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Abstract

Diagnostics for Generalized Linear Models
Sonia Benghiat

The analysis of residuals can capture departures from a parametrized model. In
this thesis we look at how the generalized linear model has become one of the most
important developments in statistics in the last thirty years, and on the adequacy of
regression model diagnostics that are meaningful and significant in a generalized linear
model context. Some asvmptotic properties are discussed and numerical examples are
provided to illustrate the techniques for binomial, Poisson, and gamma distributed

random variables.

Résumé

Des diagnostiques pour les modéles linéaires généralisés
Sonia Benghiat

L’analyse des résidus est un outil fort puissant qui nous permet de vérifier la va-
lidité d’un modéle paramétrique. Dans ce mémoire, je donne un apergu de I'importance
que les modéles linéaires généralisés ont eu sur le déroulement des statistiques dans
les trentes derniéres années. J'analyse la facilité que nous procurent de tels modéles
lorsqu’il s’agit des diagnostiques de régressions. J’éxamine également les lois as-
ymptotiques concernant ces modéles. Finalement, je présente des exemples pour des

variables aléatoires binomiales, Poisson, et gamma.
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Chapter 1

Introduction

1.1 The Linear Model

Most of the generalized linear model concepts stem from the theorv of the normal
linear model. Before introducing the generalized linear model, it is useful to set the
scene by providing a brief review of the normal linear model in this first chapter, and
hence to understand and see the parallels between the two types of models.

The normal-theory linear model is given by
y=XB+e, (1.1)

where y is an n x 1 observation vector, X is a n x p known design matrix, Sisapx1
vector of unknown parameters, called regression parameters and € is an n x 1 vector
of unobserved random variables with zero mean and constant variance o2, which are
independently and normally distributed. The model (1.1) is alternatively described

by the mean-vector and variance-covariance matrix of the observations Yy as

E(y) = X8. Var(y) = o?l.
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The linearity of the model is understood in terms of the regression parameters 3.
For estimation of the parameters, the maximum likelihood method can be used when
the errors are normal. Likewise, the principle of least squares provides the same
estimates of the regression parameters. However, it does not require any distributional
assumption. It is described below.

Least Squares Estimation of Parameters J

The least squares method estimates the regression parameters 8 by minimizing the

sum of squares:
Q) =3 € = e =(y - XBY(y — X0)
i=1
=Yy - 26Xy + X'Xp. (1.2)
Since
?)—;91- =0 -2X'y + 2X'X3 = 0,
the least square estimator 3 for 3 is given by the so-called normal equations
X'Xj3 =X'y.

This yields

B = (X'X) Xy, (1.3)

assuming that X is of full column rank. It is easily verified that 3 is unbiased for 8

and
Var(f) = e*(X’X)~1. (1.4)

In addition to being unbiased, the least square estimator (LSE) 3, has the following
properties:
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(1) bave minimum variance among all unbiased linear estimators (Gauss-Markov

theorem),
(2) consistent, and

(3) sufficient.

Projection Matrix and Residuals

The building blocks for detecting influential observations in a given data are generated
by the projection matriz, M, and residuals, e which are defined in what follows.
Consider the model (1.1) with corresponding fitted values (§) and residual vector (e)
defined by:

X3. (1.5)

@
I

o

"The projection matrix M = (n;;) is defined by:

M=I-H,
H = X(X'X)"'X'

is called the “hat matrix”. The projection matrix is most useful in the analysis of

residuals as it spans the residual space, i.c.,
e =My. 1.7)

The residuals e measure the difference between the observed and the fitted values,
with the following properties:

e E(e)=0.
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e Var(e) = 0% (I1 - H).

An unbiased estimator of o2 based on the residual e is given by
s2_ e _y"(I—H)y, (1.8)

n—p n—p

whereby (1.8) is denoted by MSE, the mean square due to ervor. Therefore,
Var(e) = MSE (I1-H) (1.9)
is an unbiased estimator of Var(e).

Theorem 1.1 The following are important properties related with the projection ma-
triz M:

1. H and M = (1 — H) are symmetric and idempotent,
2. rankM=rank(l — H)=tr(M) =tr I—H) = n —p,
I MX=(I-H)X=0
PROOF: (see Seber [24], Appendix A)
1. Symmetry is obvious as H' = [X'(X'X)!X] = X'(X'X) !X = H and the
idempotence is easily verified as
H-H = X(X'X)"IX'X(X'X)"IX’' = X(X'X)"'X = H,

and
I-H)-I-HH=1-H-H+H-H=1-H
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2. Since (I — H) is idempotent, rank(I — H) = tr (I — H). Furthermore, since

tr—-H)=trI - trH=n — &aX’X(X'X)™!
=n—trly,

=n-p.

then rank(I-H)=tr(I-H) = n —p.

(I- H)X = [I - X(X'X) X’ = X - X(X'X)"1X'X

=X-X
=0.
]
It can be further deduced that
E(y) = E(XB) = X8, (1.10)
and
Var(¥) = Var(Xf)
= o’ X(X'X) X’
=o’ H. (1.11)

1.1.1 Validity of Assumptions

In fitting a linear regression model, the residuals e can be used to justify the assump-

tions about the random errors . Since e is linear in y, e is a random variable following
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a normal distribution, and hence the assumption of normality can be used to draw
inferences about the linear model. Thus, an analysis which combines the residuals
and the fitted values will examine whether there are any departures from the linear
model with normal errors. The model departures to be examined are categorized as :

e non-linearity,

e non-constant variance,

¢ non-independence,

e non-normality,

e outliers,

e omission of independent covariates.

Graphical methods (see Draper and Smith [7], Chapter 4), involving the residuals
provide useful tools for detecting such model departures. They are described below:

1. Plots of residuals against independent variables will detect potential outliers,
non-constant variance, non-linearity of an independent variable or the need for

more independent variables,
2. Plots of residuals against the fitted values will detect non-constancy of variance,

3. Plots of residuals against time (if possible) will detect non-independence amongst
errors or if the time effect has been omitted from the model,

4. Box-plots, normal probability plots, Half-normal plots, histograms and stem-
and-leaf plots will check for normality and outliers, and
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5. Plots of residuals against other significant independent variables (if possible)
will detect whether such variables are to be included in the model.

Formal tests build statistics involving residuals which are used to test the validity of

the following normal linear regression model assumptions:
e randomness;
e homoscedasticity;
e normality; and

e outliers.

F-test for Adequacy of the Regression Model

Consider the linear regression model (1.1) whereby the errors ¢; are assumed to be
i.i.d.. The adequacy of the model is interpreted in the form of the significance of the
independent variables {x;}. i = 1.... .p — 1. The following hypotheses are tested:

Hi: Bi=Fo=...=fp =0
H, : notall 3;=0; j=1....,p—1.

It can be shown that the likelihood ratio test for H, vs. H, if H, is true yields the
following F-statistic:

MSR
F =g~ Frtayp (1.12)
where
msg=YA-Hy _ ce (1.13)

n—p n—p
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and
iy
Msp=YEH — 21Dy (1.14)
p—1
The critical region is given by
{F:F 2 Fap1n5} (1.15)

where, for any v,.1», € N~ F,,, ., is defined by

P[Fl'hl’z 2 Fa:"ls“!] =a. (1°16)

with the random variable F,, .., having an F-distribution with v, v, degrees of free-
dom. The critical region given in (1.15) is justified by the following facts:
(i) (n—p)23E ~ x2_,,

(i) (p—1) 232 ~ xr2_ (A). where A = #'X'(H— 111') X3, x/2(\) denotes the non-
central chi-square random variable with » degrees of freedom and non-centrality

parameter (ncp) A.
(ili) AMSFE and M SR are independent,
(iv) E(MSR) = o? + fX'(H - 111')X3/(p — 1) > 0®> = E(MSE).

The assertions (i)-(iii) are consequences of Cochran’s Theorem (see Searle [23], Chap-

ter 3), essentially by using the following theorem:
Theorem 1.2 Let z ~ N(O.I). Then,

(1) 2’ Az has a x?-distribution with rank(A )= degrees of freedom, iff. A is idempo-

tent;
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(2) 2 Az and ZBz are independent iff. AB = 0.

(3) The assertion in (1) changes to a non-central chi-square with ncp =’y in case
z~ N(p.1).

z'Az can be written as

MSE _y'(I-H)y €(I1—H)e _
= = - -

o o2 o2

(n —p) z’ Az,

where z ~ N(0.I) and A = (I — H).
Since A is idempotent with rank n — p (Theorem 1.1), it follows that

and, similarly
MSR y(H- %l'l)y

o2 P

(r—1)
has a non-central chi-square distribution with degrees of freedom=
trace (H — ~11') = p — 1 and non-centrality parameter

A=@X'(H - ;11- 11YX3/ o2.
Since HX = X, the non-centrality parameter simplifies to
A= @X(I- % 11NX3 / o2,

which is > 0 and equal zero iff. H, holds.
Independence easily follows since

(I - H)(H — %u') = —(I-H) % 11 = 0.

The assertion in (iv) is a strict inequality if at least one of the §; # 0.
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1.1.2 Other Diagnostics

Some diagnostic tools are used to detect influential and outlying observations in a
given regression model. The Studentized residual is very informative in examining
residuals under a normal model since it is standardized and it introduces the idea of
case deletion, where the fit for all observations is compared to the fit with the deleted

case. Also,
Var(e) = 02 M.
then
Var(e) = 6?M = MSE-M.
Furthermore,
€
o ~ N(0.1),
hence, the studentized residual e} is defined as
. __ €
€; = &J'Tﬁ’ (1'17)

where

m;=1—h;; 0<my; <1.

The diagonal elements m;; of the projection matriz depict those observations with
high-leverage (i.e. highly influential observations) since they are related to the dis-
tance between Xx; and X. Given that X is of full rank, then

Zh,—.-——-p = Zm;.-:n—p.

Hence, the average of diagonal elements m;; is 1 — p/n and high-leverage observa-
tions should have small values for m;; as compared to 1 — p/n. As a rule of thumb,
from Hoaglin and Welsch ([11]), if m; < 1 — 2p/n, then the ith observation is a



CHAPTER 1. INTRODUCTION 11

high-leverage point. Thus, M is a useful diagnostic tool for detecting influential ob-
servations.

Another type of ill-fitting point which arises in model-fitting is an outlier. It does
not necessarily imply an influential observation in a given model. In fact, an outlier
may be outweighed by neighboring X-valued points. Still, the effect that an outlying
point exerts on the fit needs to be measured. The smaller the number of observations
involved in a model, the greater the effect of the outlier on the model. This can
be done through the diagnostic tool of Cook’s distance which measures the effect of
deleting an outlier from the data:

ce = (ABY X' X(AS). (1.18)

where A3 = 3 — B¢, B4 denoting the usual LSE of 8 with the fth observation
deleted from the data.

