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Abstract

Applying Reflection in Object-Oriented Software Design
Yun Mai

Software systems evolve over time. They should be open to modifications in
response to changing technology and requirements. Designing a system that meets a
wide range of different requirements is a difficult task. A better solution is to specify
an architecture that is open to modification and extension. The resulting system can
then be able to adapt to changing requirements on demand.

Reflection is a process of reasoning about and acting upon itself. In the vocabu-
lary of software development, it provides a mechanism for dynamically changing the
structure and behavior of a software system. It supports the modification of some
fundamental aspects like type structures, function call mechanisms, etc.

The thesis work performs a series of experiments on applying reflection technique
to improve software design. First, a REFLECTIVE VISITOR pattern was captured
to improve the traditional VISITOR pattern. Reflection enables a visitor to perform
a run-time dispatch action on itself. The cyclic dependencies between the visitor
structure and the element structure are broken thus both of them can be reused inde-
pendently. Secondly, a parser framework was developed by applying several patterns.
Especially, the REFLECTION pattern is used in the design of dynamically handling
a parsing process by separating the system into two levels. The base-level defines
the grammar rules. The meta-level handles the complex relationships of these rules.
Reflection technique is used to discover grammar rules at run-time and determines
the parsing order. Third, a dynamic object model was defined for a virtual machine
that can support reflection. We demonstrated Forman'’s theory by developing a sim-
plified object model based on a single inheritance system with the support of only
one metaclass. Finally, an extensible and reusable compiler system (front-end) for
the Decaf programming language was designed and implemented. It customizes the
parser framework by defining concrete grammar rules for the Decaf language, con-
structs the virtual machine platform by extending the reflective class-based object
model, and applies REFLECTIVE VISITOR to the code generation.
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Chapter 1
Introduction

Systems evolve over time — new functionality is added and existing services are
changed. During system design and implementation, customers may request new
features, often urgently and at a late stage. The designer may also need to provide
services that differ from customer to customer. Design for change is therefore a major
concern when developing a software system.

Since reflection was first introduced by Smith [67] as a framework for language
extension, the reflection technology has been a research topic and attracted the at-
tention of researchers throughout computer science over the last twenty years. In
the recent years, the reflection technique has been integrated into programming lan-
guages and has become an importance feature in most object-oriented programming
languages such as Java (45, 32], Smalltalk [38], Oberon [77, 70], Scheme [28], etc.

Conceptually, reflection is the process of reasoning about and acting upon itself. In
the vocabulary of software development, reflection provides a mechanism for changing
structure and behavior of a software system dynamically. It supports the modification
of fundamental aspects, such as type structures and function call mechanisms in a
programming language.

This thesis work focuses on the application of reflection in object-oriented software
design, especially on how reflection helps to increase the flexibility in compiler systems

to maximize the benefits of reuse.



1.1 Aim

The thesis aims to experiment with the reflection technique in reusable and extensible
software design. Specifically, the research focuses on three aspects:

e How can the reflection feature in an object-oriented programming language
benefit the software design? In this aspect, we focus on applying Java Reflection
to simplify the software design and improve the system’s reusability.

e How to design an extensible software system with the reflection pattern? In
this aspect,we focus on applying the reflection pattern to a syntactic analyzer
(i.e. parser) in a programming language compiler system to adapt to changing
the grammar at run-time.

e How to implement reflection in an object-oriented programming language? In
this aspect, we focus on designing and implementing a dynamic object model on
a virtual machine system to support reflection of an object-oriented program-

ming language.

1.2 Motivation

Suppose that we are designing a compiler framework for compiling an object-oriented
programming language to a virtual machine. Like some object-oriented program-
ming languages such as Java, the compiled object-oriented programming language
has reflection support as one of its basic features. This means that this programming
language can obtain class information (e.g. fields, methods, parent of the class, etc.)
on the fly and can even invoke methods that do not appear explicitly in the code, but
are discovered and invoked at run-time.

The virtual machine for an object-oriented programming language generally de-
fines an instruction set to support method compilation and a class object heap to
keep information for each compiled class.

In general, a compiling process (front-end) has three basic phases: lexical anal-
ysis, syntactical analysis, and code generation. Figure 1 shows a compiling process
in general. To simplify the problem context, some compiler phases such as code
optimization will not be considered in this example.

In our compiler framework design, there are some design issues:

2
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Figure 1: A General Compiling Process

e In order to support extension and modification of a programming language
grammar, the framework should accept changing grammars in the parsing pro-
cess. That is, the language grammar can be changed without changing the
existing code. But, how to let the system determine the parsing process execu-

tion at run-time rather than at compiler-time?

e Code generation is a process determined by the parsing result and the specifi-
cation of the virtual machine. But, how to decouple the code generation and
parser so that the code generation process can be changed without changing

the parsing process?

e How to define an object model for the virtual machine so that the program-
ming language can support reflection and allow the virtual machine to be easily

extended?

The contradictory considerations must be taken into account when choosing a
solution to a problem. Forces reveal the intricacies of a problem and define the kinds

of trade-offs that must be considered in the presence of the tension or dissonance they



create [56]. The forces that influence the design decisions of the compiler framework

are:
e A programming language is determined by its grammar.

e The specifications of a language grammar and virtual machine determine what
a compiler should do.

e The grammar of a programming language may change or can be extended.

e The virtual machine may change. That is, the instruction set and the class
information structure may change.

e Extending a system without modifying the existing system will reduce some
new bugs introduced by some modification of the existing code and avoid long

recompilation time.

e To let the system be aware of the changes at run-time rather than at compile
time will make the system more flexible and extensible.

e It is hard to reuse any module within a tightly coupled system. Reducing the
couplings between the modules will improve the reusability of the system.

e We assume that the execution time is not a primary concern for a compiler

system design.

1.3 Contribution of the Thesis

The thesis work performs a series of experiments on the application of the reflection
technique to better improve the software design in some circumstances, that is, a
software environment that can support reflection.

First, a REFLECTIVE VISITOR pattern [53] was captured to improve the structure
of the VISITOR pattern [37] so that both the element hierarchy and visitor hierarchy
are extensible. In our REFLECTIVE VISITOR pattern, a visitor can perform the run-
time dispatch action on itself by using the reflection technique (e.g. Java Reflection).
The cyclic dependencies between the visitor hierarchy and the element hierarchy are
therefore removed. The REFLECTIVE VISITOR is thus more flexible and reusable.



Second, due to the high usage of the VisiTor pattern in the software design,
a pattern language for Visitors [52] is presented to classify and organize the VisI-
TOR variants. This pattern language will assist the application developer to choose
the right VISITOR pattern that best suites the intended purpose by enumerating all
important forces and consequences for each variant.

Third, a parser framework [51] was developed. A pattern language is presented
for developing a framework for parsing in object-oriented compiler design based on
the principle of the predictive recursive-descent parsing approach. It describes four
patterns that address three design aspects in developing an object-oriented parser.
Two alternative patterns are presented to provide alternative solutions to solve the
recursion problem in the object-oriented software design. A two-level structure is
defined for implementing the parsing process control based on the REFLECTION pat-
tern [13, 34]. The base-level contains a set of classes, where each represents a grammar
rule. The meta-level handles the complex relationships of the rules that are main-
tained in a hash table. Reflection is used to discover rules at run-time and determine
the parsing order. The base-level delegates the dynamic dispatch to a meta-level
object.

Fourth, a dynamic object model is defined for a virtual machine that can support
reflection. We demonstrate Forman’s theory [33] by developing a simplified object
model based on a single inheritance system with the support of only one metaclass.

Finally, we designed and implemented an extensible and reusable compiler sys-
tem (front-end) for the Decaf programming language, which is an extensible tiny
object-oriented programming language. This compiler system customizes the parser
framework by defining concrete grammar rules for the Decaf language, constructs
virtual machine platform by extending the reflective class-based object model, and
applies REFLECTIVE VISITOR for implementing the code generation.

The Decaf language itself can be further refined as a framework for experimental
object-oriented languages so that a more complex language can be developed based
on it without changing the existing system.



1.4 Layout of the Thesis

Chapter 2 presents the thesis background including an introduction to the reflection
technology, pattern, design pattern, pattern language, and framework.

Chapter 3 introduces the Reflective Visitor pattern, which is an improvement
of the “Gang of Four” VISITOR pattern [37] based on the programming language
reflection feature (i.e. Java reflection). The Reflective Visitor pattern can lead to a
framework that is easy to extend and reuse the object structure. A pattern language
to visitors is presented to introduce and compare the visitor variants.

Chapter 4 presents a parser framework design, which is documented as a pattern
language. This pattern language consists of a set of patterns that address the archi-
tectural design and component design for a parser. The MetaParser pattern is based
on the REFLECTION pattern [13, 34].

Chapter 5 presents a reflective class-based object model, which can be extended
to support reflection feature on most of the object-oriented programming language.

Chapter 6 shows a concrete application example of customization. The example
applies the techniques in chapter 3, 4 and 5 to develop a compiler system.

Chapter 7 concludes this thesis with an outline of its contributions and gives

suggestions for future work.



Chapter 2
Background

This chapter presents the background of the thesis. In general, there are three trends
in object-oriented design. The first trend is the reuse of the source code. Roughly,
before 1993, people focused on improving the coding quality to ensure that some
pieces of code are good enough and general enough to be reused in some other similar
circumstances.

After that, people found that to only reuse source code was not enough, they also
wanted to reuse the software analysis and design, especially those precious experience
from domain experts. There came the second trend. Patterns are used to capture
successful software designs, pattern languages are used to better document the suc-
cessful experience, and frameworks are used to support software reuse of the software
analysis, design, and source code.

The third trend is reflection and meta-programming. An object’s run-time behav-
ior can be better controlled and manipulated if it is self-aware and self-discoverable.

Section 2.1 reviews the notion of reflection and its three major applications. Then
the concepts of pattern, design pattern and pattern language are introduced in Sec-
tion 2.2, Section 2.3 and Section 2.4. Section 2.5 introduces the framework concept.

2.1 Reflection

2.1.1 What is Reflection ?

Software systems evolve over time. They must be open to modifications in response to

changing technology and requirements. Designing a system that meets a wide range

7



of different requirements a priori can be an overwhelming task. A better solution is
to specify an architecture that is open to modification and extension. The resulting
system can then be adapted to changing requirements on demand. In other words,
we want to design for change and evolution [13].

A software system has dynamic adaptability if it can adapt itself to dynami-
cally changing runtime environments [6]. Conceptually, reflection is the process of
the system reasoning about and acting upon itself [68, 48, 80]. Intuitively, a reflec-
tive computational system allows computations to observe and modify properties of
their own behavior, especially properties that are typically observed only from some
external, meta-level viewpoint [69]. In the vocabulary of software development, re-
flection provides a mechanism for dynamically changing the structure and behavior
of a software system. It supports the modification of fundamental aspects, such as
type structures and function call mechanisms in a programming language.

A system design with reflection maintains information about itself and uses this
information to remain changeable and extensible. In particular, a reflection system
opens its implementation to support adaptation, change, and extension of specific
structural and behavioral aspects such as type structures, function call mechanisms

or implementations of particular services [13].

2.1.2 History of Reflection

Since reflection was first introduced by Smith [67] as a framework for language ex-
tension, reflection technology has been a research topic and has attracted the atten-
tion of researchers throughout computer science over the last twenty years. Many
books [15, 46, 82], conferences, and on-line sources on reflection have pointed out
the growing interest and importance of reflection and meta-level architecture in the
fields of software engineering and programming languages and systems. Object Man-
agement Group(OMG) published a Meta Object Facility (MOF) specification [59] in
1999, which defines a MOF meta-data architecture based on the traditional framework
for meta-modeling of four layer architecture: User Object layer (data), Model layer,
Meta-model layer, and Meta-meta-model layer. In the recent years, reflection has
been integrated into programming languages and has become an important feature
in most object-oriented programming languages such as Java [45, 32], Smalltalk [38],
Oberon (77, 70|, Scheme [28], etc.



The following sections focus on the discussion of the REFLECTION pattern, Java
Reflection, and reflective class-based object model.

2.1.3 Reflection Pattern

To make the software self-aware and to make selected aspects of its structure and
behavior accessible for adaptation and change, an architecture can be split into two
major parts: a meta-level and a base-level.

The REFLECTION pattern, also known as META-LEVEL ARCHITECTURE or OPEN
IMPLEMENTATION, provides a mechanism for dynamically changing the structure and
behavior of a software system. It supports the modification of fundamental aspects,
such as type structure and function call mechanisms. In this pattern, an application
is split into two parts. A meta-level provides information about selected system
properties and makes the software self-aware. A base-level includes the application
logic. Its implementation builds on the meta-level. Changes to information kept in
the meta-level affect subsequent base-level behavior.

The meta-level provides a self-representation of the software to give it knowledge
of its own structure and behavior, and consists of so-called metaobjects. Metaobjects
encapsulate the software properties. Only system details that are likely to change or
which vary from customer to customer should be encapsulated by metaobjects.

The base-level defines the application logic. The components of the base-level rep-
resent the various services the system offers as well as their underlying data model.
The base-level also specifies the fundamental collaboration and structural relation-
ships between the components it includes. In general, its implementation uses the
metaobjects to remain independent of those aspects that are likely to change. For
example, base-level components may only communicate with each other via a metaob-
ject that implements a specific user-defined function call mechanism. Changing this
metaobject changes the way in which base-level components communicate, but with-
out modifying the base-level code.

Normally, an interface is specified for manipulating the metaobjects. It is called
the metaobject protocol (MOP). This metaobject protocol allows clients to specify
particular changes. The metaobject protocol itself is responsible for checking the
correctness of the change specification, and for performing the change. Every manip-
ulation of metaobjects through the metaobject protocol affects subsequent base-level



| behavior.

The general structure of a reflective architecture is very similar to a layered system.
The meta-level and base-level are two layers. The meta-level consists of a set of
metaobjects. Each metaobject encapsulates selected information about a single aspect
of the structure, behavior, or state of the base-level. All metaobjects together provide
a self-representation of an application. A metaobject does not allow the base-level
to modify its internal state. Manipulation is possible only through the metaobject
protocol or by its own computation. The base-level uses the information and services
provided by the metaobjects. This allows the base-level to remain flexible — its code
is independent of aspects that may be subject to change and adaptation. Base-level
components are either directly connected to the metaobjects on which they depend,
or submit requests to them through special retrieval functions, which are also part of
the meta-level. Since the base-level implementation explicitly builds upon information
and services provided by metaobjects, changing them has an immediate effect on the
subsequent behavior of the base-level. In conventional modification, the system can
be changed without modifying based-level code. The metaobject protocol (MOP)
services as an external interface to the meta-level, and makes the implementation of
a reflective system accessible in a defined way. Clients of the metaobject protocol can
specify modifications to metaobjects or their relationships using the base-level. This
metaobject protocol itself is responsible for performing these changes. This provides
a reflective application with explicit control over its own modification [13].

2.1.4 Java Reflection
2.1.4.1 Overview

Java Reflection refers to the ability of Java classes to reflect upon themselves. It lets
the software designer easily write Java code to discover class information at run time.
The designer can even invoke methods that do not appear directly in the code, but
are discovered and invoked at run time.

The Java Core Reflection API [71] supports introspection about the classes and
objects in the current Java Virtual Machine. The API can be used to:

e construct new class instances and new arrays.
e access and modify fields of objects and classes.
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e invoke methods on objects and classes.

e access and modify elements of arrays.

Generally, Java Reflection is provided by three components:

e method getClass in class Object
‘The method getClass defined in the class Object returns the Class object
associated with any Object. The class Object is the root class in Java. All
classes are subclasses of Object, and thus all objects can obtain its class object
by invoking the getClass method.

e java.lang.Class class

| lang::Class
-Class(
iang::Object +20String() : String
[+oetClass() - Ciass
leashCode() : int inatanced Object) : book
L""“):M visintertace() : booiean
[+oString() : String eisAray() : boolean
oty AlIQ X :.,' "'.,."'o'o :mm' -
Lewait(inout timeout : long) "
Lswait(inout timeout : long, inout NeNos : int  oetSuperciess( : Class
owalt( gutinterfaces()

+getC 0 : C
+getFieid(inout name : String) : Field
l+getMethod(inout name : Stnng. inout parameterTypes(] : Class) : Method
l-getConstructor(inout parameterTypes(] : Class) : Constructor
l+getDeciaredClasses() : Class
l+getDeciaredFieids() : Field
l-getDeclaredMethods() : Method
+-gatDeciaredConstructors() : Constructor
M-‘ld(m name : Stnng) Fodd

Wuwn(mm String) : inputStream
‘Mmo(mn-m suing) URL

FostMethodO(inout name : Sm'\g.mm'fymsﬂ Class, inout which : int) :
roetConstructorO(inout parameterTypes{] : Class, inout which : int) : Constructor

Wmm:_irn):mw

Figure 2: Class Diagram for Class java.lang.Class
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This class represents a Java class or interface, or any Java type. There is one
Class object for each class that is loaded into the Java Virtual Machine, and
there are special Class objects that represent the Java primitive types. Array
types are also represented by Class objects. There is no constructor for this
class. The designer can obtain a Class object by calling the getClass method
of any instance of the desired class. Figure 2 shows the members declared in
the java.lang.Class.

e java.lang.reflect package

The Java reflection model defines three final classes Field, Method, and Constructor.

Only the Java Virtual Machine can create instances of these classes. These in-
stances(objects) are used to manipulate the underlying object, that is, to:

— get reflection information about the underlying member or constructor;

— get and set field value;

— invoke methods on objects or classes;

— create new instances of classes.

Figure 3 shows the class diagram for the classes defined in the java.lang.reflect
package.

2.1.4.2 Obtaining Class Information

To find out information about a class or interface, the designer first needs to get the
class’s java.lang.Class object and then query it for the desired information [78].
The following shows some important methods defined in class Java.Lang.Class.

These methods are frequently used in the thesis work.

isAssignableFrom
public boolean isAssignableFrom(Class fromClass)

This method tests whether the type represented by the specified Class parameter
can be converted to the type represented by this Class object via an identity con-
version or a widening reference conversion. It returns true if so, false otherwise. If
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this Class object represents a primitive type, the method returns true if the specified
Class parameter is exactly this Class object. Otherwise it returns false.

This method throws a nullPointerException if the specified Class parameter
is null.

getSuperClass
public Class getSuperClass()

If this Class object represents a class other than Object, the method returns
the Class that represents the superclass of the class. It returns “null” if this Class
represents the class Object or if it represents an interface type or a primitive type.

getDeclaredMethod

public Method getDeclaredMethod(String name, Class(]paramterTypes)
throws NoSuchMethodException, SecurityException

Returns a Method object that reflects the specified declared method of the class
or interface represented by this Class object. The name parameter is a string that
specifies the simple name of the desired method, and the parameter Types parameter
is an array of Class objects that identify the method’s formal parameter types, in
declared order.

The method throws a NoSuchMethodException if a matching method is not found.
The method throws a SecurityException if access to the underlying method is
denied.

forName

public static Class forName(String className)
throws ClassNoFoundException

Given the fully-qualified name for a class, this method attempts to locate, load,
and link the specified class. If it succeeds, it returns the Class object representing
the class. Otherwise, it throws a ClassNoFoundException.

Class objects for array types may be obtained by this method. These Class
objects are automatically constructed by the Java Virtual Machine. Class objects
that represent the primitive Java types or void cannot be obtained by this method.
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2.1.4.3 Invoking Methods

With reflection, the designer can construct objects and invoke methods at run time
without performing compile-time type checking.

public Object invoke(Object obj, Object[] args)
throws NullPointerException, IllegalArgumentException,
IllegalAccessExcption, InvocationTargetException

The method invokes the underlying method represented by this method object
on the specified object with the specified parameters. Individual parameters are
automatically unwrapped to match primitive formal parameters. Both primitive and
reference parameters are subject to widening conversions as necessary. The value
returned by the underlying method is automatically wrapped in an object if it has a

primitive type.

2.1.5 Metaclass and Dynamic Object Model

In object-oriented programming, objects are created as instances of classes. Ira R.
Forman and Scott H. Danforth systematically present a theory in their book “Putting
Metaclasses to Work” [33] on how to construct a reflective class-based model. In this
object model, classes are themselves objects. That is, classes are created as instances
of other classes.

In this section, we briefly introduce the theory with a simplified object model,
which is based on a single inheritance system with only one supported metaclass.
First, we will explain some fundamental concepts in the reflective object model. Fol-
lowings are the introductions of structures of some major elements in the object

model.

2.1.5.1 Fundamental Concepts

Object Reference
Each member of the nonempty, finite set of objects is identified by a value called

an object reference.
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Class Reference
Each object has a uniquely associated entity called a class. Each class is an object.
In other words,
{Set of Classes} C {Set of Objects}
Hence, class reference indicates the object reference of a class.

Metaclass
Since a class is an object, a class must have a class, called metaclass. A metaclass
is an object whose instances are classes. In a single metaclass object model, there is
only one metaclass named Class. The metaclass Class is a class and it has a class
that is itself, namely, Class. In other words,
MetaClass € {Set of Classes}

2.1.5.2 Data Table

Data table contains the attribute information defined in a class. Since objects of a
class need these attribute information to illustrate their states, the data table is also
used in illustrating the structure of an object reference. The content of a data table
for an object is determined by its class.

A data table can be constructed as a dictionary, where keys are class references
and slot values are dictionaries in which keys are field names (strings). The general

structure of a data table can be represented as:

fieldl_initValue;
field2_initValue;

{ classRef = { "field1"
“field2"
.}

2.1.5.3 Method Table

Method table is used to contain the method information defined in a class. The
methods to which an object responds are determined by its class.

The method table is constructed as a dictionary, where keys are class references
and slot values are dictionaries in which keys are method names (strings) and values
are code pointers. The code pointer identifies an executable procedure. It is a value
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that can be used to start the execution of a procedure. The general structure of a
method table can be represented as:

methodl_CodePtr;
method2_CodePtr;

{ classRef = { "method1"
"method2"
.}

2.1.5.4 Object Reference

The structure of an object reference includes a reference to its class and state infor-
mation of the attributes that are declared in the class. An object is constructed as a
dictionary merged from a slot named class (whose value is the class reference of the
object) and a data table. That is:

{ “class” = classRef } < DataTable

The symbol “<” means that two dictionaries merge into one. The data table
(DataTable) defines the values of the attributes in the class and the values of the
attributes inherited from its ancestor classes.

The general structure of an object reference can be represented as:

{ "class" = classRef;
classRef = { "fieldl" = fieldl_initValue;
"field2" field2_initValue;

.}
superClassRef = { "superField1"

superl_initValue;

“superField2" = super2_initValue;
.}
}
For example, an object aString of the class String can be represented as:
{ "class" = String;
String = { "_mnemonic" = "DEFAULT"; }
}
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2.1.5.5 Class Reference

In a single metaclass system, each class object has a unique metaclass: Class. The
structure of a class reference is determined by the attributes of its metaclass Class.
The basic structure of a class reference looks like:

{ "class" = Class;
Class = { "ivdefs" = { ... ... }
"mdefs" =9{ ... ...}
“parent" = superClassRef;
“ivs" ={ ... ...}
"mtab" ={ ... ...}

In this structure, there are two data tables for the definition of the attributes in
a class: one is ivdefs, the other is ivs. These two data tables contain the attribute
declarations and initial values of these attributes in the class. The tvdefs contains
the information of all attributes that are declared in the class. The ivs contains
the information of attributes that are declared in the class and attributes that are
inherited from the its ancestor classes. The attribute information contained in the
ivdefs is a subset of that in the ivs. The attribute information in a class reference can

be constructed as:

{"class" = Class;
Class = {"ivdefs" = { classRef={"field1" = fieldl_initValue;
"field2" = field2_initValue;
R
"ivs" = { classRef = { "fieldl" = fieldl_initValue;
“field2" = field2_initValue;
}

superClassRef={"superField1" superl_initValue;

"superField2"
}

superl_initValue;
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The mdefs and mtab define the method tables for the definition of the methods
in a class. Both mdefs and mtab are attributes determined by the metaclass Class.
The mdefs contains the information of all methods that are declared in the class
including the methods that override that of its ancestor classes. The mtab contains
all the method information that are declared in the mdefs and the methods that are
inherited from its ancestor classes. The behavior information contained in the mdefs
is a subset of that in the mtab.

