INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with smail overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

NOTE TO USERS

This reproduction is the best copy available.

An Integrated Development Environment for

Moon Processor Simulator

Andrei Elson

A Major Report
In

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

April 2002

© Andrei Elson, 2002

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services
385 Wallington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68463-6

Canada

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fie Votre réidrence

Our fle Notra réfdrance

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

ABSTRACT

An Integrated Development Environment for
Moon Processor Simulator

Andrei Elson

The purpose of this Master’s Report is to create a software application called an
Integrated Development Environment (IDE) for Moon Processor Simulator. The product
is supposed to help students taking the Compiler Design course at Concordia University
to debug and test assembly code that was handwritten or generated by a compiler

generating moon code.

This document starts with describing the reasons and advantages of having a processor
emulator to test any assembly language. It then lists specifications and requirements of

the project and reasons for choosing the Java programming language for the

implementation.

The paper then lists Object Oriented principles and demonstrates how they are applied
during program design. The main goal of the project is to create a program that would be
useful, easy to use and fast to leam. The paper describes how these objectives are

achieved by following usability rules.

iii

TABLE OF CONTENTS

TABLE OF FIGURES \%!
1.0 INTRODUCTION 1
L1 PROJECT PURPOSEoeeiiiiccntiecncaietenente st te st e s ssses s eeeeseese e eeeee e eees s senes 1
1.2 MOON IDE DESCRIPTIONcoeiitieeeeeicieeeeeeeeeeee e e e oo ee e e e e e l
2.0 BACKGROUND 3
2.1 THE NEED FOR AN EMULATOR .cuentiteieeeeeeeeeeee e e 3
2.2 MOON REFERENCE ...cuutiitireetneeennieeteeeteeeseeseee st eseseessessssaemseessssesmessseees e e ssesee e 3
2.2.1 PrOCESSOFoccoveeieeieee et e e eee s s e e s e e 4

2. 2.2 INSIFUCHIONS ...ttt e e s e ee e 4
2.2, 2 REGUSIELS ...ttt ee et e e e e e 6
223 MEMOKY..........cveiiieeeee ettt e 6
2.2.4 Language Grammarcc.ooeeeeeeeeueeeieeeeeeeeeeeeeeeeeeeeeeee e eeeees e eee e er e 7

2.3 PROJECT SPECIFICATION.....c..ueeeutueieneenmetnasssaessssesseasesssassssssesesenesseseesteseeeeeeeeeesesees 7
24 WHY JAVA ..ottt s ees s e s st st e e e e e eeese e nesesesn 8
2.5 WHY SWING ..ttt et sseae e s ss s s e s e s e s et ees e eeeeeaeeen 8
2.5 AWT FEAIUFES ... e 8
2.5.2 SWING FEQLUFESc.oooviiimveieeieeeieneeeeeeeeeeeeeeee et es e 9
2.5.3 Comparison between AWT and SWing.....................cococoooeeeeeeeeeeeesereeeeeeeeern 9

3.0 IDE DESIGN 10
3.1 OBJECT ORIENTED DESIGNccvieiruiuuiiintineseetceeetet ettt ee e e e easenees 10

3 1.1 ERCAPSULQLION ...t 10

3 L2 INRErIIANCE...............coeoovieieeieeeeee e, 10
3.1.3 POIYMOIDAISI...........coeeeeeeeeeeeeeeeeeeeeeeeee e e 12

3.2 USER INTERFACE DESIGN CHALLENGES ...cvuvueuruititetttemteeeeeeeeeeveaeeeeeeeeeereee s senas 12
3.3 USER INTERFACE DESIGN AND USABILITY ..ovvuiuiveneeieieteeeeeceeeeee e eeseseee e 12
3.3.1 Program InstallQtionoeooeeeeeeeeeeiieeeeeeeeeeeeeeeeeeeeee e eenen 13
3.3.2 Program COPFECINESSeeueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeee s eseeeeee e e e e eeeee oo 13
3.3.3 Accessible and Well Written Helpooooeeeeeeeoreeeeeeeeeeoeeeeeeeseen 13
3.3.4 CONLIOl Of tRE SYSLEM........oceoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 14
3.3.5 SpStem FEEABACK............cuuuoeueneeeeeeeneeeeeeeeeeeeeeeeeeeeeeeeeeeee e e oo 14
3.3.6 System ReGUITEMENLSeeeeeeeeneereeeeeeeeeeeeeeeeeeeeeeeeeeeeeee oo 15
3.3.7 EXTOU PrEVERLION. ..o e 15
3.3.8 Meaningful Error MeSSAGESu..oueeeeeeeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 15
3.3.9 Minimization of User Memory Loadccooooeeoeeeeoeeeeeseeeoaeeen 15
3.3.10 Clearly Marked EXits.................oeeueeeeeeeeeeeeeeeeeeeeee e 16
3.3.11 Shortcuts for EXDert USEFSueeeeieeeeeeeeeeeeeeeeeeeeeeeeesee e eere e 16
3.3.12 POrtability...........coomeouiieeeeeeeeeeeeeeee e 17

3.4 MODEL-VIEW-CONTROLLER ARCHITECTURE ... eereeeeeeeeeeeeeeeeeeseeeee oo 17

v

4.0 IMPLEMENTATION 18

Q.1 PROBLEMS/SOLUTIONS ...ceoenetteteeeeeeeeseeeeeeesaeeseeasmeeeessaeasssesssssseeessesansessessnsesesessssns 18
4.1.1 DebUugEer Areq..............cuoomeeueeeeeeeeeeeeeeeeeeeaeeee et 18
God.2 SCPOIIING............eoeoeeeeeeeeeeeeeeeeeeeeeee et ee e 18

4.2 MODULES DESCRIPTION ...cveiueteeeeeeeeeeeeteeeseeeeeeeeseaeessaseseseeseseassssssesssessssseessssssssssessees 19
B2 L EQUIOF ... e e e e e e e e e e e e e e e 19
G222 HEIP ..ot e e e e e e e e reeann 20
G2 3 INSIPUCLION.eeeeeoeeeeeeeeeeeeeeeeeeee e ee e e eeae s s e e ee e e e e e s e e eeese s e e e eeeeee e e e eeeens 21
.24 LOAAR...............ooeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e ——— o 21
G.2.5 MEMOKY........ounoeoneeieeeeeeeeeeeet ettt e ee 21
G260 PAFSEE ...t e e e e e e e e e e e e s e e e e e e 21
4.2.7 REGUSIEFS ..ottt eas e e ee et ee ettt e e 22
G2EB RUNLIME.............ooeceoeeeeeeeeeeeeeeeeeeeee e e e e s eeeeee e se e s eeessesese s eeeeeseeennninnn D2
G2 SYMBOIS ... eeeeee e e e e e e e e e 22
4.2.10 USEr INLEIfACE ...ttt 23
G2 T T LS oo e e e e e e e e eee e e e ea e e e e e eaee e e e er e e e eeeeeessees 28

4.3 UNIQUE FEATURES ... eieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseseasessseseeaseesssssseeesseensesessssssenenesens 28
G.3.1 REIECHION ...ttt e e e e se e eeeeas 28
4.3.2 Text Buffer MOAIfiCQlion.....................coeeeereeeeeeeeieeeeeeeeeeieeeeeeee e 29
4.3.3 MEIROA TESHNGoouoeeniereeeeeeeereetete ettt 30

5.0 SOFTWARE QUALITY 31

S.T CORRECTNESS ..ttt eeeeeeeeeaeeeeseeaeesaasaeme e eeeeeesesessesmessesesssesnseseesseeseseesssesnes 31

S.2 ROBUSTNESS ...eteteteeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeesesseesseeseesseeseeeeeneeeesssseemessesee s e s oeees s e 31

