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ABSTRACT

Application of Multivariable and Intelligent Control Strategies for Improving

Plasma Characteristics in Reactive Ion Etching

Nicolae Tudoroiu

Concordia University, 2001

Reactive lon Etching (RIE) is a critical technology for modern VLSI circuit fab-
rication and is used at many stages of the manufacturing process. Several real-time
control strategies such as Proportional-Integral (PI) self-tuning, Linear Quadratic
Gaussian (LQG), stochastic adaptive control, neurocontrol, robust and hierarchical
control based on both linear and nonlinear models of the Plasma Generation Subsys-
tem (PGS) are developed to improve plasma characteristics in the Reactive Ion Etch-
ing process. The proposed approaches result in superior accuracy and performance
when compared to results that are available in the literature. The identification pro-
cess (prediction error approach) to determine linear Auto Regressive Moving Average
(ARMA) models of the PGS is based on the computationally efficient recursive least
squared (RLS) procedure. This is an alternative to the use of Kalman filter that is
based on state estimation. The massively parallel processing, nonlinear mapping, and
self-learning abilities of neural networks are exploited in the development of intelli-
gent control systems. Neurocontrollers enhance RIE manufacturability and may be
used for process optimization, control, and diagnosis. A hierarchical real-time con-
trol strategy is developed that automatically selects during each specific operating
interval the best real-time control strategy for tracking the dc self bias voltage and
fluorine concentration set points. It is shown that the proposed methodology results
in higher performance and is computationally more efficient than that using a single

control strategy that is dependent on a range of operating conditions.
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Chapter 1

Introduction

This thesis is motivated by the fact that presently most semiconductor manufac-
turing equipments are designed to be operated in an open-loop mode. Consequently,

the manufacturing performance of these equipments are not as good as desired.

In order for the Canadian semiconductor industry improve its competitiveness, it
is critical that its fabrication facilities produce highly advanced products at low cost.
To achieve these goals, these fabrication facilities must be equipped with processing
systems which can perform their functions with very high accuracy and through-
put but with low overall costs. Reactive lon Etching (RIE) is a critical technology
for modern VLSI circuit fabrication which is used in many stages of the manufac-
turing process [1]. Silicon dioxide films are of significant interest as an interlayer
dielectric material for integrated circuits and multichip modules (MCM’s). The pat-
terning of these films is of crucial importance in semiconductor manufacturing. RIE
in radio-frequency (RF) glow discharges is among the most commonly used methods
for forming patterns via holes in between metal layers of an MCM and for achieving

the level of detail necessary to define small features in film [2].

Etching is a process through which a desired pattern is transferred to a silicon

1



wafer by removing material, such as silicon (S?) or silicon dioxide (Si0,) via the
interaction of fluorine [F] or other chemicals such as chlorine or bromine with the
wafer and exhausting the reaction products [1]. Some of the most important variables
used for determining the success of the etching process are selectivity, uniformity,
arusotropy, and etch depth:

(¢) selectivity refers to the ability to etch, for example, 57 without etching either
S10; or photoresist.

(22) uniformity is the requirement that etching be spatially uniform across the
wafer.

(222) anisotropy is the ability to etch vertically while minimizing horizontal etch-
ing. thus creating vertical walls, and

(2v) etch depth is the ability to remove exactly a desired amount of material.

The relative importance of these characteristics depends upon the function of
the layer being etched. For instance, during fabrication of a transistor gate region,
a polysilicon layer is etched down to the gate oxide. Selectivity to the oxide is of
primary importance since only a small variation in the oxide layer is tolerable.

The other key requirement is critical dimension control (etch depth). Experiments
can be designed to locate an operating point which offers good performance in the
characteristics of most importance while maintaining adequate performance in the
characteristics of secondary interest. Models generated from experimental data are
used to achieve this goal. Better control of these variables translates directly into
improved yield, finer line widths and hence higher device density and higher through-
put.

The physical and chemical mechanisms involved in RIE process are very complex
and are not fully understood at the present time. Since the focus of this research is

on the demonstration of the potential benefits of using feedback control systems, an
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extremely simple plasma process is used: namely a C' F, gas system for the etching of
unmasked wafers with a material stack of polysilicon substrate. This simple system
has been studied extensively with many known material parameters and also a rea-
sonably advanced understanding of the etch mechanisms and pathways is available
[1]. The plasma process could increase in complexity by adding hydrogen, chlorine
or oxygen to enhance the selectivity and etch rate, and A, /N, for actinometry. Also,
if the number of wafers in reactor chamber increases the performance of the etching

process decreases, especially the etch rate or etch depth.

RIE is a low pressure, low temperature plasma system. The plasma is generated
by capacitively coupling a RF (13.56 MHz) power source to one electrode, which
has a smaller surface area than the ground electrode. This leads to dissociation and
lonization of the feed gas. Consequently, it generates a chemically active mixture of
electrons, ions and free radicals. Due to the fact that the electrons are more mobile
than ions, a de self bias voltage is developed across the electrodes to achieve current
continuity. This self bias voltage accelerates ions toward the surface of the wafer.
The free radicals diffuse to the surface of the wafer where they react with the exposed
silicon surface. The surface reactions are quite complicated and are not completely
understood. However, in simple terms, the fluorine atoms react with silicon atoms
and produce various volatile components such as SiFy and SiF3, desorbed possibly
with the aide of the impinging ions. In addition, the impinging ions further enhance
these etching processes. On the other hand, various polymers are formed as a result
of chemical reactions between the radicals and the surface material. These inhibit
the etching process. The polymers formed on the side walls are largely unaffected
by the ion bombardment and thus facilitate highly anisotropic etching [1]. Polymers
on the horizontal surface are removed by the impinging ions, provided the polymer

film is not too thick and the ions have sufficient energy, and this allows the etching
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process to continue. The impinging ions can also physically sputter Si atoms, thereby
etching the wafer surface, or cause surface activation, thereby speeding up the etch
process. For this reason it is useful to conceptualize RIE as consisting of two distinct
but interacting mechanisms:

(2) chemical etching caused by radicals, and

(#2) physical etching caused by ion bombardment [1].

Therefore, etch characteristics can be adjusted by carefully controlling the plasma
species composition and ion energy.

The lack of feedback control in these systems is generally considered as one of the
main challenging problems facing the semiconductor manufacturing industry. This in
particular is 2 major impediment to reliable operation of low pressure reactive plasma
systems [1].

The principal motivation for introducing advanced control techniques in these sys-
tems is that by controlling appropriate plasma parameters (the concentrations of the
reactive radicals and ions and ions energy). it is possible to improve the etch perfor-
mance of the reactive ion etchers. namely their selectivity, uniformity. anisotropy and
etch depth. The current state of knowledge in RIE does not vet allow for a defini-
tive choice of the key plasma parameters to be controlled. For example in [3] four
measured variables (namely [F|, [C F,], radicals [CO;], and Vi), four manipulated
variables (namely % O,, pressure, power, and flow rate) and seven performance vari-
ables (namely Si etch rate, SiO, etch rate, Si /| SiO, selectivity, Si0; anisotropy,
S1 uni formity, Si0, uni formity, and Si anisotropy) were considered for the RIE
of silicon and silicon dioxide in CFy/O, and CF,/H, plasma. Furthermore, in [4],
[5]-[8] only two manipulated variables (namely power and throttle valve posttion),
two measured variables of the key plasma parameters to be controlled (namely Vjqs

and [F]), and four performance variables for RIE (namely etch depth, selectivity,
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uni formity, and anisotropy) were considered. There has been a major interdisci-
plinary effort at many major US universities and institutes, such as the University of
Michigan, the University of California at Berkeley, the University of Texas at Austin,
Georgia Institute of Technology, Carnegie Mellon University, the University of Col-
orado and Massachusetts Institute of Technology, to name a few, for improving the
manufacturing characteristics of semiconductor processing equipment [1], [9].

The interest in use of plasma processes is increasing, particularly in thin film etch-
ing for VLSI applications. Plasma processing allows a more effective control of the
composition and the profile for these components and processes. Vital requirements
such as achieving robustness and high quality of the electrical connections and mini-
mum feature sizes for the MOS devices are obtained by controlling the main etching
characteristics of the process, such as the etching rate, anisotropy, selectivity and
uniformity. For instance, high etching rates for acceptable throughput in single wafer
tools as walfer sizes increase, anisotropic profiles, selectivity over thin gate oxides, uni-
formity and directionality of plasma processes can all be optimized for a particular
application through appropriate selection of the chemical reactants and the operating
conditions.

Better understanding of etching processes will allow improved control of the etch-
ing characteristics vital to the present and future productivity of the VLSI fabrication
process. A few studies of polysilicon etching in C F3C! (Freon 13) have been published

and interesting and encouraging results have been reported [10], [11], [12].

In [11] the plasma etching of heavily phosphorus doped polysilicon (an important
gate and interconnect material for MOS devices) with the chlorofluorocarbon gas,
CF3Cl, is examined. The authors are interested in identifying and investigating the
important physical processes responsible for polysilicon etching in CF3Cl/Ar dis-

charges. A method is presented by which polysilicon etching in a C F3C! plasma is
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described successfully by a statistical model. The observed characteristics in terms of
physical plasma properties inferred from an electrical impedance model are also inter-
preted. With this model physical properties of the plasma, including time-averaged
bias voltage can be predicted. Increasing demands on etching processes for improved
throughput, uniformity profiles and selectivity require better control of these etching
characteristics. To place etching process design and control on a more rational basis,
models for the etching process need to be formulated. Thus for polysilicon etching
in C Fy discharges predictive kinetic models have been formulated. In such models, a
set of chemical reactions is proposed to simulate radical and ion formation and loss,
transport and surface reaction. The steady-state solutions of the resulting ordinary
differential equations are obtained. However, rate constants for most of the reactions
in the model are not known and must be estimated. Consequently, these models nec-
essarily contain at least 10 fitted or estimated parameters. The present inability of
kinetic models to predict trends in plasma properties or etching characteristics is not
surprising. given the present lack of knowledge on fundamental chemical and physical
processes involved in plasma etching. In [11] the plasma processes modelling prob-
lem was divided into a series of more manageable tasks. First, each etching process
“response” ( etching rate or total ion flux) is characterized experimentally in terms
of externally controlled variables, or “factors” (pressure or power input). Response
surface methodology, an experimental design and data analysis strategy, is used to
examine efficiently the etching response over wide factor ranges. The resulting data
set is used with statistical analysis techniques to generate polynomial representations
of etching process responses. The polynomial response models are valuable for pro-
cess design in cases where predictive kinetic models are unavailable. Through an
electrical impedance model for the plasma, the external variables are related to phys-

ically significant plasma properties (e.g., electron density). The etching responses are



then examined in light of the physical properties predicted by the impedance model.
Response surface methodology is helpful in this endeavour, as polynomial response
models are easily converted into contour plots of etching responses but not very accu-
rately. In [11] expressions are derived for bulk plasma resistance, sheath capacitance,
potential drop across the sheaths, bulk electric field, and electron density, using a
simple electrical model of a radio-frequency (RF') discharge. Each of these quantities

varies with temporal position in the RF cycle.

In [10] the authors present an experimental technique for measuring total posi-
tive ion bombardment fluxes and energy distribution. An empirical description using
the mean ion energy provides a good representation of the ion energy distribution
over a wide range of conditions. These results allow estimation of ion energy distri-
bution in other parallel plate reactors. In [10] the ion bombardment of the surface
during etching-ion energy is predicted using the plasma impedance results and a sim-
ple elastic collision model for ion transport through the plasma sheath is examined.
The results obtained are crucial to the formulation of kinetic models of etching rate
and directionality studied in [12]|. In [12] the authors develop three kinetic models,
based on experimentally and theoretically estimated plasma properties. These models
include both chemical and ion-assisted processes. and therefore, predict etching di-
rectionality. as well as etching rate. The results indicate the importance of relatively
low energy (<30eV) ion bombardment, and suggest that the dominant loss process

for the chemical etchant is diffusion-limited recombination at the electrode surfaces.

The present understanding of plasma chemistry, and in particular, the surface
processes involved in etching is limited. It is well known that energetic ion bombard-
ment can have profound effects on thin film etching, but the details of the physical
processes responsible for ion production and transport are not clear. Consequently,

formulating a complex kinetic model for the etching process may not be fruitful at

7



present. A simple model, incorporating variables of known physical importance al-
lows evaluation of the etching process at a level commensurate with the basic data
available. In [3] process control strategies for reactive ion etching of silicon and sil-
icon dioxide in CF,;/O, and CFy/H, plasma are developed. The authors take into
consideration four measured variables, four manipulated variables, and seven perfor-
mance variables. and develop a MIMO model (four inputs, four outputs), which is
very complex, difficult to manipulate and does not take into account the dynamics of
the wafer characteristics with respect to the plasma parameters.

Relative Gain Array (RGA) analysis and Singular Value Decomposition (SVD)
methods are used to select manipulated/process variable control loop pairings for
feedback control and to evaluate potential difficulties in control system performance.
However. these methods do not guarantee consistent results and deal only with steady-
state representation of the system.

The development of real-time control techniques for improving the manufacturing
characteristics of reactive jon etching process is well documented in [1]. The over-
all goal is to redesign the RIE machine for enhanced controllability and improved
performance. To achieve this, the research is directed towards:

(2) control-oriented modelling and identification of the physico-chemical processes
involved in RIE. A control-oriented model must capture the significant dvnamics of
the physical system and be suitable for control design.

(22) analysis and improvement of the controllability and observability properties
of RIE.

(242) design and implementation of a hierarchical controller for the RIE.

The objective in [1] is to develop sufficiently general methods and results that allow
implementation of real-time feedback control systems to a large class of RIE machines

with a minimal amount of tuning. Based on a novel decomposition of the process, the
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authors present a general strategy for the control of RIE. The principal idea is that
by controlling appropriate plasma key parameters, it is possible to improve the etch
performance of these machines. In [1] and [4]-[8], the bias voltage, Viias, and fluorine
concentration [F] are used as the key plasma parameters to be controlled and power of
RF generator and throttle valve position are selected as input variables. Based on the
measured output data, and using standard identification algorithms, the authors in
[1] have constructed a two-input, two-output model mapping small perturbations in
power (Watts) and throttle valve (% opening) to the Vi;,, (Volts) and [F] signals. The
idea is very interesting and although the model is very simple and easy to manipulate,
it may not be able to capture all the dynamics of the plasma. Specifically, the problem

of representing the dynamics of the wafer still remains unanswered.

