INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UM directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Naval Battle Simulation System Optimization

LinFang Wang

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

March, 2002

© Linfang Wang, 2002

i~l

National Library Bibliothéque nationale
of Canada du Canada
isitions and isitions et
Qﬁgmp?fac Services ::r.;fll‘ces bibliographiques
Otiewa ON K1A ONA Ottewa ON K1 04
Canada Canada
Your fip Votre réédrence
Our Sl Notre réieance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68483-0

Canada

vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése m1 des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

Abstract

This dissertation is a Computer Science Master degree major report by student
Linfang Wang. The main objective of this project is to utilize the object oriented
methodologies to design and implement a simple Naval Battle Simulation
System. The project is based on a Software Engineering course project taught
by Dr. Joey Paquet at Concordia University. The project consists in
respecification of the system requirements, optimization of the system design,
UML notation improvement, reorganization of the structure of documents and
rewriting of the SRS, SDD and STD documents. This document can be taken as
an integrated standard for requirement, design, and testing documents for Naval
Battle Simulation System, or any other similar Software Engineering project. This
will enable Dr. Paquet to re-use this document as a valuable information source

for other Software Engineering projects in the future.

The project applies the object-oriented design and implementation for all the
susbsystems. The developing tool is MFC and OpenGL. For the requirements
specification, a requirements identifier scheme is applied to improve the
traceability for the whole system. For system implementation, function
overioading, virtual function and pure virtual function, multithreading, inheritance
and polymorphism are used to improve the system generality, reuseability and

flexibility as well.

Acknowledgements

| would like to express that it was very beneficial to work on my major report
under the direction of Dr. Joey Paquet. He gave me lots of important
suggestions and advises. His guidance helped me to make significant progress
and enhance my knowledge as well. Sincerely, | appreciated Dr. Joey Paquet for
his great help during the process of this project for my master study.

Also, | would like to say thanks to all the COMP554 (Software Engineering,
Summer 2001) students for their great contribution, which | took as blueprint to
start my project. Without their contribution, the project would have had to be
started from scratch and probably, it would not have been possible for me to

finish it alone.

Finally, my best wish to my lovely 2 years old son—lan. | hope he will grow up to
know more and more from the world and keep growing healthy, happily.

Table of Contents

1. INTRODUCTION 1
1.1 PURPOSE.......cuuteceereeeeeenrereerrenerrennnen 1
1.2 ScopPe 2
1.3 DEFINITIONS, ACRONYMS, ABBREVIATIONS 3
1.4 OVERVIEW......ueiiiieiieeereeeeeeeereeeeanns 4
1.5 REFERENCES 5

2. GENERAL DESCRIPTION 6
2.1 PRODUCTPERSPECTIVE ...oocuvteeueieeeeeeereeeeeeeeeeeeese e e 6
2.2 PRODUCTFUNCTIONS........... 6
2.3 USER CHARACTERISTICS «ecvoueeeierererrnternneecesecenesemessssessmsessssesssssessessesssessssessssss e seesess e eeen 7
2.4 GENERAL CONSTRAINTS ..ottt s e e seeeeeesessesessesesssessaeesssesssemees s e e e eee et see e eenen 7
2.5 ASSUMPTIONS AND DEPENDENCIESouecomeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeesseess e e e 8

3. SPECIFIC REQUIREMENTS 9

31

3.3.1

REQUIREMENT IDENTIFICATION.............
3.2 HiIGH LEVEL USE CASE DESCRIPTION...
3.3 FUNCTIONAL REQUIREMENTS DESCRIPTION
Simulation Controller Requirements

Use Case Diagram

3311
3.3.1.2 Requirement Breakdown
3.3.1.3

Use Case Description ...

Communication/Detection Requirements
3.3.2.1 Use Case Diagram............
3.3.2.2 Requirement Breakdown
3.3.2.3 Use Case Description

3.3.3 Aircraft Carrier Requirements

3.3.3.1 Use Case Diagram..................

3.3.3.2 Requirement Breakdown

3.3.3.3 Use Case Description

3.3.4 Aircraft ReQUITEMENLS ... s oo

3.34.1 Use Case Diagram............

3.3.4.2 Requirement Breakdown.............

3.3.43 Use Case Description

3.3.5 Destroyer ReGUITEMENLSooouvveeeoveeeeeeeeeeeeeeeeeeeeeen e ees s s e e s v s e eeses e e ereeeen

3.3.5.1 Use Case Diagram

3.3.5.2 Requirement Breakdown
3.3.5.3 Use Case Description

3.3.6 CruiSer REQUITEMENLS ... eee e eeeeeeeesessere e es e s ee s s eeeeseeeeen

3.3.6.1 Use Case Diagram.........

3.3.6.2 Requirement Breakdown
3.3.6.3 Use Case Description

3.3.7 Battleship ReQUITEMENLSconnooemeeeoeeeeeeeeeeeeeeeeeeeeee e

3.3.7.1 Use Case Diagram...

3.3.7.2 Requirement Breakdown.....
3.3.7.3 Use Case Description ...

3.3.8 Submarine REGUITEMENLS....................c.oooemeereieaeeeeeeeeeeeeeeeeeeeeeeeeeeseres oo e s s s

3.3.8.1 Use Case Diagram.................
3.3.8.2 Requirement Breakdown ..
3.3.83 Use Case Description

3.39.1 UseCaseDiagram........................

3.3.9 Weapons REQUITEMENLSoocooovouvimmmiueaeeeeeeeeeeeeeeeeeeeeeeeeeee e eseees e ee o

3.39.2 Requircment Breakdown
3.393 Use Case Description

34 EXTERNAL INTERFACE REQUIREMENTS.cvvvrce.e.e rerteoaeeeeae e nsas s s s aan 132
3 4.0 User Interface.........c.ooeeeeenevoncneeeiereeciaeeenns
3.4.2 Hardware Interface
3.4.3 SOftWare INIErfacecoeieoeeeeneeeereeertreseee sttt
344 Communication INErface...................o..uucoeeeeeeeuememmieeeereeneee s e eseeesesneseneeseeansoesssesens 133
3.5 PERFORMANCE REQUIREMENTS 133
3.6 DESIGN CONSTRAINTS . 134
3.7 QUALITY ATTRIBUTES 134
3.8 OTHER REQUIREMENTSccooiiiaianteraeiceernesnerarsseencesasssesssssessserensessssessssnensensens 134
SOFTWARE DESIGN 135
4.1 DECOMPOSITION DESCRIPTION......cuuveicenmmmicesreecserassssesasmesssessssessessssssssmesseessnseasses 135
4.1.1 Module DecOmPOSItiON..................ccccoommrieeeeeeeeeeeece e ee e scece e sersenenas 135
4.1.1.1 Simulation Controller 138
4.1.1.2 Communication/Detection Description 138
4.1.1.3 Aircraft Carrier DeSCTIPHON......c.oveevremnurvirieentrnsersrscsuressenesaressememsesasssses et ses 138
4.1.1.4 Aircraft Description 139
4.1.1.5 Destroyer Description 139
4.1.1.6 Cruiser Description 139
4.1.1.7 Battleship Description 139
4.1.1.8 Submarine Description 140
4.1.1.9 Weapon Description 140
4.1.2 Concurrent Process DeCOmMPOSItION..................ooenoieeneeeeeeeeeeereeeeeceeaerceeneesncsons 140
4.1.3 Data Decomposition eeeaemeree et sh st em st e a e st 140
4.1.3.1 Data entity description 140
4.2 DEPENDENCY DESCRIPTION.......oricrerrmereeersereracsensesscsseesssssersssrersesaroserssensesssrsessnses 141
4.2.1 Internal Module Dependencyccccooommemneeeeeeeee e 141
4.2.1.1 Simulation Controller dependency on BaseShip Subsystem 141
4.2.1.2 Simulation Controller dependency on BaseWeapon subsystem 141
4.2.1.3 Communication/Detection dependency on Simulation Controller. 141
4.2.1.4 Communication/Detection dependency on BaseShip 141
4.2.15 BaseShip Subsystem dependency on Communication/Detection 141
4.2.1.6 BaseShip (except Aircraft Carrier) dependency on BaseWeapon 142
4.2.1.7 BaseWeapon dependency on BaseShip 142
4.2.1.8 BaseWeapon dependency on Communication/Detectionccceeeceeererencns 142
4.2.2 Internal Process Dependency....................cccomoceeoemmescnceceeeeereeesenseceneseneserenenesrnenens 142
4.23 Data Dependencycooecoieieaieinceeeeeeeieriereeesn s eve e s s e ne s s sessessananns 142
4.3 INTERFACE DESCRIPTION TR 143
4301 Module INIEIface................o.coumieieeieieeeeeeeeeeee e eereeeeeneses e cv st eee s e ens s et ssnsnnnns 143
4.3.1.1 Simulation Controller 143
4.3.1.2 Communication/Detection 144
43.1.3 BaseShip Class 146
4.3.1.4 BaseWeapon 148
4.3.2 Process IRIEITACE...............o.cceoemioeieiereeeeeee et eeteseteeesese s ene s essas s s st st s neesesessemsanen 150
4.4 SYSTEM DETAILEDDESIGNooveemmmeneeeeereenen . 151
4.4.1 Simulation Controller Detailed Design......................ceroreeerrrereereseeercenencnssssesenns 151
44.1.1 Module Detailed Design 152
4.4.1.2 Class Definition...... 153
4.4.2 Communication/Detection Detailed DesSign..........................ccoooveevuorimicemcerereerreeeereirenennn 165
44.2.1 Module Detailed Design 165
4.4.2.2 Class DEfINItION ..c...ceiueiiccece et e sae s s s en e arenen 166
4.4.3 Ship and Aircraft Detailed Designcccoouemmeeeeeuiieeieeeeieereeeeseceseeeseeessanas 184
44.3.1 Module Detailed Design e teet ettt ee st eae s s s e eetarenestesenestaneanes 184
4.4.3.2 Class Dfiniltion ..ot seaeesessns s s ssas st s ees 184

Vi

444

4.4.3.3 Description of Class Members and Member Functions

Weapon Detailed Design....................cco.occoviiuiiimmeeeeeteeee s 212

4.44.1 Module Detailed Design

4.4.4.2 Class DefiMition......ccce oot et te et e et e e e srcseseeersns st st enss st s e ensennis 213
SYSTEM TESTING 241
UNIT TESTING . .c..eeeireeeeeecneeeeeetceneeeaesoeasssasnesaesnsesssnaesemssesessesssssssssnrssnnnes 241
3.1.1 Unit Testing for Simulation Controller242
5.1.1.1 Unit Test Case for SctUpDig Class Functions 242
5.1.1.2 Unit Test Case for Controller Class Functions 243
5.1.1.3 Other Unit Test Through User Interaction 245
5.1.2 Unit Testing for Communication/Detection.......................oueueeeeeneeneeimeeemeinneeeeiceieeenns 245
5.1.2.1 Unit Test Case for CDetccted Class Functions 245
5.1.2.2 Unit Test Case for CDetectedDatabase Class Functions 246
5.1.2.3 Unit Test Case for CRadar Class Functions 247
5.1.2.4 Unit Test Case for CSonar Class Functions 248
5.1.2.5 Unit Test Case for CMessage Class Functions 248
5.1.2.6 Unit Test Case for CMessageDatabase Class Functions 249
5.1.2.7 Unit Test Case for CRadio Class Functions 250
5.1.3 Unit Testing for All Vehiclescocovoncaueecunniirnineineeeeeeneeeeeeneeeeneeeseenseieeseenen 292
5.1.3.1 Unit Test Case for Derived BaseShip Class Functions 252
5.1.3.2 Unit Test Case for Captain Class Functions 253
5.1.3.3 Unit Test Case for NavigationOfficer Class Functions 254
5.1.3.4 Unit Test Case for RadioOfficer Class Functions 256
5.1.3.5 Unit Test Case for Radar/SonarOfficer Class Functions 256
5.1.3.6 Unit Test Case for WeaponOfficer Class Functions 256
5.1.3.7 Unit Test Case for WeaponLauncher Class Functions 258
5.0.4 Unit Testing for WeaPONS.................eeeeeeeeeeeeerceiesesrerseesessesesnereensssesmsesssesssssensessessensas 260
5.1.4.1 Unit Test Case for CWActiveStateControiler Class Functions. 260
5.1.4.2 Unit Test Case for CWPositionController Class Functions 260
5.1.4.3 Unit Test Case for CWAutoAimController Class Functions 261
5.1.4.4 Unit Test Case for CWChargeController Class Functions. 263
5.1.4.5 Unit Test Case for CWCharge Class Functions 264
5.1.4.6 Unit Test Case for CWRudder Class Functions 265

. SUBSYSTEM TESTING 266
5.2.1 Simulation Controller Subsystem TeSting.................cemiimniiieieimiieieecceie e 266
5.2.1.1 Test Cases and Results 266
5.2.1.2 Error Reports 268
5.2.1.3 Untested Components 268
5.2.2 Communication/Detection Subsystem TeStiNg............cccoommeemivevieereiieiececcieieieeeaesennene 269
5.2.2.1 Test Cases ANd RESUILS ..ot rceteesrc et te s sne s ess s sesre s snsssasnes s mne e snsen e eerns 269
5.2.2.2 Error Reports 269
5.2.2.3 Untested Components 269
5.2.3 Ship/Aircraft Subsystem TeSting...............cconeeirceeceiereereesmerereeeseeeeesrseseennesssrsesnneseens 270
5.23.1 Test Cases and Results 270
5.23.2 Ermor Reports 270
5.2.3.3 Untested Components 270
5.24 Weapon Subsystem Testing...................ccoovconininineneieeeeeeeceesee et 271
5.24.1 Test Cases and Results 271
5.24.2 Emor Reports 271
5.24.3 Untested COMPONENLS.........coourmmmerreereceereeieeeneeceseeneeene 271
5.3 SYSTEM INTEGRATION TESTINGecuvrmiurereecerentetrrecraeseneeonescssnssnsnessesesensresessssssnsnssssasssnssessessencn 272
3.3 Inte@ration SCREMe................cooovceoeeeeeeeerereteeeeeeieeeereeeeencemes e seemeees e snses oo D T
3.3.2 TestCases and ReSUILSccccooivmommiiiniereieisee et r e nesnesesneeaesnce 21
3.3.3 EFTOF REPOTLS ..ot e e b e 274
CONCLUSION 275

vii

6.1
6.2
6.3
6.4

REQUIREMENTS GATHERING AND SPECIFICATION w..ccuneneieieeeciiiaeenereeessessesmeesaenessssseesssmeessansesseneas
DESIGN AND IMPLEMENTING enereseseeeessesesesesessareseanteteaaarnsanratoeateeeasersrnesenans
TESTING AND DELIVERY/MAINTENANCE reeeereteeeesemeseessssnnsnsteteenneeeananaes
FURTHER IMPROVEMENTSoooiieerreennnes

viii

275
275
276

.276

TABLE 3-1

TABLE 3-2

TABLE 3-3

TABLE 3-4

TABLE 3-5

TABLE 3-6

TABLE 3-7

TABLE 3-8

TABLE 3-9

TABLE 3-10
TABLE 3-11
TABLE 3-12
TABLE 3-13
TABLE 3-14
TABLE 3-15
TABLE 3-16
TABLE 3-17
TABLE 3-18
TABLE 3-19
TABLE 3-20
TABLE 3-21
TABLE 3-22
TABLE 3-23
TABLE 3-24
TABLE 3-25
TABLE 3-26
TABLE 3-27
TABLE 3-28
TABLE 3-29
TABLE 3-30
TABLE 3-31
TABLE 3-32
TABLE 3-33
TABLE 3-34
TABLE 3-35
TABLE 3-36
TABLE 3-37
TABLE 3-38
TABLE 3-39
TABLE 3-40
TABLE 3-41
TABLE 3-42
TABLE 3-43
TABLE 3-44
TABLE 3-45
TABLE 3-46
TABLE 3-47
TABLE 3-48
TABLE 3-49
TABLE 3-50
TABLE 3-51

List of Tables

REQUIREMENT IDENTIFIERS w..ocoeeeneieoeeeeeeeessseesmmeesseseessnsssmeessesssesssasssssssesssensnmesnnsessesssasesasnasens 9
ATTACKER LIST eeeeeeebeerteeaneeaneteranneeean ..16
WEAPON LIST .cooeineeecieeeeeeeeeeeeieveeceteessssrsnreneessseeeessnnnsrassssssessses 16
COMMUNICATION/DETECTION LISTreieeeiieereeeteeceeeeeceeeseeseesseesasssssesssssssssssesensensesssanesssns 16
USE CASE SET UP OPERATIONAL PARAMETERS 22
USE CASE DESCRIPTION FOR: START SIMULATION 24
USE CASE DESCRIPTION FOR SIMULATE COMMUNICATION 25
USE CASE DESCRIPTION FOR BASE SUPPLY 27
USE CASE DESCRIPTION FOR PAUSE SIMULATION 29
USE CASE DESCRIPTION FOR RESUME SIMULATION.. 30
USE CASE DESCRIPTION FOR END SIMULATION . 31
USE CASE DESCRIPTION FOR REPORT STATISTICS ——- 32
USE CASE DESCRIPTION FOR TURN ON RADAR..... 37
USE CASE DESCRIPTION FOR TURN OFF RADAR. 38
USE CASE DESCRIPTION FOR RADAR EMIT WAVE ...oovieeeieeeeeeeeecnnens 39
USE CASE DESCRIPTION FOR RADAR RECEIVE WAVE) 40
USE CASE DESCRIPTION FOR TURN ON SONAR .. 41
USE CASE DESCRIPTION FOR TURN OFF SONARuooeiveeeiercteceeereseescsaeseneessessesesnsssesssses 42
USE CASE DESCRIPTION FOR SONAR EMIT WAVE 43
USE CASE DESCRIPTION FOR SONAR RECEIVE WAVE 44
USE CASE DESCRIPTION FOR TURN ON RADIOcoeomeieeeceeeeeeeetcveresreeceeeseesesssnsnmssnean 45
USE CASE DESCRIPTION FOR TURN OFF RADIO 46
USE CASE DESCRIPTION FOR RADIO SEND MESSAGE 47
USE CASE DESCRIPTION FOR RADIO RECEIVE MESSAGE 49
USE CASE DESCRIPTION FOR AIRCRAFT CARRIER NAVIGATION CONTROL......cooeeeeeeeenreeenn.. 56
USE CASE DESCRIPTION FOR AIRCRAFT CARRIER COMMUNICATE WITH ALLIES ...uvvmeeenenn. 57
USE CASE DESCRIPTION FOR AIRCRAFT CARRIER MAKE DECISION.......coueeeeeeeeereeennnreneereseeenns 58
USE CASE DESCRIPTION FOR AIRCRAFT CONTROL 60
USE CASE DESCRIPTION FOR AIRCRAFT CARRIER UPDATE STATUS 62
USE CASE DESCRIPTION FOR AIRCRAFT CARRIER REFUELING 63
USE CASE DESCRIPTION FOR AIRCRAFT NAVIGATION CONTROL 70
USE CASE DESCRIPTION FOR AIRCRAFT DETECT ENEMYooneeeieeeeeeeeeeeeecennes 72
USE CASE DESCRIPTION FOR AIRCRAFT COMMUNICATION WITH ALLIES 73
USE CASE DESCRIPTION FOR AIRCRAFT MAKE DECISION....c..uevveeeeeeeeecreeeeeeevenenes 74
USE CASE DESCRIPTION FOR AIRCRAFT WEAPON CONTROL 76
USE CASE DESCRIPTION FOR AIRCRAFT UPDATE STATUS .77
USE CASE DESCRIPTION FOR AIRCRAFT REFUELING 78
USE CASE DESCRIPTION FOR DESTROYER NAVIGATION CONTROLceeveeerreeeeerereeeaeensesnessnes 84
USE CASE DESCRIPTION FOR DESTROYER NAVIGATION CONTROL 85
USE CASE DESCRIPTION FOR DESTROYER COMMUNICATION WITH ALLIES ...coveveeeeeeeneerereennas 86
USE CASE DESCRIPTION FOR DESTROYER MAKE DECISION . 87
USE CASE DESCRIPTION FOR DESTROYER WEAPON CONTROL ...88
USE CASE DESCRIPTION FOR DESTROYER UPDATE STATUS.. 89
USE CASE DESCRIPTION FOR DESTROYER REARM AND REFUELING 90
USE CASE DESCRIPTION FOR CRUISER NAVIGATION CONTROL96
USE CASE DESCRIPTION FOR CRUISER NAVIGATION CONTROL....oueveeeeeeeeeeeeeeereesseeseseneesenes 97
USE CASE DESCRIPTION FOR AIRCRAFT CARRIER COMMUNICATION WITH ALLIEScccveeen.. 98
USE CASE DESCRIPTION FOR CRUISER MAKE DECISION ...ooneeieeeeeeeeeeeeeeeeereeeeeesssseneseens 99
USE CASE DESCRIPTION FOR CRUISER WEAPON CONTROL.....occvecrenrieniceeaeieeeeeeeeeeveesennsees 100
UsSE CASE DESCRIPTION FOR CRUISER UPDATE STATUScecuveeniene. .101
USE CASE DESCRIPTION FOR CRUISER REARM AND REFUELING ...c...cooeeeeeeeeeeeeeeeeeeceenennes 102

TABLE 3-52 USE CASE DESCRIPTION FOR BATTLESHIP NAVIGATION CONTROL ..108
TABLE 3-53 USE CASE DESCRIPTION FOR BATTLESHIP NAVIGATION CONTROLemeeeeeeereceeeeenceenecenennae 109
TABLE 3-54 USE CASE DESCRIPTION FOR BATTLESHIP COMMUNICATION WITH ALLIES ...ovveieieiieiaeeans 110
TABLE 3-55 USE CASE DESCRIPTION FOR BATTLESHIP MAKE DECISION . 111
TABLE 3-56 USE CASE FOR WEAPON CONTROL 112
TABLE 3-57 USE CASE DESCRIPTION FOR BATTLESHIP UPDATE STATUS 113
TABLE 3-58 USE CASE DESCRIPTION FOR BATTLESHIP REARM AND REFUELING 114
TABLE 3-59 USE CASE DESCRIPTION FOR SUBMARINE NAVIGATION CONTROL 120
TABLE 3-60 USE CASE DESCRIPTION FOR SUBMARINE DETECT ENEMY 121
TABLE 3-61 USE CASE DESCRIPTION FOR SUBMARINE COMMUNICATE WITH ALLIES 122
TABLE 3-62 USE CASE DESCRIPTION FOR SUBMARINE MAKE DECISION 123
TABLE 3-63 USE CASE DESCRIPTION FOR SUBMARINE WEAPON CONTROL................. 124
TABLE 3-64 USE CASE DESCRIPTION FOR SUBMARINE UPDATE STATUS 125
TABLE 3-65 USE CASE DESCRIPTION FOR SUBMARINE REARM AND REFUELING 126
TABLE 3-66 USE CASE DESCRIPTION FOR PROVIDE LOCATION 129
TABLE 3-67 USE CASE DESCRIPTION FOR AIM TARGET 130
TABLE 3-68 USE CASE DESCRIPTION FOR FIRE AND HIT TARGET 131
TABLE 5-1 UNIT STATIC TESTING 241
TABLE 5-2 UNIT DYNAMIC TESTING 242
TABLE 5-3 UNIT TEST CASE FOR SETUPDLG DRAW FUNCTION 243
TABLE 5-4 UNIT TEST CASE FOR SETUPDLG UNDO FUNCTION 243
TABLE 5-5 UNIT TEST CASE FOR CONTROLLER LOADTGA FUNCTION. 244
TABLE 5-6 UNIT TEST CASE FOR CONTROLLER CALDIR FUNCTION 244
TABLE 5-7 UNIT TEST CASE FOR CONTROLLER ONKEYDOWN FUNCTION 244
TABLE 5-8 OTHER UNIT TEST THROUGH USER INTERACTION 245
TABLE 5-9 UNIT TEST CASE FOR CDETCCTED SETDETDATA FUNCTION 246
TABLE 5-10 UNIT TEST CASE FOR CDETCCTED OPERATOR <<OVERLOADING FUNCTION........ccoverueeeeranee 246
TABLE5-11 UNIT TEST CASE FOR CDETCCTEDDATABASE DELETEALL FUNCTION ..246
TABLES5-12 UNIT TEST CASE FOR CDETCCTEDDATABASE ADDDELETED FUNCTION 247
TABLE 5-13 UNIT TEST CASE FOR CRADAR EMITRECEIVE FUNCTION 247
TABLE 5-14 UNIT TEST CASE FOR CSONAR EMITRECEIVE FUNCTION 248
TABLE 5-15 UNIT TEST CASE FOR CMESSAGE VALIDTOSEND FUNCTION 248
TABLE 5-16 UNIT TEST CASE FOR CMESSAGE VALIDTOSEND FUNCTION ..249
TABLE 5-17 UNIT TEST CASE FOR CMESSAGE VALIDTOSEND FUNCTION 249
TABLE 5-18 UNIT TEST CASE FOR CMESSAGE DELETEALLMSG FUNCTIONuevieeeereeereereraeennseesnasersans 249
TABLE 5-19 UNIT TEST CASE FOR CMESSAGE ADDONEMSGINTHELIST FUNCTION....cvmmrereereeeeennaceeens 250
TABLE 5-20 UNIT TEST CASE FOR CMESSAGE GETMYMSG FUNCTION........eeeeeeerimreeeeeeeervnveeennneeesesennanes 250
TABLE 5-21 UNIT TEST CASE FOR CRADIO DELETEMESSAGES FUNCTION........cvvmererveeeemreerreeeceesnsnncesees 250
TABLE 5-22 UNIT TEST CASE FOR CRADIO SENDMESSAGE FUNCTION 250
TABLE 5-23 UNIT TEST CASE FOR CRADIO RECEIVEMESSAGES FUNCTION 251
TABLE 5-24 UNIT TEST CASE FOR DERIVED BASESHIP CONSTRUCTOR FUNCTION 252
TABLE 5-25 UNIT TEST CASE FOR DERIVED BASESHIP UPDATESTATUS AND RESISTANCERECOVERY
FUNCTION ..cectreenerrecsererensnsesssessencsssersmssesssensesssssseees 253
TABLE 5-26 UNIT TEST CASE FOR DERIVED CAPTAIN IFATTACK FUNCTION . 253
TABLE 5-27 UNIT TEST CASE FOR DERIVED CAPTAIN : ISONTHEWAY, ADJUSTNAVIGATION FUNCTION .253
TABLE 5-28 UNIT TEST CASE FOR NAVIGATIONOFFICER ADJUSTSPEED FUNCTION 254
TABLE 5-29 UNIT TEST CASE FOR NAVIGATIONOFFICER OTHER FUNCTION 255
TABLE 5-30 UNIT TEST CASE FOR WEAPONOFFICER PREPAREATTACK FUNCTION 257
TABLE 5-31 UNIT TEST CASE FOR WEAPONOFFICER SELECTWEAPON FUNCTION ...cuoieerreeeneeeeceeeneenennes 257
TABLE 5-32 UNIT TEST CASE FOR WEAPONLAUNCHER AIMBYBALLISTIC FUNCTION ...ooveevveecceveeeeennene 258
TABLE 5-33 UNIT TEST CASE FOR WEAPONLAUNCHER FIRECANNONSHELL FUNCTION.....oooeiieenreeeenees 258
TABLE 5-34 UNIT TEST CASE FOR WEAPONLAUNCHER FIREMISSILE FUNCTIONcovcmeeeiereeecennneeanennes 258
TABLE 5-35 UNIT TEST CASE FOR WEAPONLAUNCHER DELETEWEAPON FUNCTION.....cccoveeeuieeerneeeeranaes 259

TABLE 5-36 UNIT TEST CASE FOR CWACTIVESTATECONTROLLER GET/SETSTATE FUNCTION 260

TABLE 5-37 UNIT TEST CASE FOR CWACTIVESTATECONTROLLER INITIALPOSITION FUNCTION 260
TABLE 5-38 UNIT TEST CASE FOR CWACTIVESTATECONTROLLER INITIALPOSITION FUNCTION 261
TABLE 5-39 UNIT TEST CASE FOR CWAUTOAIMCONTROLLER TRACETARGET FUNCTIONcovvevvivrnnnenns 261

TABLE 5-40 UNIT TEST CASE FOR CWAUTOAIMCONTROLLER TRACETARGET (AIRCRAFT) FUNCTION262
TABLE 5-41 UNIT TEST CASE FOR CWAUTOAIMCONTROLLER TRACETARGET (SUBMARINE) FUNCTION ...262

TABLE 5-42 UNIT TEST CASE FOR CWCHARGECONTROLLER HITDETECT FUNCTIONoecuiniininiencnnsee 263
TABLE 5-43 UNIT TEST CASE FOR CWCHARGECONTROLLER HITDETECT(AIRCRAFT) FUNCTION.......... 263
TABLE 5-44 UNIT TEST CASE FOR CWCHARGECONTROLLER HITDETECT(SUBMARINE) FUNCTION............ 264
TABLE 5-45 UNIT TEST CASE CWCHARGE DETONATETARGET FUNCTION 264
TABLE 5-46 UNIT TEST CASE CWRUDDER CHANGEVELOCITY FUNCTION 265
TABLE 547 TEST CASE FOR SIMULAITON CONTROLLER(SETUPDLG) SUBSYSTEM 266
TABLE 5-48 TEST CASE FOR SIMULAITON CONTROLLER(VECTOR) SUBSYSTEM 266
TABLE 5-49 TEST CASE FOR SIMULAITON CONTROLLER (SC) SUBSYSTEM......ccoeceernmmrcerenersreseeernvneenens 267
TABLE 5-50 TEST CASE FOR SIMULAITON CONTROLLER (VEHICLEFACTORY) SUBSYSTEM.......cocvceneneen. 267
TABLE 5-51 TEST CASE FOR SIMULAITON CONTROLLER (CONTROLLER) SUBSYSTEMcevmecmceeearenennnens 268
TABLE 5-52 TEST CASE FOR COMMUNICATION/DETECTION SUBSYSTEM 269
TABLE 5-53 TEST CASE FOR SHIP/AIRCRAFT SUBSYSTEM ...uuueeiincicecnecencenncenneas 270
TABLE 5-54 TEST CASE FOR WEAPON(WTORPEDO) SUBSYSTEM ...cccucuiecuiceancrcecceseasnesssissessnensesansasns 271
TABLE 5-55 TEST CASE FOR WEAPON (WCANNONSHELL) SUBSYSTEM . 271
TABLE 5-56 TEST CASES AND RESULTS - reveeeeenreenas 273

Xi

FIGURE 3-1
FIGURE 3-2
FIGURE 3-3
FIGURE 34
FIGURE 3-5
FIGURE 3-6
FIGURE 3-7
FIGURE 3-8
FIGURE 3-9
FIGURE 3-10
FIGURE 3-11
FIGURE 3-12
FIGURE 3-13
FIGURE 3-14
FIGURE 3-15
FIGURE 3-16
FIGURE 3-17
FIGURE 3-18
FIGURE 3-19
FIGURE 3-20
FIGURE 3-21
FIGURE 3-22
FIGURE 3-23
FIGURE 3-24
FIGURE 3-25
FIGURE 3-26
FIGURE 3-27
FIGURE 3-28
FIGURE 3-29
FIGURE 3-30
FIGURE 3-31
FIGURE 3-32
FIGURE 3-33
FIGURE 3-34
FIGURE 3-35
FIGURE 3-36
FIGURE 3-37
FIGURE 4-1
FIGURE 4-2
FIGURE 4-3
FIGURE 4-4
FIGURE 4-5
FIGURE4-6
FIGURE 4-7
FIGURE 4-8
FIGURE 4-9
FIGURE 4-10
FIGURE4-11
FIGURE 4-12
FIGURE 4-13

List of Figures

SEQUENCE DIAGRAM FOR USE CASE NAVIGATION CONTROL
SEQUENCE DIAGRAM FOR USE CASE DETECT ENEMY ..
SEQUENCE DIAGRAM FOR USE CASE COMMUNICATE WITH ALLIES
SEQUENCE DIAGRAM FOR USE CASE MAKE DECISION
SEQUENCE DIAGRAM FOR USE CASE WEAPON CONTROL
SEQUENCE DIAGRAM FOR USE CASE UPDATE STATUS
SEQUENCE DIAGRAM FOR USE CASE REARM AND REFUELING
SEQUENCE DIAGRAM FOR USE CASE TURN ON COMMUNICATION/DETECTION
SEQUENCE DIAGRAM FOR USE CASE TURN OFF COMMUNICATION/DETECTION
SEQUENCE DIAGRAM FOR USE CASE DETECTION EMIT WAVE
SEQUENCE DIAGRAM FOR USE CASE DETECTION RECEIVE WAVE
USE CASE DIAGRAM FOR SIMULATION CONTROLLER
SEQUENCE DIAGRAM FOR USE CASE: SET UP OPERATIONAL PARAMETERS
SEQUENCE DIAGRAM FOR USE CASE: START SIMULATION
SEQUENCE DIAGRAM FOR USE CASE: SIMULATE COMMUNICATION
SEQUENCE DIAGRAM FOR USE CASE: BASE SUPPLIER
SEQUENCE DIAGRAM FOR USE CASE: PAUSE SIMULATION..
SEQUENCE DIAGRAM FOR USE CASE: RESUME SIMULATION
SEQUENCE DIAGRAM FOR USE CASE: END SIMULATION
SEQUENCE DIAGRAM FOR USE CASE: REPORT STATISTICS
USE CASE DIAGRAM FOR COMMUNICATION/DETECTION
SEQUENCE DIAGRAM FOR USE CASE RADIO SEND MESSAGE
SEQUENCE DIAGRAM FOR USE CASE RADIO RECEIVE MESSAGE
USE CASE DIAGRAM FOR AIRCRAFT CARRIER
SEQUENCE DIAGRAM FOR USE CASE AIRCRAFT CARRIER MAKE DECISION
SEQUENCE DIAGRAM FOR USE CASE AIRCRAFT CARRIER AIRCRAFT CONTROL

10

11

11

12

12

13

13

...................... 14
.................... 14

15

15

17

23

24

26

28

29

30

31

32

33

48

50

51

.......................... 59
.................... 61

64

USE CASE DIAGRAM FOR AIRCRAFT

SEQUENCE DIAGRAM FOR USE CASE AIRCRAFT NAVIGATION CONTROL
SEQUENCE DIAGRAM FOR USE CASE AIRCRAFT MAKE DECISION

USE CASE DIAGRAM FOR DESTROYER
USE CASE DIAGRAM FOR CRUISER

71

75

79

91

USE CASE DIAGRAM FOR BATTLESHIP

USE CASE DIAGRAM FOR SUBMARINE
USE CASE DIAGRAM FOR WEAPON

...

......................................

...............................

SEQUENCE DIAGRAM FOR USE CASE WEAPON PROVIDE LOCATION
SEQUENCE DIAGRAM FOR USE CASE WEAPON AIM TARGET
SEQUENCE DIAGRAM FOR USE CASE WEAPON FIRE AND HIT TARGET.
INTERACTION DIAGRAM BETWEEN SUBSYSTEMS
ARCHITECTURE OF THE NAVAL BATTLE SIMULATION SYSTEM

CLASS LEVEL INTERFACE DIAGRAM

SIMULATION CONTROLLER FOR WEAPON
SIMULATION CONTROLLER FOR COMMUNICATION/DETECTION

RADAR/SONAR_FOR_WEAPON

BASESHIP_FOR_SC

BASEWEAPON_FOR_SIMULATION CONTROLLER
BASEWEAPON_FOR_SHIP AND AIRCRAFT
CLASS DIAGRAM FOR SIMULATION CONTROLLER MODULE..
CLASS DIAGRAM FOR COMMUNICATION/DETECTION MODULE
CLASS DIAGRAM FOR BASESHIP (SHIP AND AIRCRAFT) MODULE
CLASS DIAGRAM FOR WEAPON MODULE.

Xii

103
115
127
129
130
131
135
136
137
143
144
145
147
148
150
152
165
185
212

1. Introduction

The Naval Battle Simulation System is a software system to simulate real life but
yet simplified modern naval battle scenarios. This document follows the |IEEE
standards [2], [3] and Dr. Paquet SRD slides [4] to specify the system
requirements and describe the system design. The whole document is based on
the Software Engineering (COMP554, Summer 2001) project of the Computer
Science Department in Concordia University. Care was taken to write this
document in an organized and comprehensive structure, and also to fully list the
system requirement and optimize the original system design. This document’s
objective is to practice the object oriented design methodology and to comply
with the IEEE documentation standards for software.

1.1 Purpose

The purpose of this document is as following:

e Present in a precise and understandable manner the requirements, design,
and testing procedure of the Naval Battle Simulation System.

o Demonstrate software documentation traceabilty among SRS, SDD and
Software Testing Document.

e Show how the design is a translation of requirements into software structure,
software components, interface, and data necessary for the implementation
phase; show how testing is linked to requirements.

e The document is intended to be a baseline to supply sufficient design and
implementation information for the future students in other Software
Engineering courses offered in the Department.

e The system and documentation are to be designed in terms of extensibility

and reusability as much as possible.

1.2 Scope

The software system that will be developed is called NBSS-—Naval Battle
Simulation System. This system simulates the activities and functions of many
real life parties involved in (hypothetic) naval battles. The subsystem includes
Simulation Controller, Aircraft, Aircraft Carrier, Battleship, Cruiser, Destroyer,
Submarine, Weapon and Communication/Detection. The simulated behavior
includes navigating, detecting enemies with Radars and Sonars, communicating
and cooperating with allies, attacking enemies, and base supplier. The system
allows the user to set the simulation parameters and interact with the system too.

The deliverable products are the following:

Software System
A software package that fulfills the system requirements listed in section 3. It is

implemented to comply with software design in section 4. It also meets the test
goals listed in the testing document presented in section 5.

Software Document
A complete and understandable document that describes the whole system in

terms of requirement specification, software design, implementation, and testing.
It will also be an aid reference for future maintenance and updating.

1.3 Definitions, Acronyms, Abbreviations

ANSI

Aencan Natlonal Standards lnstltute

Class Diagram

Used to display some of the classes and packages of
classes in the system

Design Entity An element (component) of a design that is structurally
and functionally distinct from other elements

IEEE The institute of Electrical and Electronics Engineers

IMD intenal Module Design

MFC Microsoft Foundation Class Library

MID Module Interface Design

NA Not Applicable

NBSS Naval Battle Simulation System

Open GL Open Graphics Library

SC Simulation Controller

Sequence Diagram

Used to graphically show the flow of event in a use case
(Functional requirements specifications)

SRS

Software Requirement Specification Document

SRD

Software Requirements Document

Use Case Diagram

Used to describe the functionality of a system, or one of
its components

UML Unified Modeling Language

Vehicle Aircraft Carrier, Aircraft, Destroyer, Cruiser, Battleship,
Submarine, Weapons

Weapon Sea-Sub Missile/Torpedo, Sea-Air Missile, Heavy

Cannon Shell, Sea-Sea Missile, Torpedo, Sub-Sea
Torpedo/Missile, Air-Sea Missile, Air-Air Missile

1.4 Overview

This document is organized in six major sections. Section 1 Introduction
introduces the main purpose, scope, overview, and references of the whole
document. References are presented there to comply with the IEEE standards
for software documentation. Section 2 General Description describes the
system from different aspects: product perspective, product functions, user
characteristics, general constraints and assumptions and dependencies. Section
3 Specific Requirements defines the specific requirements and all detailed
need to build the system design for all the subsystems. Section 4 Software
Design describes the system in terms of decomposition description, dependency
description, interface description, scenario for major functionality and detailed
design. Section 5 Testing describes the unit test cases and integrated testing

plan.