It gives the distance between the usual least squares estimator and the least squares
estimator obtained after the £th observation has been deleted and provides a measure
for the change in least squares estimates 3 for the deletion of the £th observation. It
can be shown that

s (XX) x%(ye — 5
Aj = EX) m:,(m 9e) (1.19)
hence, it can be written that
(ye — Ye)2hee
cz = W, (1.20)

The residual sum of squares (RSS) will also change as a result of an observation
deletion. This is measured by:

ARSS = RSS - RSS_,

— )2
- @l_n:_> (1.21)
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where RSS_, represents the RSS with the £th case deleted. Another approach is to
measure the perturbation of the fit by letting €; ~ N(0,02/v;). Consider

v, i=24¢,

Vs

1 else

where 0 < v < 1 is a weight factor defining the matrix V = diag(v;). The resulting
weighted LSE of g is denoted by B('L)

At v =1: [(1) = f3, the usual least squares estimate, and

at v =0: fi(O) = f_,, the least squares estimate when the fth point is deleted
from the data.

The normal equations are changed and consequently, so are the least squares esti-

mates. B(v) can be expressed as

B(r) = (X'VX) 1X'Vy (1.22)
. (XX)"x,(1 — v)(ye — 9e)
1 -1 —v)he] |
The perturbation effect is measured by differentiating (1.22) with respect to ©:
s _ OB (v)  (X'X)7 % (v — W) .
P == = A= v) P (1.23)

1.1.3 Remedial Measures

If the normality assumptions made on the least squares estimates for linear models
are not. met in practice, then some remedial measures need to be taken. Throughout
the extensive literature available on this topic, one of the most prominent solutions
is to use a transformation on the data which may keep the normal linear regression
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form. However, the implications involved with a selected transformation may not
necessarily be easy to interpret. Some of the standard remedial measures taken in
case of various model departures are described below.

e Non-linearity
Non-linear Least Squares Estimation:
When a model has normally distributed errors with constant variance, but is
non-linear in the independent variables, then the property of additive errors may

enable a linear model through a transformation of the independent variables.

The most common transformations are the following:

' =logz, T’ =z,
T =%, or  =exprz,
1
r— ' —z).
=, ' = exp(—z)

Such models are intrinsically linear ([7], Chapter 5). If these transformations
are not possible, then alternative non-linear models may have to be considered:

y =9(8.x) +¢,

where x represents a vector of predictor variables, g(83,x) is not linear in 8.
The least squares estimator of 3 for B is obtained through differentiation of
the p normal equations which are not linear, unlike in the case for ordinary
least squares. Hence, these normal equations are more complicated to solve.

Consequently, numerical methods are usually required to be used to obtain

solutions.

e Heteroscedasticity and/or non-independent errors
Weighted Least Squares Estimators:
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When the observations are independent yet have unequal variances, an ordi-
nary least squares regression may yield unbiased estimates, but it will not have
minimum variance. Then the observations need to be transformed in terms of
weights, u; > 0. Var(y;) = 02/w; such that

Var(y) = c*W™! = o2 - diag(1/u. . .. , 1/uy,).

Large weights w; imply small variances and have more impact in a regression
model.

Examples of weight components:

1. if the ith response is the result of an average of n; equally variable obser-
vations, then Var(y;) = 0?/n; where w; =n;;

2. if y; results from a total of n; observations, then Var(y;) = n;02 where
u; = 1 / n;,

3. if Var(y;) « x;. then Var(y;) = 02 z; wherew; = 1/x; .

Then, introducing the weight matrix, W, the modified estimator of 3 is given
by
Bw = (X'WX) 1 X'Wy.

Variance Stabilizing Transformations:

When the variances of the observations are not constant, it is possible to trans-
form (see Rao [22], Chapter 6) the observations to make the variance constant.
For this method to work, the form of the heteroscedasticity must be known,

which is often not the case. Hence, in practice, one seeks transformations in
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. a larger family and looks for an optimal member in this family, which closely
follows the assumptions of the model. One such transformation, known as the
Bax-Cox transformation, is discussed later.

e Non-normality of errors

Non-parametric Techniques:

The roughness penalty approach using cubic splines is a method for relaxing the
model assumptions in the normal-theory linear case. It addresses two equally
important problems in curve estimation: that of finding a good fit to the data
used and that of quantifying the rapid fluctuation of a curve. Consider a model

y=g(t) +e

which is specified without placing any restrictions on the curve g. Hence, if there
are no distributional assumptions made, then the normality of errors assumption
is relaxed. Methods associated with the above model come under the general
auspices of the topic of Non-parametric Regression and the literature on this

topic is extensive (see Green and Silverman [10}).

e Non-normality and Heteroscedasticity

Bax-Cox _Transformations:

y,\ - LA_}_’ A # 0
log(y). A=0

for a positive response variable y > 0. This transformation may bring symmetry
to a skewed response and reduce the heavy tails of a distribution while still
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retaining the simplicity of the normal linear model. When it does not provide
a good fit to the data, alternative approaches have to be explored. One such
approach is to use the generulized linear model (GLM), where the response is
assumed to belong to the exponential family. The assumptions made here are
based on the concept that the response depends on the predictors through a
linear form. Thus, the linear models are generalized through

1. a lmk function which relates the expectation of the response to the linear
predictor, and through

2. an exponential family distribution for the errors.

This model will be described in detail in Chapter 2 and is the highlight of this thesis.

1.2 Outline of Thesis

The next chapter introduces the GLM, with all the relevant notations. It gives the
properties of estimators and computational details for estimating the parameters for
common exponential families. Tests for goodness-of-fit and inclusion/exclusion of
variables are also included. The basic properties of residuals in the normal theory
linear models are used for extending the regression diagnostics to the generalized
linear models in Chapter 3. This extension is made possible through transformed
residuals, which is explained in detail in that chapter. The final chapter presents
numerical illustrations of the techniques discussed in Chapter 3 and gives a hands-on
experience with real data through computer programs developed using the S-Plus

software application.



Chapter 2

The Generalized Linear Model

2.1 Historical Aspects

The term “generalized linear model” was first introduced by Nelder and Wedder-
burn in 1972. The generalized linear model has been one of the most important
developments in the field of statistics in the last thirty years. Much used in applica-
tions to the social sciences and medicine, these models also play an important role
in the analysis of survival data. As their name suggest, these models generalize the
normal-theory linear models such that the usual linear regression component is used
to describe a wider class of probability distributions, specifically the exponential fam-
ily distributions. Although generalized linear models have had an important impact
on statistics, most introductory statistics textbooks however, still only present normal
linear models.

It was seen in Chapter 1 that an adequate linear regression model should include a y-
scale which ensures the combination of constancy of variance, approximate normality
of the errors, and additivity of the systematic effects. However, this scale does not

17
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always respect all three criteria. For example, if some discrete data is found to
have errors with an approximate Poisson distribution, the systematic effects may be
multiplicative, in which case log-linear models are usually employed. The following
choices of scaling are obtained by transforming y to :

e y'/? to ensure appraximate constancy of variance,
e */* to ensure appraximate symmetry or normality, or
e log y to ensure additivity of systematic effects.

Generally, none of these scaling possibilities combine all three criteria for an adequate
linear regression analysis. Alternatively, a generalized linear model encompasses ex-
ponentially distributed errors and a variance function which depends on the mean
in some known way, so that there is no need to scale y for normality of errors or
for constancy of variance. In fact, the scaling problem is reduced to ensuring that
the systematic effects are additive. It may be considered to be an extension to the
normal-theory linear model with some added modifications where the mean p of
an exponential family with response variable y is linearly related to the predictors
Xji..-- . Xp, by a link function, g(u). This is described in detail in the sections that

follow.
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2.2 Mean and Variance Functions in an
Exponential Family

An observation y follows an exponential family distribution if its probability density

function is given by

(y6 — b(6))
a(¢)

where a. b, and ¢ are some known functions, 8 is the location parameter and ¢ is the

f(y; 6.4) = exp { + ely. ¢)} , (2.1)

dispersion parameter. This is denoted by
y~ €@, ¢; a,b,c).

When the dispersion parameter ¢ is known, 8 is the canonical parameter. The mean
and variance of y are given by ¥(0) and a(¢)b”(8). Thus it can be written that

E(y) =p=10(0). (2.2)
Var(y) = a($)V (n). (2.3)
where
V(n) =0"(0)

is called the variance function. For example, in the case of the normal distribution,

0 = pn.V(p) =1 and a(¢) = 2. These may be derived from

ot
E (ﬁ =0, (2.4)

£ ()45 (%) =o @9
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respectively, where £ is the log-likelihood function. Note that

t = log {exp [(yf — b(0))/a(®) + c(y.9)]} = (¥ — b(8))/a(®) + c(y.d).

hence
9 y-—¥()
9 a(p)
Thus, equation (2.4) yields
pu—U(9)
—_— =0,
a(4) '
(2.6)
which implies that
E(y)=p = ¥(6).
Also
Pt —b'(9)
2~ "a(9) -
hence equation (2.5) vields
b gl 9E\? _ —b'(8)  Var(y) _
2 () +£ (%) = +g = ©
(2.7)

which gives
Var(y) = a(4)b"(0).

2.3 Description of the Generalized Linear Model

The observations belonging to a statistical model can be summarized in terms of a

systematic component and a random component. In the generalized linear model
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(GLM) discussed by McCullagh and Nelder [17], the random component is inherent
in the exponential family distribution of the observation, while the systematic compo-
nent assumes a linear structure in the predictor variables for a function of the mean.
This function is known as the link function. When the parameter 8 is modeled as
a linear function of the predictors, then the link function is known as the canonical
link. Therefore, for a given set of observations {%:}2,, where y; is considered to be

associated with predictor values x; = (z;,. .. ,Z;)’, the GLM is expressed as:
Yi ~ E(6;.¢; a,b,c) — random component,
where 6; is assumed to depend on x; through the relation
7 = g(p(6:)) = xi — systematic component.
If g is the canonical link, then, the link function is specified by
9(p) = 0. (2.8)

In practice, a given data set may be distributed according to some unknown member
of the exponential family and therefore, different link functions have to be evaluated.
The link function serves to determine the scale on which linearity is assumned, and the
form of the exponential family structures the variation in the data. If the parameters
Bi:--- ,Pn are unrestricted, then g(u) can take any value in R, hence the link function
is determined to some extent by the domain of variation of u. For example, if the
response is a proportion, then the link function ¢ must map the unit interval of the
domain of variation onto the unrestricted range (—00,00). In the case where the
response is limited to being positive, ¢ must map the positive interval onto R.

It is shown, as follows, that in the case of a canonical link, the sufficient statistic
for the linear parameter 3 is given by X'y, where X = (x;,, ...: Xp)' represents the
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design matrix of the p predictor variables and y represents the column vector of the

n observations.
To see this, first note that u = ¥(#) and for the canonical link g(u) = 0, then it

follows that

b d _d0 [du]™t 1
g(u) = @y(#) = [E] = ¥y
hence by (2.3)
¢ = g (2.9)

This fact is used in deriving the maximum likelihood estimator of 3 which will be
consequently shown to depend on the observations y through X'y, proving the suffi-
ciency. Here, the log-likelihood function is given by

(i)=Y [”—%i’;‘”—’ +e(u ¢»)] , (2.10)

where 6; = x{3. Now, the differentiation of the likelihood function in equation (2.10)

gives
oK) ib: — b(6;)
o8 Z a0 |2 et 0] B Z"' e
Using equation (2.9) along with the above equation produces
Y xi- (w — ) =0,
i=1
which implies for canonical links that

X'y = X'- q(f),
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for some nonlinear function q. This is attributed to the fact that g(u) = 8 holds for
canonical links only. Hence,

p=g"%0) = f;=g'8)=g'(%H).

