INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

A Survey and Categorization of Program Comprehension Techniques

Song Wei

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

March 2002

© Song Wei, 2002

i~

National Library
of Canada

Bibliothéque nationale

du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wi

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-68487-3

Canadi

Your filp Votre rdédrence

Our fls Notre nééérence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

ABSTRACT

A Survey and Categorization of Program Comprehension Techniques

Song Wei

Program comprehension is a central activity during software maintenance, evolution and
reuse. Some reports estimate that up to 60-70% of the maintenance effort is spent in
trying to understand code. Poor design, unstructured programming metheds, and crisis-
driven maintenance can contribute to poor quality code, which in turn affects program
comprehension. The implications are that improvements to software development process
will require improvements to software maintenance. These process improvements should
facilitate comprehension of existing programs. The goal of program comprehension is to
acquire sufficient knowledge about a software system so that it can evolve in a
disciplined manner. Program comprehension is an emerging interest area within the
software engineering field. In this report, the objective is to survey and categorize
program comprehension techniques. We also present the MOOSE project to provide an

example to illustrate some of these comprehension survey and categorization.

Acknowledgement

First of all, I would like to thank my supervisor, Dr. Juergen Rilling for his
encouragement and valuable suggestions. Without his help, the work would not be what
it is today.

Second, [would also like to thank Dr. Sabine Bergler, give me many comments for the
thesis.

Finally, I would like to dedicate the work to my family, for their support and
encouragement during my master program study.

iv

Table of Contents

vi

List of Figures
1. Introduction
1.1 Motivation and objective

1.2 Scope of the dissertation

2. Program Comprehension & Cognitive Models
2.1 Program comprehension background
22 The need for Program Comprehension
23 Problems and limitations of Program comprehension
2.4 Cognitive Models
3. A Program Comprehension Framework
KN | Visualization Techniques
3.2 Algorithmic Support
33 Application support
4. MOOSE - A Case Study
4.1 Task-centered program comprehension
4.2 A user-centered approach
S. Conclusions
References

NAAUVESE & NN m

—
~

BRG

&

2%

w
[78)

55

List of Figures

Figure 1:The three pillars of the cognitive program comprehension framework

14

Figure 2: Families of reading techniques

23

Figure 3: Use Case Maps Construction

26

Figure 4: Use case diagrams

28

Figure 5: The MOOSE Comprehension Framework

3t

Figure 6: MOOSE Dynamic Sequence

Figure 7: Reverse engineered class model with slice display from MOOSE -

Figure 8: The MOOSE comprehension framework and its components

47
49

Figure 9: Choosing a comprehension task in MOOSE

50

Figure 10: Selecting among a coherent set of functions in MOOSE

52

Figure 11: MOOSE and knowledge management

vi

1 Introduction

Program comprehension is a central activity during software maintenance, evolution, and reuse.
Some reports estimate that up to 60-70% of the maintenance effort is spent in trying to understand
code. Poor design, unstructured programming methods, and crisis-driven maintenance can
contribute to poor quality code, which in turn affects program comprehension. The goal of
program comprehension is to acquire sufficient knowledge about a software system so that it can
evolve in a disciplined manner. There are varieties of support mechanisms for aiding program
comprehension, which can be grouped into three categories: unaided browsing, leveraging
corporate knowledge and experience, and computer-aided techniques like reverse engineering.
During the last three decades, the human computer interaction community has addressed this
question by developing different techniques and approaches to validate comprehension and
visualization techniques with users. It is essential to derive techniques and algorithms that provide
“means” and insights to the data to be displayed.

In this report, we focus on a survey and categorization of program comprehension techniques. One
approach to improve the comprehension of software systems is through reverse engineering
(bottom up) by providing higher level of abstraction through visualizing of data that has to be
observed and inspected. However, no matter what visualization technique we choose, the sheer
volume of information presented to the developers becomes daunting, as programs grow more
complex and large. Another approach to improve the comprehension of software systems is
through forward engineering (top down) by using formal specification, use case, and use case

maps etc. techniques.

1.1 Motivation and Objective

Program comprehension is an emerging interest area within the software engineering field.
Software engineering itself is concerned with improving the productivity of the software
development process and the quality of the systems it produces. However, as currently practiced,
the majority of the software development effort is spent on maintaining existing systems rather
than developing new ones [Rug95]. Traditionally, over 70% of the total expenditure for software is
directed to software maintenance and about 60-70% of this expenditure is directed towards
understanding the system. The implications are that if we want to improve software development,
we should look at maintenance, and if we want to improve maintenance, we should facilitate the
process of comprehending existing programs.

In this report, the objective is to survey and categorize program comprehension techniques. We
present the MOOSE project to provide an example to illustrate some of these comprehension

techniques surveyed and categorized.

1.2 Scope of Thesis

The presented thesis consists of five sections including this section. In section two, an overview of
program comprehension and a general introduction on cognitive models is presented. In the third
section, a survey of program comprehension techniques is presented. We introduce and categorize

several techniques for visualization, algorithmic and application support. In section four, the

MOOSE project and its task driven approach is presented. In the last section, conclusions and

future directions related to this research are presented.

2 Program Comprehension & Cognitive Models

In this section, we will discuss background, need and some problem for program comprehension

and introducing four different cognitive models and their applications.

2.1 Program comprehension background

Program comprehension is a crucial part of system development and software maintenance. It is
expected that a major share of systems development effort goes into modifying and extending
preexisting systems, about which we usually know little [Gal91]. As Mayrhauser mentioned in her
paper [May98]: “software maintenance of existing systems consumes 50-70% of the total
programming effort and a significant portion of this maintenance activity (50-70%) is spent on
software understanding. Because of the increased complexity of software systems, their
maintenance is becoming more and more aggravating. Change to a system may be necessitated for
adaptive, perfect, corrective or preventive reasons. Understanding the system, incorporating the
change, and testing to ensure that the change has no unexpected effect on the system are the three
facets of software maintenance.”

Cognitive models are used to describe a maintainer’s mental representation of the program to be
understood. And it describes the information structures used to form the mental model [St098]. In

what follows some key cognitive models will be discussed.

2.2 The need for Program Comprehension

Spencer Rugaber described [Rug95] program comprehension as the process of acquiring
knowledge about a computer program. Increased knowledge enables such activities as bug
correction, enhancement, reuse, and documentation. While efforts are underway to automate the
understanding process, such significant amounts of knowledge and analytical powers are required
that today program comprehension is still largely a manual task.

Program comprehension is a gradual process of building up the necessary understanding by
examining sections of the source code. Using the knowledge gained from the source code,
explanations and understanding of the software system under investigation can be built and
refined.

Also Spencer Rugaber mentioned in [Rug95]: “Program comprehension is an emerging interesting
area within the software engineering field. Software engineering itself is concerned with improving
the productivity of the software development process and the quality of the systems it produces.
However, as currently practiced, the majority of the software development effort is spent on
maintaining existing systems rather than developing new ones. So for the software maintenance
process, the greater part is devoted to understanding the system being maintained. Fjeldstad and
Hamlen report that 50% to 70% of time spent on actual enhancement and correction tasks,
respectively, are devoted to comprehension activities. These involve reading the documentation,

scanning the source code, and understanding the changes to be made [Fje83].

2.3 Problems and limitations of Program comprehension

Program comprehension is a research area, which belongs to the software engineering domain and
is devoted to developing tools and methodologies to aid in the understanding and management of
the increasing number of legacy systems. As Spencer Rugaber described [Rug95}: “software
engineering itself is concerned with improving the productivity of the software development
process and the quality of the systems it produces. However, as currently practiced, the majority of
the software development effort is spent on maintaining existing system rather than developing
new ones. According to Barry W. Boehm described in Software Engineering Economics1981
[Boe81]: estimates of the proportion of resource and time devoted to maintaining legacy systems
range from 50% to 70% in the total software budget.”
Current software systems are difficult to comprehend because their size and complexity far
exceeds that of the human brain but each brain are different. It is this difference that requires
research into easing program understanding to provide alternative ways for discovering
information and validating hypotheses. According to Spencer Rugaber mentioned in [Rug95}:
“Program comprehension is difficult because it must bridge different conceptual areas. Of
particular importance are bridges over the following five gaps.”

e The gap between a problem from some application domain and a solution to it in some

programming language.
e The gap betwee;l the concrete world of physical machines and computer programs and the

abstract world of high-level design descriptions.

e The gap between the desired coherent and highly structured description of a system as
originally envisioned by its designers and the actual system whose structure may have
disintegrated over time.

e The gap between the hierarchical world of programs and the associational nature of human
cognition.

e The gap between the bottom-up analysis of the source code and the top-down synthesis of

the description of the application.

2.4 Cognitive Models

A cognitive model describes a maintainer’s mental representation of the program to be understood.
A cognitive model describes the cognitive processes and the information structures used to form
mental models. Over the past 20 years, researchers have already proposed many studies to observe
how programmers understand programs. They developed a variety of support mechanism to aiding
program comprehension or understanding.
Scott Tilly [Til98] described in “A reverse Engineering Environment Framework”, they can be
classified into three categories:

(a) Unaided browsing;

(b) Leveraging corporate knowledge and experience (Top Down Model);

(c) And computer-aided techniques like reverse engineering (Bottom Up).
Mayrhauser and Vans mentioned in [May92]: “Studies have shown that, in reality, software

engineers switch between these different models depending on the problem-solving task. They

proposed an opportunistic or integrated approach, which is combining both top-down and bottom-

up cues as they become available.

2.4.1 Unaided browsing

Unaided browsing is actually “human ware”, which is software maintainer manually look through
source code or software document in printed form or browses it online, perhaps using the file
system as a navigation aid (Til98]). This method is a widely applied approach for the
comprehension of large systems, and frequently used by users in some form. Maybe a good
software engineer can keep track of approximately 40-50,000 lines of code in his/her head, for
larger programs however, it is impossible to keep track of all information. Additional tools and

techniques have to be applied to support the comprehension process for larger programs.