In [8] experimental results are presented on nonlinear models of the Hammerstein
type for a reactive ion etcher. and a nonlinear tracking controller is implemented. This
is motivated by the observation that the RIE exhibits significant nonlinear behaviour.
In [8] a simple nonlinear model structure is used that is an input static nonlinear
block (polynomial of second degree) in series with a linear time-invariant system.
The model is improved compared to linear models since it takes into consideration
the nonlinearity of the throttle valve actuator. However, the problem of capturing
the dynamics of the wafer, and whether the model is capable of capturing all the

dynamics of the plasma still needs to be investigated.

The experimental results demonstrate that the closed-loop predictions are very
close to the observed data, and that the controller provides the capability of command
following large excursions in the operating space. In [7] a dynamic model describing
the relationship between the various physical variables of interest such as etch depth,
etch rate and reflected light intensity is presented, and an extended Kalman filter

is used to estimate the etch depth by processing reflectometry data for fast in-situ
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etch rate measurements. This is motivated by the fact that in etching and deposition
processes, the capability of measuring thin film thickness is very useful. Single or
multiple wavelength reflectometers are commonly used for both in-situ and ez-situ
measurements of film thickness. Techniques for in-situ real-time measurement of etch
(or deposition) rate can be of great benefit in process development, on-line process
diagnostic, and real-time feedback control. The fundamental idea here is to use
nonlinear estimation theory, namely the Extended Kalman filter method for a simple
dynamic model that combines the etching process with an optical model for reflection
from a stack of parallel thin films. Problems that remain still open are selectivity,
uniformity and anisotropy characterizations. A similar idea is developed in [6] where
etch rate and etch depth are estimated from dual-wavelength reflectometry data.
Using the estimated etch rate. an efch rate stabilization is achieved by using feedback
control by actuating forward power in real-time. Using the estimated etch depth to
trigger an end point. the authors demonstrate that it is possible to get an 83% final
thickness variation over timed etches. The results depend very much on whether
the model of the Plasma Generation Subsystem is accurate or not. To reduce the
loading effect in RIE, [8] develops a real-time closed-loop control system. Recently,
empirical RIE models based on neural networks [13], [14], [15] have been shown to
exhibit superior performance in accuracy, predictive capability, and robustness over
more traditional statistical approaches (regression methods). Neuromodel predictions
of the RIE process outputs are used in conjunction with genetic algorithms and other
optimization techniques to optimize the etching process performance as well as for
recipe synthesize. More recently, adaptive learning techniques which utilise neural
networks combined with statistical experimental design methods have been applied to
semiconductor manufacturing [16], [14]. The neuromodels have shown good accuracy

because these models fit well to experimental input-output data, and the nonlinearity
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of the process is well reflected in the network. Algorithms based on adaptive learning
techniques were developed that enable these networks to adapt through a trial-and-
error procedure. In this adaptive process, the connection strengths between the active
elements of the network are gradually modified until the network exhibits a desired
behaviour. Several other neural network based plasma etch models have also appeared
in the literature [13], [17], [18], [15]. Some recent research is focused on developing
more specific and advanced structures and algorithms, such as exponentially weighted
moving average (EWMA) neurocontrollers [19]. These networks are integrated in
the overall intelligent control structures of the plasma etching processes to maintain
process targets over extended periods for improved product quality and decreased
machine downtime [19], [14]. Proper choice of neurocontroller parameters (weights)

is critical to the performance of these systems.

At the present time RIE’s are typically supplied with a PID controller for regu-
lating the chamber pressure. In addition, several of the actuators, such as the mass
flowmeters and the RF power generation unit, have internal controllers in order to
make them less sensitive to variations in operating environment. These actuators
influence the actual etch process by affecting the plasma characteristics. Currently,
the only plasma property which is stabilized by using feedback control is the pressure.
It is commonly acknowledged that the RIE process is not very robust and requires
frequent tuning to achieve acceptable yields. The research described in this thesis
is directed toward the application of a real-time control systems theory to RIE. The

main thrusts of this research are as follows:

(2) control-oriented modelling and identification of the physico-chemical processes

involved in the RIE process (linear ARIMA models and neuromodels), and

(22) controller design for the RIE using real-time multivariable control strategies

(minimum variance stochastic adaptive control, robust control, self-tuning control
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and neurocontrol).

From a control engineering viewpoint, the RIE process represents an interesting
challenge in several different ways. The key issue is the fact that many of the crucial
etch parameters that need to be controlled cannot, at present time, be measured in
real-time. This necessitates indirect control strategies wherein plasma parameters are

used for feedback to achieve tight control of the etch characteristics.

1.1 Summary

The objective of this thesis is to develop MTMO real-time control strategies for im-
proving plasma. characteristics in the reactive ion etching process.

Vital requirements for achieving robustness and high quality of the electrical con-
nections, uniformity profiles and minimum feature sizes for MOS devices require bet-
ter control of the main etching characteristics of the process, namely etching rate,
anisotropy, selectivity and uniformity. The priority in our research is focused
more upon practical aspects in order to implement the most appropriate conven-
tional and nonconventional control strategies that are needed for addressing some of
the difficulties that the plasma system community currently faces.

This goal is motivated by the following main factors:

(2) Presently most semiconductor manufacturing equipment is designed to be oper-
ated in an open-loop mode and consequently the manufacturing performance of

this equipment is not as good as desired.

(#2) The reactive ion etching process is a critical technology for modern VLSI circuit

fabrication at various manufacturing process stages.

(22) High complexities such as nonlinearities, a MIMO process, and operating at low
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pressure, have made the reactive plasma systems as interesting research topic
in plasma community. In the last decade this has captured a lot of attention of
the specialists from systems and control field to solve practical aspects of the

control problems of these systems in closed-loop.

(2v) This field of research offers an excellent opportunity to researchers and to spe-
cialists from the control area to apply dynamic systems analysis, synthesis, and

control methods to study reactive ion etching systems.

(v) By this research we could partially fill the void that exists due to the lack of
feedback control in these systems. This is presently considered as one of the

main problems facing the semiconductor manufacturing industry.

(vi) Our results could also be extended and applied to other industrial applica-
tions such as chemical vapour deposition (CVD), anisotropic wet etching silicon
(TMAH), plasma enhanced chemical vapour deposition (PECVD), low plasma

chemical vapour deposition (LPCVD), etc.

The research is based on the main idea that by controlling appropriate plasma
parameters, namely the concentration of the fluorine reactive radicals and ions [F],
and theirs energy reflected in Vs, one could ensure satisfactory tracking for the
etching rate or equivalently etch depth (being one of the most important etching
characteristics).

Specifically, in this thesis we will present some results concerning the models of
the PGS, namely the coupled and decoupled cases with or without delay (Chapter
3), the design of real-time multivariable feedback conventional and nonconventional
control strategies, namely Pl self-tuning adaptive controller based on minimization
of a quadratic cost function, a Linear Quadratic Gaussian scheme (LQG), minimum

variance stochastic adaptive control, robust control, and neurocontrol (Chapters 4-7).
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In the last chapter (Chapter 7) we will compare the performances of all the algo-
rithms developed in this thesis and we will select the best structure for a real-time
feedback control strategy using a hierarchical control approach. The hierarchical con-
trol strategy that is capable of determining at each sampling interval which controller
is the most suitable choice to be employed will be of great benefit. Tn order to have
a criterion for comparing the performances of different control strategies, we will
translate the results obtained in Chapters 4-6 for the PGS into performances of the
wafer subsystem, namely efch rate or etch depth. The main objective of our proposed
control strategies is to keep the etch depth at a desired target value in the face of
variations in the process disturbances, namely CF; flow-rate disturbances, loading
disturbances, and oxygen disturbances. The results obtained confirm the utility of
our proposed strategies to control the etching process despite the drift during an
etch. However, these algorithms can also be used as a research tool for evaluating
complicated gas kinetics. The controllers can drive the film properties, namely etch
depth, anisotropy, selectivity and uniformity to desired regimes based on important

gas species and dc induced voltage in an optimal fashion.
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Chapter 2

Overview of RIE: Equipment and

System

In this chapter a brief description of the RIE equipment is provided. This description
is given from a control system perspective. The emphasis is on the overall system
behaviour rather than on an individual physical/chemical processes. It is well known
in the plasma literature that the RIE process is highly nonlinear and multivariable [1].
Existing plasma systems attempt to control the important wafer etch characteristics
with the input variables pressure, applied RF power, and gas flow rates. However,
there is no standard and known way to use these inputs to predict the etch perfor-
mances in different machines or in identical machines, or even in the same machine on
two different runs [1]. This is due to the variations in plasma properties and distur-
bances and the fact that there is a significant amount of uncertainty in the open-loop
system. This is the main reason why we believe that the five real-time feedback con-
trol strategies developed in this thesis will be of great potential benefit to the control

of RIE process.
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Figure 2.1: Plasma reactor etching system

2.1 The Reactor

The plasma reactor that is used in this thesis is an Applied Materials 8300 Hex-
ode Reactive lon Etcher used at the Control Systerns Laboratory of the University
of Michigan. from where experimental input-output data set for different operating
points was obtained. This reactor is equipped with a data acquisition system, ac-
tuators and sensors appropriate for real-time feedback control. The configuration of
parallel plate Plasma Reactor Etching System type- 1000TP is presented in Figure
2.1. A simplified block representation of this configu ration is shown in Figure 2.2.
The parallel plate system has a bottom electrode with a diameter of 29.2 cm, 34.3
cm top electrode, and variable electrode spacing set by the user at 3.81 cm. The
power source is a 600 W, 13.56 MHz RF power generator capacitively coupled to
each electrode through an automatic tuning network impedance matching system.

Each electrode is equipped with an RF plasma dark space shield to prevent parasitic
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Figure 2.2: Plasma reactor etching system - simplified block diagram.

plasma from forming outside of the shields.

2.2 Actuators and Sensors

To regulate the exhaust of reactant gases from the chamber, the reactor is equipped
with a throttle valve. For improved control capability this valve was sized to be
small, thus moving its operating region away from the saturation with a low leakage
conductance when fully closed for a rapid response time for the measurement of the
actual valve position. We will consider in the thesis two cases: the first case where
the valve is a linear element and the second case, which is closer to reality, where the

valve is a nonlinear element with the nonlinearity given by a second order polynomial
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[8] or of a hysteresis type [1].

The throttle valve controller allows remote control of the valve. The RF power
actuator includes a 13.56 MHz generation unit and a matching network. In order to
increase the range of flows that can be achieved, an additional mass flow controller has
been added. The bias voltage is measured through an inductive tap into powered elec-
trode. Pressure in the chamber is monitored by a Baraton Capacitance Manometer
which is sensitive to pressures between 1 mTorr and 100 mTorr, where 20 mTorr is a
typical operating point for the RIE process in the above system. The fluorine concen-
tration is measured via optical emission spectroscopy using actinometry, with argon
as the calibration species. Light from the plasma glow is modulated to approximately
2KHz by a mechanical chopper, then passed through a pair of monochromators which
select specific wavelengths in the fluorine and argon spectra [1]. The light signals are
then converted to electrical signals by photomultiplier tubes and demodulated via

lock-in amplifier.

2.3 RIE System: Decomposition and Control

Motivated by the ideas developed in [1], a real-time control system for improving the
manufacturing characteristics of reactive ion etchers is developed in [4]. In this work,
the RIE system is decomposed into two functional blocks:

(2) the plasma generation subsystem (PGS), and

(22) the wafer etch subsystem (WES).

The above sequential processes separate the generation of the important chemical
and physical species from the action of etching the surface of the wafer. The inputs
to the plasma generation subsystem are:

(2) the throttle position, and
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Figure 2.3: The decomposed structure of the RIE system

(22) the applied RF power

The outputs of the plasma generation subsystem are the key plasma parameters
responsible for etching, namely

(z) the Vjius, and

(#2) the fluorine concentration [F],
where V4;,, represents an estimate of the mechanical energy of the impinging ions
and [F] represents the concentration of the chemical compounds (fluorine) involved
in etching.

The WES is driven by the key plasma parameters and its outputs represent quan-
tities crucial to the etch performance. The above decomposition actually represents
a physical separation, that is

(¢) the PGS represents the bulk plasma, and

(i2) the WES represents the wafer surface phenomena, and the interface is the
boundary layer.

The decomposition suggests a suitable control structure for the RIE system as
shown in Figure 2.3. While this decomposition is based on sound physical principles,
it is not completely accurate as there is a certain amount of feedback coupling from

the wafer surface reactions to the plasma.
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The key idea is to regulate the inputs to the WES by precisely controlling the
outputs of the PGS. The RIE system is susceptible to disturbances which increase
the variance of the output characteristics regardless of the operating point selected.
Disturbances that affect the RIE process include:

(z) the load

(22) the chamber seasoning

(222) the variation in the RF power generator and matching network

(zv) the variation in the mass flow controllers, and

(v) the water vapour and other contaminants.

Here, load refers to the total surface area of material to be etched, which is a
function of the number of wafers and the pattern on each wafer. In that work a
multivariable feedback control is designed which is capable of compensating these
disturbances and thereby reducing the process variance. By applying this form of
multivariable feedback control to RIE, the effect of the variations in the load on the
rate is dramatically reduced. Typically, when the load is increased the efch rate
decreases. This phenomenon is commonly known as the loading effect. The loading
effect is known to be significant in certain etch chemistries such as fluorine etching
of silicon. The loading effect is undesirable because it is a source of variance in
etch rate. Because of the variance in the efch rate, selection of the appropriate etch
time is difficult. Selection of the proper etch time becomes even more difficult when
considering that the etckh” rate also changes during an etch due to the loading effect.
Because of non uniformity, wafers are typically overetched to ensure that all material
is removed. As the end of the etch approaches, less material is left and the etch
rate increases. The side walls become the focus of the etchant and any additional
etch time contributes at a greater rate to the undercut, one of the wafer qualities of

interest. Consequently, the process yield may be reduced and costly trial runs are
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necessary to establish the proper etch time for new loads. The key idea is to regulate
the inputs to the WES by precisely controlling the outputs of the PGS. What remains
to be investigated is the problem of determining a supervisory controller to perform
the high-level cell control function that includes on line monitoring and diagnostics as
well as postprocessing analysis of the data for the purposes of sequential optimization,
quality control, etc. To solve this problem it is necessary to develop a controller
around WES which will translate desired etch characteristics into set points for the

PGS control system.

