INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM! films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMi a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leamning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI






Interlaminar Stresses and
Fracture Behavior in
Thickness-Tapered Composite Laminates

Kan He

A Thesis
in
The Department
of

Mechanical Engineering

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montreal, Quebec, CANADA

March 2002

© Kan He, 2002



i~l

zl‘anonal Library sulblmue nati e
uisitions and Acquisitions et
ibliographic Services  services bibliographiques
Otawa ON KIA ONG Otttwa ON. K14 0N
Canada Canada
Your fla Votre réédrence
Our fle Notre réédrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68214-5

Canadi

reproduction sur papier ou sur format
électronique. :

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.



ABSTRACT

interlaminar Stresses and Fracture Behavior in
Thickness-Tapered Composite Laminates

Kan He, Ph.D.
Concordia University, 2002

Design and manufacture of a variable thickness composite laminate such as a
helicopter yoke involves tapering the laminate by dropping individual plies at discrete
internal locations, in order to tailor the stiffness of the laminate. The ply drop in the
laminate creates large interlaminar stresses and initiates delamination. Therefore, there is
a necessity to investigate the fundamental failure mechanisms and controlling parameters
that account for the delamination mode of failure in tapered laminates. In this thesis, a
numerical and experimental study on interlaminar stresses and delamination in tapered
laminates is presented, including a critical and comprehensive review on earlier works on
this type of structure. Numerical analyses performed involved development of partial
hybrid stress finite elements needed to enhance computational efficiency, and
development of a physical concept-based modified shear-lag model that is based on the
essential assumptions that both plies and resin layers are treated as carriers of tensile
stress and also to act as stress-transfer media. Experimental analysis was attempted to
assess the accuracy of the numerical predictions. For this purpose, tapered NCT-301



Graphite/Epoxy specimens were manufactured using a ply in-fill technique for the cured
consolidation and tested under quasi-static uniaxial tension. To perform strength and
delamination analyses of the tapered laminate, the laminate was modeled as a generalized
plane deformation problem, where all the variables involved in the model are
independent of the coordinate system. Also quasi-three dimensional partial hybrid finite
elements were used to quantify the analysis. In addition to the plies, the inter-ply resin at
the critical ply interface was also modeled in order to have direct and realistic
interlaminar responses. Stress-based criteria that have proved to be effective in
determination of critical location and load of delamination onset were utilized in this
study to predict the delamination strength of the laminate. A good correlation between the
predictions and experimental results were observed. Evaluation of strain energy release
rates of delaminations occurring at the critical interfaces of the tapered laminate was
carried out by using the J-integral approach. This was possible because of the path-
independence of the J-integral that results in avoiding the need for analyzing the singular
stress field near the delamination tip and reducing the computing effort required. Effects
of various design parameters on the structural performance of the tapered laminate were
studied so as to gain an insight into design considerations for tapered composite

structures.
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Chapter 1

LITERATURE REVIEW AND OBJECTIVE

The application of advanced composites in aerospace structures has increased
significantly in the past three decades. The advantages of composite materials lie in their
high specific stiffness and strength, low weight, and elastic tailoring design capability.
These allow the development of lighter, more efficient aircraft structures and machine

components.

When composite materials are used in aerospace structural components and
machine elements, it is usually desirable to tailor the material to match the localized
strength and stiffness requirements in order to minimize the weight. For a fibrous
composite laminate composed of unidirectional layers, this is often realized by changing
the number of plies. This abrupt change in thickness, which is referred to as a ply-drop-
off, introduces a stress concentration that promotes premature delamination failure of a

laminate. It is this interlaminar stress concentration that is the subject of the present

research.



1.1 Literature Review

This section presents a review of the recent advances in the study of tapered
laminated composite structures. Following the regular laminated composite plates and
beams, tapered composites formed by terminating or dropping off some plies in some
primary structures have received much attention from researchers since the midst 80’s.
Their elastic tailoring properties and potential for creating more significant weight
savings than commonly used laminated components allow an increasing use of the

tapered composites in commercial and military aircraft applications.

A typical example is the helicopter yoke that is shown in Fig.1-1, where a
progressive variation in the thickness of the yoke is required to provide high stiffness at
the hub and relative flexibility at the mid-length of the yoke to accommodate flapping.
The first commercial composite rotor-blade yoke assembly made from fiberglass was
fabricated at Bell Helicopter Textron in 1995. Constructed completely from S-2 Glass,
the dual yoke assemblies on the Bell 430 helicopter endure several times the number of
flight hours than traditional titanium or steel yokes, and provide improved safety, as well.
Much more tolerance to damage than conventional materials, and the elimination of
corrosion is also displayed by these composite components. Other applications include
composite aircraft wing skins, helicopter flexbeams, flywheels, etc.

A significant amount of research work has been done on the delamination analysis
of tapered composites.. A review of these developments is given in the following. The
review is restricted to the studies published in the English language, mostly during the

past two decades.



R1:LITE VIEW AND VE 3

i
~!

P e

e

\

/ -
-
-

e;‘?///

/

4
El

Figure 1-1 Helicopter yoke

1.1.1 Overall review

Tapered composite structures formed by terminating some of the plies create
geometry and material discontinuities that act as sources for delamination initiation and
propagation. From earlier research works concerning this type of structures, two major
categories of work on tapered composites can be identified. The first is to understand
failure mechanisms induced by drop-off plies in tapered construction. This work
encompasses the determination of the state of interlaminar stresses in the vicinity of ply-
drop-oﬁ‘s,. the calculation of strain energy release rate associated with delamination
within the tapered region, and the direct modeling of delamination progress using finite
elements. The initiation and propagation of delaminations could thus be predicted. A
large number of investigators have been engaged in conducting research on this respect.
The list includes the works of Kemp and Johnson, ! Curry et al., > Hoa et al., ? Fish and
Lee, * Salpekar et al.,’> Murri et al..% ® ' Armanios and Parnas,” Vizzini and Lee,’

Wisnom et al.,'®'? Harrison and Johnson,'® Vizzini,'* 3 Rhim and Vizzini,'” Adams et
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al.” Wu and Webber,® Wu2® Miravete,! Thomsen et al,"'*’ Mortensen and
Thomsen,'®* Mukherjee and Varughese, Poon et al..® Hofman and Ochoa,’’ Ochoa
and Chan,“ Davila and Johnson*® and Trethewey et al.*® The second category has been
to seek more rational or optimal designs of damage resistant tapered composite structures
by investigating the parameters that have substantial influences on the structural integrity.
The works relating to parametric studies on tapered composites were conducted by
Daoust and Hoa, # Llanos and Vizzini,?* Thomas and Webber, ** Cui etal.*® Vizzini,
27 Botting et al.,”* Manne and Tsai,® Caims et al.,”* Fish and Vizzini®®*°, Pogue and

Vizzini** and those who created ESDU Data Item 91003.*

This review concentrates on the works mentioned above, specifically 1) stress

analysis, 2) delamination analysis, and 3) parametric study.

There are several basic types of tapers that are often used and analyzed, and they

can be identified as shown in Fig. 1-2.

External-ply-drop-off tapers, defined as those in which the dropped plies are on a
surface of the laminate, were examined by Wu and Webber'®, Wu, ?* Thomsen, *'*, and
by Miravete.?! Wu and Webber applied a quasi-three-dimensional iso-parametric finite
element for the linear elastic static analysis of a tapered laminated plate of infinite width
subjected to a uniform in-plane load. Numerical results were given for a single step plate
with various arrangements for the ply fibre directions. Very high peak stresses were
predicted in the corner region of the step, but these were reduced when a resin fillet was
included in the theoretical model for the step region. Following this analysis was a
continuation work by Wu?, in which the non-linear material behavior was considered to

account for the redistribution of stresses in the resin that would occur in the presence of
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the peak stresses. Compared with the linear results, the non-linear ones show that the
peak stresses are reduced by about half as a result of non-linear deformation of the resin
and the non-linear model gave more realistic prediction of interlaminar stress
distributions and failure mode at the ply-drop-offs. Thomsen et al *'**? used a simpie
mechanical model to investigate the local bending effects of ply-drop-offs in
CFRP/honeycomb sandwich panels. The interaction between the core material and the
face laminates was modeled using a two-parameter elastic foundation model. It was
concluded from the examples given that the elastic response is strongly influenced by the
presence of a supporting core material and that out-of-plane stiffness of the honeycomb
core, the bending stiffness of base-line face laminate and the bending stiffness of the
dropped sub-laminates provide significant bending effects induced by ply-drop-offs.
Experimental investigation based on using electronic speckles pattern interferometers
(ESPI) was conducted to validate the simple model and it was shown that the
theoretically predicted and measured out-of-plane deflection profiles correlated well with
respect to the local bending response induced by the ply-drop-offs. The model was

3 and stress analysis for internal drop-off

extended to delamination failure analysis®
tapered laminates.”® Miravete presented a study of mechanical behavior of variable
thickness composite beams subjected to transverse load. A theoretical model based on a
plane strain finite element theory was carried out to analyze the stress distribution near
the areas of change of thickness, which is strongly dependent on thickness ratio. For low
values of the angle of variation of thickness, the strength is outstanding and the variable
thickness effect does not alter the mechanical behavior of the plate. For large angle of

taper, the strength is lower because of variable thickness effect and failure occurs at the
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location where thickness varies. The delamination mechanism is due to high interlaminar

shear stress generated by the variable thickness effect.

TAPERS
|
r i
External Internal Midplane
‘ | —
— | %’
| e
| |
Longitudinal Transverse
Normal, z Normal, z :
Longitudinal, x - ‘ Transverse, y
: / C ‘ L
| . 8
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Figure 1-2 Basic types of tapers with dropped plies

Midplane-ply-drop-off tapers, defined as those in which the plies are terminated at
the midplane, were examined by Hofman and Ochoa® with a shear deformable
composite element. The shear deformable element was modified to accommodate
variable element thickness with midplane layer drop-off. With the example problem it is
shown that the tapered element formulation in the QHD40 element, which was developed
by Ochoa for analysis and design of complex shape composite components, adequately

models tapered and layered plates. The finite element modeling, however, was simplified
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by neglecting the presence of small resin pockets caused by forming the terminated

layers.
Normal, z
' Transverse, y
Thick Section | il
\ ! 7 lLongitudinal, x Taper Section Thin Section

Taper -}m/ - -

s L0 -
A SuDEIeoanse AR 7
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Figure 1-3 Schematic of taper with internal dropped plies

Two types of internal-ply-drop-off-tapers can be identified in terms of loading
direction.

Longitudinal-ply-drop-off tapers are defined as those in which the internal
discontinuities of the laminate are parallel to the applied load. In general, this type of
taper was used to change the stress state in the free edge in order to suppress the
delamination due to free edge effects. Vizzini’> used quasi-three-dimensional finite
element approach for strength prediction. In his analytical work, which correlated well
v?ith experimental evidence, Vizzini found that modeling a discontinuity with an
associated resin pocket provides direct evaluation of the stresses in the region where

failure occurs. Pogue and Vizzini** extended the structural tailoring techniques to the
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suppression of the delamination at stress free edge by dropping plies just around the edge
of the laminates. This is one of four-edge alteration techniques applied to prevent the
delamination induced by the stress free edge of composite laminates. The introduction of
the taper around the edge can change the state of stress at the free edge while introducing
an internal discontinuity. It may help to decrease the interlaminar stresses, which arise as
a result of the stress-free edge; however, the newly introduced internal edge may be
prone to internal damage that is difficult to detect nondestructively. The fact that benefits
and detriments of tapering exist simultaneously shows that much care must be taken in
choosing an appropriate tailoring technique. Ochoa and Chan*® also examined the
longitudinal taper under tensile, bending and torsion loads using finite elements in
analyzing laminates with 90 deg plies dropped symmetrically just inside the free edge.
They found that under tensile loading interlaminar stresses at the free edge were reduced
significantly, while under bending and torsion loading only a small amount of increase of

interlaminar stress values was found.

Transverse-ply-drop-off tapers, defined as those in which the dropped plies are
terminated from the interior of the laminate and the variation of the thickness goes along
the primary loading direction, are concentrated in the remainder of this review because of
their prevalent application in engineering. Most of the previous works in regard to
delamination analysis of transverse-ply-drop-off tapers were towards ideally two-, quasi-
three- or full three- dimensional representation of the geometry of the taper. In general,
they may consist of 0, 90, £45, +15 deg plies or a certain combination of them with a
tapering angle of less than 15 deg, usually with 5.71 deg for a 10-to-1 taper ratio. Most

papers deal with symmetric laminates, while a few papers investigated asymmetric
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laminates that are typically used in applications where a flat surface is important such as
wing skins. Both numerically intensive finite element models and simplified analyses
have been attempted. Experimentally, tapered specimens have been manufactured from
graphite-epoxy and glass-epoxy composites and tested under quasi-static loading
conditions and fatigue. The schematic of tapers with internally dropped plies is shown in

Fig. 1-3.

1.1.2 Interlaminar stresses’

The kernel part of investigation on delamination analysis of tapered laminates lies
in how to accurately describe the interlaminar stress state in the critical region of
components. Finite element method is the most prevalent and powerful tool in dealing
with geometrically complex problems such as tapered composites as applied by a large
number of authors. However, some authors either aimed at developing a simple physical
model to demonstrate stress transfer mechanisms at the drop-off location or intended to
develop a complex model as to find out the true stress distribution at the critical region.

All of these methods are named here as non-FEM approaches.

Non-FEM approaches

A simple model for interlaminar stresses at the interface between the continuous
plies and drop-off plies was developed by Armanios and Parnas.” on the basis of
equilibrium conditions on the continuous sublaminate (belt) and with local stiffness
variations at the ply-drop locations. In this model, the resin pockets were assumed as

primarily shear stress carriers and ply-drop locations as extensional and concentrated



: LITERA W AND OBJECTIVE 10

shear springs. The estimation of the interlaminar stresses was determined by application
of a minimum complementary energy principle. Although the interlaminar shear stress
from their model was in qualitative agreement with a finite element solution, it failed to

capture the tensile nature of the interlaminar normal stress at the ply-drops.

Vizzini'* employed the so-called shear-lag model to analyze interlaminar stresses
in the region around drop-offs. In his model, resin layers were assumed to act as media
carrying shear stresses only, while fiber layers as media carrying tension stresses. The
stress state at the ply-drop region was modeled as a three-zone problem, in each of which
force equilibrium was implemented. The resulting governing differential equations,
subjected to satisfaction of constraints on displacement at the boundary by finite element
results from the global analysis, the inter-zone constraints on displacements and forces,
and constraints due to degenerate cases involving zero thickness, were solved with
assumed polynomials for the displacements in the fiber layers. In comparison with the
finite element results, he found that the shear-lag model could capture a majority of the

load transfer mechanisms about internally dropped plies under tension stresses.

A simple mechanical model, which was originally developed by Thomsen
et al “'*3 1o investigate bending effects of the sandwich laminate with external drop-offs,
was extended to obtain the stress distribution in laminates/sandwich laminates with
internal ply-drop-offs. The structural modeling for the sub-laminates was based on
Kirchoff assumptions, and the classical laminated plate theory (CLT) was used to
describe the constitutive behavior of the sub-laminates. The resin layers were modeled as
continuously distributed linear tension/compression and shear springs. In the case where

the drop occurs in the face laminate of a sandwich panel, the interaction between the
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laminates and the core material is modeled using a two-parameter elastic foundation
model, which accounts for the shear interaction between the laminate and the core. One
of them is used to determine the compressive /tensile strain in the core material, and the
other to determine the shear strain in the core material. The system equations subject to
the prescribed boundary conditions were solved through the multi-segment method of
integration. It was shown that the interlaminar stresses calculated by the proposed
simplified approach correlated very well with the finite element analysis. Meanwhile, the
adaptability and limitation of the model were also presented through the discussion on
structural parameters of sandwich laminates such as elastic wavelength, thickness of resin

layers, cell-size of the honeycomb, etc.

Based on the Hellinger-Reissner variational functional, Harrison and Johnson'’
developed a stress-based method of approximation for the prediction of interlaminar
stresses in the vicinity around ply-drops. The approach chosen was to follow Pagano’s
laminate structural theory, which modeled the laminate by a series of layers with the
stress field assumed within each layer. The stresses were assumed to be explicit
functions of the thickness coordinate with stress variables as coefficients. These stress
variables were functions of the longitudinal coordinate only. Substituting the assumed
stress field into the Hellinger-Reissner variational principle and invoking the stationary
condition with respect to all admissible stresses and displacements led to a system of
differential-algebraic equations (DAEs) that could be solved by finite difference method.
The solution for interlaminar stresses in the modeled tapered laminates that were assumed
to be under generalized plane deformation was found to be in good agreement with finite

element solution.
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In general, simplified mechanical models as shown in the mentioned works for
the interlaminar stress analysis of tapered laminates provides more physical insight than
that provided by FEM, and reasonable results with comparison to that calculated with

FEM are reachable based on physically appropriate assumptions.

Displacement based finite element approaches

As for other composite structures, the majority of approaches to predict
interlaminar stress and delamination in tapered composites are based on Finite Element
methods. Displacement based finite elements and assumed stress hybrid elements are

most commonly applied in these areas and deserve more discussion in this review.

In displacement based finite element models, also called “compatible models™ by
Pian and Tong,>’ the displacements are assumed and are required to be continuous over
the whole domain. They are the most commonly used finite element models because of
their inherent ease of formulation for most applications and efficiency of computation.
Their ease of formulation is due to the relatively loose restriction of continuity on the
assumed displacement field, which on the other hand, leads to a loss of accuracy in
predicting stresses due to the fact that equilibrium of the stresses within the elements is
satisfied only in an integral sense.

The Full three-dimensional displacement based finite element approach was
employed in some of the studies, including the works by Adams, et al., *’ Hoa, et al.,’
Daoust and Hoa.> In Ref. 47, nonlinear material response and thermal residual stresses
of porous laminates with ply-drop-offs were investigated. Free-edge effects, however,

were not included due to the generalized plane strain assumption imposed. Finite
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element meshing adopted in this model was very coarse in that at the ply-drop region no
longitudinal mesh refinement was made. In Ref. 3, the three-dimensional mesh at the
ply-drop region was refined by a sub-modeling technique. This approach involved
successive reduction and refinement of the mesh in the region of interest while retaining
the results of the previous iteration as boundary conditions for the refined mesh. The
purpose of this method was to have a refined mesh in the region of large stress gradients
while keeping the number of degrees of freedom of the solution required for each pass of
the finite element solver within the capability of the computer that was available. In Ref.
23, an extension of this work, three-dimensional finite elements were employed again

with development of a more efficient computer program for parameter analysis.

Some of the studies employed Quasi-3D (Q3D) displacement based finite element
approaches by reducing the domain into two-dimensional boundary problem based on the
" assumptions of either generalized plane deformation, or generalized plane strain. In both
the theories all the cross sections would remain plane, and the stresses, geometric and
material properties, and strains would be independent of the coordinate normal to the
plane of analysis. The difference between these two theories lies in the fact that the
former allows bending about the coordinates comprised of the analyzed plane and
twisting about the remaining coordinate, of which the variables are independent. This
theory is applicable to nonsymmetric laminates under extension loading conditions
prescribed so as to accommodate deflections and rotations caused by the eccentricity of
the load path. The latter is ideal for the analysis of long symmetric structures under
tensile loading condition. Typical applications of Q3D approaches based on the above

theories for transverse-ply-drop-off tapers include the work of Kemp and Johnson' and
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Curry et al.2 In each of these models, the displacements normal to the plane of the model
were still included and therefore these models have five or six nonzero components of
strain. In Ref. 1, four elements through the thickness in the plies in the vicinity of the
drop-off were set up to perform the analysis as required to reasonably satisfy the
continuity of intralaminar stresses and strains. The analyzed results show that the
interlaminar stresses reach the maximum at the ply-drop location. Curry et al.? conducted
global/local approach to tapered composite analysis. The global analysis was performed
using the general-purpose computer program STAGS, while the local analysis for
determining the three-dimensional state of stress in the vicinity of the dropped plies was
based on the generalized plane deformation. Their study shows that interlaminar normal
stress in the interface or resin layer reaches a maximum at the end of the dropped plies,
and at the same location where the interlaminar shear stress is close to its maximum
value. Variughese and Mukherjee'® also made global-local approach for the analysis of
tapered composites. Considering that the drop-off needs not pass through a nodal line in
global analysis, they developed drop-off elements that can be independent of the location
of the drop-offs. The elements were used in global analysis to reduce the size of global
structural matrix and showed more flexibility in meshing division. An accurate stress
distribution around the ply-drop-offs was determined by local analysis with refined finite
elements over the critical region and the input from the global analysis as the boundary
conditions. Good correlation was found by comparing the results obtained using this

approach with published results obtained based on three-dimensional modeling.

Some of the authors, however, were more interested in performing plane stress

and plane strain finite element analysis by reasonably reducing the domain of the
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problem into two dimensions in order to avoid the computationally intensive nature of
three-dimensional finite element model. Salpekar, et al.° and Murri, et.al.® * '¢ are among
those authors who performed interlaminar analysis and furthermore determined strain

energy release rate associated with the delamination growth.

Assumed stress hybrid finite element approaches

The majority of finite elements used for stress analysis of tapered composites are
based on displacement formulation, particularly those employed in commercial software
packages. This is due to the simple approach to the element formulation provided by the
displacement model. However, there are some disadvantages inherent in the displacement
approach in analysis of laminated composites, which have limited its application in
accurately describing the response of the critical area in tapered laminated composites.
The main disadvantages of displacement elements include the fact that they can not
satisfy continuity conditions on displacements and transverse stresses at interlaminar
surfaces due to the discontinuity in material properties, and the fact that the convergence
of displacement element model for problems with large gradients of stresses, as in the
case of the drop-off location in tapered composites, is very slow. Moreover, the modeling
leads to excessive requirement of computer resources for finer element meshing that is
needed to determine more accurate structural and local responses of the composite. In
general, analysis of tapered composites based on displacement approaches can only
proﬁde qualitative and trend information on responses of the structure under certain

loading.
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On the other hand, assumed stress hybrid elements, motivated by an attempt to
overcome the shortcomings of displacement elements, was developed in 1964 by Pian**
and have since been extensively applied in the analysis of regular laminated composites.
As in the equilibrium model, this hybrid element model uses assumed equilibrating stress
fields within the elements which enhances stress accuracy and also uses assumed
boundary displacements in terms of nodal values such that they satisfy inter-element
continuity.

Fish and Lee' first introduced hybrid elements in the analysis of tapered
composites. In their work, 3D assumed hybrid elements were used to develop a
methodology for the prediction of delamination onset in tapered composite laminates
containing multiple ply-drop steps. The model contained 433 eight-node brick elements
and six-node pentahedral elements for a total 2,916 global degrees of freedom. The eight-
node hexahedral elements were based on an assumed stress hybrid formulation and could
provide more accurate stresses than linear displacement element. The six-node
pentahedral elements were based on the assumed displacement formulation. The
influences of the sublaminates above and below the plydrop steps were investigated. Both
experimental testing and finite element modeling of the tapered region were conducted.
The failure of the tapered laminates is due to the interlaminar shear stress and occurs at

the last ply-drop step.

This approach has been systematically employed by the research group at
University of Maryland. In addition to the above, the topics that they studied with this
method also include delamination failure mechanism analysis,” delamination prevention

techniqu&s,z‘ effects of realistic taper geometries on the stress state at critical regions?’,
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shear-lag analysis about an internally-dropped ply,'* delamination of ply-drop
configurations and tailoring concepts.?® *° Vizzini*? and Fish and Lee* also used 03D
assumed stress hybrid method to perform strength analysis of laminated composites with
internal discontinuities parallel to the applied load, and to examine the free edge effects
in a dropped ply specimen, respectively.

Another elaborate model that consists of shell elements, solid elements and
transition elements was developed by Davila and Johnson to capture post buckling
response in the internally dropped laminates. The shell elements employed to model the
majority of the laminate is a 9-node assumed natural strain (ANS) element with 5 degrees
of freedom per node. The solid element used to model the ply-drop-off region is a 20-
node serendipity brick element with 3 displacement degrees of freedom per node. A
transition element that has 15-node element with 51 degrees of freedom per node and
permits the connection of shell and solid element was constructed by degenerating the
20-node solid element. The influences of the geometric nonlinearity on the stress
concentration and the delamination initiation were examined through the analysis by this

advanced element.