2.4.2 Leveraging corporate knowledge and experience
(Top Down Model)

Brooks [Bro83] theorizes that programmers understand a complete program in a top-down manner,
where the comprehension process is one of reconstructing knowledge about the domain of the
program and mapping that to the actual code itself. The process starts with a hypothesis about the
goal nature of the program. The initial hypothesis is then refined in a hierarchical fashion by
foaming subsidiary hypotheses. Subsidiary hypotheses are refined and evaluated in a depth first
manner to reduce the cognitive load of the programmer. The verification (or rejection) of
hypotheses depends heavily on the absence or presence of beacons. A beacon is a set of features

that indicates the existence of hypothesized structures or operations. An example of a beacon may

be a function called swap in a program. The discovery of a beacon permits code features to be
bound to hypotheses.
Similarly, Soloway and Ehrlich {Sol84] observed that top-down comprehension is used when the
code or type of code is familiar. They observed that expert programmers use two types of
programming knowledge:
® Programming plans are generic fragments of code that represent typical scenarios in
programming. For examples, a sorting program will contain a loop which compares two
numbers in each iteration.
® Rules of programming discourse capture the conventions of programming, such as coding
standards and algorithm implementations.
Based on Soloway and Ehrlich’s observations, a mental model is formed top-down by forming a
hierarchy of goals and programming plans. Rules of discourse and beacons help decompose goals

and plans into lower level plans.

2.4.3 Computer-aided Techniques (Bottom Up Model)

As G.A. Miller mentioned in Psychological Review [Mil56]: Experimentation has shown that there
is a limitation on the number of separate pieces of information that can be stored in a person’s
short term memory at any one time. The phrase chunking describes the process of recoding
information into groups so that more information can be stored in short-term memory. The bottom-
up theory of program comprehension is related in that it states that programmers first read
statements in the code and then mentally chunk or group these statements into higher level
abstractions. Shneiderman [Shn79] proposed that programs are understood bottom-up, by reading

the source code and then mentally chunking the low-level software artifacts into meaningful,

higher-level abstractions. These abstractions are further grouped until a high-level understanding
of the program is formed.

As Scott Tilley described [Til98], two common approaches to program understanding often cited
in the literature are a functional approach tl;at emphasizes cognition by what the system does and a
behavioral approach that emphasizes how the system works. These two approaches are directly
related to the level of domain expertise of the software engineer. The functional approach is
bottom up and deductive, relying more on the knowledge of the implementation domain to create
more abstract concepts that may map to the application domain and the systems functional
requirements. The bottom up approach reconstructs the high level design of a system, starting with
source code, through a series of chunking and concept-assignment steps.

Pennington [Pen87] also uses bottom-up approaches for program understanding. She identifies that
the first mental representation programmer’s build is a control flow abstraction of the program
called the program model. This model is built from the bottom up using beacons to identify
elementary blocks of code that control primes in the program. When the program model
representation exists, a situation model is developed. This model is also built from the bottom up,
using a data-flow/functional abstraction. The development of the situation model requires

knowledge of the application domain.

2.4.4 Integrated or Opportunistic Approach

Both top-down and bottom-up comprehension models have been used in an attempt to define how
a software engineer understands a program. However, case studies have shown that, in industry,
maintainers of large-scale programs frequently switch between these different models depending

on the problem-solving task at hand [May92]. The opportunistic approach involves creating,

10

verifying, and modifying hypotheses until the entire system can be explained using a consistent set
of hypotheses.

The integrated Meta-Model, developed by von Mayrhauser and Vans, consists of four major
components. The first three components describe the comprehension processes used to create
mental representations at various levels of abstraction and the fourth component describes the
knowledge base needed to perform a comprehension process.

The integrated model combines the top-down understanding with the bottom-up understanding,
recognizing that for large systems a combination of approaches to understanding becomes

necessary. Experiments showed that programmers switch between all three comprehension models

[May94].

11

3 A Program Comprehension Framework

What is a program comprehension framework?
One of the key reasons of program comprehension or understanding is to maintain and reengineer
legacy systems. It represents an objective rather than a well-defined process, and involves inverse
domain mapping, that can be aided by reverse engineering. A reverse engineering environment
must make the inverse process easier by recovering lost information and making implicit
information explicit [Til96a].
A comprehension framework is a construction/architecture for computer aided reverse engineering
support of program comprehension/understanding. A framework provides means to classify
different approaches to reverse engineering and enables a common frame of reference and
implementation of different tools. It should be emphasized that a framework enables the
integration of different tools-it is not meant to be used as an evaluation mechanism.
Reverse engineering as part of program comprehension can be described as analyzing a subject
system [RilO1]:

1) To identify the system’s components and their interrelationship;

2) To create representations of a system in another form at a high level of abstraction;

3) To understand the program execution and the sequence in which it occurred.
A framework essentially implements a generic architecture for an application domain in terms of
classes [Bec94]. Previous knowledge about the application domain is, doubtless, of great

importance to help with a given comprehension framework. Through general domain knowledge, a

12

programmer is able to comprehend the general organization of concepts or, more specifically, the
domain model implemented by the framework. On the other hand, it’s also necessary to take into
account that the goal of a framework development is to allow framework users to reuse the
designer domain knowledge. Therefore, it’s reasonable to expect that framework users don’t have
a deep knowledge about the application domain, but just the essential knowledge about the
functionality of the application to be implemented. Ideally, a framework should allow the user to
implement applications knowing just the functionality that abstract classes leave to implemented
by subclasses [Cam96].

A reasonable step in a framework comprehension process is to provide users with the mechanisms
that allow them to build an initial mental model of the structure and the behavior of the
architecture implemented by the framework. According to this, providing support for recognizing
abstractions not supported by the programming language, is an important complement to facilitate
the global comprehension of the functionality of a framework [Cam96].

As an example for these comprehension techniques, the MOOSE (Montreal Qbject-Oriented
Slicing Environment) is used to illustrate the tool support for various cognitive models during the
comprehension of large software systems. The MOOSE framework architecture is based on three
major components as shown in Figure 1. These components are: (1) Software visualization
providing higher levels of abstraction; (2) A hybrid slicing framework providing algorithmic
support to allow for a reduction of the software complexity; (3) Application framework that
combines and utilizes both algorithmic techniques and the various software visualization

approaches.

13

Cognitive
Program
Comprehension
Framework
Model

Application

Figure 1. The three pillars of the cognitive
program comprehension framework

In what follows, we present our survey and categorization of program comprehension techniques

which is organized as shown below:

Visualization Techniques Reading Techniques MOOSE
@Aa.n Use Case Maps (UCMs) (Sequence diagram etc)
Use Case
Algorithmic Support Foarmal Specification MOOSE (Slicing)
A.2) Use Case Maps (UCMs)
Application Support Forward Engineering MOOSE (Debugging etc.)
(3.3)

14

3.1 Visualization Techniques

What is Software visualization?

Software visualization can be seen as a specialized subset of information visualization. This is
because information visualization is the process of creating a graphical representation of abstract,
generally non-numerical data. This is exactly what is required when trying to visualize software.
The term software visualization has many meanings depending on the author. Software
visualization can be defined, as “Software visualization is a discipline that makes use of various
forms of imagery to provide insight and understanding and to reduce complexity of the existing
software system under consideration.” [Cla98}

The goal of software visualization is also included in the above definition. To create visuaiization
for no real purpose would be a pointless exercise. It has long been known that understanding
software is a complex and hard task because of the complexity of the software itself. Therefore
techniques that aid programmers in his comprehension of an existing software system are at the
focus of various research activities. Software visualization aims to aid the programmer by
providing insight and understanding through graphical displays and views, and to reduce the
perceived complexity through the use of suitable abstractions and metaphors [Cla98].

Myers [Mye90] effectively sums up the benefits of using graphics in the presentation of program
information when he writes:

“The human visual system and human visual information processing are clearly optimized for
multi-dimensional data. Computer programs, however, are conventionally presented in a one

dimensional textual form, not utilizing the full power of the brain.”

15

Why Visualization?
¢ The human brain possesses a *“narrow bandwidth” for processing raw numbers, but a
surprisingly “wide bandwidth” for processing visual data.
¢ Source code comprehension benefits from the use of an appropriate graphical notation.
¢ Graphical representations have been recognized as having an important impact in

communicating from the perspective of both writers and readers.

3.1.1 Top down

The top-down approach

Scott Tilley described in [Til98], the behavioral approach as top down and inductive, using a goal-
driven method of hypothesis postulation and refinement based on expected artifacts derived from
knowledge of the application domain. The top-down approach begins with a pre-existing notion of
the functionality of the system and proceeds to earmark individual components of the system
responsible for specific tasks.

In what follows, we describe techniques that are adopted for the top-down approach: Reading

technique, Use Case Maps (UCM) and Use Case.

3.1.1.1 Reading Techniques

Reading techniques can be applied as part of a top down visualization framework. As Basili
described in [Bas95]: Software reading is a key technical activity that aims at achieving whatever
degree of understanding that is needed to accomplish a particular objective. The various work
documents associated with software development (e.g., requirements, design, code, and test plans)

often require continual understanding, review and modification throughout the development life

16

cycle. Thus software reading, i.e., the individual analysis of textual software work products, is the
core activity in many software engineering tasks: verification and validation, maintenance,
evolution, and reuse.