With the existing sensor technology, it is very difficult to measure the key wafer
etch parameters, namely selectivity, anisotropy, etc., in real time during the etch pro-
cess. Therefore, for real time feedback control, an indirect strategy is necessary. The
decomposition of the etching process is very important because the modeling task for
the WES would involve relating the effects of the key plasma parameters to the etch
performance. This is much more direct than trying to build a single model from the
equipment inputs to the etch characteristics. The switch from specifying the process
parameters in terms of (power. throttle valve) to (Viias, [F]) is a significant change of
viewpoint. The new set points are in many ways more directly related to the overall
etch performance. In other words tightly regulating them should eliminate much of
the variances seen in the plasma systems. As stated above, it will be necessary to
relate desired etch rate, selectivity, anisotropy, uniformity to the key plasma param-
eters. This is the purpose of the WES controller. This controller would also operate
in real-time, but perhaps would operate on a slower time scale than the plasma con-
troller. The sampling rate for the Plasma Generation Subsystem is 20 Hz. The reactor
is also instrumented with an in-situ spectral reflectometry system, which samples 798
wavelengths between 400 and 800 nm every 0.5 s for 2 Hz sampling rate, resulting

in the PGS being 10 times faster than WES. Presently, the details of this second
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level WES controller are not quite clear, because real-time sensors for the wafer etch
parameters are not readily available and the models for relating plasma parameters
to the wafer etch parameters are not well understood. As a. matter of fact, it is not
clear whether constructing empirical small perturbation models for the wafer etch
subsystem is appropriate. In [1] a primitive supervisory platform is developed and is
tested on the RIE system. This high level system emphasizes a generic central con-
trol mechanism, a sequential statistical process optimization algorithm, standardized

comrmunications, and extensive in-situ monitoring and diagnostics capabilities.

2.4 Summary

In this chapter, we have presented a comprehensive approach to the real-time control
of an RIE process. This is based on the different conceptual decompositions of the RIE
system into plasma and etch subsystems. Also, we have presented the main results
from the literature concerning modelling and multivariable real-time feedback control
strategies of RIE system. The experimental results on system identification and real-
time control offer encouraging support that controlling certain plasma parameters
results in improved etch performance, namely efch depth, anisotropy. uniformity and
selectivity. The results demonstrate conclusively that the introduction of real-time
feedback control leads to a much more stable etch rate as compared to the standard
industrial practice of setting pressure, flow, and RF power. The significant gains may
be obtained by using techniques from control and systems theory in semiconductor
manufacturing. At this time, we are able to perform a more complete investigation to
understand the appropriate plasma parameters whose control will lead to improved

etch performance.



Chapter 3

Modeling and Validation

3.1 Linear Plasma Generation Subsystem Models

3.1.1 System Identification

In order to build models for the Plasma Generation Subsystem (PGS), an experi-
mental identification approach is needed. Generally, a region of operating points is
delineated in the space of pressure, [C Fy] flow rate, and power corresponding to the
RIE region of the plasma parameters space. Specifically power ranges from 900 to
1300 Watts, pressure ranges from 20-30 mTorr, and flow rate ranges from 20-40 stan-
dard conventional cubic meters (sccm) [1]. Typical values of 1000 Watts, 20 mTorr,
and 30 sccm are selected as a nominal operating point. The identification experi-
ments involve application of step increments to the power and throttle inputs from
their nominal values. The experiments are done without a wafer in the chamber,
because the modifications to the systemn identification with a wafer being etched are
quite straightforward.

In the PGS, the control inputs are RF power, throttle posttion, and C Fy/Ar flow.

The disturbances are load and water vapours. The state of the plasma system are
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the fluorine concentration [F], and dc bias voltage, Viips. Fluorine is the dominant
etchant species and Viias Is used as a measure of the physical energy of the imping-
ing ions. Multivariable feedback control strategies reported in the literature [10],
[11], [12] use % H3/%O0,, pressure, RF power, flow rate to control Vj,,, [CFy, [F],
[H]/[CO.], but the models are more complex and very difficult to control, due to
poorly conditioned systems with strong interactions between the input and the out-
put variables. The models in [1], [20], [4]-[8], [21] are simpler since they use only
two independent input variables, namely RF power and throttle valve to control two
independent output variables, namely V};,, and [F]. We also choose these variables
since the plasma variables and [£] are more directly related to the etch rate and other
output characteristics when compared to the RF power and pressure, which are held
constant conventionally. The disturbances mostly affect the PGS and not WES, so by
controlling the plasma variables, the effects of these disturbances can be mitigated.
To design a real-time control strategy first a linear model of the plant is obtained

about an operating point.

3.1.1.1 Linear ARMA Models

Using the available experimental input-output data set a multivariable Auto Regres-

sive Moving Average ( ARMA) model of second-degree is considered

Alq)y(k) = B(q)u(k) + C(q)e(k) (3.1)
where )
u(k) ’- y1(k) _ Vbias (k) = u; (k) _ throttle position
| va(k) | F | ua(k) RF power
(k) , Ny (k) L
e(k) = » Clg)e(k) = N(k) = represent the white noise and
i ea(k) ] No(k)
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the output of the coloured noise filter, respectively, and

A(g) = I2¢* + A1q + Az, B(q) = Bog® + Big+ B,, C(q) = Coq + Cy,

. . . . ar . .
I is an identity matrix, A; = = diag(ay,as;) s A2 = diag(ays, as)
0 (153}

bo1  bo2 by bi2 b2y by

BO = 9 Bl = y B2 =
bos  bog biz b4 baz by
Co1 Co2 Ci1 Ci2

CO = ) Cl =
Co3  Co4 €13 Ci14

The model (3.1) can be expressed in one of the following four forms:

(2) Coupled case with pure delay:

This is obtained from the general structure (3.1) by setting

By = O, (defined as a 2x2 dimensional matrix with all its elements equal to
zero)

(v2) Coupled case without delay:

This is obtained from the general structure (3.1) by setting

By = Oy

(222) Decoupled case with pure delay:

This is obtained from the general structure (3.1) by setting

Bo = Oaz2 . By = diag(bi1.b14) , By = (byy, bay) , Co = diag(coy, Cos)

C\ = diag(ey, e14), where By, B,,Co, C; represent diagonal 2x2 matrices.

(tv) Decoupled case without delay:

This is obtained from the general structure (3.1) by setting

By = diag(bey, bos) , B; = diag(by1,614) , By = Ogpp , Co = diag(cor, Cos)

Ci = diag(cyy, cr4)

In the above two decoupled cases we can consider the multivariable system as two

independent SISO loops which may be expressed in the following two forms:
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(i) Decoupled case with pure delay:

- _131(3) Cl( ) _131( ) -

Vi(z) = o~ 285 Ez) =2 g oy e Ny 3.2
D)= LGN R RO =T U@ NG 62)

Yy(z) = —1%3%(‘) + izgoigg(z) = z-lgzg Us(z) + No(z)  (3.3)

Based on the available experimental input-output data set for the particular case of

uncoloured noise we get:

B (z) = 4.1996z -3.9567, B,(z) = 0.0001= -0.0001,
Ay(z) = 22 -0.5016= -0.4906, A,(z) = =2 -0.9482= -0.0433.

(i1) Decoupled case without delay:

Bl(~) . él(z) Bl(z) . .
1 = Uy(z .*E]_ z)=—"=U(z A/l Jos 3.4
Yi(z) = A0) 1 ( )+r’11(3) (2) A2) 1(z) + Ni(z) (3.4)
32(3) , éz(:—') Bz(z) - ; -
202) = —= Us(z ——Fo(z) = ==/ (= No(z 3.
2(2) () 2( )+Az(:) 2(z) () a(z) + Na(z) (3.5)

Based on the same experimental input-output data set for the particular case of

uncoloured noise we get:

Bi(z) = -2.6879= +2.939, B,(z) = -0.00001= +0.00002,
A(z) = 22 -0.4978z -0.4941, A,(z) = 22 -0.9455= -0.0449.
Similarly, the coupled PGS models of (3.1) may be expressed in the following two

forms:

(1) Coupled case with pure delay:

: L Bi) D), Cy(2)

1(2) == iz = Us(z = E\ (= 3.6

(2) f}l(z) (=) + A.0) 2( )+A1(z) (2) (3.6)
—1 Ba2(2) _1 Da(2) Ca(2) -

2(z) =2z7"= Us(z 2T —= Us(z —=F5(z 3.7

() == gl +=7 S0 + 2 ) (37)



Using the same experimental input-output data set for the particular case of un-

coloured noise we get:

Bi(z) = 4.1996= -3.9568, B,(=) = 0.0008> -0, 005, Di(z) = 0.08372-0.0569,
Dy(z) = 0.0001z, A,(z) = 22 -0.3714= -0, 4942, Ay(z) = 22 -0.853= -0.0922.

(ii) Coupled case without delay:

i B (=) Dy (z) Ci(z)

1{g) = .—Ul z = U2 < E1 3.
(=) e ()+{h(z) () + T B (3.8)

Ya(z) = ff(())w) ﬁ(() ZE ; Ea(z) (3.9)

From the experimental input-output data setup for the particular case of uncoloured
noise we get:
Bi(z) = -1.0682= +3.1012, B,(z) = -0.0055z +6.0015, Di(z) = 0.17032-0.1382,
Dy(z) = 0.0001= . A,(z) = 22 -0.4571= -0.3846, Ay(z) = 22 -0.8511= -0.0922.
For the general case these polynomials could be expressed as following
A=) =2 tans+an
fiz(i) =2+ ayz+ aaa
Bl(:) _ ~13013 +~(~)“ without delay
bi1z + by with pure delay
. 5033 + 513 without delay
32(3) = - -
613z + byy with pure delay
Ci(z) = o1z + &,

Ca(z) = Gosz + Ci4
- a7013 + J“ without delay
Dl(z) = - -
dy1z + day with pure delay
. dosz +dys  without dela
Da(2) = ~03 ‘ 13 (2 y
di3z + dys with pure delay
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Figure 3.1: System representation in ARIMA (Auto Regressive Integrated Moving
Average) model with stochastic disturbances

The schematic of the overall system considered can be represented as shown in
Figure 3.1.

An adaptive control law based on this model will not have an integral action
because of the stationary character of the disturbances. To design a control law
with integral action that is capable of dealing with nonstationary disturbances, a

disturbance process with stationary increments is postulated [22]:

G(z) = (z_—Cll;%l(z)El(:) (3.10)
G(z) = (:—_Cf—ti)—z(:)Ez(z) (3.11)
or equivalently:
AGi(z) = Ni(2)
Ag(z) = Ny(z)
where A =z — 1 is the first-order difference operator. In this case we get the general

representation of the process by the ARIMA (Auto Regressive Integrated Moving
Average) model integrated in our proposed MIMOQ real-time control strategies that

are developed later in Chapters 4-7:



(1) Coupled ARIMA model without delay

A (2)AYi(z) = B (2)AUL(2) + Di(2)AUy(z) + Cy(2) Ey(2)

A3(2)AYa(2) = By(2) AU (2) + Do) AU, (2) + C2(z)Ex(2)
(it) Coupled ARIMA model with pure delay

Ai(2)AY1(2) = 271 Bi(2)AUL(z) + 271Dy (2) AUs(2) + Ci(z)E\(2)

A2(2)AYa(2) = 7' By(2) AU (2) + 27 Dy(2) AU(2) + Co(z) Ea(=)
(i) Decoupled ARIMA model without delay

A (2)AYi(2) = Bi(2)AU(2) + Ci(2)Ei(=)

Az (2)AY3(2) = By(2)AUy(2) + Ca(z) Ea(2)

(iv) Decoupled ARIMA model with pure delay

A(2)AY1(z) = = Bi(2)AUL(z2) + Cu(2) Ei (=)

A>(2)AYa(z) = 27 By(2)AUs(2) + Ca(2) Ea ()

where AY(z) = (2 — 1)Y/(z), and AU(z) = (z = 1)U(=2)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

Although the form of the above models are linear, the model coefficients are time

varying and are to be estimated in real-time. These models are preferred for adaptive

control because they lead to algorithms that can be easily implemented on a digital

computer. The above models are used in Chapter 3 to implement multivariable

adaptive control strategies based on the minimization of a quadratic cost function,

29



namely P[ self-tuning adaptive control.

3.1.1.2 Transfer Matrix Representation

To measure the interactions between the input and output system variables to de-

termine suitable pairs among them, Relatéve Gain Array (RGA) and Singular Value

Decomposition (SVD) techniques may be used. However, they would require a trans-

fer matrix representation of the ARMA models. Based on the measured input-output

data, and using the standard identification for our system., i.e., the PGS system under

investigation, we obtain the following transfer matrices for the coupled case with pure

delay:
4.1996:—-3.9563

0.0837z-0.0569

22-0.3714:~0.4942
H(z)=
0.0008:—0.005>

22-0.37142-0.4942
0.0001=

z2-0.853:-0.0922

and for the coupled case without delay:

—1.068322+3.1912=

2 -0.853:-0.0922

0.170322—0.1382=

22 -0.45712—-0.3846
H(z) = .
—0.0059:°4+0.0015=

22 -0.4571:—0.3846
0.0001:2

z2-0.8511=—0.0922

where these matrices are calculated directly from the equations (3.6)-(3.9):

31(3)
A1z
H(z) = 1 (=)

Ba(z)

A2(z)

=2-0.85112-0.0922

Dy (=)
Ay (=)
A2(z)

for the coupled ARMA models without delay, and

é[!.z!
H(Z) — zA(z)
By (=)
zA2(z)

for the coupled ARMA models with pure delay.
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The coefficients of the polynomials ARMA models A,, :’ig, Bl, Bz, Dy, and D, are
computed by the algorithm during the identification process based on the available
experimental input-output data set. The above transfer matrix representations of
the ARMA models will be used in Chapter 6 to implement a MIMO real-time robust

control strategy using standard H* control techniques.

