INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

GRADER -
DESIGN AND IMPLEMENTATION
OF
A COMPONENT-BASED DISTRIBUTED SYSTEM

Daofeng Sun

A Major Report
In

The Department
of

Computer Science

Presented in Partial Fulfiliment of the Requirements
for the Degree of Master of Science at
Concordia University
Montreal, Quebec, Canada

October 2000

©Daofeng Sun, 2000

[Lg |

National Library Bibliothéque nationale

of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 385, rue Wellington
Ottawa ON K1AON4 Ottawa ON K1A ON4
Canada Canada
Your Nig Votre rdidrence
Our Sle Notre réitérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant i la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-59341-X

Canada

ABSTRACT

GRADER - Design and Implementation of
a Component Based Distributed System

Daofeng Sun

This project focuses on the design and implementation of student grade
management system using component-based middle-tier distributed applications.
Object-oriented design and component technology paradigms are used to analyze
and design this GRADER application. The implementation is based on the Java
language Enterprise Java Bean (EJB) and J2EE application server. Three different
distributed architectures: DNA, CORBA and J2EE, are introduced and compared
to give an overview of the current distributing computing technologies. By
partitioning three or more tiers to a Web application, each tier can be logically
and may physically separated from each other to present better design patterns
and improve overall Web application reliability and scalability. All application
services are also distributed in each tier, including clients on the front end, data
resources on the back-end, and one or more middle tiers between them where
business logic of the application should stay. The middle tier implements as EJB
component, and hence has good reusability and hides the client tier from the
complexity of the enterprise, and takes advantage of rapidly maturing Internet
technologies to minimize user administration and good portability. Transparent
access allows clients to interact with remote servers regardless of physical
component location. The underlying infrastructure takes care of locating any

server resource. Java security mechanism is also discussed in this project.

iii

Acknowledgments

[deeply appreciate my supervisor Professor Tao Linxin for the benefits [took
from his courses and initiative of this interesting project. [am grateful to him for his
guidance, valuable suggestions, encouragement and time he spent in my major project.

[really appreciate Dr. Mustillo Pardo for his many efforts to examine the report
and gave me many valuable suggestions. Many thanks are to the system administrators at
Computer Science Department especially Stan Swiercz who has provided superior
system support. I also really appreciate graduate secretary Halina Monkiewicz who was
always friendly and gave me many help.

Special thanks go to my wife for her constant support throughout my Master

program study.

iv

TABLE OF CONTENT

LIST OF FIGURES I
1 INTRODUCTION 1
1.1 MULTI-TIER PROGRAMMING MODEL 1
1.2 OBJECTIVES . 2

2 COMPONENT-BASED DISTRIBUTED TECHNOLOGIES 5
2.1 J2EE (JAVA 2 PLATFORM ENTERPRISE EDITION)cc.ucorveermerrieeeenerensesssessssorscens 5
2.2 DNA (DISTRIBUTED INTERNET APPLICATIONS) ARCHITECTURE 7
2.3 CORBA (COMMON OBJECT REQUEST BROKER ARCHITECTURE)evveueeereeeneeen 11
2.4 COMPARISON.......oevermeerrreerererersrsessasosssessrsssossesssssosses 13

3 HIGH LEVEL DESIGN OF THE THREE-TIER GRADER 16
3.1 FRONT TIER DESIGN 17
3.1.1 Client side technology 17
3.1.2 Front tier modules 18

3.2 MIDDLE TIER DESIGN 20
3.2.1 Enterprise Java Bean Introduction 20
3.22 How EJB works 22
323 GRADER EJB components 25

33 BACK END TIER DESIGN 26
4 OBJECT ORIENTED DESIGN AND IMPLEMETATION 27
41 CLASS DIAGRAM 27
42 GRADER CLASS PACKAGES 27
42.1 Pacakge grader.ejb " 27
422 Pacakge grader.gui 30
423 Pacakge grader.util 33

43 USe CASES OF THE SYSTEM .34
43.1 Use case of the monitor 35
432 Use case of student 35
433 Use case of teacher 36

44 FINAL GRADE SEQUENCE DIAGRAM 36
4.5 DETAILED IMPLEMENTATION 38
45.1 GRADER database schema 38
452 GRADER GUIs 38
453 EJB deployment Process 49
454 How to run THE GRADER system 50

S GRADER SECURITY CONTROL 53
5.1 APPLET SANDBOX RESTRICTION 53
5.2 MAKE TRUSTED GRADER APPLET 54

53 How 10 SIGN GRAGER 56

6 CONCLUSION

REFERENCES
APPENDIX A:
APPENDIX B:

GRADER USER MANUAL

GRADER WALKTHROUGH

58

62
70

List of Figures

FIGURE |: DISTRIBUTED ARCHITECTURE DIAGRAM

FIGURE 2: J2EE MULTI-TIER ARCHITECTURE

FIGURE 3: DNA MULTI-TIER ARCHITECTURE

FIGURE4: CORBA APPLICATION ARCHITECTURE

FIGURE 5: GRADER FRONT-END GUI MODULES

FIGURE 6: EJB WORK FLOW DIAGRAM

......

FIGURE 7: EJB BEAN LIFECYCLE MANAGEMENT

FIGURE 8: GRADER CLASS PACKAGE DIAGRAM

FIGURE 9: GRADER.EJB CLASS DIAGRAM

FIGURE 10: GRADER.GUI CLASS DIAGRAM

FIGURE | l: GRADER.UTIL CLASS DIAGRAM

FIGURE 12: THE MONITOR USE CASE DIAGRAM

FIGURE 13: THE STUDENT USE CASE DIAGRAM

FIGURE 14: THE TEACHER USE CASE DIAGRAM ...

FIGURE 15: FINAL GRADE SEQUENCE DIAGRAM

FIGURE 16: GRADER DATABASE SCHEMA DIAGRAM
FIGURE | 7: THE MONITOR GROUP GUIS

FIGURE 18: THE TEACHER GROUP GUIS (1)

FIGURE 19: THE TEACHER GROUP GUIS (2)

FIGURE 20: THE TEACHER GROUP GUIS (3)
FIGURE 21: THE STUDENT GROUP GUIS

FIGURE 22: J2EE SERVER START PROCESS

FIGURE 23: J2EE DEPLOYMENT TOOL SNAPSHOT

1 Introduction

1.1 Multi-tier programming model

Application programming models fall into two categories. The classic model
entails the creation of an application as a single stand-alone entity, whereas the
component model [1] allows the creation of an application as a set of reusable
components. In the classic model, the same programmer typically authors the application
framework and the business logic. The component model is quite different. A
programmer writes code to implement specific business functions, while a standard
container supplied by someone else handles the rest. Requests from outside the
application are directed to the container, which is responsible for executing the correct
code within the objects implementation. The container and the object communicate
through some protocol. The current hot Web-based applications require a more scalable,
flexible, and reliable software infrastructure. This has resulted in a necessity for the
integration of back-end systems and services with the Web. Component features act as
natural glue for integrating business objects in the middle tier of distributed applications.
Distributed applications are typically implemented in multiple tiers in which many
business components cooperate to form so called middleware. Figure 1 illustrates this.

The three-tier architecture has become quite pervasive, especially for Web-based
applications [8]. The first tier represents the presentation and GUI layer, such as a web
browser in an Internet-based application. The middle tier consists of the application
business logic, which can be constructed as business component objects. These business
objects can be new application modules or existing applications that are encapsulated so

they can be integrated into the environment. The back tier includes data repositories, such

Presentation & GUI Business Components Database

Front Tier Middle Tier Back-end
Tier

Figure 1: Distributed architecture diagram
as relational or object-oriented databases. The multi-tier component-based distributed

system is superior to the traditional Client/Server system in the aspects of scalability,
flexibility, security and productivity. Any third-party components can be plugged in to
the middle-tier where a standard application server will host these components. This will
demand component interfaces used in the distributed system must adhere to some
standard by all parties involved with the creation and utilization of the business
component objects. Examples of the component-based distributed systems include J2EE,

DNA, and CORBA as described in Chapter 2.

1.2 Objectives

GRADER is designed and implemented in this kind of multi-tier component-
based distributed system. It focuses on the features such as a three-tier component-based
distributed instead of trivial stand-alone application. GRADER should provide basic
functional capabilities to let teachers login and open a new course session, which can be
used to store and retrieve students grades. GRADER is typically used for maintaining

many course sessions and stores all transactions into a database aimed at Web access.

GRADER works on the main platforms (e.g. Unix, Windows) and with stable rich user
interface. The Database also has good features like platform independency, and at least
support for SQL standard. The Database hosts all the student data information and other
related information. This system should be used by all groups of users — administrators,
teachers and students. The system can be reliably accessed from the Intemet by browsers
like Netscape or Internet Explorer. The back-end database could be a relational database
or object database, or even plain files. The storage is transparent to users, and the
database will keep the persistence and connect via middle-tier business components.
Teachers can record, modify/query/delete information for each student (ID, names,
assignment/lab/test grades, exam grades, etc.) who belongs to teacher’s courses, and
registered students can know their own grades and other course information by logging in
to the system and then modify his/her profile. Other facilities should be included in this
application, like automatically computing course-weighted sums, averages, means and
course final grades based on student basic marks. In addition, there should be some kind
of facility to compute course statistics, and show all these course data and grade
histograms to give very straightforward representation.

Based on the above considerations, the following design goals were chosen for
this component-based distributed system [15][19]:
. Object-Oriented design

OOD must be used to design GRADER in order to get the benefit of being

easy maintain and extensible as well as reusability.

. Component based

To explore the new technologies and follow the industrial trend, most

persistence objects and business logic should be organized to be components, and
allow these components interact each other to cooperate for providing the services
to requests. The benefits of these components are the code reuse and service
transparency. This goal will be reached by biding one of the current component
design framework.
Distributed computing

GRADER should be implemented in a distributed computing
environment, and act as a test bed of the adopted middleware application server.
Internet based

The system is to be used on the Internet, and should consider the Web
accessibility from anywhere via Web browsers. This means that some kind of
remote transport protocol must be used to provide the full communication.
System usability

GRADER must provide good user interfaces and be designed carefully to
let users know what to do and get online help if needed.
System portability

GRADER should be designed and implemented to meet the multiple
platform usage. The coding also needs to follow some kind of convention and
have good documentation.
System security

Different group user such as teacher and student should have appropriate

security levels to prevent student from reaching unauthorized content, and each

teacher can only manage his/her own course materials.

2 Component-based distributed technologies
2.1 J2EE (Java 2 Platform Enterprise Edition)

The J2EE [2], which contains the Enterprise JavaBeans (EJB) [3] [4] server-side
component architecture, was designed to meet the Web complex applications with the
development, deployment and management of multi-tier enterprise solutions. It is used
for the life cycle application development and deployment of component-based
distributed business system, and is an open industry standard in the Java domain initiative
led by Sun Microsystems. J2EE synchronizes the releases of the various Enterprise Java
APIs, and defines the architecture to support both business logic components as well as
data processing components, which are critical one to build a complex and reusable
domain object model. J2EE also supports transaction load balancing and middle tier data
caching mechanism. All of features make it easy to extend system scalability by using
multi-tier deployment and load balancing. The Java language being platform independent
makes it possible for J2EE application EJB components to be written once, and then
deployed on any server platform that supports the Enterprise JavaBeans specification. A
well-designed J2EE application can be independent of middleware, operating system, and
hardware then can be deployed in a heterogeneous server-side environment. Middleware
independence is possible because J2EE is a specification, not a middleware
implementation. Operating system and hardware independence is possible because J2EE
is built on the platform-independent Java virtual machine. J2EE provides full support for
EJB components, Java Server Pages (JSPs) to create dynamic Web pages, and support for

XML technology. J2EE also provides naming and directory services through the Java

Naming and Directory Interface, transaction services, and Java Messaging Service.

Figure 2 describes this J2EE architecture [4][29].