1.1.3 Delamination analysis

Delamination analysis of tapered composites involves determination of
interlaminar stresses using finite element methods as described in the first part of this

review, prediction of delamination onset location, and simulation of delamination crack

propagation.
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In order to predict delamination onset and growth and hence the performance of
the various laminates studied, some kind of failure analysis was applied. Two general
approaches exist for this purpose. They are the strength-of-materials approach (stress-
strength approach) and the strain-energy-release-rate approach (Fracture Mechanics
approach). In the strength-of-materials approach, the local stress or strain state is
compared to the material strength allowables. In the strain-energy-release-rate approach,
which is based on fracture mechanics, the laminate is assumed to fail when the available
strain energy of a delamination crack in a ply interface exceeds the critical strain energy

release rate for the matenial.

Strength-of-materials approach

In application of this approach to perform delamination analysis, usually more
than one failure criterion was used to predict the weakest location over the whole
structure. Frequently, different criteria were used for prediction of in-plane and out-of-

plane failure of the plies as well as for out-of-plane failure between plies.

Kemp and Johnson' used the maximum stress criterion to predict the failure in the
rich resin surrounding the dropped plies, while applying the Tsai-Wu criterion for
intralaminar failure prediction. With these criteria in consideration, they found that
majority of the first failure events in either tension or compression are resin failures in a

few cases for which failure occurred at the ply-drop.

Both interlaminar and intralaminar failure criteria were used by Curry et al.? for

their analysis. The interlaminar criterion they used, which is based on matrix failure
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mode developed by Hashin, was evaluated at all interfaces between plies with different
fiber orientations in the local model, while the intralaminar criterion was a modiﬁcétion
of Tsai-Wu, in which only the strength parameters that correspond to the failure mode
were included. The failure analysis with the above criteria and finite analysis results
indicated that the first major failure event for the laminate studied was a delamination at
the interface between the dropped ply and continuous ply that appeared to initiate at the
end of the dropped ply. These failure analyses, however, underestimated the experimental

failure load by more than 30%.

Fish and Lee* used modified Tsai-Wu criterion to predict the out-of-plane failure
of the composite laminates in their study. They introduced the average stress concept for
the situations where the stress state is dominated by a single stress and applied it to the
out-of-plane stress distributions obtained from the numerical analysis, thus the maximum
stress failure was considered. They found that the maximum stress criterion, using an
interlaminar stress averaging distance of one ply thickness, provided consistent and
accurate delamination onset predictions for the laminates investigated, which was also
supported by the experimental observations.

On the basis of the assumption that the primary failure in the tapered composites
is to be delamination and to occur in the interply resin layer, Vizzini 2 3 employed the
von Mises stress criterion, an isotropic failure criterion, to be a measure of the overall
stress state for a given configuration. In Ref. 27, the maximum von Mises stress in the
realistic laminate with an ill-formed pocket modeled as to be four sided rather than
triangular as is usually assumed, or with unsymmetric ply-drops, occurred around the last
ply-drop-offs. He found that the results agreed well with his finite element analysis, and
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further the von Mises stress for the laminate with a fracture void increased by more than
50%, which indicated that the presence of a void greatly affected the stress state around
the ply-drop and that the interlaminar stress criterion that excludes voids will overpredict
the onset of damage. In Ref. 32, von Mises criterion was used to determine the strength
of the resin pocket at the discontinuity. Falling within the scatter of the experimental data
for delamination initiation, this resin pocket model predicted very well the initiation of

damage for the laminates dominated by the internal edge failure.

Harrison and Johnson!® used the delarhination fraction concept, which was
proposed by Brewer and Lagace, as a measure to investigate the effect of eccentricity and
stiffness discontinuity on the tendency of laminates with dropped plies to delaminate. In
combination with their mixed variational approach, they found that the highest
delamination fraction value contributed by both the interlaminar normal and shear
stresses at ply-drop region and show that it is the stiffness discontinuity rather than
eccentricity of the laminate that has a larger influence on the interlaminar stresses and

eventual delamination.

Thomsen and Mortensen'® applied a point stress criterion for prediction of
delamination failure in composite laminates with external ply-drop-offs. The stress at a
certain characteristic length away from the drop step was evaluated with a simplified
analytical model. Delamination failure is considered to occur if the calculated stress
exceeds the strength of the interply resin layers. An empirical formula for the
characteristic length calculation and the respective characteristic length stress criterion
were suggested. It was concluded that the proposed approach works well due to the
good match between experimental and analytical results.
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It is seen that in strength-of-materials approach for delamination analysis two
kinds of criteria, i.e. point stress approach, as used in Ref. 43, and stress averaging
approach, can be identified in terms of the techniques used to obtain principal stresses,
both of which was introduced due to the singular nature of interlaminar stress distribution
at ply-drop-off positions, where the interlaminar stress peaks occur and by far exceed the
interface material allowables at the load levels where delamination failure can be detected
experimentally. Thus, it is impossible to provide physically meaningful prediction of
delamination initiation in laminated tapered composites by direct application of the
calculated peak stresses together with some point stress criteria. To overcome the
difficulties induced by the inherent singularity some other techniques like ‘stress
averaging’ or ‘effective/characteristic length’ were applied and approved to be effective

in dealing with delamination initiation analysis of tapered laminates.

Strain-energy-release-rate approach

Strain energy release rate is a concept from fracture mechanics. It may be
interpreted as the amount of work required to close a delamination by an incremental
length. Much of the work has been done to calculate the modes of strain energy release

rate using finite element method for delamination in tapered composites.

In Reference'® the general design guidelines and analysis capability for the
prediction of delamination of tapered composites are presented. Two cases are studied,
i.e. zero transverse strain for a wide plate or zero transverse loads for a longitudinal strip.
It is indicated that a value for the critical strain energy reiease rate associated with

delamination between layers is required for delamination initiation and growth analysis,
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and notes are included on how that may be measured experimentally. Guidance is given
on good design practice in tapering a laminate to reduce the likelihood of delamination.
Results from the analysis are compared with limited experimental data from the

literature, and agreement is seen to be reasonable.

Salpekar, et al.’ conducted delamination analysis of tapered composites with this
approach. The virtual crack closure technique (VCCT), combined with a 2D finite
element model, was used in their analysis to obtain the strain-energy-release rate
components, in mode I (G), and in mode II (Gy;), based on the local forces at and ahead
of the delamination tip and the relative displacements behind the delamination tip. Two
models were shown in this work, one for the interlaminar stress distribution along the
interface BCDE (Fig. 1-3) and the other for the strain-energy-release-rate variation for
various size delaminations assumed along the interface BCDE. With the first model, they
found that the interlaminar normal stress shows peaks near the ply-drop-offs and the
largest one occurred at the transition point D. The sudden changes in the stress
distributions at drop-off location indicated that stress singularities are more likely present.
In the second model, the strain energy release rate was calculated for a delamination
assumed to initiate at the juncture of the intersection of the taper and the thin laminate,
point D. The delamination along the thin section of the laminate consisted of
predominately of mode I component, while the delamination along thick section initially
consisted of mode I component and was replaced by the mode II component afterwards.
This linear fracture mechanics approach presented a new vision to predict failure of
tapered composites, but it lacked an experimental investigation to validate the

conclusions drawn.
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Trethewey et al. * also employed linear elastic fracture mechanics to determine
the mode I and II components of strain energy release rate. Their analytical model was
based on shear deformation plate theory with a through-width delamination embedded at
the interface between continuous and discontinuous sublaminates. The influence of
geometry- and material properties on the structural performance of the tapered laminate
was determined with the parametric study. It was shown that among the geometric
parameters, the number of discontinuous layers at a single axial position had the strongest

influence, while the crack size of the delamination had a less pronounced effect.

Murri, et al.® later extended their analysis to fatigue delamination onset prediction
in unidirectional tapered laminates, using nearly the same techniques as in Ref. 5 except
for the experiments included to verify the analysis results. It was shown in the
experiments that for some of the laminates studied initial stable delamination that often
started with a resin crack at the drop-off and final unstable delaminations that initiated at
the junction of the thin and thick sections of the laminate were observed. Finite element
calculations for the strain energy release rate associated with the initial resin delamination

showed good agreement with this phenomenon.

Ref. 8 by Murri et al. was a follow up of the analysis in Ref. 5, in which
delamination of tapered multi-angle laminates under tension fatigue loading was
examined numerically and experimentally. In addition to the delamination existing at the
interface between the belt and core as in Ref. 5 and 6 the matrix ply cracking resulted
from the presence of +45° plies in the laminate of analysis was also modeled by an
observed failure mode. Only one type of the laminates examined tended to fail as
modeled using the finite element analysis since the delaminations in other types of
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laminates were dominated by matrix ply cracks and were always at locations other than

interface BCDE.

In Ref, 16, Murri, et. al. examined the effect of combined tension-bending loading
on glass-epoxy laminates with a nonlinear taper and internal ply-drops. The delamination
growth originating from the initial tension crack at the drop-off was simulated in the 2D
finite element model by releasing pairs of multi-point constraints at the critical interfaces,
and the strain energy release rates were thus calculated using VCCT for a delamination
starting at the ply-drop-off location and growing toward the thick or thin section. They
found that the initial delamination grows first toward the thick section where the
delamination is predominately Gy, (shear mode) and grows all the way, as the fatigue
loading was continued, to the junction of the tapered and thick section where the
delamination is predominately G; (opening mode). The results obtained from their model
also indicated that the mode ratios are very sensitive to the discrete angle changes in the

model.

Wisnom, el al.'” presented the results of the tests carried out on the rapidly
tapered specimens with dropped +45° and 0° plies in order to determine static and fatigue
strengths. The failure modes for the three types of specimens studied are either fiber
breaks initiated near the first dropped ply or delamination occurring at the dropped 0°
plies which is more susceptible to delamination than +45° plies. Wisnom et al. continued
this analysis in the paper'? by comparison of tapered laminate delamination with
delamination in internal cut plies under fatigue loading. They found that the delamination
in the cut ply specimens propagated in both directions from the cut, whereas for the

dropped ply specimens it propagated only to the thick end with slower delamination rate
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than cut ply specimens due to the effect of through-thickness compressive stresses in the
region where delamination initiated. Normalization of strain energy release rates
calculated from a simple equation was made by dividing the cyclic strain-energy-release-
rate range AG by the fracture energy G deduced from a static tension delamination test,
and obtained the similarity between the delaminations in the specimens under fatigue and

static loadings.

In Ref. 11 by Wisnom et al., three asymmetrical composites with 0/£45° layups
loaded in tension were chosen to carry out an experimental investigation on the effects of
the tapered geometry and the stiffness of the discontinuous plies for asymmetrically
tapered sections based on the conclusion that the strain energy release rate associated
with the discontinuous plies was the critical factor controlling delamination into the thick
section, with the effect of the tapered geometry being of secondary importance. In
comparison with the previous results for the thick section delamination failure
mechanisms in the symmetric tapers studied in Ref. 12, they concluded that the
asymmetry does not appear to have a significant effect on thick section delamination.
Existence of thin section delamination induced by specimens tapered geometry, which is
less severe than thick section delamination, however, showed a different delamination
behavior from the previously tested symmetric specimens and therefore further
investigation was encouraged to explain it. The taper angle and the degree of
consolidation in the region around the dropped plies are likely the reasons suggested by
the authors for the question. A summary of the results for transverse-ply-drop tapers is
listed in Table 1-1. It was indicated in this table that the specimens often used for

analysis and testing were made from Glass/Epoxy or Graphite/Epoxy, and were
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configured in multidirectional and symmetric form. The majority of the work was done
based on an experimental program wherein the test coupons were subjected to static and
/or fatigue loading. Various finite element modeling and non-finite element approaches
were used in the analysis of tapered laminates. Strength-of-materials criteria and fracture
criteria were almost equally applied by the authors. The maximum interlaminar shear
stress was found by most works to appear at the ply-drop step, while the maximum
interlaminar normal stress was found to appear at the ply-drop step by about half of the
authors, and at the taper root by the other half of the authors. The final delamination will
grow into the thick and thin sections simultaneously, but the location of delamination
initiation was found to appear at the ply-drop step in some works, and at the taper root in

others.

There are many factors contributing to the stress state, but among them most
important one is the configuration of a laminate. So for different configurations of a
laminated composite, it is impossible to make a categorical statement as to the location
where stress peaks appear. However, the contradiction in this regard with an identical
configuration under same loading conditions and same constraints can only be attributed
to the methodology used in modeling the taper. It seems that the model employed by
Vizzini, Lee, etc., where 3-dimensional assumed hybrid element was implemented with
inclusion of interply resin layers approximates the true stress state better than others. Zero

thickness resin layer causes singularity at ply-drop region, and variation of interply layer
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Table 1-1 Summary of data and results for monolithic laminated composites with

internal transverse-ply-drop-off tapers

Reference No. 1 2 3 4 5§ 6 7 8 9 10 11 12 13 14 15 16 17 18
Materials Glass / Epoxy e o o o o e o o . . e o
Graphite /Epoxy | ¢ e o ° ° . .
Carbon / Epoxy e o
Al / Epoxy °
Configuration | Symmetric N e o o o o o o o o e o
Nonsymmetric e o ° e o o e o
Unidirectional . ° ° e o
Multidirectional e o o o o o e o ® e o @
Loading Static ¢ o o o o ° e o o e o o o
Fatigue ® . e o o
Experiment e« o @ ® . e o o
Numerical 3D-d ®
Modeling Q3D-d o o
2D-d ° . ° ¢ o °
3D-h . .
Q3D-h
Other ° e o o ° °
Failure SM e o ° o [ °
Criterion SERR [ ® [ [ [ [ [ L
Maximum g,0ro, at C ) . . e o o .
Interlaminar D ° . e o o o .
Stress o, 0orc,, at C e o o o e e o o o o o . °
D )
Delamination | Initiatingat C ° e e o ° .
Initiation and D e o e o o o
Growth Growing into
Thin section e o o o . . ° L]
Thick section e o ® e e o e o o o ° °
Reference No. 1 2 3 4 5§ 6 7 8 9 10 11 12 13 14 15 16 17 18
Norations:

3D-d - Three-dimensional displacement based finite element;

Q3D-d — Quasi-three-dimensional displacement based finite element;
2D-d - Two-dimensional displacement based finite element;

3D-h - Three-dimensional assumed stress hybrid finite element;

Q3D-h — Quasi-three-dimensional assumed stress hybrid finite element;
SM - Strength-of- Materials approach;

SERR - Strain-Energy-Release Rate approach;

C - Point of the intersection between the inner drop ply and the belt plies (ply-drop-off step);

D - Point of the juncture between core plies and belt plies (taper root).
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thickness can alter stress state at ply-drop region. So a model without relatively accurate

thin interply resin layers is inadequate if refined results are desired.

1.1.4 Parametric study and design considerations

In order to design damage resistant tapered structures, many parameters such as
taper geometry, locations of ply-drops, and configurations of ply-drops through-the-
thickness that would affect delamination at dropped plies, have been studied.?2% 3940,
Moreover, optimization design considerations for the external tapered composite

structures have been investigated.?*

Daoust and Hoa> developed an extensive finite element program for the study of
tapered laminates. The parameters that influence the strength of the laminate were also
examined through evaluating the efficiency of the tapered laminates. The efficiency is
defined as a ratio of the maximum applied load with the drop-off to the one without drop-
off, aﬁd it can be calculated using finite element method. The analysis results show that
internal drop-offs are roughly two t-imes stronger than external ones; that the layer drop-
off does not affect torsion resistance; that extending the length of the drop-off hole while

keeping the same drop-off height reduces interlaminar stress levels.

Llanos and Vizzini 2* evaluated two commonly used tailoring techniques in free-
edge delamination prevention in flat laminates, i.e. addition of softer inner layer
(structural adhesive) and ply angle alteration, for the prevention of delamination in
tapered structures. Another technique applied and approved to be efficient by the
comparison of the analysis results and experimental observations was to add resin layers
in their model. It was demonstrated that the addition of adhesive film reduced the
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interlaminar stresses in some of the components analyzed, but provided no significant
change in the others. Both alterations of the small internal edge of the last ply-drop and
the complete ply-drop can be introduced to produce a substantial reduction in the

magnitudes and gradients of the interlaminar stresses at the last ply-drop region.

Thomas and Webber®® used linear elastic fracture mechanics combined with
simple strength of material theory to predict the tensile delamination load of tapered
laminated plate subject to a certain geometric variation. It was shown that the
delamination load is very sensitive to the thickness of the dropped sublaminate and that
varying the lay-up angle of a dropped sublaminate from 0 to + 90 deg with respect to the
direction of loading could increase the delamination load as the angle tended toward + 90
deg.

Cui et al.2® investigated the effect of the distance between neighboring drop steps
in a staircase arrangement, with the objective of finding out the point at which the
interaction between neighbouring steps becomes significant. The critical stepping
distance calculated with a simple formula was used to assess the extent to which the step
spacing affects on the delamination stress. The step spacing could have a significant
effect on delamination, particularly within small range of step spacing. Based on their
newly developed variable fracture energy concept they also concluded that the fracture

energy is not a material constant.

Vizzini?’ studied the effects of realistic taper geometries on the stress state at and
near the ply-drops using finite element analysis. Ill-formed pockets, unsymmetric ply-
drops, and fracture resin pockets (voids) were considered in his model. It was concluded

that all realistic geometries tend to increase the interlaminar stress state and the effect that
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these geometries have on the damage onset point and the failure mode is of importance.
Therefore, any quantitative results from analysis models that do not take into account

realistic geometries may be questionable and even misleading.

y .
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Figure 1-4 Schematic drawings of alternate ply-drop sequences in Ref. 28

Botting et al.2® examined through finite element analysis the stress state in tapered
laminates with different ply-drop configurations with the inclusion of stress free edge
effect. One standard staircase ply-drop configuration and the three alternate ply-drop
configurations as shown in Fig.1-4 were investigated. In all cases studied, the results
from finite element analysis showed that altering the ply-drop configuration could
decrease the stress state at the ply-drop. This conclusion was experimentally validated by
the improvement in the damage onset stress of the laminate investigated. Fish and
Vizzini*** continued this work by analyzing unidirectional glass/epoxy tapered
laminates with four different ply-drop configurations and failure modes as shown in

Fig.1-5 a) and b), respectively. Two of them were chosen for further study under cyclic
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loads. Their analysis indicated that tapered laminates could be tailored for stiffness and
strength by altering the internal ply-drop configuration. The overlapped-dispersed
configuration could achieve stable delamination initiation and growth and provide the
best overall structural performance with intermediate delamination strength, the highest

bending stiffness retention, and good damage tolerance characteristics.
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Figure 1-§ Schematic drawings of alternate ply-drop configurations and

failure model in Ref. 39-40

Notation for drop-off sequence and configuration in Fig. 1-5: “[”, “\* and " |" stand for a ply or

sublaminate that is dropped, folded & dropped, and continuous, respectively. Plies or sublaminates are
counted from the top to the bottom of the laminate, excluding the beit and core plies. The drop-off

sequence starts from the left side of each notation.
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Manne and Tsai®® investigated how sublaminates made of multiple plies at
various orientations, combining one or more materials are repeated or dropped in
different zones of the structure, yielding the external ply-drop taper while ensuring
physical continuity of the fibers in all composite layers. The orientation and thickness of
each ply group in this reference sublaminate as well as its number of repetitions in the
zones across the structures were optimized with the objective of minimum weight,
subject to the constraints of strength, stiffness and manufacturing complexity. This new
design methodology was due to an attempt of combining the considerations of low
weight and easy manufacturing requirements. The introduction of a reference
sublaminate, called base sublaminate or design unit could achieve the double objectives.
The sublaminate repeated or dropped a given number of times forms a laminate. The
optimum uniform thickness design and the best quasi-isotropic design are respectively

16% and 110% heavier than the optimum plydrops one.

Reference work’® by Caims et al. was to explore various factors such as thickness,
ply stacking sequences, and ply-drop geometries and manufacturing considerations for
design of composite blades with ply-drops. Fatigue loading was also considered with
respect to delamination initiation and growth. Delamination prevention techniques such
as the inclusion of random mat fabric between the ply-drop and the continuous layer,
“feathering” (alternating tows are pulled out to provide a less defined delamination site),
“Z-spiking” (removing the scrim from the fabric and driving the fiber tows into the lower
layers), and addition of an adhesive region were used to enhance the structural integrity.
Two epoxy adhesives were applied to repair the delamination in an exterior ply-drop

sample. The general conclusions drawn from their work about the delamination and
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preventing delamination can therefore be summarized as in the following. An optimum
configuration of dropping plies is to have an intemal ply-drop, with a combination of

either “Z-spiking”, an adhesive, or “feathering” used in the construction.

1.1.5 Concluding remarks

To accurately describe the delamination mechanisms in tapered laminate
composites and to correlate them well with experiments have been challenging tasks for
researchers for more than a decade. The difficulties in modeling tapered composite
structures for stress analysis, and delamination initiation and growth lies in their
geometric and material discontinuities as well as free-edge effect. All of these would give
rise to complicated stress distribution around ply-drop-off region, typically interlaminar

stresses that would cause delamination failure of the whole structure.

Both FEM and non-FEM approaches were implemented to determine the
interlaminar stress profile around ply-drop-offs, initial delamination onset location along
with a strength-of-materials based criterion, and to stimulate delamination mechanisms
by releasing failed elements. They were also used to calculate the strain energy release
rates associated with delamination within tapered laminates for the fracture modes I
(opening) and II (shearing). Hybrid elements were overwhelmingly applied in 3D
problems with the consideration of including free-edge effects, while easily formulated

displacement elements were preferred by most of authors for solving 2D problem.
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Several distinguishable methodologies for analysis of delamination initiation and
propagation can be identified according to finite element modeling, failure criteria

chosen, and special techniques applied.

Vizzini, Lee, etc. used 3D or Q3D assumed stress hybrid elements to accurately
determine interlaminar stresses together with the application of stress averaging concept
and applied strength-of-materials criterion to do failure analysis. Stress-free-edge effect
was included using a coarse mesh in some of their analyses. Resin layers were introduced
in their models so as to reflect the accurate stress state at and near the drop steps in
tapered laminates. It was found in their analysis that in most of the laminates studied both
maximum interlaminar stresses (normal and shear) and delamination initiation located at
the ply-drop step (point C in Fig. 1-3), where stress singularity was likely generated. A
delamination initiation location is significantly affected by local taper angles, the amount
of offset of the ply-drops and presence of fracture pockets in realistic tagers.?’ They
concluded that delamination growth simulated by the progressive damage finite element
model could agree with experimental observation and hence correctly predict stable and
unstable growth only with assumed initial damage.” With respect to parametric study,
structural tailoring techniques such as edge alterations, changing ply-drop configurations
and addition of film adhesive between the critical interfaces were investigated to find out

the effects of these changes on the structural integrity.

Murri, O’Brien, Salpekar, etc. used 2D displacement based finite element and
strain-energy-release rate approach to analyze tapered laminates loaded in tension and/or
fatigue. In their studies, the maximum interlaminar normal stress was found to be located

at the taper root (point D in Fig. 1-3), with the maximum shear stresses at the drop-off
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step (point C). The location where a delamination initiated was either assumed *** to be
at the taper root or directly borrowed 16 from the experimental observation. Delamination
growth could be further simulated by the finite element model. However, the efficiency

and accuracy of the simulation wholly depends on the delamination initiation site chosen.

Wisnom, et. al. conducted their experimental and analytical works through
behavior comparisons between tapered laminates with drop-off plies and laminates with
cut plies / untapered !aminates with the same discontinuous plies, and between tapered
laminates with drop-off plies and the same geometrical laminates with low stiffness fill-in
discontinuous plies. On this basis, they concluded that for both symmetrically and
unsymmetrically tapered laminates the® strain energy release rate associated with
discontinuous plies was the critical parameter controlling delamination into the thick
section, while the taper geometry effect was the primary factor for delamination into the
thin section. Confirmed by finite element analysis, a simple calculation model for strain-

energy-release rate was applied in their analysis of delamination initiation.