3.1.1.3 Linear State-Space Representation

Alternatively, a discrete-time state-space representation of the PGS may be expressed

as

z(k +1) = Agz(k) + Bou(k) + w(k) (3.22)

y(k) = Coz(k) + Dou(k) + v(k) (3.23)

where
T

2 =[ 216) wall) 26 2alh) ] ) = [an(8) uath) | - and

y(k) = ,: yi(k)  ya(k) ]T represent the state vector, input vector, and the output
vector of the PGS system. respectively. For this representation we set r, = y; and
T4 = y2. to give some physical significances to the z;’s, i=1.,..., 4. Furthermore,
w(k). v(k) are uncorrelated (for Linear Quadratic Gaussian control algorithm
developed in Section 4.2) or correlated (for stochastic adaptive control algorithm
developed in Section 4.3) zero-mean Gaussian random vectors representing the
eflects of process fluctuations and measurement noise, respectively, i.e.,

E(w) = E(v)=0, E(wwT) = Q,, (covariance matrix of w(k), a symmetric positive
definite matrix), E(vv?) = R, (covariance matrix of v(k), a symmetric positive
definite matrix), and E(wvT) = Ry, (cross-correlation matrix, and R,,, =0 for w

and v uncorrelated). Based on the available experimental input-output data set the
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following values for the matrices are obtained:

0 0.3846 0 0 ” 0.4108 0.0654
1 04571 0 0 2.7029 —0.0604
Ag = , Be = ’

0 0 0 0.0927 ~0.0005 0

0 0 1 0.8511 J —0.0035 0.0001
0100 —-1.0683 0.175

CG = ’ DG =

0 001 —0.0059 0.00035

The above representation is used in Chapters 4-7 to implement multivariable adap-
tive control strategies based on the minimization of a quadratic cost function, Linear
Quadratique Gaussian (LQG )-scheme, stochastic minimum variance adaptive control

(SMVAC), intelligent and robust control.

3.1.2 Simulations and Model Validation

In order to determine if the models represent a good approximation to the physical
system, experimental tests are performed. The models were identified by exciting
both system actuators together, l.e., varying throttle valve opening and RF power
simultaneously. In principle, our linear models should predict the response to small
simultaneous variations in the actuators (1%-5% of their set points) with the same
fidelity as they predict the response to individual variations. For the operating point
were selected the following values of the RF power, pressure and flow rate: 1000
Watts, 20 mTorr, and 30 sccm. In practice, however, the models may fail to accurately
describe the system response due to neglected effects of nonlinearities of the plasma
process and actuators. Physical limitations for the throttle valve created by the
mechanical problems experienced during the opening represent one of the main source
of this failure.

Using Matlab subroutines from the System Ideantification Toolbox open-loop sim-
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[ Linear ARMA PGS models Viias € [Volts] | [F] e [%]
Coupled models with delay 3.839 0.014
Coupled models without delay 4.09 0.014
Decoupled models with delay (cross-couplings) 11.996 0.143
Decoupled models with delay (direct-couplings) 9.465 0.1
Decoupled models without delay 12.0007 0.142

Table 3.1: Performance comparison for the linear ARMA models.

ulations were performed for each model to see if the models match well with the
experimental input-output data set (the second half of the data set was used to serve
as validation data). The first half of the data set was used to estimate the coefficients
of the models. During the identification process, after several experiments, it was
possible to conclude that the lowest order A RMA models vielding stable results that
match well the experimental input-output data set was the second-order models. For
each model two cases were studied:

({) with pure delay, and

(it) without delay.

The results of these simulations are synthesized in Table 3.1, and presented in
Figures 3.2-3.21. In this table we present for each model the standard deviation errors
between the model and the experimental data set for V4;,s and fluorine concentration
[F] (e).

The coupled PGS models with pure delay represented in Figures 3.2-3.3 fit exper-
imental input-output data set with the standard deviation errors e — 3.839 [Volts]
for Viias, and e = 0.014 [%] for [F], and the coupled PGS models without delay rep-
resented in Figures 3.6-3.7 fit the same data with the standard deviation errors e =
4.09 [Volts] for Vi;us, and € = 0.014 (%] for [F]. The decoupled PGS models with
pure delay represented in Figures 3.4-3.5, 3.8-3.9 fit the experimental input-output

data set with the standard deviation errors e =11.996 [Volts] for Vs, and € = 0.0143
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[%] for [F], respectively e = 9.465 [Volts| for Vji,s, and e = 0.1 [%] for [F]. The
decoupled PGS models with-out delay depicted in Figures 3.10-3.11 fit the same data
with the standard deviation errors e =12.007 [Volts] for Vjios, and e = 0.0142 [%] for
[F]. Good accuracy for these models is obtained if the maximum magnitude of the
deviation error e doesn’t excceed 10 Volts (3% of the Vi, setting point) for Vj:es and
0.1% for [F] (7% of [F] setting point). These statistics reveal that the best match of
the experimental input-outpwmt data set is performed by the coupled PGS models with
pure delay closely followed b:y the PGS models without delay (almost the same stan-
dard deviation errors) and deecoupled (direct-couplings) PGS models with pure delay
which yield the smallest sta.ndard deviation errors with respect to their maximum
magnitude. For this reason -we can use one of the first two coupled PGS models to
build our MIMO real-time control strategies presented in details in Chapters 4-7, and
decoupled PGS models with delay to build PI self-tuning control strategy in Section
4.1.3.

To test the fidelity of our- models in describing simultaneous actuator variations,
two simultaneous pseudo-ranadom binary signals (PRBS) were applied to the actuators
as depicted in Figures 3.12-3..21. The mismatch in Figures 3.5-3.15 can be explained
by a weak cross-couplings be tween the input and output variables .of the PGS plant.
The spikes and the small discontinuities in some of these figures are due to the spikes
existing in the experimental «data set. The PRBS applied to the throttle position for
the coupled PGS models with: and without delay represented in Figures 3.12-3.13, and
Figures 3.16-3.17, respectivelw was given a slower switching rate because the dynamics

associated with the throttle are slower than those associated with the power input.
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(a) Coupled case with pure delay:

Figure 3.2: The performance of the coupled PGS model with pure delay on the Vj;,
for the open-loop system.

Legend: (a) model output; (b) experimental data set: (c) representation error
performance.
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Figure 3.3: The performance of the coupled PGS model with pure delay on [F] for
the open-loop system.

Legend: (a) model output; (b) experimental data set: (c) representation error
performance.
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Figure 3.4: The performance of the decoupled PGS model with pure delay on the
Vbias (cross-couplings: Viies — RF power) for the open-loop system.

Legend: (a) model output; (b) experimental data set; (c) representation error
performance.
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Figure 3.5: The performance of the decoupled PGS model with pure delay on [F]
(cross-couplings: [F'] — throttle position ) for the open-loop system.

Legend: (a) model output; (b) experimental data set; (c) representation error
performance.

36



380
370
= 360
£ r I ]
%-350 - - - -
£ 340 | IS W b
330}
3z0
) 1000 2000 3000 4000 5000
samplaes

50

Response etror Vots)
o

]

1]

o
o]

1000 ZOO:ampalgsOO 4000 5000

Figure 3.6: The performance of the coupled PGS model without delay on the Vj;,,
for the open-loop system.

Legend: (a) model output; (b) experimental data set; (c) representation error
performance.
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Figure 3.8: The performance of the decoupled PGS model with pure delay on the
Viias for open-loop system (1., — throttle position).

Legend: (a) model output; (b) experimental data set; (c) representation error
performance.
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Figure 3.9: The performance of the decoupled PGS model with pure delay on [F] for
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Legend: (2) model output; (b) experimental data set; (c) representation error
performance.
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Figure 3.10: The performance of the decoupled PGS model without delay on the Vj;,,
for the open-loop system.

Legend: (a) model output; (b) experimental data set; (c) representation error
performance.
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Figure 3.11: The performance of the decoupled PGS model without delay on [F] for
the open-loop system.

Legend: (a) model output; (b) experimental data set; (c) representation error
performance.
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Figure 3.12: The open-loop system response to simultaneous PRBS inputs of the
coupled PGS model with pure delay, Vi .

Legend: (a) model output; (b) experimental data set; (c) representation error
performance.

b
1.8 2 1.5
< =
= 1.4 = 1.4
5 > % 8
= : =
Ei4a 1 £1a
812 H : - - 81.2
P 1

£ g
S 1.1 S1.1
. L.

1 1

[¢] 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000

samples samples

o
W

° 0o
5N

Q

-0.1

Response error|%)

-0.2¢

o 1000 2000 3000 <2000 S000
aamples

Figure 3.13: The open-loop system response to simultaneous PRBS inputs of the
coupled PGS model with pure delay, [F].

Legend: (a) model output; (b) experimental data set; (c) representation error
performance.

40



T

3as0
g
£ 340

330

0
32 o 1000 2000 3000 4000 5000
samples

0

Response error Vo)
n
0

&
0

o 1000 2000 3000 4000 5000

samples

Figure 3.14: The open-loop system response to simultaneous PRBS inputs of the
decoupled PGS model with pure delay (cross-couplings), V..

Legend: (a) model output; (b) experimental data set; (c) representation error
performance.
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Figure 3.15: The open-loop system response to simultaneous PRBS inputs of the
decoupled PGS model with pure delay (cross-couplings), [F 1.

Legend: (a) model output: (b) experimental data set; (c) representation error
performance.
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Figure 3.16: The open-loop system response to simultaneous PRBS inputs of the
coupled PGS model without delay, Viias.

Legend: (a) model output; (b) experimental data set: (c) representation error
performance.
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Legend: (2) model output; (b) experimental data set; (c) representation error
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Legend: (a) model output; (b) experimental data set; (c) representation error

performance.

43



-
[*]
L]
-
a
44

x x
=54 =1
s 84
g a3} ‘g 1.
§ 1.2 8 1.
§ 1.1 S
[V, .
1
o 1000 2000 3000 4000 5000 [ 1000 2000 3000 4000 S000
samples samples
<
0.2
o
=
e
o
2
§

o 1000 2000 3000 <4000 5000
samples

Figure 3.19: The open-loop system response to simultaneous PRBS inputs of the
decoupled PGS model with pure delay, [F]. '

Legend: (a) model output; (b) experimental data set; (c) representation error
performance.

3.2 Control System Analysis Techniques

In this section, we develop some techniques to measure the interactions between the
input and output system variables to determine suitable pairs among them, namely
we consider Relative Gain Array (RGA) and Singular Value Decomposition (SVD)
techniques. By taking into account these interactions, we are able to build more

appropriate M/MO models in coupled or decoupled forms as described in the Section

3.1.

3.2.1 Relative Gain Array ( RGA )

This technique uses an interaction measure as a tool for the design of multivariable
control systems to overcome theoretical and practical deficiencies of the system ma-
trix representation. The term interaction is used here because in practice it is often
desirable to control multivariable processes as if they were made up of isolated sin-

gle variable processes. The resulting loops are in interaction with each other. An
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interaction measure attempts to answer the question: how is the measured transfer
function between a given manipulated variables (power and throttle position) and a
given controlled variables (Vji,s and [F]) affected by the complete control of all other
controlled variables. The measure taken to answer this question is the product of
two gains representing the process gain in an isolated loop and the apparent process
gain in the same loop when all other control loops are closed [3]. The first gain is the
steady-state gain in open-loop and is given by

H(l) = {hij}i=l..-.,n,j=1,.-_,n = lim H(Z) (3.24)

z—1

where H(z) is the matrix transfer function of the PGS of dimension n x n. Let us

now set

F(l) = H—l(l) = {71'1'},‘:]_"_.',,_,]':1'__"71 (3.25)

which represents the second steady-state gain matrix.

An input-output control loop is said to be noninteracting with other loops in a
process if the steady-state gain of the loop is relatively insensitive to whether other
loops are open or closed [3].

The "relative gain™ was formulated by Bristol [22] as:

pij = hijvji (3.26)
The matrix of all relative gains for a process represents the RGA defined according
to:
RG‘A = {luij}izl,2 ,7=1,2 (3’27)

This matrix is used to determine the pairings of manipulated and controlled variables
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in single loops (SISO) such that the relative gains of the input-output pairings are
positive and close to unity. Several properties of the RGA [3], [23] that are worth

noting are as follows:

(2) The sum of any row or column is equal to unity.

(#t) Reordering the rows or columns of the steady-state gain matrix results in the

same reordering of RGA.
(#22) The RGA is not affected by scaling of process inputs or outputs.

(2v) If the steady-state gain matrix is triangular or diagonal, then the corresponding

RGA is the identity matrix.

(v) Measures much larger than one imply a " nearly " singular gain matrix.
g p ¥ g g

(vi) The transfer function between y; and u; with all other loops closed will be

non-minimum phase if y;; is negative .

(viz) A SISO closed-loop system controlled by a negative feedback controller must be
stable if the controller is assigned to variable pairs with positive measure. The
same system with negative measure will be stable only if the loop has positive

feedback.

The above measure can serve as a design tool to select preferred processes and to
specify the control structure once a process is selected. The control structure is
specified by one to one pairing of the controlled and manipulated variables as a basis
for control. The above properties suggest that the measure corresponding to the
paired variables should be positive and as close as possible to one, negative numbers
or much larger than one being particularly undesirable. The above design procedure

1s simple to use. Using this technique, we can simplify the structure of the model by
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decoupling it into SISO closed loops. For these models we can perform many feedback
control system strategies or we can adapt easily the existing control strategies from
the literature. However, it is possible in some situations that these simplifications can
lead to poorly conditioned systems, and for this reason one has to find alternative
multivariable feedback control strategies for the MIMO systems. |

By applying the above definitions to our PGS system under investigation, we

obtain the following steady-state gains in open-loop for the coupled case with delay:

1.8  0.1994
Hqy(l) = (3.28)
—0.0766 0.0018

and for the coupled PGS model without delay. we get :

13.4106 0.2027
H(l) = (3.29)

—0.0776 0.0017

where H(1) and Hy(1) are calculated by replacing = = 1 in the expressions of the
transfer matrices given by (3.20)-(3.21).
The relative gain matrices RG Ay (with delay) and RGA (without delay) become,

respectively:

. 0.
RGAy = (3.30)
0 .

RGA=| ~ (3.31)

From the RGA; matrix we can see that the recommended pairings for PGS are
found to occur on the off diagonal elements (positive and close to one), namely throttle

position controls fluorine concentration [F], power controls Vj;,, for the coupled case
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with pure delay. For the coupled case without delay, we observe the difficulty in the
interaction between input and output variables. In this last case throttle posttion
controls Viis and power controls fluorine concentration [F ]. Therefore, in the first
case we can use a decoupled control structure with two SISO loops acting as two
independent loops. The control strategies clearly now become simpler compared to

the MIMO coupled case.

3.2.2 Singular Value Decomposition Method ( SVD )

In [3] SVD was used as a technique that requires only steady-state gain information,

namely

0 vT (3.32)
00
where H(1) is given in (3.24), U is an m x m orthogonal matrix. for which the
columns are eigenvectors of GG, T is the singular value matrix of r singular values
(oi) in descending order (o;’s are positive square roots of the non-zero eigenvalues of
GTG : non-zero eigenvalues of GTG = non-zero eigenvalues of GGT), and V" is an
nxn orthogonal matrix, for which the columns are eigenvectors of GTG .