WAP Clent Ell'l'l‘l’ 1 I
T
| £5 [FRMUTIOP-- ’
3
= Fod
\L«. é 3 Application Server !
‘o [|
1 APls: l
JMS
Java Applet or - Hop——™ RMJNDI
Ju:a Application RMI mOP i
| o |
XML
' EJB Components “JDBF
CORBA Client T‘CORBWOE) ’ Database
| |
| |
Front tier Middle tier Back-end tier

Figure 2: J2EE multi-tier architecture
The major benefit of the J2EE application model is in the middle tiers of multi-

tier applications. In the J2EE platform, middle-tier business functions are implemented as
Enterprise JavaBean components, as shown in FIGURE 2. These enterprise beans allow
service developers to concentrate on the business logic and let the EJB server handle the
complexities of delivering a reliable, scalable service. JSP(Java Server Pages) technology
and servlets present middle-tier functions to the client tier as simple-to-access Internet-
style services. JSP technology makes it easy for user interface developers to present
dynamically generated pages to anyone with a browser. Serviets give more sophisticated

developers of Java technology-based applications the freedom to implement dynamic

presentations completely in the Java programming language. The following standard Java

service APIs provide basic access to these systems:

JDBC - the standard API for accessing relational data from Java.

Java Naming and Directory Interface (JNDI) - the standard API for accessing
information in enterprise name and directory services.

Java Message Service (JMS) - the standard API, which used to send and receive
synchronized messages.

Java Transaction Service(JTS) - the standard API for transaction processing.

JavaMail (JMS) - the standard API for sending E-mail.

JavalDL - the standard API for calling CORBA services.

J2EE is built on top level of Java 2 APIs and based on these flexible component
configurations [7][18][30]. The J2EE application using J2EE architecture can achieve
quicker development, easier customization and greater ability to develop powerful
enterprise applications. The J2EE applications achieve all the benefits of Java

technology: scalability, portability, and programming ease.

2.2 DNA (Distributed interNet Applications) architecture

Microsoft Windows DNA [23] is a framework and unifying architecture for
distributed applications to access the rich set of services on the Windows platform. It is
an extensible platform that builds on the Component Object Model (COM) [22]
framework that allows developers to focus on solving business logic rather than on
building basic Web solution plumbing. It consists of a combination of Microsoft products
and technologies that help applications fully use the power of the Web construction.

Windows DNA is a distributed architecture that describes how to build three-tier or n-tier

applications for the Windows platform. Using DNA, developers just need to concentrate
on maximizing overall application autonomy, reliability, availability, scalability, and
interoperability. DNA adopts COM component technology and MTS role-based security
to prevent clients from accessing critical resources directly and use MTS transactions to
ensure accurate results in a multi-user environment. By implementing redundant
hardware and software systems, which include using MSCS for redundancy solutions
involving clustering DNA, can eliminate single points of failure. It also uses MSMQ’s
store and forward, guaranteed delivery, and dynamic routing features to simulate
increased network availability. DNA architecture use MTS to share resources among
users and to pool resources in short supply to minimize resource acquisition times. When
connecting to a database, DNA uses ADO or OLE DB for universal data access and XML
to share information with other applications. DNA includes these modules such as ADO,
OLE DB, ODBC, MTS, DTC, XML, MSMQ, MSCS and COM+ Components. Within
DNA, COM defines the basic component/object model and DCOM (Distributed COM)
[21] allows components to be moved around various networks. MTS provides a
component runtime environment for all the middle-tier components. DTC coordinates
distributed transactions. MSMQ provides asynchronous communications and MSCS
allows multiple application servers to work transparently form outside. Figure 3

illustrates this architecture.

The Windows DNA business tier contains business and data logic, encapsulated
within COM+ components. COM+ components can be written in any language that
supports COM+. All invocations to COM+ components are intercepted by the COM+

runtime, and delegated to the components. This gives the COM+ runtime the opportunity

WAP Client |HTTPY
T
I §5,- —DCOM—- ‘
2=
||| 23 |
o 57 Application Server
HTML chient ,\«‘
(Browser) |
ADO
OLEDB
ActiveX Controt ——DCOM—" OanDBC
Liv or
Standalone Application Dc pIC }
| MSMQ |
MSCS ODBC
. COM+ Components OA'-EgB
CORBAClent |——COM-CORBABridge ' . Database
| |
Front tier Middle tier Backend tier

Figure 3: DNA multi-tier architecture

to perform middleware operations, such as transactions, security, and object lifecycle

management. The technologies involving in DNA [23] [12] are:

Active Server Pages (ASP) - An open application environment in which HTML pages,
server-side scripts, and ActiveX components are combined to create dynamic
content Web-based applications.

Internet Server Application Programming Interface (ISAPI) - A set of functions for
Internet servers included units, such as a Microsoft Windows NT Server running
Microsoft Intemet Information Server.

Distributed Component Object Model (DCOM) - An object protocol that enables
ActiveX components to communicate directly with each other across a network.

DCOM is language-neutral, so any language that produces ActiveX components

can also produce DCOM applications.

ActiveX Data Objects (ADO) - A collection of data access objects within a hierarchical
object library. ADO enables you to write a client application to access and

manipulate data in a database server through a interface provider such as

Microsoft IIS 4.0.

OLE DB - A set of OLE interfaces that provide applications with uniform access to data
stored in diverse information sources, regardless of location or type. These
interfaces allow data sources to share their data through common interfaces

without having to implement non-native database functionality to the data store.

Open Database Connectivity (ODBC) -A standard programming language interface
used to connect to a variety of data sources.

Microsoft Distributed Transaction Coordinator (DTC) - A system service that
coordinates transactions. Work unit controlled by a DTC can be committed as an
atomic transaction even if it spans multiple resource managers, potentially on
separate computers. Microsoft DTC implements a two-phase commit protocol to
ensure that the transaction outcome (either commit or abort) is consistent across
all resource managers involved in a transaction. Microsoft DTC ensures
atomicity, regardless of failures.

Microsoft Message Queue Server (MSMQ) - A technology that enables applications
running at different times to communicate across heterogeneous networks and
systems that may be temporarily offline. Within an MSMQ enterprise,

applications send messages to queues and read messages from queues.

10

Component Object Model (COM) - An architecture for defining interfaces among
objects implemented by widely varying software applications. A COM object
instantiates one or more interfaces, each of which exposes zero or more properties
and zero or more methods. All COM interfaces are derived from the base class
[Unknown. Technologies built on the COM include ActiveX, MAPI, and OLE.

Microsoft Transaction Server (MTS) - A COM-based transaction processing system

that provides a run-time environment for objects to perform the business logic.

Component Services (COM+) - A set of services based on extensions of MTS and the
COM that provide improved threading and security, transaction management,

object pooling, and application administration and packaging.

2.3 CORBA (Common Object Request Broker Architecture)

The Common Object Request Broker Architecture (CORBA) [9] is an emerging
open distributed object-computing infrastructure standardized by the Object Management
Group (OMG). CORBA automates many common network programming tasks such as
object registration, location, and activation; request de-multiplexing; framing and error-
handling; parameter marshalling and de-marshalling; and operation dispatching. The goal
is to move technology to a plug-and-play environment. The basis of the architecture is to
recognize all components of a network’s infrastructure as objects. The implication is that
both the client and the server are now recognized as receiver and sender, not just only as
receiver or just as sender. The core of the architecture is the Object Request Broker
(ORB) through which all objects communicate. Objects are identified in four categories:
applications, domains, services, and facilities. The main achievement of CORBA is the

interoperability cross all heterogeneous platforms and all kind of program languages.

131

Clients access objects only through objects advertised interface, invoking only those
operations that that object chooses to expose, with only those parameters (input and
output) that are included in the invocation. In order to invoke the remote object instance,
the client first obtains its object reference using Naming services. To make the remote
invocation, the client uses the method calls just like it used in the local invocation, but
substitutes the object reference for the remote instance. When the ORB examines the
object reference and discovers that the target object is remote, it marshals the arguments
and routes the invocation out over the network to the remote object’s ORB. The CORBA
object invocation process has two key levels: First, the client knows the type of object it
is, and the client stub and object skeleton are generated from the same IDL. This means
that the client knows exactly which kind of operations it may invoke and where to go in
the invocation. Second, the client’s ORB and object’s ORB must agree on a common
protocol, which is standard [IOP (Intermet Inter-ORB Protocol). The typical CORBA

distributed [9] application picture is as follows:

WEB CLIENT WEB SERVER

g paces| _(3)
G+ c

4Load Applet '

Figure 4: CORBA application architecture

12

The CORBA architecture defines many services including Object Services,
Naming Service, Trading Service, Event Service, Query Service, Relationship Service,

Security Service, Transaction Service and other common facilities.

2.4 Comparison

For serious enterprise applications deployed as three-tier or n-tier, the most
important of requirements is scalability. The middle tier will be the component tier. It is
on this tier that the business logic will run, packaged as software components. Instances
of these components will be managing requests coming in from the client tier and will be
updating back-end tier databases. Since the component instances are updating back-end
databases, they require database connections. Database connections are valuable
resources, and each component instance having a database connection is also a valuable
resource. They too, therefore, must be managed carefully. In enterprise applications the
number of clients using the system will usually far exceed the number of component
instances the system can support. Any distributed architecture must therefore include
some mechanisms for sharing instances among clients. All three of these architecture
address component objects scalability by merging two different technologies [12][11]:
Components and Transaction Processing Monitors (TPMs). Component coordination
must support not only transactions explicitly expressed as sequences of service [10][6]
invocations, but also the situation in which the internal implementation of one of those
services in turn relies on an autonomous service. The issue of proprietary architectures
within the CORBA is that it does not define a server side component coordinator
framework. It does not deal with issues such as transactions, component packaging, or

automatic state management, but a specification. Both J2EE and DNA have good middle-

13

tier components objects caching mechanism, but DNA being a Microsoft member, sticks
with only Windows, not a multiple platforms as most enterprise application deployed. It
is not a pure platform independent solution to distributed objects computing. The strength
of CORBA was deployed mainly in mainframe environments as a way to wrap legacy
code for use as components. J2EE provides for interoperability with CORBA through
The Java interface definition language, a CORBA IDL-to-Java compiler. J2EE makes
distributed object technology more accessible through EJB technology and easier to use
by offering an abstraction level that is higher, and therefore more efficient for software
development. The complexities of distributed object communication are completely
hidden. EJB can exploit object communication mechanisms such as CORBA and RMI
without having to expose these underlying technologies to the application programmer.
EJB uses RMI over [IOP - the CORBA wire protocol to allows the transparent mapping
of RMI to CORBA. J2EE can work in the Java language, and still gain the possible
interoperability benefits of CORBA. The most significant difference between Windows
DNA and J2EE is that Windows DNA is a proprietary product supported by a single
vendor, whereas J2EE is an open industry standard supported by a variety of middleware
vendors, each of which are providing implementations for the standard. J2EE has both
business and data components, whereas DNA only has business components. There is
very weak support for stateful business processes in Windows DNA. COM+ [8]
components cannot hold state beyond a transaction because they are activated and
deactivated by the COM+ runtime upon transactional boundaries. J2EE fully support
stateful business process by session EJB beans and persistent support by EJB entity

beans. COM+ does not provide any form of automated persistence support, because there

14

is no notion of a data component in COM+. The benefit of J2EE is obvious in a

component-based heterogeneous distributed system.

15

3 High level Design of the three-tier GRADER

The basic requirement of GRADER is a three-tier, component-based distributed
system, which is an expedition to a new computing paradigm. According to the analysis
of the first part, J2EE is the best candidate to be applied to the GRADER online
application. It has a sound architecture and mature APIs to satisfy all the needs of
GRADER. By partitioning GRADER into three distributed tiers that are front end, middle
tier, and back-end, we actually follow the MVC rule (Model, View, Control) [7][19] to
design the system. Model is the persistent data stored in Database, and view is the user
interface whereas Control is middle tier business component. The details of these three
layers will be described in the following parts. The basic things are that front-end will
provide a GUI interface to let teachers manage the course data and students have an easy
way to browse their grade information. The middle tier is made of distributed
components, which are EJB beans that may be deployed in several sites. This layer
focuses on the business logic and performs the gateway to the database and front-end
presentation GUI interface. The back-end layer plays a role to keep persistent objects,
which will map to the records of some tables if using a relational database, or serializable
binary files if using file storage.

This GRADER application also needs to consider the security problems like
different access policies [24]. By using the J2EE well-defined security model, we can
easily achieve this goal. J2EE can let the developer define access role for even every
method call, and make sure the data will be consistently feed to users. Using different
group identifiers, it is easy for the system to control the authentication of login user and

present the different GUI with the proper access permission. The teacher has the privilege

16

to register a new course section and set up what kind of grades that they want to prevent
to student. Students can only view his/her own courses information restricted by the
course lecturer and change their own access password or profile.

