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ABSTRACT

An X- and Q-Band Electron Paramagnetic Resonance Study
of Mn** in a Single Crystal of NHClosly in the Temperature Range 77-295 K

Gino Rinaldi

This work is an electron paramagnetic resonance study of the mixed ammonium
chloride-iodide host crystal doped with divalent manganese. The studies presented here
were carried out at X-band and Q-band microwave frequencies, and at various
microwave cavity temperatures. The resonance spectrum of this crystal is described by a
set of spin-Hamiltonian parameters, whose parameters are determined by fitting the
various resonance line positions obtained for several angular orientations of the magnetic
field relative to the crystal axes. A set of initial parameters is then determined by second-
order perturbation theory. These are then rigorously evaluated by a computer subroutine
using the least-squares-fitting technique.

The spectra obtained through angular variation of the crystal within the static
magnetic field confirm the cubic symmetry of the crystal, and the existence of three
magnetically equivalent sites having their axes along the [100], (010}, and [001]
directions.

The final set of spin-Hamiltonian parameters were interpreted using the
superposition model, which is a mathematical approach used to evaluate the intrinsic

parameters of the crystal, based on the sum of nearest neighbor ligand contributions.
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Preface

Motivation and Organization of Thesis

The motivation behind the research required for this thesis was the opportunity to
apply the knowledge of electron paramagnetic resonance (EPR), also referred to as
electron spin resonance (ESR), acquired in the classroom to the laboratory and to perform
a study on an actual crystal on my part. An EPR course taught by Dr. Misra heightened
my interest for the field of paramagnetic resonance. The initial feelings of intimidation of
all the electronic, magnetic, energetic, components soon gave way to an appreciation of
how all these different and varied pieces of equipment operate together to make up a
magnetic resonance spectrometer. In this respect, an EPR spectrometer really is the sum
of its parts.

In this thesis, an experimental study with appropriate theoretical interpretation of
divalent manganese (Mn?"), a transition metal ion, embedded in the mixed ammonium
chloride-iodide (NH4Clg slo.;) host crystal is presented. The EPR spectrum of Mn®" in the
pure compounds ammonium chloride (INH(Cl), and ammonium iodide (INH,I) host
crystals were initially studied by Forman and van Wyk (1966), and by Chand and Upreti
(1983), respectively. It was reported that the Mn>* cation substitutes for a NH," cation,
and that “most probably”, the overall charge compensation is achieved by having the next
nearest cation site vacant in the crystal. The spin-Hamiltonian parameters (SHP) reported

by Chand and Upreti (1983) for the NHLI host crystal closely match those in the NH,(Cl



host crystal even though the two crystals have different lattice structures, the NHLI crystal
possessing the face-centered-cubic (FCC), while the NH4CI crystal possessing the body-
centered-cubic (BCC) structure. The SHP of these two crystals, as well as those
determined for the NH(Closlo.: crystal, will be interpreted by the superposition model
(SM) of Newman (1971) where the intrinsic parameter, Fz is a function of the sum of,
and spatial orientation of the ligands surrounding the Mn?"* cation in these crystals.

The X-band spectra of Mn®" in NH,C1 and NH.I are very similar, and it was felt
that because of these similarities it would be interesting to investigate the EPR spectrum
of Mn** in the mixed NH.Closlo, crystal. The zero-field splitting (ZFS) parameter, b3,
reported in these works for Mn?* in NH,Cl and NH.], has been observed to be rather large
(= 4.5 GHz) in these inorganic crystals, leading to some unusual features of the X-band
spectrum, especially the forbidden hyperfine (HF) transitions [Chand and Upreti, 1983].
One of the motivations is to study this large ZFS in the NH.Closlo; crystal by using a
multi-frequency approach, X-band (x~ 9.6 GHz), and Q-band (= 35 GHz), at various
temperatures: 295K, 120K and 77K. It is hoped that the NHClyslo, crystal will be
further investigated by higher frequencies appropriate to study large ZFS.

The research for this thesis consisted of several experiments carried out at various
temperatures and microwave frequencies where the crystal was rotated in the applied
magnetic field. The Mn®* first-derivative absorption line positions were used to evaluate
the SHP for Mn®" in the mixed NH,Cly Iy crystal.

The organization of this thesis is as follows. Chapter 1 provides an introduction

to this thesis where a general discussion of EPR will be given and how it can be used to



analyze the energy transitions of paramagnetic ions embedded in suitable host crystals.
This is followed by a discussion of the spin-Hamiltonian (SH) in chapter 2, which deals
with a theoretical analysis of the energy-Hamiltonian equation. The specific SH for Mn**
is determined based upon the crystal structure of the host lattice, and the local symmetry
about the Mn®* ion. The SHP are evaluated using EPR line positions. An historical
overview of the evolution of EPR is given in chapter 3, where the workings of a general
EPR spectrometer are discussed, including the specific spectrometer components for X-
band and Q-band used in this research are introduced. The equipment used in low
temperature measurements is also discussed in this section. In chapter 4, the preparation
and structure of the NH4Closlo, crystal are discussed, and the experimental results are
analyzed to estimate the SHP for Mn®* in NH4Closlo1, and compared to those published
for NH(Cl and NH,I. The experimental results obtained are interpreted by using the SM
in chapter 5. The SM is applied to the NH4Clo sk, crystal for both the FCC and BCC
structures. The results obtained are the compared to those of the NH4I and NH,Cl
crystals in order to establish a consistency with the published results for the intrinsic
parameter b, for Mn>* with iodide ligands, and with chloride ligands. A summary and
concluding remarks are given in chapter 6, as well as the future perspectives of EPR
research on the Mn?*-doped mixed NH,Clo.slo.1 crystal. Appendix A gives the SM
calculations for the NH4I and NH,CI host crystals, Appendix B gives a derivation of
second order energy perturbation, and Appendix C includes a listing of the computer
program used in the determination of the SHP using the least-squares fitting method as

developed by Dr. Misra.



The references cited in this work are listed at the end of this thesis, and are
organized in the following way. They will be listed alphabetically. If a reference is cited
within a sentence, for example, “...will be analyzed using the SM of Newman (1971)...”,
then the author’s name will be followed by the year of publication in round brackets
Newman (1971). All other references are presented with the author’s name and year in
square brackets eg. [Newman, 1971] when referring to a particular publication. When
there are two authors given, both names will appear eg. [Newman and Urban, 1975}, if
there are more than two authors the rejoinder et al. will follow the first author’s name eg.

[Oseguera et al., 1980].



Chapter 1

Introduction

Electron paramagnetic resonance is the study of the magnetic property of atoms,
molecules, and solids that have unfilled electron d and f shells [M. Bersohn anq J.C.
Baird, 1966, Misra, 1999]. EPR is an experimental technique employed in the study of
the ground state energy levels of a particular paramagnetic ion embedded in a host-
crystal. The electron energy levels of the paramagnetic ion are describable in terms of an
effective SH, which includes both electron and nuclear spin operators. The term “electron
paramagnetic resonance” was coined by H. E. Weaver of Varian Associates, as a phrase
that would take into account contributions from the orbital as well as spin angular
momentum of an electron [Wertz and Bolton, 1972]. The study of EPR combines both of
these contributions to the angular momentum into an “effective” spin. A notable
exception is for certain gaseous systems that exhibit a net orbital angular momentum and
zero spin angular momentum. Most of the electrons in an atom do not give an EPR
signal, the reason being that the vast majority of electrons are paired. This means that for
an electron in the m, = +1/2 spin-state, there is a corresponding electron in the same
orbital with a spin-state of m, = -1/2, thus neutralizing its paramagnetism. The transition
metal ions on the other hand have unpaired electrons in their unfilled 3d and 4f shells
[Misra, 1999] and specifically the Mn®* ion has 5 unpaired electrons. Each one of these

five electrons occupies an orbital of equal energy within the 3d shell, so that one may



apply Hund’s rule which states that “when an atom has orbitals of equal energy, the
order in which they are filled by electrons is such that a maximum number of electrons
have unpaired spins” [Kittel, 1961]. In this regard Mn®" has a high-spin electron orbital
configuration.

When a substance is placed in a magnetic field, it acquires a magnetic dipole
moment given by

A=VM (1.1]
where V is the volume of the sample, and M is the magnetization per unit volume given
by

M=Zm [1-2]

os]]

where y, is the volume magnetic susceptibility and Bis the applied magnetic field.
Using
Eqs. [1.1] and [1.2] an expression for the magnetic susceptibility is found,

=H [1.3]

Ho = VB

wi| s

The magnetic susceptibility of a substance gives a clue as to the nature of the substance.
For example if the value of ¥, is negative the material is said to be diamagnetic, that is
the induced magnetic moment is in the direction opposing the applied magnetic field.

For paramagnetic materials the value for y_ is positive, and is independent of the applied
magnetic field. In cases where y_ is large and dependent upon the applied magnetic

field, the substance is said to be ferromagnetic [Derring, 1967]. The difference between a



paramagnetic substance and a ferromagnetic one is that in a ferromagnetic material the
magnetic dipoles are already strongly oriented within the domains even in the absence of
an applied magnetic field, whereas as in a paramagnetic material the dipoles are
randomly oriented. When the host crystal is diamagnetic, as the one studied here, its
magnetic dipoles constitute an extremely small negative magnetic moment to oppose the
direction of the applied magnetic field. Its influence on the EPR spectrum is thus
negligible.

The EPR technique uses an externally applied static magnetic field, the so called
Zeeman field, and a radio-frequency field inducing the transitions. The electron
transitions take place between energy levels whose separation is dependent upon the
externally applied magnetic field. These energy levels are called Zeeman levels, and the
external static magnetic field is varied to adjust the energy separation of these levels to
become equal to that of the energy of the microwave frequency being used.

Electron spin resonance is a term used mainly by chemists, dealing with only the
pure electron spin of a sample, and not in general, those of transition metal ions wherein
both the orbital and electron spins are coupled. Today, the terms EPR, ESR and EMR

(electron magnetic resonance) are used interchangeably.



Chapter 2
Spin-Hamiltonian and Evaluation of

Spin-Hamiltonian Parameters

In this chapter the Hamiltonian-energy equation will be introduced and applied to
Mn?* in NH(Closlos. The spin-Hamiltonian parameters are evaluated using experimental
data.

2.1 The Spin-Hamiltonian

Measurements carried out in EPR are most often done at temperatures where only
the lowest energy levels are populated, therefore quantum numbers describing all the
energy states are not necessary in order to effectively describe the EPR spectrum
[Dering, 1967]. The populated energy levels can be taken into account by a fictitious
spin, S, which describes only those levels pertinent to EPR spectroscopy. By equating
the number of observed energy levels to 2S + 1, the value of S can be obtained, which for
Mn*"* in the high spin state is 5/2.

The SH is a way of characterizing the energy levels and corresponding wave
functions participating in transitions in EPR, including implicitly the effect of those
energy levels higher than the ground state, and is usually made up of spin-operator terms
capable of describing EPR absorption lines consistent with the crystal symmetry. The

coefficients of these spin-operators are determined experimentally, and the orientation of
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the crystal axes can be determined by analyzing the EPR spectra obtained for rotations of
the crystal with respect to the external magnetic field about three mutually perpendicular
axes [Misra, 1999]. This task is simplified if one uses rotation planes perpendicular to
crystal axes as deduced for the morphology of the crystal. For a SH to be useful in
interpreting an EPR spectrum, it should in general include terms which account for the

following interactions,

(i). The effect that the applied magnetic field will have on the electron magnetic

dipole moment (electronic Zeeman term).

(ii). The effect that the applied magnetic field will have on the nuclear magnetic
dipole moment (nuclear Zeeman term).

(iii). The effect that the nuclear magnetic dipole moment will have on the electron
magnetic dipole moment (hyperfine interaction).

(iv). The effect that the nuclear quadrupole moment will have on the electron
magnetic dipole moment (quadrupole interaction).

(v). The effect of the crystal field on the electron magnetic dipole moment (crystal

field interaction).

The SH is an approximate way of interpreting the interaction between the
paramagnetic ion and its environment the ligands in the crystal. In general, the
complexity of the interactions involved does not allow for the solution of the complete

Hamiltonian, as the nature of these interactions is not fully known. It is often the case for
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certain transition metal ions that the spectrum produced through EPR is quite complex.
Among others, it consists mainly of lines due to different transitions between electronic
energy levels called “fine structure”. For electron spin greater than one-half, the energy
levels remain split in zero magnetic field. One can also observe “forbidden” transitions
which are not normally allowed by the selection rules of quantum mechanics in zero-
order of perturbation. The spectrum may be further complicated by the interaction of
electron-spin with the nuclear-spin (hyperfine interaction) [Abragam and Bleaney, 1970].
The terms that must be included in the SH are those which represent transitions leading to
ZFS of the energy levels. The ZFS energy levels of the paramagnetic ion, are the
eigenvalues, E, of the Schrédinger equation applied to the paramagnetic ion
[Merzbacher, 1998].

o = Enya [2.1]
where v, are the eigenfunctions representing the spin-states of the Hamiltonian J¢.

The magnetic fields at which these first derivative absorption lines occur, depends
explicitly upon the frequency of the applied microwave radiation, and also upon the
orientation of the crystal’s axes relative to the applied magnetic field. One way to treat
the effect of the crystal lattice is to think of it as a perturbation to the solution of the
Hamiltonian for a free ion, which is given by [Condon and Shortley, 1935]

ICkree = Hetecr + IsL + Fss + Iz + Fpgs + Foq + IbN [2.2]
where,

Jeeq is the electronic energy of the paramagnetic ion in the free state.

Jfs. is the electron-spin, electron-orbit interaction energy.
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Jfss is the interaction energy of the electron magnetic dipole momnets.

If2. is the interaction energy between the Zeeman levels.

Jfys is the interaction energy of the electron spin with the nuclear spin.

J€, is the interaction energy of the electrons with the electric quadrupole moment

of the nucleus.

€\ is the nuclear spin energy.

If now the paramagnetic ion is embedded in a crystal lattice Eq. [2.2] becomes,

T = Hkree + Hs [2.3]
where,

J€ is the interaction energy of the electron with the crystalline electric field
[Poole, 1967].

For Mn**, which is an S-state, 3d° transition-metal ion there are 5 unpaired
electrons in its 3d shell. The S-state is a definition meaning that the ion has only electron
spin interaction, and no spin-orbit interaction. Each electron in the valence orbital
contributes 1/2 to the spin, for a total spin S = 5/2. The electron magnetic quantum
number m, ranges from —5/2 to +5/2 in integral steps,

my=-5/2, -3/2, -1/2, 1/2, 3/2, 5/2 [2.4]
The spin-Hamiltonian for the S-state, 3d° ions (Cr*, Mn**, Fe*") in an arbitrary symmetry
is expressed by [Misra, 1999],

3¢= p,S-§-B+AS.-T+Y BFOT +Y BTOY [2.5]
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The zero-field operator coefficients, B7 , and the spin-operators, O_', in Eq. [2.5] depend
upon the crystal’s symmetry, and are specifically for the cubic symmetry determined for
the NH(Closlo, crystal, B2, B}, 09 and Of. The spin-operators are given by [Abragam
and Bleaney, 1970],
02 =382 -S(S+1) [2.6]
09 =355¢ —30S(S+1)S? +258% -6S(S+1)+38*(S+1)? 27
There are several considerations to take into account, as have been determined
through experiment on different S-state ions, before an accurate determination of the g
value, and the zero-field operator coefficients can be made. The most important of which
are [Misra, 1986],
(i) There is a large variation in the ground state field splitting for a given ion in
different host lattices.
(ii) The zero-field coefficients are temperature sensitive, increasing with an
increase in temperature.
(iii) The g value for the S-state (orbital angular momentum L = 0) ions (F e,

Mn*") deviates only slightly from that of the free electron value (2.00232).

Rewriting Eq. [2.4] in terms of Egs. [2.5, 2.6}, and with S = 5/2, the Hamiltonian then
becomes,

3¢ =pgg(B,S, +B,S, +B,S,)+B303 +B0} +A(S,I, +S,I, +S,1,) [2.7]
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The last term in Eq. [2.7] represents the hyperfine (electron-spin—nuclear-spin)
interaction. Here Iy, I, I, are the Cartesian components of the nuclear spin of manganese,
I = 5/2. The variable A is called the hyperfine-interaction parameter. The so called
“allowed” transitions have large transition probabilities, they are between levels differing
in electron magnetic quantum number M by one unit: AM =+ 1. The “forbidden”

transitions are those for which AM = 1 and the transition probability between level 1 and

level 2, P2 = |(y, | i |w,)*, has a small non-zero value. A computer simulation of an

energy level scheme showing allowed EPR transitions is shown in Fig.2.1 below for an

ion with S = 5/2 and B parallel to the x-axis of the crystal.
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Fig 2.1: A computer simulation of the allowed energy level transitions for a spin
5/2 ion, with the microwave frequency of 9.5865 GHz, and the corresponding

magnetic field values where the resonant transitions occur.
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The EPR spectrum of the Mn** ion (S = I = 5/2) in NHClqslo; can be
characterized by the following SH for axial symmetry [Forman and van Wyk, 1966].
I = un(guB:S; + 81B:Sx + g1B,Sy) + AS,I; + B(S:k + §yly) +
1/3b3[3S.% - S(S + 1)] + 1/60b? [35S,* —30S(S + 1)S.% +
258, - 6S(S + 1) + 38%(S + 1)) [2.8]
For axial symmetry g = gx = gy.
The expressions for the transitions M <> M", AE =E,, —E, . to fourth order in
perturbation for the various transitions are given by [Misra, 1986]

(£5/2 &> +£3/2): AE=B ¥ 12B? + {4(B2)*/B} + {18B)(B2)%B?}
+ {325(B3)*(B})*/B%} + 28(B;)"/B’ [2.9a]

(32 £1/2): AE=B ¥ 6B - {5(B2)¥/B} + {99B2(B2)¥/B* }
+ {405(B%)*(B2)*/B*} - 5/4(B?)*B? - [2.9b]

(12 - 1/2): AE=B-8(B3)*>/B+648(B3)*(B3)’ /B’ +56(B2)* /B* [2.9¢]

In Eqgs. [2.9a - 2.9c¢], B is the magnetic field value at which the M <3 M’ transition

occurs.
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Chapter 3

Experimental Arrangement in EPR

This chapter will give a brief historical background to EPR equipment, followed
by the makeup of a general EPR spectrometer, and the specific experimental equipment
used in this research.

3.1 A Brief History of EPR Equipment

In the early years of EPR, researchers were severely restricted by the quality of
the experimental equipment available to them, and sadly, it took World War II to induce
a substantial advance in scientific equipment technology!

The big breakthrough came with the advent of radar. Magnetrons, which are
nothing more than high power microwave generators were developed to produce the
radar signal. This development led in turn to the need for highly directional antennae to
transmit the signal, and also to receive the echo, which then led to the development of
sophisticated electronic methods to distinguish between the echo and the transmitted
signal. Improvements were also made to amplifiers, detectors, noise reducing circuits,
and data display systems such as oscilloscopes. By the end of the war, microwave, and
electronic technology had advanced far enough, so that spectrometers with higher
resolution and sensitivity could be constructed.

The very first experimental EPR observations were done in Russia in 1945 by

Zavoisky [Pake and Estle,1973]. These initial experiments observed the power
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absorption of bulk matter from a 12 mega-Hertz (MHz) radio frequency, which yielded
absorption lines roughly 50 Gauss (G) wide or more. At such low frequencies the
estimated field width for resonance is about 4G, where the condition for resonance is
given by,

hv = gugB [3.1]

where B is the magnetic field. h is Planck’s constant (6.626 x 10" JouleSOSecc,md (JoS)).
v is the incident microwave frequency, ug is called the Bohr-magneton (9.274 x 10
Joules/Tesla (J/T), 1 Tesla = 10000 Gauss), g is a dimensionless quantity called the
Landé splitting factor, which is a combination of the spin (S), orbital (L), and total

angular momentum (J) of an electron, given by

g=l_*.J(J4—1)-1!»5(5-+-l)-L(L-+-l) [3.2]
2JJ +1)
j:l:+§ [33]

According to angular momentum theory J can have values ranging fromL + Sto [L - S |
in discrete steps [Wertz and Bolton, 1972]. (For a free electron it has a value of 2.00
since L =0, and J = S). Eq. [3.3] is included in order to show that the spin, orbital, and
total angular momentum are vector quantities with magnitudes given by [Wertz and

Bolton, 1972],

Ji=JJ0+1) [3.3a]
3]=V
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|| =yLa+1) [3.3b]

|8=56+D) 3.3¢]

In later work, Zavoisky extended the EPR technique to microwave frequencies, and he
was able to observe well-defined resonances with line widths of about 250 G on samples
with the Cu?” ion.
3.2 General Details of an EPR Spectrometer

In this section the general details of an EPR spectrometer are described. This is
followed by the specific details of the two commercial spectrometers, Bruker and Varian
used to collect data presented in this thesis.

