0 atx=0

A 4 by 4 type finite element mesh is considered. Here, the first number refers to the
number of elements in X direction (dimension of the plate in X direction is a) and the
second number corresponds to Y direction (dimension of the plate in Y direction is b).
The 4 by 4 type finite element mesh for the plate is shown in Figure 3-1. Figure 3-2
shows the results obtained using the present formulation. The present results are

compared with that given in the work of Reddy er al {1]. It is observed that the results
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obtained in the present study compare very well with the results given in the work of

Reddy et al [1].
74 75 76 77 78 79 80 81
73
13 14 15 16
64 65 66 67 68 69 70 N 7
b 56 57 58 59 60 6l 62 63
9 10 1 12
16 47 8 49 50 St 52 53 54
37 B 9 40 31 42 3 u 45
5 6 7 8
28 29 30 31 312 33 34 35 36
20 a2 23 24 5 26 27
19
1 2 3 4
10 1" 12 43 14 15 6 17 8
1 2 3 4 5 6 7 3 9

Figure 3-1 4 by 4 type finite element mesh for the plate

Now different laminates with simply-supported boundary condition under the action of
uni-axial compression are analyzed and the results are compared with the results given in

the work of Singh et al [18].

The dimensions of the plate are: a = 279 mm, b = 279 mm and h = 2.16 mm. Ply

thickness is 0.135 mm.
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Z 0.01: 1= Present study
a . ' M Reddy eral (1]

0.002;7&3’]/’
a .
0\ e A A L i
02 03 04 05 06 07 08 09

Central Deflection w (cm)

Figure 3-2 Bending of cross-ply (0/90) square laminate with simply-supported

boundary condition subjected to a uniformly distributed loading

The mechanical properties of the material are:
E;=132.58 GPa E.=10.8 GPa E;=10.8 GPa

G|3=G|3= 5.7 GPa Via= V|3=O.24 V33=0.49

The material strength properties are:
X.=1.515GPa X:=1.697 GPa
Y =Z=438MPa Y.=Z.=43.8 MPa

R =67.6 MPa S=T=869MPa

The boundary conditions are given below:

u=w=606,=0 atx=0
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aty=

0

atx=a

ay=

b

A 5 by 5 type finite element mesh is considered. Here. the first number refers to the

number of elements in X direction (dimension of the plate in X direction is a) and the

second number corresponds to Y direction (dimension of the plate in Y direction is b).

The 5 by 5 type finite element mesh is shown in Figure 3-3.
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The first-ply failure load and the ultimate failure load for the (+45/0/90)»s laminate under
the action of uni-axial compression are given in Table 3-1. The first-ply failure load and
the ultimate failure load for the (+45);, laminate under the action of uni-axial
compression are given in Table 3-2. The first-ply failure load and ultimate failure load for

the (0/90)4, laminate under the action of uni-axial compression are given in Table 3-3.

Table 3-1  The first-ply failure load and the ultimate failure load for (£45/0/90),

laminate under the action of uni-axial compression

First-ply failure Ultimate failure Mode of first-ply

load (N:b*/E;h") | load (N,b*/E;h’) failure
Singh er al [18] 58.09 77.45 Transverse*
Present study 55.78 81.53 Transverse

* Transverse mode of failure refers to the matrix failure

Table 3-2  The first-ply failure load and the ultimate failure load for (+45)s laminate

under the action of uni-axial compression

First-ply failure Ultimate failure Mode of

load (N,b*/E-h*) | load (Nb*/Eqh’) first-ply failure
Singh et al [18] 49.06 65.83 Transverse *
Present study 47.92 67.94 Transverse

* Transverse mode of failure refers to the matrix failure
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Table 3-3  The first-ply failure load and the ultimate failure load for (0/90),s laminate

under the action of uni-axial compression

First-ply failure Ultimate failure Mode of

load (N,b“/Esh*) | load (NbYE.h?) first-ply failure
Singh et al [18] 60.24 71.86 Transverse*
Present study 61.50 75.81 Transverse

NbYE:h?

* Transverse mode of failure refers to the matrix failure

Figure 3-4 (a) and (b) show the load versus the central deflection response of (£45/0/90)x,

laminate under the action of uni-axial compression. In Figure 3-4. w, is the central

deflection of the plate. It is seen from these figures and Table 3-1 that the difference

between the present results and the results obtained by Singh et al [18] are small.
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Figure 3-4

312 3% ate a3 32 32
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Load versus the central deflection response of (£45/0/90)

laminate under the action of uni-axial compression

324

56



A (£45/0/90)3 laminate with simply-supported boundary condition under the action of

positive shear loading is now analyzed and the results are compared with results given in

the work of Singh et al [19].

Dimensions of the plate, the material properties of the laminates and boundary conditions

are same as that of the previous example. A 5 by 5 type finite element mesh is

considered. See Figure 3-3. The first-ply failure load and the ultimate failure load for

(£45/0/90).5 laminate under the action of positive shear loading are given in Table 3-4.

Table 3-4  The first-ply failure load and the ultimate failure load for (+45/0/90),,

Laminate under the action of positive shear loading

First-ply failure

Ultimate failure

load (N,b*/E;h?) | load (N,bY/EahY)
Singh et al [19] 59.38 116.18
Present study 61.68 115.32

Figure 3-5 (a) and (b) show the load versus the maximum deflection response of

(£45/0/90)s laminate under the action of positive shear loading. In Figure 3-5, Wy is the

maximum deflection of the plate. It is seen from Figure 3-5 and Table 3-4 that the

difference between the present results and the results obtained by Singh er al [19] are

small.
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Figure 3-5 Load versus the maximum deflection response of (£45/0/90),, laminate

under the action of positive shear

A (*45/0/90)>s laminate with simply-supported boundary condition under the action of
negative shear loading is now analyzed and the results are compared with the results

given in the work of Singh er al [19].

Dimensions of the plate, the material properties of the laminates and boundary conditions
are the same as that of the previous example. A 5 by 5 type finite element mesh is
considered. See Figure 3-3. The first-ply failure load and the ultimate failure load for

(£45/0/90),, laminate under the action of negative shear loading are given in Table 3-5.
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Table 3-5

The first-ply failure load and the ultimate failure load for (+45/0/90)

laminate under the action of negative shear loading

First-ply failure Ultimate failure

load (Nb/E:;h") | load (NbYEsh")
Singh et al [20] 82.76 126.94
Present study 78.67 121.58

Figure 3-6 (a) and (b) show the load versus the maximum deflection response of a square

(£45/0/90)>¢ laminate under the action of negative shear loading. In Figure 3-5, Wy, is

the maximum deflection of the plate. It is seen from Figure 3-6 and Table 3-5 that the

difference between the present results and the results obtained by Singh et al [20] are

small.
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Load versus the maximum deflection response of (£45/0/90),s laminate under

the action of negative shear
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No results are available in the literature on the first-ply failure load and the ultimate
failure load of laminates under the action of bi-axial compression as well as under the
action of bi-axial compression combined with in-plane positive (or negative) shear
loading, and therefore the comparison can not be made. However. a good comparison of
the first-ply failure loads and ultimate failure loads for the cases of uni-axial compression
and positive (or negative) shear loading with the results given in the work of Singh ez a/
[18]. [19] and [20]. are indicative of the fact that the present results for the first-ply
failure load and the ultimate failure load under the action of bi-axial compressive loading
as well as bi-axial compression combined with in-plane positive (or negative) shear

loading are reasonably accurate.
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Chapter 4

Parametric Study

4.1 Introduction

Three symmetric laminate lay-up configurations, (+45/0/90), (£45)4s and (0/90)ss and
three unsymmetric laminate lay-up configurations, (+45/0/90),, (+45)s and (0/90)g are
considered in the present study to understand the progressive failure characteristics under
the action of uni-axial compression, bi-axial compression, and bi-axial compression
combined with in-plane positive (or negative) shear loading. In addition, (+0)4s laminates
are also considered to understand the effect of fiber orientation on the failure strength of
laminates. The boundary conditions that have been considered in this study are shown in
Figure 4-1. Properties of the material (Reddy and Reddy [5]) used in the present study are

presented in Table 4-1.

Y { v#0, uz0, 6,20

A &7
v, 0.#0 i ,:. { v#0, uz0, 6,0
T? — E b
e T TN . x
a
uz0, 6,20,

Figure 4-1 Details of boundary conditions for the laminated plate
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In the Table 4-1, v;,, vi3 and v»; are the Poisson’s ratios in the planes 1-2, 1-3 and 2-3.
respectively. E; E; and E; are principal Young’s modulus in fiber direction and in the
direction transverse to it, respectively. Gy3, G;; and Gi; are shear modulus values
associated with planes 1-2, 1-3 and 2-3, respectively. X, is the tensile strength of lamina
in fiber direction. X is the compressive strength of lamina in fiber direction. Y, is the
tensile strength of lamina in the direction (in plane 1-2) transverse to fiber direction. Y. is
the compressive strength of lamina in the same direction. Z is the tensile strength of
lamina in principal material direction 3. Z. is the compressive strength of lamina in
principal material direction 3. R, S and T are shear strengths of lamina in planes 2-3. 1-3

and 1-2, respectively.

Table4-1  Material properties of T300/5208 graphite-epoxy [3]
Mechanical properties Values Strength properties Values
E, 132.58 GPa X, 1.515 GPa
E, 10.8 GPa X 1.697 GPa
E; 10.8GPa Y=2, 43.8 MPa
G12= G|3 5.7 GPa Y¢= Zc 43.8 MPa
Vi2= Vi3 0.24 R 67.6 MPa
V23 0.49 S= 86.9 MPa

In the Figure 4-1, a and b are dimensions of the full plate in X and Y directions.