According to Basili’s theory, the taxonomy of reading techniques is shown in Figure 2. The upper
part of the tree (over the dashed horizontal line) models the problems that can be addressed by
reading. Each level represents a further specializatio'n of the problem according to classification
attributes which are shown in the rightmost column of the figure. For example, reading
(technology) can be applied for analysis (high level goal), more specifically to detect faults

(specific goal) in a requirements specification (document) which are written in English

(notation/form).
Technology
PROBLEM > High Level Goal
SPACE

.%. Reuse Mamtenance FaultDetection Traceahility Perfoimance Specific Goal

TastPlan Code Dasign Requirements Design Document
(Software Artifacts)
Project Code Whitz= Box Black Box ™. SCR English Notation/Form
Scurce Library Framework Framework
Code
Scope Based DefectBased Perspective Based Family
SOLUTION or (rRole Bassd)
SPACE /[\

System Task Inconsistent Incorfect Omussion Tester USer Develcper Technique
Wide Jnented Ambiguity

Figure 2. Families of reading techniques

17

The lower part of the tree, (below the dashed horizontal line) models the specific solutions we have
provided to date for the particular problems, represented by each path down the tree. The solution
space consists of reading families (components of reading techniques) and reading techniques.
Each family is associated with a particular goal, document or software artifact, and notation in
which the document is written. Each technique within the family is: (1) tailorable, based upon the
project and environment characteristics; (2) detailed, in that it provides the reader with a well-
defined set of steps to follow; (3) specific, in that the reader has a particular purpose or goal for
reading the document and the procedures that support the goal; (4) focused, in that it provides a
particular coverage of the document, and a combination of techniques in the family provides
coverage of the entire document. Finally each technique is being studied empirically to determine

if and when it is most effective.

Analysis Reading

Analysis reading can solve these problems: Given a document, how can we assess various qualities
and characteristics? Reading for analysis is important for product quality; it can help us understand
the types of defects we make in programming, and the nature and structure of the product. It can be
used for various documents throughout the life cycle. Besides helping us assess quality, it can
provide insights into better development techniques.

The first family of scenario-based reading techniques is known as defect-based reading, and
focuses on a model of the requirements using a state machine notation. The different model views
are based upon focusing on specific defect classes: data type inconsistency, incorrect functions,

and ambiguity or missing information. The analysis questions are generated by combining and

18

abstracting a set of questions that are used in checklists for evaluating the correctness and
reliability of requirements documents.

The second family of techniques, perspective-based reading, focuses on different product
perspectives, e.g., reading from the perspective of the software designer, the tester, the end-user,
the maintainer, the hardware engineer. The analysis questions are generated by focusing
predominantly on various types of requirements errors (e.g., incorrect fact, omission, ambiguity,
and inconsistency) by developing questions that can be used to discover those errors from the one
perspective assumed by the reader of the document (e.g., the questions for the tester perspective
lead the reader to discover those requirement errors that could be found by testing the final
product).

Victor Basili mentioned in his paper [Bas95]: “In order to understand the effectiveness of scenario-
based reading techniques in particular, we have experimentally studied techniques from both
families.” He generated two families of reading techniques (collectively known as scenario-based
reading), by creating operational scenarios which require the reader to first create an abstraction of
the product, and then answer questions based on analyzing the abstraction with a particular
emphasis or role that the reader assumes. Each reading technique in a family can be based upon a
different abstraction and question set. The choice of abstraction and the types of questions may
depend on the document being read, the problem history of the organization, or the goals of the
organization.

The first series of experiments [Por95, Bas96] was aimed at discovering if scenario-based reading
is more effective than current practices. Based upon these experiments, empirical evidence showed

that scenario-based reading techniques could improve the effectiveness of reading methods. At the

19

same time, it was noted that some scenarios were less effective than others. In what follows, two

experiments are presented.

Defect-Based Reading Experiment

In the defect-based reading study, A. Porter described in [Por95], they evaluated and compared
defect-based reading, ad hoc reading and checklist-based reading, with respect to their effect on
fault detection effectiveness in the context of an inspection team. The study, a blocked subject-
project, was replicated twice in the spring and fall of '93 using 48 graduate students at the
University of Maryland. The experimental design was a partial fractional factorial design. The
design was less elegant than the [Bas87] design because the comparison here is with the status quo
approach (ad hoc) or with a less procedurally organized approach (checklists) so it is impossible to
teach the subject a defect-based reading approach and then return to ad hoc or check list. In this
case, a sort of ordering was assumed. On the first pass there were more ad hoc and check list
readers. Several, but not all, were moved to defect-based reading on the second pass.
Major results were that:
o the defect-based readers performed significantly better than ad hoc and checklist readers;
« the defect-based reading procedures helped reviewers focus on specific fault classes but were

no less effective at detecting other faults; and

o checklist reading was no more effective than ad hoc reading.

Perspective-Based Reading Experiment

For the perspective-based reading study, V.Basili [Bas96] evaluated and compared perspective-
based reading and NASA’s current reading technique with respect to their effect on fault detection

effectiveness in the context of an inspection team. Three types of perspective-based reading

20

techniques were defined and studied: tester-based, designer-based, and user-based. The study,

again a blocked subject-project, was run twice in the SEL environment with NASA professionals.

The design evaluated the effectiveness of perspective-based reading on both domain-specific and

generic requirements documents, which had been constructed expressly so that the generic portion

could be replicated in a number of different environments, while the domain-specific part could be

replaced in each new environment. This would allow them to combine the generic parts from

multiple studies but focus on improvement local to a particular environment. Based on feedback

from the subjects and other difficulties encountered in the first run of the experiment, they were

able to make changes to the experimental design that improved the second run. For example, they

found it necessary to:

e Include more training sessions, to make certain that subjects were familiar with both the
documents and techniques involved in the experiment;

e Allow less time for each review of the document, since subjects tended to tire in longer sessions;

e Shorten some of the documents, to reach a size that could realistically be expected to be checked
in an experimental, time-constrained setting.

Major results of this experiment were that:

e both team and individual scores improved when perspective-based reading was applied to generic
documents

e team scores improved when perspective-based reading was applied to NASA documents

Construction Reading
Construction reading can solve the following problem: Given an existing system, how do I

understand how to use it as part of my new system? Reading for construction is important for

21

comprehending what a system does, what capabilities exist and do not exist; it helps us abstract the
important information in the system. It is useful for maintenance as well as for building new
systems from reusable components and architectures.

Reusing class libraries does increase quality and productivity, but class libraries do not provide
default system behavior but only functionality at a low level, and force the developer to provide
the interconnections between the libraries [Bas95]. Greater benefits can be expected from reusable,
domain specific architectures and components that are of sufficient size to be worth reusing. Thus,
there is currently a focus on the reuse allowed by object-oriented frameworks for this purpose
[Lew9S].

Since a framework provides a pre-defined class hierarchy, object interaction, and thread of control,
developers must fit their applications into the framework. This means that in framework-based
development, the static structure and dynamic behavior of the framework must first be understood
and then adapted to the specific requirements of the application. It is assumed that the effort to
learn the framework and develop code within the system is less than the effort required to develop
a similar system from scratch.

Although it is recognized that the effort required learning enough about the framework to begin
coding is high [Boo94, Pre95, Tal95], little work has been done in the way of minimizing this

learning curve.

3.1.1.2 Use Case Maps

The Use Case Maps (UCMs) notation is gaining in popularity and in notoriety. Whether you
consider them as causal scenarios, as architectural entities, or as behavior patterns, they can help

you to describe and understand emergent behavior of complex and dynamic systems.

22

The basic idea of UCMs is very simple and is captured by the phrase causal paths cutting across
organizational structures. The realization of this idea produces a lightweight notation that scales
up, while at the same time covering all of the foregoing complexity factors in an integr~ted and
manageable fashion. The notation represents causal paths as sets of wiggly lines that enable a
person to visualize scenarios threading through a system without the scenarios actually being
specified in any detailed way. Compositions of wiggly lines (which may be called behavior
structures) represent large-scale units of emergent behavior cutting across systems, such as
network transactions, as first-class architectural entities that are above the level of details and

independent of them (because they can be realized in different detailed ways).

The notation is intended to be useful for requirements specification, design, testing, maintenance,

adaptation, and evolution. Already, UCMs have been used in a number of areas [Ucm99):

¢ Requirements engineering and design of:
o Real-time systems
o Object-oriented systems
o Telecommunication systems
o Distributed systems
o Multimedia systems
o Agent systems
¢ Detection and avoidance of undesirable feature interactions
e Performance analysis and prediction
e Evaluation of architectural alternatives

¢ Functional testing

23

¢ Detection of race conditions

e Documentation of standards

e Synthesis of message sequence charts and formal specifications
e Reverse-engineering of different systems

¢ Etc.

Figure 3(d) shows a simple UCM [Ucm99] where a user (Alice) attempts to call another user
(Bob) through some network of agents. Each user has an agent responsible for managing
subscribed telephony features such as Originating Call Screening (OCS). Alice first sends a
connection request (req) to the network through her agent. This request causes the called agent to
verify (vrfy) whether the called party is idle or busy (conditions are between square brackets). If he
is, then there will be some status update (upd) and a ring signal will be activated on Bob's side
(ring). Otherwise, 2 message stating that Bob is not available will be prepared (mb) and sent back
to Alice (msg).

A scenario starts with a triggering event and/or a pre-condition (start point req) and ends with one
or more resulting events and/or post-conditions (end points), in our case ring or msg. Intermediate
responsibilities (vrfy, upd, mb) have been activated along the way. In this example, the
responsibilities are allocated to abstract components (boxes Alice, AgentA, Bob and AgentB),
which could be seen as objects, processes, agents, databases, or even roles, actors, or persons.

The construction of a UCM can be done in many ways. For example, one may start by identifying
the responsibilities (Figure 3(a)), although not necessarily with diagrams like this one.
Responsibilities can then be allocated to scenarios (Figure 3(b)) or to components (Figure 3(c)).