The behavior information in a class structure can be constructed as:

{"class" = Class;
Class={"mdefs"={classRef = { "methodi" = method1l_CodePtr;
"method2" = method2_CodePtr;

}
superClassRef={"overridedMethod1" = overridedi_CodePtr;
"overridedMethod2" = overrided2_CodePtr;
}

}
"mtab"={classRef = { "method1" = methodi_CodePtr;
"method2" = method2_CodePtr;

}
superClassRef={"superMethod1"

method1l_CodePtr;

"superMethod2" = method2_CodePtr;

"overridedMethod1" = overridedl_CodePtr;

"overridedMethod2" = overrided2_CodePtr;
}

The parent contains a reference to its superclass.

2.1.5.6 Metaclass

All classes are instances of the metaclass Class, and the metaclass Class is also a

class itself. In a single inheritance system, the root class Object is the superclass of
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the metaclass Class.

As mentioned before, the ivdefs, ivs, mdefs, mtab, and parent determine the
structure of a class. They are all attributes of the metaclass Class. The methods
declared in the metaclass Class construct the metaobject protocol of the system.

The basic structure of the metaclass class can be constructed as:

{ "class" = Class;
Class = { "ivdefs" = { Class = { "ivdefs" = { }
"mdefs" = { }
“parent"” = { }
"jivs" ={}
"mtab" ={3} }

"jvs" = { Class = { “ivdefs" = { }
"mdefs" = { }
"parent" = { }
"ivs" ={1}
“mtab" ={} }
"mdefs" = { Class = { "newInstance" = newlInstance_CodePtr;
...} }
"“mtab" = { Class = { "newInstance" = newInstance_CodePtr;
.. .}
Object = {... ... } }

"parent" = Object;

In the following sections, we will introduce some software design concepts including

pattern, design pattern, pattern language, and framework.

2.2 Pattern

2.2.1 What is a Pattern ?

Patterns have become a popular way to reuse software design in the object-oriented
community. The goal of patterns within the software community is to help software
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developers resolve common difficult problems encountered throughout all of software
engineering and development [8].

A pattern captures the essential structure and insight of a successful family of
proven solutions to a recurring problem that arises within a certain context and
system of forces [63]. A pattern is an essay that describes a problem to be solved,
a solution, and the context in which that solution works [41]. A pattern involves a
general description of a recurring solution to a recurring problem replete with various
goals and constraints. But a pattern does more than just identify a solution, it also
explains why the solution is needed [17].

In the spirit of Alexander’s patterns, software patterns make up for lapses in
the memory of the contemporary software design culture, and capture structure not
immediately apparent from the code or from most system design documents [17):

e Patterns capture obscure but important practice: Patterns work at many levels
of detail. They capture established practices that remain obscure in the broad
practices of a given domain. A pattern is abstract because it approaches the
problem at a suitable general level, although the solution may entail detail.

e Patterns capture hidden structure: Patterns cut across the predominant parti-
tionings of the subject area. Good software patterns address system problems
and relationships that are obscured by a perspective from inside any of the parts.
Patterns complement object-oriented design methods to capture the important

constructs that cut across objects.

Patterns are usually concerned with some kinds of architecture or organization
of constituent parts to produce a greater whole. Each pattern is a three-part rule,
which expresses a relation between a certain context, a certain system of forces which
occurs repeatedly in that context, and a certain software configuration which allows
these forces to resolve themselves [36]. A good pattern will do the following [16]:

e It solves a problem: Patterns capture solutions, not just abstract principles or

strategies.

e It is a proven solution: Patterns capture solutions with a track record, not

theories or speculation.
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e The solution is not obvious: Many problem-solving techniques (such as software
design paradigms or methods) try to derive solutions from first principles. The
best patterns generate a solution to a problem indirectly — a necessary approach
for the most difficult problems of design.

o It describes a relationship: Patterns do not just describe modules, but describe
deeper system structures and mechanisms.

In general, a software pattern can be categorized as an architectural pattern, an
analysis pattern, a design pattern, or a programming pattern.

e Analysis Pattern
Analysis patterns are groups of concepts that represent a common construction
in application domain modeling. Analysis patterns involve looking behind the
surface requirements to come up with a conceptual model of what is going on
in the problem [34].

e Architectural Pattern
An architectural pattern expresses a fundamental structural organization schema
for software systems. It provides a set of predefined subsystems, specifies their
responsibilities, and includes rules and guidelines for organizing the relation-
ships between them [13, 19].

e Design Pattern
A design pattern is a pattern whose form is described by means of software
design constructs, for example objects, classes, inheritance, aggregation and
use-relationship [63]. A design pattern provides a scheme for refining the sub-
systems or components of a software system, or the relationships between them.
It describes commonly recurring structure of communicating components that

solves a general design problem within a particular context [13].

e Programming Pattern (Coding Pattern, Idiom)
A programming pattern is a pattern whose form is described by means of
programming language constructs [63]. It is a low-level pattern specific to a
programming language. A programming pattern describes how to implement
particular aspects of components or the relationships between them using the

features of the given language [13].

22



Analysis patterns are based upon metaphors in a restricted application domain.
Architectural patterns are high-level strategies that concern large-scale components
and the global properties and mechanisms of a system. They have wide-sweeping
implications which affect the overall skeletal structure and organization of a soft-
ware system. Design patterns are medium-scale tactics that flesh out some of the
structure and behavior of entities and their relationships. They do not influence
overall system structure, but instead define micro-architectures of subsystems and
components. Programming patterns are paradigm-specific and language-specific pro-
gramming techniques that fill in low-level internal or external details of a component’s
structure or behavior [63].

2.2.2 History of Patterns

The term “pattern” is derived from the writings of the architect Christopher Alexan-
der who has written several books on the topic as it relates to urban planning and
building architecture [1, 2, 4, 3].

Patterns have been used for many different domains. Software patterns first be-
came popular with the wide acceptance of the book “Design Patterns: Elements of
Reusable Object-Oriented Software” by Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides (frequently referred to as the Gang of Four or just GoF) [37].
At present, the software community is using patterns largely for software architec-
ture and design, and (more recently) software development processes and organiza-
tions. Each year, new patterns are published in the conference series of “Patterns
Languages of Program Design” (currently this conference series includes PLoP, Euro-
PLoP, ChilliPLoP, and KoalaPLoP). Pattern books “Pattern Languages of Program
Design” [18, 76, 55, 40] contain selected papers from conferences on Patterns Lan-
guages of Program Design (PLoP).

2.2.3 AQualities of Patterns

A well written pattern should exhibit several desirable qualities. Ideally, pattern
entries have the following properties [47, 8]:
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e Encapsulation
Each pattern encapsulates a well-defined problem/solution. Patterns are inde-

pendent, specific, and precisely formulated enough to make clear when they ap-
ply and whether they capture real problems and issues. Patterns should provide
crisp, clear boundaries that help crystallize the problem space and the solution
space by parceling them into a lattice of distinct, interconnected fragments.

¢ Generativity
Each entry contains a local, self-standing process prescription describing how
to construct realizations. Pattern entries are written to be usable by all devel-
opment participants, not merely trained designers.

¢ Equilibrium

Each pattern must realize some kind of balance among its forces and constraints.
This may be due to one or more invariants or heuristics that are used to min-
imize conflict within the solution space. The invariants often typify an under-
lying problem solving principle or philosophy for the particular domain, and
provide a rationale for each step/rule in the pattern. The aim is that each
pattern describes a whole that is greater than the sum of its parts, due to
skillful choreography of its elements working together to satisfies all its varying
demands.

e Abstraction
Patterns represent abstractions of empirical experience and everyday knowl-
edge. They are general within the stated context. They serve as abstractions
which embody domain knowledge and experience, and may occur at varyving

hierarchical levels of conceptual granularity within the domain.

¢ Openness and Variability
Each pattern should be open for extension or parametrization by other patterns
so that they may work together to solve a larger problem. A pattern solution
should be also capable of being realized by an infinite variety of implementations
(in isolation, as well as in conjunction with other patterns).

e Composibility
Patterns are hierarchically related. Coarse grained patterns are layered on top
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of, relate, and constrain fine grained ones. Pattern entries are arranged concep-
tually as a language that expresses this layering. Because the forms of patterns
and their relations to others are only loosely constrained and written entirely
in natural language, the pattern language is merely analogous to a formal pro-
duction system language, but has about the same properties, including infinite

nondeterministic generativity.

2.3 Design Pattern

2.3.1 What is a Design Pattern ?

A design pattern is a reusable implementation model or architecture that can be
applied to solve a particular recurring class of problem. Each pattern focuses on a
particular object-oriented design problem or issue. It captures expertise and make it
accessible to non experts [74]. Design patterns allow software designers to learn from
and apply the experience of other designers. Hence, software designers can apply
their experience with past problems and solutions to new, similar problem [16].

More specifically, design patterns are descriptions of communicating objects and
classes that are customized to solve a general design problem in a particular context.
They describes how methods in a single class or sub-hierarchy of classes work together.
It also shows how multiple classes and their instances collaborate [37].

Design pattern makes it easier to reuse successful designs and architectures. Ex-
pressing proven techniques as design patterns make them more accessible to develop-
ers of new systems. Design patterns help us choose design alternatives that make a
system reusable and avoid alternatives that compromise reusability.

Design patterns have a different emphasis than most reuse programs or design
catalogues: they tend to capture broader abstraction. Design patterns can even
improve the documentation and maintenance of existing systems by furnishing an
explicit specification of class and object interactions and their underlying intent. Put
simply, design patterns help a designer get a design “right” faster [37].
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2.3.2 Document a Design Pattern

The goal of design pattern is to capture design experience in a form that people can
use effectively. The design pattern identifies the participating classes and instances,
their roles and collaborations and the distribution of responsibilities. It describes
when it applies, whether it can be applied in view of other design constraints and the
consequences and trade-offs of its use.

Alexander says that “every pattern we define must be formulated in the form ofa
rule which establishes a relationship between a context, a system of forces which arises
in that context, and a configuration, which allows these forces to resolve themselves in
that context.” [3, 4]. Several different formats have been used for describing patterns.
The format used in the book “Design Pattern” [37] is referred to as “GoF format”.
The following essential components should be clearly recognizable upon reading a
pattern [37]:

e Pattern Name and Classification
The pattern’s name conveys the essence of the pattern succinctly. A good name
is vital, because it will become part of our design vocabulary.

e Intent
A short statement that answers the following questions: What does the design
pattern do? What is its rationale and intent? What particular design issue or

problem does it address?

e Also Known As
Other well-known names for the pattern, if any.

e Motivation
A scenario that illustrates a design problem and how the class and object struc-
tures in the pattern solve the problem. The scenario will help us understand
the more abstract description of the pattern that follows.

e Applicability
What are the situations in which the design pattern can be applied? What are
examples of poor designs that the pattern can address? How can we recognize

these situations?
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e Structure
A graphical representation of the classes in the pattern using a notation based
on the Unified Modeling Language (UML) [12] [65].

e Participants
The classes and/or objects participating in the design pattern and their respon-

sibilities.
e Collaborations
How the participants collaborate to carry out their responsibilities.

o Consequences
How does the pattern support its objectives? What are the trade-offs and
results of using the pattern? What aspect of system structure does it let you

vary independently?

e Implementation
What pitfalls, hints, or techniques should you be aware of when implementing
the pattern? Are there language-specific issues?

e Sample Code
Code fragments that illustrate how you might implement the pattern.

e Known Uses
Examples of the pattern found in real systems.

¢ Related Patterns
What design patterns are closely related to this one? What are the important
differences? With which other patterns should this one be used?

2.4 Pattern Language

2.4.1 What is a Pattern Language ?

A pattern language is a collection of patterns that build on each other to generate
a system. The term “pattern language” comes from building architecture and has
been popularized by Alexander [4]. A pattern language is a piece of literature that
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describes an architecture, a design, a framework, or other structure. It has structure,
but not the same level of formal structure the one finds in programming language [17].

A pattern in isolation solves an isolated design problem, but a pattern language
builds a system. Pattern languages place individual patterns in context. Generally,
a pattern language is applied under the context that the developers are to trying
to use the “pattern form” to describe a procedure with many steps or a complex
solution to a complex problem. Some of the steps may only apply in particular
circumstances. There may be alternate solutions to parts of the problem depending
on the circumstances. A single pattern is insufficient to deal with the complexity at
hand. To easily digest and use parts of the solution in different circumstance, a pattern
language factors the overall problem and its complex solution or procedure into a
number of related problems with their respective solutions. The pattern language
captures each problem/solution pair as a pattern, which solves a specific problem
within the shared context of the language [56].

2.4.2 Document a Pattern Language

A pattern language consists of a list of patterns, where each pattern can be organized
in a structure [56] as follows. The reason why we use different formats to document a
pattern in a pattern language rather than that of an individual pattern structure in
Section 2.3.2 is that, the patterns in a pattern language exist in the global problem
context and cooperate with other related patterns.

e Name
A name by which the problem/solution pair can be referenced. Good pattern

names form a vocabulary for discussing conceptual abstractions.

e Aliases
Other names by which this pattern might be known.

e Context
The circumstance in which the problem is being solved imposes constraints on
the solution. It implies the pattern’s applicability. It can be thought of as the
initial configuration of the system before the pattern is applied to it.
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Problem
The specific problem that needs to be solved. It describes the intent: the goals
and objectives it wants to reach within the given context and forces.

Forces

The often contradictory considerations that must be taken into account when
choosing a solution to a problem. Forces reveal the intricacies of a problem
and define the kinds of trade-offs that must be considered in the presence of
the tension or dissonance they create. A good pattern description should fully
encapsulate all the forces which have an impact upon it.

Solution

The proposed solution to the problem. The most appropriate solution to a
problem is the one that best resolves the highest priority forces as determined
by the particular context. The description may encompass diagrams and prose
which identify the pattern’s structure, its participants and their collaborations,
to show how the problem is solved.

Rationale

A justifying explanation of steps or rules in the pattern, and also of the pattern
as a whole in terms of how and why it resolves its forces in a particular way to be
in alignment with desired goals, principles, and philosophies. It explains how the
forces and constraints are orchestrated in concert to achieve a resonant harmony.
This tells us why it works, and why it is “good”. The solution component of
a pattern may describe the outwardly visible structure and behavior of the
pattern, while the rationale provides insight into the deep structures and key
mechanisms that are beneath the surface of the system.

Code Samples

Sample code shows how to implement the pattern. Examples help the reader
understand the pattern’s usage and its applicability. Visual examples and analo-
gies can often be especially illuminating. An example may be supplemented with
a sample impiementation to show one way the solution might be realized.

Resulting Context
Resulting context refers to the state or configuration of the system after the
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pattern has been applied. It includes the consequences (both the goodness and
the badness) of applying the pattern and new problems and new patterns that
may arise in this context. It describes the postconditions and side-effects of the
pattern. It also describes which forces have been resolved, which ones remain
unresolved, and which patterns may now be applicable.

Related Patterns

The static and dynamic relationships between this pattern and others within the
same pattern language or system. Related patterns often share common forces.
They also frequently have an initial or resulting context that is compatible with
the resulting or initial context of another pattern. Such patterns might be
predecessor patterns whose application leads to this pattern; successor patterns
whose application follows from this pattern; alternative patterns that describe a
different solution to the same problem but under different forces and constraints;
and codependent patterns that may (or must) be applied simultaneously with
this pattern.

Known Uses

Describes known occurrences of the pattern and its application within existing
systems. This helps to validate a pattern by verifying that it is indeed a proven
solution to a recurring problem.

2.5 Framework

2.5.1 What is a Framework ?

A framework is a reusable design of all or part of a system that is represented by a

set of abstract classes and the way their instances interact. It is the skeleton of an

application that can be customized by an application developer.

Frameworks are an object-oriented reuse technique. They take advantage of all

three of the distinguishing characteristics of object-oriented programming: data ab-
straction, polymorphism, and inheritance. Like an abstract data type, an abstract

class represents an interface behind which implementations can change. Polymor-
phism is the ability for a single variable or procedure parameter to take on values of
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several types. Object-oriented polymorphism lets a developer mix and match com-
ponents, lets an object change its collaborators at run-time, and makes it possible to

build generic objects that can work with a wide range of components. Inheritance

makes it easy to make a new component.
A framework describes the architecture of an object-oriented system; the kinds of
objects in it and how they interact. It focuses on how a particular kind of program

is decomposed into a set of interacting objects [42].
A framework is characterized by [62]:

Partial design;
Incomplete implementation;

Inversion of system control, and it contains the part of control that invokes the
methods supplied by the user;

Reuse arises in all stages of system analysis, design and implementation.

An application developed from a framework can be identified by several different
parts as shown graphically in Figure 4 [81, 35].

Framework Core: The core of the framework defines the generic structure and
behavior of the framework, and forms the basis for the application developed
from the framework. It generally consists of abstract classes, but can also
contain concrete classes that are meant to be used as is in all applications built

from the framework.

Framework Library: Extensions to the framework core consisting of concrete
components that can be used with little or no modification by applications

developed from the framework.
Application Extensions: Application specific extensions made to the framework.

Application: in terms of the framework, the application consists of the frame-
work core, the used framework library extensions, and any application specific

extensions needed.

Unused Library classes: Typically, not all of the classes within a framework will
be needed in an application that can be developed from the framework.
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Application Extension /

T

Framework Application

Figure 4: Application Developed from a Framework

Roberts and Johnson present the framework’s development process as a pat-
tern language [64], which includes nine patterns: THREE EXAMPLES, WHITE-BOX
FRAMEWORK, COMPONENT LIBRARY, HOT SPOTS, PLUGGABLE OBJECTS, FINE-
GAINED OBIJECT, BLACK-BOX FRAMEWORK, VISUAL BUILDER, and LANGUAGE
TooLs.

2.5.2 Framework vs. Software Pattern

A framework describes how a system behaves. A framework can be considered to be
a type of a pattern. In fact, a framework can be viewed as an architectural pattern
that offers an extensible template [12].

The design patterns are closely related to frameworks. Design patterns were dis-
covered by examining a number of frameworks, and were chosen as being represen-
tative of reusable, object-oriented software. In general, a framework may contain
many design patterns, but a design pattern does not contain frameworks. Moreover,
frameworks are more specialized than design patterns. Frameworks are built for a
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particular application domain, and describe an application architecture for that do-
main. Frameworks are at a different level of abstraction than design patterns. A
framework is a pattern arising at the system architectural level and design patterns
are the architectural elements of frameworks [42].

A framework can be designed and documented in terms of patterns, where each
pattern describes how to solve a small part of the larger design problem. Each pattern
describes a problem that occurs over and over again in the problem domain of the
framework, and then describes how to solve that problem. Thus, the idea is that
someone has solved a specific problem once and documented the solution as a pattern,
we can use this information in order to solve same kinds of problems [41].

2.5.3 Develop a Framework

A framework may begin as an application that evolves to a framework, and other
applications are developed to confirm the reusability of this framework before it is
rolled out for general use [14].

A framework evolves over time. Uses of a framework may expose some insuffi-
ciency and incompleteness in the framework design. The framework is then refined
to accommodate the new raised issues and the old ones. A framework evolves as
a wider application domain is covered, hot spots [62] are more precisely identified,
customization is concisely specified, and all the jargons are clearly defined.

The major steps in developing an application framework can be summarized as (43,
72):

1. Identify and analyze the application domain and identify the framework. If
the application domain is large, it should be decomposed into a set of possible
frameworks that can be used to build a solution. Analyze existing software

solutions to identify their commonality and the differences.

2. Identify the primary abstractions. Clarify the role and responsibility of each
abstraction. Design the main communication protocols between the primary

abstractions. Document them clearly and precisely.

3. Design how a user interacts with the framework. Provide concrete examples of
the user interaction, and provide a main program illustrating how the abstract
classes are related to each other and to the classes for user interaction.

33



4. Implement, test, and maintain the design.
5. Iterate with new applications in the same domain.

The design and implementation of frameworks relies heavily on abstract classes,

inheritance, and polymorphism.

2.6 Summary

This chapter introduces the basic concepts for reflection, design pattern, pattern
language, and framework. These concepts closely relate to our research.

The following chapters presents the thesis work. Chapter 3 presents a REFLEC-
TIVE VISITOR, an improved VISITOR variant based on the reflection technique. Chap-
ter 4 is the design of a parser with the reflection pattern. We will show how can RE-
FLECTION pattern benefit the object-oriented design of a predictive recursive-descent
parser. Chapter 5 presents a framework of the reflective class-based object model.
Chapter 6 is a customization example of the frameworks presented in the previous

chapters.
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Chapter 3

Reflective Visitor: To Extend and
Reuse Object Structure

The VISITOR pattern [37] wraps associated operations that are performed on the
elements of an object structure into a separate object. It allows the software designer
to define new kinds of operations over the object structure without changing the
classes of this structure. But a well-known drawback of the standard visitor structure
is that extending the object structure is hard.

Since Gamma et al. first published the VISITOR design pattern [37] in 1995, there
have been proposed several variations in the design pattern literature. In this chapter,
we first present the design and implementation of a new variation of VISITOR pattern
based on the reflection technique, we call it REFLECTIVE VISITOR [53]. This VISITOR
pattern allows the software developer to extend an object structure and define new
operations over this object structure without modifying the existing system.

This chapter also presents a pattern language to variations of VISITORs [52] to
assist the application developer to choose the right VISITOR pattern that best suites
the intended purpose by enumerating all important forces and consequences for each
variation.

Section 3.1 introduces the terms and concepts used in this chapter. Section 3.2
presents the design and implementation of the REFLECTIVE VISITOR pattern. Sec-
tion 3.3 is a pattern language to VISITORs.
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3.1 Terms and Concepts

Visitor

A visitor implements behaviors for traversing a set of element objects and assigning
responsibilities to these elements. It encapsulates operations to be performed over
these elements and wraps them in a class separated from these elements. In general,
there are two hierarchies to be defined when a visitor is implemented. One is the
element hierarchy representing the objects that will be visited. The other is the
visitor hierarchy representing operations to be performed on the elements. The use
of visitor lets the developer easily change the behaviors that would otherwise be
distributed across classes without modifying these classes.

Element

An element is a class whose instance belongs to a set of a fair number of instances of
a small number of classes [16] that will be visited.

Object Structure

An object structure refers to a fair number of instances of a small number of classes [16].
Especially in a VISITOR pattern, an object structure contains a set of instances that

will be visited.

Cyclic Dependency

A component of a system is said to depend on another component if the correctness of
the first component’s behavior requires the correct operation of the second component.
A dependency relationship is said to be acyclic if it forms a tree. That is the set of
possible dependencies in a system are considered to form an acyclic graph. It is
possible, however, for a dependency relationship to cycle back upon itself. A cyclic
dependency relationship is one that cannot be described as part of a tree, but rather
must be described as part of a directed cyclic graph [39].
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Element Adder

An Element Adder is a kind of solution that can easily add new elements to an element
hierarchy without modifying the existing program.

Operation Adder

An Operation Adder is a kind of solution that can easily add new operations over an
element hierarchy without modifying the existing program.

3.2 Reflective Visitor

The REFLECTIVE VISITOR is a new variant of the VISITOR pattern. Its design and
implementation are based on the reflection technique. With the power of the reflec-
tion technique, the REFLECTIVE VISITOR pattern can extend an object structure
and define new operations over this object structure in a much easier way without
changing the existing system. The REFLECTIVE VISITOR pattern can be used in an
environment that the implementation language supports reflection and the execution
time is not a major concern.

Intent

Define a new operation over the object structure without changing the classes of the
elements on which it operates, while in the meantime, allow the element classes in
the object structure to be extended constantly without changing the existing system.

Also Know As

Easy Element and Operation Adder

Motivation

Consider the code generation design in a compiler framework. The responsibility of
the code generation is to generate a target code list as the output of the compiler.
The format of the target code list is specified by the system requirements, which may
require the target code list to be compatible with different operation platforms. In
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order to support the cross-platform features, different code generation operations need
to be co-exist and allow easily switching from one to another. On the other hand,
the code generation process have to depend on the parser result. The parser result,
normally in terms of an abstract syntax tree, can be represented as a compound data
structure, each of whose elements is constructed from the language structure. The
language structure is a composite hierarchy consisting of a set of terminals and non-
terminals, which can be extracted from the language grammar specification. Since
the operation of code generation is actually performed on the abstract syntax tree,
its design should accommodate any potential changes on the language structure. For
a compiler framework, the design of the code generation needs to:

1. Prepare for changes of the generated code format.
2. Prepare for modifications in the language grammar.

3. Reduce the coupling between the language structure and the code generator in
order to promote the system reusability.

[ mlﬁxprj [ SubIExprj | MullExprj LDlvjExprj New extended classe[a

Figure 5: An Expression Hierarchy

Given a simple expression example, suppose it supports arithmetic expression such
as addition, subtraction, multiplication, and division for constants. Figure 5 shows the
language structure hierarchy for this expression example. The language (expression)
structure hierarchy is organized as a composite structure and can be implemented by
a COMPOSITE design pattern [37]. The abstract syntax tree therefore is represented
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as a composite object, which is recursively constructed with the instances of the node
classes in the expression structure during the parsing. The code generation process
then performs the code generation operations over this abstract syntax tree.