S.3 MAINTAINABILITY .o caeeeeeeeeeeeeeeeeeeeeeeseeaeeeem e seseeseseeseeesensseensseseesssesnsesssseneseeesssseenes 31

SeB REUSABILITY .ot eeeeeeeee e eeeeeeeesaeessneeeseseseneseeeanseeeesmsesssseeseeessseeeseesnes 32

6.0 FUTURE ENHANCEMENTS 33

6.1 MODIFYING MEMORY CONTENT «eeeeeeeeteeeeeeeeeeemeeeeeeeeeeeeeeeeenseeeseeesesessssseseeseeesnas 33

6.2 BETTER SIMULATION REPORTING .«..eueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeseeessees e 33

6.3 PLUGGABLE ASSEMBLER ENGINE.....c..eoiietieteeeeeeeeeeeeereeeteeeeeeeeeeeeeeeeeeseeseesseeee oo 33

7.0 CONCLUSION 34
REFERENCES 35
APPENDIX A - TOP LEVEL CLASS DIAGRAM 36
APPENDIX B - FULL MOON IDE ON LINUX 37
APPENDIX C - MOON IDE API 38

TABLE OF FIGURES

FIGURE 1: DATA ACCESS INSTRUCTIONSceeveutemeeeteeeeeeeeeee e oo 4
FIGURE 2: ARITHMETIC AND LOGICAL INSTRUCTIONS OF TYPE A oo 5
FIGURE 3: ARITHMETIC AND LOGICAL INSTRUCTIONS OF TYPE B oo 5
FIGURE 4: INPUT AND OUTPUT INSTRUCTIONS .o e 6
FIGURE 5: CONTROL INSTRUCTIONScouvieiemieeeeee ettt eeee et 6
FIGURE 6: LANGUAGE GRAMMARuuimiimeeeeee e eeee e e e 7
FIGURE 7: DIRECTIVES ..ttt e e e e e ee e e 7
FIGURE 8: INHERITANCE EXAMPLE ..ottt e e e 11
FIGURE 9: HELP DIALOG ..o 14
FIGURE 10: ERROR MESSAGE ...ooueeeeeieiieieeeee et e e e e e e 15
FIGURE 112 SHORTCUTS .cvontiieeceeeeeeeeeeetee et e e e e e 16
FIGURE 12: MEMORY VIEWER........otiuiietieteeeeeeeeeeee oo e e et 19
FIGURE 13: EDITORBEAN ...t e 20
FIGURE 14: ABOUTDIALOG ...t 23
FIGURE 15: INPUT OQUTPUT VIEWEReueineieieteeeeeeeeeee e e eeee e 23
FIGURE 16: MEMORY VIEWER (NON-ZERO MEMORY IS DISPLAYED).......coeooveeerernn. 24
FIGURE 17: MOONDEBUGGERcovtuieiceeeeeeeeeete e e e e e e 25
FIGURE 18: REGISTERSVIEWERuvuveiieeeieeeeeteeeeeeee oo e e e e 26
FIGURE 19: MULTIPLEFILESSELECT ...ttt 26
FIGURE 20: CHARACTER INPUT DIALOGcveeeteeeeeeeeeee e 27
FIGURE 21: ASCIT INPUT DIALOG ...ttt 27
FIGURE 22: SYMBOLS TABLE ..ttt 28
FIGURE 23: EDITOR BEAN AP ..o 32
FIGURE 24: TOP LEVEL CLASS DIAGRAM ...t 36
FIGURE 25: MOON IDE ON LINUX ..ottt et 37
FIGURE 26: EDITOR BEAN APooeeiee 38
FIGURE 27: HELPVIEWER APL......o.oouiiiiiiieeeeeeeeeeeeee e 38
FIGURE 28: DATAWORD-INSTRUCTION AP 39
FIGURE 29: MOONLOADER, EXCEPTION AP ...t 39
FIGURE 30: MEMORY CLASSEES AP ...t 40
FIGURE 31: MOONPARSER, PARSEEXCEPTION AP ..o 41
FIGURE 32: REGISTERS APL.......oeeeeieee e e 41
FIGURE 33: RUNTIMEHANDLER, MOONRUNTIMEEXCEPTION AP ..o 42
FIGURE 34: MOONSYMBOLS APT ... 42
FIGURE 35: MOONDEBUGGER APloutieeieeeeeeeeeeeee e 43

vi

1.0 INTRODUCTION

This section describes the project purpose and description of the implemented program.

1.1 Project Purpose

The purpose of this master's report is to develop a visual tool called “An Integrated
Development Environment for Moon Processor Simulator”. An Integrated Development
Environment (IDE) is a software application used by developers to write, run, and debug
programs. Moon IDE software consists of a code editor, compiler, loader, interpreter,
debugger and additional windows to show simulation context. The tool will be used to

test and debug Moon language scripts.

Dr. Peter Grogono [1] developed the Moon language at Concordia University, Canada, to
help the students taking the Compiler Design course to test their compilers. Dr. Grogono
also implemented an inline interpreter to test the scripts using the C programming
language. The interpreter serves its purpose but lacks a visual interface. The development
of a visual Moon processor simulator is the next logical step, since it would allow
students to edit scripts within the IDE, test scripts for syntax errors, and load scripts.
Users would be able to interact with the debugger, visually see simulated memory and

registers content, and so on.

1.2 Moon IDE Description
Moon IDE is build using the Java programming language. The tool has a Swing user

interface, and it supports the following operations:

e editing of Moon scripts

e detecting syntax errors

e detecting loader errors

¢ loading external files in a specific order

e setting and removing breakpoints inside the simulated memory

e stepping through instructions or running the instructions until the next breakpoint

or the end of the a script is reached

The development of the tool is strongly influenced by usability concerns. As a result it

should be easy to learn and use.

2.0 BACKGROUND

This section lists Moon processor specifications, project requirements and other relevant

information about the project.

2.1 The Need for an Emulator

The purpose of any compiler design course at the university level is to develop a working
compiler that would transform a high-level language into machine or assembly code.
Testing such machine code can be very problematic and error prone. For example, the
program might have an infinite loop; it can overwrite its own instructions, access
protected memory or do some other illegal operation. Testing such an erroneous program
on a regular CPU can lead to serious system crashes. Even if assembler debugger were
used, it would take too much time to fix compiler errors that produced such erroneous
machine code. The solution to this problem is creating an emulator of a CPU, which
would execute compiler-produced code as a regular processor. There are many
advantages to this approach: such a simulator can run on any CPU type and it can crash
or hang up without causing the whole system to fail. An emulator will generally execute
machine code slower that a regular CPU, but for educational purposes it is an ideal
solution. The Moon processor and its instruction set was developed especially for those

reasons.

2.2 Moon Reference
This section describes the most important details about the Moon Processor. The

complete specifications for the Moon processor can be found in [12].

2.2.1 Processor
The Moon is an imaginary processor based on simplified DLX architecture [2]. The
processor has four instructions for data access, twenty-nine arithmetic and logic

instructions, two instructions for input and output (I0), and eight control instructions to

branch and call subroutines.

2.2.2 Instructions

There are two instruction formats: Instruction A and Instruction B. Instruction A has an
opcode and 3 registers, while Instruction B has an opcode, two registers and a K operand,
which is a constant or a label. Before each instruction is executed, it must be loaded from
the memory. This action requires 10 clock cycles. Data read or write generally also
requires 10 clock cycles, unless data requested is already in Memory Buffer Register
(MBR). Each instruction occupies 32 bits of memory and non data access instructions
take | cycle to execute. Data access instructions require more cycles since memory
access is a more expensive operation. Figures | through 7 were taken from the original

Moon reference document [12]. Figure 1 shows data access instructions.