1.5 References

[1]

(2]

(3]

[4]

(5]

[6]

[8]

[9]
[10]

Peter Freeman, Anthony |. Wasserman, Tutorial on Software Design
Techniques. 4" Edition, IEEE Computer Society Press, 1983.

Institute of Eletrical and Electonics Engineers Inc., An American
National Standard IEEE Guide to Software Requirements
Specification, Software Engineering Standars Committee of the IEEE
Computer Society, 1984.

Institute of Eletrical and Electonics Engineers, IEEE Recommended
Practice for Software Design Descriptions, Software Engineering
Standars Committee of the IEEE Computer Society, September 1998.
Joey Paquet, SRD Document Standard & Guidelines Slides, course
material, Concordia University, Department of Computer Science, 2000.
Martin Fowler with Kendaill Scott, UML Distilled Second Edition(A
Brief Guide to the Standard Object Modeling Language), ADDISON-
WESLEY, 1999.

www.naval-technology.com, the Website for defence industries — Navy,
2001.

Terry Quatrani , Visual Modeling With Rational Rose and UML,
ADDISON-WESLEY, 1999.

www.rational.com/umllindex.jsp, Rational Software Corporation, 2001.
www.fas.org/man/dod-101/sys/, the Federation of American Scientists

James Rumbaugh, Michel Balha, Premerlani, Eddy, Lorensen, Object
Oriented Modeling and Design, Prentice Hall, 1991.

2. General Description

2.1 Product Perspective

The Naval Battle Simulation System is divided into several subsystems. Each of
these subsystems can further be divided into functional tasks.

The identified subsystems are:

Simulation Controller: provides a user interface and controls the
performance of the whole system. It also acts as the communication
medium.

Communication/Detection: is responsible for detecting enemies and
communicating with allies, also simulates aiming system for Weapons.
Aircraft Carrier: cooperates with Aircraft to locate and destroy enemy ships
and Aircraft.

Aircraft: cooperates with Aircraft Carrier to locate and destroy enemy ships
and Aircraft.

Destroyer: detects and destroys the underwater threats.

Cruiser: detects and destroys the airborne threats.

Battieship: detects and destroys the sea borne threats.

Submarine: detects and destroys sea borne and underwater threats.
Weapons: provides different kinds of Weapons that can be used by all
ships (except Aircraft Carrier) and Aircraft to attack enemies.

2.2 Product Functions

Simulation Controller:

1. Provides an interactive user interface

2. Simulates the communication media

3. Generates the vehicles for both sides

4. Animates the movements of ships

5. Generates the fuel and Weapon upon request

Ships and Aircraft (Battleship, Cruiser, Destroyer, Submarine, Aircraft)

Navigates on the map

Detects the enemy
Communicates with allies
Launche Weapon to attack targets
Makes strategic decisions

hbhwh =

Aircraft Carrier

Navigates on the map
Manages Aircraft take-offs
Manages Aircraft landings
Assigns missions to Aircrafts
Communicates with allies
Makes strategic decisions

SORwON~

Communication/Detection:
1. Passes information to the Simulation Controller
2. Detects vehicles
3. Enables communication between vehicles
4. Simulates the detecting system for Weapons

Weapon:
1. Aims at a target

2. Fires at a taget
3. Hit sa target
4. Inflicts damage to a vehicle

For the product function definitions, refer to [6] and [9].

2.3 User Characteristics

Users of NBSS can be various: some users are Software Engineering students
who need to access the system for maintenance and updating; some users are
the end users who will play with the system as a game, and they may not have
any background knowledge with computers. For the former, this document will
act as a reference manual. For the latter, the system will provide the necessary
help to them.

2.4 General Constraints

e The user interface of the vehicle subsystems is provided by the Simulation
Controller subsystem. The user has limited access rights for vehicle
subsystems.

e The vehicle subsystems have to interact with the Simulation Controller,
Weapons, and Communication/Detection subsystems to perform its functions.

e The language used for the implementation of the system is C++.
e The platform of the system is Microsoft Windows 95/98/NT/2000.

2.5 Assumptions and Dependencies

Since the NBSS is composed of nine subsystems, the cooperation and
coordination of all the subsystems is a key factor to ensure the success of the
whole system. We assume that all subsystems will meet its own requirements
and comply with the interface of the other subsystems.

Other assumptions and dependencies:

The development requires the Microsoft Windows NT 4.0 operating system.
There will be only two sides, enemy and friend, participating in the battle.
The simulation will proceed fully automatically, the user can interact the
simulation in very limited ways.

e Thers is no consideration of natural interferences in the simulation, e.g.
weather, wind, lighting.

3. Specific Requirements

3.1 Requirement Identification

Each requirement is represented by a requirement identifier, and a requirement
name. It is described by a requirement statement and a requirement support
comment. They are defined as:

Requirement ldentifier

Requirements are distinguished from explanatory text via the requirement
identifier. Requirement identifiers are made up of two alphabetic characters,
which identify the subsystem the requirement belongs to, followed by a hyphen,
and followed by a three digit number, which distinguishes it among requirements
within that subsystem.

Simulation Controller SC
Communication/Detection CD
Aircraft Carrier AC
Aircraft AT
Destroyer DT
Cruiser CS
Battleship BS
Submarine SM
Weapons WP

Table 3-1 Requirement Identifiers

Requirement numbers are assigned sequentially. Sub requirements will be
identified by requirement number and a hyphen that is followed by another two
digit number (e.g. SC-001-01).

Requirement Name

The requirement name provides a short title description. Note that many
requirements are similar across subsystems (e.g. all vehicles have to implement
navigation). In these cases, the requirement names are worded so as to refer to
the specific subsystem it describes.

Requirement Statement

The requirement statement is identified by being below the requirement name, in
normal font. The requirement statement provides a full but high-level description
of the requirement.

Requirement Support Comments

The requirement supporting comments are identified by being below the
requirement statements, in an italic and somewhat smaller font. The requirement
supporting comment provide further explanation and/or supporting discussion of
the requirement.

3.2 High Level Use Case Description

For use case diagram and sequence diagram notation refer to reference [5] and

7.
Navigation Control

Ngtio : Shig&Aircaﬁ <
Base Object 3

Figure 3-1 Sequence Diagram for Use Case Navigation Control

10

Detect Enemy

B S A

g : Bl Detection Simulation
3 §| Controller |8

Communicate with Allies

Ships & Aircraft [§
Base Object §

Figure 3-3 Sequence Diagram for Use Case Communicate with Allies

11

Make Decision

A : 5 R I e oy]
Communication pazs i s Navigation }{Communication k¥ | Weapon Officer
{Detection officer Officer

JEIIAY_eeayt

Figure 344 Sequence Diagram for Use Case Make Decision

Weapon Control

Weapon

Figure 3-5 Sequence Diagram for Use Case Weapon Control

12

Update Status

Ships8Aircraft [EX205 4 Simulation
Base Obiet TR Controller

Figure 3-6 Sequence Diagram for Use Case Update Status

Rearming and Refueling

Figure 3-7 Sequence Diagram for Use Case Rearm and Refueling

13

Turn on Communication/Detection

Figure 3-8 Sequence Diagram for Use Case Turn on Communication/Detection

Turn off Communication/Detection Device

Figure 3-9 Sequence Diagram for Use Case Turn off Communication/Detection

14

Detection Emit Wave

Ships8 Aircraft [E5% jieiall Simulation
Base or Weapon [saste?: ‘ Controlle

- o - oy e

Figure 3-10 Sequence Diagram for Use Case Detection Emit Wave

Detection Receive Wave

Figure 3-11 Sequence Diagram for Use Case Detection Receive Wave

15

3.3 Functional Requirements Description

The system requirement descriptions are based on the subsystem classification.
Each subsystem is described from the aspects of use case diagram,
requirements breakdown and use case description. Use case description refers
to the standard [4].

Attacker list

No~att'ackab|hty - o

Weapon list

Alrcraft Carner
Aircraft Aircraft Carrier, Battieship, Cruiser, Destroyer, Aircraft
Battleship Aircraft, Aircraft Carrier, Cruiser, Destroyer, Battleship
Cruiser Aircraft
Destroyer Submarine
Submarine Battleship, Cruiser, Destroyer, Submarine

Table 3-2 Attacker List

Aircraft Camer No attack ablhty

Aircraft Air-Air Missile, Air-Sea Missile

Battleship Sea-Sea Missile, Sea-Air Missile, Heavy Cannon Shell,
Torpedo

Cruiser Sea-Air Missile

Destroyer Sea-Sub Missile

Submarine Sub-Sea Torpedo, Torpedo

Table 3-3 Weapon List

Communication/Detection list

Communication/Detection Ship/Aircraft and Weapon

Radio Aircraft, Aircraft Carrier, Destroyer, Cruiser,
Submarine, Battleship

Radar Battleship, Cruiser, Aircraft, Sea-Sea Missile,Air-
Air Missile, Sea-Air Missile

Soanr Submarine, Destroyer, Torpedo,

Table 34 Communication/Detection List

16

3.3.1 Simulation Controller Requirements
The Simulation Controller subsystem has the following seven sub modules:

CMainframe
SetUpDialog
Controller

Base Supplier
Vehicle Info
Position Vector
Simulation Control

3.3.1.1 Use Case Diagram

17

3.3.1.2 Requirement Breakdown

Use Case:

Set Up Operational Parameters

SC-001

SC-002

SC-003

SC-004

SC-005

SC-006

Use Case:

SC-007

Initialize Agents
The Simulation Controller shall create the agents for both friend

and enemy sides.
The agents include Aircrat Carrier, Battleship, Cruiser, Destroyer, and
Submarine.

Add Agents
The Simulation Controller shall allow the user to add new agents to

NBSS.

The new agents will be added from an agent list by name.

Initialization Weapon

The Simulation Controller shall allow the user to set the used
Weapons.

The used Weapons will be selected from a Weapon list by name.

Set the Production Rate
The Simulation Controller shall allow the user to set the production
rate for producing all kinds of agents, producing fuel and creating

Weapons.
These rates will be used when simulation is running by both sides.

Set the Limit for Supplying Base
The Simulation Controller shall allow the user to set the maximum

stock for supplying all kinds of agents, fuel and Weapons.
No comments.

Provide Set up User Interface
The Ul shall provide the user to initialize and set the parameters to

start the simulation.
GUI of Simulation system shall allow the user to perform SC-001 ~ SC-005.

Start Simulation
Display Environment

The Ul shall display the air, water surface, and underwater

environment.
No comments

18

SC-008

Act as Medium for Communication System

SC-008-01 Act as Water Medium

The Simulation Controller shall act as water medium to

transfer the sound waves used by the Sonar.
No comments.

S$C-008-02 Act as Air Medium

SC-009

SC-010

SC-011

SC-012

Use Case:

SC-013

The Simulation Controller shall act as air medium to transfer

the electromagnetic waves used by the Radar and Radio.
No comments.

Animate Agents Movement on Screen
The Ul shall display and animate the movement of the agents.
No comments

Animate Attack and Communication
The Ul shall animate the scenario when agents shot Weapon and

agents communicate with each other.
No comments

Global Time Clock
When the simulation is starting, one global time clock shall be
created to provide a time scale for agents to update their status

(position, alive/dead, etc.)
No comments

Provide Start up User Interface
The Ul shall allow the user to start the simulation.
No comments

Simulate Communication

Provide Agent Information to Communication System

The Simulation Controller shall provide agent's information to the
Communication subsystems within the range of Radar and Sonar.
No comments.

SC-013-01 Provide Agent Location

The Simulation Controller shall provide agent’s location to

the Communication subsystem.
No comments.

19

SC-013-02

$C-013-03

Provide Agent Status
The Simulation Controller shall provide agent's status

(alive/dead) to the Communication subsystem.
No comments.

Provide Agent Representative
The Simulation Controller shall provide an agent's
representative (friend/enemy) and identification to the

Communication subsystem
No comments.

SC-Gi4- Control Status of Communication/Detection system
The Ul shall allow the user to turn on/off the status of Radar, Sonar

and Radio for all the objects when the simulation is running.
No comments

Use Case: Base Supply
SC-015 Provide Regenerate Function

SC-015-01

SC-015-02

SC-015-03

SC-015-04

SC-015-05

Produce Ships
The base supplier shall generate all kinds of ships based on
the initialization setting for both sides and depending on the

production rate.
No comments.

Produce Fuel
The base supplier shall produce the specific amount of fuel

and depending on production rate.
No comments.

Create Weapon
The base supplier shall create all kinds of Weapons based

on the initialization settings.
No comments

Transfer Fuel and Weapon
The base supplier shall transfer the fuel and Weapons to

agents upon request from agents.
No comments

Update Stock
The base supplier shall update its stock for ships; also
updates stock for fuel and Weapons and respond to agents’

queries.
No comments.

20

Use Case: Pause Simulation

SC-016 Provide Pause Function
The Ul shall allow the user to pause the simulation when the

simulation is running.
No comments

Use Case: Resume Simulation

SC-017 Provide Resume Function
The Ul shall allow the user to resume the simulation when the

simulation is paused.
No comments

Use Case: End Simulation

SC-018 Provide Exit Function
The Ul shall allow the user to stop the simulation when the

simulation is running or paused.
No comments

Use Case: Report Statistics

SC-019 Provide Report Function
The Ul shall allow the user to view the log file after the simulation

has been started.
No comments

21

3.3.1.3 Use Case Description

3.3.1.3.1 Use Case: Set up Operational Parameters

j: Provide the service to allow the user to initialize all the
M objects

5 Must have this use case in order to start the simulation

Detailed description and completed scenario

NBSS User

Simulation is not in running state or in pause state.

1. The user presses “Setup” button, the system displays
a setup dialog window;

2. The user either can press the “Add” button, the vehicle
configuration window is displayed and ask user to add
a new vehicle, or can select Weapon and input the
parameters, then click “OK", the dialog window is
closed.

B If the configuration exceeds the limitation or dissatisfies
Bl required conditions, the warning massage window will pop
§ up.

1. The valid input data are saved;
2. Set up window is closed.

Simulate Communication

Table 3-5 Use Case Set up Operational Parameters

Sequence Diagram

See next page.

22

“15-

Selected Ships&

Figure 3-13 Sequence Diagram for Use Case: Set up Operational Parameters

23

Aircrfat List

3.3.1.3.2 Use Case: Start Simulation

Provide the service to start the simulation
i Must have this use case
B Detailed description and completed scenario
R NBSS User
| The user has set up the parameters
il 1. The user presses the “Start” button.
d 2. The system initializes the map, media, creates agents
3. Simulation begins.

I NA

| Simulation successfully started
8 Simulate Communication

] | NA
Table 3-6 Use Case Description for: Start Simulation

Sequence Diagram

SRR RS % AN N N K IR ;
CoiEt, 5T g rne G g PSR P T e B A o B AT

Figure 3-14 Sequence Diagram for Use Case: Start Simulation

24

3.3.1.3.3 Use Case: Simulate Communication

Provide the service to allow SC and vehicles to

communicate with each other, and allow to turn on/off

i the Radar/Sonar and Radio.

B Must have this use case

3 High level description

k| Communication/Detection

Simulation is in running state

1. All the agents inform their status to the SC

. periodically

8l 2. The SC transfers the information to the
Communication and Detection system

3. Click “Turn on/off” button to change the status of
Radar, Sonar, and Radio for selected ship or
Aircraft.

l The SC know the status of agents, and all the agents
are aware of the presence of other agents within their
B Communication/Detection range

3l NA

[NA

Table 3-7 Use Case Description for Simulate Communication

Sequence Diagram

See next page.

25

s At eeis gy N I X SN~

User Interface ! Simulation
Controller |

Figure 3-15 Sequence Diagram for Use Case: Simulate Communication

26

3.3.1.3.4 Use Case: Base Supply

§| Provide the service to allow the SC to provide supplies

R (Weapons, fuel, ships) to both sides when the simulation

Bl is running.

Bl Must have this use case

Detailed description and completed scenario

NBSS Ships and Aircraft

Simulation is in running state

1. The base supplier will check the stock and transfer the
fuel or Weapon to the agents upon request.

2. The base supplier will produce the ships according to
the productivity settings periodically.

1. The ships are generated when the simulation is
8| running
g 2. The ships get rearmed and refueed.
SN Simulate Communication

Table 3-8 Use Case Description for Base Supply

Sequence Diagram

See next page.

27

b O P DT v T S ey i R s S L AR

hke rs

:H& User Interface |: 33| ShipdAircraft ;| Simulation

Figure 3-16 Sequence Diagram for Use Case: Base Supplier

28

3.3.1.3.5 Use Case: Pause Simulation

Provide the service to allow the user to pause the
§ simulation

i Must have this use case
B Detailed description and completed scenario

NBSS User

Simulation is in running state

1. The user presses the “Pause” button
2. The system pauses the clock and suspends the
simulation

N NA.

The system saved the current status of all agents and SC
also.

NA

i NA

| NA

Table 3-9 Use Case Description for Pause Simulation

Sequence Diagram

4

: ontroller

Figure 3-17 Sequence Diagram for Use Case: Pause Simulation

29

3.3.1.3.6 Use Case: Resume Simulation

Provide the service to allow the user to resume the
simulation

| Must have this use case

Detailed description and completed scenario

NBSS User

Simulation is in pause state.

1. The user presses the “Resume” button.
2. The system start the clock and resumes the

simulation.

B NA

Simulation resumes execution.

NA

Table 3-10 Use Case Description for Resume Simulation

Sequence Diagram

| terface | Controlier

In
Uy,
T Hatig]

Figure 3-18 Sequence Diagram for Use Case: Resume Simulation

30

3.3.1.3.7 Use Case: End Simulation

] Provide the service to allow the user to stop the simulation

Must have this use case

Detailed description and completed scenario

il 1. The user presses the “End” button
2. The system terminates the simulation

e e

i

Figure 3-19 Sequence Diagram for Use Case: End Simulation

31

3.3.1.3.8 Use Case: Report Statistics

Provide the service to allow the user to view an execution
report of the running simulation.

Would like have this use case

Detailed description and completed scenario

§ NBSS User

Simulation is in running state or in pause state, or ended
successfully.

1. The user presses the “Report” button.
2. The system displays a statistics window.

If the simulation terminated erroneously, the statistics
window will show nothing.

Save the valid statistics data, and close the statistics
window.

Controller

Figure 3-20 Sequence Diagram for Use Case: Report Statistics

32

3.3.2 Communication/Detection Requirements
The Communication/Detection subsystem has the following four modules:

Radar system
Sonar system
Radio system
Message Database
Detected Database

3.3.2.1 Use Case Diagram

Figure 3-21 Use Case Diagram for Communication/Detection

33

3.3.2.2 Requirement Breakdown

Use Case:

CD-001

Use Case:

CD-002

Use Case:

CD-003

Use Case:

CD-004

Turn on Radar

Turn on Radar
The Radar can be tumed on by its owner when it is in the “off” state

during the simulation is undergoing initialization or running.
No comments.

Turn off Radar

Turn off Radar
The Radar can be turned off by the user when it is in “on” state

during the simulation is undergoing initialization or running.
No comments.

Radar Emit Wave

Radar Send Information to SC
The Radar shall provide its owner’s ID to the Simulation Controller.
No comments.

Radar Receive Wave

Radar Get Information from SC
The Radar shall get the information about surrounding objects, both

on or above the surface of the water.
The objects refer to Ships, Aircrafts and Missiles.

CD- 004-01 Radar Get Status for Surrounding Objects

The Radar shall get all the position, status and ID
information of surrounding objects within the Radar’s range.
No comments.

CD-004-02 Radar Update Information

Use Case:

CD-005

The Radar shall save all the information in its data buffer and

update all the information periodically.
No comments.

Turn on Sonar

Turn on Sonar
The Sonar can be turned on by its owner when it in the “off’ state

during the simulation is undergoing initialization or running.
No comments.

Use Case:

CD-006

Use Case:

CD-007

Use Case:

CD-008

Turn off Sonar

Turn off Sonar
The Sonar can be turned off its owner when it is in the “on” state

during the simulation is undergoing initialization or running.
No comments.

Sonar Emit Wave

Send Information to SC
The Sonar shall provide its owner’s ID to Simulation Controller.
No comments.

Sonar Receive Wave

Sonar Get Information from SC
The Sonar shall get the information about surrounding objects in

the water. The objects refer to Ships and Torpedoes.
No comments.

CD- 008-01 Sonar Get Status for Surrounding Objects

The Sonar shall get all the position, status and ID
information of surrounding objects on or under the surface of

the water within the Sonar’s range.
No comments.

CD-008-02 Sonar Update Information

Use Case:

CD-009

Use Case:

The Sonar shall save all the information in its data buffer and

update all the information.
No comments.

Turn on Radio

Turn on Radio

The Radio can be turned on by its owner when Radio is in the “off”
state during the simulation is undergoing initialization or running.

No comments.

Turn off Radio

CD-010

Turn off Radio
The Radio can be turned off by its owner when Radio is in the “on”

state during the simulation is undergoing initialization or running.
No comments.

35

Use Case: Radio Send Message

CD-011 Radio Send Message
The objects can send a message to its allies via its Radio system

and within Radio’s range.
The objects refer to all Ships and Aircrafts.

Use Case: Radio Receive Message

CD-012 Radio Receive Message
The objects can receive a message from its allies via its Radio
system that communicates with emitting Radio objects within its

Radio’s range.
The objects refer to all Ships and Aircrafts.

36

3.3.2.3 Use Case Description

3.3.2.3.1 Use Case: Turn on Radar

@ Provide a service to allow the user to turn on the Radar

Should have this use case

Detailed description and completed scenario

1. User

2. Simulation Controller

3. Battleship, Cruiser, Aircraft

4. Sea-Sea Missile, Sea-Air Missile, Air-Air Missile, Air-
Sea Missile

Radar is in the “off” state

1. User clicks on the “Set Radar’ button, the system
display Radar setting window.

2. User selects the object from object list.

3. User set state on for Radar, and close the window.

[NA

I Radar s in the “on” state

NA

Turn on Communication/Detection

B NA

Lol

Table 3-13 Use Case Description for Turn on Radar

Sequence Diagram

Refer to Figure 3-8. The object list(ID list) is provided to the Radar owner only for
Aircraft Carrier, Aircraft, Battleship, Cruiser, Destroyer and Weapons (except the
Heavy Cannon Shell, Sea-Sub Missile when under the water, Torpedo and Sub-

Sea Torpedo).

37

3.3.2.3.2 Use Case: Turn off Radar

Provide a service to allow the user to turn off the Radar

Should have this use case

Detailed description and completed scenario

B 1. User

Bl 2. Simulation Controller

3. Battleship, Cruiser, Aircraft

4. Sea-Sea Missile, Sea-Air Missile, Air-Air Missile, Air-
Sea Missile

Radar is in on state

1. User click “Set Radar” button, the system display
Radar setting window.

2. User select the object from object list;

3. User set state off for Radar, and close the window.

NA

B Radar is in off state

Table 3-14 Use Case Description for Turn off Radar

Sequence Diagram
Refer to Figure 3-9. The object list(ID list) is provided to user only for Aircraft

Carrier, Aircraft, Battleship, Cruiser, Destroyer and Weapons (except the Heavy
Cannon Shell, Sea-Sub Missile, Torpedo and Sub-Sea Torpedo).

38

3.3.2.3.3 Use Case: Radar Emit Wave

Provide a service for objects to send info to the SC in
order to detect the surrounding enemies by using Radar.
Must have this use case
Detailed description and completed scenario
Simulation Controller
Battleship, Cruiser, Aircraft
Sea-Sea Missile, Sea-Air Missile, Air-Air Missile, Air-
Sea Missile
s 1. Object exist and Radar is created;
& 2. Object know its position, ID and flag;
¥ 5
1

WN =

. The DB of SC is accessible.
. Radar gets its owner’s ID, position and flag;
‘ Radar sends its owner’s information to SC;
f position DB is not accessible, SC return an error to the
object,
Radar send its owner’s info to SC

Table 3-15 Use Case Description for Radar Emit Wave

Sequence Diagram

Refer to Figure 3-10. This use case is only applicable for objects Aircraft Carrier,
Aircraft, Battleship, Cruiser, Destroyer and Weapons (except the Heavy Cannon
Shell, Sea-Sub Missile, Torpedo and Sub-Sea Torpedo).

39

3.3.2.3.4 Use Case: Radar Receive Wave

$| Provide a service to allow the objects to receive the
information from SC in order to detect the surrounding
| enemies by using a Radar.

i Must have this use case

B Detailed description and completed scenario

. Simulation Controller
. Battleship, Cruiser, Aircraft

Sea-Sea Missile, Sea-Air Missile, Air-Air Missile, Air-
Sea Missile

Object exist and Radar is created;
Object know its position, ID and flag;
The DB of SC is accessible;

Radar’s data buffer is available.

. Radar get the record of all the surrounding enemy

objects within Radar’s range from SC's status DB;
Radar save the info to its data buffer and update the
info.

Radar gives the info to its owner.

If position DB is not accessible, SC return an error to the
object.

The Radar’'s owner gets the info about the surrounding
enemy objects.

H NA

Detection Receive Wave

g NA

Table 3-16

Sequence Diagram

Use Case Description for Radar Receive Wave

Refer to Figure 3-11 Sequence Diagram for Use Case Detection Receive WaveThis
use case is only applicable for objects Aircraft Carrier, Aircraft, Battleship,
Cruiser, Destroyer and Weapons (except the Heavy Cannon Shell, Sea-Sub
Missile, Torpedo and Sub-Sea Torpedo).

40

3.3.2.3.5 Use Case: Turn on Sonar

| Provide a service to allow the user to turn on the Sonar

Table 3-17

Sequence Diagram

] | Should have this use case

Detailed description and completed scenario

1. User
2. Simulation Controller
3. Destroyer, Submarine, and Torpedo

Sonar is in off state

1. User click “Set Sonar” button, the system display
Radar setting window.

2. User select the object from object list;

3. User sets state on for Sonar, and close the window.

NA

Sonar is in on state

NA

Tum on Communication/Detection

NA

Use Case Description for Turn on Sonar

Refer toFigure 3-8. The object list (ID list) is provided to user only for Submarine
and Weapons (including Heavy Cannon Shell, Sea-Sub Missile, Torpedo and

Sub-Sea Torpedo

41

3.3.2.3.6 Use Case: Turn off Sonar

&:| Provide a service to allow the user to turn off the Sonar

ROy 4
e

PRy
b E gl Should have this use case

Detailed description and completed scenario

1. User
2. Simulation Controller
3. Destroyer, Submarine, and Torpedo

Sonar is in on state

1. User click “Set Sonar” button, the system display
Radar setting window.
gl 2. User select the object from object list;
2| 3. User sets state off for Sonar, and close the window.

Table 3-18 Use Case Description for Turn off Sonar

Sequence Diagram

Refer to Figure 3-9. The object list (ID list) is provided to user only for Submarine
and Weapons (including Heavy Cannon Shell, Sea-Sub Missile, Torpedo and
Sub-Sea Torpedo

42

3.3.2.3.7 Use Case: Sonar Emit Wave

il Provide a service for objects to send info to SC in order
to detect the surrounding enemies using a Sonar.

Must have this use case

Detailed description and completed scenario

Simulation Controller
Destroyer, Submarine, and Torpedo

Object exists, Radar is created and in on state;
Object knows its position, ID and flag;
The DB of SC is accessible.

Sonar gets its owner’s ID, position and flag;
._Sonar sends its owner’s information to SC,

NS WON 2N =

N

Sonar send its owner’s info to SC

NA

Detection Emit Wave

Table 3-19 Use Case Description for Sonar Emit Wave

Sequence Diagram

Refer toFigure 3-10. This use case is only applicable for objects Submarine and
Weapons (including Heavy Cannon Shell, Sea-Sub Missile, Torpedo and Sub-
Sea Torpedo).

43

3.3.2.3.8 Use Case: Sonar Receive Wave

information from the SC in order to detect the
surrounding enemies using a Sonar.

Must have this use case

% Detailed description and completed scenario

Simulation Controller
Destroyer, Submarine, and Torpedo

Object exists and Radar is created and in on state;
Object knows its position, 1D and flag;
The DB of SC is accessible.

. Sonar's data buffer id available.

Sonar read the record of all the surrounding enemy
objects within Radar’s range;

Sonar save the info to its data buffer and update the
info.

Sonar gives the info to its owner.

¢! The Sonar's owner gets the info about the surrounding
enemy objects.

= NA

Detection Receive Wave

leqtirements=| NA

Table 3-20

Sequence Diagram

Use Case Description for Sonar Receive Wave

Refer toFigure 3-10, This use case is only applicable for objects Submarine and
Weapons (including Heavy Cannon Shell, Sea-Sub Missile (when under water),
Torpedo and Sub-Sea Torpedo).

44

3.3.2.3.9 Use Case: Turn on Radio

Bl Detailed description and completed scenario

1. User

2. Simulation Controller

3. Battleship, Cruiser, Aircraft, Destroyer, Submarine,
Sea-Sea Missile, Sea-Air Missile, Air-Air Missile, Air-
Sea Missile and Torpedo.

9% Radio is in off state

1. User click “Set Radio” button, the system display
Radar setting window.

2. User select the object from object list;

% 3. User sets state on for Radio, and close the window.

NA

Radio is in on state

Sequence Diagram

Refer to Figure 3-8. The object list (ID list) is provided to user for Aircraft Carrier,
Aircraft, Battleship, Cruiser, Destroyer, and Submarine.

45

3.3.2.3.10 Use Case: Turn off Radio

Provide a service to allow the user to turn off the Radio

Should have this use case

% Detailed description and completed scenario

1. User
2. Simulation Controller
3. Battleship, Cruiser, Aircraft, Destroyer, Submarine,.

Radio is in on state

1. User clicks the “Set Radio” button, the system
display Radar setting window.

2. User selects the object from object list;

£l 3. User sets state off for Radio, and closes the window.

NA

Turn off Communication/Detection

irementas| NA

Table 3-22 Use Case Description for Turn off Radio

Sequence Diagram

Refer to Figure 3-8. The object list (ID list) is provided to user for Aircraft Carrier,
Aircraft, Battleship, Cruiser, Destroyer, and Submarine.

46

3.3.2.3.11 Use Case: Radio Send Message

Bl Provide a service for objects send the message to its
3 allies via SC
Must have this use case

Detailed description and completed scenario

Simulation Controller

Battleship, Cruiser, Aircraft Carrier Aircraft,
Destroyer, and Submarine.

N -

Object exists and Radio is created and in “on” state.
Object know its position, ID and flag;
Object know the receivers's IDs and message it want
to send.
A data buffer for the message is available.
Object sends a message to its Radio;
Radio passes the message to message DB;
Message DB check with SC to see if the receivers is
within the Radio’s range of sender;
| 4. Message DB keep the message in message list.
Step 4: if receiver is not within the range, message DB
return an error message to the Radio, and Radio retumns
it to its owner.
2| The message is available in the message DB for the
j| receiver to retrieve them when needed.

NA

i

WN =

Table 3-23 Use Case Description for Radio Send Message

Sequence Diagram

See next page.

47

ToAeTR ST " TEVRIOR ST TR Y P T I R Y A T by TN xS
-| Ships&Aircraft g Radio oy Meaasge g| Simulation |igg
Object Database Controller

Figure 3-22 Sequence Diagram for Use Case Radio Send Message

48

3.3.2.3.12 Use Case: Radio Receive Message

Provide a service for objects receive the message from
§ its allies via the SC

Must have this use case

| Detailed description and completed scenario

8l 1. Simulation Controller
2. Battleship, Cruiser, Aircraft Carrier Aircraft,
Destroyer, and Submarine.

. Object exists and Radio is created and in “on” state.

. A data buffer for the message list is available.

1
2. Object knows its ID;
3
1

. Object provides its ID to its Radio and ask Radio to
get message;

2. Radio sends the ID with an empty message list to
message DB;

3. Message DB checks the records and copies all the

. messages for this object ID to the message list;

! 4. Message DB deletes these copied records from the
DB;
5. Message DB return the message list to the Radio;
6. Radio retumns this list to its owner;

2. Object receives a message list containing zero or
more messages.

| NA

Table 3-24 Use Case Description for Radio Receive Message

Sequence Diagram

See next page.

49

Ship&Aircraft i Message
Object & Database

puer—

Figure 3-23 Sequence Diagram for Use Case Radio Receive Message

50

3.3.3 Aircraft Carrier Requirements

The Aircraft Carrier subsystem has the following four modules:

e Captain

e Communication Officer
e Navigation Officer

e Aircraft Launcher Officer

3.3.3.1 Use Case Diagram

Figure 3-24 Use Case Diagram for Aircraft Carrier

51

3.3.3.2 Requirement Breakdown

Use Case: Aircraft Carrier Navigate Control

AC-001

Start/Stop Aircraft Carrier

AC-001-01 Start Aircraft Carrier

Aircraft Carrier shall start to move on the sea in a random

direction after its initialization.
No comments.

AC-001-02 Stop Aircraft Carrier

AC-002

AC-003

Use Case:

AC-004

AC-005

AC-006

Aircraft Carrier shall be stoppable by the user manually.
It is also stopped when its fuel is used up and base supplier has no more

fuel.

Accelerate/ Decelerate/ Rotate Aircraft Carrier
Aircraft Carrier shall accelerate, decelerate and rotate according to

the Captain’'s command.
No comments.

Control Steer Status
Aircraft Carrier shall turn on or turn off the steer in order to navigate

on the sea.
No comments.

Aircraft Carrier Communication with Allies

Initialize Radio
When the Aircraft Carrier is created, a Radio object shall be

initialized with location and range.
No comments.

Updating Radio Location
Aircraft Carrier's Radio location shall be updated by Simulation

Controller.
No comments

Control Radio Status
The Aircraft Carrier shall be able to turn on or turn off the Radio at

any time after Radio initialization.
Default status after Radio initialization is turn on.

52

AC-007

AC-008

Use Case:

Receive Information from Radio

The Aircraft Carrier shall receive the report from its allies (including
its Aircrafts) by Radio.

Radio needs to get all the information from Simulation Controller. The
information about detected enemy is also sent by its allies (including its
Aircrafts) from the Radio.

Send Information to Allies
The Aircraft Carrier can send information to its allies (including its

Aircrafts) by Radio.
The significant information include newly detected enemies, efc.

Aircraft Carrier Make Decision

AC-009

AC-010

AC-011

AC-012

AC-013

Use Case:

AC-014

Collect the Necessary Information from Radar and Radio.
This requirement is accomplished by AC-006, AC-011 and AC-011.

No comments.

Analysis Information

Aircraft Carrier shall has the ability to analyze the received
information to sort out the criticality of all the threats.

No comments.

Decide Location to Conduct Ship
Captain shall take decision to steer, accelerate, decelerate the
Aircrfat Carrier based on the position of the enemies and the

position of allied Aircrafts and Ships.
No comments.

Decide Content of Sending Information
The Captain shall form the correct command and send them to the

Navigation, Aircraft Launcher and Communication Officers.
No comments.

Decide Time for Sending Information
The Captain shall decide the correct time to send commands to

subsystems.
No comments.

Aircraft Control

Get Status of Aircraft
Aircraft Carrier receives the current position, speed, and resistance

of allied Aircrafts.
No comments.

53

AC-015 Landing Control
Aircraft Carrier receives the landing request from its Aircrafts and

sends the landing authorization to them.
No comments.

AC-016 Send Return Command
Aircraft Carrier shall send the return command to its Aircraft to ask

the Aircraft come back.
No comments.

AC-017 Take off Aircraft
Aircraft Carrier shall issue the mission to its Aircraft and permit it to

take off.
No comments.

Use Case: Aircraft Carrier Update Status

AC-018 Update Aircraft Carrier Location Periodically
Aircraft Carrier can update its location periodically and randomly if

no threats are detected.
No comments.

AC-019 Calculate Aircraft Carrier Resistance
Aircraft Carrier shall calculate the resistance or hit points after each
hit.

No comments.

AC-020 Aircraft Carrier Hit by Enemy Weapon
Aircraft Carrier shall know when it is hit by the enemy’s Weapon.
No comments.

AC-021 Aircraft Carrier Recover Within Time Limit
Aircraft Carrier can determine if it can recover from the damage

within the limited time.
No comments.

AC-022 Report Status to SC Periodically
Aircraft Carrier shall inform its status (location, alive/dead status) to

the Simulation Controller periodically.
No comments.

AC-023 Aircraft Carrier Destroyed at Hit Points Limit
Aircraft Carrier shall determine to be destroyed when exceeding the
hit points limit.
When hit points reachs zero the Aircraft Carrier is considered inactive.

AC-024 Aircraft Carrier Crashed with other object

Aircraft Carrier shall determine to be destroyed when crash with

other object.
When Aircraft Carrier hit by another ship.

Use Case: _Aircraft Carrier Refueling

AC-025 Update the Fuel Level
Aircraft Carrier shall reduce its fuel level according to the navigation

time since its creation.
No comments.

AC-026 Refueling the Gas
Aircraft Carrier shall send request to its base supplying to refueling

when its gas goes to the warning level.
No comments.

55

3.3.3.3 Use Case Description

3.3.3.3.1 Use Case: Aircraft Carrier Navigation Control

| Provide the service to navigate the Aircraft Carrier

Must have this use case in order to move on the sea
Detailed description and completed scenario

ol NA

8l 1. Existing Aircraft Carrier object;

2. A command is received from the navigation officer
Upon reception of the command from a navigation officer,

NA

11

v

Table 3-25 Use Case Description for Aircraft Carrier Navigation Control

Sequence Diagram

Refer to Figure 3-1 Sequence Diagram for Use Case Navigation Control for
Navigation Control.

56

3.3.3.3.2 Use Case: Aircraft Carrier Communicate with Allies

Bl Provide the communication service between Aircraft
Carrier and its allies.

Must have this use case in order to pass information to
the Aircraft Carrier’s allies

Detailed description and completed scenario

Communication/Detection

Existing Aircraft Carrier object

1. Initialize a Radio object with location and radius when
Aircraft Carrier is created;
8 2. Update Radio location;
g 3. Tum on /off Radio;
4. Get object information around the Aircraft Carrier;
5. Send massage to its allies

NA

Bl The Aircraft Carrier received report from its allies, the
R allies received report from Aircraft Carrier

i NA

il Communicate with Allies

T | NA

12531

Table 3-26 Use Case Description for Aircraft Carrier Communicate with Allies

Sequence Diagram

Refer to Figure 3-3 Sequence Diagram for Use Case Communicate with Allies.