J2EE can let the application take full power from the Java programming language
and hence it is a totally platform-independent solution. The mature EJB (Enterprise Java
Bean) component technology guarantees the transactional database connection and
remote invocation to the EJB components and good performance as well. It is the best

choice for GRADER.

3.1 Front tier design

3.1.1 CLIENT SIDE TECHNOLOGY

J2EE provides rich front-end choices that are HTML/JavaScript, Java stand-alone,
and Java applet within Java-enabled browser [30][27]. Let us analyze each of them to
find which one is best solution for GRADER.

HTML with JavaScript uses the HTTP protocol to communicate with the Web
server where JSP and Servlet technology from J2EE can provide dynamic content from
the client request. In this mode, EJB components just talk to JSP or Servlet not HTML
directly. All the GUIs have to be built using HTML and JavaScript that is very limited for
GRADER like complex GUI demand. HTML also is static and this lead all the dynamic
content request must go to JSP or Servlet back and forth and hence increase the Internet
traffic. Each time the HTML page must be refreshed when student records are changed or
course grade is calculated on the fly.

For the stand-alone Java front-end, full Java APIs like Swing and AWT can make

a perfect user interface and very powerful to carry all the functionalities. The

17

disadvantage is that the user must live with a JDK environment to run the GRADER
application, and take care of all the Java environment set up and each time GRADER has
new server side modification such we change some business logic, the client must have
the same version of all modified class files to make the consistency to the server.
Administration work is definitely evitable.

By adopting an Applet client solution, we can have the Java rich interface
advantage, but avoid the administration problem. Users can use any Java-enabled
browser like Netscape or [E to play as a client end point. We don’t need to use JSP or
Servlet to feed the dynamic content to users. The only disadvantage is that each time the
applet needs to download the bunch of server class files to run the application.
Comparing the above two solutions, it is worth to scarify this to get other benefits.
Regarding the Applet security restriction, we can use a signed jar file or modify security
policy to free the sand box limitation of the Applet.

3.1.2 FRONT TIER MODULES
From the user point of view, the GRADER GUI can be divided into three main

groups, and each group has its own functional modules as shown in Figure5.

The individual modules can be further described to explain its functionality as
follows. Log in — the entry login in a window to authenticate the user.
Monitor group:

o Add/Modify/Query User—registers new monitor/teacher/student, assigns login ID
and password to each user, and can query a specific user to modify his/her profile
or delete this user record from the database.

e Batch add User—provides a flexible batch mode way to add many users at the

same time.

18

v v v
Monitor Teacher Student
Add/Modify/ |__| Add/Modify/ Grade
Query User Query Student Management
|1 Courseinfo
view
Add/Modify/ || Add/Modify/ -
Query Course Query Grade Statistics
=1 Bar Chart view
Bachadd | | Batch add Course [nfo/
User Student/Grade Bar Chart view
—1 Modify profile
] account Email | |
SQL tool ification

Figure 5: GRADER front-end GUI modules

e Add/Modify/Query Course — registers new course, assign course ID and teacher.
Can query specific course and modify this course profile or delete this course
from database.

e SQL tool — provides a GUI tool to query the database or build initial necessary
tables.

Teacher group:

o Add/Modify/Query student t—registers new student, assign login ID and password
to each student and can query specific student to modify/delete profile from
database.

e Add/Modify/Query Course grade — adds new course grade item, registers students
to this course and can query specific course and modify this course grade or delete

this record from database.

19

Batch add student/grade — provides flexible batch mode way to register many
students to the course at the same time, and can add a whole class course grade
instead of one by one.

Email notification ~ provides a convenient Internet communication mechanism to
send an E-mail of account information to individual students and student
summary lists to teachers.

Grade Management — provides way to let teacher author the course weight rule,
set up student view permission, full mark assignment and final grade calculation.
Statistics ~ provides way to let the teacher send command to middle tier
component to calculate course items statistics.

Course Info/Bar Chart view — lets teachers have the full choice to view course

grade information and grade bar graphics chart.

Student group:

3.2

3.2.1

Course info view —lets students view his/her courses grade summary information
Bar Chart view — lets students have a full choice to view course grade bar
graphics charts.

Modify profile — lets a student modify his/her profile like password or e-mail

address.

Middle tier design

ENTERPRISE JAVA BEAN INTRODUCTION

J2EE architecture depends heavily on the EJB components in the middle [25][26]

tier to realize its business components distribution and data persistence database

connection. Enterprise JavaBeans are well-designed reusable business logic components

20

for use in distributed, multi-tier application architectures. EJB based applications can be
get up and run quickly by just integrating all needed EJB components. For example, if
you are developing a high-end e-commerce application, you might purchase one EJB
component that performs on line credit card processing, another that manages a client
database, and another that calculates shipping costs. You would then tie these together
within your application server by setting up deployment properties of the beans, and there
you would have it - an order processing system. An application server would
automatically handle sticky issues like requests for balancing loads, maintaining security,
monitoring transaction processes, object resources share, and ensuring data integrity.

EJB is different from the conventional Java bean at the point that it is not a GUI
property and behavior of transactional server side Java bean components. Conventional
beans are Java classes, typically graphical user interface (GUI) components, designed to
conform to a series of programming conventions so that integrated development IDE
environments. They follow conventions of interfaces using get and set to define class
prosperities and arent for use inside development. The purpose of Enterprise JavaBeans
is to encapsulate business logic into server-side components. In the EJB paradigm, an
application is implemented as a set of business-logic-controlling EJB components that
have been configured in application-specific ways inside an "EJB container” such as an
application server. Clients are then written to communicate with the EJB components and
handle the results. The standardized interfaces exist to allow the EJB container to manage
security and transactional aspects of the bean.

Application servers are runtime environments to host EJB containers because they

automate the more low level features of multi-tier computing. Application servers

21

manage resources on behalf of the components involved in the design. They also provide
infrastructure services such as naming, directory services and security. And they provide
bean-based applications with the benefit of scalability - most application server
environments will let application clustered through the addition of new clusters of
machines. EJB containers offer their beans a number of important services including Life
cycle management, multithreading, security services, transaction, and persistence and
state management services. This will keep the programmer focused on the business logic
instead of system considerations.

3.2.2 HOW EJB WORKS

There are four types of EJB beans — stateless/stateful session beans and container-
managed persistence/bean-managed persistence entity beans [27]. Session beans don’t
deal with data persistence and represent a process that will be performed on the server.
Entity beans represent persistent objects and have to deal with data persistence. Each
entity beans object might implicitly represent and mapping to a row in a relational
database table and they will keep the data even system get crashed or reboot.

Each EJB component has two interfaces associated with it: EJBHome and [5] [4]
EJBObject. The classes that represent these interfaces are created when the EJB is loaded
into the container. EJBHome provides the way to create the EJB beans and have find
methods for entity beans. Both session and entity beans have create methods that will
return an instance of the EJBObject class. There may be a number of these create
methods, each taking different parameters depending upon what data is required to
initialize the EJB. In the case of entity beans, there will also be "finder methods,"” which

take a primary key as a parameter and return a reference to a unique EJBObject instance

22

or collection of EJBObjects matching find methods. EYBObject is an instance of the EJB
bean remote interface class and is used by the client to access the methods provided by
the EJB component. The EJBObject class acts as a proxy, putting the necessary
infrastructure-specific code between the client and the EJB component. We can show the

relationship as follows.

Client Application Server
Services
Locate
Bean - (JNDI Naming) \
home Baan homae JTS (Transaction
Persistence
~
Create \R“‘E‘ Database
Bean Instand
~ EJB Home
>< create()
Invocation

EJB Object
business

RMI or IIOP
Protocol

Figure 6: EJB work flow diagram

As shown above, a bean is installed into a container by supplying a deployment
descriptor, which contains details about the bean’s interfaces. EJB container tools analyze
the EJB package, reading the deployment descriptor and generating implementations
classes for the home and remote interfaces and client stubs. The bean’s home object is
then registered with the naming service, and the home and remote interfaces are then
made available to clients. A client tries to find a bean’s home interface by querying the
Java naming service (JNDI). The client calls the create or find methods, as defined in the
home interface, and receives in return a reference to the object that implements the

remote interface. A session or entity EJB Object is a remote Java object that is accessible

23

through the standard Java programming interfaces for remote invocation. The client
simply calls business methods on the object. The container provides security,
concurrency, transactions, swapping to secondary storage, and other services for the
object. This is completely hidden from the client. As an example, consider the following
client pseudo code for working with an EJB bean *“User”:

UserHome userHome = <Naming Service>.lookup(“MyUser”);

User user = userHome.create(<creation parameters>);

(or User user = userHome.findByPrimaryKey(<primaryKey>));

methodReturnType result user.setName(*“Bob");

We first lookup EJB User remote home by naming service and then use returned
User home object to create a new User remote interface or use findByPrimaryKey()
method to find the remote interface object. After having EJB remote interface client can
perform all the methods this User EJB registered just like a local object invocation. Note
that the User bean implementation object is not exposed to the client. This is analogous to
a CORBA object implementation.

The major difference between EJB and other distributed object protocols is in
how servant objects are created and managed. In CORBA, servants are explicitly
instantiated inside the server application and then registered with the ORB’s object
adapter. The same programmer that writes the object implementation usually writes the
server application. RMI is handled similarly. In the case of EJB, a bean programmer
writes only the code for the bean implementation. The responsibility for executing the

code is delegated to the EJB container, which in most cases is written by someone else.

24

The EJB container resides inside the EJB server, which interacts with the operating
system and the system administrator.

EJB specifies a contract between containers and beans. The container contract is a
protocol that defines how beans should be manipulated by a container. Part of the
contract is a requirement for each bean to implement standard methods, for example
ejbCreate() and ejbFind(). A bean also contains implementations of business logic
methods. The container uses Java reflection to redirect calls made by clients to the remote
interface for execution by the bean’s methods. As an illustration of the complexity of
bean management within a container, the following diagram shows the lifecycle of a

stateful EJB session bean [3]:

Note:

create(args) Methods invoked by clients on home or remote
Does not interfaces

¢ exist

Methods executed by the container

1. newinstance()
2 setSessionContext(gc)

3. ejbCreate(args) ejbRemove()
? LRI victim
remove()
aibPassivate()
non transaction Method
d , d
metho ready albA 160
transaction rollback T
method method
non transaction
method
transaction Method ERROR
method ready

Figure 7: EJB bean lifecycle management

3.2.3 GRADER EJB COMPONENTS

In the GRDAER system, based on the requirement analysis, six entity beans and

one session bean are chosen to play as middle layer components.

25

User entity bean — provides basic three groups with user authentication information,
stores user [D and name, and password.

Student entity bean — stores student’s extra specific information.

Teacher entity bean — stores teacher’s extra specific information.

Course entity bean — stores course information such as course name, section, room,

teacher, office hour, etc.
CourseGrade entity bean — stores course' grade information for all registered students.
Rule entity bean - stores course rules like weigh allocation, full mark, final grade schema
and student viewing permission rule.
GraderManager session bean - provides basic methods for the grade summary

calculation.

3.3 Back end tier design

Since EJB defines entity beans to represent persistence data. A single copy of a
particular entity bean is shared among all clients that need it. Therefore, all entity beans
must map to a underlying storage system such as database or file system. In the
GRADER system, we use database to store the data. J2EE reference implementation
provides a Java-based relational database called CloudScape. We can also use other
databases like Oracle or DataStore. The mapping can be done with any relational
database because all the entity beans in GRADER are container-managed persistence
bean. You can deploy those beans in the deploy time to decide which relational database

to use. The database tables that correspond to entity beans are:

CourseBeanTable, CourseGradeBeanTable, RuleBeanTable, StudentBeanTable,

TeacherBeanTable, UserEJBTable.

26

4 OBJECT ORIENTED DESIGN AND IMPLEMETATION

4.1 Class diagram

GRADER class package dependency diagram and is presented in figure 8 and

class diagrams are shown in figure 9,10,11.