Now, canonical links for the binomial, Poisson and gamma families are given re-
spectively by the logit, log and inverse transformations. Consider the probability
distribution of the proportion y based on a sequence of m identical Bernoulli trials
with probability of success 7, then

f(y; 6.4) = exp { lvb — 1(172 +el log (:y) } :

where # = log ;=;. hence the canonical link is given by the logit transformation and

the generalized linear model is given by

P
)= 5B
: r=1

For the Poisson data with mean u, the probability distribution function is denoted
byv:

7 = g(7i) = log(

f(y; 6. ¢) = exp {(y0 —~ €°) — log(y)}.
where 6 = log u, then clearly the log transformation yields a canonical link. Similarly
for the gamma data with density

fly) = k"'l}(a) e—ﬂ/kya-—l,

it may be reparametrized such that @ = 1/¢ and k = —¢/6, hence to get

Y0 + log(—0)

” +c(y.9)}.

f(y; 6,¢) = exp {

whereby

(y,¢) = [(1/¢ — 1) log(ye) + log(¢) — log [(1/4)].
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Therefore, u = ka = —1/6 and consequently, the canonical link is given by
1
9(p) = w

Table 2.1: Dispersion Parameter, Canonical Link and Variance Function for Distri-
butions of the Ezponential Family

DISTRIBUTION  Notation a(¢) 6 = g(u) Name V(p)
Normal N(u.0?) o? m identity 1
Poisson Poi(y) 1 log(u) log I

Binomial Bin(m, 7) L log(:27) logit £(1-£)
Gamma Gam(a.k) 1/a — inverse u?
Inverse Gaussian Inv(u.02) o2 —‘—‘25 1/mu? u?

Table 2.1 gives canonical links and other components for common distribution
families with respect to the exponential family given by equation (2.1) [17]. The choice
of a proper link function that will satisfy the criterion of the domain of variation pis
based on:

1. how the link function will easily interpret the parameters in the linear predictor;
2. how the link fits to the data; and

3. the existence of a simple sufficient statistic.
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Possible link functions associated to some important members of the exponential
family are cited in Table 2.2. In summary, generalized linear models make up a
general class of probabilistic regression models with the assumptions that:

(1) the response probability distribution is a member of the exponential family of

distributions;
(2) the response y; i =1,... ,n is a set of independent random variables;

(3) the explanatory variables are linearly combined to explain systematic variation

in a function of the mean.
In a practical data situation, GLM fitting involves the following;
e choosing an error distribution that is relevant;

e identifying the independent variables to be included in the systematic compo-

nent; and
e specifving the link function.

The next section presents the maximum likelihood method for estimating the regres-
sion parameters assuming that the above have been specified.

2.4 Maximum Likelihood Estimation
for the GLM

If the probability specifications of an exponential family model are known by f(y.90),
then the best way to fit a generalized linear model is by Maximum Likelihood Esti-
mation of the parameters § for the data observed (Silverman and Green [10]). With
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many desirable properties of maximum likelihood estimators such as consistency, effi-
ciency, sufficiency and asymptotic normality, it is natural to consider such a method
for GLMs. In general, the maximum likelihood equations which result from GLMs
cannot be solved explicitly and hence recourse must be made to numerical methods.
Three methods are described in this section: the Newton-Raphson method, the Fisher
Scoring method, and the Iteratively Weighted Least Squares method. But first, the
maximum likelihood equations are derived. Given the responses y,. ... . Yn, Where y;
is considered to be generated from a member of the exponential family £ (6.9; a.b.c),
the likelihood function is written as

- & i0; — b(6;
Hf(yi;oi-¢) =Hexp{y——M +c(y.-,¢)} . (2.11)
i=1l i=1 a(¢)
Then the log-likelihood is given by
= [v:6; — b(6; .
(B; ¢) = Z [EE—M + c(y;,¢)] = Ze‘-, (2.12)
2|
whereby ¢; is the ith component to the log-likelihood and is therefore given by
= y:0; — b(6:)
(=Y BE 0 4 omi. @) 2.13
; ORI, (2.13)

The likelihood implicitly depends on the parameters Bi.3=1....,p, firstly through
the link function g(u) and secondly through the linearity that it encompasses with
respect to [3; values. The derivatives of the log-likelihood with respect to Bj, otherwise
known as the score functions, are evaluated by the chain rule:

ot >\ O¢; do; dp; O .
—_— = ___—————=0; =1,,,,_ . 2.14
0f; ~ &= 36, dp; dn: 9B; 7 P (2.14)
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It is easily seen that
o _y—-Vl:) _wi—p
99; a(®) a(¢) °

doi_ LY R et =1,
ap, = GO = Vi),
O 035\ Bizij R
ap; 9B; v

Hence, the score functions reduce to

o€ "Ny — s dp;

= Zij; J=1,...,p.

;& a(B)V (ws) dn;

In a vector form, the score equations are given by
(y —n)D(p)X =0,
where

D(u) = diag(dy;), du=1/V()g' ().
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(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

The maximum likelihood estimator of 3 is obtained by solving (2.19) using the lin-
earity found in g(y) = X3, where g(u) = (g(p11).--. ,g9(m))’- Numerical methods
to solve (2.19) are essentially iterative. Common to all these methods is the starting
value of the estimate. With the ultimate aim of obtaining a “good” starting value of
the estimate, the following technique is employed using the approximate linearized
form of g(y) = g(u) + (v — u)¢’(1). The adjusted dependent variate, z which depends

on both y and p is introduced.
d
z=fl+(y—ﬂ);£

= g(u) + (v — n)g'(p).

(2.20)
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Given that the variance of z is a(¢)[¢’(u)]*V(u), an initial estimate of § may be
obtained by Weighted Least Squares of z (with x4 = y) on X, with variance-covariance
matrix given by a diagonal matrix whose components are specified by

1
- V(I;a)[y'(m)]2

:V;Tz‘.)‘.

wy
(2.21)

Known as the working weights matriz, this matrix is denoted by W. In cases where
repeated observations occur at a given design point, y; is replaced by the average of the
sample observations. Since the average also belongs to the same exponential family,
with the variance replaced by a($)V (u;)/ni, n; being the number of observations on
which the sample mean is based upon, the working weights matrix contains diagonal
elements given by

n;

T V(m)lg @)l
1

= Var(z)

u';

Clearly, the score equations can be expressed as
D (i — p)g (i) 25 = 0, (2.22)
i=1

which, when transformed to the adjusted variates yield the following

D (=~ 9(m)wizi; = 0, (2.23)

i=1

or equivalently, solving for the weighted least squares estimator from the model

E(z) = Xp. Var(z) = a(¢)diag(1/w,,... ,1/w,).
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Both z and W are used for maximum likelihood estimation through a weighted least
squares regression. This process is iterative, since both z and W depend on the
fitted values of current estimates available. Some scoring methods are needed to
measure the iteration variations for a weighted least squares regression of a GLM,

until convergence is reached.

2.4.1 The Newton-Raphson Method

The Newton-Raphson method presents a numerical approach to calculating the maxi-
mum likelihood estimate 3. This iterative process begins with a weighted least squares
estimator obtained from the initial solution of (2.23). A Taylor-series expansion of
€(B3) about. £(39) is used:

at (?
-1
B [(_ﬁf_) . ﬂ]
aB0p3 a0 0
= §®). (2.25)
An updated estimate of 3 is then obtained:
A6 = GO 4 56, (2.26)

This is iteratively repeated until convergence is obtained [10].

2.4.2 Fisher’s Scoring Method

If the negative second-derivative matrix, or the Hessian matrix, is not positive definite

at every iteration (i.e. if it is not invertible), then the Newton-Raphson’s algorithm



CHAPTER 2. THE GENERALIZED LINEAR MODEL 30

is no longer valid. In this case, the Hessian matrix is replaced by its expectation,
obtaining Fisher’s scoring algorithm. This method is simple since the expected matrix
is more likely to be positive definite as

o%¢ ot Ot
& 3507 = & (35357 @20

which is the expectation of a positive definite matrix. Thus, the iterative process for
Fisher’s scoring algorithm is given by:

36D = §® E T ae (2.28)
* ( [aﬁag']) ap° '

-1
where §() = — (E [ 0&,”,]) £ is evaluated at the previous iteration. For evaluating
the derivatives in (2.28), the linear predictor 1; is used where 7; = z3:

ot 0¢; db; 6(.— . ﬂ %_
Or,, 00 dfl. ~ 96; dp; do;

o = (b x ()8}, (2.30)

)~ (2.29)

ai(¢

and

B[] = = (e )0
= g’(m) x {apg'(pu:)b"(6:)} "
= {a(¢)g’ (1:)?0"(6:)} .
Note that —E | *32"'5"]-,' = [a(#)] 'y for i = j, and it is = O for i # j.
Consider z(® to be the initial n-vector with

20 = (yi — i) g ().

Then it follows that

'Z—s = sz(o) (2.31)
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from (2.30). Furthermore,

—E ( = o ¢)W (2.32)

Since 7 = X', then by the chain rule

o _,oe
a8~ X oy o
s (0)
= al ¢)XWz (2.33)
and
_ T
E (g07) =X [~ Elm)| X (234

The Fisher’s scoring algorithm yields the following sequence of updated estimates:
B =B + (X'WX) 1X'Wz. (2.35)
The dispersion parameter ¢ is eliminated because a(¢) gets canceled in the multipli-

cation, hence it is called a nuisance parameter (McCullagh and Nelder [17]).

2.4.3 Iteratively Weighted Least Squares (IWLS)

As indicated in Section 2.4, the introduction of the adjusted dependent variate z
results in the following equation for the MLE 3 [see (2.23)};

= (x'WX)— IX'Wz.

However, the z and W depend on the unknown f, hence this equation gives rise to
the iterative process

5G+1) _ 36)
g Bs.
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This is known as the method of iteratively weighted least squares, IWLS. The starting
value of the iteration is obtained by substituting i® = y. At each iteration i, a
weighted least squares regression of the working response variate z® on the design
matrix X is obtained with the working weights matrix W®, where z® and W®
are obtained by replacing p with i) = ¢g~'(XA®). This algorithm can thus be

suminarized as follows :

e Start with a sufficient statistic from the data to get an initial fitted value vector
a0,

e From this statistic, the link function g is used to derive an initial linear predictor
7O,

e Calulate ()g and V(a®) = (%),.

These statistics are used in creating the starting adjusted dependent variate and

working weight matrix as follows:
2® = 7® 4 (y — g (91)
du),
dn\ 2
(WO -1 = (_2) VO,
du/

A weighted least squares regression is carried out of z® on X for the model E(z) = X
with the working weights matrix, W(® to obtain a first maximum likelihood estimate:

/}(1) — (x'w(o)x)—lxiw(o)z(O)’
which is then used to obtain updated values of 7 and ji:

. A(1)
7 = X6,
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a® = g7'(#).