Function Operation Effect

Load word Iw Ri, K(Rj) R(I) 22— M,[R(j)+K]
Load byte Ib Ri, K(R)) Ry, 5, () «— My[R()) + K]
Store word sw K(Rj), Ri M, [R(j)+ K]<E—R(i)
Store byte sb K(Rj), Ri M [R(j)+K]<2—R,, ,,(i)

Figure 1: Data Access Instructions

Figure 2 shows arithmetic and logical instructions with register operand. Figure 3 shows

arithmetic and logical instructions with immediate operand.

Function Operation Effect
Add add Ri, Rj, Rk R(i) 22— R(j)+ R(k)
Subtract sub Ri, Rj, Rk R(i) «2—R(j) - R(k)
Multiply mul Ri, Rj, Rk R(i) «2— R(j)x R(k)
Divide div Ri, Rj, Rk R(}) «—R(j)+ R(k)
Modulus mod Ri, Rj, Rk R(i) «2— R(j)mod R(k)
And and Ri, Rj, Rk R(i) «=—R(j) A R(k)
Or or Ri, Rj, Rk R() «2—R(j) v R(k)
Not not Ri, Rj R(i) «2——R())
Equal ceq Ri, Rj, Rk R(i) «£E—R(j) = R(k)
Not equal cne Ri, Rj, Rk R(i) «=—R(j) # R(k)
Less clt Ri, Rj, Rk R(i) «——R(j) < R(k)
Less or equal cle Ri, Rj, Rk R(i) «E—R(j) < R(k)
Greater cgt Ri, Rj, Rk R(i)) «2—R(j) > R(k)
Greater or equal cge Ri, Rj. Rk R(i) «=2—R(j) = R(k)
Figure 2: Arithmetic and Logical Instructions of type A
Function Operation Effect
Add immediate addi Ri, Rj. K R()eE—R(j)+K
Subtract immediate subi Ri, Rj, K R() «Z—R(j)-K
Multiply immediate muli Ri, Rj, K R()e2—R(j)xK
Divide immediate divi Ri, Rj, K R()«E—R(j)+K
Modulus immediate modi Ri, Rj, K R(i) «E—R(j)mod K
And immediate andi Ri, Rj. K R()E—R()AK
Or immediate ori Ri, Rj, K R()E—R(j)vK
Equal immediate ceqi Ri, Rj, K R()Z—R(j)=K
Not equal immediate cnei Ri, Rj, K R()«E—R(j)=K
Less immediate cltiRi, Rj, K R()E—R(j)<K
Less or equal immediate clei Ri, Rj, K R()«2—R(j)<K
Greater immediate cgti Ri, Rj, K R()«E—R(j)>K
Greater or equal immediate | cgei Ri, Rj, K R()«—R(j)2K
Shift left sl Ri, K R(i)e2—R(j)<< K
Shift right st Ri, K R()<2—R(j)>>K

Figure 3: Arithmetic and Logical Instructions of type B

Figure 4 shows input and output instructions.

Function Operation Effect
Get character getc Ri R, , () <2—Stdin
Put character putc Ri Stdout «2—R,, ., (i)

Figure 4: Input and Qutput Instructions

Figure 5 shows control instructions.

Function Operation Effect

Branch if zero bz Ri, K if R(i))y=0then PC*—PC+K
Branch if non-zero bnz Ri, K if R(i))#0then PC«£—PC+K
Jump iK PC«=—PC+K

Jump (register) jr Ri PC «2—R()

Jump and link jlRi, K R(i)2—PC+4,PCe2—PC+K
Jump and link (register) | jlr Ri, Rj R(i) «2—PC +4;PC>—R())
No-op nop Do nothing

Halt hlit Halt the processor

Figure S: Control Instructions

2.2.2 Registers
There are sixteen general-purpose registers and two system registers: Memory Buffer

Register (MBR) and Memory Address Register (MAR). Register RO always contains 0

and cannot be modified.

2.2.3 Memory

Simulated machine memory contains 5000 bytes. The memory can contain 1250
instructions or data words. The memory size can be increased, but the memory module
has to be recompiled. Larger memory size results in decreased responsiveness of
MemoryViewer. This problem is explained in great detail in section 4.1.2. Current

memory size should be enough for any Moon program that was generated by a compiler

in question.

2.2.4 Language Grammar

Figure 6 shows language grammar and Figure 7 shows loader directives.

Program - {Line} eof
Line - [Symbol][Instr | Directive] [Comment] eol
Directive - DirCode [Operand {“,” Operand}]
Instr - Opcode [Operand {*“,” Operand}]
Operand - Register | Constant [“(” Register)] | String
Register - (“r” | “R”) Digit [Digit]
Constant - Number | Symbol
Number - [“+”] “-"] Digit {Digit}
String - “» {Char} "
Symbol - Letter {Letter | Digit}
Comment - *“%" {Char}
Figure 6: Language Grammar
Directive Effect
entry The following instruction will be the first to execute
align The next address will be aligned
org K The next address will be K
dw K, K,.... Store words in memory
db K,K,.... Store bytes in memory
res K Reserve K bytes of memory

Figure 7: Directives

2.3 Project Specification

Project specifications states that the Moon IDE has to be designed using modern object
oriented language such as Java or Visual C++. The IDE has to simulate the execution of a
machine code by creating virtual memory, registers and symbols table. The program is
also supposed to provide visual clues about the state of the simulated machine, show the
content of simulated memory, registers and symbol table in a visually pleasing way.
Furthermore, the program has to allow changing memory and registers content on the fly,

by users typing in new values.

2.4 Why Java

The specification of the project stipulates that the program has to be build using Java or
C++ programming language. The Java programming language is used for the
implementation of the project for a number of reasons. Some of the motives are as
follows: cross platform portability and overall simplicity of Java compared to C++,
automatic garbage collection, rich swing widget set and easy to implement threads. Java
also has no pointers and therefore is considered much safer than C++. Although Java
programs run generally slower even with Just-In-Time compiling than native C++
programs [3], the project did not really require fast execution time. The main purpose of

the program is to display the content of the simulated memory and registers.

2.5 Why Swing
There are two basic sets of components that are available for GUI designers that program
in Java: Abstract Window Toolkit (AWT) and Swing. This section describes the

differences between the libraries and lists reasons for choosing Swing over AWT.

2.5.1 AWT Features

AWT components depend on native operating system visual components called peers.
This makes AWT widgets to have platform limitations [4]. In addition to that, AWT
libraries have a limited amount of available components. AWT do not contain
components such as table, tree, tabbed pane, split pane and many other useful widgets.

AWT components also do not support features like icons and tool-tips.

2.5.2 Swing Features

Swing has a rich set of higher-level components such as tree, table, tabbed pane, image
buttons, etc. It also includes pluggable look and feel, which allows Java programs
running on one Operating System (OS) to visually look like they were running on some
other OS. Swing components do not depend on peers to handle their functionality. Thus,
these components are called "lightweight". Swing has a pure Java design which results in
fewer platform specific limitations. Pure Java design allows for a greater range of

behavior for Swing components since they are not limited by the native peers [4].

2.5.3 Comparison between AWT and Swing

Swing widget set is much richer in configuration and better looking than AWT. The
AWT is also missing useful Ul widgets. For example, the IDE uses the JTable component
to display memory and registers content. There would be no such component available if
AWT were chosen for the implementation instead of Swing. Although Swing
components are slower than their AWT counterparts [4], speed is not an issue for this

project. The look of the program User Interface (Ul) is much more important, so Swing is

chosen over AWT.

3.0 IDE DESIGN

This section describes the main features of the program design. It also covers user

interface design and program usability issues.

3.1 Object Oriented Design

The architecture of the system uses object-oriented design (OOD). There are many
benefits of OOD. OOD techniques enable programmers to create modules that do not
need to be changed when a new type of object is added. A programmer can simply create
a new object that inherits attributes and behaviour from existing objects. This makes
object-oriented programs easier to modify. The most important principles of OOD are
encapsulation, inheritance and polymorphism, whish allow for better code
maintainability, improved code quality and productivity, system flexibility, scalability

and information hiding [5].