If G is the matrix of steady-state gains between the manipulated and controlled
variables, then o; represents the ideal decoupled gain of the open-loop process between
manipulated and controlled variables for the direction 7 [3]. This technique can be
applied to either square or non-square systems, whereas the RGA can be applied
only to square systems. The additional information that is obtained from SVD is
the condition number of the steady-state gain matrix as the ratio of the largest and
the smallest singular values. The condition number is used to identify the potential

problems for controlling a process since it is a measure of the coupledness of the control
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problem. A large condition number indicates the high sensitivity of the system. When
the relative sensitivity in one multivariable direction is low, then a complete control
objective cannot be met. Since RGA does not provide conclusive evidence of the
nature of the interactions between the loops it is preferred to explore the use of SVD

techniques in our problem. As an illustration, for our with delay system we have

Hy = Y,;5,UF (3.33)
0.9991  0.0419 1.8126 0
Y; = BOFE (3.34)
—0.0419 0.9991 0  0.0102
0.993 —0.109
Us = (3.35)
0.109  0.993 |

We conclude that the resulting condition number (Hz) = 177.7058, which is relatively
large and indicates a poorly conditioned process. Also, for the without delay case, we

have

H=Yz(UT (3.36)
) 1 0.0058 13.4124 0
v = Y= (3.37)
—0.0058 1 0 0.0029

0.9999 —0.0151
U= : (3.38)

0.0151 0.9999

and the resulting condition number (H) = 4624.9655, which is even larger than the
previous case, indicating a more poorly conditioned process.
The source of the above problem is revealed by studying the right singular matrices

(UT.UT), that is
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T

uy 1 n
u= - UF = —+Ed—>Y;=[YI Y;]—>y=

U2 U, Y2

uy U, . U1
w= S UT = —>2—>y=[y1 1/2]—>y=

U9 U2 Y2

This structure represents the transformation of the input vector u € U whose
space U is defined by the set of vectors (U;, l2) (the rows of the matrix UT) into a
output vector y € ¥ whose space Y is generated by the set of orthonormal vectors
(Y1,Y3) (the columns of the matrix Y7), where

U, = dj uy + di2us. is the most sensitive (best) control direction,

Us = dyyuy + daaus, is the worst control direction, independent of Uy.

Y] = c11y1 + c12y2. is the most sensitive observed direction, and

Y2 = ca1y1 + C22y2- is the least observable direction, independent of ¥ [3].

The above formulation can be summarized as follows

Inputs: [ throttle position power ] = [ up Uz ]

".ias

Outputs: ° = u
fluorine concentration Y2

- 0.9999 0.0151 U,
= = =Inputs

—0.0151 0.9999 U,

) 1 0.0058
Y = = [ Y, Y, ] =Qutputs
—0.0058 1

SVD can also be used to determine suitable control loop pairings [12], [3], namely

the so-called natural loop pairings. The best controllable direction is paired with
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the best observable directi on and the worst controllable direction is paired with the
least observable direction. Therefore Y; is paired with U; and Y53 is paired with U,.
In addition each principal component direction is assumed to be composed of only

one space dimension, i.e, osnly one component of each vector Y; or U; is one, and all

other components are equal to zero, namely

1
Yi=[10],Y2=[01],and U; = ,Ua = . Since this situation is rarely

0 1
met in reality, therefore, i1 practice, the space variable with the largest coefficient is

taken to be the only component. If some or all of the coefficients have nearly equal
values, then using a controsl structure with SISO loops will result in an unsatisfactory
response. In our system, feoor both cases, throttle position would be paired with Vias,
and RF power with the [F], and so for the first case with delay we get a result that
is opposite to the one obta.ined using the RGA technique and for the second case i.e.,
without delay, we obtain tlhe same result. The last principal component of l/y and U
is composed entirely of RF power (one coefficient in Uy is close to unity (0.993) and
the other is near zero (0.1M99) and one coefficient in U is closed to unity (0.9999) and
the other is near zero (0.0151), and has a singular value (o2 = 0.0102 for the first
case and o5 = 0.0029 for the second case). Thus, the system is relatively unaffected
by RF power and the cont rol objectives (Vbi,s and fluorine concentration [F]) cannot
be achieved. This method reveals that the first case with delay is better than the
second one without delay. However, both SISO ARIMA models still remain incapable
of capturing all the dynarnics of the PGS and of reflecting accurately the physical

phenomenom within the resactive ion etching plasma process.
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3.3 Nonlinear Models: RIE Neﬁromodels

Process modelling permits an engineer to manipulate and optimize the process ef-
ficiency with a minimum amount of experimentation. An accurate process model
offers a competitive edge in today’s complex and competitive semiconductor manu-
facturing. As discussed in the previous sections, precise modelling of the RIE from
a fundamental physical standpoint is difficult due to the extremely complex nature
of particle dynamics within a plasma. Recently, empirical RIE models derived from
neural networks [2], [16], [14] have been shown to exhibit superior performance in
accuracy, predictive capability, and robustness over more traditional statistical ap-
proaches (regression methods). Neuromodel predictions of the RIE process outputs
are used in conjunction with genetic algorithms and other optimization techniques to

optimize the etching process performance and for recipe synthesize.

One of our goals in this thesis is to determine an appropriate neuromodel for the
highly complex PGS that takes into account the nonlinearity of the actuator (throttle
valve). The experimental input-output data set will be used to train feedforward
neural networks using an error backpropagation algorithm. We will focus our at-
tention on matching model predictions with measurements for network learning and
generalization. For this purpose our proposed neural networks consist of three layers
configured in different architectures, ranging from a 2-10-2 network to a 4-10-2 and 6-
10-2 structures all being trained by the Levenberg-Marquardt backpropagation error

algorithm [24].

Even though a simple steepest descent gradient algorithm can be efficient, there
are situations when moving the weights within a simple learning step along the neg-
ative gradient vector by a fixed proportion will yield a minor reduction of error. For

flat error surfaces for instance, too many steps may be required to compensate for
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small gradient values. Furthermore, the error contours may not be circular and the
gradient vector may not point toward the minimum. To avoid these situations one
may replace the gradient descent method by the Gauss-Newton optimization method,
which uses the second derivative of the error function E, namely its Hessian matrix
H(w) = V2E = V(V,E). To update the weights, a recursive Gauss-Newton opti-

mization algorithm may be expressed in the following matrix form
WO = W= _4[H ()] (V,, E) (3.39)

Because the Hessian matrix may be singular, it can be made invertible by using

the Levenberg-Marquardt relaxation as follows:
H(w) = H(w) + puI (3.40)

where p i1s a relaxation parameter and [ is an identity matrix. The Levenberg-
Marquardt algorithm is preferred for a small number of weights because the compu-
tational speed of the inverse Hessian matrix decreases when the number of the weights
increases. Otherwise, the steepest descent optimization algorithm is preferred.

The backpropagation algorithm attempts to minimize the error between the out-
put of the network when compared to the target or the desired response. The number
of hidden neurons and layers are varied to provide optimal network performance.

The development of an optimal neural network structure is complicated by the
fact that backpropagation networks contain several adjustable parameters for which
the optimal values are initially unknown. These include structural parameters (such
as the number of hidden layer neurons, initial weights and biases) as well as learning
parameters (such as the learning rate, momentum, and error goal). The learning

rate determines the speed of convergence by regulating the step size. However, the
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network may settle far away from the global minimum of the error surface if the
learning rate is too large. On the other hand, smaller rates can ensure stability of
the network by diminishing the gradient of noise in the weights, but result in longer
training times [2], [14]. For this reason the algorithm is improved by introducing an

adaptive learning scheme which decreases considerably the training time.

A smaller training tolerance usually increases learning accuracy, but can also result
in less generalization capability as well as longer training time [2], [L4]. Conversely, a
larger tolerance enhances convergence speed at the expense of accuracy in learning.
[t is shown in the literature that a single hidden layer is sufficient for learning any
function, but the number of hidden neurons can grow without a bound [16]. This of
course, may result in a network with a large number of connections which defeats the
main purpose of having an accurate prediction. By increasing the number of hidden
layers, each consisting of sigmoidal nodes, the complexity of the network can increase
more rapidly than the number of connections. The optimum network architecture
should have a minimum number of connections and produces a low cross-validation

error.

Development of neural network models typically consists of considerable training
and testing. The objective is to find a network that will perform well on the test data.
For the training set we will select the first half of the experimental input-output data
set to update the weight matrices and use the other half as the test set. Network

performance is measured by the root mean squared error, o which is given by:

"=\J S (i — ) (3.41)

n—1%%

where n is the size of the test set, y; is the measured value of the output, and 7; is

the response provided by the neural networks.
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All the neural network architectures proposed in this section are trained on the
experimental data set to learn the mapping from inputs to outputs of the process
model. A small network with only ten hidden neurons was sufficient to generate this
mapping. To avoid overfitting we limited the number of neurons to the fewest as
possible as long as the network converges to the desired error level. The training was
terminated once the error goal was achieved.

The input variables to the neural network models are u; =throttle valve position
and us; = RF power and the outputs are y; =Vj;.s induced and y, =fluorine con-
centration [F|. Present values of the output variables or delayed output and input
variables can also be used as inputs to the model, depending on the complexity of
the representation of the PGS considered.

Our proposed four neuromodel structures are described in detail below:

(1) nonlinear static model (2-10-2). The neural network objective is to represent

a static model of the PGS which is assumed to be expressed as a nonlinear
T

T
function f where u(k) = [ uy (k) ua(k) ] Ly(k) = [yl(k) y2(k) ] . and

y(k) = f(u(k)) (3-42)

(i2) nonlinear first-order model (4-10-2). In this case the delayed plant output y(k —
1) is used in addition to the present plant input u(k) as input variables i.e., the
dynamic input-output model is assumed to be expressed as a recursive equation

of first-order

y(k) = f(y(k — 1), u(k)) (3-43)

(#2) nonlinear second-order model (6-10-2). In this case the delayed plant outputs

y(k—1), y(k —2) are used in addition to the plant input u(k) as input vectors,
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i.e., the dynamic input-output model is assumed to be expressed as a recursive

equation of second-order

y(k) = fly(k — 1),y(k — 2), u(k)) (3.44)

(2v) nonlinear first-order model (6-10-2) with delayed input vector u(k — 1). In this
case the delayed output y(k — 1) and the delayed input u(k — 1) are used in

addition to the plant input u(k) as input vectors, i.e.,

y(k) = f(y(k — 1), u(k). u(k — 1)) (3.45)

The results of the simulations presented in the next section show that the last two
neuromodel representations yield the best performance due to the presence of their

internal feedback and the delayed input signals as input vectors to the networks.

After constructing the neural network-based models we are now able to develop
neurocontrollers that must meet the following performance objectives for the closed-

loop system:
(2) tracking the reference target without delay.
(22) preventing disturbances from influencing the output, and
(722) rejecting noise, i.e., not responding to spurious fluctuations.

It is known that objectives (i) and (¢i{) are sometimes mutually exclusive. In
other words, a neurocontroller that improves both the speed of the response and

rejects noise is, in general, very challenging to design.
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Neuromodel | Vbias € [Volts] [ [F] e [%)]
Static representation 2.99289 0.0256
First-order 1.387 0.0159
Second-order 1.3516 0.0121
First-order with delayed input 1.387 0.0172

Table 3.2: Performance comparison for the neuromodels.

3.4 Neuromodel Simulation Results

In this section we design several neuromodels capable of learning and generalizing
accurately the highly nonlinear dynamics of the PGS plant in open-loop. The results
of the training phase and the capability of the neural network models to learn and
represent the experimental input-output data set are presented below. In Table 3.2
we synthesize the performance of these neuromodels represented by the standard
deviation errors between the models and the experimental data set (e). The nonlinear
static model network fit the experimental input-output data set (not shown) in the
testing phase with the standard deviation errors of e = 2.99289 [Volts] for V.5 and
e = 0.0256 [%]| for [F]. The nonlinear first-order model network fit the same data
with the standard deviation errors of e = 1.387 [Volts] for Vi,s and e = 0.0159
(%] for [F]. The best fit is performed by the nonlinear second-order model network
depicted in Figures 3.26-3.27 which fit the experimental input-output data with the
smallest standard deviation errors of e = 1.3516 [Volts]| for Vjis and e = 0.0121 [%]
for [F]. Finally, the nonlinear first-order model network with delayed control results
in standard deviation errors of € = 1.387 [Volts] for Vjis and e = 0.0172 [%] for [F].
The maximum magnitude of these standard errors is the same as for linear ARMA

models developed in Section 3.111.
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3.5 Summary

In this chapter, we have developed four linear and four nonlinear models for the PGS
process. In the decoupled PGS models, we can consider the multivariable PGS plant
as two independent SISO loops, for which we will develop in Chapter 4 a real-time
feedback control strategy, namely a P/ self-tuning adaptive controller. To determine
suitable pairs between the input variables and the output variables, we used RGA and
SVD techniques. Using the coupled PGS models with pure delay in state-space rep-
resentation. we will develop later real-time multi-input multi-output (MIMQO) control
strategies such as Linear Quadratic Gaussian (LQG) control (Section 4.2), stochastic
minimum variance adaptive control (Section 4.3) and robust control (Chapter 7). The
neuromodels will be used in Chapter 5 to build four real-time neurocontrol strategies
which will ensure the stability, good tracking error and robustness of the RIE system
in closed-loop.

As a consequence of our model validation results, by computing the standard
deviation errors between the model output and the measured output, we can conclude
that the ARIMA models (7). (i7) provide accurate fit of the experimental input-output
data sets and work well in a small operating range. The nonlinear models such as
neural network models (¢)-(iv) work well in larger operating range, and capture the
nonlinearities of the actuators and the plant.

Among the important problems investigated here are the optimization of the ar-
chitecture of the neural networks and the type of networks used to obtain a good fit
with the experimental input-output data set. The training used for determining the
neural network models of the RIE system is based on dynamic/static backpropagation

using the Levenberg-Marquardt algorithm.
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Figure 3.23: Generalization results for the nonlinear static representation for the
fluorine concentration [F|.