This process is repeated to update the regression estimates at each iteration via a
scoring algorithm, until the variation from one iteration to the next is sufficiently
small. The maximum likelihood estimation method through the IWLS procedure
is an extension to the non-iterative least squares method of estimation for normal-
theory linear models, with W1/2X as the design matrix and the adjusted dependent
variate W1/3z as the response variable.

At convergence, if it occurs, z becomes z = X3 + W1y — ji) so that the maximum

likelihood estimate of 3 is:
B = (X'WX) ' X'Wz. (2.36)

If the working weights matrix W = I (the identity matrix), then the maximum like-
lihood and least squares methods coincide. No iteration is required for the maximum
likelihood estimation:
BEY = (X'X) X'z
= (X'X)1x'x8%,
- ge-n = g

Hence, the IWLS method extends the least squares procedure beyond the linear
model to the generalized linear model that includes the binomial, Poisson, normal,
inverse normal, gamma, exponential, and multinomial distributions.

An interesting point to note is that the working weights matrix used in JWLS, W,
is updated at each iterative step of JWLS so that each element of W, w;; is updated
too for each observation i. Hence, W depends entirely on the fit of the model, and
not at all on the likelihood equations X'(y — jz) = 0 used to determine 3. In contrast,
the weights determine the fit in the weighted least squares method.
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The basic components of the generalized linear model, as an extension to the normal
theory model, may be summarized in the following table:

2.5 The Goodness of Model Fit

As previously stated, the link function which is used to describe the systematic com-
ponent is often unknown. Canonical links may simplify the mathematics, but they
may not necessarily represent the best prediction. A natural question bound to arise
in fitting a GLM is “how good is the link function used?”, in comparison to some
other potential link functions. In fact, the model fit is questioned. Other issues at-
tributable to model fitting are based on assumptions such as the exponential family
distribution of the observations, the constancy of the dispersion parameter and the
independence of the observations, much like those seen in the normal-theory linear
models, and the issue of identifying influential observations.

A common goal in postulating the systematic effect is to have only as many in-
dependent variables as necessary for a good fit. Consequently, measures which can
determine the quality of the fit and statistical tests for keeping the variates in the
model are sought for. In particular, the two most useful goodness-of-fit statistics are
the deviance measure and the Pearson statistic. The deviance measure is motivated
by the discrepancy between the maxima of the observed and the expected (under
the model) log-likelihood functions. Conversely, the Pearson statistic measures the
relative difference between the observed and the fitted values. Both of these statistics
can be appraximated by the x? distribution with corresponding degrees of freedom.
In either case, a large deviance or chi-square value implies poorly fitted observations
with respect to the model.
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2.5.1 The Deviance Function

The maximized likelihood for a given model may be considered to be an indicator of
the goodness-of-fit. For example, the ratio of the maximized likelihoods under two
models as a measure of the goodness of one model over the other may be such an
indicator, or alternatively, taking the logarithm of this ratio. The deviance measure D
is thus defined as twice the logarithm of the likelihood ratio. Subsequently, a related
measure called the scaled deviance D* is defined as such:

D = ;’} = 2[lmaz — £(8(B))]. (2.37)
where £, = max £(6. ¢) and £6(8)) = a;,‘(‘,,‘?i‘xa“(a)’ #). Since a maximized ¢{6(3)}
implies a small D=, a good fit is indicated by small values of the deviance. The table
below expresses the deviance function for the different members of the exponential
family with their respective canonical links. Note that g; is the value of ui = E(y;)
for the model considered.

The unscaled version of the deviance is

D = ¢D"
— 23wtk — b(6)} — (™ — bGP (2.38)
P
= Zd. (2.39)
from which the deviance residuals rp are obtained given by
o, = sign (% — k) V. (2.40)

In (2.38), the parameter 0.,!") = MLE of 6; under the fitted model .
Each d; measure contributes to the deviance. The value of §; which maximizes the
likelihood function, for each ith observation, is 05") whereby ¥ (0,(”)) = y;.
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2.5.2 The Pearson Statistic

The Pearson statistic is defined using the weighted least squares approach, which
provides the following chi-square goodness-of-fit:

¥ = min 3wt 567 (241)
This can be written as
2
xX° = Z( V(IS) . (2.42)

This measure is computationally simpler than the deviance measure but it is more
useful for distributions closer to the Normal family, as it resembles the RSS under the
normal-theory for other diagnostic purposes. However, when the probability density
function of the observations is markedly asymmetric, the outliers may not be well
detected by Pearson residuals. Conversely, the deviance residuals will detect outliers

better in these situations.

2.5.3 Residuals and the Projection Matrix

The usefulness of residuals r; = y; — g; where g; is from the model fit as used for diag-
nostic purposes in normal-theory linear models, does not apply in GLMs. However,
as ) r? serves as a measure of goodness-of-fit in normal-theory models, it would be
best if the two measures given here could be decomposed into components, which in
turn could serve as modified residuals in GLMs. Using this concept, it can be seen
that

X2 = i r2, (2.43)

i=1
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where

e = SH, (2.44)

which are the weighted residuals or the Pearson residuals.
Similarly,

where

ros = £/2{60: w) — €a; w)}- (2.45)

These are the deviance residuals (see Pregibon [20]). Hence like in normal-theory
models, both the Pearson and deviance residuals may be useful in developing diag-
nostic tools in GLMs. This will be discussed in Chapter 3.

For detecting influential observations and outliers, the use of the adjusted dependent

variate z permits the use of the projection matrix
Mw =1 - WY2X(X'WX) 1 X’'W/2 (2.46)

using the transformation X — W/3X = Xw and the least squares theory as intro-
duced in Chapter 1. Hence

Mw =1-H = I — Xo(XwXw) Xl (2.47)

shares the properties of a projection matrix. As mentioned in Chapter 1, the diagonal

elements mf,'" ) can be used for diagnostic purposes. It is also interesting to note that

WYy — i) =MW 3y — a). (2.48)
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This can be seen as follows [20):

Wy -p)=z-X3
=W 1AMWY3(X3 + W i(y — i)
=W 1MW~y — ). (2.49)

Consider multiplying the LHS and RHS by W'/2 to get
WYy — ) = MW 3(y — ). (2.50)
This implies that
My x = x: (2.51)

where x denotes the vector of Pearson residuals for the canonical link. Hence to
conclude, My- spans the space of the Pearson residuals under the condition that the
canonical link is used.

2.6 Alternative Models

For both normal linear models and GLMs, the form of the distribution and therefore
the likelihood function is known. However, in practice this information may not
be available. Then some features of the data need to be evaluated such as how
the mean response u relates to the independent covariates, how the variability of
the response relates to u, and whether the observations are all independent. Quasi-
likelihood estimation is based on the idea of incomplete distribution specification. It is
determined entirely by the mean and variance functions. Like the optimal property of
linear least squares estimates, quasi-likelihood estimates have asymptotic optimality

properties.
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Definition 2.1 Let y be the vector of responses of length n,
(1) E(y)=n
(2) V(y) =a(@)V(n). V(p) = diag[V()].

Consider g to be the link function which relates the mean response y; to the systematic
part of a GLM:
9(m:) = x5,

the variance is assumed to be a function of u:
Var(y) = a($)V (:); ¢ > 0.

Only the form of the mean and variance functions are necessary for the quasi-likelihood

Junction.

The quasi-likelihood function is defined by the quadratic form
Qu;y) =y —m'VE) 'y~ n)

where parameters (3 relate to p depending on X in a nonlinear model, written y = p(3)
- Then like the least squares function for normal linear models, the quasi-likelihood
Junction estimates 3 which minimize the weighted sum of squares resulting in the
Jollowing score like equations:

O (yi — 1) . )
Zaﬂ, V(”‘) _0,3_1...,,. (2.52)

This form is uscful when the y components of the response vector have unequal vari-
ances.

Severul likelihood functions generated from the ezponential family can be derived from
this quasi-likelihood function when an appropriate variance function is assumed.
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Since V(u) is most often proportional to Cou(y), it is safe to assume that V(u) =
Cov(y). Here, the proportionality of Cor(y) to a matrix of known constants in normal
linear models is extended to the proportionality to a matrix of known functions of
the mean vector u for nonlinear models. Then it follows from the least squares that

(1) the estimate 3 minimizes the quadratic form of Q(u;y) over u(3), and
(2) the weighted sum of squares estimate 3 will satisfy the quasi-score equations
Iy )' y — u(3)
U(p;y) = =0.
w9 = (a5) "

This approach is the GLM counterpart of the least squares approach to the usual
linear model with normality assumption. It makes a base for using the generalized

linear model without adhering to a particular exponential family assumption.
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Table 2.2: Distribution Functions with their Associated Links
FAMILY MEMBER

LINK Normal Poisson Binomial Gamma Inverse Gaussian
identity X X X
log X X

o o =
a =
aqr'
T

=
B
>4

Table 2.3: An Extension of the Normal-Theory Linear Model to the GLM

Normal-Linear GLM

y — dependent variate z — adjusted dependent variate
it — linear predictor 17 — linear predictor

s? — the residual variance replaced by ¢V (ji)

X wl/3x

H — the hat(projection) matrix H = WY3X(XTWX) 1XTw/2
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Table 2.4: Deviance Function for Ezrponential Family Distributions

DISTRIBUTION D

Normal (i — 4i)?

Poisson 23 {yilog(yi/i:) — (v — fis)}

Binomial 23 {[wilog(y:/7:)] + (1 — w:) log[(1 — )/ (1 — )]}
Gamma 23 [ log(w/in) + (s — i)/ i)

Inverse Gaussian

(i — )/ (idy:)
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Chapter 3

Residual Diagnostic Measures

3.1 Modified Residuals

Two types of residuals were introduced in Chapter 2, namely, the Pearson type (rp)
and the deviance-based (rp,). It is found that the deviance-based residuals pro-
vide better goodness-of-fit measures for GLMs than does the Pearson statistic, even
though the latter is more nearly chi-squared distributed. The reasons for this are
the almost normality of the deviance-based residuals and the convenience in their
use for likelihood-based inference. In fact, deviance-based residuals are especially
appropriate for identifying individual poorly fitted observations. Here, the disper-
sion parameter ¢ is considered to be known, in which case the exponential family is
essentially given by the density function

(4. 0:) = h(y:) exp{w:6; — b(6;)},

43
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where the scale parameter is omitted. The ; are assumed to follow the tentative
model given by

oi = g(x;ﬁ)~

where g(-) is a specified function, x; is a vector of known covariables, and 3 is a
vector of unknown parameters. The residuals discussed in this chapter, however, are
useful in a more general setting than just for the exponential family distribution. The
diagnostics are based on the asymptotic distribution of residuals. In GLM, two types

of asymptotic situations arise:
(1) when n — oo, and

(2) when the index n — oo, which is equivalent to each y; becoming approximately

normal.

