INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Design of 3D Graphic Editor

Zhaoxia Liu

A Major Report
In
The Department
Of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

August 2002

©Zhaoxia Liu, 2002

i+l

National Library Bibliothéque nationale
of Canada du Canada
mmagms :cgwunces b.blggraphlques
385 Wellington Street 305, rus Wellington
Ontawa ON K1A ON4 Otawa ON K1A ON4
Canata Canada
Yaur fe Votre rlérence
Our s Nowe réldverce
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-72940-0

Canada

Abstract

Design of 3D Graphic Editor

Zhaoxia Liu

In this report, the design of a 3D graphic editor is provided with object-oriented
technology and OpenGL GLUT framework. The functionalities and features in the
system of this project contain documenting 3D graphic objects, dynamically creating
multiple windows and subwindows, and manipulating OpenGL features, such as,
lighting, colors, solid and wire mesh states. A hierarchical data structure is built to enable
import and export assembled object data. The application of building graphic objects

shows that the system performs its functionalities.

- i -

Acknowledgments

First and foremost, | would like to express my sincere gratitude to my supervisor, Prof. Peter
Grogono, for his kind agreement to my initial motivation and proposal. Subsequently his
enthusiastic support and valuable guidance gave me an excellent chance to explore the state of the

art technology for this project. Without his kind support i could not finish it.

Second | would like to express my sincere thanks to my partner, Mr. Shuli Yang, for his

contribution to this project -- described in the Implement of 3D Graphics Editor.

Finally. | would like to thank all people who provided help and support for my project.

—iv-

Table of contents

Chapter l: lntrod“ction.....................‘........................O..... 3

1.1 PrOJECt Acoeceeineeeeeecceecenctecieere et sttt ene 3
1.2 Project Taskscccoeeeueeeeceminiiniieerei ettt 4
1.3 The Organization of The Projectcooeeeerienereiennienennane 4
Chapter 2: Object-Oriented Technology.ececcceocescecccccsccccccscsccces 6
2.1 Object-Oriented Modeling...........ccccouviememmieieneiineeeecieeee 6
2.2 Object-Oriented DESIZNcccemruiruerreinieieetiieeeee e 7
2.3 Object-Oriented Implementationcooeeeievenieeeeneneieeeeeene 8
Chapter 3: OpenGL API 000000000000 0000000000000000000000003000000000000 1 1
3.1 GL LIDIArY .ottt ettt 11
3.2 GLU LADEAIY wevvoeeoeeeese oo eeeeecesseseeseevssmsesssssssesssssssssssssssmsnssssnneee 13
3.3 GLUT Library ..ottt see e 14
3.3.1 Initialize and Create @ WindOWcccocuveeeieecueereiinieneeeineeenniceaicsssnsnseensns 14
3.3.2 Handle Window and Input EVENtsccovmemmiienieeeeeeeccceeane 15
3.3.3 Load the Color MAapc.ceceeieeeiriiiiinetnrcereeite et eaene 15
3.3.4 Initialize and Draw 3D Graphic Objects........cccoeiiinrirreoniniienieieeeeeee 16
3.3.5 Manage a Background Process ... 16
3.3.6 Run the Programi........cooecceiiuciiiriinrieeesissssssisse sttt sanes 16
Chapter 4: System Design 0000000000000 00000000000080000000000000000000000 17
4.1 System ATChIteCtUTE..........coovumeemiririeieieene e 17
4.1.1 System Design Strategycccovremriermemeienrrnncitsinint ettt 17
4.1.2 Class DIQEIAMc.ceeueeeeeieiiniierrrrnee sttt st st scn s s neas 18
4.1.3 System Process StIUCIUTEc.coerirmrriirreimreetntnienttns et 19
4.1.4 System INETACLIONSecevemieirinimieiecrieesnee ettt s 20
4.1.4.1 Open and Close WindoWws.........c.coerrueieemrmescencnnencteienence i 20
4.1.4.2 Import and Export Assembly Data.........ccooevinniicicniiinne, 21
4.1.4.3 Model Graphics Objects and Manipulate Featuresccccovreennnnnnee. 22
4.2 Object Data Structure and Data Storagesccoeveveeerccecnennnne 23
4.2.1 Object Data StrUCHUTE.........ccuvevireereninnee ettt 24
4.2.2 DAta SLOTALEScveevrrerercreenensireereseeneesesssssssestessssssest et et et satassnsssesnes 24
4.3 Individual Class DESIgNcccocieriiimiirminimiiteeieeneteneee e 26
4.3.1 Application Classcocucuieimiimiieieineenietcerteet ettt e 26
4.3.2 GLUT Framework Classccecceeerernceirmeniernnenecnncesesssssesnessesccssscsessens 27
4.3.3 WINAOW CLASS ...uveneeeieeereennreeeeerecscneeeaessessessressnessesrnnsssnsssssssssssssesssncsssases 28
B.3.4 VIEW ClaSS .eoeeeeeienieeeeeieeceeereesceeeseeessetssnesnsessessesseesasssssssesssassenasesecssstsssanas 29
4.3.5 CoNrOl ClaSS.......oeeureereereecreeeeeeeeeeecseesaeisnesnessesssssesssssssssns st sesenesnsessesesnins 30
4.3.6 Light ClaSscvoveueeenereeinerecnciincneni e s ensss ettt 31
4.3.7 DOCUMENE ClASSuvrvereenrerecreerreceeeereiiseanterrasesassassas s s e sessessnnesat st e sesanessens 32
4.3.8 Geometric ObJect Class.........ccorirmiermrrneenieentietceciitste e 34