A typical EPR spectrometer is a combination of different electronic components,
which may be combined in several different ways to satisfy the particular needs of the
user in their EPR experiments. An illustrative example is given in Fig. 3.1 [Wertz and

Bolton, 1972].
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Fig. 3.1: A block diagram representation of a typical X-band spectrometer’s

major components. The sample is placed inside the resonant cavity.

An EPR spectrometer is designed to induce transitions among the eigenstates of
magnetic dipole moments. This ability to induce transitions through the application of
microwave radiation at a given frequency, and an external magnetic field, is what
distinguishes EPR spectroscopy from other spectroscopic methods, which do not induce
magnetic dipole moment transitions. In order to observe an EPR absorption signal, the
resonance condition given by Eq. [3.1], rewritten here in terms of changes in energy,
must be satisfied,

hv=AE [3.4)
where h is Planck’s constant, vis the klystron frequency, and AE = | Ey — Ear | is the

energy difference between the levels participating in resonance, provided that the
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transition probability, P12 = |<wyay | #i [war>2 2 0. Here wyy and wyy are the wave
functions for the two energy levels Ey( and Eyy, and

Him- gu, B, -S [3.5)
is the interaction Hamiltonian between the radio-frequency field B;cosot, with © = 2rv,
inducing transition, and the magnetic moment of the ion # =gu,S. Here S is the
electron-spin of the ion.

The microwave frequency is tunable over a small range, in order to compensate
for different cavity geometries, sample sizes, and temperatures. There are several
considerations, which limit the choice of the radiation frequency [Wertz and Bolton,
1972), the most important of which is sensitivity. The sensitivity of an EPR spectrometer
increases as v°. Thus in order to increase the signal-to-noise ratio, the frequency of the
incident radiation should be as high as possible. However, high frequencies require high
magnetic fields that should be uniform over the sample volume For very high magnetic
fields, of the order of 20,000-30,000 G, a homogenous field is difficult to maintain
[Wertz and Bolton, 1972]. Another important consideration involves samples in aqueous
solutions that have a high dielectric absorption. The high absorption factor seriously
affects the sensitivity, as good microwave-sample-coupling becomes difficult. This
results in a signal that is very difficult to detect even after amplification These
considerations dictate the choice of a working frequency of about 9.5 GHz for
commercial spectrometers. The frequency range of these spectrometers is known as X-
band (8.2-12.4 GHz) in the jargon of EPR experimentalists, where the X-band

designation is in reference to the particular waveguide structure used at these frequencies.
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Higher frequencies (33-50 GHz) are called Q-band. The Q-band waveguide differs from
the X-band in that it is narrower in order to accommodate higher frequency, shorter
wavelength microwave radiation. The other commonly used high frequency is 95 GHz
(W-band).

The EPR instruments that analyze the signal from the resonance cavity give the
data output in the form of the first (small modulation amplitude) or second (large
modulation amplitude) derivative of the power absorption of the sample [Bersohn and
Baird, 1966]. This is due to the fact that the DC signal from the sample represents a very
small change in the overall absorption of the incident microwave power into the cavity.
In other words, at the detector, the DC signal output from the cavity is a very small part
of the overall DC magnetic field. An AC signal is from an experimental point of view
simpler to amplify. It is then necessary to convert the DC signal due to the spins into an
AC one. This can be achieved by modulating the external magnetic field by a small
oscillating magnetic field at the sample. The smaller modulating magnetic field
alternately adds to, and subtracts from the larger field, and as the resultant field increases
and decreases, so does the absorption curve. It is this alternating increase and decrease in
the DC signal, which provides an AC signal that may be amplified and recorded, on a X-y
recorder or in the form of a data array on a digitized micro computer for different values
of the external field during sweep.

The detection method used in the ER series is called homodyne detection. This
means that the microwave frequency is split into two channels. one leading to the cavity

and the other to a reference arm. The two branches are then recombined at the detector
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diode. The self-mixed signal is then used to encode the signal response at the particular
modulating frequency being used. A 100 kHz modulation frequency was used for these
experiments. The EPR signal is then decoded by phase sensitive detection, that is, the
signal will be detected at a harmonic of the applied modulation frequency, and it will be
in or out of phase with the frequency in the reference arm. Anin phase signal leading to
a maximum, and an out of phase signal to a minimum. This form of encoding and
detection is known as Zeeman modulation with phase sensitive detection. The signal is
then amplified and a further reduction in noise is achieved by limiting all noise to *1Hz
around the 100 kHz modulating signal. The signal channel processes and enhances the
incoming signal-to-noise ratio by virtue of its bandwidth limitation capacities. The
operation of the phase sensitive detector can be understood with the help of Fig. 3.2

[Wertz and Bolton, 1972].

O-

Amplitied 100 &z
signal from
crystotl desecdor

Recorder

]

O

Reference signal
from 100 kH2
oscillotor

Fig. 3.2: Schematic diagram of a phase sensitive detector. The transformer has a
split secondary coil, which is used to combine the amplified output of the crystal
detector with a part of the output of the oscillator driven modulation coils. The
combined signal is then rectified, filtered (resistor-capacitor combination, the

filter time constant is given by RC) and recorded.
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When the amplitude of the 100 kHz field modulation is kept small in comparison
to the linewidth of the absorption curve, the amplitude of the detected signal will be
proportional to the slope of the absorption curve at the center of the modulating field. As
the modulating field varies between two values, H, and H, the crystal current varies
sinusoidally between i, and i,. The points at which the slope of the absorption curve is
zero, the 100 kHz component at the detector will be zero. At the points of inflection, the
slope is at its maximum, and the output signal will also be at maximum. The sign of the
slope determines the output polarity of the detector, so that for small modulation
amplitudes the output signal appears as the first derivative of the absorption curve. The
second derivative of the absorption curve may be obtained by doubling the modulation

frequency, for example 200 kHz. This is shown in Figs. 3.3 and 3 4.
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Fig. 3.3: The effect of small amplitude 100 kHz modulation on the detector
output current. The static magnetic field is modulated between the limits H, and

H,, and the detector current varies between i, and i,
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The oscillating magnetic field causes transitions, for example, from the upper
+1/2 spin state to the lower —1/2 spin state, as well as in the opposite direction. The first
transition involves the emission of microwaves and the second the absorption of
microwaves. EPR experiments are carried out on samples containing an enormous
number of unpaired electrons. If the population of electrons is thought of as being
divided into two populations, the +1/2 population and the —1/2 population, then when the
two populations are equal there will be as much emission as absorption of microwaves
and consequently no EPR signal. Therefore, to have an absorption spectrum in EPR the
net population of the —1/2 state must be higher than the +1/2 state. At thermal
equilibrium the ratio of the two populations is given by [Bersohn and Baird, 1966],

N.12/N+12 = exp[(E-12 — E+12)/kT] = exp(guoB/kT) [3.6]
where k is the Boltzmann constant (1.38 x 102 J/K), g is the Landé splitting factor (=2),
B the magnetic field, po is the permeability of free space (47 x 107 N/A?), and T is the
temperature expressed in the Kelvin scale.

The greater the ratio N.12/N.n, the stronger is the absorption signal recorded by
the EPR spectrometer. In Eq. [3.6] there is a temperature dependence on the population
ratio, that is, as the temperature decreases the population ratio increases and the
absorption signal is stronger. From this it can be seen that the signal intensity varies
inversely as the absolute temperature [Bersohn and Baird, 1966]. For example, a first
derivative spectral line seen at liquid nitrogen temperature (77K) is approximately four

times more intense than a spectral line at room temperature (300K).
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The magnitude of the magnetic field and the width of the magnetic field sweep
are predetermined by the user. They depend greatly upon the sample that is under
investigation, and are set through the field controller. The field controller makes use of
the Hall effect in order to generate and monitor the intensity of the magnetic field. The
poles of the magnet are made of copper wire, and the magnetic field is established by the
flow of an electric current through the copper windings.

The Hall effect is a potential difference that is measured perpendicular to the flow
of the current in a conductor, in this case a Hall probe, when the probe is placed in a

magnetic field. The potential across the probe is given by.

E, == g =1 (3 7]

z r

nq nq

where, R, is called the Hall coefficient, and is a function of the number of charge
carriers n, and q being the charge of the electron [Young and Freedman, 2000]. The
number of carriers depends on both the geometry and material of the Hall probe. The
integrity of the field is maintained by comparing the Hall voltage at the pole face. to a
reference voltage for that particular field strength, which determines the current flowing
through magnet.

All the components associated with the microwave excitation and detection, as
well as the control console electronics are referred to as the microwave-bridge. The
microwave source is a klystron, although some spectrometers use a Gunn diode as a

microwave source instead [ER Series Users Manual. 1983].
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The stability of the microwave frequency is dependent upon how well “locked”
the klystron frequency is to the cavity frequency. A feedback loop, consisting of a
circulator and an isolator, measures the amount of power going from the klystron to the
cavity, any power that is reflected back from the cavity is attenuated. When the
microwave frequency is locked to the cavity resonant frequency, there will be a
maximum power transfer. For a frequency mismatch, power will be reflected away from
the cavity. When the kiystron frequency is well matched to the cavity resonance
frequency, a sharp absorption dip will appear at the center of the resonance mode. The
sharpness of the dip, and how low the tip is relative to the baseline, are indicators of how
efficiently the microwave power is being transferred into the cavity. and coupled to the
sample. The klystron frequency can be adjusted over a small range, for a given beam
voltage, by varying the reflector voltage applied to it [Poole. 1967]. In this manner the
klystron can be tuned over the entire range of the resonance mode. Varian and OKI are
two leaders in klystron fabrication. An illustration of a typical OKI klystron is given in

Fig 3.5.
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Fig. 3.5: OKI brand Q-band (= 35 GHz) klystron. This particular model uses a

“forced air” cooling system, as opposed to a ““cold water™ cooling system.

The microwave cavity, or as it is sometimes referred to. the microwave probe. is
used to hold the sample. It is also the geometry of the cavity that determines the
operating frequency, and the sensitivity of the spectrometer. In some cases the cavity
itself may limit the experimental “freedom” of the user, in other words the cavity being
used can dictate whether or not a particular experiment can be performed.

The geometry of the cavity is designed in such a way so that standing wave
patterns, called modes are formed by the microwave radiation. A “normal mode” of an
oscillating system is one in which all the particles of the system move sinusoidally with
the same frequency [Young and Freedman, 2000]. The modes are called transverse
electric (TE), if the electric field is zero along the major axis of the cavity, and transverse

magnetic (TM), when the magnetic field is zero along the major axis [Wertz and Bolton.
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1972, ER Series Users Manual, 1983]. This is illustrated in Fig. 3.6, for a TE,q; cavity
below [Wertz and Bolton, 1972]. This cavity differs from the TE,q, in that it has only
two half-wavlengths along the principle axis. Standing waves are desirable because the
energy density associated with them is much higher than for travelling waves. One needs
only to think of sound waves, and how the change in the number of standing waves
changes the pitch of the sound being produced. The cavity should be designed in such a
manner so that a one-half wavelength of the microwave frequency being used
corresponds to one of the cavity dimensions. Wavelength and frequency are related by
the following expression,

C=AL [3.8]
where c is the speed of light. and £ the wavelength. The frequency for which this occurs
is called the fundamental resonance frequency. The numerical subscripts refer to the
number of half wavelengths along the other two axes.

Microwave cavities are also rated by the efficiency with which they can integrate
microwave energy. This efficiency is characterized by the quality factor Q, and is given

by [Wertz and Bolton, 1972],

Q= 27(maximum microwave power stored in cavity) [3.9]

energy dissipated per cycle

Since the amount of microwave power stored in the cavity, is directly related to the
number of standing waves, it is in general possible to increase Q by increasing the cavity
volume. The amount of energy dissipated depends upon the absorption characteristics of

the particular material of which the cavity is fabricated A highly reflective silver coating
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is applied to the inside walls of the cavity in order to minimize losses due to cavity wall
absorption. The reflective properties are further enhanced, by applying a thin coating of
gold over the silver to prevent oxidation.

The coupling of the microwave energy into the cavity is done through a small
opening called the iris. The iris serves the purpose of impedance matching the
microwave energy incident on the cavity, with the energy inside the cavity. Th‘at is to
say, the iris prevents any energy to be reflected back to the microwave source from the
cavity. A maximum of energy transfer takes place when there is an impedance match.
There is an electronically adjustable screw, which allows for small adjustments for
optimal impedance matching. The size and type of sample has an influence on the setting

of the screw.
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Fig. 3.6: The TE,q: rectangular microwave cavity. (a) The iris couples the
microwave energy into the cavity. The amount of microwave coupling can be
adjusted by the screw at the top of the cavity. (b) The electric field boundary in
the xz-plane. There is a one half-wavelength correspondence between points of
equal field intensity, but opposite phase. (c) The magnetic flux in the xy-plane.
The dimension of 4 is approximately one half-wavelenghth, and C is exactly two
half-wavlengths. The B dimension is not critical, but should be kept at less than

one half-wavelegth.
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The electromagnet is designed to provide a uniform, controllable magnetic field
over the sample volume. The magnet pole faces are nine inches in diameter and the
spacing between them can be varied for the specific experimental application. The
magnet is made of two low impedance coils connected in series. Two thermo-switches
connected to a water flow detection device protect the coils from overheating.

Although it is not a physical part of a working spectrometer, a cold, filtered water
supply is essential for the operation of the klystron and the electromagnet. The magnet
power supply is designed to automatically shut down in the event of a disruption of the
cooling water flow. A Varian 9-inch magnet is shown in Fig. 3.7.

The components discussed above apply, in general, also to Q-band spectrometers.
The only variations being the waveguide, and cavity dimensions. the magnetic field
intensity, and the klystron microwave source. A typical Q-band waveguide assembly is

shown in Figs. 3.8 and 3.9.

Fig. 3.7: The Varian V-3400 9-inch rotatable magnet Weight of the magnet is

1016 kg.
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In what follows the details of the two commercial spectrometers, Bruker and
Varian, used to collect data on the Mn** doped NH4Closlo ; mixed crystal are described.
3.3 The Bruker ER Series Spectrometer

The particular Bruker ER senies X-band spectrometer used in these experiments
consists of the following components: a signal channel, field controller, time base,
microwave controller, microwave bridge, klystron, microwave cavity, electromagnet, and
a cold filtered water supply. [ER Series Users Manual. 1983].

3.3.1 Signal Channel ER022.

The signal channel console allows the user to choose between 100 kHz and
12.5 kHz for the modulation frequency, depending on the circumstances of the
experiment. The peak-to-peak modulation adjustment selects the modulation amplitude
in the cavity at the sample. and is incremented in 2dB steps

The second resonator selection is used in conjunction with the TE;,; double
cavity. It allows the user to select between the first or second cavity, and channels the
modulated output from either cavity to the signal detector and amplifier.

The receiver gain level determines the sensitivity of the signal amplifier. The
overload indicator will be activated when the modulation output power or the signal
amplifier is saturating.

The receiver output time constant controls the frequency response of the output
signal by a selection of the RC filter time constant. The signal-to-noise ratio can be

greatly enhanced by selecting an appropriate time constant.
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The offset switch is used to center the signal output level on the XY
recorder or computer.

The phase of the receiver frequency can be adjusted in 90° intervals by setting the
phase selector switch to the desired phase. The receiver phase can also be “fine” tuned in
steps of 0.1° by use of the phase fine-adjust control.

3.3.2 Field Controlier ER031M.

The field controller allows the user to set the magnetic field center and the sweep
width. The magnetic field data can be entered with a maximum resolution of 0.1 Gauss.
The entries are made by pressing the appropriate buttons on an alpha-numeric keypad.

3.3.3 Time Base ER001.

The time base unit is the component that provides the timing control required for
data acquisition. The timing is achieved by using a 4.096 MHz quanz oscillator, which
can be scaled by frequency dividers as needed. Its main function is to synchronize the
field sweep timing with that of an external data display, such as a chart recorder or
computer. The sweep time determines the record time of data accumulation in seconds.
It corresponds to the total time required to vary the magnetic field between the limits set
by the field controller. The sweep rate (time/Gauss) is determined by the total sweep
time per sweep divided by the total sweep width.

3.3.4 Microwave Controller ER048SH

In the standby position, power is applied to the klystron filament but the beam
and reflector voltages remain off. Should the spectrometer be left on standby for a period

exceeding 30 minutes the filament voltage will be turned off in order to prolong the



klystron lifetime. The microwave attenuation is adjusted by a thumb screw mechanism,
and is used to establish the microwave mode on the spectrometer’s oscilloscope. The
absorption dip of the incident microwave power is found by adjusting the frequency
control of the klystron, and once found the attenuation is further reduced to allow a
maximum power transfer from the klystron to the sample. As the attenuation is reduced
the tip of the dip will be lowered towards the baseline of the microwave mode.. Fine-
tuning can be made by electronically raising or lowering the iris screw.
3.4 Varian V-4503 Spectrometer

The Q-band spectrometer used in this research consisted of the following
components

3.4.1 V-4500-10A EPR Control Unit

The control unit allows the user to monitor the klystron resonator current. and also
any deviations of the klystron frequency from that of the cavity The current flowing
through the crystal detector in the microwave-bridge is also indicated. The klystron
reflector voltage adjustments can also be made on this unit.

3.4.2 V-4250B Sweep Unit

The sweep unit allows the user to select from variable frequencies, 20, 40, 80, 200
and 400 Hz. which are then amplified and applied to the modulation coils. The x-axis of
the oscilloscope is also driven by these frequencies. The sweep unit also allows for

external modulation by providing input jacks at the back of the console.
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3.4.3 V-4240B Sweep Amplifier Unit

This unit serves to amplify the frequencies produced by the sweep unit, ensuring
sufficient power to the cavity modulation coils.

3.4.4 V-4560 100kHz Field Modulation Control Unit

To obtain optimum signal-to-noise ratio the modulation coils should driven at the
highest frequency possible as the detector noise varies inversely with the modulation
frequency. The 100 kHz modulation frequency was used for these experiments. The
spectrometer’s sensitivity 1s increased by a factor of 15 when using 100 kHz modulation

as opposed to 400 Hz.

Typical spectrometer settings used in these experiments are given in Table 3.1.



Table 3.1: Typical X and Q-band spectrometer settings

X-band Q-band
Microwave Power 12dB 17dB
Microwave Frequency 9.58 GH=z 36.02 GHz
Modulation Frequency 100 kHz 100 kHz
Modulation Amplitude | 5 G (peak-to-peak) | 5 G (peak-to-peak)
Receiver Gain 5x10° 12x10°
Time Constant 500 ms ls
Center Field 6500 G 7000 G
Sweep Width 7000 G 11000 G
Sweep Time 1 ks I ks
Diode Current 200 uA 200 uA
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3.5 Low Temperature Cryostats

The boiling point of liquid nitrogen is 77.3K. This extreme cold will burn skin on
contact, and great care should be taken in handling liquid nitrogen. Flexible or soft
materials will become hard when exposed to liquid nitrogen and are easily breakable.
Should liquid nitrogen be spilled on cryogenic or vacuum equipment, it will freeze the
rubber O-rings and cause a loss in vacuum.

For the low temperature measurements carried out in this work the following

cryostats were employed.
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3.5.1 Bruker Variable Temperature Unit

The temperature control unit has a variable temperature range of 64K to 800K for
EPR studies. The required temperature at the sample is regulated by a thermocouple that
senses the heat exchange between the sample and the heater. The selected temperature is
maintained by a gas flow that pressurizes the dewar containing liquid nitrogen. The
themocouple which is placed close to the sample detects any changes in the valtage of the
temperature selected.

The liquid nitrogen is evaporated by the heater thereby producing the nitrogen gas
flow needed for the low temperature regulation [Bruker Technical Manual VTU, 1990].

3.5.2 Oxford Variable Temperature Flow Unit

A vacuum pump system is needed for laboratory scale continuous-flow-cryostats
(CFC), in order to pump out the liquid nitrogen transfer tube, and to set up a pressure
gradient along the nitrogen flow line so that the flow of nitrogen can be controlled
[Oxford Instruments Operating Manual ESR 9, 1978].

The vacuum pressure for laboratory scale cryostat systems is generally around
10™ Torr (10" microns). In order to reach this pressure both a mechanical rotary pump
(pumping speed of SOL/min), and oil diffusion pump (pumping speed 10L/s) are used.
The rotary pump is used to reduce the pressure to a point where the diffusion pump can
start to operate, generally around 1 Torr or less, and the diffusion pump will then further
reduce the pressure to about 10~ Torr or less.

CFC operate on the principle of the controlled continuous transfer of a coolant

such as liquid nitrogen from a storage vessel to a vacuum insulated sample space. The
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temperature at the sample can be maintained at any point within the CFC range by
controlling the flow of liquid nitrogen and the power to the electrical heater attached to
the heat exchanger. The flow of nitrogen is produced by establishing a pressure
difference , with the gas flow pump, between the storage vessel and the nitrogen return
line. The nitrogen gas flow is monitored on the flow controller.