Dimensions of the plate are: a = 279 mm and b = 279 mm. Ply thickness is 0.135 mm.

A 5 by 5 type finite element mesh is used in the present analysis. Here, the first number
refers to the number of elements in X direction (dimension of the plate in X direction is
a) and the second number corresponds to Y direction (dimension of the plate in Y

direction is b). Figure 4-2 shows the finite element mesh for a square plate. Figure 4-3



and Figure 4-4 show the direction of the applied shear loading along with the fiber

direction.
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Figure 5-2 Notation for the positive shear Figure 5-3 Notation for the negative shear
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It is to be noted that in-plane shear loading is applied on all four edges of the plate, uni-
axial compressive loading is applied at the edge x = a, and bi-axial compressive loadings

are applied on the edges x =aand y =b.

Bi-axial compressive loadings Ny and Ny and in-plane shear loading Ny, are expressed in
figures in non-dimensionalized forms as NbE;h’. Nyb7Eh’ and Ny bE;h’.
respectively. Ny is the applied X-direction axial compressive loading per unit length. N,
is the applied Y-direction axial compressive loading per unit length. N, is the applied in-
plane shear loading per unit length. The corresponding central (transverse) deflection is
also expressed in non-dimensionalized form as w./h and the maximum deflection is also
expressed in non-dimensionalized form as wpa/h, where h is the total thickness of the

laminate.

4.2 Failure Under Uni-axial Compression

Figure 4-5 shows the load versus the central deflection response of various laminates
under the action of uni-axial compression. It is observed that the largest strength is
exhibited by (245)ss laminate within the deflection range w¢/h <1.0 and by (#45/0/90)3
laminate within the deflection range w./h > 1.0. It is also observed that (0/90)ss laminate
shows the least strength for a fixed value of the central deflection within the range w./h <
2.4. However, there is a drastic increase in strength for this laminate in the deflection

range w./h > 2.4, and there is also a drastic increase in strength for (45/0/90)s laminate
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in the deflection range w./h > 1.0. This is attributed to a substantial increase in the axial

stiffness.

It is noted that the first-ply failure of all laminates occur at the loaded edge of the plate

primarily.

80- — (£45/0/90), .
- (+45/45),, L e
70- __ (080), e

3

8

N,b¥E;zh?

10§ a/b=1 & b/h=129 uni-axial compression

0 —_ - el e - .
0 1 2 3 4 5 6
wc/h

Figure 4-5 Load versus the central deflection response of different lay-up

configurations under uni-axial compression

Figure 4-6 shows the progressive failure load versus the central deflection response of
(£45/0/90),s laminate for various aspect ratio values under the action of uni-axial
compression. For a fixed value of the central deflection, the highest strength is observed
for the aspect ratio of 0.8 while the lowest for the aspect ratio of 2. The failure loads

decrease with an increase of aspect ratio. The first-ply failure and the ultimate failure of

65



all laminates occur at the loaded edge. The first-ply failure is matrix failure while the

ultimate failure is caused primarily by the fiber failure.
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Figure 4-6 Load versus the central deflection response of (+45/0/90),s laminate under

uni-axial compression for various aspect ratio values

Figure 4-7 shows the progressive failure load versus the central deflection response of
various symmetric laminates (+45/0/90)., (+45)ss and (0/90)s4, and unsymmetric
laminates (+45/0/90)s, (¥45)s and (0/90)s under the action of uni-axial compression. It is
observed that for the symmetric laminate (+45)y, the load-central deflection curve almost
coincides with the load-central deflection curve of the unsymmetric laminate (+45)s.

However, the central deflections of (+45/0/90) laminate and (0/90)y laminate are
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positive while the central deflections of (+45/0/90)s laminate and (0/90)s laminate are

negative.
90 —- e
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Figure 4-7  Progressive failure of symmetric and unsymmetric laminates under
uni-axial compression

Figure 4-8 shows the deformed configuration of (+45/0/90),s laminate under the action of

uni-axial compression and Figure 4-9 shows that of (+45/0/90)4 laminate.
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Figure 4-8 The deformed configuration of (+45/0/90)2 laminate

under uni-axial compression

(1x45/0/90),
a/b=1 & b/h=129

Figure 4-9 The deformed configuration of (+45/0/90), laminate

under uni-axial compression
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The first-ply failure loads and the ultimate failure loads of symmetric laminates
(*45/0/90),s, (+45)ss and (0/90)ss and unsymmetric laminates (+45/0/90);, (+45)s and

(0/90)s under the action of uni-axial compression are presented in Table 4-2.

Table 4-2  The first-ply failure loads and the ultimate failure loads of symmetric and

unsymmetric laminates under uni-axial compression

Lay-up First-ply Ultimate Failure First-ply
failure load | failure load | (w./h)* location failure mode
(ND*/Ezb’) | (Nb*/EshY) (FL, FE)* |
(£45/0/90)5 55.79 81.53 3.16 1,25 Transverse * |
(£45/0/90)4 55.78 78.67 -3.39 16,10 Transverse
(£45)ss 47.92 67.94 3.86 1,25 Transverse
(£45)s 47.92 70.80 3.87 1,20 Transverse
(0/90)4s 61.51 75.81 3.97 1,25 Transverse
(0/90)3 54.36 77.24 -3.64 16,10 Transverse

* Non-dimensionalized central deflection at first-ply failure
* FL and FE are the failed layer number and failed element number at first-ply failure

* Transverse mode of failure refers to the matrix failure

In order to get an idea of the sequence of modes of failure under the action of uni-axial
compression, the sequence of the first occurrence of failure modes is shown in Figure 4-
10 for (x45/0/90), laminate under the action of uni-axial compression. The terms within
the parenthesis (for all failure modes except the onset of delamination) represent the
failed ply number and the location of the failed element, respectively. It is observed that
the transverse shear mode of failure, in-plane shear mode of failure and the fiber failure

mode occur at the same load level.
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Figure 4-11 shows the variation of the first-ply failure load and the ultimate failure load
of (#0)ss laminates with fiber orientation () under the action of uni-axial compression.
The results show that the variations in the response are symmetric with respect to 45°
fiber orientation. Peak values of the first-ply failure load and the ultimate failure load are

predicted to occur for 45° orientation. For (0/0)ss and (£15)4s laminates the first-ply

failure load is also the ultimate failure load.
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Figure 4-10 Modes of failure: (A) Transverse (in-plane) mode of failure (matrix failure)
(1,25); (O) Transverse shear (1) mode of failure (1,25); (&) Fiber failure (1,25); (@)

Transverse shear (1,;) mode of failure (1,25);

(©) In—plane shear (14y) mode of failure (1,25)
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Figure 4-11 Variation of the first-ply failure load and the ultimate failure load

of (£0)4s laminate with fiber orientation under uni-axial compression

Figure 4-12 shows the variation of the central deflection associated with the first-ply
failure and that just before the ultimate failure for (+0);s laminate. The results predict that
the variations in the central deflection are symmetrical about the 45° fiber orientation.
Peak values corresponding to the first-ply failure load and the ultimate failure load occur

for 45° fiber orientation.
Figure 4-13 shows the variation of these loads with aspect ratio values for (245/0/90)x

laminates. It is seen that the first-ply failure load and the ultimate failure load decrease

with an increase in the values of aspect ratio.
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Figure 4-13  Variation of the first-ply failure load and the ultimate failure load of

(245/0/90),s laminate with aspect ratio values under uni-axial compression



Figure 4-14 shows the variation of the central deflection associated with the first-ply
failure and the ultimate failure, with aspect ratio values for (+45/0/90),s laminate. It is
seen that the central deflections at the first-ply failure and the ultimate failure increase

with increasing values of aspect ratio.
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Figure 4-14 Variation of the central deflection of (+45/0/90),s laminate with

aspect ratio values under uni-axial compression



4.3 Failure Under Bi-axial Compression

Figure 4-15 shows the load versus the central deflection response of various laminates
under the action of bi-axial compression. It is observed that the largest strength is
exhibited by (+45)ss laminate within the deflection range w./h <1.1 and by (+45/0/90),,
laminate within the deflection range wc/h > 1.1. It is also observed that (0/90)4 laminate
shows the least strength for a fixed value of the central deflection within the range w./h <

2.3.
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Figure 4-15 Load versus the central deflection response of different lay-up

configurations under bi-axial compression

The progressive failure load versus the central deflection response of (*+45/0/90)s

laminate for various aspect ratio values under the action of bi-axial compression is shown
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in Figure 4-16. For a fixed value of the central deflection, the highest strength is observed
for the aspect ratio of 0.8 while the lowest for the aspect ratio 3. The failure loads
decrease with an increase of aspect ratio. The first-ply failure and the ultimate failure of
all laminates occur at the loaded edge. The first-ply failure is matrix failure while the
ultimate failure is caused primarily by the transverse shear stress ty,. When a/b=2, the

ultimate failure is caused by the transverse shear stress t,,, When a/b=3, ultimate failure

is caused by the delamination.
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Figure 4-16 Load versus the central deflection response of (+45/0/90),5 laminate

for various aspect ratio values under bi-axial compression



Table 4-3 gives the values of the first-ply failure load and the ultimate failure load of
symmetric laminates (+45/0/90), (+45)ss and (0/90)4s and unsymmetric laminates
(£45/0/90)4, (£45)s and (0/90)s under bi-axial compression. It is seen that for symmetric
(245/0/90),s and unsymmetric (+45/0/90), lay-up configurations, the first-ply failure
loads are almost the same, and the ultimate failure loads are a little different. For
symmetric laminate (+45)s; and unsymmetric laminate (+45)s lay-up configurations, the
values of the first-ply failure load and the ultimate failure load are very close. For
symmetric laminate (0/90);; and unsymmetric laminate (0/90)g lay-up configurations, the

values of the first-ply failure load and the ultimate failure load have some difference.