Another research area of interest, which is pursued by O. T. Thomsen, et al, is on
the study of interlaminar response in sandwich panels with internal or external tapered
face sheets. They resort to a simplified model, instead of a FEM model, as a tool to
perform the analysis. Experimental investigations were conducted to validate analytical
results.

All other works mainly focused on stress analysis around critical regions of the
tapered laminate.
It can be seen in this review that the finite element method is an almost

indispensable tool in the analysis of tapered composites, either for determining
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interlaminar stresses and strain energy release rate or for verifying simple formulations.
Both hybrid and displacement elements were widely employed, with the former
providing more accurate stresses than the latter. Researchers implemented finite element
analysis of taper composites by directly applying elements developed for the analysis of
continuous media to the laminated tapers, without taking into account the multilayer
nature of the laminated structures. In addition, neither of these two types of elements
could completely satisfy displacement and traction continuities simultaneously along bi-
material interfaces in tapered composite structures. Moicover, the overwhelming
dependence of finite elements on modeling the tapers would require huge computational
resources for accurate analysis. Because finite element modeling is carried out subject to
personal experience and the methodology chosen, variation of results would be expected,
even for the same problem. Non-FEM approaches that are formed based on physical
concepts, and can provide equivalent accuracy as FEM approach deserve special
attention. Fracture mechanics and damage mechanics may provide a potential and
effective way in delamination analysis of laminated tapers according to their structural

characteristics.

Experiments are essential for tapered laminate analysis. Correct prediction of
delamination initiation and propagation by finite element modeling and strain energy
release approach depends on the initial crack site observed in experiments. An initial
crack site assumed without theoretical justifications may lead to wrong conclusions about
delamination failure mechanisms unless an experimental program is conducted to
validate them.
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In contrast with the strain energy release rate approach, the strength-of-materials
approach is more efficient in seeking for the point of delamination initiation as was done
in some of the works. However, the strength-of-materials approach, which is based on
mechanics of materials, cannot characterize delamination propagation as efficiently as
strain energy release rate approach due to the fact that the delamination propagation
undergoes progressive growth phenomenon. Therefore, both these approaches have their

own merits and limitations in failure prediction.

In addition to strain energy release rate, the crucial parameters that have
significant effects on delamination in tapered laminates also include the geometry of the
taper, especially the angle of the taper. Therefore, ideally modeled tapered sections
without consideration of variations formed due to manufacturing tolerance are inadequate

if quantitative analysis is desired.

Increasing the structural integrity of the tapered section can be realized by
application of a few rules that have been drawn from the parametric studies. For example,
the addition of film adhesive around the dropped plies to strengthen the region about the
drop can modify the load transfer, thus decrease the interlaminar stress state. This method
is successful in certain configurations. Reconfiguration of the ply-drop may also increase
the structural integrity and alter the failure mechanism. The taper with dropped plies
interleaved with continuous plies displays better behavior than the other taper with
grouped dropped plies. A minor altermation or modification to the constitution and
geometry of the taper may lead to completely different mechanical behavior for the
structure studied.
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Based on the reviewed works, the following aspects with regard to analysis and
design of internally tapered laminated composite structures need to be investigated
further from either a point of view of filling up void areas of interest or improving

methodologies available:

1. Further investigations on improvement of finite element modeling
incorporating interlaminar characteristics of laminated composites is required so as to
increase computational efficiency shown in displacement-based FEM or assumed stress

FEM. Development of new finite elements is required in this regard.

2. Investigation into the influences of some structural parameters such as
resin toughness on interlaminar fracture toughness of tapered laminates is needed in order
to gain insight into employing toughened composites laminated tapers in engineering

applications.

3. Reactions of multiple delaminations in the tapered laminates have not
been touched so far. Failure mechanisms induced at geometric and material

discontinuities can be thoroughly understood only after gaining this insight.

4, Optimization of tapered laminated composite structures such as helicopter
yoke arms and rotor blades should be targeted. This work will involve devising a method
of defining variations of structural properties as functions of the construction and
materials of optimized laminates. The optimization techniques should also incorporate

manufacturing constraints.

5. It is worth noting that earlier researchers have not conducted materially

non-linear analysis of internally tapered laminates. However, realistic response in internal
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tapered laminates significantly depends on constitutive laws that describe material
properties. Both composite lamina and resins that constitute a laminated structure exhibit
non-linear stress-strain relationship, especially for shear stress-strain relations of lamina
and for all properties in resins. Material nonlinear properties must be incorporated in

quantitative analysis of tapered laminates.

1.2 Objective of the Thesis Work

The objective of the thesis is to develop and apply highly efficient partial hybrid
finite element and physical concept based shear-lag models to examine interlaminar
stress distributions in the vicinity of ply terminations, and to investigate damage failure
mechanisms using linear fracture mechanics methods. J-integrals together with other
conventional approaches were used to determine the strain energy release rate of
delamination in the tapered laminate, aiming at developing a methodology that can
accurately reflect the true influences of geometry and material discontinuity of the
laminate with taper on the strength of the laminate. Therefore, the distributions of the
interlaminar stresses and delamination mechanisms obtained would be applied with

confidence in design and manufacture of the tapered laminated structure.

Many salient points are demonstrated in this work. Specifically, they include 1)
formulation and application of partial hybrid finite element models - more efficient than
conventional displacement based and hybrid stress elements, 2) formulation and
application of a modified shear-lag model - physical concept based, simple, but with
strong capability for analysis of laminates, 3) evaluation of energy release rate of
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delamination in the tapered laminate using path-independent J-integral approach, 4)
investigation of influence of various factors such as resin thickness on composite fracture
toughness so as to gain insight into employing interleaving composites as good
candidates for design of the tapered laminated structure, and 5) use of experimental

results to assess the accuracy of numerical predictions.



Chapter 2
PARTIAL HYBRID STRESS FINITE ELEMENT MODELS

2.1 Introduction

It has been shown in the literature review presented in Chapter 1 of the thesis that
the majority of finite elements used for analysis of tapered laminated composites are
based on displacement formulations. This is because of ease of the element development
with the relatively loose restriction of continuity on the assumed displacement field.
However, there are some inherent limitations in this approach, particularly in analysis of
composites. The main disadvantages of displacement elements include a loss of accuracy
in prediction of stress state and the slow convergence in problems having steep gradients
of stresses, as in ply drop-off locations in tapered composites. Moreover, the modelling
leads to excessive requirement of computer resources to determine more accurate
responses of the composite. In general, analysis of tapered composites based on
displacement approaches can only provide qualitative trend information on responses of
the structure under certain loading.

On the other hand, assumed stress hybrid elements, motivated by an attempt to
overcome the disadvantages of displacement elements, was developed in 1964 by Pian
and have since been extensively applied in the analysis of regular laminated composites.
As in the equilibrium model, this hybrid element model uses assm_ned equilibrating stress
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fields within the elements which enhances stress accuracy and also uses assumed
boundary displacements in terms of nodal values such that they satisfy inter-element
continuity.

The conventional hybrid stress finite element, however, induces two difficulties in
its formulation and implementation. Firstly it involves large computational effort to -
construct a stiffness matrix of an elements that is dependent of the number of stress
parameters assumed. All six-stress components are assumed in the conventional hybrid
stress element and therefore the computing resources required are sometimes prohibitive.
Another limitation of the hybrid element formulation is the difficulty in searching the
stress shape function that is both absent from zero-energy kinematic modes and
satisfaction of equilibrium conditions.

On the other hand, in the partial hybrid stress finite element, only three
interlaminar stress components and in-plane strains identified as globally continuous
variables constitute the control variable field in Helligner-Reissner variational principle.
As a result, only three interlaminar stress components that dominate interlaminar failure
at the critical interfaces, rather than all six stress components as in the conventional
hybrid finite element, are assumed through this scheme and computational efforts for
inverting [H] and calculating [X,] are therefore significantly reduced in comparison with
conventional hybrid elements. It is this inherent advantage that inspired the author to
develop and apply the partial hybrid finite element, which is seeking a balance and
efficiency among the conventional displacement- and stress-based elements, to model

and analyze laminated composites.



In this Chapter, 5 partial hybrid stress elements, i.e. 3-D 6 and 15 node triangular
prism elements, 3-D 6 node wedge element, quasi 3-D 6 node triangular and 8 node
quadrilateral clements, have been formulated and applied to analysis of composite
laminated plates. In the formulation procedure, a focus was given on properly
establishing stress functions in terms of avoiding zero energy deformation mode caused
either by the rigid body modes or unsuitable assumed stress fields. The motivation for
formulating those elements is based on the following considerations:

(a). The triangular element, mingled with the rectangular element, can be used to model a
complex structure. Addressed, as examples in the thesis, are the laminated composite
plates, either with a taper or with a central hole;

(b). Finding interlaminar stress function by the method introduced is easier in comparison
to the one employed for the full hybrid element method, which is because of huge effort
needed in the full hybrid element formulation for seeking the stress function that satisfies
equilibrium conditions for all the stress variables;

(c). The number of stress parameters is fewer than that in the counterpart element;

(d). Fulfillment in con;pensaﬁng the shortage of partial hybrid element realm with the

current ones.

2.2 Interlaminar Continuity Conditions

In the analysis of laminated composite structures, the laminae are assumed to be
bonded perfectly and the individual laminae are treated as homogeneous orthotropic
material. Therefore, the lamination and anisotropy constitute the distinct behavior of the

laminated composite structures. They lead to the conjunction conditions at interfaces



between adjacent layers in laminated composite structures. The conjunction conditions
refer to the continuity conditions of partial stresses and strains at interfaces.

In order to satisfy conjunction conditions, the identification of globally
continuous variables and locally continuous variables is required. In laminated
composites, all components of displacement, strain, and stress are continuous within each
layer due to the fact that the individual laminae are treated as homogeneous orthotropic
material. At the layer interface with perfect bonding, the displacements are also
continuous due to the compatibility condition, leading to the in-plane strain continuity
across the thickness. Meanwhile, the reaction forces give rise to transverse stresses
(interlaminar stresses) and they are also continuous across the thickness because of the
equilibrium condition. It is thus seen that the following continuity conditions hold

between the stress and strain fields of adjacent layers at their interface (see Figure 2-1):

(k) (k+1) (k) (k+1)
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This means that, along the thickness direction of composites, the in-plane strains and
* transverse stresses are globally continuous variables, while the transverse strains and in-
plane stresses are usually not continuous at the interfaces although they must be

continuous within each layer. The latter are called locally continuous variables. Thus, the
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globally continuous variables are those that are continuous not only within the plane of
the lamina but also across the interface from one layer to the next. This is the result of
consideration for compatibility and equilibrium. The locally continuous variables are
those that are continuous only within the plane of the lamina but not necessarily

continuous across the interfaces.

|4

7~

k th layer (k+1)th layer

Figure 2-1 Interface traction continuity conditions in laminate;i composites

By classifying the variables into globally- and locally- continuous variables, both the

stress components and strain components can be partitioned into two groups:

a:t at 83 88
O1=10,t s OCp=1Tot: =16 5 & =17, (2-3)
Tey ™ Yy =

where subscripts g and / denote global (interlaminar) and local variables, respectively.
Coupling the globally and locally continuous variables results in the new variable
vectors, which can be substituted into the modified Hellinger-Reissner variational



principle to form the element. The formulation of this type of elements is described in

detail in Ref. 36.

2.3 The 3-D 6-Node Triangular Prism Partial Hybrid Element

2.3.1 Shape functions

In order to define the basic characteristics of the three-dimensional triangular-
prism element, such as the shape functions, geometry and displacement field of the
element, the standard idea of iso-parametric elements is applied and the reference

element is shown in Figure 2-2.
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Figure 2-2 6-node master triangular-prism finite element

The proper shape functions are defined as tensor products of two-dimensional shape
functions corresponding to the triangular base of the element defined within & 7 —plane
and one-dimensional shape functions corresponding to the direction . More precisely, if
vi, v: and y; denote vertex node shape function for a two-dimensional triangular master

clement and ¢; and @2 are shape functions corresponding to vertex nodes of one-
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dimensional master element, then the three-dimensional shape functions can be defined

N, =v\p,
N, =y,
N, =y,
N,=y\p,
N;=v,0,
Ny =v,p,

(2-4)

or in matrix form

N= ¥, O {¢l} 2-5)
P2

0 ¢,

v=1-§-n, y,=§ and y,=1n (2-6)

The form of the one-dimensional shape functious appearing in Eq. (2-5) and

corresponding to two vertex nodes are defined as follows

27
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The final form of the shape functions is

(2-8)

2.3.2 Geometry of element
For a 3-D 6-node prism isoparametric element, mapping from the global

coordinate system (x, y, 2) to the parametric coordinate system (£ 7, &) is carried out by

x=iN1xl y=iN:y: z=lezl (2'9)

=] =] 1=}

where (x; y, z,)are the global coordinates of the i-th node (i = 1, 2, ...,6), and V, are the
shape functions expressed as in Eq. (2-8).
2.3.3 Displacement fieid

As an isoparametric element allows the same geometry and displacement interpolation

function, a displacement field, within the element, can be assumed as

u=26:N,u, v=iN,v, w=iN,w, (2-10)

inl i=] in]
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where (u; v, w;) are the i-th nodal displacements in the global coordinate system (i =1, 2,
...6), and N; are the same shape functions as in Eq. (2-8). The displacement field can

also be written in a matrix form as

d,
d,

d,

u=[NMd =[N, N,I---N,I] @-11)

2.3.4 Partial strain fields

Partial strain fields are obtained with the assumed displacement filed as follows

ou
&
s, =[ex’ Eys }'xy]r =D"l=< 5}’- >=[B.]d (2'12)
Ou ov
—_— —
(& ox)
in which,
[B‘] = [Bgl BgZ o 836] (2'13)



iy (2-19)

Similarly, the other half of strain field that corresponds to the transverse strain-

displacement relation that has to be satisfied a posteriori can be obtained as in the
following,

o ow
L] =[e:’ yy.-! }':]r = D,u=‘ —_— —

%ty "B (2-15)

in which,
[(B,1=(By By -+~ By] (2-16)
where
0 0 N,
(B,]=| 0 N, N, @-17)
N. 0 N,
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Mapping the derivatives from global coordinate system to local coordinate system as

required by performing the evaluation of iso-parametric element matrices is realized by

N.: Xe Ve
Nl-q = x.v yq
N.. X Yo
where
6
x,!=ZN‘.‘ x, -

in]

The Jacobian matrix [J] can also be written as
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(2-18)

(2-19)

(2-20)

Thus, given the global coordinates (x;, y;, 2;) of element nodes and shape functions N,

used for geometry, the Jacobian matrix can be evaluated using Eq. (2-20). Another form

for Eq. (2-17) can be written as
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2.3.5 Gauss Integration

The numerical integration takes advantage of the so-called symmetrical Gauss
quadrature rule for a triangle (*3, applied to longitudinal normalized coordinates £ and 7
of the master triangle and standard Gauss integration rule applied to the third, transverse
normalized coordinate £ of the one-dimensional master element, which when mixed
together form a three-dimensional, symmetrical-standard-product Gauss integration
scheme. Thus, each integrand f (&, 7, {) of the stiffness matrix can be integrated

according to the rule

E.Llﬂ.nf(f,ﬂsf)dédndg
(2-23)

Mg N,
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where N;, w,, §;, 7, and M, w,, £, are the number of Gauss points, Gauss point

weights and coordinates, for the triangle and the third direction, respectively.

2.3.6 Interlaminar stress interpolation functions

Within the element, a partial stress field is assumed independently as

A
o, B

0 =17t =[P)B8=[0ps0promK "’ (2-24)
To )

There are several methods available lfor obtaining stress modes for hybrid element. By
satisfying equilibrium conditions, one S -stress term per one a-mode scheme 1% is
applied here to derive the initial interlaminar stress modes. This method can be used to
suppress the kinematic deformation and to limit the number of stress modes as minimum
as possible. The number of a-modes (deformation modes, M) is dependent of the
difference (M = n - r = 12) between the number of total d.o.f.s (n = 3x6) of the element
and the number of the rigid body motions (r = 6) of the element. The assumed

deformation may be expressed as

u=a, +a,5 +ayn+a,d +a,5¢ +agng
v=b +b, §+b,n+b,{ + b5 +b,nd (2-25)

w=c +e,§+oen+e,d+c 88 +ené

and corresponding strains are
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Ou C
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leads to
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ﬂ;‘ =0
B =0 (2-25d)
Bis+ B, =0

The interlaminar stress matrix achieved through this scheme is thus expressed as

(AL (2:26)

QO =
O - O
-0 O
O O YUn
O Y ©
O O3

0
-1
s

It is seen that seven stress modes are available in the above stress matrix. However, the
minimum number of stress modes required for the correct stiffness rank for the element
studied is m_, =n(3x6)—r (6)-n, (6) = 6. Therefore, the initial stress matrix needs to
be further refined to suppress one unnecessary mode. Eigenvalue analysis incorporated
with the classification technique!*!! has been applied for this purpose to obtain the
representative modes corresponding t0 Mmin natural .deformation modes.  The
representative stress matrix which assures absence of rank deficiency of the stiffness

matrix of the element with the elimination of the zero-energy inducing mode {7,0,0}" is

thus obtained and of the form
1 00 & 0 O
[P,']= 01 00 ¢& —-nq (2-27)
00100 ¢



The number of stress parameters for the stress shape function above is two less than that

required in the 8-node solid partial hybrid element 501 To let the stiffness matrix of the

hybrid element have sufficient rank and be free of kinematic deformation modes, the

following procedure can be employed to determine the stress matrix as in the above. The

numbers shown below are calculated and extracted from the currently developed new

clement.

1.

An initial stress matrix [P, ]3x7 is developed from one /3 -stress term per one a -

mode scheme;

Determination of the rank (r4 = 6) of the semi-stiffness matrix formulated from
the globally continuous strains;

The minimum number (Mmin) of stress modes responding to the natural

deformation of the element is determined using the condition

m,, =n(3x6)-r(6)-n, (6)=6

where n is the number of freedoms of the element, » the number of rigid motions

of the element, and ny the rank of the displacement based element stiffness matrix;
Through eigenvalue tests the initial stress matrix [P, ]3x7 with a number of stress
modes larger than minimum required number (Mmin = 6) is refined to be [P]]

which is verified for its rank deficiency absence for the element (see Table 2-1).



Table 2-1 Results of eigenvalue examination of the partial hybrid stress element

e = =
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.329786 1.161439 1.534557 2.953247 2988672 3.624301

4.642650 11.215609 12.597004 12.634584 23.687095 72.023983

S
Parameters used are the same as in the example given in the following.
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Evaluation of inter-
laminar stresses by
partial hybrid

element.
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Figure 2-3 A flowchart for computing interlaminar stress components
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2.3.7 Numerical example

The newly developed element was first employed to predict the interlaminar
stress distribution in a [90/0]); composite laminate with a central circular hole subjected to

a uniaxial tension in the longitudinal direction.

o
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Figure 2-4 A [90/0]; laminate with a circular hole under uniaxial tension

Geometric and material properties for the structure analyzed as shown in Figure
2-4 are listed in Tables 2-2 and 2-3. Each ply is treated as a homogeneous elastic and
orthotropic material as in the case of Raju and Crews*>. Due to the conditions given in
the problem, only one-eighth of the laminate needs to be modeled. Two models are
considered in this investigation. In model A, each of the plies was represented by one
triangular prism element in the normal direction, while in model B, two elements were
used. A mesh refinement around the hole is required to account for the interlaminar stress

concentration expected in this region. The finite element meshes in the x-y plane are



shown in Figure 2-5. The minimum length of the element adopted is equal to one half of
the ply thickness. The FE model A consists of 292 elements and 642 degrees of freedom,
and model B 584 clements and 1128 degrees of freedom. The imposed boundary
conditions are ¥ (0, y, 2) = v (x, 0, 2) = w (x, y, 0) = 0. Figure 2-6 and 2-7 show
respectively normalized interlaminar normal stress & /0, vs € and normalized

interlaminar shear stress o9 / o, vs @ for models A and B.

Table 2-2 Dimensions of the |90/0 |‘ Laminate (mm)

Length Width Height Hole Radius Ply Thickness
L=60 w=30 H=0.5 R=25 t=0.125

Table 2-3 Material Properties of the 0° Lamina in the [90/0); Laminate

Extensional Modulus (GPa) Poisson’s Ratio Shear Modulus (GPa)
El1 =138 vi2 =021 Gy, =5.86
E2=145 vi3=0.21 G;3=5.86
E3=145 vy =021 Gy =5.86

Subscripts 1, 2 and 3 denote the fiber, transverse and thickness directions, respectively.



Figure 2-§ In-plane finite element meshes
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Figure 2-6 Normalized interlaminar normal stress along @ at the 90° / 0° interface
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Figure 2-7 Normalized interlaminar shear stress along @at the 90° / 0° interface

In Figure 2-6 the distribution of normalized interlaminar normal stress around the
hole at the 90 / 0 interface is illustrated for model A and model B, with comparison to the
results obtained by Raju & Crews based on three-dimensional displacement based finite
element method. In their model, 20-node isoparametric brick elements consisting of a
about 19,000 degrees of freedom that is approximately 15 times as many as in model B
were used. Good agreement between the results is obtained from the present element and

those predicted by Raju & Crews. The same tendency for the stress distribution of g can



also be observed in Figure 2-7. The shear stress component 7 is very small compared to

the other interlaminar components and can be neglected.

2.3.8 Summary

A three-dimensional triangular prism partial hybrid element has been developed
based on the identification of interlaminar stress components and in-plane strains as
constituting the control variable field in Helligner-Reissner vaﬁaﬁc;nal principle. The
initially assumed interlaminar stress field was established first by invoking its consistence
with strain that is compatible with the assumed displacement. The optimal interlaminar
stress matrix, which possesses the minimum number of stress parameters required for
suppression of zero-energy deformation modes has been found by refining the initial
stress field. It has also been validated through demonstrating the absence of rank
deficiency for the element stiffness matrix based on the eigenvalue analysis. The number
of stress parameters for the present element considered is 75 percent of that for 8-node
solid counterpart element. A numerical example for the determination of interlaminar
stress distribution in the [90/0); laminate with a central hole was used to illustrate the
computational accuracy of the new element. It is concluded that accurate solutions to the
interlaminar stress distribution in the laminated composites can be predicted by the

proposed element.



2.4 3-D 15-Node Triangular Prism Partial Hybrid Element

In the 3-D 6-node element formulated, the stress function contains only constant
and linear terms, which could not allow exact satisfaction on the continuity conditions at
the interface on the element-wise basis. However, the 15-node element is a high-order
element that can be manipulated to meet the above continuity conditions. This element is
competitive both with the full hybrid element, where all six stress components are
independently assumed, and another type of partial hybrid element, where only two
interlaminar shear stresses are assumed, in terms of computing efficiency with less stress

parameters than and similar accuracy.

2.4.1 Shape functions

In order to define the basic characteristics of the three-dimensional triangular-
prism element, such as shape functions, geometry and displacement field of the element
the standard idea of isoparametric elements is applied and the reference element is shown

in Figure 2-8. The basis of 15-node prism element is

P ={L & 0.8, &6n8.5°¢C én¢ .S .67 8¢ ng? 80 ngt, n*dY
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Figure 2-8 The 15-node triangular-prism finite element

In the figure, ‘a’ and ‘b’ denote the top and bottom surfaces of the element. Shape

functions for each node are listed in the following forms:

Nodes 1 ~ 6:
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M

{aN/a", =4

Nodes 10 ~ 15:

{N} =1

{alv/aﬂ} =4

a5
-s(1-25)

-n(1-2n)

(—A(1-24))

{-1¢0-0)

- A(1-24))

-~ £(1-2£)

{-3¢0-0)}

{3¢t+0)

{2ct+0)

{aN/3E} =

{oN/oS} =

{aN/0&} =<

{aNfag} =1

42-8)
-1+4¢
. 4np

0

[(1-44 )

{-3¢0-0)}

[ —4n |

451

4én

4nA

(— A(1-24))
-§(1-2%)

-n(1-2n)

(2-28)

{-30-20}

J

(2-29)
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(A1-¢%)] -(1-¢%)
{N}=4&0-¢*)}p  {aNjagy={ 1-¢*
L”(1-;2)J 0
(2-30)
(~(1-¢?)] -24
{ON/on} = 0 > {oN/o¢y = {- 25 }
| 1-¢% -2ng

whereA=1-&-7

2.4.2 Geometry of element
For a 3-D 15-node prism isoparametric element, mapping from the global

coordinate system (x, y, z) to the parametric coordinate system (£ 7, ¢) is carried out by

15 13
x=Zlel y=ZNtyl Z=ZN;21 (2-31)

=] im] i=l

where (x;, ;, z;) are the global coordinates of the i-thnode (i =1, 2, ...,15), and N, are
the shape functions expressed in Egs. (2-28) ~ (2-30).

