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Abstract

Deriving New Measurements for Real-Time Reactive Systems

Olga Ormandjieva, Ph.D.
Concordia University, 2002

Real-time reactive systems are largely event-driven, interact intensively and contin-
uously with the environment through stimulus-response behavior, and are regulated
by strict timing constraints. Examples of such systems include alarm systems, air
traffic control systems, nuclear reactor control systems and telecommunication sys-
tems; applications involving real-time reactive software play a mission-critical role in
the defense industry.

Real-time reactive systems are inherently complex. The complexity pervades through
the different phases of software development, deployment, and maintenance. Applying
formal methods in the development process is an effective way for dealing with the
complexity, and for quality assurance. One of the goals is to assess the quality of such
systems starting from the earlier phases of their life cycle.

The integration of the quality measurement into the development framework provides
feedback to the system developers in order to effectively control the development
processes and to obtain high reliability of a final product. Thus, quality control is
a must when safety-critical real-time reactive systems are developed. The quality
assessment must be regarded as a support for controlling the process of software
development in order to guarantee the final quality.

The aim of the thesis is to correctly apply the measurement theory to formal descrip-
tion of real-time software upon which we can base models of object-oriented software
measurement. I[n order to create the framework for the present work, we are surveying
the theoretical approaches to software measurement.

The novelties of the quality measurement methodology are in the theoretical basis
and a practical automated measurement data generation process for real-time reactive
svstems. The proposed approach is applicable to real-time reactive systems modeled
as timed labeled transition systems.



To my family.



Acknowledgments

I would like to thank my supervisor, Dr. V.S. Alagar who guided this work with good
advice, constant encouragement and insightful comments, and provided continuous

support throughout my Ph.D studies.

Also, I would like to thank all Faculty and Staff, and the TROMLAB research

group for their support during these years.

On a personal level, [ thank my husband Chris for his support and help, and my

three wonderful daughters for their patience, understanding and love.



Contents

List of Figures

1 Introduction

1.1 Software Measurement

..........................

1.1.1  Who you measure for?

.......................

1.1.2  What you measure?

.......................

1.1.3  Why you should measure?

.....................

1.1.4 When vou should measure? . . ... ... ...........

1.1.5  What measures to use? GQM (or FCM) Approach

1.1.6  Properties of Software Measures

................

1.2 Real-Time Reactive Systems

.......................

1.3 Research Goals

..............................

1.3.1 Quality Measurement Model in Real-Time Systems
1.3.2 Formal Approach to Measurement Validation

1.4 Major Contributions and Thesis Outline

................

2 Background
2.1 Development Methodology . . . . . . .. .. ... ... ... .....

2.1.1 Abstract Reactive Models

2.1.2 Three-Tiered Formalism

2.1.3 Operational Semantics . . . . ... ... .. ..........

2.1.4 Current TROMLAB Architecture
2.2 Train-Gate-Controller Case Study

3 Fundamental Issues in Software Measurement

3.1 Categories of Software Measures

b

G 00 OO = W W NN NN =

11
I1
11
12
19
21
22

38



3.1.1 Fundamental measures

......................

3.1.2 Indirect and Conjoint measures

.................

3.1.3 Static and Dynamic Measurement

................

3.1.4 Global and Local Measurement

.................

3.1.5 Software Abstractions and Fundamental Measures

3.2 Representational Approach . . . . . . .. .. ... ... ... ...
321 Scales . . .. . ... ... e e
3.2.2 Relationship statistical tests

...................

3.2.3 Basic Procedures of Measuring

..................

3.3 Validation of Software Measures

....................

3.4 Measure Construction: Basic Development Steps . . . . . ... .. ..
3.5 Software Measurement Based on the Theory of Numbers
3.5.1 Collection of Tokens

3.5.2 Measures

.......................

.............................

3.6 Graph Theory Based Software Measurement

..............

3.6.1 Application Size Measurement

..................

3.6.2 Measures Based on Graph Representation of the OO Design .
3.7 Information Theory Based Software Measurement

...........

3.7.1 Notions of Information Theory

.................

3.7.2  Measures

.............................

3.8 Open Issues in Software Measurement

Quality Model for Real-Time Reactive Systems
4.1 Notionof Quality . . . . . . .. .. . ... . ... ... ... ...

4.2 Existing Quality Measurement Models
4.3  Quality Model

.................

..............................

Measurement related to Complexity

1] pl
[N )

Notion of Complexity

...........................

.................

Architectural Complexity Measurement
5.2.1 Existing Measures
5.2.2 Related Work
5.2.3 Approach

5.2.4 Requirements for Complexity Measures

.........................
...........................
.............................

vii



5.2.5 Mathematical Model

....................... 85
5.2.6 Architectural Complexity Measures . . . . . . ... ... ... 87
5.3 Maintainability Measurement . . . . . . .. ... .. ... .. .... 92
53.1 Related Work . ... ... . ... ... ... ... ... 93
532 Approach . ... ... ... ... L. 94
5.3.3 Maintainability Profile . . . . .. .. ... ... ........ 95
5.4 Testability Measurement . . . . . . . . ... ... ... ........ 98
5.4.1 Notionof Testability . . . . ... ... ... . ......... 98
54.2 RelatedWork . . . .. .. .. ... ... ... ... ... .. 98
54.3 Approach . . .. ... . ... .. 99
5.4.4 Testability Measures . . . . ... ... ... .......... 100
5.5 Functionality Measurement . . . . . . . . ... ... ... ....... 104
5.5.1 Approach . . ... .. ... .. . 104
5.5.2 Measure . . . . . ... L o 104
Test Adequacy Measurement 106
6.1 Notion of Test Adequacy . . . . ... ... ... ... ......... 106
6.1.1 Test Case Adequacy Measurement . . . . . . ... ... ... 107
6.1.2 Related Work . . . . . . . .. ... ... ... ... 107
6.2 Formal Foundation . . .. . ... ... ... .. ............ 111
Approach . . . . . . .. L 112

6.3.1 Formal Representation and Abstraction of the Test Cases Domain113

6.4 Testing Distance Measurement . . . . . . . . . ... ... ....... 114
6.5 Metric-Based Test Set Selection . . . . . .. .. ... ......... 116
6.6 Metric-Based Test Coverage Evaluation . . . ... ... ....... 118

Reliability Measurement 119
7.1 Existing Reliability Measures . . . . .. . ... ... .. ....... 119
7.2 Approach . . . . . . . .o 121
7.3 Markov model of the Design . . . . . .. .. ... ... ........ 121
7.4 Reliability Model . . . . . . . . .. . ... 122
7.5 Reliability Measures . . . . . . . . .. ... ... ... ..., 130

viil



8 Conclusions and Future Work
8.1 Summary of Significant Results . . . . . .. ... ... ... ... ..
82 Future Work . . . . . . . . . . .

Bibliography

ix



List of Figures

1 Process model for developing complex reactive systems
2 Overview of TROM methodology
3 LSL Trait for Set
4

Anatomy of a reactive object

....................
.............................
.......................

Template for Class Specification

.....................

Formal Specification of Class Arbiter

..................

5

6

7  Template for System Configuration Specification . . . . . . .. .. ..
8

9

Existing TROMLAB architecture

Railroad Crossing System - Problem Analysis

10  Main Class Diagram for Train-Gate-Controller

11  Statechart Diagram for Train

......................

12  Formal Description of Class Train

....................

13  Statechart Diagram for Controller

....................

14 Formal Specification for Controller Class

................

15 Statechart Diagram for Gate

.......................

16 Formal Description for Gate Class

17 Collaboration Diagram for a Train-Gate-Controllerl Subsystem. . . .
18 Collaboration Diagram for a Train-Gate-Controller2 Subsystem. . . .
19 Sequence Diagram

............................

Formal specification for Train-Gate-Controllerl Subsystem

o o
=]

Formal specification for Train-Gate-Controller2 Subsystem. . . . . . .
Nesi and Campanai’'s FCM Quality Model for Real-Time Software . .
FCM Quality Model for Real-Time Reactive Svstems . . . . . . . ..
FCM model of OOD Quality (based on MOOSFE set, MOOD sct and

Li and Henry's Metrics). . . . . . . ... ... ... ... ... .

NN
- W N

N
o

Train-Gate-Controller2 Subsystem: graph for communication links . .

X



29
30
31
32
33

34

35

36
37

38
39
40
41
42
43
44

45
46

Object-Predicate Table abstraction for the connected components of
thegraphinFigure 25 . . . . . . . .. ... ... ... ... 91
Collaboration Diagram for Train-Gate-Controller2 Subsystem: Version 2 91

Version 2: graph for communication links for the connected compo-

nents of the graph in Figure 27 . . . . . . . ... ... ... ... .. 91
Maintainability Profile for Figure 18 . . . . . . .. .. ... ... .. 96
Maintainability profile for Figure 27 . . . . . . . . ... ... ... .. 97
FCM model for Software Testability. . . . . ... ... ... ..... 103
Array Representation of Test Cases . . . . . ... ... .. ...... 116
Markov State Transition Diagram and State Transition Matrix for

TrainClass . . . .. . .. ... . . . e 123
Markov State Transition Diagram and State Transition Matrix for Gate

Class . . . . . . . . e e e e e e e 123
Markov State Transition Diagram and State Transition Matrix for Con-

trollerClass . . . . . . . . .. . . ... . .. 123
Synchronous Product of Train and Controller (Linear System) . . . . 124
Markov State Transition Diagram and State Transition Matrix for Syn-

chronous Product of Train and Controller in Figure 36 . . . . . . .. 127
Linear Architecture . . . . . . . . .. .. ... .. oL L. 128
Synchronous Product of Train, Gate and Controller - Linear System . 129
Markov Model for Train, Gate and Controller Linear System Figure 39 129
Non - Linear Architecture . . . . .. ... ... ... ......... 130
Synchronous Product of Train and Controller (Non-Linear System) . 131

Synchronous Product of Train, Gate and Controller (Non-Linear System) 131

Markov State Transition Diagram and State Transition Matrix for Syn-

chronous Product of Train, Gate and Controller in Figure 43 . . .. 132
Rose-QA: Context . . . . . . . . . . . . . e 137
Rose-QA: Graphical User Interface . . . . . ... ... ........ 138



Chapter 1

Introduction

1.1 Software Measurement

The goal of software engineering is to apply an engineering approach to the con-
struction and support of software products so they can safely fill the uses to which
they may be subjected. As any engineering approach, software engineering requires
a measurement mechanism to provide feedback and assist the software development.
testing and maintenance.

[nformally we can define measurement as a process of quantifving the attributes of
software in order to characterize them according to clearly defined rules.

Like any engineering activity, software measurement requires a definition of the en-
vironment in which the measurement is expected to be performed. The knowledge
on what is measurable, when it should be measured, and well-defined measurement

purpose(s) are necessary.

1.1.1 Who you measure for?

Fenton et al. [FP97| define three categories of software entities we can measure:
products, processes and resources. Products are the deliverables created during
the course of a project (for example, requirements, functional specifications. design
documentation, source code, test cases, test results, etc.). Processes are the set of
activities used by an organization to develop its products. Resources are the input
to the process used on a project (i.e., people, tools, materials, methods. time, money,

products from other projects). Whitemire [W97] has added one more category, the



project, defined as the relationship between instances of processes, products, resources

and internal/external goals, standards and constraints.

1.1.2 What you measure?

Fenton et al. [FP97] classify the measurable characteristics of the software entities
as internal and/or external. Internal characteristics are those attributes of software
entities which can be measured purely in terms of the process, product, or resource
itself. One application of internal metrics is in terms of a threshold value or “alarm”
[HS96]. Such a value depends on the particular development environment, especially
the complexity of a problem itself.

External characteristics are those attributes which can only be measured with respect
to how the process, product, or resource relates to its environment. For example,
external product attributes include quality, reliability, testability, reusability, and
maintainability. Internal product attributes include size, complexity, reuse. defects.

coupling, cohesion and polymorphism.

1.1.3 Why you should measure?

There are two general applications of software measures: evaluation, used to assess
an existing software entity by numerically characterizing one or more of its attributes:
and prediction, used to predict some attribute of a future software entity. involving a
mathematical model with associated prediction procedures. Whitemire [W97] gives
more detailed meaning to the evaluation subdividing it in estimation. assessment,
comparison and investigation. The prediction measurement may be applied from
within the early phases of software development to predict future characteristics of
software entities.

1.1.4 When you should measure?

The essential goal of software measurement is to identify an anomaly within the
same development phase in which it originated, as well as to measure development
progress. Thus, each software development phase should contain metrics in order to

achieve high project visibility and control on quality.



1.1.5 What measures to use? GQM (or FCM) Approach

The Goal-Question-Metric (GQM) paradigm is a common approach to set the mea-
surement framework [FP97], also known as Factor-Criteria-Metric (FCM) paradigm.
The GQM approach is a six-steps method for measuring within the context of an
organization or specific project. You need a set of metrics necessary to assess the
achievement of who, why and when you measure, to collect meaningful measurement

data and to analyze it according to clearly defined rules.

Step 1.(Conceptual Level) Develop a set of goals (factors).
A goal is a five-tuple Goal=(purpose, issue, object, viewpoint, environment)
Example of use: Goal=(improve, timeliness, change request. project manager.
development process).

Step 2. (Operational Level) Develop an operational model.
A set of questions (criteria) is developed to verify or assess the achievement
of a particular goal.

Step 3.(Quantitative Level) Determine the measures needed.
A set of theoretically valid measures is associated with each question in
order to answer it in a quantitative way.

Step 4. Develop a mechanism (tool) to collect and analyze the data.

Step 5. Collect measurement data, and empirically validate the measures.

Step 6. Analyze the data and feed back to the projects.

The numerical observations are converted into numerical results using any of sev-
eral statistical and mathematical techniques. Once interpreted into empirically valid

results, we can use this information for the measurement purpose we had in mind.

1.1.6 Properties of Software Measures

The different views on desirable software measurement properties are summarized in

[HS96]. From the practical point of view, the measure must be economical to collect



and automate, easy to apply and calculate, relevant to the user of the measure,
and (when appropriate) obtainable in early life-cycle phases.

A software measure in general has to be objective, reliable, valid, and robust. Ob-
jectivity means that the measurement process should not depend on the subject
(person, tool) that performs the measurement, on system’s size, or on the program-
ming language used (in case of code metrics). The reliability requires the metrics
to characterize in a unique way every entity measured. Equal entities should obtain
equivalent measurement values, repeated measurement in equal conditions should
give same values for the same entities. The robustness addresses the ability of a mea-
sure to tolerate incomplete information. The software measure requirement validity
means that the measurement data should reflect exactly the characteristics of the
entity under measurement.

There are three different types of validity: face ( intuitively relevant to the user);
internal and external.

Internal validity addresses how well a measure captures real differences in the values
of an attribute of the real-world entities being measured. Internal validity can be
content-related (the coverage that the measure provides of the attribute). criterion
related (the level of accuracy of prediction or estimation), or construct-related. The
last one deals with the theoretical validation of a new measure, experimental conver-
gent validation with previously validated measure(s) of the same attribute, and the
discriminant validation to prove the new measure has a low correlation to validated
measures of attributes unrelated to the given one.

The existing results of research on software measurement reported in the literature
show that universally validated and tested metrics do not currently exist, especially for
OO environments. Most of the publications are related to the conventional software
and object-oriented software. The described empirical metrics are locally useful in
the context of alarm triggers, but are highly parochial, highly limited, and highly
unscientific [HS96].

1.2 Real-Time Reactive Systems

Real-time reactive systems are largely event-driven, interact intensively and continu-

ously with the environment through stimulus-response behavior, and are regulated by



strict timing constraints. In other words, real-time reactive systems are in constant
relationship with their environment and the stimulus-response behavior respects time
constraints that ensures its correct and safe operations. The term reactive was intro-
duced by Harel and Pnueli [HP85] to designate systems that continuously interact
with their environment and to distinguish them from the interactive and transforma-

tional systems. Two important properties distinguish the reactive systems from other

real-time systems:

e stimulus synchronization: the process always reacts to a stimulus from the

environment;

e response synchronization: the time elapsed between a stimulus and its response
is acceptable to the relative dynamics of the environment, so that the environ-

ment is still receptive to the response.

Examples of such systems include alarm systems, air traffic control systems. nuclear
reactor control systems and telecommunication systems; applications involving real-
time reactive software play a mission-critical role in the defense industry.
The main issue in the development of safety-critical systems is to produce a reliable
design. The real-time system design is a conceptual solution to the domain problem
and is the basis for an implementation of the solution. Its quality is essential for the
economics of the software development and the reliability of the final product. Real-
time reactive systems are inherently complex. The complexity pervades through the
different phases of software development, deployment, and maintenance. The factors
that contribute to real-time systems complexity include time constraints on stimuli
and responses, safety requirements, complex sequencing of events, and concurrency.
To achieve a high level of reliability, the design must be supported by a rigorous for-
malism. The formal object-oriented method TROM [Ach95] has been studied as a
formal basis for the development of real-time reactive systems. The TROM formalism
is founded on merging object-oriented and real-time technologies. and provides a for-
mal basis for specification, analysis and refinements of the real-time reactive systems
design.

TROMLAB [AAMO98] is a framework for real-time reactive systems development
built on TROM formalism. The framework includes a number of tools to promote a

rigorous development of real-time reactive systems. As the measurement procedure



is both time and resource consuming procedure, a tool for automatic gathering of
quality measurement data and analyzing it according to the quality requirements,
has been designed.

1.3 Research Goals

In the context of real-time reactive systems, which are mostly safety-critical, the
main motivation for quality measurement comes from the requirements for correct
implementation of safety and time-dependent behavior. Quality assessment must be
conducted right from the design specification stage to ensure correct performance.
This thesis proposes a quality assessment based on measurement in real-time reactive
systems in different phases of their life-cycle. The proposed measurement model is
developed in the context of the TROM formalism. The TROMLAB is a framework
for applving the TROM method and incorporates rigorous methods for validation,
verification and refinements of the design.

The proposed approach is applicable to real-time reactive systems modeled as timed
labeled transition systems, and developed according to the process model shown in
Figure 1.

The process model shown in Figure 1 has five different phases: requirements analy-
sis and specification, design, validation and verification, implementation and testing.
The analysis phase defines a domain problem (real-world objects, associated pro-
cessing and timing requirements), and constructs class specifications. The design
constructs the subsystem from objects of the specified classes and is a conceptual so-
lution to the domain problem. It forms a basis for validation, verification, reasoning,
testing, and an implementation of the solution. Measurement has to be incorporated
into the specification, design, implementation and testing phases of the above process
model in order to assess quantitatively the quality of the final product. The virtues of
the process model include iterative development, incremental design, and application

of formalism through the different stages of development.

1.3.1 Quality Measurement Model in Real-Time Systems

The integration of the quality measurement into the development framework provides

feedback to the system developers in order to effectively control the development
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Figure 1: Process model for developing complex reactive systems

processes and to obtain high reliability of a final product. Thus, quality control is
a must when safety-critical real-time reactive systems are developed. The quality
assessment must be regarded as a support for controlling the process of software
development in order to guarantee the final quality.

One of the main issues, when measuring real-time reactive systems, is the reliability
of the measurement process itself. To achieve this, the quality measures are based on
the theory of software measurement, and the components and development processes

to be measured are precisely described on the basis of a rigorous formalism - TROM.

|



1.3.2 Formal Approach to Measurement Validation

Any measure should have a firm grounding in both the empirical understanding of
the software attribute to be measured, and the measurement theory. The foundations
of the software measurement methodology rest on the representational measurement
theory [FP97]. The theoretical validation of the measure guarantees the correctness
of the measurement data collection process in a specific environment.

In most disciplines, measure validation happens in carefully controlled experiments.
In software development and maintenance, controlled experiments are resource con-
suming and that increments the cost of measurement process. However, for most of
the measurement purposes, it is sufficient to formally prove that the measure meets
the representation condition, and to show empirically that the values of the measure-
ment data correspond to the expected results.

The aim of the thesis is to establish the basics of a theory of measurement for the real-
time software development, and to give the theoretical tool for building measures from
the theory out (and thus theoretically validated a priory). This approach would reduce
the expensive empirical validation in industrial environment to a few experiments.

The approach has been applied to the measures developed for the quality assessment
in the TROMLAB environment.

1.4 Major Contributions and Thesis Outline

In this thesis, a theoretical framework is laid for metrics and measurements of real
time reactive systems and their practical applicability is illustrated with a case study.
The research results include methods for measuring architectural complexity, main-
tainability, testability, test adequacy, and reliability. The theory is developed for
real-time reactive system developed in TROMLAB framework. However, it is appli-
cable for assessing the quality of real-time reactive systems whose behavior can be
abstracted as timed labeled transition systems.

The two inherent properties of a reactive system are stirnulus synchronization,
and response synchronization. In a real-time reactive systems, strict time constraints
govern response times as well as internal computations. A critical study of some in-

dustrial systems, such as Nuclear Power Plant Control System, reveal that reai-time



reactive systems also involve concurrency in addition to time-constrained synchroniza-
tion. Based on such investigation we have proposed a hierarchical quality model for
real-time reactive systems. The factors, criteria, and measures identified in this model
are investigated formally to choose appropriate metrics and derive new measures for
real-time reactive systems.

Chapter 2 reviews TROMLAB, an environment for developing real-time reactive
systems according to TROM formalism and gives the context of research described
in this thesis. The Train-Gate-Controller example, a bench mark case study in the
real-time systems community, is introduced, with a complete description of its visual
models and formal specifications. Chapter 3 is a brief survey of formal approaches
to software measurement. Measurement models and measures of software quality
that have a bearing on the research directions pursued in this thesis are reviewed in
this survey. Chapter 4 introduces a quality assessment model for real-time reactive
systems. [t is based on the Software Quality Factor-Criteria-Metrics Framework
[IEEE93]. The goal is to develop the criteria and measurements that are appropriate

for our work. Chapter 5 contains several major results:

e Architectural Complexity: A mathematical model of the metric is introduced.
Based on that metric, architectural complexity and local architectural complex-
ity measures are developed.

e Maintainability Measure: This metric is based on the architectural slice ex-

traction method applied to the system architecture.

e Testability Measurement: This measure is related to the input/output behavior
of a reactive object. An information-theoretic measurement is developed to

quantify the controllability of an object’s input and the observability of the
object’s output.

Functionality Measure: The functional complexity measure applies to an im-

plementation of the system, as derived from the architectural design.

Chapter 6 rigorously defines test adequacy, provides a formal representation of test
domain, introduces a mathematically valid metric, and gives an algorithm to select
test cases based on the metric. Chapter 7 introduces a Markov model of a reactive

system and provides a formal approach to compute reliability prediction of an evolving



real-time reactive system. The thesis is concluded in Chapter 8 with a summary of

major contributions and future research directions.
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Chapter 2
Background

The quality assessment is discussed in the context of TROMLAB, an environment
for rigorous development of real-time reactive systems built according to the process
model shown in Figure 1. The goal of this chapter is to describe the formal object-
oriented formalism (TROM) and the TROMLAB framework for which the theoretically

valid quality measurement model is developed.

2.1 Development Methodology

The TROM formalism [Ach95] is founded on merging object-oriented and real-time
technologies, and provides a formal basis for specification, analysis and refinements

of the real-time reactive systems.

