INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM! films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with smalil overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

SOFTWARE COMPREHENSION AND PROGRAM SLICING

Lava Kumar

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the degree of Master of Computer Science at
Concordia University

Montréal, Québec, Canada

November 2001

©Lava Kumar, 2001

i+l

National Library

Bibliothéque nationale

of Canada du Canada
- ssitions et
Sﬁmicagwbes QQA?qrvli‘ces'%’i‘inggraphiques
v . O, 1A 04 Otza ON K1 ofd
Canada Canada
Your Sle Votre réidrence
Our e Notre réédrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68469-5

Canada

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

ABSTRACT

Software comprehension and program slicing

Lava Kumar

Program comprehension is a very difficult task but, at the same time crucial for system
maintenance and development. As programs grow in size, this task becomes more and
more daunting. It is, therefore, necessary to evolve program comprehension strategies,
which allow us to minimize the amount of data that is to be observed and inspected as

part of the comprehension process.

Program slicing has been widely accepted as a very powerful technique for programmers
to comprehend very large and complex programs. This technique decomposes a large
program into a smaller one that contains only statements relevant to the computation of a

selected function and variable.

Various slicing techniques have been evolved over the past years, such as static slicing,
dynamic slicing and hybrid slicing. Each technique exploits a different algorithm to

compute slices based on some slicing criterion.

In this report, we present an alternate approach to hybrid slicing and its integration in the
CONCEPT (Comprehension Of Net CEntered Programs and Techniques) project, which
provides a set of tools and techniques to slice a program using various slicing
approaches/methodologies. CONCEPT also utilizes information derived from program

slicing algorithms to derive a program comprehension framework.

ACKNOWLEDGEMENTS

[would like to acknowledge Dr. Juergen Rilling, my supervisor, for all his patience and
guidance throughout my project work. His supervision and support proved instrumental

in helping me to complete this work in limited time.

I wish to thank my wife and children for encouraging me to pursue the second graduate
degree while allowing themselves a lot of discomfort during this period. I would like to
thank all the fellow students and others who have been directly or indirectly associated in

helping me to prepare this report.

-iv -

Table of Contents

1. Introduction- 1
I.1 Motivation and objective 3

1.2 Scope of the dissertation 4

2. Background S
2.1 Basic Program slicing terminology 6
2.1.1 Backward slicing 9

2.1.2 Forward slicing 9

2.1.3 Removable blocks 10

22 Static program slicing 12
2.2.1 Advantages and disadvantages of static slicing 12

23 Dynamic program slicing- 13
2.3.1 Advantages and disadvantages of dynamic slicing 16

24 Hybrid program slicing 17
2.4.1 Comparison of hybrid slicing to other slicing approaches ---===-==----- 18

2.42 Advantages and disadvantages of hybrid slicing 20

3. Integration of program slicing with CONCEPT 21
3.1 CONCEPT a comprehension framework 21
3.1.1 CONCEPT architecture 22

3.1.2 CONCEPT a user centered approach 25

4. An alternate approach to hybrid slicing 29
4.1 Advantages and disadvantages of alternate slicing approach----------------- 33

5. Conclusion and future work- 35
5.1 Conclusion -35

52 Future work 35

5.3 Analytical analysis- 35
5.3.1 Correctness 36

5.3.2 Accuracy 36

5.3.3 Time complexity 37

5.3.4 Space complexity 37
References 39

List of Figures

Figure 1: Sample program 7
Figure 2: An execution trace of the sample program on input MSRP = 2500 =-=-==meeeem- 8
Figure 3: Sample program (Figure 1) with removable blocks 11
Figure 4: Static slice for variable showroom_ price 12
Figure 5: Dynamic slice for showroom_price at block 12
Figure 6: Task-oriented function cohesion from user perspective 22
Figure 7: CONCEPT program comprehension framework 22
Figure 8: The open CONCEPT architecture with sub frameworks 23
Figure 9: CONCEPT system design 24
Figure 10: CONCEPT parent Window -1 25
Figure 11: CONCEPT-2 - 26
Figure 12: CONCEPT-3 26
Figure 13: Class diagram as sliced and depicted by CONCEPT 27
Figure 14: Sequence diagram as sliced and depicted by CONCEPT 27
Figure 15: Collaboration diagram as depicted by CONCEPT 28
Figure 16: Comparison of various slicing techniques 29
Figure 17: Source code of Sample 1 program 30
Figure 18: Executed_statement file for Sample_1 program by CONCEPT---------=seun- 31
Figure 19: Slices obtained for Sample_1 program using different techniques---------- --- 31
Figure 20: Source code for Sample_2 program 32
Figure 21: Executed_Statement file for Sample_2 program 32
Figure 22: Slices obtained for Sample_2 program using different techniques ------------- 33
Figure 23: Computation time for slicing the sample programs 37

Figure 24: Memory resource for slicing the sample programs 38

-Vi-

1. Introduction

Program comprehension is a very difficult task but at the same time crucial for system
development and maintenance. As programs grow large and complex, comprehension of
these systems becomes more and more aggravating for programmers who maintain these
programs.

Several studies have shown that a large amount of time and money is being spent on
maintenance and modification of existing programs. It is, therefore. necessary to have a
proper program comprehension strategy before maintenance or modification is done to a
program. Poor design, unstructured programming methods and crisis-driven maintenance
can contribute to poor code quality which in turn affects program comprehension. The
essence of program comprehension is to identify program artifacts and understanding
their relationships; this process is essentially pattern matching at various abstraction
levels via mental pattern recognition by the software engineer and the aggregation of
these artifacts to form more abstract system representations [44]. The comprehension of
source code plays an important role in ensuring correctness during the maintenance
process. Debugging and program tracing techniques are available for program
comprehension; however, the volume of information presented to the developer becomes
daunting as programs become large and complex.

The goal of program comprehension is to acquire sufficient knowledge about a software
system so that it can evolve in a disciplined manner. There are varieties of support
mechanisms for aiding program comprehension, which can be grouped into four

categories: unaided browsing, leveraging corporate knowledge, experience, and

computer-aided techniques like reverse engineering. In this report, the focus is on reverse
engineering and now it can be applied effectively in program comprehension [3.18,47].

One approach to improve the comprehension of programs is to reduce the amount of data
that has to be observed and inspected. Program slicing is a program decomposition
technique that transforms a large program into a smaller one that contains only statements
relevant to the computation of a selected function. Applications of program slicing can be
found in software testing, debugging and maintenance where program slicing essentially
reduces the amount of data that has to be analyzed in order to comprehend a program or

parts of its functionality.

Static slicing:

The notion of static program slicing originated in the seminal paper by Weiser [59,60].
Weiser defined a slice S as a reduced. executable program obtained from a program P by

removing statements from P such that S replicates parts of the behaviour of P.

Dynamic slicing:

Korel introduced a major extension of program slicing, with Laski [24], called dynamic
slicing. The dynamic slicing approach not only utilizes static source code information,
but also dynamic information from program executions on some program input.