4.4 Structure Abstract Data Type......cccocevvemmmmreemeeieeeeeeee 39

4.4.1 3D POINt SIIUCE........oeeeeeeeecceaceenieiecntersere st ersesssne s re s aesstnessee s s s s sesnesssane 39
4.4.2 Bounding BoX SHIUCL......ccccoireieririimciinretesteee et 39
4.4.3 Window Information Structc.ccccoeereieiinimieeeieeeete e 40
4.5 Structure Abstract Data Type.......ccceoeeemveniriviiininiicieciieeeienne 40
Chapter 5: 3D Graphics Editor — Application Result ceeceeccccccccee 41
5.1 Start SYStEIMoeeeieeeereceeeeeeecetrer e 41
5.2Creating A Bed...........oomioeiieeccciree e 43
5.3 Creating A Chair.........ccccocmnmimimniiniiieneieceeie e 45
5.4 Creating Living Room Light.........cccoooiiiiine 45
5.5 Create a Table Light........ccccooomomiiiiieeeee 46
5.6 Create BoOKShelfccoeveriemienineeieeiiececcee e 47
5.7 Create A Wardrobecoooceeeeirimnimciciiiiiccece e 47
5.8 Create A DESKcoeeeeemrecieeeeeeenteeteinrerenrne e e e 48
5.9 Create A Telephonecccccoveeiiiiiiiiiiinieeteeece e 49
5.10 Create A ClOCK......ccoeeereeeeeeieeretecierneeeceisee e nn e s ae e 49
5.11 Create Some Other Assembly Objects..........cccceevrveirrrrenreennnnnnn. 50
5.12 Assembly the Created Objects.........ccoecerirniirirninineieiieeeenene 51
5.13 Create Multiple WindOws...........ccccemevivenrenreerienreeecineneeseeneennes 53
5.14 Global and Object features.............cooeevermvreneeeienenieneee e 57
Chapter 6: Conclusion ceeececcesecccscencccscccccscssssccssccssccccosces 59
6.1 Experiences on Object-Oriented Programming............cccecceeeneence. 59
6.2 FUIhEr WOTK ..ottt e ee e e 59

Bib“ography... 60

Chapter 1: Introduction

OpenGL has widely been used to implement computer graphics and animation
applications [PG98], CAD engineering application, game development, virtual physical
reality and real-time visual systems [RW96]. It is powerful for rendering computer
graphics in various system platforms. However, the libraries in OpenGL are written by C
language and not object-oriented (OO). Object-Oriented technology has dominated
industry software development for many years, OO technology gives many benefits to
human to develop a software product, and it contains effective methodologies to build
software products, such as modeling, analysis, design and implementation. Therefore, in
this project, some functions in OpenGl are realized by OOP so that the functions can be
easily reused, inherited and modified. The C++ is a popular OO Language and is chosen
to implement the project.

This project is designed as a system of computer graphics editor for creating and editing
3D graphics, creating muitiple windows and performing OpenGL features. In this report,
we present the design of a 3D graphics editor. The system design is based on object-
oriented techniques, and it is implemented by C++ language [HS98] and documented in

the report [SLY]: “The Implementation of 3D Graphics Editor”.

1.1 Project Aim

The project is to develop 3D computer graphic editor tools with multiple windows. This
system is an OpenGL framework application, and it is implemented with object-oriented
technology, that is, the system analysis, architecture, design and implementation follow

this technology. As we consider the system emphasizing graphics edition, we have had

-3-

the functionalities to import and export the graphics object data. Therefore, some
primitive 3D graphics components are built, and their shapes and positions can be

changed so that complex 3D scenes can be built conveniently.

1.2 Project Tasks

The project tasks consist of the technologies used and the functionalities implemented.

e The project will be designed and implemented by using object-oriented technology
and object-oriented programming language, C++.

¢ The system of the project is based on OpenGL APL.

e The system is able to create and close windows dynamically.

e Ten solid primitive graphics components are built.

e Ten wire primitive graphics components are built.

e The system is able to import and export graphics object data files.

e The system can perform graphics features, such as, lighting, transformations, etc.

e Combining with the above functionalities, the system realizes its function to edit 3D

computer graphics.

1.3 The Organization of The Project

This project is for building a 3D graphics editor. It is designed and implemented by using
object-oriented technology and C++ language with OpenGL API. The user can use the
application to create and edit 3D graphics objects and view the objects from multiple

windows. The graphics objects can be created with the assemblies in a hierarchical

structure. The consideration of the project is to present an Object-Oriented approach to
build the composite and complex graphical objects by using the primitive graphics
components. We classify the OpenGL, GLU, GLAUX and GLUT functionalities on
various aspects in the system of the project, such as GLUT window functions, GLU view
function, AUX for 3D graphics representation, and OpenGL basic functions for global
environment features and individual object features, such as, lighting, color,

transformation, etc.

Chapter 2: Object-Oriented Technology

Object-oriented technology can roughly be classified to object-oriented modeling, object-
oriented design and object-oriented implementation. It provides a practical, productive
way to develop software for most practical application projects, and it makes software
products that are easily reused and maintained. Traditional software development is
mainly about functions and procedures, and it is not concemed with real world object
structure. Object-oriented technology presents a powerful approach to real world objects,
such as object concepts, attributes and behaviors, and makes software development more

objective and effective.

2.1 Object-Oriented Modeling

Modeling is a critical part in software development [BRJ99]. OO technology can control
a complexity of large-scale software system because of the modeling principle. The
principle of modularity ensures that a complex and large system should be decomposed
into many modules, in which a tight cohesion between components in a module and a
loose coupling between modules has to be ensured. According to the modeling principle,
we break a complex and large system into a set of modules so that each module is

relatively small and simple, and the interactions among modules are relatively simple.

Object-oriented modeling is more concerned with aspects of the entire system and also
the components used for building systems. Object-oriented modeling contains structural

modeling, behavioral modeling and architectural modeling.

2.2 Object-Oriented Design

From a design point of view, there are several aspects, data abstraction, encapsulation,
inheritance and polymorphism, to be considered with object-oriented technology
[BRJ99]. The processes for working on object-oriented design are the analysis of
software requirements, system architecture design for the whole system, subsystem

design and detail design for the individual components.

e Abstraction models the system and consists of making the essential, inherent aspects
of an entity, and it separates the essential from the nonessential characteristics of an
entity. Abstraction classifies and groups the data of the system into the objective type;
the result is a simpler but sufficiently accurate approximation of the original entity,

obtained by removing or ignoring the nonessential characteristics.

e Encapsulation realize information hiding, a client doesn’t need know how a service is
done but the service contract while using the service. If the clients know nothing
beyond the contractual interface, implementation can be modified without affecting
the clients, so long as the contractual interface remains the same. Tightly cohesive
components should be encapsulated as a module, and a loose coupling between

modules is necessary.

e Inheritance is also the essential part to build a system with object-oriented
technology, and it reuses the system components in a hierarchical structure. It gets the

encapsulation of data and behaviors to be more refined in multiple levels. Inheritance

catches up with the real world object feature and makes object-oriented technology to

be better understandable for the software development of the software industry.

e Polymorphism means that the same operation may behave differently on different

modules and two operations have the same syntax in one module.