2.1.1 Abstract Reactive Models

A reactive object is modeled abstractly as a finite state machine augmented with
ports, attributes, logical assertions on the attributes, and timing constraints. To
manage complexity, we distinguish between a simple state, and a complex state, such
that a complex state is an encapsulation of another finite state machine. with an initial
state, and which can include other complex states. System objects communicate using
a synchronous message passing mechanism. An external event, either input or output,
can only occur at an instance of a specific port type; an internal event occurs at the
null port. Thus a port type symbolizes the events that can occur through its instances;
events label the transitions between states. The type of an attribute can be either a

11



port type, or an abstract data structure modeled as an LSL (Larch Shared Language)
[GH93] trait. Logical assertions on the attributes specify a port condition, an enabling
condition, and a post condition on each transition. Timing constraints are associated
with a transition to describe the time-constrained response to a stimulus. A generic
reactive class (GRC) having port types, attributes, logical assertions on the attributes
and time constraints models a collection of reactive objects.

An abstract model of a subsystem includes instances of generic reactive classes, each
with instances of each port type of the corresponding class. Two ports are compatible
if the set of input message sequences at one port is equal to the output message
sequences at the other port. A port link connects two compatible ports. A port link
is an abstraction of communication mechanism between the objects associated with
the ports connected by the link. The port links effectively determine the set of all
valid messages that can be exchanged among the objects in a subsystem.

A subsystem may also include other subsystems. A formal object-oriented formalism

for specifying GRCs, and systems composed from reactive objects has been described
in [AAM98].

2.1.2 Three-Tiered Formalism

The TROM formalism has three levels. Two of them correspond to the traditional
OO approach to system development: to define classes, and then to instantiate them
to compose subsystems. The TROM methodology adds one more level for defining
data models. In the following sections we review the TROM formalism.

Figure 2 shows three-tiered structure of the TROM methodology introduced by
Achuthan [Ach95]. The formalism is sufficiently expressive for modeling real-time

reactive systems.

The three tiers independently specify system configurations, reactive objects, and
abstract data types, by importing lower-tier specifications into upper tiers. Large
and complex systems can be developed incrementally by composing, verilving, and

integrating subsystems.
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Figure 2: Overview of TROM methodology

First Tier - Larch Formalism

The Larch family of languages supports a two-tiered, definitional style of specification.
Each specification has components written in two languages: one language that is
designed for a specific programming language. The other language is independent of
any programming language. The former kind is Larch Interface Language (LIL). and
the latter is the Larch Shared Language (LSL).

LSL specifications define two kinds of symbols: operators and sorts. The concepts of
operators and sorts are similar to the programming language concepts of procedure
and type. Operators stand for total functions from tuples of values to values. Sorts
stand for disjoint non-empty sets of values, and are used to indicate the domains and
ranges of operators.

The trait is the basic unit of specification in LSL and abstractly specifies data in a

definitional style. A trait introduces operators, defines the operators with a set of
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equations that defines which terms are equal to one another, and may assert additional
properties about the sorts and operators. A trait can also include other traits. Figure
3 shows the LSL trait defining the terms to represent values of the data model Set.

Set(E,C) : trait

% Essential finite-set operators

includes Integer

introduces
{}  »C
insert : E,C —» C
—€ _:FE,C — Bool
delete : E,.C = C

asserts
C generated by {}, insert
C partitioned by €
Vs:C,ee ey E

~(e € {})
e| € insert(ey,s) ==e, =eaVe €s
delete(ey, insert(e,y, s)) == if (e, = e;) then s

else insert(e,, delete(e,, s))
implies
Vee,e:Es:C
insert(e. s) # {}

insert(e, insert(e, s)) == insert(e, s)
insert(e,. insert(es, s)) ==
insert(e,, insert(e,, s))
converts €, delete
exemptingVz: E
delete(x, {})

Figure 3: LSL Trait for Set

The Set trait introduces sorts E and C, begins by includes clause including another
trait, Integer, which can be found in the LSL handbook [GH93|. The introduces
clause declares a set of operators, each with its signature (the sorts of its domain
and range). The body of the trait contains, following the asserts clause. equations
between terms containing operations and variables. The generated by clause states
that all values of sort C can be represented by terms {} and insert. The operators
listed in the partitioned by clause are sufficient to distinguish unequal set values. The

tmplies section describes additional properties of sort C that follow from the assertions
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part. The theory of a trait is the set of all logical consequences of its assertions. It
contains everything that logically follows from its assertions, but nothing else. All
operators listed in the converts clause are defined for terms in their domains in the

exceptions noted in the ezempting clause.

Second Tier - TROM Class

A TROM class is a hierarchical finite state machine augmented with ports, attributes,
logical assertions on the attributes and time constraints, as shown in Figure 4. It
is also called Generic Reactive Class (GRC). Such an object is assumed to have a
single thread of control. A TROM object communicates with its environment by

svnchronous message passing, which occurs at a port.

Stimulus ﬂ

v

pid Incoming

I————a‘ lnlelion

Attributes | Arr. Funcg  States
X P

at

A s i ¥

Port .
COI‘T,ﬁllon < Transition g Cin
port gooseneees
: o A i Evenrs
: Internal B . . t Qutput
: R ‘ mn N G
: Events Events@ E
§ Enable, Time-Constrained
........ - Rmiﬂ Y essesee
Fr“! Global clock |
pid > Outgoing
Interaction
Respan:eE]
VvV

Figure 4: Anatomy of a reactive object
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A TROM object consists of a set of events, states, attributes, attribute functions,
transition functions and timing constraints. The events include internal, input and
output events. For instance, e, e?, e! denote internal event, input event and external
event respectively. Input and output events occur at a port and represent message
passing.

The attributes of a TROM object are of two kinds: (i) abstract data types imported
from the first tier, and (ii) port types. A port is an abstraction of an access point
for a bi-directional communication link between a TROM and its environment. A
TROM can have multiple port types associated with it. A port type denotes the set
of messages (external events) that are allowed at a port of that particular type. The
signature of a port-type P gives the set of events that can occur at the port-type P,
denoted by €. £F = EL|JEL, , where EF, is the set of input events, £F, is the set of
output events, and £, N EF, = 0. Message exchange only occurs between compatible

ports. Two port type P and Q are compatible if
e c?cEF el € £3,
e elcél oe?ecEl

The attribute functions define the association of attributes to states. For each state,
the attribute function defines a subset of attributes that are active in the state.
For a computation associated with a transition entering a state, only the attributes
associated with that state are modified and all other attributes will be read-only in
that computation.

Each specification describes the computational step associated with the occurrence
of an event. A transition specification has three logical assertions: an enabling and
a post-condition as in Hoare logic, and a port-condition specifying the port at which
the transition can occur. The assertions may involve attributes and keyword pid for
port identifier. A transition causes a reaction in the form of occurrence of either an
internal event or an output event. There may be a timing constraint on the occurrence
of the reaction.

A timing constraint can be associated with a transition to describe the time-constraint

response to a stimulus.
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A formal definition of the different components of a TROM object as described above

is presented below.
A TROM object is an 8-tuple (P, £, O, X, L, ®, A, T) such that:

e P is a finite set of port-types with a finite set of ports associated with each

port-type. A distinguished port-type is the null-type P, whose only port is the
null port o.

e £ is a finite set of events and includes the silent-event tick. The set £ — { tick }
is partitioned into three disjoint subsets: &;, is the set of input events, &£, is the
set of output events, and &;,,; is the set of internal events. Each e € (€in|J Epue)»

is associated with a unique port-type P € P — {P,}.
e O is a finite set of states. fy € O, is the initial state.

e X is a finite set of typed attributes. The attributes can be of one of the following

two types: i) an abstract data type; ii) a port reference type.

L is a finite set of LSL traits introducing the abstract data types used in X.
e & is a function-vector (®,, b,,) where,

— &, : © — 2° associates with each state 8 a set of states. possibly empty,
called substates. A state @ is called atomic, if ®,(0) = 0. By definition,
the initial state 6y is atomic. For each non-atomic state 6, there exists a

unique atomic state §* € ®,(0), called the entry-state.

— &, : © — 2% associates with each state # a set of attributes, possibly
empty, called the active attribute set. At each state 6, the set ®,,(8) = X
— &, (0) is called the dormant attribute set of 6.

e \ is a finite set of transition specifications including A;,;;. A transition speci-
fication A € A — {\inie}. is a three-tuple : < (0,8"): e(wport); Pen == Ppost >:
where:

— 0,60 € O are the source and destination states of the transition;

— event e € £ labels the transition; yp.re is an assertion on the attributes

in X and a reserved variable pid, which signifies the identifier of the port
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at which an interaction associated with the transition can occur. If e €

€ine | J{tick}, then the assertion @, is absent and e is assumed to occur
at the null-port o.

— @en is the enabling condition and ¢, is the postcondition of the transi-
tion. ., is an assertion on the attributes in X specifying the condition
under which the transition is enabled. @, is an assertion on the attributes
in X, primed attributes in ®,(6') and the variable pid, and it implicitly

specifies the data computation associated with the transition.
For each @ € O, the silent-transition A\g € A is such that,
Aso : (0, 0); tick; true => Vz € ®,,(0) : z = 1’;
The initial-transition \;,; is such that A\, : (6y); Create(); Vinit

where @;,;; is an assertion on active-attributes of 6.

e T is a finite set of time-constraints. A timing constraint v; € T is a tuple
(M, €, [l u], ©;) where,
— \i # A, is a transition specification.
— €} € (Equt|U &ine) is the constrained event.
— [{, u] defines the minimum and maximumn response times.

— O; C O is the set of disabling states when the object enters one of these

states, timing constraint v; will be ignored.

Figure 5 shows the template for a class specification.

Figure 6 is an example of the formal specification of the TROM class Arbiter. An
arbiter allocates shared resources to processes requesting them. It enqueues the re-
quests for a resource received from processes and allocates the resource to the next

process waiting in the queue.

Third Tier - System Configuration Specification

Each subsystem is the collaboration of the objects instantiated from the second tier.

A System Configuration Specification (SCS) is defined to specify a reactive system or
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Class < name >
Events:
States:
Attributes:
Traits:
Attribute-Function:
Transition-Specifications:
Time-Constraints:

end

Figure 5: Template for Class Specification

subsystem by composing reactive objects or by composing smaller subsystems. Figure

7 shows the template for a system configuration specification.

2.1.3 Operational Semantics

Reactive objects in a system communicate through messages. A message from an
object to another object in the system is called a signal and is represented by a tuple
(e, pi, t), denoting that the event e occurs at time ¢, at a port p;. The status of a TROM
at any time ¢, is the tuple (8: @; R), where the current state 6 is a simple state of the
TROM , a is the assignment vector, and R is the vector of outstanding reactions. A
computational step of a TROM occurs when the object with status (8:a@; R), receives
a signal (e, p;, t) and there exists a transition specification that can change the status
of the TROM . A computation c of a TROM object A is a sequence, possibly infinite,
of alternating statuses and signals, OS, 5™ 08, 2" A reactive system
may not terminate; consequently, a computation is in general an infinite sequence.
The set of all computations of a TROM object A is denoted by by Comp(.A). The
computation of a subsystem is an infinite sequence of system statuses and signals that
effect status changes [AAM98]. A period is a finite subsequence of the computation
such that it starts with the initial state and finishes with its next appearance in the

sequence.
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(Arbiter | @U A

Req? X:=

\. J

Class Arbiter [@U]
Events: Req?U, Grant!U, Ret?U
States: *idle, allot, wait
Attributes: rqQueue: UQueue; hold:QU
Traits: Queue[/@U, UQueue/
Attribute-function:
allot —» rqQueue; wait — rqQueue, hold,
Transition-Specifications:
R; : (idle, allot); Req?(true);
true => rqQueue’ = insert(pid, {});
R : (allot, wait); Grant!(pid € rqQueue);
true => rqQueune’ = tail(reQueue)) A (hold’ = pid);
R; : (allot, allot), (wait, wait); Req?(not pid € rqQueue);
true => rqQueue’ = insert(pid, rqQueue);
R, : (wait, allot); Ret? (pid hold);
- isEmpty(rqQueue) = equal(rqQueue’, Queue);
R;s : (wait, idle); Ret? (pid = hold);
isEmpty(rqQueue) => true;
Time-Constraints:
TC, : (R, Grant, [0,2], 0)
TC, : (R4, Grant, [0,2], 0)
end

Figure 6: Formal Specification of Class Arbiter
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Subsystem < name >
Include:
Instantiate:
Configure:

end

Figure 7: Template for System Configuration Specification

2.1.4 Current TROMLAB Architecture

TROMULAB is a framework based on TROM formalism for object-oriented design and

development of real-time reactive systems. Figure 8 is an overall architectural view
of TROMLAB.

The current TROMLAB development environment includes the following compo-
nents:

¢ Rose-GRC Translator - [{Pop99] which automatically maps the graphic Rose

model to the formal specification;

e Interpreter - [Tao96] which parses, syntactically checks a specification and

constructs an internal representation;

‘e Simulator - [Mut96] which animates a subsystem based on the internal rep-

resentation, and enables a systematic validation of the specified system;

e Browser for Reuse - [Nag99] which is an interface to a library, to help users
navigate, query and access various system components for reuse during system
development;

e Graphical User Interface - [Sri99] which is a visual modeling and interaction

facility for a developer using the TROMLAB environment;

e Reasoning System - [Hai99] which provides a means of debugging the system
during animation by facilitating interactive queries of hypothetical nature on

system behavior.

e Verification Assistant - [Pom99] which is an automated tool that enables

mechanized axiom extraction from real-time reactive systems.
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Figure 8: Existing TROMLAB architecture

The TROM formalism is illustrated on the railroad crossing problem has been con-

sidered as a bench mark example by researchers in real-time systems community.

2.2 Train-Gate-Controller Case Study

According to the problem description, several trains cross a gate independently and
simultaneously using non-overlapping tracks. A train chooses the gate it intends to
cross; there is a unique controller monitoring the operations of each gate. When
the first train approaches a gate, it sends a message to the corresponding controller,
which then commands the gate to close. When the last train crossing a gate leaves
the crossing, the controller commands the gate to open. The safe operation of the

controller depends on the satisfaction of certain timing constraints, so that the gate
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is closed before a train enters the crossing, and the gate is opened after the last train

leaves the crossing.

Assumptions
e Trains inform the controller before entering the crossing
e Trains inform the controller when leaving the crossing

e Assumption of perfect technology

Specific Requirements

In the specification of the reactive systems, two important behavioral properties needs
to be formally expressed: safety and liveness. Informally, a safety property implies
that something bad will not happen, and a liveness property implies that something

good will eventually happen.

Safety Requirements

Whenever there is a train inside a crossing, the gate remains closed.

Liveness Requirements

When the last train leaves the crossing, the gate eventually reopens.

Timing Requirements

Timing constraints include the maximum and the minimum times required for a
train to be in the gate from the instant it was observed by a controller, the maximum

permitted time for a gate to open or close, and the time bounds for a train to cross

a gate.

A train enters the crossing within an interval of 2 to 4 time units after

having indicated its presence to the controller.

The train informs the controller that it is leaving the crossing within 6

time units of sending the approaching message.



The controller instructs the gate to close within 1 time unit of receiving an

approaching message from the first train entering the crossing, and starts
monitoring the gate.

The controller continues to monitor the closed gate if it receives an ap-

proaching message from another train.

The controller instructs the gate to open within 1 time unit of receiving

a message from the last train to leave the crossing.

The gate must close within 1 time unit of receiving instructions from the

controller.

The gate must open within an interval of 1 to 2 time units of receiving

instructions from the controller.

Railroad Crossing System - Problem Analysis

h ' | ! i i
~ Gate | ! | Gate 2 * e o o o  Guel i
L} ‘ : : T ‘
i
i
! Controtler 1| | Controller 2i e o o o  Contollern
L ; :
t
. I
| Train 1 ; | Train 2 e o o o | Trainm
L j i

Figure 9: Railroad Crossing System - Problem Analysis

In our model we allow many trains to communicate with one controller, and vice

versa and there is one controller for each gate (Figure 9).

Objects

The objects are abstracting the real-world entities that belong to the environment,

to the system, or are communication channels between the environmental and the

system objects.

e Environmental objects



— trains

— gales
e System objects
— controllers

¢ Communication channels:

— trains to controllers through sensors - many-to-many

— controllers to gates through actuators - one-to-one.

Formal Behavioral Specifications

The formal behavioral specifications are based on the TROM formalism and the Real-
Time UML (RTUML).

The LSL traits model the data structures.

The RTUML is used to model the objects and the system in order to describe the
system boundary:

e The use-case model (use-case diagram(s) and sequence diagram(s)) helps to
understand the external system behavior. The sequence diagram(s) specify the

dynamic behavior in conformance with the timing constraints.

e The GRC classes aggregate instances of data models. Each GRC has a state-
chart diagram.

e The statechart diagrams addresses the logical assertions on transitions and tim-
ing constraints on reactions. Each statechart diagram is annotated with a class
specification, a formal description of the class diagram. and operational seman-

tics expressed in first-order logic.
e The main class diagram describe the classes and their relationships.

e The RTUML’s operational semantics describe formally the object and system
behavior, and form the foundation for the formal validation and verification of

safety and liveness properties of the system.

25



e The collaboration diagram models the system configuration composed from in-

stances of object models, and channels for object communication.

We specify the finite state machine behavior of the train, gate, controller objects
using temporal relations expressed in predicate logic.

Each requirement is stated as a first-order logical formula with explicit ¢ime over pred-
icates modeling events and actions. At this level of abstraction, an event corresponds

to a high-level action, as opposed to a transition event.

Interpretations for predicates and variables are given over the domain considered in

the application.

The predicates, variables and their interpretations are as follows:

e was._at(s,t) - the object was in state s at time ¢.

e occur(e,t) - the event e occurred at time ¢.

The timing constraints formulas for the three classes are given in the corresponding
object model sections.

The synchronization timing constraints for each port link defined in a SCS (subsystem
configuration specification), are given in the system configuration section.

The predicate formulas formalizing the safety and liveness properties are given in the
subsystem section.

Main Class Diagram

The UML model for the Train-Gate-Controller problem has three generic reactive
classes: Train, Controller, and Gate. These three classes and their relationships are
described in one main class diagram, as depicted in Figure 10.

Train GRC is an aggregate of port types @C.

Controller GRC is an aggregate of port types @G and @P.

Gate GRC is an aggregate of port types @S.

There is an association between port type @C of Train and @P of Controller. meaning
that the generic class Train uses port type @C to communicate to the generic class

Controller through its port type @P.



There is also an association between port type @S of Gate and port type @G of
Controller, meaning that generic class Controller uses port type @G to communicate
with generic class Gate through its port type @S.

Train GRC has one port type @C. At port type @C, the following events may occur:
output event Near, output event Ezit.

Train GRC has one attribute, named cr, whose type is the port type @C.

Controller GRC has two port types: @P and @G. At port type @P, the following
events may occur: input event Near, input event Ezit. At port type @G, the following
events may occur: output event Lower, output event Raise.

Controller GRC has one data type attribute, inSet. The type is an abstract data type
defined in the LSL trait Set with parameters @P and PSet, where @P is the type of
each name and PSet is the name of the abstract data type.

Gate GRC has one port type@S. At port type @S the following events may occur:

input event Lower, input event Raise.

% <<GRC>> <<PortType>>
| Train o i @cC
i<<PortType>> cr:@C ' ‘events : Set = {Near! Exit!}
- <<GRC>> —~
<<PortType>> Controller , <<PonType>>
; @G . <<DataType>> inSet : Set(@P,PSet] | I E e ____.
events : Set = {Lower! Raise!} y : ! : levents : Set = {Near?,Exit?}

!
i
|

t

L
! <<PortType>> ’ <<GRC>>
! @S X Gate

ilevents : Set = {Lower?,Raise?} |

Figure 10: Main Class Diagram for Train-Gate-Controller

Real-time features such as minimal and maximal delays, exact event occurrences. are

been specified in this framework.

Train Model

The statechart diagram for Train in shown in Figure 11.
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Figure 11: Statechart Diagram for Train

A Train object can be in one of four states: idle, toCross, cross, leave. Idle is the
initial state.

When event Near occurs in state idle, attribute cr is set to pid, the identifier of the
port where Near occurs. This transition is the constraining transition for two time
constraints, labeled TCvar! and TCvar2. Train goes into state toCross.

A transition from state toCross to cross happens when internal event In occurs in
state toCross, and if the time constraint condition T'Cvar{>2 AND TCuvari<{is true.
This time constraint means that internal event In should occur within 2 to 4 time
units after event Near occurs in state idle.

When internal event Out occurs in state cross, Train goes into state leave.

A transition from state leave to idle happens when event Erit occurs in state leave. if
the attribute ¢r has the value pid (pid is the identifier of the port where Ezit occurs),
and if the time constraint condition Tcvar2<6 is true. This time constraint means

that event Erit should occur within 6 time units after event Near occurs in state idle.

Train: Formal Description The formal description for Train in shown in Figure
12.

Train: Operational Semantics
e S;: train is in state Idle

e S,: train is in state toCross
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Class Train {@C]
Events: Near!@C, Out, Exit!@C, In
States: *idle, cross, leave, toCross
Attributes: cr@C
Traits:
Attribute-Function: idle -> {};cross -> {};leave -> {};toCross -> {cr};
Transition-Specifications:
R1: <idle,toCross>; Near(true); true => cr’=pid;
R2: <cross,leave>; Out(true); true => true;
R3: <leave,idle>; Exit(pid=cr); true => true;
R4: <toCross,cross>; In(true); true => true;
Time-Constraints:
TCvar2: R1, Exit, [0. 6], {};
TCvarl: R1, In, [2. 4], {}:
end

Figure 12: Formal Description of Class Train
e S;: train is in state cross
e S;: train is in state leave

e Time constraints for the class Train:

1. wasat(Ss, t)) AVte ((t; <t < ty) AN ~was.at(S3,t)) A was_at(Sy.ta) Aty — by >
2Nt -t <4

o

was_at(Sy, t)) AVte ((t; < t < ty) A-was.at(Sy,t)) AN was.at(S,, t:) Aty —t, >
OAt, -t <6

Controller Model

The statechart diagram for Controller is shown in Figure 13.
A Controller object can be in one of four states: idle, activate, monitor,deactivate.
Idle is the initial state.

When event Near occurs in state idle, the attribute inSet is modified to include the
new entry pid (pid is the identifier of the port where Near occurs). The Controller goes
into state activate. This transition is the constraining transition for time constraint
TCuarl.

When event Near occurs in state activate from a different Train (pid is not already a

member of set inSet), the attribute inSet is modified to include the new pid (identifier
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Figure 13: Statechart Diagram for Controller

of the port where the new event Near occurs). The controller remains in the state
activate.

When event Lower occurs in state activate, if the time constraint condition TCuvari<l
is true, the Controller goes into state monitor. This time constraint means that event
Lower should occur within one time unit after event Near occurs in state idle.
When event Near occurs in state monitor from a different Train (pid is not already a
member of set inSet), the attribute inSet is modified to include the new pid (identifier
of the port where the new event Near occurs). The Controller remains in state
monitor.

When event Ezit occurs in state monitor, if the identifier (pid) of the port where
event Erit was received is a member of inSet and if the size of inSet is greater than
1, meaning that more than one Trains are in the crossing, then the current pid is
deleted from inSet and Controller remains in state monitor.

When event Ezit occurs in state monitor, if the identifier (pid) of the port where event
Erit was received is a member of inSet and if the size of inSet is equal to 1, meaning
that this is the only Train in the crossing, then the current pid is deleted from inSet
and Controller goes into state deactivate. This is the constraining transition for time

constraint TCuvar2.

When event Raise occurs in state deactivate, if time constraint condition Tcvar2<1
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is true, the Controller goes into state idle. This time constraint condition means that
event Raise should occur within 1 time unit after event Frit was received from the

last Train in the crossing.

Controller: Formal Description The formal description for Controller in shown
in Figure 14.