The dynamic slice preserves the program behaviour for a specific input, in contrast to the
static approach, which preserves the program behaviour for the set of all inputs for which
the program terminates. By considering only a particular program execution rather than
all possible executions, dynamic algorithms may compute slices that are significantly

smaller than the slices computed by the static slicing algorithms.

-2.

Hybrid slicing:

Hybrid program slicing algorithms were introduced to take advantage of both static and
dynamic slicing properties. These algorithms use static information to lower the run time
overheads and dynamic information is used for more accurate handling of dependencies
{49]. Gupta and Souffa proposed in [15] to use both static and dynamic information for

the computation of program slices for structured programs.

CONCEPT:

The Comprehension Of Net CEntered Programs and Techniques project was developed
to design and develop an integrated environment. The CONCEPT project provides an
open implementation platform utilizing a variety of comprehension concepts, tools and
methods. as well as user experience and knowledge to streamline the comprehension
process by focusing a programmer’s attention on these program parts and tools that are

relevant for the selected task.

1.1 Motivation and objective

The objective of this work was to integrate and implement static and hybrid slicing within
the CONCEPT framework. CONCEPT was designed as an open comprehension
framework to guide programmers during the challenging task of understanding large

traditional and object-oriented programs and their executions.

In addition. a new alternative hybrid slicing technique referred to as "alternate hybrid

slicing” is presented and integrated within the CONCEPT project.

1.2 Scope of the dissertation

The presented report consists of five sections including this section.

In section two, an overview and a survey of related literature and existing approaches of
static, dynamic and hybrid slicing, as well as a general comparison of these algorithms is
presented.

In section three, an overview of the CONCEPT environment is presented. In section four,

an alternate technique to hybrid technique is introduced and discussed.

In section five, conclusions of the present work and proposed future directions related to

this study are outlined.

2. Background

Program comprehension is a crucial part of system development and software
maintenance. It is expected that a major share of systems development effort will go into
modifying and extending pre-existing systems, about which programmer usually know
little. Change to a system may be necessitated for adaptive, perceptive, corrective or
preventive reasons. Understanding the system, incorporating the change. and testing the
system to ensure that the change has no united effect on the system are the three facets of
software maintenance [13,36,55]. For all of these maintenance activities, software
comprehension plays a pivotal role. A commonly used technique to enhance the
comprehensibility of software systems is through reverse engineering. This technique is
used to analyze a subject system with the goals to: (a) identify the system’s components
and their inter-relationships (b) create representations of a system in another form at a
higher level of abstraction and (c) understand the program execution and the sequence in
which it occurred. Numerous theories have been formulated and empirical studies are
conducted to explain and document the problem-solving behavior of software engineers
engaged in program comprehension. Cognitive models have been introduced to describe
the comprehension processes and knowledge structures used to form a mental

representation of the program under examination [40].

Typically, a program performs a large set of functions/outputs. Rather than trying to
comprehend all of a program’s functionality, programmers will focus on selected
functions (outputs) with the goal to identify which parts of the program are relevant for
that particular function. Program slicing provides support during program

comprehension, by capturing the computation of a chosen set of variables/functions at

some point (static slicing) in the original program or at a particular program execution
position (dynamic slicing). This will lead to a smaller, simplified version of the original

version of the program without changing the local semantics of the extracted slice.
2.1 Basic program slicing terminology

Program slicing terminology is based on the terminology of program dependence theory.
Most of the slicing algorithms are represented by a directed graph, which captures the
notion of data dependence and control dependence in programs. The program structure is
represented by a flow graph G = (V, 4, s, €), where (1) Vis a set of nodes, (2) 4. a set of
arcs, is a binary relation on N and (3) s and e are, respectively, unique entry and exit
nodes. A node corresponds to an assignment statement, an input or output statement or
the predicate of a conditional or a loop statement. in which case, it is called a rest node.

A path from the entry node s to some node &, k € N is a sequence <n.n,n> of nodes
2 oy

such that n =S ng= kand (n, n) € 4, forall n; I <i<gq. A path that has actually

been executed for some input will be referred to as an execution trace. A path is regarded
feasible only if there exists some input data, which causes the path to be traversed during
a particular program execution. A program trajectory has been defined as a feasible path
that has actually been executed for some specific input. Notationally, an execution trace
is an abstract list (sequence) whose elements are accessed by position in it, e.g.. for trace

Ty in Figure 2, Ty(4)=4. T)(5)=8. Node Y at position p in Ty (e.g., Ty(p)=Y) will be

written as YP and referred to as an action. YP is a test action if Y is a test node v¥ denotes

variable v at position g, i.e., variable (object) v before execution of node 7)(q).

For example. T\ = <1,2,3,4,9,10,11,12> is the execution trace when the program in

Figure 1 is executed on the input x: MSRP = 25000; this execution trace is presented in

Figure 2.

1. normal_profit = 100;
2. bonus_profit = 1500;
3. cin >>MSRP;
4. if (MSRP > 30000)
{
5. bonus_profit =MSRP + bonus_profit ;
6. normal_profit =MSRP + normal_profit ;

7. Showroom_price = MSRP + bonus_profit + normal_profit;
}

8. else
{

9. Showroom_price = MSRP + normal_profit ;
}

10. cout <<normal_profit;
1. cout << bonus_profit;
12. cout << Showroom_price;

Figure 1: Sample program

1 normal_profit = 100

2? bonus_profit = 1500;

3’ cin>>MSRP;

4* if (MSRP > 30000)

8’ else

9¢ Showroom_price = MSRP +normal_profit ;
10’ cout << normal _profit;

118 cout << bonus _profit;

12° cout << Showroom n_price;

Figure 2: An execution trace of the sample program on input MSRP = 25000

A use of variable v is an action in which this specific variable is referenced. A

definition of variable v is an action, which assigns a value to that variable. The

following assumptions are made: U(¥P) is a set of variables whose values are used in

action Y and D(IP) is a set of variables whose values are defined in ¥P. Sets U(¥P)

and D(YP) are determined during program execution, especially for array and pointer

variables because it is possible to identify the specific array elements that are used or

modified by the action during program execution.

Static data dependence captures the situation in which one node assigns a value to an

item of data and the other action uses that value. Data dependence is based on the

concepts of a variable definition and use. Thus, a node j is data dependent on node i if

there exists a variable v such that: (1) v is defined in node i, (2) v is used in node j and (3)

there exists a path from / to j without an intervening definition of variable v. In the

sample program of Figure 1, there exists data dependence between node 5 (using the

variable MSRP) and node 3 (defining the variable MSRP).

Static control dependence is based on the concepts of post-dominance. Informally, this
can be thought of as one program statement determining in some way, whether or not
another statement will be executed. The control dependence is defined as [11]; let ¥ and
Z be two nodes and (Y, X) be a branch of Y. Node Z post-dominates node Y iff Z is on
every path from Y to the exit node e. Node Z post-dominates branch (Y, X) iff Z is on
every path from Y to the program exit node e through branch (Y, X). Z is control
dependent on Y iff Z post-dominates one of the branches of ¥ and Z and does not post-
dominate Y. The concept of post-dominance means that all execution paths in a control
flow graph from a specific node i to the program end must pass through another node j
before they reach the program end [19]. For example, in the sample program of Figure 1,
there exists a control dependence between the node 5 and node 4, where node 5 is control

dependent on node 4.