Legend: (a) neuromodel output; (b) experimental data set; (c) representation error
performance.
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Chapter 4

MIMO Feedback Control Strategies

4.1 Adaptive Controllers Based on Quadratic Cost

Function Minimization

4.1.1 Introduction

Automatic tuning of controllers for industrial processes has received both theoretical
and practical interest for many years. Self-tuning control is one approach to the
automatic tuning problem. A self-tuning controller has three main elements:

(2) A standard feedback law in the form of a difference equation that acts upon
a set of values such as the measured output and feedforward signals and the current
set-point to provide the new control action,

(#2) A recursive parameter estimator that monitors the plant’s inputs and outputs
and computes an estimate of the plant dynamics in terms of a set of parameters in a
prescribed structural model, and

(22¢) The parameter estimates that are fed into a control design algorithm which

then provides a new set of coefficients for the feedback law. The control design
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algorithm simply accepts current estimates and ignores their uncertaintjes.

Appropriate modifications to the basic algorithms and their relative robustness are
still open topics for current research. The application of self-tuning control strategies
started with the development of self-adaptive systéms in the aircraft industry for
changing flight conditions. The usefulness of linear adaptive control techniques is still
debated in the control system community. The principal reason is that all controlled
processes for which linear adaptive control systems might be suitable are essentially
nonlinear and stochastic, and therefore difficult to control and to analyse. If they
were not nonlinear they could be optimally controlled by classical linear controllers;
and if they were not in some way uncertain, or stochastic, there would be no need
for learning in the form of self-adjustment or estimation of coefficients. Nonlinear,
stochastic problems are difficult to study analytically because, there can be in general
no analytic solutions to them. In particular no general design procedures are avajlable
for designing controllers for nonlinear stochastic processes.

Self-tuning control techniques can be classified into two main categories:

() explicit method, where the process model is used and the control is based
on estimated model parameters which do not directly appear in the control law. At
each sampling interval, the parameters in the process model are estimated recursively
from input-output data of the PGS and the controller parameters are then updated as
shown in Figure 4.1. This approach is the basis for the self-tuning control approach.
The dynamic model is assumed to be either a linear input-output difference equation
or a linear discrete-time state Space representation with constant parameters. The
parameter estimator is designed based on the RLS algorithm. The controller is de-
signed in such a way that it minimizes a quadratic cost function with the form given
by (4.3)-(4.4) [22].

(22) implicit methods where the process model is converted into a predictive form
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Figure 4.1: Self-tuning controller for the PGS

that allows the future process output to be predicted from the current and past values
of the input and output variables by using a predictive model as shown in Figure 4.1.
In this case, the control law parameters are directly updated from the input-output
measurements.

In this figure, the blocks Calcul I and Calcul 2 represent the subroutines for
the RLS procedure, and the low pass Filter | and Filter 2 blocks are used to filter
the white noises €; and €,. These filters have the same significance as N| and N,

defined in the Chapter 3, equation (3.1).

4.1.2 Design of the Predictive Models of the PGS

In this section, we design an adaptive self-tuning controller based on minimization of
a quadratic cost function described by equations (4.3), (4.4), known in the literature
as minimum variance control, or minimum regulation [22].

Minimum variance control [25], [22] is applied here to our decoupled PGS models
with pure delay (direct — couplings) represented in the Figures 3.8-3.9 to compare

with other advanced control algorithms such as neurocontrollers and robust controllers
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that are developed subsequently in the thesis. The process model can first be written

in the predictive form [25]:

_ Bl Cl
ik +1) = Zhu(k) + ek + 1) (4.1)
.y = B2 Co
el +1) = ZZua(k) + ek + 1) (4.2)

where

Y1, y2 are defined as Y1 — Yispr Y2 — Y2sp

u, uz are defined as u; — uyqp , Uz — Uy,

Yisp: Y2sp » Ulsps Uzsp denoting the steady-state values of yy, , y2, and u,, us,
respectively.

The objective is to design two controllers that minimize the following cost functions:

min Jy = E {§u(k +1)* + rAu(k)?} (4.3)

min J; = E {ga(k + 1)> + raAu(k)?} (4.4)

where g1(k + 1). J2(k + 1) represent the one step ahead (given by the pure delay)
predicted values of the Vi, and fluorine concentration [F] computed by the RLS
estimation algorithm [35], [26], [27], [22], [25]. The model of the process (4.1)-(4.2)

can be rewritten in the form indicated in [22], [25] as:

A]_Ay]_(k' —+ 1) = BlAul(k) + E1.41A61(k7) -+ Flel(k) (4.5)

Aszg(k + 1) = BgAUz(k) + EgAerz(k) “+ Fgeg(k) (4.6)

where
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Ayi(k +1) = gi(k + 1) — yik), Aui(k +1) = ui(k +1) — u;(k), and

Aei(k+1) =ei(k+1) —ei(k), 7 = 1, 2, represent the first order difference of the

output. input, and error, respectively, and the polynomials F}, F,, E;, E, are of

degrees ny,,ny,, ne,, n.,, and satisfy the Diophantine equations [22]:

Cl = E']_AIA -+ Flz-l

Cg - EzAzA + ng_l

where:

e,

El(z‘l) =1+ Z €inz "
n=1

Tlez

Eg(:'—l) =1 + Z egn::"n
n=1
n,l

Fiz") =1+ > finzT"

n=0
7’LI’2

Fz(:-l) =1 + Z fgn:-:_n

n=0

with n representing the time delay in the closed-loop, and

Ne, = Ne, =n — 1(= 0 for pure delay), ny, = maz(n,,, n.,

ng = mar(ng,,Ne, — n).

Therefore, the model of the process reduces to

B, E F;
ik +1) = “2 A (k) + Zoui (k)
1 1
ByFE F:
vk + 1) = 22 Aua(k) + Shualk)
‘2
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(4.10)

(4.11)

(4.12)

—Tl),

(4.13)

(4.14)



Minimizing the cost functions J; in (4.3) and J, in (4.4) yield the self-tuning

control laws [22]:

F

L) = — 4.15

Auy (k) BB + mc 1) (4.15)
Fy

Auy(k) = — 4.16

u2(k) BrEs + Ryl 2 ) (4-16)

where for the pure delay case R, = b—”; and R, = b—’;zl-, with 7, r; representing the
weights of the control in J; and J,, respectively, and b11, b2) representing the elements
of the matrices By, B, introduced in equation (3.1) to describe the PGS dynamics.
The minima of the cost functions JJ; and J, are reached for R; = R, = 0, and therefore
we get the minimum variance control laws for the self-tuning controller.

Remarks:

¢ The design of the self-tuner includes the specification of the following model

parameters:

(2) model orders: n,, , n,, . Ty, » My s Ny & Ny

(22) time delay parameter n (n = 1, for pure delay)

 Generally, larger values of the model parameters should not be chosen because

the controller will take longer to tune.

® The control action, therefore, depends on the predicted values of the one step

ahead model.

¢ The predicted values of §;(k + 1) and g,(k + 1) can be calculated from the

process input and output values according to equations:

) BE J2
ik +1) = = Auy(k) + Ly (k) (4.17)
C: C,
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Figure 4.2: Block: diagram for the predictive control scheme

B,E E
22 Auy(k) + C—zyz(k) (4.18)
2

g2k +1) =

~

2
where B, . B,. .G, E, LEy L Fy . F, are estimated by the RLS algorithm.

¢ By solving the Diophanttine equations (4.7)-(4.8) using the experimental input-
output data set for this model ((u;, y1), (u2, y2) interactions). we get the con-

trol law for the self-tunesrs in each loop.

The algorithm is similar to thie one step ahead control algorithm, where

ik +1) =yj(k+1)

Yok +1) = y;(k+ 1)

are fixed at their target valuses. The explicit identification procedure has the dis-
advantage that the coefficiemts E;, E;, F,, F» have to be calculated on line at
each sampling interval from t.he Diophantine equations (4.7)-(4.8). Solution of the
Diophantine equation can be avoided if the coefficients of the polynomials E; , E,,
F\, F are identified directly. If we introduce the variables (in and ®, defined as:

& (k+1) = yi(k+1) + R A=, (k), and Ci)g(k + 1) = g2(k + 1) + RoAus(k), the re-
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gression model for identifying the implicit parameters £, E,, F;, F, is obtained as

follows

R F B,E
Q,(k+1)= C—iyl(k) +( Clh L+ Ry)Au (k) (4.19)
. F. BE

ok +1) = Zova(k) + (572 + Ro)Aua(k) (4.20)

The above forms still cause difficulties to estimate these variables by solving the
highly complex Diophantine equations at each sampling time. Building a PI self-
tuning adaptive controller based on this procedure is not computationally efficient.
In practice we can simplify this procedure considering the variables §;, as polynomials

of first-order in the following form:
®;(k + 1) = oyi(k) + auayilk — 1) + BoiAui(k), i = 1, 2 (4.21)

where a;(z7') = Fi(z7'), and B:(z7')=G:(z"!) + R; are obtained by the parameter
Identification expression given in equation (3-1) or estimated directly using a RLS
procedure presented in detail in Section 4.1.4. By adding supplementary terms
(second-order or higher) to the equation (4.21) we can build a Proportional Integral

Derivative (PID) self-tuning controller or more other sofisticated control laws.

4.1.3 PI Self-Tuning Controller

Our goal is to design a standard Pl self-tuning controller for the decoupled PGS model
with pure delay in the predictive form given by equations (4.1)-(4.2). The objective
of this approach is to build a standard controller to be used easily in practice and
to have a reference model so as to compare the results obtained by applying this

algorithm with the other algorithms developed in this chapter and in Chapters 5-7.
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The equations (4.19) and (4.20) for the P[ self-tuning controller could be represented

in the following predictive forms:

& (k + 1) = Goryi (k) + éuyi(k — 1) + BorAuy (k) (4.22)

®y(k + 1) = dooya(k) + Guoya(k — 1) + Boa Aua(k) (4.23)

where &;;j, Bij appear in equation (4.21), and are estimated directly using a RLS

procedure (Section 4.1.4). The PI control law then takes the form [22]:

Ay (k) = =[G (k) + Guyi(k — 1)] (4.24)
Bor

Aus(k) = == [Goaya(k) + Graya(k — 1)] (4.25)
1302

This approach is implicit because the predictive model parameters appear directly
in the control law. As the number of parameters increases the initial estimates become
increasingly important and poor estimates may result in an extended period of poor

performance and even lead to instability [22].

4.1.4 The RLS Procedure

To estimate the parameters in the P/ self-tuning controllers, one may use the RLS
algorithm. This algorithm identifies the model parameters using the experimental
input-output data set. In order to set up the regressor vectors the predictive equations

(4.22)-(4.23) are rewritten at the sampling time & as:

&, (k) = Goryu(k— 1) + a1y (k —2) + BorAuy(k —1) (4.26)
&2 (k) = doaya(k — 1) + Guaya(k — 2) + BorAua(k — 1) (4.27)
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Using the vector notation these equations may be written in the form:

&, (k) =¥T(k-1)0,(k — 1) (4.28)

&, (k) = 0Tk~ 1)@2(k — 1) (4.29)
where the regressor vectors ¥y, ¥, are given by

Uik —1) = [k —1) yi(k —2) Auy(k—1)] (4.30)
U7 (k—1) = [ya(k ~ 1) ya(k —2) Aug(k —1)] (4.31)

and parameter vectors ©;, O, have the form
Ok - 1) = [Go1 é11 Boil (4.32)

07 (k — 1) = [doz &1z Boa) (4.33)

The updates for the parameter vectors ©,, O, are performed according to [22]

Oi(k) = Oi(k — 1)+ Ki(k)[Ayi(k) — Agi(k)] (4.34)
Pk — 1)W;(k —1)

MO = STk -nRG-DuG—n T b2 (4.33)
P(k) = I — K(k)Wi(k — D]Rilk — 1) (4.36)

where A’; and P, i = 1, 2 represent the Kalman filter gains and covariance matrices
of the estimation errors, respectively. P!s are positive definite measure of the
parameter estimate errors and tend to decrease as k increases. The above equation
requires an initial estimate of the parameter vectors ©; and P;. Usually P;(0) is

chosen as a diagonal matrix. Large diagonal values (e.g.10* or higher) indicate that
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| Viias /[F] | t[s] | ti[s] %0S € | Convergence |
Viias 80 35 | 2 [Volts] | 0.0015 [Volts} very good
[F] 60 | 15 | 0.02 [%] | 0.00002 [%] very good

Table 4.1: Closed-loop system performance of the PI self-tuning control strategy.

the confidence in (:);(0) is poor and will cause initially rapid changes in O;. If these
matrices are not well initialized it is possible a degradation of the system
performance in the closed-loop. Small values indicate that ©;(0) is a good estimate

and will cause slow changes in O;.

4.1.5 Simulation Results

We design in this section a standard PI self-tuning adaptive controller based on
minimization of a quadratic cost function (4.3)-(4.4) (minimum variance regulation),
capable of performing fast transient and good tracking error for the PGS in closed-
loop. Also. the algorithm can take into account the physical constraints due to the
rate of change in the input variables throttle valve and RF power actuators by setting
minimum and maximum bounds for these inputs: 0 < u; < 100 (% opening), and
0 < upy < 5000 [Watts], such that each time when u, and u; reach the minimum or
maximum values then u; = Ujmar OT Ui = Uimin, until u;, =1, 2, given by the algorithm
take values between the input bounds. The algorithm is developed for the decoupled
PGS model with pure delay depicted in Figures 3.8-3.9 to serve as comparison for the
other advanced algorithms which are developed later in the thesis in neurocontrollers
and robust controllers chapters. To estimate the parameters of the PI self-tuning
controller we use the standard RLS estimation algorithm initialized by the following

values of the parameters:

7 0 500 O
Rl = R2 = 2.5, P]_(O) =
0

* P2(0) =
0 500

~1
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Figure 4.3: The performance of the PI self-tuning controller on the fluorine concen-
tration [F] for the closed-loop system.
Legend: The dot line designates the evolution of [F] and the solid line designates the

set point.

©.(0) = [0.5 1 2500 ] 02(0) = [ 1 05 —0.1 ] and A;2 = 0.98.