Class Controller {@P, @G|
Events: Lower!@G, Near?@P, Raise!@G, Exit?@P
States: *idle, activate, deactivate, monitor
Atributes: inSet:PSet
Traits: Set{@P,PSet]
Attribute-Function: activate -> {inSet};deactivate -> {inSet};monitor -> {inSet}.idle -> {}:
Transition-Specifications:
RI: <activate,monitor>; Lower(true); true => true;
R2: <activate,activate>; Near(!(member(pid.inSet))); true => inSet’=insert(pid,inSet);
R3: <deactivate.idle>: Raise(true); true => true;
R4: <monitor.deactivate>; Exit(member(pid.inSet)); size(inSet)=1 => inSet'=delete(pid.inSet):
RS: <monitor,monitor>; Exit(member(pid.inSet)); size(inSet)>1 => inSet'=delete(pid.inSet).
R6: <monitor.monitor>; Near(!(member(pid,inSet))); true => inSet'=insert(pid.inSet);
R7: <idle,activate>; Near(true); true => inSet'=insert(pid.inSet);
Time-Constraints:
TCvarl: R7, Lower, [0, 1], {}:
TCvar2: R4, Raise, [0, 1]. {}:
end

Figure 14: Formal Specification for Controller Class

Controller GRC: Operational Semantics
e C: controller is in state idle
e C,: controller is in state activate
e (Cj;: controller is in state monitor

e C,: controller is in state deactivate

1. was_at(Cs, t) AVte((t; < t < ty) A—~was-at(Cs,t)) Nwas_at(Cs, t2) Aty —t, >
0Nt -t <1

2. was_at(Cy, t,) AVte((t, <t < ty) A—was_at(C,.t)) Nwasat(Cy,t2) Nt —t, >
OANt, -t <1
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Up[ true && true & TCvar2 >1 AND TCvar2<2 ]

Down| true && true && TCvar1>0 AND TCvari <1}
— Y

toOpen P : closed
Sy
Raise / true && TCvar2=0

—_—

Figure 15: Statechart Diagram for Gate

Gate Model

The statechart diagram for Gate is shown in Figure 15.

A Gate object can be in one of four states: opened, toClose, closed, toOpen. Closed
is the initial state.

When event Lower occurs in state opened, the Gate goes into state toClose. This is
the constraining transition for time constraint labeled Tcvarl.

A transition from state toClose to closed happens when internal event Down occurs in
state toClose if the time constraint condition TCvar!<1 is true. This time constraint
means that internal event Down should occur within 1 time unit after event Lower
occurs in state opened.

When event Raise occurs in state closed, the Gate goes into state toOpen. This is the
constraining transition for time constraint TCuvar2.

A transition from state toOpen to open happens when internal event Up occurs in
state toOpen if the time constraint condition TCvar2>1 and Tcvar2<2 is true. This
time constraint means that internal event Up should occur within 1 to 2 time units

after event Raise occurs in state closed.

Gate: Formal Description The formal description for Gate in shown in Figure
16.



Class Gate (@S]
Events: Lower?@S, Down, Up, Raise?@S
States: *opened, toClose, toOpen, closed
Attributes:
Traits:
Attribute-Function: opened -> {}:toClose -> { };toOpen -> {}:closed -> {};
Transition-Specifications:
R1: <opened,toClose>; Lower(true); true => true;
R2: <toClose,closed>; Down(true); true => true;
R3: <toOpen,opened>; Up(true); true => true;
R4: <closed,toOpen>; Raise(true); true => true;
Time-Constraints:
TCvarl: Ri, Down, [0, 1}, {);
TCvar2: R4, Up, [1, 2], {};
end

Figure 16: Formal Description for Gate Class
Gate: Operational Semantics
e G,: controller is in state opened
e (»: controller is in state toClose
e (;: controller is in state closed

e G,: controller is in state toOpen

1. was_at(Gy, b)) AVEe((t, < t < ta) A~was._at(Gs, t)) Awas_at(Gy, ty) Aty — Ly >
0Nt -t <1

2. wasat(Gy, t))AVte((t, <t < ta) A~was_at(G,,t)) Nwasat(G,t2) Aty — £ >
1At -t <2

System Model

The (sub)systems has a Collaboration Diagram, a formal description, and synchro-
nization semantics expressed in first-order logic. The safety and liveness properties
are expressed in first-order logic. They have to be consistent with the timing and
synchrony constraints.

A collaboration diagram depicts a system, or, for larger systems. a subsystem. We
specify a system with one train, one controller and one gates, named Train-Gate-
Controller! (Figure 17).
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We also specify a system with 5 trains, 2 controllers and two gates, named Train-
Gate-Controller2 Figure 18. In this configuration, the object train3 is allowed to
interact with both controllers, while the other train objects can only interact with
one of the controllers. This schematic drawing conforms to a system with different

trains on specific routes. The collaboration diagram for this subsystem is shown in
Figure 18.

‘@Cii@c; | tamiTamin | | ammeuGae | @sii@s

E@_,s, .@P F“*{ mm.&gmm‘r,Awl

f

Figure 17: Collaboration Diagram for a Train-Gate-Controllerl Subsystem.

| taini:Train | . train : Train ; train3 : Train traind : Train ‘! trainS ; Train
{ ' ' :
| 7 -
— / ———
T I
\ : | |
R , i 1 .
P1:@P @P2:@P' @P3:@P! P4:@P | @P5:@P' '@P6:@P!
RN — T ’,"”” o ' ”'"\\'
‘Controllert - Controller oy ——
' i
i
‘@51:@§’ e @5
_ ;
Gatel:Gate | ;. Gate2 : Gate

Figure 18: Collaboration Diagram for a Train-Gate-Controller2 Subsystem.
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Sequence Diagrams

A sequence diagram depicts one possible scenario for the system (Figure 19). We
specify a scenario of the system with one train, one controller and one gate, named
Train-Gate-Controller! (Figure 17).

When a train approaches a gate, it sends a message to the corresponding controller,
which then commands the gate to close. When the train crossing a gate leaves the
crossing, a train sends a message to the controller, and the controller commands the

gate to open.

TP ’ E | > I 2: Lower |
{b-a<1} ® E t iﬁf T >"L 3 Down
{c-b<1} ¢ i , e
| :
{d'a<4} ' 4 i !
{f-a<6} R — ! .
{g-f<1} : | §: Qut i ;
{h-g>1} e ! :— . ) ;
R | ;
{h-g<2} ¥ | .
K 6: Exit N |
' L - 7: Raise ,
g ! e i e T
. i 8Up
"o | <
| |
H i ;
U i

Figure 19: Sequence Diagram

Subsystem Formal Description

The formal specification for the subsystem configuration described in Figure 17 (1

Train object, 1 Controller object, and 1 Gate object) is as shown in Figure 20.

The formal specification for the subsystem configuration described in Figure 18 (5
Train objects, 2 Controller objects, and 2 Gate objects) is as shown in Figure 21.
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SCS TrainGateController
Includes:
Instantiate:
gatel::Gate[@S:1];
trainl::Train[@C:1];
controllerl::Controller(@P:3, @G:1];
Configure:
controller1. @G1:Q@G <-> gatel.@S1:@S;
controller1 @P1:@P <-> trainl.@C1:QC;
end

Figure 20: Formal specification for Train-Gate-Controllerl Subsystem.

Synchronization Semantics for Train-Gate-Controllerl Subsystem

e Synchronization between Train and Controller

1. was_at(Sy, t)Awas_at(C, t)Aoccur(Near, t) = was_at(S,, ') Awas_at(Cs, t')A
(' =t+e)

(8]

. was_at(Sy, t)Awas_at(C,, t)Aoccur(Near, t) = was_at(Ss, ) Awas_at(Cy. ')A
(' =t+e)

3. was_at(Cs, t)Awas_at(S), t)Aoccur(Near, t) = was.at(Cy, ')Awas_at(S,, ')A
( =t+e)

4. was_at(Cy, t)Awas_at(Sy, t)Noccur(Exit. t) = (TCvar2 > 0Awas_at(Cy, ')A
was_at(Sy, ')A (' =t+€))V(TCuvar2 = 0Awas_at(Cy, t') Awas_at(S,, ')A
(' =t+e¢€))

e Synchronization between Controller and Gate

1. was.at(Cs, t)Awas_at(Gy, t)Aoccur(Lower,t) = was.at(Cs, t)Awas_at(G, t)A
(' =t+e)

2. was_at(Cy, t)Awas_at(Gs, t)Aoccur(Raise. t) = was_at(Cy, ') Awas_at(G,, ')A
( =t+e)
Safety and Liveness Properties

Consider an interval of time (¢, t,], such that at time ¢; there is no train in the crossing

and the first train enters the crossing, and at time ¢, a train leaves the crossing and
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SCS TrainGateController

Includes:

Instantiate:
gatel::Gate[@S:1];
gate2::Gate|@S:1};
trainl::Train[@C:1}];
train2::Train|@QC:1]|;
train3::Train|{@C:2|;
traind::Train|@C:1];
train5::Train|@C:1];
controllerl::Controller{@P:3, @G:1};
controller2::Controller|@P:3, @G:1};

Configure:
controller1. @G1:@G <-> gatel.@S1:@S;
controller2.@G2:@G <--> gate2.@S2:@S;
controllerl.@P1:@P <-> trainl.@C1:QC;
controller1.@P2:@QP <-> train2.@C2:QC;
controllerl.@P3:@P <-> train3.Q@C3:QC;
controller2.@P4:@P <-> train3.@C4:QC;
controller2.@P5:QP <-> traind.@C5:QC;
controller2.@P6:QP <-> train5.@C6:QC;

end

Figure 21: Formal specification for Train-Gate-Controller2 Subsystem.

there is no other train still in the crossing.

Safety Property: For a safe functional and temporal behavior of the system. the
gate must be closed whenever there is a train inside the crossing.

Formally,

was.at(Sy, t;) ANwas_at(Sy, t2) AN (Vte((t, < t < tr)A(occurs(In,t))) = was_at(G3,t))

Liveness Property: When the last train leaves the crossing, the gate eventually
reopens.

Formally, (was.at(Sy,t;) A TCvar2 = 0) = 3t e (was_at(G,,t) A (t —t; > 0))

Note: The safety and liveness properties must be a logical consequence from the

object models operational semantics and system synchronization semantics.



Chapter 3

Fundamental Issues in Software

Measurement

In this chapter a survey of formal approaches to software measurement is presented.
The underlying theories upon which fundamental measures are constructed. are: the-
ory of real numbers, graph theory, information theory and category theory. For each
theory the set of axioms and examples of fundamental measures are given. Measure-
ment models and measures of software quality reviewed in this survey have a bearing

on the research directions pursued in this thesis.

3.1 Categories of Software Measures

There are three categories of software measures: fundamental, or direct measures
that reflect and directly characterize the empirical properties of the attribute in the
numerical system; indirect measures which require first one or more fundamental
measures of one or more attributes, than their combination (using some mathematical
model) to measure (indirectly) another supposedly related attribute: and conjoint

measures that measure the attribute and its components simultaneously.

3.1.1 Fundamental measures

The fundamental measures directly characterize the empirical properties of an at-

tribute in terms of a number or symbol. The theoretical approach to measurement
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described in [W97] allows the construction of theoretically valid fundamental mea-
sures. The author suggests to look for required scale types, then to select the require-
ments for the empirical structures and to construct one that is likely to provide the
right kind of measure. Whitemire generalizes his approach introducing the notion
of software measure life cycle. The author traces four phases for software measures
development in analog with the software engineering well-known development phases

requirements, analysis, design, implementation.

3.1.2 Indirect and Conjoint measures

The indirect measurement requires first one or more fundamental measures of one or
more attributes, than their combination (using some mathematical model) to measure
(indirectly) another supposedly related attribute. The conjoint measures measure the
attribute and its components simultaneously.

There are two types of mathematical models of indirect and conjoint measures: at-
tribute models (one external attribute is represented by one or more internal at-
tributes), and relationship models (one attribute is defined as mathematical function
of a list of other attributes).

3.1.3 Static and Dynamic Measurement

We can categorize the measurement as static or dynamic depending on the nature of
the properties to be measured.

The static measurement is the evaluation of the set of static properties of the ob-
ject, which assists the decision-making during the development process. The static
measurement of the quality attributes can help decide whether the high-level system
description, or a system design is better than another and choose the one that best
meets the system goals.

The dynamic measurement requires the executing of the program before the metrics
are applied. The dynamic measurement needs “probifacts” to be inserted within the
software (for example, RTTI is the C++ future that allows to measure dynamically).
The probifacts are reducing the speed of software execution, thus are to be removed
(without damaging the system) later. Some of the metrics probes are required to

stay within the system permanently. Thus, the probes should be chosen small, so
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that their impact on the speed and the reliability would be invisible. The OO dy-
namic measurement evaluates the dynamic behavior (state-dependent response of a
system/object to an external/internal event) of the system/object.

The dynamic measurement at design phase evaluates the dynamic behavior (state-
dependent response of a system/object to an external/internal event) of the sys-
tem/object. The dynamic measurement assesses the dynamic analysis of the object-
oriented design (i.e., the design behavior when the implementation is executed) before
the construction of code.

3.1.4 Global and Local Measurement

The measurement can be categorized as global or local in dependence of the scope
of our measures. Global measurement is a measurement applied to a system as
whole. Local measurement is a measurement applied only to a particular system’s

component.

Scope of Application

The measures can be categorized according to their scope of application following the

corresponding Fenton et al. (1997) list:

- Structural and Complexity Metrics

- Quality Models and Metrics

- Productivity Models and Metrics

- Reliability Models and Metrics

- Cost and Effort Estimation Models and Metrics
- Performance Evaluation Models and Metrics

- Capability - Maturity Assessment Models and Metrics

The structural and complexity measures have to characterize directly the software
properties in order to assess the development process. The object-oriented proper-

ties that can be measured are coupling between objects, inheritance hierarchy, class
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internal coherence and application size. The conventional software properties that
can be measured are the control-flow, data-flow and the application size. The choice
of an empirical relational model depends on the underlying software development
paradigm (OO, conventional), software abstraction and on the purposes of the mea-

surement process.

3.1.5 Software Abstractions and Fundamental Measures

The abstractions of real-word software entities reported in the literature that allow
the quantification of the software properties, can be classified as follows: collection of
tokens, control graphs and data dependency graphs, state spaces, object-predicated
tables, covariance matrices and categories.

The different abstractions of software are rooted either in the theory of numbers (col-
lection of tokens), graph theory (Control graphs and data dependency graphs, State
spaces), information theory [Sh69] (Object-predicated tables, Covariance matrices),
or the category theory introduced as useful general structure for studying software
in [W97] (Categories). All the above theories are founded in discrete mathemat-
ics. According to the theory on which the model of software is based, the software

fundamental measures can be categorized as follows:

- Measurement based on the theory of numbers
- Measurement based on the graph theory

- Measurement based on information theory

The basics of mathematics necessary to understand the measurement of software are

summarized in the following section.

3.2 Representational Approach

The software measurement is used to quantify objectively the abstraction of the
software entities. To quantitatively characterize some attribute or property of a class
of empirical objects, a model (abstract representation) of an object is necessary.

The aim of this section is to establish the basics of the theory of measurement, and

to give the theoretical tool for building theoretically valid measures.
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The purpose of the software measurement is to define clearly and unambiguously the
population, the characteristics of software to be measured (domain representation
model), and then to devise appropriate measures for these software characteristics
together with instruments with which to measure them [HS96]. In order to define
the domain representation model, the following must be identified: the set of empir-
ical entities to be measured, their attributes to be measured, and a model for each
attribute appropriate for the current environment.

Generally accepted representational approach to software measurement [FP97] con-
sists in building numerical representations of the empirical observations in a numer-
ical structure. The measure is a function that maps an empirical relational structure
onto a numerical relationship structure. This mapping is known as fundamental
measurement and leads to fundamental measures, or direct measures, because it di-
rectly characterizes the empirical properties of the attribute in terms of a number or
symbol.

The fundamental measurement is formally defined as a process of a structure pre-
serving mapping ¢ between a model of the empirical relationship in the form of an
empirical relational structure E, and a model of the numerical relationship in the
form of a numerical relational structure N.

The structure preserving mapping is constrained by two theorems: representation
theorem and uniqueness theorem. The representational theorem, also called the rep-
resentation condition, sets forth the conditions (axioms) to be satisfied by the empiri-
cal relational structure, and shows how to construct the representation of an empirical
structure into a numerical structure. The uniqueness theorem (or uniqueness condi-
tion) defines the mathematical transformations between different representations.
The representation theorem and the uniqueness theorem are framed by the conditions

(axioms) imposed on an empirical structure by a representation in numbers/symbols.

There are three classes of such axioms:

Class of necessary axioms. These are mathematically necessary conditions due to

the representation being constructed. They lead to a set of allowable structures.

Class of structural axioms. These are unnecessary conditions that limit the allowable

structures to a more manageable set.

Archimedean axiom. Every strictly bounded standard sequence is finite (based on
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the Archimedean property of real numbers).

The triple < E, N,® > is also called a scale [FP97]. In general, the measurement
theory involves the mathematical description of scales, measures, and methods of

measuring.

3.2.1 Scales

Fenton and Whitemire ( [FP97], [W97]) present five scale types in order of strength.
Each type is defined in terms of its defining mathematical relations and its allowable

transformations. The scale types are:

Nominal Scale

Real-word entities must be countable. They are assigned to numbers/symbols as a
form of classification. The real meaning of using nominal scale is not measurement
but classification. The defining relation is equivalence and partitions the set of entities
into a set of scale values. The properties of the equivalence relation are reflexivity,
transitivity and symmetry. Valid transformations are all isomorphisms of the form
£ — f(x) which preserve this partitioning.

Appropriate Statistics: Some robust techniques (include frequency, mode, contin-
gency coefficients).

Appropriate Statistical Tests: Non-parametric tests which do not depend on ordering.

Ordinal Scale

The empirical entities must be countable. An empirical structure must have an em-
pirical ordering relation > which is transitive and connected. The defining relations
are equivalence and greater than >. Valid transformations are all isomorphisms of
the form z — f(z) that are strictly increasing. The empirical ordering relation is a

weak order and has the following properties:
1. a = b < ®(a) > ®(bH)
2. a = bV b > a (Connectivity)

3. a> bAb>c= a > c (Transitivity)
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Appropriate Statistics: Robust techniques (including frequency, mode, contingency
coefficients, median, quartiles, upper fourth, lower fourth, box length, upper and
lower tails).

Appropriate Statistical Tests: non-parametric tests - Kendall’s rank correlation coef-

ficient 7, the Spearman rank correlation coefficient r,, Kendall’s w.

Interval Scale

The mapping is preserving an empirical ordering relation > and the ratio of intervals
between objects. The defining relations are the ratio of any two intervals, > and
equivalence. Valid transformations are any linear transformations of the form g =
az + b(a > 0) that preserve order and intervals. The empirical ordering relation is a
weak order and has the following properties:

Valid transformations form the positive affine group, if the domain of the numerical
structure is real numbers and form the power group, if the domain of the numerical

structure is the positive real numbers.
l. a > b < P(a) > P(b)

2. If c>dAa>bA(a>b<=> d'(a) > ®'(b), then

®(a) — B(b) _ ®'(a) — ®'(b)
B(c) — B(d) P (c) — ¥ (d)

Appropriate Statistics: Parametric statistical methods (including all the appropriate
for an ordinal scale plus arithmetic mean, standard deviation, variance).

Appropriate Statistical Tests: all parametric and non-parametric tests.

Ratio

The mapping is preserving an empirical ordering relation >, the ratio of intervals
between objects and the ratio of scale values. The defining relations are equivalence,
ratio of any two intervals, >, concatenation and ratio of any two scale values. The
minimum scale value exists and it is a null (zero point). This scale permits calculation
based on ratio and percentage. Valid transformations are of form g = ax(a > 0),

when r € Set of real numbers, or of the form ¢ = ar + b(a > 0) when z €



- Set of positive real numbers. The empirical ordering relation has the following
properties:

I Valid transformations: form the translation group and similarity group,, if the
domain of the numerical structure is all real numbers; of form the similarity group,

if the domain of the numerical structure is the positive real numbers.
1. a > b &> ®(a) > ¢(b)
2. a ~ nb &> ®(a) = n®(b)
3. aob~ cod < ®(a) + ®(b) = ®(c) + ¢(d)

The defining relation is

(a) _ ¥ (a)

®(b)  ®'(b)

[ Appropriate Statistics: Parametric statistical methods (including the geometric

mean and coefficient of variation, and those appropriate for the interval scale).

Appropriate Statistical Tests: all parametric and non-parametric tests.

Absolute

This scale presents counts of objects, cardinality of sets, and probabilities. The
defining relations are all in the ratio scale plus the existence of the unit of measure.
The valid transformation is the identity z = f(z).

Appropriate Statistics: all the appropriate for the ratio scale.

Appropriate Statistical Tests: all the appropriate for the ratio scale.

To determine the relationships between attributes of the same or different types,

relationship statistical tests should be applied.

3.2.2 Relationship statistical tests

There are two classes of relationship tests:

1. Robust/Non parametric statistical methods - used for nominal and ordinal scale

measurements.
2. Parametric tests - used on data from the interval and ratio scales.
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The measurement data should be gathered in order to be statistically analyzed. The

scale type determines the type of statistics and statistical tests to be applied.

3.2.3 Basic Procedures of Measuring

In case the measurement is allowable, Whitemire [W97] outlined three basic pro-
cedures of assigning numbers to objects: Ordinal Measurement, Extensive Measure-
ment/Counting of Units and Solving Inequalities.

Ordinal measurement procedure’s first step is to determine an ordering relation for
the objects, and the second is to assign a number sequence that preserves the order of
the objects. The set of allowable transformations of the mapping of one representation
to another is any transformation that preserves the order.

Extensive Measurement/Counting of Units procedure’s first step is to select a unit
and the second is to construct a standard sequence using the concatenation operation
until the approximation of the length of the object being measured. The procedure
depends upon an empirical concatenation operation and the construction of a stan-
dard sequence of objects. The set of allowable transformations can be obtained by
applying the conversion factor between units.

Solving Inequalities procedure is used when it is impartial or impossible to construct
a standard sequence. The first step is to write a set of inequalities reflecting the
relationship between the entities, and the second is to find solution to this set. Any

simultaneous solution to the set of inequalities is a valid numerical representation.

3.3 Validation of Software Measures

From the theoretical point of view, the formality is a must when defining a measure.
Any measure should be developed and tested in the context of measurement theory in
order to clarify whether any specific measure is appropriate to be applied in specific
situation. The measure should be theoretically grounded, with at least a weak order
and expressed in some unit system.

Validating a software evaluation measure is a process of ensuring that it is a proper
numerical characterization of the claimed attribute. Validating a software predictive
metric is a process of establishing the accuracy of the prediction by comparing model

performance with known data. There are two types of software metrics validation:
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theoretical and empirical.

The theoretical validation is a process of ensuring that the fundamental measure is
satisfying the representation condition of measurement theory.

The empirical validation is a process of establishing the accuracy of the software mea-
surement by empirical means. In case of assessment, comparison, investigation pur-
poses measurement, the empirical validation identifies the extent to which a measure
characterizes a stated attribute by simple test against reality. In case of prediction,
estimation purposes measurement, the empirical validation formulates a hypothesis
about the prediction and then experimentation to test the hypothesis by compar-
ing the model performance with known data (controlled empirical experiment). To
formulate the null hypotheses necessary for validating the predictive abilities of the

measures, the prediction system should be classified as:

e Using internal measures of early life-cycle products to predict internal/external

measures of later life-cycle products.

e Using early life-cycle process/resource attribute measures to predict measures

of later development phases products/resources attribute measures.
e Using process measures to predict later process attribute measures.

e Using internal product measures to predict process attribute measures.