2.1.1 Backward program slicing

In backward slicing, slices are computed by gathering statements and control predicates
through backward traversal of the program dependencies, starting at the slicing criterion
[56]. The slices are mostly obtained by traversing the edges of graph towards the root

node.

2.1.2 Forward program slicing

A forward program slice contains all statements and control predicates dependent on the
slicing criterion. A statement is ‘dependent’ on the slicing criterion: 1) if the value

computed at that statement depend on the values computed at the slicing criterion or 2) if

the values computed at the slicing criterion determine the fact if the statement under

consideration is executed or not.

2.1.3 Removable Blocks

Korel introduced the notion of removable blocks in [29] and described it as the part of
program text (code) that can be removed during slice computation. A block is described
as the smallest component of the program text that can be removed (e.g. assignment
statement, input and output statements, etc.). Test nodes (predicates of conditional
statements) are not removable individually and therefore, they are considered part of a
complex block where they can be removed if none other block in the complex block is
said to be not removable. Intuitively, a block may be removed from a program if its
removal does not "disrupt" the flow execution on some input x. Each block B has a
regular entry to B and a regular exit from B referred to as r-entry and r-exit, respectively.
In unstructured programs, because of jump statements, execution may enter a block
directly without going through its r-entry; in this case, one can say execution enters the
block through a jump entry. Similarly, execution can exit a block without going through
its r-exit; in this case, the execution leaves a block through a jump exit. Let B, Bi B; be
a sequence of three blocks in a program. Block B, may be removed, if during execution
of the program on some input x, the execution exits from block B, through its r-exit,
enters block B, through its r-entry, leaves B, through its r-exit, and enters block B;
through its r-entry. If block B, is removed and the resulting program is executed on the
same input x, the program execution will, after leaving B, through r-exit, enter block B3

directly through its r-entry. In this case, the flow of execution is not disrupted by the

-10-

removal of block B,. Figure 3 shows the sample program represented in Korel's

removable block concept.

1lnormal_profit = 100 Bi|

2{ bonus_profit = 1500; B2

3, cin >>MSRP; B3|

4[iF (MSRP > 30000) B4
| '
| |

S5 honus profit =MSRP + bonus_profit ; BS,

6{ 'normal profit = MSRP + normal_profit ; B8! I

7 'Showroom _price = MSRP + bonus profit + normal_profit; B7

8' else B8:
| Z -
A | |

9./ “Showroom price = MSRP + normal profit; 89 |
b | ,

10.cout << normal_profit; B10|

11.cout <<bonus_profif; B11]

12.cout << Showroom price; B12;

Figure 3: Sample program (Figure 1) with removable blocks

-11-

2.2 Static program slicing

Based on the original definition of Weiser[60], static program slice S consists of all
statements in program P that may affect the value of variable v at some point p. The slice
is defined for a slicing criterion C=(x, V), where x is a statement in program P and V'is a
subset of variables in P. Given C, the slice consists of all statements in P that potentially
affect variables in ¥ at position x. Static slices are computed by finding consecutive sets

of indirectly relevant statements, according to data and control dependencies.

normal_profit = 100;
2% bonus_profit = 1500;
3°. cin >>MSRP;

4. if (MSRP > 30000)

{
5. bonus_profit = MSRP + bonus_profit ;
6°. normal_profit= MSRP + normal_profit ;
7. Shoom_price = MSRP + bonus_profit + normal_profit;
!
s
8. else
{
9%, Showroom_price = MSRP +normal_profit ;

]
f

12'°. cout <<Showroom price;

Figure 4: Static slice for variable Showroom_price
2.2.1 Advantages and disadvantages of static program slicing
Static program slicing [60] derives its information through the analysis of the source
code. Its strength can be found particularly in the following areas:

(a) The computation of a static program slice is relatively rapid (compared to the
dynamic program slice) as only the static analysis of the source code and no analysis

of program execution is required

-12-

(b) It helps the user to gain a general understanding of the program parts that contribute
to the computation of a selected function with respect to all possible program

executions.
(c) It is not necessary to identify relevant input conditions.

However, static program slicing has some major drawbacks and they are as follows:

(a) For programs containing conditional statements. dynamic language constructs like
polymorphism, pointers, aliases, etc., static slicing has to make conservative
assumptions with respect to their run-time contribution that might be relevant for
slice computation.

(b) Due to its static nature, static program slicing does not provide any information with
respect to the analysis of program executions as slices are based on static
information.

(c) In most cases, static program slicing produces larger program slices than the

dynamic program slicing algorithms.

2.3 Dynamic program slicing

The goal of program slicing is to find the slice with the minimal number of statements,
but this goal may not be always achievable in general static program slicing. A dynamic
program slice overcomes the limitations of the static program slicing algorithms as it is
based on a particular program execution (program input). A dynamic program slice, as
originated by Korel and Laski [24], is an executable part of the program whose behaviour
is identical, for the same program input, to that of the original program with respect to a

variable of interest at some execution position. In the existing dynamic program slice

-13-

algorithms. the major goal is to identify those actions in the execution trace that
contribute to the computation of the value of variable y? by identifying data and control
dependencies in the execution trace. However, it is also important to identify actions that
do not contribute to the computation of y?. The more such "non-contributing” actions that
can be identified, the smaller will be the dynamic program slice computed by the
algorithm. A slicing criterion of program P executed on program input x is a tuple
C=(x.y”) where)7 is a variable at execution position g. A dynamic program slice of
program P on slicing criterion C is any syntactically correct and executable program P’
that 1s obtained from P by deleting zero or more statements. In addition. the dynamic
program slice when executed on program input x, produces an execution trace 7', for
which there exists a corresponding execution position ¢’ such that the value of)7 in T,
equals the value of ? in T'.. A dynamic program slice P’ preserves the value of y for a
given program input x. The goal to find the smallest slice may be difficult; however. it is
possible to determine a safe approximation of the dynamic program slice that will
preserve the computation of the values of variables of interest. Most of the existing
algorithms of dynamic program slice computation use the notion of data and control
dependencies to compute dynamic program slices. Dynamic program slicing algorithms
presented in [3,13] do not compute correct slices for unstructured programs (shown in
[31]) and/or procedural language constructs. In [21], an algorithm for the computation of
inter-procedural slicing of structured programs was presented. However, this algorithm is
limited to structured programming language constructs. In [31], a dynamic program
slicing algorithm based on the notion of removable blocks was introduced. This algorithm

computed correct executable slices for unstructured non-object-oriented programming

-14-

languages. Later. the algorithm was further refined in [47] for all language constructs
found in major procedural programming languages. A forward computation of dynamic
slices for structured programs was introduced in [29] that does not require the recording
of an execution trace. A dynamic program slicing for object-oriented programs based on
forward computation was introduced in [62] that computes non-executable program

slices. but it is not based on the notion of removable blocks.

k

By last definition LD vk) of variable v* in execution trace Ty . it means. action ¥? such
y X

that (1) v € D(¥P) and (2) for all i, p < i < k and all Z such that Ty, (i)=Z, v € D(Zi), in

other words, action ¥P assigns a value to variable v and v is not modified between

positions p and k. For example, the last definition of variable Showroom_price at node

127 in execution trace of Figure 2 is action 9.