57

3.3.3.3.3 Use Case: Aircraft Carrier Make Decision

Provide the service to analyze the report, decide attack
arget, decide where to conduct the ship, decide to rearm
and refuel

Must have this use case in order to know its next action

Detailed description and completed scenario

Communication/Detection

1. Existing Aircraft Carrier object;
. The Aircraft Carrier's status is updated,;

2
i 3. All the reports are received
1. Upon reception of reports, the Captain analyzes the
threats and decides to attack a target;
2. The Captain gives the order to the Navigation Officer
for where to conduct the ship and at what speed;
3. The Captain gives order to Aircraft Launch officer to
prepare the attack;
i 4. The Captain gives order to Communication Officer to
: send out the message about detected enemy;
5. The Captain decide to rearm or refueling to send
request to SC.
6. The Aircraft Launcher Officer decide to launch the
Aircraft.

1. The Navigation Officer executes captain's command

2. The Weapon Officer executes captain’s command

3. The Communication Officer execute Captain’s
command;

4. The Base Supplier perform the transaction task;

1. Aircraft Carrier Update Status;
2. Aircraft Carrier Detect Enemy;
3. Aircraft Carrier Communication with Allies;

d Make Decision

Sequence Diagram

See next page

58

Nawgatlon : icati . A:rcraftLaunch
officer § Officer s Officer

Figure 3-25 Sequence Diagram for Use Case Aircraft Carrier Make Decision

59

3.3.3.3.4 Use Case: Aircraft Control

@ Provide the service to control the Aircraft

Bl Must have this use case in order to control the Aircraft

Detailed description and completed scenario

Aircraft

1. The Aircarft Carrier object exist;
. The Aircraft object exist;
. The Aircraft need to be take off.

. The Captain allow the Aircraft to take off ;

. The Aircraft Carrier receive information from its allies
@ Aircraft.

8 4. Aircraft Carrier respond to the landing request and
send command to return.

2
3
1. The Captain send request to launch the Aircraft;
2
3

B Aircraft, and respond to Aircraft's request.

Make Decision

Sequence Diagram

See next page.

60

STE BTY ke FLY : - aLEn
Aircraft Launcher 3 Aircraft
officer

Figure 3-26 Sequence Diagram for Use Case Aircraft Carrier Aircraft Control

61

3.3.3.3.5 Use Case: Aircraft Carrier Update Status

§| Provide the service to update Aircraft Carrier's location
and other status (alive/dead)

| Must have this use case

Detailed description and completed scenario

7| Simulation Controller

&% Exist a Aircraft Carrier object

El0 JaSEE: Update the location of the Aircraft Carrier

= 2atk Determine if the Aircraft Carrier is hit by Weapon

Get the hit points of the Aircraft Carrier

Determine if the Aircraft Carrier can recover from the
hit points

Determine if the Aircraft Carrier is destroyed
Determine if the Aircraft Carrier crashes with other
object

el ol

oo

NA

The status of the Aircraft Carrier is updated

% NA

: Update Status

] NA

Table 3-29 Use Case Description for Aircraft Carrier Update Status

Sequence Diagram

Refer to Figure 3-6 Sequence Diagram for Use Case Update Status.

62

3.3.3.3.6 Use Case: Aircraft Carrier Refueling

2l Provide the service to refueling the Aircraft Carrier

Would like to have this use case

Detailed description and completed scenario

Simulation Controller:
Aircraft Carrier;
Radio.

The base supplier has enough fuel in stock;
The Radio is in “on” state.

Navigation Officer sends information to ask captain to
deduct the fuel,

Captain checks if the fuel is at limited level;

Captain sends request to SC to ask base supplier to
refuel;

Base Supplier transfer the fuel to Aircraft Carrier;

Zd wbN

A

The Aircraft Carrier gets refueled

Aircraft Carrier Make Decision

NA

NA

Table 3-30 Use Case Description for Aircraft Carrier Refueling

Sequence Diagram

Refer to Figure 3-7 Sequence Diagram for Use Case Rearm and Refueling.

63

3.3.4 Aircraft Requirements
The Aircraft subsystem has the following five sub modules:

Pilot

Navigation Officer
Communication Officer
Weapon Officer
Weapon Launcher

3.3.4.1 Use Case Diagram

Figure 3-27 Use Case Diagram for Aircraft

64

3.3.4.2 Requirement Breakdown

Use Case: Aircraft Navigation Control
AT-001 Start/Stop Aircraft

AT-001-01 Start Aircraft
Aircraft shall start to move in the air in random direction after
its initiation.
No comments.

AT-001-02 Stop Aircraft
Aircraft shall be stoppable by the user manually.
It is also stopped when its fuel is used up and base supplier has no more
fuel.

AT-002 Accelerate/ Decelerate/ Rotate Aircraft
Aircraft shall accelerate, decelerate and rotate according to the

Pilot's command.
No comments

AT-003 Control Steer Status
Aircraft shall turn on or turn off the steering in order to navigate.
No comments

Use Case: _Aircraft Detect Enemy

AT-004 Initialize Radar
When the Aircraft is created, a Radar object shall be initialized with

location and radius.
No comments.

AT-005 Updating Radar Location
Aircraft's Radar location shall be updated by Simulation Controller.
No comments

AT-006 Control Radar Status
The Aircraft shall tum on or turn off the Radar at any time after

Radar initialization.
Default status after Radar initialization is turn on.

AT-007 Receive Information from Radar
The Aircraft shall get the information about the surrounding

enemies from its Radar.
Radar needs to get all the information from Simulation Controller.

65

Use Case:

AT-008

AT-009

AT-010

AT-011

AT-012

Use Case:

Aircraft Communicate With Allies

Initialize Radio
When the Aircraft is created, a Radio object shall be initialized with

location and radius.
No comments.

Updating Radio Location
Aircraft's Radio location shall be updated by Simulation Controller.
No comments

Control Radio Status
The Aircraft shall turn on or turn off the Radio at any time after

Radio initialization.
Default status after Radio initialization is turn on.

Receive Information from Radio
The Aircraft shall receive the report from its allies (including its
Aircraft Carrier) by its Radio.

Radio needs to get all the information from Simulation Controller.

Send Information to Allies

The Aircraft can send information to its allies (including its Aircraft
Carrier) by Radio.

The significant information include newly detected enemies, the target it will
attack, eftc.

Aircraft Make Decision

AT-013

AT-014

AT-015

AT-016

Collect the Necessary Information from Radar and Radio.
This requirement is accomplished by AT-006, AT-011 and AT-012.

No comments.

Analysis Information
Aircraft shall has the ability to analyze the received information to

decide all the threats.
No comments.

Decide Attack Object
Decide attack objects among threats based on the analyzed threats
No comments.

Decide Location to Conduct Ship
The Pilot shall take decision to steer, accelerate, decelerate the

Aircraft based on position of allies and enemies.
No comments

66

AT-017 Decide Content of Sending Information
The Pilot shall form the correct command and send them to

navigation officer, Weapon officer and communication officer.
No comments.

AT-018 Decide Time for Sending Information
The Pilot shall decide the correct time to send the command to

subsystems.
No comments.

Use Case: Aircraft Weapon Control

AT-019 Select Number and Type of Weapon
Weapon Officer shall decide the type and quantity of Weapon to be

used on the Aicraft.
No comments.

AT-020 Initialize Weapon
Weapon Officer will issue an order to Weapon launcher to create a

Weapon.

No comments.

AT-021 Aim Object and Fire Weapon
Weapon object shall aim the target and fired by Weapon launcher.
Except the Heavy Cannon Shell, it is unguided after it is shot. It is also not for

Aircraft.

AT-022 Update the Number of Weapon
Weapon Officer shall calculate and update the number of Weapons

on board.
No comments.

AT-023 Recharge Weapon
When the Weapons are used up, the Aircraft shall go back to the
base (just give some remind to show the Weapon is used up) and
the Weapon officer can reload the Weapon as needed type and

quantity.
No comments.

Use Case: Aircraft Update Status

AT-024 Update Aircraft Location Periodically
Aircraft can update its location periodically and randomly if no

threats are detected.
No comments.

67

AT-025

AT-026

AT-027

AT-028

AT-029

AT-030

AT-031

Use Case:

Calculate Aircraft Resistance
Aircraft shall calculate the resistance or hit points after each hit.
When hit points reachs zero the Aircraft is considered inactive.

Aircraft Hit by Enemy Weapon
Aircraft shall know when it is hit by the enemy’s Weapon.
No comments.

Aircraft Recover Within Time Limit
Aircraft can determine if it can recover from the hit points within the

limited time.
No comments.

Report Status to SC Periodically
Aircraft shall inform its status (location, alive/dead status) to

Simulation Controller periodically.
No comments.

Report Status to Aircraft Carrier Periodically
Aircraft shall inform its status (location, alive/dead status) to Aircraft

Carrier periodically
No comments.

Aircraft Destroyed at Hit Points Limit

Aircraft shall determine to be destroyed when exceed the hit points
limit.

No comments.

Aircraft Crashed with other object
Aircraft shall determine to be destroyed when crash with other

object.
When Aircraft hit by other Aircraft.

Aircraft Rearm and Refueling

AT-032

AT-033

Update the Fuel Level
Aircraft shall reduce its fuel level according to the navigation time

since its creation.
No comments.

Refueling the Gas
Aircraft shall send request to its base supplying when its gas goes

to the warning level.
No comments.

68

AT-034 Rearm the Weapon
Aircraft shall send the request to its base supplying once its
Weapons are used up.
Actually, the Weapon are created by Aircraft when they are launched, only after
the fired Weapon exceed the limits, the base supplying will create Weapon for
Aircraft and transfer them to Aircraft.

69

3.3.4.3 Use Case Description

3.3.4.3.1 Use Case: Aircraft Navigation Control

Provide the service to navigate the Aircraft

Must have this use case in order to move

Detailed description and completed scenario

NA

1. Existing Aircraft object;

2. A command is received from the navigation officer

g 1. Upon reception of the command from a navigation

: officer, the Aircraft may perform one of following
operations: Start or stop, Rotate, Accelerate,
Decelerate;

2. Upon received return command from Aircraft Carrier,

the Aircraft shall go back to its Aircraft Carrier.

=B NA

’: The Aircraft is moved
Aircraft Make Decision

Table 3-31 Use Case Description for Aircraft Navigation Control

Sequence Diagram

See next page.

70

Figure 3-28 Sequence Diagram for Use Case Aircraft Navigation Control

71

3.3.4.3.2 Use Case: Aircraft Detect Enemy

Bl Provide the service to locate the enemy using Radar

B Must have this use case in order to detect the enemy

Detailed description and completed scenario

Communication/Detection

Existing Aircraft object

1. Initialize a Radar object with location and radius when
Aircraft Carrier is created;

2. Update Radar location;

3. Turn on /off Radar;

4. Get enemy information around the Aircraft

NA

Any enemy in the range are detected

J NA

Bl Detect Enemy

(5% NA

Table 3-32 Use Case Description for Aircraft Detect Enemy

Sequence Diagram

Refer to Figure 3-2.

72

3.3.4.3.3 Use Case: Aircraft Communicate with Allies

Provide the communication service among Aircraft, its
allies , and its Aircraft Carrier.

Must have this use case in order to pass information to
the Aircraft ‘s allies and its Aircraft Carrier

Detailed description and completed scenario

Communication/Detection

Exist a Aircraft object

$ 1. Initialize a Radio object with location and radius when
_ Aircraft is created;

¢l 2. Update Radio location;

3. Tumn on /off Radio;

4. Get enemy object information around the Aircraft;

5. Send massage to its allies and its Aircraft Carrier.

NA

| The Aircraft received report from its allies and Aircraft
j Carrier; the allies and Aircraft Carrier received report from
B Aircraft.

NA

| Communicate with Allies

Sequence Diagram

Refer to Figure 3-3.

73

3.3.4.3.4 Use Case: Aircraft Make Decision

B Bik Provide the service to analyze the report, decide attack
target, decide where to conduct the Aircraft, decide rearm
and refueling

Must have this use case in order to know its next action
Detailed description and completed scenario
Communication/Detection

Existing Aircraft object;

The Aircraft status is updated;

All the reports are received

Upon reception of reports, the captain analyze the
threats and decide attack target;

The captain gives the order to navigation officer for
where to conduct the Aircraft and at what speed;

The captain gives order to Weapon officer to prepare
the attack;

The captain gives order to communication officer to
send out the message about detected enemy;

The Captain decide to rearm or refueling to send
request to SC.

The Pilot decide to land on the Aircraft Carrier.

- N —-

Zlo o & o N

>

The navigation officer executes captain’s command
The Weapon office executes captain’s command
The communication officer execute captain’s
command;
The Base Supplier perform the transaction task;
Aircraft send request to land on.
Aircraft Update Status;
Aircraft Detect Enemy;
._Aircraft Communication with Allies;
ending:| Make Decision
e AUSE:EasEs
OthesREquirementsy] NA

Table 3-34 Use Case Description for Aircraft Make Decision

WNAOR wN-

Sequence Diagram

See next page.

74

WP PR T R TR T T T R vy X Ty » 3 y Gt a - Calaonh.)
Base Supplier |Communication} § ication g Weapon Officer [l Aircratt Carrier §
{Detection] '

Figure 3-29 Sequence Diagram for Use Case Aircraft Make Decision

75

3.3.4.3.5 Use Case: Aircraft Weapon Control

Provide the service to select Weapon to attack, update
the quantity of Weapon on board, and recharge the
Weapon as needed

Must have this use case in order to attack the enemy

i Detailed description and completed scenario

5| Weapon

An attacking command is received

Decide the type and quantity of Weapon to be used;
Calculate and update the Weapon quantity on board
Issue an order to Weapon launcher

A Weapon object will be created and fired by Weapon
launcher

Weapon launcher will aim and fire Weapon

Deduct the quantity of Weapon on board

o0 kb=

lf the Weapon is Sea-Sea Missile, it will return a massage
| stating whether the target is destroyed or not.

j Weapon is fired and exploded

Table 3-35 Use Case Description for Aircraft Weapon Control

Sequence Diagram

Refer to Figure 3-5.

76

3.3.4.3.6 Use Case: Aircraft Update Status

@ Provide the service to update Aircraft's location and other
status (alive/dead)

Must have this use case in order to report status to SC

Detailed description and completed scenario

¢| Simulation Controller

% Exist a Aircraft object

1. Update the location of the Aircraft

2. Determine if the Aircraft is hit by Weapon

3. Get the hit points of the Aircraft

4. Determine if the Aircraft can recover from the hit points
5. Determine if the Aircraft is destroyed

6. Determine if the Aircraft crashes with other object

The status of the Aircraft is updated

| NA

e NA

Sequence Diagram

Refer to Figure 3-6.

77

3.3.4.3.7 Use Case: Aircraft Rearm and Refueling

| Provide the service to refueling the Aircraft Carrier

Would like to have this use case in order to continue
moving on the sea

Detailed description and completed scenario

Simulation Controller;
Aircraft;
Radio.

The base supplier has enough fuel in stock;
The Radio is in ON state.

LY [AN SN

Navigation Officer send information to ask captain to
deduct the fuel;

Pilot checks if the fuel is at limited level;

Pilot send request to SC to ask base supplier to refuel;
Base Supplier transfer the fuel to Aircraft;

N

8 NA

l The Aircraft get refueling

581 Aircraft Make Decision

i NA

il NA

Table 3-37 Use Case Description for Aircraft Refueling

Sequence Diagram

Refer to Figure 3-7.

78

3.3.5 Destroyer Requirements
The Destroyer subsystem has the following five sub modules:

Captain

Navigation Officer
Communication Officer
Weapon Officer
Weapon Launcher

3.3.5.1 Use Case Diagram

Figure 3-30 Use Case Diagram for Destroyer

79

3.3.5.2 Requirement Breakdown

Use Case: Destroyer Navigation Control

DT-001

Start/Stop Destroyer

DT-001-01 Start Destroyer

Destroyer shall start to move on the sea in random direction
after its initiation.
No comments.

DT-001-02 Stop Destroyer

DT-002

DT-003

Use Case:

Destroyer shall be stoppable by the user manually.
It is also stopped when its fuel is used up and base supplier has no more
Fuel.

Accelerate/ Decelerate/ Rotate Destroyer
Destroyer shall accelerate, decelerate and rotate according to the

Captain’s command.
No comments.

Control Steer Status
Destroyer shall turn on or turn off the steer in order to navigate on

the sea.
No comments.

Destroyer Detect Enemy

DT-004

DT-005

DT-006

Initialize Radar
When the Destroyer is created, a Radar object shall be initialized

with location and radius.
No comments.

Updating Radar Location
Destroyer's Radar location shall be updated by Simulation

Controller.
No comments

Control Radar Status
The Destroyer shall be able to turn on or turn off the Radar at any

time after Radar initialization.
Default status after Radar initialization is turn on.

80

DT-007 Receive Information from Sonar
The Destroyer shall get the information about the near Submarine f

rom its Sonar
Radar needs to get all the information from Simulation Controller.

Use Case: Destroyer Communication with Allies

DT-008 Initialize Radio
When the Destroyer is created, a Radio object shall be initialized

with location and radius.
No comments

DT-009 Updating Radio Location
Destroyer's Radio location shall be updated by Simulation

Controller.
No comments

DT-010 Control Radio Status
The Destroyer shall turn on or turn off the Radio at any time after

Radio initialization.
Default status after Radio initialization is turn on.

DT-011 Receive Information from Radio
The Destroyer shall receive the report from its allies by its Radio.
Radio needs to get all the information from Simulation Controller.

DT-012 Send Information to Allies

The Destroyer can send information to its allies.
The significant information include newly detected enemies, the target it will
aftack, etc

Use Case: Destroyer Make Decision

DT-013 Collect Information from Radar and Radio.
This requirement is accomplished by DT-006, DT-011 and DT-012.

No comments.

DT-014 Analysis Information
Destroyer shall has the ability to analyze the received information to

decide all the threats.
No comments.

DT-015 Decide Attack Object
Decide attack objects among threats based on the analyzed

threats.
No comments

81

DT-016 Decide Location to Conduct Ship

DT-017 Decide Content of Sending Information
The Captain shall form the correct command and send them to the
Navigation Officer, Weapon officer and communication officer.
No comments.

DT-018 Decide Time for Sending Information
The Captain shall decide the correct time to send the command to

sub system.
No comments.

Use Case: Destroyer Weapon Control

DT-019 Select Number and Type of Weapon
Weapon officer shall decide the type and quantity of Weapon to be

used on the Destroyer.
No comments.

DT-020 Initialize Weapon
Weapon Officer will issue an order to Weapon launcher to create a

Weapon.

No comments.

DT-021 Aim Object and Fire Weapon
Weapon object shall aim the target and fired by Weapon launcher.
Except the Heavy Cannon Shell, it is unguided after it is shot. it is only for
Battleship.

DT-022 Update the Number of Weapon
Weapon officer shall calculate and update the Weapon on board.
No comments

DT-023 Recharge Weapon
When the Weapons are used up, the Destroyer shall go back to the
battle base, and the Weapon office can reload the Weapon as

needed type and quantity.

No comments.

Use Case: Destroyer Update Status

DT-024 Update Destroyer Location Periodically
Destroyer can update its location periodically and randomly if no

threats are detected.
No comments.

82

DT-025

DT-026

DT-027

DT-029

DT-030

DT-031

Use Case:

Calculate Destroyer Resistance
Destroyer shall calculate the resistance or hit points after each hit.
When hit points reachs zero the Destroyer is considered inactive.

Destroyer Hit by Enemy Weapon
Destroyer shall know when it is hit by the enemy’s Weapon.
No comments.

Destroyer Recover Within Time Limit
Destroyer can determine if it can recover from the hit points within

the limited time.
No comments.

Report Status to SC Periodically
Destroyer shall inform its status (location, alive/dead status) to

Simulation Controller periodically.
No comments.

Destroyer Destroyed at Hit Points Limit
Destroyer shall determine to be destroyed when exceed the hit

points limit.
No comments.

Destroyer Crashed with other object
Destroyer shall determine to be destroyed when crash with other

object.
When Destroyer hit by another Ship.

Destroyer Rearm and Refueling

DT-032

DT-033

DT-034

Update the Fuel Level
Destroyer shall reduce its fuel level according to the navigation time

since its creation.
No comments.

Refueling the Gas
Destroyer shall send request to its base supplying to refueling when

its gas goes to the waming level.
No comments.

Rearm the Weapon
Destroyer shall send the request to its base supplying once its

Weapons are used up.
Actually, the Weapon are created by Destroyer when they are launched, only
after the fired Weapon exceed the limits, the base supplying will create Weapon

for Destroyer and transfer them to Destroyer .

83

3.3.5.3 Use Case Description

3.3.5.3.1 Use Case: Destroyer Navigation Control

Must have this use case in order to move on the sea

Detailed description and completed scenario

x| NA

3 1. Exist a Destroyer object;
2. A command is received from the navigation officer

¥ Upon reception of the command from a navigation officer,
the Destroyer may perform one of following operations:
Start or stop, Rotate, Accelerate, Decelerate

NA

The Destroyer is moved

Destroyer Make Decision

Jl Navigation Control

Sequence Diagram

Refer to Figure 3-1.

84

3.3.5.3.2 Use Case:

Destroyer Detect Enemy

IScHptionksae:| Provide the service to locate the enemy using Radar

Table 3-39

Sequence Diagram

Refer to Figure 3-2.

Must have this use case in order to detect the enemy

Detailed description and completed scenario

Communication/Detection

| Exist a Destroyer object

1. Initialize a Radar object with location and radius when

Destroyer is created;
2. Update Radar location;
3. Turn on /off Radar;
4. Get enemy object information around the Destroyer

NA

Any enemy in the range are detected

NA

Detect Enemy

NA

Use Case Description for Destroyer Navigation Control

85

3.3.5.3.3 Use Case: Destroyer Communication with Allies

i Provide the communication service between Destroyer

Sequence Diagram

Refer to Figure 3-3.

il and its allies

Communication/Detect must have this use case in order
to pass information to the Destroyer 's allies

Detailed description and completed scenario

Communication/Detection

Exist a Destroyer object

5

. Initialize a Radio object with location and radius when

Destroyer is created;

. Update Radio location; 3.

Turmn on /off Radio; 4.
Get object information around the Destroyer ;
Send massage to its allies

NA

The Destroyer received report from its allies, the Allies
| received report from Destroyer

' NA

Communicate with Allies

86

3.3.5.3.4 Use Case: Destroyer Make Decision

gl Provide the service to analyze the report, decide attack
target, and decide where to conduct the ship
Must have this use case in order to know its next action

Detailed description and completed scenario

Communication/Detection

1. Exist a Destroyer object;

2. The Destroyer 's status is updated;

3. All the reports are received

1. Upon reception of reports, the captain analyze the

: threats and decide attack target;

% 2. The captain gives the order to navigation officer for
where to conduct the ship and at what speed;

3. The captain gives order to Weapon officer to prepare
the attack;

8§ 4. The captain gives order to communication officer to

| send out the message

5. The Captain decide to rearm or refueling to send

¥ requestto SC

2 1. The navigation officer executes captain’s command
3l 2. The Weapon office executes captain's command
3. The communication officer execute captain's
command;
4. The Base Supplier perform the transaction task;
1. Destroyer Update Status;
2. Destroyer Detect Enemy;
3. Destroyer Communication with Allies;
Make Decision

RREE NA
Table 3-41 Use Case Description for Destroyer Make Decision

Sequence Diagram

Refer to Figure 3-4.

87

3.3.5.3.5 Use Case: Destroyer Weapon Control

| Provide the service to select Weapon to attack, update
the quantity of Weapon on board, and recharge the
Weapon as needed

Must have this use case in order to attack the enemy

S0 kN~

5| Detailed description and completed scenario

Weapon
il An attacking command is received
Decide the type and quantity of Weapon to be used;
Calculate and update the Weapon quantity on board
Issue an order to Weapon launcher
A Weapon object will be created and fired by Weapon
launcher
Weapon launcher will aim and fire Weapon
When Weapons are used up, recharge the Weapon on
board
if the Weapon is Sea-Sea Missile, it will return a message
stating whether the target is destroyed or not

F| Weapon is fired and exploded.

¥ Destroyer Make Decision

CRRCaUiteRent

Weapon Control

NA

Table 3-42 Use Case Description for Destroyer Weapon Control

Sequence Diagram

Refer to Figure 3-5.

88

3.3.5.3.6 Use Case: Destroyer Update Status

Provide the service to update Destroyer 's location and
other status (alive/dead)

Must have this use case in order to report status to SC

Detailed description and completed scenario

% Simulation Controller

Exist a Destroyer object

Update the location of the Destroyer

Determine if the Destroyer is hit by Weapon

Get the hit points of the Destroyer

Determine if the Destroyer can recover from the hit
points

Determine if the Destroyer is destroyed

6. Determine if the Destroyer crashes with other object
NA

O hwN=

P —

’ : i_ The status of the Destroyer is updated
| NA

¥l Update Status

Table 3-43 Use Case Description for Destroyer Update Status

Sequence Diagram

Refer to Figure 3-6.

89

3.3.5.3.7 Use Case: Destroyer Rearm and Refueling

Would like to have this use case in order to continue
moving on the sea
% Detailed description and completed scenario

Simulation Controller;

Destroyer;

Radio.

The base supplier has enough fuel in stock;
The Radio is in ON state.

Navigation Officer send information to ask captain to
deduct the fuel; Weapon Officer send information to
Captain to deduct the Weapon;

2. Captain check if the fuel is at limited level; Captain
check if the Weapon is used up ;

g 3. Captain send request to SC to ask base supplier to
" refuel; Captain send request to SC to ask base
: supplier to create Weapon;

il 4. Base Supplier transfer the fuel or Weapon to Aircraft
Carrier.

=N 2 (O N -

Sequence Diagram

Refer to Figure 3-7.

90

3.3.6 Cruiser Requirements
The Cruiser subsystem has the following five sub modules:

Captain

Navigation Officer
Communication Officer
Weapon Officer
Weapon Launcher

3.3.6.1 Use Case Diagram

Figure 3-31 Use Case Diagram for Cruiser

o

3.3.6.2 Requirement Breakdown

Use Case: Cruiser Navigation Control

CS-001

Start/Stop Cruiser

CS-001-01 Start Cruiser

Cruiser shall start to move on the sea in random direction

after its initiation.
No comments.

CS-001-02 Stop Cruiser

CS-002

CS-003

Cruiser shall be stopped by the user manually.
It is also stopped when its fuel is used up and base supplier has no more

fuel.

Accelerate/ Decelerate/ Rotate Cruiser
Cruiser shall accelerate, decelerate and rotate according to the

Captain's command.
No comments.

Control Steer Status
Cruiser shall turn on or turn off the steer in order to navigate on the

sea.
No comments.

Use Case: Cruiser Detect Enemy

CS-004

CS-005

CS-006

Initialize Radar
When the Cruiser is created, a Radar object shall be initialized with

location and radius.
No comments.

Updating Radar Location
Cruiser's Radar location shall be updated by the Simulation

Controller.
No comments.

Control Radar Status
The Cruiser shall turn on or turn off the Radar at any time after

Radar initialization.
Default status after Radar initialization is turn on.

92

CS-007

Receive Information from Radar
The Cruiser shall get the information about the nearing Aircrafts

from its Radar.
Radar needs to get all the information from Simulation Controller.

Use Case: Cruiser Communication with Allies

CS-008

CS-009

CS-010

CS-011

CS-012

Use Case:

CS-013

CS-014

CS-015

Initialize Radio
When the Cruiser is created, a Radio object shall be initialized with

location and radius.
No comments

Updating Radio Location
Cruiser’s Radio location shall be updated by Simulation Controller.
No comments

Control Radio Status
The Cruiser shall turn on or tumm off the Radio at any time after

Radio initialization.
Default status afler Radio initialization is turn on.

Receive Information from Radio

The Cruiser shall receive the report from its allies by its Radio.
Radio needs to get all the information from Simulation Controller.

Send Information to Allies

The Cruiser can send information to its allies.
The significant information include newly detected enemies, the target it will
attack, etc.

Cruiser Make Decision

Collect the Necessary Information from Radar and Radio.
This requirement is accomplished by CS-006, CS-011 and CS-012.

No comments.

Analysis Information

Cruiser shall has the ability to analyze the received information to
decide all the threats.

No comments.

Decide Attack Object
Decide attack objects among threats based on the analyzed

threats.
No comments.

93

CS-016 Decide Location to Conduct Ship

CS-017 Decide Content of Sending Information
The captain shall form the correct command and send them to
navigation officer, Weapon officer and communication officer.
No comments.

CS-018 Decide Time for Sending Information
The captain shall decide the correct time to send the command to

sub system.
No comments.

Use Case: Cruiser Weapon Control

CS-019 Select Number and Type of Weapon
Weapon officer shall decide the type and quantity of Weapon to be

used on the Cruiser.
No comments.

CS-020 Initialize Weapon
Weapon officer will issue an order to Weapon launcher to create a

Weapon.

No comments.

CS-021 Aim Object and Fire Weapon
Weapon object shall aim the target and fired by Weapon launcher.
Except the Heavy Cannon Shell, it is unguided after it is shot. It is not for Cruiser.

CS-022 Update the Number of Weapon
Weapon officer shall calculate and update the Weapon on board.
No comments.

CS-023 Recharge Weapon
When the Weapons are used up, the Cruiser shall go back to the
battle base, and the Weapon office can reload the Weapon as
needed type and quantity.

No comments.

Use Case: Cruiser Update Status

CS-024 Update Cruiser Location Periodically
Cruiser can update its location periodically and randomly if no
threats are detected.
No comments.

94

CS-025 Calculate Cruiser Resistance
Cruiser shall calculate the resistance or hit points after each hit.
When hit points reachs zero the destroyer is considered inactive.

CS-026 Cruiser Hit by Enemy Weapon
Cruiser shall know when it is hit by the enemy’s Weapon.

No comments.

CS-027 Cruiser Recover Within Time Limit
Cruiser can determine if it can recover from the hit points within the

limited time.
No comments.

CS-029 Report Status to SC Periodically
Cruiser shall inform its status (location, alive/dead status) to

Simulation Controller periodically.
No comments.

CS-030 Cruiser Destroyed at Hit Points Limit
Cruiser shall determine to be destroyed when exceed the hit points

limit.
No comments.

CS-031 Cruiser Crashed with other object
Cruiser shall determine to self-destroyed when crash with other

object.
When Cruiser hit by another ship.

Use Case: Cruiser Rearm and Refueling

CS-032 Update the Fuel Level
Cruiser shall reduce its fuel level according to the navigation time

since its creation.
No comments.

CS-033 Refueling the Gas
Cruiser shall send request to its base supplying to refueling when
its gas goes to the warning level.
No comments.

CS-034 Rearm the Weapon
Cruiser shall send the request to its base supplying once its
Weapons are used up.
No comments.

95

3.3.6.3 Use Case Description

3.3.6.3.1 Use Case: Cruiser Navigation Control

Provide the service to navigate the Cruiser

Must have this use case in order to move on the sea

1. Exist a Cruiser object;
. A command is received from the navigation officer

Upon reception of the command from a navigation officer,
he Cruiser may perform one of following operations: Start

The Cruiser is moved

Cruiser Make Decision

[l Navigation Control

Sequence Diagram

Refer to Figure 3-1.

96

3.3.6.3.2 Use Case: Cruiser Detect Enemy

| Provide the service to locate the enemy using Radar

Must have this use case in order to detect the enemy

Detailed description and completed scenario

Communication/Detection

Exist a Cruiser object

gl 1. Initialize a Radar object with location and radius when
Cruiser is created;

4 2. Update Radar location;

] 3. Turn on /off Radar;

4. Get enemy object information around the Cruiser

Table 3-46 Use Case Description for Cruiser Navigation Control

Sequence Diagram

Refer to Figure 3-2.

97

3.3.6.3.3 Use Case: Cruiser Communication with Allies

mmtﬁaw 5

2t "
-
.
i
3

its allies

Provide the communication service between Cruiser and

Communication/Detect must have this use case in order
to pass information to the Cruiser ’s allies

Detailed description and completed scenario

% Communication/Detection

Exist a Cruiser object

Cruiser is created;
| 2. Update Radio location; 3.
3. Turn on /off Radio; 4.

' s 1. Initialize a Radio object with location and radius when

| 4. Get object information around the Cruiser ;

5. Send massage to its allies

S| NA

il The Cruiser received report from its allies, the Allies

received report from Cruiser.

NA

Communicate with Allies

g
aiﬁ

NA

Table 347 Use Case Description for Aircraft Carrier Communication with Allies

Sequence Diagram

Refer to Figure 3-3.

98

3.3.6.3.4 Use Case: Cruiser Make Decision

| Provide the service to analyze the report, decide attack
target, and decide where to conduct the ship

| Must have this use case in order to know its next action

j Detailed description and completed scenario

{ Communication/Detection

1. Exist a Cruiser object;
. The Cruiser's status is updated;
. All the reports are received

. Upon reception of reports, the captain analyze the
threats and decide attack target;

2. The captain gives the order to navigation officer for
where to conduct the ship and at what speed;

3. The captain gives order to Weapon officer to prepare
the attack;

4. The captain gives order to communication officer to

, send out the message ;

8 5. The Captain decide to rearm or refueling to send

request to SC

. The navigation officer executes captain’s command
The Weapon office executes captain's command

The communication officer execute captain's
command;

The Base Supplier perform the transaction task.

Cruiser Update Status;
Cruiser Detect Enemy;
._Cruiser Communication with Allies

WN AR N

gg| Make Decision

Table 3-48 Use Case Description for Cruiser Make Decision

Sequence Diagram

Refer to Figure 3-4.

99

3.3.6.3.5 Use Case: Cruiser Weapon Control

Provide the service to select Weapon to attack, update
the quantity of Weapon on board, and recharge the
Weapon as needed

3| Must have this use case in order to attack the enemy

B Detailed description and completed scenario

Weapon

An attacking command is received

1. Decide the type and quantity of Weapon to be used;
2. Calculate and update the Weapon quantity on board

. Issue an order to Weapon launcher
4. A Weapon object will be created by Weapon launcher
5. Weapon launcher will aim and fire Weapon
6. Deduct the Weapon on board

If the Weapon is Sea-Sea Missile, it will return a massage
stating whether the target is destroyed or not

Weapon is fired and exploded.

Cruiser Make Decision

Table 3-49 Use Case Description for Cruiser Weapon Control

Sequence Diagram

Refer to Figure 3-5.

100

3.3.6.3.6 Use Case: Cruiser Update Status

il Provide the service to update Cruiser’s location and other
status (alive/dead)

Must have this use case in order to report status to SC

Detailed description and completed scenario

Simulation Controller

Exist a Cruiser object

Update the location of the Cruiser

Determine if the Cruiser is hit by Weapon

Get the hit points of the Cruiser

Determine if the Cruiser can recover from the hit points
Determine if the Cruiser is destroyed

. Determine if the Cruiser crashes with other object

COAwN

NA

The status of the Cruiser is updated

NA

i Update Status

Sequence Diagram

Refer to Figure 3-6.

101

3.3.6.3.7 Use Case: Cruiser Rearm and Refueling

m “é'?én"jlerw Provide the service to rearm and refueling the Cruiser
Would like to have this use case in order to continue

moving on the sea

Detailed description and completed scenario

Simulation Controller;

Cruiser;

Radio.

The base supplier has enough fuel in stock;

The Radio is in ON state.

Navigation Officer send information to ask captain to

deduct the fuel; Weapon Officer send information to

Captain to deduct the Weapon;

2. Captain check if the fuel is at limited level; Captain
check if the Weapon is used up ;

3. Captain send request to SC to ask base supplier to
refuel; Captain send request to SC to ask base

i supplier to create Weapon;

| 4. Base Supplier transfer the fuel or Weapon to Aircraft

Carrier.

i The Cruiser get rearm and refueling
NA

Rearm and Refueling

Table 3-51 Use Case Description for Cruiser Rearm and Refueling

Sequence Diagram

Refer to Figure 3-7.

102

3.3.7 Battleship Requirements
The Battleship subsystem has the following five sub modules:

Captain

Navigation Officer
Communication Officer
Weapon Officer
Weapon Launcher

3.3.7.1 Use Case Diagram

Figure 3-32 Use Case Diagram for Battleship

103

3.3.7.2 Requirement Breakdown

Use Case: Battleship Navigation Control

BS-001

Start/Stop Battleship

BS-001-01 Start Battleship

Battleship shall start to move on the sea in random direction
after its initiation.
No comments.

BS-001-02 Stop Battleship

BS-002

BS-003

Battleship shall be stopped by the user manually.
It is also stopped when its fuel is used up and base supplier has no more

fuel.

Accelerate/ Decelerate/ Rotate Battleship
Battleship shall accelerate, decelerate and rotate according to the

Captain's command.
No comments.

Control Steer Status
Battleship shall turn on or turn off the steer in order to navigate on

the sea.
No comments.

Use Case: Battleship Detect Enemy

BS-004

BS-005

BS-006

Initialize Radar
when the Battleship is created, a Radar object shall be initialized

with location and radius.
No comments.

Updating Radar Location

Battleship’s Radar location shall be updated by Simulation
Controller.

No comments.

Control Radar Status
The Battleship shall turn on or turn off the Radar at any time after

Radar initialization.
Default status after Radar initialization is turn on.

104

BS-007

Receive Information from Radar
The Battleship shall get the information about the surrounding

objects from its Radar.
Radar needs to get all the information from Simulation Controller.

Use Case: Battleship Communication with Allies

BS-008

BS-009

BS-010

BS-011

BS-012

Use Case:

Initialize Radio
when the Battleship is created, a Radio object shall be initialized

with location and radius.
No comments

Updating Radio Location
Battleship’s Radio location shall be updated by Simulation

Controller.
No comments

Control Radio Status
The Battleship shall turn on or turn off the Radio at any time after

Radio initialization.
Default status after Radio initialization is turn on.

Receive Information from Radio
The Battleship shall receive the report from its allies by its Radio.
Radio needs to get all the information from Simulation Controller.

Send Information to Allies

The Battleship can send information to its allies.
The significant information include newly detected enemies, the target it will
attack, etc.

Battleship Make Decision

BS-013

BS-014

BS-015

Collect the Necessary Information from Radar and Radio.
This requirement is accomplished by BS-006, BS-011 and BS-012.

No comments.

Analysis Information

Battleship shall has the ability to analyze the received information
to decide all the threats.

No comments.

Decide Attack Object

Decide attack objects among threats based on the analyzed
threats.

No comments.

105

BS-016 Decide Location to Conduct Ship

BS-017 Decide Content of Sending Information
The captain shall form the correct command and send them to
navigation officer, Weapon officer and communication officer.
No comments.

BS-018 Decide Time for Sending Information
The captain shall decide the correct time to send the command to

sub system.
No comments.