Basically, there are two kinds of potential extensions to the above example: one
is the changing of the expression structure, the other is generating different code
formats. For example, the expression structure can be extended with supports of
variable and assignment expression that will be used to assign the value or expression
to the variable. As shown in Figure 5, they are represented as two extended classes in
gray. On the other hand, the code generation may require target code to be generated
in different code format according to the design requirements. It may also require
easy switching from one format to another and easy addition of new kind of output
code format. For simplicity, we suppose the code generation for above example should
support the two different virtual machines, VM1 and VM2.

The basic design issues in the design of code generation for this expression example

are:

1. Both the code generations for VM1 and VM2 should be represented as different
operations that are performed on the abstract syntax tree.

2. The code generation should support easy switching between the VM1 output
format and the VM2 output format. Any future extension of the output format
can be easily added without modifying and re-compiling the existing system

program.

3. The addition of the variable and assignment expression needs not affect the rest

of the system.

4. The language (expression) structure can stand alone and has no knowledge

about the code generator.

As Gamma et al. pointed out in their Design Patterns book [37], the VISITOR
pattern is suitable to represent an operation to be performed on the elements of
an object structure. We refer this VISITOR PATTERN as GOF VISITOR pattern in
this thesis. The GOF VISITOR pattern lets the designer define a new operation
over the object structure without changing the elements of that structure. Figure 6
shows the design of the above expression example with the GOF VISITOR pattern.
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By applying GOF VISITOR pattern, the code generation can be easily changed or
extended to support different kinds of output code formats, for example, switching
between the VM1 output format and the VM2 output format. But we can also see
that the extension of the expression structure becomes difficult. In our example, to
support the addition of the variable and assignment expression, the GOF VISITOR
pattern requires the new code generation methods, such as visitVariable(Variable)
and visitAssignmentEzpr(AssignmentEzpr), to be added across the visitor hierarchy
(the Visitor interface the VMiCodeGenVisitor class and the VM2CodeGenVisitor
class in Figure 6). Therefore, all classes in the visitor hierarchy need to be modified
and re-compiled due to changing of the expression structure. Obviously, the GOF
VISITOR pattern could not fit our system design requirement and it is not suitable
for the code generation design in a compiler framework.

<type- VM1CodeGenvVisitor
— <" +visitAddExpr(in : AddExpr)
w!sfuddExpr(gn : AddExpr) +visitSubExpr(in : SubExpr)
w,qlSubExpr(m : SubExpr) +vigitMulExpr(in : MulExpr)
e&w_mmm : MulExpr) Acking rew Expression sbessesl, | [+VisitDVEXpr(in : DivEXp)
visitDivExpr(in : DivExpr) requires the visiio o) Mmethods +vigitConstant(in : Constant)
+vigitConstant(in : Constant) 1o be added acrass the Viekor asrerchy LL_ 1, visitVariable(in : Variable)
+visitVariable(in : Variable) """ e visitAssignmentExpr(in : ArithmeticExpr)
L visitAssignmentExpr(in : ArithmeticExpr) \
|: Client | Py T—r—— 3 \ =
l+-accept(in v : Vi LevisHAGDExpr(in : ADJExpr)
vaccept(in v : Visitor) \ +VvisitSubExpr(in : SubExpr)
— e e
— ” LoVt n : r
Ex;yop:;lon [*accept(in v : Visitor) : visitConstant(in : Constant)

[+accept(in v : Visitor)

L+Wsitvariable(in : Variabie)
MulExpr +visitAssignmentExpr(in : ArithmeticExpr)
[+accepi(in v : Visitor)

+acecept(in v : Visitor)

DivExpr
+accept(in v : Visitor)

Figure 6: Apply GoF Visitor Pattern to the Expression Example

There are several variations of the VISITOR pattern [52] intended to overcome this
shortcoming so that the VISITOR pattern can also be used in an environment that
the object structure changes often. A brief summary of them is mentioned in the
Related Patterns section of this section.
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The REFLECTIVE VISITOR pattern introduced in this paper supports both the
changes of the generated code format and the changes of the language grammar with-
out changing the existing classes. It achieves this goal by performing the dynamic
operation dispatch in the Visitor class through reflection. The Visitor class de-
clares a visit method to be responsible for the dynamic dispatch. The corresponding
operation can be invoked automatically at run-time. Therefore the accept methods
are no longer needed and the cyclic dependencies are removed. This visit method
is defined as the only interface visible to the outside of the system so that detailed
implementation of code generation is hidden from the outside of the system.

Visitabi
ft(in : Visitable)
Expression Client findMethod(in : Visitable) : Method
isAncestorOf(in : String, in : Class) : boolean
) 0 K 1
VM2CodeGenVisitor VM1CodeGenVisitor
uate(in : AddExpr) uate(in : AddExpr)
uate(in : SubExpr) uate(in : SubExpr)
u.b(in : DivExpr) uate(in : DivExpr)
MuIExpr) uate(in : MulExpr)
uate(in : Constant)

Figure 7: Apply Reflective Visitor Pattern to the Expression Example

Figure 7 shows the solution for the above expression example by applying the
REFLECTIVE VISITOR pattern to the code generation. The visit method declared
in the Visitor class takes the concrete Expression object as argument. It queries
the concrete Expression class information through reflection to find the evaluate
method based on the concrete Expression object and then invokes the evaluate
method to perform the operation. In our example, to support two code genera-
tion formats for the virtual machine VM1 and VM2, we define two concrete visitors
VMiCodeGenVisitor and VM2CodeGenVistor respectively. The addition of the vari-
able and assignment expression in the expression structure only requires two new vis-
itor classes (ExtendVM1CodeGenVistor and ExtendVM2CodeGenVisitor) to be added

in the visitor hierarchy and their evaluate methods to be implemented. All existing
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classes in both the expression structure and the visitor hierarchy need not to be mod-
ified and re-compiled. All the evaluate operations in the visitor hierarchy are declared
protected so detailed implementation information of code generation is encapsulated.

With the REFLECTIVE VISITOR pattern, the system designer can easily add new
operations to the object structure by simply defining new concrete Visitor classes, as
what the GOF VISITOR pattern does. On the other hand, the designer can also easily
add new concrete Element classes by simply defining new Visitor subclasses in the
visitor hierarchy. The visit method is the only visible interface of the visitor hierarchy.
The client only needs to invoke this method to perform any desired operation on the
object structure. Since the interface and the implementation of the operations on the
object structure are separated, the client is shielded from any potential changes of
the implementation details.

Applicability
The REFLECTIVE VISITOR pattern can be applied when:

1. The programming language that the designer uses to implement the REFLEC-
TIVE VISITOR design pattern should support reflection. For example, Java.

2. An object structure contains many classes of objects with differing interfaces,
and the designer performs operations on these objects that depend on their

concrete classes [37].

3. Distinct and unrelated operations need to be performed on objects in an object

structure [37].

4. The object structure may be changed often to fit changing requirements. The
designer do not want to redefine the interface and recompile all existing classes.

The designer may need to reuse the object structure in the future and thus

wants to break the cyclic dependencies and de-couple the object structure and

n

the visitor hierarchy.

6. The designer wants to define a unified stable operation interface for the client

and to encapsulate the implementation details.

7. The run-time efficiency is not a major concern in the design.
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Structure

Figure 8 shows the structure of the REFLECTIVE VISITOR design pattern.

Visitor

(in : Visitable)
thod(in : Visitable) : Method
(in : String, in : Class) : boolean

yay

L » §

Visitor Visitor2
@] uata(in ElomontA) aiuvate(in : ElementA)

uate(in : ElomomB) aluate(in : ElementB)

Figure 8: The Structure of the Reflective Visitor

Participants
Visitor (Visitor)

1. The abstract class Visitor is the facade and the root of the visitor class hier-
archy. All the concrete Visitor classes are derived trom it.

2. The Visitor class defines a public visit operation, which is the unified operation
interface for the Visitor class. The client invokes the visit method to execute

the corresponding operations on the object structure.

3. The visit method takes a Visitable interface object as argument. It performs
the dynamic dispatch for the concrete Element object. That is, the visit method
finds the corresponding concrete evaluate operation from the Visitor hierarchy
and invokes it at run time.

Visitorl (VM1CodeGenVisitor, VM2CodeGen Visitor)

1. The Visitor1 defines a set of evaluate operations, each implements the specific

behavior for the corresponding concrete Element class.
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2. The evaluate operations are declared as protected so that the implementation
information can be hidden from the outside of the system.

Visitable

The interface Visitable is the interface for all the classes that can be visited. It is
an empty interface and provides the run time type information for the Visitor.

Element (Expression)

The class Element is the root of the element class hierarchy to be visited. It imple-
ments the Visitable interface. All concrete Element classes derive from the Element
class and they have no knowledge about the Visitor.

ElementA (AddExpr, SubExpr, MulExpr, DivExpr)

The class ElementA is a descendant of the Element class. The Element class and all
the concrete Element classes construct the element class hierarchy.

Collaborations

A client who uses the Visitor pattern must create a concrete Visitor object (e.g.
Visitor1) and pass the concrete Element object (e.g. ElementA) to the Visitor for
visiting.

The Visitor uses reflection to query the ElementA class information and finds the
corresponding evaluate method whose argument type is same as that of the ElementA.
The search process begins from the Visitor1 class, and then traces up its ancestors
until it reaches the root of the visitor hierarchy. If the method is found, it is invoked.
Otherwise, we assume that this evaluate method is defined for the ancestor classes of
the ElementA, so the search process repeats for these ancestors. If all the ancestors
of the ElementA have been tried and the corresponding evaluate method can not be
found, an error is thrown. Figure 9 is the sequence diagram of the visit method.

Consequences

Some benefits of the REFLECTIVE VISITOR pattern are:
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Figure 9: The Sequence Diagram for the Visiting Process

1. As that of the GOF VISITOR pattern, adding a new operation is easy. The
existing code can be avoided from modifying by simply subclassing the visitor
hierarchy if a new operation over an object structure is to be added.

2. Adding a new element class ElementC is easy. Since the Visitor is responsible
for the dynamic dispatch, any operation operating on this new ElementC can be
defined within a new subclass of the Visitor1 without modifying the existing

codes. The system’s extensibility is then improved.

3. The cyclic dependencies are broken and the coupling between the object struc-
ture and the visitor hierarchy is reduced. As the key of the standard VISITOR
pattern, the double-dispatch technique is used to bind the operation with the
concrete element in the object structure at run time. But this technique reduces
the system’s reusability. With the reflection technique, the REFLECTIVE VIsI-
TOR pattern can avoid the cyclic dependencies by performing the dynamic dis-
patch within the Visitor class. Since the Visitor is responsible for the dynamic
dispatch, the element hierarchy has no knowledge about the visitor. Hence the
system’s reusability is improved. On the other hand, the visitor can visit any
object that has a corresponding evaluate operation in the visitor hierarchy only

if this object has a Visitable interface.
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4. The visit method is the only visible interface of the visitor hierarchy. The client
only needs to invoke this method to perform any desired operation on the object
structure. Since the interface and the implementation of the operations on the
object structure are separated, the client is shielded from any potential changes

of the implementation details.

Some liabilities of the REFLECTIVE VISITOR pattern are:

1. The name of the operation needs to be fixed. The system designer should follow
the name convention and keeps all the operations named evaluate. Since the
evaluate is only visible within the visitor hierarchy, there is no direct influence

to other parts of the system.

2. The programming languages that used to implement this REFLECTIVE VISITOR
pattern need to support reflection. This limitation lets some languages, like
C++, can not be used as the implementation language for the REFLECTIVE
VISITOR PATTERN.

3. The use of reflection imposes a significant performance penalty and reduces the
system efficiency [60]. This pattern can be considered to be used only in time

non-critical systems.

Implementation

The abstract class Visitor declares a unique method visit that takes a concrete
Element object for visiting. This visit method invokes the findMethod operation to
fetch the corresponding evaluate method object through reflection. Then the wvisit
method invokes the evaluate method object to execute the operation related to the
concrete Element object.

The findMethod takes a Visitable interface object as argument. It queries the
corresponding evaluate method object based on the method name "evaluate” and
the type of the concrete Element object. The search process starts from the current
concrete Visitor class and traces up until it reaches the root class (Visitor) in
the visitor hierarchy. If the corresponding evaluate method is found, the findMethod
returns the method object. Otherwise, the search process repeats for the ancestors
of this concrete Element until it reaches the root class (Visitable) in the element
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hierarchy. If all the ancestors have been tried and the corresponding evaluate method
can not be found, an error is thrown.

There is a nested loop statement in the method findMethod. The inner loop is
used to search for an evaluate method with a given Element object as parameter. The
outer loop assigns the Element object to the inner loop for search. The assignment
principle is that the Element object to be visited is tried first, then the Element
object whose declare type is the superclass of the current Element is tried until the
corresponding evaluate method is found or an error is thrown if the search reaches the
root interface Visitable. The nested loop statement guarantees that the searches
trace up over the visitor hierarchy for the concrete Element object and all its ancestors
until the corresponding evaluate method is found.

The Visitor class would be declared in Java like:

abstract class Visitor {
public void visit(Visitable v) throws NoSuchMethodException {
Method m = findMethod(v);
try {
m.invoke(this, new Object[] { v });
}
catch ( IllegalAccessException el ) { /* code handling */ }
catch ( InvocationTargetException e2 ) { /#* code handling */ }

private Method findMethod(Visitable v)
throws NoSuchMethodException {
String methodName = "evaluate";
Class visitable = v.getClass();
wvhile ( isAncestorOf ("Visitable", visitable) {
Class visitor = getClass();
vhile ( isAncestorOf("Visitor", visitor) {
try {
Method m = visitor.getDeclaredMethod(
methodName,new Class[]{visitable});
return m;
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} catch ( NoSuchMethodException e ) {
visitor = visitor.getSuperclass();

}

visitable = visitable.getSuperclass();

}
String errMsg = "put error message here";
throw new NoSuchMethodException(errMsg);

private boolean isAncestor(Of(String ancestorName,Class descendant)
{
try {
return Class.forName (ancestorName) .isAssignableFrom(
descendant) ;
}
catch ( ClassNotFoundException e ) { /* code handling */ }
return false;

The concrete Visitor class (e.g. class Visitor1) derives from the Visitor class.
It declares an evaluate operation for each concrete class of Element that need to be
visited. Each evaluate operation in the Visitor1 takes a particular concrete Element
as argument. The visitor accesses the interface Element directly, and the visitor-
specific behavior for that corresponding concrete Element class (e.g. ElementA) is

executed.

class Visitorl extends Visitor {
protected void evaluate(ElementA el1) {
// perform the operation on ElementA;
}
protected void evaluate(ElementB e2) {
// perform the operation on ElementB;
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Sample Code

We'll use the Expression example defined in the Motivation section to illustrate the
REFLECTIVE VISITOR pattern. Instead of generating code, we implement the exam-
ple as a calculator that calculates the arithmetic expression for integers. The variables
and assignment expressions are added as extensions.

Expression Hierarchy

Figure 5 is the class diagram for the Expression hierarchy. The interface Visitable
may be declared like:

interface Visitable { }

The Expression is an abstract class implementing the Visitable interface:
abstract class Expression implements Visitable { }

The classes ArithmeticExpr, AddExpr, SubExpr, MulExpr, DivExpr, and Constant
are defined as:

abstract class ArithmeticExpr extends Expression {
protected ArithmeticExpr(Expression left, Expression right) {
this.left = left;
this.right = right;
}
public Expression getLeft() { return left; }
public Expression getRight() { return right; }

private Expression left;
private Expression right;

}

class AddExpr extends ArithmeticExpr {
public AddExpr(Expression left, Expression right) {
super( left, right );
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}

class SubExpr extends ArithmeticExpr {
public SubExpr(Expression left, Expression right) {
super( left, right );

}

class MulExpr extends ArithmeticExpr {
public MulExpr(Expression left, Expression right) {
super( left, right );

}

class DivExpr extends ArithmeticExpr {
public DivExpr(Expression left, Expression right) {
super( left, right );

class Constant extends Expression {
public Constant(int value) { this.value = value; }
public int getValue() { return value; }

private int value;

Then we add two extended expressions to the Expression hierarchy. They are

classes Variable and Assignment and can be declared like:

class Variable extends Expression {
public Variable(String id) {
this.id = id;
this.value = O;
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public int getValue() { return value; }
public void setValue(int value) { this.value = value; }
public String getId() { return id; }

private String id;
private int value;

class Assignment extends Expression {
protected Assignment (Expression lvalue, Expression rvalue) {
this.lvalue = lvalue;
this.rvalue = rvalue;
}
public Expression getLvalue() { return lvalue; }
public Expression getRvalue() { return rvalue; }

private Expression lvalue;
private Expression rvalue;

Visitor Hierarchy

The implementation of the abstract class Visitor has been showed in the Imple-
mentation section. The CalculationVisitor is defined to perform a calculation

operation on the expressions. Its declaration may like:

class CalculationVisitor extends Visitor {
protected void evaluate(AddExpr expr)
throws NoSuchMethodException {

Expression left = expr.getLeft();
Expression right = expr.getRight();
visit(left);
int leftResult = result;
visit(right);
result = leftResult + result;
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}
protected void evaluate(SubExpr expr)
throws NoSuchMethodException {
Expression left = expr.getLeft();
Expression right = expr.getRight();
visit(left);
int leftResult = result;
visit(right);
result = leftResult - result;
}
protected void evaluate(MulExpr expr)
throws NoSuchMethodException {
Expression left = expr.getLeft();
Expression right = expr.getRight();
visit(left);
int leftResult = result;
visit(right);
result = leftResult * result;
}
protected void evaluate(DivExpr expr)
throws NoSuchMethodException {
Expression left = expr.getLeft();
Expression right = expr.getRight();
visit(left);
int leftResult = result;
visit(right);
result = leftResult / result;
}
protected void evaluate(Constant ¢) {
result = c.getValue();
}
public int getResult() { return result; }
protected int result;
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In order to adapt to the changing of the Expression hierarchy, a concrete Visitor
class ExtendCalculationVisitor is defined to perform calculation operation on the
newly added Expression classes. The class ExtendCalculationVisitor is an im-
mediate subclass of the CalculationVisitor and can be declared like:

class ExtendCalculationVisitor extends CalculationVisitor {
protected void evaluate(Variable var) {
result = var.getValue();
}
protected void evaluate(Assignment expr)
throws NoSuchMethodException {
expr.getLvalue();

Expression lvalue
Expression rvalue = expr.getRvalue();

visit(rvalue);
if ( lvalue instanceof Variable);
((Variable)lvalue) .setValue(result);

Client Code

For example, to calculate the expression x= 2*y+3, a client method calculate can be

written as:

void calculate() {

Expression expr = new Assignment (
new Variable("x"),
new AddExpr(new MulExpr(new Constant(2),

new Variable("y")),
new Constant(3) ) );

ExtendCalculationVisitor calculator
= new ExtendCalculationVisitor();

try {

calculator.visit(expr);
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System.out.println( calculator.getResult() );

}
catch ( NoSuchMethodException e ) { /* code handling */ }

Known Uses

The REFLECTIVE VISITOR pattern is applied to a compiler framework developed by
the authors (50]. This framework is implemented in Java. The code generation part
of the compiler framework is implemented using the REFLECTIVE VISITOR pattern.
The code generation operation is started with a direct call to the Visitor. The
abstract syntax tree that generated by the syntactical analyzer is passed to the code
generation (i.e. the Visitor). The later recursively visit each node in the abstract
syntax tree to generate the corresponding code. With the REFLECTIVE VISITOR
pattern, the dispatch action is done by the Visitor itself. The abstract syntax tree
includes no accept method and thus it can stand alone, which improve the reusability
of the system.

The REFLECTIVE VISITOR pattern is also used in the design and implementation
of an extensible one-pass assembler developed by the authors [49]. This assembler is
based on a virtual micro assembly language under a simple virtual processor (SVP)
system and is implemented in Java.

Martin E. Nordberg III [58] describes an EXTRINSIC VISITOR pattern, which
focuses on breaking the cyclic dependencies between the visitors and the elements.

Jens Palsberg and C. Barry Jay [60] use the Java reflection technique in the
VISITOR pattern to break the double-dispatch between the dynamic linked list and
the visitor Walkabout.

Jeremy Blosser [11] and Jeanne Sebring [66] also use the Java reflection to gain the
flexibility to extend the object structure (element hierarchy) in the VISITOR pattern.

Related Patterns

COMPOSITE pattern {37]: The REFLECTIVE VISITOR pattern can be used to recur-
sively execute operations over a composite object implemented in the COMPOSITE

pattern.
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INTERPRETER pattern [37]: The REFLECTIVE VISITOR pattern can work with
the INTERPRETER pattern to do the interpreter.

GOF VISITOR pattern [37] is used to represent an operation to be performed on
the elements of an object structure. It is most likely to be used in an environment
that this visited object structure is stable.

VLISSIDES VISITOR pattern [74] defines a catch-all operation in the Visitor class to
perform the run-time type tests that ensure the correct code generation operations to
be invoked. It is best suitable in a situation where occasional extensions are occurred
to the visited object structure.

VISSER VISITOR [73] is a variation on the Vlissides Visitor framework [75]. It
defines generic counterparts AnyVisitor and AnyVisiable for visitor and element
hierarchies respectively.

SABLECC VISITOR pattern [29] allows the visited object structure to be extended
without any limitation by performing a downcasting in the object structure. How-
ever, this approach introduces a deeper binding between the object structure and the
Visitor hierarchy. It is used in situations where reusability of the object structure is
not a major concern to the designer.

AcycLIC VISITOR [54] breaks the cyclic dependency. It allows new elements to
be added without changing the existing classes. This is done by defining individual
Visitor interface for each Element to provide the operation interface. A dynamic cast
is needed in the accept method to cast the Visitor parameter to its corresponding
Visitor interface.

WALKABOUT VISITOR pattern [60] removes the cyclic dependency between the el-
ements and the visitor hierarchy by using the Java reflection technique to perform the
dispatch action. Its drawback is that it can not visit a complex multi-level compos-
ite hierarchy. The Reflective Visitor pattern can replace Walkabout Visitor pattern
wherever it is used.

BLOSSER VISITOR pattern [11] and JEANNE SEBRING VISITOR pattern [66] also
implements the dispatch action with Java reflection. It supports re-dispatch actions
so that it can visit a complex multi-level composite hierarchy. The accept method is
still used to implement the recursive traversal in this pattern. The Blosser Visitor
pattern can be replaced by the Reflective Visitor pattern when the designer wants
to remove the cyclic dependencies and to define a unified operation interface and
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encapsulate the implementation details.

EXTRINSIC VISITOR pattern [58] removes the cyclic dependencies between the
element hierarchy and the visitor hierarchy by defining a dispatch method in the visitor
to perform the dispatch action dynamically. Although the Extrinsic Visitor Pattern
reduces the coupling between the elements and visitors, adding new element classes
is hard because all related visitor classes have to redefined. The Extrinsic Visitor
Pattern is limited to be implemented under a C++ development environment.

3.3 A Pattern Language to Visitors

There are a number of approaches that have been proposed to handle a class of
complex and related objects and their related operations. The baseline approach is
the VISITOR design pattern proposed by Gamma et al [37]. But this approach gains
flexibility in some aspects and loses it in others. Variations are proposed aiming for
some improvement to the baseline approach.

This section classifies the major variations of the VISITOR pattern and organizes
them into a pattern language. It first provides general descriptions about the basic
concepts of visitors, a road map to visitors, how to use these patterns and a compar-

ison on these visitors. The following sections describe each visitor in details.

3.3.1 A Road Map to Visitors

@uble Dispatch Pattera

{Extend element hierarchy] ( =~ [Extend element hierarchy occasionally]
Gny Operation Adder PatternJL
Gasy Elerment Adder Pan% ‘fCalch-All Operation Pattea

[ Easy to extend element hisrarchy and make slements stand alone]

(Easy Element and Operation Adder Panoa

Figure 10: Road Map for the Visitor Patterns
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This section provides a road map for the Visitors. It also gives a short description
on how to use these patterns and a comparison on these Visitors and a guidance that
assists the application developer to make the best choice.