2.3 Object-Oriented Implementation

Object-oriented programming (OOP) dominates software development in the software
industry [BRJ99]. The reason for this is that the real software projects are becoming more
and more complex and large, and method of procedure programming cannot fit for such
software, but OOP provides an organizational method for developing the complex and
large computer systems. The framework in object-oriented design and programming is a
new technique for developing extensible systems. It makes it easier to design reliable and
reusable application system. Such frameworks can also improve the documentation and

maintenance of existing systems.

Object-oriented program has the facilities to develop a modern software product.

e Object-oriented programs tend to be written in terms of real-world objects, not
internal data structures. This makes them somewhat easier to understand by
maintainers and the people who have to read your code -- but it may make it harder

for you as the initial designer. Identifying objects in a problem is a challenge.

e Object-oriented programs encourage encapsulation -- details of an objects
implementation are hidden from other objects. This keeps a change in one part of the

program from affecting other parts, making the program easier to debug and maintain.

-8-

Object-oriented programs encourage modularity. This means that pieces of the
program do not depend on other pieces of the program. Those pieces can be reused in

future projects, making the new projects easier to build.

Corresponding to the object-oriented design, OOP in C++ language also has the

features of abstraction, encapsulation, inheritance and polymorphism.

In OOP, we use struct and class to define the abstraction types. It aggregates the data
to be one data type and builds the type to be reused conveniently.

Encapsulation is the basic feature to implement OOP codes. We realize the
implementation of software product in module form. Its mechanism binds together
code and the data it manipulates, and keeps both safe from outside interference and
misuse. When code and data are linked together in this fashion, an object is created.
In other words, an object is the device that supports encapsulation. Within an object,
code, data, or both may be private to that object or public. Private code or data is
known to and accessible only by another part of the object. That is, private code or
data may not be accessed by a piece of the program that exists outside the object.
When code or data is public, other parts of program can access it even though it is
defined within an object. Typically, the public parts of an object are used to provide a
controlled interface to the private elements of the object.

Inheritance is the process by which one object can acquire the properties of another
object. This is important because it supports the concept of classification. If we think
about it, most knowledge is made manageable by hierarchical classifications. For

example, a red apple is part of the classification apple, which in turn is part of fruit

class, which is under the large class food. Without the use of classifications, each
object would have to define explicitly all of its characteristics. However, through the
use of classifications, an object need only define those qualities that make it unique
within its class. It is the inheritance mechanism that makes it possible for one object
to be a specific instance of a more general case. Inheritance is an important aspect of
object-oriented programming.

Object-oriented programming languages support polymorphism. Polymorphism is the
ability by which a method can be executed in more than one way, depending on some
arguments and returns. When a client class sends a message, the client class doesn’t
need to know the class of the receiving instance. The client class for a specific event
only provides a request, while the receiver knows how to perform this event. The
polymorphism characteristic sometimes makes it uncertain at compile time, to
determine which class an instance belongs to and thus to decide which operation to
perform. Polymorphism allows a programmer to provide the same interface to

different objects.

-10-

Chapter 3: OpenGL API

OpenGL is not a programming language. It is a C runtime library, which provides some
prepackaged functionality. We classify OpenGL APl into the OpenGL, GLU, GLAUX
and GLUT functionalities on various aspects in the system of the project, such as, GLUT

window functions, GLU view function, AUX for 3D graphics representation [MJT99].

3.1 GL Library

OpenGL GL library provides the basic functionalities for displaying and manipulating 2D
and 3D graphic objects, such as, defining light, glLight(); object color, glColor(); and

transformations, giTranslate(), glRotate() and glScale().

e OpenGL data types
To make OpenGL code more portable for various platforms, OpenGL defines its own
data types. These data types map to normal C language data types that people can use

instead, if they want [RW96].

OpenGL Data Type | Internal Representation | Defined as C type

Glbyte 8-bit integer Signed char

Glshort 16-bit integer Short
Glint, Glsizi 32-bit integer Long

Glfloat 32-bit floating Float

Gldouble 64-bit floating Double

-11-

a.

b.

(2]

e

Glubyte 16-bit unsigned Integer | Unsigned char
Glboolean 16-bit unsigned Integer | Unsigned char
Glushort 32-bit unsigned Integer | Unsigned short
Gluint, Glenum 32-bit unsigned Integer | Unsigned long
Glbitfield 32-bit unsigned Integer | Unsigned long
¢ Function naming convention
OpenGL functions follow following naming convention:
First which library the function - library prefix
Second all functions have a root — root command
. Third pair number to specify — number of arguments
Fourth pair type to specify — type of arguments
For example,
Root Command Type of Arguments

e GL library functionalities

Library prefix

Number of Argument

-12-

The OpenGL GL library has the basic graphic environment and display functions:

a. Lighting item: enable light, call glEnable(GL_LIGHTING) and
glEnable(GL_LIGHTO), and set the light properties, such as, ambient, diffuse,
specular, spot light parameters.

b. Transformations: defining translation, rotation and scale.

c. Specifying the functionalities for geometric rendering.

d. Setting window view port.

e. Setting window client environments, such as, object color, background color and
other attributes.

f. Texture mapping process command functions.

g. OpenGL text displaying.

h. Clearing buffers, such as, color, depth, accumulation and stencil.

3.2 GLU Library

GLU is the OpenGL Utility Library. It is an extension of OpenGL and supports higher-

level operations. GLU functions are used to manipulate the transformation matrices of

model, view and projection, surface tessellations, quadratic surface rendering and etc.

e Mipmapping and image scaling with the functions, gluBuildlDmipmaps(),
gluBuild2Dmipmaps() and gluScalelmage()

e Matrix transformations, gluOrth2D(), gluPerspective(), gluLookAt(), gluProject(),
gluUnProject() and etc.

o Nurbs surfaces and polygon tessellations, gluNurbsSurface(), gluTessCallback(), and

etc.

-13-

¢ Quadratic surfaces, gluCylinder(), gluShpere(), gluDisk(), and etc.
3.3 GLUT Library

GLUT (pronounced like the glut in gluttony) is the OpenGL Utility Toolkit, a window
system independent toolkit for writing OpenGL programs [RW96]. It is an extension of
OpenGL and implements a simple windowing application-programming interface (API)
for OpenGL. GLUT makes it considerably easier to learn about and explore OpenGL
programming. GLUT provides a portable API so you can write a single OpenGL program
that runs on several platforms. The following sections describe the features provided by

GLUT.