Use Case: Battleship Weapon Control

BS-019 Select Number and Type of Weapon
Weapon officer shall decide the type and quantity of Weapon to be
used on the Battleship.
No comments.

BS-020 Iinitialize Weapon
Weapon officer will issue an order to Weapon launcher to create a

Weapon.

No comments.

BS-021 Aim Object and Fire Weapon

Weapon object shall aim the target and fired by Weapon launcher.
Except the Heavy Cannon Shell, it is unguided after it is shot.it is for Battleship.

BS-022 Update the Number of Weapon
Weapon officer shall calculate and update the Weapon on board.
No comments.

BS-023 Recharge Weapon
When the Weapons are used up, the Battleship shall go back to the
battle base, and the Weapon office can reload the Weapon as
needed type and quantity.

No comments.

Use Case: Battleship Update Status

BS-024 Update Battleship Location Periodically
Battleship can update its location periodically and randomly if no
threats are detected.
No comments.

106

BS-025 Calculate Battleship Resistance
Battleship shall calculate the resistance or hit points after each hit.

No comments.

BS-026 Battleship Hit by Enemy Weapon
Battleship shall know when it is hit by the enemy’s Weapon.

No comments.

BS-027 Battleship Recover Within Time Limit
Battleship can determine if it can recover from the hit points within

the limited time.
No comments.

BS-029 Report Status to SC Periodically
Battleship shall inform its status (location, alive/dead status) to

Simulation Controller periodically.
No comments.

BS-030 Battleship Destroyed at Hit Points Limit
Battleship shall determine to be destroyed when exceed the hit

points limit.
No comments.

BS-031 Battleship Crashed with other object
Battleship shall determine to be destroyed when crash with other
object.
No comments.

Use Case: Battleship Rearm and Refueling

BS-032 Update the Fuel Level
Battleship shall reduce its fuel level according to the navigation time

since its creation.
No comments.

BS-033 Refueling the Gas
Battleship shall send request to its base supplying to refueling
when its gas goes to the warning level.

BS-034 Rearm the Weapon
Battleship shall send the request to its base supplying once its
Weapons are used up.
Actually, the Weapon are created by Battleship when they are launched, only
after the fired Weapon exceed the limits, the base supplying will create Weapon
for Battleship and transfer them to Battleship.

107

3.3.7.3 Use Case Description

3.3.7.3.1 Use Case: Battleship Navigation Control

| Provide the service to navigate the Battieship

| Must have this use case in order to move on the sea

Detailed description and completed scenario

NA

3 1. Exist a Battleship object;
k| 2. A command is received from the navigation officer

Upon reception of the command from a navigation officer,
the battle ship may perform one of following operations:
Start or stop, Rotate, Accelerate, Decelerate

NA

il The Battleship is moved

Battleship Make Decision

Sequence Diagram

Refer to Figure 3-1.

108

3.3.7.3.2 Use Case:

Battleship Detect Enemy

IScaptionsie| Provide the service to locate the enemy using Radar

Table 3-53

Sequence Diagram

Refer to Figure 3-2.

Must have this use case in order to detect the enemy

Detailed description and completed scenario

Communication/Detection

Exist a Battleship object

1. Initialize a Radar object with location and radius when
Battleship is created;

2. Update Radar location;

3. Turn on /off Radar;

4. Get object information around the Battleship

| NA

Any enemy in the range are detected

NA

Detect Enemy

NA

Use Case Description for Battleship Navigation Control

109

3.3.7.3.3 Use Case: Battleship Communication with Allies

| Provide the communication service between Battleship
g| and its allies

} to pass information to the Battleship’s allies

Detailed description and completed scenario

Exist a Battleship object

1. Initialize a Radio object with location and radius when
Battleship is created;
. Update Radio location;
. Tum on /off Radio;

. Send massage to its allies.

2

i 3

Bl 4. Get object information around the Battleship;
5
N

$# The Battleship received report from its allies, the Allies
M received report from Battleship

A NA

il Communication with Allies

Table 3-54 Use Case Description for Battleship Communication with Allies

Sequence Diagram

Refer to Figure 3-3.

110

3.3.7.3.4 Use Case: Battleship Make Decision

Provide the service to analyze the report, decide attack
target, and decide where to conduct the ship

Must have this use case in order to know its next action

Detailed description and completed scenario

Communication/Detection

1. Exist a Battleship object;
. The Battleship's status is updated;

2

3. All the reports are received

1. Upon reception of reports, the captain analyze the
threats and decide attack target;

The captain gives the order to navigation officer for
where to conduct the ship and at what speed;

The captain gives order to Weapon officer to prepare
the attack;

The captain gives order to communication officer to
send out the message ;

The Captain decide to rearm or refueling to send
request to SC.

o &> wWN

The navigation officer executes captain's command;
The Weapon office executes captain’s command;

The communication officer execute captain's
command;

The Base Supplier perform the transaction task.

wn A

Battleship Update Status;
Battleship Detect Enemy;
. Battleship Communication with Allies

RINPE

Ngy Make Decision

eaiieneaes NA

Table 3-55 Use Case Description for Battleship Make Decision

Sequence Diagram

Refer to Figure 3-4.

111

3.3.7.3.5 Use Case: Battleship Weapon Control

Provide the service to select Weapon to attack, update
the quantity of Weapon on board, and recharge the
Weapon as needed

B Must have this use case in order to attack the enemy

Detailed description and completed scenario

2%t Weapon

gl An attacking command is received

1. Decide the type and quantity of Weapon to be used;

2. Calculate and update the Weapon quantity on board;
3. Issue an order to Weapon launcher;

4. A Weapon object will be created and fired by Weapon
launcher;

Weapon launcher will aim and fire Weapon;

When Weapons are used up, recharge the Weapon on
board.

oo

If the Weapon is Sea-Sea Missile, it will return a massage
| stating whether the target is destroyed or not

B Weapon is fired and exploded.

| Battleship Make Decision

fl Weapon Control

Table 3-56 Use Case for Weapon Control

Sequence Diagram

Refer to Figure 3-5.

112

3.3.7.3.6 Use Case: Battleship Update Status

Provide the service to update Battleship’s location and
other status (alive/dead)
Must have this use case in order to report status to SC
k| Detailed description and completed scenario
Simulation Controller
Exist a Battleship object
1. Update the location of the Battleship
2. Determine if the Battleship is hit by Weapon
3 3. Get the hit points of the Battleship
t 4. Determine if the Battleship can recover from the hit
points
5. Determine if the Battleship is destroyed
6. Determine if the Battleship crashes with other object

htsk NA
Table 3-57 Use Case Description for Battleship Update Status

Sequence Diagram

Refer to Figure 3-6.

113

3.3.7.3.7 Use Case: Battleship Rearm and Refueling

[ilg8isE| Provide the service to rearm and refueling the Battleship

DEscriptio

=

Would like to have this use case in order to continue
moving on the sea

SiEuE Detailed description and completed scenario
Aciod 1. Simulation Controller;
. Battleship;
. Radio.

. The Radio is in ON state.

2
5 3
1. The base supplier has enough fuel in stock;
2
1

. Navigation Officer send information to ask captain to
deduct the fuel; Weapon Officer send information to
Captain to deduct the Weapon;

1 2. Captain check if the fuel is at limited level; Captain

check if the Weapon is used up ;

3. Captain send request to SC to ask base supplier to

refuel; Captain send request to SC to ask base

& supplier to create Weapon;
| 4. Base Supplier transfer the fuel or Weapon to Aircraft

Carrier.

Sequence Diagram

Refer to Figure 3-7.

114

3.3.8 Submarine Requirements
The Submarine subsystem has the following five sub modules:

Captain

Navigation Officer
Communication Officer
Weapon Officer
Weapon Launcher

3.3.8.1 Use Case Diagram

Figure 3-33 Use Case Diagram for Submarine

115

3.3.8.2 Requirement Breakdown

Use Case: Submarine Navigation Control

SM-001

Start/Stop Submarine

SM-001-01 Start Submarine

Submarine shall start to move(float\sink) in the sea with
random direction after its initiation.
No comments.

SM-001-02 Stop Submarine

SM-002

SM-003

Submarine shall be stoppabie by the user manually.
it is also stopped when its fuel is used up and base supplier has no more
fuel.

Accelerate/ Decelerate/ Rotate Submarine

Submarine shall accelerate, decelerate and rotate according to the
Captain’s command.

No comments.

Control Steer Status
Submarine shall turn on or turn off the steer in order to navigate on

the sea.
No comments.

Use Case: Submarine Detect Enemy

SM-004

SM-005

SM-006

Initialize Radar
when the Submarine is created, a Radar object shall be initialized

with location and radius.
No comments.

Updating Radar Location

Submarine’s Radar location shall be updated by Simulation
Controller.

No comments.

Control Radar Status
The Submarine shall turn on or turn off the Radar at any time after

Radar initialization.
Defauit status after Radar initialization is turn on.

116

SM-007

Receive Information from Sonar

The Submarine shall get the information about the surrounding
enemy ships and Submarines from its Sonar.

Radar needs to get all the information from Simulation Controller.

Use Case: Submarine Communication with Allies

SM-008

SM-009

SM-010

SM-011

SM-012

Use Case:

SM-013

SM-014

SM-015

Initialize Radio
When the Submarine is created, a Radio object shall be initialized

with location and radius.
No comments

Updating Radio Location
Submarine’s Radio location shall be updated by Simulation

Controller.
No comments

Control Radio Status
The Submarine shall turn on or turn off the Radio at any time after

Radio initialization.
Default status after Radio initialization is turn on.

Receive Information from Radio

The Submarine shall receive the report from its allies by its Radio.
Radio needs to get all the information from Simulation Controller.

Send Information to Allies

The Submarine can send information to its allies.
The significant information include newly detected enemies, the target it will
attack, etc.

Submarine Make Decision

Collect the Necessary Information from Radar and Radio.
Refer to requirements SM-006, SM-011 and SM-012.

No comments.

Analysis Information

Submarine shall has the ability to analyze the received information
to decide all the threats.

No comments.

Decide Attack Object

Decide attack objects among threats based on the analyzed
threats.

No comments.

117

SM-016 Decide Location to Conduct Ship

SM-017 Decide Content of Sending Information
The captain shall form the correct command and send them to
navigation officer, Weapon officer and communication officer.
No comments.

SM-018 Decide Time for Sending Information
The captain shall decide the correct time to send the command to

sub system.
No comments.

Use Case: Submarine Weapon Control

SM-019 Select Number and Type of Weapon
Weapon officer shall decide the type and quantity of Weapon to be
used on the Submarine.
No comments.

SM-020 Initialize Weapon
Weapon officer will issue an order to Weapon launcher to create a

Weapon.

No comments.

SM-021 Aim Object and Fire Weapon

Weapon object shall aim the target and fired by Weapon launcher.
Except the Heavy Cannon Shell, it is unguided after it is shot. It is not
forSubmarine.

SM-022 Update the Number of Weapon
Weapon officer shall calculate and update the Weapon on board.
No comments.

SM-023 Recharge Weapon
When the Weapons are used up, the Submarine shall go back to
the battle base, and the Weapon office can reload the Weapon as
needed type and quantity.

No comments.

Use Case: Submarine Update Status

SM-024 Update Submarine Location Periodically
Submarine can update its location periodically and randomly if no
threats are detected.
No comments.

118

SM-025 Calculate Submarine Resistance
Submarine shall calculate the resistance or hit points after each hit.

No comments.

SM-026 Submarine Hit by Enemy Weapon
Submarine shall know when it is hit by the enemy’s Weapon.

No comments.

SM-027 Submarine Recover Within Time Limit
Submarine can determine if it can recover from the hit points within
the limited time.
No comments.

SM-029 Report Status to SM Periodically
Submarine shall inform its status (location, alive/dead status) to

Simulation Controller periodically.
No comments.

SM-030 Submarine Destroyed at Hit Points Limit
Submarine shall determine to be destroyed when exceed the hit

points limit.
No comments.

SM-031 Submarine Crashed with other object
Submarine shall determine to be destroyed when crash with other

object.
When Submarine hit by another ship.

Use Case: Submarine Rearm and Refueling

SM-032 Update the Fuel Level
Submarine shall reduce its fuel level according to the navigation

time since its creation.
No comments.

SM-033 Refueling the Gas
Submarine shall send request to its base supplying to refueling
when its gas goes to the warning level.
No comments.

SM-034 Rearm the Weapon
Submarine shall send the request to its base supplying once its

Weapons are used up.
No comments.

119

3.3.8.3 Use Case Description

3.3.8.3.1 Use Case: Submarine Navigation Control

B Provide the service to navigate the Submarine

Must have this use case in order to move on the sea

Detailed description and completed scenario

NA

1. Exist a Submarine object;
2. A command is received from the navigation officer

Upon reception of the command from a navigation officer,
the battle ship may perform one of following operations:
Start or stop, Rotate, Accelerate, Decelerate

NA

The Submarine is moved

Submarine Make Decision

il Navigation Control

S8 NA

Table 3-59 Use Case Description for Submarine Navigation Control

Sequence Diagram

Refer to Figure 3-1.

120

3.3.8.3.2 Use Case: Submarine Detect Enemy

%! Provide the service to locate the enemy using Radar

Must have this use case in order to detect the enemy

| Detailed description and completed scenario

Communication/Detection

Exist a Submarine object

1. Initialize a Radar object with location and radius when
Submarine is created;

2. Update Radar location;

2| 3. Turn on /off Radar,

4. Get object information around the Submarine

NA

Any enemy in the range are detected

NA

Detect Enemy

NA

Table 3-60 Use Case Description for Submarine Detect Enemy

Sequence Diagram

Refer toFigure 3-2.

121

3.3.8.3.3 Use Case: Submarine Communicate with Allies

il Provide the communication service between Submarine
and its allies

i Communication/Detect must have this use case in order
il to pass information to the Submarine’s allies

Detailed description and completed scenario

Communication/Detection

Exist a Submarine object

1. Initialize a Radio object with location and radius when
Submarine is created;
| 2. Update Radio location;
| 3. Turmn on /off Radio;
4. Get object information around the Submarine;
| 5. Send massage to its allies

i NA

% Communication with Allies

| NA

Sequence Diagram

Refer to Figure 3-3.

122

3.3.8.3.4 Use Case: Submarine Make Decision

¥%| Provide the service to analyze the report, decide attack
target, and decide where to conduct the ship

Must have this use case in order to know its next action

Detailed description and completed scenario

Communication/Detection

il 1. Exist a Submarine object;
. The Submarine’s status is updated;

i 2
(| 3. All the reports are received
1. Upon reception of reports, the captain analyze the
threats and decide attack target;
2. The captain gives the order to navigation officer for
where to conduct the ship and at what speed;
il 3. The captain gives order to Weapon officer to prepare
i the attack;
4. The captain gives order to communication officer to
: send out the message ;
| 5. The Captain decide to rearm or refueling to send
request to SC.

. The Weapon office executes captain’s command;

. The communication officer execute captain’s
command;

. _The Base Supplier perform the transaction task.

4

1. Submarine Update Status;

2. Submarine Detect Enemy;

3. Submarine Communication with Allies

Make Decision

Table 3-62 Use Case Description for Submarine Make Decision

Sequence Diagram

Refer to Figure 3-4.

123

3.3.8.3.5 Use Case: Submarine Weapon Control

2l Provide the service to select Weapon to attack, update
the quantity of Weapon on board, and recharge the
Weapon as needed

Must have this use case in order to attack the enemy

Detailed description and completed scenario

Weapon

An attacking command is received

Decide the type and quantity of Weapon to be used;
Calculate and update the Weapon quantity on board
Issue an order to Weapon launcher

A Weapon object will be created and fired by Weapon
launcher

Weapon launcher will aim and fire Weapon

When Weapons are used up, recharge the Weapon on
board

o0 howh=

If the Weapon is Sea-Sea Missile, it will return a massage
stating whether the target is destroyed or not

Weapon is fired and exploded.

¥ Submarine Make Decision

Weapon Control

| NA

Table 3-63 Use Case description for Submarine Weapon Control

Sequence Diagram

Refer to Figure 3-5.

124

3.3.8.3.6 Use Case: Submarine Update Status

Provide the service to update Submarine’s location and
other status (alive/dead)

Must have this use case in order to report status to SC

Detailed description and completed scenario

Simulation Controller

Exist a Submarine object

8 1. Update the location of the Submarine

Determine if the Submarine is hit by Weapon

Get the hit points of the Submarine

Determine if the Submarine can recover from the hit
points

Determine if the Submarine is destroyed

il 6. Determine if the Submarine crashes with other object

NA
JESHIEE Update Status
£ o ~4;;1.j
heEREquirementss| NA

Table 3-64 Use Case Description for Submarine Update Status

Sequence Diagram

Refer to Figure 3-6.

125

3.3.8.3.7 Use Case: Submarine Rearm and Refueling

Would like to have this use case in order to continue
moving on the sea

4 1. Simulation Controller;
2. Submarine;
. Radio.

. The base supplier has enough fuel in stock;

3

1

2. The Radio is in ON state.

1. Navigation Officer send information to ask captain to
deduct the fuel; Weapon Officer send information to
Captain to deduct the Weapon;

2. Captain check if the fuel is at limited level, Captain
check if the Weapon is used up ;

3. Captain send request to SC to ask base supplier to
refuel; Captain send request to SC to ask base
supplier to create Weapon;

f| 4. Base Supplier transfer the fuel or Weapon to

Submarine

NA

Table 3-65 Use Case Description for Submarine Rearm and Refueling

Sequence Diagram

Refer to Figure 3-7.

126

3.3.9 Weapons Requirements
The Weapons subsystem has the following four sub modules:

Weapon (Carried Weapon)
Controller

Rudder

Charger

Weapons can be classified into the following eight types:

Sea-Sub Missile (Carrying Torpedo)
Sea-Air Missile

Heavy Cannon Shell

Sea-Sea Missile

Torpedo

Sub-Sea Torpedo (Carrying Missile)
Air-Sea Missile

Air-Air Missile

More Weapon types may be added when the NBSS6 needs to extend its
functionality.

3.3.9.1 Use Case Diagram

Figure 3-34 Use Case Diagram for Weapon

127

3.3.9.2 Requirement Breakdown

Use Case: Provide Location

WP-001 Report Position to SC
The Weapon shall report its position to SC periodically.
No comments.

Use Case: Aim Target

WP-002 Target Tracing via Radar or Sonar
The Weapon except the Cannon Shell, shall aim and trace the

target by its Radar or Sonar.
The Radar and Sonar act as simulation for Weapon detection device.

WP-003 Trajectory Control
The Cannon Shells shall be shot according to ballistic.
No comments.

WP-004 Steering Weapon
The Weapon except the Cannon Shells can be steered after shot.
No comments.

Use Case: Fire and Hit target

WP-005 Fire Itself
The Weapon shall fire itself after receiving a command from

Weapon launcher.
No comments.

WP-006 Detonate
The Weapon should signal and transfer the power to the target
when the target is hit.
No comments.

WP-007 Inform the Hit Target
The Weapon shall inform the target that has been hit by it.
No comments.

WP-008 Inform the Owner
Once the Weapon detonated itself, the Weapon will send a
message to its owner it has been exploded.

128

3.3.9.3 Use Case Description

3.3.9.3.1 Use Case: Provide Location

PR Provide the Weapon location to SC

Must have this use case in order to aim the target.

Detailed description and completed scenario

1. All the Weapon;
Y 2. Simulation Controller.

T Weapon knows its location

1. When Weapon will be launched, report its location to
SC;

2. When Weapon is fired, provide the updated location to

SC periodically.

NA

SC get the Weapon ‘s location
T @':

Rl Bat
AN

e.n.- d NA

Table 3-66 Use Case Description for Provide Location

Sequence Diagram

Figure 3-35 Sequence Diagram for Use Case Weapon Provide Location

129

3.3.9.3.2 Use Case: Aim Target

¢| Provide a service to trace the target location

Must have this use case in order to aim the target

Detailed description and completed scenario

1. All the Weapon (Heavy Cannon Shell, Sea-Sub Missile
and Sub-Sea Missile will based on ballistic to aim the
target);

2. Communication/Detection;

3. Target Objet.

Detected targets are within the Radar or Sonar’ s range

1. The Weapon's owner detect the target and launch the
Weapon;

2. Weapon use its detection system to trace the location
of the nearest target;

The location of target has been traced by Weapon

Provide Location

| NA

Table 3-67 Use Case Description for Aim Target

Sequence Diagram

Figure 3-36 Sequence Diagram for Use Case Weapon Aim Target

130

3.3.9.3.3 Use Case: Fire and Hit Target

Provide the service for Weapon to be fired and hit the
target.

Must have this use case in order to hit the target
Detailed description and completed scenario

1. All the Weapon;

2. Target Object.

Weapon is launched and prepared to fire.

1. Weapon is launched by the Weapon's owner;

2. Weapon is fired and detonated when it hit the target;
3. Weapon inform the hit target to reduce its resistance
NA

The Weapon is fired and target has been hit.
Aim Target

131

3.4 External Interface Requirements

Each subsystem need the external interface to provide the service and use the
services provided by other subsystem. The detailed interface requirements are
listed in this section to accomplish a successful design goal.

3.4.1 User Interface

The only user interface is provided by the Simulation Controller subsystem. All
the other subsystem has no direct user interface.

3.4.2 Hardware Interface

The software is supported by personal computer equipped with a keyboard and a
mouse.

3.4.3 Software Interface

The software interface is outlined as following. The detailed software interface
will be addressed in the software design section.

Ship and Aircraft vs. Simulation Controller

A) Ship and Aircraft provide to Simulation Controller

e Constructor to create the ship or Aircraft object
e Ship or Aircraft current location and alive/dead ststus

B) Simulation Controller provide to Ship and Aircraft for initialize ship and Aircraft

Initial location, direction

Initial speed

Initial quantity of fuel

Blue/Red flag

Object ID

On board quantity of Weapons(Sea-Sea Missile and heave cannons)

For Aircraft Carrier, on board quantity of Aircraft.

Base supplier responds to fuel and Weapon request during the simulaiton
is running.

132

Ship and Aircraft vs. Communication/Detection

A) Ship and Aircraft provide to Communication/Detection

Create and initialize Radar/Sonar object
Update Radar/Sonar location

Create and initialize Radio object
Update Radio location

Prepare information to be sent

B) Communication/Detection provide to Ship and Aircraft

* Radar provide the location, speed, direction of all objects detected around
the ship

Distinguish the enemy or friend

Emit and receive wave function

Radio send report to friends

Receive report from friends

Ship and Aircraft vs. Weapon
A) Ship and Aircraft provide to Weapon

o Initialize the Weapon object
e Target location
e |Initialize location, speed and direction of heavy cannon.

B) Weapon provide to Ship and Aircraft

e Fire Weapon function
Inform the ship and Aircraft when they are hit
Trace the target(Sea-Sea Missile)

3.4.4 Communication interface
NA

3.5 Performance Requirements

This software is designed for single user and single terminal. Simulation
controller will set up a time limits and a terminated condition. User starts the
simulation program and input all the parameters required, simulation will start

133

and run by itself. When the simulation reach its time limit or the terminate
condition is satisfied, this simulation will be terminated.

3.6 Design Constraints

The design is based on personal computer with Microsoft Windows
95/98/NT2000. The language to implement this design is Visual C++. Since each
subsystem of NBSS need to co-operate with each other to accomplish the whole
system function, it is extremely important that the connection between the
interfaces of subsystems is well designed.

3.7 Quality Attributes

All the functional requirement will be tested to insure the quality of the software.
Software documentation will be supplied to insure the good learnability and
maintainability.

3.8 Other Requirements

NA

134

4. Software Design

4.1 Decomposition Description

This section describes partition of the system into design entities, the way the
system has been structured, the purpose and the function of each entity. The
main criteria and methods for entity decomposition is information hiding, which
means the module’s interface of definition was chosen to reveal as little as
possible about its inner workings. [1]&[8].

4.1.1 Module Decomposition

The Naval Battle Simulation System consists of nine subsystems: Simulation
Controller, Communication/Detection, Weapons, Aircraft Carrier, Aircraft,
Destroyer, Submarine, Cruiser and Battleship. In the following figure, MFC and
OpenGL are external library of system.

' <<subsye
Alrcraft Carrier

P——
"_'
i

<<subsystem>>

<<subsystem>> &
Simulation
Caontroller

Battleship

<<subsystem>>
Weapon

Figure 4-1 Interaction diagram between subsystems

135

The following figure describes the architecture of the system:

;] <<subsystem>> : ¥t <<library>
Communication/ KRS AR MFC
Detectioon

<<subsystem>> 3
Simulation
Cantroller

<<subsystem>>

Battleship E 5
| <<subsystem>>}

Destroyer

Cruiser | Aircraft Carrier [~ Aircrat |

Fite 4-2 citecture of the Naa Battle Simulaio Sytem l

136

The following diagram describes the subsystem interface diagram at the class
level:

]

e

Detection g
77

fid

SRS L5

K

— —
244 3

e

Figure 4-3 Class Level interface diagram

137

4.1.1.1 Simulation Controller

The Simulation Controller is the heart of the simulation. It provides a user
interface to view the objects navigating on the map. Consequently, threats are
generated to provoke offensive and defensive maneuvers at the beginning and
periodically after running as well.

To perform the simulation, Simulation Controller allows every object to have a
time slice to update its data information. By tracking the positions and status of
all Vehicles and Weapons objects periodically, it generates an animated view of
the naval battlefield. The Simulation Controller knows exactly where each agent
is at any time and draws the agents on the screen.

For any agent, the only way to know the position of another agent is done by
interrogating the Simulation Controller through Communication/Detection.
Communication (Radio) and Detection (Radar and Sonar) can interact with the
Simulation Controller to detect the enemies and exchange information among
allies. The Simulation Controller depends on all other subsystems except
Communication/Detection subsystem.

4.1.1.2 Communication/Detection Description

Enemies can only be detected using a Radar for Aircraft and Ships or Sonar for
Submarines and Destroyers. Radars and Sonars are on board ships and
Aircrafts. If an enemy is not detected using a Radar or Sonar (i.e. it is outside its
range), it is virtually non-existent in the simulation, as far as other Ships and
Aircrafts are concerned.

Allies also have to communicate with one another to share some information
about the location of enemies. Aircraft Carriers also need to communicate their
orders to Aircrafts. In the simulation, Communication/Detection acquire agent
position information by interrogating the Simulation Controller. It depends on the
Simulation Controller and all other subsystems depend on it, except the
Simulation Controller.

4.1.1.3 Aircraft Carrier Description

The Aircraft Carrier gives long-range capacities to the fleet by launching Aircrafts
to locate and destroy enemy Ships and Aircrafts. The Aircraft Carrier itself is
“blind”. It can only “see” enemies by the information it gets from its patroliing
Aircrafts and its allied Ships using its Radio (Communication).

138

Much of the job done by the Aircraft Carrier itself is communication with its
Aircrafts to gather threat information and react to it as fast as possible to
eliminate threats while they are as far as possible from the fleet. The Aircraft
Carrier can transmit its updated position to the Simulation Controller. It depends
on the Communication/Detection and its Aircrafts.

4.1.1.4 Aircraft Description

The Aircraft is used by the Aircraft Carrier to provide a long-range detection by
patrolling using its Radar (Detection). It is also able to intercept far enemy
Aircrafts and Ships by firing Weapons (Air-Sea Missile and Air-Air Missile). It
communicates using its Radio (Communication) to the Aircraft Carrier the
position of any enemy Aircraft and Ship it encounters during a patrol. An Aircraft
can transmit its updated position to the Simulation Controller. It depends on the
Communication/Detection and Weapon subsystems.

4.1.1.5 Destroyer Description

The Destroyer locates underwater threats with its Sonar (Detection) and attempts
to intercept them with its torpedoes and sea-sub Missiles (Weapons). It
cooperates with Submarines teammates by sending them the coordinates of all
detected enemy Submarines using their Radio (Communication). The Destroyer
can transmit its updated position to the Simulation Controller. It depends on the
Communication/Detection and Weapon subsystems.

4.1.1.6 Cruiser Description

The Cruiser locates airborne threats with its Radar (Detection) and gives the
information about far threats to its allies using its Radio (Communication). It also
attempts to intercept close airborne threats with its sea-air Missiles (Weapons). It
also receives information using its Radio (Communication) about far enemy
Aircrafts detected by allies. The Cruiser can transmit its updated position to the
Simulation Controller. It depends on the Communication/Detection and Weapon
subsystems.

4.1.1.7 Battleship Description

With its Radar (Detection), the Battleship scans the surrounding water surface for
enemy ships. It also receives information from its allies about far seaborne
threats by Radio (Communication). The Battleship attempts to eliminate the
nearest threats using its Weapons (Sea-Sea Missiles and Heavy Cannons).
Battleship can transmit its updated position to Simulation Controller. It depends
on the Communication/Detection and Weapon subsystems.

139

4.1.1.8 Submarine Description

The Submarine cruises underwater and attempts detect enemies in the water
using its Sonar (Detection) and to destroy enemy ships and Submarines using its
torpedoes and Sub-Sea Missiles (Weapon). It can use its Radio
(Communication) to communicate to its allies all the enemies it detected with its
Sonar. The Submarine has a unique advantage: it is invisible to all Ships and
Aircrafts, except to Destroyers and to other Submarines, which can detect them
underwater with their Sonar. The Submarine can transmit its updated position to
Simulation Controlier. It depends on the Communication/Detection and Weapon
subsystems.

4.1.1.9 Weapon Description

The Weapons are used by Ships and Aircrafts to eliminate threats. They have
limited functionalities, but there are different kinds of Weapons, such as the
various Missiles, Torpedoes and Cannon Shells. Most Weapons are auto-aiming,
relying on their own Radar or Sonar (Detection) to aim at their assigned target.
Some others (e.g. Cannon Shells) follow a ballistic trajectory and are unguided
after they are shot. The Weapon can transmit the object's position to the
Simulation Controller from time to time. It depends on the
Communication/Detection subsystem only.

4.1.2 Concurrent Process Decomposition
NA.

4.1.3 Data Decomposition

4.1.3.1 Data entity description

¢ Each object has a position of the Vector type. A position comprises three float
numbers, representing the object’s tridimensional coordinates.
Each object also has a status, which represent it is alive or dead.
Each object has a type represented as follows: 1-Aircraft Carrier; 2-Aircraft;
3-Destroyer; 4—Cruiser; 5-Battleship; 6-Submarine; 7-Missile/Torpedo; 8-
Heavy Shell Cannon.

o Each object has a flag of the Character type to indicate its side.

140

4.2 Dependency Description

This section describes the dependency relationships among all the subsystems
i.e. what subsystem uses or requires from other subsystems. The main purpose
of designing emphasizes low module coupling and high module cohesion in
terms of subsystem dependency. [10]

4.2.1 Internal Module Dependency

4.2.1.1 Simulation Controller dependency on BaseShip Subsystem

SC depends on BaseShip to create/destroy itself, update its position and status,
get type, and get flag etc. SC needs all these functions to control the BaseShip
activity during simulation process.

4.2.1.2 Simulation Controller dependency on BaseWeapon subsystem

SC depends on BaseWeapon to get position, update its position and status, get
type, get flag, and execute fire behavior etc. SC needs all these BaseWeapon
functions to simulate the BaseWeapon activity when Weapon are fired and hit the
target.

4.2.1.3 Communication/Detection dependency on Simulation Controller

Communication/Detection depends on SC to get the object list within range of
Radar/Sonar. Radio also depends on SC to communicate with its allies ship.

4.2.1.4 Communication/Detection dependency on BaseShip

Communication/Detection depends on BaseShip to get its ID, type, position and
status when Radar/Sonar detects the ship or aircraft. Same dependency is
between Radio and BaseShip when Radio needs to send/receive the message.

4.2.1.5 BaseShip Subsystem dependency on Communication/Detection

BaseShip depends on Communication/Detection to create/destroy itself
(radar/soanr, radio), get detected objects information, go through the objects
information, send/receive information, get sender/receiver ID and type, and get
sender/receiver position etc. By the above dependency, BaseShip can detect
enemy and pass the information to allies.

141

4.2.1.6 BaseShip (except Aircraft Carrier) dependency on BaseWeapon

BaseShip depends on BaseWeapon to create/destroy itself, get attributes, get
speed, get position, get type as well. BaseWeapon also provides its status,
velocity to BaseShip. Especially, BaseWeapon can fire itself and hit the target by
listen to the BaseShip command.

4.2.1.7 BaseWeapon dependency on BaseShip

BaseWeapon depends on BaseShip to deduce its resistance when it is hit by
Weapon.

4.2.1.8 BaseWeapon dependency on Communication/Detection

BaseWeapon including all the Weapons except Heavy Cannon Shell, Sub-Sea
Torpedo and Sea-Sub Missile depend on Communiction/Detection (Radar and
Sonar, not Radio) to simulate the Weapon detection device. BaseWeapon need
to get the detected object information and go through the detected information to
aim the target.

4.2.2 Internal Process Dependency
NA

4.2.3 Data Dependency
NA

142

4.3 Interface Description

This section describes the details of external and internal interfaces not provided
in the software requirement specification. It provides the information for the
developer to know how to correctly use the functions provided by each entity. It
contains everything another designer needs to know on how to interact with a
specific entity. It also specifies the type of relations in terms of shared
information, prescribed order of execution, or parameters interfaces. [10]

4.3.1 Module Interface

The whole system working well needs all subsystems to cooperate with each
other. Besides using functions of other subsystems, each subsystem also
provides some service for some other subsystems. This section described the
interface of each subsystem in interface interaction diagram and detailed function
description as well.

4.3.1.1 Simulation Controller

Simulation Controller provides the services to Communication/Detection
subsystem and Weapon subsystem as described following.

4.3.1.1.1 Simulation Controller for Weapon

SC To Weapons

; :getPosition()
| YupdatePosition() —~

O | SisActve) | O

—): nn,wn_): ‘execute() ke j /L

2 | $getType() h

sC | SgetFlag() Weapons

i vsell
(from Use Case View) ; ’getlg((; (from Use Case View)

I
!

Figure 4-4 Simulation Controller for Weapon

143

4.3.1.1.2 Simulation Controller for Communication/Detection

o getVehicleList() takes no parameters, and return a pointer to the array of
base ship class. When the ships or Aircraft need to get the information about
the other objects, the Radar/Sonar needs to call this function of SC to get the
object information within its range. The Radio also needs this function to know
the allies position to communicate with each other.

Figure 4-5 Simulation Controller for Communication/Detection

4.3.1.2 Communication/Detection

Communication/Detection subsystem provides the service to all the ships
(Aircraft) and Weapon subsystem. The Communication/Detection is the
simulation system of detection for Weapon.

4.3.1.2.1 Communication/Detection for Ships and Aircraft

e emitReceive() takes vector type for its position as parameter, returns no
value to ensure that all the object information is updated. This function is
called before getting position info to ensure that all position info are up to date
when the Ship or Aircraft need to know the position of other Ship or Aircraft.

o goFirstDetected() takes no parameters, returns the first detected object. This
function is called when the ship want to know the first detected object info.

o goNextDetected() takes no parameters, returns the next detected object.
This function is called when the ship want to know the next detected object
info.

o getDetectedInfo()takes no parameters, returns the Detected type of object
information.

144

4.3.1.2.2 Communication/Detection for Weapon

o emitReceive() takes vector type for its

Sk

position as parameter, returns no
2’*57.'.:’ %53 “ 3 ~;_«,!iw!'_ -

Radar/Sonar_for_ Weapon

SCRadar or CSonar()
emitReceive()
$g0FirstDetected()
$goNextDetected()
$getDetectedinfo)
$umOn()

SumOfi()

value to ensure that all the object information is updated. This function is
called before getting position info to ensure that all position info are up to date
when the Weapon need to know the position of target Ship or Aircraft.

o goFirstDetected() takes no parameters, retuns the first detected object. This
function is called when the Weapon wants to know the first detected object
info.

o goNextDetected() takes no parameters, returns the next detected object.
This function is called when the Weapon wants to know the next detected
object info.

o getDetectedInfo()takes no parameters, returns the Detected type of object
information. Then call a derived object of Ship Base Obiject functions getid(),
getFlag(), getPosition(), getSpeed() and getPowerSwitch() to get the
information of the detected object. This function is called when the Weapon
wants to know the detailed detected obiject info.

Figure4-6 Radar/Sonar_for_Weapon

145

4.3.1.3 BaseShip Class

Base ship class provides the services to the Simulation Controller,
Communication/Detection and Weapon. If the derived ship class has additional
services, they will be described in each derived class section.

4.3.1.3.1 BaseShip Class for Simulation Controller

SBaseConctructor() takes different parameters to create the different kinds
of ships and Aircraft for both sides respectively when simulation is started.
getPosition() takes no parameter. Returns a vector type position of a derived
object of Ship.

updatePosition() takes no parameter, and returns no value. It updates the
Ship’s position from the last time slice to the present time slice.

isActive() takes no parameter, and return value is Boolean type. It indicates if
a Ship object is still alive. TRUE means alive and FALSE means sunk.
execute(int) takes an integer type time slice as a parameter, and no return
value. It is called by the Simulation Controller to allow a derived object of Ship
to undertake its all computation at the latest time slice.

getType() takes no parameter, and return value is an integer. The different
return value indicates the different type of a Ship.

getFlag() takes no parameter, and returns a char. The return value ‘R’
indicates a Ship belongs to “RED" side and ‘B’ to “BLUE" side.

setlD() takes integer as a parameter, and no retum value. This function sets a
unique ID to a Ship as soon as it is created.

getlD() takes no parameters, and returns an integer. The return value
indicates the unique ID of a derived object of a Ship.

setFuelAmount() takes one float parameter as the fuel amount at the initial
setting, and another integer to indicate 1D of a Ship, retumns no value.
setFuelLimit() takes one float parameters as the fuel limit at initial setting,
and another integer to indicate ID of a Ship, returns no value.
requestFuel()takes one float parameters as the requested fuel amount, and
another integer to indicate ID of a Ship, retums Boolean value to indicate if
the refilling fuel is success or fail.

requestWeapon() takes no parameters and returns Boolean value to indicate
if the Weapon request is success or fail.

setWeaponType() takes one integer parameter as the Weapon type at the
initialize setting, and another integer to indicate ID of a Ship, returns no value.
setWeaponAmount() takes one float parameters as the weapon amount at
the initialize setting, and another integer to indicate ID of a Ship, returns no
value.

146

o SetWeaponLimit() takes one parameter as the Weapon limit at the initialize
setting, and another integer ti indicate ID of a derived object of Ship, rrturns

no value.

®getPosition()
SupdatePosition()
®isActive()
®execute()
$getType()
$getFlag()
®setiD)
®getiD(
$setFuelAmount()
®setFuellimit()

% ®requestFuel()

| ®requestWeapon() E

Figure 4-7 BaseShip_for_SC

4.3.1.3.2 Base Ship Class for Communication/Detection

o getPosition() takes no parameter. Returns a vector type position of a derived
object of Ship.

o updatePosition() takes no parameter, and returns no value. It updates the
Ship’s position from the last time slice to the present time slice.