Figure 10 shows the road map for major variations of the VISITOR pattern. The
topmost pattern in Figure 10 is the DOUBLE DISPATCH pattern [37, 5, 16] and the
following is the EASY OPERATION ADDER pattern [37] introduced by the GoF book.
The DOUBLE DISPATCH pattern is a kind of generalization of the EASY OPERATION
ADDER pattern and the EASY OPERATION ADDER pattern is the baseline approach
of all Visitors. The followings are two VISITOR patterns: the CATCH-ALL OPER-
ATION pattern [75] introduced by John Vlissides and the EAsy ELEMENT ADDER
pattern [29] developed by Etienne Gagnon in his Sablecc Compiler framework. Both
the CATCH-ALL OPERATION pattern and the EASY ELEMENT ADDER pattern use
some kinds of run-time type checking and down-casting to enable the addition of the
new elements to the element hierarchy easier. But they do not break the cyclic depen-
dency between the visitor hierarchy and the element hierarchy, so the two hierarchies
have to know each other. The last approach named Easy ELEMENT AND OPERA-
TION ADDER pattern [53], is characterized by the use of the reflection technique. It
not only makes the addition of both new operations and new element classes easy,
but also breaks the cyclic dependency between the visitors and the elements so that
the elements have no knowledge about the visitors. Furthermore, it hides the im-
plementation details of the operations from the clients and thus simplifies the usage
of the visitors. But this VISITOR pattern achieves its simplicity in the expense of
performance.

There is not a right approach for the Visitors. The vitality of the Visitors is that

it provides a choice that can robustly apply in certain circumstances.

Pattern Language Summary

This pattern language includes five patterns. They are described in the following

order:

1. The DOUBLE DISPATCH pattern
‘This pattern {37, 5, 16] is not a kind of VISITOR but a generalization of the most
Visitors. It exists in the context that the execution of an operation depends
on the kind of request and the types of two receivers, the dispatcher and. the
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element. The DOUBLE DISPATCH pattern lets the dispatcher request different
operations on each class of element without modifying the existing classes.

. The EAsy OPERATION ADDER Pattern

This pattern was first introduced in the Design Pattern book [37]. It separates
the unrelated operations from the element hierarchy and wraps these operations
into another class hierarchy. By using the EASsY OPERATION ADDER pattern,
you can define new operations over the elements by simply adding a new visitor.
So the existing elements can remain unchanged. But adding new element classes
is hard because all related visitor classes have to be redefined.

. The CATCH-ALL OPERATION Pattern

This pattern [75] is an improvement to the EASY OPERATION ADDER pattern
for occasional extension of the element hierarchy. It defines a catch-all operation
in the visitors and allows new element classes to be occasionally added without
modifying the existing visitor interfaces. The cyclic dependencies still exist

between the visitors and the elements.

. The EAsy ELEMENT ADDER Pattern

This pattern [29] is also an improvement to the EASY OPERATION ADDER
pattern in the situation where the element hierarchy is changed often. It allows
new element classes to be added without any limit. But this approach introduces
a deeper binding between the element hierarchy and the visitor hierarchy. It
can be used where reusability of the element hierarchy is not a major concern

to the designer.

. The EAsy ELEMENT AND OPERATION ADDER Pattern

This pattern is proposed by us[53]. It takes advantages of the reflection tech-
nique to simplify its structure and implementation. The cyclic dependency
between the visitors and the elements is broken and the implementation details
of the operations are encapsulated. Both addition of new operations and new

element classes become easy.
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Table 1: Problem/Solution Summaries for Visitors

Problem

Solution

Pattern Name

How to accept additional
types of arguments in a
method without modify-
ing the existing code of
the method?

Shift responsibility from
the class that performs
the operation to a class
hierarchy, where any ele-
ment may appear as an
argument to the opera-
tion.

Double Dispatch

How to define new opera-
tions on classes over time
without changing these
class interfaces?

Package the operations
in a separate hierarchy
and define the accept
method in the elements
to perform dispatch.

Easy Operation Adder

How to prevent the
modification of the exist-
ing visitor classes while
allowing new element
classes to be added
occasionally?

Define a catch-all opera-
tion in the Visitor class
and override it in the
concrete visitors to per-
form the run-time type
checking.

Catch-All Operation

How to easily add new
element or new opera-
tions without modifying
the existing interfaces?

Redefine a complete in-
terface for all visitors and
perform a down-casting
in the elements.

Easy Element Adder

How to enable both ad-
dition of new operations
and new element classes
easy, while at the same
time, make the element
hierarchy stand alone?

Remove the accept from
the elements and let the
visitor to elegantly han-
dle the dispatch action
based on reflection.

Easy Element and Op-
eration Adder
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Table 2: Comparison on Visitor Patterns

eration Adder

Pattern Name Add New | Add New | Coupling Efficiency
Operation | Element
Easy Operation Adder | Easy Hard “Tight High
Catch-All Operation | Easy Easy for small Tight High
extension
Easy Element Adder | Easy Easy Tight High
Easy Element and Op- | Easy Easy Loose Low

How to Use These Patterns

The reader who searches for a solution to a visitor problem may resort to Table 1
and Table 2. If a pattern is of particular interest, Context, Forces, Rationale and
Resulting Context sections can be examined to determine the applicability of this
pattern in the target circumstance. Once a pattern is chosen, the Solution and Code

Samples sections can help the reader to implement the chosen pattern in the target

system. Table 1 summarizes the pairs of problem and solution for the patterns.

A Comparison on Visitors

Table 2 compares the VISITOR patterns based on easy addition of new operations,

easy addition of new elements, coupling between the visitor hierarchy and the element

hierarchy, and the run-time efficiency:

e All VISITOR patterns can easily add new operations because they all define two

class hierarchies.

e The EAsy ELEMENT ADDER pattern and the EASy ELEMENT AND OPERA-

TION ADDER pattern allow new element classes to be easily added. The latter

is superior to the previous due to the simplicity of its implementation. The

CATCH-ALL OPERATION pattern allow a small number of element classes to be

added, otherwise, the programming style will degrade into tag-and-case state-
ments. Use the EASY OPERATION ADDER patterns to extend the element

classes is hard because all related visitors need to be modified to incorporate

new element types.
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e The EAsy ELEMENT AND OPERATION ADDER patterns breaks the cyclic de-
pendency between the visitors and the elements so that they have loose coupling.
But other patterns do not.

e Due to the use of reflection technique, the run-time efficiency of the EAsy
ELEMENT AND OPERATION ADDER pattern is low.

There is not a right VISITOR pattern all the time. All patterns presented in this
section are selectively applied in certain circumstances. From Table 2, we can also
see that a system’s extensibility is always traded with its efficiency. For example, the
EAsy ELEMENT AND OPERATION ADDER pattern has a very superior structure and
good extensibility, but its efficiency is very slow.

3.3.2 A Simple Example

Because all patterns presented in this section are closely related, we will put all of
them together to highlight their similarities and differences. We’ll re-use the simple
expression example that is shown in Section 3.2 to illustrate their implementations.
This simple expression supports arithmetic expressions such as addition, subtraction,
multiplication, and division for constants. Figure 5 shows the language structure hier-
archy for this expression example. The expression structure hierarchy is organized as
a composite structure and can be implemented by a COMPOSITE design pattern [37].
The abstract syntax tree therefore is represented as a composite object, which is
recursively constructed with the instances of the node classes in the expression struc-
ture during the parsing. The code generation or calculation process then performs

the code generation operation or calculation over this abstract syntax tree.

3.3.3 Double Dispatch
Alias

Visitor Essence.

Context

The behavior of a method depends not only on the class that implements the method

but also on the classes of the method’s arguments as well.
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Problem

How to accept additional types of arguments in a method without modifying the
existing code of the method?

Forces

e Using a case-like statement to perform type-checking on the types of arguments
makes the system difficult to extend.

e Determining the argument types at run time rather than at compile-time makes
the system more flexible.

Solution
Dispatcher AbstractElement
+accept(in @ : AbstractElement) vigit(in : Dispatcher)
l JAN
Element1 Element2
+visit(in : Dispatcher) +vigit(in : Dispatcher)

Figure 11: Structure for the Double Dispatch Pattern

Shift responsibility from the class that performs the operation to a class hierarchy,
where any element may appear as an argument to the operation. All these elements
share an identical operation interface.

Figure 11 shows the structure of the DOUBLE DISPATCH pattern. There are two
groups defined in the design. One is the class Dispatcher. The other is the element
hierarchy. The Dispatcher defines a method accept that can accept a concrete ele-
ment instance. The implementation of the accept method calls the related method
visit in the element hierarchy. The method accept is a double-dispatch operation. It
depends on both the types of the Dispatch and the concrete element.
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Rationale

Treating different types of receivers the same and letting the program determine the
concrete types at run time help to avoid degrading the program into a long tag-and-
case statement in order to distinguish different types of receivers. For instance, in
Figure 11, we assume that the class Element2 is a newly added concrete element class.
It defines a visit method to implement the corresponding operation that should be
executed during the accept method’s execution. When the accept method is called on
an instance of Dispatcher with a given instance of Element2 as argument, it invokes
the polymorphic visit method on the instance of class Element2(the argument of
the method accept) and supplies itself as a parameter. The visit method of class
Element2 can call back to any method defined in the Dispatcher. As a consequence,
any concrete element type can be accepted by the Dispatcher without modifying the
invoking method defined in the Dispatcher.

Resulting Context

e Accept additional types of arguments in a method without modifying the ex-
isting code of the method. New type argument can be added in the element
hierarchy by inheritance and the method can accept the instance of this new
type and dispatch the operation to this instance by polymorphism.

® There is no need to write a case-like statement in the invoking method (eg.
accept) to perform type-checking on the types of arguments and add additional
type-checking statements once a new parameter type is added. Instead, the
argument types can be determined at run time dynamically. With DOUBLE
DISPATCH, the parameter type is determined at run-time, the behavior of the
invoking method is hidden at compile time.

e The code is distributed in several classes so that locating and understanding
the intending behavior becomes hard.
Code Samples

We focus on the Constant class in the simple expression example and show how to
implement the DOUBLE DISPATCH pattern, The following shows the definitions of
the related classed and the implementation in Java.
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class Constant{
public void accept(CodeGen gen) {

gen.visit(this);

abstract class CodeGen {
abstract public void visit(Constant expr);

class VMiCodeGen extends CodeGen {
public void visit(Constant expr) {
// code generation for virtual machine VM1 ;

class VM2CodeGen extends CodeGen {
public void visit(Constant expr) {
// code generation for virtual machine VM2 ;

Related Patterns

The DoOUBLE DISPATCH pattern is a kind of generalization of the EAsy OPERATION
ADDER pattern.

3.3.4 Easy Operation Adder
Aliases

GoF Visitor, Visitor Pattern, Standard Visitor.
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Context

There are a fair number of instances of a small number of classes that are rarely
changed, and you are expecting to perform new operation that involves all or most
of them [16].

Problem

How to define a new operation on classes over time without changing the classes of

the elements on which it operates?

Forces

e Codes that change often will introduce new bugs that are hard to locate and
fix.

o If the number of classes is large, adding new operations to these classes needs

a significant overhead of recompile.

e Grouping distinct and unrelated operations in a class may lead to a solution

that is hard to understand and maintain.

e A volatile interface is hard to use and maintain because the client code needs

to change often.

Solution

Define two hierarchies. Related operations are grouped into a hierarchy called the vis-
itor hierarchy, and the other hierarchy includes all elements and is called the element
hierarchy. A method accept is defined across the element hierarchy. An operation is
performed on an element object by a call of the accept on the element object and a
supply of the corresponding visitor as argument that represents the desired operation.
Thus, in the EASY OPERATION ADDER pattern, the dispatch action is performed by
the element object. A concrete element object knows which operation associated with
it, so it dispatch a call to the corresponding visitor object by supplying itself as the
parameter. Figure 12 shows the structure of the EAsY OPERATION ADDER pattern.
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AbstractVisitor |- —| Clienmt AbstractElement |

+visitElementA(in :ElamomA)l (in v : AbstractVisitor)|

i l‘v.viwaunnn(lrn); v.vigitElement1 (mﬁ v.vmtaemna(misﬁ
0 be added across the Visitor hierarchy, '

Figure 12: Structure for the Easy Operation Adder Pattern

Rationale

If an object is too complex to understand, it is better to separate it into smaller
objects that are less complex. Isolating the changeable parts in an object helps to
leading to a system that is easy to maintain and extend. On the other hand, removal
of unrelated operations will make the elements more cohesive. It is also desirable to
separate code that changes from the code that does not. Adding new operations will
only happen within the scope of the visitor hierarchy, while the interface of the element
hierarchy keeps unchanged. If any new bugs are introduced due to the adding of new
operations. the bugs are easily located by examining the newly added operations in
the visitor hierarchy. This solution structure also supports incremental programming

because new operations to an object structure can be added incrementally.

Resulting Context

¢ A new operation can be easily added by simply adding a new visitor. Any code

in the elements needs not to be changed.

e adding a new concrete element class is hard. Any addition of a new concrete
element class Xxx requires a visitXzz(Xzz) method to be defined as abstract in
the abstract visitor root class and implemented in all concrete element classes.
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Code Samples

We will use the simple expression example to illustrate this VISITOR pattern. Instead
of generating code, we implement the example as a calculator that calculates the
arithmetic expression for integers. The variables and assignment expressions are

added as extensions.

Expression Hierarchy
Figure 5 is the class diagram for the Expression hierarchy. The Expression is an
interface:

interface Expression {
public void accept(Visitor visitor);

The classes ArithmeticExpr, AddExpr, SubExpr, MulExpr, DivExpr, and Constant
are defined as:

abstract class ArithmeticExpr implements Expression {
protected ArithmeticExpr(Expression left, Expression right) {
this.left left;
this.right = right;

}

abstract public void accept(Visitor visitor);
public Expression getLeft() { returm left; 3}
public Expression getRight() { return right; }

private Expression left;
private Expression right;

class AddExpr extends ArithmeticExpr {
public AddExpr(Expression left, Expression right) {
super( left, right );
}

public void accept(Visitor visitor) {
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visitor.visitAddExpr(this);

}

Class SubExpr extends ArithmeticExpr {
public SubExpr(Expression left, Expression right) {
super( left, right );
}
public void accept(Visitor visitor) {
visitor.visitSubExpr(this);
}
}

class MulExpr extends ArithmeticExpr {
public MulExpr(Expression left, Expression right) {
super( left, right );
}
public void accept(Visitor visitor) {
visitor.visitMulExpr(this);

class DivExpr extends ArithmeticExpr {
public DivExpr(Expression left, Expression right) {
super( left, right );
}
public void accept(Visitor visitor) {
visitor.visitDivExpr(this);

class Constant implements Expression {
public Constant(int value) { this.value = value; }
public int getValue() { return value; }
public void accept(Visitor visitor) {
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visitor.visitConstant(this);

private int value;

Then we add two extended expressions to the Expression hierarchy. They are
classes Variable and Assignment and can be declared like:

class Variable implements Expression {
public Variable(String id) {
this.id = id;
this.value = 0;
}
public void accept(Visitor visitor) {
visitor.visitVariable(this);
}
public int getValue() { return value; }
public void setValue(int value) { this.value = value; }
public String getId() { return id; }

private String id;
private int value;

class AssignmentExpr implements Expression {

protected AssignmentExpr(Expression lvalue, Expression rvalue) {
this.lvalue = lvalue;
this.rvalue = rvalue;

3

public void accept(Visitor visitor) {
visitor.visitAssignmentExpr(this);

}

public Expression getLvalue() { return lvalue; }

public Expression getRvalue() { return rvalue; }
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private Expression lvalue;
private Expression rvalue;

Visitor Hierarchy The visitor hierarchy encapsulates calculation operations per-
formed over the expression.

The following implementation also shows that a concrete element can also be a
composite object.

interface Visitor{
public void visitAddExpr (AddExpr expr);
public void visitSubExpr(SubExpr expr);
public void visitMulExpr(MulExpr expr);
public void visitDivExpr(DivExpr expr);
public void visitConstant(Constant expr);

// nevly added methods due to the extension of the expression
pPublic void visitAssignmentExpr(AssignmentExpr expr);
public void visitVariable(Variable expr);

class CalculationVisitor implements Visitor {

public void visitAddExpr (AddExpr expr) {
Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult + result;

}

public void visitSubExpr (SubExpr expr) {
Expression left = expr.getLeft();
Expression right = expr.getRight();

70



left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult - result;

}

public void visitMulExpr (MulExpr expr) {
Expression left = expr.getleft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult * result;

}

public void visitDivExpr(DivExpr expr) {
Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept (this);
int leftResult = result;
right.accept(this);
result = leftResult / result;

}

public void visitConstant(Constant expr) {
result = expr.getValue();

// newly added methods due to the extension of the expression
public void visitAssignmentExpr (AssignmentExpr expr) {

Expression lvalue = expr.getLvalue();
expr.getRvalue();

Expression rvalue

rvalue.accept(this);

if ( lvalue instanceof Variable);
((Variable)lvalue) .setValue(result) ;
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public void visitVariable(Variable expr) {
result = expr.getValue();

}
public int getResult() { return result; }

protected int result;

Related Patterns

Visitor pattern can be used to perform operations on a composite object defined in
the Composite pattern [37]. It can also be applied to perform the interpretation in
the Interpreter pattern [37].

3.3.5 Catch-All Operation

Aliases

Vlissides Visitor, Restricted Element Adder Visitor.

Context

You want to use visitors and you need to occasionally add new element classes. But
vou do not want to change the interfaces of the visitors once they have been defined.

Problem
How to prevent the modification of the existing visitor classes while allowing new
element classes to be added occasionally?

Forces

e It is hard to modify an interface once it has been built in a framework.

e The structure proposed in the EASsYy OPERATION ADDER pattern separates
operations from elements. Adding new operations are easy because it needs not
modify the existing interfaces of elements. But adding a new element class is
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hard. All interfaces of related visitor classes must be modified to incorporate a
method to visit the newly added element class.

A structure with changing interface is fragile.

An interface can be easily extended by inheritance without modifying the ex-
isting interface.

If a method could not be added to the existing classes, it can be added to
the extended classes. But since the definition of this method is missing in the
ancestors, a type casting is mandatory if the message receiver has a declared
type of the ancestors.

If the implementation of a method in a class could not be changed, it can be
overridden in the extended classes. An overridden method is only necessary if
it has a distinct behavior that the original method could not handle.

AbstractVisitor Chient Abstracttiement

+vigit(in : ElementB)
+Visit(in : AbstractElement

+visit(in : ElementA) v.visit( this );

in v : AbstractVisitor)

ZF

Visitor1 E ™y

+visit(in : ElementA)
+visit(in : ElementB)
+visit(in : AbstractElement)

+accept(in v : AbstractVisitor

it ( e instanceof ElementC ) {

v.visit( this ); ,

T e T /I perform operation
.~"V:.L:J"‘.-‘~W"f R }

eise // default operation

@ 2, Abs! i

super.visit(e);
}

Figure 13: Structure of the Catch-All Operation Pattern

Solution

Similar with the EASsY OPERATION ADDER pattern, the structure of the pattern

defines two class hierarchies, the element hierarchy and the visitor hierarchy. A catch-

all operation is defined in the base class AbstractVisitor and it is overridden in its
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descendants. If a new element class is added in the element hierarchy, new visitor
classes are defined to extend the existing concrete visitor classes and the catch-all
operation is re-written to perform the run-time type test on the newly added element
class.

Figure 13 shows the structure for the CATCH-ALL OPERATION pattern. The
newly added classes are adorned in gray. The ElementC is a newly added element
class. A ExtendVisitorl class is defined to subclass the Visitor1 and the catch-all
operation wvisit is overridden to perform the run-time type checking on the ElementC.
If a element to be visited is a newly added element, specific operation related to the
new class is performed. Otherwise, the method demonstrates its previous behavior.

Rationale

Two simple class hierarchies as that defined in the EASY OPERATION ADDER pattern
have many advantages including one that allows the new operation to be added easily
without recompiling the element hierarchy. A catch-all operation is so blurring that it
leaves margin to allow the new elements to be easily added and handled. Occasional
addition of the element classes will not degrade the programming style of the catch-all

operation because the tag-and-case statement is very short.

Resulting Context

e New element classes can be added occasionally without any modification of the

existing visitor classes.

e If new element classes are constantly added, CATCH-ALL OPERATION will de-

grade into a tag-and-case-statement style of programming.

Code Samples

We’ll still use the expression example to calculate the arithmetic expression for inte-

gers. The variables and assignment expressions are added as extensions.
Element Hierarchy

The classes defined in the element hierarchy are the same as the class declarations in
the EASY OPERATION ADDER.
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Visitor Hierarchy

interface Visitor{
public void visit(AddExpr expr);
public void visit(SubExpr expr);
public void visit(MulExpr expr);
public void visit(DivExpr expr);
public void visit(Constant expr);

// catch-all operation
public void visit(Expression expr);

class CalculationVisitor implements Visitor {

public void visit(AddExpr expr) {
Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult + result;

}

public void visit(SubExpr expr) {
Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult - result;

}

public void visit(MulExpr expr) {
Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);



int leftResult = result;
right.accept(this);
result = leftResult * result;

}

public void visit(DivExpr expr) {
Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult / result;

}

public void visit(Constant expr) {
result = expr.getValue();

}

// catch-all operation

public void visit(Expression expr) { }

public int getResult() { return result; }

protected int result;

Operations for newly added elements are encapsulated in the extended concrete

visitor class.

class ExtendCalculationVisitor extends CalculationVisitor {
// catch-all operation
public void visit(Expression expr) {
if ( expr instanceof AssignmentExpr )
visit ((AssignmentExpr)expr) ;
else if ( expr instanceof Variable )
visit((Variable)expr)
else
super.visit(expr) ;
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public void visit(AssignmentExpr expr) {
Expression lvalue = expr.getLvalue();

Expression rvalue = expr.getRvalue();
rvalue.accept (this);
if ( lvalue instanceof Variable);
((Variable)lvalue) .setValue(result) ;
}
public void visit(Variable expr) {
result = expr.getValue();

Related Patterns

This pattern is an improvement to the EASY OPERATION ADDER pattern [37].

Visser’s Visitor (73] is a variation on the Vlissides Visitor framework [75]. It
defines generic counterparts AnyVisitor and AnyVisitable for visitor and element
hierarchies respectively.

3.3.6 Easy Element Adder
Aliases

Sablecc Visitor.

Context

You have visitor that works well. You are expecting to add element classes in the
future, but you are unable to change the existing class interfaces.

Problem

How to easily add new element or new operations without modifying the existing
interfaces?
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Forces

The EAsy OPERATION ADDER pattern makes the addition of new operations
easy, but adding new element classes is hard because it needs to modify the

existing interfaces of the visitors.

The CATCH-ALL OPERATION pattern is not suitable because constantly adding
new element classes will degrade the implementation of the catch-all operation

to be a tag-and-case style of programming.

Inheritance provides a good means to extend the existing interface without
actually modifying it.

If the inheritance tree is high, a structure is hard to understand because the

underneath classes could not be understood without resorting to its ancestors.

A type casting can satisfy the compiler because it can precisely refer to a method
defined in some classes but not in others. But the type casting is unsafe. It
always depends on the good wills of the programmer.

«interface» ConcretsVisitor!
:] L Vishor i itElementA('v‘.- ElementA)
visitElementA(in - ElementA) +VIst n :
+visitElementB(in : Elements) visitElementB(in_: ElementB)

l_ Client I «interface»
Visitable

AbstractElement +accept(in v : VisitorlF)
+accept(in v : VisitorIF) B

((ExtendVisitor)v).visitElementC(this);
+accept(in v : VisitoriF)
? ElementB B

((Visitor)v).visitElementB(this);

ElementA ((Visitor)v).visitElementA(this);
+accept(in v : VisitorlF)p—""

Figure 14: Structure for the Easy Element Adder Pattern
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Solution

Separate the elements and their operations in two class hierarchies, one is the Visitor,
and the other is the Element. An interface VisitorIF is defined on the top of the
visitor hierarchy. New operations can be easily added by defining concrete visitor
classes in the visitor hierarchy. New element classes can be added by extending
existing interfaces in the Visitor hierarchy and defining concrete visitor to implement
the newly added interface.