Components can be discovered along the way. Eventually, the two views are merged to form a

bound map (Figure 3(d)).

24

req . vify fidd u .
tf re
A e - s — e

(@) Scaario Ispmsiblitics {bi Pah allocation
Alice A B Bob Alico AgE
msg ms

“(¢) Companent alocation tdi Bound map

Figure 3. Use Case Maps Construction

Under an apparent simplicity, UCMs such as Figure 3(d) convey a lot of information in a compact
form, and they allow for requirements engineers and designers to use two dimensions (structure

and behavior) to evaluate architectural alternatives for their system.

3.1.1.3 Use Case

Jacobson introduces use cases in [Jac92] by describing them as: "a behaviorally related sequence
of transactions in a dialogue with the system". Perhaps some examples will help to illustrate the
notion of use case. Use cases for a word processor might include building an index or inserting a
picture. In this way they correspond to menu commands. They can be quite large (building an
index) or quite small (making some text bold). Often they might not involve a single command. A
use case might be to ensure that the text in a document is consistently formatted; there is no

command for this, but this is the use case that drives the need for style sheets.

25

This latter example introduces many of the difficulties of getting good use cases. The art is to
identify the users' goals, not the system functions. One way of doing this is to treat a user's

business task as a use case, and to ask how the computer system can support it.

Use case diagrams (Figure 4) provide a way of describing the external view of the system and its
interactions with the outside world. In this way it resembles the context diagram of traditional
approaches. In this representation the outside world is represented as actors. Actors are roles
played by various people, or other computer systems. The emphasis on roles is important: one
person may play many roles, and a role may have many people playing it. Use cases are then

typical interactions that the actor has with the system.

«— Use Case
Actor— > /

Set Limits

«uses»

Analyze Risk

«uses» Valuation

Trading Manager%
\ Price Deal \

Trad
/

s v
© «extends» Capture Deal
Salesman

Limits Exceeded

Figure 4. Use case diagrams

Use cases can be seen as a large unstructured set or they can be structured in some way. Jacobson
[Jac92] provides two structuring mechanisms. The first allows behavior used by several use cases

to be pulled out into a separate use case, which is used by the other ones. This is somewhat like

26

pulling a common subroutine out which is shared by other routines. The second construct allows
one use case to extend another. The new use case defines certain points in the original use case at
which it takes over with new behavior (it has been likened to a programming patch). Extensions
are often used to show exception behavior and special cases, which would otherwise bloat the
amount of use cases in the model (Graham [Gra95] uses side-scripts for the same purpose). Use
cases act as the structuring mechanism for interaction diagrams. Typically an interaction diagram

is drawn for each use case in later design.

One of the big dangers of use cases is that of structuring the software to mimic the use cases. Use
cases provide an external view of the system; the software is often structured in a completely
different way. The biggest danger is that of turning each use case into a procedural controller,
which acts upon simple data holders. When using use cases remember that they are an external

view only.

When to Use Them?

Use cases are a vital part of QO development. They should be used when one wants to understand
the requirements of a system. Use cases are valuable if just kept on a database as an unstructured
list. Each needs a name and a few paragraphs of description. They are central to planning the

evolutionary development process. They should also drive system testing and functional testing.

3.1.2 Bottom-up

For the bottom-up visualization techniques, we use an example environment to describe the basic
concepts. The MOOSE (Montreal Qbject-Oriented Slicing Environment) project was developed

to provide programmers with support for various cognitive models during the comprehension of

27

large software systems. A cognitive model describes the comprehension processes and knowledge
structures used to form a mental representation of the program under examination. Although
substantial progress has been made in tool-based environmental support for aiding program
comprehension, there is no general structure that classifies different comprehension tools and
techniques. [RilOla]

The MOOSE framework architecture is based on four major components as shown in Figure 5.
These components are: (1) Software visualization providing higher level of abstraction; (2) The
hybrid slicing framework providing algorithmic support to allow for a reduction of the software
complexity; (3) Application framework that combines and utilizes both algorithmic techniques and
the various software visualization approaches; and (4) A repository to store and retrieve static and
dynamic information. [Ril01b] But for this section bottom-up, they still describe the (1) Software

visualization providing higher level of abstraction.

Visualization ,anpxeluﬁon
Framewark
lcpnlcy
.'........”.:’;'.......'...n'.. osasege
Hytrid Slicing Applictin
Framework Framework

Figure 5. The MOOSE Comprehension Framework
The MOOSE environment provides a descriptive environment that uses reverse engineering to
present different levels of visual abstraction to support both bottom-up and top down cognitive

comprehension models, as well as static and dynamic visualization techniques. The environment

28

supports two of the better-known static visualization approaches for bottom-up comprehension: the
call-graph representation for functional programs and the class-model representation (UML
notation) for object-oriented programs. These static abstraction levels are derived by reverse
engineering existing source code. Static visualization techniques can help a software engineer to
determine the interaction among objects and provide a general understanding of the system
structure and the dependencies within the system. However, static analysis does not provide any
means for determining how many objects of a class might exist during run-time, or how many
method calls might occur between particular objects. In the MOOSE comprehension environment,
encoding techniques for dynamic trace information are included that makes it possible to analyze
dynamic data at various abstraction levels. The dynamic information is based on information
collected as the software system executes. When a comprehension task requires views that involve
a larger number of classes, the usability of the dynamic approaches degrades, as it tends to display
complex interactions among multiple objects that lead to a very large amount of data to be
visualized. To overcome this complexity problem, an architecturally oriented visualization
approach was introduced by Steindl [Ste99] that enhances the dynamic visualization techniques by
providing both coarse and fine-grained level views. [Ril0la]

The MOOSE environment provides views with different granularity levels and presents new
visualization techniques for observing and analyzing the dynamics of program executions. For this
environment, the standard UML notion of a sequence diagram and collaboration diagram are
reused and extended by applying a reengineering process to derive the dynamic sequence (Figure
6) and dynamic collaboration diagram. The standard UML sequence and collaboration diagrams
are based on use cases for the purpose of determining the later class design. These dynamic

diagrams are based on information collected during program execution and they support both

29

cognitive models, the bottom-up as well as the top-down approach to program comprehension. To
represent the information across a system execution, a sequence of executed statements is used.
Depending on the leve! of visual abstraction, each cell represents an executed statement, function
or even class. In the dynamic sequence diagram a program object will be include on the X axle
after its first execution. The lifeline is used to represent the timely sequence of program
executions. The execution sequence can easily be observed and analyzed based on the position of
the cells within their associated lifelines. The visualization techniques support additional
enhancements for the comprehension of large programs and long program executions by offering
different levels of visual abstractions. Available options include: re-executing a program in a step-
wise fashion, stepping through the program execution at the statement/method or class level.
During the step-wise re-execution of the program, the execution position in the sequence diagram
and the corresponding source code display will be updated dynamically. As part of the UML
notation, collaboration diagrams are the primary source of information used to determine class
responsibilities and interfaces. MOOSE extends this standard UML notion of a collaboration
diagram further to provide an inside view on the dynamics of the relationships and interaction
among different classes. The dynamic collaboration diagram has limitations in visualizing the
interaction for large programs and their executions. Collaboration diagrams tend to be better suited
for depicting simpler interactions among a smaller number of objects and shorter program
executions. As the number of objects and messages grows, the diagram becomes increasingly

complex and difficult to read.

30

Figure 6. MOOSE Dynamic Sequence
The visualization techniques presented in the MOOSE environment support the cognitive
comprehension of software systems and focus on an approach by bottom-up providing the software
engineer with the ability to switch from the source code view to the corresponding higher levels of
visual abstraction and visa versa. It should be noted that the MOOSE environment is not limited to
the presented visualization techniques and that it can be extended easily to support and utilize other

visualization techniques like: 3-D, virtual reality, etc. [Sta99]

31

3.2 Algorithmic Support

Introduction

As described earlier, software visualization techniques are one of the pillars of the cognitive
comprehension framework. Software visualization allows for the transformation of a large amount
of data to a higher level of abstraction that improves the comprehension of the overall program
structure. However, even with higher levels of visual abstractions, a user might still have to deal
with a large amount of data without having any meaningful insights about the relationships and the
dependencies within a given scenario. Filtering and interpreting enormous quantities of
information is a problem for humans. From a mass of data they need to extract knowledge, which

will allow them to make informed decisions.

3.2.1 Top down

As we mentioned before, a top-down approach begins with a pre-existing notion of the
functionality of the system and proceeds to earmark individual components of the system
responsible for a specific task. Similar to the top down algorithms, there are some types of top

down algorithm technique, like formal methods, UCMs that can be usually applied in this field.

3.2.1.1 Formal specification

Generally speaking, a formal specification is the expression, in some formal language and at some
level of abstraction, of a collection of properties some system should satisfy. This purposely

general definition covers different notions dependent on what the word “system” really covers,

32

what kind of properties are of interest, what level of abstraction is considered, and what kind of
formal language is used.

Formal specifications have been considered for a long time. In the late nineteen forties, Turing
observed that reasoning about sequential programs was made simpler by annotating them with
properties about program states at specific points [Ran73). In the late sixties, Floyd, Hoare and
Naur proposed axiomatic techniques for proving the consistency between sequential programs and
such properties, called specifications [Flo67, Hoa69, Nau69)]. Dijkstra showed how a formal
calculus over such specifications could be used constructively to derive non-deterministic
programs that meet them [Dij75]. Specific techniques were also proposed to formally express
intended properties for special kinds of programs, notably, data structured programs [Par72, Lis75]
and concurrent programs [Pnu77]. This was the starting point for a whole new area of research
aimed at specification-in-the-large [Par77, SRS79, Abr80, Hen80]. The interest in formal
specifications and their multiple uses in software engineering have been growing continually since
that point {Win90, Cra93, Hin95, Cla96, Win99, SCP2K].