The temperature is measured by a temperature sensor attached to the heat
exchanger. This apparatus maintains the temperature of the cavity as close as possible to
the “set point” by maintaining a balance between the heat lost by the system to its
surroundings and the heat provided by the heater. By alternately heating and cooling the
cavity an average temperature is established that is very close to the user defined “set
point”. In this regard, in order to obtain an accurate measurement of the sample volume
temperature, the thermocouple must be in good contact with the sample volume, and be
isolated from every part of the system that is at a different temperature {Oxford
Instruments Operating Manual ESR 9, 1978]. A typical CFC system is shown in Fig.

3.10.
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Chapter 4
Preparation of Single Crystal of NH4Cl ol

and Experimental Data

In this chapter the preparation of the crystal as prepared by Dr. P Chand of the
Indian Institute of Technology, Kanpur, India will be presented, as well as the
experimental results obtained following a multi-frequency, multi-temperature strategy.
4.1 Sample preparation

The method most commonly used in the growth of ammonium halides is by the
slow evaporation of a saturated aqueous mother-solution under a constant temperature
[Chand and Upreti, 1983]. It was found that solutions left in lighted areas did not
produce good quality crystals, believed to be due to photo-decomposition of the
compound, leading to bleeding of iodine into the mother-solution resulting in crystals
being dark and malformed. Crystals grown in a very dark, temperature controlled
(20.5°C) environment were clear and cubic, and of a relatively large size. The
evaporation rate was kept slow by addition of urea (2% by weight) to the mother-
solution. An x-ray analysis of the crystals grown in this manner showed that the urea did
not adversely contaminate the crystal lattice [Chand and Upreti, 1983].

The Mn?* ion was introduced by adding 0.5% manganese dichloride (MnCl;) by

weight of NH(ClysIo ) to the mother-solution. The crystal was mounted onto a quartz
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support rod with some Dow-Corning vacuum grease, and attached to a Varian E-229
goniometer. When the crystal was not being tested, it was stored in a small container of

mineral oil. The BCC structure of NH4Cly 5lo.; is shown in Fig. 4.1.

Fig. 4.1: The BCC lattice structure showing the central cation surrounded by eight

anions.

42  Experimental Data

4.2.1 X-band

The first experiment was carried out using the Bruker X-band spectrometer at
room temperature (295K), and the NH4Closlo ; crystal rotated in the (001) or equivalent
plane. The quartz support rod and crystal were then mounted onto a goniometer and

attached to the cavity. The length of quartz was adjusted such that the crystal attached to



it was in the position of highest microwave concentration. Once the crystal has been
attached to the cavity an initial attempt is made at tuning the spectrometer. This is
achieved first by lowering the microwave attenuation and establishing a klystron
resonance mode, and secondly a good coupling, by an iris, of the incident microwave
power and the sample in the cavity. When a sharp dip in the resonance mode of the
klystron is obtained, a maximum standing wave power condition exists. This is shown in

Fig. 4.2 [Poole, 1967).

A

a b

Fig. 4.2: a) On resonance: there is a maximum power transfer from the klystron to
the sample. (High standing wave density within the cavity)
b) Off resonance: there is low power transfer from klystron to sample. (Low

standing wave density within the cavity)

Once a good coupling has been established, the crystal’s magnetic z-axis, that is
the axis parallel to the applied magnetic field, is found by taking spectra at different
crystal angles relative to the applied field, by rotating the goniometer. The orientation at

which the spectrum shows a maximum overall splitting of lines is defined to be the z-axis
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of the crystal. The magnetic z, x, and y axes, are therefore defined to be those directions
of the magnetic field for which the overall splitting of the EPR line positions exhibit
extrema, that is along the [100], [010], or [001] directions corresponding to the cube
edges of the crystal. Of these the splitting is largest for B || z-axis, and smallest for B || v,
or x-axis. The spectrum for B || z-axis is shown in Fig. 4.3. Each group of lines consists

of a sextet, and are about 11 G peak-to-peak per line.
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Fig 4.3: The spectrum of Mn®* in NH,Clo s, for B || z showing the largest
splitting of line positions. The group of lines marked A, B, D, correspond to the

z-x spectrum, while those marked E, F, G, correspond to the x-y spectrum.
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The group of lines marked as E, F, G, in Fig. 4.3, do not show any angular variation as
the crystal is rotated from [100] to [010] in the (001) plane. The groups marked as A, B,
D, in Fig. 4.3, show angular dependence and the A, B group moved to higher magnetic
field values as the crystal was rotated. This same group of lines is shown in Fig. 4.4 for

an angular orientation of 45 degrees, that is B is at 45 degrees relative to z.

r v

T Y Y v T v T T T T 1
0 2000 4000 6000 8000 10000 12000

Magnetic Field (Gauss)
Fig. 4.4: The spectrum for an angle of 45 degrees from the z-axis. The group of
lines marked A, B, C, D have shifted position from that of Fig. 4.3, while those

marked E, F, G have not.

The group of lines marked as C in Fig. 4.4 showed an interesting characteristic as the
crystal was rotated. For B || z the intensity of these lines was very small, and they first

moved to higher fields up to about 30 degrees off the z-axis and then started to decrease
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in field strength to the point where their position was no longer discernable in the
spectrum.

All the crystal faces (100), (010) and (001) were found to be equivalent as far as
the angular behavior of the EPR spectra was concerned. The EPR spectrum became quite
complex as the crystal was rotated away from the z-axis due to the increasing overlap of
other line positions, making it impossible to follow all the group of lines through the full
angular variation of the crystal.

From the resulting angular variation, and the shifting of the line positions of the
fine structure group in the (001) plane from [100] to [010] shows the existence of three
types of magnetically equivalent sites, with their axes along the [100], [010], and [001]
directions [Chand and Upreti, 1983). The angular variation of the EPR spectrum of Mn®"
in NH4Closlo; is given in Fig. 4.5 (z-spectrum). Lines not showing any angular
dependence are given in Fig. 4.6 (x-y-spectrum). Spectra were recorded at angular
intervals of two degrees from B || zto B || z +12°, then every four degrees thereafter up to
B || z + 78°, and finally every two degrees up to B || z + 90°. This approach was used
because the line positions for angles close to B || z have a greater influence on the SHP

than those for angles farther away from B || z. The spectrum repeats itself at every 90°

interval (z =z + 90°). This is shown in Fig. 4.7.
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Fig. 4.5: The angular variation of Mn?* in the (001) plane. The solid lines

represent the computed values, and the circles, squares, triangles and diamonds

are from experiment.
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"H” 24270

Magnetic Field (Gauss)
Fig. 4.7: A comparison of spectra starting at B || z (bottom spectrum), at 90°

intervals showing that they are equivalent, verifying that the crystal has cubic

symmetry. The intensities of the lines are indicated in arbitrary units.

The line positions for low magnetic fields were quite difficult to resolve due to the
many fine-structure forbidden transitions, AM = + 1, where M is the electronic magnetic
quantum number. The intensities of forbidden transitions become quite high and they
over shadow those of the allowed transitions [Forman and van Wyk, 1966]. The energy
levels for B || z are shown in Fig. 4.8, and for B L z in Fig. 4.9. The allowed transitions
are those corresponding to an energy equal to the incident microwave frequency, and
with AM =1 and Am = 0. The fine structure forbidden transitions correspond to changes

in the nuclear quantum number m by + 1 [Abragam and Bleaney, 1970].
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Fig. 4.9: Zeeman energy levels for B L z.
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422 Q-band

The Q-band Zeeman energy levels are spread further apart than they are for X-
band. This is owing to the fact that the Q-band microwave frequency being used here is
approximately 3.5 times higher than the X-band klystron frequency of about 9.6 GHz.
This higher frequency accordingly corresponds to higher magnetic field values for the
electronic transitions, thereby separating the energy levels to such a degree as to allow
one to distinguish quite readily between the forbidden and allowed transitions. The

angular variation for Q-band is given in Fig. 4.10.
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Fig. 4.10: The angular variation of Mn®* in the (001) plane at Q-band. The solid
lines represent the computed values, and the circles, squares, triangies and

diamonds are from experiment.
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The following two models have been proposed in order to explain the existence of
the three axially symmetric magnetic sites [Chand and Upreti, 1983],
(i). The substitution of Mn** for NH,", and in order to maintain overall charge
neutrality, a vacancy at the next nearest cation site.
(ii). The s.ubstitution of Mn?* for NH,", and the substitution of two CI ions with two

OH ions along the cubic axis of the crystal.

All equivalent distortions in the above models occur with equal probability, so that 1/3 of
the symmetric centers will have their axes along [100], 1/3 along [010] and the remaining
1/3 along the [001] direction. From experiment it was determined, to within

experimental error, that the x and y-axes are equivalent, so that g« = gyy = 81. Therefore,

for B parallel to either the [100], [010], or [001] directions the x-y spectrum becomes

relatively more intense (theoretically about twice as much) than the z-x or z-y spectrum.
All three centers will give identical overlapping spectra along the [111] direction,

resulting in a single spectrum [Chand and Upreti, 1983].

At zero-field, the difference between the energy levels of the electron depends
upon the ZFS parameter bj. The quantity b3 is the interaction energy of the spins of the
electrons when the magnetic field B is in the z direction [Bersohn and Baird, 1966].

From the value Ib‘,’| , the average separation between two electrons with opposite spin can

be estimated. When axial symmetry is present [Abragam and Bleaney, 1970]

(b2), = b2), =-172(2), =-1/3b3 [4.1]
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where,

(bg)“ =22 Z Khd‘ll"czll‘d)l2

4.2
M=z0 EM -Eu' [ ]

where, a =x,y, z, A is the spin-orbit interaction constant, and L, is the orbital angular
momentum operator [Pake and Estle, 1973].
> b3).. =0 . [43)

For Mn?* in NH(Closlo 1, the value of b} has been observed to be unusually large,
indicating a strong axial distortion due to the presence of extra charge in the proximity of
the paramagnetic ion [Chand and Upreti, 1983]. By model (i), it would indicate the
presence of a charge compensating vacancy at the next nearest cation site. It has been

found that for the alkali-halides, the equivalent sites associated with the OH" impurity
ligand, also have a large b2 value compared to that of the pure ligands CI' or I'. This

suggests model (ii) for the strong axial distortion. As the crystal was grown from
slightly aqueous solution, there was the possibility of the formation of Mn(OH); due to
the dissociation of H,0 [Chand and Upreti, 1983, Forman and van Wyk, 1967]. The OH
ligands seem to make large distortions to the cubic environment possible, however,
Chand and Upreti (1983) report having heat treated their crystal (430K), and cooled to
liquid nitrogen temperature (77 K), and found no differences in the EPR spectra. This
leads to the conclusion that the OH radical is not responsible for the large axial

distortion. Forman and van Wyk (1966) report that for the NH4Cl crystal doped with
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Mn?*, the spin-Hamiltonian given is consistent with a vacancy at the next nearest
neighbor cation site. This same approach will be applied to the NH,Closlo; crystal.

The observed spectra at Q-band are consistent with the existence of three axially
symmetric magnetic sites, where the spectra also repeated themselves at 90° intervals.
The analysis and interpretation of the Q-band spectra, confirm a large b? value as was
found with X-band.

4.3  Evaluation of spin-Hamiltonian Parameters

The spin-Hamiltonian parameters as given by Eq. [2.7] rewritten here,

J€ =uge(B,S, +B,S, +B,S,)+B;0? +BJO% +A(S, 1, +S,1, +8,1,) [4.4]
were evaluated using the least-squares fitting (LSF) procedure as outlined by Misra
(1999). This method provides a quick, accurate procedure for the analysis of EPR data.
In this procedure, the magnetic field values where transitions occurred for different
orientations of the magnetic field relative to the crystal axis are used simultaneously,
including the forbidden transitions for which AM = 1. The computer program developed
by Dr. Misra using the LSF technique in the evaluation of the SHP is given in Appendix
C.

In the LSF, a mathematical criterion is used to arrive at a set of final parameters in
an iterative manner, beginning with a set of initial parameters [Misra, 1999]. For the
analysis of EPR data, one is interested in evaluating the SHP from the resonant magnetic
field values obtained from one (preferably more than one) orientation of the external
magnetic field. The set of P parameters described by the column vector v™ obtained

from the iteration for which the chi-square value S’ is at the absolute minimum, can be
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obtained from a set of initial parameters which are described by the column vector V' as
follows,

v =v -E'F [4.5]
where F is the column vector whose elements are the first derivatives of S' evaluated at
¥, and E is the matrix containing the second derivatives of S’ evaluated at v™. The
value of chi-square is defined as, |

=3 (fuGm, ¥) - Vi)Yo’ [4.6]

M
where Vy is the experimental value for a given experimental variable xy. The oM is a
weight factor determined from standard deviation, and fu(xm, V) is the calculated value
with parameters v corresponding to the experimental value V.

Initially, the values of V™ are not known, therefore the elements of E are
evaluated with respect to ¥', from which a new set of parameters described by v'is
obtained,

V=V —(E)' F [4.7)
In the fitting, done by the computer software designed by Dr. Misra, Eq. [4.7] is used in
an iterative manner until a sufficiently small value for S is obtained [Misra, 1999].

The chi-square function for EPR data is given by

S=Y" [(JAEM| - hom) fo’u] [4.8]

M
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where AEm = Em — Em. The energies Ey and Eur are obtained by substituting the
numerical values of the parameters, and the resonant magnetic field value By into Eq.
[4.4], and diagonalizing it on the computer [Misra, 1999].

As mentioned above, in order to apply the LSF method the first and second

derivatives of S’ (with respect to the parameters) are needed. These are given here,

By A, (AEy |-boy)(Ey Ty [4.9]
da, 4|AEy| o2, \oa; ou; )
IS _ 51 (FEy T FEy _Ey ),
Gajla, 4o\ da; oa; \Oa, Ooa, [4.10]
AE,, 8%E,, O°E, ’
AE,, | -h -
IAEMI(l M| DM)(‘.mjaal 28 a,

These can be evaluated numerically by using Feyman’s theorem as outlined in Misra

(1999), and according to which

cE
6ah.d =<ym|(8H/Ca))| wm > [4.11]

)
or in a form more convenient for computer evaluation [Misra, 1999],

Eri  Tr(a0e/0a(vm >O<vrd] [4.12]

j
where [yu >®<wyy| is the (2S + 1) x (2S + 1) matrix found by taking the outer-product of
the column vector |yy > with itself, and 8J€/0a; are the spin operators proportional to
either the components of Sor O™ in Eq. [4.4]. Tr stands for “the trace of a matrix”, that

is, the sum of the diagonal elements of the matrix.
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The evaluation of SHP from EPR data by using the LSF technique, can be done

by using the following steps [Misra, 1999]

G).

(ii).

(iii).

(iv).
).

By using second-order perturbation theory, an estimate is made for the initial

parameters (non-zero)

Fit the greatest number of data points possible from different magnetic field
orientations. The more line positions are fitted, the smaller the parameter error
becomes. For each resonant field value By, the elements of the SH matrix are
determined using the V'. By using an adequate computer subroutine the
eigenvalues Eyy, and eigenvectors [y > should be calculated.

By using the results of (ii), calculate chi-square, the first derivative, and second
derivative.

Determine the matrices E and F as outlined above.

Calculate the eigenvalues and eigenvectors of E. Calculate, using Eq. [4.7], a
new set of parameters with the initial set found in (i), and then compute a new S'.
If this “new” S’ is smaller than the “old” S, and consistent with experimental
uncertainties, end the computation, otherwise Misra (1999) gives other strategies
such as the use of interpolated fields, where the theoretical fields are computed,
using a set of initial parameters, corresponding to the actual resonant fields.
However, it may be simpler to calculate theoretical frequencies instead, by the use
of interpolated frequencies, where the computed frequencies are proportional to

the energy differences between the levels participating in resonance.
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For each calculated spectrum the mean square deviation (SMD) is calculated
using,

SMD=Y (|AEum|-hv)’ [4.13]

™
where AEy is the energy difference of the two levels participating in resonance at the Mm*®
resonant field value. The LSF technique was successfully applied in the interpretation of
the experimental data amassed for the NH4Closlo.1 crystal. The final output data (SHP), as
determined by the LSF method, are given in Table 4.1 for different temperatures and

microwave frequencies.

The SHP of Chand and Upreti (1983) X-band and (1984) Q-band for Mn?* in the
pure NH.I crystal with FCC structure, along with those of Forman and van Wyk (1966)
for Mn** in the pure NH,ClI crystal with BCC structure are given in Table 4.2 for

comparative purposes.



Table 4.1: Spin-Hamiltonian parameters for NH,Clo.slo.1

Frequency | 9.6193 9.6965 35.87 36.06 9.6193 +
(GHz) 35.87
Temp (K) 295 120 295 77 295
# Lines fit 216 222 288 288 504
g 2.0062 1.9984 20141 2.0446 2.0160
+0.00021 | £0.00019 | +£0.00005 | +0.000067 | +0.000031
g 1.9991 1.9986 2.0104 2.0162 2.0102
+0.00012 | £0.00013 | +£0.00004 | +0.000031 | +0.000032
b? (GHz) -4.5274 -4.6362 -4.5771 -4.7003 -4.5672
+0.00073 | +0.00068 | +0.00022 + 0.00027 + 0.00012
b2 (GHz) .000812 0.00035 0.013 0.036 0.0111
+0.00035 | £0.000006 | +0.00014 | +0.00015 +0.00012
A (GHz) -0.24387 -0.23733 -0.25406 -0.24859 -0.24834
+0.00033 | +£0.00032 | +0.00023 + 0.00023 + 0.00019
B (GHz) -0.24193 -0.23888 -0.25523 -0.24987 -0.24852
+0.00034 | +£0.00034 | +0.00031 + 0.00024 + 0.00022
SMD 0.24485 0.61396 0.35903 0.53491 0.13496
Table 4.2: Spin-Hamiltonian parameters for NH4Cl and NHLI.
Host 8i 8L b%(GHz) | b3(GHz) | A (GHz) | B (GHz)
NH,4CI 2.0012 | 2.0012 | -4.7728 | 0.0064 -0.26379 | -0.26797
NH,I: X-band | 2.0014 | 2.0028 | -4.7966 | 0.0168 -0.26797 | -0.26797
NH4I: Q-band 2.0003 | 2.0004 | -4.4809 0.00028 | -0.24414 | -0.24885
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Chapter 5

Analysis of Experimental Data

In this chapter an attempt is made to analyze the Mn?* zero-field-splitting
parameter in NH(Clo 5lo.; using the superposition model of Newman (1971).

5.1 The Superposition Model

The experimentally determined spin-Hamiltonian parameters (SHP) can be
analyzed by making use of the superposition model (SM), originally proposed by
Newman (1971). The SM makes the assumption that the SHP can be expressed as the
sum of the ionic contributions due to individual ions within the crystal lattice. The
spherical symmetry of the ions allows one to represent the contribution from each ion as
a cylindrically symmetric field if the z-axis is taken along the symmetry axis of the
coordinated ions. The SM approach takes into account only the nearest-neighbor
interactions, being the predominant contributors to the SHP, and neglects the effects of
the more distant ions.

Knowledge of the crystal structure is required in order to determine the exact
spatial location of the ions within it. This is important because the SM analysis in this
work is based upon the interaction of the Mn®" ion with the surrounding CI” ligands. Due
to the fact that there is a “charge compensation” (Mn 2*: NH,") effect, and a difference in
ionic size between the host ion and the impurity ion, there will be some local distortion in

the crystal about the Mn®* ion. There is an abundance of chemical-bond data available in
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publications, notably that by Pauling (1939) which were exploited in the calculations of
bond distances and lattice distortions in this work.
The crystal investigated here is the mixed ammonium chloride-iodide

(NHLClo slo.1) crystal, doped with 0.2% concentration of Mn**. The valence of the NH,

cation is +1, and it has an ionic radius of 1.43 :\ [Pauling, 1939]. As the crystal is

electrically neutral, the valence of the Cl, and I anions are —1 each. The ionic radii for the

Cl and I ions are 1.81 A and 2.20:& respectively [Pauling, 1939]. There will result some
local distortion within the crystal where 2 mono-valent (NH,)" cation has been replaced

by the divalent Mn®" cation, because the latter has a different valence, and a different

ionic radius of 0.81 A [Pauling, 1939].

To apply the SM to the Mn**-doped NHClgslo; crystal, the Mn?* cation will here
be assumed to be at the origin (0,0,0) of a coordinate system located within the crystal.
Then one of the anions ClI" or I'!, say the i, called a ligand ion, will be located at some
position (R;, 6;, ¢;) relative to this cation. The variable R; is the bond length between the
impurity cation and one of its nearest neighbor anions. The angular coordinates (6;, ¢;)
are the azimuthal and polar angles respectively, that the anion-cation bonds make relative
to the axial plane of the crystal. For cubic crystals, such as NH,Closlo1, which is
assumed to have the BCC structure (NH4CI has BCC structure [Kittel, 1961]), the polar

coordinate ¢ is not required due to the axial symmetry of the crystal.