2.4.3 Displacement field

As an isoparametric element allows the same geometry and displacement interpolation

function, a displacement field, within the element, can be assumed as



u =2N,u, v=ZN,v, w=ZN,w,. (2-32)

where (u; v, w,) are the i-th nodal displacements in the global coordinate system (i =1, 2,
...15), and N, are the same shape functions as in Eq. (2-28) ~ Eq. (2-30). The

displacement field can also be written in a matrix form, as

dl
d

u=[Nd=[NI N,I--N,IK"} (2-33)
dl.f

2.4.4 Partial strain fields

Partial strain fields are obtained with the assumed displacement filed as follows,

ou
>
4 =len 52,1 ==y = 1=[B, M (2-34)
ou ¥
CAR-J
in which,
[B,1=[By, B,; -+ By;l (2-35)



0
N, O (2-36)
N,

Similarly, the other half of strain field that corresponds to the transverse strain-

displacement relation that has to be satisfied a posteriori can be obtained in the following,

r -a-w— 3
avazaw
] =[£:’ Vs yz]r =Dlu=‘ E+E+=[Bl]d (2'37)
ow Ou
— s —
[ Ox
in which,
[B]= [Bn Blz an] (2-38)
where
0 0 N,'x
(B,]=| O Nl.: Nl,y (2-39)
Nl.: 0 Nl,x

Mapping the derivatives from global coordinate system to local coordinate system as

required by performing the evaluation of isoparametric element matrices is realized by
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N Xe Ve ZefNos N,.
N,i=lx, v, z,{N,|=U]IN, (2-40)
Ni.c Xe Ve Zo(\Ni: N,.
where
13 18
Xe=2 N x - 2,=2 Nz (2-41)
in] =]
[J] can also be written as
(0N, oV, = &Ny
08 of 2 |[% »n &
1= aN, oN, ON,, J::2 y:2 z:z 2u2)

on On on : : :
dN, N,  ON, Xis Vis 2

R o¢ |

Thus, given the global coordinates (x;, y:, ) of element nodes and shape functions »;
used for geometry, the Jacobian matrix can be evaluated using Eq. (2-40). Another form

for Eq. (2-40) can be written as

N,, |=UT'| N, (243)
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2.4.5 Gauss integration

The method of numerical integration takes advantage of the so-called symmetrical
Gauss quadrature rule for a triangle®, applied to longitudinal normalized coordinates §
and 5 of the master triangle and standard Gauss integration rule applied to the third,
transverse normalized coordinate ¢ of the one-dimensional master element, which when
mixed together form a three-dimensional, symmetrical-standard-product Gauss
integration scheme. Thus, each integrand f (&, 7, ) of the stiffness matrix can be

integrated according to the rule

[LE77G.n.6)dgdndg

lM
|15

Isl

(2-44)

an

ww, (& s »81)

»

=]

where N, w,, &, 1, and Mg, w,, £, are the number of Gauss points, Gauss point

weight and coordinate, for the triangle and the third direction, respectively.

2.4.6 Interlaminar stress interpolation functions

Within the element, a partial stress field is assumed independently as
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Ar
7,
0‘ = tp =[Pg]ﬂ=["l’”'2!'"’n] ‘:‘.2. (2'45)
T
- B

The initial stress shape functions are determined based on the one -stress term per one
deformation a-mode scheme as applied in the development of 6-nodal triangular prism
element shown in Section 2-3 to suppress the zero-deformation mode in Ref. 50. The
general procedures are first to establish the strain fields from the displacement basis for
the 15-node prism element and then to copy the format of interlaminar strains as

interlaminar stress interpolated function. The basis for 15-node prism element is

P, ={1, & 1., &, 08,838 &n¢ . .S EC 0t 62, Enst, sty (2-46)

and the displacement field is thus in form of

u=a +a,§+a,r]+a‘{+a,§{+a,r]{+a7524'+a,§r];+a,r)z¢+a,°§2
+a"§{2 +axz’7;z "‘0135242 +au§’7¢z "'015’72;2

v=b +b,§ +bn+b, +b55 +bng +5,8%¢ +b.§17{+b,ng+b,°{2

2-4
+b,5¢ 2+ b,n¢ 24+b,8 22 + by éng 2 +bls"zg ? @47

w=c, +C 6+ +c, 5 +6,86 +cgng +¢,&2 8 +eiénd "’c’"z;"'cxo;z
+c,,5¢ 2+epns 2+epé 22 +e éné? +cl$”2; 2

The corresponding interlaminar strain components are
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e =
(—a;
ow ov
=22 2-48
G

&, =(c, "'cs:"‘cs""‘c-/"z "’csg”*co”z)
+{(2c0 +2¢,§ +2¢c,n + 2c3n” +2¢,.én +c,51°)

Ve = (@, +c,)+a,E +amn+a,n’ +aén+a,n’
+{T1Q2a, +¢,)+2(ay, +¢,)5 +(2a,;, +e ) +20,3§2 + 2“145’7"’2015’72] (249)

+;z(c“ +2c,8 +¢14M)

Ve = (s “’cs)"’bs:"'bs'l"’bﬂf "’baé”"’bq’?z
+{T(2by, +¢4) +(2by, +¢4)5 +2(b,, +"9)”+2b1352 +2bu§’7+2bxs’72]

+& (e + € +2¢05m)

To facilitate the writing of the equation, the following form is used
& = [(al +a,§+an+adn+ asfz + as’lz)
+{(a, +a S +an+aén+ augz + alz’lz)]
Y= [(au +a, & +ayn+ayén +a, &’ +a,n°)
(2-50)
+§(@y +ayé +ayn+ayin+ Exét + 024’72) +8 (@ + s + an’l)]

Y = [(a,, + A& + Ay + 4,87 +a,2§2 +ass’lz)

+4(as +ass§+ax”+an§’7+aso';z +ayn’)+$i (@, +a4|5"'¢¢2’7]
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There are total 36 independent parameters o, involved in Eq. (2-49). Comparison of

above two equations gives the following parameter relationships:

Ay =y =y

|
Ay =y = ;aw

(2-51)
an =a),

The stress shape function can be thus formulated based on the one B-stress term per one
deformation a-mode scheme, and can be written below for i-th layer element as shown in

Fig. 2-9

o; = (B, + B:& + Bin+ Bién+ B,E* + Ben®)
"’;(p*r +ﬁl§+p9”+ﬂlo§”+ﬂllgz +ﬁlz’72)]‘

f;lp: = [(ﬂla + Bl + P+ Pl + B&’ + Pun’®)
(2-52)

+$(By "'pzof*‘ﬂzxﬂ*’ﬂzzg’l"’ﬂzsgz "’ﬂu’lz)'*';z(ﬂzs "’ﬂzsf"‘ﬂn’l)]‘

tzt = [(ﬂzn + Pl + Bt + Buén + P&’ + Bun®)

+§ (B + Bisé + P + P + Bl + B )+ (B + Bué "'pcz'l]‘
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Since the interlaminar stress field is assumed for each layer, the term £ is defined
to vary from —1 to +1 in each layer. Similarly, of the total 42 stress parameters in the

abo{re field, 6 are not independent and the correlations:

B =5 = By
1
B =By = ;ﬁlo
(2-53)
.ﬂn =B
BPu = %ﬂc

By imposing the following traction continuity conditions, the final interlaminar stress

field of each layer can be constructed.

AN

ITN Laminate interface
<

Figure 2-9 Illustration of element geometry of the laminate
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Traction-free boundary conditions on the top and bottom surfaces of the laminate:

Ty =Ty = ollop of the lamin are

(2-54)
O =Tg =Ty = olbmm of the lamin ate
Interlaminar interface traction continuity conditions:
(03757, )ltop of thettnigyer 2 (03T Te )| bottom of the (1+1)ch layer (2-55)

At the upper surface of the i - th layer element ({ = 1), the interlaminar stresses are

o; =[(B,+ B+ (By + B)E+(Bs + By)n

+(Ba + Bro)en+(By + B)E* + (B + B )nP)]'
f:pc = [(ﬂls + Bio + Bas) +(Biy + Ba + P16 )6 +(Pis + By + B
, (2-56)
+(Bis + B )en+(By + Bu)E* + (B + Bo 0]

T =[(Bas + B + Bu) + (Brg + Pas + Bu )+ (B + Pas + B
+(By + Bn)on +(By +Pu)E2 +(Bsy "’ﬂso)ﬂz]‘

At the lower surface of the i-th layer element (£ = -1), the interlaminar stresses are



7”7

ol =[(B - B+ (B, - B)E+(Bs - Ba)n

+(Bi = Bo)én+(Bs 'ﬂu)fz +(Bs -ﬂlz)’lz)]'

T = [(ﬁu = Bis + Bas) +(Brs = B + Brs)s +(Brs = B + BN

| @-57)
+ B = B+ B = B)* + By = o))

fé‘ = [(ﬂ” -ﬂu +p40)+(ﬂ29 -ﬁjs +ﬂu)§+(ﬂm -ﬂx +ﬁ42)’7
+(Bsy = Bn)sn+ (B ~ B)é? + (B 'ﬂ”)”z]‘

The traction free conditions on the top surface of the laminate are satisfied by setting

BY + BN, =0, k=1~6, 16~18 and 31~33

(2-58)
BN+ B+ B =0, k=13~15and 28~30
on the bottom surface of the laminate by
B =P =0, k=1~6, 16~18 and 31~33
(2-59)

Bl =Bl +Pla =0, k=13~15 and 28~30

Similarly, the interlaminar interface traction continuity conditions are satisfied by

demanding that
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st _gil gl g k=1~6, 16~18 and 31~33

k = Fke6 =

(2-60)
w_pgil gt gl Bl B, k=13~15and 28 ~30

k kss + Pror2
The final stress shape functions that satisfy traction continuity conditions can thus be
defined completely in terms of stress parameters.

Consider a laminate composed of N layers of lamina (layer 1 is designated as
bottom layer and layer N top layer). So there are (N - 1) interlaminar interfaces and the
number of the total constraints induced by Eqs. (2-54) and Eq. (2-55) is [18 x (V -
1)+(12+18)] and the average number of stress parameters per layer is therefore {36 x N -
[18 x (N-1)+(12+18)] } / N=18 — 12/ N. From a computational point of view, the new
element developed is very economical not only in comparison with the full hybrid stress
element developed by Spilker™ (52 — 12 / N), but also competitive to another partial

hybrid element developed by yong® (18 — 12 / N), wherein only two transverse stresses

e and 7, are independently assumed.

Interlaminar stress functions for a single, double and triple layered laminates

under transverse loading are listed according to the above formulation.
Single layer laminate:
o, =1+{XA + B+ B+ Bén+ B’ +Bs?)
t,.=( =8By + Bk + Bism) (2-61)

e =(A=8>XBa + Bué + But)



Double layer laminate:

Layer #1
o® =[1+4XB, + 8B, +nB, +EnB. + £ B, +n2B|®
t® = [0+ )Bis +EBuu +1Bis +EnBs + &7 By + 11" B R
+C(A+EXB, +.58B, + 1)
¢® = (14X + 5B + 1B + 80Py + B + 7B ]”

+$A+EN.5B; +&P, +.5nB,)"

Layer #2

o® =[(1+4XB, +£B, +nBy +EnB. + &8, +1* )
~2[(B, + 8, + By +Enp + & B, +1*B,]”

1@ = (1= + Bus + Bisén+ i + P&’ + Bun N
+UA=)B+25XB; +.558, + 1B, )"
~(A=C*XB, +.588, + 1)

t® = A=) Bag + Bl + Prol + Bu& + P&’ + B NY
+(A-)X3+20X.58, +&B; +.5n8,)"

(=& X58, + 8B, +.5nB)P
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(2-62)

(2-63)



Triple layer laminate:
Layer #1
o® =[0+¢XB, +£8, +1B, + EnB, + &2 B, +n* A"
r® = [0+ CXBi +8Bus + 115 +EMBs + 8B + 17 Bu]”

(2-64)
+{ A+ LBy +.5EB, + )Y

1@ = [0+ 0N B + B +1Buo + EnB + By + 7]

+SA+ N5, +EBy +.5nB)"

Layer #2

o® =[1-0XB, +28, +nB, + &b, + £, +n*B.]"
+[5a+¢XB, +£8; +nB, + &np, + 88, +7°B,|”

-[sa+¢XB, + 28, + 1By + EnBo + £ B + 17 Bs]”

e® < [1=0)Bis +EBru +1Bys +EnBrg +E2 By +1* )"
+[0+ 0N B + 8B + 1B + ENBi + E2 By + 17 B}
+1A=-0)2 +Q)B; +.588, +nB; " 2-65)
-QA-¢)[58, + 2588, +nps I

+(1+OG-O5B, +2588, +.518, P
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6@ = (1 OB + B + 1B+ EnB + &P 417 B5|”
P[0+ O Bs + 8B +1Bro + ENB +E By + 17 B3]
+(1-0CQ+0N58, + &8, +.5nB.J° +a-¢*)258, + .58, - 2578,
+A+0)3-0l258, +.588, + 2578, 7

Layer #3

)]

o =8, + 28, +nB, +&nB, + £, +n'B]
+[;('8’ +&Py + 1Py +EMPro +& B, +1’ B, ](3)

fg) = [(1 =X Bis + &P +1Bis +EnPe + & By +1 Pu ](3)
(2-66)

+& (148X B, +.58B10 + 1)

¢® = (1= )P +EBrg + Pro + EnBrs + 6B +1° 85"

+ & (=14 QX5 + EB, +.51P1o)™

The superscripts in the above equations denote the layer number that the stress

parameters are related to.



2.4.7 Numerical results and discussion

In order to validate the present finite element formulation, a number of typical
laminated plate problems are analyzed and the results are compared with analytical
solutions as well as finite element solutions available in the published literature. Two

categories of laminated plate problems considered in the examples are:

CASE I: Simply supported laminate under cylindrical bending and subjected to
sinusoidal loading

q(x,y) = q, sin(zx/a) (2-67)

CASE II: Simply supported laminate with the shape of a square plate (axa) under bi-
directional sinusoidal loading

q(x,y) = q, sin(zx/ a)sin(zy / a) (2-68)

The material constants used in the simulations are listed in Table 2-4.

Table 2-4 Material properties used in the examples
E, E; G Gn Vi v
174.6 GPa 7GPa 3.5GPa 1.4 GPa 0.25 025
1, 2 and 3 refer to the material principal axes

These are the same as those used in the literature® ¢, In addition, the numerical results

are normalized for the consistency in comparison with other works. Hereafter, the
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displacement or stress components with overbars denote the corresponding normalized

quantities as shown in the following:

- Eu 100E,w
u= (2-69)

gohS’ g,hS*

- - 1
0:,0y,Ty |]=——\0,,0,,T ) (2-70)
(_ y '7) qth‘( yrtay
P N S PPy @-71)
q,S

S=alh z=z/h (2-72)

For all the examples employed to demonstrate the efficiency and accuracy of the element,
the loading is assumed to be applied on the top surface of the laminate. Owing to

symmetry, only a quarter of the plate is used in the analysis.

CASE I: CYLINDRICAL BENDING PROBLEM

Example 1:
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Figure 2-10 [Illustration of cylindrical bending problem for a three layered laminate
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Figure 2-11 In-plane finite element mesh

The laminated plate considered in this example is a three-layered symmetric
cross-ply square laminate (0°/90°/0°) subjected to bending loads (see Figure 2-10). The
laminate is simply supported at edges x = 0 and x = L with a plate span-to-thickness ratio
of S = L/T = 4, “L” being the side length of the plate and “T™ its overall thickness.
Figure 2-11 shows the in-plane finite element mesh for the model. The boundary

conditions are



o, (x,T/2)=q(x)

o (x~T/2)=1_(x,T/2)=0
(2-73)
0.(0,2)=0,(L,2)=0

w(0,z)=w(L,z)=0

_ Partial hybrid element
z Elasticity solution [56)
— - = —  Classical plate theory

-

0.4
-0.5

Figure 2-12 Variation of normalized transverse shear stress (;z) through the thickness
atx = 0, y = a/2 due to a sinusoidal load applied on a thick square plate (L/T = 4) with
three laminae (0°/90°/0°)

Figure 2-12 presents the result for a plate (span-to-thickness ratio S = 4) with
configuration [0°/90°/0°] under cylindrical bending. The orientation of the fibers in the
top and bottom laminae is parallel to the length of the plate and in the middle layer it is



transverse to the length. The normalized interlaminar shear stress value plotted in Figure

(2-12) shows excellent agreement with the solution of Pagano [56].

Example 2:
z
0.5 Partial hybrid element
04-N 2 - Elasticity solution [56]
0.3 — - - — Classical plate theory

0.2
0.1 _
0.0 ' LT,
Py 30 40

-02 )

0.3

-0.4
-0.5

Figure 2-13 Variation of normalized transverse shear (7= ) through thickness at x = 0 due
to the cylindrical bending of a plate with two laminae (0°/90°) and L/T = 4.0
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Partial hybrid element
........ Elasticity solution [56)
—— - = — Classical plate theory

Figure 2-14 Variation of normalized transverse normal stress (;,) through the thickness
atx =0 due to the cylindrical bending of a plate, with two laminae (0°/90°) and L/T = 4



In this example, plates with two cross-ply laminae (0°/90°) of equal thickness and
made of transversely isotropic materials are considered. The orientation of the fibre in
the bottom layer is parallel to the length of the strip (say x-direction) and in the top layer
the orientation is transverse to the length. For a laminated plate (S = 4) variation of the

normalized interlaminar normal stress o at x =L/2 across the thickness and that of the

interlaminar shear stress (7.z)at x = 0 are shown in Figures 2-13 and 2-14. The close
agreement of the stress values obtained based on the present method and Pagano’s
elasticity solution is quite obvious from these plots. It is also apparent that even for the
thick plate considered, the discrepancy in the stress values based on the Classical Plate

Theory (CPT) is not as large as in the case of normalized displacement w.

CASE II: SIMPLY SUPPORTED SQUARE LAMINATE UNDER BIDIRECTIONAL
SINUSOIDAL LOADING

Example 3:

Table 2-5 Normalized center deflection of two-layer angle-ply (-8/+8)
simply supported square plate under sinusoidal loading

Normalized center deflection
g 3D Elasticity First order plate theory Partial hybrid element
15° 1.7059 1.7638 1.6998
30° 1.7297 1.7724 1.7284
45° 1.6887 1.7403 1.6903

S

Table 2-5 contains the maximum values of transverse deflection of the midplane

for square plates for different lamination scheme. The angle @ indicated in the table is
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measured from the positive x-axis. The results obtained with partial hybrid element are
compared with the values obtained from the first-order shear deformation theory™ and

exact analytical results given by Pagano®.

Example 4:

_ Partial hybrid element
z Elasticity solution [56]
0.5 — - - —  Classsical plate theory
0.4
03 ~—
02 T
0.1
0.0 l vl
by g4 05 @
202 .
203 -~
04
0.5

Figure 2-15 Variation of normalized transverse shear stress (t=) through the thickness
atx = 0, y = a/2 due to a sinusoidal load applied on a thick square plate (L'T = 4) with
three laminae (0°/90°/0°)

In this example, a laminated cross-ply square plate (0/90/0) is considered and the
results based on the present element formulation are compared with the theoretical results
of Pagano®® based on the theory of elasticity and with those obtained from classical plate
theory. The plate is simply supported at its four edges and due to symmetry only one
quarter of the plate is considered which is modelled with just one finite element. In

Figure 2-15, the transverse shear stresses exhibit close agreement with Pagano’s solution.
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2.4.8 Summary

A three-dimensional 15-node triangular prism partial hybrid element has been
developed based on the identification of interlaminar stress components and in-plane
strains as constituting the control variable field in Helligner-Reissner variational
principle. The interlaminar stress interpolation function was first constructed based on the
one B-stress term per one deformation a-mode scheme, which is appropriate to suppress
the zero-deformation mode as used in Ref. 50. Furthermore, with interlaminar traction
continuity conditions at interface and free traction conditions at the top and bottom
surfaces of the laminate the interlaminar stress function is defined completely in terms of
stress parameters. From a computational point of view, the new element with the number
of stress parameters per layer (18 — 12 / N) is very economical not only in comparison
with the full hybrid stress element developed by Spilker* (number of stress parameters =
52-12/N), but also competitive to another partial hybrid element by Yong® (number of
stress parameters = 18-12/N), where only two transverse stresses %, and 7. are
independently assumed. The efficiency and accuracy of the newly developed element
have also been validated through some typical examples of analysis of composite plates
under cylindrical bending and bi-directional sinusoidal loading conditions. The feasibility
of the element is proved by the examples, in the determination of interlaminar stress
components and deflection. It is concluded that accurate solutions to the interlaminar

stress distribution in the laminated composites can be predicted by the proposed element.



2.5 Three- and Quasi-Dimensional Partial Hybrid Finite Element
Analysis of Tapered Laminated Composites

2.5.1 3-D 6-node wedge partial hybrid element

This element, incorporated with the 8-node solid element by Hoa and Feng*®, was
intended for analysis of tapered laminated composites, which is a core job of the thesis.
In modeling the tapered laminate, the wedge element is required for meshing the taper

root region as shown in Figure 2-20. So there is a necessity for formulating this element.