Once the hypothesis has been confirmed, the cause-and-effect relationships between
the measures have to be identified. The most used statistical test is correlation. Cor-
relations can be run between two or more attributes and measures the extent to which
the value and direction of change in one attribute is tied to that of another attribute.
When the relationship between two or more attributes is established, the regression
analysis is applied to determine what that relation might be (linear, polynomial. or
exponential). It is often the case that a single measure, or even a number of measures,
do not adequately characterize a software entity due to the collinearity problem (each
measure contributes the same or nearly so characteristic that can lead to incorrect
conclusions on measurement data). The principal component analysis was developed
to combat this problem. The method uses a given set of data to select and weight the
principal components, which amounts to built-in correlation. The principal compo-

nent analysis is the method for creating indirect measures from collections of direct
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and other indirect measures [W97]. Once the cause-and-effect relationships have

been identified, a useful and valid predictive (prognostic) model can be created.

3.4 Measure Construction: Basic Development Steps

A measure has a life-cycle similar to the software life-cycle. The first step in the the-
oretical validation process is to define requirements for measurement. The require-
ments are the constraints of the chosen scale type, and the structural requirements
of a potential mathematical model (representation) of a measure.

The representation condition sets forth the requirements to be satisfied by the math-

ematical model of a measure.
1. Determine your requirements for measurement (define requirements)

e Requirements are obtained from the chosen type of scale.

e The scale type is set by the choice of kind of analysis to perform on the
data.

e The kind of analysis depends upon the role (the use) for the technical
measurement:
— Estimation: requires at least the interval scale.

— Prediction: requires at least the interval scale: would work better with

ratio or absolute scale measures.
— Assessment: requires at least nominal scale.
— Comparison: requires at least ordinal scale.
— Investigation: requires at least nominal scale.
e The process results in a set of candidate mathematical structures available

for the above requirements. If the set is empty than the requirements have

to changed.

2. Analyze the model (analyze the requirements).

The approach is to take a mathematical structure, identify its requirements,
and see if the elements, relations, and operations required by the structure are
found in the model. Eliminate any structure for which you cannot meet the

requirements.
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3. Select the target structure (design a candidate implementation)
Select a structure that requires less effort to collect measurement data or to

calculate the measure, and is most closely aligned with the goals.

4. Construct a representation (build an application)

(a) Map the structure elements to numeric elements; the empirical relations

and operations to numeric relations and operations.
(b) Select a unit.

(c) Validate the representation (testing).

The second step is to construct the representation such that it satisfies the mea-
surement requirements. A mathematical proof is required to show that the measure
satisfies its requirements.

When the theoretical validation of the measure is completed, it has to be empirically

validated (i.e., the representation has to be tested).

Testing the Representation

The collected measurement data has to be used to show that the measure satisfies

the following criteria:

1. Tracking: the extent to which changes in the value of the measure follow changes

in the value attribute.

[NV

. Consistency: the extent to which the value of the attribute and the value of the

measure share rankings when measurement data is sorted in order:

a2 az... 2 a, = ®(a,) < P(a2)... < P(an)

The process results in an empirical relational structure which is guaranteed (math-
ematically proven) to map to a real numerical structure with the properties of a
particular scale type.

The empirical validation process is illustrated on different configurations of the Train-

Gate-Controller systems case study.
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3.5 Software Measurement Based on the Theory

of Numbers

The abstractions of real-world entities that allow the quantification of software prop-

erties as a collection of tokens, are rooted in the theory of natural numbers.

3.5.1 Collection of Tokens

Collection of tokens means static counting of elements in a set. Tokens are objects to
be collected and could one of the following: lines of code, operators, operands, objects,
classes, or functions derived from the source [W97]. The procedure of collection of
tokens is based upon absolute scales of counts of tokens. Therefore, the mapping is

on the set of natural numbers, and the measures are easily collected on the ratio and

absolute scales.

Axiomatic Approach The set of axioms imposed on an empirical relational model

by the properties of the natural numbers, is as follows:

Axiom 1. Every nonempty set has a minimum element

Axiom 2. Archimedeum axiom

Axiom 3. There is at least a weak order between the elements of a set
Axiom 4. Commutativity: Va,b € S : {a +b=0b+a}

Axiom 5. Associativity: Va,be S: {a+ (b+c) = (a +b) + ¢}
Axiom 6. Exists a unity: Va € S: {a x 1 = a}

Axiom 7. Va,b.ce S: {a+c=b+c=>a=0b}

Axiom 8. Va € S : {3succ(a) @ succ(a) # 1&(succ(a) = succ(b) = a = b}

3.5.2 Measures

Fundamental measurement of the physical size of a software is based on the counting

of tokens.



Whitemire ( [W97]) is refining the static measurement of the physical size of OO
product in population (counting of elements in a set of objects) and functionality

(counting of elements in a set of relationships between the elements of a system).

Population and Functionality

Axiomatic Approach The following set of axioms for the fundamental measure-
ment of the population pop(A) are defined:

Axiom 1. Population is nonnegative: pop(A) > 0
Axiom 2. Population can be null: A =0 = pop(A) =0

Axiom 3. Population is additive for disjoint populations: 4, N A, =0 = pop(4, U
A2) = pop(Ay) + pop(A2)

Axiom 4. Population follows the siege principle: pop(A,L...UA,) =30 (-1)" ey

i=

where ¢; is the sum of the populations of the intersections taken i at a time.
Axiom 5. Population is monotonic increasing: 4, C 4, = pop(A;) < pop(A,)
Axiom 6. Population of two merged populations cannot exceed the sum of two

Axiom 7. Population forms a weak order

The functionality is defined by Whitemire as “the set of functions derived from the
source” (i.e., the set of functions requested, the set of functions delivered).

Example of functionality measurement are the OO coupling direct measures defined

in the corresponding section.

Axiomatic Approach

Whitemire ( [W97]) denotes the functionality as fun(A) and lists the properties that
are similar to those for population.

Axiom 1. Functionality is nonnegative
Axiom 2. Functionality can be null
Axiom 3. Functionality is additive for disjoint sets of functions
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Axiom 4. Functionality follows the siege principle
Axiom 5. Functionality is monotonic increasing
Axiom 6. Functionality of two merged populations cannot exceed the sum of two

Axiom 7. Functionality forms a weak order

An early attempt to measure the size of a source code for an imperative language
based on counting of tokens has been proposed by Halstead [H75]. Halstead defined
the abstraction of a program as a collection of operators and operands. Halstead’s
fundamental software science measures for these tokens were u, (number of unique
operators), i (number of unique operands), N, (total occurrences of operators), and
Ny (total occurrences of operands). Fenton argued that only three of the Halstead’s
measures, namely the length N= N, + N,, vocabulary p = p, + p» and volume
V' = N x log u are theoretically valid measures of internal code attributes that reflect
different views of code physical size.

We can define the size of S as the cardinality of a set of objects {O,...0,}. The
traditional length code measure is the number of lines of code LOC. Fenton et al.
[FP97] review different approaches for defining a token “line” in dependency on a
particular code measurement purpose. The example of industrial use of length mea-
suring are the COCOMO (Constructive Cost Model [Bo81], based on the measuring
of delivered source instructions DS/ or source lines of code SLOC.

The OO measures of counting of tokens are:

e MOOSE metric Number of attributes (NOA) [CK93] defined as NOA(C;) = m

e MOOSE metric Number of public methods (NOM) [CK93]: NOM(C;) = n.

e Number of responsibilities the class has (NOR):
NOR(C;) = NOA(C;) + NOM(C)

e Lines of code per class (LOCC):

Y j=i(lines of code for M;)
n

LOCC(C)) =
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e Number of parameters per visible method (NPS):

NPS (m;) = number of parameters admitted by M; of class C;

e Li and Henry ( [LH93]) metric Data Abstraction Coupling DAC defined as
DAC = Number of Abstract Data Types Defined in a Class is a measure of
the coupling complexity due to declaration of variables of Abstract Data Type
within the class. Range of metric’s values is [0, Np.c|. Higher value indicates

higher level of coupling complexity and higher maintenance effort.

e Liand Henry ( [LH93|) Number of Methods in a Class NMC is a class interface
increment metric. It is defined as NMC = Number of Local Methods in a
Class. The range of metric’s values is [0... Nyac]- Higher value indicates

more complex class’ interface and higher maintenance effort.

Measurement of Polymorphism in OO System

Notion of Polymorphism An operation is polymorphic when its semantics de-
pend on the context of invocation. Polymorphism allows the implementation of a
given operation to be dependent on the object that “contains” the operation: a sub-
class should minimally adhere to what the superclass prescribes, but it is allowed to
define an operation differently as long as they conform to what the superclass pre-
scribes (i.e., it may strengthen a postcondition of a transition in a superclass [Ch97].
Benlarbi and Melo [BM99] are classifying the polymorphism in dependency on the
encapsulation level as class level polymorphism and system level polymorphism. At
class level the polymorphism is pure (applying a single method to arguments of dif-
ferent types in the same context). At system level the authors consider two forms of
polymorphism: method overriding (the behavior described in a parent class is altered
in the descendant class) and method overloading (or ad hoc) (the same name denotes
different methods). Benlarbi and Melo [BM99| define the use of the same name
and the same signature in an overridden method as dynamic polymorphism, and the
use of the same name but different signatures in different classes (linked or not by

inheritance) as static polymorphism.



Examples of Existing Measures

Benlarbi and Melo [BM99] define the pure polymorphism measure named Paramet-
ric Overloading OVO. OVO is simple counting of number of times when “the same
method is envoked with the same name with different signatures inside the scope of
the same class”. It is a static fundamental measure of OOD on the absolute scale.
The method overriding polymorphism measures have to be derived from the inheri-
tance hierarchy tree abstraction. The basic characteristics of the tree abstraction may
be used as fundamentals measures of polymorphism. Thus, the static fundamental
measure of the scope (size) of polymorphism may be defined as the cardinality of a
set of overridden methods. The measure of the polymorphism in a descending inher-
itance line is the fan-down metric defined as cardinality of a set of subclasses that
redefine any feature. The MOOD’s metric Polymorphism Factor POF [BaPS98] is
quantifying the ratio of a number of overriding/redefined methods and total num-
ber of methods in a descending inheritance line. Benlarbi and Melo [BM99] static
and polymorphism measures SP.A (Static Polymorphism in Ancestors), SPD (Static
Polymorphism in Descendants), DP A (Dynamic Polymorphism in Ancestors), DPD
(Dynamic Polymorphism in Descendants) are calculating the cardinality of a set of
static/dynamic polymorphism function members within the set of distinct ancestors/
descendants of a class.

The method overloading polymorphism can increase the complexity of a system if the

semantic consistency across the interfaces of the objects is not provided.

Axiomatic approach The mathematical notion of function overriding is used to
model polymorphism in software. The notation of f is overridden by gis f & g.

Any operation/method can be seen as a function (deterministic relation) that maps a
particular element from an input set (domain) onto the output set (codomain). The
domain and codomain are described by the pre- and postconditions. Lets consider
a polymorphism of two methods f and g such that g is overriding/ overloading f.
A polymorphism in software can be interpreted as choosing between different func-
tions producing different results for some common domain element (static binding
and dynamic binding). The mathematical terming for this procedure is function
overriding. The domain of a method resulting from method overriding has to be

(dom(f) N dom(g)) \ dom(f). The following axioms for polymorphism can be stated
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based on function overriding properties:
Axiom 1. Polymorphism(f,f)=f (idempotentcy)

Axiom 2. Polymorphism(f, Polymorphism(g,h))= Polymorphism (Polymorphism(f,g),h)
(associativity)

Axiom 3. Polymorphism(@, g) = g (has left unity)
Axiom 4. Polymorphism(g,®) = g (has right unity)
Axiom 5. dom(f)(\dom(g) =0 = Polymorphism(f,g)= Polymorphism(g,f)

Benlarbi and Melo [BM99] claim that the some forms of polymorphism may decrease
the reliability of the OO software.

Measures Based on State Spaces

The dynamic measurement assessing the development of the object-oriented design
during its dynamic analysis depends on the number of the objects’ behaviors and
the different transactions required to solve the application. An object’s behavior
is concerned with object’s state changes (internal behavior) and message passing
(request from another object to perform a service) (external behavior). The message
passing is linked to the state changes through mechanism called binding [W97]. Each
transaction consists of the operations message passing, message binding and object’s
state transition(s).
Let us consider an application A and a subsystem S that solves A. The system S can
be constructed as-a collection of objects {0, ... O,} that interact among themselves
in solving the problem 4. Therefore the state spaces abstraction is based on the
graph theory. The state spaces abstraction is useful when evaluating the dynamic
behavior (state-dependent response of a system/object to an external/internal event)
of the system/object. The particular in the set membership of state spaces is that
the time factor is included: set membership have to be determined at a specific point
of time or a time interval.

The state spaces abstraction is useful when evaluating the dynamic behavior

(state-dependent response of a system/object to an external/internal event) of the

system/object.
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Fundamental Measures for Dynamic Analysis

Fundamental measures are the volume of the state space, the number of different
transactions and the number of events to which it need to respond.

Let k be the number of different transactions dependent only on an application A;
{T\,...T:} be the set of different transactions required to solve the application A;
m;, i € [1, k| denote the number of messages exchanged to complete the transaction T;;
t; be the time of completing the transaction T; (in units); ¢;, - the time (to complete
the execution of message-passing, binding and state transition(s)) calculated for the
j** message (j € [1, m;]) from the dynamic model of S.

The following dynamic fundamental measures are proposed:

k (the cardinality of the set of different transactions): fundamental measure of the

functionality of S.

m = Ele m; (the cardinality of the set of messages exchanged to complete all the

transactions): fundamental measure of the functionality of S.

t; =t +ti, +...+t;, (the time of completing the transaction 7; (in units)). ¢; is a
measure of the relative contribution (weight) of the transaction T; for the total

functionality of S.

t = Z:.“:l m; (the time of completing all the transactions T; (in units)). ¢ is a measure

of the factor time in the functionality of S.

Axiomatic Approach The volume is equivalent to the population measure (the
cardinality of a set of objects) at a specific point of time or a time interval [W97).
The number of different transactions is equivalent to the functionality measure (the
cardinality of a set of relationships) determined at a specific point of time or a time
interval. When the time factor is held constant, the Whitemire axioms respectively

for population and functionality hold.

3.6 Graph Theory Based Software Measurement

From the mathematical point of view graphs are algebraic structures, based on a set
and relationships between elements of the set. Since graph theory is well developed. a
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graph representation of software allows to formally define software characteristics in
terms of well known characteristics of graphs, and to quantify them directly applying
fundamental measurement.

Most graphical representations of software such as control-flow, data-flow models,
entity-relationship models, state transition models, class models and use case models
can be considered as a graph.

The unified approach to abstract the control - flow structure of the structured pro-
gram, or low-level design is to use flowgraphs.

Flowgraphs

A program is considered to be structured if it is implemented using only a small set
of allowable constructs. The optimum set of constructs consists of sequence, selection
and iteration.

Flowgraph is a directed graph in which two vertices, the start and the stop, have
special properties: the stop vertex has outdegree zero, and every vertex lies on some
walk from the start to the stop [FP97].

There are two operations defined on the set of flowgraphs: sequencing “;” and nesting
“()”. Given two flowgraphs F1 and F2, their sequencing produce a new flowgraph
(F1; F2) by identifying the stop vertex of F1 with the start vertex of F2. Given
two flowgraphs F1 and F2, their nesting produce a new flowgraph (F1(F2 on v} by
replacing the edge leaving the vertex v, with F2. The flowgraphs that cannot be
decomposed non-trivially by sequencing and nesting are named prime flowgraphs .
Each flowgraph is associated with the unique decomposition tree that describes how
the flowgraph is built by sequencing and nesting primes. The prime decomposition
theorem asserts that every flowgraph has a unique decomposition by sequencing and
nesting into a hierarchy of primes, i.e. non-decomposable flowgraphs [FP97].

The most measures based on graph theory are measuring code structure complexity.
Set of axioms have been proposed by Bache (1990) and cited [FP97] for complexity
measures of general control structure.

Axiomatic Approach Let F,F1,F2,....F,,G, H be prime flowgraphs, p be a

measure of general control structure. The above axioms are:

Axiom 1. u(F;G) > max{u(F), u(G)}
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Axiom 2. u(F;G) = p(G; F)

Axiom 3. u(H) > p(G) = u(F; H) > p(F; G)

Axiom 4. p(H) > u(G) = u(F(H,F2,...,F,)) > u(F(G,F2,...,F,))
Axiom 5. u(F(G)) > u(F;G)

Axiom 6. p(H(G)) > p(G(H))

Control-flow measures based on flowgraphs

The classic McCabe’s cyclomatic complexity measure [Mc76] for the flowgraph F

is calculating the complexity in terms of the number of linearly independent paths
through

F : v(F) = (number of edges) — (number of vertices) + 2

The measure v(F) is objective indicator of testability and maintainability of struc-
tured software, but cannot be considered as valid complexity measure because it does
not satisfy the Bache’s axioms 5 and 6.

Fenton et al. [FP97] provides hierarchical measures for software structuredness based
on his definition of the set of basic S — graphs and D — graphs (legal control struc-
tures suited for particular applications). The McCabe’s essential complexity measure
ev(F) = v(F) - number of D-structured primes subflowfraphs is proposed to capture
the overall level of structuredness in a program.

Detailed minimum number of test cases measurement for the structural testing ap-
proach is developed in [FP97] applying the prime decomposition theorem. The
definition of a measurement formula of calculating the minimum number of test cases
depends on each testing approach.

In object oriented software, the flowgraph-based structured measures are applicable
to measure the static internal structural complexity of methods within a class. The
class-level calculation for a class with m methods, each of cyclomatic complexity
vij, is: S; = Z;":l vij. In more general case, when c; is the static complexity of a
method;, the class-level complexity is calculated by the Chidamber and Kemerer’s

metric WMC = 3" ¢; [CK93]. The average complexity measurement at module
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level is useful because the algorithms may be self-contained or may reference other
algorithms within the class:

Z# of services in class u(serv'ice)
total # of services
At interclass level, the analog to the McCabe’s cyclomatic complexity is the Associa-

tion complexity measure AC defined as AC = A —C + 2P, where A is the number of

Average Complezity =

associations (edges) in the class diagram, C is the number of classes (vertices), and

P is the number of disconnected parts.

Data-flow measures based on graph theory

The data-flow measures have to capture the level of the inter-modular or intra-
modular data moving through a system [FP97]. The abstraction of the information
flow is a data dependency (oriented) graph, where the vertices are software compo-
nents (modules, classes, objects) and the edges correspond to the interchange of data
between the software components. These measures are applicable during the early
development phases.

The traditional software Henry and Kafura’s information flow measures [HK81] con-
sider the local direct flows, local indirect flows and the global flow (via global data
structures in common use) of the structured design. Fan-in of a module M corre-
sponds to the indegree graph characteristic and thus is theoretically valid. It shows
the number of local flows that terminate at M, plus the number of data structures
from which information is retrieved by M. Fan-out of a module M corresponds to the
outdegree graph characteristic and thus is theoretically valid too. It calculates the
number of local flows that start at M, plus the number of data structures updated
by M.

The original information flow complexity of a module M measure is calculated as

length(M) x ((Fan — in(M) x (fan — out(M))?

This definition is not theoretically valid from the theoretical point of view because
length and in - outdegree are not orthogonal characteristics of the underlying abstrac-
tion. Shepperd [Sh90] has refined the definitions of fan-in and fan-out, and modified
the complexity measure disregarding the length(M).
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In object oriented software, measures Fan-in and Fan-out refer to the number of
collaborating classes. The association and the aggregation relationships are counted
during the OO Analysis and OO Design phases. High Fan-in value indicates good
object designs and a high level of reuse. High Fan-out indicates excessively complex
dependence on other modules [HS96].

The association and the aggregation relationships counting doesn’t take into cousid-
eration the number of references made (statically or dynamically) to the collaborating

class. Thus, it is irrespective of the amount of collaboration.

3.6.1 Application Size Measurement

The internal product quality attribute which can be measured statically and dynam-
ically early in the life-cycle is the size of the software system. The discussion of the
sources of size and its different aspects are given in [FP97] and [W97].

Fenton et al. [FP97| define three criteria for the factor size: length (physical size of
the product), functionality (the quantity and quality of functions supplied by the
delivered product or in a description of how the product is supposed to be) and
computational complexity of the underlying problem.

Whitemire [W97] is refining the notion of length in three more precise views, namely
population (static counting of elements in a set of objects), length (defined as static
counting of elements in a chain of connected physically or conceptually elements)
and volume (dynamic counting of elements in a set of objects). The author argued
that the computational complexity of the underlying problem is not a static aspect
of the size of an application, but dynamic design measure. Therefore, Whitemire
defines four aspects of software size: population, length, volume and functionality.
The functionality is defined by Whitemire as “the set of functions derived from the
source” (i.e., the set of functions requested, the set of functions delivered) and means

static counting of elements in a set of relationships between the elements of a system.

Axiomatic Approach

Population and functionality are based on the theory of natural numbers and are
discussed in the section 3.5. Volume is a dynamic measure discussed in the section
Measures Based on State Spaces.
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Length measurement is defined as “the number of elements in a chain of connected
elements” where the connections are physical (graph representation) or conceptual
(tree representation). Whitemire [W97] lists the following axioms for length:

Axiom 1. Length is nonnegative

Axiom 2. Length can be null

Axiom 3. Length is monotonic non-increasing for connected elements
Axiom 4. Length is monotonic nondecreasing for elements in different chains

Axiom 5. Length of a set of disjoint (non-overlapping) chains is the maximum of
the lengths of the member chains

3.6.2 Measures Based on Graph Representation of the OO
Design

The quality of the design is essential for the economics of object oriented software
development, therefore most of the publications on object oriented software metrics
are dedicated to the quality of object oriented design. To make use of the measure-
ment during the object oriented design process, the components of the design have
to be measured directly in order to assess the course of the design. The Object Ori-
ented Design properties that can be measured directly are: coupling between objects,
inheritance hierarchy, cohesion and application size.

Measurement of Coupling in the OO System

Notion of Coupling. The abstraction used to model the coupling is a directed
graph. Coupling is an internal product attribute that describes the nature and extend
of the logical/ physical connections between the components of a system.

There are two general classes of coupling: necessary (required to support interaction
among components of the system); and unnecessary as result of bad design (results
in low modifiability of a system). A system may be a component in a larger system,
in which case it is called ‘subsystem. The IEEE standard [IEEE90] defines coupling

13

as “ a measure of the interdependence among modules in a computer program”.
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Coupling is defined in [W97] as measure of strength of the physical connections
between components of a system.

The only physical connections which may exist between classes are instances of the
relationship types defined in the formal object model: inheritance, association, ag-
gregation. Inheritance coupling is the degree to which a derived class uses inherited
attributes and methods. Interaction coupling is the degree to which information in
a message between two objects is used by the receiving object. Abstract coupling
is presented when a class is dependent only on the type or interface of the abstract
class, not on the implementation of its properties (attributed or behaviors). This
form of coupling is helpful when avoiding compile-time dependencies between classes
in a design.

The coupling within a class is manifested by the connections between the methods of
a class and its state information. The methods can be coupled to each other when
they access directly the attributes of a class. Any time one method in a class calls
another method in same class, the two methods are coupled.

The three kinds of coupling identified in [LH93| are

e coupling through inheritance,
e coupling through message passing, and
e coupling through data abstraction.
This classification differs from the classification proposed in [W97]:

1. Interface coupling Whenever an object refers to another object through its

interface methods, interface coupling is said to exist between the two objects.

2. Inside internal coupling This is the result of coupling of the methods to the
object’s attributes, or of the methods of the component object’s attributes that

make up the a composite object.