3.1.1 Encapsulation

Each class in the software has a special Application Programming Interface (API), a
collection of public methods that are used for object access and modification. This
allows hiding of the actual implementation to the outside world and improves security of

the system. The complete API for all of the classes can be found in Appendix C.

3.1.2 Inheritance

[nheritance is a programming instrument by which more-specific elements incorporate
the structure and behaviour of more general elements. This allows inheriting classes to
reuse operations of the parent classes. Figure 8 shows how inheritance is used in the

Moon IDE. The notation used is Unified Modeling Language [6]. The diagram shows

10

InstructionA, InstructionB and Directive classes, which inherit operations from
Instruction class. The Instruction in turn inherits from the DataWord, because DataWord

objects get stored in the simulated memory.

| DataWord
= VP,
lMalue :int=0

%:Iitv:)omo Instruction
Wseting) B - int = - 1
-!oStnng() N 'R] cint=-1

AL EllineNumber : int = - 1

. IilsetSymbol()
Blsetsymbol()
WsetFileName()
BlgetFileName()

BlsetLineNumber()
BlgetLineNumben()
Plinstruction()
lsetOpcode()
__.getOpcode()

. HsetRi()
MligetRi()
e WlsetRj()
i InstructionA - BoetRi()
(= e oStrin .
R = Woswrad__ _ Diectie _
| IllinstructionA() P T
| IlsetRk() : . JlDirective()
MgetRK) ‘ MladdOperand)
. litoString() ; 'MllgetOperands()
e WtoString()
__ Instruction8
BlinstructionB()
Wset(
Mliget(
WkoString)

Figure 8: Inheritance Example

[nstructionA, InstructionB and Directive inherit attributes Ri, Rj, lineNumber and all
operations from Instruction class. This makes inherited classes much smaller because

most of the required operations are already implemented in the parent class.

11

3.1.3 Polymorphism

Polymorphism is a characteristic of objects that enables run-time type binding. This
feature allows programmers to avoid writing explicit conditions such as if-else or switch
when condition depends on object type. Polymorphism can only work with inheritance,
because it is possible to overwrite and redefine methods in derived classes only. Figure 8

shows an example of polymorphism, where the toString () method in each class will

be called according to the target object type.

3.2 User Interface Design Challenges

User interface design brings challenges to the system design. According to [7] there are
the following inherent problems with any program what uses user interface: designers
have difficulty learning potential user’s tasks, good user interface design requires
iterative approach, program that uses Ul requires multiprocessing and real-time response
on input events. The software must also be robust and support aborting actions. Next

section explains how these challenges are solved.

3.3 User Interface Design and Usability

The Moon Debugger IDE design is strongly influenced by usability concerns. The
usability is an element of software quality, and it is defined in ISO-9126 standard. This
International Organization for Standardization standard is concerned with the explanation
of quality characteristics to be used in the evaluation of software products [5]. Among the
factors of quality user interface discussed in the standard are the following
characteristics: efficiency, leamability, intuitiveness, satisfaction, effectiveness, precision
and productivity. Other researchers [8, 9] defined some additional features that are

important to make the user satisfied with the program. Sections 3.3.1 through 3.3.12

12

discuss all of the usability factors and the ways they are addressed in system and user

interface design.

3.3.1 Program Installation

For the user to be satisfied with the program he must be able to easily install and uninstall
the program [9]. To solve this problem, the program uses Nullsoft’s product called NSIS
[14]. It is freely available software that allows creating install programs. After the IDE
gets installed on the target system, the user can also easily perform complete uninstall of

the product.

3.3.2 Program Correctness

Program is assumed to be correct when it does the task specified in the software
specifications document and gracefully handles inputs outside its domain. The program is
indeed meets specifications and works in an expected manner. The program does not
crash even when non-standard input is entered. One specific case of this behavior is

described in section 3.3.8

3.3.3 Accessible and Well Written Help

Help is accessible from the main menu window and it is designed to look similar to the
standard Windows help dialog (Figure 9). The dialog has 3 parts: content viewer, index
viewer and article viewer. The content viewer allows the user to see available help titles
and select and interesting item for reading it in the article area. The index viewer allows

the user to type in any keyword, perform a search, and select any found help title.

13

T
actAmC)

s A4
Save
SaveAs; FIl i T

Figure 9: Help Dialog

3.3.4 Control of the System

The user must always have total control of the system [9]. The program is using
multithreading to give user total charge of the system. If the Moon processor goes into an
infinite loop because of the errors in the code, the user interface will still respond to the

external inputs, and the user could stop the execution of the Moon Processor.

3.3.5 System Feedback

The program is using colors to provide constant feedback to the user. For instance, the
location of the Program Counter is always highlighted in blue. Memory regions that
contain instructions are also highlighted differently than regions that contain data.
Program also highlights the register that was accessed last. These features should help
users to immediately see what data values were changed and facilitate program usage. It

should also make users spend less time figuring out what just happened.

14

3.3.6 System Requirements
During installation the user must be alerted about software and hardware requirements of

the program [9]. The installation readme . txt file clearly states minimum software and

hardware requirements.

3.3.7 Error Prevention

The simulator disallows to read or write data from memory area, which is occupied by
the instruction. Although the “‘real” program can potentially overwrite its instructions,
the Moon Debugger is educational software that is supposed to prevent this from

happening. That is why it notifies the user about illegal memory access.

3.3.8 Meaningful Error Messages
The error messages in the program not only notify user of abnormal conditions but also
give possible solutions to the problem. Figure 10 shows error messages generated when

user inputs invalid ASCII code.

Figure 10: Error Message

3.3.9 Minimization of User Memory Load
The program hides options that are rarely used into menus, and shows options that are

often used as image buttons. This technique should minimize user memory load.

15

The memory viewer has a mode where only non-zero (non-empty) memory is displayed.
This should prevent user from extra scrolling through memory, and again decrease

memory load and unnecessary hand movement because the user will not have to

remember address range of previously visible memory cells.

3.3.10 Clearly Marked Exits

The program can be stopped by closing a main window or selecting the Exit submenu

from the File menu (Figure 11).

3.3.11 Shortcuts for Expert Users
Figure 11 shows File menu, which has shortcuts for advanced users. Every
menuw/submenu in the IDE has a shortcut where an action key always corresponds to the

action name. For example, shortcut for “New” command is CTRL-N, ‘N’ being the first

letter of action command.

¢|"Hello, world", 13,10,0

% Start here

£33

4910
Ib r3.message(r2) % Getnextchar

cani rAd 2.0
R A T T T M o T A o R O e e O er T e T
R LT : NG St L e P

ASpY o o BN,
o vt T f‘-;.':*__ u"‘ig.' ~':ﬁ,ﬂ"£.'{":r;{ rTY

Figure 11: Shortcuts

16

3.3.12 Portability

The software is indeed portable since the Java programming language is used for the
implementation. It makes software to be easily run on any platform that has a Java
Virtual Machine (JVM) installed. JVM comes with Java Development Kit (JDK), which
is freely available for download. The software was tested on Windows 98 (JDK
[.3.1_02), Windows 2002 (JDK 1.3.1_02) and Red-Hat Linux (JDK 1.3.1_0l). On all
tested platforms the program worked correctly. Appendix B shows a screen capture of

how Moon IDE looks when running on Red Hat Linux.

3.4 Model-View-Controller Architecture

The [DE is using a Model-View-Controller (MVC) architecture [11]. MVC architecture
separates visual representation (View) from data (Model). This schema allows greater
decoupling between data and view. The architecture can also be used for differently
displaying the same data. In the program the data models are MoonRegisters,
MoonMemory and MoonSymbols classes. There are appropriate views for each model:
MemoryViewer, RegistersViewer and SymbolViewer. The Controller catches events
generated by the user input and modifies the data in the Model. They are three controllers

that handle this: MemoryTableModel, RegistersTableModel and SymbolsTableModel.