The NH4CI crystal has a BCC structure, and a lattice constant, a, of 3.87 .&
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[Kittel, 1961]. A representation of the BCC structure is given in Fig. 5.1. When the
crystal consists of mixed anions, as is the case for NH(Clo.slo.1, 9 out of 10 anion lattice
sites will be occupied by the CI” ion, and the tenth site by the I ion if there is uniform
doping. This is shown in Fig. 5.2. In this work the SM will first be applied to the
NH.Closlo; crystal with different possible anion configurations assuming that the local
coordination of the Mn?" ion is the same as that of the NH," ion, except for a vacancy in
the former case. Then it will be applied to both to the NH(Cl and NH.I crystals
separately for comparative purposes. Based upon the results obtained for these two

crystals a confirmation can be made to the assumption as to whether NH(Clo.slo.1 has

BCC structure or the FCC structure of NH,IL.
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O Cation site

‘ Anion site

Fig. 5.1: A unit cell of the BCC lattice structure of the NH4Cl crystal. The body-

centered cation is surrounded by 8 coordinated anion ligands.

Fig. 5.2: A possible arrangement of the ions for the NH4Closlo.1 crystal with BCC

structure. The iodine ion is shown in gray, and the chlorine ion in black.



In the SM, the contribution of the i coordinated ligand to the SHP, B” is
expressed as,

KT (6, ¢) bu(R) [5.1]
where the variable b_ (R;) is called the intrinsic parameter, representing the contribution
to the crystal field from a single ligand at a distance R; from the origin (0,0,0) [Newman,
1971, Newman and Urban, 1975). The K™ are called the coordination factors. They
depend on the angular position of the ligand with respect to the defined origin within the
crystal. Specifically, for cubic symmetry the only required coordination factors are:

K?(0) = % (3cos’6-1) [5.2]

K (8) = /3(35¢c0s*0 - 30cos?@ +3) [5.3]
As there are multiple ligands at the distance R in a given cubic crystal, the zero field
splitting parameters (ZFS), are expressed as a sum of the contributions of the various
ligands i:

by =2 KI 6, ¢) buR) (=1,2,3,...) [5.4]

with

ba(R) = bu(Ro)Ro/R)" [5.5]
where R, is the anion-cation bond distance taken along the direction of the Mn**-nearest
neighbor vacancy. This direction will be hereby defined to be the z-direction for the Mn**
doped NHCloslo, crystal. In Eq. [5.5), R is the impurity cation-anion distance for the ith
ligand, and t, is the power law exponent. It is usually taken as 7 + 1 for Mn?* [Newman,

1971, Newman and Urban, 1975, Newman and Siegel, 1976, Rubio and Cory, 1978,
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Rubio et al., 1979, Oseguera et al., 1980, Lehmann, 1980, Weltner and van Zee, 1985,
Heming and Lehmann, 1987, Jain and Lehmann, 1990, Wen-Chen, 1993].

In this work the determination of the impurity ligand distance will be made by
taking into account the effect of charge compensation due to the difference in the ionic
charge of the host, and impurity cation. This difference in ionic charge leads to a vacancy

at the next nearest cation site in order to maintain electrical neutrality.

In EPR, the SHP, b, are determined experimentally using the LSF technique.

Specifically, for a cubic crystal these are the parameters b and b. For these
parameters, Eqgs. [5.4] and [5.5] yield

b =3 % (3cos’6i-1) ba(Ro)Ro/R))" [5.6]

b = s(35c0s*6; - 30c0s’6; +3) ba(Ro}Ro/R:)" (5.7}

In order to express b2 , and b} in the form given by Eqgs. [5.6] and [5.7] respectively,
the values of by(Ro) and bs(Ro) should be determined from the SHP and the
configuration of the ligands. To this end one needs to know the bond length Ro. This is
described in the following section.
5.2 Estimation of the Bond Length R,

The ammonium chloride (NHLCI) crystal has the BCC lattice structure, while
NHL.I has the FCC structure. It is expected that there will be a good probability that the
mixed NH4Closlo; crystal will also have the BCC structure due to the predominantly

large content of CI" ions versus I ions (9:1 rato).



In order to estimate bond lengths in a host crystal one needs to know how the
substitution of a host cation, NH,*, by the impurity cation Mn?" effect the integrity of the
host crystal in the vicinity of the impurity cation. At equilibrium, the attractive and
repulsive coulomb forces cancel each other out completely, and the crystal is electrically
neutral. If one were to think of ions as small spheres, the bond distance might simply be
the sum of the radii of the anion and cation provided that they are touching each other
(tight-binding). However, this is generally not the case [Pauling, 1939]. The combination
of Coulomb forces, ionic radii, and type of ions, ultimately determines the structure of a
crystal, and the size of the unit cell. In some cases, the equilibrium condition leads to
anion-cation overlap, that is Ro < Ranion + Raation, While there are cases where the
equilibrium condition requires that Ro > Renion + Raation, due to either strong cation-cation,
or anion-anion interaction [Pauling, 1939].

The NH4Cl1 and NH.I crystals may crystallize into either the BCC or FCC
structure when external influences such as temperature affect the equilibrium condition
[Pauling, 1939]. (However, in this work the crystal structures as published by Kittel
(1961) will be used, that is, NH,Cl has BCC structure, and NH,I has FCC structure). The
inter-ionic distances for BCC structure are about 3% greater than for FCC structure. This
particularity is exploited in a manner such that given the bond length for the FCC
structure, the bond length in the BCC structure can be calculated. The calculations carried
out here to find the bond lengths for the BCC structure were based on the FCC structure.

The FCC structure is shown in Fig. 5.3.
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Fig. 5§.3: The face-centered-cubic lattice. The large spheres are anions and

the small ones cations.

The procedure described by Pauling, (1939) is described as follows.

The total potential energy of a crystal with FCC structure may be written as
[Pauling, 1939],

2.2 2
Ae z +Be [5.8]

V=-
R R°

In Eq. [5.8], A is the Madelung constant, B is the repulsive Coulomb coefficient, the
variable z? accounts for the valence of the ions, e is the electron charge, R is the anion-
cation bond length and n is the Born exponent, or as in some publications the repulsive

potential exponent. The attractive Coulomb force is accounted for in the e? term.
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At equilibrium, the attractive and repulsive Coulomb forces are balanced. The value of R
(called Ro) at which this occurs is found by differentiating Eq. [5.8] with respect to R and

equating to zero [Pauling, 1939].

2.2 2
dV/dR = A‘;f - '1‘3‘3, [5.9]
and at equilibrium,
2.2 2
Al: 2z _ ;Bf“ =0 [5.10]
0 0
from which Ry can be found,
il
nB a-
R":(Az’) ‘ [5.11)

The Madelung constant depends upon the type of crystal structure; it can be determined
by taking the sum of the charge distribution of the particular crystal structure. R is of
vital importance to SM calculations, since the Madelung constant is dependent upon the
crystal structure, and according to Eq. [5.8] the potential energy is a function of R.
Determination of the Madelung constant will be discussed in further detail below. The
Born exponent, n, can be estimated from the compressibility data of a crystal

[Kittel, 1961], and it is given by the following relationship,

18R ,*

5.12
Ke3A [ ]

=1+

where the compressibility K is a function of the change in volume of the crystal with a

change in pressure. It is given by,
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dv

-—— 5.13
Vap [5.13]

For most crystals the value of n = 9 is used [Pauling, 1939, Kittel, 1961]. If one now

takes into account the sizes of the individual ions, Eq. [5.8] becomes,

Ae 2 (r-p t r. )n.l (2r+ ) ! (21'. )"-l
- +pBe’ ——-—+ BBe By +fBe Ry [5.14]

where £ is an ionic-interaction constant. It has values of 1, 1.25, 0.75, respec;ively, for
anion-cation interaction, for cation-cation interaction, for anion-anion interaction
[Pauling, 1939]. The variables, r. and r., are the radii of the cation and anion
respectively. In order to determine the distance Ro, one needs to minimize V as given by
Eq. [5.14]. Thus, by differentiating Eq. [5.14] with respect to R one obtains
[Pauling, 1939],

Ryee =(r. +1)F(p) [5.15]
in which F(p) is a function of the ionic radii ratio

p=5 [5.16]
r.

and it has the form

1
L n-1 e-1) o1
6nB )a- 125 ( 2p 075 ( 2
F(p)= (——) 1+ —(—) + —(—) [5.17]
A (‘/5)' p+1 (‘/g)r p+1
The factor 6 in Eq. [S.17] takes into account the six nearest neighbors in the FCC lattice.

A plot of F(p)vs p is given in Fig. 5.4 [Pauling, 1939].
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Fig. 5.4: A plot of F(p) versus p. p= L Ro=(r. +1)F(p), for crystals with
r,

FCC structure.

According to what has been published in the past, for the vast majority of ionic crystals n
= 9, and the value nB = 0.262 was chosen so that for p=0.75, F(p) = 1 [Pauling, 1939,
Kittel, 1961]. These particular values were chosen mainly because for many crystals
with NaCl structure, which is FCC, the anion-cation radii ratio is very close to 0.75.
Therefore for crystals having this particular ionic ratio, the equilibrium bond distance, Ry,

is just the sum of the radii of anion and cation [Pauling, 1939].
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In order to apply Eq. [5.15], which is based on FCC structure, one needs to
recalculate R, for the assumed BCC structure for NH(Cly olo.; crystal. As was mentioned
above, NH,Cl, and NH,I, may crystallize into either the FCC or the BCC lattice structure,
depending upon the conditions present when the crystal was formed [Pauling, 1939]. The
relationship between the two possibilities is given by,

a1 :
Repec _ (Eﬂﬂoi‘&)“ [5.18]
Roce  (Brec  Aspcc
Given the inter-ionic bond distance of one structure, the Madelung constant of both, and
repulsive coefficient of both, for example, it is now a simple matter to calculate using
Eq. [5.18] the ionic bond distance Ropcc or Rorcc from that of the other [Pauling, 1939].

The bond distances for NH,Cl and NH,I will now be calculated for both BCC and
FCC lattice arrangements respectively. Starting with Eq. [5.16], p for NH4CI is equal to,

p=r./r.=1.43/1.81=0.79 [5.19]

and now putting this value into Eq. [5.17],

[ 6(.262) [ 125 (2079 o715 2 Y '
F(")"[1.74756) {H(ﬁ)? (.79+1) +(,/5)9 (.79+1)} 0.9986  [5.20]

Putting this value into Eq. [5.15], one obtains

Rorce = 0.9986(1.43 + 1.81) =324 A [5.21]
The value obtained in Eq. [5.18] is for FCC structure, and it is now possible by using

Eq. [5.18], to calculate Rg for the BCC structure.

Roncc = 3.24 A (1.322)"8=3.355A [5.22]
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Similarly the bond distance for the NH,I crystal, for both the FCC and BCC structures
can be calculated. The results are listed in Table 5.1. The repulsive potential coefficient

B, is equal to 8 for BCC structure, and 6 for FCC structure [Pauling, 1939].

Table S.1: Crystal structure data for ammonium chloride and ammonium iodide.

Host ) ) o .0
. (A) |r(A) [P |FO® Rorcc(A) | Ropec(A)

NH,CI 1.43 1.81 0.79 | 0.9986 3.24 3.355

NH,l 1.43 2.20 0.65 | 1.0056 3.65 3.81

53 Madelung Constant

It was felt that a brief discussion of the Madelung constant should be included
here because of the role the Madelung constant plays in determining the equilibrium
distance Ro, and given the importance of Ry in the application of the SM. Its importance
is justified because the value of the Madelung constant varies with the type of crystal
structure as can be seen in Eq. [5.18]. It may be evaluated by taking into account the
contribution of the ionic charges situated on a cubic unit cell of a particular crystal. The
charges on cube faces are shared between 2 unit cells, on edges between 4 unit cells, and
at corners between 8 unit cells, this method of summing the net charge contribution of
successive unit cells was first developed by Evjen [Kittel, 1961). A two dimensional

representation is given below in Fig. 5.5.
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Fig. 5.5: A two-dimensional representation of the Evjen method for determining

the Madelung constant.

At the boundary of the inner square we have a total charge of 4(1/2) - 4(1/4) = 1.
Similarly for the outer square 4(1/2) - 4(3/4) - 4(1/2) + 8(1/2) - 4(1/4) = 0. Applying the
same approach to a three dimensional FCC lattice one obtains,

A =m@(2)/1 - n(148Y V2 +n3(18)/+3 [5.23]
where n,;, n;, n; are the total number of ions per cube on its faces, edges, and corners
respectively, so that for a FCC unit cube withn; =6, n; =12, andn; =8, A=145is
obtained. If the next cube enclosing the smaller one is taken into account a more accurate
value of A = 1.75 was obtained for the FCC structure. If even more successive cubes are
included in the calculation, a value which is very close to the accepted value of 1.74756,
which has been calculated using the Ewald method, may be obtained [Kittel, 1961]. The

value of the Madelung constant for the BCC structure is 1.76267 [Pauling, 1939].
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54 Mixed Ammonium Chloride-Iodide Host Crystal: NH,Cl Structure

First the SM will be applied to the situation where the iodine ion is not part of the
cubic unit cell surrounding the Mn?* ion, so that all the ligand contributions come only
from the chlorine ions. Secondly the assumption will be made that the iodine ion is part
of the unit cell surrounding the Mn*" ion, at an anion site on the side nearest to the
cationic vacancy, and finally for the third situation, on the side furthest away from the
cationic vacancy. The reason for doing this is because the exact location of the iodine
anion is not known. There are 8 anion sites surrounding the central cation in BCC
structure, and it was felt that the probability that the iodine anion could occupy any one
of these sites was high enough to warrant the approach described above. This is shown in
Fig. 5.6. In the “normal” BCC lattice, all the anion sites are equal and homogenous, so
that the four anion sites on the right of Fig. 5.1 are the same as those on the left side. The
same can be said for the four on top and the four on the bottom. In Fig. 5.6, cube 2 will
be taken as the one undergoing lattice distortions due to the next nearest cation site
vacancy in the adjoining cube to the right (cube 3). The chlorine ions are shown in black,
the iodine in light gray, the manganese in white, ammonium in dark gray, and the
vacancy as a square at the cationic site of cube 3. Cube 1 is assumed to consist of NH,"

ions and Cl'ions only.
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Cube 1 Cube 2 Cube 3

Fig. 5.6: Possible lattice configurations: a) Mn?* ion surrounded by 8 CI" ions, b)
Mn?* ion surrounded by 7 CI" ions and one I ion on the side closest to vacancy, ¢)

Mn®" ion surrounded by 7 CI and one I ion on the side farthest from vacancy.
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The SM will now be applied to the situation as illustrated in Fig. 5.6a), where the
assumption has been made that the Mn®* ion is surrounded only by CI ions as ligands.
54.1 a)Cr=8,r=0
A 2 dimensional representation of the lattice distortions due to charge
compensation is given in Fig. 5.7. Because of the symmetry of the crystal the perspective
shown in Fig. 5.7 can be taken as directly head on looking into the crystal, or directly

overhead looking down into the crystal.

cr

Fig. 5.7: A two-dimensional representation of the lattice distortion due to charge
compensation for the BCC structure assuming that the Mn®" ion is surrounded
only by CI" ions. The angle between the ligands in this structure is 70.36 degrees.
E and n are the distortion parameters, modifying the bond length from Ro to R;
and R; respectively. The cation sites illustrated are actually situated below the

plane of the paper.
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Due to the difference in cationic charges, the assumption is made that in order to
maintain electrical neutrality, the next nearest cation site is vacant [Rubio and Cory,
1978, Oseguera er al,, 1980]. The resulting effect of the cationic substitution, and the
next nearest cation site vacancy, will be to produce local site distortions about the
impurity Mn?* ion, changing the bond lengths.

In the BCC structure there are 8 ligands oriented about the central cation. These
ligands will not be equally displaced by the vacancy at the next nearest cation site. The
distortion induced by the Mn**ion causes the ligand distances to vary from that of the
undisturbed lattice. The anions situated further away from the vacancy site will be less
displaced from their initial positions. This is due to the NH," cation exerting an attractive
force on these anions. However, this is not the case for the anions situated closer to the
vacancy site, as they have a much smaller force exerted upon them from that side. The z-
axis is taken along the direction of the vector drawn from the impurity cation to the
vacancy site. Only the nearest neighbor interactions are taken into account here, as
contributions from more distant ions are negligible [Newman, 1971].

Accordingly, the distances R; and R; as shown in Fig. 5.7 can now be estimated
using the results published by Rubio and Cory (1978), and those of Oseguera e? al.
(1980). They applied the charge —compensation stratagem to several different alkali-
halide crystals doped with Mn**. The results obtained by them are listed in Table 5.2.
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Table 5.2: The alkali chloride crystal bond distances and

distortion parameters.

Host ° o ° R/R
Ro(A) [n(A) [&A) 1
LiCl 2.5648 0.0993 0.0623 0.9852

NaCl 2.8201 0.1585 0.0862 | 0.9735

KCl 3.1465 0.2293 0.0836 | 0.9524

RbCi 3.2740 0.2548 | 0.0737 |0.9434

The values of the distortion parameters 7 and £ determining R, and R;:

R; =Ro -n, R2 =Ry - §, were estimated by Mott and Littleton (1938), and by Reitz and
Gammel (1951). The method they developed is for calculating the polarisation around
any lattice site in a polar crystal containing an excess of charge, and to obtain the work
required to form vacancies (of either polarity) in alkali-halide crystals. A plot of 7 versus
Ro from the values given in Table 5.2 is given in Fig. 5.8. A plot of R;/R; versus Ry is
given in Fig. 5.9. From these graphs the distortion parameters for the assumed BCC

structure of NH,Clo sl will here be estimated.



79

0.26 NH,Cl,l,, (BCC)

. RbCi
0.24 4 KCi NH Cl,,l,, (FCC)
0.20 =~

: -
0.16 =~
0.12 =
Lict
0.08 =~
T v T v L v Y e \ S
2.4 2.6 2.8 3.0 3.2 3.4

R, (angstroms)

Fig. 5.8: A graph of the distortion parameter n} versus the bond distance R, for the

alkali chlorides.
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Fig. 5.9: A plot of the ratio of the distorted bond distances R, and R: versus Ry
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The bond distance Ry for NH4Clo olo.1 was determined to be 339A , and from Fig. 5.8 the
distortion parameter n was estimated to be 0.27 :ﬁ resulting in a value for R,

R, =3355-027=3.12A [5.24]

The radius ratio Ry/R;, from Fig 5.9 was estimated to be 0.9315, so that

R, =(1/0.9315)3.12=335A - [5.25]
Table 5.3 lists the necessary data required to apply the SM to NH,Closlo.; with assumed

BCC structure.

Table 5.3: The required data necessary to apply the SM to Mn?* in NH,Clo.slo ;.

The angle, 6;, is the angle that the impurity-ion-ligand makes with the z-axis. The

SHPs b and bJ were determined experimentally.

0 -1 0 -1 o o o o
bitem™) | Baem) | Ropec(A) | n(A) [ Ri(A) [Ro(a) [R1R2 | & Cer)
0.15257 | 0.000435 | 3.39 027 |3.12 3.35 09315 | 35.18

The SHPs b3 and b] can now be analyzed using the SM. In Fig. 5.7, exhibiting a
2-dimensional configuration of the CI” ligands surrounding the Mn?* ion, the z-axis is
taken along the impurity-vacancy direction, which is also the direction of axial symmetry
of the crystal. The number of nearest ligands at distance R, is 4, and the number of

ligands at distance R is also 4. In this case, an estimation of the angles between the
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impurity-ligand bond and the z-axis gives 0, = 62 = 35.18°. Using Egs. [5.4] and [5.5]
one can express,

by =K3b,(R,)+K3b,(R,) . [526]

b, (R,)=b,(R,)R,/R,)" [5.27]
Substituting now the values listed in Table 5.3, the intrinsic parameter ba2(Ry) is
estimated following the definition of the coordination factor K given by Eq. t5.2].

0.15257 = 4/2(3cos*(35.18) — 1) ba(R)) + 4/2(3cos’(35.18) - 1) by(R2)  [5.28]
which results in

0.15257 cm™ = 2 b(R1) +2 b2(R2) [5.29]

b2(R;) = 0.047 cm™ [5.30]
Now using Eq. [5.3] for K}, the intrinsic parameter b«(R:) may be evaluated in a similar
fashion.