Shape functions

In order to define basic characteristics of the three-dimensional triangular-prism
element, such as shape functions, geometry and displacement field of the element the
standard idea of isoparametric elements is applied. This means that the construction of
the FE Interpolants describing geometry or displacements takes place on the so-called
master element shown in Figure 2-16. The master (reference) element is a simple
triangular prism defined with the so-called normalized coordinates £ 7 and {as shown in

the Figure.
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Figure 2-16 3-D 6-node wedge element

The proper shape functions are defined as tensor products of two-dimensional
shape functions corresponding with the triangular base of the element defined within &, §
—plane and one-dimensional shape functions corresponding with the direction n. More
precisely, if y1, w2 and y; denote vertex node shape function for a two-dimensional
triangular master element and @; and @ are the shape functions corresponding to vertex
nodes of one-dimensional master element, then the three-dimensional shape functions can

be defined as

LN

N, =¢p
N, =¢.m
Ny =99
N,=¢\;,
Ns; =¢,9,
Ns =939, ]

——

2-79)

or in matrix form



N= ¥s O {?’l} 2-75)

g, =4, i=12,3 (2-76)

Note that we use so called affined (or area) coordinates 4; , 4; and 4; in Eq. (2-76),
which can be expressed through normalized coordinates & , § with simple formulas

h=1-¢-¢, L =f and 4 ={ 2-77)

The form of the one-dimensional shape functions appearing in Eq. (2-74) and

corresponding with two vertex nodes are defined as follows

=1-
A @2-78)
P2 =1

The final form of the shape functions is

N =1=¢=g-0+5+n0)
N, =f-8
N3=(-7( +
Ny=9-H-%
N, =84
Ne=n{

(2-79)

Geometry of element
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For a 3-D 6-node wedge isoparametric element, the mapping from the global coordinate

system (x, , z) to the parametric coordinate system (£ 7, {) is carried out by

3 6 6
x=lexl y=ZNtyl Z=ZN121 (2-80)

sl inl iwl

where (x; ¥, z;) are the global coordinates of the i-th node (i =1, 2, ...,6), and N, are the

shape functions expressed as Eq. (2-74)

Displacement field
As an isoparametric element allows the same geometry and displacement interpolation

function, a displacement field, within the element, can be assumed as

u=iN,u, v=iN,v, w=26:N,w, (2-81)

iw] =] tm]
where (u; v, w;) are the i-th nodal displacements in the global coordinate system (i =1, 2,
...6), and N; are the same shape function as in Eq. (2-74). The displacement field can
also be written in a matrix form,

u=[NJd=[NI N,I--Ng (2-82)

Partial strain fields
Partial strain fields are obtained with the assumed displacement filed as follows,



9%

ﬁ b
%
o =lenc,r,) =Du={ = =B (2-83)
ou
|9y
in which,
[B,1=[B,, B, -- B (2-84)
where,
N, 0 O
[B,]=| 0 N, 0O (2-85)
N, N. O

Similarly, the other half of strain field that corresponds to the transverse strain-

displacement relation and has to be satisfied a posteriori can be obtained in the following,

o
oz
o =le,s s ral = D= { S+ 221 =B, 2-86)
ow Ou
— —
| &x
in which,
[Bll=[8n Blz -+« By] (2-87)
where
0 0 N,
[B,]=| O Nl,x N Ly (2-88)
N, 0 N,

Mapping the derivatives from global coordinate system to local coordinate system as

required by performing the evaluation of isoparametric element matrices is realized by



: N,
=|x, », z,|N,|=V1N,, (2-89)
N,

where

[]
X =2 N x - z,=2 N,z (2-90)

=] =]

Another form for Eq. (2-15) can be written as

Nl,x Nl.{
Nt.y =[J]-l Nl.q (2.91)
Nl,: Nl.(
in which
Nl.{=_(l-'/) Nl..,""(l‘;-() Nx.:=’(l‘7)‘
Nz.:=(l"7) Ny, ==¢ N, =0
N,,=0 N, =={ N,,=1-
3L 39 e n L (2.92)
Neg=-1 N,,=1-¢-¢ Nig=-n
Noe=1 Ny,=¢ N, =0
N, =0 N, =¢ Neo=n )
Partial stress field using iso-function method
Within the element, a partial stress field is assumed independently as
‘. ;
O =1%n =[Pg]p=["l”‘2!"”‘-] “2. (2.93)
tﬂ’
Bu

A partial stress matrix using iso-function method can be directly derived from the

displacement field as follows



u=a, +a,§+azr)+a3§+a4§ﬂ+asﬂ§‘

v=b, +b§ +b,n+b4 +bSn+bng

v~

(2-94)
w=cy +CE+C, M+ 05 +e SN+Csng |
or in matrix form
u=oa (2-95)
where,
100£00n00¢00¢& 0 0 g 0 O
D={0100&&00n00C¢ 0 0 & 0 0 n 0| (296
00100£00n00C¢ 0 0 & 0 0 n¢
a={a, b, c, a, b ¢ - a; b ¢ ¥ 2-97)
The strains derived from the assumed displacement field are
£ =é-u-=a +a ‘
4 oF 1 T A
ov
g, =5;=l>2 +b,F+b{
€ -aw—c +c59
¢ T Ry  ©3 s
43 | (2-98)
y =Q+2v-=(cz+b,)+c.!+b,q+c,{
o &
ow Ou
Ve =3¢:+§=("| +a,)+(as +¢,)n
ov Ou
Vs =3g+‘a""=(bl +az)+acf+b47+as:‘
The stress field is related to the assumed displacement with the following
o=Cs (2-99)

where,



o={d,, Oys Ogs Trs T ’a}r (2-100)
‘={ee,, Eys Ers Vyro Vs 767}

For specially (on-axis) orthotropic material

(€ €2 G3 0 0 0
C C C 0 0 0
~|>~31 *32 %33 -
C=lo o o Coyg 0 O (2-101)
0 0 0 0 Cg5 O
(0 0 0 0 0 Cg
Thus
0, =Cyep +Cre, +Cpe;
te =Curyp (2-102)
T =Cule
or in matrix form
o, =Ox (2-103)
where,
o, =0, 7 t,]r (2-104)
g, =a +a,Fra,n+ayd
Te =a;+asf+agn+apd (2-105)
Ty =a,+aen
1 00f009,920¢0
&=|01 00 £ 00 45 077 (2-106)
00100 ¢ O0O0O0UPO0

¢={a, a, a, a, as ag a, ag 4, a,o}r (2-107)



ay = Cya@, +Cy3b, +Cyyc;)
a, =Cy(c, +by)
ay =Cyg(c, +a;)
a, =Cyb,

s = Cuce ! (2-108)
ag =Cgq(as +¢,)

a, =Cyes +Cya,
a, = Cszbs

ayg = CgsCs

The resulting partial stress field is therefore, according to the iso-function method, in the

form of
o, =P (2-109)
where the partial stress field function
1 0000247 0¢ 0
P=6=|01 00 ¢ 00 452 0 (2-110)
001 00¢0O0O00O

Modeling of a tapered laminated composite plate

A three-dimensional finite element model for stress analysis is used to calculate
the stress state in the ply drop region of the unidirectional tapered laminate made of glass
fiber-epoxy. Three factors determined the specimen chosen to be investigated. The first is
that some of aircraft components such as helicopter rotor blades are often made
predominantly from unidirectional composites since the loading is mainly in the spanwise
direction. The second is that a free edge effect is not present in unidirectional composites
and an investigation of fundamental mechanisms solely controlling delamin#tion in



tapered section is possible. The third one is that glass fibre-epoxy is a good material with
which to study delamination because it is possible to detect the initiation and propagation
of delamination visually. The interply resin region surrounding the ply drops is modeled
as well as the laminate and is shown by the shaded area as in Figure 2-17. The
dimensions of the model, in terms of the ply thickness ty, and the resin layer thickness
0.1 tyy and the global coordinate system are also shown in Figure 2-19. The resin layer
thickness between plies is assumed to be ten per cent of the ply thickness. Eight-node
solid elements®® and six-node wedge element developed are involved in the partial hybrid

finite modeling as shown in the former sections.

thick section y

resin
layer

Figure 2-17 Schematic of tapered specimen
Each of the plies and the resin layer between the plies is modeled through the
thickness by one clement. However, the resin rich region ahead of the ply drop steps
is modeled by as many as four elements through the thickness. Each element spans
the half-width of the laminate and the mesh becomes very fine along the length of the
laminate in the vicinity of the last ply drop step, where the maximum interlaminar
stresses are located. The finite element mesh surrounding the last ply drop step is
shown in Figures (2-19) and (2-20). The local coordinate systems for the
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sublaminates above and below the ply drops, and the coordinate, X’, representing the
distance along the laminate length from the last ply-drop step, are also shown in the

figure.

! 57°

— 74

60  20twy 20tpy 70

42t,,

Figure 2-18 Dimension of the finite element model (not to scale)
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Figure 2-19 Fine mesh surrounding last ply-drop step
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8-node solid element | 6-node wedge element

ply properties | resin properties

Figure 2-20 Schematic drawing of dropped ply
2.5.2 Quasi-three-dimensional partial hybrid stress finite element

In order to reduce computing efforts involved in the stress and delamination analysis
of tapered laminated composites, quasi three-dimensional elements were formulated
below based on the generalized plane deformation theory. Most of the researchers on
tapered composites would like to convert a 3-dimentional problem into a 2-dimentional
one so as to decrease the computing load, which induces a loss of accuracy. The quasi-
three dimensional element, however, stands in between 2D and 3D elements, and is
characterized in seeking a balance between computation efforts needed and targeted
result accuracy. There is a good potential for the elements to be widely employed in
engineering applications. This is also the reason that the elements, after gaining the
confidence of its application to stress analysis, were further implemented to conduct

fracture analysis of tapered laminates.
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Figure 2-21 Generalized plane deformation of plate

In the so-called generalized plane deformation theory of Lekhnitskii’’, all the
cross-sections would remain plane, and the stresses, geometric and material properties,
and strains would be independent of the co-ordinate normal to the plane of analysis, i.e.
y-axis as shown in Figure 2-21. The elasticity fundamentals and formulation of the finite

clements are briefed as follows.

Elasticity fundamentals
Displacement assumptions

u =u(x,2)
v=v(x,2) (2-111)
w=w(x,2)

and the corresponding strain field
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(2-157)

Equilibrium conditions

—E " x_9 (2-113)

Constitution relations

{o}=1Cs} (2-114)

Two transformations need to be considered (layer angle relative to loading direction and
taper angle) (See Appendix A.1).

6-Node triangular element
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Figure 2-22 6-node triangular element

Displacement basis for the element is

P)=f € ¢ & & ¢}

Nodes 1~6:
(-1(1—241)’ [(1-44 ] [(1-44
48 HA-§) -4
-£1-2% -1+4¢ 0
N = >, {ON/OE} = > N, =
{v} 4 {on/og}=1 i {on/a¢} .
-¢1-20) 0 -1+4¢
| | -4¢ | 44-0))

where A=1-¢&-¢
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(2-115)

r (2-116)

and the interlaminar stress function based on the one p-stress term per one deformation

a-mode scheme, incorporated with force equilibrium, is formulatgd in the following:

Displacement field is



Strain field:

or of form
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u=a, +a,f+a,{ +a,E* +a,8¢ +a,l?
v=b +b,E+b,0 +5,E% +b,EL + b (2-117)
w=c +0, 5 +e, 0 +¢,E + ¢, 80 +c L

o (2-118)

Ou ow
Y = a",-4-?=(a,+c,)-o-(a,-v-2:: JE+(2a, +¢, )¢
Ou ov
7:;,—§+?—b , +2b, & +bC..

=y +ab+ad
&, =0

. =a,+as+al
Yoo =@ +ayé+ayd
Yo =Cp +ayé +a,8
Yo =+ S+ad

(2-119)

Interlaminar stress function is thus written as

o, =p+hS+ ¢

From the equilibrium condition, we have

T =B +BS+ald (2-120)
T =P, +ﬂ;§+ﬂa;
%% 2% _pirp, =0 @-121)

& o
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so the final form the stress function is

o, =B+ B¢+ B¢
T =B+ B:S+ Bl (2-122)
Ty =B =B+ Bl

or in a matrix form

o, 1;400000”’9‘
Tet=({0 0 0 1 & ¢ 0 Ol (2-123)
L 00-;00014‘_'[};.
8-Node quadrilateral element
4

7 6 5

1 4] ¢
Lw 1 2 3

] y.v
X u

Figure 2-23 8-node quadratic element

Displacement basis

(BY=0 ¢ ¢ & & ¢ &¢ &} - @129



Nodes 1~8

awagy=f OO

L a-9Ha-¢h2

(A-$XN2 +$)/4)
-q-%
A-$x%-$)/4

A+X2%+/|
-a+o%
a+OEE-0)/4
| -a-¢v/2 |

[ Q-&XE+24)/4
-1-$H/2
-+ -2/

-a+8% |
A +8XE+2)/4

a-gh/2
-Q-X¢~24)/4

-a-¢&¢ |

(-A-HA-OA+E+4)/4
a-£Ha-of
=A+A-OA-¢+{H)/4
| a=pa-¢hH2 |

~(+5+A-¢-0)/4
a-£+$)/2
A=+ +E-{)/4

)
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(2-125)

and the interlaminar stress shape functions are given by the similar way as above for 6-

node 3-D quasi element:

o, =p+5¢+ Bi& =285 + BE* + S
o =B + Ba§ + Byl + i8S + By & + B¢
Ty =B = Bob + B —2885 + B.&*

or in a matrix form

(2-126)



2.5.3 Validation of the models through example

The example exercised to validate the models developed is similar to the one given
in Ref. 14. It was also used in Chapter 5 for the modified shear-lag analysis. All plies in
the model as shown in Figure 2-24 are 0° unidirectional glass/epoxy with material
properties given in Table 2-1, which, for convenience of comparison and evaluation, are
quoted from Ref.14. Also, thin (0.1-ty, thick) resin layers are included in the model to
allow for the direct calculation of interlaminar stresses. In this problem, an eight-ply
laminate is tapered to four plies in a symmetric fashion. The laminate is 50.8 mm (2 in)
long in the thick section, 50.8 mm (2 in) long in the thin section, 25.4 mm (lin) wide and
has a taper ratio of 10:1 (Ply drop-off step space s is 10 times ply thickness). Uniaxial
tension is applied by fixing the thicker end of the laminate and applying an axial
displacement of 0.0254 mm (0.001in) at the other end.



Table 2-1 Material Properties
ﬁ

Glass/Epoxy Unidirectional Tape Resin
Extensional Moduli, msi Young's Modulus, msi
E.=64 Er=138 Ex=1.8 E=0.57 msi
Shear Moduli, msi Shear Moduli, msi

Gir=0.65 G = 0.65 Gy =0.60 G=021
Poisson’s Ratios Poisson’s Ratio

vir=0.29 vy =029 vy =0.50 v=0.37
Tensile Strength

Go = 9 ksi

C|

A B Top resin layer

Bottom resin Isyer

=

Figure 2-24 Schematic drawing of tapered laminate
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Meshing of quasi three-dimensional elements is shown in Figure (2-25). Figures (2-
26) and (2-27) illustrate interlaminar stress peak values about the foremost ply drop
(Point C in Figure 2-24), where a critical load transfer occurs and further induces
delamination failure at the interfaces between dropped plies and continuous plies.
Predictions by the both models agree well with the referred finite element solution',
showing in quality the trend of stress distribution. At the drop-off location, both
interlaminar shear and normal stresses appear to be at peak values. For interlaminar
normal stress, whether at the top resin layer or at the bottom resin layer, a similar trend of
change is observed: the stress around the drop-off changes to compression just at the left
side of the ply-drop end from tension at the right side of the ply-drop end. The
interlaminar stress gradient over this critical region is high and a singularity may exist. It
is also suggested that the interlaminar normal stress, although peaking at the drop off
location, plays a role not so strong as to initiate a fracture at this critical region. On the
other hand, interlaminar shear stress not only has its peak value at the drop-off, but also
shows the change of sign in both top and lower resin layers. Therefore, in the drop-off
location, the interlaminar shear stress seems to contribute more to the first damage failure

event than interlaminar normal stress.
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Figure 2-25 Finite element mesh for quasi three dimensional elements
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Figure 2-26 Comparison of interlaminar shear stress distributions
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Figure 2-27 Comparison of interlaminar normal stress distributions
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Chapter 3
EXPERIMENTAL PROGRAM

3.1 Description

The tapered specimens to be studied in the experimental program are composed of
three sublaminates as indicated in Figure 3-1: one internally dropped sublaminate, and
two outer continuous sublaminates (also called belt sublaminates) that cover the dropped
sublaminate. All of the laminates investigated are symmetric and unidirectional. The
laminates were tapered from 12 plies to 6 plies through a taper angle of approximately
ten degrees. The dropped sublaminate contains six plies and terminates at the mid-plane
of the laminates. The hatched triangular section in Figure 3-1 represents a resin rich
region ahead of the ply-drop step that results from the curing process. The basis for
selecting this type of structure for experimental study and numerical analysis is to avoid
complications involved in complex laminates with multiple dropped plies and free-edge
stresses which will present more difficulties in gaining insight into the failure

mechanisms and controlling parameters.

113
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Top BeltPlies

P \
6 plies PN =
3 plies === %‘ = -
Bottom Belt Plies

Figure 3-1 View of the tapered laminate

3.2 Manufacturing of Specimens

114

The material that was used to fabricate the specimens is NCT 301 unidirectional

prepreg tape manufactured by Newport Adhesives and Composites, Inc. It consists of the

continuous unidirectional graphite fibers embedded in the €poxy resin, and it is intended

for structural applications over a temperature range of —65° F to 250° F. The material is

supplied in rolls and kept in the refrigerator. The unidirectional prepreg tape was first cut

with standard knives with replaceable blades into the appropriate lengths for hand lay-up.

The laminate panels were made using a ply in-fill technique as shown in Figure 3-2

whereby an equivalent tapered section is built up on the other side of the release cloth.

Formation of the laminate panel with this technique is described as follows:

1. Lay up 4 basic blocks, each of which constitutes three unidirectional prepreg plies,

so as to build the laminate;

Use 2 of the 4 blocks to construct the top and bottom belts;

Cut each of the remaining 2 blocks into 3 pieces; 2 of them were included in the lay-

up of the laminate and the third was placed on the outside of the release cloth,
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allowing good consolidation to be obtained when the panel was cured in the
autoclave. '
4. Cut the panel, after curing, into the specimens with the dimensions shown in Figure
3-5 for test.
Generally a triangular resin-rich pocket could be seen at the tip of the dropped plies.
The taper angle could be estimated from photographs of the cross sections by measuring
the height and length of the triangular resin pockets. This technique allows panels to be
made between flat plates, producing good consolidation without the need for special
tooling. All of the full-length plies for the laminates have in-plane dimensions of

///////////J/////////////l

P ——

X A
IS ST
— & — 8, |—

E__-_1 Fill-in sublaminates
[T Beltsublaminates 7~~~ Resin rich pockets

------ Release fibric films

Dropped solid sublaminate

Figure 3-2 Ply in-fill technique for manufacturing of the tapered laminate

approximately 240 mm in length and 30 mm in width. The internally dropped plies that

make up the ply-drop step were also 30 mm in width and 120 mm in length.
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A thick aluminum plate was used to support laminates during curing. Release
agent was applied over the cure area of the plate for subsequent tool release. Preparation
of the assembly began by placing resin-damming material around the perimeter of the
cured area on the cured plate. Next, the composite part was placed on the plate covered
with a sheet of release film to isolate the excess resin from the aluminum plate. A sheet
of porous Teflon fabric was added to allow the resin to flow away from the laminate to
the bleeder material. Two sheets of paper bleeder were then placed on the assembly to

absorb the majority of the excess resin from the laminates. A large section

Bagging film
Breather
Bleeder

Sealant tape Re|case fabric

~— 77777777 Composit pa

——— Aluminum tool plate

Figure 3-3 Lay-up of cure materials for tapered laminates

of synthetic fiber breather material was placed over the assembly and down to the surface
of the vacuum plate to allow gases to vent away from the assembly. Vacuum bag sealant
was then placed on the vacuum plate around the perimeter of the assembly. Finally, a
large section of bagging film, with a quick disconnect vacuum valve attached, was placed
over the assembly and pressed onto the sealant. An electrically heated autoclave was used
to cure the laminates. The laminates were cured according to the manufacturer’s
specifications. A full vacuum of 28 in.Hg was drawn over the assembly and the bag was

inspected for leaks. The entire assembly was then placed in the autoclave and the door is
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closed and secured. The lay-up of the assembly and the curing cycle are shown in Figure

3-3 and Figure 3-4, respectively.

The laminate and cure materials were removed from the aluminum plates and the
laminate was post-cured for ten hours. After the post-cure, the excess resin from the
laminate was trimmed off with a circular sander using medium grit sandpaper. The final
step in the specimen fabrication process was the bonding of glass-epoxy tabs to the ends
of the laminates to prevent grip damage during the tension tests. A band saw was used to
cut a 2.5 mm-thick sheet of glass polyester into tab sections measuring approximately 25

mm in length 30 mm in width.

T(°C)

140

T soes
104 +
-
60 psi
28
1 1 ! I
30 45 65 125

- -~
-28 in.Hg vacuum 80 psi

t(min)

Figure 3-4 Curing cycle

One end of the tabs was then beveled across the width to an angle of approximately thirty
degrees, using sand paper. The tabs were bonded to the ends of laminates, with the
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beveled section placed toward the laminate center, using adhesives. The bonding tabs are

shown in Figure 3-5.

3.3 Experimental investigation

Prior to conducting the tests, strain gages were bonded to the specimens. For each
of the tapered specimens, 2 gages were placed longitudinally at the center on one surface
in order to be able to monitor the axial strain. Pairs of gages were located on both sides of
the drop-off, 10 mm from the end of the discontinuous plies (see Figure 3-5).

Gages of type CEA-06-125UW-350, manufactured by Micro-Measurements of
Measurements Group, Inc., were used and attached onto the specimens with M-Bond 200
adhesive as prescribed by Instructions Bulletin B-127-6. Briefly, the procedure involves
the following steps: degreasing the gaged area with Freon TF, marking the gage
alignment lines with a pencil, applying M-Prep Conditioner and M-Prep Neutralizer 5,
placing cellophane tape over the gage, positioning the assembly within the layout lines,
applying M-Bond 200 catalyst, applying the adhesive, applying thumb pressure to press
the adhesive, and peeling the tape away from the specimen and gage. Lead-in wires
were then soldered onto the gages.

The tension tests were conducted with a digital control MTS Servo Hydraulic
Testing Machine. The machine uses self-aligning wedge grips to hold the specimen
during testing. Output from the load cell of the testing machine and crosshead
displacement was continuously monitored with MTS 431 X - Y Recorder. A long
distance Questar QM1 (Maksutov-Cassegrain Catadioptric) telescope manufactured by
Questar Corporation was used to observe and record damage development during the test.
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The blackened specimen edges were inspected with the camera. Any damage to the
specimen edges was easily recognized as light areas on the dark surface. The strain gages
on the test specimens were always placed on the side opposite the lamps, to minimize
thermal effects on the gages. The position of the light was also needed to be properly
adjusted to give maximum shade contrast between the rich pocket and its adjacent areas
so as to clearly see cracking progress. The experiment was required stopped in order to
observe the whole specimen when a noise was heard, which means cracking occurred in
some place of the laminate. Afterwards the experiment was continued until the specimen
failed.

Figure 3-5 shows the specimen arrangement and nominal dimensions. The
material properties are listed in Table 4-1. The tensile tests were conducted at a crosshead
rate of 0.5Smm/min. Damage was monitored and recorded with the camera and lamp set-

up as each test progressed. Strains, load and crosshead displacement were logged into a

computer.

Bonding tab Strain gages
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Figure 3-S Specimen dimensions (not to scale)
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3.4 Experimental Results and Observations

A typical load versus strain curve from one of the tensile tests is shown in Figure
3-6. The marks along the curve indicate points at which delamination onset (DOT),
global delamination propagation (GDP), and ultimate failure (ULT) occurred during the
test.

Delamination onset in the specimens is easily observed which is in general
accompanied by a cracking sound, an appearance of crack in the specimens, and a load
drop. Delamination in the majority of the laminate specimens initiated in the region
above and below the drop step.

Global delamination propagation was easily detected by a drop in load, as well as
by both visual and audible indications.

Failure of the adhesive, used in bonding the end tabs to the specimens, occurred
during the tests for the ultimate strength of the laminate specimens. The true ultimate

failure values for some specimens were not attainable.
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Figure 3-6 A typical load-strain curve

The loads and axial stresses for the damage events are presented in Table 3-1 and
3-2, respectively. The damage event stresses are determined by dividing the relevant load

by the measured cross-sectional area of the thin section of the specimen.
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‘Table 3-1 Damage Event Loads for Tapered Laminates

Specimen#| DOT(N) | GDP(N) | ULT (N)
1 8140 29998 >32000
2 9123 28985 >33000
3 8748 24009 34023
4 6739 26349 >34000
5 8970 27510 33457
6 9430 29458 33968
7 8350 30355 >32000
8 7780 27651 >31000
9 9321 31008 33031
10 7689 28561 >31000
11 7856 29890 >31000
12 8543 31002 32096

Mean 8391 28731 N.A.
C.V. (%) 39 7.9
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Table 3-2 Delamination Stresses in Tapered Laminates

Specimen # DOT (MPa) GDP (MPa)

1 362 1334

2 405 1288

3 433 1166

4 300 1123

5 399 1222

6 419 1308

7 371 1350

8 346 1228

9 414 1378

10 342 1270
1 349 1307

12 380 1380
Mean 373 1271
C.V. (%) 3.9 7.9

Figures 3-7 ~ 3-9 illustrate a typical delamination progression in the laminate
under tension test, from an intact state to eventual delamination failure. To get close
examination of the delamination progress, a telescope instrument together with a monitor
is used. Because the resin pocket critical for delamination initiation is very small it
usually will take a long time to pinpoint that area. Properly positioning the light is helpful
in determining the location of the resin pocket. The above figures were therefore
gathered by photographing the screen of the monitor screen at an instant that a sudden
change such as noise and/or crack occurrence takes place and the load is immediately

paused for the further observation of the laminate.
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A dark and triangular resin pocket can be seen clearly in Figure 3-7. The

formation of the resin pocket is due to lay-up operation and curing process. Figure 3-
8 shows a typical cracking configuration about the resin pocket. The resin pocket is
the delamination source that pments significant influence on fracture toughness of
the laminate. Figures 3-9(a) through Figure 3-9(i) illustrate progressive delamination
demonstrated in a typical tapered laminate during the test, from an intact state to a
delamination propagation. The transverse cracking shown in Figure 3-9(b) for the
sample first appears at a low load, starting from the corner point of dropped plies. It is
indicated by a darken shade line at the left side of resin rich area. As the load
increases, the darken shade line is shaping into an oval, showing a delamination
between the belt plies and dropped layers occurs, which in general companies with a
big noise. A sudden appreciable load drop of about 100 N that is in response to the
global delamination propagation (see Figure 3-9(i)) can be observed both in the strain
gages attached onto the specimens and the instrument for measure. The eventual
fracture of the specimen occurs either at the tab of the thickness end by sliding or
fiber fractured.
Delamination onset load that is difficult to be captured by the appearance of crack is
obtained in accordance of the first big sound induced in the test, and the value for this
typical specimen (#5) is 8970 N. The ultimate load occurs due to the fracture failure
at the tab of the thicker end of the laminate and its value is 33457 N.