17

4.0 IMPLEMENTATION

The design of classes and algorithms reflects a lot of ideas taken from [10]. This made a
source code shorter and the whole system more manageable. The advices taken from the
same source also improved internal structure of the code and made it easier for different

developers to understand and modify source files.

4.1 Problems/Solutions
This section discusses problems that were encountered during development of the

software and solutions that were found and applied for each problem.

4.1.1 Debugger Area

At first, debugging capabilities were supposed to be implemented right inside the editor
(Figure 13). After careful examination, this option of the IDE was moved to the memory
viewer (Figure 12). The editor’s text buffer typically has directives and comments, which
are not important when debugging the application. The Moon code might not be aligned,
which would strain user’s eyes and decrease perception during debugging phase. In
addition to that, the memory viewer would store and display instructions anyway. So, it

made more sense to have debugging capabilities in the memory viewer instead of in the

main window editor.

4.1.2 Scrolling

After the first prototype was developed, it was noticed that the memory viewer was very
slow to redisplay during scrolling (Figure 12). After analyzing the problem using JProbe
Java profiler, it became apparent that the simulated Moon memory was taking too much

actual physical computer memory because the Java objects it held were too big. The

18

objects had to be redesigned, and some extra functionality such as conversion of integers
to hexadecimal and ASCII form was removed from DataWord class and placed into the
utility class (Util.java). This made DataWord object and all its children to be truly
data objects and improved the speed of the memory viewer and the responsiveness of the
whole user interface. When Moon memory was set to 5000 bytes, the simulator used on

average 250KB less memory with the redesigned DataWord class.

224 b R3R2 me...|
228 ceqi R4R30 | ;f,i
232 bnz R4 pr2 .
236 putc R3 . | .
240 addi RIR21 ! ‘
244 j | pri f % o
248 addi 'R2R0 na... ! :
252 jl R15 getna.... :
256 : ! o
- 28085 00004 -0~ }.
~ 264 00000 |5

Figure 12: Memory Viewer

4.2 Modules Description
The Moon IDE implementation has 11 modules and 34 classes. This section describes

each module and classes that compose that model.

4.2.1 Editor
This package contains two classes: EditorBean and EditorBeanBeanInfo. The EditorBean

class is a custom editor, which is build on top of JTexArea. The component allows user to

19

edit text, and set and remove breakpoints (Figure 13). The EditorBeanBeanInfo class is
only needed in case the EditorBean must be laoded into the Java IDE such as Borland
JBuilder, IBM Visual Age or similar IDE. The file allows Java IDE to display properties

of the bean so that they can be modified by the user during design time.

!{;;,. Moon Debugger
B2 AS A Y0

add r2,:0,r0
spri b r3message(r2) % Getnextchar
ceq! r4,r3,0

AR R R STl N S ot ST T L S I

Figure 13: EditorBean

4.2.2 Help

This package contains the HelpViewer class, which displays help. It is a singleton class,
which ensures that only on instance of the class can be instantiated. This feature makes
sure that only one dialog is created for the whole application. This is a useful technique to
reduce systemn resources use in case the user tries to open the help dialog multiple times

or from multiple windows. The dialog is displayed on Figure 9.

20

4.2.3 Instruction
This package contains 5 classes: DataWord, Directive, Instruction, InstructionA and
[nstructionB. All of the classes in this package are data classes that represent Moon

words, Moon directive and two types of Moon instructions. The classes can be seen on

Figure 8.

4.2.4 Loader

This package contains two classes: MoonLoader and LoaderException. MoonLoader is
used when the parser successfully parsed files, and loading to the simulated memory can
be performed. The purpose of the class is to go through parsed instructions and directives,
load them into memory and fill in the symbol table. If any errors are encountered such as

invalid memory address or undefined symbol, the Module throws a LoaderException.

4.2.5 Memory

This package has three classes and one interface. The main class of this package is
MoonMemory. It represents the simulated memory, and its purpose is to store data or
instructions to be executed. MemoryTableModel is the controller that is used to convert
memory content into human readable form, and then display it in the MemoryViewer (Ul
package). The MemoryTableModel implements MemoryChangeListener, which allows
MoonMemory to notify MemoryTableModel when memory was changed at a particular

address. The controller then redisplays that cell.

4.2.6 Parser
This package is used for parsing. The main class in the package, MoonParser, parses the

text file that contains Moon code and checks for syntax errors. If no errors were

21

encountered, it returns a list off all parsed instructions and directives. [f errors are
encountered, the class throws a ParseException. Parse errors are displayed in the “Errors”

area below text buffer (Figure 17).

4.2.7 Registers

The package is used for storing and controlling registers content. It is similar to the
MoonMemory package (Section 4.2.5), and it has three classes and an interface:
MoonRegisters, RegistersAccessException, RegistersChangeListener and

RegistersTableModel.

4.2.8 Runtime

This package contains RuntimeHandler and MoonRuntimeException. RuntimeHandler
has methods to execute one instruction at a time for “stepping” or execute all for
“running”. It checks if current instruction is a breakpoint, and suspends executions if it is.
If a RuntimeError is encountered, such as invalid memory access,

MoonRuntimeException is thrown. Runtime exceptions are displayed using a pop-up

dialog.

4.2.9 Symbols

This package has classes to store and display the content of symbol table. The design of
its classes is similar to that of MoonMemory (Section 4.2.5) and MoonRegisters (Section
4.2.7). The only difference is that the package does not have ChangeListener interface,
because during simulation, the state of SymbolTable does not change and therefore

SymbolsViewer does not need to refresh.

22

4.2.10 User Interface

The UI package contains all of the User Interfaces used in Moon IDE.

4.2.10.1 AboutDialog
AboutDialog gets displayed when user chooses the ‘About’ submenu form the ‘Help’

menu. Figure 14 shows the dialog.

Std Qut > (32)
Std Out >w (119)
Std Out>0 (111)
Std Out>r (114)
Std Out =1 (108)
Std Out >d (100)
Std Qut >1 (33)
Std Out > (13)
Std Out > (10)
Std In>y(121)
Std Qut >y (121)
Std In > (8)

Figure 15: Input Qutput Viewer

23

4.2.10.2 IOViewer
[OViewer (Figure 15) allows users to see a history of what has been outputted and
inputted. It is designed in such a way that users can scroll through history and see old

values. Each line displays character originator (Standard Input or Output), character and

corresponding ASCII code.

4.2.10.3 MemoryViewer
This class displays memory content, current instruction (Program Counter) and allows

putting breakpoints by double clicking on the interesting instruction (Figure 16).

2221 A o et AT

?«DDR{ 1! ’@hﬁiﬁ?@ SZSB!RSW NS "

228 ! ceqi | R4R3D0

232 bnz R4 pr2 ,

236 | putc ! R3 ; ! "

240 ' addi | R2R21 ' E

244 | j | pr

248 : addi IR2ROna..

252 | jl R15 getna...|

256 hit ; \ ' g
260 " | 790000007} -y 2112987 0: 120300431 .|

320 | getc

ceqi : R4R313

Figure 16: Memory Viewer (Non-zero Memory is Displayed)

24

Memory address 332 has a breakpoint, and instruction at address 324 is a current
instruction. The memory viewer displays only non-zero memory to avoid extra scrolling
and improve usability. The component can also display all memory (Figure 12), when

user checks “Show All Memory” check box.

4.2.10.4 MoonDebuggerFrame
This is the main window of the IDE. The user can edit and compile Moon code using this

component.