0.000435 = 4/8(35c0s*(35.18) — 30cos*(35.18) + 3)b, (R1) +

4/8(35co0s*(35.18) — 30cos*(35.18) + 3) b, (R2) [5.31]

resulting in

b, ®R:) =-0.0002 cm [5.32]
where Eq. [5.27] has been rewritten as

b.R,)=b,R)IR,/R,), t4=T%1 [5.33]
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5.4.1 b)CI'=7,T =1 (on vacancy side)

The SM will now be applied to the situation as illustrated in Fig. 5.6b), where the
assumption has been made that the Mn?* ion is now surrounded by 7 CI' ions, and one I
ion as ligands. In this scenario the iodine anion is assumed to be at a site on the same
side as the cationic vacancy relative to the Mn®* cation. Therefore there will be two
different bond distances “R,” on the vacancy side, three of them due to the CI’ ions and

one due to the I' ion. This is illustrated in Fig. 5.10.

cr

Fig. 5.10: A two-dimensional representation of the lattice distortion for BCC
structure assuming that the Mn?* ion is surrounded by 4 CI ions at distance R;, 3

Cl' ions at distance R;, and 1 I ion at distance R, .

In this case, the position of the I' cannot be ignored. Although it has the same electronic

charge as the CI ion, its radius is different, 2.20A as compared to 1.81 ;\ for CI'. This
difference in radius will affect the bond length. Thus the I ion’s contribution to the

intrinsic parameter for Mn?*-CI" must be taken into account. The strategy adopted in this
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work is to assume that the I ion is at a distance proportional to the atomic masses of

chlorine and iodine ions

Rur=Rici - MoyMy) = 3.12 - (35/127) = 2.84 A [5.34]
and that its contribution will be included in the calculation for the intrinsic parameter
b,(R,). Recalling the result obtained for the intrinsic parameter b, (R,)=0.047 cm™, in
Eq. [5.30], and b,(R,) = -0.0002, a comparison can be made with the results oBtained
here.

In order to relate the intrinsic parameter B, (R,) as a function of R, only, the
following relations are used in the calculations as well as Eq. [5.27], and Eq. [5.33]

b,(R,)= b2Ric) RicvRur)’ [5.35a]

b,R,)= biRic) Ric/Ru)’ [5.35b]
the following determinations are made,

0.15257 cm™ = 3/2(3¢c0s*(35.18) — 1) ba(R;) + 1/2(3c0s*(35.18) - 1) ba(Rup) +

4/2(3cos*(35.18) - 1) ba(R2) [5.36]
resulting in,
0.15257 cm™ = 3/2 by(R1) +1/2 b2(Ru) +2 b2(R2) [5.37)
which yields,
b2(R;) = 0.041 cm™ [5.38]

and in a similar manner the intrinsic parameter,

b, (R1) =-0.000334 cm’! [5.39]



5.4.1 ¢)CI=7,TI =1 (opposite the vacancy side)

In the final case investigated here the SM will now be applied to the
situation as illustrated in Fig. 5.6c), where the assumption has been made that the Mn**
ion is again surrounded by 7 CI” ions, and one I' ion as ligands. However for this
situation the iodine anion is assumed to be at a site on the opposite side of the cationic
vacancy relative to the Mn>* cation. Therefore, now there will be two different.bond
distances “R;” on the vacancy side, three of them due to the Cl ions and one due to the I’

ion. This is illustrated in Fig. 5.11.

Ccr

Fig. 5.11: A two-dimensional representation of the lattice distortion for BCC
structure assuming that the Mn®* ion is surrounded by 3 CI ions and 1 I ion at

distance Rz, and 4 CI ions at distance R;.

In Fig. 5.11, the distance of the iodine ion from the Mn®* cation should now be greater
than was the case in the previous section. This stems from the fact that there is now a

NH," cation “attracting” the mixed ligands towards it, and compensating, to a degree, the
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“attractive” force of the Mn®" cation on the opposing side of the unit cell. A calculation

for R gives,

Ra1 = Roct — (Mcy/M;) = 3.35 — (35/127) = 3.07A [5.40]
The calculations for the intrinsic parameters b,(R,)and b,(R,), following the same
method as in the previous sections yielded the following results:
For the intrinsic parameter b,(R,),
0.15257 cm™ = 4/2(3¢c0s?(35.18) — 1) ba(Ry) + 1/2(3¢cos*(35.18) — 1) ba(Ra) +
3/2(3cos*(35.18) - 1) ba(R2) [5.41]
leading to
b,(R,)=10.0398 cm™ [5.42)
and for the intrinsic parameter b,(R,),

b,(R,)=-0.000319 cm’ [5.43]
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55 Mixed Ammonium Chioride-Iodide Host Crystal: NH I Structure

For the sake of intellectual curiosity, and also as a means for comparison with
established results for Mn®* with CI" ligands, the SM will now be applied to the situation
where the NH4Cloolo.1 crystal has the FCC structure of NHLI. In this type of structure the
central cation is surrounded by 6 anions. A 3-dimensional representation of a FCC lattice
is given in Fig. 5.12. Unlike the case for BCC structure, four possible I’ ligand

orientations shall be investigated for the FCC structure.

1T o o o o
P = Zal=ad =

Fig. 5.12: A 3-dimensional representation of a FCC lattice. The Mn?* cation is

shown as the white circle, and the charge compensating vacancy as the white

square.

The distortion parameter 1} and the radius ratio Ri/R2 will be estimated in the same
manner as for the BCC structure of NH,Cl. The calculations are not repeated here but are

summarised in Table 5.4.
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Table 5.4: The required data necessary to apply the SM to Mn** in NH,Closlo yfor

the assumed FCC structure of NH,I.

0 -1 0 -1 ° o o ° Ri/R.
P2(em) | D) | Rorcc(A) | m(A) | Ri(A) |Ra() |52 |01 (48
0.15257 | 0.000435 | 3.28 0.256 | 3.024 |3.20 0943 (0
90

551 a)CIr=6,IT=0

A 2 dimensional representation of the lattice distortions due to charge
compensation is given in Fig. 5.13. Again due to the symmetry of the crystal the
perspective shown in Fig. 5.13 can be taken as directly head on looking into the crystal,

or directly overhead looking down into the crystal.

R, R,
>
R, ?

Fig. 5.13: A two-dimensional representation of the lattice distortion for FCC

—>
cr

structure assuming that the Mn?* ion is surrounded by 5 CI” ions at distance R; (1
ion is coming out of the page, and 1 is going into the page) , and 1 CI" ion at

distance R;.



Using the data obtained and tabulated in Table 5.4, although not all the steps are included

in this section, the same approach will be applied to the FCC structure as was the case for
the BCC structure, and the result thus obtained for the intrinsic parameters and ‘5‘ are
respectively,
0.15257 = 1/2(3cos*(0) - 1) ba(Ry) + 4/2(3cos*(90) - 1) ba(R2)
+1/2(3cos*(0) - 1) ba(R2) - [5.44]
resulting in
b,(R1)=0.458 cm [5.45]
and for b,
0.000435 =1/8(35cos"(0) — 30cos’(0) + 3) b, (R1) +4/8(35cos*(90) —
30c0s’(90)+3) b, (R) + 1/8(35¢0s*(0) - 30cos?(0) + 3) b, (Rz) [5.46]
leading to the result

b, (R;) =0.00016 cm ! [5.47]

5.5.1 b)CI'=S5,T =1 (on side nearest to vacancy)

A 2 dimensional representation of the lattice distortions due to charge
compensation is given in Fig. 5.14 with this time the iodine ion at a anion site which is on
the side of the vacancy. Again, due to the symmetry of the crystal the perspective shown
in Fig. 5.14 can be taken as directly head on looking into the crystal, or directly overhead

looking down into the crystal.
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Cr
R, R,
>
R; *

Fig. 5.14: A two-dimensional representation of the lattice distortion for FCC
structure assuming that the Mn?" ion is surrounded by 5 CI” ions at distance R, a
ion is coming out of the page, and 1 is going into the page), and 1 I ion at

distance R;;.

It is again necessary to calculate the bond distance due to the iodine ion. Making use

once more of Eq. [5.34] with the appropriate values one obtains for R,

Rui = Rici — (Mc/My) = 3.024 - (35/127) = 2.75 A [5.48]
Resulting in,

b,(R;)=0.537 cm™ [5.49]

and  b,(R;)=0.000121 cm™ [5.50]

5.5.1 ¢)CI'=5,T =1 (on side farthest from vacancy)
In this situation the iodine ion is located at an anion site on the side directly

opposite the cationic vacancy. This is shown in Fig. 5.15. Once again, due to the
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symmetry of the crystal, the perspective shown in Fig. 5.15 can be taken as directly head
on looking into the crystal, or directly overhead looking down into the crystal.

Ccr

i

R;

™

2 R;
<
>
R; +

Fig. 5.15: A two-dimensional representation of the lattice distortion for FCC

structure assuming that the Mn?* ion is surrounded by 4 CI ions at distance R (1
ion is coming out of the page, and 1 is going into the page), 1 CI" ion at distance

R,, and the I ion at distance Ra;.

It is again necessary to calculate the bond distance due to the iodine ion. Making use

once more of Eq. [5.34] with the appropriate values one obtains for Ry,

Ra: = Ract — (Mc/My) = 3.20 — (35/127) = 2.93 A [5.51]
Resulting in,

b,(R;)=0.100 cm™ [5.52]

and b,(R,)=0.000113 cm™ [5.53]
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55.1 d)CIr=S5,T =1 (with I off the z-axis)
In this situation the iodine ion is located at an anion site, with bond length Rz, not

on the z-axis of the crystal. This is shown in Fig. 5.16.

Cr

Fig. 5.16: A two-dimensional representation of the lattice distortion for FCC
structure, assuming that the Mn®* ion is surrounded by 4 CI” ions at distance Rz (1
ion is coming out of the page, and 1 is going into the page), 1 CI" ion at distance

R,, and the I' ion at distance Ry off the z-axis of the crystal.

This ligand arrangement results in the following values for the intrinsic parameters,
b,(R,) =-0.600 cm [5.54]

and  b,(R;)=0.000152 cm’ [5.55]
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5.6 Summary of the Results Obtained

In this chapter the SM was applied to the mixed ammonium chloride-iodide host
crystal, first for the most “probable” situation where the lattice is assumed to have the
BCC structure of NHCl and with three possible lattice-ligand orientations. Secondly, as
a matter of intellectual curiosity, the SM model was applied to the “not-so-probable”
situation that the ammonium chloride-iodide crystal has the FCC structure of NHL.I, and
with four possible lattice ligand orientations.

A comparison of the intrinsic parameters, b2 and b4 obtained in this work for
BCC structure, show a good consistency with the values published by Heming and
Lehmann (1987), and to those of Jain and Lehmann (1990). It is of interest to note that
the inclusion of the iodide ion in the calculations for the intrinsic parameter, does not
greatly affect the value of b, when it is “moved” from one anion site to another for the
BCC structure. This is most likely due to the fact that the iodide ion is “outnumbered”
three-to-one on any given side of the BCC lattice, and it’s contribution or lack thereof, to
the overall magnitude of the intrinsic parameter b, is negligible. However, for the case of
the FCC structure, this “averaging” no longer applies as the iodide ion is “isolated” at any
given anion site relative to the Mn?* ion, and therefore it’s effect on the evaluation of
b, can not be taken lightly or ignored. The results obtained are given in Table 5.5.
Included are the intrinsic parameters as calculated for NH,Cl and NH.I based on the
SHPs b and b3 of Forman and van Wyk (1966), and Chand and Upreti (1983)
respectively. The calculations carried out for the intrinsic parameters of NHCl and NH,I

are given in Appendix A.



Table 5.5: A summary of the results obtained for the SM as applied to

the mixed ammonium chloride-iodide crystal. The results evaluated for

ammonium chloride, and ammonium iodide are also included for comparison.

Host NH.Closlo NH.Closlo. NH.CI NHLI
(BCC) (FCC) (BCO) (FCC)
bl (cm™) | 0.15257 0.15257 0.14974 | 0.15043
bS(cm”) | 0.000435 0.000435 0.00021 | 0.00056
b,(cm™) | 2)0.047 a) 0.458 0.045 0.633
b) 0.041 b) 0.537
c) 0.398 c) 0.100
d) 0.6
b,(cm™) | a)-0.0002 a) 0.00016 -0.000181 | 0.000193
b)-0.000334 | b) 0.000121
c)-0.000319 | ¢) 0.000113
d) 0.000152
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Chapter 6

Conclusions

The EPR X-band and Q-band study of Mn?* in NH (Closlo; at 295 K, 120 K, and
77 K has been presented here. The spin-Hamiltonian parameters describing the EPR
spectra of Mn?* in NH (Closlo. obtained by fitting resonance line positions for several
crystal angles relative to a magnetic field, closely resemble those of NH,Cl and NH,I in
spite of their different crystal structures. The conclusion to be drawn from the resulting
spin-Hamiltonian parameters is that they are consistent with the model of the Mn** ion
entering substitutionally for a NH," ion at a cationic site in the crystal. The overall charge
neutrality of the crystal being maintained by having a vacancy at the next nearest NH,"
lattice position, and the lattice distortions induced by the vacancies in the three crystals
accounting for the similarities of the SHPs.

The spin-Hamiltonian parameters were then analyzed by using the superposition
model. The superposition model was first applied to the “most probable” BCC lattice
structure for NH4Closlo.1, and then to the “least probable” FCC structure. From the
resulting intrinsic parameters two conclusions may be drawn. First, the intrinsic
parameters determined for NH(Cloolo. for the assumed BCC structure are consistent with
those of other publications for Mn** with CI" ligands. However, similar calculations
carried out for the FCC structure resulted in values for the intrinsic parameters

inconsistent with published values for Mn** with CI' ligands. In order to verify the
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validity of the methods employed for the NH(Closlo1 FCC calculations, the SM was
applied to the FCC structure of NH.I and the results were found to be consistent for Mn>*
with I ligands. Therefore, the second conclusion to be drawn from the SM calculations
is that the results obtained for the intrinsic parameters show that NH,Cly sl ; has the BCC
lattice structure of NH,CI.

For future work it would be interesting to study crystals with varying
concentrations of chloride and iodide, especially the NH,Clo slos: Mn?* crystal, and to
study the spectra of these crystals in order to determine which structure each would have,
BCC or FCC. It would also be of interest to carry out measurements at higher microwave
frequencies, as the resulting splitting of energy levels are easier to interpret than for low
microwave frequencies where degeneracies of energy levels at low fields lead to spectra

that are difficult to analyze.



Appendix A

The SM calculations for the NH,I and NH,CI host crystals are given here.
A.l1 Ammonium lodide

To be able to apply the SM, one needs to determine the bond length Ry for the
NHLI crystal, which has the FCC lattice structure. Using Eq. [5.16], the value.of 0.65 is

obtained for p in the NHLI crystal, where the ionic radii of the NH," cation and the I’

anion are r. = 1.43 Aandr.= 2.20A respectively. With this value, one can find F(p)

from Eq. [5.17], which yields a value of 1.0056, and then by applying Eq. [5.15] one may

calculate Ro. The value obtained using this method is 3.65 A. The next step is to re-
evaluate this bond length upon the substitution of the Mn®" cation in place of the NH,*
cation. Due to the differences in the cationic charges, the assumption is made that in
order to maintain electrical neutrality, the next nearest cation site is vacant [Oseguera et

al., 1980, Rubio and Cory, 1978]. This is illustrated in Fig. A.1.
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Fig. A.1: The NH4I FCC lattice structure with distortions due to charge

compensation by having nearest neighbor cation site vacant.

As was the case for the alkali-chlorides, the values for R; and R, were obtained from the
work done by Oseguera et al., (1980). The determination of the values of the distortion
parameters,n and &, were made by Mott and Littleton, (1938), and by Reitz and Gammel,
(1951). A plot of n versus R for the alkali-iodides for the values obtained by Oseguera ef

al., (1980) given in Fig. A.2, and was exploited in determining the value of n for the

NHL4I crystal.
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Fig. A.2: A plot of the distortion parameter n versus the intrinsic bond distance

Ry for several alkali iodide crystals.

For the NH4I crystal, which has Ro = 3.65 A the value obtained for n is 0.1669 A , SO that

R, = (3.65 — 0.16996) = 3.48 A [A1]
By again making use of the ratios Rj/R; of Rubio and Cory, (1978), it was found that
they decrease for increasing Ro in the alkali iodides. This removes the need to calculate
the second distortion parameter £ explicitly. A plot of Ry/R; versus Ry for the alkali

iodides of Rubio and Cory, (1978) is given in Fig. A.3.
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Fig. A.3: A plot of the ratio of the distorted bond distances versus the intrinsic

bond distance for the alkali iodides.

From Fig. A.3 it was found that the ratio R,/R; for the NHLI bond distance of 3.65 Ais
0.962, which yields a value for R; of 3.62:\ , which would mean that the value of £ is

0.03 fx . All the necessary ingredients have now been acquired in order to apply the SM
to the NH,I Mn?" doped crystal.

In Fig. A.1, the z-axis is taken along the impurity-vacancy direction. The number
of nearest neighbor ions at distance R, is one, and there are 5 next nearest neighbors at

the distance R,. Two of these impurity-ligand bonds lay in the z-direction, while the other

four are perpendicular to this direction, so that 8, = 0°, 8, = 90°. The reported (ZFS)
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parameter for the ammonium iodide crystal is 0.15043 cm™ [Chand and Upreti, 1983].

Therefore in using this value the following results are obtained,

0.15043 = 1/2(3cos? (0) - )b, (R, ) +1/2(3cos*(0) - Db, (R, ) +

4/2(3cos*(90)-Db,(R,) (A2]
0.15043=b,(R,)-b,(R,) [A.3]
0.15043=b,(R,)-b,(R,)0.962)’ (A4
0.15043 =0.2375b,(R,) [A.S]
b,[R,)=0.633cm" [A.6]
and for b,(R,)
0.00056 = 1/8(35cos*(0) — 30cos*(0) + 3)b, (Ry) + [A.7]
1/8(35¢c0s*(0) — 30cos*(0) + 3)b, (Rz) +
4/8(35cos*(90) — 30cos?(90) + 3)b, (Rz2)
which results in
b,(R,)=10.000193 cm™ [A.8]

A.2 Ammonium Chloride
From Fig. 5.8, n was found to be 0.2668 for Rg =3.335 A This value for Ry was

determined using the method outlined in Sec. 5.2. From these values R, was found to be

equal to 3.0682 ;\ . The determination of £ will be bypassed again exploiting the

relationship between the ratio R)/R; and Ro. This is given in a plot in
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Fig. 5.9, and results in a ratio of 0.9369 so that R, = 3.275 A .
0.14974 = 4/2(3cos? (35.18) - 1)b, (R, ) + 4/2(3cos* (35.18)- )b, (R,)  [A.9]
0.14974 =2b,(R,) +2b,(R,) [A.10]
0.14974 =3.26 b,(R,)
b,(R;) =0.045 cm™  [A11]

and

0.00021= 4/8(35cos*(35.18) - 30cos?(35.18) + 3)b, (R1) + [A.12]
4/8(35cos*(35.18) - 30cos*(35.18) + 3)b, (R2)

resulting in

b, (R1) =-0.000181 cm™ [A.13]
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Appendix B

The derivation of a second-order perturbation for a non-degenerate level is presented

here.

The spin-Hamiltonian that most generally describes cases in practice is given by

[Misra, 1985]

I = I + Iy [B.1]
where the fine structure term is given by

J€; = upg(B«Sx + BySy + B.S;) + BJ03 + B0} B.2]
and the hyperfine structure term by

I = A(SxIx + Syly + S.1;) [B.3]
We assume that the equation

360y @, = EO,y©@, [B.4]
has been solved for some n [Byron and Fuller, 1992] and we are interested in finding the
solution to the original problem

FHyu(A) = Es(A)wa(2) (B.5]
where it is assumed that the eigenstates |w,(A)>, and the eigenenergies En(A) can be

expanded in a power series of [Peleg e? al., 1998]

lwn(l)> = |W(O)n> + llw(l)n> + lzlw(z)n»_ . _'+A'QIW(‘I)'.> = i A‘QIW(Q)n> [B6]
e
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E.(\) = E®, + AE®, + A%E®, + .+ A%E©@, = i AE@, (B.7]
«0

Putting Eqs. [B.6] and [B.7] into Eq. [B.5] one obtains

(96 O+ 296D i Ay @,> = i APE®), i Ay ©@,> (B.8]
&0 =0 «0
or,
i A0 Oy @ > + i 23190 W)y @ > = i AP E®) |y @ > [B.9]
90 «0 Rg=0

if we make the substitution p + q =s, and q =t, and by setting [y®»> =0 forall @ = -1,

Eq. [B.9] can be rewritten in the form [Byron and Fuller, 1992]
3 AR OS> + 3 A D> = 3 S A ESY 0, [B.10]
t=0 =0 =0 =0
now, by equating the coefficients of successive powers of A one obtains [Peleg e al.,
1998]
WO> + F DpyD> = 'z EO |y > (B.11]
=0

which can be written as,

(96 -EOIO> = Y ECly® %> - # V0> s=0,1,2....  [B.12]
t=1

In Eq. [B.12] we have the eigenstates in terms of |y >, [w">, [v®»>, |w* ">, but the
right hand side of the equation also contains E*’, which may cause some difficulty as

|w®s> can not be found until E®, is known [Kumar, 1962]. However, by taking the inner



104

product of both sides of Eq. [B.12] with <y®,| the following result is obtained [Byron

and Fuller, 1992],

<y @[3 @ - EDp)w@e> = Y <y O] EQly®p> - <@} 3¢V V> [B.13]

=t
it can be seen that the left hand side of Eq. [B.13] is equal to zero from Eq. [B.4] so that

fors=1,23...