Figure 3-8 A typical crack configuration
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Figure 3-9(a) Intact specimen (P =0 N)

Figure 3-9 (b) Progressive delamination (P = 14630 N)
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Figure 3-9 (c) Progressive delamination (P = 20670N)

Figure 3-9 (d) Progressive delamination (P = 26100N) X



Figure 3-9 () Progressive delamination (P = 28190 N)
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Figure 3-9 (g) Progressive delamination (P = 29600 N)

Figure 3-9 (h) Progressive delamination (P = 30850 N)



Figure 3-9 (i) Progressive delamination (P = 31340 N)
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Figure 3-10 Testing of the specimens using MTS machine
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Figure 3-11 Visualizing the cracked state of specimen using the telescope apparatus



Figure 3-12 Monitoring of the crack propagation through telescope



Figure 3-13 Delaminated failed specimen



Chapter 4
INTERLAMINAR DELAMINATION ANALYSIS

4.1 Introduction

Delamination of a laminated composite may be considered as interlaminar failure
phenomena manifesting the out-of-plane separation of two adjacent plies within the
laminate. If 2 composite laminate is examined through its thickness in a microscopic way,
as illustrated in Figure 4-1, it is observed that the laminate constitutes two phases: the
plies themselves and resin rich region, which are all macroscopically homogeneous. So
delamination may be described as the out-of-plane failure of the interply resin layer
within a laminate.

08 Plies
OOOO%OO O S Interply Resin Layer

Figure 4-1 Interply resin layer
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Delamination analysis of the tapered laminated composite usually involves two
types of idealizations. An idealization of a composite laminate that is free from any
defects within the structure is a classical and convenient approach in engineering practice
and academic research, aiming at ascertaining a critical stress state and seeking a way to
improve the structural performance. The methods often used in earlier works with this
respect are described in detail in the review part of the thesis. The other more advanced
approach, popularly adopted for characterizing fracture behavior in the tapered laminated
composites, is fracture mechanics based methodology, in which it is assumed that a
structure always possesses to some degree a defect, either resulting from manufacture, or
from service. Fracture Mechanics is thus a key tool in dealing with this type of problem.
Along this approach, one would not be much concerned with when and how an initial
defect has been formed in the structures. It is the life span and period of service time a
laminate containing defects can sustain that is of interest to researchers and engineers.
This is in fact a damage tolerance concept that will be detailed later in this chapter.

It has been seen from the review that the so-called stress-based approach and the
fracture mechanics approach were both extensively, but independently, employed in the
early research on failure and delamination analysis of tapered composites. The stress-
based approach proves to be advantageous in secking the failure initiation (damage onset)
location, while the fracture mechanics approach demonstrates well in being able to
characterize the initiation and propagation of delamination. These two distinct
methodologies respectively represent a way in resolving the problems like those
mentioned before, but they were never concurrently applied to a particular tapered
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laminated composite structure. Therefore it is a good idea that a combination of these two
approaches at different phases of the overall structural analysis would be made.

Computational efficiency and accuracy may result.
4.2 Delamination Onset

421 Finite element analysis

The laminate plate that is to be modeled and analyzed is the same as the one
studied in the experimental program as described in Chapter 3. The basis for selecting
this type of structure for experimental study and numerical analysis is to avoid
complications such as complex laminates with multiple dropped plies and free-edge
stresses which will present more difficulties in gaining insight into the failure

mechanisms and controlling parameters.

The axis system used in the finite element model is depicted in Figure 4-3. The
laminate was modeled with the quasi-three-dimensional 8-node quadrilateral and 6-node
triangular partial hybrid elements presented in Chapter 2 to predict a stress state and the
consequent strength of the laminate studied. Due to symmetry, only one quarter of the
laminate is modeled. Fine meshes of 20 elements and 10 elements with a size of 0.5H
(ply thickness H = 0.125mm) are used to model the ply drop region and taper root region
in the longitudinal direction respectively.

A thin resin region is included in the model representing the interface between the
ply drop and the top and bottom plies adjacent to them. The resin layer of about 1/10 the
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thickness of a lamina always exists between layers. However the resin layer is added into
the model here because of its importance in the fracture behavior of the sample. Also the
thickness of this resin layer is modified later on to examine its effect. This resin layer
the;efore may not come from the normal lay up process but additional resin thickness can
be added.

Each of the plies, 12 in the thick section and 6 in the thin section, and the resin
layer are modeled with row of elements in the longitudinal direction and one element for
each resin layer and ply in thickness direction. A section of the model at the ply drop is
shown in Figure 4-3. The resin is assumed to be isotropic and the plies to be orthotropic.
The material properties of NCT 301 used are listed in Table 4-1, which was provided by
manufacturer Newport Adhesives and Composites, Inc. The total number of degrees of
freedom in the model is 654.

To determine the stress state in the tapered specimen, the thick end of the
specimen is held fixed in the longitudinal direction and a uniform uniaxial displacement
is applied on the thin end. The corresponding reaction forces at the thin end can be used
to determine the equivalent force or stress level on the specimen. The interlaminar

stresses can be determined directly from the stress state in the interply resin layers.

4.2.2 Strength predictions

Stress-based criteria proved to be effective in the prediction of the onset of
damage and consequent strength of the laminate. Many possible failure surfaces in stress
space are available for the prediction of the delamination strength of composite laminate
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structures. The simplest approximation of the failure surface is a maximum stress
criterion, with which, failure is assumed to occur when any one of stress components
exceeds its ultimate value. Due to its simplicity of concept and ease of use, the criterion
appears quite attractive. The approximation may be acceptable for stress states which are
dominated by only one stress. However, the exclusion of the remaining stresses may lead
to unacceptable results in states of combined stress where the interaction of stress
components is important.

Because the primary failure is assumed to be dominant in delamination and to
occur in the interply resin layer, an isotropic failure criterion such as von Mises can be
employed to predict the onset load. All six-stress components are used to determine the

equivalent von Mises stress given by

0, =\ol+0l+0l 0,0, -0,0,-0,0, + 3z, +1i +11) @-1)

In this maximum distortion energy theory, failure by yielding occurs when, at any
point in the body, the distortion energy per unit volume in a state of combined stresses
becomes equal to that associated with yielding in a simple tension test. Note that unlike
most delamination criteria, the von Mises stress considers equally both tensile and
compressive values of the interlaminar normal stress. Moreover, in-plane stresses are
included as well. Thus, the von Mises stress is a measure of the overall stress state for a
given configuration. An increase in the von Mises stress would indicate a decrease in the

damage onset load.
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Taking into account the fact that delamination is an out-of-plane failure mode
independent of the in-plane stress state, the in-plane stresses in von Mises criterion
expressed in Eq. (4-1) do not dominate and can thus be excluded from the original von
Mises, resulting in

o, = ﬁr} -0,0,~0,0, +3(t} +12) 4-2)

which is a derivative of von Mises criterion and will be used for the prediction of the
interlaminar failure.

4.2.3 Resuits and discussions

The interlaminar normal stress 6 and shear t of the critical resin layer going
along the line ABCD (horizontal for sections AB and CD and inclined for section BC) as
shown in Figure 4-2 are determined at the region c!ose to the drop-off. The influence of
the third interlaminar stress t,y on the stress state of the laminate is negligible in the
analysis. The interlaminar stresses in the resin layer are averaged and plotted with respect
to the longitudinal coordinate normalized by the thickness of the ply (X/H, H denotes the
ply thickness), starting at the drop step (Point B as indicated in Figure 4-2) with positive
direction towards thin section and negative towards thick section. The interlaminar
normal stress shown in Figure 4-4 indicates peaks near the points of B and C, where
geometric and material discontinuities occur. At the drop step of point B, the stress

changes from a high compressive value immediately to the left of the drop-off to a high
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tensile value immediately to the right of ply drop-off. Interlaminar shear stress along the
taper line is plotted in Figure 4-5. High interlaminar shear is observed at Point B.
Comparing these results, it is found that the higher positive normal and shear stress
magnitudes occur at the drop step (Point B). These sudden changes in the normal and
shear stress distributions at Point B and Point C (taper root) are not unexpected. Since
there are geometric and material discontinuities, it was suggested that stress singularities
might exist at the place of discontinuity. The results suggest that stress singularities exist
at the ply drop locations, as demonstrated by the steep peaks at those locations.

The von Mises stress and the stress in the derivative form of von Mises were
employed to predict the strength of the laminate and substantiate the conclusion drawn
above. To determine whether the calculated stress state within a given resin element is
critical or not, the von Mises stress and its derivative stress must be determined first. If
the calculated stress is equal to the characteristic strength of the resin layer, failure is
assumed to occur.

It has been found in the analysis that the location of critical site predicted using
these two criteria appears at the point B (Refer to Figure 4-2), bottom of the resin layer.
This correlates well the experimental observation. Also note that comparison of the
predicted and experimental far-field stresses (at the thin end) on damage onset load,
which is listed Table 4-2, shows a good consistence between them. It shows that the
derivative form of von Mises criterion, which captures all interlaminar stress components
that dominate the delamination at the critical interface, can be a potentially useful and

simple one in prediction of delamination failure.
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Table 4-1 Material Properties of NCT — 301 Graphite Fiber Reinforced Epoxy

NCT 301 epoxy unidirectional tape
Elastic moduli Ei1=114GPa, E,=79GPa
Shear moduli Gi12=3.1 GPa, G; =2.8 GPa
Poisson’s ratio vi2=0.28
Tensile sueugths o1 = 1621 MPa, o =48.2 MPa
In-plane shear strength $=333 MPa
Neat Resin
Elastic modulus E=3.1GPa
Shear modulus G=12GPa
Poisson’s ratio v=0.38
Tensile strength c=572MPa
Top continuous belt
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Figure 4-2 Intact tapered laminate with ply-drop at mid-plane
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Figure 4-4 Normalized interlaminar normal stress distribution along taper line
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Figure 4-§ Normalized interlaminar shear stress distribution along taper line

Table 4-2 Predicted and Experimental Far-Field Stresses at Damage Onset

Max von Mises criteron 426 (14.2)

Predicted Stress, MPa (% error)
von Mises derivative criterion 412 (10.5)

Experimental Stress, MPa i 373
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4.3 Damage Tolerance Behavior of Composites

The concept of damage tolerance in fiber-reinforced composites has been used
primarily by the aerospace industry, and encompasses a design philosophy based on
ensuring safety and integrity of a material/structural system. The basis of the damage
tolerance methodology as it applies to composite systems is the assumption that the
material system is not defect free and that structural design is modeled on the basis of the
presence of an assumed damage level. Structural defects can arise through fabrication,
processing, assembly and normal service. Some of the typical defects and damage modes
encountered within the framework of these damage sources include fiber misalignment,
improper cure, density variations, voids, inclusions, debonds, resin cracks, delaminations,
and broken fibers.

To adequately assess structural damage tolerance, the designer must assume that
initial defects exist in the structure, and that repeated service loading can cause the
existing damage to propagate. The response of a component containing a defect is shown
schematically in Figure 4-6 (See Ref. 72). In the fatigue environment, the effective
damage size may increase, progressively reducing the residual stiffness and strength and
therefore the lifetime of the components. Before laminated components can be utilized in

major load bearing application, initiation and growth of damage must be studied.
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Time

Figure 4-6 Schematic of the effect of a defect in structure

A comparison of the damage behavior of a metallic and a composite component
containing a defect is shown schematically in Fig 4-6, which was given in Ref. 73. The
primary mode of damage in a metal structure is self-similar cracking. Cracks propagate
in a relatively well-defined manner with respect to the applied stress, and the critical
| crack size and rate of crack propagation can be related to specimen data through
analytical fracture mechanics. The crack initiation occupies a large part of the fatigue life
of a metal part. The composite damage propagation shown in Figure 4-7 is in a less
regular manner and damage modes can change. It is also expected that composite
materials will be more damage tolerant than metals.
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Damage Size

Figure 4-7 Damage development behavior of composites and metals

Damage tolerance is defined as the ability of a structure to resist failure in the
presence of flaws, cracks, or other damage for a specified period of time. As shown in
Figure 4-6, this technique involves determining a functional relationship between damage
size and the length of time that the component has been in service. Similarly, the
component residual strength must be evaluated and related to the damage size. Once
these relationships have been developed, the damage tolerance approach utilizes a design
load as input. This load level is generally associated with a defined degree of confidence
in the component structural integrity. Through residual strength, this fail-safe load is
associated with an elapsed time of service loading. In turn, the functional form
describing defect accumulation relates this elapsed time to a critical in-service defect

size. In effect, this procedure defines a limited service lifetime for the component.
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The minimum detectable damage size is also of importance. As initial defects
accumulate, the effective damage size will eventually reach a magnitude that can be
detected by non-destructive evaluation techniques. The associated time in service can be
viewed as the beginning of an inspection period (See Figure 4-7). The end of the
inspection period is the time required for the damage to reach a critical size.

In summary, an acceptable structural component requires that damage be detected
before it has developed to a dangerous size. Alternatively, damage must not reach a
dangerous size within a specified lifetime. This involves periodic inspections of the
component within the service life of the part. Therefore to achieve a damage tolerant
structure, the components must be designed to resist damage growth. To date, this is
accomplished through judicious choice of structural material. Obviously, a high residual
strength and high resistance to fracture, during both static and fatigue loading, are
desired. Design to minimize the magnitude of an existing stress concentrator is another
valid approach.

To this point the discussion of damage tolerance has considered general damage
in a load-bearing component. For laminated fiber reinforced composite structures it has
been observed that delamination is a common type of defect. The susceptibility of
laminated composites to delamination has been illustrated in many works. The
occurrence of interlaminar stresses, combined with the inherent minimum toughness of
the material, results in the minimum tolerance of the materials to existing damage.
Therefore delamination is the most likely growth related failure to limit the life of a

laminated composite structure.
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To study the resistance of a laminated composite structure to delamination, we
assume that the component of interest contains an initial debonding. The general loading
of the component results in a very complicated stress state in the region of the damage.
To simplify the analysis of this phenomenon, the actual loading situation can be viewed
as a superposition of three pure mode loads as shown in Figure 4-8. Mode I, also known
as the opening mode, results when the surface of the crack or delamination is displaced
normal to the defect plane. Mode II or forward shear is characterized by delamination
surface displacements in the plane of the delaminati_on and normal to the delamination
front. Finally, when the delamination surfaces are displaced in the plane of the
delamination and parallel to the delamination front, the fracture process is termed as
Mode III or the tearing mode.

In reality, practical structures experience combined tension, shear and torsional
loading and existing defects are therefore exposed to mixed-mode fracture. In order to
characterize the damage tolerance of a practical structure a mixed-mode failure criterion
is required. It should be pointed out that the validity of any mixed-mode fracture
criterion depends on accurate pure mode fracture toughness measurements. Producing
accurate and reproducible pure mode static-fracture toughness data is a major
contribution towards characterizing the damage tolerance of fiber reinforced material
systems. Relating the damage size within the structure to its residual strength is also an
important step in the damage tolerance approach, toward characterizing the performance

of composite structures.
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Figure 4-8 Three modes of crack extension

4.4 Strain Energy Release Rate

The strain energy release rate G is the crack-extension force characterizing
delamination initiation and propagation. It is defined as the energy required to grow a
crack by a unit length. A measure of the energy release rate thus provides information on
the tendency of a delamination to grow. Computed as a function of the advance of the
crack front, it can also be used to determine the stability of delamination growth under
constant loading conditions.

In this section, the various approaches to the determination of the energy release
rates are briefly reviewed. These are, respectively,

e Method of direct calculation, which is based on the determination of the

potential energy using prescribed stresses and end displacements;

e The ] integral;
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o Evaluation of modal contributions G; and Gy; using crack tip stresses.

The direct method is displacement based, and is one of the popular methods used
to calculate the total strain energy release rate. According to thxs method, delamination
will occur in a laminate when the total strain energy release rate at the critical interface
exceeds the total critical strain energy release rate.

Most numerically based research to date has relied on either the use of the crack
closure method or the evaluation of the path independent J-integral. In both of these
methods, only one analysis may be necessary to approximate the strain energy release
rate. Another method to determine the total strain energy release rate is the direct
calculation of the rate as the change in potential energy for two crack lengths. This
method requires two analyses.

The crack closure method'*® may be used to compute the values of G; and Gy, and
the total strain energy release rate is obtained by additions of these terms. For instance,
for an isotropic material in plane strain, Irwin’s closure integral may be used to establish
a relationship between the total strain energy release rate and the stress intensity factors,

in the context of linear elastic fracture mechanics (LEFM), as

2
G=(1;v)K,’+(1-EV ) k2 | 4-3)

and the total energy release rates as

G=G,+G, 4-4)
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Also, from Sun®® the energy release rates for a crack lying along the interface of two
dissimilar elastic media, neglecting the oscillatory stress term, (again in the context of

LEFM), are given as

G 4-5)

4.4.1 Direct method
The direct calculation of the total strain energy release rate is an effective way in

obtaining the global energy change of the laminate due to delamination growth. The
strain energy of the laminate, U, can be conveniently computed as U = -:-Z fu, , where

J, and u, are the nodal forces and corresponding nodal displacements, respectively, for
all nodes i on the loaded end. The strain energy release rate for successive delamination

growth can be calculated as
G=——r— (4-6)

where dW/dA and dU/dA are the rate of change of work and strain energy,
respectively, with change in delamination area. In the finite element analysis, the above

equation can be computed as

G = (Uaoa - Ua )/ da (4.7)
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where U,,, and U, are respectively the strain energies for delamination lengths a +da

and da corresponding to a same external loading condition. The value of G thus

calculated is considered to be the strain energy release rate at (a+da/2), which is

located at the center of the interval.

4.4.2 Modified crack closure method

Irwin postulated that the energy release rate associated with a crack extension of
Aa was equal to the amount of energy required to close the crack by an amount Aa.

This concept leads a way to calculate the strain energy release rate. Referring to Figure 4-

9, let Aube a vector representing the relative normal and sliding displacements between

the crack faces.
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Figure 4-9 Schematic of crack closure
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Let o bea vector defining the normal and shear force components per unit area which

are required to close the crack. Then the crack closure integral can be expressed as

1 paa— =
G, =G, +G, +G hm— - Auda 4-
(g m = o Aa 4 (4-8)

.1 paa
G’=Mh§102Ta--L a',Au,da

G, = lim '23 j’o o, Au,da (4-9)

-,.':5‘027;10“ Oy Aty da

The subscripts I, II and III denote stress and displacement components corresponding to

pure Mode I, Mode 11, and Mode III strain energy reicase rates, respectively.

Two general methods have been used to obtain the required forces and
displacements. The strain energy release rates for delamination growth may be
calculated using two separate finite element models, in which the delamination lengths
differ by a small amount. This procedure is cumbersome because two separate problems
need to be solved. An alternate method, based on a crack-closure method, uses the forces
ahead of the crack tip and the displacements behind the crack tip to solve for the strain
energy release rates. Although the forces ahead of the crack tip are only approximations
of the closure forces, the method has been favored over the use of two separate models.
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For finite element models, the strain energy release rate components in Mode 1
and Mode II, based on the local forces ahead of, and the relative displacements behind,
the delamination tip can be calculated using the following equations:

Gy =5 c{Fu (¥ =¥e)+ Fy (0 =)
4-10)

Gy =~ Fulh — 1)+ Fy(un -]

where A is the element size, F,, and F, are the normal (n) and tangential (t), forces
respectively, at node i, and (vi - v&) and (u; - us) are the relative opening and sliding
displacements, respectively, at node k (see Figure 4-10), force at node j and relative

displacements at nodes m and m’ are defined similarly.

n(v)

Figure 4-10Finite element idealization near the delamination tip for calculating G
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443 J-integral

In the context of fracture behavior analysis for composite materials, the path-
independence of J is an important property. Thus, once we calculate the value of J
around any admissible path 7 its value can be used to estimate the crack tip stress and
strain fields. The fact the J can be estimated from stress and displacement quantities far
away from the crack tip is very important in numerical analysis for determining J because
numerical solutions are often not accurate in the immediate vicinity of the crack tip but
increase in accuracy as one moves away from the crack tip. The path-independence of J
implies that J can also be measured at points remote from the crack tip and therefore
computing efforts are significantly reduced. These are the major initiatives in exploring
the current method in calculation of fracture parameter of strain energy release rate in this

research work.

Rice’® defined the J-integral for a cracked body in two-dimensional problems as

Ou
J = .[_(Wn, -7, -;:)df 4-11)
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where I"is a counter clockwise contour as shown in Figure 4-11 which begins at a point
on the lower crack surface and ends on any point on the upper crack surface, W is elastic

strain energy density given by

W = L"a',jdey
o _ﬂ 4-12)
Y oe,

and T is traction vector defined according to the outward normal » to the contour T, =

ojn;, and « is the displacement vector & = u;i +u,j

J = L(Wafv-T, -%}df (in the x, y coordinate system ) (4-13)
1

crack

ds

Figure 4-11Crack body with a contour I~

J-integral can be shown as follows to relate to the rate of change of potential energy with

respect to change in crack size, for a body of thickness B
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J=——= (4-14)

Thus, the path-independent J-integral can be interpreted as being directly related to the
rate of release of potential energy with respect to crack length. For linear elastic bodies,
value of J-integral is equivalent to strain energy release rate G (also called the Griffith’s

crack extension force).
J-integral mode separation (J, Ji)

As indicated in the above, evaluation of J-integral is more efficient than some
other methods such as the stress based approach in determination of total strain energy
release rate. J-integral, however, could not be separated for pure fracture modes. In the
following, a so-called restrained J-integral mode separation’ is introduced.

Isolation of fracture mode with the restrained J-integral involves several steps.
Supposing that only Mode I and Mode II are considered. Isolation of Mode I strain
energy release rate can be realized first by directly suppressing the Mode II contribution.
This is done by prescribing Au = 0 over the area of crack extension (see Figure 4-12).
Similarly, isolation of Mode II can be realized by suppressing the Mode I contribution by
prescribing Av = 0 over the area of crack extension (see Figure 4-13). The resuiting

solution offers an alternative approach to mode separation.



Crack step 1

[i. —jda2[—  (uresmined)

Crack step 2

— @ | o

Figure 4-12 Isolation of Mode I energy release rate mode

L.