1
[>1)
+CourseBean .
+StudentBean gui
+TeacherBean &< —— - — — —— +PinalGradeRule
+User®2JB +AddCourse
+CourseGradebean +Graderipplet
+RuleBean *MenuPanel
+GraderManagerBean +GradeViewRule
+Admaddstudent
A i +AdmAddTeacher
: { +Impozzer
i 1 +AdwAddUser
| | +MyPassword
—L| ‘V +LoginPrame
+GradeHistogram
seil +AddCourseGrade
+Content +AdmModi fyUser
+MailSend €~ ———————— +DBSqlTool
+HVRule sMyTable
+UUIDGenerator
+BJBUtil

Figure 8: GRADER class package diagram
GRADER is designed to have three packages that are grader.ejb, grader.gui and

grader.util. Package grader.ejb contains all EJB entity beans and session bean, and
grader.gui contains all GUI class and help classes. Package grader.util only contains all

packages needed for utility classes. The detail classes are described as follow:

4.2 GRADER class Packages

4.2.1 PACAKGE GRADER.EJB

public interface User extends javax.ejb.EJBObject

-User EJB Entity bean remote interface

27

Figure 9: grader.ejb class diagram

Courselean

encicysea] B

EnticyBea)
Studsntiesan

sserinticyContext (Ccontext: ja
sunsetencityContexs () sveid
~e3bActivatel) :void
-ejbPassivacet) :void
+eIbRemove() :vord
sejbStoret) :vord

~ejbloadt) :void

+~e)bCreatetcoursell: String, coy
+ejtPostCreateicousselD: Seriny

«findByTeacherID(teacher!D:St,
«findBySectionisection:String|
+findByCourseStatus (starus: St
«£indBy ¢ s
+£indByTutorID(tutorID: Striag|
+¢indByPrimaryKey (courselD: St

*getiD() : String
~getCourseName() : String

st ¢

:Ser

«getCourseTitle!() :String
+setCourseTitle(courseTitle: S
~getSection() :String
~secSection(section:String) : vy
'GetlectureTime) :String
esetLectureTime {lectureTime: S
*getRocmi) : String

~secinticyContext {concexe: jav
sunsetEncityContexc() :vorid
+e1bActivate() :void
-e1bPassivate!() :vord
+e1bRemovet) :void

+e)bStore(}) :void

~eibload() :verd

=]

encicyses) EncityBea
Teacherdesn CourseGradelean
» 1tyContext : java «gerEntizyContext (Context:

sunsecEntityContext () :veid
s@)bActivatel) :void
~ejbPassivace()::void
+e1bRemove() : void
~ejbStorel) :veid
+e1bload{) :void

sunsecEnc:zyContexc) :vord
~ejbActivatet) :void
+~e1bPassivate() ;vard
+e1bRemove() :void
+~e1bStoret) :void
+e1bload() :void

~e1bCreate(id:String, firstNane
+e)bPostCreateiid: String, tirstey

«findBylascNamelagtName:Strin
«findByAnyName (AnyName:String)
o findBy?i 124 134

+a1bCreacetid:Sering, firscName:

+findBylascName(lastName:Str:

ofind String!:
«findByFirstName(firstName:Stri

~£indiy

iliemail.String):Coll

+findBy®nail ianail:Sering) :Col
~findByPromaryKey/studencID:St

~getID() :Sering

sgucyirstName () :String
esecrirstName (firscName: STOing
+~gecEmarli) :String

esetPnail (ematl:String) :void
sgetlastName() : String
sseclagtName(lastName : STring) ©

~setReom(room: String) :vosd
getOfficedour() :Sering
*seatOfficeHour(officeHour: Sty
~getTeacherID() :String
csetTeacherID{teacher ID: Striny
~getTutoriD() :String
rsecTULOrID{tuLCr ID: SEring) : vd
~getsStacus() : String
+getSTALUS (STALLS : SLring) : Vol

=]

+findBy t 2
~findByPrinaryKey 1teacherID: Strg

+getlD() :String
eQucPirstName) :String
sgetPirstNamettirstName: String)
«getCttice!) :Sering
+setOfticetottice:String) :void
*getPhoneNumbert) : String
+setPhoneNumber (ShonaNumber : Str|
egetZoail() :Sering

-setBnail (email:String):void
egetlastName () :SEring
ssetlastName (lastName:Strs

Ruladesn

EcityBes

- 1zyCt

sunsetEncicycontext () :veid
selbActivate() :void
e1bPassivate () :void
~e1bRemove!) :void

=]

«GraderManagerBeant)

SessionBean
—Graderibnsgesresn = |

egetSessianContext (sc:Sessiont

~ejbStorel) :void
se1bLload() :vo1d

Y :java>

meityBea

UserRIB
-ejbRemcvel) :void
~e1bload i) :veid
s»e1bStorel) ::vord
sunsecEncityContext () svoid
~secEnticyContext (concexs:1
sejbActivatet) :void

~¢)bRemove() :void
~eIbActivatet) :void
sejbPassivate() :vord

se)dCreate{courselD: String) : SLri)
~ejbPostCreate(courselD: String):

sejbFassivate() :void

+e3bPostCreatei1d: String, pay

e findByPrimaryKey(courselD: Strin

se7bCreatetid: String,

+¢1bCreate(userName: String) : voil

*getID() :String
le():String

~getUsersamet) : String

sval

*getUUID() : int
+gecOBConnactioni) :Connection

String, of

+getTeacherinfo(subiectindex: irf
«getChartinfo(subjectindex:at,

ssetierghtRule(weightRule: String
~getViewRulel) :String
+setViewRule{viewRule:String} : voy
sgetGradeRule() :String
~getGradefuleigradeRule: SEring) ;
~gecmarkStandard() : Straing

setMACL] dard R dard: St

+getIDi) :String

getFirstiane () : String
+setFirstName (firstName: Str]
~gecPassword() : String
rd rd Strm

3Ly
egerloginKame() :String
+setloginName (loginName: Strd
~geclastName(} :String

setl M1

:String

+getiUserGroup() : 1L

28

(3314

~@1bCreate(UUd: 1L, COUrSE.
+¢)bPostCreate(UUid: :nL.

~findByPrisaryKey (UUid: inc)
»2indByCourseCtStudent (coury
«findByCourselDNithStatus(cy
+findByStudencID/student ID: 4
«findByCourseMidternlnRange
+£indByCourseFinallaRange(c]
of. ourseMaril: 1 COi

*getIDti):ane
+getCourselD(): String
ssetCourselDicourseID: String
«getStudentID{} :String
ssetStudent ID(student ID: Str
egetStatus():Scring
+SQTSTATUS (STATUS:SEring) : vy
*QetAssl () :double
esetAssliassl:doublel :void
*QetAss2(} :double
*setAss2iassi:double) :void
egetAssli() :double
+getAss]iags):double) :void
+getAssd() :double
+*setAssdiassd doudle) :vord
+QgetAssS() :double

+setAssi (assS:double) :void
egetlabli) :double
egetlabl{labl:double) :void
egetlabl i) -double
esetlab2(labi:dcuble) :void
~getlabli) :double
+getlabl(labl:double) :vord
sgetlabii) :double
+setlabd{ladd :doudble) :void
egetlabs{) :double
~setlabs(14b5:double) :void
sgutTestl) :double
+setTestl {testl:double) : void
~getTest2 () :double
+setTestl (Test2 double) : void
+gecrTestl () :double
~setTestl (testl:double) :void
=getTestd () :double
~setTestd ttestd:double) : void
egecTestS {) :double
~setTestS (test5:double) :void
~getMidtermi) :double
~setMdtermimdcerm: double)
~gecFinal () :double
~setPinal (finalPxam:double)
~getCourseMarkt) :double

~secc K ¢

i : dd

~gecCourseGrade) :String
~setCourseGrade (courseGrade

public interface UserHome extends javax.ejb.EJBHome

-User EJB Entity home interface

public class UserEJB extends java.lang.Object implements javax.ejb.EntityBean

-User EJB Entity bean implementation

public interface Teacher extends javax.ejb.EJBObject

-Teacher EJB Entity bean remote interface

public interface TeacherHome extends javax.ejb.E/JBHome

-Teacher EJB Entity bean home interface

public class TeacherBean extends java.lang.Object implements
Jjavax.ejb.EntityBean

-Teacher EJB Entity bean implementation

public interface Student extends javax.ejb.EJBObject

-Student EJB Entity bean remote interface

public interface StudentHome extends javax.ejb.EJBHome

-Student EJB Entity bean home interface

public class StudentBean extends java.lang.Object implements
javax.ejb.EntityBean

-Student EJB Entity bean implementation

public interface Course extends javax.ejb.EJBObject

-Course EJB Entity bean remote interface

public interface CourseHome extends javax.ejb.EJBHome

-Course EJB entity bean home interface

29

4.2.2

public class CourseBean extends java.lang.Object implements
Jjavax.ejb.EntityBean

-Course entity Bean implementation

public interface Rule extends javax.ejb.EJBObject

-Rule EJB Entity bean remote interface

public interface RuleHome extends javax.ejb.EJBHome

-Rule EJB Entity bean home interface

public class RuleBean extends java.lang.Object implements javax.ejb.EntityBean

-Rule EJB Entity bean implementation

public interface CourseGrade extends javax.ejb. EJBObject

-CourseGrade EJB Entity bean remote interface

public interface CourseGradeHome extends javax.ejb.EJBHome

-CourseGrade EJB entity bean home interface

public class CourseGradeBean extend java.lang.Object implements EntityBean

-CourseGrade EJB entity bean implementation

PACAKGE GRADER.GUI

public class GraderApplet extends java.applet.Applet implements
Jjava.awt.event.ActionListener, java.awt.event.AdjustmentListener,

Jjava.awt.event.MouseMotionListener, java.awt.event.ltemListener

-Provides a fuli functionality to three kinds of users Monitor: Perform all users

Add/Modify/Delete and SQL query course registration Teacher: Perform students

registration and course grade management Student: Perform grade query and

profile modification.

30

Figure 10: grader.gui class diagram

Panel

THDOITar ‘;ﬁ

rinalGradaRule
+FinalGradeRule(gagplet
1bIniel) :vord
displayRule(rule:Rule):
schema_izemStateChangec

+Imparter tattachedApplet :Grade
+Imporeer()

~gerPileStreamibr:BufferedRead
-courseValiationist: StreamTcke

Centainey

MouseListene

MouseMotionlistend
NasuPanel

Panel
ActionLister]
NyTable

+per

c

course!D_itemStateChans

+igValidSubject (subjecz:5tring

+MenuPanel (}
spaine (g:Graphics) :void
+clearMouselListeners() :void

wyTabletpippler :GraderAppler, pCon
sinzt) ivord
eactionPerformed{evt :ActionBvent)

secPields () :vaid

actionPer? di{e:A

courselDStateChangedie: [temBven
cverweight (sTr:String) :Doolean
t1aNumber (str:String) :boolean
beaFindGrade_actionPertormed (e:
+displayGradelntoicourselD:Strs
btnMods tyGrade_actionPerformedt
tenDel _actionPertormedie:Action
benClear_actionPerformed(e@:Actt

sAdmiodi tyUser tapplet:

sinit () :void

-addBordert) ;void

about () :vaid
content{) :void

bInit () :void

clearAlll) :void
lockupUserinto(searchiD: String)
mods tyUserintol) :void
deleceUserInfol}:void

| oraderagplee |

displayloginPrame) :vord
-buildlettPanel() :void
-buildRightPanel () :void

-bui ldTeachermenuPanel () : void
-buildStudenthenuPanel t) :void
-bus ldAdmPanael () :void
«displayAdminiscractorPanel () :vo:
«displayTeacherranel() :vosd
viewGradeSummary (Courses: Jjava.u!

changePasswordi) :void
viewChartOisplay(perm: Hashtable:
viewChartDisplay(courses: java.ut
viewChart (DarChartSer: SEring) v
+displayStudentPanel () :void

benOk_accionPer pear BarChACE smakenem: (parent:Object. 1tems:t /

benClear_actionPerforms wmain P) iverd teve:) 1

check_acticnPertormedie ~mouseBxired (evet: HouseBvent) s

overwe:ight (cnum:doubley mouseReleased(evt:NouseEvent) Panel

covermMeight (1num::iaci}): teve):ve AczionL:stery

isNumber(str:String) ;b d(eve:):e DBsg1To0L

cleasAlli) svoxd 2 o ~mouseClicked eve :HouseRvent) - +DBSQLToOL (applec :GraderAgplet)

ievt: LEM -handl enessage (msg: String) :void
vanel manuBaz:HenuSar -connectToOB() : boolean
AddCourseGrade N -closeDB{) :voird