Dynamic data dependence captures the situation where one action assigns a value to an
item of data and the other action uses that value. For example. in the execution trace of

Figure 2, 33 assign a value to variable MSRP and 4% uses that value.

Dynamic control dependence captures the influence between *test” actions and actions
that have been chosen to be executed by these “test” actions. The concept of control
dependence may also be extended to actions by using the concept of control dependence

between nodes. Action Z* is control dependent on action Y iff (1) p <k, (2) Zis control

dependent on Y. and (3) for all actions X' between Y* and Z, p < i < k X is control

-15-

dependent on Y. For example, action 9°is control dependent on action 4* as action 8’ is
control dependent to 4% in the execution of Figure 2. Figure 5 shows a dynamic program
slice for variable Showroom_price at block 12, with input MSRP = 25000. A dynamic
program slice can be regarded as a refinement of the static program slice. By applying
dynamic analysis [24], it is easier to identify those statements in the program, that do not

have influence on the variables of interest.

1t normal_profit = 100;
3. cin>>MSRP;
4. if (MSRP > 30000)
{
| }
8. else
) {
9. Showroom_price := MSRP + normal_profit;
}
12°. cout<<Showroom price;

Figure 5: Dynamic slice for Showroom_price at block 12,
with input MSRP = 25000

2.3.1 Advantages and disadvantages of dynamic program slicing

As already stated, dynamic program slicing is a further refinement of static program

slicing, the following are considered the main advantages as compared to the later:

(a) Dynamic program slicing allows a reduction in the slice size and a more precise
handling of arrays and pointer variables at runtime.

(b) Dynamic program slicing computation can utilize information about the actual
program flow for a particular program execution, which leads to an accurate
handling of dynamic and conditional language constructs and therefore, leads to

smaller program slices.

-16-

(c) Allows for additional application in performance analysis and debugging.
There are few associated disadvantages to get the above benefits such as:

(a) In dynamic program slicing (compared with static slicing), it is necessary to identify
relevant input conditions for which a dynamic program slice should be computed. A
commonly used approach to identify such input conditions is referred to as an
operational profile, which is a well-known concept that is frequently applied in

testing and software quality assurance.

(b) The computation of dynamic slices is based on a particular program execution that
incurs a high run time overhead due to the required recording of program executions

and/or analysis of every executed statement.

24 Hybrid program slicing

Hybrid program slicing algorithms takes advantage of the best properties of both static
and dynamic slicing to derive a compromising slicing solution. However. very few
research work focus on this type of slicing. Gupta and Souffa in [15] used pre-set
breakpoints history information in their static slicing to solve conditional predicates.
They characterized the procedure as follows:

(a) The user sets the breakpoints and starts the execution.

(b) When the breakpoint is encountered, the user examines the values of variables at

breakpoint.

-17-

(c) If the values are as expected. the user resumes the program execution. However,
before resuming the execution, the user may disable some breakpoints or add new
ones.

(d) If the values are incorrect, the user requests slicing information for selected
variables to potential causes of errors.

Information on conditional predicates helped to reduce the size of the static program slice
without having to generate complete execution trace of the program. It assumes that the
user can identify the breakpoints at various points in the program. Limitations of this
approach are that it only supports structured programs, assumes user’s knowledge of
program for breakpoints and it might not compute executable slice. It is generally agreed
that mixing of static and dynamic program slicing is a good compromise between
accuracy and time performances. However, the user should interfere as little as possible
to compute the slice [49]. Gupta et al. in their paper [15], have presented an algorithm
based on breakpoint history and some experimental results of their work. Schoenig and
Ducass'e [49] hybrid backward slicing algorithm for Prolog and is only applicable to a
limited subset of Prolog programs. They developed only preliminary prototype and there

is no further research evidence on their algorithm or test results.

2.4.1 Comparison of hybrid program slicing with other program slicing

approaches

Dynamic program slicing algorithms have the advantage of being able to handle dynamic
language constructs. However, the computation of dynamic slices is based on a particular

program execution that incurs a high run time overhead due to the required recording of

-18-

program executions and/or analysis of every executed statement. The time and space
required for recording execution trace and traversing the same trace depends on the
number of times each of these executed statements might be significant. For example, if
the program has a “for” loop for n times and has m statements in the loop, then the m x n
entries have to be stored/traversed and analyzed. Many statements are executed merely
because they are part of the program flow but their execution might not be relevant at all
for the computation of the selected function. In the above example, for instance, say there
are only | statements that are relevant to the computation of the selected function. This
will result in unnecessary tracing and traversing of ((m-I)+1) x n executed statements
during slice execution.

As the source code size grows, space and time complexity increases drastically for the
dynamic program slice computation due to number of executed statements that have to be
stored and analyzed.

Static program slicing, on the other hand, only analyzes the source code and requires,
therefore, less of an overhead during the slice computation. As already stated. it computes
conservative program slice, which is an undesirable property. At the same time, the cost

for computation is far lower than the dynamic program slicing.

In short, hybrid program slicing uses the cheaper computational properties of static
program slicing presented in [15], and at the same time, improves the accuracy of the
slice with minimal incremental cost. However, the algorithm presented in [15] is clearly
not the choice for larger programs as it is impractical to set breakpoints for every

conditional statement unless the user has a very good understanding of the code.

-19-

Definitely, the quality of the slice should be progressed towards dynamic program slice.
To achieve better slicing algorithms, one of the logical steps is to give the user some
choices to choose between size and accuracy. One choice is to reduce the size of the
execution trace recording in dynamic program slicing by some means. One of the ways
to reduce the recording trace is to use the condensed program such that unwanted
statements are executed in the first place. Another approach is to suspend the execution

trace recording at a given criterion.

24.2 Advantages and disadvantages of hybrid program slicing

As stated earlier, hybrid program slicing uses properties of both static and dynamic

program slicing, taking advantage of both approaches:

(a) Tt allows for a reduction of space and time complexity for the computation.

(b) It computes a slice of higher or equal precision than the static slice.

(c) It helps programmers to carry out multiple executions at a low cost with various
values for the same variable to understand behaviour of the source code.

However, to bring the two major program slicing techniques together, hybrid program

slicing has to carry out additional work and it poses a few disadvantages:
(a) Additional run time requirements compared to static program slicing.

(b) Not all the hybrid program slicing guarantees the accuracy of dynamic slicing as it

depends on the hybrid program slicing algorithm and criterion.