Crack step 1

Yy

L —{da2|— (v restained)

Crack step 2

— 4 | (vrestrained)

Figure 4-13 Isolation of Mode II energy release rate mode
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For this analysis, the change in u (or v) over the crack extension was suppressed,

for both crack step 1 and step 2, as shown in Figure 4-12 and 4-13. Under the restraints
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of the two models, mode J; (Jy) for the strain energy release rate can be computed with
general J-integral approach. |

It is of note that the path-independent property of the J-integral is, in general, not
valid in heterogeneous media. When a path of integration crosses an interface, the path-
independence is not always guaranteed. For instance, for a crack that is perpendicular to
and terminating at the interface of a bi-material system, the J-integral is path-dependent
and its physical meaning lost '*. Thus, the use of the J-integral in heterogeneous media
must be invoked with caution. In the present thesis a crack is assumed to propagate
parallel to an interface of laminated composite and path independence is valid.

4.5 Numerical Calculation of Strain Energy Release Rates

4.5.1 Model description

The direct calculation (also called global method) and J-integral approaches
combined with the quasi three dimensional partial hybrid elements developed in Chapter
2 were employed to compute strain energy release rates associated with the delamination
at critical interfaces of tapered composite laminates. After calculation of the stresses and
displacements based on the newly developed elements (quasi-three dimensional 6-node
triangular and 8-node quadrilateral partial hybrid stress finite elements), the Gaussian
integration quadrature is employed as the numerical integration scheme for line integrals
appearing in the J-integral module. To perform this type of integration stresses, strains,
and displacements must be obtained at each gauss point. It should be noted that
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displacements are given at nodal points, while stresses and strains are given at gauss
points. Therefore, for stresses and strains appearing in Eq. (4-11) and Eq. (4-15) the
finite element results at gauss points are directly used. However, displacements at the
gauss points must be calculated using the interpolation functions.

Rice’s J-integral is extendable to quasi- and full-three dimensional problems. The

J-integral for Q3D is of the form
du
J = [ @m-T, -5:-)& @-15)

which has the same form as Eq. (4-11) for two dimensional crack materials, but with i =
1, 2, 3, rather than 1, 2. It should be pointed out that this J-integral involves the
integration of 3D displacements, and stresses and strains, i.e., all three components of
displacement and, further the six components of stress and strain are involved. However,
only two-dimensional quantities are involved in the original J integral proposed by
Rice’. The conservation property of the J-integral in the homogeneous and layered non-
homogenous quasi three-dimensional problems is provided in Ref. [69].

A thickness tapered laminate with a matrix tension crack at drop-off location as
shown in Figure 4-14 is considered for modeling and evaluating strain energy release
rates associated with two crack configurations assumed in the laminate. Interply layers
(resin layer or interleaf) are included in the models so as to My predict the
interlaminar response as well as to closely approximate the true stress state of the
laminate. Due to symmetry, only half of the laminate is modeled. An interply layer

configuration (a-crack), shown in Figure 4-15, in which the crack lies along a finite
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thickness isotropic resin or adhesive layer between continuous composite plies or
between continuous and dropped plies, is considered. The crack is assumed to be at the
center of the resin or adhesive layer. The second crack configuration is interfacial (-
crack) in which the crack is assumed to lie along the interface between the resin or

adhesive layers and drop plies, starting from the drop-off step into the thick section of the

laminate.
Transverse crack Top continuous belt
Top resin layer
A /\/
BRRS /
lies — [hRetie NRzzs D
—— - ——Dropped p. “_Spocket\‘.\ -
GLITIIETILIIIIY TP III IS ; /
/\/ . / /\/
Bottom resin layer Bottom continuous beit

Figure 4-14 Tapered laminate with transverse matrix crack
assumed at ply drop-off location

In practice, cracks propagate into thin and taper sections simultaneously, either in
a stable manner or in an unstable manner, after their initiation. Therefore the crack
configurations selected have to account for the influence of the double embedded cracks,
with one at the thin section approaching towards the right hand side epd of the laminate
and the other at thick section to the left hand side end, on the structural performance of
the tapered composites. The interfaces above and below the resin pocket element between
Points B and C remained intact in the delaminated models. In a; - @, configuration as

shown in Figure 4-15, both the cracks are embedded in the interply layers, one in the thin
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section of the laminate and the other in the thick section. Taking into account the
assumption that the a; crack is at the mid-plane of the laminate, loading condition and
configuration of the lamination, it is assumed that there exists only mode I in this crack.
However, at the position where a; is located both Modes I and II are present. In o;-f
configurations, an interfacial crack B is assumed to be located at the thick section. Both
the J-integral method and direct calculation method outlined in Section 4.4 are used to
obtain the strain energy release rate associated with a; crack since the general J-integral
value is exactly equivalent to the entire energy release rate (J = G = Gj). It was shown
that the J-integral that avoids the requirement for the accurate description of stress state at
the critical region as does the stress based method, is more effective for the determination
of single mode fracture parameter (mode I for tearing or mode II for shearing).
Meanwhile, in the restrained J-integral (Jr) method, in which one of the displacements is
suppressed, separation of pure modes can be realized. Analysis of a; and B cracks
requires the direct calculation and Jr methods. Finite element mesh and J-integral paths
for the three cracks are shown in Figure 4-16. Fine meshes that have 20 elements with a
size of half of ply thickness 0.5H are used to model the vicinity close to the crack tip. The
ply thickness is assumed to be 0.125 mm. The thickness of the baseline resin layers is
one-tenth of the thickness of the ply. Each of the 12 plies in the thick section and 6 plies
in the thin section, and the resin layer are modeled with a row of elements in the
longitudinal direction and one element in normal directions. The resin is assumed to be
isotropic and the plies to be orthotropic. The material properties used are listed in Table
4-1 of Section 4.2. The total number of degrees of freedom in this basic laminate is 1238.

To model the failed resin pocket, the stiffness of three elements at the resin pocket
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adjacent to the ply drop-off is set to zero, and stresses around the failed interface are

determined.

o, crack

o, crack

(a) a;- a; crack

B crack
/& « crack
A V22220l L L L L Lt L ool o /
B G S\ /,\/
‘
NN D
- - - --‘\ “\“\ L LI, . 2.
AN

(a) a; - P crack

Figure 4-15 Crack configurations considered in the analysis
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'/ x=0 x =+30H

Crack tip @

()

Figure 4-16 Paths for contour J-integral in the laminate with: (a) a; crack, (b) a2 crack

and (c) B crack
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4.5.2 Results and discussion

Stress distribution around the crack tip

Cont. plies [0];, Dropped plies {0]; a;= 10 mm

—
|
2 ¥l
*
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Figure 4-17 Stress distribution ahead of a; crack tip

Figure 4-17 illustrates the interlaminar stress distributions ahead of a; crack. Very near
the delamination tip (@2 =10 mm), interlaminar shear and normal stresses show steep

gradients. The normal stress shows a sign reversal at about 0.1 mm from the crack tip
and assumes values close to zero at about 1.2 mm away from the crack tip. Similarly,

interlaminar shear stress diminishes to near zero values at a nearly same distance from the

crack tip.
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As discussed in the introductory section, the B crack is inherently in the mixed
mode. Figure 4-18 shows the distributions of normal and shear stresses ahead of B crack

with assumed crack length of 10 mm starting at the ply-drop step. The shear stress is
more localized near the crack tip than the normal stress.

Cont. plies [0],, Dropped plies [0]; B= 10 mm
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Figure 4-18 Stress distribution ahead of B crack tip

Influence of thin section debond length (length of a;)
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Figure 4-19 Influence of thin section cracking length (TN: thin section, TK: thick
section, DC: direction calculation, J: J-integral method, and Jr: displacement
restrained J-integral method)

The strain energy release rate results obtained using different methods are
presented in Figure 4-19. It illustrates the variation in the strain energy release rate results
for a fixed delamination length in the thick section and variable delamination length in
the thin section. For the entire range of crack lengths shown, the total G calculated using
the direct method and J-integral method are in good agreement for delamination both in

thin and thick sections The Mode II component was always dominant, with a ratio of
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Guo/Gp equal to 1.97, for example, for the delaminations at a; = a2 = 10 mm. A pure
Mode 1 value is assumed to exist at the thin section tip due to the symmetric
configuration and the loading condition.

Influence of thick section debond length (length of az)

Cont. plies [0, Dropped plies [0}, a;= 10 mm
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Figure 4-20Comparison of restrained J-integral method and direct calculation method for
3 dropped plies

Figure 4-20 illustrates the comparison for a thin section delamination length of 10
mm and a variable delamination length in the thick section. The dotted lines represent
the prediction of the J-integral model and the solid line corresponds to the results of the
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direct calculation method. The values of total G calculated from these approaches are in
good agreement for the entire range of delamination lengths shown. The small difference
between the predictions is that the J-integral method underestimates the values of total G
by at most § percent in comparison with that of the direct calculation method. This is due
to the restrained condition imposed for the mode separation. Also shown in the figure are
the individual mode components.

Influence of dropped ply thickness on delamination

Cont. plies [0],, Dropped plies [0] , a,= 10 mm, a; = 10 mm
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Figure 4-21 Influence of the number of dropped plies on delamination

The strain energy release rate corresponding to a given load is presented in Figure
4-21. It shows that the total strain energy release rate calculated at both the thick and thin
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section delamination fronts increases quite linearly with the thickness of the dropped
sublaminate. This trend is expected since the eccentricity of the load path is increasing.
The total strain energy release rate at the thick section delamination front is significantly
higher than the value at the delamination front in the thin section. However, the slope of
the curve for the thick section delamination is much larger. This results in an increasing
sensitivity to delamination at the thick section delamination front relative to that at the
thin section -delamination front, as the thickness of the discontinuous layer is increased.
Both the Mode I and II components calculated at the thick section delamination front
increase with increasing drop thickness. However, the Mode I component increases at a
larger rate than the Mode II component. Therefore the model predicts a change from a
Mode II dominated delamination front to mixed mode when the drop ply thickness

increases to a certain value.

Influence of resin / adhesive layer thickness

The resin layer has been separated in the model to characterize the fracture
behavior of laminate composites. This is because the resin layer is a definable region of
matrix material existing between plies as shown in Figure 4-1, which is on the order of
fiber diameter. Also considered is the fact that delamination is an interply phenomenon
and is dependent upon the load-carrying capacity of the matrix phase, instead of the fiber
phase. A singularity develops at the ply drop if a zero thickness interply layer is assumed
(i.e., no interply resin layer), meaning that if a thinner resin layer is modeled higher
stresses are produced. The minimum thickness of interply layer used in the models is one
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tenth of the ply thickness. It has been shown that the interlaminar response predicted with
the iﬁclusion of interply layer reflects more realistic eases than those without it °. One of
the objectives for the present work is to understand the influence of the thickness of
interply on the structural strength. Thickness values larger than resin layer thickness are
utilized to conduct the simulation. Strain energy release rates calculated are presented in
Table 4-3. For the laminate with thin interply (up to 12 um), the energy release rate is
almost unaffected by the presence of the interlayer. For the laminate with thicker |
interply, however, G increases over the baseline value. Energy release rates computed by
DC method are larger than the restrained J-integral values. This is expected because of
displacement restraints imposed in the J-integral model. Comparison of the magnitudes of
the energy release rate for interply crack and interfacial crack configurations shows that,
for a given interply thickness, the interfacial crack model provides a somewhat larger
energy release rate than the interply crack model, although the difference is relatively
small (less than 8% in all cases).
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Table 43 Energy release rate components computed from finite element analysis
o;=10mm, a; =f=10mm

thicknes | G,/P? (ir) Gg/P’ (Jr) G¢/P? (Jr) GP? (DC) | G/P? (J) GyP? (DC)

(m) MNmy'x10?  Mmy'xic* op'xi0t a0t | (Rm)'xi0® Nay'xic?
Insarply 2 3751 74.33 11154 121.51 1] 595
Configuration 30 3843 78.18 116.61 123.73 6.11 6.14
@ -a) 6 39.70 225 121.95 135.682 620 625
100 a2 ss61 13685 140.18 631 637
Intarthcial 2 39.10 nn 116.37 126.36 625 67
Configuration 2 40.13 4 1260 129.58 6.40 6.48
@-P e 41.78 87.81 129.57 143.76 6.5 6.70
100 Qe 80.62 133.04 14528 en 6.1

Jr, DC and J stand for Restrained J-integral, Direct Calculstion, and J-integral, respectively.

4.5.3 Concluding remarks

The developed quasi three-dimensional partial hybrid elements have been utilized
to characterize interlaminar fracture behavior of tapered laminate embedded with two
crack configurations. Quasi three-dimensional J-integral, which is of the same form as
Rice’s J integral for a two dimensional crack problem as well as path independent, has
been used to calculate the strain energy release rates at embedded crack tips assumed in
both interply crack and interfacial crack models. Magnitudes of strain energy release rate
calculated using J-integral and restrained J-integral agree well with that obtained using
conventional direct calculation approach. Of all the parameters studied, material and
geometric properties of interply layers present significant influences on delamination. It
is shown that thick and tough resin/interleaf layers will increase the fracture toughness
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and subsequent structural performance of the laminate. It is therefore suggested that
interleaved tapered laminates are good candidates for effectively enhancing the fracture
behavior of the laminate. For the case of a thin interply layer, the strain energy release
rate predicted for the interfacial crack configuration (a; — B) is slightly higher than that
for the interply crack configuration (a; — @) (less than 5%), but for the thicker interply
layers the difference becomes larger. The estimation of strain energy release rate
rendered by interfacial model provides conservative observation regarding the

delamination in the tapered laminate.

46 Summary

In this chapter, both stress- and fracture mechanics based methods are studied for
characterizing fracture behavior of tapered laminates. The damage onset was first
investigated based on stress based criterion. The critical stress values and region were
predicted with the developed hybrid elements and they correlate well with experimental
observations. The analysis results proved that the von Mises derivative criterion is
practical in the prediction of delamination initiation failure. Various approaches to
calculate the strain energy release rate are further discussed in this Chapter. The direct
method of calculation of the energy release rate has been shown to be reliable and gives
its use credibility. For linear elastic analysis, J-integral is equivalent to strain energy
release rate. Meanwhile, Rice’s J-integral, which is originally developed for two-
dimensional problems, is extendable to quasi and full-three dimensional problems. J-
integral of Q3D is of the same as the original J-integral, but with a wider range of
variables involved. J-integral shows promising in impmvhg calculation efficiency due to
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its path independent property. The developed quasi-three-dimensional partial hybrid
elements were implemented to model the tapered laminate that has the same
configuration as the one tested in the lab and has been considered to be under the
generalized plane deformation. Through the example analyzed, it is seen that increase of
resin thickness, by whole or partial interleaving of the tapered laminate at critical
interfaces, rational selection of ratio of the number of the continuous and dropped
sublaminates, and manufacturing the composite with proper taper angle would enhance

fracture performance of the tapered laminate.



Chapter 5

MODIFIED SHEAR-LAG ANALYSIS

5.1 Introducftion

Finite element methods, as indicated in the review part of the thesis, have been
extensively used to predict interlaminar stress distributions and delamination in tapered
composite structures. These methods were included in works by Kemp', Curry?, Hoa’,
Fish 4, Llanos®, Salpekar®, etc. In contrast, there are few approaches solely independent
of finite element methods that have been addressed to the tapered laminate problems.
Harrison'® developed a mixed formulation that correlates well with the finite element
model of the tapered section. However, this model lacks a physical description of the load
transfer mechanism.

Some simplified mechanical models were developed which include, for example,
extensional and shear spring model by Armanios’ and shear-lag model by Vizzini'.
Throughout their efforts one objective has been to understand the load transfer

mechanism and to describe it in a simple analytical form.

177
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Armanios developed a model composed of extensional and shear springs and
predicted the interlaminar stresses based on the tendency of the plies to' align themselves
to the applied load. Although the comparison between his model and a finite element
solution is good for interlaminar shear, it fails to capture the tensile nature of the
interlaminar normal stress at the ply drops.

Vizzini * first applied the ordinary shear model to predict the load transfer
mechanism in tapered composite structures. The fundamental basis of his shear-lag
model consists of three elastic layers separated by two shear layers. It was shown that
this ordinary shear-lag model could capture a majority of the load transfer mechanism for
the composite structures only when the Young’s modulus of resin layer is lower
compared with the Young’s modulus of unidirectional tape. Meanwhile, this model has
difficulty in addressing the matrix cracking problems that often exist in composite
laminates because of the assumptions made in the model. These limitations constrain its
wide applications.

In general, simplified mechanical models, as shown in the above work, for the
interlaminar analysis of tapered laminates provide more physical insight than that by
FEM, and reasonable results in comparison to that calculated with FEM are reachable
based upon physically appropriate assumptions.

With above in mind, a new approach, named modified shear-lag model hereafter,
has been developed to overcome the limitations of the model with ordinary shear-lag.
The essential assumptions for the new model are that both plies and resin layers are
treated to act as carriers of tensile stress and also to act as stress-transfer media. On the

basis of these assumptions, more complicated mathematical forms were established as to
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get a close solution to the true responses of loaded tapered composites. The reasons for
selecting the shear-lag model for taper composites lie in the fact that this model is
formulated based on a conceptual model with comparatively simple formulations and that
it can provide more accurate stress responses for any composite material consisting of
tapered laminates than the ordinary shear-lag model. Less computing efforts are involved
in the current shear-lag niodel than in finite element methods. The model is also capable

of being applied to any type of composite laminates

5.2 General Formulation

Assumptions used in the current shear-lag model are that both plies and resin
layers are treated to act as tensile stress carriers and also to act as stress-transfer media.

Two types of laminates are separately considered in the analysis.
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5.2.1 Laminate without drop-off layers

L2 B e P l ' x

)N

Figure 5-1 Schematic drawing of model with variable layer thicknesses

For equilibrium of the force in each layer in x direction, as indicated in Fig. 5-2, there
exists:

ﬂ-{- r% =0 (Bottom layer, i=1) (5-1a)

dh, - ; i=2 3N
I+t"}{-t%- , =0 ( Intermidate layers,i=2,3,---N -1) (5-1b)

dP, - .
78 =0 (Top layer,i = N) (5-1¢)
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where, P;, ti; are, respectively, the axial force per unit thickness of the i-th layer and
interfacial shear stress. (2i-1)* and (2i)* layers are corresponding to plies and resin
layers, respectively. In the above equation, x is the global horizontal coordinate.

—  Pi+1+dPi+1

Pi -— ti —= Pi+dPi

Pi.l -— ;',;',::'/ —= Pi-1 +dPil

Figure 5-2 Diagram of free body

Under the conditions of linear elasticity, the following equations hold, considering the

assumptions above:
P=EnB  (i=1,2N) 5-2)

2G,G,

vy AR L) 5-3)



where, E; - Elastic modulus; Ej;.; for plies, and E;; for resin layers;
G; — Shear modulus, G;.; for plies, and Gg; for resin layers;
u; — Displacement of the i th layer;
t; — Thickness of layer as t,=a/+b; XL (i=1,2,3, ....N);
K,; - Interfacial modulus, derived using the definition of shear deformation as

follows (Refer to Figure 5-3 for the derivation).

_G (o, — ) _G, (), )
WETGD) G 02) ©4

In the above equation, it was assumed that each layer i has a constant displacement u;,

and the equation is valid whether t; is constant or not.
The final differential system can be obtained by the substitutions of the latter

equations into Eq. (5-1).

2
E,(ﬁﬁul 3&)+K%(uz -u,)=0 (5-5a)
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dt, du d*u
El(dr' h' +1, hzl)*'Ku}{("m -ul)-K%_l(ul "ul-l)=o

i=234,--N-1 (5-5b)

(5-5¢)

Figure 5-3 Derivation for interfacial modulus

For the differential equation system in Eq. (5-5), it is impossible to obtain a closed form
solution, so we can solve it in a numerical way. Suppose that the displacements in each

layer are of the following form:

u, =ic;(%) i=1,2,3N (5-6)
nwl
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Substituting Eq. (5-6) and formulation for t(x) into Eq. (5-5) results in a series of
recursive equations involving C, for each layer. By setting the coefficients of like terms
on both sides of the equations equal, a solution can be obtained with two initial values for
each layer determined by boundary conditions.

More commonly applied modeling for this problem can be established with only 5
layers or 5 sublaminates, i.c. one continuous belt sublaminate, one continuous core
sublaminate, one dropping sublaminate, and two resin layers between belt and dropping
sublaminate, and between dropping sublaminate and core. Under this situation, Eq (5-5)

becomes

E,(d“ du, d’u,

o 2 +1, =7 )-{-K%(uz -u,)=0

2
E{dt, du,  du,

dx dc ' dx? )+K"}{(u“l -U,)-K%_l(u, -u,,)=0 i=2,3.4>

(5-7)

dt, du d’u
E,(d; dx’-l-t, ‘kz’)-K%(u, -u)=0

P

Note that in this analysis, equilibrium along the z direction is not considered. This
is due to the basic assumption of the shear lag model. It can also be the weakness of the

model.

5.2.2 Laminate with drop-off layers
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The simplest tapered laminate consists of a two-zone area close to the drop off
location, as shown in Fig. 5-4. The first zone consists of four constant thickness plies and
resin layer and one variable thickness resin layer. The top ply is inclined. In zone two,
three resin layers are located between the top and bottom plies. Similarly to the derivation
of equations for the regular plate without drop-off layer, the governing equilibrium
equations for general laminate with total number of N layers and with drop-off layer at
the top the laminate are given in the following.

ml
Zone 1 - Zone 2

Layer5 |
:"/ Belt pyy sub'hmin“e
wa

Layer3 D'OI’I”‘l ply / sublaminate K Resin pocket % Resin layers
Layer 2 7l L2 e '
Layer1 ; Core ply / sublaminate !

] : ‘

m n p

}__.

Figure 5-4 Schematic drawing of typical ply drop region
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Figure 5-§ Equilibrium conditions of ply drop at zone 1

For the above equilibrium of the force in each layer in zone 1 of the typical drop off, as

indicated in Fig. 5-5, there exists:

dP,
El". Tin =0 (5-8)
Intermediate layers (i =2, 3, ... N-2):
dP.
— Ty Ty = 0 (5-9)

dx
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! 1 i=N-1):

;" + Ty +BOSCy v =Ty =0 (5-10)

Oyina —tanfry,y, =0

dPy, . ,
or d‘;l + Ty ya(+1an’ B) =1y v, =0 (5-10%)

Py 2 fr =
& cos” f=ty,y, =0 (5-11)

Oyina = Thnatan f=0

The governing equilibrium equations in each layer in zone 2 as shown in Figure 5-6

below are of the forms:
Bottom laver (V= 1):
dP,
I‘-&-rm =0 (5-12)
In ediate la i= ... N-3):
dP,
—+ Ty =T =0 (5-13)

dx
Intermediate thickness variable resin layer (i = N-2):

@ » . .
; L+ Ty ey A0SOy =Ty zines =0 (5-19)

Oyyn-2 —tan fry iy, =0
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dP,_ : ,
or N2 4y yna(+tan? f) -1y 503 =0 (5-14°)

”N.l 1] 1] L] 1 ]
— =+ (T N1 = Cvun-2) + B B(ON vy =T yyn-2) =0

dx (5-15)
(Onina —OCpoyn-2) —tan ﬂ(t;vm-l -Tyan-2)=0
dPy., .2 . . ,
or Tcos B+(Tyina=Tyaun-2)=0 (5-15°)
inclined ply (i = N):
dP, .
Tﬂcosz B=tyina=0 (5-16)

Cyina—Tnatanf=0

Tielh
P —— A
Ykl
Py — Pt
]
I L J
r dx |

Figure 5-6 Equilibrium conditions of ply drop at zone 2
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In the governing equations above, P, is a function of (E ,, #;, %) which is of the same form
as in Eq. (5-2), while 7, is a function of (G;, G, t,, 1, us, %) as in Eq. (5-3). The recursive
formulation for the coefficients of polynomial is described as follows. The required
coefficients are contained in a linear system. Coefficients in one layer are coupled with
that in adjacent layer as well as the sequential dependence of former term coefficient on

the latter in the same layer. If the boundary conditions such as C;and C| for

displacements and stress/strain on one side of each layer are known, the total coefficients
are defined using the above recursive formulation. The convergence of the series depends
on the number of terms chosen. In this model using the modified shear-lag analysis, we
can also present its difference from the model using original shear-lag method. The
comparison with FEM results is performed so as to further determine the accuracy of the

model.