Table 4-3  The first-ply failure loads and the ultimate failure loads for symmetric and

unsymmetric laminates under bi-axial compression

First-ply Ultimate Failure First-ply
Lay-up failure Load failure load | (wc/h)* location failure mode
(N:b*/Esh’) | (NDYEzh’) (FL, FE)*
(£45/0/90)5 30.75 45.06 3.461 1,25 Transverse®
(£45/0/90)4 30.04 41.48 3.389 1,25 Transverse
(£45)4s 27.89 40.45 4.313 1,20 Transverse
(+45)s 26.82 38.26 4.329 1,25 Transverse
(0/90)4s 34.33 45.77 3.995 1,24 Transverse
(0/90)g 30.75 42.20 3.989 1,25 Transverse

* Non—dimensionalized central deflection at first-ply failure
*Transverse mode of failure refers to the matrix failure

* FL and FE are the failed layer number and the failed element number at first-ply failure
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Table 4-4 gives the progressive failure loads and failure modes of (£45/0/90),s laminate

for various load ratio values (Nx : Ny : Nyy) in terms of non-dimensionalized first—ply

failure load, ultimate failure load and central deflection under the action of bi-axial

compression. In addition, the first-ply failure locations (i.e. the failed ply number and the

failed element number) and failure modes related to the first-ply failure and the ultimate

failure are also shown in this table. It is observed that with increasing proportion of N,

(Y-direction axial compression) in the bi-axial compression, the first-ply failure load and

the ultimate failure load decrease monotonically. At Ny : Ny : Ny, = 1:1:0, the percentage

loss in the first-ply failure and the ultimate failure load are respectively, 44.9 and 44.7. [t

is observed that the first-ply failure is matrix failure.

Table 4-4 Progressive failure of the (+45/0/90) 55 laminate at various load ratio values
under bi-axial compression
Load First-ply Ultimate Failure First-ply Ultimate
ratio failure load | failure load | (w/h)* | location failure failure
Ni:Ny:Nyy | (NYEzRY) | (NDYEoh®) (FLFE)* |  mode modes
1:0:0 55.78 81.53 3.161 1,25 Transverse® | Shear stress 1,
1:0.2:0 47.20 70.80 3.228 1,25 Transverse | Shear stress 1.,
1:0.4:0 40.77 60.08 3.253 1,25 Transverse | Shear stress 1.,
1:0.6:0 35.94 53.10 3.274 1,25 Transverse | Shear stress t,,
1:0.8:0 34.33 48.63 3.484 1,25 Transverse | Shear stress 1,
1:1:0 30.75 45.06 3.470 1,25 Transverse | Delamination

* Non—dimensionalized center deflection at first-ply failure

*FL and FE are the failed layer number and failed element number at first-ply failure

*Transverse mode of failure refers to the matrix failure
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Figure 4-17 shows the load versus the central deflection response of (+45/0/90),s laminate
for different load ratio values (N : Ny : Ny,) under the action of bi-axial compression. It is
seen that the first-ply failure load and the ultimate failure load decrease with increasing

load ratio values (increasing N,).
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Figure 4-17 Load versus the central deflection response of (+45/0/90)s;

laminate for different load ratio values under bi-axial compression

Table 4-5 gives the results of the progressive failure analysis of (+45)ss laminate at
various load ratio values (Nx : Ny : Nyy) in terms of the non-dimensionalized first—ply

failure load, ultimate failure load and central deflection under the action of bi-axial
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compression. In addition, the first-ply failure locations (i.e. the failed ply number and the
failed element number) and failure modes related to the first-ply failure and the ultimate
failure are also shown in this table. It is observed that with increasing proportion of N,
(Y-direction axial compression) in the bi-axial compression, the first-ply failure load and
the ultimate failure load decrease monotonically. At Ny : Ny : Ny, = 1:1:0, the percentage
loss in the first-ply failure and the ultimate failure load are respectively, 44 and 43.67. It
is observed that the first-ply failure is matrix failure.

Table 4-5 Progressive failure of (+45) 4 laminate at various load ratio values under bi-

axial compression

Load First-ply Ultimate Failure First-ply Ultimate
ratio failure load | failure load | (w/h)* | location failure failure
NxNy:Ny | (NbDYE:RY) | (NbYEohY) (FLFE)* | mode mode
1:0:0 47.92 67.94 3.859 1,25 Transverse® | Transverse
1:0.2:0 41.48 61.51 4.016 1,25 Transverse | Delamination
1:0.4:0 36.47 53.64 4113 1,25 Transverse Transverse
1:0.6:0 32.18 46.49 4.147 1,25 Transverse | Transverse t,,
1:0.8:0 27.89 42.20 4.045 1,25 Transverse | Delamination
1:1:0 26.82 38.27 4.313 1,25 Transverse | Delamination

*Non-dimensionalized central deflection at first-ply failure

*FL and FE are the failed layer number and the failed element number at first-ply failure

*Transverse mode of failure refers to the matrix failure

Figure 4-18 shows the load versus the central deflection response of (+45)4s laminate for

different load ratio values (Nx : Ny : Ny) under the action of bi-axial compression. It is
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seen that the first-ply failure load and the ultimate failure load decrease with increasing

load ratio values (increasing Ny).
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Figure 4-18 Load versus the center deflection response of (+45);s laminate for

different load ratio values under bi-axial compression

Table 4-6 gives the results of the progressive failure analysis of (0/90)s laminate at
various load ratio values (N : Ny : Ny,) in terms of the non-dimensionalized first-ply
failure load, ultimate failure load and central deflection under the action of bi-axial
compression. In addition, the first-ply failure locations (i.e. the failed ply number and the

failed element number) and failure mode related to the first-ply failure and the ultimate
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failure are also shown in this table. It is observed that with increasing proportion of Ny
(Y-direction axial compression) in the bi-axial compression, the first-ply failure load and
the ultimate failure load decrease monotonically. At Ny : Ny : Ny = 1 : 1 : 0, the
percentage loss in the first-ply failure and the ultimate failure load are respectively, 50

and 44.33. It is observed that the first-ply failure is matrix failure.

Table 4-6  Progressive failure of (0/90)4 laminate at various load ratio values under

bi-axial compression

Load ratio | First-ply Ultimate Failure First-ply Ultimate

Nx:Ny:Nyy | failure load | failure load | (ws/h)* | location failure failure

(NxbY/Eah’) | (NbY/Esh®) (FL,FE)* mode modes
1:0:0 61.51 75.81 3.973 1,25 Transverse® | Fiber failure
1:0.2:0 51.49 68.66 3.991 1,25 Transverse | Delamination
1:0.4:0 45.06 59.36 4.062 1,25 Transverse | Delamination
1:0.6:0 37.91 52.21 3.974 1,25 Transverse | Delamination
1:0.8:0 34.33 45.77 3.995 1,25 Transverse | Delamination
1:1:0 30.75 42.20 3.975 1,25 Transverse | Delamination

*Non—dimensionalized central deflection at first-ply failure

*FL and FE are the failed layer number and the failed element number at first-ply failure

*Transverse mode of failure refers to the matrix failure

Figure 4-19 shows the load versus the central deflection response of (0/90)4s laminate for
different load ratio values (Ny : Ny : Nyy) under the action of bi-axial compression. It is
seen that the first-ply failure load and ultimate failure load decrease with increasing load

ratio values (increasing Ny).
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Figure 4-19 Load versus the central deflection response of (0/90),; laminate for different

load ratio values under bi-axial compression

In order to get an idea of the sequence of modes of failure under the action of uni-axial
compression, the sequence of the first occurrence of failure modes are shown in Figure 4-
20 for (+45/0/90),s laminate under the action of bi-axial compressive loadings. The terms
within the parenthesis (for all failure modes except the onset of delamination) represent
the failed ply number and the location of the failed element, respectively. It is observed
that the transverse shear mode of failure, in-plane shear mode, the fiber failure and

delamination occur at the same load level.
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Figure 4-21 shows the variation of first-ply failure load and ultimate load of (+8)ss
laminates with fiber orientation (0) under the action of bi-axial compression. The results
show that the variations in the response are symmetric with respect to 45° fiber
orientation. Peak values of the first-ply failure load and the ultimate failure load are
predicted to occur for 45° orientation. For (0/0)ss, (£15)4s and (£30)4s laminates the first-

ply failure loads also are the ultimate failure loads.
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Figure 4-21 Variation of the first-ply failure load and the ultimate failure load of (£8)ss

laminate with fiber orientation under bi-axial compression

Figure 4-22 shows the variation of the central deflection associated with the first-ply
failure and that just before the ultimate failure for (36)ss laminate. The results predict that
the variations in the central deflection are symmetrical about the 45° fiber orientation. A
peak value corresponding to the first-ply failure load occurs for 45° fiber orientation. It is
observed that the central deflection associated with the ultimate failure load also has a

symmetric pattern in the case of bi-axial compression.