-20-

3. Integration of program slicing within CONCEPT

3.1 CONCEPT a comprehension framework

The CONCEPT project was developed to provide an open software comprehension and
maintenance framework [47]. The CONCEPT framework is developed using a program
slicing tool presented in [32.33]. It provides a platform for the development of advanced
program slicing algorithms, slicing related features as well as applications and
visualization techniques for both functional and object-oriented programs. The
motivation for the project is to provide an open environment that supports a variety of
cognitive models and visualization & algorithmic comprehension techniques to guide
users during various program comprehension tasks. For example, understanding and
analyzing of existing source code and the comprehension of program executions etc.
Providing higher levels of visual abstraction might not be enough to guide programmers
during the complex tasks such as software comprehension of large software systems
[5,21]. Most program comprehension tools represent more a collection of somewhat
independent tools that provide certain analysis or visual abstraction approaches. Users (in
particular novice users) are frequently confronted with a significant initial learning curve
caused by the large set of less intuitive functions and their associated information. Within
the software engineering community, well-known concepts of good software design are
module cohesion and module coupling. In the CONCEPT environment, we try to
overcome limitations of current comprehension tools with respect to their functionality
and learnability by applying the concepts of coupling and cohesion on the functional level
of program comprehension tools. One of the CONCEPT design goals is to maximize the

cohesion and minimize the coupling of the available functionality within the tool.

221 -

Functional cohesion means a collection of tools that form from a user and task
perspective, a set of coherent functions providing them with the functionality required to

master a particular task and its associated information (Figure 6).

Traditional Comprehension MOOSE - a coherent set of
Tools task driven functionality
— Tcular program
Dynamic Diagram) comprehension
Sequence - onmal
Visualization o
technique
— Tfﬂucncmg program
r)ymmic/Smuc slicing ' [applications

Figure 6: Task-oriented functional cohesion from a user perspective

3.1.1 CONCEPT - Architecture

The CONCEPT architecture (Figure 7) is based on five major components: (1) task and
user centred approach that will guide users during comprehension of specific tasks
(slicing framework), (2) an algorithmic framework. providing analysis and metric
functionality, (3) an application framework that provides a set of applications supporting
various comprehension tasks, (4) the visualization support and (5) an underlying
repository that provides a communication and interaction interface among all the parts of

the environment.

Algorlthmic support(2)
S licing Fram ework(1')_

P B o e Lo oy B ARV N PR

Figure 7: CONCEPT program comprehension framework

-22.

The CONCEPT environment was designed with two major goals in mind. The first goal
was to provide a suite of tightly integrated tools with a set of coherent functionality. The
second goal was to create an open environment that can easily be extended with new
tools, algorithms, and applications to meet future demands. These goals are achieved by
creating a general framework that consists of several sub-frameworks as illustrated in

Figure 8.

Visualization

.Comprehension
framework

Reposio ry

eering

Algornthmi c@ i

framework

Application
framework

Figure 8: The open CONCEPT architecture with sub-frameworks

Figure 9 shows the abstract system design of the CONCEPT framework. The system
design allows the addition of modules without having to modify the overall system as
they exchange the data using the adapter layer. The new modules such as static and
hybrid program slicing algorithms need to use the adapter for external data storage and

retrieval. Within CONCEPT framework an algorithmic sub-framework has been

-23-

implemented that uses program slicing for algorithmic analysis of sub-programs. The
algorithmic sub-framework is an integrated part of CONCEPT framework providing an
open architecture that can be expanded to use different algorithms utilizing static and
dynamic information. The information is derived through reverse engineering and is
stored in framework repository. Parser layer interfaces the source code through adapter

for visualization support within CONCEPT framework.

WVISUALIZATION

PARSER ALGORITHMS

REPOSITORY

Source code intermediate files

Figure 9: CONCEPT system design

3.1.2 CONCEPT - A user-centered approach

Evidence culled from day-to-day experience tends to indicate that, in most cases.
software engineering technology can meet business benefits and requirements and yet.
still be quite challenging to use and learn. Many definitions of usability exist, often
making usability a confusing concept. Generally speaking, usability of software refers to
how easy it is to use and how easy it is to understand. For an inexperienced user, ease of
use is coupled closely with ease of learning and does not necessarily imply a high
performance in task completion. Whereas experienced users are interested in completing
a wide range and number of tasks with minimal obstruction. A usable system would,
therefore, be easy to use and learn over time while allowing to gain experience in the
process [58]. Despite efforts made by managers to render the transition more “user-
friendly”, the associated help documentation and training material, although precise and
perfectly describing the product, are often delivered in an esoteric and unreadable
language. Thus rendering the product and its document inconsistent. This could
contribute to the rejection of the product by its users. It also explains a large part of the
frequently observed phenomenon of modifying the product or the documentation after it
has been deployed.

A typical CONCEPT interactive interface is shown in the following figures.

7, CONCEPT

Figure 10 : CONCEPT parent Window -1

-25-

int free‘unction {inl passvariable} i 1. Tice =]
{. ! ElDiagrams '
int localfree; ! Class
localfiee - saccvariabls; : Sequence
1etun (locdfree); . Collaboration
} Charts
o & Statistics
void main() Memory
{ Slice hme
int a;
intc;
a=10;
ba 20,
c=30;
of
AN of”!

[Statement Numbe- 13 ‘Statement NunberICriv-kom Execulon): 24 43

Figure 11: CONCEPT- 2 Figurel2: CONCEPT-3

The user first interacts with CONCEPT framework using interface as shown in Figure 10.
The user then loads the specific program source code into CONCEPT through File/Open
menu options. This inturn will display the source code in the display screen (Figure 11).
The user will now have to parse the source code using Parse option on the menu bar or
press concerned button on main tool bar. CONCEPT will now create necessary repository
files and display screen (Figure 12) to enable user to view various diagrams such as Class
diagram (Figure 13), Sequence diagram (Figure 14) and collaboration diagram (Figure
15). User will also be able to create slices (Static, Dynamic, Hybrid and Alternate hybrid)

through Slice menu option and respective sub options.

-26 -

}__‘_ Dynaemic Cless Maodel

Figure 13: Class diagram as sliced and depicted by CONCEPT
In the CONCEPT class model slice (Figure 13). a class member function will be included
in the slice if at least one statement in the member function is the part of the program

slice. This also includes any cascading relationship among classes relevant to slice.

.. Sequence Diagram

Figure 14: Sequence diagram as depicted by CONCEPT

-27-

The CONCEPT framework provides some of the traditional visual abstraction, e.g. call-
graph with enhancements in the navigation process and newer approaches for static and
dynamic views of the larger object oriented system and their execution. Other abstraction
techniques extend the standard UML notation of a class model, sequence and
collaboration diagram by applying a reengineering process to derive dynamic sequence
diagrams (Figure 14). dynamic collaboration diagrams (Figure 15) and class diagrams

(Figure 13).

', Colbaboraton Dagram H=1E3

Figure 15: Collaboration diagram as depicted by CONCEPT

-28-

4. Alternate approach to hybrid slicing

After considering the advantages and disadvantages of various slicing techniques, which

are presented in chapter 2 and summarized in the table below (Figure 16).While

CONCEPT currently uses all the three techniques, neverthless, we have proposed and

integrated in CONCEPT an alternative approach to hybrid slicing. This approach utilizes

slicing algorithms already implemented in the CONCEPT framework and at the same

time overcomes the major disadvantages of the hybrid algorithm presented in section 2.4.