These values of the parameters were obtained by trials, monitoring for each trial
the system performance in closed-loop (fast transient and good tracking error). Ana-
lyzing both the open-loop and the closed-loop simulations revealed that the algorithm
works well and provides satisfactory results. The results of the simulations for the
closed-loop PGS system without changes in the set point are shown in Figures 4.3-4.6,
and with changes in the set points are given in Figures 4.7-4.10. These results reveal
good tracking error and good convergence of the self-tuning Pl algorithm for the both
cases. The performance comparison of the results for the closed-loop and open-loop
system are presented in Figures 4.11-4.12. Also, we synthesize the closed-loop system
performance of this control strategy, namely the settling time (%, ), rise time (¢;), over-
shoot (%0S), steady-state error (¢) and the convergence of the algorithm for Vj;,,

and [F] in Table 4.1.
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Figure 4.4: The performance of the PI self-tuning controller on the dc Vj;,s for the

closed-loop system.

Legend: The dot line designates the evolution of the V4;,s and the solid line designates

the set point.
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Figure 4.5: The performance of the PI self-tuning controller on the RF power for the

closed-loop system.
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Figure 4.6: The performance of the PI self-tuning controller on the throttle position
for the closed-loop system.
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Figure 4.7: The performance of the PJ self-tuning controller on the dc Vi, for the
closed-loop system with changes in the set points.
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Figure 4.8: The performance of the PI self-tuning controller on the [F] for the closed-
loop system with changes in the set points.
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Figure 4.9: The performance of the P/ self-tuning controller on the throttle position
for the closed-loop system. with changes in the set points.
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Figure 4.10: The performance of the PI self-tuning controller on the RF power for
the closed-loop system with changes in the set points.
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Figure 4.12: The performance comparison results for the fluorine concentration [F]
for the open-loop and closed-loop system with the PI self-tuning controller.

4.2 Real-Time Reactive Ion Etching Multi-Input Multi-
Output Control based on the Linear Quadratic

Gaussian Scheme

4.2.1 Linear Quadratic Gaussian Controller (LQG)

In this section, we propose to use Linear Quadratic Gaussian (LQG) strategies [29],
due to their conceptual simplicity and their ability to handle systematically coupled
dynamics. Given the model of the plasma generation subsystem in the state-space
representation form, an Linear Quadratic Gaussian (LQG) controller is designed and
tuned to meet certain desired performance specifications. We use in this approach the
linear plant model represented in a state-space representation by the equations (3.22)-

(3.23) where the process and the measurement noise (w(k) and v(k), respectively) is
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assumed to be zero-mean Gaussian and uncorrelated. In order to obtain a unique
solution to the design problem the Reactive Ion Etching system (RIE) must be both

controllable and observable.

To eliminate steady-state errors when the set points are constant we add an inte-
gral control action represented by the accumulator block as shown in Figure 4.13. The

accumulator dynamics is described in the state space form by the discrete equation

q(k + 1) = q(k) + r(k) — y(k) = q(k) + e(k) (4.37)

where g(k) = [ (k) qu(k) JT represents the state vector of the accumulator. The
input to the accumulator is the error signals e(k) (defined as the difference between
the reference signal r(k) and the measured process variables y(k)). Once the
feedback control is designed such that g(k) converges to a steady state value then
y(k) must converge to the reference input r(k) (since e(k) —0). Defining the
extended or augmented state vector by

k
k) = | ) (4.38)

q(k)

the full order augmented dynamics of the PGS in closed-loop can be written in

state-space representation as

2(k + 1) = Az(k) + Bu(k) + G,w(k) + G,u(k) + Er(k) (4.39)
y(k) = Cz(k) + Du(k) + v(k) (4.40)

with appropriate definitions for the matrices A, B,C, D, and E:
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AG BG'
A= ’Bz ’C=[CG O2X2J’D=DG’
—CG —DG
E_ Oux2 G, = Oax2 G = I,
I -1 Oax2

where from our experimental data set used in identification process of the PGS the

following values for the matrices Ag, Bg,Cc¢, and Dg were obtained:

r0 0.3846 0 0 ( 0.4108  0.0654
I 0.4571 0 0 2.7029 —0.0604
.4G = 9 BG =

0 0 0 0.0927 -0.0005 0

0 0 I 0.8511 J —0.0035 0.0001
0100 —-1.0683 0.175

CG = s DG =

0 0 01 —0.0059 0.00035

Using the separation principle [28], [29], [30]. the LQG controller is now designed in
two steps:
(7) Linear Quadratic Estimator design (LQE) (Kalman filter design), and

(it) Linear Quadratic Regulator design (LQR) ( Full-state feedback design)

4.2.1.1 Linear Quadratic Estimator design (LQE)

In this step an estimator for the process state vector z(k), denoted by #(k), is
designed since only y(k) is assumed to be measurable. The algorithm computes the

estimate of the PGS state, £(k), by employing a steady-state Kalman filter [29] with
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the dynamic state equation governed by
z(k + 1) = Agi(k) + Bou(k) + A.[y(k) — CeAgi(k) — CeBgu(k)] (4.41)

where A is the Kalman gain matrix that is given by

K, = Ag[S — SCE(CeSCE + R,)"'CeS|CLR;! (4.42)

where S is the unique positive definite solution of the algebraic Riccati equation [29]
S = Ag[S — SCs(CeSCE + R,)"'CcS]AL + Q. (4.43)

The Kalman filter generates a state estimate that minimizes the variance of the
estimation error where R, and @, are the covariance matrices for the noise
processes v(k) and w(k), respectively. To achieve a “good” dynamic performance,
the covariance matrices R, and Q,, are chosen as diagonal matrices such that the
estimator bandwidth is approximately four times the bandwidth of the closed-loop

system [28], [29], [30].

4.2.1.2 Linear Quadratic Regulator design (LQR)

In this step a feedback gain matrix A" is computed such that when
u(k) = —RKz(k) (4.44)

is applied to the full order system (4.39), the resulting closed-loop system is stable,
Le., the eigenvalues of the matrix (A — BA™ ) are all inside the unit circle. Since the

state of the accumulator, ¢(k), is available for use in the controller, the control may
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now be implemented as follows

#(k
u(k) = — [ K, 1{2] 2R —RK3(k) — Kaq(k) = —R z(k) (4.45)

q(k)
To obtain a stabilizing state feedback gain matrix, we use the deterministic for-
mulation of linear quadratic optimal control (LQR), in which the process noise w(k)
and reference r(k) are assumed to be zero. The control is selected to minimize the

following quadratic function

J = i[z(k)TQz(k) + u(k)T Ru(k)] (4.46)

k=0

Consequently, the feedback gain matrix A is given by [28], [29]. [31]
K=(R+BTPB)"'BTPA (4.47)
where P is a solution to the algebraic Riccati equation [29]
P =AT[P— PB(BTPB + R)"'BTP|A + CTQC (4.48)

Under full controllability and observability of (A, B, C), a unique positive definite
solution to P does exist.

The weighting matrices Q and R are chosen to be diagonal so that increasing a
nonzero term in ¢ has the effect of reducing the rate of the response in the correspond-
ing process variable, and increasing a nonzero term in R makes the corresponding
control input less aggressive. For practical reasons we choose Q and R such that the
closed-loop system bandwidth is approximately one tenth of the sampling frequency

[25].
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Figure 4.13: Block diagram of the LQG controller

4.2.2 Simulation Results

In this section we design a real-time MIMO LQG control strategy capable to perform

in stochastic environment fast transient and good tracking error for the PGS in closed-

loop. For the simulations we choose Q,, = 0.001/; and R, = 3.5/, values obtained by

trials and monitoring for each trial the closed-loop system performance (fast transient

and good tracking error). The solution to the Linear Quadratic Estimation problem

(LQFE) has the following form:
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It can be shown easily that the matrices (A, B, C) of the RIE extended system
satisfy the full controllability and observability criteria. Therefore, the LQR problem
has a unique positive definite solution P. For example by setting ) = 12/¢ and

R = 1001, we get:

0.463 0.521 —2.075 —2.08 0.082 —0.04
K = (4.50)

0.19 0479 16.17 16.21 0.117 0.314

0.00011 0.00017 0.0188 0.01891 0.000035 0.000365
0.00017 0.00041 0.01808 0.01811 0.000095 0.00035
0.0188  0.01808 9.4785 9.4939  0.0007  0.18318
P =10° % (4.51)
0.1891  0.01811 9.4939 9.51017 0.0007  0.18379

0.000035 0.000095 0.0007 0.00070 0.000036 0.000013

0.000365 0.00035 0.1831 0.18379 0.000013 0.003667

Regulation of the process variables in the RIE system requires a multivariable
controller that can vary two inputs (manipulated variables) simultaneously to track
setpoints for the two process variables. Also, the measurements of the plasma process
variables, particularly fluorine concentration are contaminated by the noise measure-
ment. The sensor noise is very close to a white, Gaussian one. For these reasons, we
have selected the Linear Quadratic Gaussian (LQG) as a suitable multivariable con-
trol strategy to be applied to the RIE system. This control strategy facilitates the use
of in-situ sensing to modify inputs in real-time, providing considerable information
about the process and wafer state. The closed-loop system performance of this control
strategy, namely the settling time (t.), rise time (¢;), overshoot (%0S), steady-state
error (¢) and the convergence of the algorithm for Vi, and [F] are presented in Table
4.2. The simulation results for the closed-loop system with changes in the set points

are presented in Figures 4.14-4.17. For constant set points the evolution of the control
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| Viias/[F] | t-[s] | :[s] %0S | € | Convergence |
Vhias 15 5 | 45 [Volts] | 0.0014 [Volts] | very good
[F] 75 - - 0.00001 [%] very good

Table 4.2: The closed-loop system performance of the L@QG control strategy.

Throlle Posttion{%)

1 L L 1 L 1
[0} 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
samplas

5 X 2 2

Figure 4.14: The performance of the LQG controller on the throttle position of the
closed-loop system with changes in the set points.

and outputs of the closed-loop system are presented in Figures 4.18-4.21. The effects
of the noise on the control and the outputs are shown in Figures 4.22-4.23. where the
weighting matrices are tuned with the values: @ = 125, R = 100/;, @, = 0.001 /4.
and R, = 3.51,.

By analyzing the above simulations we can conclude that very good results are
obtained in the deterministic case. Moreover, the control strategy has also performed
satisfactorily in the stochastic environment. The figures reveal the significant impact
of the noise in [F] level and in the V};,, level during the transient and the steady-state
evolution. The LQG algorithm has good convergence properties and can be used in
real-time control since it is computationally efficient due its low complexity, and the

small number of operations involved in the computation process.
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Figure 4.15: The performance of the LQG controller on the power of the closed-loop
system with changes in the set points.
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Figure 4.16: The performance of the LQG controller on Vi, of the closed-loop system

with changes in the set points.
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Figure 4.17: The performance of the LQG controller on [F] of closed-loop system

with changes in the set points.
Legend: The solid line curve designates the evolution of [F]
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Figure 4.18: The performance of the LQG controller on Vj;,, of the closed-loop system.
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Figure 4.19: The performance of the LQG controller on [F] of the closed-loop system.
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Figure 4.20: The performance of the LQG controller on the throttle position of the
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Figure 4.21: The performance of the LQG controller on the power of the closed-loop
system.
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91



(FIr%)

1 L 1 ! L L L 1 1 I
Q 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
samples

Figure 4.23: The performance of the LQG controller on [F] of the closed-loop system
contaminated by noise.

4.3 Coupled Real-Time Multi-Input Multi-Output

Stochastic Adaptive Control Strategy of the PGS
System

In this section we consider a real-time MIMO stochastic adaptive control strategy
developed as a combination of the system identification scheme based on the minimum
variance principle approach and the control law strategy derived from minimization
of a per-interval performance index. The high efficiency and high performance of this
control strategy is utilized for developing our real-time MIMO control scheme for the
RIE system. This approach, as demonstrated below, results in superior accuracy and
performance. We believe that this control strategy is suitable for implementation
in our MIMO RIE system expressed in the state-space representation form. The
potential advantages of this control strategy when applied to RIE system are as

follows:



(2) process recipes are defined in terms of the desired physical and chemical pro-
cesses occurring in the plasma generation subsystem and on the wafer.

(22) the stochastic adaptive controller can compensate for progressive drifts in
real-time, namely changes to components of the RIE system such as the mass flow
controllers, throttle valve, pumps, and variations in loading effect.

(#22) the stochastic adaptive controller can also compensate for drift which occurs
during the process, in principle reducing process variability. Drifts during the process
can be caused by physical or chemical changes to the reactor during deposition due
to wall heating or deposition.

(2v) failure detection and fault classification is enhanced because in-situ sensor-
based stochastic adaptive controller provides considerable information about the pro-
cess and wafer state.

(v) the identification process (prediction error approach) is based on the state-
space innovation model, which eliminates the use of the Kalman filter algorithm for
the state estimation, thus resulting in a computationally efficient scheme.

(vi) the tracking control law is generated using per-interval performance index
optimized for a regulation problem (one step ahead prediction). This approach en-
sures higher performance and is computationally more efficient as compared to the
dynamic programming approach.

It is assumed that the PGS system is an unknown strictly proper plant to be

controlled which is characterized by a general stochastic state-space model, namely

z(k+1) = A(k)z(k)+ Blk)u(k) + w(k) (4.52)

y(k) = C(k)z(k)+ v(k) (4.53)

were the elements of the matrices A(k), B(k) and C(k) are time dependent and
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z(k), y(k) and u(k) are the state, output and input vectors, respectively. A(k),
B(k) and C(k) are unknown system matrices, w(k) and v(k) represent uncorrelated
zero-mean Gaussian modelling errors and disturbances with the following statistics:
w(k) ~ NA{0, Ry(k)}, v(k) ~ N {0, R,(k)}, and z¢ is the initial state having a X

mean and a covariance matrix R, (k), i.e, zo ~ N {Xo, Rz, }-

It is desired to adaptively control the plant in order to minimize the following

performance index:
J0) = 5B {ly(k+1) — yalk + DI Qy(k + 1) — yalk + 1] + w7 (k) Bu(k)} (4.54)

subject to the constraints of equations (4.52) and (4.53), where yq4(k) is the desired
output tracking signal, @ and R are symmetric positive definite weighting matrices,
and E {*} denotes the expectation operator. To effectively control the unknown plant
given by (4.52), (4.53), the plant dynamics must be identified and be known to the
controller. Therefore, the control strategy for the PGS system consists of the following

two main stages, namely
(2) identification of the plant using a stochastic identification algorithm, and
(22) the control law design using a stochastic control scheme.