These situations are referred to as n —asymptotics and m — asymptotics respectively.
In situation (2), m would correspond to the sample size for the binomial distribution,
the means for Poisson, or the gamma shape parameters. Hence m can be thought of
as a common factor multiplying the exponents in these aforementioned densities. The
standard asymptotic results for estimation and hypothesis testing with respect to 3
apply if either m or n is large. However, asymptotic results pertaining to individual
case diagnostics require large m, irrespective of n. The problem arises when n is
large but m is not. This is a common occurring situation for residual distributions.
Distinguishing between first- and second- order m — asymptotics (i.e.: corresponds
to the stochastic convergence of order m—'/2 and m™! respectively), the second-order
asymptotic results are more useful when m is small than the first-order ones (see
Pierce and Schafer [21}).
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Consider residuals that are appraximately normally distributed. In the following
models, 6; is treated as known, but in practice, it is replaced by

8; = g(ziB). (3.1)
Three types of residuals are considered:
(1) Linear
Ri(y.0) = (y — Ee(y))/SDs(y). (3.2)
where E = mean and SD = standard deviation,
(2) Transformed linear
Rr(y.8) = (t(y) — Eslt(v)])/SDslt(y)]. (3.3)

where #(-) is a specified transformation depending on the particular distribution
of y.

There are two ways to go about in choosing a transformation £(-). One way lets
the first-order m — asymptotic skewness of (y) be zero (i.e. symmetrizing) and
hence approximate normality may be achieved. This is done using primarily
the Anscombe residual.

(a) Anscombe Residual (see [2])
Starting with a function which will make the distribution of A(y) as normal
as possible, standardized with 0 mean and unit variance to the first order
in 4, for the likelihood functions in GLMs, the function A(-) is given by:

1
A(p) = / e
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(b)

A ‘symmetrizing transformation ’(see Chaubey and Mudholkar [3]) on ¢(-)
(for ¢’ # 0) can be obtained by solving

£(6) = / e HiE5® 4 (3.4)

whereby f,(0) = &(0) — 3£,(0)£2(0). £2(0) = &(0) — £3(0). and &;(6) =
E(X,.-06yY,j=1,23,4.
In the case of the binomial distribution with proportions 7 and m trials,

the symmetrizing transformation is given by

1
t(0) = _/ 81/3(1 — )1/ db. (3.5)

which can be solved numerically using the incomplete beta function, with

no explicit solution.

For a Poisson distribution with mean u, the transformation yields

_ 1 _ 3 a3
t(u) = mdﬂ = u™". (3.6)

As for the gamma distribution with mean u and shape parameter a, the
transformation is known as the Wilson-Hilferty cube-root transformation

) = [(S) B = saoys. (3.7
An alternative to the approximate normality objective is to choose a t(-)
that will make the m — asymptotic variance of t(y) constant in 6.
Variance Stabilizing Residual (see [22])
If {t.},n=1,2,..., is a sequence of statistics such that

Vn(ta — 0) - y ~ N(0,0%(8)),
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i.e. y/n(t, — 0) has an asymptotic distribution,
then it follows that if g is a function with the first derivative existing and
being continuous, ¢’(6) # 0, then

Vnlk(ta) — h(0)] — y ~ N(0, (¥'(6)a(6))?)

Valh(ts) — h(6) -
() — y ~ N(0,5*(6))

and further, if (@) is contimious, then

Valh(ts) — h@)] _
Witwotta) O

By the Taylor series expansion,

=

h(ts) — h(6) = (tn — 0)(h'(6) + e,).

h(t,) = h(0) + (t, — 0)R'(6).
Now if 4 is a function such that A’(6)a(8) = ¢ where ¢ is independent of 6,

then
dh c 1
%~ o0 " _0/0(0) @

Then the asymptotic variance of h(t,) is independent of 6:
Var[h(t,)] = a?(0)h"*(6) = .

If y is a random variable with B(m, w), then the variance-stabilizing trans-
formation for the binomial distribution is

h(r) = / e 1_ yi7e 47 = arcsin VT, (3.8)

and for the Poisson, P(u),

ww = [ —zdu = V. (39)
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The variance-stabilizing transformation for the gamma distribution G(a, k),
where E(y) = ak = p, Var(y) = ak? = ku yields the following asymptotic

mean and variance
N\ _ (BN _ e W2 _ 1, e
E (k) = (k) =a’, Var (k) = gka (3.10)
Table (3.1) summarizes the Anscombe residuals with a O(m~1/2) correction
added to t[Ey(y)] and the variance-stabilizing residuals (see [21]):

Table 3.1: Anscombe and Variance-Stabilizing Residuals Exrpressed for the
Binomial, Poisson and Gamma distributions

ANSCOMBE RESIDUAL VARIANCE-STABILIZING
. - ty/m)—it(x)+(x(1—x)~1/3(2x—1)/6m in~![(y/m)?/2] —sin—'(x}/3)
Binomial(m, x) {em=MEEC o G
<. /3 _(u3/3—py—1/379 1/2_,1/2
Poisson(u) i ((';/3),,:'/6 £2) L'T/'f—"
. k 1/3_! /3 _(n—2/3 9, k 1/72_,1/2
Gamma(a, k) w/k) (.::UE)/(;; ) ‘(ll/Lu%;)"T

(3) Deviance residual

Rp(y.0) = sgn(6 — 6){2[€(6,y) — €6, y)]}"/2. (3.11)
6 is the MLE of 6 based on y without restriction by model 6; = g(x!5). The
deviance residual will measure the discrepancy between the maximized log-
likelihood for the current model and the maximum possible log-likelihood for
the data. Under a first-order m-asymptotic, the deviance has an approximate
normal standard distribution. An adjustment to the deviance residual will
remove the bias coming from the asymptotic term, O(m!/2), and the adjusted

deviance residual is formed, as described next.



CHAPTER 3. RESIDUAL DIAGNOSTIC MEASURES 49

(4) Adjusted deviance residual

Rap(y.6) = Rp(y,0) + p2(8) /6, (3.12)
p3(0) = Eo(y — p1)/SDe(y))>.
1= Eo(y).

The table which follows cites the expressions for deviance residuals and adjusted
deviance residuals, for the three given densities.

Table 3.2: Deviance and Adjusted Deviance Residuals for the Three Distributions

ADJUSTMENT TERM TO
DEVIANCE RESIDUAL ADJUSTED DEVIANCE, ;p3(0)

Binomial(m. =)  {2lylog($) - (m — y)log(8B)}? 74720

Poisson () {2[-log(¥) — (y — @)]}'/? ﬁ
Gamma(a, u/a) {2a[- log(g) + Q;?ﬁl]}l/z ﬁ

Taking the normal approximated tail probabilities, these residuals for different values
of y lie between .0001 and .10 for the binomial and Poisson distributions and are
equal to .05 and .01 for the gamma. Pierce and Schafer [21] compared the true tail
probabilities for each respective density,

Pr(Y <y) or Pr(Y>y)
to appraximations

®[R(y+.5.0)] and 1-®[R(y—.5,0)],
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by considering different residuals R, where y is an integer. In all three density func-
tions, Pierce and Schafer found that the Anscombe residual and the adjusted deviance
residual are good for appraximate normality, even when m is small. Furthermore, the
adjusted deviance residual should be consistently the closest to the true tail probabil-
ity throughout, for the different distributions due to its almost-normal characteristic.

3.2 Influential Observations

Deletion or perturbation of observations from a given model helps detect those in-
dividual observations which may exert influence on the various components of the
fitted model. The following approach is described in Pregibon [20]. To see the effect
of perturbing an individual observation is to see the effect of its deletion. Pregibon
pursues this idea by considering the likelihood

&(By) = Z vil(53; i), (3.13)

where considering v; = 1, Vi yields the usual likelihood, whereas v; = 1Vi except
t = { amounts to deleting the £th observation. Thus, a matrix composed of diagonal
elements v; may be defined by

v 1=¢,

vy =

1 otherwise

for0<v<1.
Then the likelihood estimate 3 becomes a function of V and is denoted by B(v). The
likelihood equations are

X'V(y — ) = 0. (3.14)
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Then Fisher’s scoring algorithm for the modified likelihood leads to a new sequence
of estimates:

F(r) = B(r) + X'WAVWY3X)~I1XV(y — @) (3.15)
B = B(1) is the maximum likelihood estimate from IWLS. An alterative to consid-
ering the maximum likelihood G(v) is to start from the usual maximum likelihood

estimate § = B(1) obtained through IWLS and to finish this sequence after one
additional step:

B(r) = (X'WIAVWI/3X)- 1X'W1/3yW1/25, (3.16)

As v — 0, the £th point has less leverage in the fit. The £th point is influential if a
small value for v yields a large #(v):
_ XWV) " "x(ye — fie)(1 — v)

sy A
gi(r)=p 0= (1 = ) (3.17)

N 2 B'(x) = B'(v)
— (XTWV)_lxl(yl - ﬁl) (3.18)

(1 -1 —v)hy)?
measures the impact that an £th observation exerts on the vector of coefficients in
a GLM regression. Plotting the standardized change in coefficients A,f}/s.c.(5;)
against, £ detects any influential observations in the selected coefficient, ﬂ}.

Cook’s statistic ¢,, measures the impact of an observation on all the coefficients 5.
One convenient way of interpreting c, in a GLM context is by the confidence region
displacement for 3 due to deleting an £th observation, namely,

Ce = —2{£(X5; y) - l(Xﬁ(,);y)} (3.19)
= Cr = (ﬁ - ﬁ(c))'x'wx(ﬁ - B(z))
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A large ¢, corresponds to a highly influential éth observation on the overall fit of the
model. By applying a second-order Taylor series expansion to (3.19), the confidence
region is generated by the limiting Normal distribution of 5.

‘The concept of observation deletions can be extended to perturbations by letting
v; = 0 so that 8 = 5(0) measures the influence that the éth point exerts on the coeffi-
cient estimates 3 through c,. Then the confidence interval displacement is measured
by the one-step approximation to 3(0):
to . Xehe (3.20)

€= (1 - ’lu)2

where x? = r%, (2.43).

3.3 Testing the Goodness-of-Fit

Measuring the goodness-of-fit of a model can be done by calculating the effect of
change in v on the diagnostic measures of the deviance function D and Pearson’s sta-
tistic x°. In case of the deviance function, the maximum likelihood estimate should
minimize D, much like the least squares estimate minimizes the residual sum of
squares RSS in a normal-theory linear model. Subsequently, deletion of an observa-
tion decreases D , like it would decrease RSS in the normal-theory model.

Using the observation count matrix V in the loglikelihood function yields a deviance
function expressed by:

D, (XB(v);y) =2 Z vil(0s; %) — U=B(v); wi))- (3.21)

A one-step estimate 3'(v), and a second-order Taylor series expansion of D, (X3 (v);y)
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about 3 appraximates the above quantity :

(3.22)

_v)?
D.XP'(e);y) = D(XBiy) — [(1 o) 4 XA =WV ha ]

[1 —_ (1 - l‘)ha]

At v =1: D,(XB(v);y) = D(XB;y) (maximum),

at v=0: D,(XAY(r);y) isat a minimum of D(XB;y) — (& +¢!), where c; is
the change in the confidence interval displacement diagnostic &!.

The deviance decreases as v — 0.

The rate of change of D due to perturbations is obtained by taking the derivative of
(3.22) with respect to .