* A delapplet o -closeStatement () :vord

ibInit() :void Appled€ -displayResultSec (rs:ResultSec):\

displaypullmark(rule:Rulel :void E 5 ActionListen -exgcutesSQL() :void

displayWeight (rule:Rule) :void AdjusementLister e _é -getPreviousSubm ssioni) :void

t1llDataigr:Sering(l):veid Mousesotionliscent -getNextSutmissiont) :void

cleagAll() :void ItemListend pd. zons () :vord

sacticonPerf{crmedtevent :ACtionEver

=] Prase
logioPrane

+LoginPrame (applec:GraderApplet
smatniargs:Sering(]):vord
-jBinit() :vord
-wioginCancelAction() :void
-wloginCRActiaon() :vard
-uservalidationikk:int) :1ac
-userValidation() :int

currentUser:grader.¢ib.User

Panel|
MACourse

Panel
aradaViewRule

«GradeviewRule(gapplet :GraderAps
jbrnite) iverd
btnOk_acticnferforned(e: ACTionEy
benClear_acticnPerformedie:Actic
chotcel_tzemStateChangedie: [temE
sdisplayPermission(rule: Rule):ve
clearAllt):vord

Panel
AduiddTeaches
+~AdnAddTeachert)
bInset) :vaid
clearAll{):void

eclearleftPanel () :void
ddadmaddnen gort):
actionPerformedievt: ActionEvent
-displayStudentintciperm: Hashtal
-processAddCourse() :
-processAddUser () :void
-bacchAkiStudents () :
-batchAddGradet) :void
sprocessAdkiStudent () :void
sprocessmclesStudent () :void
sprocessMobeCrade) :

void

void

sAddCoursetapplet :GraderApplet)
getAllTeacherlist i) :void
IbBIniti) :void
clearAlli):vord
+lockupCourselnto(id: String) :vaid

e E ~modityCourselnto() :void
+~deleteCourseInfo() :vord
benOK_actionfertormed (e: ActionEvent) : 7o
benClear_acticnPerformedie:ActionBvent)

woid

void
d:Stris

tapplet Let
jbInie) :vord
clearContent () :void
btnOk_actionferfcrmed (e:Actiont
benClear actionPerformed{e:Act:
choicet 1 Changs

aispMyTable() :void

-processMcbDeCoursed) :vaid
-processioleUseri) :void
processfullmark() ;veid
applyweightRulel) :void
applyfinalRule{) :void
-countOn(source:double(] . step: iz
processwWeigntRulet) :vexd
processFinalRulet) :void
processViewRule() :void

H useDBSQITooL {} :v0:d

(—-——& MyPassword

MyPassword lapplet:GraderApplet)
jbdInit () :void
btnOk_actionPerformed(e:Action®ven

Panel

Canvas
Gradafiistogram

r

aken: St

Panel -paint{g:Graphics) :void
>3] _Atmaddstndens | esTart() :void
~AdmaddStudent()

IbInic() :void
clearAll():veid

-makelabel {d:double} :String

smarniargs:Seringl}) :void

31

public class AddCourse extends java.awt.Panel

-AddCourse is used to add a new course entry to Grader distributed system.
public class AddCourseGrade extends java.awt.Panel

-AddCourseGrade class is for a teacher to add course grade entry to system.
public class AdmAddStudent extends java.awt.Panel

-AdmAddStudent is used to register a new student entry in the database.
public class AdmAddUser extends java.awt.Panel

-AdmAddUser is used to register a new user in DB

public class AdmAddTeacher extends java.awt.Panel

-AdmAddTeacher is used to register a new teacher in DB

public class AdmModifyUser extends java.awt.Panel

-AdmModifyUser is a GUI object to let a user modify an exsited user profile in
Database.

public class DBSqlTool extends java.awt. Panel implements java.awt.event.ActionListener
-DBSqlTool is used to let a Monitor manipulate the database directly with out
other GUL

public class FinalGradeRule extends java.awt.Panel

-FinalGradeRule class is a GUI component to let a teacher assign final course
grade schema.

public class MenuPanel extends java.awt.Container

implements java.awt.event. MouseListener, java.awt.event. MouseMotionListener
-MenuPanel: The Menu Container class. Uses text Labels and PopupMenus to
simulate a Menu Bar. Standard MenuBars can only be used in Frame windows,

but this can also be used in Applets, as well as within any other Container class.

32

4.23

USAGE: Set up your MenuBar object as usual, then call setMenuBar(menuBar).
You can use MenuPanel.makeMenu(...) to help you create MenuBar items.
public class GradeViewRule extends java.awt.Panel

-GradeViewRule class is used to provide a GUI interface to let the teacher
manipulate the viewing rule of the courses.

public class Importer extends java.lang.Object

-Importer class is used to deal with the student account and course grade batch
mode processing.

public class MyPassword extends java.awt.Panel

- The student profile modification GUI

public class MyTable extends java.awt.Panel

- This is class used to display grade detailed grid table view GUI

public class LoginFrame extends java.awt.Frame

-This is entry class for Grader system. It is for first login window

public class GradeHistogram extends java.awt.Canvas

-GradeHistogram is for drawing student Grade Histogram graphics
PACAKGE GRADER.UTIL

public class Content extends java.lang.Object

-Provides a full help content to three kind of users group Monitor/Teacher/Student
public class MailSend extends java.lang.Object

-MailSend is used to construct and send an RFC822 (plain text) email content.
public class HVRule extends java.awt.Canvas

-Component class to draw small Horiz or Vert Rule Separator lines.

33

Figure 11: grader.util class diagram

EJBUtil

srgetDBConnection() :Connectian i"
>getStudencHome () : StudentHome |
sgecUsertiome () :Usertiome I

]

|

|

]

--------- >

smyConcent {userGroup:tac) : Seran

sgetTeacherHome () : Teacheriiome
sqetCourseHome () :Courselcome
rgetCourseGradeHome {) : CourseGradetome
~gerGraderMansgertiome|) :GraderManagertiome Applel java. fo.Seriali
sgetRuleHome(} : RuleHome ActicnListef TUID3ensrator
sgetDataSource) :Dacasource (o e e e AdjustmentListel — — — = >
+codeStriht :Hashtable) :String MouseMocionListerd
+deCode (task:String. tokenOut:String, tokenin IzemLiscen
sround(d:double. s :int) :deuble grader.gul.
-mean{ad:double{}):double
smean{li:List) :double
smintad:double(]) :double
smanili:tise):double
-max(ad:double(1) :double
smax{li:List):double

>nextSegium (dbConnection:Connec
smaini{args:String(]):veid

MailSend

smaintargyv:Steing(])void

enamelnlist (usertist:yava.ucil.tist, allser:s: ssencMailtfrom:Sering. to:Sering,
+isNumber(str:String) :boclean

gecPinalMarkReport (applec:Graderipplet) :St: *HVRulei)

efillWweighMarkRule(fm: StringButfer. courselD *HVRule(bHoriz:boolean)

=getSegmentSchema (marktist:List. fsta:inc(]) +KVRuleithick::int,.boriz:boolean.bD
sgettetterSchematsource:String(].counter: sAdjustAllHRulesiroot:Container) :vo

sfillSeqment(fsta:ine(]):String ~adjust() :void

rgecGraderBnys () :Stringf) supdate(g:Graphics) :void

sgetGraderPropertyt) :Stringl] +painti{g:Graphics) :void

smaintargs:Sering(]) :void

public class UUIDGenerator extends java.lang.Object implements
Jjava.io.Serializable

-This class is used to generate unique primary keys for CourseGradeBean.

public final class EJBUTtil extends java.lang.Object

-This is a utility class for obtaining EJB components references and other

application lever methods collection.

4.3 Use Cases of the System

Use Case diagrams provide a way of describing the extemal view of the system
and its interactions with the outside world. Use case diagram shows the relationship

among actors and use cases within a system. We here present use case of the GRADER

system.

34

4.3.1 USE CASE OF THE MONITOR
A monitor actually can interact with GRADER for new user registration,

modification and course information maintenance. Figure 12 shows the use case.

Add/Query/Modify Uses
Login to GRADER Query. ¥
<<extend>>

<<extend>> _~/ :
7 <cextend>> Add/Query/Modify Course

Vd
P
Pd
4 v

Figure 12: The Monitor use case diagram

.

4.3.2 USE CASE OF STUDENT
A student can query with the GRADER system to view their course information

and modify their profile. Figure 13 shows this use case.

Modify Profile
1

<<extend>> 1
<cextend>> __ -7
-
—
-
Login GRADER

~ o SSextend>>
Student —_—-—

—
——
—
—

View Bar Chart

Figure 13: The student use case diagram

35

4.3.3 USE CASE OF TEACHER

A teacher can interact with the GRADER system to manage student information

and course grade. This is main functionality of system. Figure 13 shows the use case.

Add/Modi £y Grade

Add/Medi fy Studen

Teacher

<<extend>> - —
——
S ——
—

Grade Batch Mode

el

Define/Modify Rule

Figure 14: The teacher use case diagram

4.4 Final grade Sequence diagram

To further describe the GRADER system dynamic interaction, we present a detail
sequence diagram in Figure 15 to show corresponding interactions between classes to
achieve the goal of the teacher’s “get final grade”. The teacher first logs in to the
GRADER system, LoginFrame is the actually class to validate the user and assign next
the GUI to the coming user. LoginFrame will try first to get a GraderManagerbean bean
home and then invoke its method to validate the teacher’s status. Teacher then needs to
verify all needed full course standards are already there and weight also ready for

calculating. In this process classes like GraderApplet, CourseGradeBean, RuleBean and

36

EJBUIHl cooperate to finish the required job. After that teacher can issue a command to
ask the system calculate the course final grade. In this calculating process, class
GraderApplet will first retrieve the final grade rule if it already exists or let the user
define a new rule and then compare the course final mark to get the final grade letter for

each student in the course and display this result to the teacher.

Figure 15: Final Grade sequence diagram

objectl odject2 objectl Objectd Ohjects Object$ Object?
Loginframe Bear le 7inalGradeRruld RuleBean EJBUT:1 CourseGradeBean
us idadiontine) : | |] I
[Lomerval dagioniacicans T — . .
validateUser (String, String) :int { : lr
displayTeachertagel () :void | : I
|
. |
processPullark() :void gL GecRuleHome () : ful etiome 1
: getMarkStandargt) : String !
| dncudn(s:nno.{tnnq.s:nnq:gbmh
I T T
| i
processNeihtRule() :vord
‘{lh i getRuleHome) :*uhllw. !
{ getWeightRule({:String]
f deCodetString, jering, String) : htable
i
applywerghdhule) :void L] |
I r geec: b t):C

L)
setCourseMark (doublel : vord

o |

u:cndnmummq) svoid

ptocnunnillmlu) svoid

—— e ot e e ——

applyluul&uu) :void

getTeachfrinfoting, Strs

v’.mstflnnr(java.u:il.LiF:. java.util.

|
getGradeRule!) {String

deCode(string. §

Ering, s:mm

htable

£i11Segment (10!

|
{1):Sering !

getSegmentScherda(List, iat(]) :viid

getLetterScheny

yistrang{l.int!]

svoid

|
L
|
|
I
|
|
L
§
1
|
I
|
i
T
|
|
] I T
]
L
I
I
I
]
i
)
|
|
I
1
I
I
I
|

setCourseGrade

String} :void

ughmxd

sing

37

-—— ————— T ——

- ———— ———— —— o

SR & % K SN P NS A0S JUS S

4.5 Detailed implementation

4.5.1 GRADER DATABASE SCHEMA

To meet the EJB entity beans data structure, we need to have same database
schema in the back-end. Each container-managed persistence bean will mapping to its
corresponding table when being deployed, and all beans data fields have one-to-one

mapping relationship to table fields including primary key. The following figure shows

the GRADER database schema.

smcmrabh gm.an'l'ﬁh

D s Registed Students \ D

assl Tr T Hemail

ass2 FIRSTNAME

ass3

" o
assS [
oID CourseBeanTshle | T

BnalExam :“N.. Student
Iabl courseTitle

lab2 Courses lectureTime o g

Iah3 eofficeHour

Tabd [roem [GensETBTable
labS sectan D

midterm status FIRSTNAME
|status teachariD LASTNAME
|studextID tatoziD PASSWORD
sestl X userGrowp
2 T Coumes 3
testd Teach By

sostS H

X G
‘TesshorBeanTable H
T D Teascher

D H amail

gradeitale CoumeRule FIRSTNAME

markStandaxd LASTNAME

tewRuk efifice segRum

weightRule phoneNumber

Figure 16: GRADER Database schema diagram

4.5.2 GRADER GUIs

GRADER front tier presents rich interfaces to the end-user, and lets each user
group have different access GUISs to interact with the system. The login GUI is provided

to be a entry GUI to all three user groups for validating the user’s identity and then

forward to the predefined assigned user main GUL

38

In monitor GUIs as shown below, the monitor first gets the page of “Add New
User” where the monitor can register a system new user of any group. If choosing
“Modify/Delete user” menu item, the system will let monitor either browser user one by
one or find specific user information quickly by the given user ID. The monitor can also
use the “Batch add mode” to add whole class students name at one shot. This is
convenient to deal with bunch data import to the GRADER system. The monitor GUI
was designed to be responsible for course information manipulation to centralize the
course resources management instead of letting the teacher manage this trial job. A more
powerful GUI is the “SQL tool”, which can let the monitor connect a remote database
server to perform some database tuning and direct table management. This GUI accepts
standard SQL standard statements and uses JDBC to connect to the database. It can be
also used to establish initial GRADER database tables if the J2EE EJBs deploy tool

doesn’t create these tables.