(=}

E(S)n = <‘V(0)nl "n’(l) IW(S'I) > - Z <W(°)n| E(‘)nlw("‘) > [B 1 4]

H
So that E®, is determined in terms of the E”, and E®, which are of lower orders than s.
In this manner, the set of equations implied by Eq. [B.14] can be solved by using the first
(n - 1) equation providing the input for the nth equation. The first 4 equations of this

group are [Byron and Fuller, 1992]

(7@ . E(o)n]I\V(o)n> =0 [B.16]
[‘;’e ©) _ E(O)n]IW(I)n> = [J.e a _ E(l)n]lw(0)0> [B 17]
[9¢ ©) _ E(O)nllw(z)n> =.[9¢ m_ E"’-]I\V‘”-P + E“’ul\u‘°’n> [B.18]

[7© - EQ)ly®p> = - [36D - EDJjy@p> + EP oy Vo> + E@yjy > [B.19]
The first equation is just Eq. [B.4], and it provides the starting point for solving all the
other equations order by order. Eq. [B.17] can give a solution for [y"»> only if

<y ul[36V - EVa Jy > =0 [B.20]
because the [y®,> can be written as a linear combination of the eigenvectors of 3¢

which belong to nonzero eigenvalues [Byron and Fuller, 1992]

therefore by choosing |y®,> to be normalized to 1, this yields,
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ED, = <\V(°)n| W("I\V‘m > [B.21]
E®, = <y @, (36D - ED, JyV> [B.22]
E®, = <y@|[3¢ D - EV, Jy®> - EPu<y@,y@> [B.23]

These equations give us the E?, in terms of quantities that are known. If one were now
to rewrite Eqs [B.16]-[B.19] in a manner where the |y™"’»> can be computed in terms of
[w©@m>, then by taking the inner product with |w®> and with m #n one obtains for
Eq. [B.17]

<YO[7@ - EDy D> = - <y@ (36D - ED,Jy©> [B.24]

<Y O3 Oy, > - <y®IEO [y D,> = - <@, 198 Vy©,>

- EDg <yOuly@p> [B.25]

now since > is an eigenfunction of 3¢ ® with eigenvalue E®y, and since the
eigenvectors form an orthonormal set <y@,jy®,> = 0 for m # n, one may rewrite
Eq. [B.25] to obtain [Byron and Fuller, 1992],

ED, - EV) <y@uly®> = <y, 136 Dpy© > [B.26]
Since we are considering the nondegenerate case here E®, # E®y, as long as m = n,
therefore,

<Y Ou= <y Ol3e Oy O >/(ED, - EOy) [B.27]

applying the closure relation Y [yPu><y@y| = 1 [Peleg er al., 1998]to the set of

orthonormal kets in Eq. [B27] we obtain
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WO = 3 [<YOuld OO (E®D, - E%)lIvOw> [B.28]

which when put into Eq. [B.6] results in the first order eigenvector,

WaA)> = P>+ 1Y [<y Ot VYO IEDs - EO)ly > [B.29]

The second order correction to the energy can be obtained from Eq. [B.22]
E% = <y®3 My Vo> = 37 [<yuide OO HE s - E%m) )y >
= 3 <yl Oy O E, - E) [B.30]

and the energy, to second order is given by

Ei(A) = E® + A<y Oude Oy O a2 3 [<y@ul3e Oy > FIE-EV) [B31]

Or in the notation of Misra (1985)

Erm = gusB (E© term) + E(M) (E™ term) + Ex(M, m) (E® term) [B.32]
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Appendix C

This is a listing of the computer program, as developed by Dr. Misra, for the evaluation
of the spin-Hamiltonian parameters for Mn?" using the least-squares fitting method.

PROGRAM HFTUTON (INPUT,OUTPUT,TAPES=INPUT, TAPE6=OUTPUT)
NO =THE NO. OF FIRST MAG FIELD IN DATA INCLUDED IN FITTING
M =NO. OF PARAMETERS
L4 =NO. OF ITERATIONS ALLOWED
Q1 =MIN. VALUE OF SUM OF SQUARES FOR FITS( CHI-SQUARE
TOLERANCE)
Z(T)=MAGNETIC FIELD VALUES FOR FITS
B =PARAMETER MATRIX
N =NO. OF DATA POINTS USED IN LEAST-SQARES FITTING
Q1 =N/10
Q2 =TOLERANCE ON GRAD(CHI**2) =APPROX .01
FM(I) = MEASURED VALUES
FC(I) = CALCULATED VALUES
ERR(I)= STANDARD DEVIATION ON FM(I) = SQRT(FM(I))
DIMENSIONS OF A,B IN EXAM AND MATINV SUBROUTINES SHOULD BE
THE SAME AS THOSE OF B2,B1 RESPECTIVELY IN THE MAIN
PROGRAM AND IN CURFIT
ENTER THETA IN DEGREES
DIMENSIONS OF Q,V IN JACOBI1 SHOULD BE THE SAME AS THOSE OF
B3,B2 RESPECTIVELY IN CURFIT
NUMBER=INDEX THAT CHANGES WITH EACH NEW CASE
NCASES=NO. OF CASES CONSIDERED. ITS VALUE SHOULD BE
ENTERED.
IBB(1I, 1) AND IBB(II,2) INDICATE THE EIGENVALUES INVOLVED IN
RESONANCE FOR THE NO. I MAG FIELD VALUE
B=G=GPARRALEL,GPERPENDICULAR B20,B22,B40,B42,B44,A B,
QPRIME=0. QDOUBLEPRIME=0
DIMENSION Z(850), FM(850),FC(850),DF(850), ERR(850),B(12),
1B1(12),B2(12,12),IBB1(850,2),
12Z(850,5),G(12,20),ZZ1(850,5), TEETA1(850,5),
2THETA(850),GG(12,5),IBB(850,2), DELHH(850,20), DELH(850)
DIMENSION TEETA(850,5),FREQ(20),FACTOR(20), NN(20),HN(20)
1,Z1(850,5), ADD(20),Z2(850),1AB(30,2),ICC(30,2), DDF(850,5)
1,SMDD(20),JJTI(10,2),IA1(850,5),IA2(850,5),SSS(850)
CHARACTER*(3) ABC{2)

oleloNololoNoNoNoNoNoXoNeNolo e loNeXe XeXe Ko Xe Ko Xo Ko Xe!
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C

-~--———-—-DATA FOR XBAND (ROOM TEMP)

CHARACTER*(3) Y(4)

CHARACTER*(3) A2

COMMON/DATAI1A/ABC,Y

COMMON/DATA1/B1,B2,Q1,Q2,SMD,SSMD,1L4

COMMON/DATA3/Z, THETA DELH,IBB,IBB1

COMMON/DATA/FM,FC,DF,ERR,B,BO,HN,

*ILLNUMBER,N.M

open(unit=6.file= ‘mnhfl.dat’,status='new")
CASES= AM/ZN MN2+

DATA(ZZ(J,5),)J=1,216)/
Data for Z

* 0662.5,9734.7,9815.8,9902.1,9997.6,10092.6,

* 4143.3,4231.7,4320.7,4408.7,4497.7,4585.6,

* 921.7,1009.6,1098.6,1188.3,1277.5,1366.6,
Data for Z+2

* 9622.1,9693.7,9775.3,9862.5,9957.2,10052.4,

* 4148.3,4236.4,4325.1,4413.8,4502.7,4590.3,

* 921.3,1009.7,1098.4,1188.3,1277.5,1366.9,
Data for Z+4

* 0482.4,9553.3,9635.7,9722.2,9817.1,9912.6,

* 4163.5,4251.6,4340.7,4428.8,4517.3,4605.7,

* 0926.7,1014.4,1103.6,1193.4,1282.7,1371 .4,
Data for Z+6

* 0256.8,9328.4,9410.2,9497.6,9592.1,9687.8,

* 4198.8,4286.4,4375.9,4466.7,4560.1,4655.0,

* 926.7,1014.4,1108.2,1193.8,1282.4,1371.4,
Data for Z+8

* 8920.4,8993.7,9075.4,9162.3,9257.3,9352 4,

* 4233.5,4332.7,4431.1,4530.8,4629.6,4726.1,

* 936.7,1024.3,1118.1,1203.6,1292.7,1381.6,
Data for Z+10

* 8475.8,8548.3,8630.5,8717.3,8812.3,8907.7,

* 4283.4,4383.7,4485.1,4589.7,4695.9,4800.1,

* 946.8,1034.5,1128.9,1213.4,1302.3,1391 4,
Data for Z+80

* 5021.3,5111.6,5217.8,5287.5,5375.4,5463.8,

* 2847.6,2937.1,3025.4,3114.8,3203.7,3292.7,

* 1288.4,1377.2,1466.3,1555.1,1644.8,1733.2,
Data for Z+82

* 5666.1,5756.7,5862.1,5932.8,6020.4,6108.6,

* 2867.8,2957.1,3045.9,3134.4,3223.4,3312.8,

* 1283.4,1372.8,1461.7,1550.8,1639.3,1728.7,
Data for Z+84

108
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* 6106.4,6196.4,6302.7,6372.2,6460.4,6548.5,

* 2882.3,2972.8,3060.7,3149.2,3238.6,3327 .4,

* 1278.7,1367.4,1456.3,1545.9,1634.7,1723 4,
Data for Z+86

* 6401.2,6491.7,6579.5,6667.2,6755.5,6843.7,

* 2892.9,2982.2,3070.3,3159.5,3248.7,3337.1,

* 1273.4,1362.7,1451.2,1540.7,1629.5,1718.5,
Data for Z+88

* 6571.8,6661.3,6749.5,6837.3,6925.4,7013.8,

* 2898.6,2987.2,3075.4,3164.9,3253.7,3342.1,

* 1268.2,1357.4,1446.2,1535.7,1624.3,1713.8,
Data for Z+90

* 6627.5,6716.4,6804.3,6892.9,6980.6,7068.2,

* 2903.7,2992.5,3080.4,3169.8,3258.7,3347.1,

* 1268.1,1357.4,1446.2,1535.8,1624.3,1713.2/

DATA(TEETA(J,S),J=1,216)/

* 18*0,18%2,18*4,18%6,18*8,18*10,

* 18*80,18*82,18*84,18*86,18*88,18*90/

DATA FOR QBAND (ROOM TEMP)

oNeoXe

C

DATA(ZZ1(J,5),)=1,288)/
Data for Z

* 6036.89,6129.36,6218.41,6307.44,6396.5,6485.51,

* 9237.79,9326.83,9415.87,9494.64,9587.11,9671.73,

* 12506.71,12596.45,12682.75,12775.85,12865.65,12955.3,
Data for Z+2

* 6036.89,6129.36,6218.41,6307.44,6396.5,6485.51,

* 9242.7,9331.74,9420.78,9499.55,9592.02,9676.64,

* 12511.65,12601.39,12687.69,12780.79,12870.59,12960.24,
Data for Z+4

* 6051.46,6143.93,6232.98,6322.01,6411.07,6500.08,

* 9262.32,9351.36,9440.4,9519.17,9611.64,9696.26,

* 12521.54,12611.28,12697.58,12790.68,12880.48,12970.13,
Data for Z+5

* 6058.1,6148.1,6235.75,6326.8,6415.86,6504.87,

* 9282.94,9371.3,9461.51,9540.73,9631.94,9715.16,
Data for Z+6

* 6075.76,6168.23,6257.28,6346.31,6435.37,6524.38,

* 9291.74,9380.78,9469.82,9548.59,9641.06,9725.68,

* 12541.3,12631.04,12717.34,12810.44,12900.24,12989.89,
Data for Z+8

* 6104.91,6197.38,6286.43,6375.46,6464.52,6553.53,

* 9330.98,9420.02,9509.06,9587.83,9680.3,9764.92,

* 12570.95,12660.69,12746.99,12840.09,12929.89,13019.54,
Data for Z+10
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* 6148.63,6241.1,6330.15,6419.18,6508.24,6597.25,

* 9384.93,9473.97,9563.01,9641.78,9734.25,9819.87,

* 12605.55,12695.29,12781.59,12874.69,12964.49,13054.14,
Data for Z+15

* 6284.5,6380.7,6470.14,6562.97,6655.8,6745.2,
Data for Z+20

* 6481.57,6574.15,6666.68,6755.83,6851.82,6944.37,
Data for Z+25

* 6750.34,6846.14,6941.94,7034.3,7126.69,7222.49,
Data for Z+30

* 7127.63,7223.34,7320.05,7417.74,7513.44,7609.14,
Data for Z+35

* 7609,7705.55,7805.56,7902.1,7997.66,8095.21,
Data for Z+40

* 8206.59,8303.14,8401.14,8497.68,8594.23,8691.78,
Data for Z+45

* 8942.28,9039.83,9138.83,9236.37,9332.93,9429.48,
Data for Z+50

* 9804.71,9900.26,10000.26,10095.98,10190.54,10290.09,
Data for Z+75

* 9825.87,9915.91,10003.95,10093.04,10185.87,10275.24,

*11011.3,11095.15,11185,11267,11356.39,11445.78,

* 12325.25,12421.52,12514.36,12610.61,12704,12800.5,
Data for Z+80

* 12200.58,12293.04,12379.87,12474.55,12570.43,12666.63,

* 10873.27,10962.93,11052.58,11142.24,11224.99,11314.65,
Data for Z+82

* 9642.61,9732.52,9822.27,9908.56,9998.31,10091.51,

* 10828.81,10918.47,11008.12,11097.78,11180.53,11270.19,

* 12177.47,12267.21,12356.96,12446.68,12536.44,12629.64,
Data for Z+84

* 9608.11,9698.02,9787.77,9874.06,9963.81,10057.01,

* 10794.23,10883.89,10973.54,11063.2,11145.95,11235.61,

* 12152.73,12242.47,12332.22,12421.94,12511.7,12604.9,
Data for Z+86

* 0578.52,9668.43,9758.18,9844.47,9934.22,10027 .42,

* 10769.56,10859.22,10948.87,11038.53,11121.28,11210.94,

*12132.98,12222.72,12312.47,12402.19,12491.95,12585.15,
Data for Z+88

* 9563.73,9653.64,9743.39,9829.68,9919.43,10012.63,

* 10749.77,10839.43,10929.08,11018.74,11101.49,11191.15,

*12118.17,12207.91,12297.66,12387.38,12477.14,12570.34,
Data for Z+90

* 9558.8,9648.71,9738.46,9824.75,9914.5,10007.7,
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* 10744.83,10834.49,10924.14,11013.8,11096.55,11186.21,
* 12113.22,12202.96,12292.71,12382.43,12472.19,12565.39/

DATA(TEETAI1(J,5),J=1,288)

* 18%0,18*2,18%4,12*5,18%6,18*8,18*10,6*15,6*20,6*25,6*30,6*35,
* 6*40,6%45,6*50,18*75,12*80,18*82,18*84,18*86,18*88,18*90/
Input initial spin hamiltonian parameters here
DATA(G(J,5),J=1,11)
* -4.5000,-0.25000,-0.25000,2.0000,2.0000,0.0,
* 0.0,0.0,0.0,0.0,0.0/

HERE ONE DEFINES THE TRANSITIONS FOR VARIOUS LINES
DATA(IBB(J,1),J=1,216)/

XBAND TRANSITIONS 1st COLUMN (TEMP=ROOM)
11,2,3,4,5,6,13,14,15,16,17,18,13,14,15,16,17,18,
21,2,3,4,5,6,13,14,15,16,17,18,13,14,15,16,17,18,
41,2,3,4,5,6,13,14,15,16,17,18,13,14,15,16,17,18,
61,2,3,4,5,6,13,14,15,16,17,18,13,14,15,16,17,18,
81,2,3,4,5,6,13,14,15,16,17,18,13,14,15,16,17,18,
11,2,3,4,5,6,13,14,15,16,17,18,13,14,15,16,17,18,
130,29,28,27,26,25,13,14,15,16,17,18,1,2,3,4,5,6,
230,29,28,27,26,25,13,14,15,16,17,18,1,2,3,4,5,6,
430,29,28,27,26,25,13,14,15,16,17,18,1,2,3,4,5,6,
630,29,28,27,26,25,13,14,15,16,17,18,1,2,3.4,5,6,
830,29,28,27,26,25,13,14,15,16,17,18,1,2,3,4,5,6,
930,29,28,27,26,25,13,14,15,16,17,18,1,2,3,4,5,6/

QBAND TRANSITIONS 1st COLUMN (TEMP=ROOM)----------—--
130,29,28,27,26,25,24,23,22,21,20,19,13,14,15,16,
217,18,30,29,28,27,26,25,24,23,22,21,20,19,13,14,15, 16,
317,18,30,29,28,27,26,25,24,23,22,21,20,19,13,14,15,16,
417,18,30,29,28,27,26,25,24,23,22,21,20,19,30,29,28,27,
526,25,24,23,22,21,20,19,13,14,15,16,17,18,30,29,28,27,
626,25,24,23,22,21,20,19,13,14,15,16,17,18,30,29,28,27,
726,25,24,23,22,21,20,19,13,14,15,16,17,18,30,29,28,27,
826,25,30,29,28,27,26,25,30,29,28,27,26,25,30,29,28,27,
926,25,30,29,28,27,26,25,30,29,28,27,26,25,30,29,28,27,
126,25,30,29,28,27,26,25,1,2,3,4,5,6,7,8,9,10,11,12,13,
214,15,16,17,18,13,14,15,16,17,18,7,8,9,10,11,12,1,2,3,
34,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1,2,3,4,5,6,7,
48,9,10,11,12,13,14,15,16,17,18,1,2,3,4,5,6,7,8,9,10,11,
512,13,14,15,16,17,18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,
615,16,17,18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18/

DATA(IBB(J,2),J=1,216)/

XBAND TRANSITIONS 2nd COLUMN (TEMP=ROOM)
17,8,9,10,11,12,24,23,22 21,20,19,24,23,22,21,20,19,
27,8,9,10,11,12,24,23,22,21,20,19,24,23,22,21,20,19,
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47,8,9,10,11,12,24,23,22,21,20,19,24,23,22,21,20,19,
67,8,9,10,11,12,24,23,22,21,20,19,24,23,22,21,20,19,
87,8,9,10,11,12,24,23,22,21,20,19,24,23,22,21,20, 19,
17,8,9,10,11,12,24,23,22,21,20,19,24,23,22,21,20,19,
136,35,34,33,32,31,24,23,22,21,20,19,7,8,9,10,11,12,
236,35,34,33,32,31,24,23,22,21,20,19,7,8,9,10,11,12,
436,35,34,33,32,31,24,23,22,21,20,19,7,8,9,10,11,12,
636,35,34,33,32,31,24,23,22,21,20,19,7,8,9,10,11,12,
836,35,34,33,32,31,24,23,22,21,20,19,7,8,9,10,11,12,
936,35,34,33,32,31,24,23,22,21,20,19,7,8,9,10,11,12/

QBAND TRANSITIONS 2nd COLUMN
136,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,
220,19,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,
320,19,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,
420,19,36,35,34,33,32,31,30,29,28,27,26,25,36,35,34,33,
532,31,30,29,28,27,26,25,24,23,22,21,20,19,36,35,34,33,
632,31,30,29,28,27,26,25,24,23,22,21,20,19,36,35,34,33,
732,31,30,29,28,27,26,25,24,23,22,21,20,19,36,35,34,33,
832,31,36,35,34,33,32,31,36,35,34,33,32,31,36,35,34,33,
932,31,36,35,34,33,32,31,36,35,34,33,32,31,36,35,34,33,
132,31,36,35,34,33,32,31,7,8,9,10,11,12,13,14,15,16,17,
218,24,23,22,21,20,19,24,23,22,21,20,19,13,14,15,16,17,
318,7,8,9,10,11,12,13,14,15,16,17,18,24,23,22 21,20, 19,
47,8,9,10,11,12,13,14,15,16,17,18,24,23,22 21,20,19,7,8,
59,10,11,12,13,14,15,16,17,18,24,23,22,21,20,19,7,8,9, 10,

611,12,13,14,15,16,17,18,24,23,22,21,20,19,7,8,9,10,11,12,

713,14,15,16,17,18,24,23,22,21,20,19/

JII(,1),(,2) TELL GROUPS OF 30 LINES WHICH ARE BETWEEN
0 AND 25 DEG. AND BETWEEN 75 AND 90 DEG. RESPECTTIVELY.