84



7- alb=1 & b/h=129 (#0)4s

w¢/h
H

—- first-ply failure
—— ultimate failure

0 - : S e S
0 10 20 30 40 50 £C 70 80 90

Fiber orientatior (0)

Figure 4-22 Variation of the central deflection associated with the first-ply failure and the

ultimate failure of (+6)ss laminate with fiber orientation under bi-axial compression

Figure 4-23 shows the variation of these loads with aspect ratio values for (£45/0/90)
laminate. It is seen that the first-ply failure load and the ultimate failure load decrease

with an increase in the values of aspect ratio.
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Figure 4-23 Variation of the first-ply failure load and the ultimate failure load of the

(+45/0/90),s laminate with aspect ratio values under bi-axial compression

Figure 4-24 shows the variation of the central deflection associated with the first-ply
failure and the ultimate failure, with aspect ratio values for (£45/0/90) laminate. It is
seen that the central deflection at the first-ply failure and the ultimate failure increase

with increasing values of aspect ratio.
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Figure 4-24 Variation of the central deflection of (+45/0/90),, laminate with

aspect ratio values under bi-axial compression
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4.4 Failure Under Bi-axial Compression Combined with In-plane Positive Shear

Figure 4-25 shows the load versus the maximum deflection response of various laminates
under the action of bi-axial compression combined with in-plane positive shear loading.
It is observed that the largest strength is exhibited by (#45)s;s laminate within the
deflection range Wma/h <0.6 and by (+45/0/90); laminate within the deflection range
Wmax/h > 0.6. It is also observed that (0/90)ss laminate shows the least strength for a fixed

value of the maximum deflection within the range Wmax/h < 1.9.
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Figure 4-25 Load versus the maximwu ucuiccuon response of different laminates under

bi-axial compression combined with in-plane positive shear
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Figure 4-26 shows the load versus the maximum deflection response of (+45/0/90);s
laminate for various aspect ratio values under the action of bi-axial compression
combined with in-plane positive shear loading. For a fixed value of the maximum
deflection, the highest strength is observed for the aspect ratio of 0.8 while the lowest for
the aspect ratio of 3. The failure loads decrease with an increase in the aspect ratio values.
The first-ply failure and the ultimate failure of laminates occur at loaded edge primarily
(when a/b=3 the first-ply failure occurs in element 24). The first-ply failure is matrix

failure while the ultimate failure is caused by the delamination.
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Figure 4-26 Load versus the maximum deflection response of (+45/0/90) laminate for

various aspect ratio values under bi-axial compression combined with in-plane positive shear
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Table 4-7 gives the results for the first-ply failure load and the ultimate failure load of
symmetric laminates (+45/0/90), (145)ss and (0/90)ss and unsymmetric laminates
(245/0/90)s, (+45)s and (0/90)s under the action of bi-axial compression combined with
in-plane positive shear loading. It is seen that for symmetric (+45/0/90) and
unsymmetric (+45/0/90); laminates the ultimate failure loads are almost the same, and the
first-ply failure loads are a little different. For the symmetric laminate (0/90)s;s and
unsymmetric laminate (0/90)s, the first-ply failure load and the ultimate failure load are
very close. The first-ply failure mode for all symmetric laminates and unsymmetric
laminates is transverse (matrix) failure. Ultimate failure mode for all symmetric laminates

and unsymmetric laminates is delamination.

Table 4-7  The first-ply failure loads and the uitimate failure loads for symmetric and
unsymmetric laminates under bi-axial compression combined with in-plane
positive shear

First-ply Ultimate Failure First-ply Ultimate

Lay-up failure load | failure load | wpa/h* | location failure failure

(NbY/Eah®) | (N /Eah?) (FL,FE)* mode mode
(+£45/0/90)2 2146 30.04 2.562 1,1 Transverse® | delamination
(£45/0/90)45 24.32 30.04 2.929 1,1 Transverse | delamination
(245)45 20.38 26.11 3.478 16,25 Transverse | delamination
(45)s 22.89 25.75 3.900 1,20 Transverse | delamination
(0/90)ss 22.17 27.89 3.005 1,1 Transverse | delamination
(0/90)s 22.17 27.89 3.010 1,1 Transverse | delamination

*Non—dimensionalized maximum deflection at first-ply failure

*Transverse mode of failure refers to the matrix failure

*EL and FE are the failed layer number and the failed element number at first-ply failure
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Table 4-8 gives the progressive failure analysis results for (+45/0/90); laminate for

various load ratio values (Nx : Ny : Nyy) in terms of the non-dimensionalized first-ply

failure load, ultimate failure load and maximum deflection under the bi-axial

compression combined with in-plane positive shear loading. The ratio of Ny and Ny is set

to a value of 1, and the value of N,y is changed. In addition, the first-ply failure locations

(i.e. the failed ply number and the failed element number) and failure mode related to the

first-ply failure and the ultimate failure are also shown in this table. It is observed that

with increasing proportion of in-plane positive shear in the combined loading, the first-

ply failure load and the ultimate failure load are not changed too much. It is observed that

the first-ply failure is matrix failure and the ultimate failure is delamination in all cases.

Table 4-8  Progressive failure of (+45/0/90) »s laminate at various load ratio values
under bi-axial compression combined with in-plane positive shear
Load ratio First-ply Ultimate Failure First-ply Ultimate
Ne:Ny:Nyy | failure load | failure load | wma/h* | location failure failure
(NLb*/Esh*) | (N b¥E;h?) (FLLFE)* mode mode
1:1:0.2 27.89 33.61 3.284 1,25 Transverse® | Delamination
1:1:04 27.89 33.61 3.277 1,1 Transverse | Delamination
1:1:0.6 25.03 30.75 2.927 1,25 Transverse | Delamination
1:1:0.8 25.03 30.75 2.941 1,1 Transverse | Delamination
1:1:1 21.45 30.04 2.562 1,1 Transverse | Delamination

*Non—dimensionalized maximum deflection at first-ply failure

*FL and FE are the failed layer number andthe failed element number at first-ply failure

*Transverse mode of failure refers to the matrix failure
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Figure 4-27 (a), (b) and (c) show the load versus the maximum deflection response of
(+45/0/90),5 laminate for different load ratio values Ny : Ny : Ny, (Ny : Ny =1 : 1. change
N values) under the action of bi-axial compression combined with in-plane positive

shear loading.

Table 4-9 gives the progressive failure analysis results for (+45/0/90) laminate for
various load ratio values (Ny : N, : Ny) in terms of the non-dimensionalized first-ply
failure load. ultimate failure load and maximum deflection under the action of bi-axial
compression combined with in-plane positive shear loading. Here. the value of Ny, is
fixed. and the values of Ny and N, are changed with 1:1 ratio. In addition. the first-ply
failure locations (i.e. the failed ply number and the failed element number) and failure
modes related to the first-ply failure and the ultimate failure are also shown in this table.
It is observed that with increasing proportion of bi-axial compression in the combined
loading, the first-ply failure load and the ultimate failure load decrease monotonically. At
N Ny : N =1:1:1, the percentage loss (compared to the case Ni: N, : N, =0.2:0.2:
1) in the first-ply failure and the ultimate failure loads are respectively, 48.2 and 53.3. It
is observed that the first-ply failure is matrix failure and the ultimate failure is

delamination in all cases.

Figure 4-28 shows the load versus the maximum deflection response of (+45/0/90)x;
laminate for different load ratio values Ny : Ny : Ny (N =1, change Ny and N, values)
under the action of bi-axial compression combined with in-plane positive shear loading.
It is seen that the first-ply failure load and the ultimate failure load decrease with an

increase of load ratio values (Ny, Ny).
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different load ratio values of bi-axial compression combined with in-plane positive shear
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Table 4-9  Progressive failure of (+45/0/90) 5 laminate at various load ratio values
under bi-axial compression combined with in-plane positive shear
Load ratio First-ply Ultimate Failure | First-ply Ultimate
Ny Ny: Nyy | failure load | failure load | (Wmach)* | location | failure failure
(NDYE;h*) | (NbY/E ) (FL,FE)* | mode mode
0.2:0.2:1 41.48 64.37 1.4876 1,1 Transverse® | Delamination
0.4:04:1 35.76 52.92 2.003 1.1 Transverse | Delamination
0.6:0.6:1 29.32 43.63 2.239 1,1 Transverse | Delamination
0.8:0.8:1 26.46 35.04 2.585 1,1 Transverse | Delamination
1:1:1 2145 30.04 2.562 I.1 Transverse | Delamination

*Non—dimensionalized maximum deflection at first-ply failure

*FL and FE are the failed layer number and the failed element number at first-ply failure

*Transverse mode of failure refers to the matrix failure
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Figure 4-28 Load versus the maximum deflection response of (+45/0/90),s laminate for

different load ratio values of bi-axial compression combined with in-plane positive shear
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Table 4-10 gives the progressive failure analysis results for (+45/0/90),s laminate for
various load ratio values (Ny : Ny : Nyy) in terms of non-dimensionalized first-ply failure
load, ultimate failure load and maximum deflection under the action of bi-axial
compression combined with in-plane positive shear loading. The ratio of Ny, and N, is set
to a value of 1, and the value of Ny is changed. In addition, the first-ply failure locations
(i.e. the failed ply number and the failed element number) and the failure mode related to
the first-ply failure and the ultimate failure are also shown in this table. It is observed that
with increasing proportion of compression in the combined loading. the first-ply failure
load and the ultimate failure load decrease monotonically. At N¢: Ny : Ny =1:1: 1. the
percentage loss (compared to the case Ny: Ny : Ny = 0.2 : 1 : 1) in the first-ply failure
load and the ultimate failure load are respectively, 26.8 and 31.2. It is observed that the

first-ply failure is matrix failure and the ultimate failure is delamination in all cases.