.
P Gant iy ropan

39

I e T
P £ R WO S W TR IR &R T T LT =
L R I 1]
t w @ w o om o e oag e W T

-

= I_E‘t)t L

a » a o

£ £ ¥ ¥
.

¥y 3 % =

;m
~|
12

Rlwen 1o

e N S SN

nitor group GUIs

The mo

Figure 17

[wen 18.00-18:00pm

¥® e E Y K 1
TSN N

]
W
5
g
m
8
S
i
4
g
:
-]
g
:
g
]
5

|
]
m
:
m
}

m
g
!
:
!
m
i
3
g
§
m.

: i oK

B m - B

| : : z T

ft = 1 = L
: ; : «
= W N = » B !
= Y < e i
E 28 = : _
z m : P e — — .‘U ' i

The GUISs provided for the teacher group user has all the functionalities to let the
teacher finish all jobs. The entry page is the “Course Grade Info” page, which can let the
teacher add a new course grade item into the system as well as providing a detailed
students registration list to current teacher’s courses. The teacher can then choose another
menu item from the menu and perform related operation. The “Modify/Delete student ™
menu item can let the teacher either browse student profiles or find a specific student by
given student ID, and modify the entry of that student. By choosing the “Batch register
student”, the teacher can register whole class student at one shot just like the monitor, but
only for current teachers own courses. If “Email notification” is activated, all the
registration students can get an email notification containing his/her login name and
password, and the teacher can get a registration summary report containing the rest of all
students. The teacher can choose “Add Course grade” to add an individual course grade
entry, or use “Batch add grade” to add many entries at the same time like adding student
accounts. “Modify/Delete grade” is used to let the teacher to browse course grade
information or to find a specific student record from the database, and perform either the

modification or delete operation. Figure 18 shows the GUIs of this group.

4218821 CROSSMAN , Biti
4234502 CUMMINGS, Joe!

il 4234844 CZEBOTAR, James

3218381 CROFT ,vicks

4241142 DAVIS Knsten

W.
g
g
]
:

. Michetanne

3781356 ADAMS

. Wendy

3845731 BEESON, Judt
] 3853076 BLAKE

42

Figure 18: The teacher group GUIs (1)
The teacher group GUIs also provides course grades automatically calculation

function to easy grade management by using “Define full mark”, “Define weight rule”
and “Define final rule” menu items. The teacher needs to define each course full mark
standard and weight rule for course items like assignments, labs, midterm exam and final
exam. In the module “Define final rule”, two rules based methods are provided to let the
teacher calculate course final grade letter either by absolute or relative. This gives
flexibility for the teacher to choose an appropriate way to calculate the course grade. The
teacher can still manually modify the final grade result after system calculation by
finding the specific entry and modify it using the “Modify/Delete grade” module.
Command buttons “Apply this weight rule” and “Apply to this course” are used to
activate the calculation process for course final mark and final grade. Figure 19 shows

this group GUIs. GRADER imposes a strict data validation in these GUI to decrease the

43

input error as less as possible. For example, the teacher cannot give a weigh rule which
has total value greater than 100, or Final rule must has incremental number from low to
high not intermingled letter in “absolute” case and can’t allocate more than total students
number in the total grade number allocation. GRADER can also detect if the user inputs a

digital number as well to make a sure the GUI has right number to calculate.

Figure 19: The teacher group GUlIs (2)

GRADER also provides course information viewing GUISs to let the teacher view
detailed information for each course and bar chart graphics of grade statistics. The
teacher can even define the student viewing items permission to selectively publish the
course information to students. Teachers have the full control to hide some course item

from students at their will. Following Figure20 shows the GUIs.

4293198
912381
5358153

1284525
4111082
5936624

‘s3n

“4110892
394572
4234044
4119192
333005

a11796¢

‘s
4289862
rer1ss

'5937434
2920248

5317423

‘3943984

5908922

A
A
A
'y
A
A
A
&
A
A
A
»”
»
s
»~
~
e
~
»
»
»~
&
8
4234502 Be
>

Figure 20: The teacher group GUIs (3)
Student group GUIs are pretty straightforward for proving viewing information of

the courses student registered. Students can view their courses grade detailed information

as well as the class grade distribution bar chart. Students can also modify their personal
information like their email address or password as the password produced by system as
soon as they get the GRADER registration email notification. The system validation can
guide the user to use the correct length password and refuse to take not consistent

password. Figure 21 shows this group GUIs.

47

{8 he tength of new password muste atleast 3t 7

Figure 21: The student group GUIs
In any case, each group member can use the “Help” menu to get that group
operation on line help by choosing the “Content” menu item. This help context will give

the user detailed instruction about the usage of the GRADER system.

43

4.5.3 EJB DEPLOYMENT PROCESS
In order to deploy the GRADER distributed system, the following software is
needed installed in the deployed computer.
¢ JDK 2 standard edition [4] version [.2.1 or later
e J2EE application server [2] version 1.2.1 or later
e Oracle database or other relational database if not use default CloudScape database
Define your JAVA_HOME system variable to point the JDK2 installation folder
and another system variable J2EE_HOME to point the J2EE installation folder. Start the
j2ee server by execute batch “j2ee.bat -verbose” file under %J2EE_HOME%\bin. After
you start j2ee server, you need to start the CloudScape database server using command
“cloudscape.bat -start” or start a chosen other database server like Oracle8i by its related
instructions. Now the servers are ready to store data or let you deploy the GRADER

system. The j2ee start process is like figure 22.

CAWINM ISy tem32cmd exor 1200 verbose

:\j2sdkeel1.2.1\bin>j2ee -verbose

2EE server Listen Port: = 1649 !
aming service started: :1050

Published the configuration object ...

Binding DataSource, name = jdbc/Cloudscape, url = jdbec:cloudscape:rmi:Cloudscape
DB;create=true

Binding DataSource. name : jdbc/Oracle, url = jdbc:oracle:thin:@sa2server:1521:t

eystore C:\WINNT\Profiles\dsun\.keystore initialization error : Keystore was ta|
pered with, or password was incorrect

eb service started: 8060

ed seruvice started: 7660

oading jar:/E:/j2sdkeel.2.1/repository/dsun/applications/GraderEJBs975535686803
Server. jar

E:/j2sdkeel.2.1/repository/dsun/applications/GraderEJBs975535086803Server . jar i

sto1
eb service started: 9191 l

Binding name: java:comp/enu/GraderMonitor”

Binding name: " java:comp/env/MonitorPin’

Binding name: " java:comp/enu/MylPName”

Binding name: " java:comp/enu/MyRule’

Binding name: " java:comp/enu/MyUser”

Binding name: " java:comp/enu/MyCourseGrade”

Binding name: " java:comp/enu/MyDataSource’

L ooking up authenticator... P
J2EE server startup complete. j&

Figure 22: J2EE server start process

49

Open j2ee deploy tool by execute batch file “deploytool.bat” in the same folder as
“j2ee.bat”. You can then choose menu item “Open Application” under “File” menu to
open GRDAER system EJB ear file “GraderEJBs.ear” and highlight bean “manager” ->
“managerBean”. By choosing the right panel “Environment” tab, you can define the
GRADER system default monitor name and password and also j2ee server machine [P
name. After this modification, you can deploy GRADER EJB beans by using “Deploy
Application” menu item under “Tools” menu to deploy all the EJB beans to the machine

which you just start the j2ee server. The deploy tool figure is as follows:

© @ usergean i
& § courseGradeBean(]
o e
o @ StudentBean
© & manager

plagic S8

o § courseBean
© @ TeacherBean

Figure 23: J2EE deployment tool snapshot

4.5.4 HOW TO RUN THE GRADER SYSTEM
We just described the Grader Distributed EJB Beans deployment steps above,

now let us put all things together to see how to run the whole system both on the server

side or client side.

50

Server side:

Install J2EE server and copy “ioserl12.dll” file under J2EE_HOME\nativelib
folder to any search path folder (like c:\winnt\system32).

Make sure you have set up JAVA_HOME and J2EE_HOME environment
variables with their installation folders name. Modify the “orb.properties™ file
under J2EE_HOME/ config to set the host name as the current deployed machine
name.

Sign the file “graderjar” inside the GRADER deployment zip file
“grader_project.zip” and exports signer’s certification file to clients who will
access GRADER system. Or just simply unzip “grader.cer” file from
“grader_project.zip” and let client import this certification file.

Extract the GRADER deployment zip file “grader_project.zip” to folder under
J2EE_HOME\ public_html. All classes archive signed jar files “sGraderAll.jar”
and the index.html and grader.html files will go their right folder. Now the
deployment is ready. Use any text editor to open “grader.html” file and modify
applet parameter host value to be your deployed server IP.

Run the j2ee server and cloudscape database server (or other database server) as

described 3.5.3.

Server now is ready for client request!

Client side:

The client side needs to have the JRE run time environment (Java 2 plug-in)
installed. Copy the j2ee jar file and two cloudscape jar files or oracle driver jar

files into JRE_Home\JRE\1.2\lib\ext folder

51

o Copy J2EE native lib “ioser12.dll” file to any user system search path or modify
system environment variable to let PATH point to the folder containing this
“ioser12.dll” file

e Import signer’s certification file “grader.cer’” to generate a user keystore and
modify client side policy file as described in 4.3

¢ You can optionally enable client side Java 1.2 Console to let user see running
results.

The client browser can now point URL to http://server[P:8000 to enter The

GRADER system now.

52

5 GRADER Security Control

5.1 Applet sandbox restriction

An applet being a Java program that is run from inside a Web browser, is
subjected to some security restrictions. The original Java applet security model
implements a sandbox that imposes strict controls on what certain kinds of Java programs
can and cannot do. In general, applets loaded over the net are prevented from reading and
writing files on the client file system, and only from making network to the applet-
originating host [24]. By default all downloaded applets are considered untrusted, which
means that all these applets are only permitted to run in client side binding applet
sandbox security model and can’t access local resources. Hence, they are of limited
functionality if the application is expected to have complex ability.

All Netscape Navigator versions subsequent to 3.0 are Java enabled. All
Microsoft Internet Explorer versions subsequent to 3.0 also include Java. The two
browsers’ security [16] policies are, at the present time, very similar. Both are somewhat
strict. The following rules apply to all untrusted applets running under Netscape
Navigator and Internet Explorer [24]:

e Applets can’t read or write files at client local disk.

e Applets can’t open a client-side network connection to any machine other than

the applet’s origin host.

o Applets after JDK 1.1 can open a server socket as long as the port number is

greater than the privileged port number on the machine (usually 1024).
e Applets can read only nine system properties. Applets are not permitted to

read any other system properties.

53

e If an applet is loaded using the file: URL, and it does not reside in a directory

in CLASSPATH, it will be loaded by an Applet Class Loader.