This new alternate hybrid algorithm reduces the run time overhead required by the

original hybrid algorithm.

Static slicing

Dynamic slicing

Hybrid slicing

Advantages:
Cheap as no analysis of an

Provides a general way to
understand the program.

No operational profile is
necessary.

Disadvantages:

No dynamic execution trace
is available for dynamic
analysis of program
executions.

Outputs a large slice.

execution trace is necessary.

Advantages:
Provides information about

actual program flow.

Facilitates testing and
debugging.

Outputs a smaller slice.

Disadvantages:
Requires high run time

overhead.

Requires an operational
profile.

Advantages:
It allows for a reduction

of the space and time
requirements for the
computation.

[t will help the
programmer to carry
out multiple executions
at a low cost.

Outputs a smaller slice.

Disadvantages:
Additional run-time
overhead is required as
compared to static
program slice.

Figure 16: Comparison of various slicing techniques

-29.

In this new approach, an executable static slice will first be computed. In the next step.
the repository file such as “Executed_statement.txt” will be examined and based on the
dynamic information available in this file, the system will highlight the statements in the

new alternate hybrid slice that are part of static slice and executed.

The different steps involved in the computation of alternate hybrid slice arc ciiumerated

below:

—

. The original program will be parsed.

[

. An executable static slice will be computed.

. The static slice will be executed keeping track of executed statements.

LI

4. The static slice will be combined with the executed statements as available in the

Executed_Statements.txt file and new alternate hybrid slice will be generated.

w

. The slice will be displayed.

The process can be well illustrated on the source code shown in Figure 17.

1. void main(){
2.1=0;
3. while (i <2) {
4. if(i==0)
5. a=95;
6. else
7. a=10;
8 i+t

H
}

Figure 17: Source code of Sample_1 program

-30-

Figure 18 shows the execution trace for the Sample_1 program (Figure 17) combining

the data and control dependencies for variable "a".

=<123456.7.8>

Statement number | Execution count Code

1 1 void main()
2 1 i=0;

3 2 while (i <2)
4 1 if (i==0)

5 1 a=S§;

6 2 else

7 2 a=10;

8 2 i+

Figure 18: Executed_statements file for Sample_1 program by CONCEPT

Based on the slicing techniques discussed in section 2, the slices of the Sample !

program (Figure 17) using different slicing approaches are shown in Figure 19.

Static slicing

Dynamic slicing

Alternate hybrid slicing

1. void main(){

3. while (i <2)

{
4. if(i==0)
5 a=35;
6. else
7 a=10;
8. it

}
}

1. void main(){

o

1=0;

(95)

while (i <2)
{

4. if(i==0)
6. else

7 a=10;
8. it+;

;
}

p—

. void main(){
2.i=0;

3. while 1<2)

{
4. if(i==0)
5. a=35;
6. else
7. a=10;
8. i+

}

Figure 19: Slices obtained for Sample_1 program using different techniques

-31-

It can well be observed from Figure 19 that the slice created by the alternate hybrid
approach is the same as the one computed by the static slicing approach and in this case
there has not been any tangible gain by using this technique. The dynamic slicing
approach will provide in this case, a smaller and more precise slice for a given slicing
criterion compared to the static or alternate hybrid slicing algorithms. However, for the
Sample_2 program (Figure 20) the alternate hybrid slicing algorithm will compute a

smaller slice than the static algorithm. The slice will be identical to the dynamic slice.

1. void main(){

2.1=0;

3. if(i==0)
4 a=3;
5. else

6 a=10;
7

Figure 20: Source code for Sample_2 program

Figure 21 shows the execution trace for the sample_2 program shown in Figure 20.

T.=<12347>

Statement number Execution count Code

1 1 void main()
2 1 i=0;

3 1 if(i==0)
4 1 a=5;

7 1 1+

Figure 21: Executed_statements file for Sample_2 program

-32-

Once we compute the alternate hybrid slice, the traditional static and dynamic slice for

the for Sample_2 program, we can compare the different slices (Figure 22).

Static slicing Dynamic slicing Alternate hybrid slicing
1. void main(){ 1. void main(){ 1. void main(){
2.1=0; 2.i=0; 2.1=0:

3. if@i==0) 3. if(i==0) 3. if(i==0)

4 a=35; 4. a=95; 4. a=35:

5. else 7. i+ 7. i++;

6 a=10; } ¥

7. it

Figure 22: Slices obtained for Sample_2 program using different techniques

In Figure 22, one can observe that the alternate slicing approach computes the same slice
as the dynamic slicing approach. however, without requiring the recording of a complete

dynamic execution trace and thereby reducing the required runtime overhead.

4.1 Advantages and disadvantages of the alternate slicing approach

(a) The computation of the alternate program slicing approach is relatively rapid
(compared to dynamic program slicing) as only the static analysis of the source
code is conducted and no detailed analysis of program execution is required.

(b) The alternate hybrid slice assists the user to gain a general understanding of the

-33-

program parts that contribute to the computation of a selected function and a
particular program execution.

(c) For specific program flow and slicing criterion discussed above, this approach may
compute a much smaller slice than that computed by static slicing approach.

Nevertheless. the alternate program slicing has some drawbacks. which are elaborated
below:

(a) For programs containing dynamic language constructs like arrays. pointers, aliases,
etc., the alternate hybrid slicing has to make some conservative assumptions with
respect to their run time contribution similar to the one made by static slicing and
therefore, frequently computes larger slice than dynamic slicing algorithm.

(b) As this approach does not take into consideration all the information regarding

execution trace, the slice created may not provide all the information necessary for

a detailed analysis of program execution.

-34-

S. Conclusions and future work

5.1 Conclusions
In this report, we have presented and discussed general program slicing techniques
which include static, dynamic and hybrid slicing techniques. A new alternate technique to

hybrid slicing has also been proposed, discussed and integrated in the CONCEPT project.

The results of the static and alternate hybrid slicing obtained through CONCEPT are
very encouraging and produce almost correct slice as anticipated for all language

constructs found in object oriented programming language.

5.2 Future work

As part of the future work, it is proposed to include criterion-based hybrid slicing
algorithm in the CONCEPT framework and also to combine criterion-based slicing with
the new alternative hybrid slicing approach. New slicing related concepts as well as new
visualization techniques should be derived to take advantage of the algorithms. In
addition, integration of forward program slicing algorithms within hybrid slicing
framework has to be developed to investigate additional usability aspects of CONCEPT

environment.

53 Analytical analysis to be conducted

It is now planned to conduct an experimental analysis of the various slicing algorithms

presented in this report using a variety of programs to illustrate the benefits and

-35-

limitations of each approach.

It is anticipated that hybrid program slicing run time will be greater than the static
program slicing, which may be acceptable to achieve better accuracy. The hybrid
program slice run time will also be much lower than dynamic program slicing because

many non-contributing statements have been removed using static program slicing.