3.3.1 Initialize and Create a Window

For GLUT window management, you must specify the window environment

characteristics, single-buffered or double-buffered, and the color types, RGGA or color

indices. The functions of GLUT window application can be used to run the application.

e Initialize GLUT library, first call the function, glutlnit(). The function also processes
command line options.

o Specify the buffer state, call the function, glutDisplayMode() to setup the display
mode, single-buffered or double-buffered.

e Create window by calling glutCreateWindow() or glutCreateSubWindow() to open a
window or a subwindow in its parent window. Before creating a window, you can set
the window size and location by calling glutlnitWindowSize() and

glutWindowPosition().

-14-

Further manipulation by calling glutGetWindow(), glutSetWindow(), glutSetWindow
Title(), glutSeticonTitle(), glutPositionWindow(), glutReshapeWindow(), glutPop
Window(), glutPushWindow(void), gluticonifyWindow(), glutShowWindow(),

glutHideWindow().

3.3.2 Handle Window and Input Events

For GLUT framework application system to interact with the user, it handles the window

and input events by using the callback functionalities.

The glutDisplayFunc() procedure is the first and most important event callback
function. A callback function is one where a programmer-specified routine can be
registered to be called in response to a specific type of event.

Window resizing and moving, we need to call the function, glutReshapeFunc() to

reset the viewport.

" Mouse event by calling glutMouseFunc() and glutMotionFunc() to handle the mouse

events.
For keyboard events, the system calls the function, glutKeyboardFunc() to handle to
keyboard key events, and glutSpecialFunc() to handle keyboard special key events.

Redraw window graphics, the system always uses the function, glutPostRedisplay().

3.3.3 Load the Color Map

GLUT provides a routine to load a single index color with an RGB value, the system uses

the function, glutSetColor().

-15 -

3.3.4 Initialize and Draw 3D Graphic Objects

For drawing some primitive graphic objects, GLUT library provides some objects, such

as, cube, cone, sphere, torus, teapot, and etc.

3.3.5 Manage a Background Process

For making an animation by a background process, the function glutldleFunc() registers a

callback function provided by the user.

3.3.6 Run the program

GLUT enters a loop in which events are processed as they occur until the user signals that

the program is to be terminated.

-16 -

Chapter 4: System Design

For the application of OpenGL framework, the system is designed by View-Document-
Control (from MFC — Microsoft Foundation Class) architecture and three classes of items
are considered to describe the system: constants, structures and classes. The OpenGL
APl is classified based on its functions. The system will be implemented by C++
language and designed by using object-oriented technology. Base classes are built for
user to create further functionality. In order to create multiple window objects in the
GLUT framework application dynamically, we create a class to contain all the GLUT

callback functions, as we should put the callback functions as static member functions.

4.1 System Architecture

The system design is object-oriented. The internal functionalities are implemented with
OpenGL API. For setting window, OpenGL GLUT API functions are used to GLUT
Framework; OpenGL GLU API functions are used to set model view transformation;
OpenGL GL API functions are used to implement the basic functionalities; OpenGL

Glaux API functions are used to create primitive objects.

4.1.1 System Design Strategy

The main functionalities of the system are as follows: create multiple windows including
windows and subwindows; documenting graphic objects including editing and storing

graphic objects; classifying OpenGL graphics rendering features including global

-17-

environment features and individual object features. The system is designed based on

View-Document-Control architecture and implemented by C++ language.

4.1.2 Class Diagram

We have the items to be considered for building the system, CGLApp, CGLWindow,
CGLGlutFramework, CGLView, CGLLight, CGLCtl, CGLDoc, CGLObject,
CGLCube, CGLCone, CGLSphere, CGLCylinder, CGLTorus, CGLTeapot,
CGLDodecahedron, CGLIcosahedron, CGLOctahedron, CGLTetrahedron,

CGLAssembly. The class diagram is described as:

CGLAPD ' COlutFramework
_—ﬁ__“\\;x e
7+ coLWindow |

CGLCtd R

e = — S

T~ CGLView | " CGLLight |
— ‘ et
CGLDoc L — ‘ S
[Colobiest
CGLCone | CGLCube x _CGLYeapa ~ CGLTomus
i - - -
I RS ‘ Bl o
]
| CGLDodecahedron | | COLCylinder " CGLSphere CGLTetrahedron
| , _CGLTetrahedron |
| —
| ——— .
| S
|
I _ S
CGLOctahedron CGLAssembly | CGLlcosahedron -

]
i

Figure 4.1 System Class Diagram

-18-

From the class diagram, we can see that there are three parts, GLUT Application

Framework, View-Document-Control and Object Data.

e GLUT Application Framework: The classes, CGLApp, CGlutFramework and
CGLWindow, become the system application framework. User can create new
windows and new subwindows dynamically.

e View-Document-Control: The classes, CGLView, CGLDoc and CGLCtrl, become
the internal core components. They handle the events coming from user GUI input
display and process graphics object data.

e Object Data: The classes, CGLObject and its children classes, build the graphics

object data components.

4.1.3 System Process Structure
To simplify the system structure, we consider component-based architecture. There are
four parts of components to compose the system. Such as, window framework

application, core components, data management and database.

System Process Structure Core Components
(App, Framework, Window) &—» (View, Control, Light)

Database Data Management

(Doc, Primitive Data)

Figure 4.2 System Process Structure

-19-

The window framework is for starting the system, interacting with both user and core
component parts; the core component part is for handling window messages and
commands, and interacting with data management to request and get object data; the data
management part is for managing and producing object data, and interacting with both
core components and database; the database part is for storing object data and responding

requests of data management.

4.1.4 System Interactions

In this subsection, we present interaction diagrams to describe the system process
interactions for several process tasks, such as, open and close window and subwindow,
import and export assembly data, model object data and perform global environment and

object features.

4.1.4.1 Open and Close Windows
For opening and closing windows, the process involves CGLCtrl, CGLApp,

CGLWindow, CGlutFramework objects.

-20-

CGLCtr! CGLApPD : CGLW.indow GlLut
i Framework

(

!
! RunCreate W indow() '
—

I
l
_'1 CreateW indow() |
o)
‘GlutCreateW indo w()

i
|
!
t
i
>
-
i
]
]
i

indow Created

A

CloseW indow()

|
B window closed

T N s — L —F Y

Figure 4.3 Interaction Diagram for Creating and Closing Windows

4.1.4.2 Import and Export Assembly Data

For documenting graphics objects, the system needs ways of loading and saving object

data. The process involves CGLCtrl, CGLDoc, CGLObject and CGLAssembly class

objects.