Both browsers offer complex security models based on digital signatures and
partial trust. Although the models are quite similar to the model defined by Java 2, there
are many detailed differences that annoy developers and users. To solve this problem we
have to make a trusted applet to break the applet sandbox restriction. There are two ways
for an applet to be considered trusted, the applet is installed on the local hard disk, or the
applet is signed by an identity marked as trusted in your identity database. GRADER is
expected to present its complex front-end functionality like local disk file access and read
some system properties, so we need to make it a trusted applet to take full power of Java

ability.
5.2 Make trusted GRADER Applet

GRADRER is a distributed system and has to use J2EE platform to get the EJB
capability. We need to use The Javal.2 plug-in to deploy the system and we can naturally
use the Javal.2 security model to leverage the GRADER fuil applet ability. The Java 1.2
security model is policy based and it will force the Java application abide the policy file
definition. We think GRADER is trusted Java application, and give GRADER all the
needed permission to perform its tasks.

Permission represents access to a system resource. In order for a resource access
to be allowed for an applet (or an application running with a security manager), the
corresponding permission must be explicitly granted to the code attempting the access. A

Policy file represents the policy for Java application resource accessibility. The default

54

Policy implementation obtains its information from static ASCII policy configuration
files. A policy file can be composed via a simple text editor, or via the graphical Policy
Tool utility policytool in JDK. The user policy file “.java.policy” is by default located at:
CAWinni\ProfilesNlogin_name on multi-user Windows NT systems
CAWindows\Profiles\login_name on multi-user Windows 95 systems
C:\Windows on single-user Windows 95 systems
user.home/ java.policy (Solaris)
When the Policy is initialized, the system policy is loaded in first, and then the
user policy is added to it. If neither policy is present, a built-in policy is used. This built-
in policy is the same as the original sandbox policy. Policy file locations are specified in

the security properties file, which is located at

java.home/lib/security/java.security (Solaris)
java.home\lib\security\java.security (Windows)

Using the Policy Tool saves typing and eliminates the need for you to know the
required syntax of policy files, thus reducing errors. There is a tool named keytool from
JDK that can be used to create public/private key pairs and self-signed X.509 vl
certificates [24], and to manage keystores. A keystore is a protected database that holds
keys and certificates for an enterprise. Access to a keystore is guarded by a password
(defined at the time the keystore is created, by the person who creates the keystore, and
changeable only when providing the current password). In addition, each private key in a
keystore can be guarded by its own password. Another tool jarsigner are used to digitally
sign Java applications or applets using produced keys and certificates from keystores.
Using keytool, it is possible to display, import, and export X.509 vl, v2, and v3
certificates stored as files, and to generate new self-signed vl certificates. By using these

tools JDK 1.2 provides the basic technology for loading and authenticating signed

55

classes. This enables browsers to run trusted applets in a trusted environment. The
GRADER is using these tools for finer-grained policy control to get flexible security

policies. We will show the detail steps to demonstrate how to apply this.

5.3 How to sign GRAGER

In order to deploy GRADER and let the client browser executed as an applet
client, we need to sign the class archive file and export the signed certification file to the
client side. The Client then imports this certification and adds a new Java security policy
entry to the client policy file. The steps are as follows:

Server side

o Step L: Produce owner public key

JDK_HOME/bin>keytool -genkey -keystore CA\WINNT\dsun\.keystore -alias dsun

Enter keystore password: grader

What is your first and last name?
[Unknown]: daofeng sun

What is the name of your organizational unit?
[Unknown]: concordia

What is the name of your organization?
[Unknown]: concordia

What is the name of your City or Locality?
[Unknown]: montreal

What is the name of your State or Province?
[Unknown]: quebec

What is the two-letter country code for this unit?

56

[Unknown]: ca
Is <CN=daofeng sun, OU=MRI, O=MRI, L=montreal, ST=quebec, C=ca> correct?
[no]: y
Enter key password for <dsun> (RETURN if same as keystore password):[return]
o Step2: Use above public key to sign a jar file

JDK_HOME/bin >jarsigner -keystore C\WINNT\Profiles\dsun\ keystore -
signedjar sGraderAll.jar GraderAll.jar dsun

Enter Passphrase for keystore: grader
e Step 3: Export the Public Key Certificate file and signed jar file

JDK_HOME/bin >keytool -export -keystore C\WINNT\Profiles\dsun\.keystore -
alias dsun -file grader.cer

Enter keystore password: grader
Certificate stored in file < grader.cer>
Client side
e Step 4: Import signer’s certification file to produce client's keystore file
JDK_HOME/bin >keytool -import -alias dsun -file grader.cer -keystore
c\userStore

StepS: Modify java policy file
Use java policy tool policytool to create or modify existing *“java.policy” file in

the folder of client profile folder(i.e C:\WINNT\Profiles\dsun\). Eventually the following
two lines should be in “.java.policy” file.
keystore "'C:/ userStore”
grant signedBy "dsun"’ {permission java.security.AllPermission ;};
Now the signed GRADER applet can break the applet restriction and access EJBs

and local machine resources like the read/write file.

57

6 Conclusion

GRADER is implemented as a multi-tier component-based distributed system and
uses EJB technology to demonstrate the significant benefits of server-side software
components: business logic focus, portable deployment, and easy maintenance; reusable
building blocks for rapidly developing and extending Web-based applications; widely
robust portable applications across heterogeneous operating system, platform
independency, middleware, and protection of user access, as well as standard JDBC
database connection to embrace legacy EIS systems.

The J2EE architecture and EJB specification make EJB components and
component-based distributed applications available and superior to other distributed
systems like DNA or CORBA. This wide support of the EJB technology offers flexibility
and a clear Model/View/ Control design paradigm and object oriented implementation.
Each tier has specific responsibility to provide service or request service to other tiers.
The Java J2EE platform architecture also offers two other choices for building the
middle-tier servers for Web-based applications: JavaServer Pages, Servlets, which we
have not yet explored yet in GRADER.

By using applet to be a client of GRADER system, we are taking the benefit of
rich Java language power, which provides GRADER complex user interfaces and more
functionalities than using JSP or JavaScript technologies dynamic HTML pages.

The restrictions of the EJB component distributed-based system are:

e All the entity beans properties have to be defined to be public which violate

the object encapsulation rule.

58

¢ EJBs use network to communicate each other and increase the overhead of the

system and cost some system performance.

e Container-managed persistence is only single-table based, and has to use

bean- managed persistence if the application involves complex objects.

The applet client solution raises the complexity of the application deployment and
the browser has to download big jar file from server before GRADER can run on the
client side. A signed applet has to be used to release the applet security restriction. It also
may have a firewall tunnel problem if the network proxy is not well defined.

Despite of the above limitations, GRADER demonstrates a well-defined Object-
oriented design and implementation process. GRADER provides the end user a friendly
and powerful GUIs layout and interactivity. It also shows a practical realization of
component-based distributed system using EJB technology, which could become the
principal component models of the application.

GRADER performance can be enhanced in the middle-tier by using cached beans
objects and using bulk access objects model. These improvements should be addressed in

the further work [27].

59

References

o

9.

Clemens Szyperski, “Component Software”, ISBN 0201178885 , Addison-
Wesley

Designing Enterprise Applications with Java 2 Platform, Enterprise Edition and
Java 2 Platform, Enterprise Edition specification, v1.2 http://java.sun.com/j2ee/

"Enterprise JavaBeans™: Server Component Model for Java
"http://www.javasoft.com/products/ejb/white paper.html

Enterprise JavaBeans Specifications v1.1 Sun Microsystems:
http://java.sun.com/products/ejb/

Sun J2EE Bulletins http://java.sun.com/j2ee/bulletin.html

Server side portal: _http://theserverside.com/home

Ed Roman, "Mastering Enterprise JavaBeans, and the Java 2 Platform, Enterprise
Edition" published by John Wiley & Sons, 1999

Ash Rofail ;Tony Martin, “Building N-Tier Applications with COM and Visual
Basic 6.0” ,Wiley Computer Publishing, John Wiley & Sons, Inc. ISBN:
0471295493

CORBA Specification, Version 2.3.1, OMG http://www.omg.org/

10. The Simple Object Access Protocol (SOAP), Working Draft, W3C

http://www.w3.0rg/TR/SOAP

11. The XML RPC Specification, UserLand Software. http://www.xml-rpc.com/spec

12. The Battle For The Middle Tier http://www.objectwatch.com/issuel2.htm

13. For a complete listing of JavaWorld articles covering EJB:

http://www.javaworld.com/javaworld/topicalindex/jw-ti-ejb.html

14. A set of related patterns about scripted components and scripting languages is

online at
http://www-dse.doc.ic.ac.uk/~np2/patterns/scripting

15. Ralph Johnson and Brian Foote, "Designing Reusable Classes”, Journal of Object-

Oriented Programming, http://www.laputan.org/drc/drc.htm

60

16. For a complete listing of JavaWorld articles covering EJB:
http://www.javaworld.com/javaworld/topicalindex/jw-ti-ejb.htmi

17. Avalon --an up-and-coming open source server-side Java framework:

http://java.apache.org/framework/
18. BEA WebLogic —Popular J2EE Server http://www.weblogic.com

19. Design patterns: http:/hillside.net/patterns/patterns.html

20. Boss — an open source application server http://www.jboss.org

21. Al Williams, Kim Barber, and Paul Newkirk Coriolis, “Active Server Pages Black
Book™ The Coriolis Group ISBN: 1576102475

22. Frank E. Redmond , “DCOM: Microsoft Distributed Component Object Model”
IDG Books Worldwide, Inc. ISBN: 0764580442

23. Microsoft DNA architecture http://www.microsoft.com/dna

24. Gary McGraw, Edward W. Felten “Securing Java” 2nd Edition by Wiley, ISBN:
047131952X

25. Michael Hicks, Suresh Jagannathan, Richard Kelsey, Jonathan T. Moore and Cristian
Ungureanu. "Transparent communication for distributed objects in Java" pp. 160-170
Proceedings of the ACM 1999 conference on Java Grande June 12 - 14, 1999,

26. Matthew Izatt, Patrick Chan and Tim Brecht.”Ajents: towards an environment for
parallel, distributed and mobile Java applications”, Proceedings of the ACM 1999
conference on Java Grande, June 12 - 14, 1999, pp. 15 - 24

27. Vlada Matena. "Advanced Programming with EJB Technology”.JavaOne website
http://industry.java.sun.com/javaone/99/tracks/

28. Nick Kassem. "The Application Programming Model for the Java 2 Platform,
Enterprise Edition",,JavaOne website http://industry.java.sun.com/javaone/99/tracks/

29. Vlada Matena,Rahul Sharma."The Enterprise JavaBeans Component Architecture
Specification - Overview of Architecture and Roadmap”.

30. Mark Hapner,Bill Shannon. "The Java 2 Platform, Enterprise Edition"

61

Appendix A: GRADER User Manual

Log in to the system:

After you enter the URL to point to Grader (Java Applet client/EJB server), you
can put either your ID or your login name in "Login ID" field and password in
"Password” field , then press "Ok" button, If you want type again due to an error, just
press the "Cancel” button and then type again. The system will display waiting
information at the bottom of the window, and lead you to the next main menu shortly,

given the correct pair of login ID/password.

Monitor user group:

If the user login as a monitor group member, the system will lead to the monitor
GUI after the user successfully logs in to the system. The first page is the "Register New
User” page, which can be used to create a new user in either group from
Monitor/Teacher/Student.

Menu instruction:
[ADMINISTRATION MENU]

Add user— same as the first entry page of monitor login. This GUI can let the current user
add a new user of any type of Monitor/Teacher/Student. You can change to
"Modify/Delete User” page by clicking the right bottom button "Modify/Delete User” or
button "Log Off" to exit.

Modify/Delete User— This leads to the "Modify Existing User” page let current user to
modify an existing user profile as well as delete a user from database. Four navigation

buttons are provided for easy browsing through the all user list from database or by type a

62

specific user ID in the upper field, and then click "Look-up user” button to quickly
retrieve user’s information if this user exist. By clicking "Add New User” button in right
bottom, that will lead you back to the "Register New user” page.

Add course-- This leads to page "Register New Course” which lets the current user add a
new course to the system. By typing course information in corresponding fields, then
press "Ok" button to save it to the database. CourseID and Teacher ID fields must be
filled to proceed. By clicking the "Modify/Delete Course" right-bottom button that leads
to another "Modify/Delete course” page.

Modify/Delete Course-- This leads to the "Modify Course page”, which is used to modify
or delete or just browse course entries in the database. Groups of navigation buttons are
provided to easily browse through the course information. By typing a specific course ID
in the upper field, one can quickly get that course profile from database given it already
exists in the database.