Formal specifications may refer to fairly different things in the software lifecycle; the wording is
thus heavily overloaded. An additional source of confusion stems from the fact that a single word
is used for a product and the corresponding process.

Complex software applications are built using a series of development steps: (a) high-level goals
are identified and refined until a set of requirements on the software and assumptions on the
environment can be made precise to satisfy such goals; (b) a software architecture, made of
interconnected software components, is designed to satisfy such requirements; and (c) the various

components are implemented and integrated so as to satisfy the architectural descriptions. All

33

along this development/satisfaction chain, knowledge about the application domain is often used to
guide the elaboration and to support the validation with respect to upstream prescriptions.

The *system” being specified may be a descriptive model of the domain of interest; a prescriptive
model of the software and its environment; a prescriptive model of the software alone; a model for
the user interface; the software architecture; a model of some process to be followed; etc. The
“properties” under consideration may refer to high level goals; functional requirements; non-
functional requirements about timing, performance, accuracy, security, etc.; environmental
assumptions; services provided by architectural components; protocols of interaction among such
components.

Beyond such different realizations of the general concept of specification, there is a common idea
of specifications pertaining to the problem domain (as opposed to the solution domain). To make
sure some solution solves a problem correctly, one must first state that problem correctly. This
dichotomy is, however, simplistic; a solution to a problem may in general be given as a set of sub
problems to be specified and solved in turn [Swa82]. A specification must thus in general satisfy
some higher-level specification and be satisfied by some lower-level specifications.

“Formal” is often confused with “precise” (the former entails the latter but the reverse is of course
not true). A specification is formal if it is expressed in a language made of three components: rules
for determining the grammatical well-formedness of sentences (the syntax); rules for interpreting
sentences in a precise, meaningful way within the domain considered (the semantics); and rules for
inferring useful information from the specification (the proof theory).

The latter component provides the basis for automated analysis of the specification. The collection
of properties being specified is often fairly large; the language should thus allow the specification

to be organized into wunits linked through structuring relationships- such as specialization,

34

aggregation, instantiation, enrichment, use, etc. Each unit in general has a declaration part, where
variables of interest are declared, and an assertion part, where the intended properties on the
declared variables are formalized. Formal specification techniques essentially differ from semi-
formal ones (such as dataflow diagrams, entity-relationship diagrams or state transition diagrams)
in that the latter do not formalize the assertion part.

Formal methods are methods that are valid by virtue of their form, using mathematically well-
defined objects and relationships. A formal method provides a means to construct an executable
program that can be demonstrated mathematically to be a valid equivalent to its specification. This
research theme explores the use of formal methods both in the forward engineering and reverse
engineering directions; formal methods may assist with software maintenance but do not require
that the system was previously written using such methods, although this is a research thread
{Formal 00].

Formal Methods attempt to provide mathematical underpinning for the design of computer systems
(hardware or software). A formal method should provide a specification language which has a firm
mathematical semantics and a development notion which has a clear concept of what needs to be
proved for a design (ultimately implementation) to satisfy its specification. [Bac00]

Examples of specification languages include VDM-SL, Z and RSL from the RAISE project.
Development methods include VDM and the RAISE method. Z itself is only a specification
language but attempts have been made to support the development process by using various
refinement calculi. One could also consider Jean-Raymond Abrial's Abstract Machine Notation as

a development method that is related to Z at least by having the same prime originator.

35

3.2.12 UCMs

Use Case Maps are used to describe and integrate use cases representing the requirements. The
construction of UCMs can reveal problems with the use cases, which may be incomplete,
incorrect, ambiguous, inconsistent, or at different levels of abstraction. UCMs include high-level
design information (internal responsibilities and components), but they do not commit to messages
between components (in contrast with MSCs), so they are more easily maintainable as design
scenarios. UCMs excel at integrating individual features and at the same time allowing for
reasoning about potential undesirable interactions. UCMs are not executable as is, but they can be
manually translated to a model that allows for fast prototyping and validation. LOTOS is
especially well suited for representing UCMs. Mappings to hierarchical finite state machines (used
in UML-RT) and to Layered Queuing Networks (for performance modeling) also exist.

UCMs can also serve as a basis for the definition of abstract validation test suites based on the
design. This represents a level of completeness different from (and often better than) plain
functional testing.

Finally, the use of the UCM Navigator tool enables the automated generation of documentation
and of XML code, which can be processed for further analysis and potentially for partial

generation of formal models.

3.2.2 Bottom-up

The comprehension of source code plays a prominent role during software maintenance and
evolution. There are varieties of support mechanisms for aiding program comprehension, which
can be grouped into three categories: unaided browsing, leveraging corporate knowledge with

experience, and computer-aided techniques like reverse engineering. In the following sections we

36

focus on the latter and how reverse engineering in combination with algorithmic support can be
applied effectively in program comprehension [Agr90, Ril98].

One approach to improve the comprehension of programs is to reduce the amount of data to be
observed and inspected. Programmers tend to focus and comprehend selected functions (outputs)
and those parts of a program that are directly related to that particular function rather than all
possible program functions. One approach is to utilize program slicing, a program decomposition
technique that transforms a large program into a smaller one that contains only statements relevant
to the computation of a selected function. The notion of program slicing originated in the seminal
paper by Weiser [Wei84].

Typically, a program performs a large set of functions/outputs. Rather than trying to comprehend
all of a program’s functionality, programmers will focus on selected functions (outputs) with the
goal of identifying which parts of the program are relevant for that particular function. Program
slicing provides support during program comprehension, by capturing the computation of a chosen
set of variables/functions at some point (static slicing) in the original program or at a particular

execution position (dynamic slicing).

Static slicing

Based on the original definition of Weiser [Wei84] the slice is defined for a slicing criterion C=(x,
V), where x is a statement in program P and V is a subset of variables in P. Given C, the slice
consists of all statements in P that potentially affect variables in V at position x. Static slices are
computed by finding sets of indirectly relevant statements, according to data and control
dependencies. The program dependence graph (PDG) was originally defined by Ottenstein and

Ottenstein and later refined by Horwitz et al. Data and control dependencies between nodes form a

37

program dependence graph. The static slice of a program with respect to a variable v at a node i,
consists of all nodes whose execution could possibly affect the value of the variable v at node i. A
static slice can be constructed from the PDG by traversing backwards along the edges of a program
dependence graph starting at a node i. The nodes visited during the traversal constitute the
program slice.

The major characteristic of static slicing is: the static nature of the source code analysis. This
technique is rather inexpensive with respect to run-time overhead and utilization of system
resources. Further, it helps in comprehending the overall program dependencies of the selected
function/variable at a point of interest. However, static slicing has limitations with respect to the
accurate handling of dynamic language constructs (like polymorphism, pointers, aliases, etc.) and
conditional statements. In these cases, static slicing algorithms have to make conservative

assumptions with respect to these language constructs resulting in larger program slices.

Dynamic slicing

Dynamic program slicing overcomes these shortcomings of static a. » rithms by utilizing actual
program flow information for a particular program execution. This leads to a more accurate
handling of dynamic and conditional language constructs and therefore to smaller program slices.

As described by Korel in [Kor94], a slicing criterion of program P executed on program input x is

a tuple C = (x, y7) where y is a variable at execution position q. A dynamic slice of program P on
slicing criterion C is any syntactically correct and executable program P’ that is obtained from P
by deleting zero or more statements. The program P’, executed on program input x produces an

execution trace 7", for which there exists the corresponding execution position ¢’ such that the

value of yq in T, equals the value of yq' in T",. In other words, the dynamic slice P’ preserves the

38

value of y for a given program input x. Most of the existing dynamic slicing algorithms use data
and control dependencies to compute dynamic program slices.

One of the major requirements of dynamic slicing is that it is necessary to identify relevant input
conditions for which a dynamic slice should be computed. A commonly used approach to identify
such input conditions is referred to as an operational profile, a well-known concept that is

frequently applied in testing and software quality assurance.

Removable blocks

Korel introduced in [Kor94] the notion of removable blocks that are described as the smallest
component of the program text that can be removed during slice computation without violating the
syntactical correctness of the program (e.g. assignment statements, input and output statements,
etc.). For the hybrid-slicing framework, they refine the original definition of a removable block, as
follows:

*“A removable block is a set of user defined statements containing one or more statements
included in the scope of each programming language construct, upon removal of the same will not
affect the flow of execution” [Kor94].

Each block B has a regular entry to B and a regular exit from B referred to as r-entry and r-exit,
respectively. In unstructured programs, because of jump statements, execution may enter a block
directly without going through its r-entry; in this case, we say execution enters the block through a
Jump entry. Similarly, an execution can exit a block without leaving it through its r-exit rather than
through its jump exit. Intuitively, a block may be removed from a program if its removal does not
“disrupt” the flow execution on some input x. Traditional dynamic slicing algorithms (based on

data and control dependencies) identify those actions in the execution trace that contribute to the

39

computation of the value of variable yZ. Algorithms based on the notion of removable blocks, on

the other hand, identify actions that do not contribute to the computation of y¥. The larger the

number of actions that can be identified as “non-contributing”, the smaller the computed dynamic

slice.

3.3 Application support

Traditionally, in order to understand a program execution, a programmer uses conventional
débuggers that support breakpoint facilities and step-wise program execution. Conventional
debuggers, however, do not provide any means for identifying those parts of a program and its
execution that contribute to the computation of a particular function [Gal91]. Software
comprehension is the process of acquiring knowledge about a computer program that supports
such activities as bug correction, enhancements, reuse and documentation. Based on the variety of
comprehension tasks, different application support should be made available [Kun95]. MOOSE
define application support as applications that utilize the underlying repository to achieve a general
goal, e.g. design evaluation, functional optimization, etc. Within the application sub-framework it
provide an open architecture, based on predefined access interfaces that allow the plug-in of new

application support.