Figure 14 shows the structure for the EASsy ELEMENT ADDER pattern. It is
a snapshot after adding a new element class ElementC. The new added classes are
adorned in gray. The interfaces of the visitors are extended by introducing two new
interface classes: ExtendVisitor and AllVisitor. The previous extends the root
interface VisitorIF by defining a new visit operation for the newly added element
class. The latter represents the complete interface for the visitors due to the chang-
ing of the subject elements. Class AllVisitorAdapter is a new visitor class that
implements the complete interface A11Visitor. In order to adapt to the changing
interfaces in the visitor hierarchy, the accept methods that are defined in the element
classes must indicate which visitor class it dispatches to by performing down-casting.

Rationale

An existing interface is hard to change, but it is easy to extend. A redefinition of
the concrete visitors due to any addition of new element class is easy to understand
without resorting to the ancestors. In general, both hierarchies are developed or
maintained by the same person. So a type casting in the accept can be considered to

be safe.

Resulting Context

e The elements and their operations can be easily extended without any restriction

and without modifying the existing class interfaces.

e Frequently adding new classes makes the class hierarchy too complicated to

understand and implement.

e The type-casting in the accept method makes the programming unsafe and
tightly coupled with the concrete element types.
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Code Samples

The following shows the Java implementation on how to applying EAsy ELEMENT
ADDER pattern to the calculation for the simple expression example.

Expression Hierarchy

interface Visitable { }

interface Expression extends Visitable {
public void accept(Visitor visitor);

The classes ArithmeticExpr, AddExpr, SubExpr, MulExpr, DivExpr, and Constant
are defined as:

abstract class ArithmeticExpr implements Expression {
protected ArithmeticExpr(Expression left, Expression right) {
this.left left;
this.right = right;

}

abstract public void accept(Visitor visitor);
public Expression getLeft() { return left; }
public Expression getRight() { return right; }

private Expression left;
private Expression right;

}

class AddExpr extends ArithmeticExpr {
public AddExpr(Expression left, Expression right) {
super( left, right );
}
public void accept(Visitor visitor) {
((Visitor)visitor).visitAddExpr(this);
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class SubExpr extends ArithmeticExpr {
public SubExpr(Expression left, Expression right) {
super( left, right );
}
public void accept(Visitor visitor) {
((Visitor)visitor) .visitSubExpr(this);

}

class MulExpr extends ArithmeticExpr {
public MulExpr(Expression left, Expression right) {
super( left, right );
}
public void accept(Visitor visitor) {
((Visitor)visitor) .visitMulExpr(this);

class DivExpr extends ArithmeticExpr {
public DivExpr(Expression left, Expression right) {
super( left, right );
}
public void accept(Visitor visitor) {
((Visitor)visitor) .visitDivExpr(this);

class Constant implements Expression {
public Constant(int value) { this.value = value; }
public int getValue() { return value; }
public void accept(Visitor visitor) {
((Visitor)visitor) .visitConstant (this);

private int value;
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Two extended expressions, classes Variable and AssignmentExpr can be added

to the Expression hierarchy as following:

class Variable implements Expression {
public Variable(String id) {
this.id = id;
this.value = 0;
}
public void accept(Visitor visitor) {
((ExtendVisitor)visitor) .visitVariable(this);
}
public int getValue() { return value; }
public void setValue(int value) { this.value = value; }
public String getld() { return id; }

private String id;
private int value;

}

class AssignmentExpr implements Expression {

protected AssignmentExpr(Expression lvalue, Expression rvalue) {
this.lvalue = lvalue;
this.rvalue = rvalue;

}

public void accept(Visitor visitor) {
((ExtendVisitor)visitor) .visitAssignmentExpr (this);

}

public Expression getLvalue() { return lvalue; }

public Expression getRvalue() { return rvalue; }

private Expression lvalue;

private Expression rvalue;
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Visitor Hierarchy For extending the new elements without modifying the existing

visitors, the new visitor interfaces are defined to support the extension.

interface VisitorIF { }

interface Visitor extends VisitorIF {

public void

public
public

public void

public

visitAddExpr (AddExpr expr);
visitSubExpr (SubExpr expr);
visitMulExpr (MulExpr expr);
visitDivExpr (DivExpr expr);
visitConstant (Constant expr);

interface ExtendVisitor extends VisitorIF {
public void visitAssignmentExpr(AssignmentExpr expr);
public void visitVariable(Variable expr);

interface AllVisitor extends Visitor, ExtendVisitor { }

class CalculationVisitor implements Visitor {
public void visitAddExpr(AddExpr expr) {
Expression left = expr.getLeft();

Expression right = expr.getRight();
left.accept(this);
int leftResult = result;

right.accept(this);

result

}

leftResult + result;

public void visitSubExpr (SubExpr expr) {
Expression left = expr.getLeft();

Expression right = expr.getRight();

left.accept(this);
int leftResult = result;
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right.accept(this);
result = leftResult - result;

}

public void visitMulExpr(MulExpr expr) {
Expression left = expr.getleft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult * result;

}

public void visitDivExpr(DivExpr expr) {
Expression left = expr.getLeft();
Expression right = expr.getRight();
left.accept(this);
int leftResult = result;
right.accept(this);
result = leftResult / result;

}
public void visitConstant(Constant expr) {
result = expr.getValue();
}
public int getResult() { return result; }

protected int result;

class ExtendCalculatorVisitor extends CalculatorVisitor
implements AllVisitor {
public void visitAssignmentExpr(AssignmentExpr expr) {
Expression lvalue = expr.getLvalue();

Expression rvalue = expr.getRvalue();
rvalue.accept(this);
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if ( lvalue instanceof Variable);
((variable)lvalue) .setValue(result);

}
public void visitVariable(Variable expr) {
result = expr.getValue();

Related Patterns

This pattern is an improvement to the EASY OPERATION ADDER pattern [37].
Acyclic Visitor [54] allows new elements to be added without changing the existing

classes. It defines an individual visitor interface for each element to provide the

operation interface. A dynamic cast is needed in the accept method to cast the

visitor parameter to its corresponding visitor interface.

3.3.7 Easy Element and Operation Adder
Aliases

Reflective Visitor.

Context

You want to use visitors and you want to make both addition of new operations and

new elements easy. You are also expecting to reuse the element hierarchy.

Problem

How to enable both addition of new operations and new element classes easy, while

at the same time, make the element hierarchy stand alone?

Forces

e A structure that proposed in the EASsY OPERATION ADDER pattern makes
adding new operations easy, but adding new element classes is hard and reusing

these elements is also hard.



e Structures proposed in the the CATCH-ALL OPERATION pattern and the EAsy
ELEMENT ADDER pattern support the extension on both the element hierarchy
and visitor hierarchy, but reuse elements is hard because these elements depend

on the visitors.

e Breaking the cyclic dependency and letting the element hierarchy stand alone,
the system can reuse the elements hierarchy easily.

e If the dependency is removed on the side of elements, the Visitors must carry
out the dispatch action that requires the type information about the related

elements.

e The reflection technique provides an easy way to locate a method if its naming
convention is known in advance. But the use of reflection gains simplicity in

the expense of performance.
e A unified simple interface for operations is easy to use and maintain.

e To modify an interface is hard, but extend it is easy.

Solution

Separate operations from the elements. Objects of the elements to be visited are
specified as Visitable. All accept methods are removed from the element hierarchy.
Method wvisit in the root class AbstractVisitor is the only visible method in the vis-
itor hierarchy and invokes the findMethod method to perform the dispatch operation.
The method findMethod uses reflection technique to locate the desirable methods for
the supplied parameter. Various evaluate methods are defined in the concrete visitors
to perform specific operations on the related elements. Figure 8 shows the structure
for the EAsy ELEMENT AND OPERATION ADDER pattern.

Rationale

A common interface Visitable enables distinct elements to be built in different
element hierarchies to share a common ancestor. The method visit implemented in
the AbstractVisitor class is the only public method in the visitor hierarchy. It takes
a role of a dynamic dispatcher by invoking the corresponding evaluate method found

86



by findMethod method. The reflection is used by the method visit and findMethod
to support the method finding and method invocation dynamically. Because the
dispatch operation is performed by the Visitor class, the accept methods can be
removed from the element hierarchy and thus the developer can reuse these elements
without the visitors’ supports. The method evaluate can visit a composite object
recursively because an evaluate method is invoked by the visit method and it can
also make a call to the method visit if needed. The use of reflection will lead to a
severe performance penalty, but it can still be accepted if performance is not a major
concern in the system design. Any addition of new operations only needs to define
a new concrete visitor class in the visitor hierarchy. Any addition of new element
class only needs to extend the related concrete visitor classes and define new evaluate
methods in the new visitor classes. Existing classes are thus kept from any potential

modification.

Resulting Context

1. As that of the EASY OPERATION ADDER pattern, adding a new operation is
easy. The existing code can be avoided from modifying by simply subclassing
the visitor hierarchy when a new operation over the element hierarchy is added.

2. Adding a new element class is easy. Since the AbstractVisitor is responsible
for the dynamic dispatch, any operation operating on this new element can be
defined within a new visitor subclass without modifying the existing codes. The

system’s extensibility is then improved.

3. The cyclic dependencies are broken and the coupling between the element hi-
erarchy and the visitor hierarchy is reduced. As the key of the traditional
VISITOR pattern, the double-dispatch technique is used to associate the oper-
ation with the concrete element at run time. But this technique reduces the
system’s reusability. With the reflection technique, the VISITOR pattern can
avoid the cyclic dependencies by performing the dynamic dispatch within the
AbstractVisitor class. Since the visitor is responsible for the dynamic dis-
patch, the element hierarchy has no knowledge about the visitor. Hence the
system’s reusability is improved. On the other hand, the visitor can visit any

object that has a corresponding evaluate operation in the visitor hierarchy only
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if this object has a Visitable interface.

4. The visit method is the only visible interface of the visitor hierarchy. The
client only needs to invoke this method to perform any desired operation on the
visitable elements. Since the interface and the implementation of the operations
on the elements are separated, the client is shielded from any potential changes

of the implementation details.

5. The name of the operation needs to be fixed. The system designer should follow
the name convention and keeps all the operations named evaluate. Since the
evaluate is only visible within the visitor hierarchy, there is no direct influence

to other parts of the system.

6. The programming languages that used to implement this VISITOR pattern need
to support reflection. This limitation lets some languages, like C++, can not
be used as the implementation language for this pattern.

7. The use of reflection imposes a significant performance penalty and reduces the
system efficiency [60]. This pattern can be considered to be used only in time

non-critical systems.

Code Samples

The Java implementation of the EASY ELEMENT AND OPERATION ADDER for the

simple expression example is shown in Section 3.2.

Related Patterns

This pattern is an improvement to all other VISITOR patterns presented in this section
and is applied when the programming environment supports reflection and efficiency
is not a major concern. Section 3.2 presents a set of patterns that are related to this

pattern.
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3.4 Summary

The REFLECTIVE VISITOR improves the extensibility and reusability features upon
the earlier implementations of the VISITOR pattern. The reflection technique en-
ables the visitor to perform the run-time dispatch action on itself. The separation of
the run-time dispatch action from the object structure makes any extension to the
object structure become easy. It also removes the cyclic dependencies between the
visitors and the object structure, so the reusability and extensibility of the system
are improved.

This chapter also presents a pattern language to VISITORs that have been pro-
posed since 1995. The pattern language can assist the application developer to better
understand the circumstance that a VISITOR pattern is applied and their pros and
cons so that a right decision can be made. However, this pattern language does not
come to the end. As long as new VISITOR patterns continue to emerge, this pattern
language will evolve with them.

The next chapter will present the design of a parser with the reflection pattern.
We will show how can REFLECTION pattern benefit the object-oriented design of a

predictive recursive-descent parser.
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Chapter 4
Parsing with Reflection Pattern

Parsing is the core of the front end of a compiler. The predictive recursive-descent
parsing approach is most widely used in a traditional compiler design. It is straightfor-
ward and easy to implement. But since predictive recursive-descent parsing degrades
into structured program, it results in a parser that is very hard to change, extend and
maintain.

A pattern language is a set of related patterns that solve a common problem
in a problem domain. This chapter presents a pattern language for developing a
framework for parsing in object-oriented compiler design based on the principle of the
predictive recursive-descent parsing approach. It describes four patterns that address
three design aspects in developing an object-oriented parser. Two alternative patterns
are presented to provide alternative solutions to solve the recursion problem in the
object-oriented software design. One is based on the Builder design pattern, and the
other is based on the meta-programming technology. The parsers developed from this
pattern language are easy to implement, easy to extend, and easy to maintain. This
pattern language is intended to express a flexible and extensible design for parsing
that can accommodate variations to its most extent. It is presented in a pattern
language format [56] as described in Section 2.4.

Section 4.1 presents a pattern language for parsing. Section 4.1.1 is the overview
of this pattern language. Section 4.1.2 to Section 4.1.5 describe patterns PARSER
STRUCTURE, LANGUAGE STRUCTURE, PARSERBUILDER, and METAPARSER in de-
tails.
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Table 3: Problem/Solution Summaries for Patterns in the Parsing
Problem Solution Pattern Name

How to define an exten- | Separate grammar rules from Parser Structure
sible architecture to maxi- | the language structure.
mize accommodation of var-
ious hot spots for the design
of a parser?

How to represent the lan- | Organize the language struc- | Language Structure
guage structure to antici- | ture with the COMPOSITE de-
pate the changing formats | sign pattern.

of the target languages?
How to assemble the loose | Define a common parsing in- ParserBuilder
coupling components in the | terface with a hook method
parser, while at the same | and let a concrete class imple-
time, allow it to be eas- | ment this hook method and
ily extended without mod- | wrap the parsing process for

ifying the existing code? the corresponding target lan-
guage.
How to encapsulate the ap- | Define the base-level for the MetaParser

plication logic and build | application logic and the
a self-manageable and in- | meta-level to reflect the base-
telligent parsing processing | level and control the parsing
mechanism? process.

4.1 A Pattern Language for Parsing

4.1.1 Overview

As the use of pattern has injected insight in the analysis of a problem and its solutions,
pattern is increasingly important in software design and presentation. A pattern
language is a set of related patterns that solve a common problem in a problem
domain. It is particular effective at addressing certain recurring problems.

The syntactic analyzer, or the parser, is the core of the front end of the compiler.
Its main task is to analyze the program structure and its components [61]. In gen-
eral, the design of a parser is changing due to the changing of the target language’s
definition. However, for various compiled languages, all parsing processes share the
major commonalty, that is, they follow the same operation pattern.

This section presents a pattern language for developing a framework for parsing
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in object-oriented compiler design based on the principle of the predictive recursive-
descent parsing approach. It contains four patterns, each is described in a pattern
style, where its context, problem, forces, solution, etc, are discussed. The target
audience is the framework designer who intends to develop an extensible architecture
for parsing or the application developer who needs to better understand the framework
in order to customize it for a specific application.

This pattern language contains four different patterns to address three aspects of
a framework design for the syntactic aralysis in a compiler. These patterns are:

e An analysis pattern: PARSER STRUCTURE, which addresses the architectural
aspect of a parser.

e A structural pattern: LANGUAGE STRUCTURE, which addresses the static rep-
resentation of the target language.

e Two creational patterns: PARSERBUILDER and METAPARSER, which address
the dynamic aspects of the parsing process.

Table 3 is the problem/solution summaries for the patterns presented in the sec-
tion. It can be used as a guidance and quick reference to the use of the patterns.

4.1.2 Parser Structure
Context

You have decided to develop a framework for syntactic analysis.

Problem

How to define an extensible architecture to maximize accommodation of various hot
spots?

Forces

e To anticipate the unanticipated is hard. The definition of the target language
is vague when the framework is building.

e The grammar rules and the elements of the language structure are embedded
in the language definition, which implies the parsing process. Any changes of
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the grammar rules or the language structure will cause the parsing process to

change accordingly.

e A structure is easy to maintain if the code that is frequently changed is separated
from that is not.

e The language definition contains so much information that it is too complex to
handle. A number of simple problems are easier to solve than a complex one.

e To mix the processing of an object structure with its representation will make
a system hard to understand and maintain.

e The user need not understand the implementation details of a parser. A simple
interface is always preferable than a complex one because the complexity of a

system is hidden.

® Successful examples often inject insight into the solutions for a recurring prob-

lem. Reuse of successful experience can minimize the potential risk.

Solution

Apply the ACCOUNTABILITY analysis pattern [34]. Separate grammar rules from the
language structure and make the language structure stand alone. A grammar rule
encapsulates the application logic and will drive the parsing process. It represents
the dynamic aspect of the language definition. A language structure is only a rep-
resentation of the target language. It represents the static aspect of the language
definition.

Define a simple interface, ParserHandler, to simplify the use of the system. It
provides the least and exact information that the user needs to know.

Structure Figure 15 shows the structure of the PARSER STRUCTURE.

The PARSER STRUCTURE contains three packages: Parser Handler, Grammar
Rules, and Language Structure . Note that the packages in gray do not belong
to this pattern. But since they are parts of the compiler design, they have direct
dependency relationships with the parser.
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Figure 15: Structure for the Parser Structure

Participants

e Parser Handler
Declares the interface for the syntactic analysis.

e Grammar Rules
Encapsulates the grammar rules for the target languages and defines the exe-

cution sequence of the parsing process.

e Language Structure
Defines the elements that make up of the target language and shows the static
view of the relationships among the elements.

Consequences

The separation of the grammar rules from the language structure has the following

implicit advantages:

e The static representation of the target language is separated from its potential
processing. The grammar rules and the language structure have different roles
to play and serve for different purpose. The architecture becomes less coupling

and more cohesive.
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e Both the grammar rules and the language structure are simple to handle than
the one as a whole. The separation helps to reduce the complexity of the system.

e A loose coupling structure is easy to develop, extend, and maintain.

In addition, the ParserHandler provides a simple and stable interface to the user.
The user is shielded from any potential changes of the grammar rules and the language
structure.

Related Patterns

The ACCOUNTABILITY analysis pattern [34] provides similar solution to separate rules

from the organization structure.

4.1.3 Language Structure
Context

You are defining the language structure and have applied the PARSER STRUCTURE.

Problem

How to represent the language structure to anticipate the changing formats of the

target languages?

Forces

e To define a unified language structure for all potential target languages is hard
and impossible. A reasonable representation of the language structure is a

general abstraction of most frequently used target languages.

e An organized structure is easier to understand and maintain than a number of
discrete objects. An organized structure offers a hierarchy that can benefit from
some design techniques such as inheritance, which promotes software reuse and

extensibility.

e A component of the language structure can be primitive or composite. To

differentiate their processing is tedious and error-prone.
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e The parsing output is a syntax tree. The representation of the language struc-
ture should allow the syntax tree to be easily built and processed.

Solution

Define an interface class Language to encapsulate the language abstraction. The
language structure is organized using the COMPOSITE design pattern [37]. The syntax
tree is represented as the object structure. It is a tree made up of objects of the

language structure that are created at run-time.

Structure Figure 16 shows the structure of the LANGUAGE STRUCTURE.

«interface»
Langusge

[PﬂmltlnCompon‘ml [gonh

Figure 16: Structure for the Language Structure

Participants

o SyntaxTree
A composite object structure that can be used to enumerate its elements.

e Language
An interface for all components of the target language.

e AbstractComponent
A place holder to group the related components into a hierarchy according to

their semantics. It allows the hierarchy to be easily extended.

e PrimitiveComponent
Represents an atomic component that does not contain any other components.
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e ContainerComponent
Represents a component other than the primitive component. It can contain
primitive components and even container components.

Consequences

e The use of the Language interface allows different target languages to extend
and prevents the client code from changing.

e A composite element can be made up of primitive elements or composite el-
ements. The AbstractComponent treats elements uniformly. The language
structure is easy to extend through inheritance.

e The syntax tree can be used to easily enumerate its element objects without

knowledge of their concrete types.

Related Patterns

The COMPOSITE design pattern [37] treats all primitive and composite objects uni-
formly and define a structure that is easy to extend.

The REFLECTIVE VISITOR Pattern [53] or other variation of the Visitor pat-
tern [52] can work with LANGUAGE STRUCTURE to perform operations ( for example,
code generation ) on the elements in the LANGUAGE STRUCTURE.

4.1.4 ParserBuilder

Context

You are working towards the parsing process and you have applied the LANGUAGE
STRUCTURE.

Problem

How to assemble the loose coupling components in the parser, while at the same time,
allow it to be easily extended without modifying the existing code?
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Forces

e A structure that is hard to or is restricted to modify can be extended through

inheritance.

e The rule set encapsulates the application logic. If the rule set is changed or
new rules are added, the parsing process needs to be changed accordingly. A
changing procedure is hard to maintain and evolve.

e A stable interface can hide the implementation details and allows the imple-
mentation to change without changing the client code.

o If the parser is tightly bounded to the rule set, the parser is only meaningful
when the corresponding rule set is in use. This makes the system hard to change.

Solution

Define a common parsing interface with a hook method and let a concrete class
implement this hook method and wrap the parsing process for the corresponding
target language. Apply the BUILDER design pattern [37] to separate the parsing
process from the representation of the target language. A hook method parse is
defined in the interface class and will be overridden in the concrete builder class.

Processing of each rule is defined as a method in the concrete builder class.
Structure Figure 17 shows the structure of the PARSERBUILDER.

Participants

e ParserBuilder
A class that plays the role of the Parser Handler and defines a hook method
parse that needs to be overridden by the ConcreteLanguageBuilder to perform

the actual parsing.

e ConcreteLanguageBuilder
Encapsulates the grammar rules and implements the parse method to perform

the parsing in a sequence that determined by the rules.
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Figure 17: Structure for the ParserBuilder

e SyntaxTree
A composite object structure that represents the parsing result and can be used
to enumerate its element objects.

Collaborations Figure 18 shows the sequence diagram for the parsing process in
the PARSERBUILDER.

e An object of the ConcreteLanguageBuilder is created for a specific target
language.

e The client, compilerHandler, invokes the parse method on an object of class

ConcretelanguageBuilder to start the parsing process.

e The parsing method for each grammar rule is recursively invoked. It may need
to interact with the Lexical Analyzer package to get tokens.

e The parsing result is added to the syntax tree.

Consequences

e Because of the use of the hook method parse in the interface, the client is
unaware of whatever changes that may be made to the rule set and its imple-

mentation.
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Figure 18: Sequence Diagram for the Parsing Process in the ParserBuilder

® A rule is easy to change or add by subclassing the ConcreteLanguageBuilder.
But removing a rule will cause its corresponding method obsolete and redun-
dant.

e The ConcreteLanguageBuilder will become too complex to understand and
maintain if the rule set becomes large.

e It is hard to debug and maintain the rule parsing methods due to the recursive

invocations among them.

Related Patterns

The BUILDER design pattern [37] separates the construction process from the object
structure so that the same construction process can create different representations
of the same object structure.

The METAPASER pattern that will be presented in Section 4.1.5 provides a more

flexible structure for parsing.
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4.1.5 MetaParser
Context

You are working towards the parsing process and you have applied the LANGUAGE
STRUCTURE. You want a more flexible parser that supports its own modification at

run-time.

Problem

How to encapsulate the application logic and build a self-manageable and intelligent
parsing processing mechanism?

Forces

e The application logic encapsulates the changing rule set. A changing compo-
nent will have limited impact on the rest of the system if it is wrapped into a

separated component.

e When the rules are constantly added or are changed often, their relationships be-
come unwieldy. A separate component may be necessary to control the spread-

ing complexity.

e Changing software is error-prone and expensive. A desirable result is to let the

software actively control its own modification.

e Changes to rules vary according to the target language. A uniform handling
mechanism can lead to a system that is easy to understanding and maintain.

Solution

Apply the REFLECTION pattern [13] and define two levels in the system. The base-
level contains a set of classes, where each represents a grammar rule. The meta-level
handles the complex relationships of the rules that are maintained in a hash table.
Reflection is used to discover rules at run-time and determines the parsing order. The

base-level delegates dynamic dispatch to a meta-level object.
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Structure Figure 19 shows the structure of the METAPARSER pattern. The gray
area represents the meta-level of the system. The packages in gray belong to a
compiler design and have direct interaction with the parser.

Figure 19: Structure for the MetaParser Pattern

Participants

e Parser
A class that plays the role of the Parser Handler. The client can directly
invoke its method parse to start the parsing process.

® Rule

Defines a common interface for all grammar rules.

e ConcreteRule
A concrete grammar rule defined in a target language. All grammar rules com-
pose the rule library that can be reused over time.

e MetaRule
Defines the properties of the rule. Each grammar rule class has a corresponding
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metaobject whose declare type is MetaRule.

e ParsingEnvironment
Encapsulates the parsing related information used by the Rule. It is managed
by the MetaRule and shared by all MetaRule objects.

e Grammar
Defines a common interface for all grammar rules in the potential target lan-
guages. It contains a hash table that defines the relationships of the grammar

rules.

e ConcreteGrammar
Represents a grammar rule in the target language. It needs to initialize the hash
table by specifying the actual grammar rules in use and their relationships.

e SyntaxTree
A composite object structure that represents the parsing result.