-21-

| CGLCtrl ' CGLDoc CGLAssemb

' ExportAsmFile() |
>‘1 W riteDataEntity()
[

-
File Exported

ReadFileNames()

Y

! File Names Loaded

. -

|

i ImportFile() - |
> ReadDataEntity() |

) >

!

File Loaded

|
|

L.

|
1
Figure 4.4 Interaction Diagram for Importing and Exporting Data Files

4.1.4.3 Model Graphics Objects and Manipulate Features
For modeling graphics objects, the system need the functionalities to process rendering
primitive 3D graphics objects and manipulate the global environment and individual

object features. An interaction diagram is given for loading one object and changing its

features. The process involves CGLCtrl, CGLView, CGLDoc, CGLObject, CGLCube.

-22-

CGLCtr | CGLView " CGLDoc | CGLObject

I | l |
AddObject() . |
FL! ; > Create Object '
| ”]
| i
! SelectObject() T :
T 5 >L Object Selected !
3 | >
i T
i -+ Marked Object |

\ Display() —<<

™ Object Displayed <
< '

o

'Add Object Features™

‘ > T
L Change Selected Object Features 'r"
> Change Features !
| : >
x T J
| -
f Display‘() 41'
t

! O A

1

R

Figure 4.5 Model Object and Change Its Features

4.2 Object Data Structure and Data Storages

For documenting and editing graphics object data, we need to consider building an

object data structure and data files to store data that corresponds to the data structure.

4.2.1 Object Data Structure
For creating a complicated graphics object, data structure and data storage need to be
provided. In this design section, we have the hierarchical data structure to build a

complicated graphics object and store the data to a data file for reuse. The structure of the

data is:
Assembly
Object | \
Subassembly 1 || _
- . ,/ \\ Subassembly n
Object n Object 11 Subassembly 11

Object In Subassembly In

AY
\
\
A}

Figure 4.6 Object Data Structure

From the object data structure, we know that the assembly object can hold several

primitive objects and assembly objects. It builds a hierarchical data structure.
4.2.2 Data Storages

According to GLUT framework application, we have two kinds of data file formats to

consider:

-24-

¢ Data file for listing file names, filenames.con, the data format is:

Line number in data file data
i N, Number of assembly files
2 Index of first assembly file
3 Index of second assembly file
N+1 Index of Nth assembly file

We use the index to the file with assembly plus the index; the third line stores the
index of second assembly file, etc.

e Assembly data file, filename.dat, the data format is:

Line number in data file data
1 N, number of entities
2 Entity type
3 Object color, three float points
4 Object — translation, three float points
5 Object ~rotation, three float points
6 Object-scale, three float points

The assembly data file stores the new object information for user to edit complicate

graphics objects.

-25-

4.3 Individual Class Design

For the detail design of the system, we provide the individual class information, such as

attributes and operations, and we can know more detail functionalities of the system.

4.3.1 Application Class
In the system, the application class provides the functions and we name the class as

CGLApp.

CGLApp
_wndCreate : int = 0
Bl _pView : CGLView = null
_pWnd : CGLWindow = nuli,
@ _eCtrl : CGLCtrl = null !
B _pTheApp : CGLApp = this |

Wl ain
BCGLAPPO

- CGLAppO

Wlnit0)
RunCreateMainWindow()
[RunCreateNew Window()
S etCreateWindow()
CioseWindow(

Figure 4.7 Class CGLApp

e Init() for initializing GLUT Framework, View and Control.
e RunCreateMainWindow() for creating main window object and running the main

window frame application.

e RunCreateNewWindow() for creating and running new windows and new
subwindows.

¢ CloseWindow() for terminating the individual windows.

-26 -

The CGLApp class starts the application; initialize main window size and location, and
classes CGlutFramework, CGLView, CGLWindow, CGLLight objects and setup to

create main OpenGL windows and subwindows.

4.3.2 GLUT Framework Class

For the GLUT framework application, we consider it to be implemented by object-
oriented technology. A class should be designed to enable all GLUT callback functions.
We name this class as CGlutFramework that contains all the operations display, mouse,

keyboard, special key, idle function, reshape callback functions.

 CGlutFramework ;
@m _pTheFramework : CGlutFramework® = null|

JGetGlutFramework()

BCG!utFramework()

B CGlutFramework()

'lG!utCreateWindow()

. JiMainLoop()

; isplayFunc()

ousefFunc()

otionFunc() !

eyboardFunc()
SpecialFunc()
IdieFunc() i

eshapeFunc()

Figure 4.8 Class CGlutFramework

e DisplayFunc() the callback function for calling all the entrances of graphics
representation and environment control.
e IdleFunc() for animation of the operations and actions.

e KeyboardFunc() for keyboard even control.

-27-

e MotionFunc() for action of mouse cursor moving.
e MouseFunc() for mouse even control.
o ReshapeFunc() for setting window view port, modelview and projection environment.

e SpecialFunc() for special key control.

4.3.3 Window Class
In the system, Window class provides the function to pass all the callbacks, so that we
can simply create multiple windows, views, documents and controls. We name the class

as CGLWindow that contains the members as CGlutFramework class.

CGLWindow

W _wid-int=0

'B8m _wnd : GLWND

i

/JIIC G utW indow()
'} CGLW indow()
ElRunCreateWindow()
OisplayFunc()
BWMouseFunc()
@M otionFunc()
i< eyboardFunc()
lisreciaFunc()
i ieFunc(
ReshapeFunc()

Figure 4.9 Class CGLWindow
It also has RunCreateWindow() function to call create window function in
CGlutFramework. Therefore by this structure, we can create multiple windows based on

object-oriented technology.

-28 -

4.3.4 View Class

In the system, the view class provides the environment for the windows and is named as

CGLView:

CGLView

_ptType : in
sm Type : int
_vtType : int
_opType : int
_Radius : float
_xAngle : double
_yAngle : double
_bkColor: GLPOINT
_vwPoint : GLPOINT
-
-

wndinfo : GLWND
pDoc : CGLDoc"*
_plLight : CGLLight*
pTheVuew CGLView"*

-GetGLView()()
BcGLView()

- GLVview()

i)

MRoisplay()

BlS etW indowSize()
Hlls etOperationType()
S etLightState()
s etBkColor()

Bls etShadeModel()
Bls etView Transform ()
S etP rojection()
S etkeyboardView()
Bs etLight()

e xColor()

Blis hadeModel()
JBView Transform()
P rojectionTransform ()

Figure 4.10 Class CGLView
It contains the functions:
o Display() for the entrance to display 3D graphics objects. The CGLWindow will call
the function to enable all the functions in OpenGL GLUT window environment.
e Init() and SetWindowSize() for passing window information.

e SetBkColor() and BkColor() for setting and changing window background color.