However, further analytical experiments have to be carried out to compare the hybrid
program slicing algorithm with static and dynamic program slicing. Through this
analytical analysis, certain properties will be evaluated which will allow further study of
slicing algorithms in the context of their accuracy, limitations, time and space complexity
and behavior for different types of programs and program executions. The properties we

plan to use are the following:
5.3.1 Correctness

Correctness of the slice is defined for each of the language constructs that are handled
properly by the algorithm. This property has to be tested with sample programs with
different language constructs, for example, conditional statements, loops. class constructs

etc. for the proposed algorithms with the existing algorithms.
5.3.2 Accuracy

The goal of slicing is to compute the smallest executable subprogram from the original
program. This property is referred to as accuracy of the program slicing algorithm.
Again, this property has to be tested with sample programs with the new algorithm as

well as with other existing algorithms.

-36 -

5.3.3 Time complexity

Time complexity is dependent on the execution length and size of the program to be
sliced. This property can be analytically verified using the computation time for different

algorithms with same slicing criterion.
5.3.4 Space complexity

Space complexity is dependent on the amount of data used for the analysis in any
algorithm at any one time. This property can be verified by memory requirements during

the computation of slice using different algorithms with the same slicing criterion.

Further experiments need to be carried out in the above category with the same
conditions across the experiments. In other words, the comparison with different
algorithms shall use the same sample program, slicing criterion and where applicable.
same execution length. This data could be useful in optimizing the slicing algorithms

within the CONCEPT framework.

Program Computation Time for Computation Time for Computation Time

Hybrid slicing statie slicing for dvnamic slicing
Programl X1 seconds Y! seconds Z1 seconds
Programx Xx seconds Yx seconds Zx seconds

Figure 23: Computation time for slicing the sample programs

-37-

Program Memory resources for — Memory resources for - Memory resources

Hy brid slicing statie slicing for dvnamic slicing
Programl X1 kB Y1 kB ZI kB
Programx Xx kB Yx kB Zx kB

Figure 24: Memory resources for slicing the sample programs

Using the above information, CONCEPT users can determine the particular type of
slicing algorithm to be used in a the particular case, based on the time and space

availability of each algorithm.

-38-

References

10.

1.

12.

13.

Agrawal, H., “Towards automatic debugging of computer programs”, Technical
Report SERTC-TR-40-P, Purdue University, 1989.

Agrawal, H. and Horgan, J, “Dynamic program slicing”, In Proceedings of the ACM
SIGPLAN'90 Conference on Programming Language Design and Implementation,
SIGPLAN Notices, 25(6), pp. 246-256, 1990.

Agrawal, H.. DeMillo, R., and Spafford, E., “Debugging with dynamic slicing and
backtracking”, Software — Practice and Experience, 23(6), pp. 589-616. 1993.

Agrawal, H., “On Slicing programs with jump statements”, /n Proceedings of the
ACM SIGPLAN'94 Conference on Programming Language Design and
Implementation, pp. 112-135, 1994.

Binkley D. and Gallagher K., “Program Slicing™, Adv. in Computers, 43, Academic
Press, pp. 1-52, 1996.

Chen J.L., Wang F.J., and Chen Y.L., "Slicing object oriented Programs”. /n
Proceedings of the APSEC'97, pp. 395-404, Hongkong, China, December 1997.

Cheng, J.. “Slicing concurrent programs a graph-approach”, In Proceedings of the
First International Workshop on Automated and Algorithmic Debugging (1993), P.
Fritzson, Ed., Vol. 749 of Lecture Notes in Computer Science, Springer-Verlag, pp.
232-245, 1993

Choi, J.-D., Miller. B., and Netzer, R., “Techniques for debugging parallel programs
with flowback analysis”, In ACM Transactions on Programming Languages and
Systems, 13(4). pp. 491-530, 1991.

Desmarais, M.C., Liu, J. "Exploring the applications of user-expertise assessment for
intelligent interfaces". In Proceedings of InterCHI'93, Bridges between worlds
(Amsterdam, 24-29 April), pp. 308-313, 1993.

Duesterwald, E., Gupta, R., and Soffa, M., “Distributed slicing and ", In Proceedings
of the fifth workshop on Languages and Compilers for Parallel Computing, New
Haven, Connecticut, partial re-execution for distributed programs pp. 329-337, 1992.

Ferrante, K., Ottenstein, K, and Warren J. “The Program Dependence Graph and its
use in Optimization”, In ACM Transactions on Programming Languages and Systems,
9(5), pp-319-349, 1987.

Gallagher, K. and Lyle, J., “Using program slicing in software maintenance”. /EEE
Transactions on Software Engineering, 17(8), pp. 751-761, August 1991.

Gopal, R., “Dynamic program slicing based on dependence relations”, In Proceedings
of the Conference on Software Maintenance, pp. 191-200, 1991.

-39.

14.

15.

16.

17.

18.

19.

S8
88

~
[O%]

N
N

N
W

D
(=)}

27.

Gupta, R., Harrold. M., and Soffa, M., “An approach to regression testing using
slicing”, In Proceedings of the Conference on Software Maintenance, pp. 299-306,
1992.

Gupta, R., Soffa. M. and Howard J., “Hybrid Slicing: Integrating Dynamic
Information with Static Analysis”, In ACM Transactions on Software Engineering and
Methodology, 6(4), pp. 370-397, October 1997.

Harman M. and Gallagher K., editors, Journal of Information and Software
Technology Special Issue on Program Slicing, volume 40. Elsevier, 1998.

Hart. J.M, “Experience with Logical code analysis in software reuse and
reengineering”. In 4/AA computing in Aerospace, 10, pp. 1243-1262. San Antonio,
Texas, March 28-30. 1995.

Hendley R., et al.: “Case Study - Narcissus: Visualizing Information”, In Proceedings
of the IEEE Information Visualization 93, pp. 90-96, 1995.

Horwitz S.. Reps, T., and Binkley, D.. “Interprocedural slicing using dependence
graphs”, In ACM Transactions on Programming Languages and Systems, 12(1), pp.
26-61. 1990.

. Horwitz, S. and Reps. T.. “The use of program dependence graphs in software

engineering”, In Proceedings of the l4th International Conference on Software
Engineering, pp. 392-411, Melbourne, Australia, 1992.

. Kamkar M., “Interprocedural Dynamic Slicing with Applications to Debugging and

Testing”, Ph.D. Thesis, Linkoping University, 1993.

. Kamkar M.. Fritzson. P.. and Shahmehri, N., “Three approaches to interprocedural

dynamic slicing”. Microprocessing and Microprogramming, (38), pp. 625-636, 1993.

. Karanth B.A *“Utilizing notation of removable block to enhance program slicing

algorithm”, Master thesis ,Concordia University, Montreal. June 2001.

24. Korel, B. and Laski, J., “Dynamic program slicing”, In Proc. Letters, 29(3), pp. 155-

163, Oct. 1988.

. Korel, B., “PELAS - Program Error Locating Assistant System”, In [EEE

Transactions on Software Engineering, 14(9), pp. 1253-1260, Sept. 1988.

26. Korel, B. and Laski. J., “Dynamic program slicing”, In Proc. Letters, 29(3), pp. 187-

195, 1990.

Korel, B. and Ferguson, R., “Dynamic slicing of distributed programs”. Applied
Mathematics & Computer Science Journal, 2(2), pp. 199-215, 1992.