The change in deviance due to deletion of the ¢th point is appraximated by:

AsD = D\(XB;y) — Do(XB(0);y)

= d? + Xihee (3.23)
1-— hu

Since the individual components A,D are asymptotically x?, then each y, can be
replaced by d, to get the appraximately normal studentized residuals

de/\/ma (3-24)

which are useful for index plotting. The presence of x> components is a feature found
in the one-step approximation, making it a useful diagnostic tool.

The Pearson’s statistic is not a straight-forward measure to interpret since it doesn’t
extend from the normal-theory linear model as does the deviance function. As obser-
vations are deleted from a given model, the x? measure does not necessarily decrease.
However, like the RSS, the x? is the result of the sum of squares of differences of the
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observed from the fitted values. The one-step approximation to the x? due to the
deletion of the fth observation is:

Aix® = x* - Xy
- Xi
= X (3.25)

In extreme cases, x? will increase for some observation deletions.
The deviance function and Pearson’s x? goodness-of-fit statistics can be interpreted

in two ways:

(1) when the £th point is not well fit by a given model, i.e. an outlier, then a model
perturbation caused by v will be reflected in the single components of D and
x%: d¢ and x7 respectively;

(2) when the fth point is an extreme point in the design matrix, i.e. an influential
point, then all the individual components of D and x? will change.

A change in either the deviance function or the Pearson’s statistic can’t distinguish
whether the change comes from (1) or (2). An addtional diagnostic measure hy; can
resolve this problem, where /,; is an off-diagonal element in the hat matrix H for the
£th observation with respect to the jth observation, lhy;| < vhe/hj;. The h,j’s in
combination with the x, and x; are useful for measuring how an £th point is influential
on the remaining (n — 1) points.

There are other ways of measuring the goodness-of-fit such as by investigating the
interactions between covariates, or by looking for non-linear effects by adding some
terms to a model in the hopes of reducing the approximated deviance.
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3.4 Testing Goodness-of-Link Functions

Once a model has been tested for potential outliers and influential observations and
that they’ve been removed from the data, then the validity of the link function needs
to be checked. Consider a generalized linear model to be fitted with a hypothesized
link function g,(u) generated from a class of functions, of which the true and un-
known link function g.(z) is also a member. All link functions belonging to a class
of functions are indexed by one or more unknown parameters. Plotting for a range
of fixed parameter values against the corresponding deviances is useful in deciding
which range of parameter values are most consistent with the data. The adequacy of
the hypothesized link function is examined by expanding and linearizing the link to
optimize over the range of parameters. The deviances obtained from fixed parameter
values are tested against best-fitting values. This is called the goodness-of-link test.
If a class of link functions is generated by the the power family for one parameter A,
then it is defined either by

A
oy Bl
with limiting value g(u; A) =logpas A — 0
or by
A -
w, fA#£0,
g(p; A) =
logu. ifA=0.

The power family transforms the fitted values u in a GLM case. Conversely, the
Box-Cax transformation is a power function which transforms the data in a normal
linear model.

If a model is fitted with a link function g,(u) when the true link is g.(u), then this
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can be represented by:

Hypothesized link : go(”) = g(ﬂ; ’\o) — Do:xg
True link 2 ge(ps) = g(p; A) — anf

To optimize over A,, one approach is to linearize the power family through a first-order
Taylor series expansion about g,(u). Based on the appraximate relationship

9e(12) = go() + (Ae — A0)gA (115 Ao). (3.26)
the true link g.(u#) = X0 is appraximated by
QO(I‘) = X.Bpxl + zl7qxl (3°27)

where 2’ = (g3 (15 A0)) and ' = (=X, + A,).

The hypothesized link function is now modified by the addition of a covariate z’ to
the design matrix and its parameter estimate 4 yields a first-order adjustment to X,.
Hence the additional factor in the systematic linear component accounts for local
differences between the hypothesized link and the modified one. These differences
are measured by a reduction in the deviance. In turn, this reduction serves to test

whether A, is suitable enough for A,:

Do-Dn,.vX%_Xf xz
~ ~~ ~v P

-

¢ ¢

¢=D./(n—-p—q) or x3/(n—p—gq).
When g,(4) is assumed to have the identity link (i.e. the data is normally distributed),
then the approximations made on the x? distribution are exact:

approximately, (3.28)

D,—D., _SSE,— SSE.
- /p = =92
¢ o

/p ~ Fap, (3.29)
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The process is repeated to form a new adjusted value for A, at each iteration until
a possible convergence is reached and then the maximum likelihood estimate of A,
is obtained. If the initial A, is sufficiently close to X,, convergence is assured. Then
the linearization of the power family will yield the true maximum likelihood estimate.

The process follows a sequence
g(m; A1) = g(p; M) + (it ~ N)gl. 20, (3.30)

which is implemented in the iterations for fitting a generalized linear model.

The link modification method has its limits such that it is restricted to a specified
class of link functions g. The most which can be done is to improve an already
reasonable fit in order to obtain the true link function. On the other hand, if the
hypothesized link is inadequate, then the true link function belongs to another class
of link functions altogether. This is attributable to a misspecfication of the systematic
component of the model.

Counsider a model initially fitted with link g,(u) = X3 to get estimates 3 and fitted
values § = X3. Thus z = (90(f3; X)) can be obtained, and the model is refitted with

the extended design matrix now including the covariates Z = Z,. In turn,
¥ = (-A+X) = @FW2)'2'W(y - a). (3.31)
The sum of squares corresponding to ¥ (to test if y = 0) is
YEWzy ~ 3. (3.32)

A parallel reduction in the degrees of freedom and in the deviance from the initial
model to the extended one including % is produced. This reduction is evaluated by
an F-test to decide for the validity of the hypothesized link function.
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For every parameter added to the power function, an extra covariate is added to
the design matrix which is given by —% |x=a.- The power family provides link
generalizations for the normal distribution with identity link, for the Poisson with log
link, for the gamma with reciprocal link and for the inverse gaussian with z~2 link.
For log-linear data, the power family is defined by the one-link parameter function

ol = =1, (3.33)

The log link is generated by the limit
lim g(p; A) = log(u) (3.34)

As for binomial data, the power family does not apply. Another one-parameter link

family is given instead by

9(i; A) = log [( (m—'f;)* - 1) /A] . (3.35)

It will generate the logit link at A = 1:
{ ™m
9(pu; 1) = log .(m _”) 1]

o)

= logit (u/m). (3.36)



CHAPTER 3. RESIDUAL DIAGNOSTIC MEASURES 59

As A — 0, the complementary log-log link is generated:
. Ay m
lim g(41; A) = log [log (m — ”)]

=t o (77|

= log [—log(1 — p/m)]. (3.37)

Another family of link functions applied to tolerance distributions (see Pregibon [19])
is given by:

) _ (7.’)""6 -1 3 (1 _ r)a—&
9(; a.0) = —— Py

(3.38)

7 = p/m is the responding proportion. It is a two-parameter link family with
parameters a and 4 (based on tolerance distributions). This family of functions
generates the logit link as the limiting form of g:

Jim_g(p; a. 9) = log(p/m) — log(1 — pu/m)
— logit (u/m). (3.39)
For this model, the series expansion is
9.(0) = gu(o) + e ( (8% u/m) —1og*(1 /) )
+ 3. (—5Q0(u/m) +log(1 - w/m))) . (3.40)

A fit using the logit link will give estimates § and fitted values 2 = X/ from which
=2 |;_z is obtained:

# = { J0g%(3/m) — og?(1 - /). —3(og?(i/m) +1og?(1 — a/m) } . (341

N
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This implies

¥ = —(d,8.). (3.42)
The true link function is approximated by the extended model

9o(p) = i(g + &’Z/ . (3.43)

hypothesized link  additional factor
The maximum likelihood estimate of « is reached through the iterative process de-
scribed earlier. A reduction in deviance results from adding on the additional factor
to the systematic linear component. Finally, an F-test uses the change in deviance
to assess whether the estimate of v via (a..d.), hence of the link function itself, is

adequate.

3.5 Software Applications

The software application GLIM (“Generalized Linear Interactive Modelling”) was
created in the early 1970’s for generalized linear model computations, but because
one had to have some in-depth knowledge of statistics to use this tool, the generalized
linear models were not popularized. It took twenty years for generalized linear mod-
elling procedures to become accessible to everyone through user-“friendly” software
applications. In SAS, GLMs can be fitted through the Genmod procedure, and the
GEE macro analyzes longitudinal data by using the Generalized Estimation Equation
approach. In S-Plus, the StatMod library contains some functions for GLM statisti-
cal modelling. R, which is a non-commercial equivalent to S-Plus, can fit GLMs. It

shares some libraries with S-Plus which are accessible from the website

e  http://www.ci.tuwien.ac.at/R/mirrors.html .
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LispStat is useful for GLMs and uses some R coding. Matlab uses a module called
glmlab to fit GLMs. Another application is Genstat which is much like GLIM. Some
websites offer articles and abstracts on GLMs. The following are only a few websites
worth consulting for a start:

e  http://www.ams.org/mathscinet/ and

e  http://www.maths.uq.edu.au/ gks/research/glm/articles.html.



Chapter 4

Numerical Examples

4.1 Introduction

In this chapter, three sets of data are used for illustration of the techniques presented
earlier for generalized linear models. The first set of data is assumed to come from the
binomial family, the second one from the Poisson family and the third one from the
gamma family. In each case, maximum likelihood fit of the model is provided along
with the residual diagnostics. The parameter estimates were obtained through some
computer programs created in S-Plus. These programs are provided in Appendix A:
see A.1 for binomial data, A.2 for Poisson, and A.3 for gamma data.

4.2 Binomial Data

A study of a herbicide effect on the proportion of birth abnormalities was conducted
over a time span of one year (see Aitken, Anderson, and Francis, 1989, “Statisti-
cal Modelling in GLIM™). The data was collected on a monthly basis. The birth

62
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abnormality proportions are determined by dividing the observed number of birth
abnormalities by the total number of births for a given month.