DATAQII(, 1),J=1,4)/6,5,6,6/
DATAQIII(J,2),)=1,4)/5,6,5,5/

DATA(FREQ()),J=1,5)/9.6193,9.5256,9.4475,9.485,9.6193/

DATA(FACTOR(J),J=1,5)/6.1,6.1,6.1,6.1,1.0/

DATA(ADD(J),J=1,5)/314.,326.5,332.10,304.5,0.0/
To change number of lines here (5th column)

DATA(NN(®),J=1,5)/330,330,330,330,504/

DO 331 J)=1,5

NNIJJ=NN{J)

DO 331 J=1,NNJJ

DELHH(J,JT)=FACTOR(J))*2

331 CONTINUE

NZERO=5
NUMBER=NZERO
NCASES=S
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C*****DEFINE HERE QUANTUM NOS. FOR VARIOUS LINES
C FACTOR CONVERTS MMS ON GRAPH TO GAUSS

1 CONTINUE

188 FORMAT(1H1)

8 FORMAT(1X,4HQ1 = E13.5,5X,4HQ2 = ,E13.5)

137 FORMAT (3X,12,5X E16.6/)

136 FORMAT(10X,19H INITIAL PARAMETERS//3X,1HJ,10X,4HB(J)//)
135 FORMAT(1X,11H PARAMETERS//3X,1HJ,10X,4HB(J),27X,6HERRORS//)
9 FORMAT(2X,4H HN=,F9.4)

140 FORMAT(3X,12,5X,E16.6,15X,E16.6/)

138 FORMAT(5X,14H CASE NUMBER =,12//)

141 FORMAT(10X,6H SMD =,E13.5//)
235 FORMAT (15X,5(E13.5,8X)/)

C

C

M=5
MM=M

L4 IS THE TOTAL NUMBER OF ITERATIONS ALLOWED

L4=10
Ql=1.E-8
Q2=1.E-40

BO CONVERTS GAUSS TO GHZ
B0=92.732/(6.6252*10000.)
IG=1

958 CONTINUE

WRITE (6,188)
N=NN(NNUMBER)
HN(NUMBER)=FREQ(NUMBER)
N1=N

N2=216

N3=NN(NUMBER)-N2

DO 6661 I6=1,N2

Z1(16, NUMBER)=ZZ(16, NUMBER)

6661 THETA(I6)=TEETA(I6, NUMBER)

DO 6662 16=1,N3
Z1(16+N2,NUMBER)=2Z1(16,NUMBER)

6662 THETA(I6+N2)=TEETA1(I6,NUMBER)

DO 806 UK=1,N1
IFO(NUMBER EQ.5) GO TO 342

IF (THETA(UK).GT.(25.)) GO TO 807
TYJ=JIII(NUMBER, 1)

DO 340 II=1,30

DO 340 JJ=1,JYJ

I1=@J-1)

WIJ=I1+JJ1*30

IBB(ILJJ, 1)=IAB(IL, 1)
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IA1(ILUJ,NUMBER)=IBB(11JJ,1)
IBB(11J,2)=1AB(I1,2)
IA2(ILJJ,NUMBER)=IBB(11J},2)
340 CONTINUE
GO TO 342
807 CONTINUE
IXJ=JII(NUMBER,2)
DO343 II=1,30
DO 343 Ji=1,JXJ
JI1=(JJ-1)
MJJ=0+JJ1*30+JJIIINUMBER, 1)*30
IBB(1JJ,1)=ICC(IL 1)
IA1(INJ,NUMBER)=IBB(11]J,1)
IBB(IJ,2)=ICC(1L,2)
IA2(IJJ,NUMBER)=IBB(11JJ,2)
343 CONTINUE
342 CONTINUE
806 CONTINUE
DO 210 LL=1,MM
210 B(LL)=G(LL,NUMBER)
WRITE (6,138) NUMBER
WRITE (6,136)
WRITE (6,137) (3,B(J),J=1,M)
DO 3 DK =1,N1
DELH(UK)=DELHH(IJK,NUMBER)
3 Z(IJK) = Z1(WK,NUMBER)
IF (NUMBER.NE.1) GO TO 20
20 CONTINUE
IF(NUMBER.NE.2) GO TO 21
21 CONTINUE
IF(NUMBER.NE.3) GO TO 22
22 CONTINUE
IF(NUMBER.NE.S) GO TO 6666
6666 CONTINUE
DO 6663 II=1,N1
6663 CONTINUE
IF(NUMBER.NE.4) GO TO 23
23 CONTINUE
WRITE(6,8)Q1,Q2
WRITE(6,9) HN(NUMBER)
DO 201 I=1,N1
IF(I.LE.N2)FM(I)=HN(NUMBER)
C  To change the Qband frequency
IF(I.GT.N2)FM(II)=35.87
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201 CONTINUE
CALL CURFIT
DO 202 I=1,N1
IF(NUMBER EQ.5) THEN
IA1(ILNUMBER)=IBB(IL, 1)
IA2(0LNUMBER)=IBB(1I,2)
END IF
DDF(ILNUMBER )=DF(II)

202 CONTINUE
SMDD(NUMBER) = SSMD
WRITE(6,188)
WRITE(6,135)
DO 220 LL=1.M

220 GG(LL.NUMBER) = B(LL)
WRITE(6,140)(J,B(J),B1(J),}=1,M)
WRITE(6,188)
NUMBER = NUMBER + 1
IF (NUMBER - NCASES) 1,1,2

2 CONTINUE

DO 230 LL=NZERO,NCASES
N=NN(LL)
IF (LL.GT.NZERO) WRITE(6,188)
WRITE (6,138) LL
WRITE (6,141) SMDD(LL)
WRITE(6,302)

302 FORMAT(15X,' IDENTIFICATION OF LINES)
DO 300 O=1,N
IF(Z1(IL LL))563,562,563

563 CONTINUE

562 CONTINUE

300 CONTINUE

658 FORMAT(//)

C  SSS11IS SMD(1),THAT IS WHEN ALL(LINES)SIGMA=1

SSS1=0.
NEFF=0
DO 555 ID=1,N1
IF(Z(ID))561,560,561

561 CONTINUE
NEFF=NEFF+1
SSS(ID)=DDF(ID,LL)**2
SSS1=SSS(ID)+SSS1

560 CONTINUE

555 CONTINUE

WRITE(6,3011)
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WRITE(6,301 ) (ILZ(II), THETA(I),JA1(IL LL),IA2(ILLL),
1 SSS(IM)),I=1,N)

ANEFF=FLOAT(NEFF)

SSSAV5=SSS1*5./ANEFF

WRITE (6,657)SSS1,SSSAVS

657 FORMAT (10X,'SMD(1)='E13.5,5X,'SSSAVS5="E13.5,/))
301 FORMAT(XI3,2X,F12.1,2X F8.2,4X,13,3X I3,5X,E12.5)
3011 FORMAT(2X,FIELD NO.'3X,'GAUSS",4X,'ANGLE' 4X,

I'TRANSITIONS',8X,'SMD",/)

230 WRITE (6,235) (GGAM,LL),LM=1,11)
708 CONTINUE

OOOOOOO0N

oloNoNoXoNe)

STOP

END

SUBROUTINE CURFIT
EXAM HANDLES ALL MATRICES OF DIMENSIONS UPTO THE DIMS. MM
OF AB,C
THAT IS M IS LESS THAN OR EQUAL TO MM (SAME IS TRUE OF MATINV
AND JACOBI)
IN EQUIVALENCEGRAD SHOULD BE PLACED IMMEDIATELY AFTER
B SINCE IN FUNC B(12,2)=BB(12),GRAD(12) IN CURFIT
DIMENSION OF B3 SHOULD BE M*(M+1)/2
FORTRAN 4

DIMENSION FM(850),FC(850),DF(850),ERR(850),B(12), GRAD(12),

1 B1(12),B2(12,12),B4(12,12),HN(20), ANORM1(12),F1(12,12),

2 F2(12,12),A1(12,12),W(12),B3(12,12),

1 X(850),D1(12),D2(12,12)

CHARACTER*(3) ABC(2)

CHARACTER*(3) Y(4)

CHARACTER*(3) A2

COMMON/DATA1A/ABC,Y

COMMON/DATA1/ B1,B2,Q1,Q2,SMD,SSMD,L4

COMMON/DATA/FM,FC,DF,ERR B,BO,HN,

*I,LLNUMBER,N,M

COMMON/DATA2/D1,D2,GRAD,LLX

INTEGER LDA,LDVEC,NNN

PARAMETER(NNN=12,LDA=NNN,LDEVEC=NNN)

COMPLEX ZP(LDA,NNN),EVEC(LDA,NNN)

EXTERNAL EVCHF
EQUIVALENCE (Z,DC),(FM,DC(501)),(FC,DC(1001)),
1(DF,DC(1501)),(ERR,DC(2001)),(B,DC(2989)),(GRAD,DC(3001)),
2(B1,DC(3013)),(B2,DC(3025)),(N,DC(3169)),(L4,DC(3170)),
3(Q1,DC(3171)),(Q2,DC(3172)),(M,DC(3173)),(LDC(3174)),
4(L,DC(3175)),(D1,DC(2501)),(D2,DC(2513)),(BO,DC(3176)),
5(SMD,DC(3177)),(SSMD,DC(3178)),(IBB,DC(4000)),(THETA,DC(3500))
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6 ,(HN,DC(3179))
7,(S,DC(2901)),(SA,DC(2902)),(BMOD,DC(2903)),(PROD,DC(2904))
8,(GMOD,DC(2905)),(LE,DC(2906)),(LLX,DC(4998))
DATA(ABC=2HNO,3HYES),(Y=1H ,1HC, 1H*, 1HM)

ABC(1)='NO'

ABC(2)="YES'

MM=M

NN=N

L1=0

SA=00
SAI IS SA WITH SIGMA (ALL LINES)=1.

SA1=0.

DO 1000 J=1, MM

B1(J)=0.0

DO 1000 K=1,MM

1000 B2(J,K)=0.0

C

WRITE(6,901)
LLX=0 ALLOWS WRITING E.VALUES IN FUNC

LLX=0

DO 10011 = 1, NN

I=II

L=1

CALL FUNC(2)

X(T)=ERR(I)**2

901 FORMAT(5X,10H FUNC2,210 )

DF(IT) =FM(II) - FC(IT)

DO 101 J=1,MM
B1(J)=B1(J)-(2.0*DF(II)*D1())/X(I)
DO 101 K=1,MM

101 B2(J,K)=B2(J,K)-(2.0*(DF(I)*D2(J,K)-D1(3)*D1(K)))/X(II)

SA1=SA1+DF(II)**2

100 SA = SA + DF(II)**2/X(I)

C
C

LLX=1 OMITS WRITING E.VALUES IN FUNC
LLX=1
EQZERO TELLS IF ELEMENTS OF B2,B1 ARE ZERO
CALL EQZERO(B2,B1,M,IC1,IC2,IC3)
WRITE(6,901)
LM=1
WRITE(6,5)CPU,LM
5 FORMAT(5X,'CPU="F8.2,LM="12)
GMOD=0.0
DO 102 J=1M

102 GMOD=GMOD+B1(J)**2

WRITE(6,243)SA,GMOD
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243 FORMAT(1X,26H'INITIAL VALUE SUM OF SQ.=E13.5,20X,17H'SQ MOD OF
GR
1AD =E13.5)
WRITE(6,244) SAl
244 FORMAT(5X,INITIAL VALUE SUM OF SQ.(ALL SIGMA
1=1)="E13.5/)
WRITE(6,1751)
1751 FORMAT(14HO DERIVATIVES-)
WRITE(6,240)B1(J),J=1,M)
240 FORMAT (15X,5(E13.5,8X)/)
LLJJ=0
C***** FOLLOWING FOR CALCULATING INITIAL VALUES ONLY
C LLID=1
IF(LLJJ.NE.0) GOTO 559
IF (SA - Q1) 110, 110, 200
110LE=1
GO TO 600
200 S =0.0
GMOD = 0.0
BMOD = 0.0
PROD =0.0
A2=ABC(1)
DO 210J =1, MM
B1(J)=0.0
DO 210K =1, MM
210 B2(J,K) = 0.0
WRITE(6,902)
DO 2200 =1, NN
I=II
L=1
CALL FUNC(2)
X(D)=ERR(I)**2
902 FORMAT(5X,10H FUNC2,210 )
DF(II) = FM(IT) - FC(ID)
DO 220J =1, MM
B1(J) = B1(QJ) - (2.0*DF(II)*D1Q)VX(II)
DO 220K =1, MM
220 B2(JK) = B2(J,K) - (2.0*(DF(I)*D2(J,K) -D1(3)*D1(K)))/X(1I)
CALL EQZERO(B2,B1,M,ICL,IC2,IC3)
WRITE(6,902)
LM=2
WRITE(6,5)CPU,LM
DO 2307 =1, MM
230 GRAD(J) = B1(J)
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L1=L1+1

WRITE(6,903)
CALL EXAM (B2,B1,M,LF)
WRITE(6,903)

903 FORMAT(5X,9H EXAM,230 )
IF (LF) 250, 250, 305

250 CONTINUE
DO 1231 D=1 M
DO 1231 J}=1.M
AI(ILJT)=0.

1231 B3(ILJJ)=B2(1LJJ)
WRITE(6,904)
DO 232 I=1,MM
DO 232 JJI=1,MM

232 ZP(ILJJ)=CMPLX(B3(I1,JJ), AI(1L JJ))
CALL EVCHF(NNN,ZP,LDA,W,EVEC,LDEVEC)
CALL EVCHFN(NNN,LDA,W,EVEC,ANORM1,F1,F2)
WRITE(6,904)

904 FORMAT(5X,12H EVCSF,231 )
DO 5005 IR=1,MM
B3(IR,IR)=W(IR)

DO 5005 JR=1, MM

5005 B2(IR,JR)=REAL(EVEC(IR,JR))
DO 235 K=1,MM

235 B1(K)=B3(K,K)

WRITE(6,240)B1

DO 389 IS=1, MM
AB1=ABS(B1(I5))
IF((AB1).GT.(1.E-10)) GO TO 388
B1(IS)=0.

388 CONTINUE

389 CONTINUE
14=5
IF (I4EQ.1) GO TO 912
A2=ABC(2)

DO 260J = 1, MM

260 D1(J) = 0.0

DO 270J =1, MM
DO 270K = 1, MM
270 D1(K) = D1(K) + B2(J,K) *GRAD())
DO 2751 =1, MM -
IF (B1(J)) 280, 290, 285

280 B1(J) = - B1(J)

285 D1(J) = D1(J)/B1(J)
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GO TO 275
290 D1(J) = 0.0
275 CONTINUE
DO 295 J = 1, MM
295 B1(J) = 0.0
DO 3007 = 1, MM
DO 300K = 1, MM
300 B1(J) = B1(J) + B2(J,.K)*D1(K)
305 DO 310 J=<1,MM
GMOD = GMOD + GRAD(J)**2
BMOD = BMOD + B1(J)**2
310 PROD = PROD + GRAD(J)*B1(J)
IF (GMOD - Q2) 315, 315, 320
31SLE=2
WRITE(6,1761) GMOD
1761 FORMAT(5X,7H GMOD =,E13.5//)
GO TO 600
320 C=PROD/SQRT(BMOD*GMOD)
IF (C) 335, 335, 400
33SLE=4
GO TO 600
400LD =0
L3=0
DO 410J =1, MM
410 GRAD(J) = B(J) - B1(J)
WRITE(6,905)
450 D0 420 1 = 1, NN
I=I
L=2
CALL FUNC(1)
X(IN=ERR(I)**2
905 FORMAT(5X,10H FUNC1,450 )
DF(IT) = FM(II) - FC(IT)
420 S = S + DF(I)**2/X ()
LM=3
WRITE(6,5)CPU,LM
WRITE(6,905)
IF (SA - S) 435, 500, S00
435LD=LD +1
WRITE(6,906)
430D0440J = 1, MM
BI(J) =B1(J)/2.0
906 FORMAT(5X,16H BINARY CHOP,430 )
440 GRAD(J) = B(J) - B1(J)
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WRITE(6,906)
S=0.0
L3=L3+1
IF(L3-3)450,460,460
460LE=S5
GO TO 600
500 IF (LD) 505, 505, 506
SO6LD =0
GO TO 430
505DO 510J = 1, MM
510 B(J) = GRAD(QJ)
SA=S
IF (SA - Q1) 507, 507, 530
S07LE =1
GO TO 600
530 IF (L4) 200, 200, 900
900 WRITE(6,920)L1,A2,L3,S,GMOD,(B(J),J=1,M)
920 FORMAT(//,15H ITERATION NO.=I5,10X,43H TRANSFORMATION MADE
TO PRIINCIPAL AXES = A4,10X, 18H BINARY CHOP USED=I3,6H

TIMES/1X,27THW

2EIGHTED SUM OF SQUARES =E14.7,25X,32H SQUARE MODULUS OF
GRADIEN

3T =E14.7/20H PARAMETERS B(J) -/(6E17.8)/)
IF (L1 - L4) 200, 910, 910
910LE=6
GO TO 600
600 DO 710 J=1,MM
B1(J) = 0.0
DO 710 K=1,MM
710 B2(J,K) = 0.0
=1
907 FORMAT(5X,'FUNC(2) AT 720'/)
C*****FOLLOWING FOR INITIAL VALUES ONLY
559 CONTINUE
WRITE(6,907)
DO 7201 = 1, NN
I=II
CALL FUNC(2)
X(I)=ERR(II)**2
DF(II) = FM(I) - FC(II)
DO 720 = 1, MM
B1(J) = B1(J) - (2.0*DF(AI)*D1())/’X (D)
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DO 720K = 1, MM
720 B2(J,K) = B2(J.K) - (DFAI)*D2(J K) -D1(J)*D1(K))/X(I)

CALL EQZERO(B2,B1,M,IC1,IC2,IC3)

LM=4

WRITE(6,5)CPU,LM

WRITE (6,3029)
3029 FORMAT( GINO, I AM LOST IN MANTINV’)

3030 FORMAT( GINO, I AM OUT OF MATINV")
WRITE(6,3031)B2(1,1),B2(1,2),B2(1,3),B2(1,10),B2(1,11)
WRITE(6,3032)B2(2,1),B2(2,2)

3031 FORMAT(2X, B2(L))=",5(E10.4,2X))

3032 FORMAT(2X, B2(1,J)=", 2(E10.4,2X))

CALL MATINV(B2,M,B1,1, DETERM)
WRITE (6,3030)
DO 730 J=1, MM
IF (B2(J,J)) 2001,2002,2002
2001 BI1(J) =-SQRT(-B2(J,)))
GO TO 730
2002 B1(J)= SQRT(B2(J.)))
730 CONTINUE
DO 740 J=1, MM
DO 740 K=1,MM
740 B2(),K)=B2(J,K)/(B1(J)*B1(K))
WRITE(6,551)LE,SA
551 FORMAT(//,13H EXIT NUMBER=I3,20X,25H WEIGHTED SUM OF
SQUARES=E15.81//)
SSMD = SA
912 CONTINUE
RETURN
END

SUBROUTINE FUNC(LX)
C SUBROUTINE FUNC
DIMENSION SZ(6,6),SX(6,6),520(6,6),540(6,6),542(6,6),SU(6,6),
1AR(6,6),SY(6,6),522(6,6),SPX(6),544(6,6), HN(20),S(36,36)
DIMENSION B(12),GRAD(12),BB(12),D1(12),D2(12,12)
1,Z(850),SIGN(850),SP(8,12),IBB(850,2), THETA(850)
2 ,W(36),ZR(36,36),SR(36,36),SI(36,36),CC(36,36),A(666)
3 .DELH(850), ANORM2(36),F3(36,36),F4(36,36),IBB1(850,2)
4 ,CCI(36,36),S122(36,36),S142(36,36),S144(36,36)
5 .ZI(36,36),AI(36,36),FM(850),FC(850), DF(850),ERR(850)
COMMON/DATA/FM,FC,DF,ERR B BO HN,
*I,LLNUMBER N,M
COMMON/DATA2/D1,D2,GRAD,LLX
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COMMON/DATA3/Z,THETA,DELH,IBB,IBB1
INTEGER MDA, MDVEC, MMM
PARAMETER(MMM=36, MDA=MMM,MDVEC=MMM)
COMPLEX ZP(MDA,MMM) EVEC(MDA,MMM)
EXTERNAL EVCHF
EQUIVALENCE (Z,DC),(B,DC(2989)),(D1,DC(2501)),(D2,DC(2513)),
1(M,DC(3173)),(L.DC(3175)),(1,DC(3174)),(BO,DC(3176)),
2(HN,DC(3179)),(IBB,DC(4000)),(THETA,DC(3500)),(FC,DC(1001))
3 ,(LLX,DC(4998)),(NUMBER,DC(4999)),(ERR,DC(2001))
B(LL) ARE THE LITTLE B(I,L) AS IN THE SPIN HAMILTONIAN
FOR RELATION TO CAP B(LL) SEE ABRAGAM AND BLEANEY |
DATA(SP(J,1),J=1,6)/2.5,1.5,.5,-.5,-1.5,-2.5/
DATA(SPX(J),J=1,6)/10.,-2.,-8.,-8.,-2.,10./
DATA(SP(J,5),J=1,6)/1.,-3..2,2.,-3.,,1./
****TO BE REMOVED LATER
DO 91 JU=1,6

91 SP(J1J),3)=SPX(JL))/3.

R2=SQRT(2.0)

R3=SQRT(3.0)
=SQRT(5.0)

R7=SQRT(7.0)

R10=SQRT(10.0)

SP(1,4)=R10/3.