Collaborations Figure 20 shows the sequence diagram for the rule execution.

e The client invokes the parse method on the Parser to start the parsing process.

e The Parser initializes the MetaRule with the ParsingEnvironment object
and invokes the neztRule method on its own MetaRule object to start the
parsing. This MetaRule object then searches the hash table defined in the
ConcreteGrammar to locate the start rule and creates the corresponding metaob-

ject for the start.

e Once the Parser get the start Rule object from its MetaRule. It calls the parse
method on that Rule object.

e When a rule is executed, it asks its own MetaRule object for the successors by
invoking the neztRule method on this MetaRule object. The MetaRule object
searches the ConcreteGrammar for the Rule’s successors. A parse method is

then called on the successors.
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Figure 20: Sequence Diagram for the Parsing Process in the MetaParser

Consequences

There is no need to explicitly modify the source code. Any potential changes
are implicitly handled by the meta-level.

The complexity of the system is reduced because the many-to-many relation-
ships among the rules are changed to many-to-one relationship between the

rules and the meta-level.

The hash table that encapsulates the relationships of the rules can be modified
or extended, the corresponding parsing logic and priority are then changed

dynamically.

A pool of grammar rules can be created and maintained, and optionally selected
by the meta-level at run-time. The design promotes the reuse of the grammar

rules even if they are defined for different target languages.

A graded meta objects can be created to accommodate a graded complexity of
the application logic. It is especially useful in incremental system development

and testing.

The design is more extensible and flexible. The grammar rules can be easily

changed or extended without changing the existing classes. The hash table is
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free to add, delete, or modify an entry. The debug and test become easier. Any
combination of the grammar rules can be set up in the hash table for different

debugging purpose.

e There two major liabilities in the design. One is that the run-time efficiency is
low due to the use of the reflection technique. The other is that the increased
number of classes because each rule needs be represented as an individual class.

Related Patterns

The REFLECTION pattern [13] is used to discover the grammar rules at run-time.
The ACCOUNTABILITY analysis pattern [34] defines a knowledge level (meta-level)
and an operational level (base-level) to reduce the complexity of the system.

4.2 Summary

This chapter intends to address the extensibility of the parser. The patterns presented
can be easily used to build an extensible parser framework. We have used them to
build a compiler framework [50], which is implemented in Java. These patterns were
also used in an extensible one-pass assembler developed by us [49]. This assembler is
based on a virtual micro assembly language under a simple virtual processor (SVP)
system and is implemented in Java. We agree that there exist different implementa-
tions of a parser in the compiler community, such as the table-driven parser [61, 57, 7],
etc. The recursive-descent parser was chosen because it is one of the most difficult
to extend in compiler design, we limit our discussion to the design of such a compiler
system to address its extensibility.

This pattern language is by no means complete. As long as experience is accumu-
lated in the object-oriented parser development, this language can be enriched when
more and more patterns will be added.

The next chapter will present the design of a framework for the reflective class-

based object model.
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Chapter 5

Reflective Class-Based Object
Model

This chapter presents a framework for reflective class-based object model. The frame-
work design focuses on how to define the relationships among objects, classes, and the
metaclass. This object model can be used to implement a reflective object-oriented
programming language that has a single inheritance system with the support of only
one metaclass.

Section 5.1 is the general principles of the reflective class-based object model.
Section 5.2 presents its class hierarchy. Section 5.3.1 to Section 5.3.9 present the
design of its participants in details.

5.1 General Principles

Forman’s book [33] presents the theory of systematically constructing a reflective
class-based model. The reflective class-based object model presented in this chapter
is a simplified object model based on a single inheritance system with the support of

only one metaclass. The followings are the general design principles:

e Every object has a uniquely associated entity called a class.
e Every class is an object and it has an associated metaclass Class.

e A metaclass is an object whose instances are classes.
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e In single inheritance, the number of parents of a class is no more than one.
Multiple inheritance is not allowed.

The inheritance hierarchy has a single root class named Object.

¢ To solve the metaclass incompatibility problem [33], the object model defines a
single metaclass Class. Subclassing the metaclass Class is not allowed.

o A field defined in a class is an object.

A method defined in a class is an object.

All fields have types that are classes of Field.

All methods have types that are classes Method.

5.2 Class Hierarchy of the Object Model

«type»
Memory::V,
) A
] l ] 1
Memory:Listvalue] [Memory:CiassTabie| L‘ ~type- [Memory::ByteCode]

Memory::ClauValwl [Memory::o o

v . : a

)|
Memory::ChuRofmneeHemory::FWRchnne;I lliﬂemory::Mothodﬂefofencel

[Memory::MetaClass]

Figure 21: Class Hierarchy of the Object Model

The object model defines the relationship among objects, classes, and the meta-
class. This relationship can be organized into a class hierarchy using COMPOSITE de-
sign pattern [37]. Figure 21 shows the class hierarchy of the object model. All classes
defined in the object model share a unified interface Value. Class ObjectReference
represents the type of an object reference. An object reference is primitive so class
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ObjectReference is an immediate subclass of the interface Value. Since each class is
an object, class ClassReference inherits from class ObjectReference. Each object
reference has a class type ClassReference. As the class of a class (the type of a class),
a metaclass is a class too. The metaclass is represented by class Metaclass, which
is a subclass of class ClassReference. In this simplified object model, Metaclass
has only one instance named “Class”. Class ClassTable maintains all class (class
reference) declarations defined in an object-oriented program.

Abstract class ClassValue defines a sub-hierarchy to encapsulate the properties of
a class reference. Some of these properties may change due to the differences between
different programming languages. The concrete properties of a specified programming
language can be defined by subclassing the ClassValue. A field declared in a class
can be considered as a special object and is represented by class FieldReference,
which is derived from the class ObjectReference. A method declared in a class is
also an object reference and can be represented by class MethodReference.

Each build-in class has some predefined methods. The implementation of a pre-
defined method can be represented by a code pointer, which is a concrete subclass
of CodePtr. In contrast, a user-defined method is represented in a byte code format
encapsulated in the class ByteCode.

To treat composite objects and individual ob jects uniformly, class ListValue that
contains a linked list of instances of Value is designed as a subclass of class Value.

9.3 Elements of the Object Model

5.3.1 Class Table

Class ClassTable maintains a collection of class references. It plays the role of the
symbol table for classes in an object-oriented language. Figure 22 shows its class
diagram.

All declared classes in a program are stored in a hash table (attribute classes in the
class ClassTable) as pairs where the key is the class name and the slot is a reference to
the corresponding instance of class ClassReference. Public method topSort performs
a topological sort to check whether there exists a cycle in the inheritance hierarchy
of the program.

The method addClassRef is executed during the compile time to add a newly
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- classes : Hashtabie I!emocy::cmlm;l
+ClassTable
L+addClassRef(inout aClass : ClassReference) ¢
lassRef(inout name : String) : ClassR
+getTable() : Hashtable

LinitTable()

+toString() : String

+topSort() : boolean

Figure 22: Class Diagram for ClassTable

recognized class into the hash table. The build-in classes are also pushed into the
hash table through this method.

5.3.2 Object Reference

-_value
-m »
Memory:: Vi
1 A
Memory::ObjectReference

-_name : String
-_type : ClassReference
-_value : Value
+ObjectReference(inout name : String, inout type : ClassReference)
+ObjectReference(inout name : String, inout type : ClassReference, inout value : Value)
+getName() : String
+getType() : ClassReference
+getvValue() : Value
+initValue(inout value : Value)
initType(inout type : ClassReference)
+isEqual(inout name : String) : boolean
+toString() : String

-_type

)lMemory::ClmRmmcol

1

Figure 23: Class Diagram for ObjectReference

An object reference is used to identify an object. Each object has a class as

its type, an object name, and an object value which specifies the properties of the
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object. The structure of an object reference can be represented in a dictionary format

as follows:

{ "type" : ClassReference
"name" : String
"value" : Value

}

The value of an ordinary object (i.e. the object that has no instances) is deter-
mined by the field values of its corresponding class. These fields are defined and
initialized either in the current class or in its ancestor classes. The value of an object

reference can be illustrated as:

{ "value" : ListValue = { FieldReference,

Figure 23 shows the class diagram for class ObjectReference. The method get-
Type returns a class reference, which is the class of this object. Using the name
“getType” rather than “getClass” is to avoid conflict with the method getClass of
class Object that is defined in Java. Method isEqual compares two object references
and returns true if they refer to the same objects. The method init Value initializes
the object with a linked list of FieldReference, which has the interface Value.

5.3.3 Class Reference

A class reference is an object reference that represents a class. a class reference can

be constructed as an object reference as follows:

{ "type" : ClassReference<Class>
"name" : String
"value" : Value

}

Figure 24 shows the class diagram for class ClassReference. Since a class is an
object, the class ClassReference inherits from the class ObjectReference. As an
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Figure 24: Class Diagram for Class Reference

object, a class must have a type known as the metaclass “Class”, which is defined
as MetaClass in this object model. The walue of a class reference represents the
properties of a class.

All these properties can be encapsulated in a sub-hierarchy with an abstract class
ClassValue as the root. The inheritance relationship property is maintained by class
ClassValue. Other properties such as fields and methods can be customized for a
concrete programming language by subclassing the class ClassValue.

The inheritance relationship between two classes is defined as a reference from a
class to its superclass. This reference is encapsulated in an instance of ClassValue

with format:
{ "parent" : ClassReference }

Basically, there are five operations related to the inheritance properties of a class:

e Get Superclass
The method getParent return a class reference referring to the superclass of the

current class.
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e Is A Subclass Of
Given a class reference, method isSuperclassOf returns a boolean value that is
true if this class reference refers to the superclass of the current class. Otherwise,

it returns false.

e Is A Descendant Of
Given a class reference, method isDescendantOf returns a boolean value that is
true if the current class is one of the ancestors of what is referred by this class

reference. Otherwise, it returns false.

e Is A Parent Of
Given a class reference, method isParentOf returns a boolean value that is true
if the current class is the superclass of what is referred by this class reference.

Otherwise, it returns false.

e Is An Ancestor Of
Given a class reference, method isAncetorOf returns a boolean value that is
true if this class reference refers to one of the ancestors of the current class.

Otherwise, it returns false.

5.3.4 MetaClass

—qﬁemory::Obcfmnub—
ﬁnemory::cﬁndonmlé
JAN -_type

Memory::MetaClass

+MetaClass()

+initMetaClass(in parent : ClassReference, in value : Value) : ClassValue
+toString() : String

-init() : ClassValue

Figure 25: Class Diagram for MetaClass
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MetaClass is a class reference that represents the unique metaclass Class in the
object model. It is the type of all classes. The type of the MetaClass is itself.
Figure 25 shows the class diagram for the metaclass Class.

The metaclass can be represented as follows:

{ "type" : ClassReference<Class>
"name" : String<"Class">
"value" : Value

}

The type of the metaclass is a class reference referring to itself. The name of the
metaclass is “Class”. The value of the MetaClass is a reference of class ClassValue,
which will be customized for defining the metaobject protocol of the object model.

The method initMetaClass initializes the metaclass with a class reference to its
superclass Object and a customized ClassValue. It returns a class reference referring
to itself.

5.3.5 Field Reference

1 -

-_valueType

E——ﬁ Memm:@mhhn% 4l

Memory::FieldReference

-_static : boolean

-_valueType : ClassReference

+FieldReference(inout name : String, inout type : ClassReference, inout isStatic : boolean, inout valueType : ClassReference)
+isStatic() : boolean

+getValueType() : ClassReference

+toString() : String

Figure 26: Class Diagram for FieldReference

A field reference is a representative of a field defined in a class. Each field is an
object. Its type is a class reference to a build-in class, which is the same as the class
Field in Java. Each field has a value that will be set up at run time. This value has a
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declared type field Type, which is a class reference. A field may be static or non-static.

A field reference can be structured as follows:

{ "type" : ClassReference<Field>
“name" : String
"value" : Value

"fieldType" : ClassReference
"static" : boolean

Figure 26 shows the class diagram of FieldReference. The method get Value Type
returns the class reference of the declared type of the field’s value. The method
isStatic is a boolean function that returns true if this field is static. Otherwise, it

returns false.

5.3.6 Method Reference

—‘[Mmmzmzmm'.elﬂmzcursm

I

Memory::MethodReference
+MethodReference(inout name : String, inout type : ClassReference, inout value : Vaiue)
+toString() : String

Figure 27: Class Diagram for MethodReference

A method reference is a representative of a method defined in a class. Each method

is an object. A method can be represented as follows :

{ "type" : ClassReference<Method>
"name" : String
"value" : Value

}
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Figure 27 shows the class diagram of MethodReference. The class MethodReference
is a subclass of class ObjectReference. The type of a method is a class reference to
a build-in class, which is the same as the class Method in Java.

The value of a MethodReference represents the properties of a method such as
return type, parameters, local variables, and method body. These properties can
be encapsulated in a separate class can be customized for a concrete programming

language.

5.3.7 Code Pointer

The interface CodePtr defines an interface for all build-in methods. These methods
are generally defined in the build-in classes to provide default functionality for these
classes. For each build-in method, a concrete class is defined by subclassing the class
CodePtr. This concrete class provides the execution support for the corresponding
method. Figure 28 shows the class diagram of CodePtr. Method ezecute is defined
across the code pointer hierarchy to perform an execution of the concrete method.

Memory::CodePtr
+execute(inout target : ObjectReference, inout paramtrs : Vector) : Objy
+toString() : String

Figure 28: Class Diagram for Code Pointer

5.3.8 Byte Code

The execution information of a user-defined method are generated during the compile-
time. For each user-defined method, there are two kinds of execution information:

e Run-time Literal References
A list of literal references indicates the usages of various literals during the
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Memory::ByteCode
-_literals : Vector
+BytaCode(inout literals : Vector)|
+getliterals() : Vector
+loStrin_gr() : String

Figure 29: Class Diagram for Byte Code

method execution. These literals, such as parameters, local variables, non-
static or static method calls through object reference or class reference, etc,
should be valid to the method.

e Byte Code
A list of byte code for a method are composed by opcodes and integer values.
The opcodes are defined in the instruction set on the virtual machine platform.

These two execution information will be used together when a method is inter-
preted and executed. In Figure 29, the class ByteCode encapsulates the execution
information (method body) of a user-defined method. The literal references and byte

code list are linked together and stored in the attribute literals.

5.3.9 ListValue

To treat a list of Value and an individual Value uniformly, class ListValue is defined
as a subclass of Value to maintain a linked list of Values. Figure 30 shows the class

diagram for class ListValue.

5.4 Summary

This chapter presents the design of a framework for reflective class-based object model.
This object model can be integrated in a virtual machine platform which supports

the systems with a single inheritance and a unique metaclass.
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Memory::ListValue

-_list : Vector

+ListVaiue()

. +ListValue(inout list : Vector)

+getList() : Vector

+removeCommonElement(inout listvalue : ListValue)
+append(inout listValue : Listvalue)

+toString() : String
-hasElement(inout ref : ObjectReference, inout list : Vector) : boolean|

Figure 30: Class Diagram for ListValue

The next chapter will present the Decaf compiler, a customization example of the

frameworks presented in this thesis.
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Chapter 6

Decaf Compiler: An Application

Example

This chapter illustrates how to customize our frameworks towards developing an ex-
tensible and reusable compiler system (front-end) for the Decaf programming lan-
guage [26]. The Decaf programming language is an extensible tiny object-oriented
programming language. We are going to focus on addressing the basic design issues
in developing this compiler system. First, we will illustrate the architecture view of
the compiler design and briefly introduce the component design for the lexical ana-
lyzer. Then we will show the customization of a syntactical analyzer with the parser
framework introduced in Section 4.1. At the end we will illustrate how to buiid a code
generation for the Decaf language with the REFLECTIVE VISITOR and how to imple-
ment the virtual machine based on the reflective class-based object model introduced
in Chapter 5.

Section 6.1 is the Decaf language specification. Section 6.2 presents the architec-
tural design for the Decaf compiler. Section 6.3 to Section 6.5 are the detailed design

for the lexical analyzer, parser, and code generation.

6.1 Decaf Language Specification

The Decaf programming language [26] is a tiny reflective object-oriented program-
ming language for embedded system programming. It is based on C— [20], Java [9)],
Bob [10], Synapse [21, 22, 23], and React [24, 25]. The major features of the Decaf
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language are uniform type system, meta-information, and classes as basic software
building blocks.

6.1.1 Decaf Grammar
6.1.1.1 Conventions for Syntax

The syntax of the Decaf language [26] is described by a set of syntax rules called
productions. Each production described a valid sequence of tokens called lexical
elements.

Non-terminals represent a production and begin with an upper-case letter. Iden-
tifiers are named as “ID”. Terminals are either keywords (with all upper-case letters)
or quoted operators. Each production is terminated by a period. We use the notation
for defining the syntax as shown in Table 6.1.1.1.

Table 4: Conventions of Decaf Syntax

Notation Meaning
A* Repetition — 0 or more occurrences of A's
A+ Repetition — 1 or more occurrences of A’s
A? Option — 0 or 1 occurrence of A’s

AB Sequence — A followed by B
A|B Alternation — A or B
( AB) | Grouping — of a sequence A B
“0” .. “9” | Alternation — one character betwwen 0 and 9 inclusive
“string” | A string enclosed in a pair of double quotes is a reserved word

6.1.1.2 Class Declaration Productions

The following shows the productions for the class declaration in Decaf:

Compilation = TypeDecl* EOF.

TypeDecl = "class" ID ( "extend" ID )? ClassBody.

ClassBody = "{" MemberDecl* "}".

MemberDecl = Visibility? (“"static")? ID ID (";" | ("(" MethodDecl ) ).
MethodDecl = Signature MethodBody.

Signature = Paramtrlist? ( ";" LocalVariableList )? ")".
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MethodBody "{" BlockStmt.
ParamtrList = ID ID ( "," ID ID )=,
LocalVariableList = ID ID ( "," ID ID )=.

6.1.1.3 Statement Productions

The following shows the productions for the statement definition in Decaf:

Statement = Expr “;"
| "if" IfStmt
| "while" WhileStmt
| "return" ReturnStmt
| “{" BlockStmt.

IfStmt = "(" Expr ")" "{" BlockStmt ( "else" "{" BlockStmt )7?.
WhileStmt = " (" Expr ")" "{" BlockStmt.

ReturnStmt = Expr? ";".

BlockStmt = Statement* "}".

6.1.1.4 Expression Productions

The following shows the productions for the expression definition in Decaf:

Expr = AssignExpr.
AssignExpr = OrExpr ( "="  AssignExpr )7?.
OrExpr = AndExpr ( OrOp AndExpr )=*.
AndExpr = EquExpr ( AndOp EquExpr )=*.
EquExpr = RelExpr ( EquOp RelExpr )=*.
RelExpr = AddExpr ( RelOp AddExpr )=*.
AddExpr = MulExpr ( AddOp MulExpr )=*.
MulExpr = UnaExpr ( MulOp UnaExpr )=.
UnaExpr = PrimaryExpr

| SignExpr

| NotExpr

| "new" ID "(" Argumentlist.
AddOp UnaExpr.
1" UnaExpr.

SignExpr
NotExpr
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PrimaryExpr = ID ( ( "::" StaticCall )

| ¢ "." ReferenceCall )
| ¢ "(" ArgumentList ) )7
| (" Expr ")"
| IntLiteral.
StaticCall = ID ( "(" ArgumentList )?.
ReferenceCall = 1ID ( "(" ArgumentList )?.
ArgumentList = ( Expr ( "," Expr )* )7 ")".
0or0p = "lI".
AndOp = “&&".
EquOp = ‘"==" | "!=",
RelOp = "< | "<=" | ">" | w>=v,
AddOp = " | tev,
MulOp = “s" | "/ | "
Visibility = 4" | "ot | g,
IntLiteral = ( "0" .. "9" ) | ( "1" .. "9" ) ( "O" .. "9" )+

6.1.1.5 Predefined Type Production

The following shows the productions for the predefined types in Decaf:

Type = Object
| Class
| Method
| Field
| Integer.

Figure 31 illustrates the class hierarchy of the build-in classes defined in the Decaf
language. The class Object is the root of the class hierarchy and all classes are its
subclasses. The class Class is the metaclass and all classes (including class Class

itself) are instances of it.

6.1.2 Virtual Machine

The virtual machine is an abstract machine that can be executed by a program

such as an interpreter or assembler. It represents a machine-independent platform
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Opcode Meaning
OP_BRT branch on true
OP_BRF branch on false
OP_BR branch unconditionally
OP_PUSH push nil onto stack
OP.NOT logical negate top of stack
OP.NEG negate top of stack
OP_ADD add top two stack entries
OPSUB subtract top two stack entries
OP.MUL multiply top two stack entries
OPDIV divide top two stack entries
OP_BAND bitwise and of top two stack entries
OPBOR bitwise or of top two stack entries
OP.LT less than
OP_LE less than or equal to
OP_EQ equal to
OP.NE not equal to
OP_GE greater than or equal to
OP.GT greater than
OP_LIT load literal
OP_RETURN | return from interpreter
OP_CALL call a function
OP_REF load a variable value
OPSET set the value of a variable
OPMREF load a member variable value
OP_MSET set a member variable
OP_AREF load an argument value
OP_ASET set an argument value
OP_TREF load a temporary variable value
OP_TSET set a temporary variable
OP_TSPACE | allocate temporary variable space
OP_SEND send a message to an object
OP.NEW create a new class object
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Figure 31: Class Hierarchy for Decaf Language

encapsulating all run-time information that are necessary for execution.

The Decaf virtual machine is based on the virtual machine of the Bob program-
ming language [10]. It defines a platform that is constructed by a set of class objects,
which correspond to the class declarations in the Decaf program.

An instruction set is defined in the Decaf virtual machine in order to support the
compile of the methods in Decaf. This instruction set is a subset of the instruction
set of the Bob virtual machine [10]. Table 5 defines the instruction set of the Decaf
virtual machine.

6.2 Architectural Design

As the most critical part in developing an object-oriented system, the architectural
design determines the top-level system structure of the Decaf compiler system. A
good system architecture will let us keep an easy way to design a system.
Structuring a system into subsystems helps to reduce complexity. Our design
model divides the compiler system based on the phases of a compiler. In general,
the basic phases of a compiler system include lexical analysis, syntactic analysis, and
code generation. Based on this, our design model divides the compiler system into

five subsystems:
1. the runner subsystem;

2. the lexical analyzer subsystem;

w

the syntactic analyzer subsystem;

-

the code generation subsystem;
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5. the memory subsystem.

6.2.1 Overview of the Subsystems

The runner subsystem is the controller whose role is to control the execution flow of
the whole system. It also takes a role of the facade of the system. It is visible to the
client of the compiler. It takes the responsibility to response the clients’ requests and
to offer the compilation services.

The task of the lexical analyzer subsystem is to break the source code into mean-
ingful units, the tokens. It executes the tokenizing process and frequently forwards
the recognized token to the syntactic analyzer upon request.

The syntactic analyzer subsystem is the core of the front end of the compiler. It
analyzes the structure of the source program and checks for syntactic errors.

The code generation subsystem takes the action to produce the compiling results
on a pre-defined virtual machine. It also performs partial semantic checking on the
program.

The memory subsystem handles the run-time memory management of the compiler
system. It encapsulates data structures generated during the compilation process.
Typically, the memory subsystem represents the object model of the virtual machine
structure resulting from the code generation phase.

We will further discuss each subsystems in the following sections.

6.2.2 Dependency Relationships among the Subsystems

In the architectural design, the idea of building the design model for the potential
solution is to capture the relationships between the subsystems and define the top-
level classes for each subsystem.

The relationships between the subsystems reflect the flexibility and extensibility
features of an extensible compiler system. We aim for reducing the coupling among
the subsystems. Figure 32 illustrates the package diagram for the extensible Decaf
compiler system.

To reduce the coupling, the major components of the compiler system (lexical
analyzer, syntactic analyzer, and code generation) will not have mutual knowledge
of each other. The runner subsystem coordinates the execution of the system and
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Figure 32: Package Diagram for Decaf Compiler

the message passing between these subsystems. It also plays a role of the creator
and the owner of the instances of the top-level classes in these subsystems. Thus,
the relationships among the lexical analyzer, the syntactic analyzer, and the code
generation subsystem can be designed as the association relationships between each

of the subsystems and the runner subsystem via the callback implementations.