-40-

29.

30.

31

34.

35.

36.

37.

38.

39.

40.

. Korel, B., “Identifying faulty modifications in software maintenance”, Proceedings of

the I** International Workshop on Automated and Algorithmic Debugging, pp. 341-
356, Link6ping, Sweden, 1993.

Korel, B. and Yalamanchili, S., “Forward Derivation of Dynamic Slices”. In
Proceedings of the International Symposium on Software Testing and Analysis, pp.
66-79, Seattle, 1994.

Korel, B., “Computation of Dynamic Slices for Programs with Arbitrary Control-
flow”, The 2nd International Workshop on Automated and Algorithmic Debugging,
pp. 1-41. St. Malo, France, 1995

Korel. B., “Computation of dynamic slices for unstructured programs”. /n [EEE
Transactions on Software Engineering, 23(1), pp. 17-34, 1997.

. Korel B. and Rilling, J., “Application of Dynamic Slicing in Program Debugging”,

Third International Workshop on Automated Debugging (AADEBUG'97), pp. 59-74.
Link6ping, Sweden. May 1997.

. Korel. B. and Rilling, J.. “Program Slicing in Understanding of Large Programs™. In

Proceedings of the 6" IWPC ‘98, pp. 145-152, Ischia, Italy, June 1998.

Korel, B. and Rilling, J., “CASE and Dynamic Program Slicing in Software
Maintenance”, Special issue of the International Journal of Computer Science and
Information Management, (June 1998)

Krishnaswamy A., "Program slicing: An application of object-oriented Program
Dependency Graphs”. Technical report TR94-108, Computer Science Department,
Clemson University, 1994.

Kung D. Gao J. et al. “Developing an object-oriented software testing and
maintenance environment”; /n Commmunications of the ACM, Vol. 38. Issue 10
(1995), pp- 75-87.

Larsen L.D. and Harrold M.J., "Slicing Object oriented software", Proceeding of the
18" International conference on Software engineering, March,1996.

Law R.C.H., "Object-Oriented Program Slicing" Ph.D. thesis, University of Regina,
Regina, Canada, 1994.

Lyle, J. and Weiser, M., “Experiments on slicing-based debugging tools”,
Proceedings of the Ist Conference on Empirical Studies of Progrmes.”. pp. 187-197,
6/ 1986.

Mayerhauser A, Vans A. M.. “Program Understanding Behavior During Adaptation of

Large Scale Software”, Proceedings of the 6" International Workshop on Program
Comprehension IWPC ‘98, pp. 164-172, [schia, Italy, June 1998.

-41 -

41.

42.

43.

44.

46.

47.

48.

49.

50.

Ottenstein, K., and Ottenstein, L., “The program dependence graph in a software
development environment”, In Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development Environments,
SIGPLAN, 19(3), pp.177-184, 1984.

Reps, T., and Horwitz S., “Semantics-based program integration”, In Proceedings of
the Second ACM European Symposium on Programming (ESOP'88), pp. 133-145,
Nancy, France, March 1988.

Reps, T. and Bricker, T., “Semantics-based program integration illustrating
interference in interfering versions of programs”, In Proceedings of the Second
International Workshop on Software Configuration Management, pp. 46-55.
Princeton, New Jersey, Oct. 1989.

Richner, T. and Stéphane Ducasse, “Recovering High - Level Views of Object -
Oriented Applications from Static and Dynamic Information”, In Proceedings of
ICSM'99, September. IEEE Computer Society Press, pp. 13-22, 1999.

. Rothermel G. and Harrold, M. J., “Selecting tests and identifying test coverage

requirements for modified software”, In Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 169-184, August
1994.

Rilling, J., “Maximizing functional cohesion of comprehension environment by
Integrating user and task knowledge”, Computer Science Department. Concordia
University, Montreal.

Rilling, J.. “Investigation Of Dynamic Slicing And Its Application In Program
Comprehension”, Ph.D. Thesis; lllinois Institute of Technology. July 1998.

Rilling, J. and Seffah, A., "Enhancing the Usability and Learnability of Software
Visualization Techniques through Task Wizards and Software Agents", 200/
International Conference on Imaging Science, Systems, and Technology (CISST'200),
June 25-28, 2001, Las Vegas, Nevada, USA.

Schoenig S. and Ducass'e. M., “A hybrid backward slicing algorithm producing
executable slices for Prolog”. In Proceedings of the 7th Workshop on Logic
Programming Env. Pages 41--48, Portland, USA, December 1995.

Seffah, A., "Training Software Developers in Critical Skills" [EEE Software
Magazine, June 1999.

. Seffah, A. and Rilling, J.. "Investigating the Relationship between Usability and

Conceptual Gaps for Human-Centric CASE Tools", [EEE Symposium on Human-
Centric Computing Languages and Environments, Stresa, ltaly, September 2001.

53.

54.

. Shimomura T., “The program slicing technique and its application to testing.

debugging and maintenance”, Journal of IPS of Japan, 9¢9). pp- 1078-1086, Sept.
1992.

Steindl, C.. "Intermodular slicing of object-oriented programs”. In International
Conference on Compiler Construction (CC'98), 1998.

Steindl, C.., “Static Analysis of Object-Oriented Programs”, 9" ECOOP Workshop for
Ph.D. Students in OO-Programming, Lisbon, Portugal, June 14, 1999.

. Storey, M., Wong, K. and Muller, H.A., "How do program understanding tools affect

how programmers understand programs?” Proceedings of the Fourth Working
Conference on Reverse Engineering, p. 12-21, Netherlands, October 1997.

. Tip F.. “A survey of program slicing techniques”, Journal of Programming

Languages, 3(3), pp- 121-189, September 1995.

. Tip F., Choi J.D., Field J. and Ramalingam G. "Slicing Class Hierarchies in C++."

Proceedings of the 11" Annual conference on Object-Oriented Programming,
systems, Languages. and Applications, pp.179-197, October,1996.

58.Walker, R.J., Murphy, G.C., Freeman-Benson, B., Wright, D., Swanson, D., Isaak, J.,

60.

61.

“Visualizing Dynamic Software System Information through High-level Models™.
Proceedings of OOPSLA'98, pp. 271-283, Vancouver, October 1998. Published as
SIGPLAN Notices 33(10), October 1998.

. Weiser M., “Programmers use slices when debugging”, Communications of ACM, 25,

pp. 446-452, 1982.

Weiser M., "Program slicing" JEEE Transactions on Software Engineering 10(4) .
pp352-357,1984

White L.and Leung, H., “Regression testability”, IEEE Micro, pp. 81-85. April 1992.

62. Zhao J., Cheng J. and Ushijima K, "Static Slicing of Concurrent Object-Oriented

63.

Programs", Proceedings of the 20" IEEE Annual International Computer Software
and Applications conference , pp.312-320, August, 1996, IEEE Computer Society
Press.

Zhao.J, " Dynamic Slicing of Object-Oriented Programs,” Technical-Report SE-98-
119, pp.17-23. Information Processing Society of Japan, May,1998.

-43 -