Table 4-10  Progressive failure of (+45/0/90), laminate at various load ratio
values under bi-axial compression combined with in-plane positive shear
Load ratio First-ply Ultimate Failure | First-ply Ultimate
Ni: Ny: Ny | failure load | failure load | (Wma/h)* | location | failure failure
(NbYE>h%) | (NbD/EzR’) (FL,FE)* | mode mode B
0.2:1:1 29.32 43.63 2.242 1,1 Transverse® | Delamination |
0.4:1:1 27.89 39.34 2431 1, Transverse | Delamination |
0.6:1:1 26.46 35.04 2.586 1,1 Transverse | Delamination '
0.8:1:1 22.88 31.47 2.483 1.1 Transverse | Delamination |
1:1:1 21.45 30.03 2.562 1.1 Transverse | Delamination

*Non-dimensionalized maximum deflection at first-ply failure

*FL and FE are the failed layer and the failed element number at first-ply failure

*Transverse mode of failure refers to the matrix failure
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Figure 4-29 shows the load versus the maximum deflection response of (+45/0/90):s
laminate for different load ratio values Ny : Ny : Ny, (Nyy = Ny = 1; change Ny values)
under the action of bi-axial compression combined with in-plane positive shear loading.

It is seen that the first-ply failure load and the ultimate failure load decrease with increase

in the load ratio values (Ny).
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Figure 4-29 Load versus the maximum deflection response of (+45/0/90),s laminate for

different load ratio values of bi-axial compression combined with in-plane positive shear

Figure 4-30 shows the variation of the first-ply failure load and the ultimate load of (+8)ss
laminates with fiber orientation (8) under the action of bi-axial compression combined

with in-plane positive shear loading. The results show that the variation in response are
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symmetric with respect to 45° fiber orientation. Peak values of the first-ply failure load
and the ultimate failure load are predicted to occur for 45° orientation. For (0/0)45 and

(£15)4s laminates the first-ply failure loads also are the ultimate failure loads.
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Figure 4-30  Variation of the first-ply failure load and the ultimate load of (£6)s5 laminate

with fiber orientation under bi-axial compression combined with in-plane positive shear

Figure 4-31 shows the variation of the maximum deflection associated with the first-ply
failure and that just before the ultimate failure for (+0)s; laminate. The results predict that
the variations in the maximum deflection are symmetrical about the 45° fiber orientation.

A peak value corresponding to the first-ply failure load occurs for 45° fiber orientation. It
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is observed that the maximum deflection associated with the ultimate load has symmetric

pattern in the case of bi-axial compression combined with in-plane positive shear loading.
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Figure 4-31 Variation of the maximum deflection associated with the first-ply failure load
and the ultimate load of (+0)4s laminate with fiber orientation under bi-axial compression

combined with in-plane positive shear

Figure 4-32 shows the variation of these loads with aspect ratio values for (£45/0/90)-s

laminate. It is seen that the first-ply failure load and the ultimate failure load decrease

with an increase in the values of aspect ratio.
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Figure 4-32 Variation of the first-ply failure load and the ultimate load of (+45/0/90),s laminate

with aspect ratio values under bi-axial compression combined with in-plane positive shear

Figure 4-33 shows the variation of the maximum deflection associated with the first-ply
failure and the ultimate failure, with aspect ratio values for (+45/0/90),s laminate under

the action of bi-axial compression combined with in-plane positive shear loading.
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Figure 4-33 Variation of the maximum deflection of (+45/0/90), laminate with aspect ratio

values under bi-axial compression combined with in-plane positive shear

45 Failure Under Bi-axial Compression Combined with In-plane Negative Shear

Figure 4-34 shows load versus the maximum deflection response of various laminates
under the action of bi-axial compression combined with in-plane negative shear loading.
It is observed that the largest strength is exhibited by (*+45)ss laminate within the
deflection range Wmah <1.6 and by (£45/0/90),s laminate within the deflection range
Wma/h > 1.6. It is also observed that (0/90),, laminate shows the least strength for a fixed

value of the maximum deflection within the range Wpah < 3.7.
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Figure 4-34 Load versus the maximum deflection response of different laminates

under bi-axial compression combined with in-plane negative shear

Figure 4-35 shows the load versus the maximum deflection response of (£45/0/90)y
laminate for various aspect ratio values under the action of bi-axial compression
combined with in-plane negative shear loading. For a fixed value of the maximum
deflection, the highest strength is observed for the aspect ratio of 0.8 while the lowest for
aspect ratio of 3. The failure loads decrease with an increase in the aspect ratio values.
The first-ply failure is matrix failure while the ultimate failure is caused by the

delamination.
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Figure 4-35 Load versus the maximum deflection response of (£45/0/90),s laminate for

various aspect ratio values under bi-axial compression combined with in-plane negative shear

Table 4-11 gives the results for the first-ply failure load and the ultimate failure load of
symmetic laminates (+45/0/90);, (+45)ss and (0/90)ss and unsymmetric laminates
(+45/0/90)4, (£45)s and (0/90)s under the action of bi-axial compression combined with
in-plane negative shear loading. It is seen that for symmetric and unsymmetric laminates,
the first-ply failure load and the ultimate failure load are a little different. The first-ply
failure mode for all symmetric laminates and unsymmetric laminates is transverse

(matrix) failure. The ultimate failure mode for all symmetric laminates and unsymmetric
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laminates is delamination. The first-ply failures in all cases occur at the loaded edge. For

unsymmetric (+45/0/90); and (+45)s laminates, the maximum deflection values are

negative.
Table 4-11  The first-ply failure loads and the ultimate failure loads for symmetric and
unsymmetric laminates under bi-axial compression combined with in-
plane negative shear
First-ply Ultimate Failure First-ply Ultimate
Lay-up failure load | failure load | (Wmax/h)* | location failure failure mode
(NbY/Esh’) | (NbLYERY) (FLFE)* mode
(245/0/90),5 24.32 30.04 3.288 2,21 Transverse® | delamination
(£45/0/90), 22.89 28.61 -3.410 1,5 Transverse | delamination
(£45)4 23.96 29.68 4218 2,5 Transverse | delamination
(245)s 21.46 27.18 -3.889 2,5 Transverse | delamination
(0/90)45 18.59 24.32 3.143 16,21 Transverse | delamination
(0/90)s 19.85 24.14 3.334 16,5 Transverse | delamination

*Non—-dimensionalized maximum deflection at first-ply failure

*Transverse mode of failure refers to the matrix failure

*FL and FE are the failed layer and the failed element number at first-ply failure

Figure 4-36 shows the load versus the maximum deflection response of various

symmetric laminates (£45/0/90),, (+45)ss and (0/90)ss and unsymmetric laminates

(£45/0/90)4, (+45)s and (0/90)s under the action of bi-axial compression combined with

in-plane negative shear loading. It is observed that for symmetric laminate (0/90)4, the

load-maximum deflection curve almost coincides with the load-maximum deflection

curve of unsymmetric laminate (0/90);. However, the maximum deflection of
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(£45/0/90),5 laminate and (+45)ss laminate are positive while the maximum deflection of

(£45/0/90)4 laminate and (+45)s laminate are negative.
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Figure 4-36 Progressive failure of symmetric and unsymmetric laminates under bi-axial

compression combined with in-plane negative shear

Table 4-12 gives the progressive failure analysis results for (£45/0/90),s laminate for
various load ratio values (Nx : Ny : Nyy) in terms of non-dimensionalized first-ply failure

load, ultimate failure load and maximum deflection under the action of bi-axial
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compression combined with in-plane negative shear loading. The ratio of N and Ny is set

to a value of 1, and the value of Ny is changed. In addition, the first-ply failure locations

(i.e. the failed ply number and the failed element number) and the failure modes related

to the first-ply failure and the ultimate failure are also shown in this table. It is observed

that with increasing proportion of in-plane negative shear in the combined loading, the

first-ply failure load and the ultimate failure load are not changed too much. It is

observed that the first-ply failure is matrix failure and the ultimate failure is delamination

in all cases.
Table 4-12  Progressive failure of (£45/0/90) s laminate at various load ratio values
under bi-axial compression combined with in-plane negative shear
Load ratio | First-ply Ultimate Failure First-ply Ultimate
Nx:Ny:Nyy | failur load | failure load | (Wpax/h)* | location | failure failure
(NbZ/Ezh?) | (N b /Ezh1) (FL,FE)* | mode mode
1:1:-0.2 27.89 33.61 3.399 1,25 Transverse® | Delamination
1:1:-0.4 27.89 36.47 3.469 1,25 Transverse | Delamination
1:1:-0.6 27.36 33.79 3.493 2,21 Transverse | Delamination
1: 1:-0.8 27.89 33.62 3.684 2.5 Transverse | Delamination
1:1:-1 24.31 30.04 3.288 2,21 Transverse | Delamination

*Non-dimensionalized maximum deflection at first-ply failure

* FL and FE are the failed layer number and the failed element number at first-ply