3. Outside internal coupling This occurs due to the knowledge that one class

has of another. There are two forms of outside internal coupling:

e One of a pair of otherwise unrelated objects may access internal, even
private, attributes or functions of the other object.
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e A specialization accesses attributes and methods of its generalization in a

way other than through the generalization public interface.

enditemize

Axiomatic Approach. Whitemire ( [W97]) is summarizing the theoretical ap-
proaches to the notion of coupling and lists the following axioms for the coupling of

a design component C (cu(C), where the underlying abstraction of a design is graph
G=<V,E>:

Axiom 1. Coupling is nonnegative

Axiom 2. Coupling can be null

Axiom 3. Adding an inter-component relationship does not decrease coupling
Axiom 4. Merging two components does not increase coupling

Axiom 5. Merging two unconnected components does not change coupling

Axiom 6. Coupling forms a weak order

Examples of Valid Measures. The following metrics illustrate a possible way of

coupling direct measurement based on graph representation:

e the MOOSE [CK93] metric Coupling between objects/classes

e Liand Henry [LH93] metric Message passing coupling and the MOOD [BaPS98§]
coupling metric.

Measurement of Cohesion in OO System

Notion of Cohesion. Cohesion is an internal product attribute defined as “degree
to which the tasks performed by an entity are functionally related”, or, in other words,
the degree to which the class describes a single abstraction. It can be measured
directly in a white box fashion by examining measure’s intervals.

The traditional view of (structural) cohesion defines it in terms of the connections

between components of a class or a module. Chidamber and Kemerer [CK94| define
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cohesion in terms of the intersections of instance variables used by the methods. The
Chidamber and Kemerer’s metric Lack of Cohesion in Methods (LCOM) [CK94]
illustrates a possible way of direct cohesion measurement.

A different view on cohesion is to define it in terms of singleness of purpose (semantic,
or logical), i.e., as the degree to which the entities (such as class, an operation,
or a module) contribute to the carrying out of a single, identifiable purpose. The
measurement of the following two forms of semantic cohesion may be carried out by

examining the public interface of the design component:

1. The strength of relationship between the external properties of a component

and the external properties of an abstraction it implements;

2. Contribution of the internal elements of a component to providing the external
properties.

Axiomatic Approach. Whitemire ( [W97]) defines the cohesion coh(r,a) as a
relation between the abstraction of a design component = and the abstraction of the

corresponding domain object a, and is proposing the following axioms for cohesion
measurement:

Axiom 1. Cohesion is nonnegative
Axiom 2. Cohesion is independent of size
Axiom 3. Cohesion can be null

Axiom 4. The cohesion is an external characteristic of a collection of components

(independent from the internal structure of the components).

Axiom 5. Cohesion forms a weak order

Examples of Valid Measures. Whitemire is giving a theoretically valid measure
of cohesion defined as:

|z\a]

coh(z,a) =1 —
(z,a) Tz
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where | z \ a | means the set of attributes in z that are not in the domain object a.
The measure is on the absolute scale. coh reach its maximum (corresponds to the
best case) when | z\ a |=0.

A system measure of cohesion is given in [FP97] as:

# of modules having functional cohesion
total # of modules

cohesion ratio =

Measurement of Class Inheritance Hierarchy in OO System

Notion of Inheritance. The inheritance principle allows the incremental defi-
nition of the classes by reusing previously defined classes as the basis for new ob-
jects. According to Henderson-Sellers [HS96|, inheritance is an internal attribute
of OOD that reflects the object-to-object dependency and class-to-class visibility
requirements. The result of inheritance is a coupling between classes/objects. Inher-
itance can be considered as sharing of declarative properties such as attributes and
constraints, and thus is rooted in the static measurement. There are two approaches
to classifying inheritance: single (allows a subclass to have only a single parent class)
vs multiple (a subclass may inherit from more than one parent class), and specifica-
tion inheritance (a-kind-of relationship) vs implementation inheritance (or incidental
that deals primarily with code reuse).

The underlying abstraction of the class inheritance hierarchy is a tree. The char-
acteristics of the tree morphology (size, length of path/walk, distance between two
vertices, depth of a tree, height and width of a tree) are theoretically valid defini-
tions for the fundamental measures of the inheritance. Complete discussion of the

inheritance measures is given in Henderson-Sellers [HS96].

Examples of Valid Inheritance Measures. The existing measures are: the
Chidamber and Kemerer’'s metric depth of inheritance tree (DIT) [CK93], called
also nesting level within the inheritance hierarchy; Chidamber and Kemerer’s met-
ric Number of Children of a Class; (NOC;); and the following listed in Henderson-
Sellers [HS96] measures: Maximum depth of inheritance tree; Mean depth of inheri-
tance tree; average NOC for the whole inheritance tree; number of distinct inheritance
hierarchies within a system.

Inheritance is an essential future of the object oriented paradigm. Its use results in
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coupling between classes/objects. Some authors argue that inheritance reduce the
actual design complexity. Another existing opinion is that the use of the inheritance
provides decrease of the maintainability level of the system.

3.7 Information Theory Based Software Measure-

ment

Information theory based software measurement is used to quantify objectively the
software complexity in terms of an amount of information based on some abstraction
of the software. The information content of the software product is synonymous with
the complexity of the product [KA94|, so measuring the amount of information is
assessing the quality improvement and the maintainability of the software system.
The information theory based measurement is objective because it evaluates the ab-
straction of a software product independently of the software notation to be used and

the life cycle phase to be applied in.

3.7.1 Notions of Information Theory

There two fundamental information theory notions: Entropy and Excess-entropy.
Entropy is information theory measure of the average information of an event. Con-
sidering a set of n events and their probability distribution {p;,...,p,}. the formula

for calculating the entropy H is:

H(py,....pa) = — )_ pilog, p;

The definition of the entropy of a k - partition of a set of n elements, where the

subset; has n; elements and Z _ i =m, is:

H = —Z—log2

The maximum entropy (when all events are equally likely) is H = log, n. The unit
of measure is bit. The basis for the probability distribution of the n possible events

is the key modeling decision when measuring software complexity with entropy.
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Excess-entropy is information theory measure of the interaction between subsystem
components or similarities among the software products. The excess-entropy C is
defined as the difference between the sum of the entropies of parts and the entropy
of the whole. The formulas for the calculation of the excess-entropy C of a set of n
random elements {ely,...el,} are:

Clely,...eln) =Y Hlel;) — H(el,, . . .ely)
i=1

H(ely,...el,) = — Z plely,...el,) log, p(ely, .. el,)
all combinations of el; values
The definition of the interactions among the elements is the key modeling decision

when measuring software complexity with excess-entropy.

3.7.2 Measures

For the software complexity models that define an abstraction of a software product
as a set of objects partitioned into k equivalence classes by some attribute, the entropy
is interpreted as the average complexity of the elements of the set.

For the software complexity models that define an abstraction of a software product
as a graph. the entropy can be interpreted as the average complexity of the graph.
The Mowshowitz’ automorphism entropy H, measure of the symmetry of a graph,
and chromatic entropy H. measure of the information content of graph connections,
can be used to calculate the information content of the graph.

When the software complexity model uses non-quantitative data discrete probability
distribution, an object-predicate table is proposed to model such data, and an excess-
entropy to measure the complexity of the interaction among objects via predicates in
common use.

For the software complexity measurement modeled as continuous random variables
from a multivariate distribution, the covariance matrix entropy represents the average

complexity of system elements, and the excess entropy represents the correlation

among the measurements.
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Measures Applicable during the Specification Phase

The specification measures reviewed in Khoshgoftaar et al. (1994) are Hellerman mea-
sure of software work w(f); Paulson and Wand application of w(f) as a measure of
a document’s complexity; Coulter, Cooper and Solomon problem space (PS) entropy
H(PS) = log|PS|. The reviewed measures provide an evaluation of the complex-
ity of alternative decompositions of the high level software system description into
components.

The first two measures are based on the inputs and outputs of a function f as stated
in the software specification. The last measurement model defines a problem space
PS as all possible execution time output states allowed by the software specifica-
tion. The measures reviewed provide an evaluation of the complexity of alternative

decompositions of the high level software system description into components.

Measures Applicable during the Design Phase

The design measures reviewed in Khoshgoftaar et al. [KA94] are Mohantly excess-
entropy measure of system structure complexity via shared information, applied to
the design phase; Lew, Dillon and Froward’s system complexity measures based on
control/data messages passing between components, applied during the detailed de-
sign phase (the Mowshowitz’s approach of calculating entropy of graph is applied);
Lew’s component complexity measure AM; and system complexity measure K defined
as Euclidean norm of component complexity M;. Alternative designs at comparable

level of abstraction could be evaluated on the basis of Mohantly’s design complexity

measure.

Measures Applicable during the Implementation Phase

The implementation measures reviewed in Khoshgoftaar et al. (1994) are Chen’s
control structure entropy Z, based on a control flow graph (counts of I F’ statements
in a program code); Berlinger’s code complexity measure M and language entropy
H (the amount of information per token in the programming language subset used
by the application); Cook’s measure for module complexity M based on Berlinger’s
measure M and applied to assembly language programs; Harrison’s module complex-

ity measure AICC based on the distribution of operators within a program; Davis
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and LeBlanc’s entropy measures of the structure of chunk connections, content or
size (chunk is a sequence of statements with only one In control statement at the
top), based on equivalence classes; Robillard and Boloix complexity measure Ipgy
based on the excess entropy calculation of the interconnections between statements
in a program; Khoshgoftaar and Munson’s methodology for combining primitive
software measures into a synthetic system complexity measure v, based on excess
entropy; Zhuo, Lowther, Oman and Hagemeister empirical validation of v with re-
spect to maintainability (- is based on the Halstead V'; Extended McCabe cyclomatic
complexity; Lines of Code; Lines of Comments; Number of statements between two
references to the same variable SP). Low 7 corresponded to good level of maintain-
ability.

Most metrics have not been empirically validated.

3.8 Open Issues in Software Measurement

Software measurement issues surveyed in the previous sections mainly addresses soft-
ware measurement for untimed transformational systems. A transformational system
is a system which starts in an initial state for a given input and produces an output in
its final terminating state. Modeling a transformation as a function between two suc-
cessive states, a systematic construction of fundamental measures and measurement
models were discussed.

A reactive system is not just transformational, for it has to have a certain level of
synchronization. A real-time reactive system must have synchrony and timeliness.
Thus, we need to have a rigorous and formal approach to real-time reactive software
measurement.

There is insufficient work on the proper use of abstraction necessary for construct-
ing measurement models, measurement of data collection, and analysis for real-time
software. In particular, we need to address quality assessment, and the measures
necessary to evaluate/predict quality of real-time reactive systems. These issues are
addressed in the following chapters.

Further research is necessary to address system evolution, and the measures necessary

to predict the reliability of evolving systems.
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Chapter 4

Quality Model for Real-Time

Reactive Systems

4.1 Notion of Quality

The concept “quality” is highly context-dependent. The quantitative characterization
of a quality is referred to as a quality measure. The quality of a software product or a
process can be characterized by the set of quality factors that, when evaluated, show
if the software meets prescribed conditions. This may serve as a basis for reaching
product release decisions, as an aid in interpreting whether improvements have been
achieved, and for many other purposes.

The model of software quality aims to predict the level of quality of the software
product, and is based on quality factors. The problem is to incorporate the right
factors into the quality model, to define the relevant criteria for the quality factors
in that model. and to develop measures that will be correctly characterizing those
criteria. The following are some of the views of software quality and of the quality
measurement [KP96}:

1. Measuring the User’s View

The users expect usability, reliability and performance of the software product.

2. Measuring the Manufacturing View

The suggested characteristics to measure are the defect counts and rework costs.
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Figure 22: Nesi and Campanai’'s FCM Quality Model for Real-Time Software

3. Measuring the Product View

A product view of quality considers the product’s internal quality attributes.
The measurement of internal quality indicators assess external quality. Val-
idated models that link the product view to the user’s view are needed to

confirm that internal product quality assures external quality.

4. Measuring the Value-Based View

This view is considering the trade-offs between cost and quality. The measure-

ment is necessary to compare the product cost with the potential benefits.
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4.2 Existing Quality Measurement Models

The aim of quality control is to provide quality of the final product that is satisfactory
according to the quality requirements defined a priory.

The well-known existing quality models are the McCall’s quality model [M77], Boehm’s
quality model [BBKT78|, ISO 9126 Standard Quality Model [ISO91], Factor-Criteria-
Metrics quality model [IEEE93]. In [W97] the quality of object-oriented design is
modeled in terms of static design characteristics of size, complexity , coupling, suf-
ficiency, completeness, cohesion, primitiveness, similarity, and volatility. The char-
acteristics have been defined in terms of the formal model of objects (based on cate-
gories), developed by the author to use as a basis for static measurement of a software
design. The proposed measure construction technique [W97] has been applied to
construct measures of the above characteristics. Each measure has been validated
theoretically by showing how the measure satisfies the requirements of the quality
characteristic.

Among the most widely accepted models for evaluation of the quality of the product
that can be followed to ensure product quality, we mention ISO/IEC Standard [SO-
9126 [ISO91], and IEEE Std 1061-1992 [IEEE93].

ISO 9126 provides the definition of the characteristics and associated quality evalua-
tion process to be used when specifying the requirements for and evaluating the qual-
ity of software products throughout their life cycle. The characteristics are function-
ality, reliability, usability, efficiency, maintainability and portability. This standard
does not provide sub-characteristics and metrics, nor the method for measurement,
rating and assessment.

In Software Quality Factor-Criteria-Metrics Framework [IEEE93| the technique to
build a quality model according to the organization goals and management require-
ments, is defined. The technique to build such models is also called Goal-Question-
Metric approach and is described in [FP97]. Quality models have hierarchical struc-
ture based on the decomposition of quality requirements into measurable components.
The hierarchical model is useful because it provides flexibility when modification of
the model is necessary. The model’s flexible hierarchical structure is obtained by
decomposition of every quality requirement in quality attributes (factors) from the

management and user - oriented views; decomposition of each factor in software -
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oriented attributes (criteria) from the technical personnel views. Quantitative repre-
sentation (software metrics) of the characteristics of each criteria are identified and
associated to the established criteria and factors.

Both approaches are important and both require the presence of a system for man-
aging quality.

There is, however, a lot of discussion on these standards and the certificates accompa-
nying them. Adhering to strict software-quality standards can in some circumstances
be counterproductive because the software development process has to be attuned to
the specific systems development environment. Fenton et al. [FP97] suggest the mon-

itoring of the software quality in two different ways:

1. Fixed model approach. This approach assumes that the quality factors

needed to monitor a project are a (sub)set of those in already published model.

2. Define your own quality model approach.

Real-time software is considered to be different from other software due to its time
constraint feature. Applying measures, created for other approaches. to quantify the
factors of real-time reactive systems quality would lead to invalid measurement. In
the measurement of the real-time systems, a lack of adherence to theoretically valid
principles is still present. In addition, real-time reactive systems measurcment in-
volves specific need to give more evidence to system’s behavior, thus limiting the
applicability of existing quality models and measures. Figure 22 shows a model for
controlling the quality of real-time development process, as presented in [NC96].
The implementation of the measurement model has been integrated in the devel-
opment process, mainly focused on the specification of embedded reactive systems.
The above measurement framework has allowed flexibility in the estimation of sys-
tem quality characteristics at each phase of software life-cycle using a characteristic’s
weight (depending on the phase) technique. A set of metrics has been selected on the
basis of their intuitive correlation with the respective quality characteristics, and their
efficiency has been confirmed by experimental data, based on experimental work. Ac-
ceptable ranges of measures have been established. Most of the measures have been
newly defined, while the others have been defined as equivalent to existing object
oriented measures. The measurement framework is believed to be useful as objective

support for developers in all phases of software life-cycle, even if the system is only
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partially specified, and to be applicable to other object-oriented approaches with mi-
nor changes. The week point in the above work is the lack of theoretical validation
of the proposed measures. Consequently, there is no guarantee of correctness of the

quality model when applied in a different environment.

4.3 Quality Model

Our approach is to develop a model for controlling the quality in real-time reactive
systems based on the most widely accepted characteristics of software ( [I[EEE93],
(ISO91], [FP97], [BaPS98], [BBMI6], [BGI3|, [Bi96], [CK94], [Ch97], [COTTI5], [EMIT]),
and the previous work carried out in the TROMLAB. The quality is decomposed from
the management and user-oriented views in quality factors complexity, maintain-
ability, testability, test adequacy, reliability and functionality. Figure 23
illustrates the relationship between object oriented quality factors, criteria and met-
rics. In the following chapters we develop a definition of each one of these factors as
well as the decomposition of each factor in software - oriented attributes (criteria).
We have chosen the define your own quality model approach to develop a measurement
framework for the quality control in the TROMLAB environment for the following

two reasons:

e Existing models and measures do not apply to real-time reactive systems. Mea-
surement of a real-time reactive system should not only include its structural
information but also its dynamic information. For instance, a controller object
that interacts with three trains and one gate is structurally and behaviorally
different from a controller object that interacts with five trains and two con-
trollers. Yet, these two controller objects in TROMLAB can be initialized from

the same generic reactive class.
e Most of real-time reactive systems operate in safety-critical applications.

For instance, a safety property of the Train-Gate-Controller system is that

whenever a train is in the crossing the controller should be monitoring the
gate and the gate must remain closed
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This safety property should be verified in the system design and must be enforced in
an implementation of the design. Hence, quality measurement can not be restricted
to the code level. It must be applied at the specification, design, and implementation
levels.

The quality factors have been defined in terms of the TROM formal model, and are to
be used as a basis for quality assessment of a software development in the TROMLAB
framework. In order to guarantee the validness of the measures, each measure has

been constructed from theory out, and the representation tested for tracking and
consistency.

FACTORS CRITERIA MEASURES
Complexity
Architectural Complexity H, Hi, C, Cmax
Maintainability

Testing Distance td
Test Adequacy Worst-Case Coverage — e
\[Hausdortf Distancedy
Testability Controllability C_input, Cmax
Observability C_output, Cmax
Functionalit*' e A o omation FC
Reliability Level of Certainty —{Excess-Entropy

Figure 23: FCM Quality Model for Real-Time Reactive Systems
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Chapter 5

Measurement related to

Complexity

5.1 Notion of Complexity

The term software complexity, referring to the difficulty in comprehension, develop-
ment and analysis, was introduced in late 1960. Complexity is an internal quality at-
tribute that indicates the degree to which a system/component has a design/implementation
which is difficult to understand and verify. There are different interpretations of com-
plexity from the measurement perspective, namely: algorithmic complexity of the
algorithm implemented to solve the problem; computational complexity of the un-
derlying problem; cognitive complexity (i.e., difficulty of understanding a problem);
and structural complexity. In the present work the perspective is to measure the
structural complexity of the high-level software description and software design, thus
when referring to complexity we will mean the structural complexity of the software.
The structural complexity is decomposed into syntax complexity, inheritance
complexity, and interaction complexity [KKKC96|.

Complexity is usually the main factor on which the quality control of the object
oriented development process depends. In this chapter, we review the existing com-
plexity measures, and propose measurement to quantify the level of complexity in
real-time reactive systems development.

There is not much work done in the area of complexity measurement and management

for real-time reactive systems. Our approaches to assess architectural complexity,
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testing complexity, and implementation complexity are new. A static analysis tech-
nique useful in design understanding - architectural slicing, is introduced and used
in our maintainability measurement model. We discuss the different complexities in
the context of the process model shown in Figure 1 for developing real-time reactive
systems, propose measurement to quantify the level of complexity in different phases,
and methods to manage them.

Much of our work seems applicable to frameworks and systems other than TROMLAB

as long as it is modeled on labeled transition systems in an object-oriented paradigm.

5.2 Architectural Complexity Measurement

The total complexity of an object-oriented system’s design is composed from the
internal complexity (of the classes) and the interface/architectural complexity ( a
function of the relationships among the components of the software).

Major factors of software complexity are cohesion, coupling, modularity, and module
complexity. There are a few existing sets of object-oriented design software metrics
specifically designed to measure the static complexity in the design of classes.

In the following sections a number of existing object-oriented design static complexity

metrics are described.

5.2.1 Existing Measures

We will focus on metrics that allow the prediction of future development efforts, are
objective (do not depend on the judgment of a human user and can be preferably ex-
pressed in a machine-executable algorithm), and can be applied at reasonable cost. In
this chapter, the above mentioned metrics are described in detail, and are summarized

in the Factor - Criteria - Metrics quality model (Figure 24).

MOOSE set of OO Metrics

The Chidamber and Kemerer's (MOOSE) [CK94] set of six implementation-independent
metrics WMC, DIT, MOC, CBO, RFC, LCOM are specifically designed to measure
the complexity in the design of classes, as it is the central issue in the object ori-

ented paradigm. The metrics are based on measurement theory and are evaluated

analytically.
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Weighted Methods Per Class (WMC)

Considering a Class C with methods M,,... M, defined in the class, let ¢; be the
static complexity of the method M;.
Definition:
WMC ="
Range of metric’s values: [0... Nyl

A higher value indicates higher static complexity of the class.

Depth of Inheritance Tree (DIT)

Definition:

DIT = Maximum Length from the Node to the Root of Inheritance Tree
Range of metric’s values: [0... Np;r]-

A higher value indicates higher complexity of the design and class maintenance effort.

Number of Children (NOC)

Definition:

NOC = Number of Immediate Subclasses Subordinated to a Class in the Class
Hierarchy
Range of metric’s values: [0... Nnoc)-

A higher value indicates higher complexity of the design and class maintenance effort.

Coupling Between Objects/Classes (CBO)

Definition:
CBO(Class) = Number of Other Classes to which the Class is Coupled
Range of metric’s values: [0... Ncgol.

A higher value indicates higher complexity of the design.

Response For a Class (RFC)

Definition:
RFC = Number of Methods that can be Invoked in Response to a Message to an
Object of the Class

Range of metric’s values: [0... Ngpc)-
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A higher value indicates higher class maintenance effort.

Lack of Cohesion in Methods (LCOM)

Let P = { Method Pairs Whose Similarity is 0 },
and Q = { Method Pairs Whose Similarity is Not 0 }

Definition:

rcom = { ‘F1-1QL if 1P1>1Q|

, otherwise
Range of metric’s values: [0... Nicoul-

A higher value indicates higher class maintenance effort.

The six metrics are designed to measure the three non-implementation steps in
Booch’s OOD methodology [Chidamber 1994] :

1. Identification of Classes (Objects) (WMC, DIT, NOC)

(3]

. Identification of the Semantics of Classes (Objects) (WMC, RFC, LCOM)

3. Identification of the Relationships Between Classes (Objects) (RFC, CBO)

The metrics are based on the measurement theory and are evaluated analytically

against the subset of Weyuker’s axioms of complexity in [CK94].

In [BBM96] the MOOSE metrics RFC, NOC, DIT, CBO, WMC are empirically
validated as predictors of fault-prone classes if used early in the life-cycle (high-
or low-level design).

Five of the MOOSE metrics and other metrics defined in [LH93] have been empirically
validated and reported to be adequate in predicting the class maintainability.

Li and Henry’s Metrics

The metrics MPC, DAC, NMC defined in [LH93| have been empirically validated

and reported to be adequate in predicting the class maintainability:
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Message-Passing Coupling M PC

Definition:

M PC = Number of Send Statements Defined in a Class

Range of metric’s values: {0... Nypc)-

Higher value indicates higher level of dependency of the implementation of the local

methods on the methods in other classes and higher maintenance effort.

Data Abstraction Coupling DAC

Definition:

The measure of the coupling complexity due to declaration of variables of Abstract
Data Type within the class.

DAC = Number of Abstract Data Types Defined in a Class

Range of metric’s values: [0... Npac].