{-”s Moon Debugger

org 217

align

entry_ % Start here

add r21,r0,10

b r3,message(r2) % Getnextchar

raai rded N}

RN

Line 4, parse error. uknown command entn/
Line 5, parse error: invalid register: 121",

Figure 17: MoonDebugger

Figure 17 shows the MoonDebugger window with one file opened and two errors in the

Moon code on lines 4 and 5.

25

4.2.10.5 RegistersViewer

The registers viewer shows the content of registers and highlights the last accessed

register. Figure 18 shows that the last register to be accessed is R3.

,u,,ﬂ .1 G002
RIEEHS0D000 mrﬂ

R3 | 000000CA n 0 o 01

G Hl!l T"E" W»f'.

a0 W':ul »&
1..1,. i cT?‘:}

e

SIS BT 0010
ST L onmee; T
< oo

PRPIIS S AR, il AR AT o1

NOWE 0T

)
%

]
3
“)

-’“{ss’!%*}:’f‘iﬁ‘ ;

e !f. .\“» ,".gﬂ% ;

A

Figure 19: MultipleFilesSelect

4.2.10.6 SelectFilesDialog
When two or more files must be loaded, the user can specify what files to load and the
ordering of the each load. The dialog window on Figure 19 is used for that purpose. It

allows marking additional files for loading and permits the user to change ordering of the

loading using buttons on the left.

4.2.10.7 StdInDialog
When an Input Instruction is encountered, the simulator opens StdInDialog. That allows

the user to type in a character (Figure 20) or an ASCII code (Figure 21).

Figure 21: ASCII Input Dialog

27

4.2.10.8 SymbolsViewer

Symbols viewer dialog (Figure 22) displays the content of the symbols table.

2-'35 Symbol Table viewer

Figure 22: Symbols Table

4.2.11 Utils
This package contains utility classes with static methods that are used by some modules.

The complete API for the utility classes FileUtil and Utils can be found in Appendix C.

4.3 Unique Features

This section describes interesting solutions that were used when implementing the Moon

IDE.

4.3.1 Reflection

The parser uses reflection API to avoid if-else blocks by making one-to-one mapping
between operation code of Moon instructions and appropriate parser methods. Reflection
APl allows invoking a method upon an object, even if the method is not known until run
time. For example, let’s assume that a function parse_addi () exists in a parser class.

When line parser encounters instruction with opcode addi, it can concatenate parse_

28

and addi and call resulting function parse_addi () dynamically. Similar way of

calling the right parse methods is used in MoonParser.

4.3.2 Text Buffer Modification

Every editor must check if the text was modified in order to save or not to save
modifications to the file system for periodical backup or before compiling. Saving
unmodified files every time wastes system resources and irritates the user. Nicely
designed program has to address this issue. The simulator program uses Cyclic
Redundancy Code (CRC) checksum to check if the text in the editor buffer was modified.
One other design solutions would be to keep a copy of the text buffer and then compare
the copy with the real content. This approach would take too much memory, since a copy
of the text buffer must be kept in the memory. The second approach would be assigning a
“dirty” flag to the editor and set it to true if something was typed. This approach has also
a drawback because user might make a change and then undo it. The flag would tell the
program what file was changed, even though in reality it was not. CRC method is the best
solution because the only overhead it required was assigning a CRC value of unmodified
text to each text buffer. The new CRC value can then be compared with the original CRC
value, and if they are different, the text is saved in the file system. The feature is
implemented using java.util.CRC32 class. The probability that two different strings
would have the same CRC value is I — 1/ (2732) when strings would differ by more than

32 characters and | — 1/ (2731) otherwise [13].

29

4.3.3 Method Testing
Some of the non-GUI classes have a main method that performs a white-box testing of

the methods. If the source code were changed, the class can be tested by simply running

the main () method.

30

5.0 SOFTWARE QUALITY

According to [5] there are thirteen quality issues that can be used to evaluate software
systems. Some of them are correctness, robustness, maintainability, reusability,
efficiency, portability, security, friendliness and understandably. Sections 5.1 through 5.4

explain how the Moon IDE software meets factors described above that were not covered

in previous sections.

5.1 Correctness

The software is indeed correct, because it meets original specifications. To check for
software correctness, different test scripts were created to test each instruction. The Moon
IDE simulator was then tested with those test cases. The IDE was also tested against the
original interpreter using different sample scripts by means of back-to-back testing. Tests

results of the IDE matched results of the original interpreter.

5.2 Robustness

The software is robust, because usability ideas such as responsiveness and recoverability
were used when designing and implementing software. Such practice insures that the
program is reliable even in abnormal conditions. If abnormal conditions were to occur,

the software protects the users by saving files before every compile.

5.3 Maintainability
The software is easily maintainable because OOD was used during its design. The

program is divided into classes and packages, which are logical collections of classes.

31

This structure allows for easy code maintains, because code can be easily modified in one

class without altering the other parts of the program.

5.4 Reusability

Some parts of the software are indeed reusable, because they were designed to be very
generic. For instance, EditorBean can be used as an editor widget that supports setting
and removing breakpoints and displaying line numbers in any Java program. Figure 23
shows the API of the EditorBean. The FileUtil class (Appendix C) can also successfully
be used in other interactive programs. The class has functions to save and load files, to

browse through the file system and to check if a given file indeed exists.

_ EditorBean “:
@possibleBreakpointLine : int = 0
@currentLineNumber : int=-1 |
HidebugMode : bootean |

EditorBean() f EditorBeanBeaninfo
‘MupdateGutter() ‘r R

, R —
E::I:::g i BEditorBeanBeaninfo()

» MllgetAdditionalBeantinfo()
Boowos o ooy
. ; Bgeticon()
Bocineomo 0 EseProenyesciparsy
moveToNextLine() 7
'lmoveToLine() |
.lsDebugMode() ;
ain() 1
i ilisCurentLineBreakpoint()
! ?etareakpointso
nitHighlights() }
extAreal_mousePressed()
'HlMenuttem1_actionPerformed()
'‘HMenuttem2_actionPerformed()
'llMenuttem3_actionPerformed()
JITextAreat_caretUpdate()
Eselectline(
' BEditorBean_ancestorAdded()

)
i

Figure 23: Editor Bean API

32

6.0 FUTURE ENHANCEMENTS

The Moon [DE program has a lot of room for improvement. This section discusses

potential additions that can make the application even more useful.

6.1 Modifying Memory Content
There are some features of the software that are not implemented in this release. For
instance, the software does not allow users to edit the content of the registers and

memory. A future release might have this important feature implemented.

6.2 Better Simulation Reporting

The program might have a better statistical reporting for each run. For instance, the
program might display what instructions were executed the most and what instructions
caused the most cycles. To achieve that goal the program must have internal counter that
records instruction types used during program execution. At the end of each run special
form window can appear with statistics for each run. This information can be very useful

for optimizing the compiler generating the Moon code in question.

6.3 Pluggable Assembler Engine

The IDE could be improved so that it could handle different assembly languages. The
best design approach to achieve that objective would be to create a special description file
for each assembly language. The file would have information such as a description of the
instruction set and language grammar. The file could be parsed by the IDE, and after that,
the new assembly language could be understood by the IDE. This feature would make it

unnecessary to recompile the IDE if the Moon language were ever to be changed.

33

7.0 CONCLUSION

This report described the Moon IDE project, outlined its purpose, specifications and
features. The document also highlighted the importance of OOD and usability goals and

then illustrated how it affected design of the Moon IDE.

This project covered many tasks that included system analysis, architectural design. user

interface design, program implementation and testing.

When developing the software, I really tried to create something very useful. During my
years at Concordia I took the Compiler Design course. I remember it took me quite a bit
of time to test the Moon code that was generated by a compiler [was developing. I hope
that the Moon [DE program will help the students to save time when debugging Moon

code and better understand the workings of a regular computer system.