*Transverse mode of failure refers to the matrix failure

Figure 4-37 shows the load versus the maximum deflection response of (+45/0/90)z

laminate for different load ratio values Ny : Ny : Ny, (N : Ny = 1, change N,y values)

under the action of bi-axial compression combined with in-plane negative shear loading.
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Table 4-13 gives the progressive failure analysis results for (+ -45/0/90),, laminate for
various load ratio values (Nx : Ny : Nyy) in terms of non-dimensionalized first-ply failure
load, ultimate failure load and maximum deflection under the action of bi-axial
compression combined with in-plane negative shear loading. Here, the value of Ny is
fixed, and the values N, and N, are changed with 1:1 ratio. In addition, the first-ply
failure locations (i.c. the failed ply number and the failed element number) and the failure
modes related to the first-ply failure and the ultimate failure are also shown in this table.
It is observed that with increasing proportion of compressions in the combined loading,
the first-ply failure load and the ultimate failure load decrease monotonically. At Ny: N, :

Ny =1:1:-1, the percentage loss (compared to the case Nx: Ny : N,; =0.2:0.2: -1) in
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Figure 4-37 Load versus the maximum deflection response of (+45/0/90),; laminate for

different load ratio values of bi-axial compression combined with in-plane negative shear
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the first-ply failure and the ultimate failure load are respectively, 57.5 and 43.75. It is

observed that the first-ply failure is matrix failure and the ultimate failure is delamination

in all cases.
Table 4-13  Progressive failure of the (+45/0/90) 5 laminate at various load ratio values
under bi-axial compression combined with in-plane negative shear

Load First-ply Ultimate Failure First-ply Ultimate

ratio failure load | failure load | (Wna/h)* | location failure failure
NeNy:Ny, | NDYEzh%) | (NYE;R®) (FL,FE)* | mode mode
0.2:0.2:-1 57.22 68.66 3.844 2,5 Transverse® | Delamination
0.4:04:-1 44.34 52.92 3.023 2,5 Transverse | Delamination
0.6:0.6:-1 35.04 43.63 3.161 2,5 Transverse | Delamination
0.8:0.8:-1 29.32 35.04 3.308 2,5 Transverse | Delamination

1:1:-1 24.32 30.04 3.288 2,21 Transverse | Delamination

*Non-dimensionalized maximum deflection at first-ply failure

*FL and FE are the failed layer number and the failed element number at first-ply failure

*Transverse mode of failure refers to the matrix failure

Figure 4-38 shows the load versus the maximum deflection response of (+45/0/90)s

laminate for different load ratio values Ny : Ny : Nyy (Nyy = -1, change Ny and N, values)
under the action of bi-axial compression combined with in-plane negative shear loading.
It is seen that the first-ply failure load and the ultimate failure load decrease with

increasing load ratio values (Ny, Ny).

Table 4-14 gives the progressive failure analysis results for (+45/0/90)s laminate for

various load ratio values (Nx : Ny : Nyy) in terms of non-dimensionalized first-ply failure
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load, ultimate failure load and maximum deflection under the bi-axial compression
combined with in-plane negative shear loading. The ratio of N,y and N, is set to a value
of 1, and the value of Ny is changed. In addition, the first-ply failure locations (i.e. the
failed ply number and the failed element number) and the failure modes related to the
first-ply failure and the ultimate failure are also shown in this table. It is observed that
with increasing proportion of compressions in the combined loading, the first-ply failure
load and the ultimate failure load decrease monotonically. At Nx: Ny : Ny =1:1: -1, the
percentage loss (compared to the case Ny : Ny : Nyy = 0.2 : 1 : -1) in the first-ply failure

and the ultimate failure loads is respectively, 24.4 and 26.3.
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Figure 4-38 Load versus the maximum deflection response of (+45/0/90),s laminate for

different load ratio values of bi-axial compression combined with in-plane negative shear
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Table 4-14  Progressive failure of (+45/0/90) 55 laminate at various load ratio values
under bi-axial compression combined with in-plane negative shear
Load ratio | First-ply Ultimate Failure First-ply Ultimate
N«:Ny:Ny | failure load | Failure load | (Wmax/h)* | location failure failure
(NBYER%) | (NDYE R (FL.FE)* mode mode
0.2:1:-1 32.18 40.77 2.923 2,21 Transverse® | Delamination
04:1:-1 30.75 36.47 3.144 2,21 Transverse | Delamination
0.6:1:-1 29.32 35.04 3.333 2,5 Transverse | Delamination
0.8:1:-1 25.75 31.47 3.193 2,21 Transverse | Delamination
I:1:-1 24.32 30.04 3.288 2,21 Transverse | Delamination

*Non-dimensionalized maximum deflection at first-ply failure

*FL and FE are the failed layer number and the failed element number at first-ply failure

*Transverse mode of failure refers to the matrix failure

Figure 4-39 shows the load versus the maximum deflection response of (+45/0/90),,

laminate for different load ratio values Ny : Ny : Nyy (Nyy = -1, Ny = 1, change N values)

under the action of bi-axial compression combined with in-plane negative shear loading.

It is seen that the first-ply failure load and the ultimate failure load decrease with increase

in the load ratio values (N,).
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Figure 4-39 Load versus the maximum deflection response of (+45/0/90),s laminate for

different load ratio values of bi-axial compression combined with in-plane negative shear

Figure 4-40 shows the variation of the first-ply failure load and the ultimate load of (1),
laminates with fiber orientation (8) under the action of bi-axial compression combined
with in-plane negative shear loading. The results show that the variations in response are
symmetric with respect to 45° fiber orientation. Peak values of the first-ply failure load
and the ultimate failure load are predicted to occur for 45° orientation. For (0/0)4s and

(£15)4s laminates, the first-ply failure loads also are the ultimate failure loads.
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Figure 4-40 Variation of the first-ply failure load and the ultimate load of (+8)4 laminate

with fiber orientation under bi-axial compression combined with in-plane negative shear

Figure 4-41 shows the variation of the maximum deflection associated with the first-ply
failure and that just before the ultimate failure for (£6)ss laminate. The results predict that
the variations in the maximum deflection are symmetrical about the 45° fiber orientation.
A peak value corresponding to the first-ply failure load occurs for 45° fiber orientation. It
is observed that the maximum deflection associated with the ultimate load has a
symmetric pattern in the case of bi-axial compression combined with in-plane negative

shear loading.
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Figure 4-41 Variation of the maximum deflection associated with the first-ply failure and the
ultimate load of (£8);; laminate with fiber orientation under bi-axial compression combined

with in-plane negative shear

Figure 4-42 shows the variation of these loads with aspect ratio values for (45/0/90)s
laminates under the action of bi-axial compression combined with in-plane negative

shear.
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Figure 4-42 Variation of the first-ply failure load and the ultimate failure load of
(+45/0/90),s laminate with aspect ratio values under bi-axial compression

combined with in-plane negative shear

Figure 4-43 shows the variation of the maximum deflection associated with the first-ply

failure and the ultimate failure with aspect ratio values for (+45/0/90),s laminate under

the action of bi-axial compression combined with in-plane negative shear loading.
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Figure 4-43 Variation of the maximum deflection of (+45/0/90), laminate with aspect ratio

values under bi-axial compression combined with in-plane negative shear

4.6 Conclusion

For the case of uni-axial compression or bi-axial compression, the tensor polynomial
form of the maximum stress criterion is used to predict the failure of the lamina. For the

case of bi-axial compression combined with in-plane positive or negative shear loadings,
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the tensor polynomial form of the 3-D Tsai-Hill criterion is used to predict the failure of
the lamina. The maximum stress criterion is used to predict the onset of delamination at

the interface between two adjacent layers.

The influences of plate aspect ratio, symmetric and unsymmetric lay-ups, and fiber
orientations on the deflection response, first-ply failure load, ultimate failure load. failure
mode and the maximum deflection associated with failure loads are determined. The
results of the present study predict that the maximum difference in the first-ply failure
loads and the ultimate failure loads are strongly dependent on the type of laminate lay-up
and aspect ratio value. Failure mode of the first-ply failure is associated with the
localized matrix cracking and occurs primarily due to in-plane normal stresses acting in
the direction transverse to the fiber direction irrespective of the laminate lay-up and
aspect ratio value. The first-ply failure locations are found to be the most critical points of
failure and they lie near the loaded edges of the plate. In (£45/0/90):5 laminate (for all
aspect ratio values) under the action of bi-axial compression combined with in-plane
shear loading, the ultimate failure mode is delamination. The failure loads of laminates
under the action of bi-axial compression are lesser than that for the laminates under the
action of uni-axial compression. However, there is a small change in the first-ply and
ultimate failure loads when the bi-axial compression is applied together with the shear

load.
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Chapter 5

Stochastic Failure Analysis

5.1 Introduction

The reliability of many engineering structures in the presence of uncertainty has been a
crucial factor in their analysis and design. Primary and secondary systems related to
aerospace structures are quite sensitive to small imperfertions in pertinent design
variables. Several of these variables are inherently random and can be most appropriately
modeled as random processes. They may include quantities such as modulus of elasticity.
Poisson ratio, shear strength, and a variety of other physical and mathematical
parameters. Clearly, the complexity of these modern structures requires the use of
versatile numerical techniques such as the finite element method to obtain accurate

mathematical approximations to their physical behavior.

Significant randomness is displayed in the spatial variations in the properties of fibers
and of matrix materials, in the properties at interfaces, in the fiber orientation angles of
various piles, in the thickness of lamina, and so on. Tests on a single material specimen
provide a specific value for each material parameter and mechanical property. However,
different randomly distributed values are obtained for the same mechanical property or
the material parameter after a number of specimens are tested. Most of the existing
techniques are limited to dealing with deterministic loadings and environmental

conditions despite the fact that they intrinsically involve randomness and uncertainty to a
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considerable degree. Therefore, the analysis of laminates should be performed based on a
probabilistic approach. In light of this, this thesis applies tools such as the Markov Model
and Stochastic Finite Element Analysis, which is basically Finite Element Analysis

performed on the basis of a stochastic approach.