* isActive() takes no parameter, and return value is Boolean type. It indicates if
a Ship object is still alive. TRUE means alive and FALSE means sunk.

o getType() takes no parameter, and return value is an integer. The different
return value indicates the different type of a Ship.

o getFlag() takes no parameter, and returns a char. The return value ‘R’
indicates a Ship belongs to “RED” side and ‘B’ to “BLUE" side.

o getlD() takes no parameters, and returns an integer. The return value
indicates the unique ID of a derived object of a Ship.

147

4.3.1.3.3 Base Ship Class for Weapon

¢ hitObject() takes one integer type of parameter for firepower and returns
void. The function is called when Weapon is hit with ship or Aircraft. The ship
will update its resistance according to firepower.

4.3.1.4 BaseWeapon

Weapon subsystem provides the service to Simulation controller and all ships
and Aircraft except the Aircraft Carrier.

4.3.1.4.1 BaseWeapon for Simulation Controller

o execute() takes vector as position for parameters, and retums void to
execute all necessary real-time function when it is fired on the map of SC.

o updatePosition() takes one integer type for Weapon |D as parameter and
returns void. When the Weapon is launched, the SC need this function to
know the Weapon updated position for aiming and firing the object.

SgetPosition) [§
SupdatePosition() B

®isActive()
Sexecute()
$getType()
$getFlag()
®setiD()
®getiD()

Figure 4-8 BaseWeapon_for_Simulation Controller

148

4.3.1.4.2 BaseWeapon for Ship and Aircraft

WBaseConstructor() takes different parameters to create the different types
of Weapon objects respectively when the Weapon are launched by the ship s

and Aircraft.

getAttribute() takes one integer value as Weapon ID , returns vector value to
indicate the Weapon attribute;

getSpeed() takes one integer value as Weapon ID, returns float value to
indicate the Weapon speed;

getType() takes one integer value as Weapon ID, returns integer value to
indicate the Weapon type.

getFalg() takes one integer type as Weapon ID, returns char type as flag of
Weapon. The ships and Aircraft need to use this function to know the
Weapon belongs to which side.

getlD() takes no parameters and return the ID of a Weapon. The ships need
this function to know the Weapon ID.

getPosition() takes one integer type for Weapon ID as parameter and return
the Position type of position of Weapon. The ships need this function to know
the Weapon current position.

getType() takes one integer type for Weapon |ID as parameter and return
integer type for Weapon type. The ships need this function to know the
Weapon type.

isActive() takes one integer value as Weapon ID , returns Boolean value to
indicate the Weapon is active or not. The ships need this function to know the
Weapon state.

fire() takes two Position type for start position of launcher and destination
position of target as parameters, and return void. The ships need this function
to fire the Weapon.

getVelocity() takes one integer type for Weapon ID and return Velocity type
for velocity of Weapon.

getStatus() takes one integer type for Weapon ID and return integer type for
status of Weapon.(Moving or static)

149

BaseWeapon_for_BaseShip

$ireWeapon()
SisActive()
SgetAttribute()
®getSpeed()
®getPosition()

Figure 4-9 BaseWeapon_for_Ship and Aircraft

4.3.2 Process Interface

NA.

150

4.4 System Detailed Design

This section describes the internal design detail of each subsystem. It includes
the attribute descriptions for identification, processing and data. Each subsystem
is described in the aspects of module detailed design, class definition and
description of class data members and member functions.

In Class Definition sub section, the traceability of the class design to SRS
requirement is listed for each class. The constants and private data member of
class are described in the Constant table and Private(Protected or public)data
member table.

In the description of functions, when one function need to use a function in
another class, we use sign — . The left side of sign — is the class name and the
right side is the function type. This applies to all class descriptions in section 5.4.

4.4.1 Simulation Controller Detailed Design

This section describes all the classes of the SC module of the NBSS and the
functions they contain. In the module detailed design section, the modules of this
subsystem are diagrammed in UML and designed in such a way that this module
can be implemented easily in MFC and OpenGL. We employed MFC's
View/Document architecture to describe the core structure of the SC module as
shown in the following figure.

151

4.4.1.1 Module Detailed Design

SelUpDIg B
&x : float g
&y : float 3
ype : int 3
Controller 2 - int
|{®pVehicleAray : BaseShip™ ShandleVehiclelNput()
¢ . . ’handIeOk
| ®stanSimulation(:<<V|rtual>> getActiveDocument() | Sdisplay() 0
1 SpauseSimulation() <<vintual>> getActnveVewO ®draw()
] ®resumeSimulation() ‘ ' ShandleMouse()
| ®endSimutation() $SetUpDIg()
! ‘preCreate‘.ﬂ.fndow)O Scqvitual>> getParemframeO
| ®onCreate:init()
j ’onSuzeO
; ’OnTmerO Simulation
Soprame System)
| ’g:;zsoﬁ::()e 0 &wvehiclesAmray(] : BaseShip*
‘~Controller0 &vehicleinfo[] : vehicleinfo
| SonDra " ; j| &<<static>> vehicleArraySize : int
Q<<vmual>> gelParentFrameO z::::::g: {eat::i:’e!'}as'ze -t

&vehiclelnfolndex : int

OcreateVehicle()
’setVehlcleO

; %fuelAmount double ’getVeh'cleo
| QfuelLimit : double L %00
¥ &baseShip : BaseShipStruct B SCQ

$requestWeapon()
$requestFuel()
¢reateShip()

% %BaseSupplier()

: ‘~BaseSuppher0

Figure 4-10 Class Diagram for Simulation Controller Module

152

4.4.1.2 Class Definition

4.4.1.2.1 CMainFrame Class

Traceability to SRS

SC-006, SC-012, SC-014, SC-017, SC-018, SC-019

Constants
NA

Private data members

controller Controller*

Handle to View Class

Public functions

Name: CmainFrame
Input: none
Output: none

Description: default constructor, inherit CframeWnd class of MFC

Pseudo-code:
Begin:
End

Name: getActiveDocument

Input: none

Output: CDOcument*

Description:

Pseudo-code:
Begin:
Return a handle of the active Document
End

Name: getActiveView

Input: none

Output: Cviewr

Description:

Pseudo-code:
Begin:
Return a handle of the active View.
End

Name: -CMainFrame
Input: none
Output: none

153

Description: virtual destructor

Pseudo-code:
Begin:
End

4.4.1.2.2 SetUpDIg Class

Traceability to SRS

SC-001, SC-002, SC-003, SC-004, SC-005, SC-007, SC-008, SC-008-01,

SC-008-02

Constants
NA

Private data members

Float

X of x axiel of position

Y Float Condinate of y axiel of position

Type char Ship type

Flag char Side flag

DrawInfo Struct Structure of draw information about
object

m typebutton Integer Ship type button flag

vinfol1ls5] [15] ; VehicleInfo Ship info 2-D array

Public functions

Name: SetUpDlg
Input: pParent CWnd*

Output:none

Description: constructor,

Pseudo-code:
Begin:
m_typeButton=-1
End

inherit from CDialog class of MFC

Name: Draw

Input: wBmp WORD,x1 int,yl int

Output: none

Description: constructor, inherit from CDialog class of MFC
Pseudo-code: draw the ship object on the map

Begin:

Select image symbol according to type
Copy the bitmap to screen

End

154

Name: OnInitDialog

Input: none
Output:none
Description: initialize the draw info array and ship info array
Pseudo-code:
Begin:
Loop to initialize the draw info array
Loop to initialize the ship info array
vInfo{i] [j] = NULL; //i and j are index for ship objects array
End

Name: OnLButtonDown
Input:nFlags UINT, point CPOint
Output:none

Description:

Pseudo-code: draw the ship object on the map
Begin:
Select image symbol according to type

Copy the bitmap to screen
End

Name: OnUndo
Input: none
Output: none
Description: undo the drawing object on map
Pseudo-code:
Begin:
take the top element of undoStatck;
delete vInfolr] [c]l;//r and c are index of ship element in the top of
undoStack
set viInfolr]{c] = NULL;
set drawInfo array to default value
End

Name: OnClearall

Input: none

Output: none

Description: clear all the ship image on the map
Pseudo-code:

Begin:
For all the ship on the map
delete viInfolr]licl; 1;//r and ¢ are index of ship element on the map

set vInfolr][c] = NULL;
set drawInfo array to default value
End

155

4.4.1.2.3 SC class

Traceability to SRS
SC-011, SC-013, SC-013-01,SC-013-02, SC-013-03, SC-013

Constants

PARA double 1.3
RADAR RANGE double 150.0 Radar range

SONAR_RANGE double 100.0 Sonar range

RADIO RANGE double 1000.0 | Radio range

WEAPON RANGE | double 140.0 Weapon range for all Weapon

Time double 0.07 Time slice for each ship or Aircraft

Private data members

vpVehicles vector of pointers to
Vehivles

Fac VehicleFactory

vehicleInfo([15] (15] | VehicleInfo+ 2-D Array of ship

; information

Mdir CMap<int, int, float, Simulation Map

float>

Anim bool Indicate animation is
started or not

Time static double Time slice for each ship or
Aircraft

lastID static Integer The lastID of new created
ship object

Public functions

Name: SC
Input: none
Output: none
Description: constructor, inherit from CDocument class of MFC
Pseudo-code:
Begin:
Set animation to false;
Loop to set vehicleInfo(i) (j]=NULL;
End

Name: calVelocity
Input: bl Vector, v0 Vector, speed double

Output: vector

156

Description: calculate the velocity
Pseudo-code:
Begin:
Generate the random number as V1 and VO,
Use V1 and v0 and speed to get the vector of next position;
End

Name: iterator findNearest

Input: *vptr vector<ShipClass*>, *vptr Vector,tl int,t2 int,t3 int,t4 int,t5 int
Qutput: vector<baseClass*>

Description: find the pointer of an object which is nearest to the current

position
Pseudo-code:
Begin:
LOOP to get the nearest position
If((the target position minus current position < minimum length) and the
target is type 1 to 6 except itself)
Update the minimum length;
Return pointer of the nearest object
End

Name: getVehicleList

Input: none
Output: VPtr+*
Description:
Pseudo-code:
Begin:
return & vpVehicles
End

Name: OnStartSetup

Input: none
Output: none
Description: start the animation
Pseudo-code:
Begin:
Loop to set the vehicleInfolrow] (col}l//index are position on the map
VehicleFactory->createVehicle() ;
Set anim to true
End

Name: freeVehicleList
Input: none
Output: none
Pseudo-code:
Begin:
Set the pointer to the first of pVehicles;
Loop until the end of the vector to erase the element of vector}
End

157

Name: getTimeSlice

Input: none
Output: double
Description:
Pseudo-code:
Begin:
return time
End

Name: incrlLastID
Input: none
Output: none
Description:
Pseudo-code:
Begin:
lastID++;
End

Name: -SC
Input: none
Output: none
Description: distructor
Pseudo-code:
Begin:
Call freeupVehicleList() ;
End

4.4.1.2.4 Controller Class

Traceability to SRS
SC-009, SC-010, SC-013, SC-014

Constants

Private data members

A DegcTrIpEIon
counterActive integer Counter of system
startl Clock_t | start system time

Protected data members

percent

integer

e N T

I DesEri pEionsi Tt i TR oy

Test variable

158

Public data members

ENamed o s 2SR STy be s o a T i = S Deser i prTon iy i Ay
Fhor float Time variable
fver float Velocity variable
zoom float Image zoom variable
Texturelmage Struct Image struture
textures [18] Texturelmage TestureImage array
offset GLfloat Offset of image
Public functions

Name: Controller
Input: none
Output: none
Description: constructor,
Pseudo-code:
Begin:
Initialize the member data;
End

inherit from CView class of MFC

Name: OnDrawc
Input: pDC CDC*
Output: none
Description:
Pseudo-code:
Begin:
Test one loop time;
Clear out the color & depth buffers;
Draw picture by using OpenGL function

Get the object size of ships by calling VPtr *ptr

clearing dead Weapons;

Tell OpenGL to flush its pipeline;

Swap the buffers;

If the simulation is over,
End

Swap the buffer;

SC::getVehicleList () ;

Name: InitializeOpenGL
Input: none
Output: bool

Description:
Pseudo-code:
Begin:
Get a DC for the Client Area; if fail, return false;
Create Rendering Context by calling : :wglCreateContext
>sGetSafeHdc) ()); if fail, return false;

Make the Rendering Context Current; if fail,

Otherwise, return true;

End

return false;

{m_pDC-

159

Name: calbir
Input: Vo Vector, V1 Vector
Output: GLfloat
Pseudo-code:
Begin:
Calculate the direction according to the vo and vl
End

Name: OnStartSetup

Input: none
Output: none
Description: start the animation
Pseudo-code:
Begin:
Loop to set the vehicleInfo(row] [col]
VehicleFactory->createVehicle() ;
Set anim to true
End

Name: OnCreate
Input: lpCreateStruct LPCREATESTRUCT
Output: integer
Description: start the animation
Pseudo-code:
Begin:
get rid of the default title;
Call InitializeOpenGL();
Return -1 if can not load images;
Call OpenGl function to set the background and Enable blending

Return 0;
End

Name: OnSize
Input: nType UINT, cx int, cy int
Output: none
Description:
Pseudo-code:
Begin:
Handle paints of graphical ships when window size is changing
End

Name: OnTimer
Input: nIDEvent UINT
Output: none
Pseudo-code:
Begin:
For each element of vehicleArray
Do execute function in a time slice
Do Update position;
End

160

Name: LoadTGA
Input: texture Texturelmage *, filename char *
Output: bool
Description: Loads A TGA File Into Memory
Pseudo-code:
Begin:
Open The TGA File by calling FILE *file = fopen(filename, "rb");
Read file Bytes;
Loop the image data to swap the data;
If (texture Building of OpenGL function) success Return True;
End

Name: drawVehicles
Input: Texturelmage *tex, float posx, float posy,float w, float h,
float angle
Output: none
Pseudo-code:
Begin:
Call OpenGL function to draw the ship or Aircraft objects;
Flush the buffer for openGL;
End

4.4.1.2.5 Vehiclelnfo Class

Traceability to SRS
SC-001, SC-002, SC-013, SC-015, SC-015-01

Constants
NA

Public data members

position | vector vector of Vehicle position
type integer Type of Vehicle
flag char Flag of Vehicle

Public functions

Name: VehicleInfo
Input: Vector pos, int aType, char aFlag
Output: none
Description: constructor
Pseudo-code:

Begin:

Initialize the member data
End

161

4.4.1.2.6 VehicleFactory Class

Traceability to SRS
SC-001, SC-002, SC-013, SC-015, SC-015-01

Constants
NA

Public data members

FiDeserip oA

Handle for document object

Public functions

Name: VehicleFactory
Input: CDocument* pDoc
Output: none
Description: constructor
Pseudo-code:

Begin:

this->pDoc = pDoc;
End

Name: createVehicle
Input: none
Qutput: bool
Description: create the ship or Aircraft according to the user setting
Pseudo-code:
Begin:
Create SC object;
Switch(SC->VehiclelInfo(I] (j]->Type)
Case AircraftCarrier:
Case Aircraft:
Create new object;
Initialize flag,position and ID for this object;
Increase the object number counter;
Case://for all the other ship object

If (counter>0)

Return true;

Else return flase;
End

Name: virtual -VehicleFactory
Input: none

162

Qutput: none
Description: virtual destructor
Pseudo-code:

Begin:

End

4.4.1.2.7 BaseSupplier Class

Traceability to SRS
SC-015, SC-015-01, SC-015-02, SC-015-03, SC-015-04, SC-015-05,

Constants
NA

Public data members

X2 < M-_‘;&

bship BaseShipStructure | New created ship object

Fuelamount | double Total fuel amount of base supplier

Weapon struct Total Weapon amount and Weapon type structure
Public functions

Name: BaseSupplier

Input: none
Output: none
Description: default constructor
Pseudo-code:

Begin:
Fuelamount=0;
Weapon.type=-1;
Weapon.amount=0;
Ship.type=-1;
Ship.amount=0;

End

Name: BaseSupplier

Input: double fue, Weapon wep, BaseShipStructure ship
Output: none
Description: constructor
Pseudo-code:
Begin:
Furamount=fue;
Weapon. type=wep.amount;
Weapon.amount=wep. type;
Bship.type=ship.type;
Bship.amount=ship.amount
End

163

Name: requestFuel
Input: double fuel

Output: bool
Description:
Pseudo-code:
Begin:
Check the fuel is enough or not;
Deduct the fuel amount;
Return true;
Else return false;
End

Name: requestWeapon

Input: Weapon wep
Output: bool
Description:
Pseudo-code:
Begin:
Check the wepaon amount and type;
Create Weapon;
Deduct the Weapon amount o fth etype;
Return true;
Else return false;
End

Name: createShip

Input: none
Output: bool
Description:
Pseudo-code:
Begin:
Check the ship object amount;
If amount<=1limits
Create the ship fo setting type and amount.
Deduct the ship amount of the type;
Retrun true;
Else
return false;
End

Name: ~BaseSupplier
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

End

164

4.4.2 Communication/Detection Detailed Design

This section describes all the classes of Communication/Detection subsystem of
the NBSS and the functions they contain. In module detailed design section, the
modules of this subsystem are diagrammed in UML and designed in such a way
that this module can be implemented easily using MFC. The architecture of this
subsystem is shown in Figure 4-11.

4.4.2.1 Module Detailed Design

The class operation and attribute are not list in the class diagram for all the
classes in Communication/Detection module. Refer to the section of Description
of Class Members and Members Functions for each class.

CommunicationBase

2 CRadar ! CSonar AR CRadio 22
@ Rk
CDetected CMessage
DetectedDatabase : MessageDatabase

Figure 4-11 Class Diagram for Communication/Detection Module

165

4.4.2.2 Class Definition

4.4.2.2.1 CommunicaitonBase Class

Traceability to SRS
CD-001, CD-002, CD-003, CD-004, CD-004-01, CD-004-02, CD-005, CD-006,

CD-007, CD-008, CD-008-01, CD-008-02

Constants
NA.

Private data members

Ty h ST

type integer 1 is Radar,2 is Sonar
ID integer Radar/Sonar object ID
ddb CDhetectedDatabase All the detected information class
state integer Radar/Sonar on/off state
(*on” for object creation)
range double Radar/Sonar radius of detection
Public functions

Name: CommunicationBase
Input: integer ty
Output: none
Description: default constructor
Pseudo-code:
Begin:
Initialize the member data;
ID=0;
Range=0;
type=ty;
End

Name: CommunicationBase

Input: nId integer, nRange integer, ty integer
Output: none

Description: constructor

Pseudo-code:

Begin:
Id= nid; //initialize id
Range=nRange; //initialize Range
Type=ty;

End

166

Name: emitReceive
Input: Vector pos
Output: integer

Description:
Pseudo-code:
Begin:
//refresh the detection list ddb.deleteAll();
difference=0.0 ; // distance between two positions.
i=o; // indicator for static gloable array from SC

for {(int 1i=0; i < SCarraylength; i++)

{

length =0; //length of detected object list.
point= new detected; // a pointer point to a detected object.
detected dobject; // instance of detected object.
Dpoint = SCarraylil ; //this pointer point to a object.
if (SCarray{i}-> active()) //pointer access in BaseShip class.

pl = dpoint->getPosition();
p2 = pos;
p3 = pl-p2 ; // difference between two vectors.
p3.length();
if (difference < range) and (difference >0.0))
{
//set data members for detected object dobject;
dobject.setDetData(Scarray{I]);
//insert detected object b to container DetectedDatabase ddb
ddb.addOneDetIntheList (dobject) ;
increment length by 1;
}
}
return length;
End

Name: getDetected

Input: none
Output: baseClass*
Description:
Pseudo-code:
Begin:
get detected object by calling getDetectedFromList() in DetectedDatabase
End

Name: getFirstDetected
Input: none
Output: baseClasst*
Description:
Pseudo-code:
Begin:
set pointer points to the first object by calling setFirstDetected() in
DetectedDatabase;

End

167

Name: getNextDetected
Input: none
Output: none
Description:
Pseudo-code:
Begin:
set pointer points to the next object by calling setNextDetected() in
DetectedDatabase;
End

Name: turnOff
Input: ty integer, id integer
Output: integer
Description:
Pseudo-code:
Begin:
assgin 0 to State for object.ID=id for Radar 1, for Sonar 2.
return State;
End

Name: turnOn
Input: ty integer, id integer
Output: integer
Description:
Pseudo-code:
Begin:
assgin 1 to State for object.ID=id for Radar 1, for Sonar 2.
return State;
End

Name: ~ communicationBase
Input: none
Output: none
Description: virtual distructor
Pseudo-code:

Begin:

End

4.4.2.2.2 CDetected Class

Traceability to SRS
CD-004, CD-004-01, CD-004-02, CD-007, CD-008, CD-008-01, CD-008-02

Constants
NA.

168

Private data members

K TYDe s s TS Y [DescTi pEion At e S STk
integer Detected object ID
integer Detected object flag
type integer Detected object type
powerswitch integer Detected object power switch
pos vector Detected object position
velocity vector Detected object velocity

Public functions

Name: CDetected
Input: none
Output: none

Description: default constructor

Pseudo-code:

Begin:
ID=0;
flag = 0;
type =0;
powerswitch = 0;
End

Name: CDetected

Input: de CDetected &
Output: none
Description: constructor
Pseudo-code:

Begin:
ID = de.ID;
flag = de.flag;
type = de.type;
powerswitch = de.powerswitch;
pos = de.pos;
velocity = de.velocity;
End

Name: CDetected

Input: int il, int f£1, int t1,
Vector pl, Vector sl
Output: none

Description: constructor
Pseudo-code:
Begin:
ID=1i1;
flag=£1;
type=tl;
powerswitch=psl;
pos=pl;
velocity=sl;
End

int ps1,

169

Name: getID

Input: none

Output: integer

Description:

Pseudo-code:
Begin:

return ID;

End

Name: getFlag

Input: none
Output: integer
Description:
Pseudo-code:
Begin:
return flag;
End

Name: getPosition

Input: none
Output: vector
Description:
Pseudo-code:
Begin:
return pos;
End

Name: getVelocity

Input: none
Output: vector
Description:
Pseudo-code:
Begin:
return velocity
End

Name: getPowerSwitch

Input: none
Output: integer
Description:
Pseudo-code:
Begin:
return powerswitch;
End

Name: setDetData

Input: vehicle BaseShip*
Output: none
Description:
Pseudo-code:

170

Begin:

set position, type;
set ID, flag, velocity
Switch on ship type to call their setPowerswitch()

End

function;

Name: setID
Input: id Integer
Output: none
Description:
Pseudo-code:
Begin:
ID = id;
End

Name: setFlag
Input: f£1 Integer

OCutput: none
Description:
Pseudo-code:
Begin:
flag = £1
End

Name: setPos
Input: posit Vector
Output: none
Description:
Pseudo-code:

Begin:

pos = posit

End

Name: setPowerSwitch
Input: ps Integer
Output: none
Description:
Pgseudo-code:

Begin:

powerswitch = ps;

End

Name: setType
Input: ty Integer
Output: none
Description:
Pseudo-code:
Begin:
type = ty;
End

171

Name: setVelocity

Input: ve Vector
Output: none
Description:
Pseudo-code:
Begin:
velocity = ve;
End

Name: -CDetected
Input: none
Output: none
Description: distructor
Pseudo-code:

Begin:

End

4.4.2.2.3 DetectedDatabase Class

Traceability to SRS
CD-004, CD-008

Constants
NA.
Private data members

list DetList typedef vector<CDetected*> DetList;
itCurrDetected; DetList::iterator Iterator to the vector of DetList
Public functions

Name: CdetectedDatabase
Input: none
Output: none
Description: default constructor
Pseudo-code:
Begin:
End

Name: ~-CDetectedDatabase
Input: none
Output: none
Description: distructor
Pseudo-code:

Begin:

End

172

Name: addDetected
Input: det CDetected*

Output: none
Description:
Pseudo-code:
Begin:
//Call Vector push function
list.push_back(det);
End

Name: getDetected
Input: none
Output: CDetected
Description:
Pseudo-code:
Begin:
CDhetected det ; //create new pointer.
if(itDetList < list.end()) //get detected object pointed by iterator
Det .getDetData(*itCurDetect)//Remove the det from the database of

messages
delete current iterator which is 1list.begin() by calling erase() 1in

vector;
return det;

End

Name: setPirstDetected
Input: none
Output: none
Description:
Pseudo-code:

Begin:
set pointer to the first element of database be calling list.begin() ;
End

Name: setNextDetected
Input: none
Output: none
Description:
Pseudo-code:
Begin:
set pointer to the next element of database by increment iterator;
End

Name: deleteAll
Input: none
Output: none
Description:
Pseudo-code:
Begin:
empty list using predefined vector function;
End

173

Name: singleton

Input: none
Output: CDetecetdDatabase
Description:
Pseudo-code:
Begin:
static CDhetectedDatabase instance;
return instance;
End

4.4.2.2.4 CRadar Class

Traceability to SRS
CD-001, CD-002, AT-004, DT-004, CS-004, BS-004.

Constants
NA.

Private data members

N/A.

Public functions

Name: CRadar
Input: none
Output: none
Description: default constructor, inherit from the CommunicationBase Class
Pseudo-code:
Begin:
Type=1;
End

4.4.2.2.5 CSonar Class

Traceability to SRS
CD-005, CD-006, SM-004

Constants
NA.

Private data members
N/A.

174

Public functions

Name: CSonar
Input: none
Output: none
Description: default constructor, inherit from the CommunicationBase Class
Pseudo-code:
Begin:
Type=2;
End

4.4.2.2.6 CRadio Class

Traceability to SRS
CD-009, CD-010, CD-011, CD-012, AC-004, AT-008, DT-008, CS-008, BS-008,

SM-008.

Constants
NA.

Private data members

SO T s Or S O .
myRadioId integer Radio object ID

range float Range of Radio radius

Private functions

Name: SetRadiold
Input: int Radiold

Output: none

Description:

Pseudo-code:
Begin:
myRadiold = Radiold;
End

Public functions

Name: CRadio
Input: none
Output: none
Description: default constructor
Pseudo-code:
Begin:
End

175

Name: CRadio
Input: Radiold Integer
Cutput: none
Description: constructor
Pseudo-code:
Begin:
SetRadioId(RadioId);
range=1000.0;
End

Name: SendMessage
Input: CMessage & Msg

Output: none

Description:

Pseudo-code:
Begin:
Msg.updateSenderInfol() ;
MESSAGE_DB.AddOneMsgInthelist (Msg) ;
End

Name: ReceiveMessage

Input: none
Output: none
Description:
Pseudo-code:
Begin:
CMessage *msg = MESSAGE_DB.GetMyMsg(myRadiold);
return *msg;
End

Name: turnOff
Input: none
Output: State integer
Description:
Pseudo-code:
Begin:
assgin 0 to State;
return State;

End

Name: turnOn
Input: none
Output: none
Description:
Pseudo-code:
Begin:
assgin 1 to State;
return State;

End

176

Name : DeleteMessages

Input: none
Output: none
Description:
Pseudo-code:
Begin:
MESSAGE_DB.DeleteMyMessages (myRadioId) ;
End

Name: ~CRadio
Input: none
Output: none
Description: virtual distructor
Pseudo-code:
Begin:
End

4.4.2.2.7 CMessage Class

Traceability to SRS
CD-011, CD-012

Constants
NA.

Private data members

struct define Message include senderID, receiverID,
senderType, command, sender Position, destination
position and enemyInfo of CDetected type.

pVehicle BaseShip* Pointer variable of BaseShip type to indicate the
ship information.

Public functions

Name: CMessage
Input: none
Output: none
Description: default constructor
Pseudo-code:
Begin:
pVehicle=0;
Msg.sPos = Position(0,0,0);
Msg.dPos = Position(0,0,0);
Msg.senderID = 0;
Msg.senderType = 0;
Msg.receiverlD 0;
Msg.command = 0;
End

177

Name: CMessage
Input: baseClass *aVehicle
Qutput: none
Description: constructor
Pseudo-code:
Begin:
pVehicle=avVehicle;
Msg.sPos = pVehicle->getPosition();
Msg.dPos = Position(0,0,0);
Msg.senderID = pVehicle->getID();
Msg.senderType = pVehicle->getTypel();
Msg.receiverID = 0;
Msg.command = 0O;
End

Name: validToSend
Input: none
Output: bool
Description:
Pseudo-code:
Begin:
return (pVehicle!=0);
End

Name: SetMsgData

Input: Message *outMsg
Output: none
Description:
Pseudo-code:
Begin:
set enemyInfo to outMsg
End

Name: GetMsgData
Input: Message inMsg

Output: none
Description:
Pseudo-code:
Begin:
Put the inMsg to Msg struct;
End

Name: updateSenderInfo
Input: none
Output: none
Description:
Pseudo-code:
Begin:
Read the pVehicle info to Msg struct;
End

178

Name: SetSenderId
Input: int psId
Output: none
Description:
Pseudo-code:
Begin:
Msg.senderID = psId;
End

Name: getSenderFlag

Input: none
Output: char
Description:
Pseudo-code:
Begin:
if (pvehicle!=0) return pVehicle->getFlag();
else return 'f';
End

Name: GetSenderId
Input: none

Output: integer
Description:
Pgeudo-code:
Begin:
return Msg.senderlID;
End

Name: SetSenderType
Input: int psType
Output:
Description:
Pseudo-code:
Begin:
Msg.senderType = psType;
End

Name: GetSenderType

Input: Message inMsg
Output: integer
Description:
Pseudo-code:
Begin:
return Msg.senderType;
End

Name: SetReceiverId
Input: int prId
Output:
Description:
Pseudo-code:
Begin:
Msg.receiverlID = prid;
End

179

Name: GetReceiverId
Input: Message inMsg
Output: Integer
Description:
Pseudo-code:
Begin:
return Msg.receiverID;
End

Name: SetCommand
Input: int pCommand
Cutput: none
Description:
Pseudo-code:
Begin:
Msg.command = pCommand;
End

Name: GetCommandld
Input: none

OCutput: Integer
Description:
Pseudo-code:
Begin:
return Msg.command;
End

Name: SetSenderPosition
Input: Vector Pos
Output: Integer
Description:
Pseudo-code:
Begin:
Msg.sPos[1]
Msg.sPos (2]
Msg.sPos[3]
End

Pos[1];
Pos [2];
Pos (3] ;

Name: GetSenderPosition
Input: none

Output: Vector
Description:
Pseudo-code:
Begin:
return Msg.sPos;
End

180

Name: SetDestinationPosition
Input: Vector Pos
Output: none

Description:
Pseudo-code:
Begin:
Msg.dPos = Pos;
End

Name: GetDestinationPosition
Input: none
Output: Vestor
Description:
Pseudo-code:

Begin:

return Msg.dPos;
End

Name: SetDetectedInfo
Input: CDetected Det
Output: none
Description:
Pseudo-code:

Begin:

Msg.enemyInfo = Det;

End

Name: GetDetectedInfo
Input: none
Output: CDetected
Description:
Pseudo-code:

Begin:

return Msg.enemyInfo;
End

4.4.2.2.8 MessageDatabase Class

Traceability to SRS |
CD-011, CD-012

Constants
NA.

Private data members

MsgList Typedef std vector<Message*> MsgList

181

Private functions

Name: MessageDatabase
Input: none

Output: none
Description: constructor
Pseudo-code:

Begin:
Message *msgData= new Message() ;//member data
list.push_back(msgData) ;

End

Public functions

Name: ~MessageDatabase
Input: none
Output: none
Description: virtual destructor
Pseudo-code:
Begin:
End

Name: DeleteAllMsg

Input: none
Output: none
Description:
Pseudo-code:
Begin:
list.clear();
End

Name: singleton

Input: none
Output: CMessageDatabase&
Description:
Pseudo-code:
Begin:
static CMessageDatabase instance;
return instance;

End

Name: AddOneMsgIntheList

Input: CMessage & Msg

Output: none

Description:

Pseudo-code:
Begin:
check if this Msg is valid;
keep this message to the list;

End

182

Name: GetMyMsg
Input: int pRadiold

Output: CMessage
Description: Get the message from the database
Pseudo-code:
Begin:
return the first message in the list with receiverID equal to pRadiold;
return NULL if no message with this receiverID.
delete this message
End

Name: DeleteMyMessages

Input: int pRadiolId
Output: none
Description:
Pseudo-code:
Begin:
delete the all message in the list with receiverID equal to pRadiold;
End

183

4.4.3 Ship and Aircraft Detailed Design

The Ship and Aircraft subsystem is composed of Aircraft Carrier, Aircraft,
Destroyer, Cruiser, Battleship and Submarine. All of them are derived from the
base ship and Aircraft class. The derived class feature is described in each sub
section of this part. In module detailed design section, the modules of this
subsystem are diagrammed in UML and designed in such a way that this module
can be implemented easily using MFC. The architecture of this subsystem is
shown in Figure 4-12.

4.4.3.1 Module Detailed Design

The class operation and attribute are not listed in the class diagram for class
Captain, WeaponLauncher, WeaponOfficer, RadioOfficer, RadarOfficer,
SonarOfficer, NavigationOfficer and BaseShip class. Refer to the section of
Description of Class Members and Members Functions for each class. See
Figure 4-12 for a diagram representing the detailed design.

4.4.3.2 Class Definition

4.4.3.3 Description of Class Members and Member Functions

The traceability of the class design to SRS requirement is listed for each
class.The constants and private data member of class are described in the
Constant table and Private data member table. In the description of function,
when one function needs to use another function of other class, we use sign —.
The left side of sign — is the class name and the right side is the function type.
This applies to all class descriptions in section 5.5

184

NavigationOfficer
radar_officer : RadarOfficer
radio_officer : RadioOfficer
)_officer : WeaponOfticer
&radar orsonar : Cradar or CSonar
Qudio : Cradio
%tirne_counter: bng
Qtesistance tint

Cexecute()
QgetFlag)
’getPositionO
$getTyped
VisActive()
QupdatePositionQ
i)

Qoperator new
‘opemor deleteQ

Figure 4-12 Class Diagram for BaseShip (ship and Aircraft) Module

185

4.4.3.3.1 BaseShip Class

Traceability to SRS
SC-001, SC-002

Constants (Defined in the derived class if different constant is used)

MAX RESISTANCE integer | Depends | resistance value when sh1p and
on ship | Aircraft first created

RECOVERABLE_RESISTANCE | integer | Depends | minimum resistance that the can
on ship | make reparation

MAX_REPAIR_TIME integer | Depends | Maximum time the ship and Aircraft
on ship | needs to restore the resistance

Protected data members

ID integer Ship and Alrcraft ID

Check int used to indicate if the ship object is selected or
not

Public functions

Name: BaseShip
Input: none

Output: none
Description: default constructor
Pseudo-code:
Begin:
baseClass(){ check = 0; }
End

Name: getPosition

Input: none
Output: none
Description: pure virtual function
Pseudo-code:
Begin:
virtual Vector getPosition() = 0;
End

Name: updatePosition

Input: none

Output: none

Description: pure virtual function
Pseudo-code:

186

Begin:
virtual void updatePosition()
End

Name: isActive
Input: none
Qutput: none
Description: pure virtual function
Pseudo-code:
Begin:
virtual bool isActive() = 0;
End

Name: execute

Input: a double type as time to recover

Output: none
Description: pure virtual function
Pseudo-code:
Begin:
virtual void execute{double)
End

Name: getgne

Input: none
Output: none
Description: pure virtual function
Pseudo-code:
Begin:
virtual int getType() = 0;
End

Name: getFlag

Input: none
Output: none
Description: pure virtual function
Pseudo-code:
Begin:
virtual char getFlag() = 0;
End

Name: setID
Input: none
Output: none
Description: pure virtual function
Pseudo-code:
Begin:
virtual char getFlag() = 0;
End

187

Name: setID
Input: an integer type as ID
Output: none
Description: to set the object ID when it is creation
Pseudo-code:

Begin:

ID = id
End

Name: getID

Input: none
Output: an integer type as ID
Description: to get the object ID when it is creation
Pseudo-code:
Begin:
Return id
End

Name: setCheck
Input: an integer type as Check is true or false
Output: none
Description: to set the object Check is true or false
Pseudo-code:

Begin:

check = ck
End

Name: getCheck

Input: none
Output: an integer type as Check is true or false
Description: to get the object Check is true or false
Pseudo-code:
Begin:
return check
End

Name: ~BaseShip

Input: none
Output: none
Description: virtual distructor
Pseudo-code:
Begin:
virtual ~baseClass(){}
End

4.4.3.3.2 Derived Class

The derived class includes Aircraft Carrier, Aircraft, Battleship, Cruiser,
Destroyer, and Submarine. Because the most of function of derived class are

188

same, the general function will be described for all the derived class in one
pseudo code section, only the different and additional functions will be addressed
with bold style; otherwise, the Battleship is taken as the example IN pseudo
code dexcription. Radar/Sonar represents the Radar class for all the applicable
ships and Sonar class for all the applicable ship in different class implementation.