Table 4.1: Number of birth abnormalities out of total births per month for herbicide

effect
MoNTH ABNORM. ToTAL HERB MONTH ABNORM. ToTAL HERB
Jan. 10 222 0 July 20 208 788
Feb. 17 221 0 Aug. 17 219 0
Mar. 18 188 0 Sep. 9 198 304
Apr. 11 183 0 Oct. 15 216 960
May 16 197 1454 Nov. 16 244
June 24 218 3280 Dec. 15 218

Based on the assumption that the data is binomially distributed and that the logit
link is used to fit this model, a combination of graphical and analytical techniques are
used to test for any high-leverage or outlving observations. The maximum likelihood
estimates for this logistic regression model are calculated using an S-Plus computer
program that was created for this purpose. Other pertinent statistics(z- adjusted
dependent variate, fitted values, variance) are also calculated in an iterative fashion
through the S-Plus linear model function(see lm, A.1). The output is presented in
the following page in table format. Testing the goodness-of-fit for the current logit
model with one explanatory variable accounting for birth abnormalities, the test sta-
tistic (2.37) gives D* = 8.31 < 18.3 = x§ g5 4r—10 Which implies that this logit model
is well fitted by the binomially distributed data at a 5% level of significance. Further,
a one-step function based on Pregibon’s work [20] which modifies the loglikelihood
function was also developed in S-Plus to determine the effect that each observation
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exerts on the regression coefficients through model perturbations to the extent of case
deletions. [ called this function ‘w4onestep’(see Appendix B). A small change in
coeflicients for £th observation means that the observation is non-influential in the

model fit.
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MoODEL LOGIT

PARAMETERS Go 6r

ESTIMATES -2.620648 | 0.0001629353
Data | Fitted Values | Adjusted Dependent Variable | Variance
10 15.05633 -2.980909 14.03519
17 14.98851 -2.476682 13.97197
18 12.75041 -2.178973 11.88566
11 12.41130 -2.742632 11.56955
16 16.63094 -2.425176 15.22694
24 24.07666 -2.089799 21.41755
20 15.89181 -2.212360 14.67763
17 14.85287 -2.465570 13.84553
9 14.06209 -2.958618 13.06339
15 15.94563 -2.593435 14.76849
16 16.54840 -2.656198 15.42607
15 14.78505 -2.605052 13.78231
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Figure 4.2: x residuals for birth abnormalities due to herbicide spray exposure
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Figure 4.5: Standardized change in 8, for herbicide data

According to the deviance residual and the y residual index plots, the month of
March would indicate that the herbicide spray effect is significantly greater on birth
abnormalities than for any other month of the year. The standardized change plots
in both the intercept(3) and the herbicide spray exposure variable(3,) would also
agree that a perturbation or a deletion of the observation for the month of March
(i.ewr = 0.5,0.2 or = = 0 resp.) would cause a greater standardized change in the
regression coefficients than for any other month. Hence, based on these diagnostics,
it is likely that the month of March exerts an undue influence on the total mumber of
birth abnormalities.
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4.3 Poisson Data

The set of data given here classifies the defects found on furniture from a given
manufacturing plant obtained from (see Aitken, Anderson, and Francis, [1]). The
defects are thus classified as the type of defect, and the production shift. There were
a total of n = 309 defects recorded in all, classified in one of four types: A. B,C. D.
Each piece of furniture is also classified by one of three production shifts: 1,2,3.
The contingency table below tabulates these defect counts by type of defect and
production shift. The Poisson distribution model is fitted to the data with the log

Table 4.2: Contingency table for furniture defect

TYPE OF DEFECT
SHIFT A B C D TorAL

1 15 21 45 13 94
2 26 31 34 5 96
3 33 17 49 20 119

link. The computer program in Appendix A.2 calculates the MLEs for the GLM
log-linear regression. The output is summarized in the following tables:

MODEL LOG-LINEAR

PARAMETERS Bo b B Bs P Bs

ESTIMATES 3.114019 | -0.06995859 | 0.5479652 | -0.6664789 | 0.02105341 | 0.2358287
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Data | Fitted Values | Adjusted Dependent Variable | Variance
15 22.51133 2.780350 22.51133
21 20.99029 3.044523 20.99029
45 38.93851 3.817652 38.93851
13 11.55987 2.572120 11.55987
26 22.99029 3.265984 22.99029
31 21.43689 3.511218 21.43689
K7 39.76699 3.538018 39.76699
5 11.80583 1.892113 11.80583
33 28.49838 3.507808 28.49838
17 26.57282 2.919640 26.57282
49 49.29450 3.891838 49.29450
20 14.63430 3.050020 14.63430

‘This model is explained by four levels of defect types and three levels of production
shifts. To assess the significance of this log-linear model, the statistics from equations
(2.37) and (2.42) are compared to x3 g5 = 12.6. Since D* = 20.34 and 32 = 19.14,
it is concluded that the log-linear model does not provide a good fit to the Pois-
son distributed data at a 5% significance level. In fact, the goodness-of fit for this
model is only significant at the 1% level. The index plots of the deviance residu-
als, the x residuals and the diagonal elements of the projection matrix are based
on the fitted log-linear model. Both the 6th and the 8th observations, which corre-
spond to the Type B number of defects and Type D number of defects respectively,
found in the second production shift, are not well fit by the model. In fact, the
8th observation has a very large m;; value. The standardized change in coefficient



CHAPTER 4. NUMERICAL EXAMPLES 71

plots for the intercept(), the Type B defect variable(53;), and the second production
shift variable(3,) agree that the 6th observation is causing instability in these coeffi-
cients, while the 8th observation is causing instability more so in the Type D defect
variable(/;) and the second production shift variable(83;). Hence, the standardized
change in coefficient plots are in-line with the residual and projection matrix index

plots.

Residuals
0
{
0
0

-
-

index

Figure 4.6: Deviance residuals for defects found on furniture produced in a certain
manufacturing plant
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Figure 4.7: x residuals for defects found on furniture produced in a certain manufac-
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duced in a certain manufacturing plant
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Figure 4.11: Standardized change in 3, for furniture damage data
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Figure 4.12: Standardized change in £ for furniture damage data
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4.4 Gamma Data

The next set of data are taken from McCullagh and Nelder, 1989, “Generalized Linear
Models”, p.300. They describe blood clotting times, in seconds, for normal plasma
diluted at nine different percentage concentrations(X) with a prothrombin-free agent.
The blood clotting is induced by two lots of thromboplastin. Bliss(1970) fitted a
hyperbolic model by using an inverse transformation of the data to the first lot only.
Here, the data assumes a gamma distribution with the inverse link applied to each
lot separately, since some initial plots indicate that the two intercepts and slopes are
different for the two lots. Some of the output from the program in Appendix A.3 is

summarized below.

Table 4.3: Blood clotting times in seconds for 9 percentage concentrations of plasma
and for 2 lots

% CONCENTRATION
ChorTnG TIME 5 10 15 20 30 40 60 80 100

LoT 1 118 58 42 35 27 25 21 19 18
LOT 2 69 35 26 21 18 16 13 12 12
MODEL (LOT 1) INVERSE " MobDEL (LOT 2) INVERSE

ESTIMATES -0.01655439 | 0.01534312 || ESTIMATES -0.02390848 | 0.02359922

PARAMETERS Go B H:ARAMETERS Bo I




CHAPTER 4. NUMERICAL EXAMPLES 77

Data(lot1) | 118 58 42 35 27 25 21 19 18

Fitted Values | 12286 53.26 4001 34 2807 2497 2161 19.73 1848
Data (lot 2) 69 35 26 21 18 16 13 12 12
Fitted Values | 71.06 3286 25 21.37 17.74 1584 13.75 1258 1138

If the level of significance is 0.05, then the 95th percentile of the x2 = 14.1. The value
obtained through (2.37) is much less than that: D* = 0.017 for lot 1 and D* = 0.013
for lot 2. Thus, the gamma distributed blood clotting times provides a good model
fit for both lots.

In the graphs that follow, some diagnostic tools are used to assess which observations
exert some influence on the fitted model for lot 1. The first two index plots agree
that observation 2, which is the 10% concentration of the prothrombin-free agent, is
not well fitted by the inverse model of the blood clotting times. However, the two
standardized change in coefficient plots for the intercept(f;) and the percentage of
agent concentration(3;) agree that the 5% concentration level is greatly influential
on the model fit, depending on the level of perturbation(w = 0.5,0.2) or on a case
deletion(u' = 0) altogether.
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Figure 4.15: Deviance residuals for lotl of bloodclot time
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Figure 4.19: Standardized change in £, for lotl of bloodclot time
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4.5 Conclusion

The diagnostic measures developed through the one-step function provide an effective
counting device to modify the loglikelihood function which is not too time consuming.
In fact, the one-step function presents an adequate way of detecting and quantifying
the effect of outlying observations and extreme points for GLMs. It is noteworthy to
mention that for logistic regression, the Hauck-Donner phenomenon can occur (see
[27], p.225). When the §; are large, the t statistic goes to zero. This implies that
highly significant [;,- may have non-significant ¢ ratios. For example, when dealing
with fitted values that are very close to either one or zero, then a dual conflict of
the Hauck-Donner phenomenon and convergence problems may arise. This can be
seen when dealing with a very large dataset of say, 1000 observations, and about fifty
binary explanatory variables, whereby one of the covariates is always one to confirm
the presence of a disease, for example. Then the resulting fitted probabilities with
respect to that covariate must necessarily be one, and hence its associated regression
coefficient, [},- = 0o. This in turn implies that the maximum likelihood estimates do
not exist.

Since the generalized linear models are members of the exponential family distri-
butions, the computations and diagnostic measures described here can be extended
to a greater scope to lead to applications in time series models and survival models.
Some research work on diagnostic measures for survival models has been investigated
by D. Pregibon.



Appendix A

Programs for Parameter

Estimation for Different Families

A.1 MLE program for binomial family

# Binomial data program: sufficient statistic is the proportion of y to m
# for the ith observation.
#
muhati <- function(y,m) {
mubat <- rep(NA, length(y))
for (i in 1:length(y)) {
if (ylil/m[il==0 || y[il/m[i]l==1) {
mubhat[i] <- (y([il+0.5)/(m[i])+1)
} else {
mubat [i] <- y[il/m[i]
}
}
muhat
}

% Gather all information(z - adjusted dependent variate, X - covariates,

82
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# W - veightvalue) in a dataframe - GenDataFrame.
*
GenDataFrame <- function(zValue, X, weightValue, nRows) {
# Generate matdata.
matdata <- data.frame(zValue, X[1,])
if (nRows >= 2) {
for (j in 2:pRows) {
matdata <- data.frame(matdata, X[j,l)
}
}
matdata <- data.frame(matdata,weightValue)
}

# Purpose of this function is to create and execute the command:
# betaValue <- lm(zValue -~ x[1,]+x[2,])+x[3,]+etc..., matdataValue)$coefficients
# through concatenation of each covariate Xi.
#
Genlm <- function(zValue, X, matdataValue, nRows, weightValue) {
# cat-file & parse file to generate Beta0
cat("betaValue <- 1lm(zValue ~ X[1,]",file="tmp.1")
if (nRows>=2) {
for (i in 2:pRows) {
cat("+X[", file="tmp.1", append=T)
cat(i, file="tmp.1i", append=T)
cat(",]", file="tmp.1", append=T)
}
}

cat(", weights = weightValue)$coefficients", file="tmp.1", "\n", append=T)
#cat(", matdataValue, weightValue)$coefficients”, file="tmp.1", "\n", append=

# Now execute the created command
eval (parse(file="tmp.1"), local=T)

# Purpose of this function is to create and execute the command:
# etahat <- betaValue[l] + betaValue[2])#*X[1,] + betaValue[3]*X[2,] +
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betaValue[4]+X[3,] + etc.
#
Genetahat <- function(betaValue, X, nRows) {
# Need a for loop to generate the required command.
cat("etahat <- betaValue[1]",file="tmp.1")
for (k in 1:nRows) {
cat("+ betaValue[", file="tmp.i", append=T)
cat(k+1, file="tmp.1", append=T)
cat("]*X[", file="tmp.1", append=T)
cat(k,file="tmp.1", append=T)
cat(",]", file="tmp.1", append=T)
}