We begin in the following section with a description of the analytical modeling of
material properties as stochastic processes. MATLAB program developed in Chapter 3
and Chapter 4 is extended so as to incorporate stochastic description of material

properties and stochastic finite element analysis.

5.2  Stochastic Field Modeling of Material Properties

Such spatial variations of material properties as Young’s modulus. Poisson’s ratio and the
shear modulus, are each considered to constitute a two-dimensional homogeneous
stochastic field. The fluctuating components of a material property have a zero mean. For

tllustrative purposes, first the stochastic field of Young's modulus in the fiber direction

(E,) is described below. A similar procedure is applicable to E,. E,. G,,. G., G,,.

V.. vy, and v,,, ply orientation angle and ply thickness.

E, =E1+a(X)] (5.1)
Ela(X)]=0 (5.2)

The auto-correlation function is given by

R,.(&)=Ela(X )a(X +¢)] (5.3)
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In the equations (5.1-5.3). X =[x.¥[ indicates the position vector and f:[f,.g"]r

represents the separation vector between two points X and (X +¢£). In the present thesis.
it is assumed that each material property varies at each Gauss point of all the finite
elements. Thus. if there are a total of n finite elements present in the structure, and m
represents the order of Gauss quadrature. then there are N (equal to n*m) material
property values associated with the n elements. Consider only the fluctuating component
of the homogeneous stochastic field. which models the material property variations
around the expected value. These N values a =a(X,). (i=123.. . . .N). are
random variables with mean zero, but correlated. Here, X, corresponds to the location of
each Gauss point. Their correlation characteristics can be specified in terms of the

covariance matrix C,, of order N*N, whose ;" component is given by:

c,= Cov[a,a/]= EUa,a’,”z R, (E,I) i.j=L..N (5.4)

in which &, = (X ,—X ,) represents the separation distance between the Gauss points i

and ;. Then, a vector a = [al a, a,.. ay ]r can be obtained as
a=LZ (5.5)
where Z = [Z, Z, Z.. Z, ]T 1s a matrix consisting of N independent Gaussian

random variables with zero mean and unit standard deviation, and L is a lower triangular

matrix obtained by the Cholesky decomposition of the covariance matrix C_, .Thus.



LL" =C (5.6)

Once the Cholesky decomposition is accomplished, different sample vectors of a are

easily obtained by generating different samples for the Gaussian random vectors Z .

The correlation properties of the stochastic field representing the fluctuating components
of material properties are expressed using the Markov correlation model. also known as
the First-order autoregressive model. The choice of this model in this work is due to its

familiarity and wide use.

5.3 Markov Model

The Markov correlation model is given by [25]

R, (&)=0; t:xp,:-[l%1 ]1 (5.6)
J

in which the correlation length 4 is a positive parameter such that when it is large the

correlation disappears more slowly, and o, is the standard deviation of the stochastic

field a(X).

The process a(X) is defined as the stochastic field which represents the deviatoric
components of the material property with autocorrelation function as given in the Markov
model. The basic material properties such as the elastic modulus and Poisson’s ratio are

assumed to have a Gaussian distribution and are given by:



E,6=E, (l + ag) I-directional Young's modulus (5.6)
E, =E,(1+b,) 2-directional Young's modulus (5.7)
E. =E,, (l +Cz) 3-directional Young's modulus (5.8)
Vi = v,:m(l +d, ) 1-2 directional Poisson’s ratio (3.9)
Vi = "n,..(l +e‘,) I-3 directional Poisson’s ratio (5.10)
Vi, = vm(l + fc) 2-3 directional Poisson’s ratio (5.11)
G, =G, (1+ g, ) I-2 directional Shear modulus (5.12)
G., =G, (1+ h, ) [-3 directional Shear modulus (5.13)
G,., =G, (l + jz) 2-3 directional Shear modulus (5.14

in which a,. b,. c,. d, . e,. f,. g, h, and j, are the values of the stochastic field
a(X), b(X). (X)), d(X). e(X). f(X), g(X). h(X) and j(X). respectively, at each
Gauss point in the structure. These values also represent the variations in the material
properties

E.E.E.v, v, vs.G, G,and G,,. E_, E, and E, arethe mean values of

the Young’s modulus in directions 1, 2 and 3, respectively, and, v,,,.. Vs, .and v,, are

the mean values of the 1-2 direction Poisson's ratio. 1-3 direction Poisson’s ratio and 2-3



direction Poisson’s ratio. G,,, . G;, and G, are the mean values of the 1-2 direction

Shear modulus. 1-3 direction Shear modulus and 2-3 direction Shear modulus.

Variations of fiber orientation angle &, and thickness of plies ¢  are expressed in a

similar manner given by:

6,=0,t+k,) (5.15)

t, =1, (1+1,) (5.16)

in which 8_ and ¢, are the mean values of the fiber orientation angle and ply thickness

respectively.

The assumption of Gaussian distribution implies the possibility of generating negative
values for the material properties. In order to avoid this difficulty. the values of the

random variable a, in the case of Monte-Carlo simulation are confined to the range

~l+e<a,<l-¢ (5.17)

in which £ is a positive constant introduced to avoid the mathematical complications that

would arise if the sum (l+a_) becomes negative or zero. The other material property

values are confined in a similar manner.



5.4 Stochastic Elasticity Matrix

The boundary conditions that have been considered in this study are shown in Figure 5-1.
Properties of NCT-301 graphite/epoxy material (Ganesan and Haque [66]) used in the

present study are presented in Table 5-1.

Y vz0. uz0. 0,20
A b
v#0. 8,20 "T v#0. uz0, 8,20
T? b
o TN . . 5
4 uz0, 6,20.

Figure 5-1 Details of boundary conditions for the laminated plate

Table 5-1  Material properties of NCT-301 graphite-epoxy [64]

Mechanical Mean values Slaf_ldi_if d Strength Values
properties deviation properties
E; 129.43 GPa 2.8719 X, 1584.8 MPa
E, 7.99 GPa 0.3298 X 1033.5 MPa
E: 7.99 GPa 0.3298 Y=272 48.28 MPa
Gi=G1s 428 GPa 0.2366 Y=2Z 48.28 MPa
Vio= V13 033 0.0317 R 25.90 MPa
var 0.4 0.0317 5= 33.3 MPa

In the Table 5-1, vi2, Vi3 and va; are the Poisson’s ratios in the planes 1-2, 1-3 and 2-3,
respectively. E;, and E: and Ej; are principal Young's modulus in the fiber direction and

in the directions transverse to it, respectively. Gja. Gy3 and Gz; are shear modulus
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associated with planes [-2, 1-3 and 2-3, respectively. X, is the tensile strength of lamina
in fiber direction. X, is the compressive strength of lamina in the fiber direction. Y, is the
tensile strength of lamina in the direction (in plane 1-2) transverse to the fiber direction.
Y. is the compressive strength of lamina in the same direction. Z, is the tensile strength of
lamina in principal material direction 3. Z. is the compressive strength of lamina in

principal material direction 3. R, S and T are shear strengths of lamina in planes 2-3, [-3

and 1-2, respectively.

In the Figure 5-1. a and b are dimensions of the full plate in X and Y directions.

Dimensions of the plate are: a =279 mm and b = 279 mm. Ply thickness is 0.135 mm.

A 5x5 finite element mesh is used in the present analysis. Figure 4-2 shows the finite
element mesh for 5x35 type. Figure 5-2 and Figure 5-3 show the direction of the applied

shear loading along with the fiber direction.

p
L)
Y R Y S
2 2
l ~ l [ I \él.
\é'e %)

. X - X
. >

Figure 5-2 Notation for the positive Figure 5-3 Notation for the negative

shear shear



It is to be noted that in-plane shear loading is applied on all four edges of the plate, while
uni-axial compressive loading is applied at the edge x = a, and bi-axial compressive

loadings are applied on the edges x =aand y =b.

Bi-axial compressive loadings N, and Ny are expressed in figures in non-dimensionalized
forms by N.b¥E:h* and Nyb:/Egh" respectively. N is the applied X-direction axial
compressive loading per unit length. N, is the applied Y-direction axial compressive
loading per unit length. The corresponding central (transverse) deflection is also

expressed in non-dimensionalized form by w./h where h is the total thickness of the

laminate.

Using the test data on elastic constants of the composite material (given in Table 5-1) and
the generated sample realizations of elastic constants at each Gauss point, the stochastic
Young's modulus, Poisson’s ratio, and shear modulus are determined according to the
equations (5.3-5.17). Further, the stochastic laminate elasticity matrix [E] at the
corresponding Gauss point is obtained in the same way. In practice, a three-point Gauss
quadrature is employed as it gives the most accurate results for 9-node element. Sample
realizations of Young's moduli, Poisson’s ratios, Shear moduli and the stochastic

elasticity matrix [E] calculated for element | and 13 in the structure of laminate

(£45/0/90),, are shown in Figure 5-4.