Traceability to SRS
SC-001, SS-002

Class if applicable

Constants(Redefined in Different Derived Shi

MAX RESISTANCE integer | resistance value when ship and Aircraft
first created
RECOVERABLE_RESISTANCE | integer | minimum resistance that the can make
reparation
MAX REPAIR TIME integer | Maximum time the ship and Aircraft needs to
restore the resistance
Private data members
ID integer Ship and Aircraft ID
active bool used to distinguish between alive and dead
flag char used to distinguish between allies and
enemies
type integer used to distinguish among different ships
and Aircraft
fuelamount integer fuel amount at ship creation
fuellimit integer Fuel limit when need to send request
Weaponamount integer Amount of on board Weapon when ship is
created
captain Captain an object of the class Captain
n_officer NavigationOfficer | An instance of class NavigationOfficer
Radar officer | DetectionOffice An instance of class DetectionOffice
Radio officer | RadioOfficer An instance of class RadioOfficer
w officer WeaponOfficer An instance of class WeaponOfficer
w launcher WeaponLauncher An instance of class WeaponlLauncher
S Radar Radar An instance of class Radar
s Radio Radio An instance of class Radio
time counter long records the simulation time
resistance integer The value stands for the status of the
ship and Aircraft, i.e. how serious the
ship is damaged

189

Public functions

Name: AircraftCarrier, Aircraft, Battleship, Cruiser, Destroyer, Submarine
Input: none
Output: none
Description: default constructor
Pseudo-code:
Begin:

create n_officer using default constructor
create captain
call getiID() function which is in the base class to obtain the continued
ID for this object
create Radar, pass ID and sea Radar radius as parameter
create Radar_officer
create Radio_officer
create Radio, pass ID as parameters for derived object
create w_officer
create w_launcher
set flag and type for this object
resistance = MAX_RESISTANCE;
active = true;
time_counter = 0;
End

Name: AircraftCarrier, Aircraft, Battleship, Cruiser, Destroyer, Submarine
Input: fl: char, cPos: Vector, dPos: Vector
Output: none
Description: constructor
Pseudo-code:
Begin:
create n_officer, pass cPos, dPos as parameters
create captain
call getID() function which is in the base class to obtain the ID of this
object
create Radar, pass ID and sea Radar radius as parameter
create Radar_officer
create Radio_officer
create Radio, pass ID as parameters
create w_officer (Not for AircraftCarrier Class)
create w_launcher (Not for AircraftCarrier Class)
flag = f1;
type = 1 to 6; //SC assign integer 1 for AircraftCarrier, 2 for
Aircraft,3 for Cruiser, 4 for Destroyer,5 for the type Battleship and 6
for Submarine.
resistance = MAX_RESISTANCE;
active = true;
time_counter = 0;
End

Name: ~AircraftCarrier,-Aircraft,-Battleship,-Cruiser, ~-Destroyer, ~-Submarine

190

Input: none
Cutput: none
Description: destructor
Pseudo-code:

Begin:

End

Name: execute
Input: t: integer
Qutput: void
Description: update the ship or Aircraft status
Pseudo-code:
Begin:
time_counter + 1;
w_launcher — deleteWeapon();(Not for AircraftCarrier Class)
captain — updateCaptain(t, Radar_officer, Radio_officer, n_officer,
w_officer, w_launcher, Radar, Radio, time_counter);
(Not for AircraftCarrier Class)
captain —» updateCaptain(t, Radar officer, Radio_officer, n_officer,
Radar, Radio, time_counter); (for AircraftCarrier Class)
updateStatus(t) ;
End

Name: getFlag

Input: none
Output: char
Description: get the flag of the ship or Aircraft, ‘B’ OR ‘R’
Pseudo-code:
Begin:
return flag;
End

Name : getgzge

Input: none
Output: integer
Description: get the ship or Aircraft type
Pseudo-code:
Begin:
return type;
End

Name: isActive
Input: none
Output: bool
Description: check if the Battleship is alive or dead
Pseudo-code:

Begin:

return active;
End

Name: getPosition

191

Input: none
Output: Vector
Description: get position of the ship or Aircraft
Pseudo-code:
Begin:
return n_Officer — getPosition();
End

Name: updatePosition

Input: none

Output: void

Description: update position from last snapshot to this snapshot

Pseudo-code:
Begin:
n Officer — updatePosition()
End

Name: hit
Input: firePower: integer
Output: void
Description: used to decrease resistance points when ship or Aircraft is hit
Pseudo-code:

Begin:

resistance = resistance - power;
End

Name: * operator new
Input: size_t s
Output: void
Description: overloading operator: create an object, register this object to
the Simulation Controller and return this object. Simulation Controller will
provide code.
Pseudo-code:
Begin:
create an object and register this object to the Simulation Controller;
return this object;
End

Name: operator delete
Input: void * mem
Output: void
Description: overloading operator: delete this object; remove the object.
registration from the Simulation Controller. Simulation Controller will
provide code
Pseudo-code:
Begin:
delete this object;
remove the cbject registration from Simulation Controller;
End

192

Private functions

Name: updateStatus
Input: t: integer
Output: void
Description: update the status(alive or dead)
Pseudo-code:
Begin:
if resistance <= 0 or captain -» isCrash{) = true, set active = false
if resistance > RECOVERABLE_RESISTANCE and < MAX_ RESISTANCE
call resistanceRecover(t)
End

Name: resistanceRecover

Input: t: integer

Output: void

Description: used to recover resistance point
Pseudo-code:

Begin:
resistance = resistance + (MAX RESISTANCE - RECOVERABLE RESISTANCE) * t
/ MAX_REPAIR_TIME;
if resistance > MAX RESISTANCE, resistance = MAX RESISTANCE;

End

Name: getResistance

Input: none
Output: integer
Description: get resistance point
Pseudo-code:
Begin
return resistance;
End

Name fuelRequest
Input: Integer

Output: bool
Description: if true, the ship or Aircraft get the fuel filling from the SC
base supplier
Pseudo-code:
Begin:
If (fuelamount of base supplier >=fuelamount request)
{
Basesupplier->deductFuel (fuelamount) ;
return true;
}
else return false;
End

193

Name WeaponRequest (Not for AircraftCarrier class)
Input: Integer
Output: bool
Description: if true, the ship or Aircraft get the Weapon needed from the SC
base supplier
Pseudo-code:
Begin:
1f (Weaponamount of base supplier >=Weaponamount request)and
Weapontype==ship’s Weapon type)
{
Basesupplier->createWeapon() ;
Return true;
}
else return false;
End

4.4.3.3.3 Captain Class

Traceability to SRS
AC-001, AC-001-01, AC-001-02, AC-003, AC-009, AC-010, AC-011, AC-012,

AC-013, AC-025, AC-026. AC-018 to AC-024. AT-001-01,AT-001-02, AT-002,
AT-003, AT-013 to AT-018,AT-032 to AT034, AT-024 to AT-031. DT-001-01,DT-
001-02, DT-002, DT-003, DT-013 to DT-018,DT-032 to DT034, DT-024 to DT-
031. CS-001-01,CS-001-02, CS-002, CS-003, CS-013 to CS-018,CS-032 to
CS034, CS-024 to CS-031. BS-001-01,BS-001-02, BS-002, BS-003, BS-013 to
BS-018,8S-032 to BS034, BS-024 to BS-031. SM-001-01,SM-001-02, SM-002,
SM-003, SM-013 to SM-018,SM-032 to SM034, SM-024 to SM-031.

Constants
NA

Private data members

friend_list ObjectList the node of the Ob]ectLlst will contain
information of id, position, flag, speed of
object. This list contains friends info.

enemy list ObjectList list after update

previous_enemy lis | ObjectList list before update

t

crash bool if true, the ship or Aircraft collides with
another object

attack_target Detected Target object the ship and Aircraft will
attack

194

Public member functions

Name: Captain
Input: none
Output: none
Description: constructor
Pseudo-code:
Begin:
initial friend List ,enemy List, and previous_enemy_list as empty list
crash = false;
attack_target = NULL; //no attack target
End

Name: ~Captain
Input: none

Output: none
Description: destructor
Pseudo-code:

Begin:

End

Name: updateCaptain
Input: t: int, Radar: RadarOfficer&, Radio: RadicOfficer&, n_officer:

navigationOofficer&, w_officer: WeaponOfficer&, w_launcher:
WeaponLauncher&, Radar: Radar&, Radio: CRadio&,counter: long
(Not for AircraftCarrier Class)
Input: t: int, Radar: RadarOfficer&, Radio: RadioOfficer&, n_officer:
navigationOfficer&, Radar: Radar&, Radio: CRadio&,counter: long
(for AircraftCarrier Class)
Output: void
Description: execute every time slice, to update all decisions made by captain
Pseudo-code:
Begin:
First step:
update friend list and enemy_list
remove all elements in the friend list;
remove all elements in the previous_enemy_list;
copy enemyList to previous_enemy_list;
remove all elements in the enemyList;
Second step:
decide if the ship collides with another object, no matter friend or
enemy by checking both the friend-list and enemy-list. If there is one
object is too close to the ship or Aircraft, which means that the
distance between two object is less than one tolerant value,we think it
collides with the ship, then the ship will sink.
crash = true;
Third step:
If there are any new enemies detected, send message to allies

195

loop the friend_list
{
compare previous-enemy-list with friend-list, whenever find an object
that is in friend-list and not in previous-enemy-list
RadioOfficer/SonarOffice — sendDetectMessage (bRadio, Detected, 0)
}
Fourth step:
if (ifAttack()=true), attack the enemy
get current position of the ship from NavigationOfficer
get target positon, speed, ID from object attackTarget
WeaponOfficer—prepareAttack (currPos, targetPos, targetSpeed, targetid,
count, launcher)
(Not for AircraftCarrier Class)
(for AircraftCarrier Class)
Fifth step:
adjust navigation: adjustNavigation();
End

Name isCrash
Input: none
Output: bool
Description: if true, the ship and Aircraft collides with other object
Pseudo-code:

Begin:

return crash;
End

Private member functions

Name: ifAttack
Input: none
Output: bool
Description: if true, there is a specific target to attack
Pseudo-code:
Begin:
case 1: there is no enemy around, return false
if (the enemyList is empty) return false
case 2: there are only enemies which can not be target for this object,
return false
--check all elements in the enemy_list from the first one to the
case 3: there is at least one enemy for this object, for example, sea-
borne enemy for Battleship
//the following code take Battleship as example, it 1is also
applicable for other ship or Aircraft object
(not for AircraftCarrier Class)
if (the number of the sea-borne is equal to one)
then it is the intended target
if (this object position is within the Missile range)
{

int wtype = WeaponOfficer — selectWeapon();

196

int cQty = WeaponOfficer — getCannonQty();
int mQry = WeaponOfficer — getMissileQty();
if (wtype is cannon and (cQty or mQty >= 1) or wtype is Missile
and mQty >= 1))
{
attack_target = this object
return true.
}else

{

can not attack the target,
return false;

}

}

if (the target position is out of the Missile range)

return false;

if (the number of the sea-borne is more than one)
{
Compute the distance between each enemy and the Battleship
Choose the nearest one to the sea-brone as the target.
Following the same procedure as the case of having only one sea-
borne enemy

}

End

Name: adjustNavigation

Input: none

Output: void

Description: adjust navigation, speed and direction

Pseudo-code:
Begin:
case 1: there is no enemy within range in enemy_list at this
moment, for example, sea-borne enemy for Battleship
if (found enemies’Submarine(s) (z value of the positon is less than
0))
{

calculate the distances from enemies’ Submarine(s), steer to a
direction which has angle @ with current direction to get away
from enemy.

NavigationOfficer — steer(0);
double accl= 525; //525km/hr’ for Battleship

NavigationOfficer — adjustSpeed(accl, MAX_SPEED);

if (no friend on the heading direction and |speed|<Max)

{

find a direction which has angle 0 with current direction where
there is no friends and object on the way;
NavigationOfficer — steer(6);

}

if (friends or object on the way)

{

find a direction which has angle 8 with current direction where
there is no friends and object on the way;

NavigationOfficer — steer(9);
double deceleration = -700; // -700km/hr?

197

for Battleship
NavigationOfficer — adjustSpeed(deceleration, 0};

}

case 2:
if (ifAttack() = true)
éind a closest target direction on which there is no friend;
NavigationOfficer —» cruise{t, attack_target.position};
double deceleration = -700; // -700km/hr® for Battleship
NavigationOfficer — adjustSpeed(deceleration, 0);
}
End

Name: addToFriendList
Input: Detected
Output: void
Description: add new detected or received friend info to friend list
Pgseudo-code:

Begin:

add Detected to friend_list
End

Name: addToEmnemyList
Input: Detected
Output: void
Degcription: add new detected or received enemy info to enemy_list
Pseudo-code:

Begin:

add Detected to enemy_list
End

Name iffuelEmpty

Input: none
Output: bool
Description: if true, the ship or Aircraft has no fuel any more
Pseudo-code:
Begin:
If (fuelamount==0) Return true;
else return false;
End

4.4.3.3.4 Radar/Sonar Officer

Traceability to SRS
AT-004 to AT-007, CS-004 to CS-007, DT-004 to DT-007,8S-004 to BS-007,

SM-004 to SM-007.
Constants
NA

198

Private data members

% SED@script ioniasine BERS
det Detected a Detected object, store object information

Radar on/Sonar on bool Radar/Sonar is on if true

Public member functions

Name: RadarOfficer
Input: none
Output: none
Description: constructor
Pseudo-code:
Begin:
det = Detected ();
Radar_On = true; or Sonar_on=true;
End

Name: ~RadarOfficer
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

End

Name: turnOffRadar/turnOffSonar
Input: Radar/Soanr: Radar&/Sonars
Output: void
Description: turn off Radar/Sonar
Pseudo-code:

Begin:

Radar/Sonar — turnoff();
End

Name: turnOnRadar/turnOnSonar
Input: Radar/Soanr: Radar&/Sonars
Output: void
Description: turn on Radar/Sonar
Pseudo-code:

Begin:

Radar/Sonar — turnon();
End

Name: getNumOfDetected
Input: Radar/Sonar: Radar&/Sonar&, pos: Vector
Output: integer

199

Description: the function pass the ship position in order to know the center of
the Radar/Sonar. It is used to get number of detected objects
Pseudo-code:
Begin:
return Radar/Sonar — emitReceive (pos) ;
End

Name: getFirstDetected
Input: Radar/Sonar: Radar&/Sonark,
Output: Detected
Description: get the first detected object information
Pseudo-code:
Begin:
Radar/Sonar — goFirstDetected() ;
return Radar/Sonar —» getDetectedInfol();
End

Name: getNextDetected
Input: Radar/Sonar: Radar&/Sonark,
Output: Detected
Description: get the next detected object information
Pseudo-code:
Begin:
Radar/Sonar — goNextDetected() ;
return Radar/Soanr — getDetectedInfo() ;
End

4.4.3.3.5 RadioOfficer Class

Traceability to SRS
AC-004 to AC-008, AT-008, AT-012, CS-008 to CS-012, DT-008 to DT-012, BS-

008 to BS-012, SM-008 to SM-012.

Constants
NA

Private data members

message Cmessage an instance of CMessage, store message info

Public member functions

Name: RadioOfficer
Input: object: BaseShip
Output: none
Description: constructor

200

Pgseudo-code:
Begin:
message = CMessage(cobject); //communication group ask for this
End

Name: RadioOfficer
Input: object: BaseShip
Output: none
Description: default constructor
Pseudo-code:

Begin:

message = CMessage();
End

Name: -RadioOfficer
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

End

Name: sendDetectMessage
Input: Radio: CRadio&, det: Detected, id: integer
Output: void
Description: send the detected message to a specific object or broadcrast
Pseudo-code:
Begin:
message — setReceiverld(id); // set 0 for message broadcast
message — setDetectedInfo(det);
Radio — sendMessage (message) ;
End

Name: gsendDesPosMessage
Input: Radio: CRadio&, pos: Vector, id: integer
Output: void
Description: send the destination position to a specific object or broadcrast
Pseudo-code:
Begin:
message — setReceiverld(id); // set 0 for message broadcast
message — setDestinationPosition(pos);
Radio — sendMessage(message) ;
End

Name: receiveMessage
Input: Radio: Radio&
Output: CMessage
Description: receive message by using Radio
Pseudo-code:
Begin:

201

return message = Radio — receiveMessage();
End

Name: getMessage

Input: none
Output: CMessage
Description: get the value of data member message
Pseudo-code:
Begin:
return message;
End

4.4.3.3.6 NavigationOffice Class

Traceability to SRS
AC-001, AC-001-01, AC-001-02, AC-003. AT-001-01,AT-001-02, AT-002, AT-

003. DT-G01-01,DT-001-02, DT-002, DT-003. CS-001-01,CS-001-02, CS-002,
CS-003. BS-001-01,8S-001-02, BS-002, BS-003. SM-001-01,SM-001-02, SM-
002, SM-003.

Constants

Maximum speed of the Battleship

) .:Li e

Sasiroyrel

Curr position Current position
Temp position Vector Temparily positon before update
velocity Vector including direction

Public member functions

Name: NavigationOfficer
Input: curPos: Vector, desPos: Vector, spd: Vector
OCutput: none
Description: constructor
Pgseudo-code:
Begin:
curr_position = curPos;
temp_position = curPos;
velocity = (desPos - curPos)*MaxSpeed;
End

Name: ~NavigationOfficer
Input: none
Output: none

202

Description: destructor
Pseudo-code:

Begin:

End

Name: cruise
Input: At: integer, decPos: Vector
Output: void
Description: navigate the ship or Aircraft from current position to the
destination position
Pseudo-code:
Begin:
//ship decelerate at the original Velocity (Vector), and adjust direction
of Velocity accordingly every t interval. See the figure below to
understand the algorithm.
//calculate direction needed to get to target position.
Vector direction = targetPos - curr_position;
//calculate Velocity on original direction after At.
Vector velocity ori = velocity-aAt;
//calculate Vector Velocity on target direction.
Vector velocity _des= direction/length()*|velocity|; //target Velocity
//calculate the actual Velocity at this time slot and update velocity of
//ship or aircraft.
velocity = velocity des - velocity_ori;
//calculate the position after At and update position of ship or aircaft.
curr_position = curr_position + VelocityAt;
End

Name: getPostion

Input: none
Output: Vector
Description: get current position
Pseudo-code:
Begin:
return curr_position;
End

Name: getVelocity

Input: none
Output: Vector
Description: get current velocity
Pseudo-code:
Begin:
return velocity;
End

Name: setPosition
Input: pos: Vector
Output: void
Description:

203

Pseudo-code:
Begin:
curr_position = pos;
End

Name: setVelocity

Input: vel: Vector
Output: void
Description: set velocity
Pseudo-code:
Begin:
Velocity = vel;
End

Name: adjustSEeed

Input: accl: double, targetSpeed: double
Output: void
Description: adjust the velocity with certain acceleration to the target
velocity.
Pseudo-code:
Begin:
//accelerate to a Velocity bigger than original one.
if ((accl>0) and (targetVelocitysvelocity))
velocity = velocity + acclAt;
//decelerate to a velocity smaller than original
else if (accl<0 & (targetVelocity<Velocity)&(targetVelocity>=0))
{temp_Velocity = velocity + acclAt;
if (temp_Velocity<0) velocity =0;
else velocity = velocity + acclAt;
End

Name: steer

Input: angle: float

Output: void

Description: changes the navigation direction of the ship or Aircraft by angle
with the current direction.

Pseudo-code:

velocity
a Velocity’
Begin:
tan(b)=velocity.y/velocity.x;
tan(a+b) = velocity’.y/velocity’.x;
End

Name: updatePosition
Input: none
Output: void

204

Description: updates the current position of the ship or Aircraft with
temp_position
Pseudo-code:
Begin:
curr_position = temp_position;
End

4.4.3.3.7 Weapon Officer Class

Traceability to SRS
AT-019 to AT-023. CS-019 to CS-023. DT-019 to DT-023. BS-019 to BS-023.

SM-019 to SM-023

Constants

CANNON QTY integer The quantity of cannon (Battleship eg.)
MISSILE_QTY integer The quantity of sea-sea Missile (Battleship
eg.)

Private data members

Ll S

cannon_gty integer contain the quantity of cannon(Battleship
eqg.)

Missile_qty integer contain the quantity of Missile(Battleship
eqg.)

is_cannon integer record the selected Weapon: 1 denotes cannon,
0 denotes Missile(Battleship eg.)

target 1id integer record target id

first aim time Long integer record the first aim time

last fire time Long integer record the last fire time

Public member functions

Name: WeaponOfficer
Input: none
Output: none
Description: Constructor initializes attributes
Pseudo-code:
Begin:
is_cannon = 0;
target_id = 0;
first_aim time = 0;
last_fire_time = 0;
//For Battleship
cannon_gty = CANNON_QTY;
Missile_qty = MISSILE_QTY;
End

205

Name: ~WeaponOfficer
Input: none
Cutput: none
Description: Destructor
Pseudo-code:

Begin:

End

Name: prepareAttack
Input: cp:Vector, tp:Vector, ts:Vector, tid:int, ct:long, launcher:
WeaponLauncher
Output: void
Description: directly or indirectly do every prepare work for attack enemy:
select Weapon, check if the target id has been changed and the selected Weapon
has been changed, consider aim latency time and fire latency time, call the
function of launcher to create Weapon and fire it, and finally update the
quantity of Weapon.
Pseudo-code:
Begin:
// check if the target Id has been changed.
if(target_id isn‘t equal to tid, i.e. the target Id has been changed
comparing with the last target Id)
{Record target Id, first aim time, last fire time and the choosed
Weapon at this snapshot:
target_id = tid;
first_aim_time = ct;
last_fire time = O;
is_cannon = selectWeapon(cp, tp);
}
if (targe_id = tid, i.e. the target Id hasn’t been changed)
{//choose Weapon and record it at this snapshot:
int n = selectWeapon(cp, tp):
// check if the selected Weapon has been changed. For example, the
Battleship has two types of Weapon as canon and Missile:
if((is_cannon isn’t equal to n, i.e. the selected Weapon has been
changed)
{record first aim time, last fire time and the chosen Weapon again
at this snapshot:
first_aim time = ct;
last_fire time = 0;
is_cannon = n;}
if(is_cannon = n, i.e. the selected Weapon hasn’t been changed)
{if (the choosed Weapon is cannon and aim time >= latency time and
fire time >= fire interval for continually firing cannon)
{compute the intended destination of cannon:
laucher-> aimByBallistic(cp, cs, tp, ts),
return destination Vector: dp;
Create and fire cannon shell:
launcher->fireCannonShell (cp, dp);
Record last fire time: last_fire time = ct;
Update the quantity of cannon: updateCannonQty();}
if (the choosed Weapon is Missile and aim time >= latency time and
fire time >= fire interval for continually firing Missile)
{Create and fire Missile:
launcher->fireMissile(cp, tp);
Record last fire time: last_fire time = ct;

206

Update the quantity of Missile: updateMissileQty();}

End

Name: cancelAttack
Input: none
Output: void
Description: cancel this attack
Pseudo-code:
Begin:
//Cancel attack and initialize attributes:
taget_id = 0;
first_aim_time
last_fire time =
End

I
o o
e o~

Name: selectWeapon
Input: tp: Vector, cp: Vector
Output: integer
Description: select Weapon: for example, cannon or Missile according to the
distance between Battleship and target. If choose cannon, return 1; if choose
Missile, return 0. Suppose that before this function is called, the quantity of
Weapon has been checked.
Pseudo-code:
Begin:

Suppose that before this function is called, the quantity of Weapon has

been checked.

Compute the distance between Battleship and target;

if (this distance <= the range of cannon) {

if(the quantity of cannon >= 3)

Choose cannon:
return 1;

}

otherwise

{

Choose Missile:
return 0;

}
}
if (this distance > the range of cannon)

choose Missile:
return 0;

End

Name: updateCannonQty (for Battleship)
Input: none

Output: void

Description: update the gquantity of cannon
Pseudo-code:

207

Begin:

Update cannon quantity {suppose that three cannon shell will be

every time): cannon_gty = cannon_gty - 3
End

fired

Name: updateMissileQty (for Battleship)
Input:none
Qutput: void
Description: update the quantity of Missile
Pseudo-code:
Begin:
Update Missile quantity: Missile gty = Missile qty - 1
End

Name: getCannonQty (for Battleship)
Input: none
Output: integer
Description: return the quantity of cannon
Pseudo-code:

Begin:

return the quantity of cannon;
End

Name: getMissileQty (for Battleship)
Input: none
Output: integer
Description: return the quantity of Missile
Pseudo-code:

Begin:

return the quantity of Missile;

End

4.4.3.3.8 WeaponLauncher Class

Traceability to SRS
AT-021, CS-021, DT-021, BS-021, SM-021

Constants

cannon attribute WAttribute contain the attrlbutes of cannon (Battleship)

Missile attribute WAttribute contain the attributes of Missile (Battleship)

cannon_list List keep the created cannon shell until it is
detonated (Battleship)

208

(Battleship)

Missile_list List keep the created Missile until it is detonated

Public member functions

Name: WeaponLauncher
Input: none
Output: none
Description: constructor initializes the attributes
Pseudo-code:
Begin:
End

Name: -~WeaponLauncher
Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

End

Name: aimByBallistic (for Battleship)
Input: cp: Vector, tp: Vector, ts: Vector
Qutput: Vector

Description: For example, Battleship compute initial velocity of cannon shell
and intended destination by using ballistic trajectory formular based on some

assumption
Pseudo-code:
Begin:

use the ballistic equation to calculate the fire angles and fire speeds of
cannon shells so that they can hit the targeted ship precisely.

The equations used here are:
(1) V*cosy*t = (g*t?)/2
V*cosfi*t = (Ym - Ye) - Vxr*t
V*cosa*t (Xm - Xe) - Vy*t
(cosa)?® + (cosB)® + (cosy)? =1

Note: V is the magnitude of the cannon shell speed.
a, B, v are the fire angles of the cannon with x, y, z coordinate

directions respectively

Xm, Ym are the positions of my ship

respectively
Xe, Ye are the positions of enemy
respectively

in x and y coordinates

ship in x, y coordinate

Vx, Vy are the speeds of enemy ship in x and y directions

respectively

From the above four functions we can derive the following equation:
vire? = ((g*t?)/2)% + ((Ym - Ye) - Vx*t)? + ((Xm - Xe) - Vy*t)?

Return the destination Vector of cannon shells;

End

209

Name: fireCannonShell (for Battleship)
Input: cp: Vector, dp: Vector
Output: void
Description: create cannon shell and fire it
Pseudo-code:
Begin:
create cannon_shell of WCannonsShell ;
add cannon_shell to cannon_list;
fire cannon: cannon_shell — fire(cp, dp);
End

Name: fireMigsile (for Battleship)
Input: cp: Vector, tp: Vector
Output: void
Description: create Missile and fire it
Pseudo-code:
Begin:
Ccreate sea_Missile of WMissileSeaSea;
add Missile_list to Missile_list;
fire Missile: sea_Missile — fire(cp, tp):
End

Name: deleteWeapon (for Battleship)
Input: none
Output: void
Description: delete cannons or Missiles if them have been detonated
Pseudo-code:
Begin:
while(cannon_list is not empty)
{
if (cannon_shell -» isActive() = false, i.e. the cannon
detonated)
delete cannon_shell;
}
while(Missile_list is not empty)
{
if(sea_Missile — isActive() = false, i.e. the Missile
detonated)
delete sea_Missile;

End

has

has

been

been

Name: getCannonAttribute (for Battleship)
Input: none
Output: WAttribute
Description: return the attributes of cannon
Pseudo-code:
Begin:
return attributes of cannon;

210

End

Name: getMissileAttribute (for Battleship)
Input: none
Output: WAttribute
Description: return the attributes of Missile
Pseudo-code:

Begin:

return attributes of Missile;
End

211

4.4.4 Weapon Detailed Design

This section describes all the classes of Weapon subsystem of the NBSS and
the functions they contain. In module detailed design section, the modules of this
subsystem are diagrammed in UML and designed in such a way that this module
can be implemented easily in MFC . The architecture of this subsystem is shown
in Figure 4-13.

4.4.4.1 Module Detailed Design

The class operation and attribute are not listed in the class diagram for all the
classes in Weapon module. Refer to the section of Description of Class
Members and Members Functions for each class.

J‘
:

CWActiveStateController

o

8 WmissileSubSea
Z
__ /|

s

WCannonShell

Figure 4-13 Class Diagram for Weapon Module

212

4.4.4.2 Class Definition
4.4.4.2.1 CWeapon

Traceability to SRS
WP-001

Constants

Depends on
Weapon wAttr.wMaxSpeed/15

Private data members

i

. pe Descriptior
wFlag integer friend and enemy
time len double record time length for each loop
wPosContr CWPositionController
wAimContr CWAutoAimController
wChgContr CWChargeController
wStaContr CWActiveStateController

Protected data members

. R S Aol LT TR
ey

struct WAttribute Weapon Attribute Structure

Private member functions

Name: checkValidPosition
Input: none
Output: integer
Description:
Pgseudo-code:
Begin:
call checkvalidPosition position controller
For Cannon Shell: detonate()
For Carrier Weapons: launched()
For AutoAimming Weapons: detonate()
End

213

Protected member functions

Name: Initialize
Input: TYPE_WEAPON id, int flag, CWCharge *charge
OCutput: none
Description: function overloading for different type of Weapon
Pseudo-code:
Begin:
initialize Weapon instead of constructor function
// differ three kinds of Weapons to implement
// Cannon Shell, carrier Weapons, auto aimming Weapons.
// Cannon Shell: only Charge
// Carrier Weapons: only carried Weapon pointer
// Auto Aimming Weapons: Rudder, Charge, Radar/Sonar.
For Auto Aimming Weapons.Rudder, Charge, Radar/Sonar use function
Initialize (TYPE_WEAPON id, int flag, CWRudder *rud, CWCharge *charge,
void *RSpt)
End

Public member functions

Name: CWeapon

Input: none
Output: none
Description: Default Constructor to initializes attributes
Pseudo-code:
Begin:
wFlag(0),
wCarriedWeapon ((CWeapon *)NULL)
//Initialize (WeaponType) ;
End

Name: getFlag

Input: none
Output: char
Description:
Pseudo-code:
Begin:
return (char) wFlag
End

Name: setFlag
Input: char flag

Output: none
Description:
Pseudo-code:
Begin:
if(wFlag == flag) return;
wFlag = flag;
wAimContr.setFlag(flag) ;
wChgContr.setFlag(flag) ;
End

214

Name: getPosition

Input: none
Output: Position
Description: return current position from PositionController
Pseudo-code:
Begin:
return wPosContr.getPosition{) ;
End

Name: get e
Input: none
Output: integer
Description:
Pseudo-code:

Begin:

return wAttr.wType
End

Name: isActive()
Input: none
Output: bool
Description: return state from StateController
Pseudo-code:

Begin:

return wStaContr.getState() ;
End

Name: updatePosition
Input: none

Output: none
Description:
Pseudo-code:
Begin:
wPosContr.updatePosition() ;
End

Name: getAttributte

Input: none
Output: Wattribute
Description:
Pseudo-code:
Begin:
return wAttr;
End

Name: locateTargetPosition
Input: Position curPos
Output: integer
Description: Only for carried Weapon: SeaSeaMissile and Torpedo
Pseudo-code:
Begin:
set target position for carried Weapon
return 0 for successful; return 1 for fail;
End

215

Name: setInitTargetPosition
Input: Position targetPos

Output: none
Description: Only for carried Weapon: SeaSeaMissile and Torpedo

Pseudo-code:
Begin:
Call wAimContr.setInitTargetPosition(targetPos) ;
set target position for carried Weapon by calling
wCarriedWeapon->setInitTargetPosition(targetPos);
End

Name: fire
Input: Position curPos, Position destPos
Output: none
Description:
Pseudo-code:
Begin:
calls ActiveStateController.setState(ACTIVE) to set active state.
calls PositionController.setInitPosition(init) to set initial position.
calls AutoAimController.setInitTargetPosition(target) to set target
position.
calls PositionController.setDestinationPosition() to set destination
position.
But for carrier Weapon, this function create Weapon object that will be
launched by carrier Weapon.
Call ActiveStateController.setState(ACTIVE)
Call PositionController.setInitPosition(initial position)
Call PositionController.setDestinationPosition(destination)
If Weapon type is Carrier Weapon like Sub-Sea Missile and Sea-Sub Missile
Then
Create launchedWeapon
Call launchedWeapon.setInitTargetPosition
// launchedWeapon is a Weapon carried by this carrier Weapon
else
call AutoAimController.setInitTargetPosition
endif
End

Name: execute
Input: double time
Output: none
Description: main function to control all modules in controller
Pseudo-code:

Begin:

If Weapon type is not carrier type Weapon like Sub-Sea Torpedo/Missile
and Sea-Sub Missile/Torpedo

Then
Call chargecont.checkDetonateRange
Endif
If Weapon type is auto aim Weapon
Then
Call AutoAimController.locateTargetPosition
Call AutoAimController.updateVelocity
updateVelocity is called in locateTargetPosition()
Endif

If Weapon type is Carrier Weapon like Sub-Sea Torpedo/Missile and
Sea-Sub Missile/Torpedo

216

Then
Call launchedWeapon.locateTargetPosition
//launchedWeapon is a Weapon carried by this carrier Weapon
endif
Generate a random value ram which is between 0 to 1;
if (ram > precision) // The Weapon failed to hit the target.
return false;
else
return true; // The target was hit

End

Name: checkValidPosition
Input: none
Output: integer
Description:
Pseudo-code:
Begin:
call checkvalidPosition position controller
For Cannon Shell: detonate()
For Carrier Weapons: launched()
For AutoAimming Weapons: detonate()
End

Name: operator delete
Input: void * mem
Output: none
Description:
Pseudo-code:
Begin:
vector<baseClass*>::iterator first = SC::vpVehicles.begin{(),last =
SC: :vpVehicles.end(),it;
it = find(first, last, (baseClass*)mem);
if (it != last)
{
: :delete mem;
*it = NULL; // set mem = NULL
SC::setDelete();

}

else cerr<<"Nothing can be deleted\n”; //This command is for command user

interface.
End

Name: operator new
Input: size_t
Output: none
Description:
Pseudo-code:
Begin:
int id=SC::getLastlD(); // assign a new index to the new object
SC::vpVehicles.push_back(::new WMissileAirSea()};
int sz = SC::vpVehicles.size();
SC::vpVehicles[sz-1] ->setID(id);
SC::vpVehicles([sz-1] ->setCheck(0) ;
SC::incrlLastID();
SC::setNew() ;

217

return SC::vpVehicles[sz-1];
End

Name: ~CWeapon

Input: none

Output: none
Description: distructor

Pseudo-code:
Begin:
End

4.4.4.2.2 WCommon Class

Traceability to SRS
WP-002, WP-003

Constants

s

DOUBLE MAX Maximum double
INVALID VEC Vector (vector(- Invalid Vector for speed
DOUBLE_MAX, -
DOUBLE_MAX, -
DOUBLE MAX))
W RADAR RANG integer 50 50000 meters
MAX TARGET DIST double DOUBLE MAX Maximum target distance
WeaponTypeStart integer 7 the begin type of Weapon
WRadar Type integer 0 //aiming device no.
Ballistic integer 2 //aiming device no.
DOUBLE PREC double 0.00001 Precise of double
AircraftCarrier Type | integer 1 Ship type
Aircraft Type integer 2 Ship type
Destroyer Type integer 3 Ship type
Cruiser Type integer | 4 Ship type
Battleship Type integer 5 Ship type
Submarine Type integer 6 Ship type
HeavyCannonShell integer WeaponTypeStart Weapon Type
AirAirMissile integer | WeaponTypeStart+l Weapon Type
AirSeaMissile integer WeaponTypeStart+2 Weapon Type
SeaSeaMissile integer WeaponTypeStart+3 Weapon Type
SeaAirMissile integer WeaponTypeStart+4 Weapon Type
SeaSubMissile integer WeaponTypeStart+5 Weapon Type
Torpedo integer | WeaponTypeStart+6 Weapon Type
SubSeaTorpedo integer WeaponTypeStart+7 Weapon Type

Private data members

Sy

| Descriptionets
Weapon Attribute

Public functions

218

Name: IsTargetType
Input: int mytype, int targettype
Output: bool
Description:
Pseudo-code:
Begin:
Switch on the Weapon type, and check if the target can be hit by this
type of Weapon;
End

Name: betweenTwoPosition

Input: Position destPos, Position start, Position end

Output: bool

Description:

Pseudo-code:

Begin:

Return Value: TRUE: destpos is on the line between two positions
FALSE: not on the line.
Cannon Shell should be detonated when destination position is
on the line from current position to next time position.
how to check current position ??? two necessary conditions
1. the distance between destination and current position should
be less than distance between current position and next time position
2. the unit of (destination - current position) should equal to
the unit of (next time position - current position)

End

Name: calDestination
Input: int type ,Position curPos,Position targetPos,double range
Output: Position
Description:
Pseudo-code:
Begin:
get two project positions for current and target position
calculate maximum horizontal distance
calculate horizontal direction
convert to unit (length == 1)
calculate destination horizontal position
return position;
End

Name: IsSamePosition
Input: Position pl, Position p2
Output: bool
Description:
Pseudo-code:
Begin:
Compare the position value of x, y and 2
return TRUE;//if same;
else return false;

End

219

Name: IsZeroDouble
Input: double

Output: bool
Description:
Pseudo-code:
Begin:
If(abs(db) < DOUBLE_PREC) return TRUE;
Else return FALSE;

End

Name: IsSameDouble
Input: double dbl, double db2
Output: bool

Description:
Pseudo-code:
Begin:
return ((dbl > db2)? ((dbl - db2) < DOUBLE_PREC)
: ((db2 - dbl) < DOUBLE_PREC));
End

4.4.4.2.3 CWAutoAimController Class

Traceability to SRS

Constants

doublePl | const double 3.1415926; | radius of Circle

Private data members

O!
wTargetPosition Position Target position
wType TYPE WEAPON Weapon type
MyFlag int Friend and enemy
StaContrPt; CWActiveStateController* | Weapon state controller
rudderPt CWRudder* Weapon Rudder
RSDetect void* convert void pointer in function
according to Weapon type.

Public functions

Name: CWAutoAimController
Input: none
Output: none
Description: default constructor
Pseudo-code:
Begin:
wType (0), myFlag(o0),
staContrPt((CWActiveStateController *) NULL),
rudderPt ((CWRudder *)NULL),
RSDetect (NULL) ,

220

wTargetPosition (INVALID_VEC)
End

Name: CWAutoAimController
Input: none
Output: none
Description: default constructor, Cannon Shell don't use this class For Carrier
Weapons, no rudder and Radar/Sonar
Pseudo-code:
Begin:
(TYPE_WEAPON id,int flag, CWActiveStateController *state)
wType (id),
myFlag(flag),
staContrPt (state),
rudderPt ((CWRudder *)NULL),
RSDetect (NULL) ,
wTargetPosition (INVALID VEC)
End

Name: CWAutoAimController
Input: TYPE WEAPON id,int flag,
CWActiveStateController *state,
CWRudder *rud, void *RSpt
Output: none
Description: For Auto Aimming Weapons: Rudder, Radar/Sonar system
Pseudo-code:
Begin:
wType (id) ,
myFlag(flag),
staContrPt (state),
rudderPt (rud),
RSDetect (RSpt) ,
wTargetPosition (INVALID_VEC)

End

Name: init
Input: TYPE_WEAPON id, int flag,
CWActiveStateControlle *state
Output: none
Description: for carrier Weapons, function overloading
Pseudo-code:
Begin:
wType = id;
myFlag = flag;
staContrPt = state;
rudderPt = (CWRudder *)NULL;
RSDetect = (void *)NULL;
//for Auto Aimming Weapons
wlype = id;
myFlag = flag;
staContrPt = state;
rudderPt = rud;
RSDetect = RSpt;
End

221

Name: updateVelocity

Input: Position curPos, Position desPos
Output: integer

Description:

Pseudo-code:

Begin:
Call CWPositionController.getPosition() to get current postion
Call Rudar.setCurrentPos{) to set current position.
Call Rudar.setTargetPos() to set target position.
Call Rudar.calcVelocity() to get the change of Velocity.
Call Rudar.getVelocity() to get the Velocity and set wVelocity
to returned Velocity.

End

Name: locateTargetPosition

Input: Position curPos

Output: integer

Description: differ Radar and Sonar system
Pseudo-code:

Begin:
if (Radar/Sonar.EmitReceive(}==0) return 0
else return # of objects in the Radar/Sonar range.

For each object
Gets target using Radar/Sonar.getFirstDetect ()
Gets target using Radar/Sonar.getNextDetect ()

if (isTargetType())=valid type

call Radar/Sonar.getPosition() to get position of object.

counts the distance between object position and the target position.
else go to second step for next object.