Higher value indicates higher level of coupling complexity and higher maintenance
effort.

Number of Methods in a Class VAMC

Definition:

Class interface increment metric.

NMC = Number of Local Methods in a Class
Range of metric’s values: [0... Nyl

Higher value indicates more complex class’ interface and higher maintenance effort.

Defect Density and Rework Measurement: MOOD

The MOOD metrics [BaPS98] have been created to measure independent aspects of
the design objectively, size independently and language independently. The MOOD
metrics measure encapsulation (MHF and AHF), inheritance (MIF and AIF), poly-
morphism (POF), and message-passing (COF').

Method Hiding MHF

Let TC be a total number of classes; My(C;) - a total of methods defined (not in-
herited); V(M,,;) - the measure of visibility (% of the total classes from which the
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method M,,; can be called).
Definition:

MHF — Sint Zmat (L= V(Mms)
21_1 IV[d(C)

Attribute Hiding AHF

Let 44(C;) be a total of attributes defined (not inherited); V'(A,;) - a measure of
visibility (% of total classes from which A,;; can be referenced).
Definition:

Ad(C.) )
arp = ZE TR0~ V()
21':[ "‘d(ct)

Method Inheritance MIF

Definition:

MIF = —g}ﬁ :;((g))
i=1 "\l
where
ML (Ch) = My(Cy) + M(C).
\[a(C ) is a total of available methods;
My(C)
Ci)

M (

is a total of methods defined;
is a total of inherited methods.
Attribute Inheritance Al F

Definition:

Ai(Ci)

AIF = 21—1”4,‘(0)

where

A(Ci) = Ad(C)) + Ai(C),

Aq(C;) is a total of available attributes,
Aq(C;) is a total of attributes defined,
4;(C;) is a total of attributes inherited.
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Polymorphism POF

Definition:

TC M,(Cy)
2,.=1[Mn(c, « DC(C))|

POF =

where

My(C;) = Mp(Ci) + M,(C;),

DC(C;) is the number of descendants; M, (C;) is a number of new methods
M,(C;) is a number of overriding/redefined methods.

Coupling COF

Definition:

SIAIS is — client(Ci, Cj)]
TC? -TC

where (TC? — TC) is the maximum number of couplings in a system with TC classes.

COF =

. l. iff the client — server relation erists
is — client(C,,C,) = { f ]
0. otherwise
Note: the client-server relation exists if the client class contains at least one non-

inheritance reference to a(method or attribute of a supplier class C,.

The measurement'’s effect on quality has been assessed individually for each MOOD's
metric by determining the correlation between the MOOD design metrics and the
object oriented implementation quality measures of defect (fault and error) density
and normalized rework (effort spent on repairing errors). MIF, COF, MHF and POF
were empirically validated proving to be statistically significant for predicting the
implementation quality criteria defect density (reliability factor) and rework
(maintainability factor) during the design phase.

5.2.2 Related Work

In order to be able to manage the complexity of the design, the information on the
actual level of complexity is needed.
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Real-time systems are considered to be different from other software due to their time
constraints. A recent study [CRS96] analyzes the applicability of traditional software
complexity measures to real-time software complexity measurement. The results of
the study show that the information flow measures seem to be more suitable for
real-time software than the classic control flow complexity measures.

In this section we propose new measures to quantify the level of complexity of the
reactive systems in the TROMLAB environment. We accept the results of the above
analysis and extend the choice of information theory based measurement for the design
complexity at architectural level. We separate information flow measures into in-
flowing and out-flowing measures for the testability, i.e., testing complexity prediction,
measurement purposes. We assess the complexity in the maintenance phase based on
a new technique named architectural slicing visualizing the architectural complexity

of system’s components, and their interconnections.

5.2.3 Approach

In TROMLAB, the design complexity is concerned with the behavior of the reactive
objects and the level of interaction between the objects. Let us consider an applica-
tion A and a system S that solves A. The system S can be constructed as a collection
of reactive objects {O,,...0O,} that interact among themselves in solving the problem
A. Each object’s state of S is described by the set of static attributes and their cur-
rent values. An object’s behavior is concerned with object’s state changes (internal
behavior) and message passing (request from another object to perform a service)
(external behavior). Therefore, the total structural complexity of the software sys-
tem is a function of the internal complexity (of the object’s internal behavior) and
the architectural complexity (of the interactions between the objects). The internal
complexity is mainly an implementation issue, and any structural complexity metric
would be applicable (for example, McCabe’s cyclomatic complexity [Mc76]). At the
design level, we are concerned with the architectural complexity only.

The architectural complexity may arise in two ways: the presence of a large number
of components and the fact that most of these influence many others. In our work,
the architectural complexity is viewed in terms of how the software components in-

teract through message passing mechanism. without considering the complexity of its

83



components. To manage complexity, it is sometimes possible to decompose hierar-
chically the system into a few subsystems with relatively weak interactions between
them. In their turn, each of this subsystems may be subjected to the same treatment.
The hierarchical decomposition of complexity then corresponds to the decomposition
of the total amount of information transfer. The information transfer between the
components is synonymous with the complexity of interactions within the software
system, so measuring the amount of information transfer is assessing the complexity

management in real-time reactive systems.

5.2.4 Requirements for Complexity Measures

The purpose of the architectural complexity measurement is a comparison of different
designs. Therefore the chosen scale is the ordinal one, and the constraint of the chosen
scale type for the ordinal representations (Cantor’s Theorem) is: VYa,b € A : a =<
b= ¢(a) < ¢(h)
The sufficient condition for the representation ¢ to exist is:

A is finite set and < is a weak order (connectedness. transitivity)
In our work, the mathematical model underlying the notion of coupling is a graph
whose nodes represent design objects and edges represent the connections between
them (see Figure 25). Let us denote a graph by G = (V" E), where V" is the set
of design objects and E is the set of communication links in V" (we denote by aRb
the link R between the objects a.b € V). Here, a design component means an entire
graph or any connected component in a graph.

The following properties should be met by all measures based on coupling:
1. (coupling is nonnegative)
coupling(G) > 0
2. (coupling can be null)
Vae V:({e€ E,bec V]e=aRb} =0}) = coupling(G) =0
3. (adding an inter component relationship does not decrease coupling)
VG, =V}, E\),Gy = (V3, Es) :

(3e € Esee ¢ E\ A (E, = EyUe)) = coupling(G.) > coupling(G,)
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4. (merging (o) two unconnected components does not change coupling)
VG = (W1, Ey), Gy = (Va, Ep) -
(EyNEy; =0AG3 =GLUG3) = coupling(G, o G3) = coupling(G5)

5. Coupling forms a weak order; design components can be ordered in terms of

level of coupling they contain

The mapping between the empirical structure and the numerical structure is described
by the mathematical model of the measure.

5.2.5 Mathematical Model

The architectural description in TROMLAB has two aspects to it:

static aspect: class structure diagrams, refinements of classes, and state machine
descriptions.

dynamic aspect: system configuration describes the objects in a subsystem and

their interactions.

Objects interact through message passing and synchronously change their states dur-
ing an interaction. For instance, when an object o, sends the message e! to object
02, the message e? occurs for object 0, and the objects change their states simulta-
neously.

For the architectural complexity measurement purposes, all the information related
to the interaction between objects via message exchanges, has to be extracted from
the TROMLAB design specification. The architectural complexity measures have
to quantify objectively the amount of information exchanged between the objects.
Information theory based software measurement is used to quantify the interaction
complexity in terms of an amount of information, based on some abstraction of that
interaction. Measurement based on information theory is objective because it evalu-
ates the abstraction of a software product independently of the software notation to
be used and the life cycle phase to be applied on. We define an object-predicate table,
in which each row is an object in the system and each column is a port in the system.

This table abstracts the interaction between objects:
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1, if port; belongs to object;
Object_Predicate Table(object;, port;) = “or is linked to a port of object;,

0, if this is not the case.
We quantify the complexity of interaction in terms of ezrcess-entropy on the object-

predicate table abstraction. In the past Emden’s original work on quantification of
information transfer model [E70] was adapted for calculating the level of complexity
of code [RB89], and for measuring the maintainability level of software specifications
[COTT95]. Ours is the first attempt to adapt the information transfer model to
reactive systems.

The excess-entropy C is defined as the difference between the sum of the entropies
of parts and the entropy of the whole. Let us consider an m-partition of a set of n
components such that Y- n; = n. The set of non-negative numbers {2¢,.. 2=}
is associated to the m partitions and }_; 2 = 1. The formulas for calculating the

i=ln

entropy H and the excess-entropy C are:

(A): H =logyn — 157 n;log,n;

n i=1

(B):C=Y"H - H
(C): H;=log,n; — ;l'-z:f':lpj log, p;

where H; is the entropy of a partition;, k; is the number of different column configu-
rations in the object-oriented table corresponding to the partition;, p; is the number
of columns with the same configuration; , and n; = Zf':l p;- where H; is the entropy
of a partition,.

Justification for choosing a row configuration as criteria for partition. The
row configuration indicates the channels involved in the communication process of the
corresponding object. Saying that row configurations are identical means that both
rows are communicating the same objects (RE: partition to which they belong to)
and they form a (sub)partition.

The calculation of H; depends on the interconnections between the objects that belong
to the partition;. If it is possible to decompose a partition into subsets with relatively
weak interactions between them, then H; is calculated using the entropy formula (A).
Otherwise formula (C) is used, where k; is the number of different row configurations
in the object-oriented table corresponding to the partition;, p; is the number of rows

with the same configuration; , and n; = Z?":l pj-
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In TROMLAB, the port links effectively determine the set of all valid messages that
can be exchanged among the objects through their ports. Therefore, in order to
define the abstraction of interactions as an object-predicate table, we consider the
port names as predicates that associate one object with another (through communi-
cation channels). The reliability of the software measurement depends on the rigor
of in the measurement approach. We follow the representational approach that re-
quires the definition of an abstract reactive model, formal description of the empirical

view of complexity in terms of that model, and the theoretically valid representation
(measure) for the complexity.

5.2.6 Architectural Complexity Measures

To quantify the architectural complexity in TROMLAB environment, let us consider
an m-partition of the set of n ports in mutually independent subsets such that n;
ports of each subset; (i=1,m) are connected by means of message passing through
port links. Clearly each number %* indicates the probability that a port belongs to
the partition;. The entropy H; is calculated considering only n; ports in the subset;.
In order to measure the level of interconnection independently of the size of the system

description, the following Architectural Complezity measure is proposed:
AC = £

Cmd.t

Chez:=(n — 1) log, n

Justification for C,,,.. In case all the n elements in a partition are interconnected,
thenm =n, H = loga n; Vi € {1,...n} : H; = logs n. The quantity C,,, represents
the maximum excess-entropy of a set of components and thus logically normalizes
the measure.

The range of the values of the AC measure is [0, 1]. The value 0 indicates that there
is no common information between the elements of a set, and the value 1 indicates
that all ports are linked.

To locally evaluate the contribution of a port to the architectural complexity of a
design, the Local Architectural Complerity (LAC) measure which reflects the rela-
tionship between the individual interconnectivity level of a port; (C;) and the level of
global interconnectivity (Cpe.) of the set.
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The formula for evaluating LAC depends on the cases considered in the previous
section, namely:

1. The given object belongs to only one set of interacting objects.

LAC is defined as a ratio between the weight of the interconnections for a given

object (H;) and the maximum interconnectivity (Cpq.) of the architecture:

2. The given object belongs to at least two sets of interacting objects.

LAC is defined as the ratio between the sum of the weights of all the sets j of
interacting objects the given object belongs to, and the maximum interconnec-

tivity (Cpaz) of the architecture:
LAC = &=

C'ma.:
The LAC measure values near 0 indicate that the influence of the object on the global
maintainability of the system is small, i.e., it is easy to maintain, and the bigger value

of LAC indicates more interactions between the objects.

We illustrate the architectural complexity measure computation on the Train - Gate
- Controller system shown in the Figure 18. This system is configured with 5 trains
(objects t,, ta, t3, L4, t5), 2 controllers (objects ¢, ¢2) and two gates (objects g,, g2).
In this configuration, the object train3 is allowed to interact with both controllers,
while the other train objects can only interact with one of the controllers. This
schematic drawing conforms to a system with different trains on specific routes. The
interactions are represented as a graph in Figure 25. The object-predicate tables for
the two connected components of the graph 25 are given in Figure 26.

There are two subsets resulting from the partition of the initial set of sixteen ports.
The first subset is composed of {C1,C2,C3, P1, P2, P3,G1, S1}, and the second one
of {C4, C5, C6, P4, P5, P6, G2, S2}. The values of the variables, in the Emden’s
model, for this case are: n = 16, m =2, ny = n, = 8, k = k = 4,

V j =1,4ep; = 2. The following expression gives the value for AC:

_ 2(log;8 — 5 37, 2log, 2) — (logy 16 — 1 Y-, 8log, 8)

AC 15log, 16
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en=16m=2,n = n, = 8, ky= ky = 4,Vje{l...4}: p;=2
eVie{1,2}: H;=log,8 — +3_,2 log, 2

o H=log,16 — L 32 8log,8

® Craz = 15 log, 16

o LAC for the objects t,,ty,¢1,91: LAC = E‘%ﬁ =0.03

e LAC for the objects t4, t5,c2,92: LAC = C—-’:; =0.03

e LAC for the object Ty: LAC = i + - =0.06

Testing AC and LAC

The second version of the 5 trains - 2 gates - 2 controllers subsystem configuration
shown in Figure 27 is more complex due to the added connection between the objects
t, and c; (i.e., version, < version;). The added connection between the objects ¢,
and c, affects the values for the following model variables (compared to version 1):
n=18,n,=10,k; =5, Hy = log, 18 — £ 32, 2log, 2, Crmaz = 17 log, 18.

The above testing of the AC and LAC models with real data has demonstrated their

tracking and consistency with changes in the architecture.
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5.3 Maintainability Measurement

The goal of this section is to assess the maintenance prediction based on the complex-
ity of the designs, and to propose methods to localize changes in the designs during
the maintenance phase.

Software maintenance is the modification of a software product after delivery to cor-
rect faults, to improve performance or other attributes, or to adapt the product to a
changed environment. Software maintenance is classified into four types: corrective,
adaptive, perfective and preventive. Corrective maintenance refers to fixing a pro-
gram. Adaptive maintenance refers to modifications that adapt to changes in the data
environment, such as new product codes or new file organization or changes in the
hardware of software environments. Perfective maintenance refers to enhancements:
making the product better, faster, smaller, better documented, cleaner structured,
with more functions or reports. The preventive maintenance is defined as the work
that is done in order to try to prevent malfunctions or improve maintainability.

The system maintenance effort is evaluated based on two criteria. namely, the nor-
malized rework and duration of the rework. The normalized rework is the average
effort spent in realizing maintenance activities (i.e., corrective, adaptive, preventive
or perfective), and has to be evaluated during the maintenance phase. The duration
of the rework is the speed of implementing the change. The related process metric
proposed in [FP9T7] is the Mean Time to Repair (MTTR).

We usually think of software maintenance as beginning when the completed product
is delivered to the client. While this is formally true, in fact decisions that affect the
maintenance of the product are made from the earliest stage of design. A critical
aspect of any object-oriented system design is its software architecture that describes
a high-level organization as an interacting set of computational elements. Preserving
and/or increasing the reliability of software during maintenance requires that software
engineers understand how various components of a design interact. When a software
system is not designed for maintenance, it exhibits a lack of stability under change.
A modification in one part of the system has side effects that ripple throughout the
system, turning "one small change” into a major rewrite of the product. Thus. the
main challenges in software maintenance are to understand existing software and to

make changes without introducing new bugs.
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Maintainability is a prediction of the ease with which a system can evolve from its
current state to its future desired state. Maintainability indicates the maintenance
effort in the object-oriented system, and depends on the level of objects coupling
through communication mechanisms provided by the object-oriented paradigm. The
ever-changing world makes maintainability a strong quality requirement for the ma-
jority of software systems.

The maintainability measurement during the development phases estimates the main-
tenance effort in the object-oriented system, and therefore evaluates the likelihood
that the software product will be easy to maintain. Maintainability measurement can

be useful in comparing alternative designs in terms of their maintainability.

5.3.1 Related Work

The maintainability cost model is reflecting the decomposition of the factor main-
tainability in quality criteria. IEEE Standard Std 1061-1992 [I[EEE93] suggests the
following Factor-Criteria-Metric model for the Maintainability Factor:

Correctability Criteria - The degree of effort required to correct errors in software

and cope with user complaints. The metric types suggested are Effort and Fault
Counts.

Expandability Criteria - The degree of eftort required to improve or modify the
efficiency of functions of software. The metric type suggested are Degree of
Testing and Effort.

Testability Criteria - The effort required to test software. The metric types suggested
are Effort and Change Counts.

The idea to use software complexity measures in order to predict the maintenance
effort and/or to compare designs in terms of their maintainability, is not new. Various
object-oriented software design complexity measures have been published as a mean
to ascertain the maintainability of the implementation.

In [WKHZKRSP2001], some enhancements to existing object-oriented code mea-
sures, and additional code measures are proposed, based on experience with measur-
ing C++ and Java codes.
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In [LV2000], the quantitative assessment of the impact of requirements changes
on maintenance phase, and the quantitative estimation of costs of those changes,
are addressed. The above approach involves product measurement to characterize
quantitatively the elements in the process and the product models.

In [Sch99], software product and process measures are used to predict the stability
of a software maintenance process in terms of reliability and risk of deploying the

software. The approach is illustrated on the NASA Space Shuttle flight software.

5.3.2 Approach

Maintenance can be difficult because of bad architectural design decisions. [n our
work, the maintainability is estimated based on the complexity of interactions between
the objects in the design architecture. The architectural complexity is viewed in terms
of how the software components interact through message passing mechanism (that is,
a type of coupling), without considering the complexity of its components. Coupling
predicts the difficulty of changing the program and the likelihood of errors introduced
by these changes.

Preserving and/or increasing the reliability of software during maintenance requires
that software engineers understand how various components of a design interact. We
differentiate between a given modification (primary modification) and the changes
resulting from it in the affected part of the system (secondary modifications).

Our approach cousists in assessing quantitatively the maintenance effort related to the
secondary modifications that are due to interactions between the objects. It visualizes
the maintainability of the design objects (maintainability profile), and reduces the
maintenance effort through architectural slices that would localize the set of design
objects to be affected by a given change.

Our maintainability profile is a visualization of the maintainability level for each ob-
ject, based on the complexity of interactions between the objects in the corresponding
architectural slice.
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5.3.3 Maintainability Profile

We propose a static analysis technique useful in design understanding - Architectural
Slicing. Architectural slicing extracts all the design objects relevant to the compu-
tations of a given one. Before a developer changes a particular object, architectural
slicing can be used to decompose the design into two parts, one to be affected by the
change, and another that will be unaffected by the change. Then, design retest will
be required with respect to the affected part only. Architectural slices can be used to
reduce the effort in examining software by allowing a maintainer to focus attention
on the set of objects to be affected by the change only, one object at a time. Before
changing the design of a particular object, the maintainer can use the architectural
slice profile to partition into two groups - one consisting of the parts that will be
affected by the design change and the other consisting of parts that will be unaffected
by the design change. Only the group that is affected by the design change is required
to be subjected to further analysis.

This approach would help in selecting a better design from among alternative design
choices. Moreover, the stress points that usually lead to difficulties during system
maintenance are visualized graphically through maintainability profiles. We illustrate

our approach on the train-gate-controller case study.

Architectural Slice Extraction

The graph for communication links allows the extraction of an architectural slice for
a specific object. The graph is made up of connected components (i.e., equivalence
classes of vertices under the “reachable from” relation). Each vertex corresponds
to a communication channel label, therefore there is one set of interacting objects
corresponding to each component. For the purpose of defining the architectural slice

for a given object, we have to consider the following cases:

1. The given object belongs to only one set of interacting objects. In this case,
the above set of objects would define the architectural slice for the participating

objects.

2. The given object belongs to at least two sets of interacting objects. In general,

one object may belong to different sets of interacting objects. In this case,

95



the architectural slice is the union of the sets to which the interacting object
belongs.

Ilustration of architectural slicing for Figure 18.

The objects in the system depicted in Figure 18 are t,, t,, t3, ¢4, ts5, ¢i, €2, g1, and g».
The slices for the objects t, and ¢, consist of the objects {¢,, t,, t3, ¢;, g1}. The slice
for the object t; consists of the objects {t,, t2, t3, ty, ts, 1, g1, C2, g2}. The slices for

the object t, and t5 consist of the objects {t3, ty, c2, g2}

Maintainability Profile

The maintainability profile depicts graphically the relative weight of the complexities
of the architectural slices for the design objects. To locally evaluate the complexity of
an architectural slice (independently of the size of the system), the Local Architectural

Complexrity (LAC) measure is applied.

Illustration of the Maintainability Profile

The profile created for the system depicted in Figure 18 is given in Figure 29.
Objects
g2 IS 0.0
gl NI .03
c2 NN 003
|

cl _ 0.03

5 I 003

4 I 00

3 ] 006

© I 00

t! I 003
LAC

Figure 29: Maintainability Profile for Figure 18

We have tested the sensitivity of the maintainability profile to architectural complex-
ity on two versions of the train-gate-controller model.

The second version of the train-gate-controller model is more complex due to the
added connection between the objects ¢, and ¢, (version, < version,) (Figure 28).
The architectural slicing, the maintainability profile and the analysis of the compar-

ison of the two versions are presented below.
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Architectural Slicing for Figure 27

The objects in the system depicted in Figure 27 are t,, t5, t3, t4, t5, 1, C2, g1, Go-
The slices for the objects t,, |, g, consist of the objects {t|,t,,t3,¢1,91}-

The slice for the objects ¢, and t3 consists of the objects {t,, t2, t3. Ly, t5, €1, g1, C2, g2 }-
The slices for the object t; and t5 consist of the objects {t3,t4,¢2,92}.

The values of LAC for the system objects are given in Figure 30.

Objects
g2 0.033
gl 0.028
c2 0.033

cl =71 o028

t4 0.033

3 1 o061

R 1 o0

tl ] _0.061
LAC

Figure 30: Maintainability profile for Figure 27

The comparison of the maintainability profiles for the two different configurations
of the 5 Trains - 2 Controllers - 2 Gates systems shows higher relative complexity
(value of LAC) for the objects ¢, ga, 2, t4, t5 of the more complex second case. thus
illustrating the sensitivity of the LAC measure to changes in the complexity of the

architecture. and ordering the design components in terms of the level of complexity

they contain.
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5.4 Testability Measurement

Software testing is a process of determining whether a software development has
been correctly carried out. Software testing is necessary to produce highly reliable
systems, since static verification techniques cannot detect all software faults. The
testing process adds value to the software development process, thus the goals are
to maximize the testing efficiency and to minimize the cost and difficulty of testing.
The way to increase the testing efficiency is to efficiently allocate the testing resources
according to the level of complexity of software components ( [ZORS97]) and their

level of testability, where the testability is the ability of the software to be easily
tested [Bi96].

5.4.1 Notion of Testability

A software component’s testability measurement is a prediction of software testing
ability to detect faults. Binder argues that a software component with low level of
testability would require more testing than a component with high level of testabil-
ity. The potential benefits of measuring software testability are significant: testing
resources can be distributed more effectively, and the degree to which software compo-
nent’s testing is to be performed could be estimated using the component’s testability
measure [VMMO91].