34

REFERENCES

[1] Peter Grogono. Home Page. http://www.cs.concordia.ca/~faculty/grogono/ (Current
March 12, 2002)

[2] J. Hennessy, D. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, 1990.

[3] Ulrich Stern. Java vs. C+. http://verify.stanford.edw/uli/java_cpp.html (Current March
12, 2002)

[4] Borland Developer Support Staff. Why Swing? http://community.borland.com/
article/0,1410,26970,00.htm! (Access March 12, 2002)

[5] lan Graham, Object-Oriented Methods, Principles & Practice, 3™ edition, Addison-
Wesley (2001).

[6] Grady Booch, James Rumbaugh , and Ivar Jacobson, The Unified Modeling Language
User Guide, Addison Wesley (1999).

[7] Brad A. Myers. Why are Human-Computer Interfaces Difficult to Design and
Implement? Carnegie Mellon University School of Computer Science, Technical Report
CMU-CS-93-183, July 1993.

[8] John Karat. Taking Software Design Seriously: Practical Techniques for Human-
Computer Interaction Design. Academic Press, 1991.

[9] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers, 1994.

[10] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

[11] Aaron E. Walsh, John Fronckowiak Java Bible. IDG Books, 1998.

[12] Peter Grogono. Moon Reference. http://www.cs.concordia.ca/~faculty/
paquet/teaching/442/moon.pdf (Current March 12, 2002)

[13] Greg Gagne. Lecture Notes. http://people.westminstercollege.edu/faculty/
ggagne/spring2002/352/chapters/chapter3 (Current March 12, 2002)

[14] Nullsoft. Nullsoft Install System. http://www.nullsoft.com/free/nsis/ (Current March
12, 2002)

35

APPENDIX A - TOP LEVEL CLASS DIAGRAM

B L LoaderException |
tructionA . — Irnm.lm:h:)_-{ ;
(fr;n: instruct » 4 h ‘ RegistersAccessExcaption
—_— : {from registers)
. Instruction8 \"—\ e -
(from UCthome - . “~ -nstruction -lnstr}cﬁon
T Owective | o ‘.'t*élnstn.ncﬁm =) i MoonRuntimeException '
(from instructi... | (from instructl_{-instruction }—m‘mmm—ﬁ
- ——— T J
lnstruct!gu/
[MemoryAccessEsception “Deawad | MemonChangeLs
‘,_iftmmcmom__q {from instructl; ... ifrom memo... 7
-memony(] BmemoryChanged()
| MaonMemory -memModel MemoryTaBleModel
-memow-ﬂia‘ogv_ s_lzg int=5000 -memory. _{from memory)
| :‘:r““ﬁ:")) SymbolisTableMode!
om r :
ot .__(from symbols) -memory
-symboiTable
-table "M*A'*s yr;bols 1 \éelectﬁiesl;la—lo_g
from i)
{from symbois) | - (frox -
o j seloc!FlesDiabg
-regist... -table
‘MoonRegisters ? Mc;t;nD-ebugéerFrame :
sistener . . (from registors) .o e Mromu)
7 -registers '
RegistersChangel . ; ;
istener | o Pagser -
_ (from registe... ‘ . ' -ha[)dbf . ‘ MoonParser
Il o - ! {from parser).
- __—_;k, e
-registerChanged RegistersTabeodel‘°9M°d°'_ .__ RuntimeHandier - currengEditorBean
({from ragisters) {from runtime) ~curremg=cic
LN Eﬁtorﬁean—l
T _ {from edit...
- runtime |
-lonewer :
“StdinDialog [-9129 1Oviewer K " st¥iewer
(from ui) e (from ui)) . "
-memViewer !
. -regViewer)
. v A
illomoryVlewu' RegistersViewer | SymbolsViewer ‘
L (fromu) (fromul) ! {from ui)

Figure 24: Top Level Class Diagram

36

APPENDIX B - FULL MOON IDE ON LINUX

> P Al 4 " > = '

2 X i

ES : . |

STy ¢ 3 j

—20 T R2R0. 5 l
EERs e

B6_ L e 2 R 1

G Ted SRR T =]

2 R A Y- YO S b b

8T RS e ;

ETT_ 0 it —— = |

T3 S e TR TR |

; - !

il

= o i

i

£ X B
- TR 50
[-3)

ory 10) N N
massage ¢d “meilo, won 31, 11, 10,0
ey 217

ign
snery N ltet pere
dd 2,000

#n 18 rimessagelr?) % Cetment char
coqi 14,130
g rape Vined of rera
putc)
-y r2.r23

' »n % 0 for nevt cher

#12 e r2cOname % Coand get reply
rid gesname
e ® Al done

% Subroutine 10 read & stang
fame, (es 33 A Nams Buffet
OV X B TR TN W TS
ST RIS >
ane [rron:
Loater trront

i

I

‘
+

.
i

WSBEGHRAARR 82 0 A R0 |

Figure 25: Moon IDE on Linux

37

APPENDIX C - MOON IDE API
The diagrams in this appendix displays the API for classes used in the project.

L EditorBean

@possibleBreakpointLine : int = 0
tLineNumber : int = - 1

HiidebugMode : boolean

.E:gaﬁﬂgo EditorBeanBeaninfo |
5313:8 /Ml ditorBeanBeaninfo) |
s otOebugMode() fmwummmbo i
ElgetCunentLineContent() :ﬂmoescnptao
%::ﬁf’mm?gmmwo {lllgetPropestyDescriptors() ! |
o ToNextLine()
EmoweToline(

[l sDebugMode()

Wmain()

s CunentLineBreakpoint()
etBreakpoints()
nitHighlights ()

Bl TextAreat_mousePressed()

Bl Menuttem1_actionPeronmed()
Menultem2_actionPerformed()
Menultem3_actionPerformed()

B TextArea1_caretUpdate()

MiselectLine() i

.EditorBean anc&storAddedO !

Figure 26: Editor Bean API

HelpViewer
‘:omponentsAd]usted boolean = &lse|

|

t

BERddindexArticle()
BshowArticle()

BsearchForArticle()
Bl stArticleName() F
ElhasString() +viewer
llHelpViewer()
Wlsetvisibie()
lacdNotify()
BlHelpViewer_WindowClosing ()
B Lis2_walueChanged()
lButton1_actionPerformed()
BlliTextField1 _actionPerformed(
List1 _valueChanged()

1

Figure 27: HelpViewer API

38

DataWord
@alve :int =0

liDataword() !

Instruction
Mligetint(—
Blsetint) ER‘ tint = -1
.toString() k>~ HR] tint=-1
N EllineNumber : int = - 1°
| illsetSymbol()
ligetSymbol()
lisetFileName()
WostFileName()
s etLineNumber()
WloetLineNumber()
Bllinstruction()
lsetOpcode()
.1 llgetOpcode()
| setRi) ~.
o~ |lgetRi()
——ee Wsetri)
InstructionA |- Bloetri()
EMRK : int=-1 oStri C e
LGt T
WllinstructionA() ; 1 e e
WlsetRk(: ! IlDirective()
MlgetRk() ! ! IlladdOperand()
Mosting) f MligetOperands()
T | MitoString(
B lrlsﬂ;tions
- 1
WlinstructionB() .
Wlse() '
llget()
MlitcString(
Figure 28: DataWord-Instruction API
M)onLoaderm“
@cumentMemoryAddress : int = 0
lifirstExecinstructionAddress : int = - 1 " LoaderException
i
lMoonLoader() l o
WllgetFirstinstructionAddress() liLoaderException()
MliperformLoading() | MllgetErrorMessage()
lihasExceptions() l.getlnstruct!on()
MlloetAlE xceptions() Wlsetinstruction()
ElhandleDirective() Mostring)
igetSymboiTable()
ligetMemory()
BcetRegisters()