Compares this distance with saved distance, and keep distance
and position of the lesser distance object. If saved distance
is null, then keep this distance and position.

sets wTargetPosition to the position of the nearest object,
return 1.

End

Name: setInitTargetPosition
Input:Position targetPos

Output: none

Description: called in fire() function

Pseudo-code:

Begin:

if((wType == SeaSeaMissile) || (wType == SeaAirMissile)
|| (wType == Torpedo) || { wType == AirSeaMissile)
|| (wType == AirAirMissile))

wTargetPosition = targetPos;

End

Name:

~CWAutoAimController

222

Input: none
Output: none
Description: destructor
Pseudo-code:

Begin:

End

4.4.4.2.4 CWCharge Class

Traceability to SRS
WP-005, WP-006, WP-007, WP-008

Constants
N/A
Private data members

Firepower integer

Fire power of Weapon

precision double

Weapon precision

Public functions

Name: CWCharge

Input: none
Output: none
Description: default constructor
Pseudo-code:
Begin:
firepower(0),
precision(0)
End

Name: CWCharge

Input: int fp, double ps
Output: none
Description: constructor

Pseudo-code:

Begin
firepower = fp;
precision = ps;
End

Name: setFirepower
Input:int fp
Output: none
Description:
Pseudo-code:

Begin:

firepower = fp;
End

223

Name: setPrecision
Input: double ps
Output: none
Description:
Pseudo-code:

Begin:

precision = ps;
End

Name: chargeTarget

Input:none
Output: bool
Description: check if the target was hit
Pseudo-code:
Begin:
double ram = rand{)/(RAND_MAX+1);
if (ram > precision)

return false; // The Weapon failed to hit the target
else

return true; // The target was hit

End

Name: detonateTarget

Input: baseClass *target
Output: bool
Description:
Pseudo-code:
Begin:
Switch on Ship type
Call hit() function of the BaseShip class;
Return true;
Default: return false;

End

Name: -CWCharge

Input: none
OQutput: none
Description: destructor
Pseudo-code:

Begin:

End

4.4.4.2.5 CWChargeController Class

Traceability to SRS
WP-005, WP-006, WP-007, WP-008

Constants

N/A

Private data members

224

itDet ChitDetect Hit detected object
Ch CWCharge~* Weapon charge object
Asc CWActiveStateController * Weapon state controller object
MyFlag integer Enemy or friend
FirePower integer Fire power of Weapon
HitRange double Hit range of Weapon
WeaponType integer Type of Weapon
pObject baseClass* Target object
Private functions
Name: detonate

Input: baseClass *pO

Output: none
Description:

Pseudo-code:
Begin:

Detonate the Weapon;

End

Pubilic functions

Name: CWChargeController

Input: none
Output: none

Description: default constructor

Pseudo-code:
Begin:
End

Name: init

Input: TYPE_WEAPON id, int flag,
CWActiveStateController *pAsc

Output: none

Description: overload function

Pseudo-code:
Begin

WeaponType = id;
myFlag = flag;
asc = pAsc;

ch =
hitRange = 0;
firePower = 0;
End

(CWCharge *)NULL;

Name: checkDetonateRange
Input: double timeLen,
Output: integer
Description:
Pseudo-code:

Begin:

Position curPos,

number = Call Detect.EmitReceive

225

Position nexPos

Loop index from zero until index = number
If index is zero

Then
Call Detect.getFirstDetect
Else
Call Detect.getNextDetect
Endif

Type = Call Detect.getType
If IsTargetType(type) is false
Then
Goto loop
Endif
objectPoint = Call Detect.getObjectPoint()
detonate(objectPoint)

End Loop
If the Weapon type of this controller is Cannon Shell
Then
CWActiveStateController.setState (INACTIVE)
return 1
Endif
if state is INACTIVE
Return 1
else
return 0;

End

Name: checkDetonateRange
Input: double timeLen, Position curPos, Position nexPos
Output: integer
Description:
Pseudo-code:
Begin:
number = Call Detect.EmitReceive
Loop index from zero until index = number
If index is zero
Call Detect.getFirstDetect
Else
Call Detect.getNextDetect
Endif
Type = Call Detect.getType
If IsTargetType(type) is false
Goto loop
Endif
objectPoint = Call Detect.getObjectPoint ()
detonate(objectPoint)
End Loop
If the Weapon type of this controller is Cannon Shell
CWActiveStateController.setState (INACTIVE)
return 1;

Endif
if state is INACTIVE Return 1;
else return 0;

End

Name: ~CWChargeController
Input: none
Output: none

Description: distructor

226

Pseudo-code:
Begin:
End

4.4.4.2.6 CWPositionController Class

Traceability to SRS

WP-001, WP-002, WP-003

Constants
N/A

Private data members

WCurrentPositon

Position

wDestinationPosition | Position Destination position

wNextPosition Position next time slice position

wRoute double Route for this Weapon

WVelocity Velocity Cannon Shell and carrier
Weapons don't have Radar and
Sonar system.
other Weapons use Velocity
from
CWAutoAimController.getVeloc
ity ()

wType TYPE_WEAPON Type of Weapon

CWRudder *rudderPt

CWActiveStateController*

None of Cannon shell

StaContrPt

CWActiveStateController®*

Weapon active state control
object

Public functions

Name: CWPositionController

Input: none
Output: none

Description: default constructor

Pseudo-code:
Begin:

wType (0},

rudderPt ((CWRudder *)NULL),
staContrPt ((CWActiveStateController *)NULL),

wRoute(0),

wCurrentPosition(INVALID VEC),
wDestinationPosition{INVALID_ VEC),
wNextPosition (INVALID VEC)

End

227

Name: CWPositionController
Input: TYPE_WEAPON id,CWActiveStateController *state
Output: none
Description: constructor For Cannon Shell
Pseudo-code:
Begin
wType (id) ,
rudderPt ((CWRudder *)NULL),
staContrPt (state),
wRoute (0),
wCurrentPosition (INVALID_VEC},
wDestinationPosition(INVALID_VEC),
wNextPosition (INVALID_VEC)
End

Name: CWPositionController
Input: TYPE_WEAPON id,CWActiveStateController *state,
CWRudder *rud
Qutput: none
Description: constructor For Auto Aimming Weapons: CWRudder to getVelocity
Pseudo-code:
Begin:
wType (id),
rudderPt (rud),
staContrPt (state),
wRoute (0),
wCurrentPosition{INVALID VEC),
wDestinationPosition (INVALID_VEC),
wNextPosition (INVALID VEC)

End

Name: init

Input: TYPE_WEAPON id

Output: none

Description: function overloading, init is for Cannon Shell and init is

carrier

Weapons
Pseudo-code:
Begin:
wRoute = 0;
wType = id;

staContrPt = state;

rudderPt = (CWRudder *)NULL;

//init for Auto Aimming Weapons

//Parameters TYPE WEAPON id,CWActiveStateController *state,
CWRudder =rud

wRoute = 0;

wType = id;

staContrPt = state;

rudderPt = rud;

End

for

Name: checkValidPosition
Input:none

Output: integer
Description:

228

Pseudo-code:

Begin:

checks range for any Weapon. If it exceeds range, wActive is set to
INACTIVE.

checks condition for height

return 1;

else return 0;

End

Name: updateNextPosition
nput: double newtime
Output: none
Pseudo-code:
Begin:
Call RudarController.getVelocity to get current
velocity.
Count new position according to current position, velocity and time.
Increase wRoute value.

End

Name: updatePosition

Input: none

Output: none

Pgeudo-code:

Begin:

if it is INACTIVE state, then don't change position. Next position is
calculated in updateNextPosition() only when updatePosition() is called,
currentPosition is updated by next ©position that is kept in
wNextPosition. It also increase wRoute when current position is changed.

End

Name: ~CWPositionController
Input: none

Output: none
Description: destructor
Pseudo-code:

Begin:

End

4.4.4.2.7 CWActiveStateController Class

Traceability to SRS
WP-005, WP-006

Constants
N/A

Private data members

]

| Weapon state (Alive or dead)

wActive

Public functions

229

Name: CWActiveStateController
Input: bool d_wActive

Output: none

Description: default constructor

Pseudo-code:
Begin:
wActive(d wActive),
End

Name: CWActiveStateController
Input: none
Output: none
Description: constructor
Pseudo-code:

Begin

wActive(false)

End

Name: getState

Input:none
Output: bool
Description:
Pseudo-code:
Begin:
return wActive;
End

Name: setState
Input: bool state
Output: integer
Pseudo-code:
Begin:
wActive = state;
return 0;
End

Name: ~CWActiveStateController
Input: none

Output: none
Description: destructor
Pseudo-code:

Begin:

End

4.4.4.2.8 CWRudder Class

Traceability to SRS
WP-002, WP-003, WP-004

Constants

230

TTDONTINER

doublePI cons

Private data members

> C:
wpSpeed wSpeed Weapon speed (velocity) wSpeed is structure of speed
currentPos Vector Weapon current position
TargetPos Vector target position
currentRad double current steering angle
NewRad double new steering angle
Steering bool steering on/off
maxSpeed integer maxium Weapon speed (speed)

Public functions

Name: CWRudder
Input: int d_maxSpeed,double d_currentRad
Output: none
Description: constructor
Pseudo-code:
Begin:
maxSpeed (d_maxSpeed), currentRad(d_currentRad)
End

Name: CWRudder
Input: none
Output: none
Description: default constructor
Pseudo-code:
Begin:
maxSpeed (0) ,currentRad(-1.0)}
End

Name: calcSpeed

Input: none
Output: none
Description:
Pseudo-code:
Begin:
set Weapon speed to 0 if targetpos equal to currentpos;
according to the Weapon's current position and target position, get the
new steering angle;
before Weapons are finally fired, steering will not be turned on.
especially for those topedos and Missiles lauched with carrier;
calculate distance between target position and current position;
calculate speed z;
calculate speed x;
calculate speed y;
End

Name: setCurrentPos

231

Input: Vector pos
Output: none
Description:
Pseudo-code:
Begin:
currentPos=pos;
End

Name: setTargetPos

Input: Vector pos
Output: none
Description:
Pseudo-code:
Begin:
targetPos=pos;
End

Name: getSpeed

Input: none
Output: Vector

Description:
Pseudo-code:
Begin:

initialize speed;

End

Name: setSteering
Input: bool st

Output: none
Description:
Pseudo-code:
Begin:
steering=st;
End

Name: setMaxSpeed
Input: int sp
Output: none
Description:
Pseudo-code:
Begin:
maxSpeed=sp;
End

232

4.4.4.2.9 WMissileAirAir Class

Traceability to SRS
AT-019, AT-020, CS-019, CS-020, DT-019, DT-020, BS-019, BS-020, SM-019,

SM-020.

Constants
N/A

Private data members

CWRudder]ect

CWCharge Weapon charge object
CRadar Radar object
Public functions

Name: WMigsileAirAir
Input: none
Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:
Begin:
initInstance (DEFAULT_FLAG) ;
End

Name: initInstance
Input: int flag
Output: none
Description:
Pseudo-code:
Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;
End

Name: ~WMissileAirAir
Input: none

Output: none
Description: destructor
Pseudo-code:

Begin:

End

233

444210 WMissileAirSea Class

AT-019, AT-020

Constants
N/A

Private data members

Rudder CWRudder Weabon Rudder object

Charge CWCharge Weapon charge object
Radar CRadar Radar object
Public functions

Name: WMissileAirSea
Input: none

Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:
Begin:
initInstance (DEFAULT FLAG) ;
End

Name: initInstance
Input: int flag
Output: none
Description:
Pseudo-code:
Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;
End

Name: ~WMissileAirSea
Input: none

Output: none
Description: destructor
Pseudo-code:

Begin:

End

234

4.4.42.11 WMissileSeaAir Class

Traceability to SRS
CS-019, CS-020, BS-019, BS-020.

Constants
N/A

Private data members

TNe SCTipt] -
Rudder CWRudder Weapon Rudder object
Charge CWCharge Weapon charge object
Radar CRadar Radar object

Public functions

Name: WMissileSeaAir
Input: none

Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:
Begin:
initInstance (DEFAULT_FLAG) ;
End

Name: initInstance
Input: int flag
Output: none
Description:
Pseudo-code:
Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;
End

Name: ~-WMissileSeaAir
Input: none

Output: none
Description: destructor
Pseudo-code:

Begin:

End

235

4.44.212 WMissileSeaSea Class

Traceability to SRS
BS-019, BS-020

Constants
N/A

Private data members

gDescrin

“Rudder CWRudder Weapon Rudder ggiect
Charge CWCharge Weapon charge object
Radar CRadar Radar object

Public functions

Name: WMissileSeaSea
Input: none

Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:
Begin:
initInstance (DEFAULT_FLAG) ;
End

Name: initInstance
Input: int flag
Output: none
Description:
Pseudo-code:
Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;
End

Name: -~-WMissileSeaSea
Input: none

Output: none
Description: destructor
Pseudo-code:

Begin:

End

236

444213 WMissileSeaSub Class

Traceability to SRS
DT-019, DT-020.

Constants
N/A

Private data members

ER A AL

CarrléaTorpgaa Wtorpe

Public functions

Name: WMissileSeaSub
Input: none

Output: none

Description: constructor derived from CWeapon Class

Pseudo-code:
Begin:
initInstance (DEFAULT_FLAG) ;
End

Name: initInstance
Input: int flag
Output: none
Pseudo-code:
Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower,
initialize Radar;
End

Preceision;

Name: -WMissileSeaSub
Input: none

Output: none
Description: destructor
Pseudo-code:

Begin:

End

237

4.4.4.2.14 WtorpedoSubSea Class

Traceability to SRS
SM-019, SM-020.

Constants
N/A

Private data members

e

DescR]

Car;iage Missile object

WMissileSeaSea*

carriedMissile

Public functions

Name: WtorpedoSubSea
Input: none

Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:
Begin:
initInstance (DEFAULT_FLAG) ;
End

Name: initInstance
Input: int flag
Output: none
Pseudo-code:
Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;
End

Name: ~WtorpedoSubSea
Input: none

Output: none
Description: destructor
Pseudo-code:

Begin:

End

238

4.4.4.2.15 WcannonShell Class

Traceability to SRS
BS-019, BS-020

Constants
N/A

Private data members

Public functions

Name: WcannonShell
Input: none

Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:
Begin:
initInstance (DEFAULT_FLAG) ;
End

Name: initInstance
Input: int flag
Output: none
Description:
Pseudo-code:
Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;
End

Name: -WcannonShell
Input: none

Output: none
Description: destructor
Pseudo-code:

Begin:

End

239

444216 Wtorpedo Class

Traceability to SRS
SM-019, SM-020.

Constants
N/A
Private data members

. R S 4 il il A

Weapon Rudder object
CWCharge Weapon charge object
CSonar Sonar object

Public functions

Name: Wtorpedo
Input: none

Output: none
Description: constructor derived from CWeapon Class
Pseudo-code:
Begin:
initInstance (DEFAULT_FLAG) ;
End

Name: initInstance
Input: int flag
Output: none
Pseudo-coda:
Begin:
initialize Rudder: MaxSpeed;
initialize Charge: FirePower, Preceision;
initialize Radar;
End

Name: ~Wtorpedo
Input: none

Output: none
Description: destructor
Pseudo-code:

Begin:

End

240

5. System Testing

We use glass-box testing to test all the functions for all the subsystem, <<Test
data>> is input of test cases, <<Expected result>> is expected output from
<<Test data>>, which is shown on the screen. The <<traceability>> traces the

test case specific requirements.

Test cases are derived based on major functions in each class Knowledge of
algorithms used to implement functions is used to identify equivalence partition.
Most of the cases, path testing is used. If test cases of a function are complex,
the function will be listed separately from other simpler functions.

5.1 Unit Testing

The units in the project are defined as functional components within modules. All
functional components should be verified individually. Unit tests are conducted
on each individual functional component to ensure that it is as clean as possible
before we move on to more complex, multi-component integration. The goals of
these tests are to verify data integrity, proper hyperlink connection and database
access.

Testing Tasks
o Test preparation: read the Detailed Design Document, SRD; Design the

Module testing plan and test cases; design test design specifications, test
procedures.

o Design test drivers for each bottom up testing. Isolate the testing Module from
other modules, prepare the methods for recording data output.

e Execute test cases according to the specified test procedure, record the
testing result, find the defects, and solve the problem, and then retest the
suspended test.

Test Methods

o N S T A [e e T e St e T Y e 4 e

Identifying coding errors
#| Code inspection
#&7v.-| All inspection questions must be checked
efiaz| Every line of code has been inspected
251 And each kind of error in the check list has been checked
“| and corrected
None

Table 5-1 Unit Static testing

241

1 En internal fu
appear to be working correctly
.| Ensure that proper input processing and data integrity
-| have followed the rules
:| Both white box testing and black box testing will be used
| For each data integrity and access rule, at least one test
%| script should be created for testing

| All test cases must be executed
| No high priority or severity defects are found
.| None

t

Table 5-2 Unit Dynamic testing

Here, for every class, we choose some important functions to test and some
simple functions are ignored. Testing is done on major functions in all the class
by choosing some significant data as input and observing if the expected output
results appear.

5.1.1 Unit Testing for Simulation Controller

These test case are mainly for test the class functions includes: SetUpDig,
Controller, and other classes.

5.1.1.1 Unit Test Case for SetUpDIlg Class Functions

5.1.1.1.1 Unit Test Cases and Results

:Test Case# . TestDatalifEXpected:Result ¥ [Traceabilityrs sz adias:

TC_SC-001 Bitmap:1 No overlap SC-001, SC-002, SC-007, SC-008, SC-
X:300 Y:300 008-01, SC-008-02
Bitmap:1
X:300 Y:300

TC_SC-002 Bitmap:1 No overlap SC-001, SC-002, SC-007, SC-008, SC-
X:500 Y:500 008-01, SC-008-02
Bitmap:2
X:500 Y:500

TC_SC-003 Bitmap:2 No overlap SC-001, SC-002, SC-007, SC-008, SC-
X:400 Y:400 008-01, SC-008-02
Bitmap:2
X:400 Y:400

TC_SC-004 Bitmap:1 Within region SC-001, SC-002, SC-007, SC-008, SC-
X:729 Y:599 008-01, SC-008-02

TC_SC-005 Bitmap:1 Out of region SC-001, SC-002, SC-007, SC-008, SC-
X:729 Y:600 008-01, SC-008-02

TC_SC-006 Bitmap:1 Out of region SC-001, SC-002, SC-007, SC-008, SC-

242

X:730 Y:600 008-01, SC-008-02

TC_SC-007 Bitmap:2 Within region SC-001, SC-002, SC-007, SC-008, SC-
X:130 Y:0 008-01, SC-008-02

TC_SC-008 Bitmap:1 Within region SC-001, SC-002, SC-007, SC-008, SC-
X:130 Y:599 008-01, SC-008-02

TC_SC-009 Bitmap:1 Within region SC-001, SC-002, SC-007, SC-008, SC-
X:729 Y:0 008-01, SC-008-02

TC_SC-010 Bitmap:1 out of region SC-001, SC-002, SC-007, SC-008, SC-
X:100 Y:100 008-01, SC-008-02

TC_SC-011 Bitmap:1 Out of region SC-001, SC-002, SC-007, SC-008, SC-
X:200 Y:700 008-01, SC-008-02

TC_SC-012 | Bitmap:2 Out of region SC-001, SC-002, SC-007, SC-
X:100 008, SC-008-01, SC-008-02
Y:700

Table 5-3 Unit Test Case for SetUpDig Draw function

5.1.1.1.2 Error Reports

iTest Case i prestPataisiyn it [Expected:ResultiSTraceability:)
TC SC-013 Destroyer properly SC-001
TC SC-014 Submarine properly SC-001
TC SC-015 Cruiser properly SC-001
TC SC-016 Destroyer,Submarine,Cruiser,Battleship Undo correctly SC-001
TC SC-017 Destroyer,Destroyer,Destroyer,Destroyer | Undo correctly SC-001
TC_SC-018 No input No undo SC-001
Table 54 Unit Test Case for SetUpDIlg Undo function

a) Window is flashing when undo. We changed the called OnPaint() function by draw()

function.

b) The image is drawn overlap for test case 2. We construct a 15*15 matrix and
trace each image sizing 40 by 40 pixels,

c) Image out of map for test case 4. We set image position x, y into the top-left
of each cell. It is solved problem.

5.1.1.2 Unit Test Case for Controller Class Functions

5.1.1.2.1 Unit Test Cases and Results

| Trace-ability:.

image_tgaMeamn_red.tga 'Output “image load successﬁl” and | SC-009, SC-010

display red Weapon on screen
TC_SC-020 | image_tga/Weapon.tga Output “Load image failure!” S$C-009,SC-010
TC_SC-021 | image_tga/Weapon_redi.tga | Output “Load image failure!” S$C-009, SC-010

243

[TC_sC-022 | image_tga/Weapon_red1.bmp | Output “Load image failure!”

[SC-009, SC-010 |

Table 5-5 Unit Test Case for Controller LoadTGA function
sTestCasa ¥ KT KEXpécted RéSUlts: | Traceablltiimossinsg
TC_SC-023 Vector(10 0 10.0, 0), 9.0f (as flag) SC-013, SC-013-01, SC-013-02
Vector(10.0, 10.0, 0) S$C-013-03,SC-014
TC_SC-024 Vector(10.0, 10.0, 0), PI/2.0f SC-013, SC-013-01, SC-013-02,
Vector(10.0, 20.0, 0) SC-013-03, SC-014
TC_SC-025 Vector(10.0, 10.0, 0), 3.0°Pl/2.0f SC-013, SC-013-01, SC-013-02,
Vector(10.0, 0.0, 0) SC-013-03,SC-014
TC_SC-026 Vector(10.0, 10.0, | Pl SC-013, SC-013-01, SC-013-02,
0), SC-013-03,SC-014
Vector(0.0, 10.0, 0)
TC_SC-027 Vector(10.0, 10.0, 0), 0.0f SC-013, SC-013-01, SC-013-02,
Vector(20.0, 10.0, 0) SC-013-03,SC-014
TC_SC-028 Vector(0.0, 0.0, 0), P1/4.0f SC-013, SC-013-01, SC-013-02,
Vector(10.0, 10.0, 0) SC-013-03,SC-014
TC_SC-029 Vector(0.0, 0.0, 0), 3*P1/4.0f SC-013, SC-013-01, SC-013-02,
Vector(-10.0, 10.0, 0) SC-013-03,SC-014
TC_SC-030 Vector(0.0, 0.0, 0), 5*P1/4.0f SC-013, SC-013-01, SC-013-02,
Vector(-10.0, -10.0, 0) SC-013-03,SC-014
TC_SC-031 Vector(0.0, 0.0, 0), 7°Pl/4.0f SC-013, SC-013-01, SC-013-02,
Vector(10.0, -10.0, 0) SC-013-03,SC-014
Table 5-6 Unit Test Case for Controller calDir function
TestCase i TestData 2 XpectedResil tTraceabilifysak
TC_SC-032 Press key “F12° Images get bigger SC-001, SC~006 SC-007 SC-
008, SC-008-01, SC-008-02
TC_SC-033 Press key “F11” Images get smaller SC-001, SC-006, SC-007, SC-
008, SC-008-01, SC-008-02
TC_SC-034 Press key “€” Images move left SC-001, SC-006, SC-007, SC-
008, SC-008-01, SC-008-02
TC_SC-035 Press key “>" Images move right SC-001, SC-006, SC-007, SC-
008, SC-008-01, SC-008-02
TC_SC-036 Press key “° Images move up SC-001, SC-006, SC-007, SC-
008, SC-008-01, SC-008-02
TC_SC-037 Press key “¥" Images move down SC-001, SC-006, SC-007, SC-
008, SC-008-01, SC-008-02
TC_SC-038 Press key “space” | Image position no change | SC-001, SC-006, SC-007, SC-
and “a” and *1" 008, SC-008-01, SC-008-02
TC_SC-039 Vector(0.0, 0.0, 0), 5'PV/4.0f SC-001, SC-006, SC-007, SC-
Vector(-10.0, -10.0, 0) 008, SC-008-01, SC-008-02
TC_SC-0490 Vector(0.0, 0.0, 0), 7*Pl/4.0f SC-001, SC-006, SC-007, SC-
Vector(10.0, -10.0, 0) 008, SC-008-01, SC-008-02

Table 5-7 Unit Test Case for Controller OnKeyDown function

5.1.1.2.2 Error Reports

244

None

5.1.1.3 Other Unit Test Through User Interaction

Other units related to Ul and receivers, setters are tested through user interaction
and execution of the program. Traceability for this test case are: SC-003, SC-
004, SC-005, SC-006, SC-012, SC-016, SC-017, SC-018, SC-019.

jelassiContiolloaRaNE G TS SaIUPDIGRIERS IR E a5 siS CRERISE
drawVehicles(); OnLButtonDown() OnStartSetup()
SetupPixelFormat(); OnClickAircraftcarrierB();

OnRButtonUp(); OnClickAircraftcarrierR();

pauseSimulation(); OnClickBattleshipB();

resumeSimulation(); OnClickBattleshipR();

startSimulation(); OnClickCruiserB();

endSimulation(); OnClickCruiserR();

OnClickDestroyerB();
OnClickDestroyerR();
OnClickSubmarineB();
OnClickSubmarineR();
OnPaint();
OnClearall();

Table 5-8 Other Unit Test Through User Interaction

5.1.1.3.1 Error Reports
None

5.1.2 Unit Testing for Communication/Detection

Test cases for testing the class functions includes: CDetected, CRadar,
CdetectedDatabase. CSonar, CMessage, CMessageDatabase, and CRadio.

5.1.2.1 Unit Test Case for CDetccted Class Functions

5.1.2.1.1 Unit Test Cases and Results

TC CD-001 Pouner to Alrcraft AlrcraﬂCamer(lD type ﬂag CD-OO4 CD-004-01 CD-004-02
Carrier, Powerswitch=0, pos,velocity)
state=0 or state = 1
TC_CD-002 | Poiner to Aircraft, Aircraft (ID,type, flag, CD-004, CD-004-01, CD-004-02
state=0 werswitch=0, pos,velocity)
TC_CD-003 Poiner to Aircraft (ID, type, flag, CD-004, CD-004-01, CD-004-02
Aircraft, Powerswitch=1, pos,velocity)

245

state=1

TC_CD-004 | Poinerto Destroyer (ID, type, flag, CD-004, CD-004-01, CD-
Destroyer, state=0 | Powerswitch=0, pos,velocity) 004-02

TC_CD-005 | Poinerto Destroyer (ID, type, flag, CD-004, CD-004-01, CD-004-02
Destroyer, state=1 | Powerswitch=1, pos,velocity)

TC_CD-006 | Poiner to Cruiser, Cruiser (ID, type, flag, CD-004, CD-004-01, CD-004-02
state=0 powerswitch=0, pos,velocity)

TC_CD-007 | Poiner to Cruiser, Cruiser (ID, type, flag, CD-004, CD-004-01, CD-004-02
state=1 Powerswitch=1, pos,velocity)

TC_CD-008 | Poinerto Battleship (ID, type, flag, CD-004, CD-004-01, CD-004-02
Battleship, state=0 | powerswitch=0, pos,velocity)

TC_CD-009 | Poinerto Battleship (1D, type, fiag, CD-004, CD-004-01, CD-004-02
Battleship, state=1 powerswitch=1, pos,velocity)

TC_CD-010 | Poinerto Cruiser (ID, type, flag, CD-008, CD-008-01, CD-008-02
Submarine state=0 | powerswitch=0, pos,velocity)

TC_CD-011 Poiner to Submarine (ID, type, flag, CD-008, CD-008-01, CD-008-02
Submarine, state=1 | powerswitch=1, pos,velocity)

TC_CD-012 | Poiner to missle, Missile (ID, type, flag, CD-004, CD-004-01, CD-004-02
state=0 or state=1 Powerswitch=1, pos,velocity)

TC_CD-013 | Poiner to any other | Object (ID, type, flag, CD-004, CD-004-01, CD-004-02
state=0 or stat =1 Powerswitch=0, pos,velocity)

Table 5-9 Unit Test Case for Cdetccted setDetData function
SECase'# AkTestData FrREXpected ResulETRRLF | Traceabilityi%’
TC_CD-014 CDetected Object Output object’s ID, flag, type, | CD-004,
pos (x.y.z) and velocity (x,y,z) | CD-008
Table 5-10 Unit Test Case for CDetccted operator <<overloading function

5.1.2.1.2 Error Reports
None

5.1.2.2 Unit Test Case for CDetectedDatabase Class Functions

5.1.2.2.1 Unit Test Cases and Results

Test"cas' g # -IRENETe RRaR Ei”'Eted’Result%‘?{%?ﬁﬂ’ Traceability’:
TC_CD-015 Delare Radar (Sonar) The number of detected object | CD-004,
object and call calling in the second time CD-008
emitReceive two times should be same with that calling
in the first time

Table 5-11 Unit Test Case for CDetcctedDatabase DeleteAll function

246

5.1.2.2.2 Error Reports

None

5.1.2.3 Unit Test Case for CRadar Class Functions

5.1.2.3.1 Unit Test Cases and Results

n g "?: L

(2] a i a

TestCase# <~ |:TestData. - ‘Expected-Result .- - Traceability -

TC_CD-016 CDetected object There is an error message to | CD-004,
indicate the input should be | CD-008
constant type

TC_CD-017 The pointer of Insert the pointer of CDetected | CD-004,

CDetected object object to database CD-008
Table 5-12 Unit Test Case for CDetcctedDatabase addDeleted function

TC_CD-018 Output message to user:
* Radar is turned off, no
object can be detected "
TC_CD-019 State =1 and Output error message to | CD-004
Range =0 user “ Radar's range
can't be less or equal to
zero ®
TC_CD-020 State = 1 and Output error message to | CD-004
Range = -1 user “ Radar's range
can't be less or equal to
zero *
TC_CD-021 State = 1 and Output the number of | CD-004
Range =10 and detected object and a
type=3 or type =8 list of pointer to detected
objects.
TC_CD-022 State =1 and the number of detected | CD-004
Range =10 and object is zero and the
type!=3 ortype =8 list of pointer to
detected objects is
empty

Table 5-13 Unit Test Case for CRadar EmitReceive function

5.1.2.3.2 Error Reports

None

247

5.1.2.4 Unit Test Case for CSonar Class Functions

5.1.2.4.1 Unit Test Cases and Results

asteas X TeSED % | EXpOCIod RESUIS:" > < RTraceabilitysss
TC_CD-023 State =0 Output message to user: CD-008
“ Somar is tumed off, no
object can be detected ”
TC_CD-024 State = 1 and Output error message to user | CD-008
Range =0 “ Sonar’s range can't be less
or equal to zero ”
TC_CD-025 State = 1 and Output error message to user | CD-008
Range = -1 “ Sonar’s range can't be less
or equal to zero *
TC_CD-026 State = 1 and Output the number of | CD-008
Range =10 and detected object and a list of
type=3 or pointer to detected objects.
type =8
TC_CD-027 State = 1 and the number of detected object | CD-008
Range =10 and is zero and the list of pointer
type =3 or to detected objects is empty
type != 8

Table 5-14 Unjt Test Case for CSonar EmitReceive function

5.1.2.4.2 Error Reports

None

5.1.2.5 Unit Test Case for CMessage Class Functions

5.1.2.5.1 Unit Test Cases and Results

class NOT set as parameter to
the Cmessage object

False is returned

ATeStCaseEpTest DatastaReasitand I ExXpected Resulti: 3273 | Traceabilitysy:
TC_CD-028 Pointer to the vehicle’'s base | True is retumed CD-011

class set as parameter to the

Cmessage object
TC_CD-029 Pointer to the vehicle’'s base CD-011

Table 5-15

248

Unit Test Case for CMessage validToSend function

Obj a a Sitio :
‘Test Case #: | Test:Data:=:"A5rit" - -| Expected Result . - |- Traceability -
TC_CD-030 Pointer to the vehicle’s base | Sender's Id is updated. CD-011
class set as parameter to the | Sender's Type is updated.
Cmessage object Sender’s Position is updated.
TC_CD-031 Pointer to the vehicle’'s base | Function is not called CD-011
class NOT set as parameter to
the Cmessage object
Table 5-16 Unit Test Case for CMessage validToSend function
5.1.2.5.2 Error Reports
None

5.1.2.6 Unit Test Case for CMessageDatabase Class Functions

5.1.2.6.1 Unit Test Cases and Results

"Test Case'#: [TeStDat 3 FFExpected Result: . ¥ 7% [XTraceabilityss™
TC_CD-032 Receiver's Id is the Radio’s Id | Al messages belonging to | CD-012
and is passed as parameter the Radio’s id are deleted
from the message database.
TC_CD-033 Receiver’s Id IS NOT the Radio’s | No messages are deleted. CD-012
Id and is passed as parameter
Table 517 Unit Test Case for CMessage validToSend function
=TSt Case# [TestData¥ 12 [Expected:-Result: ;8 STraceabilitys:::
TC_CD-034 | Function Call All messages from the | CD-012
message database are
deleted.
Table 5-18 Unit Test Case for CMessage DeleteAllMsg function
‘Test Case # |:Test Data:: "|.Expected Resuit - - | Traceability .- : -
TC_CD-035 CMessage object sent for | The message is added | CD-012
broadcast. in the message
database for all the
comrresponding receivers.
TC_CD-036 CMessage object sent for a | The message is added | CD-012

249

specific receiver.

in the message
database for the specific

receiver.
Table 5-19 Unit Test Case for CMessage AddOneMsgintheList function

TC_CD-037 Radio id = receiver id and is | A message ob;ect |s retumed CD-012
different from sender id.

TC_CD-038 Radio’s id != receiver’s id but is | A default message object with data | CD-012
still different from sender’s id. set to default values (0) is retumed

TC_CD-039 Radio’s id != receiver's id and is | A default message object with data | CD-012
not different from sender’s id. set to default values (0) is retumed

TC_CD-040 Radio's id = id and is not| A default message object with data | CD-012
different from the sender’s id. set to default values (0) is retumed

Table 5-20 Unit Test Case for CMessage GetMyMsg function

5.1.2.6.2 Error Reports
None

5.1.2.7 Unit Test Case for CRadio Class Functions

5.1.2.7.1 Unit Test Cases and Resuits

Call to;f'un.(;tioﬁ D;iéteMyMéssaéés of
CMessageDatabase class (refer to
CMessageDatabase class).

Unit Test Case for CRadio DeleteMessages function

: TC CD-041 Funchon call

Table 5-21

o et v

-Test:Dal

::‘j “‘;L, A I e Tt
TC CD-042 CMessage object is
passed as parameter.

Call to functlon AddOri;aMsglntheLlst of —
CMessageDatabase class (refer to
CMessageDatabase class).

Table 5-22 Unit Test Case for CRadio SendMessage function

250

sTastCase# : e
Call to function GetMyMsg of
CMessageDatabase class (refer to
CMessageDatabase class).

Table 5-23 Unit Test Case for CRadio ReceiveMessages function

5.1.2.7.2 Error Reports
None

251

5.1.3 Unit Testing for All Vehicles

Classes Ship or Aircraft are all derived from the class: BaseShip class, a class
for all vehicles. It is responsible to initialize all classes used in the ship or Aircraft
subsystem, including Captain, NavigationOfficer, RadioOfficer, WeaponOfficer,
WeaponLauncher and onboard Radar/Sonar and Radio. All the derived class
includes AircraftCarrier, Aircraft, Battleship, Cruiser, Destroyer, and Submarine.
The general test case for these class are described in the table of test case, only
the special test case scenario is described in bold for some subsystems.

5.1.3.1 Unit Test Case for Derived BaseShip Class Functions

5.1.3.1.1 Unit Test Cases and Resuits

Battleship 1)N_officer created. \
2)Captain created : flag="B’, BS-001
type=5, resistence=300,
actlive=true, time_counter=0.
3) Radar created :
id=myID,radius=75.
4) BRadarOfficer created .
5) BRadioOfficer created :
type=5.
6) Radio created : id=myID.
7) BWeaponOfficer created.
8) BWeaponLauncher created.
TC_BS-002 Battleship('R’, 1)N_officer created : SC-001, SC-002,
Vector(2,2,0),Vector curr_position=Vector(2,2,0), BS-001
(5,5.0)) temp_position=Vector(5,5,0).
2)Captain created : flag="R’,
type=5, resistence=300,
active=true, time_count=0.
3)Radar created : id=mylID,
radius=75.
4)BRadarOfficer created.
5)BRadioOfficer created :
type=5.
6)Radio created : id=mylD.
7)BWeaponOfficer created.
8)BWeaponLauncher created.