5.4.2 Related Work

In [NC96] a testability estimation is proposed to identify the classes for which the
test is needed before continuing with the development process. It is estimated relative

to the last testing session, change in class complexity since last test:

_ CCi(ActualVersion) — CCi(LastTestedV ersion)
- CC;(LastTestedV ersion)

where CC; is the class complexity. Classes whose TI; measure is higher than a

TI;

predefined value must be tested before continuing with the development process.
Voas and Miller [VM93] propose static testability measurement approach, called
Propagation-Infection-Execution. This method is based on input/output domains in

random black-box testing. Le Traon and Robach [TR97] propose design specification
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phase testability measurement in terms of controllability /observability of the software
units that consider white box testing. The controllability and observability measures
are based on information theory. Given software system’s data flow specification, the
measure predicts the controllability/observability of the software unit in terms of the
information loss through the possible information flows.

Several design-for-testability strategies in terms of controllability of the component’s
input and observability of its output are suggested in [Bi96]. These are: informa-
tion hiding and separation of concerns; test scaffolding; adding explicit built-in test
functions to report internal state on demand; defining a data type that exactly corre-
sponds to the domain of the output variables. To assess quantitatively the software
testability Binder [Bi96] suggests the measure Index of Testability defined as the
number of changes that must be made to obtain perfect observability and control-
lability of the software component. It is argued that software testability depends
primarily on the characteristics of the software analysis and design descriptions (Fac-
tor Representation), characteristics of the implementation (Factor Implementation),
built-in test capabilities that provides built-in observability and effective control of
the software (Factor Built-In Test), and overall software process maturity that views
testing as process’ essential component (Factor Process Capability).

The Factor-Criteria-Metrics testability model shown on the Figure 31 is based on the
testability fishbone described in detail in [Bi96]. We exclude Test Suite (test cases
and associated information) from the FCM model. The reason is that the features of
a test suite are similar to the characteristics of a test adequacy that indicates how well
the testing process has been performed, and therefore is not related to the internal
quality of the OO product.

The testability measurement may be applied when comparing different adequacy

criteria with respect to the ability to reveal hidden faults in the particular software.

5.4.3 Approach

For the purposes of measurement in TROMLAB environment, we focus on the evalua-
tion of the object’s testability in terms of controllability /observability of the software
units and independently of any particular test strategy. The goal of the design object
testability measurement is to evaluate the ease with which the information propagates

through messages exchanged between objects - from the external input events to the
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external output events (within one period) - in the (sub)system designed.

5.4.4 Testability Measures

The testability of the design object depends on the controllability of the object’s input
and observability of its output. Controllability and observability measures quantify
objectively the testability in terms of information transfer between objects (informa-
tion flow), in an abstraction of interactions among the objects of a reactive system.
Controllability is measured statically in terms of the quantity of information available
on the input to a object. When an object is isolated, all the possible input events can
be generated, corresponding to the maximum information content. On the contrary,
when the object belongs to an information flow, the information content generated as
its input is less because of the loss of information (due to the interactions between the
objects). Observability is a static measure that quantifies the information propagated
from the object’s output events to the final output events. The information quantity
that may be received from the object's output at the external outputs is less due to
the loss of information.
Testability evaluates the relative contribution of the object’s observability and con-
trollability with respect to the maximum loss of information within the information
flow. Intuitively, the lower is the contribution to the loss of information, the higher
are the objects’ controllability and observability, and therefore the higher the ability
of the adequate testing to reveal faults. We quantify the loss of information through
excess-entropy of the information flow within the system.
For the information flow abstraction purposes, all the information related to the mes-
sages exchanged (i.e., events) between objects should be extracted from the design
specification. The information flow (corresponding to one period) is originated by
external input events and is followed through the communication links between com-
patible ports of the interacting objects. We construct an object-predicate table whose
columns represent port names and rows represent objects in a system design:
Object_Predicate Table(object;, port;) =
I, if object; receives Input events at portj,
O, if object; receives Output events at port;,

, if port; doesn’t belong to object;.

We can view the information flows as an activation of the smallest set of design
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objects associated with the (sub)set of external input events. The activation is in-
dependent from the remainder of the system. Thus, each information flow partitions
the set of design objects into mutually independent subsets. Using Emden’s math-
ematical model, the information flow is quantified by the excess-entropy C on the
Object_Predicate T able abstraction of interactions.

Let Cinpu: be the excess-entropy calculated on an extraction of the object-predicate
table corresponding to the information flow from the external inputs to the object’s
inputs. Let Coyupye be the excess-entropy calculated on an extraction of the object-
event table corresponding to the information flow from the object’s outputs to the
external outputs. We define the measures as follows:

Controllability(Object) = Cinpue;
Observability(Object) = Coyrpus;
An object may belong to several information flows. The object’s testability related

to only one information flow has been defined formally in [AO2000] and is as follows:

Testabilityinf,,_f,,,w (Ob]ect) — (Observability(Objéct)!+f';ntrdlaﬁlity(Object))

where Ciyfo- fiow is the excess-entropy calculated on the abstraction of the interactions
within the objects activated by the information flow, and thus logically normalizes

the testability measure.

Formally, the object’s testability related to several information flows, is defined as
Testability(Object) = sup{Testabi[ity,—,,f,,_ﬂm,, (Ob_]ect) }Vinfo_flgw

Lower value of testability measure indicates higher level of object’s testability.

We illustrate the testability computation on the object Controllerl of the subsystem
shown in the Figure 18. The information flow that activates Controller! is initiated by
the external input event(s) "Train (1, 2, 3) is approaching the gate 17, and partitions
the set of objects into two mutually independent subsets. The first subset consists
of the objects Trainl, Train2, Train3, Controllerl, and Gatel. The second subset
consists of the objects Traind4, Train5, Controller2, and Gate2. The value of Cy,4; is
calculated from the object-predicate table. In this case we have the following values
for the model variables: n =9, m = 2, n; = 5,ny = 4. The observability and con-

trollability measures of Controllerl are quantified on related subtables extracted from
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the object-predicate table. The values of the measures are obtained by substituting
the variables values into the formulas.
The testability measures are theoretically valid, and have to be validated statistically

when enough measurement data is gathered.
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5.5 Functionality Measurement

We define the functional complexity for reactive systems implementation as an amount
of work performed in a time slice by the implementation, where the amount of work
is understood in terms of quantity of information processed in that period of time,
and the number of functions necessary to perform the work.

5.5.1 Approach

Let S be a subsystem of O,,...O, reactive objects. Let Comp(A) be set of all
computations of a TROM object A in one period of time (i.e., the time between two
consecutive idle states), and Prot(c;) be the projection of Comp(.A) on the signals
(01,...0,). Let us define as Funct(O;) the sequence of signals obtained by merging all
protocols ( Prot(c;)) on a time coordinate. For the functional complexity measurement
purposes, we need the projection of Funct(O;) on the sequence of events Events(S) =
{ei....e,}. The events present the functions necessary to perform the work in the
period of time.

We apply the concepts of information theory to measure the amount of work per-
formed in a time slice by the system in terms of amount of information in the
Events(S) sequence. Our version of such a measure is based on an empirical dis-
tribution of events within a sequence. The probability p; of the i*® most frequently
occurring event is equal to the percentage of total event occurrences it contributes and
is calculated as p; = 7\%, where f; is the number of occurrences of the i** event and
NE is the total number of events in the sequence. The classical entropy calculation

H =Y p; log, pi quantifies the average amount of information contributed by each
event.

5.5.2 Measure

The functional complexity in a time slice is defined as an average amount of informa-

tion in the corresponding sequence of events and is computed as follows:

= fi fi
FC=-3_ NE %8 NE

=1

The functional complexity in a period of time with higher average information content
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should, on the whole, be less complex than another with a lower average information
content. The FC measure is intended to be used on the ordinal scale. That is, the
FC measure is intended to order the performance of real-time reactive systems in a

time period in relation to their functional complexity.
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Chapter 6

Test Adequacy Measurement

In this chapter measures for test adequacy are developed. After briefly reviewing the
twin concepts of test adequacy criterion and test data adequacy criterion. we develop

those measures for real-time reactive systems that are designed and implemented in
TROMLAB context.

6.1 Notion of Test Adequacy

To ensure the correctness of the implementation with respect to design, the imple-
mentation of the system has to be tested. Informally, the test adequacy criterion
can be defined as “a predicate that defines software testing objectives in terms of the
properties that can be measured”. Test adequacy criterion plays two essential roles
in any testing method: to specify testing requirements, and to determine the obser-
vations that should be done during the testing process. The testing requirements
specification has two forms. The first form is called test case selection criterion and
is an explicit specification for test case selection. The second form is an explicit spec-
ification for test set adequacy measurement when a degree of adequacy in terms of
test coverage is associated with each test suite, namely test data adequacy criterion.
In particular, the test data adequacy criterion determines whether or not sufficient
testing has been done suggesting that the testing can be stopped (stopping rule).

To generate a set of test cases from the software product and its own specification, a
testing method should be defined using a test case selection criterion. The level of test

case adequacy, which is the degree to which the software is tested, is to be evaluated
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as well. The degree of adequacy of testing related to the test adequacy criterion is
estimated by the test adequacy measurement. Theoretically valid coverage measures
evaluate how well the test suite approximates its target. The measurement of the
quality of coverage of the test suite would increase (or decrease) the confidence in
tested components.

Zhu [ZHM97] surveys research in test adequacy criteria and provides formal def-
initions for test case adequacy criterion and test data adequacy criterion. A rep-
resentational theory of test adequacy measurement and an axiom system to study
the properties of test adequacy measures have also been proposed. The evidence of
relationships between test adequacy and software correctness, and between test ade-
quacy and software reliability have also been reported. From this work and the work
by Fenton (1997), we can conclude that methods on test adequacy criteria can be
compared according to fault-detecting ability measurement, reliability measurement

of tested software, and test cost measurement.

6.1.1 Test Case Adequacy Measurement

The test case adequacy for untimed systems is measured by the mutation adequacy
of a set of test data planting systematically some artificial faults into the program
and checking if they are detected by testing. The test case adequacy measure, called
Mutation Adequacy, is the percentage of programs with artificial faults (mutants)
detected, compared to all tested mutants.

The testing method defined according to the test case adequacy criterion gener-
ates systematically and efficiently the test cases. The set of these test cases is then
considered adequate and no measurement is required. Thus, the test data adequacy
measurement is related only to the test data adequacy criterion and, in particular, to

the stopping rule.

6.1.2 Related Work

The test data adequacy measurement associates a degree of test set adequacy accord-
ing to the test data adequacy criterion to indicate how adequately the testing has been
performed. There are two important measures associated with every test data ade-

quacy criterion ( {[FP97]): test effectiveness ratio (degree of adequacy of testing) and
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minimum number of test cases. The testing effectiveness is defined as TE = F/E,
where F is the number of faults discovered and FE is the effort measured as “person
month”. To be able to predict the testing time and resources, the testers would need
to know the minimum number of test cases needed to satisfy the test data adequacy
criterion for a given software. The definition of a measurement formula of calculating
the minimum number of test cases depends on each testing approach. A method
based on Prime Decomposition Theorem is given by Fenton [FP97] to calculate a
minimum number of test cases measurement for the structural testing approach. The
problem of determining minimum number of test cases measurement for error-based
and fault-based testing approaches still remain an open problem.

The test effectiveness ratio measure or equivalently, a degree of adequacy of testing
of a program p by a test set ¢t with respect to the specification s, according to the
test adequacy criterion C, is a function Mc(p, s,t) with value in the interval [01] .
To determine whether or not sufficient testing has been done, the test data adequacy

criterion as stopping rule (or predicate rule) should be considered:

Given a degree R of adequacy corresponding to the minimum number of
test cases r, the stopping rule Mg is True if and only if the adequacy

degree is greater than or equal to R, or False otherwise:

True, iffM(p,s,t)>r

Mp(p,s.t) =
r(P ) {F alse, otherwise.

The measurement formula of the test effectiveness ratio measure M depends on the
specific testing approach and the corresponding test data adequacy criterion. The
higher degree of adequacy M indicates more adequate testing of p with respect to
s, according to C. Zhu [ZHM97] points out that M depends on the specific testing
approach and the corresponding test data adequacy criterion and discusses three

approaches to software testing in this context. These are briefly discussed below:

Error-Based Testing This approach focuses on checking critical error-prone soft-
ware points. An error is a defect in the output produced by a software product.

Two types of errors are considered:

e Domain Error is an error which occurs when the conditions under which

the boundaries for a selected sub-domain are incorrect. Here, a domain
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refers to an input/output behavior space, partitioned into sub-domains so

that the behavior of a software on the points of a sub-domain is equivalent.

e Computation Error is an error which occurs due to the incorrect imple-

mentation on'a given sub-domain.

The Measure of Adequacy M is defined as the proportion of errors detected
during domain testing and error-based testing, over the total of known errors

detected in the software product.

Fault-Based Testing This approach focuses on detecting faults (defects in a soft-
ware). The degree of the fault-based test adequacy M is the ratio of the number
of faults found to the total number of faults.

Structural Testing This approach specifies the testing coverage requirements in
terms of the structure of the program/specification. The two basic structural

testing testing approaches are black-box and white-box testing.

The metrics developed in this section are applicable to all real-time reactive systems,
regardless of the notation used for their specification or languages used for their
implementation. The metrics will be illustrated for the test cases developed from the
formal specifications of reactive systems in TROMLAB environment.

Test case generation methods have recently been reported by Zheng [Zhe02|. Since
this testing strategy is specification-based, it is black-box testing of the system. In
case of black-box testing approach the test data adequacy criterion is to use a manage-
able set of test cases to increase the probability of detecting a previously undetected
fault while minimizing the probability of detecting the same fault by more than one
test case. In this context, the degree of adequacy M indicates a degree of covering of
the required functions specified in the formal specifications. by the test data. Reid
[R97] reports an experiment comparing the testing effectiveness of the black box test-
ing techniques equivalence partitioning, boundary value analysis and random testing
in terms of their degree of adequacy. The experiment considers “all possible input
values that satisfy a test technique and all possible input values that would cause a
model to fail”. The author indicates the need in similar experiment concerning the
effectiveness of white-box techniques.

Test data adequacy criteria, as well as adequacy measures related to different test

data adequacy criteria can be given for code-based white-box testing of real-time
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reactive systems, in a way that are quite analogous to those discussed for untimed

systems:

Statement Coverage The adequacy criterion is the requirement to generate test
cases to execute every statement in the program at least once. The Measure of
Adequacy M is defined as percentage of the statements exercised by testing. A
reactive program will include constructs for synchrony, delay, and concurrency.
The adequacy criterion of untimed systems should be extended to include such

constructs in a statement.

Path Coverage The adequacy criterion is the requirement of executing all the exe-
cution paths from the program’s entry to its exit. A real-time reactive program

need not terminate. So, this criterion must be changed to

. all execution paths from the program’s entry to every statement

in the program.

The Measure of Adequacy M is the percentage of the execution paths exercised

by testing.

Linearly Independent Set of Paths Coverage The adequacy Cyvclomatic-Number
criterion is the specification of restrictions on the redundancy among all paths.
The test set contains only v independent paths, where v is a cyclomatic number
of the flow graph of the program under test. The Measure of Adequacy M is
defined as the percentage of the execution of independent paths exercised by

testing.

Branch Coverage The adequacy criterion is the requirement of executing all con-
trol transfers in the program under test. The Measure of Adequacy M is the

percentage of the control transfers exercised by testing.

Data-Flow Based Testing In this approach only the data-flow information is taken
into account in the definition of the testing requirements. The adequacy crite-
rion is the requirement of executing the flow-graph paths that are significant
for the data-flow in the program. The data flow and its timeliness must be part
of the criterion. The Measure of Adequacy M is defined as percentage of the

execution of the required paths.
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6.2 Formal Foundation

In this section we discuss a representational theory of test adequacy measurement
and an axiom system to study the properties of test adequacy measures. For un-
timed systems Zhu [{ZHM97] has proved the consistency of these axioms. Analytical
evaluation of testing techniques considers whether the testing criteria meet adequacy
axioms. We justify the validity of these axioms for real-time reactive systems designed
and developed in TROMLAB.

Let C; denote a test adequacy criterion C for testing p against s, where s € S (S is

a set of specifications), and p € P (P is a set of implementations).

Axiom 1. (Inadequacy of Empty Test Set)
Vpe P and s€ S:Cy(Empty Test Set) =0

This is trivially valid for every system.

Axiom 2. (Adequacy of Exhaustive Testing)

Definition: The program has been an exhaustivelv tested if it is tested on all
representable points of the specification domain. Such a test should be adequate

independently of the criterion.
Vp€ P and s € S:C,(Ezhaustive Test) =1

This axiom is valid for any system. However, we remark that the behavior of
a timed system is in general infinite, thus precluding exhaustive testing. More
importantly, it should be noted that test case domain for a timed system with

real-time semantics is dense, in the sense it is an uncountable set.

Axiom 3.(Monotonicity)

Vp € P. s € S, if test set t, is a subset of test set t,, than the adequacy of
t, is less than or equal to the adequacy of t,. For real-time reactive systems,
the monotonicity prevails in the size of the test set as well as in the granularity
of testing. In the test case generation algorithms discussed by Zheng [Zhe02],
the state machine description of a reactive class is mapped to a grid automa-
ton with a certain grid size. By increasing the grid size, one may be able to
obtain test cases that test the behavior in smaller subintervals of time. Hence,

in the later case, test adequacy measure increases. However, it is shown in
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Zheng [Zhe02] that the grid size chosen by the grid automaton construction
algorithm is sufficient to test the behavior as specified in the time constraints.
That is, only when the time constraints change, the grid size will change and
thus changing the adequacy measurement. When such a change happens, then
it is constrained by the monotonicity property.

Axiom 4. (Convergence)
Let t;,...,tn,... € T be test sets such that
HCtC...Ctn.. ..
Then,Vp € P,s€ S: limg,oo Cp(te) = Cp(UR tk)

This property is a consequence of monotonicity property. Because the time
constraints should be bounded, the convergence property holds for test cases

generated for testing real-time reactive systems.

Axiom 5. (Law of Diminishing Returns) The more program has been tested, the

less a given test set can further contribute to the test adequacy. Formally:
Vit ta € T o (t, C ta => C,(t[t1) = Cp(t[L2)),

where Cj(t|t)) = Cj(t U t) — Cp(t1) Test cases generated by the algorithms
discussed by Zheng [Zhe02] test every observable state and state change. That
is, corresponding to each state in the system specification there a test template
is generated, and corresponding to every step of observable state change (as
specified by the transition specification) a test template is generated. Test tem-
plates can be instantiated with values for parameters and attributes from their
respective domains to get test cases for submission to a test execution. These
test cases are sufficient [Zhe02] to test the conformance of an implemented

program to the specification of the system. Hence, this axiom is valid.

6.3 Approach

Test adequacy measurement for real-time reactive systems have not been widely stud-

ied. Results discussed in this thesis are new.
There are two central points when developing a solution for test adequacy measure-

ment: the choice of a formal representation of the domain of the test cases, and a
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model of its abstraction. We have chosen to represent formally the test cases domain
as a metric space. A metric space is a pair (V, td), where V' is a non-empty set and td
is a distance, or metric, such that td : V xV — R* and the set of distance axioms are
satisfied. This approach allows the use of metric-based test case selection algorithm
to select the minimal set of test cases (from the set of automatically generated test
cases), and metric-based coverage evaluation measurement, both based on the notion
of distance between test cases.

Vz,y € V the following axioms are satisfied:
Axiom 1. td(z;y) > 0;
Axiom 2. td(z;z) =0& z =y;
Axiom 3. td(z;y) = td(y; r);
Axiom 4. td(z; z) < td(zx;y) + td(y; z).

The metric is unique in the sense that there is an order-preserving transformation

between two metrics.

6.3.1 Formal Representation and Abstraction of the Test

Cases Domain

The test case domain is the set of symbols and terms in the formal specification used
to specify the system. The algorithms discussed by Zheng [Zhe02] compute the test

cases as follows:

For a reactive unit A, the set T(A) of test cases is computed as
Xa(A) U Ya(4),

where Xy4(A) and Yy(A) are respectively the state and transition covers of
the grid automata G4(A) with grid size d = 1/k. k being the number of
clocks in A. A state cover for a state 0 in the grid automaton is a labeled
path from the initial state of G4(A) to #. The sequence of labels in a path
are the events that take the grid automaton from its initial state to the

state #. An event in the grid automaton G,4(A) is either an event of A ord.

113



The label d for a transition from the state 8 to a state ' in G4(A) indicates
the passage of time at the state s of 4, where both § ' are mapped to s

by the construction of the grid automaton. As an example, the sequence
Near?,1/2,1/2,In
may denote a state cover for the grid automaton of the Train class.

The formal representation that we discuss for developing metrics for test cases are
independent of such concrete representations.

In general, let STC denote any test set with any arbitrary representation of test
cases in it. Our approach consists in abstracting the elements of STC as binary
strings. This would allow the introduction of testing distance as information distance
in the space of binary strings. Our choice of information distance is justified by the
fact that it is an absolute and objective quantification of a distance between individual
objects [Be98].

A two-dimensional array TC A represents the mapping of a test case into a binary

string. The definition of the array TC A is as follows:

1, if test case, contains event;

TCA(a.j) =

0, otherwzise.
Each row of TC A is a mapping of a test case into a binary string. The creation of

the array TC A reflects the order of appearance of the events in the test case. The
above order then implicitly includes dependence on the ports and time restrictions.
Refer to the case study in Chapter 2.

6.4 Testing Distance Measurement

Any distance measurement should satisfy the symmetric and triangle properties for a
distance. Intuitively, we expect more similarity between test cases when the distance
between the two test cases is small. We want to select test cases for test execution
from a test set so that the distance between the selected test case and the set of
already exercised test cases is not small.

The distance between two test cases A, B € STC is abstracted as a distance between
their binary string representations a,b € V. The distance between A, B € STC
would depend on two factors, namely, the similarity and the dissimilarity between

the test cases. Thus we define the testing distance as:
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td(a, b) = similarity(a,b) x dissimilarity(a,b)

where similarity(a, b) is defined in terms of the longest common prefix of a and b, and
dissimilarity(a, b) is expressed in terms of the minimum amount of change necessary

to convert the binary string a into b. The formal quantification models are given
below.

Similarity quantification

Let LC P(a; b) be the longest common prefix of the binary string representations a, b €
V of A, B € STC. We define similarity factor between strings as similarity(a,b) =
9-length(LCP(ab))  Note that LCP(a,b) is 0 when there is no common prefix, and
min(length(a); length(b)) when the longest common prefix coincides with one of the
strings. The range of the similarity is between 0 and 1. Higher values indicate lower
level of similarity between two test cases and diminish the value of a testing distance.
The information distance between two binary strings (elements of a metric space)

is computed as the length of the shortest program that translates one string into
another.

Dissimilarity quantification

The dissimilarity measure between two binary strings a and b is calculated as the
number of elementary transformations that are minimally needed to transform the
string (a\LC P(a, b)) into the string (b\ LC P(a, b)). Let us suppose that the abstrac-
tion a € T of some test case 4 € STC is the row a of the array TCA. The set
of elementary transformations are (1) adding an event j (i.e., setting the value of
TC A(a; j) to 1), and (2) removing an event j (i.e., setting the value of TC A(a; j)
to 0). The dissimilarity is an unidimensional spatial proximity measure, defined on
the ordinal scale. It satisfies the representation and uniqueness conditions for the

unidimensional ordinal scale measures and thus is theoretically valid.

Illustration of Testing Distance Measurement

We illustrate the quantification of the distance between two test cases generated [Zhe02]
for the Controller-Gate subsystem. Consider the two test cases A, B € STC, A =
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Figure 32: Array Representation of Test Cases

{Near?.Lower.Down.Exit? Raise. ;..7.3.Up}, and B = { Near?.Lower.Down..1.1.1.Exit}.
The array representation of the test cases is shown in Figure 32. In this case the val-
ues of the model variables are as follows: LCP(a,b) = 3; similarity(a,b) = 273

dissimilarity(a,b) = 4; td(a,b) = 3.