E=129.08 GPa
E.=7.73 GPa
E;=8.42 GPa
v;>=0.30
v13=0.27
V33=0.37
G>=4.07 GPa
G,3=2.77 GPa
G:3=4.34 GPa

7

4

Y Ei=132.54 GPa

E.=8.40 GPa
E:=7.70 GPa
v1>=0.30
v3=0.31
v13=0.38
G|3=4. 16 GPa
G|}=2.72 GPa
Gi:=4.17 GPa

-t

!
]

~

Element |

E=135.55 GPa
E>=7.95 GPa
E;=8.19 GPa
V|3=0.36
V|3ﬂ.35
V33=0.42
Gi>=4.36 GPa
G13=2.86 GPa
Gg3=4. 17 GPa

E\=132.57 GPa
E;=7.92 GPa
E_z=8.4l GPa
V|:——0.33
V1}=O.35
V:}=O.42
G|3=4.17 GPa
G|]=2.88 GPa
G:}-—-“.26 GPa

[
-

Figure 5-4 A set of sample realizations of elastic constants at different Gauss points in

Element 13

element | (at the loaded edge) and element 13 (the central element)



5.5 Stochastic Analysis Resuits

In the stochastic analysis, the number of simulations is kept at 150 considering the
computational time taken for the entire stochastic analysis. The mean values and the
standard deviation values of both the first-ply failure load and the ultimate failure load for

the (+45/0/90);s laminate that is subjected to uni-axial compressive loading are

determined.

The mean values of the first-ply failure load and the corresponding maximum deflection
are presented in Figure 5-5. The mean values of the first-ply failure load and the
maximum deflection are both influenced by the number of simulations. Within the range
of 1-30 simulations, the mean value of the first-ply failure load decreases. Within the
range of 30-150 simulations the mean value increases. It can be observed that between
the range of 10-150 simulations, the mean values of the first-ply failure load and mean

values of the maximum deflection at the first-ply failure have the same trend of variation.

The vanations of the standard deviation values of the first-ply failure load and the
maximum deflection with the number of simulations are presented below in Figure 5-6.

The standard deviation values of the first-ply failure load and the maximum deflection
are both influenced by the number of simulations. It can be observed that between the
range of 60-150 simulations, the standard deviation values of the first-ply failure load and
the standard deviation values of the maximum deflection at the first-ply failure have the

same trend of variation. The standard deviation values of the first-ply failure load and the



standard deviation values of the maximum deflection at the first-ply failure decrease in

the range of 60-150.

The mean values of the ultimate failure load and the corresponding maximum deflection
are presented in Figure 5-7. The mean values of the ultimate failure load and the mean
values of the maximum deflection are influenced by the number of simulations. The
mean values of the ultimate failure load and the mean values of the maximum deflection

have the same trend of variation between 60-140 simulations.

The ratio of the mean value of the uitimate failure load to the mean value of the first-ply
failure load corresponding to each simulation is calculated. It has been observed that the

minimum value of this ratio is 1.060 and the maximum value is 1.065.

The variations of the standard deviation values with the number of simulations are
presented below in Figure 5-8. The standard deviation values of the ultimate failure load

and the maximum deflection are both influenced by the number of simulations.

The ratio of the standard deviation of the ultimate failure load to the standard deviation of
the first-ply failure load corresponding to each simulation is calculated. It has been
observed that the minimum value of this ratio is 0.866 and the maximum value is 0.909.
This indicates that the degree of randomness in the ultimate failure is lesser than that in

the first-ply failure.
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Now the case of bi-axial compression is considered. The ratio of N, : N, is set to be equal
to (1 : 1). The variations of the mean values of the first-ply failure lodd and the maximum
deflection are shown in Figure 5-9. The mean values of the first-ply failure load and the
maximum deflection are both influenced by the number of simulations. It can be
observed that between the range of 45-150 simulations, the mean values of the first-ply
failure load and mean values of the maximum deflection at the first-ply failure have the

same trend of variation.

The variations of the standard deviation values of the first-ply failure load and the
maximum deflection with the number of simulations are presented below in Figure 5-10.

The standard deviation values of the first-ply failure load and the maximum deflection
are both influenced by the number of simulations. It can be observed that in the range of
30-150 simulations, the standard deviation values of the first-ply failure load and the
standard deviation values of the maximum deflection at the first-ply failure have the same

trend of variation.

The mean values of the ultimate failure load and the corresponding maximum deflection
are presented in Figure 5-11. The mean values of the ultimate failure load and the mean
values of the maximum deflection are influenced by the number of simulations. The
mean values of the ultimate failure load and the mean values of the maximum deflection

have the same trend of variation between 10-140 simulations.
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The ratio of the mean value of the ultimate failure load to the mean value of the first-ply
failure load corresponding to each simulation is calculated. The minimum value of this

ratio is found to be 1.056 and the maximum value is 1.057.

The variations of the standard deviation values with the number of simulations are
presented below in Figure 5-12. The standard deviation values of the ultimate failure load

and the maximum deflection are both influenced by the number of simulations.

The ratio of the standard deviation of the ultimate failure load to the standard deviation of
the first-ply failure load corresponding to each simulation is calculated. It is observed that
the minimum value of this ratio is 0.979 and the maximum value is 0.98. This indicates
that the degree of randomness in the ultimate failure and that in the first-ply failure are
almost the same, in the case of bi-axial loading. It has previously been pointed out that

this is not the case when the loading is uni-axial.
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5.6 Conclusion

This thesis has investigated the progressive failure of composite laminates using a non-
linear finite element formulation that also takes into account the effects due to shear
deformation. The influences of randomness in the material property values on the first-
ply and ultimate failure loads. and the corresponding maximum deflections of the
laminate have also been investigated. The number of simulations seems to have a strong
influence on the probabilistic characteristics of predicted failure loads and maximum
deflection values when the number of simulations is less than 100. Considering the
maximum value of the ratio of the mean value of the ultimate failure load to the mean
value of the first-ply failure load for both the cases of uni-axial and bi-axial compression.
it has been found that the case of uni-axial compression results in a higher value. This
indicates that more reserve strength is available after the first-ply failure in this case.
Considering the maximum value of the ratio of the standard deviation of the ultimate
failure load to the standard deviation of the first-ply failure load for both the cases of uni-
axial and bi-axial compression, it is found that the case of bi-axial compression results in
a higher value. Therefore, the degree of randomness in the ultimate failure is almost the
same as that in the first-ply failure. This indicates that considerable variations in the

reserve strength are present in this case, suggesting that the reliability is low for this case.
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Chapter 6

Conclusions and Recommendations

In the present thesis, the principle of minimum potential energy is used to derive the
nonlinear finite element formulation. The finite element formulation is based on the first-
order shear deformation theory and the von Karman geometric non-linearity hypothesis
and also the finite element formulation employs a nine-node Lagrangian element having
five degrees of freedom (two in-plane displacements, one transverse displacement and
two rotational degrees of freedom) per node. The resulting nonlinear equations are solved

using the Newton-Raphson technique.

For the stochastic failure analysis. a stochastic finite element methodolo;gy based on the
Monte Carlo Simulation is used. The program that has been developed to conduct the
non-linear finite element analysis is extended so as to incorporate the stochastic
description of material properties and the stochastic finite element analysis. In the case of
stochastic material properties. the mean values and the standard deviation values of

failure loads are calculated.

For the case of uni-axial compression and bi-axial compression. the tensor polynomial
form of the maximum stress criterion is used to predict the failure of the lamina. For the
case of bi-axial compression combined with in-plane positive or negative shear loadings,
the tensor polynomial form of the 3-D Tsai-Hill criterion is used to predict the failure of
the lamina. The maximum stress criterion is used to predict the onset of delamination at

the interface between two adjacent layers. The influences of plate aspect ratio, symmetric
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and unsymmetric lay-ups, and fiber orientations on the deflection response, the first-ply
failure load. the ultimate failure load, the failure mode and the maximum deflection
associated with the failure loads are determined. In addition. progressive failure of

(245/0/90)3, (+45)ss and (0/90)s, laminates are analyzed.

Based on the study. the following main concluding remarks can be made:

eThe maximum difference in the first-ply failure loads and the ultimate failure

loads are strongly dependent on the type of laminate lay-up and aspect ratio value.

eFailure mode of the first-ply failure is associated with the localized matrix
cracking and occurs primarily due to in-plane normal stresses acting in the
direction transverse to the fiber direction irrespective of the laminate lay-up and

aspect ratio value.

*The first-ply failure locations are found to be the most critical points of failure

and they lie near the loaded edges of the plate.

eln (+45/0/90) laminate (for all aspect ratio values) under the action of bi-axial

compression combined with in-plane shear loading, the ultimate failure mode is
delamination.

eThe failure loads of laminates under the action of bi-axial compression are lesser
than that for the laminates under the action of uni-axial compression. However,
there is a small change in the first-ply and ultimate failure loads when the bi-axial

compression is applied together with the shear load.



eConsidering the maximum value of the ratio of the mean value of the ultimate
failure load to the mean value of the first-ply failure load for both the cases of uni-
axial and bi-axial compression, it has been noted that the case of uni-axial
compression results in a higher value. This indicates that more reserve strength is
available after the first-ply failure in this case.

eConsidering the maximum value of the ratio of the standard deviation of the
ultimate failure load to the standard deviation of the first-ply failure load for both
the cases of uni-axial and bi-axial compression, it has been noted that the case of
bi-axial compression results in a higher value. This indicates that considerable
variations in the reserve strength are present in this case thereby indicating that

the reliability is low for this case.

The following recommendations may be considered in the future studies:

eProgressive failure analysis using Hashin criterion or using Tensor polynomial

criteria of maximum strain (Tsai-Wu) criterion has to be conducted.

eUsing other stochastic models . laminate progressive failure analysis has to be

conducted.

sStochastic progressive failure analysis under the action of bi-axial compression

combined with in-plane shear loading has to be conducted.
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