Table 5-24 Unit Test Case for Derived BaseShip Constructor function

252

et testatiishresi 58|

<RE : =SRESI NEERgEIoriresis:
2 = { 2 1ISEC I
(]
‘TestCase #5775 [Test Data i etz FEXpOcts |-Traceability;:

TC_BS-003 Resistance= 190. Resustance—190 BS-024 to BS-031
T = 5600. IsActive = ture. BS-032 to BS-034
TC_BS-004 Resistance =201 Resistance=201. BS-024 to BS-031
T =5399 IsActive = ture. BS-032 to BS-034
TC_BS-005 Resistance = 201 Resistance=300 BS-024 to BS-031
T =5401 IsActive = ture. BS-032 to BS-034

Table 5-25 Unit Test Case for Derived BaseShip updateStatus and resistanceRecovery function

5.1.3.1.2 Error Reports
None

5.1.3.2 Unit Test Case for Captain Class Functions

5.1.3.2.1 Unit Test Cases and Results

‘TestCase #.75 5% |- Test Datavisdi e | ExpectediResult: - ~ -~ |\ Traceabilityz 5
TC_BS-006 enemy_list = NULL or return false BS-015
dist = 120000
TC 8S-007 sea_enemy count=0 retum false BS-015
TC_BS-008 sea_enemy_count = 2, return attack = true BS-015
dist = 90000,
wtype = 0, cQty = 50
OR
sea_enemy_count = 2,
dist = 90000,
wtype =1, mQty = 10
TC_BS-009 sea_enemy_count = 2, BS-015
dist = 90000, Return attack = flase
mQty=0,cQty=0

Table 5-26 Unit Test Case for Derived Captain ifAttack function

Test'Case #7- ‘Expected Résult>--.” . | Traceability -

|- Tést Dat: ‘7\
TC_BS-010 pos = vector (50, 30, 0) return dist = 80.62 BS-001 to BS-003
my_pos = vector(40, 20, 0)

Table 5-27 Unit Test Case for Derived Captain : isOntheway, adjustNavigation function

253

5.1.3.2.2 Error Reports
None

5.1.3.3 Unit Test Case for NavigationOfficer Class Functions

5.1.3.3.1 Unit Test Cases and Results

e

“TC_BS-011 | nofficer3.

adjustSpeed(40,80,2)

curr_position=Vector(3.1.0)
temp_position=Vector(3,-139,0)
velacity=Vector(0.-70,0)

BS-001 to BS-003

TC_BS-012 | nofficer3.

adjustSpeed(30,80,2)

curr_position=Vector(3,1,0)
temp_position=Vector(3,-125,0)
velocity=Vector(0,-63,0)

B8S-001 to BS-003

TC_BS-013 | nofficer3.

adjustSpeed(40,60,2)

curr_position=Vector(3,1,0)
temp_position=Vector(3,-119,0)
velocity=Vector(0,-60,0)

BS-001 to BS-003

TC_BS-014 | nofficer3.

adjustSpeed(40,80,2)

curr_position=Vector(3,1,0)
temp_position=Vector(3,-85,0)
velocity=Vector(0,-43,0)

BS-001 to BS-003

TC_BS-015 | nofficer3.

adjustSpeed(-2,-1,2)

curr_position=Vector(3,1,0)
temp_position=Vector(3,1,0)
velocity=Vector(0,0,0)

BS-001 to BS-003

TC_BS-016 | nofficer3.

adjustSpeed(-2,-1,1)

curr_position=Vector(3,1,0)
temp_position=Vector(3,0,0)
velocity=Vector(0,-1,0)

BS-001 to BS-003

TC_BS-017 | nofficer3.

adjustSpeed(-2,-1,1)

curr_position=Vector(3,1,0)
temp_position=Vector(3,-1,0)
velocity=Vector(0,-2,0)

BS-001 to BS-003

TC_BS-018 | nofficer3.

adjustSpeed(-1.2,1,2)

curr_position=Vector(3,1,0)
temp_position=Vector(3,-1,0)
velocity=Vector(0,-1,0)

BS-001 to BS-003

TC_BS-019 | nofficer3.

adjustSpeed(-1.2,9,2)

error message

temp_ position=curr_postion=Vector(3,1,0)

velocity=Vector(0,-3,0)

BS-001 to BS-003

TC_BS-020 | nofficer3.

adjustSpeed(2,1,2)

error message

temp_position=curr_postion=Vector(3,1,0)

velocity=Vector(0,-3,0)

BS-001 to BS-003

Table 5-28 Unit Test Case for NavigationOfficer adjustSpeed function

254

a8 Expected Result

BS—021 Bnavngatlon nofﬁcer1 {0 curr _posmon-Vector(O 0 0) B8S-001 to
BNavigationOfficer() function temp_postilon=Vector(0,0,0) BS-003
velocity=Vector(0,0,0)

TC_BS-022 | BNavigationOfficer curr_position=Vector(2,2,0) BS-001 to
nofficer2(temp_postilon=Vector(5,5.0) BS-003
Vector(2,2,0),Vector,(5,5,0),Vector(1,3,0)) velocity=Vector(1,3,0)

BNavigationOfficer (
Vector curPos,Vector desPos,Vector spd)

TC_BS-023 | BNavigationOfficer curr_position=Vector(2,2.0) BS-001 to
nofficer2(temp_postiion=Vector(5,5,0) BS-003
Vector(2,2,0),Vector(5,5,0),Vector(70,70,0)) | velocity=Vector(49.4975,49.4975,0)
BNavigationOfficer (

Vector curPos,Vector desPos,Vector spd)

TC_BS-024 | BNavigationOfficer curr_position=Vector(2,2.0) B8S-001 to
nofficer3(Vector(2,2,0), Vector(5,5,0)) temp_postilon=Vector(5,5,0) BS-003
BNavigationOfficer (velocity=Vector(49.4975,49.4975,0)

Vector curPos, Vector desPos);

TC_BS-025 | None main() runs without error. BS-001 to
~BNavigationOfficer(); BS-003

TC_BS-026 | nofficer3.getPosition() ; Vector(2,2,0) BS-013 to
getPosition() BS-018

TC_BS-027 | nofficer3.getVelocity() ; Vector(7.07107,7.07107,0) BS-013to
getVelocity() BS-018

TC_BS-028 | nofficer3.setPosition(Vector(3,1,0)) curr_position=Vector(3,1,0) BS-013 to
setPosition(Vector pos) BS-018

TC_BS-029 | nofficer3.setVelocity(Vector(60,80,0)) Velocity=Vector(42,56,0) BS-013 to
setVelocity(Vector spd) BS-018

TC_BS-030 | nofficer3.setVelocity(Vector(4,3,0)) Velocity=Vector(4,3,0) BS-013to
setVelocity(Vector spd) BS-018

TC_BS-031 | nofficer3.cruise(Vector(3,1,0),1) curr_position=Vector(3,1,0) BS-013to
cruise(Vector targetPos, double t) temp_position=Vector(3,1,0) BS-018
cruise(Vector targetPos, double t) velocity=Vector(0,0,0)

TC_BS-032 | nofficer3.cruise(Vector(3,-3,0),1) curr_position=Vector(3,1,0) BS-013 to
cruise(Vector targetPos, double t) temp_position=Vector(3,-2,0) BS-018

velocity=Vector(0,-3,0)

TC_BS-033 | nofficer3.steer(0.1) steer(a) curr_position=Vector(3,1,0) BS-013to
temp_position=Vector(3,1,0) BS-018
original velocity=Vector(0,-3,0)
velocity=Vector(-2.98501,-0.2995.,0)

TC_BS-034 | nofficer3.setVelocity (Vector (0, -3,0)) curr_position=Vector(3,1,0) BS-013 to

nofficer3.adjustSpeed(30,80,2) temp_position=Vector(3,-125,0) BS-018

nofficer3.updatePosition() ; updatePosition()

velocity=vector00,-63,0)

Table 5-29

255

Unit Test Case for NavigationOfficer other function

5.1.3.4 Unit Test Case for RadioOfficer Class Functions
5.1.3.4.1 Unit Test Cases and Results

Because it is difficult to test this unit without simulating the communication class,
this unit test will be done in subsystem testing case.

5.1.3.4.2 Error Reports
None

5.1.3.5 Unit Test Case for Radar/SonarOfficer Class Functions
5.1.3.5.1 Unit Test Cases and Results

Because it is difficult to test this unit without simulating the communication class,
this unit test will be done in subsystem testing case.

5.1.3.5.2 Error Reports
None

5.1.3.6 Unit Test Case for WeaponOfficer Class Functions

5.1.3.6.1 Unit Test Cases and Resuits

: Expect”' EEResuIt:: m@gy Tracet

S A S o T Y
rC:asea'tﬂﬁ:f% TERERA

T R [o B s abilityx,.n-.
TC_BS-035 In every time i, After 5 times call the object of BS-019 to
cp=Vector(i,i,0), WeaponLauncher be called and the BS-023
tp=Vector(26+i,26+i,0)ts=Vect | cannon shell sent,
or(20,20,0) 8 times, sent again
tid=1, ct=10+5"i
TC_BS-036 | Ineverytimei, After 4 times call, the object of BS-019to
cp=Vector(i,i,0), WeaponlLauncher be called and a Missile | BS-023
tp=Vector(27+i,27+i,0) sent, 7 time calls, sent again.

ts=Vector(20,20,0),
tid=1, ct=10+10"i

TC_BS-037 | In every timei, After 4 times call, the object of BS-019 to
cp=Vector(i,i,0), WeaponLauncher be called and a Missile | BS-023
tp=Vector(80+i,80+i,0) sent, 7 time calls, sent again.

ts=Vector(20,20,0),
tid=1, ct=10+10"i
TC_BS-038 | Inevery timei, The object of BS-019 to
cp=Vector(i,i,0), WeaponlLauncher is not called, so BS-023

256

tp=Vector(85+i,85+i,0) neither cannon shells nor misslies is

ts=Vector(20,20.,0), launched.
tid=1, ct=10+10°i

TC_BS-039 | In every time i, The object of BS-019to
cp=Vector(i,i,0), Weaponl.auncher is not called, so BS-023
tp=Vector(26+i,26+i,0) neither cannon shells nor misslies is
tp=Vector(27+i,27+i,0) launched.

ts=Vector(20,20,0),
tid=1, ct=10+10"i

TC_BS-040 | In every timei, The object of BWeaponLauncher is not BS-019 to
cp=Vector(i,i,0), called, so no cannon shells are BS-023
tp=Vector(26+i,26+i,0) launched.

ts=Vector(20,20,0),
tid=1, then tid=2, ct=10+10"i

Table 5-30 Unit Test Case for WeaponOfficer prepareAttack function

Test:iCase #: -5 &ipTest Dataiin il | Expected Resiilt:s: - [Tracéabilitys: 5%
TC_BS-04% cp=Vector(0, 0, 0), retum value is 1. BS-019
tp=Vector(26, 26, 0)
cannon_gty=4.
TC_BS-042 cp=Vector(0, 0, 0), return value is -1. BS-019
tp=Vector(26, 26, 0),
cannon_gty=2.
TC_BS-043 cp=Vector(0, 0, 0), return value is 0. BS-019
tp=Vector(27, 27, 0),
Missile_gty=1.
TC_BS-044 cp=Vector(0, 0, 0), return value is -1. BS-019
tp=Vector(27, 27, 0),
Missile qty=0.
TC_BS-045 cp=Vector(0, 0, 0), return value is 0. BS-019
tp=Vector(80, 80, 0),
Missile qgty=1.
TC_BS-046 cp=Vector(0, 0, 0), return value is 0 BS-019
tp=Vector(85, 85, 0),
Missile_gty=1.

Table 5-31 Unit Test Case for WeaponOfficer selectWeapon function

5.1.3.6.2 Error Reports

a) In the test of the prepareAttack function, we observed that when enemy was
the fire range of Missiles, after the latency time for launching Missiles was
arrived, there were no Missile launched. After examining the code, we found
that there was an error in calculating the latency time for Missile launching.

b) In the test of the selectWeapon function, we found that it might cause
confusion if using return value O to represent two cases when Missile was

257

selected and neither Missile nor cannon was selected. We add a return value
—1 which represent the neither Missile nor cannon selection case.

5.1.3.7 Unit Test Case for WeaponLauncher Class Functions

5.1.3.7.1 Unit Test Cases and Results

E]
‘TestCasesiiTest Data. -SSR FExpected: Result 243 | Traceability:z:i::

TC_BS-047 cp=Vector(0, 0, 0), dx=10/3600"t+12 CS-021, DT-021,
tp=Vector(12, 13, 0) , dy=20/3600"t+13 SM-021, AT-021
ts=Vector(10, 20,0),

TC_BS-048 cp=Vector(0, 0, 0), dx=20/3600°t+18 CS-021, DT-021,
tp=Vector(18, 20, 0) , dy=15/3600"t+20 SM-021, AT-021
ts=Vector(20,15,0),

TC_BS-049 cp=Vector(0, 0, 0), dx=15/3600"t+25 CS-021, DT-021,
tp=Vector(25, 28, 0) , dy=20/3600"t+28 SM-021, AT-021

=Vector(15, 20,0),
Table 5-32 Unit Test Case for WeaponLauncher aimByBallistic function
TesfCase#lzTesti Data S rdame IFXpected. Result 84l | Traceabilityds:

TC_BS-050 cp=Vector(0, 0, 0), A cannon shell is inserted BS-021
tp=Vector(20, 20, 0) , into the cannon_list.
b-flag=R. The fire function in

WMissileSeaSea is called
Table 5-33 Unit Test Case for WeaponLauncher fireCannonShell function
-TeStCasei# i -Test Datas e iz {EXpected Reésult < = |
TC_BS-051 cp=Vector(0, 0, 0), A Missile is inserted into
tp=Vector(50, 50, 0) , the Missile_list. 021, AT-021
b-flag=R. The fire function in
WMissileSeaSea is
called.
Table 5-34 Unit Test Case for WeaponLauncher fireMissile function

258

Eunct a

(3] - 3¢ efefcannons ogMissi vhepitheyihav
- Test Case. #'7::2:5 .| Test Data- #7445 K Expected Result =+~ | Traceability. -+

TC_BS-052 Create a Missile list with | The Missiles marked active CS-022, DT-022,
Missiles some marked are deleted and those SM-022, AT-022
active, some inactive marked inactive remain

TC_BS-053 Create a cannon shell The cannon shells marked BS-022
list with cannon shells active are deleted and those
some marked active, marked inactive remain
some inactive

Table 5-35 Unit Test Case for WeaponLauncher deleteWeapon function

5.1.3.7.2 Error Reports

In the test of aimByBallistic function, we found that the output results were too
large, comparing with the expected resulits. After checking the code carefully, we
found that there was some errors with the units used in some places in the
function. After correcting the error, we get the expected results.

259

5.1.4 Unit Testing for Weapons
These test cases are mainly for testing the class functions includes:

CWActiveStateController, CWPositionController, CWAutoAimController,
CWChargeController, CWCharge, and CWRudder.

5.1.4.1 Unit Test Case for CWActiveStateController Class Functions

5.1.4.1.1 Unit Test Cases and Resuits

-TestCase #+..ial Test Datass: 55y | Expected: Resulesy [\ Traceability:s
TC_WP-001 Create an actwe getState return true WP-005
instance
TC _WP-002 SetState to inactive getState() retums false. | WP-005
TC_WP-003 Create an inactive | getState return false WP-005
instance
TC_WP-004 SetState to active getState retum true WP-005

Table 5-36 Unit Test Case for CWActiveStateController get/setState function

5.1.4.1.2 Error Reports
None

5.1.4.2 Unit Test Case for CWPositionController Class Functions

5.1.4.2.1 Unit Test Cases and Results

TTestDAtaRE A" s EXpected Resultsy: 15 LTrc

- Soderitasil destination | |'state | velocity. | position: -
TG WP-005 (100,0,0) Active (50,0,0) (0.014,0,0)
TC_WP-006 (100.0,100) Active (35.36,0,35.36) | (0.01,0,0.01)
TC_WP-007 (100,0,-100) Inactive | N/A NIA

Table 5-37 Unit Test Case for CWActiveStateController initialposition function

260

QUGS GE FestDatasE: @ R’*s‘ii G aAs kTraceabil
: " destination’;. | statec:.:velocity posltlon’ -
TC_WP-008 (100,0,0) Active (50,0,0) {0.014,0,0) WP-001
TC_WP-009 (100,0,100) Inactive | N/A N/A WP-001
TC _WP-010 (100,0, -100) Active {35.36,0,35.36) | (0.01.0,0.01) | WP-001
Table 5-38 Unit Test Case for CWActiveStateController initialposition function

5.1.4.2.2 Error Reports

None

5.1.4.3 Unit Test Case for CWAutoAimController Class Functions

5.1.4.3.1 Unit Test Cases and Results

: Q" Y
lh a ?B;e;’t‘"e"" sdziEDetect Bet'éégéd& :Def
A - Position 5& “Object4 =X Object 2: »‘*‘o“b"rectar;. =*Obi
TC_WP- (100,0,0) | Ship, Ship, Submarine, | Aircraft, Ship, WP-002,
01 (100,0,0) (100,10, 0) | (100,0,-50) | (100,10,80) | (100,0,0) WP-003
Retum WP-004
SUccess
TC_WP- (100,0,0) | Ship, Aircraft, Submarine | N/A Ship, WP-002,
012 (300,0,0) (100,0,50) | (100,0,-50) (300,0,0) WP-003
Retumn Wp-004
SuUccess
TC_WP- (50,0,0) Aircraft, Submarine | N/A N/A Return WP-002,
013 (50,0,100) | (50,0,-50) failure WP-003
Wp-004
Table 5-39 Unit Test Case for CWAutoAimController tracetarget function

261

NS QL AP o, ¢

T,v-c.s;.

U abil
TC_WP-014 | (100,0,100) | Ship, Aircraft, Submarine, | Aircraft, Aircraft, WP-002,
(100,0,0) | (100,0,100) | (100,0,-50) | (100,10,80) | (100,0,100) | WP-004

Return

success
TC_WP-015 | (100,0,50) | Ship, Aircraft, Submarine | N/A Aircraft, WP-002,
(100,0,0) | (200,0,100) | (100,0,-50) (200,0,100) | WP-004

Retumn

success
TC_WP-016 | (50,0,50) Ship, Submarine | N/A N/A Retumn WP-002,
(100,0,0) | (100,0,-50) failure WP-004

Table 5-40 Unit Test Case for CWAutoAimController tracetarget (Aircraft) function

-Det’ééfedf Zabil
. Obie‘ét ke
‘.j : o ; ; ”:\"\" QA% ‘yl'
%';“ i L R i S ‘ : ; - RESSRREnlt RET "'Jiﬂv
TC WP—017 (100.0.-50) Ship, Submarine, | Submarine, | Aircraft, Submarine, | WP-002,
(100,0,0) | (80,0,-50) (100,0,-50) | (100,10,80) | (100,0,-50) | WP-003
Retum Wp-004
success
TC_WP-018 | (100,0,-50) | Ship, Aircraft, Submarine | N/A Submarine WP-002,
(100,0,0) | (100,0,50) | (150,0,-50) (150,0,-50) | wP-003
Return Wp-004
success
TC_WP-019 | (50,0,-50) Ship, Aircraft, N/A N/A Retumn WP-002,
(50,0,0) (50,0,50) failure WP-003
Wp-004

Table 5-41 Unit Test Case for CWAutoAimController tracetarget (Submarine) function

5.1.4.3.2 Error Reports

None

262

5.1.4.4 Unit Test Case for CWChargeController Class Functions

5.1.4.4.1 Un

it Test Cases and Resulits

T6StCase: ivaniniaiy, est lz Expecteds
N Sl B R T % e Results: |
Zioi.ddzen| Weapon | Weapon:. | Detected- | Detecte etected | Detonation:-
szl Position: | Velocity | Object 1 | Object2 | Object3 |- Check"
TC_WP-020 | (0,0,0) (1000,0,0) | Ship1, Ship2, N/A Return
(0,0,0) (0.2,0,0) success
(detonate 2
objects)
TC_WP-021 | (0,0,0) (1000,0,0) | Ship1, N/A N/A Retumn WP-005,
(0.1,0,0) success Wp-006
(detonate 1
objects)
TC_WP-022 | (0,0,0) (1000,0,0) [N/A N/A N/A Retumn failure | WP-005,
Wp-006
Table 5-42 Unit Test Case for CWChargeController HitDetect function

5 %‘:‘%Eﬁ,‘%’;l%* R e N
£|'Weapon..| Weapon. ' Detected - | Detected | Detected . | Deton:
ix=|-Position : | Velocity -~ | Object 1" | Object2 | Object3 | Check
(0,0,100) (1000,0,0) Aircraft, Aircraft, N/A Return
(0,0,100) (0,0,100.2) success Wp-006
(detonate 2
objects)
TC_WP-024 | (0,0,100) (1000,0,0) Aircraft, N/A N/A Retumn WP-005,
(0,0,100.1) success Wp-006
(detonate 1
objects)
TC_WP-025 | (0,0,100) (1000,0,0) | N/A N/A N/A Retumn failure | WP-005,
Wp-006
Table 5-43 Unit Test Case for CWChargeControlier HitDetect(Aircraft) function

263

6 anyavaliditargei
§ ang
Test Caseeinai i < FTrace
e B ma‘,“"a“'eé’ﬁ abili
1 "Weapon apoin. | Dé d- | ‘Detected:- fDetonatlon.]
e winer | Position | Veélocity” ’Object 1 Object2 “I'Object3 | Check . [g2%
TC_WP-026 (0,0,-50) (1000,0,0) Submarine, | Submarine, | N/A Retumn WP-005
{0,0,0) (0.2,0,0) success Wp-006
(detonate 2
objects)
TC_WP-027 (0.0.-50) (1000,0,0) | Submarine, | N/A N/A Return WP-005,
(0.1,0,0) success Wp-006
(detonate 1
objects)
TC_WP-028 (0.0,-50) (1000,0,0) | N/A N/A N/A Retumn failure | WP-005,
Wp-006
Table 5-44 Unit Test Case for CWChargeController HitDetect(Submarine) function
5.1.4.4.2 Error Reports
a) The HitDetect returned a null pointer of target, but the target actually existed.
The return type of HitDetect is wrong. It has been fixed:
int CWChargeController::checkDetonateRange (double timelLen,
Position curPos, Position nexPos)
b) Weapon attack any target no matter if its flag is opposite to itself.
Modified the following code:
int vehicleFlag = infoDet.getFlag();
if((vehicleFlag != myFlag)&& (
IsTargetType (WeaponType,vehicleType) == TRUE))
Old version:
if(IsTargetType(WeaponType,vehicleType) == TRUE
5.1.4.5 Unit Test Case for CWCharge Class Functions
5.1.4.5.1 Unit Test Cases and Results
Sl
‘TestiCase#: | TestData ;.. .- | ExpectedRésults . . . “Traceability
TC_WP-029 baseClass * ship1, 20 iterations are run and 18 times hit, 2 WP-006,
resistance 50, times miss, resistance=42. WP-0007,
precision=80%, WP-008
fire power=1 .

Table 5-45 Unit Test Case CWCharge detonateTarget function

264

5.1.4.5.2 Error Reports

Hit function is not called. The reason is the type of the pointer is baseCalss, we

have to convert it to the type of each vehicle respectively. It's fixed.

5.1.4.6 Unit Test Case for CWRudder Class Functions

5.1.4.6.1 Unit Test Cases and Results

:Test Case: [RxisrttaiyTast Dataifesnyais - | . EXj
o #ei5 Current | Current. | Target |-
| Velocity.. | Position - | Position

C_WP-030_| (1000.0.0) | (0.0,0) (0.0.0)

TC_WP-031_| (1000.0.0) | (0.0.0) (100.0.0) | (1000.0,0) WP-001
TC_WP-032_| (1000,0,0) | (0.0.0) (0.100.0) | (866.03, 500.0) WP-001
TC_WP-033 | (1000,0,0) | (0,0.0) (0,100,100) | (612.37,353.55,707.11) | WP-001

Table 5-46 Unit Test Case CWRudder changeVelocity function

5.1.4.6.2 Error Reports

Vector::unit() will happen assert 0 Error in Vector Class, if speed is zero. So we
can't return zero speed if speed doesn’t have valid value. We offer a minimum

speed.

265

5.2 Subsystem testing

After all the classes and functions has complete the unit testing. The subsystem
testing must be done to ensure various components in the subsystem corporate
correctly and fulfill all the functionality. Testing interface is also developed for

effective and convenient testing.

5.2.1 Simulation Controller Subsystem Testing

5.2.1.1 Test Cases and Results

zTest Case #: |-TesEDatad =S| | Expected:Resultzo2; fote [Traceabllityss:

TC SC-041 Click icon, click map | Bitmap, position, type, flag SC-001 to SC-006

TC SC-042 Click icon, click map | Full of vehicles within the map SC-001 to SC-006

TC_SC-043 Click clear all button | All vehicles disappear from the map SC-001 to SC-006

TC_SC-044 Click Undo button The most recent object is removed from | SC-001 to SC-006
the map

TC_SC-045 Click Ok button Setup dialogue window closed and main | SC-001 to SC-006
window display

TC_SC-046 Click Cancel button | Setup dialogue will be closed. SC-001 to SC-006

Table 5-47 Test Case for Simulaiton Controller(SetUpDlg) Subsystem

“Test Case#:| TeSEDatE= 5% | Expected Result:sicrns

i s L Traceabilityz <
TC_SC-047 v1(0.0, 0.0, 0.0) + v(1.0,1.0,1.0) SC-013-01
V2(1.0,1.0,1.0)
TC_SC-048 V2(1.0,1.0,1.0)* 2.0 | V(2.0,2.0, 2.0) SC-013-01
TC_SC-049 V2(1.0,1.0,1.0)/2.0 | V(0.5, 0.5, 0.5) SC-013-01
TC_SC-050 V2(1.0.1.0,1.0)/0.0 | Emor SC-013-01
TC_SC-051 V1(1.0, 1.0, 1.0} - V1(0.0, 0.0, 0.0) $C-013-01
TC SC-052 Click Cancel button | Setup dialogue will be closed. SC-013-01

Table 5-48 Test Case for Simulaiton Controller(Vector) Subsystem

266

SetUpDIg dialog window after
picking up a number of vehicles

simulated naval battle fields in the

main window

Test Case # Expected Result

TC_SC-053 Click on SETUP button on the | Set up dialog window is to be | SC-012
Toolbar or Set up item from Start | displayed, iconic buttons and a cyan
menu of the main window rectangle shown

TC_SC-054 Using mouse clicks to select | Output the text info of the 2-D amray to | SC-001
vehicles, generate positions and | a text file out.tt via cout. The same
create 1, 10, 225 Vehicleinfo | number of Vehiclelnfo expected
objects in separate tests as
described in 3.2.1.1

TC_SC-055 Click on OK button of the | Created objects will display in the | SC-012

Table 549 Test Case for Simulaiton Controller (SC) Subsystem

TC SC-056 Aircraft Carrier | 1 Created o jects will display in the

simulated naval battile fields SC-012
TC_SC-057 Aircraft Carrier 1 Created objects will display in the | SC-001,
simulated naval battle fields SC-012
TC_SC-058 Aircraft Carrier | 1 1 Created objects will display in the | SC-001
simulated naval battle fields SC-012
TC_SC-059 Aircraft Carrier | 1 1 Created objects will display in the | SC-001
Aircraft 10 10 simulated naval battle fields SC-012
TC_SC-060 Aircraft Carrier | 1 1 Created objects will display in the | SC-001
Aircraft 10 10 simulated naval batile fields SC-012

Destroyer 2 2
TC_SC-061 Aircraft Carrier | 1 1 Created objects will display in the | SC-001
Aircraft 10 10 simulated naval battle fields SC-012

Destroyer 2 2

Cruiser 1 1
TC_SC-062 Aircraft Camier | 1 1 Created objects will display in the ;| SC-001
Aircraft 10 10 simulated naval battle fields SC-012

Destroyer 2 2

Cruiser 1 1

Battleship 1 1
TC_SC-063 Aircraft Carrier | 1 1 Created objects will display in the | SC-001
Aircraft 10 10 simulated naval battle fields SC-012

Destroyer 2 2

Cruiser 1 1

Battleship 1 1

Submarine 1 1

Table 5-50 Test Case for Simulaiton Controller (VehicleFactory) Subsystem

267

ObjectiveiEogclassiControllesste IRpausesstopRandirestimel fanctior
Test Case# | TestData: - - . . " i .. [Expected Result - " | Trace:
SRR R A . .. | ability
TC_SC-064 Click “start” with vehicles created Animation starts. (Fig. 4) SC-012
TC_SC-065 Click “start” without vehicles created No action. SC-012
TC_SC-066 Click “start” when animation is running No effect. SC-012
TC_SC-067 Click "Pause” when animation is running | Animation is paused. SC-016
TC_SC-068 Click “Pause” when animation isn't No action. SC-016
running
TC_SC-069 Click "Resume” when animation is Animation is resumed. SC-017
paused
TC_SC-070 Click “Pause” when animation running No action. SC-016
TC_SC-071 Click “Stop” when animation is running Animation is terminated and | SC-018
is reset for next simulation.
TC_SC-072 Click “Stop™ when animation isn't running | No action. Systemis setfor | SC-018
new simulation if necessary.

Table 5-51

5.2.1.2 Error Reports

None

5.2.1.3 Untested Components
Ali the important components are tested.

268

Test Case for Simulaiton Controller (Controller) Subsystem

5.2.2 Communication/Detection Subsystem Testing

5.2.2.1 Test Cases and Resuits

Vehicle declare Radar object r of detected object within CD-004
r(ID, 200), state=1,and its Radar’s range and a fist of pointer to CD-008
position(4,5,6) detected objects

TC_CD-045 Vehicle declare default Radar Get the number of detected object within CD-004
object Radar’s range and a list of pointer to CD-008
r(),range=1000, state=1, detected objects
position(4,5,6)

TC_CD-046 the number of detected object Go through all pointer inside the CD-004
within Radar’s range. detected List CD-008

TC_CD-047 vehicle detects the number of Get each detected object pointed by CD-004
objects within Radar’s range, pointer inside the detected list CD-008
and access detected objects by
declaring a detected object.

TC_CD-048 Call tumoff Nothing is detected. CD-004

CD-008

Table 5-52 Test Case for Communication/Detection Subsystem

5.2.2.2 Error Reports
None.

5.2.2.3 Untested Components
All the important components are tested

269

5.2.3 Ship/Aircraft Subsystem Testing

5.2.3.1 Test Cases and Results

ast:Cas estD: . 26CIBa. KeSuity
g#}‘})ﬁh_ s ’-“1\;“'!:'3 St 5,9‘?*?'5“ 3??%—‘5-- S R s |

TC_BS-054 Ship/Aircraft current ShlplAurcraft move at ﬁx speed towards to BS-001 to
position the destination BS-002
Vector(10,10,0)
destination position
Vector(100,10.0)

TC_BS-055 1)An underwater object: Ship/Aircraft changes its direction 180°C BS-003
Vector(10,10,-10)) at max speed.
is aimed at ship/Aircraft.
2)Message send by allies.

TC_BS-056 1)Ship/Aircraft position : Ship/Aircraft reduces its speed and fire BS-001 to
Vector(0,0,0) cannon. B8S-002,
2)Object Vector(26,26,0). BS-021

TC_BS-057 1)Ship/Aircraft position: Ship/Aircraft reduces its speed and fire BS-002,
Vector{0,0,0) Missile. BS-021
2)Object
Vector(80,80,0)

TC_BS-058 1)Ship/Aircraft position : Ship/Aircraft reduces its speed and fire BS-002,
Vector(0,0,0) Missile. BS-021
2)Object Vector(53,53,0)

TC_BS-059 Fire Weapon to ship/Aircraft | The resistance points of ship/Aircraft BS-025,
reduces continuously without recovery BS-026,
and finally reduces to zero.

TC_BS-060 Fire Weapon to ship/Aircraft | The resistance points reduced first and BS-025,
recovered to maximum 300 later on. BS-026,

BS-027

5.2.3.2 Error Reports

None

5.2.3.3 Untested Components
All the important components are tested.

Table 5-53 Test Case for Ship/Aircraft Subsystem

270

5.2.4 Weapon Subsystem Testing

5.2.4.1 Test Cases and Results

Test Case ¥ Test Dataviine s Bl Expectad:Restilts? = ETracetability#ssl
TC_WP-034 Destroyer(0,0,0) Flag1 Both Destroyer are hit WP-005,WP-006
Destroyer(30,0,0) Flag0 WP-007, WP-008
TC_WP-035 Destroyer (0,0,0) Flag1 None of Destroyer is hit | WP-005WP-006
Destroyer (50,0,0) Flag0 because out of range WP-007, WP-008
TC_WP-036 Destroyer (0,0,0) Fiag1 Both vehicle are hit WP-005,WP-006
Submarine (30.0,-10) Flag0 WP-007, WP-008
TC_WP-037 Destroyer (0,0,0) Flag1t Invalid position WP-005WP-006
Aircraft(30,0,100) Flag0 WP-007. WP-008
TC_WP-038 Destroyer (0,0,0) Flag1 Trace Target and hit WP-005,WP-006
Destroyer(10.0,0) to(10,100.0) Flag0 WP-007 WP-008

Table 5-54 Test Case for Weapon(Wtorpedo) Subsystem

& O

R PRI My 20 "'P(‘n,,-‘&;
P v b L AT

v

cerabil

TC_WP-039 | Battle Ship(0,0.0) Flag1 Both Batlle ships are | WP-005,WP-006
Battle Ship(30,0,0) Flag0 hit. WP-007 WP-008
TC_WP-040 Battle Ship(0,0,0) Flag1 None of battle ship WP-005,WP-006
Battle Ship(50,0,0) Flag0 is hit because out of | WP-007, WP-008
range.
TC_WP-041 Battle Ship(0,0,0) Flag1 Invalid Weapon WP-005,WP-006
Battte Ship(30,0,-10) Flag0 position WP-007, WP-008
TC_WP-042 Battle Ship(0,0,0) Flag1 Submarine cannot WP-005,WP-006
Submarine(30,0,0) Flag0 be detonate WP-007 WP-008
Table 5-55 Test Case for Weapon (WcannonShell) Subsystem

5.2.4.2 Error Reports

None

5.2.4.3 Untested Components
All the important components are tested.

271

5.3 System Integration Testing

The Naval Battle Simulation System is composed of nine subsystems. All
subsystems must be integrated and their interaction must be verified. In order to
check if the whole nine subsystems can co-operate and undertake their functions
well, integration testing must be performed.

5.3.1 Integration scheme

The Simulation Controller subsystem provides a user interface and affects the
performance of the whole system, so it is the top-level of the whole system. The
top-down strategy with incremental approach should be used for system testing.
The Communication/Detection subsystem is responsible for detecting enemies
and communicating with allies and the Weapons subsystem provides different
kinds of Weapons that can be used by ships and Aircrafts to attack enemies,
they have much interaction with each other and other subsystems. Therefore the
successful integration and coordination of these three subsystems is the basis for
the integration and coordination of the whole system. According to this analysis,
these three subsystems should be integrated at first place. After they are
successfully integrated, the other subsystems should be integrated one by one.

However, because there are some relationships between different subsystems,
the integration should follow a sequence. The Aircraft Carrier subsystem should
be integrated before Aircraft subsystem, because Aircraft Carrier will provide
launching and landing base for Aircrafts. Then the Cruiser subsystem should be
integrated because the Cruisers must have Aircrafts to fire at; the Submarine
subsystem should be integrated before Destroyer subsystem because
Destroyers must have Submarines to be destroyed, and etc. The Battleship
subsystem should be integrated into the system later because Battleships must
defense the Submarines and Aircrafts.

5.3.2 Test Cases and Results

The successful integration of the system is only one part of the success of the
system. The more important part of the success is that each subsystem can work
coordinately with each other and the whole system can operate well and achieve
the anticipated goals.

The following test cases are designed to check if Battleship subsystem can work
coordinately with other subsystems when it is put together with them. The
method used in the test cases is black-box testing. Some crucial and critical

272

situations are chosen as input states and the output results are examined and
compared with the expected results.

Test -

Thls test case is to check the navigation aspect of shlplAarcrafl subsystem when other

Descriptlon ‘| ships and Aircrafts are present.
lnput states [Some other ships, Aircrafts on both sides are created and put in places relatively near,
- - then relatively far away to the ship/Aircrafts.

E'xpected Battle ships navigate properly and accordingly, meaning they adjust their directions and

,esuns navigation speeds to avoid collision and for defense. If there is no enemy around, they
navigate with constant speed towards the destination

TC2 'Test This test case is to check the interaction of ship/Aircraft subsystem with

Description detection/communication and Weapon subsystems. Allies should exchange information

_ about the presence of enemy with each other, and Missiles should be launched when
enemy ships enter the fire area of Missile.

lnput states Some other ships and Aircrafts on both sides are created and some allies are placed in

the communication areas of ship/Aircraft, some enemy ships are placed in the Missile fire
range, but out of the Radar detect range and the fire range of cannon of the
ship/Aircrafts.

Ship/Aircrafts act accordingly with the presence of enemy and allies. When there are

.%| enemies in the fire range of Missiles (which is out of the detect range of Radar on
o) battleships), Missiles, not cannon are launched,

& This test case is to check the interaction of ship/Aircraft subsystem with
detection/communication and Weapon subsystems. Enemies should be detected by

Radar on the ship/Aircrafts and Missiles, not cannon should be launched when enemy
ships are out of the fire range of cannon on the battle ships.

;.| Some other ships and Aircrafts on both sides are created and allies are placed out of the
;1 communication areas of ship/Aircraft, some enemy ships are placed in the detect area of
;| Radar (75km), but out of the cannon fire range (38km) of battleshoip.

i| Ship/Aircrafts act accordingly with the presence of enemy and allies. When the Missiles,

not cannon shells are launched.

' This test case is to check the interaction of battle ship subsystem with

detection/communication and Weapon subsystems. Enemies should be detected by the
Radar on the ship/Aircrafts. Cannon shells should be launched when enemy ships enter
the fire area of cannon.

Some other ships on both sides are created and some enemy ships are placed within the
detection range of Radar on the ship/Aircraft, which is also within the range of cannon.

Ship/Aircrafts act accordingly with the presence of enemy and allies. When there are
enemies in the fire range of cannon (which is within the detect range of Radar on battie

': ships), cannon, not Missiles are launched,

' Description

This test case is to check if Weapons fly in the right way and the targets should vanish

when their resistance points reached.
Input states | Some other ships of both sides and some enemy ships are placed in the fire range of
~. - - - | Missile, some are placed in the fire range of cannon of ship/Aircrafts
Expected. Missiles, cannon shells fly towards enemies not allies and hit the enemies with certain
i'eSiJIts precision. Enemies vanish when their resistance points reach.

Table 5-56 Test Cases and Results

273

5.3.3 Error Reports

The results found a “division by zero” error. After checking, the errors were found
when using “unit()" of Vector class. Since unit() is actually calculated by deviding
Vector by length, so length can not be zero. By adding the checking code to
make sure the unit is not called when length is zero. Also other places where
calculation includes division are checked.

274

6. Conclusion

This project is mainly focus on a case studying in software engineering. It uses
use case driven approach and complies with the IEEE standards on Requirement
Gathering, Specification and Software Design. By going through each phase
(Analysis, Specification, Design, Implementation, Testing and
Delivery/Maintenance) of NBSS, we prove that software development should be
a systematical activity. The basic concerns of this project is improving the
productivity of the programming/development process, improving the quality of
software product at levels of Reliability, Efficiency, User-Friendly and
Maintainability. The following list concludes the solutions and improvements for
each phase of the project development:

6.1 Requirements Gathering and Specification

= Grouping the requirements based on each subsystem to make the
requirement easy to be clarified;

= For requirements specification, describing the basic meaning with the extra
comments to reduce the misunderstanding between customers and
developers;

= Splitting multiple features requirement into sub-feature definitions and giving
the sub-identification to them. Especially by giving each requirement an
identification number, making the whole system to be easy traceable on user
requirements;

* The Use-Case-Driven approach is used to describe the requirements. The
UML diagrams used in this phase also are useful for system design.

6.2 Design and Implementing

* Defining the reasonable number of sub-systems and components for sub-
systems;

* Forming components with low couple and high cohesion. Describing

functionality for each module separately and describing their dependency to
specify the relations among them;

275

Defining the minimal while complete interface of each key class. By
describing the interface, further to find out the detailed services of the class;

Using Object-Oriented principles, explaining the role of each classes which
designed as an abstraction;

Implementation is combined with detailed design in the project, describing the
detailed class information: data attributes, sequence of actions, functions, and

local variables;

Requirement ID is used with each class implementation to promise a good
traceability.

6.3 Testing and Delivery/Maintenance

Providing a integrated test design covering unit test , subsystem test and
integration test for the system,;

Giving each test case a test case ID and matching them to Requirement ID to
test on all the requirements;

Specifying the input data and expected output clearly for each test, giving the
pass criteria explicitly.

6.4 Further Improvements

The function prototype (pseudocode) needs to follow the well-defined syntax
rules that shall be easy to learn and fast to use. The algorithm of class function
also needs to be revisited in order to optimize the design. Some UML notations
need to be verified to meet the requirement of the specific scenarios. For test
case design, need to have the fail criteria for each test case.

276