Figure 29: MoonLoader, Exception API

39

Memory TableModel L MoonMemory
ATA ZERO TYPE :int=0 EIMEMORY_SIZE : int = 5000

ATA NONZERO TYPE :int= 1

INSTRUCTION TYPE - int = 2 'IlIMoonMemory()

ElisEditabie(] : boolean = null iE\itiaizeMenory()
lirowTitles[] : boolean = null s etMemoryChangelistener()
@llcurrentLine : int = - 1 EnotifyListener()
llcurentAddress : int = 0 PetMemorySize()
BldisplayAliMemory : boolean = false s etins truction()

Pgetins truction()
IlMemory TableModel() PEsetByte()

MgetByte()
Psetint()

-memagiiigetint()

7 JsInstruction()
BlisAligned()
BcheckAlignment()
BlcheckAddress()
it oString()

PmemoryChanged()
BhowToAddress()

dress ToRow()
isAddressDisplayed()
WreloadAliMemory()

ligetColumnCount()
llgetRowCount()
BlgetvalueAt()
MlicetType() 'MlidumpMemory()
BllupdateTable() Binain()
BupdateTable() e
BlupdateTatie()
WsetTable() -
lishowMenu() IR -istener
ElrowAtPoint() oL
ElsetvaiveAt() .
=1setcgcli igit:?e!zl)e() Memory ChangeListen
er
lisetObject Type() o
E::go%.lr:\t:meél)ass() Mmemory Changed()
lsetBreakpaint()
PremoveBreakpoint()
—Sivivatiat MemoryAccessException
BsetCurrentAddress()
WlcetCurentLine()
WresetCumentLine()
set8GColor()
PWsetWidth()

Wlimain()

%.MemoryAccessException()
' JllgetErrorMessage()
}metlnstmction()

s etinstruction()

{ filtoString()

Figure 30: Memory Classes API

40

MoonParser

fllcurentLineNumber : int = - 1
RHOEBUG : boolean = false

lMoonParsen()
ElinitValidRegis ters()
BlinitParser() e
:avalig?:g'me'() : ParseException |
rseFi : Ty
BcS tring) ‘lneNumber tint 1
lhasExceptions()
Wliget2.dlinstrction()
EllgetAiExc eptions()
Wlipars eFiles() etEmorMessage
ElremoePerentesis() ! Eosmng() ge0 :
Blvars eDataAccessinstruction() l; -
BllgetRegistetNumben() :
: rseArithmeticRegisterinstruction()
g:rs eArithmeticimmeditelnstruction()i
Ez:rselmutompulnstmction() |
rs eControlinstruction() ;
Boars eDirectivelnstruction() ;
Bhanalyzeline() !
BlparseLine()

JESURSU RIS S

WParseException()
BlgetLineNumben() '
BlgetBadToken()

Figure 31: MoonParser, ParseException API

———TT&O—O—?—ZS—Q%S‘:ESTS——_—-% o lbgstetsTab(eModel
g ! jsters fal
registers() - int = nul L aastChangedReglster int=-1
o tetsTableModelO
EMoonRegisters() . WRegis
-setReglstetsChangeUStenero' registers Mgt ColumnCount
WotifyListenen() ‘.get_RowCounto
s etRegister() MlegisterChanged()
BlicetRegister) i EligetvalueAt()
Bl etRegisterByteq ; BlupdateTabie()
WlloetRegisterByte() . BlupdateTable()
litoString) ‘ PlsetTabie()
-dwnpRegnstetso ' r_._;(?gusdnable() o
RegistesAccésEmeption
. .RegtstetsAccessExcepuon()
-listengr, - MlgetErrorMessage()
ke Wligetinstruction()
~ Wsetinstruction()
Register:r(\::rangeList .L-losmﬂg() ;
.reglslerChanged()

Figure 32: Registers API

41

RuntimeHandler
Bcycles : int=0

EMAR:int=0

VDR : int =0

BFC:nt=0

EllendWasReached : boolean = false .

EllexceptionEncountered : boolean =false | MoonRuntimeException

ElendSimulation : boolean = false

MlgetcCounter : int = 0 lMoonRuntimeException()
BllgetEnorMessage()

ERuntimeHandler() Plgetinstruction()

lllendSimulation() oString()

BshowAIWindows() -
MlexecuteNextinstruction()
MlexecuteAllins tructions()

BlkaddBreak point ()
lkrem 0B reakpoint()
BlsBreakpoint()
WeformOpeation()

Bllget ()

Figure 33: RuntimeHandler, MoonRuntimeException API

MoonSymbols ' i

e
.MOOHSIF“WSO i - SymbolsTableMogigi L
ﬁit:gyd;;r:gedsymbmes‘)i Eow‘l'tles[] boolean = null
=:Y:I‘J°°'Usfd‘“é) -symbolTable .SymbolsTableModel() |
._:Ex_s"’:g)e ocation() i ‘.getColumnCount() |
1.ind SIS él bok) : 'getRowCount() |
.wSt%go 1 IMcetvalueAt() |
lidumpTabie() | ;.Sem’b'eo 5
=.gewlsymbolso | ‘.sCelIEdltaEI‘e_() B

j-nsertSortOrder() 1

Figure 34: MoonSymbols API

42

! MoonDebuggerFrame

fﬂ_isDebugMode : boolean = false

@ isThreadActive : boolean = false
@llrunOnce : boolean = true
WrameSizeAdjusted ; boolean = faise

BllexecuteinThread()

0
HlstartDebugMode()
BloetcunentBuffer()

goeadSampleFle()
tProperties()

llexitApoplication()
MoonDebuggerfFrame_windowClosing()

Mlexititem_actionPerformed()
Mlexititem_actionPerformed_Interaction1()
Hlaboutitem_actionPerformed()
laboutitem_actionPerformed_Interaction1()
i MicheckIfFilels Opened()

' MligetCRC(

fillsaveButton_actionPerformed()

;.aboutButton _actionPerformed()

| lllaboutButton_actionPerformed_interaction 1()
|-oadButton _actionPerformed()

.unButton _actionPerformed()

[.stopsutton actionPerformed()

| lflistepButton_actionPerformed()
’.newFuIeo

' IllopenFile()

{illsaveAsFileQ

;.saveF‘leO

-saveAll()

BlcloseFile()
erGuideltem_actionPerformed()
tSelectFilesDialog()

Options_actionPerformed()

l _actionPerformed()

' MilsaveCurrentFile()

i

1

oadCode()

extAreal_mouseClicked()
Blsclectiine()
WlistopSim_actionPerformed()
showWin_actionPerformed()

!

MoonDebuggerFrame_windowClosing_| lnteracuom()

|

i
i
r

. selectFilesOialogi gy 18, t10n5_actionPerformed()

i SelectFilesDiatog o

W¥frameSizeAdjusted : boolean = false

s electFilesDialog()

Boadimages()

WlsetFileList()

WlgetFileList()

lsetParent()

s showAgain()

s electFilesDialog()

Mlsetvisible()

IlladdNotify ()

i Button1_actionPerformed()

.Button2_actionPerformed()
Z1MButton3_actionPerformed()

" !JilUButtond_actionPerformed()

StdinDialog
IlframeSizeAdjusted : boolean = false
kyped : int = -1

HistdinDialog()

Weset()

WistdinDialog()

WistainDialog()

Wmain(

lladdNotifyQ
BllUTextField1_actionPerformed()
|ligetTypedChar()
|IlJTextField1_keyTyped()

B utton1_actionPerformed()

l..ﬂextFieldz_actionPedonned()
L —sfhemginsriattabiiuilogbiboe

-dialog

lOVlewer .
.frameSlzeAdmsted boolean = false

BioViewer()
lOViewer()
Wlimain
WRaddNotify()
extField1_keyTyped()
StdinQ
tdOut()

Figure 35: MoonDebugger API

43