-29.

e SetShadeModel() and ShadeModel() for setting and changing shade model, such as,
flat and smooth models.

e SetProjection() and ProjectionTransform() for setting and changing projection state,
such as, crthography and perspective.

e SetViewTransform() and ViewTransform() for setting and enabling model and view.

e SetLightState() and SetLight() for setting and enabling light. Let the user to change
light position.

o SetKeyboardView() for setting specific view points to view the objects from
keyboard input.

e SetOperationType() for selecting mouse control operations, such as, moving light,
look around and zoom.

The CGLView class creates and initializes CGLDoc and CGLLight class objects, and

manipulates the global environment features.

4.3.5 Control Class

In this system, the control class provides the action control for window menu, mouse
button action and mouse motion, keyboard and special key controls. It is named as

CGLCtrl:

-30-

cGLCtr

Ml _stx : int

Bl _sty : int .
BB _bPressed - bool |
Bl _opType : int '
i~ _pTheCtrl : CGLCtn

etG LCtri()
GLCtri()
CGLCtri()
akeMenu()
ouse()
eyboard()
pecialKey()
otion()
ainMenu()
indowMenu()
ileM enu() :
perationTypeMenu()!
ddObjectMenu()
eleteObjectMenu()
electObjectMenu()
kColorMenu()
bjectColorM enu()
bjectStateMenu()
rojectionMenu()
hadeModelMenu()
ightMenu()
mportFileMenu()

1
!
i
t
i
i
i
i
|
I

Figure 4.11 Class CGLCtrl
e MakeMenu() for the entrance of setting and calling window menu.
e Mouse() for mouse button control, mainly control moving light, view position and
creating windows and subwindows.
e Keyboard() for keyboard control, mainly control specific view positions.
o SpecialKey() for special key control, mainly control object transformations.
e Motion() for mouse motion action to control global environment, such as, view

position, light motion and zoom.

4.3.6 Light Class
In this system, the light class provides the functions to initialize and set light properties,

enable and disable light.

-31-

4.3.7 Document Class

In this system, the document class provides the functions to manage objects

as CGLDoc and also does the operations to read and write data files.

CGLLight

_nLight : int = 0

_light : GLenum
_const : foat
_linear : foat
_quad : float
_ambient : faot®
_diffuse : float®
_specular: float®
_spotangle : float
_spotexp : foat
_xSpin : float
_ySpin : float
_pos : float*
_vect : float*

_LightState : bool =

false

GLLight()
CGLLight()
etState()
etState()
etLight()

raw()

nable()
isable()

s etP osition()
s etM oveA ngle()
s etSpotDirection()

iaedl s s LI

Figure 4.12 Class CGLLight

-32-

. It is named

[_ CGLDoc

i _nindex : int

m _bbox : BBOX

i m_nObjects : int

'l _pObjects : CGLObject"
.n nFies : int :
, _nFienames : int*™ ‘
_pTheDoc : CGLDoc* |

etGLDoc(}
GLDoc()
CGLDoc()
isplay()

.FnleState()
importFile()

: etNum Files()
i=§etFnename()
[BA ddObject
oeleteObject()
S e'ectObject()
ClearObjects()
G etNum Objects()
GetObjectName()
A etObjectTransform()
f=§et0bjectColor()
s etObjectState()
JJPGetSelectedObject()

‘HlReadFileNames ()
; xportAsmFile()
{

Figure 4.13 Class CGLDoc

e Display() for passing the display from CGLView class.

File import and export operations:

e FileState() for passing Window Menu events to enable import or export data files.
e GetNumFiles() for passing number of data files loaded to CGLCtrl class.

¢ GetFilename() for passing individual file name to CGLCtrl class.

Object management operations:

o AddObiject() for adding object to document object list.

-33-

e DeleteObject() for deleting object from document object list.

e SelectedObject() for selecting object from document object list and manipulating the
individual object features.

e GetNumObjects() for passing number of objects to CGLCtrl class.

e GetObjectName() for passing individual object name to window menu in CGLCtrl
class.

o SetObjectTransform() for setting object transformations from CGLCtrl class
keyboard control.

° Set(.)bjectColor() for setting object color from CGLCtrl class window menu.

e SetObjectState() for setting object rendering state, solid or wire mesh, provided by
CGLCtrl class window menu.

e GetSelectedObject() for passing selected object.

4.3.8 Geometric Object Class

The object class is a base class of geometric graphic object and contains material feature
information, object color, shade model, show status and material properties. It is named

as CGLObject.

-34 -

CGLObject
_state : int !
_findex : int l
_objType : int
_origin : GLPOINT |
_bbox : BBOX
_color : GLPINT
_scale : GLPOINT |
_rotate : GLPOINT|
_mat : float*

_amb : float*
_dif : float*
_spe : float®
_emi : float*
_shin : float

ICGLObject()
- CGLObject()
IlOraw()
GetObjectType()
IS etColor()
s etState()

s etTransform()
ReadDataEntity()
W riteDataEntity()
EMakeTransform()
EMaterialProperty()

Figure 4.14 Class CGLObject
Draw() function for rendering the individual object;
GetObjectType() function for passing the object type to window menu.
SetColor() function for changing color by window menu call.
SetState() function for switching rendering states between solid and wire.
SetTransform() function for passing transformation data from window menu call.
ReadDataEntity(0 function for reading entity data from data file.

WriteDataEntity() function for writing entity data to data file.

-35-

The class CGLObject is a base class and has the general attributes and functions, for

children classes, they have more refined attributes and operations.

e Cube
The cube object is designed as class CGLObject’s child class. It inherits the attributes and
operations from CGLObject, CGLCube class has its own features, such as, length, width

and height.

! CGLCube

CGLCube()
}-CGLCube()
Horaw0

e Cone
The cone object is designed as class CGLObject’s child class. It inherits the attributes and

operations from CGLObject, CGLCone class has its own features, such as, radius and

height.
CGLCone
cGLCone() |
CGLCone() |
raw() :
e Sphere

The shpere object is designed as class CGLObject’s child class. It inherits the attributes

and operations from CGLObject, CGLSphere class has its own features, such as, radius.