# Now execute the created command.
eval (parse(file="tmp.1"))
}

# This part is made to measure for binomial data - need to extract
# pertinent statistics.
#
iterbin <- function(y, X, m, itmax=50) {
# Find out hov many Xi’s, by the length of a column.
nRows <- length(X[,1])

mubat0 <- mubati(y,m)

etahat0 <- logit(mubhatO)

weightO <- rep(1, length(y))

z0 <- etahatO + ((y/m)-muhat0)/(muhatO+*(1-muhatO))
matdata <- GenDataFrame(z0, X, weightO, nRows)

beta0 <- Genlm(zO, X, matdata, nRows, weightO)
n<-0
for (i in 1:itmax) {

n <- n+1

etahat <- Genetahat(beta0, X, nRows)
muhat <- exp(etahat)/(1+exp(etahat))
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weight <- msmuhats+(1-muhat)

z <- etahat + m*((y/m)-mubat)/weight

matdata <- GenDataFrame(z, X, weight, nRows)

beta <- Genlm(z, X, matdata, nRows, weight)

if (sum(abs(beta-betal)) <= 10-(~10)) {
return(list("Pass"=T, coefficients=beta, fittedValues=m¢muhat,
adjustedValue=z, Variance=weight, iterations=n))

}

beta0 <- beta

}

list("Pass"=F, coefficients=beta, iterations=n)

}

A.2 MLE program for Poisson family

# Poisson data program: sufficient statistic is the mean of y
# for the ith observation.
#y is vector of the sum of counts
muhatpoi <- function(y,m) {
y/m
}

# Gather all information(z - adjusted dependent variate, X - covariates,
# W - veightvalue) in a dataframe - GenDataFrame.
#
GenDataFrame <- function(zValue, X, weightValue, nRows) {
# Generate matdata.
matdata <- data.frame(zValue, X[1,])
if (nRows >= 2) {
for (j in 2:nRows) {
matdata <- data.frame(matdata, X[j,])
}
}
matdata <- data.frame(matdata,weightValue)
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# Purpose of this function is to create and execute the command:
# betaValue <- 1lm(zValue ~ x[1,]+x[2,]+x[3,]+etc..., matdataValue)$coefficients
#
Genlm <- function(zValue, X, matdataValue, nRows, weightValue) {
# cat-file & parse file to gemerate Betal
cat("betaValue <- 1lm(zValue ~ X[1,]",file="tmp.1")
if (oRows>=2) {
for (i in 2:nRows) {
cat("+X[", file="tmp.1", append=T)
cat(i, file="tmp.1", append=T)
cat(",]”, file="tmp.1", append=T)
}
}

cat(", weights=weightValue)$coefficients", file="tmp.1", "\n", append=T)

# Now execute the created command
eval (parse(file="tmp.1"), local=T)

# Purpose of this function is to create and execute the command:
# etahat <- betaValue[1] + betaValue[2]+X[1,] + betaValue[3]*X[2,] +
# betaValue[4]#+X[3,] + etc
#
Genetahat <- function(betaValue, X, nRows) {
# Need a for loop to generate the required command.
cat("etahat <- betaValue[1]",file="tmp.1")
for (k in 1:nRows) {
cat("+ betaValue[", file="tmp.1", append=T)
cat(k+1, file="tmp.1", append=T)
cat("]*X[", file="tmp.1", append=T)
cat(k,file="tmp.1", append=T)
cat(",]”, file="tmp.1", append=T)
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# Now execute the created command.
eval (parse(file="tmp.1"))
}

# This part is made to measure for poisson data - need to extract
# pertinent statistics.
#
iterpoi <- function(y, X, m, itmax=100) {
# Find out how many Xi’s, by the length of a column.
nRows <- length(X[,1])
etahat0 <- log(muhatpoi(y,m))
weight0 <- rep(1, length(y))
20 <- etahat0
# Generate matdata.
matdata <- GenDataFrame(z0, X, weightO, nRows)

# cat-file & parse file to generate Betal
# beta0 <- 1m(z0 ~ x[1,}+x[2,}+x[3,])+etc..., matdata)$coefficients
beta0 <- Genlm(zO, X, matdata, nRows, weightO)

h <-0

for (i in 1:itmax) {
h <- h+1
# etahat <- betaO[1] + betaO[2]*X[1,] + betaO[3]*X[2,])+beta0O[4]*X[3,]
etahat <- Genetahat(beta0, X, nRows)

muhat <- exp(etahat)

weight <- muhat

z <- etahat + (y-muhat)/weight

# Generate matdata

matdata <- GemDataFrame(z, X, weight, nRows)
beta <- Genlm(z, X, matdata, nRows, weight)

if (abs(max(beta-beta0))<= 10-(-10)) {
return(list("Pass"=T, coefficients=beta, fittedValues=muhat,
adjustedValue=z, Variance=weight, iterations=h))
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}
beta0<-beta
}
list("Pass"=F, coefficients=beta, iterations=h)

}

A.3 MLE program for Gamma family

# Gamma data program: sufficient statistic is the mean of y
# for the ith observation.
#
muhatgam <- function(y,m) {
muhat <- rep(NA, length(y))
for (i in 1:lemgth(y)) {
muhat [i] <- y[il/m(i]
}
mubhat
}

# Gather all information(z: adjusted dependent variate, X: covariates,
# W: wveightvalue) in a dataframe - GenDataFrame.
#
GenDataFrame <- function(zValue, X, weightValue, nRows) {
# Generate matdata.
matdata <- data.frame(zValue, X[1,])
if (oRows >= 2) {
for (j in 2:mRows) {
matdata <- data.frame(matdata, X{j,])
}
}
matdata <- data.frame(matdata,weightValue)

# Purpose of this function is to create and execute the command:
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# betaValue <- lm(zValue ~ x[1,]+x[2,]+x[3,]+etc..., matdataValue)$coefficients
Genlm <- function(zValue, X, matdataValue, nRows, weightValue) {
# cat-file & parse file to generate Beta0
cat("betaValue <- lm(zValue ~ X[1,]",file="tmp.1")
if (nRows>=2) {
for (i in 2:nRows) {
cat("+X[", file="tmp.1", append=T)
cat(i, file="tmp.1", append=T)
cat(",]", file="tmp.1", append=T)
}
}

cat(", weights=weightValue)$coefficients”, file="tmp.1", "\n", append=T)

# Now execute the created command
eval(parse(file="tmp.1"), local=T)

# Purpose of this function is to create and execute the command:
# etahat <- betaValue[1] + betaValue[2]+X[1,] + betaValue[3]*X[2,] +
# betaValue[4]+X[3,] + etc
#
Genetahat <- function(betaValue, X, nRows) {
# Need a for loop to generate the required command.
cat("etahat <- betaValue[1]",file="tmp.1")
for (k in 1:nRows) {
cat("+ betaValue[”, file="tmp.1", append=T)
cat(k+1, file="tmp.1", append=T)
cat("]*X[", file="tmp.1", append=T)
cat(k,file="tmp.1", append=T)
cat(",]", file="tmp.1", append=T)
}

# Now execute the created command.
eval (parse(file="tmp.1"))
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# This part is made to measure for gamma data - need to extract pertinent
# statistics.
t
itergam <- function(y, X, m, itmax=50) {
# Find out how many Xi’s, by the length of a column.
nRows <- length(X[,1])

muhatO <-muhatgam(y,m)

etahat0 <- inverse(muhatO)

veight0 <- rep(1, length(y))

Z0 <- etahat0 + (y-muhatO)/((muhat0)"2)

# Generate matdata.
matdata <- GenDataFrame(z0, X, weightO, nRows)

# cat-file & parse file to generate BetaO
# beta0 <- 1m(z0 - x[1,]+x[2,]+x[3,]+etc..., matdata)$coefficients
beta0 <- Genlm(z0O, X, matdata, nRows, weightO)

h<-0

for (i in 1:itmax) {
h <- h+1
# etahat <- betaO[1i] + betaO[2]*X[1,] + betaO[3]*X[2,]+beta0[4]*X[3,]
etahat <- Genetahat(betaO, X, nRows)

muhat <- inverse(etahat)

weight <- mubat~2

Zz <- etahat + (y-muhat)/weight

# Generate matdata

matdata <- GemDataFrame(z, X, weight, nRows)
beta <- Genlm(z, X, matdata, nRows, weight)

if (sum(abs(beta-beta0)) <= 10-(-10)) {
return(list("Pass"=T, coefficients=(-1)*beta, fittedValues=muhat,
adjustedValue=(-1)*z, Variance=weight, iterations=h))

}
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betalO<-beta
}

list("Pass"=F, coefficients=beta, iterations=h)

}

A.4 One-step function

onestep <- function(X, V, W, z, i) {

inverse <- solve(X %*% sqrt(V) %% W %s% sqrt(V) %s% t(X))

result <- inverse %*% X %*% sqrt(V) %s% W %*% sqrt(V) %*% =z

}
v4onestep <- function(X,V,z,w,dimen){
cat("", file="tmp.1")

for (i in 1:dimen) {
W<- diag(rep(1,dimen))
Wii,i] <- w
temp <- onestep(X,V,W,z,i)
cat(temp, file="tmp.1", "\n", append=T)
}

Value <- read.table("tmp.1")
}
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B.1 Output for the Herbicide data

> iterbin(y.herb, X.herb, m.herb)
$Pass:
(11T

$coefficients:
(Intercept) X1, 1
-2.620648 0.0001629353

$fittedValues:
[1] 15.05633 14.98851 12.75041 12.41130 16.63094 24.07666 15.89181 14.85287
[9] 14.06209 15.94563 16.54840 14.78505

$adjustedvValue:
(1] -2.980909 -2.476682 -2.178973 -2.742632 -2.425176 -2.089799 -2.212360
[9] -2.465570 -2.958618 -2.593435 -2.656198 -2.605052

$Variance:
(1] 14.03519 13.97197 11.88566 11.56955 15.22694 21.41755 14.67763
[8] 13.84553 13.06339 14.76849 15.42607 13.78231

$iterations:
(1] 4
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B.2 Output for One-Step function using the Her-

bicide data
> onestep(X1.herb, V,W,z)

(1] -2.6206479686 0.0001629353
> w4onestep(X1.herb, V,z, 0.2,12)

Vi V2
1 -2.585102 0.0001480545
2 -2.634782 0.0001688525
3 -2.657003 0.0001781548
4 -2.610896 0.0001588526
5 -2.618878 0.0001651574
6 -2.621226 0.0001654647
7 -2.639557 0.0001608354
8 -2.635722 0.0001692459
9 -2.590345 0.0001550040
10 -2.615674 0.0001624919
11 -2.616755 0.0001613054
12 -2.622156 0.0001635668
> w4onestep(X1.herb, V,z, 0,12)
Vi V2
1 -2.575092 0.0001438639
2 -2.638761 0.0001705179
3 -2.667047 0.0001823594
4 -2.608209 0.0001577279
5 -2.618366 0.0001657994
6 -2.622215 0.0001697957
7 -2.644727 0.0001602613
8 -2.639960 0.0001710200
9 -2.582075 0.0001528395
10 -2.614313 0.0001623706
11 -2.615644 0.0001608406
12 -2.622580 0.0001637442
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