The next step is concerned about implementation of the modeling. It consists of
the consideration of boundary conditions/constraints, converting of the global system to
local system (tapered coordinate system) for obtaining correlation between FEM and
current method, determination of interlaminar normal stress with force equilibrium
considerations, and finally comparison of the current modeling results with others

available in the literature.
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5.3 Derivation of the Coefficients of Polynomials

Derivation of polynomial coefficients that are used to approximate displacements
and deformations of the laminate in tension is given below for a general laminate
consisting of total of N layers with or without taper on the top one. A general formulation
for straight laminates was first derived and a layer correction for taper was thus further
made and adjusted for the corresponding layer in the straight laminate without taper in

order to account for tapered influence.

5.3.1 Laminate without drop-off layers

Eq. (5-7) for the laminate without drop-off layers can be rewritten as

&t du, du) 2GG
E| %  , dY % () —u)=0 5.17
‘(dx i) )‘“:,c;,w,c;l (- ) (3-172)

dt du, d’u 26..G
E [Rhasad SPPS Ll isl Mt (; -
'(dx ranilrs ) £.G, +1,G, . )
(5-17b)
266, ,
eI~y )=0 i=234,--N-1
‘IGI-I +tl°le (u‘ u‘-l) ‘ ,3

dt, du d*u 2G,.G
EJJ =X —X,¢ N NN (u, —u,,)=0 5-17
N( L ) 17Gys+ 1y Gy Uy —Uy 1) ( )
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If the thicknesses are constant, the above differential equations become homogeneous
with constant coefficients and can be solved in closed form. However, the thickness of all
layers can vary as indicated in Figure 5-1 (although, in this development, only the
thickness of resin layers will vary). In particular, assume in general expressions, that:

«

X
t, =a, +b,-L—

_ X
L =0, + blol Z

> (5-18)
X
L, = +b_ —
-1 =@ 0, L
G.G = GG, = G,
Denoting that
8., =a,,0,+ a,G,.,, ‘
a,.,=aG,_ +a,,G,
> (5-19)

b =0,G +5G,,

bm-l =bG,, +bt-th J

Eq (5-17) thus becomes:
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2
El(‘:; M ‘;’i‘} 20— (4, -1)=0 (5-208)
ay +by I

dt, du d*u 2G
E,( L—+¢, 2‘)-«- (u,‘, -u,)
x
& dx & @ ¥bian

L
(5-20b)
- % —(-u)=0  i=234,-N-1
+b =
@1t Y014 2
dt, du d’u 2G
EN( hN d: +y dszJ' ™ (“N -“N-l)= 0 (5-20¢)

Ayina Oy v

L

To solve for the system of governing differential equations, u; assume that the

displacements have the following form:

u =gc;(%)n (i=12,3--N) (5-21)

Substitution of Eq. (5-21) into Eq (5-20), considering:
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d'u, & . n(n-n(x\"
e Mo (I) | (5:22)

gives a solution for each layer as discussed in the following.

Bottom layer (i = 1

With substitution of Eq. (5-22), Eq. (5-20a) becomes:

® =l ® n=2
E, bl-!-ZC,:l Xl +|a+5= > C, "(":l) z
Lot "L\L L) L L

+_£__;[§(c3 - (%)] =0

ayn +by I

(5-23a)

Re-arrangement of Eq (5-23a) yields:
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Sfhcf)" ot

- ~2 n=l n )
+Z[q,c:n(n-1 %) +q‘C:n(n-l)(%) +¢,Cin(n-1 %)] (5-23b)
A=

+§[q,(€,f -c:)(%)"] =0

1
q, =Ea,,b ‘Z'z'

1
q, = Eb,,b, F

1
q; = E\a;,a, F

1
q,=E (a5, + albzn)L—z

1
qs = E\b,1by ‘Zz‘

95 =2G

(5-24)

For the six series in Eq. (5-23), the lowest common power of (x/L) is 2, so the terms with

power 0 or 1 can be separated out first. Letting each of the summations of the coefficient
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f (x/L) power be equal to zero leads to the eternal validity of the equation. So Eq. (5-23)
becomes:

- \*t
b 4 p 4
q,C,' + quc;(Z) + g[%cl Z} ]

+ qzC{(-:-) + i[qzc.‘. %)
x ® x »~2
+2¢,C; +64,C; ('L') + ;[%C:"(" -1 Z) ]

cncl) T e

+qs(c:-c;)+q,(c3-c:{f}iz:[qg(c: -G, {) ]=o
~ (5-25)

Also with:
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] - k
Z 2,C'n(n-1 -) =2 q,C,',,,(k+2)(k+l)({-):|

- 17 ™ i k
Z %C‘n(n- )( ) =Z q‘CL,(k-l—l)k(%) ]

o ™3 k
2. q,C'n(n 1)(—) =Y| g;Cik(k~1 %)

n-2 J k=2
_ - _ - (5-26)
o x n © x k
3 qs<c:-c:>(—) -3|ac -c:>(—)
nw2 | L 4 km2 L L J
Eq. (5-25) becomes:
¢,C} +2¢,C; -q,Cy +45,Cq =0 (5-27a)
(9:-95 )Cxl + 244C; + 693C3l + %Clz + 241C; =0 (5-27b)
[k + g k(e -D-gsJC. +lak+D+q 4R, (0

+q3(k+2)(k+l)C:02 +q6Ck2 =0 & =2,3,4'"Q



Top i=N

Similarly as in the calculation of coefficients related to the bottom layer, substitution of
Eq. (5-22) into Eq (5-20c) yields

- L P . =2
oo s(e) oo e ()]

J-o

(5-28)

- 26 - [g(c:’ -cM (%)

Ay ina + By na I

Re-arrangement of Eq (5-28) leads to:

o n=l n
;[:,C:’ n(%) +5,C¥ n(-z-) ]
© -2 n-1 n
+ Z[s,c,f' n(n— l)(f-) +5,C¥n(n- l)(-{) +5,C¥n(n-1 i) ] (5-29)
A=l L L L

- gl:s, cy-cr )({-” =0



s, =Eyay,y. by F

1

S; = Eyby/nby L—z

sy =Eyay,y.ay—

L

1
se =Ey(ay/nby +aNbNIN-l)F

1
ss =Eyby,n1by -7

L

s, =2G

(5-30)

For the six series in Eq. (5-29), the lowest common power of (x/L) is 2, so the terms with
power 0 or 1 can be separated out first. Letting each of the summations of the coefficient
f (x/L) power be equal to zero leads to the eternal validity of the equation. So Eq. (5-29)
becomes:
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et (D)o glerd(d) ]
enct(B)o ey

sanct sasct(5)o & sctma(3) ]
vanci(§)-Elscmnf 3] |- Encrnasf 3]

— 54 (CYY ~CI Y= 5,(CY -Cf'"{%]"i[’s(cf -G )(%J =9

ne2

(5-31)

Also with:
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o k
[leﬁl (k+1 %) ]

>

kn2

o3|
er(d)|

IE.M. L]

kn2

~

it

n-1]

s‘C Yn(n-1

E.M'

7)
?:; 5,Cn(n - 1)( ) ]

Eq. (5-31) thus becomes:

" =2
5,C¥n(n- l)(%)

[s,c: k(k - 1)(—)
=l

-3

kw2

$fucr-e -

= i[s,c,{‘

_ x\‘
-Z 5,CY (k+1) Z) ]

sl +2s,¢f

(5; =Ss)ef +2(s, +5,)c7 +655¢; +56¢;

[5,k + s.k(k =1) +sJci’ +[s,(k +1) +5,(k + k],
+5,(k +2)(k + )i,

200

3

[ k
$,CX (k+2)k +1 -L"-) ]

-366:' -

(5-32)
\k
|:55(C,, CH)(L; ]
—54Co +5sca ' =0 (5-33a)
=0 (5-33b)
(5-33¢)

=0 k=2’3...w
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In iate I =23 ..... N-1

Substitution of Eq. (5-22) into Eq. (5-20b) leads to:

=2

ic,‘,“(%)"—ic:(%) Z ( )y z :-1( %
+2G} =2 n=0 =0

By = by =
Qs+ hlllz Qi + UHZ

3 ean Gy 4, +b, —)Z RE )"’]
el

hlu—

(5-34)

Re-arrangement of Eq. (5-34) leads to
ZC n(n 1)( )n-z
+Zc n( Zyrt ""Z" ! +r)n(n- 1)( Xyt
n=2
+ZC ﬂ(—) +ZC (I's +r. )n(n l)(_)n
e St~ + el e 2y
=0

"'ZC ryn(= )”l'*'ZC'r,‘n(n 1)( Lyt

# S - e+ = K™ =0 (5-35)
n=0
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The lowest common term of (%) power for the series in Eq. (5-35) above is (%)’ . By

the same way as used in obtaining top and bottom layer coefficients before, we can
obtain:

2cir! +6cir! (%)+12c1r“ (%)z +3 c,‘,r,‘n(n—l)(%)"” (5-36a)

ans$

cir +2c4r (%) +3cir ({)’ +2¢,(r) +1 x%)«»sc; (s +r} )(-z-)z
(5-36b)

+3 L R WACEE (Ll
Al ned



X R -
A+ 265 (1) + 2650 + RN + (e = oo + (o =57 )

i+l

+[(ci = el + (el —ci™ny 1(%)

+ - > 4
+l(el =t + —et ISy

(5-36¢)
+35 criny + 3 ot +rimn-Ey
ned L =l L
+ 3 [ —ehri + (el =l alg)
G
z)
eir (D +ler™ = el +(ch ~ e )
+l(el™ —eDri + el =)’
(5-36d)

+Y ciry n(E)™ + > ciryn(n- )™
n=? L ne2 L

+3, e = +eh - k™
An

Letting the sum of the coefficients for each like of power (%) be equal to zero leads to:

2eir! +cir! + (et =i +(ch =ity =0 (5-37a)
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(] i+l

i1t { { { i () (A}

5-37b
+(e —e g + (e — o) +(cy — ¢ Iy =0 370
L2cirs +3es +6e3(ry +7y) + 2030 + 230 +R)+ (T ~ 0 g 20

+(ez =e Iy +eiry + (™ — ey +(e{ — ¢ )ry =0

Craafi(k+2Xk+ D)+, r' (k+ D) +cl, (r +r Xk +Dk
+eyrk+c,(rg +rg)k(k-1)+ [(c;‘l - no +(c —cin; ] (5-37d)
s el uri (k=1 +clyrd (k= 10k = 2)+ (el = el Ity +(chy — by =0
(k=34,..), (=23,...,N-1)
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ol 2
n =Eba,,a,. /L
[ 2
. 2= n= Elbl(b»mam-l +aulubm-l)/ L
ri=rl=Eb,. b, _b L[}
3 =l = £40:41/10:/149,
r!=Eaa,,,a,,. /L
s =£/88,,,,8;1
rl=Eab,,a,._/!lL
s = £,8,0,,1/,8;/11
r'!=Eb,,b,_a /L >
6 = “iYie11i%1141-1%
rl=Eaa,,b,. L}
7 = £,8,8,4,1/,01/411
L.
ro =2Ga,,,
L
ry =2Gb,,,,

(5-38)

‘ —
h, = -ZGalolll

i
hs ==2Gb,,,, J

Eqgs. (5-27), (5-33) and (5-37) can be applied to derive all the coefficients required, if

boundary conditions used to determine the initial values of each layer are given.
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5.4 Model Implementation and Validation

The model developed was applied to examine the local stress distribution of the
tapered laminate. The actual problem of interest to be solved involves partitioning the
region about the drop-off into two zones as shown in Figure 5-4. The 2-zone model has
10 boundary conditions, related to five deflections at each end of the model. The
additional constraints on the system are the continuity requirements at the boundary
between zone 1 and 2, where displacement and force must be continuous. To solve the 2-
zone problem, a set of 20 equations is set up and the initial coefficients in each zone can
be determined. Based on these initial coefficients, all of the coefficients can be
determined. Thus, the displacements, strains, and stresses can be determined. All of the

constraints can be reduced by the definitions of the assumed displacements. For example

in layer §

u,(x)=iC:(%). (540)

AaQ

Thus the displacements at the boundary for any layer i are given by

%,(0)= C;
(541

u()=3.Ct
Al
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where i = 1, 2, ... 5, designating 0° as zero. The origin of x-coordinate for zone 1 is
located 10H away from the foremost ply drop off (at the left side of Point C in Figure 5-
7), and the origin of x-coordinate for zone 2 is just located at the ply drop off (Point C).

The force, in each layer, can be determined by

F,(x) = o(x)t(x)

= E,e(x)t(x)
(5-42)

= Elu; (x)(x)

. (n x n={
=E . 1l
& (x)zl 2 ( L)
Thus the forces per unit width at the boundaries in each layer are given by
FO) = Ef -

(5-43)

nC,
L

F(L)=Et D)3
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For a 2-zone problem as shown in Figure 5-4, total of 20 constraints must be applied.
Each zone generates ten unknowns (C, andC;, i = 1, 2, ... 5). The 20 constraints can be
broken into constraints on displacements at the boundaries, continuity of displacements
between zones, and continuity of forces between zones. For this problem, the 20
constraints are:
- Boundary Conditions (10)

1. Left boundary condition on each ply and resin layer (total 5)

2. Right boundary condition on each ply and resin layer (total 5)
- Displacement continuity conditions (5)

3. Displacement continuity between zone 1 and 2 in each ply and resin layer
- Force continuity conditions (5)

4. Force continuity between zone 1 and 2 in each ply and resin layer

To demonstrate the capability of the shear-lag model developed, an application of the
model to predict interlaminar stresses about the ply drop region in the uniaxially loaded
tapered laminate was made. All plies in the model as shown in Figure 5-7 are 0°
unidirectional glass/epoxy with material properties given in Table S-1, which, for
convenience of comparison and evaluation, are quoted from Ref.14. Also, thin (0.1-t;y
thick) resin layers are included in the model to allow for the direct calculation of
interlaminar stresses. In this problem, an eight-ply laminate is tapered to four plies in a
symmetric fashion. The laminate is 50.8 mm (2 in) long in the thick section, 50.8 mm (2
in) long in the thin section, 25.4 mm (lin) wide and has a taper ratio of 10:1 (The



distance between the ply drop-off steps is 10 times ply thickness). Uniaxial tension is
applied by fixing thicker end of the laminate and applying an axial displacement of
0.0254 mm (0.001in) at the other end. Convergence of the shear-lag model is controlled
by the term at which the infinite series in Eq. (5-21) are terminated. Figure 5-8 indicates
the peak values of interlaminar shear stress in the top resin layer using 5, 10, 15 and 20
terms in the series. For this analysis the series will be truncated at 20 terms.

Table 5-1 Material Properties

Glass/Epoxy Unidirectional Tape Resin
Extensional Moduli, msi Young's Modulus, msi
Er =64 Er=18 En=138 E=0.57 msi
Shear Moduli, msi Shear Moduli, msi
Gr=0.65 G =0.65 G =0.60 G=0.21
Poisson’s Ratios Poisson's Ratio
wr=029 v =029 vin = 0.50 v=037
Tensile Strength
- Go =9 ksi
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Top resin layer
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Bottom resin layer’Y D

=

Interlaminar Shear Stress Peak

Figure 5-7 Schematic drawing of tapered laminate
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Figure 5-8 Convergence for the shear-lag model



CHAPTER 5: MODIFIED SHEAR-LAG ANALYSIS 211
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- 888888

Figure 5-9 Comparison of different models for interlaminar shear peak values in the
top resin layer (left) and bottom resin layer (right). FEM: Partial Hybrid Finite Element
Method; MSL: Modified Shear-Lag model; and OSL: Ordinary Shear-Lag model

Figure 5-9 illustrates interlaminar shear peak values about the foremost ply drop
region (Point C), where a critical load transferring occurs and, it further induces
delamination failure at the interfaces (ABCDE) between dropped plies and continuous
plies. Improvement of MSL model over OSL model is observed with direct comparison
of estimations of stresses components against the partial hybrid finite element solution,
which has proved to be effective in analysis of laminated composites as indicated in the
former chapters of the thesis. Predictions by both shear-lag models agree well with finite
element solution, with results obtained from MSL being closer to the stress state rendered
by FEM. Over the range of dropped ply region as shown in Figures 5-10 and 5-11, it is
indicated that about 26 to 43 percent of improvement in the magnitudes of interlaminar

stress components is found with the present model.



Interlaminar Shear Stress, psi

Interlaminar normal stress, psi

OSL Ref. 14]
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Figure 5-10 Interlaminar shear stress distributions

OSL (Raf. 14)

Figure 5-11 Interlaminar normal stress distributions
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5.5 Summary

The modified shear-lag model developed demonstrates through the example
studied its significant advantages over conventional shear-lag theory, both in
computational accuracy and in application capability. Implementation of the model to
analysis of interlaminar stresses at the critical location in the tapered laminate provides a
closer solution to the true one rendered with finite element method. Majority of the stress
values were captured by the current model. With the confidence in applying this model to
prediction of a stress state in the tapered laminate, the model, based upon its essential
assumptions, can also be further extended to conduct delamination initiation and
propagation analysis of the tapered laminate.

It is of note that although the new model is capable of providing a more realistic
prediction than the ordinary model, irrespective of the stiffness value of the ply and the
resin layer, some limitations are inherent in the model. Since the assumptions allow both
plies and resin layers to sustain tension and shearing only, the model is unable to address
problems with transverse loading.

In the local analysis of tapered laminate, a two-zone problem was considered. The
finite element model provided the boundary conditions at the two ends of the local
model, but only the deflections along x-direction were imposed on each layer of the local

shear-lag model to approximate solutions.



LAG AN I 214

The convergence for the shear-lag model is also dependent of the numbers of the
truncated terms applied. A good approximation can be made by at least 15 terms for the
serials in the model.



Chapter 6
CONCLUSIONS AND RECOMMENDATIONS

Combined numerical and experimental analyses have been conducted to
investigate stress distributions and delamination behavior of the tapered composite
laminate having internal drop plies at certain locations of the laminate. Delamination
initiation and propagation of the laminate are in general characterized by an interlaminar
stress state at the critical interfaces and a strain energy release rate. On the basis of the
critical and comprehensive review on the tapered composite, the partial hybrid stress
finite elements offering a high capability in analysis of composite laminates, together
with the modified shear-lag model, were developed as tools for examining the
interlaminar stress state created by the intermal ply drops. The interply resin was
simulated at the critical ply interfaces in all the models considered. Interlaminar fracture
behavior of the tapered laminate was studied based on modeling the laminate as a
generalized plane deformation problem. The formulated quasi three-dimensional partial
hybrid elements were accordingly applied in order to reduce computing efforts involved
in calculating the strain energy release rate of delamination. J-integral, which is equal to
G in the context of linear elastic fracture mechanics (LEFM), was introduced to evaluate
strain energy release rates associated with delamination initiation and propagation in the
tapered laminate. An experimental investigation was carried out to validate the analytical

models.

218
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The following conclusions were drawn based on the results of the models
analyzed:

1. Proposed partial hybrid stress finite elements have been demonstrated to be
advantageous over the counterpart elements through their usage in analysis of tapered
laminated composites, which has been validated numerically and experimentally.

2. A simple and innovative shear-lag model shows a significant improvement over the
conventional shear-lag theory, both in computational accuracy and in application
capability. The true interlaminar stress magnitudes in the laminate of interest have
been better approximated by the current model than the existing shear-lag model.

3. Identity of resin layer(s) for modeling and analysis of the tapered laminate composite,
which was validated both in the shear-lag model and finite element model, exhibits
significant influences on stress and delamination results.

4. Failure in the tapered laminates with negligible free-edge effects is caused by the
interlaminar shear stress, 7, and initiates at the bottom of the foremost ply drop step.

5. In simulation of interlaminar fracture behavior a transverse matrix crack occurring at
ply drop locations must be taken into account in order to validate the model properly
with experimental observations.

6. Delamination analysis using interfacial model presents a conservative resuit for the
characterization of delamination initiation and propagation.

7. Structural performance of tapered laminates is affected by many parameters, but, of
them, material and geometric properties of the resin layer proved to be significant

factors; in this regard, increase of resin layer toughness, increase of the thickness
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value of resin layer, full or partial interleaving along the critical interface are
prominent means of improving the fracture resistant performance.
. Von Mises derivative criterion proved to be suitable as an effective means for

determining delamination strength in the tapered laminated composite.

The contributions made in the thesis are summarized below:

. The first of its kind review article on thickness tapered laminated composites, which
was published on Composites Science and Technology, Vol. 60 (2000), pp. 2643-
2657, elaborates advances achieved in the past two decades and tendency on analysis
and design of tapered laminated composites. It is certainly beneficial to those who are
of interest in study of this kind of structures.

. As a significant contribution to the realm of partial hybrid elements, 5 novel and
highly efficient elements, i.e. 3-D 6- & 15- node triangular prism elements, 3-D 6-
node wedge element, and quasi 3-D 6-node triangular & 8- node quadrilateral
clements, have been developed as to implement structural analysis of composite
laminated plates.

. Energy based J-integral approaches was proposed for the first time to account for
interlaminar fracture behavior of the tapered laminate, which have proved to be an
effective and competitive means of evaluating the strain energy release rate
associated with such a crack tip as embedded in the tapered laminate.

. A simple modified shear-lag model based upon its essential assumption has been
developed, implemented and validated in examination of the interlaminar behavior of

the composite laminate.
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The following recommendations for the future study can be considered:

. Formulation of crack tip elements based on partial hybrid stress method.

. Nonlinear analysis of fracture behavior in the composite tapered laminate.

. Accounting for manufacturing induced loads such as residual stresses due to thermal
history for improved prediction of stress and fracture response.

. Inclusions of contact and friction effects in calculation of strain energy release rate.

. Idealization of analysis model for delamination from two-dimensional crack tip to
three-dimensional crack plane.

. Experimental program for whole and partial interleaving of tapered laminate at the

critical interfaces so as to further validate predicted results shown in the model.
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A.1 Transformation of Stress and Strain From Material Coordinate
to Global Coordinate System

Figure A-1 shows a sketch of the material coordinate (1, 2 and 3) and the global
coordinate (x, y and z), respectively in the different regions. The stress and strain
transformation from the global coordinate to the material coordinate can be written as

f}=Ir.Jo}
e}=Ir. 1}

(A-1)

(o, ] (o]
o, o,
{o}=1 Il and g}m Tz (A-2)
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and [T,) and [7,] are 6x6 transformation matrix dependent on the rotation angle.
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Figure A-1 Sketch of coordinate systems in the taper region - 1, 2, 3: Material coordinate
system; x, y, z: Global coordinate system; @: Ply orientation about 3-axis; §: Taper angle
oriented about y-axis.

Explicit form of the matrices will be given in section A.3
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Rewriting Equation (A-1), we have

El=lr.I'e}
El=Ir.I'e)

(A-4)

Now let us consider stress and strain matrix transforming from the material coordinate to
the global coordinate by rotating a negative angle. Then Equation (A-1) can be also

rewritten as

El=Ir. o) o}

(A-5)
El=r.ol &)
The relation of [7,] and [T] can be written as
[r.®)=Ir.-oF (A-6)

A.2 Transformation of Stiffness Matrix From Material to Global
Coordinate System

The stress and strain relationship in the global and material coordinates are

expressed as



bl=lofe!
fo}=loke)

where [Q] and [Q] are the reduced stiffness matrices referring to global and material

(A-7)

coordinates, respectively. Next, a relationship between [Q] and [Q] can be established

as follows:

{o}=[oKs}
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_Comparing equation (A-6) and (A-8), we have

le)=Ir. ®Iokr, o F (A-9)

A.3 Stiffness Matrix in the Tapered Region

Referring to Figure A-1, transformation matrix in the tapered region rotated a

taper angle P about the y-axis can be written as
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where s, =sin § andc, =cos S

The stiffness matrix of 0°ply, [Q] is given as
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Ei, E; and E; are Young’s moduli in the 1-, 2- and 3-directions; G2, G2; and G3; are

shear moduli in 1-2, 2-3 and 3-1 planes, respectively. The Poisson’s ratio vjj is

v, =——= (A-14)



The corresponding stiffness matrix [Q] is given by Equation (A-9) as
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