-36 -

CGLSphere

—

GLSphere() :
CGLSphere():
Wioraw0 |

o Cylinder
The cylinder object is designed as class CGLObject’s child class. It inherits the attributes

and operations from CGLObject, CGLCylinder class has its own features, such as, radius

and height.
| CGLCylinder i
' i
| ;
;-CGLCylinder()
ll-CGLCylinder():
'BOraw()

o Torus

The torus object is designed as class CGLObject’s child class. It inherits the attributes
and operations from CGLObject, CGLTorus class has its own features, such as, inner

radius and outer radius.

CGLTorus

i
i |
licGLTorus()

'l CGLTorus()|
Woraw) |

¢ Teapot, Dodecahedron, Octahedron, Tetrahedron and Icosahedron
The Teapot, Dodecahedron, Octahedron, Tetrahedron and Icosahedron objects are
children classes of CGLObject, they all inherit some attributes and operations from

CGLOBject, but also have size attribute need to be defined.

-37-

e Assembly

The assembly object is a child class of CGLObject, and it inherits some attributes and
operations from CGLObject, but class CGLAssembly has a special rule to build its
object. It groups the primitive objects and other assembly objects to build a new assembly

object.

CGLAssembly

' _nObjects : int
_pObjects : CGLO bject"j:

_findex :int

BliC GLAs sembly()
- CGLAssembly()

MOraw)

PReadDataFile()

BBV iteDataFile()
R eadDataEntity()

'V riteD ataEntity()
JCreateObject()

Figure 4.15 Class CGLAssembly

From CGLAssembly class, besides it has same structure with class CGLObject, it has

additional operations and attributes.

e ReadDataFile() for reading the containment assembly data file.

e WriteDataFile() for writing a new assembly data file to database.

e ReadDataEntity() for reading assembly entity that is ditferent from the other kind of
objects.

e WriteDataEntity(0 for writing assembly entity that is different from the other kind of

objects.

-38-

e CreateObject() for checking the object to be created and creating the object.

4.4 Structure Abstract Data Type

In this system, some structure abstract data types are provided for simplifying class
attribute definition and easily implementing various class member functions and function

calls.

4.4.1 3D Point Struct
For 3D point, we present GLPOINT structure for defining 3D point, vector, color, and

transformation variables.
typedef struct _tagGLPOINT
{
float x;
float y;
float z;

} GLPOINT;

4.4.2 Bounding Box Struct
For geometric object measurement, we need a structure to define bounding box.
typedef struct _tagBBOX

{
GLPOINT min;

GLPOINT max;

-39-

} BBOX;

4.4.3 Window Information Struct
In this system, we need pass the window information, such as, window size and position,
to various class objects. For convenience, we define a structure to store the window

information.
typedef struct _tagGLWND
{
int w;
int h;
int x;
inty;

t GLWND;

4.5 Structure Abstract Data Type

For managing system message and window message even passing, we need enumerate

various message items. In this system, we define integer constants to define the messages.

- 40 -

Chapter 5: 3D Graphics Editor — Application Result

In this section, a sample application is provided with the 3D graphics editor. The editor
builds the graphic objects by assembling the primitive objects, such as, cube, cone,
sphere, torus, cylinder, teapot, and etc. The processes for building the 3D graphic objects
demonstrate all the functionalities of the system, such as, multi-objects assembly editing,
multi-window creation and manipulation and dynamic assembly objects storage and
loading. The system is a GLUT framework application, has the primitive objects let the
user to document and edit new complex objects, and provides the functions to manipulate

the objects globally and individually.

The 3D graphic object is named to * family kitchen Table and Chairs”. It is designed by
several stages, system start, creating a table, chair, cup, light, their assembly, multiple

windows, etc.

5.1 Start System

Before creating a 3D graphic object, we start the system by executing the exe file,

openglapp.exe. An OpenGL Framework window is created.

-41 -

Figure 5.1 Open OpenGL Window
From the figure, the window is an empty window. When we press the right mouse button,

we see a window menu, which contains the items, window, file, model, view, object, exit.

Figure 5.2 OpenGL Window Menu

In order to see the 3D graphic environment, we need to enable the light.

5.2 Creating A Bed

From section 5.1, we already start the system and open the window menu. Now we create
a bed in the window and do the following processes.
e Select model item and add object item under the model item, and create a cube.
a. After creating a cube, select model item and select object item under the
model item, and choose the cube item.
b. Press the special keys to reshape the cube by the transformations.
e Press F1 to narrow the cube in the direction x-axis (1, 0, 0);
e Press F2 to enlarge the cube in the direction x-axis (1, 0, 0);
e Press F3 to narrow the cube in the direction y-axis (0, 1, 0);
e Press F4 to enlarge the cube in the direction y-axis (0, 1, 0);
e Press F5 to narrow the cube in the direction z-axis (0, 0, 1);
e Press F6 to enlarge the cube in the direction z-axis (0, 0, 1);
e Press F7 to rotate the cube in clockwise around x-axis;
e Press F8 to rotate the cube in counter-clockwise around x-axis;
e Press F9 to rotate the cube in clockwise around y-axis;
e Press F10 to rotate the cube in counter-clockwise around y-axis;
e Press F11 to rotate the cube in clock-wise around z-axis;
e Press F12 to rotate the cube in counter-clockwise around z-axis;
e Press PageUP to scale the cube in small;
e Press PageDown to enlarge the cube in large;

o Press Insert key to recover the cube to the original shape.

-43 -

c. Press the keyboard keys, ‘u’, *v’, ‘I, ‘r’, ‘", ‘b’ to view the object from
specific directions:
e Press key ‘u’, view the object from direction (0, 1, 0);
e Press key ‘v’, view the object from direction (0, -1, 0);
e Press key ‘I’, view the object from direction (-1, 0, 0);
e Presskey ‘r’, view the object from direction (1, 0, 0);
e Press key ‘f°, view the object from direction (0, 0, 1);
e Press key ‘b’, view the object from direction (0, 0, -1);
e Select model item and add object item under the model item, and create four cubes
for the legs of the bed, another two cubes for the bed board and front fence, and one
torus for the bed fence, and a cylinder and a sphere. Then select each object from the

menu object list, and reshape the each object by controlling special keys.

Figure 5.3 Create a Bed

Afier the table is created, select file item and export file item under file item to save the

table to a data file as the assembly data.

-44 -

5.3 Creating A Chair

As the process for creating a table, we can load a sequence of cubes to create a chair.