3.3.1 Top down

As Scott Tilley described [Til98]: The behavioral approach is top down and inductive, using a

goal-driven method of hypothesis postulation and refinement based on expected artifacts derived

40

from knowledge of the application domain. The top-down approach begins with a pre-existing
notion of the functionality of the system and proceeds to earmark individual components of the
system responsible for specific tasks.

Forward engineering can be considered a top down technique method. Forward engineering is the
traditional process of moving from the requirements of the system to its design, and from design to
the concrete implementation of the system utilizing domain knowledge. Actually, forward
engineering means the same as engineering. The adjective “forward” is only used to distinguish the
term from reverse engineering [Har00].

For program comprehension, documentation is often considered a poor source of information. And
it's always wrong and doesn’t provide the required information. As Scott R. Tilley mentioned
[Til96], most of the existing program comprehension tools allow the user to generate
documentation that is consistent with the techniques (e.g., data flows, control flows, etc.) available
in tools. While the tools can no doubt produce reams of information, it is not clear what additional
value (beyond that provided by the tool display) this documentation has, since it can all be
reproduced by the tool at any point. In addition, when using the tool on-line (as opposed to

documents produced by the tool), the user is assured of consistency with the source code.

In addition to producing hard copy, new program comprehension tools often allow the forging of
links between source code and documents [Til96]. An illustrati\;e example [Til96] is the ParaSET
workbench, which allows the user to create three types of links between code and documentation:
hypertext links which allow forward and backward navigation, ““soft" associations which spawn
warnings when documents have become inconsistent with source, and ““hard" associations which

force consistency between documents and source for constructs like tokens and identifiers.

41

ParaSET also supports the forging of links between source and other related information, such as

regression tests.

Linking of source and related information can potentially be quite useful for supporting program
comprehension, par;icularly for connecting domain information with source manifestations
[Til96]. The value of the support obviously depends on the quality of the information connected,
the links built, and the willingness of personnel to build and maintain the links. Ideally, developers
would construct the links as the application is built, and maintainers would use and update these
links as appropriate. This, however, requires that both developers and maintainers are willing to

use the workbench, and that the workbench is appropriate for both tasks.

For the document-centered approaches, research has focused on improved document organization.
content and access to information. Also Scott R. Tilley mentioned: [Pinto and Soloway88] focused
their work on supporting an ‘as needed’ strategy toward program comprehension (i.e., learn that
portions of the application are necessary to make the expected modification). The authors approach
was to design a documentation format that explicitly documented the causal relationships between
non-connected sequences of source code. In effect, their documentation format ignores much of
the intervening detail and explicitly documents the purpose, structure and effect of the basic

algorithm within the program (as opposed to providing this information in a separate document).

3.3.2 Bottom-up

In general, in order to understand a program execution, programmers usually use conventional

debuggers to support breakpoint facilities and step-wise program execution. Breakpoints allow a

42

programmer to specify places in a program where the execution should be suspended and to
examine various components of a program state. The step-wise execution allows the programmer
to observe the program execution for a particular program execution and to comprehend the
program flow of the program. Conventional debuggers, however, do not provide any means for
identifying those parts of a program and its execution that contribute to the computation of a
particular function [Gal91]. Frequently, this leads to the observation of a large amount of unrelated
program executions. In this section, third pillar of MOOSE comprehension framework has been
presented, which is the application support for program comprehension. Application support
addresses issues concerning utilizing the presented algorithmic approaches in connection with
presented visualization techniques. Dynamic program slicing not only allows for a reduction of the
program slice, but it can provide additional guidance during comprehension of program
executions. A dynamic slice was traditionally displayed to the programmer by highlighting the
relevant statements in the original program or by removing all statements from the original
program that do not belong to the slice. However, for large software systems, this
highlighting/reduction might only provide limited guidance to the programmer because the size of
the reduction might be still very large. In what follows, will present visualization approaches for
program slices, and the presented program slicing related concepts. These applications support a

variety of cognitive models and allow the user to switch easily from one model to another [RilOla].

Class model slice

In the class model slice, a class/member function will be included in the slice if at least one
statement within the member function/class is part of the program slice (relevant to the

computation of a selected variable or function). The class model slice also includes any cascading

43

relationships among classes that are relevant to the slice (Figure 7 illustrates a class model slice by
highlighting relevant statements and classes). Program slices on the class-model slice level are

visualized by highlighting these parts of the class model that are included in the program slice.

Figure 7. Reverse engineered class model with slice display from MOOSE

Examples of currently implemented application support include static and dynamic class model

slice, the dynamic sequence diagram and influencing program artifacts.

Influencing and relevant program artifacts

An important question that arises during the comprehension of software systems for users is to
identify which program artifacts should be observed in order to gain a clear understanding of a
program’s behavior. In [Kor97] the concept of influencing variables was introduced on the source
code level and in [Kor98, Ril98] extended for all influencing program artifacts. The concept of

influencing program artifacts allows a user to identify those program artifacts that currently

influence a variable/function of interest at a particular program position. For a programmer, it is
almost impossible to determine which program artifacts are currently influencing the computation
of a particular function by stepping through the source code. Certain parts of a program execution
are not relevant to the computation of a particular function and a programmer may only be
interested in stepping through these program executions that are relevant to the computation of that
particular function. Therefore, MOOSE have developed slicing related concepts that are based on
dynamic slicing that allow users to make these distinctions with respect to the function of interest.
The concept of relevant program artifacts is based on information that is normally discarded after
a slice computation. Note that it is possible for a program artifact to be executed multiple times
and only some of its executions might be relevant to the computation of the function of interest. A
programmer cannot distinguish between relevant and non-relevant executions of a program artifact

by observing the source code.

45

4 MOOSE - A Case Study

Program comprehension is a crucial part of system development and software maintenance. It is
expected that a major share of systems development effort goes into modifying and extending
preexisting systems, about which we usually know little [Dem99). The complexity of existing
software systems is increasing and their comprehension at the same time is becoming more and
more aggravating for those who must maintain these systems.

In this section, a case study, based on the MOOSE (Montreal Object-Oriented Slicing
Environment) [RilOl] project is presented. The study presented an example of current research
efforts to derive new comprehension tools that take advantage of existing comprehension
techniques. In particular, the MOOSE project focuses on the integration of the different top-down
and bottom-up comprehension techniques to guide programmers during typical comprehension
tasks. The MOOSE project provides an open software comprehension and maintenance framework
[RilO1], with its architecture being based on five major components: (1) a task and user-centered
approach that will guide users during comprehension of specific tasks, (2) an application
framework that provides a set of applications supporting various comprehension tasks, (3) an
algorithmic framework, providing analysis and metric functionality, (4) the visualization support,
and (5) an underlying repository that provides a communication and interaction interface among all
the parts of the environment.

The major motivations for the MOOSE environment are to achieve two goals. The first goal is to
provide a suite of tightly integrated tools with a set of coherent functionality. The second goal is to

create an open environment that can easily be extended with new tools, algorithms, and

46

applications to meet future demands. The two goals are achieved by creating a general framework
that consists of several sub-frameworks as illustrated in Figure 8. The focus of the case study is on
the provision of a task and user-centered approach that takes advantage of top down and bottom up
comprehension techniques. It introduced a method that aims to increase the functional cohesion of
comprehension tools from a user perspective and moves responsibilities away from the user
towards the supporting comprehension environments to support an opportunistic approach as
applied by end users.

In general, current program comprehension tools provide a suite of tools that aim for “a one tool
fits all” comprehension and user needs strategy. However, the user must determine how and when
to apply these tools in a coherent and meaningful way. Present software comprehension tools and
techniques need to be enhanced to meet current and future demand with respect to their usability
and learnability [Rob00, Sef99, Sef01]. The task and user-centered approach, MOOSE project
presented a method that aims to increase the functional cohesion of comprehension tools from a
user perspective and moves responsibilities away from the user towards the supporting
comprehension environments. It also allows combine both bottom up and top down approaches

from an end-use perspective.

Visualization Comprehension
framework

Repository

Reverse Engineering

Application
framework

Algorithmi
framework

Figure 8. The MOOSE comprehension framework and its components

47

4.1 Task-centered program comprehension

Many studies have been conducted to observe how programmers understand programs. As a result,
several cognitive models have been developed to describe the behavior of these programmers. As
part of typical software comprehension processes, users frequently perform a series of related
functions that are based on past experience, recurring work patterns, or practices as determined by
company policies. Incorporating such recurring work patterns in program comprehension
environments will significantly enhance these environments by eliminating repetitive steps and
make the comprehension task more transparent and coherent. Novice users are frequently
overwhelmed and challenged by identifying the appropriate tools and menu options for a specific
task. Within the MOOSE environment, it implemented the following task-centered approaches to
enhance the usability and to help to create a more coherent comprehension environment.

Context sensitive menus

A widely used technique in most GUI application is the use of context sensitive menus. They
provide a first step towards a task-centered approach by displaying only those functions in the
menu bar that are applicable for that particular visualization technique. The context sensitive
menus reduce the number of options to choose from and therefore may help to streamline the
execution of a particular task.

Personalized menus

Personalized menus disclose information in a progressive fashion by streamlining the interaction
~ as skill levels advance and allow the interaction to be customized. Personalized menus show only

basic and frequently used commands on short versions of the menus rather than all possible menu

options. They also allow for a significant reduction of the user’'s memory load, in particular with
respect to common tasks.