Batch add mode-- This is a GUI to let the monitor add many students to the system at
once, A file needs to exist in the user’s local file system or use "Edit this file" button to
create a new file which follow the format the system requires. After you edit the file put
the right bottom button named as "Process batch add” to register all students in your file.
This GUI has a function to notify the monitor and the student with the registration
information via e-mail from user’s profile. To activate this function, the user needs to
check the option "Email notification” on. If you do not want this function, just uncheck
this option.

SQL tool-- This is a powerful GUI which lets the monitor connect to a remote or local

database by a given driver and connection URL in the "Driver:" and "URL:" fields. The

63

system provides a default string for these fields, which are the Oracle driver and a type 4
JDBC connections URL string. Just check the database vendor to know the strings and
put them here to connect with the database server or the local database. After getting the
connection, the monitor can use this GUI to perform any SQL query over the database
and see the result in the text fields below. These query statements issued by the monitor
are stored in the system and can be recalled by pressing the navigation group buttons
“previous/next”. The status field displays the application status, and by clicking the
button "Exit" to quit the SQL tool page.

Email Notification-- By checking this option the "Batch add user” page can activate the
email notification function and send a summary report of finished registered users list to
login the monitor and send to all students a separate email notification about their login
name and password to let students have the access right to log to GRADER system as a

student group member.

Teacher user group:

If the user logs in as a teacher group member, the system will lead to the teacher
GUI after user successfully logs to the system. The first page is the "Course Grade Info"
page, which can be used to create a new grade item in courses taught by the login teacher.
The right panel will display all course registration information (student ID and name

under each course).

Menu instruction:

[GRADE MENU]
Add student—-This GUI can be used to let the teacher add a new student to Grader system.

The teacher can change to the "Modify/Delete Student” page by clicking the right-bottom

button "Modify/Delete Student” or button "Log Off" to exit. This GUI only establishes
user profile and does not bind to any specific course. You still need to use the "Add
Course grade” GUI to register student to a specific course.

Modify/Delete student-- This leads to the "Modify Existed Student” page, which lets the
teacher modify an existing student profile as well as delete a student from the database.
Four navigation buttons are provided for easy browsing of the entire student list from the
database or by typing a specific student ID in the upper field and then click "Lookup
student” button to quickly retrieve this student’s information if the student exist. Clicking
"Add New Student” button at the bottom will lead the teacher get back to the GUI
"Register New Student" page.

Add Course grade-- This leads to same page as the teacher first logged into Grader, and
lets the teacher add a new grade to system as well as register the student to this course.
By choosing course ID from the list and typing the student ID in corresponding fields,
then type grade fields and press "Add a Grade” button to save it to the database. Course
ID and Student ID fields must be filled to proceed. By clicking "Modify/Delete grades”
in right bottom button can lead to another "Modify/Delete grades”" page. A monitor
defines the courses of the course ID list and the teacher himself cannot change this item.
Modify/Delete grade-- This leads to the "Course Grade Info" page, but having the
functionality to modify/delete/browse any grade records in the database. Groups of
navigation buttons are provided for easy browsing of the grades information. By
choosing a different course ID and typing specific student ID in the corresponding fields
and then press button "Find a grade”, you can quickly get that student’s course grade

information from the database given this student already registered to the chosen course.

65

Change any grade and then press button "Modify a grade” to modify this grade item in
the database, pressing the "Delete” button will delete this grade item from the database,
and you will need to rebuild this again by going to "Add Course Grade"” GUIL

Batch register student—- This is a GUI to let the teacher register many students to the
course at one time, as well as add these students to GRADER user profile system, A file
needs to be exist in the teacher’s login client side file system or use "Edit this file” button
to create a new file locally, which follows the format specified by the system. After you
edit the file, put the right-bottom button named as "Process batch add” to register all
students in your file list. This GUI has a function to report to the teacher all students
registration summary and notify the student with the registration information via e-mail
from the user’s profile. To activate this function the teacher needs to check the option
"Email notification” on. If dont want this function, just uncheck this option (default
status).

Batch add grade -- This is a GUI to let the teacher add whole class grade to the given
course at one time including its full mark standard, A file needs to exist in the teacher’s
login client side file system, or use "Edit this file" button to create a new file locally,
which follows the format specified by the system. After you edit the file put the right
bottom button named as "Process batch grade” to add partial or whole class students
grade into GRADER.

Email Notification— By checking this option, the "Batch register student” page can be
activated the email notification function and send a summary report of the finished

registered students list to the logged on teacher, and send to all student a separate email

66

notification about their login name and password to let students have the access right to

log into GRADER as a student group member.

[RULE MENU]

Define full mark — A GUI to be used for assign all assignment/lab/test/midterm/final
exam full mark. These values will be used to calculate the course final mark; each section
student grade is just relative to this full grade mark. Choose a course ID from the list, and
then assign full marks to the missing fields and then press button "Add full mark" to save
to the database. This GUI is the complementation to the "Batch add grade” GUI, which
also add a full mark by each grade section. Here, you can add all full mark standards to
all courses taught by the teacher.

Define weight rule-- This GUI can let a teacher define each grade percentage in the final
mark. The total must be exactly 100 in order to pass the system’s input validation. After
weight rule assignment, press button "Add weight rule" to save it to the database and then
you can press "Apply this weight rule” to calculate whole class final mark to the given
course. If you miss some student grades, you just need to add these grades and then come
to this GUI to press "Apply this weight rule” again to recalculate to refresh the final mark
of the course.

Define final rule-- This is the GUI to allocate final the letter to the chosen course. You
can first press button "Check Statistics” to get the whole course final mark and its
distribution, and then by assigning the number to the course. Two methods are provided
to let the teacher have the flexibility to get the course final letter. Relative is the way you
just assign a letter number in each frame; the system will try to calculate the final grade

relative to the schema. Using absolute way, you have to type all frame grade margins and

67

follow the number order in order to pass the input validation. After you input type
finished, first click button "Ok” to save this rule, and press button "Apply to this course”
will calculate the course final grade and display the result in the right panel. You can
immediately see the result and adjust again.

[VIEW MENU]

Define views rule--This GUI can be used to assign student permission to the course
grade. The teacher can hide the grade he/she does not want the student to see.

Views grade table--This GUI can be used to present a grade detail grid view as a table
and let the teacher sort the different field and choose a special entry to edit.

View grade summary--This GUI give full course grade summary of the chosen course
and either assignment, lab, test, midterm exam, final exam, final mark and final grade.
The summary includes max/min/mean grade and grade distribution in the class. This
gives the teacher detailed information about his/her course. Just choose the course ID and
item subject from the display list, and then press the "View summary now” button to get
the result in the left panel.

View grade chart-- This is graphic bar chart display to the midterm/final exam/final
mark/final grade. This GUI gives a more straightforward way to the teacher about the
class grade. Just choose courseID from list and item subject from display list, and then

press the "View chart now" button to get the bar chart in the left panel.

Student user group:
If a user logs in a student group member, the system will lead to the student GUI
after the user successfully logs in to the system. The first page is all course grade

summaries, which includes all courses registered by the current student.

68

Menu instruction:
[STUDENT MENU]

My course info— This GUI is the same page as the student login to the Grader system. In
the right panel, the student can choose a different courseID and course item, and then
press button "View my summary now" to see chosen course detailed information
including grade statistics. The course items are just items defined by the teacher
permission GUI.

Chart view- This is graphic bar chart display to the midterm/final exam/final mean/final
grade. This GUI gives more straightforward way to the student about the class grade. Just
choose the courseID from the list and item subject from display list, then press button
"View chart now" to get the bar chart in the left panel. The course items are just items
defined by the teacher permission GUL

Change password-- This GUI is used to let the student change his/her personal profile

like password and e-mail address.

{(HELP MENU]

Content -- display correspond user group content text for help usage

About— display Grader version information

69

GRADER walkthrough

Appendix B

Monitor

ing the same entry GUI as other groups

In as a monitor us

Login

GRADER course grade management system

Slonmae

>

.1

Add new user (student group)

AL Es

K]

A«

GRADER course grade management system

70

o Add new students account in batch mode

DOGHRADEH Mo rosoft lnternel | aplorer

GRADER course grade management system

¢ Enable e-mail notification if you want to notify students of the registration status

71

e Register to a new course

DAL Micronaft Internet b aplurer

DAL Mucranott idernaet 1 gione

Modify or look up an existing course

FoAnen

Microsoft Internet Fxploree

' 16:00-18:00pm
i

abeALTE B

Mot

LI SN SR AR A R LS
AN ORI

i

o ornc i Geazvamer 21 e 1

DR Rr S WL S

RN
ettt

73

Monitor online Help like other two groups

craate a new user In either group from Monitor/TeacherStudent.

|
‘f Menu instruction:

g [Administration menu|

: Add user.. same as the flrst entry page of manitor login. This GUI can ist the cusrent user add a new
Huser of any type of Manitor/Teacher/Student. You can change to “ModifywDelete Uses” page by click the
} right-bottom bottom “ModifywDelets User” or button Log Off" to exit.

i

[{MadifyDelets User- This isads to the "Madify Existing User™ page Ist currant usar to madiy a existing

Juser profile as wail as delets 2 user from the database. Four navigatian b are provided for easy S1ii

[browsing the all user fist from the database or by type a specific user ID in the upper flald and then click B

["Look-up user” buttan to quickly retrive usar's information If this usar exist.By clicking “Add New Usar™ 3

Hbutton in right bottom will lead you back to "Register New uses”™ page.

i

Add course~ This leads to page "Registar New Coursa™ which [t the cursent usar add a new course (o

t systam. By type courss information in correspond flsids then press "0k™ button to save it to database.

1CourseiD and Teacher ID fiaids must be filled to proceed. By clicking “ModifyDalsts Courss™ right

[§hottom button can lead to another “ModifyDelste courss™ page.

} ModifyDelete Course-. This laad to page “Modify Caurse page” to be used to madify or delete or just

| browser courss entries In databass. A group of navigation buttons are provided to easy the course

Hinformation browses. By typs specific course Id In upper fisld can quicidy qet that course profile
from database given this course exists already in database.

Batch add mode- This is GUI to let monitar add many students to system at one shot, A fie nesd to be
exist in user’s local file system or use “Edit this file™ button (o creats & new file which follow the
format of system require. After you edit the file put the right bottorn button named as “Procsss batch

74

Teacher:

e Login in as a teacher (as a monitor login)

e Add course grade entry

DAL Mool eteinest

aplore

GRADER course grade management system

? 3701358 ADAMS, RMMM

R1007735 BRADY. Ebeen X5
4110692 BRAGO , Jsne .

F AT LG Micronott Interoet b plaoer

o The teacher can also add a course grade in batch mode

D GHABE TG Micro ottt Internet | apdooer

GRADER course grade management system

Define course full mark standard

Doanl e Mo

GRADER course grade management system

Define course weight rule

ot ntenet bagploge

ro

M

WAL By

A

GRADER course grade mansgement system

77

Click “Apply this weight rule” to calculate the course final mark

DAL Micranolt it Eaploer

GRADER course grade management system

am e e e e e
Ve T T e 2 e

T

QAR PODO NI =

78

e Check course statistics, and define the final grade rule in relative mode

D OHADEHC Mol tnernet Eapluone

GRADER course grade management system

79

e View grade in a table, and sort the student ID field

DOFADEf Mictn ot lnteraet § o

s saenmo

o

GRADER course grade management system

RN RN EEE X EEENEREEN N

9

JoADEH Moot Intemnet Eaplarers

500 AR

Edit a grade entry in another GUI

Doabit by Micronont Internet txplorer

GRADER course grade mansgement system

DA I Micraalt lateeoaet Eoaibosaer

CRQQ - TN=N

81

e View course grade in chart manner

DOHAD s Mot Internet | oplurer

GRADER course grade mansgement system

SHADE T Mroott Internet Baplorer

Set up a student viewing permission

GEADERS Moottt Internet Eaplorer

GRADER course grade management system

83

Student:

¢ Login as a student group (as monitor login manner)
e View course grade information

DAL I Micro Gl Inbernel £ aplorer

GRADER course grade management system

View course item statistics information

JHADE S Mcrosott Intemet teplorer

GRADER course grade management system

ASs? AsS2 ASS3 AGSS ASSS mark

6778779770000
0066896090000
98.09998688080000
1707706700000
9949186880000
4504507850000
1788008000000

998
450

DAl e Ko ol Internet b aplarer

GRADER course grade management system

85