Figure 5.4 Create a Chair

The chair is created and, the graphic object is exported and stored in an assembly data

file.

5.4 Creating Living Room Light

For creating a living room light graphical object, we can use the primitive objects, such
as, cylinder, cone, sphere, and export the assembly graphic object and store in an

assembly data file.

-45-

Figure 5.5 Create Living Room Light
For creating the light graphical object, we use the system functions, all the
transformations, moving system light, manipulating global view positions, look around
and zoom. All the global environmental controls are with left mouse button and its

motion.

5.5 Create a Table Light

For creating a table light, we can use the primitive objects, such as, sphere, cylinder,

cone, and export the assembly graphic object and store in an assembly data file.

-46 -

Figure 5.6 Create Table Light
For creating the light, we also use the system functions, all the transformations, moving
system light, manipulating global view positions, look around and zoom. All the global

environmental controls are with left mouse button and its motion.

5.6 Create Bookshelf

For creating a bookshelf, we just need load cubes and reshape them to a shelf and books.

Figure 5.7 Create Bookshelf

5.7 Create A Wardrobe

For creating a wardrobe, we need load the objects, cubes, torus, and reshape them to the

frame, withdraws and the bars.

-47 -

Figure 5.8 Create Wardrobe
5.8 Create A Desk

For creating a desk, we also need load the objects, cubes, torus, and reshape them to the

frame, withdraws and the bars.

Figure 5.9 Create A Desk

-48 -

5.9 Create A Telephone

For creating a telephone, we load a cube, 13 spheres, 2 torus, and 2 cones, and reshape

the objects to form the telephone assembly object.

Figure 5.10 Create A Telephone

5.10 Create A Clock

For creating a clock, we need load torus, cubes and sphere, and reshape them to the right

sizes and locations.

Figure 5.11 Create A Clock

-49 -

5.11 Create Some Other Assembly Objects

In this subsection, we create some smaller assembly objects, toys, cup and the bottle

flower.

e For creating a cup, we need load a cylinder, sphere and torus.

e For creating this project in window, we load a dodecahedron, an icosahedron,

octosahedron and tetrahedron, cone, cube and cylinder.

-50 -

5.12 Assembly the Created Objects

For building the final assembly graphic object, we create a bachelor bedroom and load all

the created assembly objects.

Select window menu file item and file names item under the file item;
Select window menu file item and import files item under the file item;
Load the bed assembly file;

Load the chair assembly file in four times;

Load the bookshelf assembly file;

Load the living room light and table light assembly files;

Load the wardrobe assembly file;

Load the clock assembly file;

Load the telephone assembly file;

Zoom the view.

-51-

Figure 5.12 Bedroom Assembly Object
For loading the assembly files, we reshape the objects by the transformations with special
keys. We cannot change the assembly color as we take the assembly data as the final
design result. We also can repeat to load the assembly objects, for example, here we load

chair in four times. The background color can be changed with the user needs.

Figure 5.13 Change Background Color to Black

-52-

5.13 Create Multiple Windows

For creating and terminating multi-windows, the functions, glutCreateWindow(),
glutCreateSubWindow(), glutDestroyWindow(), glutGetWindow() are called to process
the tasks. In this system, we use window menu to control the window creating and

closing actions.

e Create a window dynamically, select menu Window item and Create Subwindow

item at any time.

Figure 5.14 Select Menu Create Subwindow

e Move mouse cursor to define location for creating a subwindow. Press mouse left

button, then window is created.

-53-

Figure 5.15 Create Sub window

e Repeat the sub window creation process, you can create the subwindows you want.

Figure 5.16 Multi — Subwindows

o For closing subwindow, press right mouse button on the subwindow and select Close

Window item, then the window is closed.

-54-

Ulpesradal b ame apenck

Figure 5.18 The Window [s Closed
The subwindows can be created and closed at any time and any location of the parent

window.

-55-

For creating new windows, the principle is same as to create subwindow, but the new

window is not contained in the other window and is independent from other window.

Figure 5.20 Multi-Windows Layout

- 56 -

5.14 Global and Object features

In this demo example, some global environment and individual object features are
presented. For the global features, the system enables background color, move light, look
around, zoom, switch shade model between flat and smooth, and switch projections
between orthographic and perspective projections; for individual object features, change

object color and switch cbject show states between solid and wire.

e Load objects to window.

Figure 5.21 Objects In Multi-Color

o Change light position, projection to orthographic and some objects to wire state.

-57-

Figure 5.22 Global and Objects Features

-58-

Chapter 6: Conclusion

In designing a Graphic Editor for 3D objects, we used the GLUT framework and object-
oriented technology to develop a system with many capabilities, including management

of multiple windows and files of graphical object data.

6.1 Experiences on Object-Oriented Programming

From the system analysis, design and implementation, we use object-oriented technology
to develop the project. We understand well about internal knowledge of inheritances,
dependency, associations, encapsulations and polymorphisms. It provides us an easy way
to model the project well in object-oriented concept.

C++, as an object-oriented language, is concerned with the creation, management, and
manipulation of objects. An object encapsulates data and methods used to manipulate the

data.

For OpenGL framework, we learn how to build a bridge to pass callback functions to
create multiple windows and subwindows, and other OpenGL API functionalities. We
find the data structure to store assembly data, and build a hierarchical tree to call

assembly and primitive objects recursively.

6.2 Further Work

When documenting the graphic objects by using 3D graphics editor, we find the graphic

user interface is convenient to user to operate its items.

-59.

For the future work, we need,

e Get more functionalities to build the GUI part;
e Have multiple views and multiple controls;

e Add surface rendering from GLU library;

e Add more light functionalities.

Bibliography

[PGOO] Peter Grogono, Requirement of Glut Framework Application,

-60 -

[PG98]

[RW96]

[BRJ99]

[MJT99]

[HS98]

[SLY]

Faculty Website, Concordia University, 2000.

Peter Grogono. Getting Started with OpenGL, Concordia
University, 1998.

Richard S. Wright JR. OpenGL Super Bible, 1996.

Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified
Modeling Language User Guide, Press. Addison-Wesley,
1999.

Mason Woo, Jackie Neider, and Tom Davis. OpenGL
Programming Guide, Third Edition, Addison-Wesley, 1999.
Herbert Schildt. C++: The Complete Reference, Third
Edition, 1998.

Shuli Yang, Implementation of 3D Graphics Editor, Major

Report, Department of CS, Concordia, May, 2002.

-6l -