Task wizards

Understanding a software program is often a difficult process because of missing, inconsistent or
even too much information. The source code often becomes the sole arbiter of how the system
works. Questions are the basis of user’s interaction with the documentation (source code) and the
system expert comprehension tool. The task to be performed determines the type of maintenance
technique/method to be used. Once a user decides on a particular task, the appropriate tools and
methods selection has to take place. The main factors that affect software comprehension are the
complexity of the problem solved by the program, the program text, the user’s mental ability and
experience and the task being performed. User tasks can be defined as the operations the user
wants to perform on a set of topics.

For example, users may want to identify relevant components, comprehend how the system is
currently working, observe relationships among program parts or analyze program executions.
Goals are associated with each task. Explicit task support is critical for both novice and expert
users, increasing the learn ability and the usability of the system. Software comprehension is the

reconstruction of logic, structure and goals that were used in writing a program.

Task: Analyzing program execution

€ wanttoanalyze the d: ics of the function/class calls

C [want 10 gain a general overview of the classes/fi
€ 1 want 1o find out why the performance of certain functions is so poor.

i
I
(.
Fi
]

A dynamic collaboration diagram

A dynamic class model

L o]

Figure 9. Choosing a comprehension task in MOOSE

49

A wizard-based approach in connection with the repository provides users with guidance during
the switching process among the cognitive models and it fosters the effective application the
visualization techniques introduced earlier. This approach also creates a coherent set of functions
that are grouped together to achieve a specific goal/task. Previous research [May92] has shown
that the process of software comprehension is influenced by several factors, including the
knowledge level of the programmer, the size of the program, the user’s experience, the complexity
of the software, the expected task that is to be performed, and the switching among different
cognitive models, techniques and abstraction levels. In our MOOSE prototype, we have
incorporated a task taxonomy where each task is associated with a particular comprehension goal
(Figure 6).

The available selection is based on information retrieved from the knowledge repository and
represents results from previous tasks. However, it should be noted that our MOOSE prototype
currently supports only a rather small and narrow subset of software maintenance tasks, by
providing wizards that will guide users through these specific program comprehension tasks
(Figure 10). In the case that a user task is not supported by the system, the user can cancel the
wizard at any time and access all the available visualization, algorithmic and application

approaches manually.

Select primary task to be performed:

Identify ail program parts that are influencing a particular vanablesfunction
Visuaii y to gain a g | averview of the software system
and its structure

Identify the scope of a parucular clasy/function/variable

Analyze program flow or a particular program exccution
Identify which parts of the software system are utilizing a particular function
Identfy the scope of a modification

Find all occurrences of a certain function/vanable

anoomn o n

Show me more options

L3 o |

Figure 10. Selecting among a coherent set of functions in MOOSE

50

One advantages of the task-oriented approach is the reduction of the cognitive and memory load.
Task wizards can be based on past best practice can enforce company wide standards, and they can

provide guidance for the less experienced user.

4.2 A user-centered approach

Evidence culled from day-to-day experience tends to indicate that, in most cases, software
engineering technology can meet all the business benefits and requirements and yet still be quite
challenging to use and learn. Many definitions of usability exist, often making usability a
confusing concept. Generally speaking, usability of software refers to its ease of use and its ease of
leaming. For an inexperienced user, ease of use is coupled closely with ease of leaming and does
not necessarily imply a high performance in task completion, whereas experienced users are
interested in completing a wide range and number of tasks with minimal obstruction. A usable
system would, therefore, be easy to use over time while gaining experience, and easy to learn
[Wal98]. Despite efforts made by managers to render the transition more “user-friendly”, the
associated help documentation and training material, although precise and perfectly describing the
product, are often delivered in an esoteric and unreadable language. This could contribute to the
rejection of the product by its users. It also explains a large part of the frequently observed
phenomenon of modifying the product or the documentation after it has been deployed.

Software, including these tools used by software engineers, is becoming more and more complex,
harder to use effectively and more time consuming to learn efficiently. Current training approaches
must be aligned with new methods of apprenticeship that are capable of empowering and sustain
self-learning and collaborative training. Learning must focus on leamer’s needs and skills and on

how to complete tasks within a specific work context [Sef01].

h] |

Furthermore, designing for learnability should not focus only on first-time users (anyone who has
never been involved in the process before, such as a newly-hired employee), but also support more
experienced users who need to learn advanced tasks as well as new tasks. Occasional users are
those who may have been trained, but are involved in the process so infrequently that they may
forget how to complete a task between times. Tools should address *“on-the-spot” and “just-in-
time" assistance for learning and performing tasks. Maintenance tools should support case based

problem solving and learning (Figure 11).

Figure 11. MOOSE and knowledge management
Programmers and software engineers are specializing as part of their daily work routine on
recurring tasks during which they can frequently apply case based reasoning techniques.
Reasoning techniques include those based on previous cases from within a certain application
domain, knowledge from other problem domains, and analogy based reasoning. Maintenance

environments should support different types of reasoning.

52

S5 Conclusions

Software comprehension is a crucial phase during system development. It is a well-known fact that
a major share of systems development effort goes into the modification and extension of pre-
existing systems, about which we usually know little. There are many techniques and methods in
this area that can be applied to deal with it. But each of these techniques or methods has their own
characteristic and different application areas. Software comprehension is utilizing various
techniques and approaches that can be grouped into three main areas: Software visualization
techniques to provide higher level of visual abstractions, algorithmic support to provide additional
meaning to the information to be displayed and application support to guide programmers during
typical program comprehension tasks. There exists a large amount of literature presenting different
approaches and techniques applicable for program comprehension, however none of the existing
publications provides a structured framework to group existing comprehension techniques. The
presented report introduces a novel categorized of comprehension techniques based on mental
models from the cognitive sciences. The report presents a survey of state-of the art program
comprehension techniques and their grouping into top-down and bottom-up approaches within the
visualization, algorithm and application categories.

A case study, based on the MOOSE project is presented to illustrate the current research trends in
develop new comprehension tools that take advantage of existing comprehension techniques. The
MOOSE project provides users and software developers with guidance during the comprehension
of software systems. The framework is based on an open architecture that supports a variety of

cognitive models to allow users to take advantage of the various properties of these models. The

53

framework currently supports, but is not limited to the bottom-up, top-down and opportunistic
cognitive comprehension models.

There is a number of challenging additional problems that will need to be addressed by future
research in the area of software comprehension and tool development. Some of the key areas
identified that can be identified after surveying existing comprehension techniques are:

There exists currently only limited tool support for top-down program comprehension. The
majority of comprehension tools do not yet take advantage of top-down information like, UCM,
Use Cases, and formal specifications, to guide programmers during comprehension tasks. Tools
should support program comprehension both bottom-up and top-down at the same time for all
categories. In industry, maintainers of large-scale programs frequently swiich between these
different models depending on the problem-solving task at hand. Current tools are limited to
provide knowledge of the implemented source code. There is a clear need to integrate domain
knowledge into comprehension tools, to provide maintainers not only with knowledge about the
problem domain, but additionally with information about certain business rules and company
policies that might be reflected in the source code.

Furthermore, already existing bottom-up comprehension (in particular algorithmic and
visualization) techniques have to be further enhanced to be able to cope with large amount of data,

distributed environments, and the overall higher complexity of today’s and future software systems.

54

Reference

[Abr80)

[Agr93]

(Bac00]

[Bro83]

[Boe81]

[Boo94)

[Bas87]

[Bas96]

[Bec94]

[C1a98]

[Cam96]

JR. Abrial, “The Specification Language Z: Syntax and Semantics”.
Programming Research Group, Oxford Univ., 1980.

H.Agrawal, R.DeMillo, and E.Spafford., “Debugging with dynamic slicing
and backtracking”, Software — Practice and Experience, 23(6), 1993,pp.
589-616

http://www.cs.man.ac.uk/fmethods/backeround.html

Reven Brooks, “Towards a theory of the comprehension of computer
programs”, International Journal of Man-Machine Studies, 18:543-554,
1983.

Barry W. Boehm. “Software Engineering Economics”, Prentice Hall, 1981.

G. Booch, , “Designing an application framework”, Dr. Dobb's Journal, vol.
19, no. 2, February 1994.

V. Basili, R. Selby, “Comparing the effectiveness of software testing
strategies”, IEEE Transactions on Software Engineering, vol. SE-13, no. 12,
pp-1278-1296, December 1987.

V. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Soerumgaard,
M. Zelkowitz, “The empirical investigation of perspective-based reading”;
Empirical Software Engineering - An International Journal, vol. 1, no. 2,
1996.

Beck, K.; Johnson, R. “Patterns Generate Architectures”. Procs. ECOOP’ %4,
Bologna, Italy, Berlin: Spring-Verlag, 1994. p. 89-110.

Claire Knight “Visualization for Program Comprehension: Information and
Issues”, Computer Science Technical, Dept. of Computer Science, University
of Durham Report 12/98-October 1998

Marcelo Campo, Claudia Marcos and Alvaro Ortigosa, “Framework
Comprehension and Design Patterns: A Reverse Engineering Approach”,
UNCPBA, 1996.

55

[Cra95]

[Cl1a9%6]

[Dem99]

[Dij75]

[For00]

[Fl067]

[Fje83]

[Gal91]

[Gra9s5]

[GXLO1]

[Har00]

(Hen80]

(Hoa69]

[Hin95]

D. Craigen, S. Gerhart and T. Ralston, “Formal Methods Technology
Transfer: Impediments and Innovation™, in Applications of Formal Methods,
M.G. Hinchey and J.P. Bowen (eds.), Prentice Hall, 1995, 399-419.

E.M. Clarke, J.M. Wing et al, “Formal Methods: State of the Art and Future
Directions”, ACM Computing Surveys Vol. 28 No. 4, December 1996, 626-
643.

Demeyer S., Stéphane Ducasse and Michele Lanza, “A Hybrid Reverse
Engineering Platform Combining Metrics and Program Visualization”, In
Proceedings of WCRE'99, IEEE Computer Society Press, pp.175-187, 1999.