SP(2,4)=R2

SP(3,4)=R2

SP(4,4)=R10/3.

SP(1,6)=3.*R10/20.

SP(2,6)=-5.*R2/20.

SP(3,6)=-5.*R2/20.

SP(4,6)=3.*R10/20.

SP(1,7)=1./RS

SP(2,7)=1./RS

SP(1,2)=R5/2.

SP(2,2)=R2

SP(3,2)=1.5

SP(4,2)=R2

SP(5,2)=R5/2.

IF (M.LE.3) THEN
BB(4)=2.00
BB(5)=2.00

END IF

DO 117 I=1.M

IF (L.EQ.1)BB(II)=B(I)

IF (L.EQ.2)BB(I)=GRAD(II)



117 CONTINUE
IF (Z(D) 18,21,18
18 CONTINUE

C PBBZ, PBBX, PBBY ARE COEFFS. MULTIPLYING S(Z), S(X),S(Y)

C SPIN COMPONENTS

DO 500 IX=1,6
DO 500 JX=1,6
SZ(IX,JX) = 0.
SX(IX,JX) = 0.
SY(TX,JX) = 0.
S20(IX,JX) = 0.
$22(IX,JX) = O.
S40(IX.JX) = 0.
S42(IX,JX)=0.
S44(IX,JX) = 0.
AR(IX.JX) = 0.
SU(IX,JX) = 0.

500 CONTINUE
DO 605 IX=1,36
W(IX) = 0.
DO 605 JX=1,36
SR(IX,JX)=0.
ZR(IX,JX)=0.
SI(IX,JX)=0.

605 CC(IX,JX)=0.
DO 505 IX=1,6
SZ(IX,IX) = SP(IX,1)
S20(IX,IX) = SP(IX,3)
S4U(IX,IX) = SP(IX,5)
SUIX,IX) = 1.

505 CONTINUE
DO 510 IX=1,4
IX2=IX+2
S$22(IX,IX2) = SP(IX,4)
S22(IX2,IX) = SP(IX,4)

510 CONTINUE
DO 515 IX=1,5
IX1=IX+1
SX(IX,IX1) = SP(IX,2)
SX(IX1,IX) = SP(IX,2)

515 CONTINUE
$42(1,3)=9.*R10/60.
$42(2,4)=-15.*R2/60.
S$42(3,5)=S42(2,4)
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$42(4,6)=S42(1,3)
S42(3,1)=542(1,3)
S42(4,2)=542(2,4)
$42(5,3)=542(3,5)
$42(6,4)=542(4,6)
S44(1,5)=12.*R5/60.
S44(2,6)=S44(1,5)
S44(5,1)=S44(1,5)
$44(6,2)=S44(2,6)
RD=3.14159264/180.
TH = THETA(T)*3.14159264/180.
CSTH =(COS(TH))
SNTH =(SIN(TH))
IF (THETA(I).GT.(8000.))GOTO 775
BB(12)=0.
PBBZ = BB(4)*BO*Z(I)*CSTH*COS(BB(12)*RD)
PBBX = BB(5)*BO*Z(I)*SNTH
PBBY = BB(5)*BO*Z(I)* CSTH*SIN(BB(12)*RD)
GO TO 780

775 CONTINUE
PBBZ =0.0
PBBX = BB(5)*BO*Z(I)*CSTH
PBBY = BB(5)*BO*Z(I)*SNTH

780 CONTINUE
AR(1,1)=2.5*PBBZ+10.*BB(1)/3.+BB(6)
AR(2,2)=1.5*PBBZ-2.*BB(1)/3.-3.*BB(6)
AR(3,3)=.5*PBBZ-8.*BB(1)/3.+2.*BB(6)
AR(4,4)=AR(3,3)-PBBZ
AR(5,5)=AR(2,2)-3.*PBBZ
AR(6,6)=AR(1,1)-5.*PBBZ
AR(1,3)=BB(10)*R10/3.+BB(11)*9.*R10/60.
AR(2,4)=BB(10)*3.*R2/3.-BB(11)*15.*R2/60.
AR(3,5)=AR(2,4)
AR(4,6)=AR(1,3)
AR(3,1)=AR(1,3)
AR(4,2)=AR(2,4)
AR(5,3)=AR(3,5)
AR(6,4)=AR(4,6)
AR(1,5)=BB(9)*R5*12./60.
AR(2,6)=AR(1,5)
AR(5,1)=AR(1,5)
AR(6,2)=AR(2,6)
AR(1,2)=RS*PBBX/2.
AR(2,1)=AR(1,2)
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AR(2,3)=R2*PBBX
AR(3,2)=AR(2,3)
AR(3,4)=1.5*PBBX
AR(4,3)=AR(3,4)
AR(4,5)-R2*PBBX
AR(5,4)=AR(4,5)
AR(5,6)=RS*PBBX/2.
AR(6,5)=AR(5,6)
SY(1,2)=-RS*PBBY/2.
SY(2,1)=-SY(1,2)
SY(2,3)=-R2*PBBY
SY(3,2)=-SY(2,3)
SY(3,4)=-1.5*PBBY
SY(4,3)=-SY(3,4)
SY(4,5)=-R2*PBBY
SY(5,4)=-SY(4,5)
SY(5,6)=-R5*PBBY/2.
SY(6,5)=-SY(5,6)
AI(1,2)=SY(1,2)*PBBY
AI(2,1)=-AI(1,2)
AI(2,3)=SY(2,3)*PBBY
AI(3,2)=-Al(2,3)
AI(3,4)=SY(3,4)*PBBY
AI(4,3)=-AI(3,4)
AI(4,5)=SY(4,5)*PBBY
AI(5,4)=-AI(4,5)
AI(5,6)=SY(5,6)*PBBY
AI(6,5)=-AI(5,6)
DO 530 J=1,4
12=1+2
SI122(J,12)=-522(J,J2)
SI122(J2,7)=S22(J,J2)
SI142(J,J2)=-S42(J,J2)
S142(J2,1)=S42(J,]2)
BB(12)=0.
AI(J,J2)=BB(12)*S122(J,J2)+BB(12)*SI42(J,]2)
AI(J2,])=-AI(J,J2)

530 CONTINUE
DO 535 J=1,2
Ja=J+4
SI44(J,J4)=-S44(J,J4)
SI44(J4,1)=S44(J,J4)
BB(12)=0.
AI(J,J4)=BB(12)*S144(J,J4)
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AI(J4.7)=-AI(J,]4)
535 CONTINUE
DO 520 IY=1,6
DO 520 JY =1,6
DO 520 IZ=1,6
DO 520 JZ=1,6
IX=(Y-1)*6+1Z
IX=(JY-1)*6+JZ
SR(IX,JX)=AR(Y,JY)*SU(IZ,)Z)+
1 SUQY,JY)*(S20(1Z,)Z)* BB(7)+S22(1Z,1Z)*BB(8))+
2BB(2)*SZ(IY,JY)*SZ(1Z,1Z)+BB(3)*(SXQAY,]Y)*SX(Z,JZ)
3 -SY(IY,JY)*SY(1Z,)Z))
SIIX,JX)=AI(IY,JY)*SU(IZ,)Z)
520 CONTINUE
DO 5007 IR=1,36
DO 5007 JR=1,36
5007 ZP(IR, JR)=CMPLX(SR(IR,JR),SI(IR,JR))
CALL EVCHF(MMM,ZP, MDA, W,EVEC,MDVEC)
CALL EVCHFN(MMM,MDA, W,EVEC,ANORM2,F3,F4)
DO 5005 IR=1,36
S(IR,IR)=W(IR)
DO 5005 JR=1,36
ZI(R,JR)=AIMAG(EVEC(IR,JR))
5005 ZR(IR,JR)=REAL(EVEC(IR,JR))
C ** TO BE REMOVED LATER(LLX IS DEFINED IN FUNC)
IF(LLX)992,993,992
993 CONTINUE
995 FORMAT(SX,I="13)
994 FORMAT(X,'W=",6E12.4)
IF(LNE.415)GOTO 1111
1994 FORMAT(X,6E12.4)
1111 CONTINUE
992 CONTINUE
C *****DEFINE HERE THE LINES WHOSE QUANTUM NOS. NOT DEFINED
ABOVE
16=I
IFONUMBER.NE.1) GO TO 1814
11=IBB(6,1)
12<IBB(16,2)
GO TO 803
1814 CONTINUE
IFONUMBER NE.2) GO TO 815
11=IBB(6,1)
12=IBB(16,2)
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GO TO 803
815 CONTINUE
IF(NUMBER NE.3) GO TO 816
1=IBB(6,1)
2=IBB(16,2)
GO TO 803
816 CONTINUE
IF (NUMBER NE.4) GO TO 817
11=IBB(16,1)
12=IBB(16,2)
GO TO 803
817 CONTINUE
IF (NUMBER NE.S) GO TO 818
IF ((IBB(16,1).EQ.0).AND.(IBB(16,2).EQ.0)) GO TO 818
11=IBB(I6,1)
12=IBB(16,2)
GO TO 803
818 CONTINUE
C*****DEFINE ABOVE THE LINES WHOSE QUANTUM NOS. NOT DEFINED
ABOVE
802 CONTINUE
=1
2=2
DELMIN=ABS(ABS(W(1)-W(2))-FM())
DO 85 [X=1,35
IX1=IX+1
DO 81 JX=IX1,36
DELI=ABS(ABS(W(IX)-W(IX))-FM())
IF(DELI-DELMIN)84,84,86
84 DELMIN=DELI
1=IX
2=JX
IBB(L1)=I1
IBB(L,2)=I2
86 CONTINUE
81 CONTINUE
85 CONTINUE
803 CONTINUE
FC(I)=ABS(W(11)-W(12))
SIGN()=(W(1)-W(12))/FC()
DO 301 IY=1,6
DO 301 JY=1,6
DO 301 1Z=1,6
DO 301 JZ=1,6
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IX=(TY-1)*6+1Z
IX=(JY-1)*6+JZ
CC(IX.JX)=BO*DELH(I)*(BB(4)*CSTH*SZ(IY,JY)*SU(1Z,JZ)+
1 BB(5)*SNTH*SX(Y,JY)*SU(Z,JZ))
301 CONTINUE
ERR(I)=0.
DO 814 IX=1,36
DO 814 JX=1,36
ERR(=ERR(N+CCIX,JX)*(ZRIJX,I1)*ZR(IX,I1)
1 -ZR(JX,12)*ZR(IX 12))
814 CONTINUE
GO TO 17
21 CONTINUE
FC(I)=FM(I)
ERR(D=1.
SIGN() =1.
17 CONTINUE
IF(LX-1)110,110,120
120 CONTINUE
DO 235 1Z=1,12
D1(1Z) = 0.0
DO 235 JZ=1,12
235 D2(1Z,JZ) =0.0
IF (Z(1)) 418,217,418
418 CONTINUE
DO 237 KX=1,11
DO 236 IY=1,6
DO 236 JY=1,6
DO 236 1Z=1,6
DO 236 JZ=1,6
IX=(Y-1)*6 +1Z
IX=(JY-1)*6 +JZ
GO TO (707,714,715,705,706,709,712,713,711,708,710),KX
705 CC(IX,JX)=SZ(Y,]Y)*SU(Z,JZ)
ALPHA=BO*Z(I)*CSTH
GO TO 720
706 CCX,JX)=SX(IY,IY)*SU(Z,JZ)
ALPHA=BO*Z(I)*SNTH
GO TO 720
707 CC(IX,JX)=S20(IY,JY)*SU(IZ,)Z)
ALPHA=I1.
GO TO 720
709 CC(IX,JX)=S40(Y,JY)*SU(IZ,)Z)
ALPHA=1.



GO TO 720
714 CCAX,JX)=SZ(Y,TY)*SZ(1Z,)Z)
ALPHA=1.
GO TO 720
712 CC(X,JX)=SUQY,JY)*S20(1Z,JZ)
ALPHA=1.
GO TO 720
710 CC(IX,JX)=S42(TY,JY)*SU(IZ,JZ)
ALPHA=1.
GO TO 720
711 CCIX,JX)=S44(TY,JY)*SU(IZ,JZ)
ALPHA=1.
GO TO 720
708 CC(IX,JX)=S22(IY,JY)*SU(Z,JZ)
ALPHA=1.
GO TO 720
713 CCIX,JX)=SUQY,JY)*S22(12,)Z)
ALPHA=1.
GO TO 720
715 CCAX,JX)=SXY,JY)*SX(1Z,JZ)
2 -SY(AY,JY)*SY(1Z,)Z)
ALPHA=1.
720 CONTINUE

SRIX,IX)=(ZRIX,11)*ZR(IX,I1)-ZRIX,12)*ZR(IX 12))*

1 SIGN(I)

C FOLLOWING TWO LINES CHANGE FROM GXX INDEPENDENT TO

GXX=GZZ
KX1=KX

236 D1(KX1)=D1(KX1)+CC(IX,JX)*SR(JX,IX)* ALPHA
C FOLLOWING LINE CHANGES GXX INDEP. TO GXX=GZZ

237 CONTINUE
217 CONTINUE
110 CONTINUE
RETURN
END
SUBROUTINE EXAM(A,B,M,LF)
C SUBROUTINE EXAM
C FORTRAN 4
DIMENSION A(12,12),B(12),C(12)
DO 80 J=1.M
80 C()=AQJ,))
IF(A(1,1)) 60,200,70
60 A(1,1) =-SQRT(-A(1,1))
GO TO 300

130



70 A(1,1) =SQRT(A(1,1))
GO TO 100
100 IF(M-1)400,400,110
110DO 115 K=2.M
115 A(1,K)y=A(LKY(A(L 1))
DO 120 J=2.M
J1=J-1
S=A(J,))
DO 125 L=1,J1
125 S=S-A(L,J)**2
IF (S) 50,200,40
50 A(J,J) =-SQRT(-S)
GO TO 300
40 A(J.J) =SQRT(S)
GO TO 130
130 IF(J-M)135,400,400
135 J2=J+1
DO 120 K=12.M
S=A(J,K)
DO 145 L=1,J1
145 S=S-A(L,J)*A(L.K)
120 A(J,K)=S/A(J,J)
400 B(1)=B(1)/A(1,1)
IF(M-1)420,420,405
405 DO 410 J=2.M
S=B(J)
J1=J-1
DO 415 L=1,J1
415 S=S-A(L,J)*B(L)
410 B()=S/A(J,))
420 B(M)=B(M)/A(M,M)
J=M-1
435 IF(J)450,450,425
425 S=B(J)
J2=J+1
DO 430 L=I12.M
430 S=S-A{J,L)*B(L)
B(J)=S/A(J.))
J=J-1
GO TO 435
450 LF=1
GO TO 460
200 LF=0
GO TO 460
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300 LF=-1
460 DO 465 J=1.M

AJJ)=CQA)
IF(J-M)470,475,475

470 J2=J+1

DO 465 K=12M

465 A(J.K)=A(K.J)
475 RETURN

C
C
C
C

END

SUBROUTINE MATINV(A,N,B,M,DETERM)
SUBROUTINE MATINV
FORTRAN 4
MATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR
EQUATIONS
DIMENSION IPIVOT(12),A(12,12),B(12,1),INDEX(12,2),PIVOT(12)
EQUIVALENCE (IROW,JROW),(ICOLUM,JCOLUM),(AMAX,T,SWAP)
DETERM=1.0
DO 20 J=1.N
20 IPIVOT(J)=0
DO 169 I=1,N
WRITE(6,179(A(1,7).J=1,N)
169 CONTINUE
179 FORMAT(5X,'A(L))=",/,6(E10.4,2X),/,6(E10.4,2X))
DO 550 I=1,N
AMAX=0.0
DO 105 J=1,N
IF(IPIVOT(J)-1)60,105,60
60 DO 100 K=1,N
IF(IPIVOT(K)-1)80,100,740
80 IF(ABS(AMAX)-ABS(A(J,K)))85,100,100
85 IROW=]
ICOLUM=K
AMAX=A(J,K)
100 CONTINUE
105 CONTINUE
IPIVOT(ICOLUM)=IPIVOT(ICOLUM)+1
IF IROW-ICOLUM)140,260,140
140 DETERM=-DETERM
DO 200 L=1,N
SWAP=A(IROW,L)
A(ROW,L)=A(ICOLUM,L)
200 A(ICOLUM,L)=SWAP
IF(M)260,260,210
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210 DO 250 L=1,M
SWAP=B(IROW,L)
B(IROW,L)=B(ICOLUM,L)

250 BACOLUM,L)=SWAP

260 INDEX(, 1)=IROW
INDEX(L,2)<ICOLUM
PIVOT(T)=A(ICOLUM,ICOLUM)
DETERM=DETERM*PIVOT(l)
MODIFY =0
IF (ABS(DETERM).LT.(1.E+25)) GO TO 310
MODIFY = MODIFY + 1
DETERM = DETERM*(1.E-10)
WRITE(6,320) MODIFY

320 FORMAT(5X,MODIFY=" I2)

310 CONTINUE
A(ICOLUM,ICOLUM)=1.0
DO 350 L=1,N

350 AJCOLUM,L)=A(ICOLUM,L)/PIVOT(I)
IF(M)380,380,360

360 DO 370 L=1,.M

370 BOCOLUM,L)=B(ICOLUM,L)/PIVOT()

380 DO 550 L1=1,N
IF (L1-ICOLUM)400,550,400

400 T=A(L1,ICOLUM)
A(L1,JCOLUM)=0.0
DO 450 L=1,N

450 A(L1,L)=A(L1,L)-A(ICOLUM,L)*T
IF(M)550,550,460

460 DO 500 L=1,M

500 B(L1,L)=B(L1,L)-BACOLUM,L)*T

550 CONTINUE
DO 710 I=1,N
L=N+1-1
IFANDEX(L,1)-INDEX(L,2))630,710,630

630 JROW=INDEX(L, 1)
JCOLUM=INDEX(L,2)

DO 705 K=1,N
SWAP=A(K,JROW)
ACK,JROW)=A(K,JCOLUM)
ACK,JCOLUM)=SWAP

705 CONTINUE

710 CONTINUE

740 RETURN
END
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SUBROUTINE EQZERO(A,B,M,IC1,IC2,IC3)
DIMENSION A(12,12),B(12)
IC1=0
1C2=0
IC3=0
DO 5 J3=1,M
IF((ABS(B(J3))).GT.(1.E-20)) GO TO 10
B(J3)=0.
IC1=]3
WRITE(6,100) IC1
10 CONTINUE
DO 5 J4=1.M
IF((ABS(A(J3,J4))).GT.(1.E-10)) GO TO 15
A(J3,J4)=0.
IC2=I3
IC3=J4
WRITE(6,101) IC2,IC3
15 CONTINUE
5 CONTINUE
100 FORMAT(5X, I3)
101 FORMAT(5X,213)
RETURN
END
SUBROUTINE EVCHFN(M,MDA,W,EVEC,ANORM1,F11,F22)
C NORMALIZATION OF EIGENVECTORS
COMPLEX EVEC(MDA,M),VV(M)
REAL ANORM1(M),F11(M,M),F22(M,M), W(M), TEMP
DO 108 I=1,M
DO 108 =1 M
F11(I,J)=REAL(EVEC(,J))
108 F22(1,))=AIMAG(E VEC(,J))
DO 1005 I1=1,M
ANORM1(11)=0.0
DO 1006 J1=1,.M
1006 ANORM1(I1)=ANORMI(I1)+F11(J1,11)**2+F22(J1,11)**2
1005 ANORM1(11)=SQRT(ANORM1(11))
DO 1007 I1=1,M
DO 1007 J1=1.M
F11(11,J1)=F11(11,J1)/ANORMI1(J1)
1007 F22(11,J1)=F22(11,J1)/ANORM1(J1)
DO 101 I2=1M
DO 101 ]2=1,M
101 EVEC(I12,J2)=CMPLX(F11(12,2),F22(12,12))



MI1=M
DO 501 19=1,M1
16=19+1
DO 501 18=1,M1
IF(W(I8)-W(I9))505,510,510
505 TEMP=W(I8)
W(I8)=W(I9)
W(9)=TEMP
DO 515 I7=1.M
VV(Q7)=EVEC(I7,18)
EVEC(17,18)=EVEC(17,I9)
515 EVEC(17,19)=VV(7)
510 CONTINUE
501 CONTINUE
RETURN
END
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