6.3 Lexical Analyzer

An extensible lexical analyzer is important when developing an extensible and reusable
compiler system. We need to minimize the impact from any changes of the language
specification, especially from the token type and the language reserved word set.
Hence, the lexical analyzer subsystem can be designed by dividing it into three com-

ponents as showed in Figure 33.

6.3.1 The Lexer Component: Facade of the Lexical Analyzer

The Lexer component defines the Lexer interface and its implementation subclass, the

DecafLexer in Decaf. The Lexer component plays two roles in the lexical analyzer
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Figure 33: Separating the Lexical Analyzer Subsystem into Three Components

subsystem: one is the facade of the subsystem; the other is the controller of the
tokenizing process.

Method getToken is a public method declared in the Lexer interface. It for-
wards the recognized token to the syntactic analyzer upon request. The subclass
DecafLexer implements this method by scanning the source code stream and recog-
nizing the valid token. Figure 34 shows the class diagram for the Lexer component.

m-:’y_pz;m Lexer::ReserveTable
+getToken() : Token -_keywordTable : Hashtable
+getCol() : int ~_operatorTable : Hashtable
+getRow() : int +ReserveTable()
4 Reserve(inout mnemonic : String) : boolean
+isKeyword(inout mnemonic : String) : boolean
Lexer.:DecafLexer +isOperator(inout mnemonic : String) : boolean
-in : StreamTokenizer +getKeyword(inout mnemonic : String) : Keyword
-table : ReserveTable +getOperator(inout mnemonic : String) : Operato
-colNo : int T
-rowNo : int
+DecaflLexer(inout in : InputStream)
+Decaflexer(inout in : Reader) “type-
-setTokenizerMode() %;Lex?r:. Token
+getToken() : Token ___] +oString() : String
+getCol() : int +clone() : Object
+getRow() : int

-repontError(inout err : LangException)

Figure 34: Class Diagram for the Lexer Component

6.3.1.1 The Facade of the Lexical Analyzer Subsystem

The responsibility of a lexical analyzer is to response the requests from the syntactic
analyzer and to provide the recognized tokens. In order to reduce the coupling be-
tween the lexical analyzer and the other parts of the compiler system and hide the
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concrete implementation information, we introduce the FACADE pattern [37] in the
design of the lexical analyzer subsystem.

The public Lexer interface as well as its implementation subclass (DecafLexer)
construct the facade of the lexical analyzer. They are declared as public and are
exposed to the outside of the subsystem. The syntactic analyzer can communicate

with the Lexer component to get the token.

6.3.1.2 The Controller of the Lexical Analyzer

Class DecafLexer plays a role of the control handler of the tokenizing process. It
responses the request from the syntactic analyzer, searches in the reserved word table
and determines whether or not the current mnemonic (i.e. lexeme) matches any
system reserved symbol. According to the search result and the token type hierarchy,
it creates and returns the corresponding token object. The token information includes
the content of the token, the type of the token, and the position of the token.

 Parser::Parser lexer : Lexer::Decafl exer lable : Lexer::ReserveTable
i getToken() i :
isKeyword(mnemonic:String) !
isOperation(mnemonic:String)
getOperation(mnemonic:String) t]

Figure 35: Sequence Diagram for a Tokenizing Process

Figure 35 shows a scenario of getting an operation token. When the Parser calls
the DecafLexer requesting a token, The DecafLexer will ask the ReserveTable to
justify the token. If the token is a keyword, method getKeyword is called on the
ReserveTable to return a keyword token to the Parser. In this scenario, the token
is not a reserved word. Then method isOperation is called on the ReserveTable.
Since the token is an operation, it returns true and method getOperation is called on

the ReserveTable to return an pre-defined operation token to the Parser.
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6.3.2 The Token Type Hierarchy

Lexer:-Token
+{oString() :
+clone() : Object
«typen Lexer::identToken Lexer::Keyword
I“""';"m -_value - String value - String
*”s‘:,,n "y a:m'mm [+identToken(inout mnemonic : String) +Keyword(inout mnemonic - String)
- + () : String +equals(inout key : String) : boolean
p+clone() : Object +90String() : String
Lclone() : Object
Lexer::intToken
-_value : Integer Lexer::EOL -
+IntToken(inout mnemonic : int) +toString() : String - Loxor '
L+IntToken(inout value : Integer) +clone() : Object -_op : String <
+getint() : int / \ +Operator(inout mnemonic : String)
+getValu8() sIwr +equals(580ué :ip : String) : boolean
+toString() : +40String() : String
L.clone() : Object Lclone() : Object

Figure 36: The Token Type Hierarchy

To easily manage and extend the lexical analyzer, we separate the token type

information from the tokenizing process. The key point is to abstract the token types

and organize them into a class hierarchy. This abstraction gives us more flexibility

for a modest increase in complexity.

Figure 36 shows the token type hierarchy. There are six token types defined in
Decaf: Integer, Identifier, Keyword, Operator, EOL (end of line), and EOF (end of
file). The root class is the Token. Each token type is defined as a concrete subclass.
A sub-hierarchy is defined for all numbers with interface NumberToken as the root.
Class IntToken is a subclass that implements the NumberToken interface. New types

of numbers can be easily added by implementing the NumberToken interface. EOF is

treated as a special case of EOL, so it is defined as a subclass of EOL.
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6.3.3 The Reserved Word Table and the Flyweight Pattern

Different program languages may define different system reserved symbol set, which
includes reserved words (i.e. keywords) and operation symbols (e.g. “+”,“", etc.).
To reduce the impact on the compiler system due to any changes of the reserved
symbol set, we separate this set from other parts of the lexical analyzer subsystem.
Our design is to keep the set elements in a hash table. The controller of the lexical
analyzer can search the hash table to determine whether the current lexeme is a
system reserved symbol or not.

If the source code is very large, a large number of the token objects will consume
lots of the memory and may incur unacceptable run-time overhead. To handle this
problem, the FLYWEIGHT pattern [37] can be applied to reduce the number of the
token objects. The FLYWEIGHT pattern uses sharing to support large number of

objects efficiently.

6.4 Customize the Parser Framework

The syntactic analyzer performs the syntax checking for the Decaf program. In Sec-
tion 4.1, we have introduced a pattern language for the design of a parser framework.
This pattern language includes four patterns. The PARSERBUILDER pattern and
METAPARSER pattern are alternative solutions to address the dynamic aspects of
the parsing process. We choose to apply the METAPARSER pattern in the Decaf
compiler design since it is more flexible and extensible. Therefore, three patterns
in the pattern language are applied to the syntactic analyzer design of the Decaf

compiler:

e PARSER STRUCTURE pattern
This pattern reflects the architectural design for the parser. By applying the
PARSER STRUCTURE pattern, the Decaf parser is composed by three compo-
nents: parser handler, language structure, and grammar rules.

e LANGUAGE STRUCTURE pattern
This pattern is used to define the language structure for the Decaf compiler.
It addresses the static relationships among the elements that make up the De-

caf language. This pattern organizes the language components as a composite
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hierarchical structure. The parsing result, the abstract syntax tree, is a compos-
ite object created based on the language structure. To construct the language
structure for Decaf language, we implement it in three steps:

1. Construct expression hierarchy.
2. Construct statement hierarchy.

3. Construct class declaration hierarchy.

e METAPARSER pattern

This pattern addresses the parsing process and constructs the abstract syntax
tree during the parsing. It divides the system into two levels, meta-level and
base-level. The base-level contains a set of RULE objects defined based on the
language grammar. The objects of class MetaRule in the meta-level take a
role as metaobjects in the REFLECTION pattern. They control the execution
sequence of the parsing process. Thus, the Rule objects in the base-level are
isolated each other and have no knowledge about other rules. To customize
the METAPARSER, we need to define all the concrete Rule classes based on the
Decaf language grammar.

6.4.1 Define the Language Structure

A programming language is specified by its grammar. The language structure is an
abstraction of the grammar. It represents the static view of the grammar. The LAN-
GUAGE STRUCTURE pattern defines the language structure as a composite hierarchy
that captures the static relationships among the various language components.

In order to explain how this language structure can be easily extended, we imple-

ment the language structure for Decaf grammar in the following three steps:

1. Construct the expression hierarchy. This hierarchy defines the most basic op-

erations in most programming languages.

2. Construct the statement hierarchy. This hierarchy supports different statements
such as conditional statement and loop statement. The expression hierarchy is

integrated into statement hierarchy as a whole.
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3. Construct the class declaration hierarchy. This hierarchy represents the whole
Decaf object-oriented language.

The language structure shares a unified interface named Language. As the result of
parsing, the abstract syntax tree is a composite object created based on the language
structure. On the other hand, code generation process can be viewed as a visiting
process on the abstract syntax tree. Therefore, interface Visitable is defined as the
root of the language structure hierarchy to identify the elements that can be visited.
That is, the Language then becomes a interface subclass of the Visitable.

6.4.1.1 Construct Expression Hierarchy

Expressions defined in the Decaf grammar can be grouped into three major categories
and some special kinds of expressions. These three categories are: expressions with
two operands (binary expressions), expressions with one operand (unary expressions),
and primary expressions such as constants, variables, and method calls.

Language::
| - .

Language:: UnaryExpr Language::B/Expr
-_expr : Expr -_left : Expr
+UnaryExpr(inout expr : Expr) -_right : Expr
+getExpr() : Expr —0p : String
+toString() : String +BiExpr(inout left : Expr, inout op : String, inout right : Expr)
+getLett() : Expr
r— +getRight() : Expr
+getOp() : String
|Language::Primary] +toString() : String

Figure 37: Top Level Classes in the Expression Hierarchy

Figure 37 shows the top level classes in the expression hierarchy. Each category
is organized into a hierarchy. UnaryExpr is the root class for all unary expressions,
BiExpr is the root class for all binary expressions, and Primary is the root class for all
primitive constructs such as constants, variables, and method calls. All expressions

derive from the same global root interface Expr.
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Expressions with Two Operands All expressions with two operands are grouped
into a class hierarchy called binary expression hierarchy, which has a root abstract
class BiExpr. According to the Decaf grammar, this binary expression hierarchy
can be further specialized into three categories: arithmetic expressions, relational
expressions, and logical expressions. Hence, we define three sub-hierarchies: the
arithmetic expression hierarchy with an abstract class ArithmeticExpr as the root,
the relational expression with an abstract class RelaExpr as the root, and logical
expression with an abstract class LogicalExpr as the root. Figure 38 shows the class
diagram of the binary expression hierarchy.

Expressions with One Operand All expressions with one operand are grouped
into a class hierarchy called unary expression hierarchy, which has a root abstract
class UnaryExpr. As shown in Figure 39, the expressions with one operand (i.e.
unary expressions) include:

e ParenExpr, which represents the parentheses expression that is an expression
within a pair of parentheses.

® LogicNOT, which represents an expression that is performed by a “logic not” (
prefixed by a symbol “!”) operation.

e SignExpr, which represents an expression that is performed by a negative or

positive operation (prefixed by a symbol “-” or “+”).

Classes LogicNOT and SignExpr can be generalized into a sub-hierarchy with

abstract class PrefixExpr as the root.

Primary Expressions All primary expressions are grouped into a separate hierar-
chy with abstract class Primary as the root. These primary expressions can be further
divided into three categories: constants, variable accesses and method calls. Each of
these categories is defined into a sub-hierarchy. The constant hierarchy defines the
class Constant as the root and includes a subclass IntLiteral that represents the in-
teger constants in the Decaf program. The variable access hierarchy defines the class
Variable as the root. There are two kinds of variable accesses defined in the Decaf
language: one is the static field access that the field is accessed through a class name,
and the other is the reference field access that the field is accessed through an object .
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Language:: BiExpr

|- Jeft : Expr

-_fight : Expr

-_0p : String

+BIExpr(inout left : Expr, inout op : String. inout right : Expr)
+getLeft() : Expr

+getRight() : Expr

+QetOp() : String

+20Swring() : String

[ = |
Language::Rels ] [ Language:-Equal
L+Rela(inout left : Expr, inout op : String, inout right : Expr) loft : Expr, inout op : String, inout right : Expr)
Lo inout op : S! : boolean : :
Language:: LogicelExpr
l+LogicalExpr(inout left - Expr, inout op : Sing, inout right : Expr)
l = 1
Language::LogicalAND Language::LogicalOR
+LogicalAND(inout left : Expr, inout op : String, inout right : Expr)|  [+LogicalOR(inout left : Expr, inout op : String, inout right : Expr))
oinSeg_(inout op : String! : boolean +in$ot!inout op : Sg! : boolean
Language:: ArithmeticExpr
[+ArithmeticExpr(inout left : Expr, inout op : String, inout right : Expr)
JAN
{ 1
Language::AddExpr Language::MulExpr
+AJdExpr(inout left - Expr. NOUt op : SHing, INOUt fight - [+MulExpr(inout left : Expr, inout op : String, inout right . Expr)
nSettwonop Sting): bosean o o 0| |sinSetinout op : Swing): booiean

Figure 38: Class Diagram for Expressions with Two Operands
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-_expr : Expr
+UnaryExpr(inout expr : Expr)|
+getExpr() - Expr

+toStrhg0 : Sahg

Language::ParenExpr Language::PrefixExpr
+ParepExpt(inout oxpr: Exprn -_op : String
+toString() : String +PrefixExpr(inout op : String, inout expr : Expr)

| ]
Language::LogicalNOT Language: SignExpr
+SignExpr(inout op : String, inout expr : Expr)
gm op : g ! : boolean

Figure 39: Class Diagram for Expressions with One Operand

reference. These two categories are represented by two classes StaticFieldCall and
ReferenceFieldCall as shown in Figure 40. Similarly, there are two kinds of method
classes in the Decaf language: one is the static method call where the method is called
through a class name, and the other is the reference method call where the method

is called through an object reference.

Special Expressions The expressions that can not be grouped into any of the
above expression category are considered as special cases of expressions. The special
expressions in the Decaf language include assignment expression, “new” expression,
and variable declaration. These three special expressions are represented by class
AssignExpr, class NewExpr, and class VariableDecl in the Expr hierarchy as shown
in Figure 41.

6.4.1.2 Construct Statement Hierarchy
The Decaf language grammar defines a statement as:

&N

Statement = Expr ¢
| “if” IfStmt
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[
wac«mq
-_name : String A
+Variable(inout name : String)
l+getName() : String
Language::intLiteral LetoString() : String
-_value :int
+IntLiteral(inout vaiue : int) nguage::ReferenceFieidCal
l+getValue() : int - La !
L+t0Siring() : String -_objName : String
+ReferenceFieidCali(inout objName : String, inout fieidName : String)|
+QetObjName() : String
l+toString() : String

Language::MethodCall ]

-_name : String Language::StaticFieldCall
_arguments : Vector [_className : String
+MethodCall(inout name : String, inout arguments : Vecton) [ ryicFmidCaii(inout className : String, inout fieldName : String)
+getName() : String +getClassName() : String '
l-getArguments() : Vector +oString() : String
LtoString() : String -

PAN

Language::StaticMethodCall

-_className : String
+StaticMethodCail(inout className : String, inout methodName : String, inout arguments : Vector)

L-getClassName() : String
l+toString() : String

Language::ReferenceMethodCall

-_objName : String

+ReferenceMethodCall(inout objName : String, inout methodName : String, inout arguments : Vector)
+getObjName() : String

+t0String() : String

Figure 40: Class Diagram for Primary Expressions
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Language::AssignExpr Language::NewExpr
-_left - Expr -_type : String
imt Expr arglmems.\loctor
Expr(inout left : Expr, inout right : Expr)] +NewExpf(muttype String, inout arguments : Vector)|
+getLeft() : Expr +getType() : String
+getRight() : Expr +QetArguments() : Vector
+inSet{inout op : String) : boolean +10String() : String
+toString() : String T
Language::VariableDecl
-_type : String
-_hame : Stmg
+thbood(houuypo String, inout name : String)
+gefType() : String
+getName() : String
+isEqual(inout name : String) : boolean
~m.)Strmgo String

Figure 41: Class Diagram for Special Expressions

| “while” WhileStmt
| “return” ReturnStmt
| “{” BlockStmt

These grammar rules show that there are five kinds of statements defined in the

Decaf language:
® expressions.
e “if” statement represented by class IfStmt.
e “while” statement represented by class WhileStmt.
e “return” statement represented by class ReturnStmt.
e block statement represented by class BlockStmt.

We organize these statements into a statement hierarchy that defines the interface
Statement as the root. Figure 42 shows the class diagram of this statement hierarchy.
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§ -m-
J 1 | 1
Language::BlockStmt Language::WhileStmt
-_stmts : Vector -_tost :
LeBlockStmt(inout stmts : Vector) -_body : Statermnent _
. getStmts() : Vector Fwnnsmm test : Expr, inout Dody ; Statement)
L+taString() : String +getTest() : Expr
— l-getBody() : Statement
- 30String() : String
e
-_test : Expr
L l -_then : Staterent g
Language::RetumStmt -_eise : Statement _
- +IIStmt(inout test : Expr, inout thenStmt : Statement, inout eiseStmt : Staterment)
C_retum : Expr l+getTest() : Expr
l+RetumStmt(inout retumExpr : Expr) L+getThen() : Statement
+getRetum() : Expr l+getEise() : Statement
+toString() : String +t0String() : String

Figure 42: Class Diagram for Statement Hierarchy

6.4.1.3 Construct Class Declaration Hierarchy

Section 6.1.1.4 presents the productions of class declaration in the Decaf language.
These productions can be separated into two categories: class declaration and class

member declaration.

Class Declaration The design for the class declaration hierarchy are based on the

following forces:
e A Decaf language (DecafLanguage) Is A kind of language (Language).
® A Decaf language is composed by a series of class declarations (ClassDecl).

e class declarations are distinguished by their class names, and each class decla-
ration has a super class name associated with it. The contents of a class are
encapsulated in a class body (ClassBody).

e A class body is composed by a series of member declarations (MemberDecl).



T

-w»
‘ . Language::
Language::DecafLanguage Language::CiassBody
-_classDecls : Vector -_members : Vector
+DecafLanguage(inout classDecis : Vector) +ClassBody(inout members : Vector)
+getClassDecis() : Vector +getMembers() : Vector
+toString() : String +oString() : String
Language::ClassDec!
-_className : String b—

-_superName : String

-_classBody : Language
+ClassDeci(inout name : String, inout superName : String, inout body : Language)|
+getClassName() : String
+getSuperName() : String

Figure 43: Class Diagram for Class Declarations

Figure 43 shows the class diagram for class declaration. The participants in this
class diagram are organized with a COMPOSITE pattern.

Member Declaration In the Decaf language, class members are divided into two
categories: attributes and behaviors. Figure 44 shows the class diagram for class
member declaration in Decaf. The declarations for these two categories are designed

as class FieldDecl and class MethodDecl.

6.4.2 Define the Grammar Rules

The METAPARSER pattern introduced in Section 4.1 separates the parser design into
two levels: the meta-level and the base-level. The meta-level handles the relationship
between the rules. It determines the parsing execution sequence. The base-level
defines a rule library that includes a set of Rule classes. Each of these rules is
associated with a MetaRule object defined in the meta-level, which determines this
rule’s execution successors during the parsing.

To apply this pattern to the parser design for the Decaf program, the rule library
needs to be constructed based on the Decaf grammar and the relationship between
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Language::Signature

-_paramtrs : Vector
'-;baNarhbhs : Vector

+Signature(inout paramtrs : Vector, inout locaiVariables : Vi
+getParamtrs() : Vector

QetParamtrNames() : Vector
[+getParamtrTypes() : Vector

[+getLocals() : Vector

l+getiocalNames() : Vector

W"M Vector

-getNames(inout list : Vector) : Vector

-getTypes(inout list : Vector) : Vector

+loString() : String
Language:: AttributeDec!
-_type : String
AttributeDeci(inout v : String, inout t : String, inout n : String) Language:: BeheviorDec!
[+gefType() : String WI - -s'l
+t0String() : String [#BehaviorDeckinout visidility : String, inout name : String)|

ZP AN

Language::FieidDecl!

-_static : boolean

+FieidDecl(inout v : String, inout s : boolean, inout t : String, inout n : String)
+isStatic() : boolean

+toString() : String

Language::MethodDec!

-_static : boolean
-_retumType : String
-_signature : Language
-_methodBody : Language

o

+MethodDecl(inout v : String, inout st : boolean, inout r : String, inout n : String, inout sig : Language, inout m : Language)
+isStatic() : boolean

+getReturmnType() : String

+getSignature() : Language

+getMethodBody() : Language

+toString() : String

Figure 44: Class Diagram for Member Declarations
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the rules must be specified and initialized in the meta-level class Grammar.

6.4.2.1 Construct Rule Library for Decaf Language

Figure 45 shows the class diagram of the rule library defined for the Decaf language.
The abstract class Rule is the root class of all the rules in the rule library. The method
parse is defined throughout the rule hierarchy to perform the parsing operation on
each concrete rule. The method init gets references to rule’s successors from the meta-
level (a corresponding MetaRule object). The Rules in the rule library are designed
based on the productions listed in the Decaf grammar (Section 6.1.1).

6.4.2.2 Initialize the Rules’ Relationships in the Meta-level

Figure 46 shows the class diagram for participants who initialize the rule’s relation-
ships. The class DecafGrammar is derived from the class Grammar. It implements
the hook method initRuleSet to initialize the grammar relationships for the Decaf
language. The class ParsingEnvironment maintains and supplies information for
parsing at the meta-level.

The relationship between the rules must be specified and initialized in the meta-
level. It is abstracted directly from the grammar rule productions. This relationship
is defined as a sequence of rule names, in which the first rule name in the sequence
represents the rule that is applied and the subsequence represents the successors after
this rule is applied.