E.W. Dijkstra, “Guarded commands, nondeterminacy and the formal
derivation of programs”, Comm. ACM Vol. 18, August 1975, 453-457.

http://www.dur.ac.uk/CSM/themes/formal/

R. Floyd, “Assigning Meanings to Programs”, In. Mathematical Aspects of
Computer Science, Proc. Symp. Appl. Maths., Vol. 19, American athematical
Society, 1967, 19-32.

R.K.Fjeldstad and W.T.Hamlen. “Application Program Maintenance Study:
Report to Our Respondents.” Procesdents. Proceedings GUIDE 48,
Philadelphia, PA, April 1983.

Gallagher, K. and Lyle, J., “Using program slicing in software maintenance”,
[EEE, Transactions on Software Engineering, 17(8), pp. 751-761, 8/1991.

Graham L., “Migrating to Object Technology”, Addison-Wesley, Wokingham
UK, 1995.

http:// www.gupro.de/GXL/

Marrit Harsu “Re-engineering Legacy Software Through Language
Conversion”, Department of Computer and Information Science, University
of Tampere, Tampere 2000, Finland.

K.L. Heninger, “Specifying Software Requirements for Complex Systems:
New Techniques and their Application”, [EEE Transactions on Software
Engineering Vol. 6 No. 1, January 1980, 2-13.

C.A.R. Hoare, “An Axiomatic Basis for Computer Programming”, Comm.
ACM Vol. 12 No. 12 No. 10, Oct. 1969, 576-583.

M.G. Hinchey and J.P. Bowen (eds.), “Applications of Formal Methods".
Prentice Hall, 1995

56

[Jac92]

(Kor97]

[Kor94]

[(Kor98]

(Kun95]

(Lis75]

(May92]

[May94]

(May98]

[Mil56]

[Nau69]

[(Par72]

[Pen87]

Jacobson L, Christerson M., Jonsson P. and Overgaard G. “Object-Oriented
Software Engineering: a use case driven approach”, Addison-Wesley, 1992.

Korel B. and Rilling, J., “Application of Dynamic Slicing in Program
Debugging”, Third International Workshop on Automated Debugging
(AADEBUG'97), pp. 59-74, Linkoping, Sweden, May 1997.

B.Korel, and S.Yalamanchili, “Forward Derivation of Dynamic Slices”,
Proceedings of the Intern. Symposium on Software Testing and Analysis,
Seattle, 1994, pp. 66-79.

Korel, B. and Rilling, J., “Program Slicing in Understanding of Large
Programs”, Proceedings of the 6" International Workshop on Program
Comprehension, INPC °98, Ischia, Italy, June 1998, pp. 145-152

Kung D., J. Gao et al., “Developing an object-oriented software testing and
maintenance environment”™; In Com. of the ACM, Vol. 38, Issue 10 (1995),
pp- 75-87.

B.H. Liskov and S.N. Zilles, “Specification Techniques for Data
Abstractions”, IEEE Transactions on Software Engineering Vol. 1. No. 1,
March 1975, 7-18.

Mayrhauser A, Vans M., “An Industrial Experience With an Integrated Code
Comprehension Model”, Technical Report CS-92-205), Ft. Collins, Co,
Colorado State University, 1992.

Mayrhauser A, Vans M, “Program Understanding - A Survey” Technical
Report, CS-94-120, Colorado State University, Aug. 1994, pp. 17

Mayrhauser A., A. M. Vans, “Program Understanding Behavior During
Adaptation of Large Scale Software”, 6" IWPC ‘98, ltaly, 6/1998, pp. 164-
172

G. A. Miller, Psychological Review, 63 (2): 81-96,1956.

P. Naur, “Proofs of algorithms by General Snapshots”, BIT Vol. 6, 1969,
310-316.

D.L.Parnas, “A Technique for Software Module Specification With
Examples”, Comm. ACM Vol. 15, May 1972.

N. Pennington, “Stimulus structures and mental representations in expert
comprehension of computer programs”. Cognitive Psychology, 19:295-342,
1987.

57

[Pnu77]

[Por9s]

[Pre95])

[Ran73]

[Ril01]

[Ril98]

[Ril01a]

[RilO1b]

[Rob00]

[Rug9s]

[Sta99]

[SCP2K]

[Sef99]

A. Pnueli, “The Temporal Logics of Programs”, Proc. I8th IEEE Symp. On
Foundations of Computer Science, 1977, 46-57.

A. Porter, L. Votta, V. Basili, “Comparing detection methods for software
requirements inspections: a replicated experiment”, IEEE Transactions on
Software Engineering, vol. 21, no. 6, 1995, pp.563-575

W. Pree, “Design Patterns for Object-Oriented Software Development”,
Addison-Wesley Publishing Co., 1995.

B. Randell, “The Origin of Digital Computers” . Springer-Verlag, 1973.

Juergen Rilling “Maximizing Functional Cohesion of Comprehension
Environments by Integrating User and Task Knowledge”, Department of
Computer Science, Concordia University, 2001.

Rilling J, “Investigation Of Dynamic Slicing And Its Application In Program
Comprehension”, Ph.D. Thesis; lllinois Institute of Technology, July 1998.

Juergen Rilling, “MOOSE-A Cognitive Software Comprehension
Framework Based On Reverse Engineering”,

www.cs.concordia.ca/~feculty/Rilling/, Department of Computer Science,

Concordia University.

Juergen Rilling, “A Hybrid Program Slicing Framework”,
www.cs.concordia.ca/~feculty/Rilling/ Department of Computer Science,
Concordia University, 2001

Robitaille R. S., Reinhard Schauer, and Rudolf K. Keller, “Bridging Program
Comprehension Tools by Design Navigation”. ICSM'2000 Proceedings, San
Jose, CA, October 2000. IEEE, pp 22-32

Spencer Rugaber, “Draft — 2, Program Comprehension”, Georgia Institute of
Technology, May 4, 1995, pp. |

Staples M. and Bieman, J., “3-D Visualization of Software Structure”. In
Advances in Computers, Volume 49, Edited by M. Zelkowitz, Academic
Press, London, 1999.

“Science of Computer Programming”, Special Issue on Formal Methods in
Industry, Vol. 36 No. 1, January 2000.

Seffah A. “Training Software Developers in Critical Skills”, IEEE Sofiware
Magazine, 6/1999.

58

[Sef01]

[Shn79]

[Sim00]

[Sol84]

[SRS79]

[Sta99]

[Ste96]

[Ste99]

[Sto98]

[Tal95]

[Til96a]

[Til96]

A. Seffah and J. Rilling, “Learnability support: Learnability-centered design
for software engineering tools”, 8th World Conference on Continuing
Engineering Education, May 12 - [6, 2001 Sheraton Centre, Toronto,

Canada.

B.Shneidlerman and R.Mayer. “Syntactic/semantic interactions in
programmer behavior: A model and experimental result”. International
Journal of Computer and Information Science, 1979, 8(3):219-238

S. E. Sim, R. C. Holt, R. Koschke, “WoSEF Workshop on Standard
Exchange Formats”, ICSE 2000 Workshop proceedings, Limerick 2000
(http://www.cs. toronto.edu/~simsuz/wosef/).

E.Soloway and K. Ehrlich, “Empirical studies of programming knowledge”.
IEEE Transactions on Software Engineering, Sept. 1984, SE-10 (5): 595-
609.

“Proceedings SRS - Specification of Reliable Software”, [EEE Catalog No.
79 CH1401-9C, 1979.

Staples M. and Bieman, J., “3-D Visualization of Software Structure”. In
Advances in Computers, Volume 49, Edited by M. Zelkowitz, Academic
Press, London, 1999.

Seifka M., A Sane and R.H. Campbell, “Architecture-oriented visualization”.
In Proceedings of the 1996 ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’96), 1996,
pp-389-405.

Steindl C., “Static Analysis of Object-Oriented Programs”, 9" ECcoor
Workshop for PhD Students in OO-Programmiong, Lisabon, Portugal, June
14, 1999.

Margaret Anne D. Storey, “A Cognitive Framework for Describing
Evaluating Software Exploration Tool”, Technical Report, Simon Fraser
University, 1998.

Taligent Inc., “The Power of Frameworks”, Addison-Wesley, 1995.

Scott R. Tilley, Santanu Paul, “Toward a Framework for Program
Understanding”, Software Engineering Institute, Carnegie Mellon
University, Center for Software Engineering, IBM T.J. Watson Research
Center, 1996.

Scott R. Tilley, “Perspectives on Legacy System Reengineering”, Carnegie

Melion University, 1996,
http://www.sei.cmu.edu/reengineering/pubs/Isysree/node 1 55 .html

59

[Til98] Scott Tilley, “A reverse engineering Environment Framework”, Technical
Report, CMU/SEI-98-TR-005, ESC-TR-98-005, April 1998, pp. 5.

[Ucm99] http://www.usecasemaps.org/

(Wal98] Walker, R.J., Murphy, G.C., Freeman-Benson, B., Wright, D., Swanson, D.,
[saak, J., “Visualizing Dynamic Software System Information through High-
level Models”, Proceedings of OOPSLA'98Vancouver, October 1998.
Published as SIGPLAN Notices 33(10), October 1998, pp. 271-283.

[Win90] J.M. Wing, "A Specifier's Introduction to Formal Methods", IEEE Computer
Vol. 23 No. 9, September 1990.

[Win99] J.M. Wing, J. Woodcock and J. Davies (eds.), “FM-99 -World Conference on
Formal Methods in the Development of Computing Systems”, LNCS 1708
and 1709, Springer-Verlag, 1999.

[Wei84] M.Weiser, “Program slicing”, IEEE Transactions on Software Engineering
10(4), 1984, pp. 352-357.