6.5 Metric-Based Test Set Selection

Let V" denote the set of binary strings representing the original set of test cases STC,
€ denote the initial target distance, and €p,;, denote some comprehensive minimum
value of distance such that any approximation on distance smaller than €, would
not give more meaningful approximations. Let C denote some given threshold cost,
and Cost denote the function representing the resources required to execute the (set
of) test case(s). The Test Selection Algorithm selects the minimal set of test cases
A from the set V. The algorithm stops when the cost limit is reached, the distance
€min 1S reached, or there are no more test cases left. We define the distance of a point
t € V' from the set A, A C V" by the formula td(¢, A) = inf{td(t.y)ly € A}.

Test Selection Algorithm
Precondition: {V=V #0 A €nin>0 A C=C A A=0}

Step 1. Initialization(A, V,€)
Step 2. Create — Test — Set(A, V) €)

Postcondition: {A#0 A (Cost(4d) >C V € <é€min V V =0)}
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Algorithm for Initialization(A, V,¢)
Precondition: {V =V A A =0}
Step 1. t = Longest — test — case(V)
Step 2. Add(A,t);
Step 3. Remove(V, t);
Step 4. € = Length(t) —1;
Step 5. IF ¢ <=0 THEN
€ = €min;
ENDIF;
Postcondition: {A#0OA € > 0}

Algorithm for
Create — Test — Set(A, V), €, €nin)
Precondition: {A # 0 A e > 0}
WHILE
—(Cost(A) >C V €< é€min V V=0)
IF (3 test case t : td(t,A) >=¢€)
THEN Add(A,t); Remove(V,t);
ENDIF;
e=¢€¢ — 1;
ENDWHILE;
Postcondition:
{A#0A(Cost(Ad) >2CVe<ennVV =0)

Algorithm for Initialization(A, V,e€)
Precondition: {VV=V A A =0}

Step 1. t = Longest — test — case(V)
Step 2. Add(A,t)
Step 3. Remove(Vt)
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Step 4. € = Length(t) — 1
Step 5. IF ¢ <= 0 THEN ¢ = €,,; ENDIF

Postcondition: {A #0 A € > 0}

Algorithm for Create — test — set(A, V, e, €nin)
Precondition: {A # QA € > 0}

WHILE —(Cost(A) >C V €< é€min V V =0)

IF (3 test case t : td(t,A) >=¢) THEN Add(A,t); Remove(V't)
ENDIF;
e=¢€¢ — 1;

ENDWHILE;
Postcondition: {Cost(A) > C V € < €min V V =0}

The test selection algorithm has to be applied in order to select an minimal set of
test cases. This minimization would reduce the cost of the testing process while

maintaining the same level of efficiency.

6.6 Metric-Based Test Coverage Evaluation

We introduce the metric-based evaluation of test coverage strategy with pre-defined
target test sequences which is applicable in safety-critical testing. The basic idea
is to choose a test case based upon the test coverage achieved by all preceding test
executions. The Law of Diminishing Returns, stated as Axiom 5 in Section 6.2,
emphasizes this point. The criterion chosen is the worst-case coverage of some test
suite by a selected set A of test cases. The proposed measure of the worst-case
coverage of a set V' by a selected set A is CovMazr(A) =1 — m(4), where m(A)
is the normalized supremum of distances from the set (V' \ 4) to A. The distance
between two finite sets A, B C V" of points in a metric space (V, td) is defined by the
Hausdorff distancedy (A, B) = max{sup{td(a, B) : a € A}, sup{td(b.d): b€ B}}.
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Chapter 7
Reliability Measurement

The reliability of a software product is defined in [I[EEE90] as the ability of the
software to perform its required functionality under stated conditions for specified
period of time. The reliability measurement is a procedure that makes predictions
about future failure behavior. In this chapter we develop a reliability model for
real-time reactive systems whose abstract behavior are modeled by labeled transition
systems. We illustrate reliability prediction based upon such a model for Train-Gate-

Controller case study.

7.1 Existing Reliability Measures

Several reliability models exist for the object-oriented systems. The common ap-
proach to software reliability prediction is the measurement of remaining failures
based on the collected data on software failures. The most popular reliability models
are Software Reliability Growth Models (SRGM), that use the failure history of a
software obtained during testing and a given operational profile for future prediction.
SRG models based on test coverage measurement, are reported in [GOT79], [MO84],
[Mal94] and [POC93]. The accuracy of the reliability estimate remains as reliability
measurement’s open problem. Chen at al. [CLW96] points out that the SRGM
predictions tend to be optimistic, and propose the pre-processing of the test data
(before used by the SRGM) based on both test coverage and testing time.

There exists a verity of definitions and models for software reliability. The reliability

measure is defined in [CLW96| as the ratio of the number of failures to the number
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of executions in the same operational environment as used in the testing process. The
reliability measurement is stated in [ZHM97] in terms of the cost-weighted failure
rates.

In [Dyer92] the CLEANROOM reliability certification model is described. The Clean-
room Certification Model is implemented as a PC-based, graphical tool that auto-
mates the analysis of statistical usage testing results for the reliability certification
process. It takes as input the run times between failures and gives as an output the
projected MTTF (mean-time-to-failure) for the next change. The MTTF measure
estimates the increase in system reliability as errors are fixed. The testing process
stopping criteria is based on comparison of the Markov chain usage model (derived
from the specifications) with a Markov chain constructed from the testing experience.
Since Markov chains are often very large and complex, Bayesian Belief Networks have
been used in [FN2000] to provide reliability predictions. A Bayesian Belief Network is
a directed graph whose nodes represent uncertain variables of the reliability model and
the arcs are the causal or influential links between the variables. Associate with each
node is a set of conditional probability functions that model the uncertain relationship
between the node and the parents. Some of the uses of the BBNs reported in [FN2000]
have been to provide reliability arguments for critical computer systems. to provide
improved reliability predictions of prototype military vehicles, and to predict general
software quality attributes such as defect-density and cost.

The measurement of the confidence in the reliability of the software that has passed
an adequate test has practical application, especially for safety-critical software when
high level of confidence is required. In [Sch96| software reliability predictions ap-
proach, used to increase confidence in the reliability of safety critical software (NASA
Space Shuttle Primary Avionics Software), is described. The given Schneidewind
Software Reliability Model predicts the maximum number of failures over the life
of the software, maximum number of remaining failures and the operational quality
stated in terms of fraction of remaining failures. The prediction of the test time
necessary to achieve required operational quality, as well as the time to next failure,
are also measured. The above predictions are meaningful for assessing the program
manager’s decision whether the software is sufficiently tested to allow its release. The

model is validated comparing the predictions with actual failure data.
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7.2 Approach

This section discusses reliability issues in a rigorous development of real-time reactive
systems, and gives measures to predict it in the design phase. Interactions among
entities in such systems are complex to describe and reason about. To ensure a level
of reliability, it is imperative that the various interactions are understood and their
probabilities calculated. Our approach is to model the real-time reactive software
design as a Markov system, and propose reliability measurement based on the Markov
model.

The reliability assessment method discussed in this work differs from the conventional

reliability evaluation methods in important ways:

I. early reliability prediction of real-time reactive system modeled in TROMLAB
is new;

!\D

it is based on the archiiecture model of the reactive system and the state ma-

chine description of reactive units;
3. our approach models the system configuration as a Markov system; and

4. the prediction of the reliability is derived from the steady state of the Markov

syvstem.

The approach is illustrated on the railroad crossing problem (Chapter 2). The
reliability assessment is discussed in the context of TROMLAB.

7.3 Markov model of the Design

Markov model is one of the most powerful tools available to engineers and scientists for
analyzing complex systems. This analysis yields results for both the time dependent
evolution of the system and the steady state of the system. The name Markov model
is derived from one of the assumptions which allows this system to be analyzed;
namely the Markov property. The Markov property states that given the current
state of the system, the future evolution of the system is independent of its history.
The motivation for applying Markov theory to real-time reactive systems comes from

two perspectives: (1) environmental events are not governed by system laws, and
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hence may be regarded as random; and (2) the system may execute any one of the
several possible transitions in one state to progress to another state.

The operation of the system is represented by a state diagram, which represents the
states and rates of a dynamic system. This diagram consists of nodes (representing
a possible state of the system, which is determined by the states of the individual
components and sub-components) connected by arrows (representing the rate at which
the system operation transitions from one state to the other state). Transitions may

be determined by a variety of possible events.

7.4 Reliability Model

The proposed reliability analysis is based on the software architecture, the state
machine models, and the system configuration specification. The advantage is the
applicability of the model at design specification phase. The objects, their interactions

and the probabilities for the interactions are formalized as a Markov system.

Mapping Reactive Units to Markov Systems We associate with each reactive
unit a diagram showing all the states and transition probabilities, and a transition
matrix. If an object is in state i, there is a fixed probability, p;;. of it going into state
J at the next time step. and p;; is called a transition probability. The matrix P
whose ij,, entry is denoted pyj, is called the transition matrix associated with the
object. The entries in each row add up to a unity. The transition matrix is calculated

as follows:

1. The initial probabilities for all the transitions in the state machine of the reactive
object are calculated. The algorithm for calculating such probabilities for a state
is based on the following assumptions: 1) all external events that can happen
at the state have the same probability; 2) all internal events that can happen

at the state have the same probability, and (3) these are in general different.

2. In case there is more than one transition {l; U ... U [,} of the same type
(shared/internal) from state; to state;, then the above mentioned transitions

are substituted by one whose probability is

P{Liu...UlL} = 1 (1=P{Li}) x... 1—P{l}) -
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Figure 33: Markov State Transition Diagram and State Transition Matrix for Train
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Figure 34: Markov State Transition Diagram and State Transition Matrix for Gate
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3. The probabilities of all the transitions for a state have to sum to 1.

The approach is illustrated on the Train (Figure 33), Gate (Figure 34) and Controller
(Figure 35) classes. The detailed description of the states and transitions for the

above reactive classes can be found in Chapter 2, case study.
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Figure 35: Markov State Transition Diagram and State Transition Matrix for Con-
troller Class
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Mapping Object Pairs to Markov System

A system configuration is composed of several synchronously communicating reactive
objects. The interaction between two objects is due to shared events. Let P and
Q@ be the state machines for two interacting objects. Each object can be in one or
several states, and can pass from one state to another on each time step according
to fixed probabilities. The interacting behavior of the two objects is completely
described by their synchronous product machine R. Whenever P and @ exchange
a message, they change their states simultaneously. The synchronized product of
the Train and Controller is shown in Figure 36. The following algorithm creates
the synchronous product machine for two given state machines, and calculates the

transition probabilities in the product machine.

Algorithm for Transition Matrix for the Synchronous Product Machine

Let E; and E> be the sets of internal events in the machines P and @, and F to
denote the set of shared events. Let M, and M, be the transition matrices of P and

Q. and R be the synchronized product machine of P and Q. An informal description
of the algorithm is as follows:

1. Compute the synchronous product machine.

2. For each state, the transition probabilities of the events in that state are calcu-

lated as follows:

Case 1 All the events are internal, in the sense that every event is internal

to one of the machines. Probabilities are obtained by normalizing the
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probabilities of events in their respective machines.

Case 2 Only shared events happen in the state. Probabilities are obtained by

normalization of the events’ probabilities in their respective machines.

Case 3 Both internal and shared events happen in the state. First the proba-
bilities of the shared (external) events are calculated. The justification is
that interactions between the objects are due to synchronization events,
and therefore they must happen together for the correct execution of the
system. Assume that there are only two events e and f, both external,
happening in a state. If the external event e has probabilities p, in M,
and p, in Mo, and the external event f has probability ¢, in M, and ¢, in
M5, then assuming the independence of state transitions in P and Q, the
probability of e in the product machine is p, x p», and the probability of f
in the product machine is ¢, X ¢». The probabilities of all the transitions
for a state have to sum to 1, therefore the probabilities of the internal
events at that state sum to 1 — (p; X p» +q; X ¢2). The above probabilities
can be distributed among the internal events at that state according to

the weight each internal event has. Notethat 1 — (py xpa+q; X ¢2) >0
because py X p2+q1 X @2 < (p1+q1) X (p2+q2) = L

Formal description
Step 1. p=1; // row sum

Step 2. r; = {e| e is a shared event occurring at state : (P) and at state j (Q) }
z9 = {e| e is an internal event occurring at state i (P)} U {e| e is an internal
event occurring at state j (@) }

Step 3. If x; # @ // calculate probabilities for transitions due to shared events
then NF = 0 (Normalization Factor); set, = §;

Step 3.1 For each event e € z, find the (set of) states i (P) and j (Q) such
that i i, j 55

Step3.2y=yn{i,j},if{i,j} ¢y

Step 3.3 NF = NF + M[i,i] x Ma[j, ]
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Step 3.4 M[(i,i), (j,j)] = Mi[i,i] x Ma[j, 7]
Step 3.5 set; = set, N (j, )
Step 4. If 7, # 0 // calculate probabilities for transitions due to internal events

then NF' = 0 (Normalization Factor); set; = 0;
Step 4.1 For each event e € z,, if e € M, then

find the state i (M) such that i 5 i’;
y=yn{ij}if {i'.j} ¢ v
MG, ), D] = M[i,i]; NF = NF + M{(i, )0 . )};

set, = sety N (4,7 )
else

find the state j' (M>) such that j 5 j';
y=yn{i.j}if{i.j'} ¢

M((i, )i 5] = Ma[j,i'); NF' = NF + M[(i. j)(i,J)];
sety = sety N (4, §)

Step 5. If ry =0 Az, =0, the (i, j) row is deleted from M

Step 6.If r, =0Az, #0

For each (i ,j') € set, do

o e M[(,4),(,§
MG, )] = LB T )
Step 7. Ifl'l¢®/\l'2=0
For each (i',j') € set, do
.. WA M 'i, '] . 'lJ,'J
MG g), ()] = MLEDET)
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Figure 37: Markov State Transition Diagram and State Transition Matrix for Syn-
chronous Product of Train and Controller in Figure 36

Step 8. If £, #0Az» #0 do
For each (¢, ') € set, do
(L= NF) x M[(ij), ()]
NF’

Step 9. To fill in the matrix M with 0 where there are no entries

MG, 5), @ 5)] =

Markov model’s state transition diagram and state transition matrix for the syn-
chronous product of Train and Controller reactive classes are shown in Figure 37.
Mapping a Subsystem to a Markov System

We differentiate between two cases, that are most commonly occurring system con-
figurations: (1) the system configuration is linear as shown in Figure 38, and (2) the
system configuration is non-linear as shown in Figure 41.
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Figure 38: Linear Architecture

Case 1: Linear System

Definition: Linear system is a system whose objects synchronize in the past.

In this case, we extend the algorithm pairwise, i.e.,

1. Apply to a first pair (from the I'ni, or start)
2. Substitute the pair with their synchronized machine;

3. While there are more objects do

e apply the algorithm between the synchronized machine and the next ob-

ject’s machine;

e substitute the pair with their synchronized machine;

Let My, be the Markov model for a Train object; M be the Markov model for
a Controller object; Mg be the Markov model for a Gate object. Let ® denote
synchronized product operation, and let M; be the Markov model’s matrix for the
train-gate-controller linear system My, ® Mc ® Mg. The matrix M} will denote the
transition matrix of the linear system for the k,; time step.

The case of linear system for £ = 0 is illustrated on the synchronous product of
Train, Gate and Controller (Figure 39). The corresponding Markov state transition

diagram and transition matrix are shown in Figure 40.
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Case 2: Non-linear System

We first motivate non-linear system with the example in Figure 41. This diagram
shows a system configured with n trains interacting with a controller in order to cross
the gate controlled by it.

In case of non-linear system, the synchronous product of Train and Controller shown
in Figure 42 would differ from the case of linear system (Figure 36). The synchronous
product of Train, Gate and Controller and the corresponding Markov model in the

case of non-linear system, are illustrated in Figures 43 and 44.

7.5 Reliability Measures

The reliability prediction for a system configuration composed from n reactive objects

is defined as the level of certainty quantified by the source excess — entropy:

Reliability(Subsystem) =Y _ H;— H
=1

where H = =Y. v ZJ- pij log pij is a level of uncertainty of the Markov system
corresponding to a subsystem; v; is a steady state distribution vecior for the corre-

sponding Markov system and the p;; values are the transition probabilities. H; is a
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level of uncertainty in a Markov system corresponding to a reactive object.

Steady Vector If P is a transition matrix for a Markov system, and if v is a dis-
tribution vector with the property that vP = v, then we refer to v as a steady
state (distribution) vector. To find a steady state distribution for a Markov

System with transition matrix P, we solve the system of equations given by

xX+y+z+ . . . =1

x vy z...1P=0Ix y =z...]

where we use as many unknowns as there are states in the Markov system. A

steady state probability vector is then given by

H is related exponentially to the number of paths that are "statistically typical” of
the Markov system. Thus, higher entropy value implies that more sequences must

be generated in order to accurately describe the asymptotic behavior of the Markov

system.

We illustrate the calculation of our reliability measure on two configurations of the

case study shown in Figures 39 (linear system) and 43 (non-linear system):

Relialﬂllty(Flgure 39) = HTrain + HGate + HController - HFiyure 39

where Hrroin = Hgate = HFrigure 33 = 0. For calculating Heontroiter We will need
the the steady vector of the Controller: veontroter = {-125..25,.5,.125}. Then,
Heontroiter = .25 + .15 = 0.4. Therefore, Reliability(Figure 39) = 0.4.

We calculate the reliability for Figure 43 at time step k=0:

Reliablltty(Figure 43) = PI’[‘raiﬂ + HGate + HCanlraller - HF'ig-ure 43

where Hrrqin = Hgate = 0, Hcontrotter = 0.4, and

Hrigure i3 = (V2 + U3 + vy + U5 +v7) x log: + vs x (3log3 + ilogl) > 0
Therefore, Reliability(Figure 39) > Reliability(Figure 43). The above measure-
ment data collected on two different configurations for the case study given above,
tests the consistency and tracking of the reliability measures.
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The reliability prediction for a system is defined as the lowest reliability measure
value between its m subsystems:

Reliability(System) = min{Reliability(Subsystem;)}"

We chose the minimum value due to the safety-critical character of the real-time
reactive systems. Higher value of reliability measure implies less uncertainty present
in the model, and thus higher level of software reliability.

The Markov model of a configured system changes when the system undergoes change.
The calculation of the Markov matrix for the reconfigured system would allow to

compare the reliability prediction:

Reliability(C;-,) = min{Reliability(S;)};".
where S; is a subsystem of C;_,, and

Reliability(C;) = min{ Reliability(S;)}".

where S} is a subsystem of C;. If Reliability(C;) > Reliability(C;_,), then the
uncertainty present in the reconfigured system is less than the uncertainty that existed
in the current system. The reliability measurement will allow the reconfigured system
to be deployed. However, if If Reliability(C;) < Reliability(C;-,). then there is
more uncertainty present in the reconfiguration. This would suggest to determine the

subsystem(s) of C; that are responsible for lowering the overall reliability.
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Chapter 8
Conclusions and Future Work

During the last fifteen years a great deal emphasis has been put on the quality control
of real-time reactive system development. However, not much work was done in the
area of quality measurement and management of real-time reactive systems. The
results in this thesis seem to be the first ever reported for metrics and measurements
of real-time reactive systems. In particular, the quality model for real-time reactive
systems, metrics and measurements for design complexity, testing complexity. and
reliability are new.

In pursuing this research work, we have focused on the Object-oriented formalism
TROM and the framework TROMLAB for illustrating the applicability of our results
and the context of tools that can be built on our theory. This does not preclude our
results being applied to real-time reactive systems developed in other contexts and

formalisms, as long as their semantic basis fits timed labeled transition systems.

8.1 Summary of Significant Results

The two inherent properties of a reactive system are stimulus synchronization, and re-
sponse synchronization. In a real-time reactive systems, strict time constraints govern
response times as well as internal computations. A critical study of some industrial
systems, such as Nuclear Power Plant Control System, reveal that real-time reactive
systems also involve concurrency in addition to time-constrained synchronization.
Based on such investigation we have proposed factors, criteria, and measures for

real-time reactive systems.
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Correct measurement and interpretation of measurement results are possible only
when the metrics used for the measurement are theoretically sound. We have devel-
oped mathematical models appropriate to the object-oriented architecture in TROM
formalism and provided methods for measuring the complexity in architecture, main-
tenance, testability and functionality.

Testing a safety-critical reactive system before deployment is crucial for ensuring
the safety of its operational cycle. Theoretically, the test set is only finite, however
exercising all test cases is not cost-effective. In order to provide a criteria for stopping
the testing process we have developed a test adequacy criteria based on a distance
metric on the space of test sequences. We have given an algorithm based on the test
adequacy criteria, to select just sufficient number of test cases which are sufficiently
dissimilar for a test exercise. The number of selected test cases depends on the
distance metric.

Another significant contribution of thesis is a formal approach to calculate the re-
liability of a real-time reactive system. This approach finds applications in assessing
the reliability of time-dependent Web application. In a practical setting, the number
of reactive compbnents and their interactions will be large. There are also other fac-
tors such as resource constraints, load factor, and communication complexity. From
a reliability point of view, we require a good formal model which takes these factors
into account. In the formal model proposed in this thesis the load factor and commu-
nication delays can be brought in as synchronization constraints, and resources can
be modeled within each class (such as the Set in Train class) and timing constraints
may be imposed on database transactions. Calculation of transition probabilities for
large evolving configurations involves multiplying fairly large matrices. The density of
the transition probability matrix of a system depends on the number of transitions in
the product matrix, which due to synchronization constraints, might be sparse. The
sparsity of the matrix and the availability of very fast powering and multiplication
algorithms for matrices may be used to speed up reliability calculation for changing
configurations.

One of our goals is to empirically evaluate the reliability model. This is one aspect

of our ongoing study in metrics and measurements for real-time reactive systems.
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8.2 Future Work

As the measurement procedure is both time and resource consuming procedure, a tool,
called Rose-QA, for automatic gathering of quality measurement data and analyzing
it according to the quality requirements is being designed. It will be integrated with
the rest of the tools in TROMLAB framework, shown in Figure 8.

The goal of the quality assistant Rose-QA is to assess the quality of the real-time
reactive systems design being developed in the TROMLAB environment, before the
implementation phase. The quality assistant would provide early feedback on the
development process and artifacts, and has to be regarded as an auxiliary tool for
providing transparency throughout the development process.

The context of the tool within TROMLAB is defined below:

ROSE GRAPHICAL INTERFACE

ROSE MODEL ROSE-QA
(.mdl) l GRAPHICAL USER INTERFACE

ROSE-QA
QUALITY ASSISTANT

Figure 45: Rose-QA: Context

e Rose-QA shall run in the Rose environment shown in Figure 45.

e Rose-QA shall provide a standard graphical user interface, shown in Figure 46.

This GUI will become part of the graphical user interface that already exists in
TROMLAB.

e Rose-QA shall run only after the execution of the ROSE-GRC Translator [Pop99].
That is, only after the specification of the system is compiled and an internal

representation is constructed.

The work reported in this thesis is part of an on-going research project on integrating
formal methods with industrial strength methods for the development of real-time

reactive system. Important future directions of research include
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Figure 46: Rose-QA: Graphical User Interface

empirical validation of the measures on large size systems developed in indus-
tries,

development of metrics for formal verification approaches of real-time reactive
systerns,

assessing the prediction of the reliability model for evolving safety- critical sys-
tems, and

modeling web-based applications within TROMLAB, assess their quality through
Rose-QA tool, and ewmnpirically evaluate the findings.
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