The following programming list shows the implementation of the class DecafGrammar,
which initializes the relationships between the rules defined in the rule library. The
relationships are maintained by a hash table defined in the super class Grammar, in
which the key represents the current rule name that is applied and the value refers

to the rule names of its successors.

public class DecafGrammar extends Grammar {
protected void initRuleSet(){

push( "START", new String(] {"Compilation_Rule"} );
push( "Compilation_Rule", new String[] {"TypeDecl_Rule"} );
push( "TypeDecl_Rule", new String[] {"ClassBody_Rule"} );

push( "ClassBody_Rule", new String[] {"MemberDecl_Rule"} );
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hule::Elpr_ﬂllol
-nextRule : Rule
+parss()
-nit()
[Rute::AddExpr_|
-eftRule : Rule
-rightRule : Rule
+parse()
-initQ)
[Rute::ANdExpr_Rule{
[eftRule : Rule
_rightRule : Rule
M
-nit)
|Ruie: MulExpr_Rule]
-eftRule : Rule +parse()
-rightRule : Rule " ~exprRule : Rule -init()
+parse() -ifRule : Rule
Linit() m'f:. : m [Rule::MethodDeci_Rule|
m : = "
[Ruie:EquExpr_Rule] blockRule : Rule | e fue
HeftRule : Rule +parse() oarsel)
LrightRule : Rule T =init() _initQ)
+parse()
iy Iaw..nbmu_mnl [Rute-MethodBody_Rule]
Rule::OrExpr_Rule] - |___|-blockRule : Rule
HeftRule : Rule -init() +parse()
LrightRule : Rule | -init()
rse - ﬂl“l
Mavigal [Fule-WhileStmt_ [Rute:-UnaExpr_Rute]
it)

-testRule : Rule onRule - Rule
|Rule::NotExpr_Rule] -stmtAule : Rule _notRule : Rule
-operandRule : Rule | | x(')”o —1-argsRule : Rule
rparse() -primaryRule : Rule
-init() +parse()

Rule::#Stmt_Rule -init()

1Rule::SignExpr_Rule -exprAule : Rule
-operandRule : Ruie | __| -stmtRule : Rule Aule: PrimaryExpr_Rule
+parse() poral -argsRule : Aule
-init() -parenRule : Rule
I .. . +parse()
Rule::RelExpr_Rule| [Rule::ReturnStmt_R reeumber()
-leftRule : Rule -exprAule : Rule #parseParen(inout parenRule : Rule)
-rightRuie : Rule  |— +parse() -init()
+parse() -init()
init() 1
[Rute::AssignExpr_Rule] Rule:Signature_Rule
-ivalueRule : Rule
-rvalueRule : Rule —— +parse()
-containsKey(inout name : String, inout list : Vector) : boolean
i
n

Figure 45: Class Diagram for Rule Library
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Parser::ParsingEnvironment

Grammar::Grammar

-_lexer : Lexer

-_grammar : Grammar

-_ruleSet : Hashtable

:Farsiannvimnmnt(inout lexer : Lexer, inout grammar : Grammar)

+Grammar()
oqgu.ist(mout key : String) : Vector

+getGrammar() : Grammar sinitFuleSet()
-+getlexer() : Lexer Iommnkcy:swing. inout nameLisy] : String)]
? [Gmnmnzmllk
[#intRuleSet()
Figure 46: Class Diagram for Class DecafGrammar
push( "MemberDecl_Rule", new String[] {"MethodDecl_Rule"} );
push( "MethodDecl_Rule"”, new String[] {"Signature_Rule",
"MethodBody_Rule"} );
push( "MethodBody_Rule”, new String[] {"BlockStmt_Rule"} );
push( "BlockStmt_Rule", new String[] {"Statement_Rule"} );
push( "Statement_Rule", new String[] {"Expr_Rule",
"IfStmt_Rule",
"WhileStmt_Rule",
"ReturnStmt_Rule",
"BlockStmt_Rule"} );
push( "IfStmt_Rule", new String[] {"Expr_Rule",
“"Statement_Rule"} );
push( "WhileStmt_Rule", new String[] {"Expr_Rule",
"Statement_Rule"} );
push( "ReturnStmt_Rule", new String[] {"Expr_Rule"} );
push( "Expr_Rule", new String[] {"AssignExpr_Rule"} );
push( "AssignExpr_Rule", new String[] {"OrExpr_Rule",
"AssignExpr_Rule"} );
push( "OrExpr_Rule",
new String([] {"AndExpr_Rule", "AndExpr_Rule"} );
push( "AndExpr_Rule",
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new Stringl{] {"EquExpr_Rule", "EquExpr_Rule"} );
push( "EquExpr_Rule",
new Stringl[] {"RelExpr_Rule"”, "RelExpr_Rule"} );
push( "RelExpr_Rule”,
nev Stringl] {"AddExpr_Rule", "AddExpr_Rule"} );
push( "AddExpr_Rule",
new String[] {"MulExpr_Rule", “MulExpr_Rule"} );
push( "MulExpr_Rule",
new String[] {"UnaExpr_Rule", "UnaExpr_Rule"} );
push( "UnaExpr_Rule", new String[] {"SignExpr_Rule",
"NotExpr_Rule",

"Expr_Rule",
“PrimaryExpr_Rule"} );
push( "SignExpr_Rule", new String[] {"UnaExpr_Rule"} );

push( "NotExpr_Rule", new String[] {"UnaExpr_Rule"} );
push( "PrimaryExpr_Rule",
new String[] {"Expr_Rule", "Expr_Rule"} );

6.5 Code Generation

The code generation process generates the compiling result on the virtual machine by
visiting the abstract syntax tree, which is created as a result of the syntactic analysis.
Considering the extension on both the Decaf grammar and the virtual machine, we
choose to apply the REFLECTIVE VISITOR pattern to the code generation design.
The application of the REFLECTIVE VISITOR pattern can reduce the impact to the
existing system due to any changes in the language specification. On the other hand,
the reflective class-based object model introduced in Chapter 5 provides an extensible

solution to implement the virtual machine.
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6.5.1 Extend the Reflective Class-based Object Model for
Decaf

Chapter 5 presents a framework for reflective class-based object model. This object
model framework defines the relationships among object, class, and metaclass. It also
provides some utility classes such as class ListValue, class ByteCode, and interface
CodePtr. To implement a reflective object-oriented programming language, more
classes should be defined based on the specified language grammar. These classes

includes:

e Class DecafClassValue is derived from class ClassValue to encapsulates the
properties of a class reference in Decaf. Attribute value defined in class ClassReference

refers to an instance of class DecafClassValue.

e Class MethodValue encapsulates the properties of a method. Attribute value
defined in class MethodRefrence refers to an instance of class MethodValue in
Decaf.

e Subclasses of the interface CodePtr implement the build-in methods that defined
for the build-in classes.

e Build-in classes. According to the Decaf grammar, some basic build-in classes
are necessary for the system. These classes include: Object, Method, Fzeld, and
Integer. More build-in classes can be added by subclassing class ClassReference.

6.5.1.1 Package Memory

The Decaf compiler defines a package Memory, which encapsulates the compiling result
of the compiler. The package Memory also represents the run-time information of the
virtual machine.

The package Memory includes the classes defined in the reflective object model and
the class Mem, the top level class of the package. The class Mem manages an instance
of class ClassTable, which maintains a set of class references. Each of these class
references represents the definition of a single class. Figure 47 shows the top level

structure of the package Memory.
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Memory::CiassTable

Memory::Mem

-_classes : Hashtabie

-_classes : ClassTable

+Mem()
4getClassTabile() : ClassTable
+oString() : String

+ClassTable()

+addClassRef(inout aClass : ClassReference)
+getClassRef(inout name : String) : ClassReference|
+getTable() : Hashtable

-initTable()

+toString() : String

+topSort() : boolean

Figure 47: Structure of the Memory Package

6.5.1.2 ClassValue and DecafClassValue

The value of a class reference represents the properties of a class. These properties can
be encapsulated in a separate class hierarchy that is composed by class ClassValue
and its subclass DecafClassValue. Figure 48 shows the class diagram for this class

hierarchy.

According to the Decaf language grammar, there are five kinds of properties in a

class definition:

e class name.

class members).

The class name and the type of a class are defined in class ClassReference. Class
ClassValue maintains the reference to its superclass. The member properties in the

type of the class (i.e. the class of the current class).
a reference to its superclass.
class members defined in current class.

class members inherited from its ancestors (do not include those overridden

class definition are encapsulated by class DecafClassValue.
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-_publicFieids : ListValue
-_protectedFieids : ListValue
-_privatefields : ListValue
_inheritedPublicFields : ListVaiue
-_inheritedProtectedFields : ListValue

L]

33222

-oDomlChssvuua(m String, in : ListValue, in : ListVaiue, in : ListValue, in : ListVaiue, in : ListValue, in : ListValue, in : ListValue)
[+getPublicFieids() : ListValue

l+getProtectedFieids() : ListValue

l+getPrivateFieids() : ListValuve

+getinheritedPublicFieids() : ListValue
[+getinheritedProtectadFieids() : ListVaiue

vinitinheritedFieids()

-initinheriedPublicFields()

HnitinheritedProtectedFieids()

+findPublicFisid(inout iName : String) : FieidReference
+findProtectedField(inout fName : String) : FieidReference
+findPrivateFieki(inout fName : String) : FieikdReference
[+findField(inout name : String) : FisidReference
[+findDefinedField(inout Name : String) : FisidReference
+findSupportedPublicField(inout fiName : String) : FieidReference
[+findSupportedProtectedFieid(inout fName : String) : FieldReference
+findinheritedFieid(inout fiName : String) : FieidReference
+addPublicMethods(inout ref : MethodReference)
+addProtectedMethods(inout ref : MethodReference)
l+getPublicMethods() : ListValue

l+getProtectedMethods() : ListValue

l+getPrivateMethods() - ListValue

+getinheritedPublicMethods() : Listvalue
[+getinhearitedProtectedMethods() : ListValue
l+initinhertedMethods()

-initinheritedPublicMethods()

-initinheritedProtectedMethods()

[+findPublicMethod(inout mName : String) : MethodReference
[+findProtectedMethod(inout mName - String) : MethodReference
+findPrivateMethod(inout mName : String) : MethodReference
[+findMethod(inout name : String) : MethodReference
l+findDefinedMethod(inout mName : String) : MethodReference
r+findinheritedMethod(inout mName : String) : MethodReference
[+findSupportedPublicMethod(inout mName : String) : MethodReference
+findSupportedProtectedMethod(inout mName : String) : MethodReference
-indMember(inout name : String, inout list : Vector) : Value
-findMember(inout name : String, inout members : ListVaive) : Value
letoString() : String

Figure 48: Class Diagram for DecafClassValue
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The member information defined in the current class, also known as “defined”
members (in contrast to the “inherited” members which refer to those members in-

herited from ancestors) , includes:

e defined public method list.

defined protected method list.

defined private method list.

defined public field list.

e defined protected field list.

defined private field list.

Encapsulating the inherited member information in the class DecafClassValue
can improve the efficiency feature in the interpreter/execution phase. These inherited

members include:

e inherited public method list.
e inherited protected method list.
e inherited public field list.

e inherited protected field list.

As a summary, class properties included in class DecafClassValue can be con-

structed in a dictionary format as follows. This dictionary constructs the attributes

of class DecafClassValue as shown in Figure 48.

{

"publicMethods" : ListValue
"protectedMethods" : ListValue
"privateMethods" : ListValue
"publicFields" : ListValue
"protectedFields" : ListValue
"privateFields" : ListValue
"inheritedPublicMethods"

: ListValue

"

{ publicMethodRef, ... }

{ protectedMethodRef, ... }
{ privateMethodRef, ... }

{ publicFieldRef, ... }

= { protectedFieldRef, ... }
{ privateFieldRef, ... }

{ inheritedPublicMethodRef, ... }
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“inheritedProtectedMethods"

: ListValue = { inheritedProtectedMethodRef, ... }
"inheritedPublicMethods"”
: ListValue = { inheritedPublicFieldRef, ... }
"inheritedProtectedMethods"”
: ListValue = { inheritedProtectedFieldRef, ... }
}
Basically, there are three use cases in searching for the members (fields or methods)
of a class.

e Find Defined Members
Methods findDefinedField and findDefinedMethod find a field and a method
in the defined member set with the supplied name, respectively. The defined
members includes public, protected and private members introduced in the

current class.

DefinedMembers = PublicMembers
U Protected Members
U PrivateMembers

e Find Supported Members
Methods findSupportedField and findSupportedMethod find a field and a method
in the supported member set with the supplied name. The supported members
are visible to other classes or its descendent classes. They include public and

protected members in the current class and the ancestors of the current class.

SupportedPublicMembers = DefinedPublicAMembers
U Inherited Protected Members

SupportedProtectedMembers = DefinedProtectedMembers
U Inherited Protected Members

e Find Members
Methods findField and findMethod find a field and a method in all defined

members and inherited members with the supplied name.
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6.5.1.3 MethodValue

+findLocakinout name : String) : ObjectReference
l-getParamerindex(inout name : String) : int

l+getlocalindex(inout name : String) : int

-find(inout name : String, inout listValue : ListVaiue) : ObjectReference
-getindex(inout name : String, inout kstValue : ListVaiue) : int
.nsmgo : String

Figure 49: Class Diagram for MethodValue

Method reference is a representative of a method defined in a class. The value
of a method reference represents the properties of a method. These properties can
be encapsulated in a separate class named MethodValue. Figure 49 shows the class
diagram for the class MethodValue.

According the Decaf grammar, the value of a method reference can be constructed

as follows:

{ "static" : boolean
"returnType" : ClassReference
"parameterList : ListValue = { ObjectReference, ... }
"localVariableList": ListValue = { ObjectReference, ... }
"methodBody" : Value

}

In Figure 49, class MethodValue defines the above structure as its attributes. The
attribute methodBody can be either a code pointer CodePtr or a byte code format
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ByteCode. For a build-in method, the methodBody is a code pointer CodePtr. While
for a user-defined method, the methodBody refers to an instance of ByteCode that
includes the byte code list and the literal information of the method body.

6.5.1.4 Code Point Classes

«type=
et
- +axecute(inout target : ObjectReference, inout paramtrs - Vector) : Obji
+oString() : String ?
Memory::CodePtr_getClass |
+execute(inout target : ObjectReference, inout paramtrs : Vector) : oqectl
+toString() String

Figure 50: Class Diagram for Code Pointer

The code pointer interface CodePtr defines an interface for all build-in methods.
The implementation of a concrete build-in method is defined as a subclass of the
interface CodePtr. The method ezecute is defined across the code pointer hierarchy
to perform the execution on the concrete build-in method.

Figure 50 shows that the build-in method getClass is defined as one of the concrete
subclass of CodePtr. This method is defined in the class Object to return the tvpe

of the class reference.

6.5.1.5 Build-in Classes

There are a set of build-in classes defined in the Decaf language. They include:

e Object — The root class of the Decaf class hierarchy. It is represented by the
class ObjectClass in the Decaf object model.

e Field — The class for all fields defined in a class. It is represented by the class
FieldClass in the Decaf object model.
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[Memory: ClassReference] Memory:MethodCless l
N\ +MethodClass(inout type : ClassReference, inout parent : ClassReference)
Linit(inout parent : ClassReference) : ClassVaiue

+10String() : String

Memory:-FisidClass
- FieldClass(inout type : ClassReference, inout parent : ClassReference)
-init(inout parent : ClassReference) : ClassVaiue

+0String() : String
|
Memory::ObjectClass | Memory:integerClass
+ObjectClass(inout type : ClassReference)| [+integerClass(inout type : ClassReference, inout parent : ClassReference)
-init() : ClassValue -init(inout parent : ClassReference) : ClassVaive
+toString() : String wbSuinoO:Sﬁhg

Figure 51: Build-in Classes

e Method — The class for all methods defined in a class. It is represented by the
class MethodClass in the Decaf object model.

e Integer — A system-defined build-in class. It is represented by the class
IntegerClass in the Decaf object model.

Figure 51 shows the class diagram for these build-in classes. More system-defined

classes can be added by subclassing the class ClassReference.

6.5.2 Implement the Visitor Hierarchy

Section 3.2 introduces the REFLECTIVE VISITOR pattern, one of the variations of
VISITOR pattern. The REFLECTIVE VISITOR pattern can be used as a framework to
perform operations over an extensible and reusable object structure. Unlike most
of the VIsITORs that perform dispatch actions through DOUBLE DISPATCH, the
REFLECTIVE VISITOR pattern defines a unique dispatch method wisit in the class
Visitor. This method handles the dispatch via reflection. Hence, the client can call
this method to visit an object structure and this object structure has no knowledge
about the visitor. Furthermore, any operation defined in the visitor hierarchy can

call this dispatch method to perform a re-dispatch action.
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By applying REFLECTIVE VISITOR pattern, the code generation can generate

compiling resuit on the target virtual machine by visiting the parsing result, an ab-

stract syntax tree that is a composite object. This design is compatible to any po-

tential changes on either the virtual machine specification or the language grammar.

6.5.2.1 Structure Overview

Generator::Generator

-_visitor : Visitor

-_tree : SyntaxTree

+Generator(inout visitor : Visitor, inout tree : SyntaxTree)

+generate()

Parser:SyntaxTree

-_tree :
ﬁmmmomm Visitor:: Visitor
+getLanguage() : Language visit(inout e : Victable)
+extendTree(inout lang : Language)| findMethod(inout e : Visitable) : Method|

Figure 52: Structure of Code Generation

Figure 52 shows the design of the visitor hierarchy for the code generation. For

extension purpose, this visitor hierarchy are designed in five levels:

Level One includes the class Visitor, which defines the method visit to perform
the dynamic dispatch. This class is the root of the visitor hierarchy. Section 3.2

presents the definition of this class.

Level Two includes the class CodeGeneration, which encapsulates the basic
properties for code generation. All concrete code generation processes are de-

rived from this class and they use the sources provides by this class.

Level Three includes the class ExpressionGenerator, which implements the
code generation for expressions defined in the Decaf language.

Level Four includes the class StatementGenerator, which implements the code
generation for statements defined in the Decaf language.

Level Five includes the class ClassGenerator, which implements the code gen-
eration for class declarations defined in the Decaf language.
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6.5.2.2 CodeGeneration Class

Visitor:: CodeGenerator
_mem : Mem
_codeBuff : Vector
-_literals : Vector
inout mem : Mem)
0 : Mem
Visitor:: Visitor code : Object) : int
isit(i : Vi code : int) : int
+visit(inout e : Visitable) int) -
-findMethod(inout e : Visitable) : Method} Ofd(lr:u:‘ eo:: : int) .v:t. it
cint
: Vector
(inout lit : Object) : int
: Vector

0
inout err : LangException)|

L]

Figure 53: Class Diagram for Class CodeGeneration

Figure 53 shows the class diagram for CodeGenerator. The class CodeGeneration
is derived from class Visitor. It encapsulates the basic properties to support the
execution of the code generation. All concrete code generation classes that handle
the code generation processes are derived from this class so that they can use and
share the sources provided by this class. Generally, there are three properties defined
in the class CodeGeneratior:

e Mem. which references the location that stores the compiling result.

e codeBuff, which temporarily stores the byte code sequence for each method.
The byte code is generated during the code generation.

e literals, which temporarily stores the literal information for each method.

6.5.2.3 Code Generation for Expressions and Statements

Figure 54 shows the class diagram for ExpressionGenerator and StatementGenerator.
The set of methods evaluate defined in these two classes recursively generates byte
code for expressions and statements.
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Visitor::StatementGenerator

+StatementGenerator(inout mem : Mem)
+evaluate(inout stmt : BlockStmt)
L+evaluate(inout stmt : IfStmt)
+evaiuate(inout stmt : WhileStmt)
+evaluate(inout stmt : ReturnStmt)

Figure 54: Class Diagram for Classes ExpressionGenerator and StatementGenerator

Expression Generator Class ExpressionGenerator is directly derived from class
CodeGeneration. It implements the code generation for variant expressions. These
expressions are defined in the Expr hierarchy in the language structure (Section 6.4.1).
The evaluate methods in this class receive expression objects as parameters and recur-
sively visit these expressions to generate byte code sequence according the instruction
set defined in the virtual machine specification. The generated byte code is stored in
the attribute codeBuff defined in the superclass CodeGeneration.

Statement Generator The statement is the basic component of a class method in
the Decaf program. Class StatementGenerator inherits from ExpressionGenerator
so that changes in the statement-level specification will not affect the code generation
part for expressions. As a part of the code generation for a method, the evaluate
methods in this class generate byte code sequence and store them in the attribute

codeBuff defined in the superclass CodeGeneration.

6.5.2.4 Code Generation for Class Declaration

As the leaf of the visitor hierarchy, the class ClassGenerator implements the code
generation for class definitions, which compose of the target Decaf program. It derives
from the class StatementGenerator. Changes in the specification of the class defi-
nition level will not affect the code generation for statements. The evaluate methods
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Visitor::ClassGenerator

-_curmentMethod :

-_currentClass : ClassReference
MethodReference

+evaluate(inout lang :
+evaluate(inout lang
+-@valuate(inout lang
+evaluate(inout lang
+ovaluate(inout lang

+evaluate(inout lang

+ClassGenerator(inout mem : Mem)
: DecaflLanguage)
+evaluate(inout lang : ClassDecl)
: ClassBody)
+evaiuate(inout lang :
: FieldDecl)
: Signature)
: Variabie)
+evaluate(inout lang : MethodCall)
: ReferenceFieidCall)
+evaiuate(inout lang :

MethodDeci)

[Visitor::StatementGeneratork]— ovaiuats(inout lang - StaticFieidCal)
- evaluate(inout lang : StaticMethodCail)
+evaluate(inout lang :

NewExpr)
-newClassValue(inout classDec! : ClassDecl) : ClassVvalue
-newMethodValue(inout mDed! : MethodDec) : MethodVaiue|

Figure 55: Class Diagram for Class ClassGenerator

that are defined in this class and inherited from its ancestors are executed recursively
to complete the code generation task for the whole Decaf program. Those literals that
will be used during the execution of current method such as user-defined variables,
method parameters, attributes and some constant literals are temporarily stored in
the attribute literals that inherited from class CodeGeneration. After the completion
of code generation for the current method, this literals is stored in the ByteCode ob-
ject as the value of currentMethod. The byte code sequence generated for the current
method is temporarily stored in the attribute codeBuff inherited from the superclass
CodeGeneration. The content of the codeBuff will be stored in the ByteCode object
as the value of currentMethod after the completion of code generation for the current
method. The compiling result for the current class (currentClass) is pushed into the
hash table (classes) defined in the class ClassTable, which is maintained by class

Mem in the package Memory.

6.6 Summary

This chapter presents the design for developing an extensible and reusable compiler
system (front-end) for the Decaf programming language, which is an extensible tiny
object-oriented programming language. This compiler system customizes the parser
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framework by defining rules for the Decaf language, constructs virtual machine plat-
form by extending the reflective class-based object model, and applies REFLECTIVE
VISITOR for implementing the code generation. The Decaf language itself can also be
defined as a language framework because a more complex language can be developed
based on Decaf without changing the existing system.

The next chapter is the conclusion of the thesis. We will also discuss the future

research work.
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Chapter 7

Conclusion and Future Work

7.1 Summary and Conclusions

Design for change is a major concern in software design since new requirement and
new technology emerge over time. Designing a system that meets a wide range of
different requirements is a difficult task. A better solution is to specify an architecture
that is open to modification and extension. The resulting system should be able to
adapt to changing requirements on the fly.

Reflection provides a means for a software system to dynamically change its struc-
ture and behavior. It supports the modification of some fundamental aspects like type
structures, function call mechanisms, etc. Since its first introduction by Smith [67]
as a framework for language extension, reflection technology has been an interesting
research topic and has been successfully applied in many domains. Specifically, in
the recent years, reflection has been integrated into programming languages and has
become an important feature in most object-oriented programming languages such
as Java (45, 32|, Smalltalk [38], Oberon [77, 70], Scheme [28], etc.

The thesis work performs a series of experiments on the application of the reflection
technique to better improve the software design in some circumstances.

First, a REFLECTIVE VISITOR pattern [53] was captured to improve the structure
of the VISITOR pattern design so that both the element hierarchy and visitor hierarchy
are extensible. In the REFLECTIVE VISITOR pattern, a visitor can perform the run-
time dispatch action on itself by using the reflection technique (e.g. Java Reflection).
The cyclic dependencies between the visitor hierarchy and the element hierarchy are
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therefore removed. The REFLECTIVE VISITOR is thus more flexible and reusable.

Second, due to the high demand of the VISITOR pattern in the software design,
a pattern language for Visitors [52] is presented to classify and organize the VIsI-
TOR variants. This pattern language will assist the application developer to choose
the right VISITOR pattern that best suites the intended purpose by enumerating all
important forces and consequences for each variant.

Third, a parser framework [51] was developed. A pattern language is presented
for developing a framework for parsing in object-oriented compiler design based on
the principle of the predictive recursive-descent parsing approach. It describes four
patterns that address three design aspects in developing an object-oriented parser.
Two alternative patterns are presented to provide alternative solutions to solve the
recursion problem in the object-oriented software design. A two-level structure is
defined for implementing the parsing process control based on the REFLECTION pat-
tern 13, 34]. The base-level contains a set of classes, where each represents a grammar
rule. The meta-level handles the complex relationships of the rules that are main-
tained in a hash table. Reflection is used to discover rules at run-time and determine
the parsing order. The base-level delegates the dynamic dispatch to a meta-level
object.

Fourth, a dynamic object model is defined for a virtual machine that can support
reflection. We demonstrate Forman'’s theory [33] by developing a simplified object
model based on a single inheritance system with the support of only one metaclass.

Finally, we designed and implemented an extensible and reusable compiler sys-
tem (front-end) for the Decaf programming language, which is an extensible tiny
object-oriented programming language. This compiler system customizes the parser
framework by defining concrete grammar rules for the Decaf language, constructs
virtual machine platform by extending the reflective class-based object model, and
applies REFLECTIVE VISITOR for implementing the code generation.

The Decaf language itself can be further refined as a framework for experimental
object-oriented languages so that a more complex language can be developed based

on it without changing the existing system.
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7.2

[S1}

Future Work

. The target of our reflective object-oriented programming language is for em-

bedded system programming. Further study should be made to investigate the
issues arising in the embedded systems, and in the future, the Decaf program-
ming language will be tailored for embedded system programming.

The dynamic object model and the front-end compiler system (Decaf compiler)
presented in this thesis can be used to develop an extensible virtual machine
framework for embedded systems. A reflective interpreter/assembler system [27]
will be developed and integrated into this virtual machine to support program
execution on the target machines.

. Garbage collection is the automatic recovery of resources (79, 44]. As an im-

portant feature in memory management for modern object-oriented languages,
the garbage collection should be supported in our virtual machine.

Error recovery has not been covered in this thesis. The error recovery can be
defined as a separate package and be integrated into the compiler framework.
The design of the error recovery in the compiler system should support handling
of lexical errors, syntactic errors, and semantic errors. It will also handle three

basic error categories: warning, skippable errors, and fatal errors.

Applying reflection leads to low efficiency. Jens Palsberg and C. Barry Jay [60]
made some discussions on the efficiency issues in using reflection. We need to
do the performance study in our target systems and compare them to other

related systems.
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