For the first stage, we consider 8(k), a vector of the unknown parameters of the
process to be identified, which may be originating from the elements of the system
matrices A(k), B(k) and C(k) as well as the covariance matrices R.(k), Ry, Rz, In

other words, the state-space model (4.52), (4.53) may be rewritten as

z(k+1) = A(0)z(k)+ B(O)u(k) + w(k) (4.55)
y(k) = C(0)z(k)+ v(k) (4.56)
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In the identification process, it is useful to associate with the above general state

space-model, the state-space innovations model of the following form [32]:

z(k+1,0) = A(0)z(k,8) + B(0)u(k) + K()e(k, ) (4.57)

y(k,8) = C(6)z(k,0) + e(k,8) (4.58)

where g(k,8) = C(0)z(k, ) is the predicted output, e(k,8) = y(k) — y(k,0) is the
prediction error, K(6) € R¥™Xx4mY (dim X and dimY being the dimensions of the
state space X and output space Y, respectively) is the steady-state Kalman filter
matrix with unknown elements to be determined by the algorithm, and é(k) is the

estimate of #(%) given by
(k) = 6(k — 1) + L(k)e(k, ) (4.59)

where L(k) is the identification gain to be determined subsequently. As indicated
below this gain is expressed in a recursive form in step (7) of the stochastic minimum
variance adaptive control algorithm. In the identification process the Kalman filter
gain A'(0) of the state-space innovations model is explicitly parametrized in terms of
8(k) which requires an indirect computation of R (k) through the Kalman filter
algorithm. The identification part of the control strategy is computationally more
efficient than the modified extended Kalman filter algorithm, since the state-space
innovations model eliminates the computation of the Kalman gradient V4A(6) with
respect to § via the Kalman gain algorithm. Also, in this case the execution of the
Kalman filter for the state estimation is not needed since the Kalman gain A'(0) is

directly parametrized by §(k) which is considered as a Markov-Gauss process [32]:

(k) = 0(k — 1) + n(k) (4.60)
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where n(k) and €(k) are uncorrelated zero-mean Gaussian modeling and prediction
errors, respectively, with the covariance matrices R, (k) and R.(k). The control part
of the adaptive strategy uses the per-interval performance index (4.54), which is
computationally more efficient than the dynamic programming algorithm, and

which yields good tracking error and fast transient as shown later in Section 4.3.1.

The control law u(k) that minimizes the per-interval performance index (4.54)

subject to the constraints of the state-space model (4.55)-(4.56) is given by

u(k,0) = —F(k)[C(O)A0)E(k,0) — ya(k +1)]
F(k) = [BT(9)CT(H)QC(8)B() + RI™*BT(8)CT(6)Q

and where the variables required in the algorithm may be determined by using the
following recursive expressions:

(7) Computation of the gain L(k)
1
k
S(k)y = OT(k,§)P(k—1)U(k,0)+ R.(k)

R.(k) = Rc(k—1)+ —[e(k.0)eT(k.0) — Re(k —1)]

L(k) = P(k—1)¥(k,6)S™'(k)

Pk) = P(k—1)— L(E)UT(k,0)P(k — 1) + R.(k)

(¢7) Stochastic minimum variance adaptive identification

e(k,0) = y(k)—g(k,0)
O(k) = G(k —1)+ L(k)e(k,6)
#(k+1,6) = A(0)z(k,0)+ Bd)u(k) + K(0)e(k,9)
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G(k+1,6) = C)i(k+1,06)+ D@)u(k+1)
Wk+1,0) = [A() - K@O)CEIW(k,8) + M(6,%,u,e) — K(§) D4, 7)

U(k+1,0) = WT(k+1,0)CT(6) + DT,k + 1))

(222) Control law for the closed-loop system

1l

u(k,0) —F(k)[C(0)A(8)(K,0) — ya(k + 1)]

F(k) = [BT(H)CT(6)QC(6)B(f) + RI™'BT()CT(6)Q

where
M(B,3.u.e) = (%[A(G)a‘:(k)+B(H)u(k)—{-[\'(e)e(k)]e___g-
Di(l.x) = SOk 0oy
and

K(6(k)) = K(8(k — 1)) + L(k)e(k. §).

4.3.1 Simulation Results

Our goal in this section is to design a real-time MIMO stochastic adaptive control
strategy capable of operating effectively to work well in a stochastic environment and
yielding fast transient and good tracking error. For simulation purposes and to com-
pare our results, we consider the model already used in the LQG control problem.
This model was developed in Section 4.2.1 and is given by (3.22)-(3.23). The plant
is parametrized by (k) as a 20x1 vector of unknown parameters to be identified for
the system matrices A(k), B(k), C(k) and the Kalman gain matrix A (d) as shown

explicitly below:
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K 0u(k) 0 0 | ’-95(k) Os(k) r(913(1c) 614(k)
AGk) = 1 6;k) 1 0 B(k) = 0:(k)  6s(k) K(6) = ‘?15(/‘?) ?ls(k)
0 0 0 63k) Os(k) Bi0(k) bi7(k) 6,s(k)
[0 0 1 64(k) | | 0. () 6ix(k) | -élg(k) 010(k) ]
[ 2.(k.0)
0100 . #9(k, 6)
C = , and #(k,6) = )
0001 £3(k, 6)
#4(k, ) ]

The matrix M (é, T, u,€)qx20 has the-following elements :

M(1,1) = #5(k,9) , M(1,5) = uiope » M(1,6) = ugepy, M(1,13) = ¢, s M(1,14) = e
M(2,2) = 22(k,0) , M(2,7) = wrope , M(2,8) = Uzopt » M(2,15) = e; , M(2,16) = e,
M(3.3) = £4(k,0), M(3,9) = wiope » M(3,10) = ugep , M(3, 17) =€, , M(3,18) = e,
M(4,4) = 24(k.6) , M(4.11) = uiope , M(4,12) = ugope , M(4, 19) =€, M(4,20) =
€2 .

where A(7,7) = 0 for all other i’s and J s different than the above values, ugy =

. Ulo
Flys — CAZ(k,0)) = topt is the optimal control for the closed-loop system, and
U20pt
€1
e(k) =y(k) — g(k) = is the prediction error.
€2

For the proposed algorithm the covariance matrix and the weighting matrices Q
and R of the performance index J (k) are assigned so as to increase the effect of the
control or of the system output. The improved performance of the stochastic min-
imum variance adaptive control algorithm can be seen in Figures 4.24-4.27. These
figures also show a fast adaptation speed and convergence. In the identification pro-
cess, the highly oscillatory property of the adaptive control signal contributes largely

to exciting the system dynamics for yielding good identification. For a deterministic
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Viias /[F] | ¢.[s] | ti[s] %0S | € | Convergence |
Viias 100 5 | 200 [Volts] | 1.29 Volts] good
[F] 50 | 5 22 [%] 0.05 [%] good

Table 4.3: The closed-loop system performance of the Stochastic minimum variance
adaptive control strategy.

control environment, perfect tracking at steady-state can be obtained. The following
parameters are selected for the controller in our simulation results:

A 0 - ..

7(0) = » 0(0) = O20x1, R(0) = 50.2 * Usgxao (matrix with all the elements

0
equal to one), ¥U(0)yox2 =0.581 = Uazox2, P(0) = 0.81 * lgxa0 (covariance matrix),

M(0) = Oaxz0. K(0) = Ouxz, W(0) = Oux20, Ry = 0.005, R, = 0.005, Mean, = 0,

Mean, = 0,
8000 O . o )
Q = (the output weighting matrix in the performance index J(k)),
0 8000

0.001 0 )

and R = (the input weighting matrix in the performance index
0 0.001

J(k)).

The closed-loop system performance of this control strategy, namely the settling
time (¢.). rise time (%;), overshoot (%OS), steady-state error (¢) and the convergence

of the algorithm for V};,, and [F)] are presented in Table 4.3.

The results of the simulations are presented in Figures 4.24-4.27 for the case with-
out changes in the set point and in Figures 4.28-4.29 for the case with changes in
the set points. These figures reveal good tracking performance in steady-state for
Vhias and [F] and a smooth control effort for both the actuators throttle valve and
RF power, as depicted in F igures 4.24-4.25. Also, the simulations reveal a strong
dependence of the computation speed of the algorithm with the number of samples

and the poor estimation of the parameters in the first period of the transient with
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Figure 4.24: The performance of the minimum variance adaptive controller on the
throttle position of the closed-loop system.

a degradation of the performance, but in the second period of the transient (after 2
seconds) the algorithm works properly having enough informations about the system,
and estimates well these parameters. The algorithm is not quite robust to the varia-
tions in the tuning parameters, namely on the initial values of the covariance matrices
P(0), R.(0), and the weighting matrices @ and R. If the algorithm is not initialized
properly its performance could be affected and get degraded. Unfortunately due to
the nonlinear nature of the algorithm a formal procedure for tuning these parameters

are not available, and consequently in practice one has to resort to some trial and

error to determine the best tuning quantities.

4.4 Summary

In this chapter we have developed three real-time feedback control strategies to ma-
nipulate fluorine concentration ([F ]) and induced dc voltage (Viis) across the reactor

electrodes in an RIE system. The control strategies are based on P/ self-tuning adap-
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Figure 4.25: The performance of the minimum variance adaptive controller on the
RF power of the closed-loop system.
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Figure 4.26: The performance of the minimum variance adaptive controller on the dc
Vhias of the closed-loop system.
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Figure 4.27: The performance of the minimum variance adaptive controller on the
fluorine concentration [F] of the closed-loop system.

380 v T T T T T T T T
-
-
37olg B - 7
-
-
360y .
201 point
- -
aso ™ —
z |3
= -
g -
" 4
L 3
‘- . o
b
o
s N . . R L . . .
1000 1500 2000 2500 3000 3500 4000 <500 5000
samplos

Figure 4.28: The performance of the minimum variance adaptive controller on the de
Viias for the closed-loop system with changes in the set points.
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Figure 4.29: The performance of the minimum variance adaptive controller on [F] for
the closed-loop system with changes in the set points.

tive controller, Linear Quadratic Gaussian (LQG) scheme and minimum variance
stochastic adaptive control. The controlled species were measured by quadrupole
mass spectrometry with direct effect on the outcome of the performance variables.
This demonstrates the feasibility of our control strategies in the sense that an in-
situ sensor-based controller is capable of reducing significantly the variations of the
process variables. The results obtained confirm the utility of our proposed strategies
to control the etching process with drifts. Moreover, these algorithms can be used
as a research tool for evaluating complicated gas kinetics. The controllers can drive
the film properties, namely etch depth, anisotropy, selectivity and uniformity to de-
sired regimes based on important gas species and dc in induced voltage in an optimal
fashion. Also, the mass flow controller offset experiments [21], [37] demonstrate the

utility of real-time sensing and control for disturbance rejection.
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Chapter 5

Intelligent Control Strategies

In this chapter we develop neuromodels used to construct intelligent controllers real-
time neurocontrol strategies. Application of neural networks to control systems have
become increasingly important. The massive parallel processing, nonlinear mapping,
and self-learning abilities of neural networks have been the motivating factors for
development of “intelligent” control systems. Our objective in this thesis is to demon-
strate that the RIE neuromodels integrated in intelligent control architectures offer

advantages in both accuracy and robustness over traditional statistical models.

In [15] a method to develop plasma etching neuromodels is presented which out-
performs the predictions of statistical regression models from limited experimental
data. In fact, in nearly every one of these studies, the authors found that building
accurate plasma etching neuromodels generally requires fewer training experiments
than classical statistical methods. Also, in [13] neural networks are used to model
etch rate, etch anisotropy, spatial variations in etch rate (i.e., etch uniformity), and
etch selectivity. Our goal here is to built accurate and robust neurocontrollers, and
to explore their potential benefits as measured by their ability to attenuate the ef-

fects of exogenous perturbations on the etch characteristics. It is not clear a priori
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whether good control of Vi;,s and F will lead to stabilization and control of the etch
characteristics. Etch rate data is collected in real-time using the interference of laser

light reflected off of the laser surface.

5.1 Inverse Dynamics Neuromodels for the Plasma

Generation Subsystem (PGS)

In recent years, there has been a number of neuro-control learning schemes proposed
in the literature. Among these, the inverse model neurocontrol approach, developed
by Widrow and Stearns and Psaltis et al. [33], [34] has been one of the most viable
techniques for implementation of neural networks in control. One reason for its utility
is its simplicity. Once the network has learned the inverse model of the plant, it is
configured as a direct controller for the system. We chose to investigate the inverse
dynamics control technique because of its ease of implementation. The objective of a
nonlinear dynamic inversion is to invert the dynamic equations of the plant directly in
order to find the control necessary to yield the given output. In this thesis we perform
this operation using neuromodels capable of learning the highly nonlinear inverse
dynamics of the plasma process. We describe several architectures for the inverse
dynamics of the RIE process. To learn the inverse dynamics of the plant, we train
the neurocontrollers off-line. By applying the desired range of inputs to the plant, its
corresponding outputs can be obtained and a set of training patterns can be selected.
Once trained, the networks could be used to produce the appropriate control input
as a function of the desired plant output. The performance of the neural networks
based on these input vectors are observed by configuring it directly to control the
plasma etching process. Based on these observations, the neural network structures

that give the best performances are then used in the neurocontrol structures of the
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PGS system.

5.2 Neurocontroller Structures

In this section four nonlinear neurocontroller structures (inverse dynamics neuromod-
els) for the PGS system are developed, namely

() nonlinear static neurocontroller

(iz) nonlinear first-order neurocontroller

(izi) nonlinear second-order neurocontroller

(iv) nonlinear first-order controller with delayed control

To learn the inverse dynamics model of the PGS system, we use the same neural
network architectures that were developed in Chapter 3, Section 3. Each inverse neu-
romodel is then configured as a direct controller for the PGS system. The results of
the simulations presented in the next section demonstrate that the neurocontrollers
perform very well and offer encouraging advantages as compared to the other con-
ventional methods.

The structures proposed in this section are described in more details below:

(2) Nonlinear static neurocontroller (2-8-2): This architecture is equivalent to the
neural network model developed in Section 3.3, and is repeated here for conve-

nience:

u(k) = g(y(k)) (5.1)

(i) Nonlinear first-order neurocontroller (4-8-2): This architecture is equivalent to
the first order nonlinear model introduced in Section 3.3, and is repeated here

as follows:

u(k) = g(y(k),y(k — 1)) (5.2)
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(v22) Nonlinear second-order neurocontroller (6-8-2): This architecture is equivalent
to the second-order nonlinear model given in Section 3.3, and is repeated here as

follows:

u(k) = g(y(k), y(k — 1), y(k - 2)) (5-3)

(2v) Nonlinear first-order neurocontroller with delayed control (6-8-2): This architec-
ture is equivalent to the first-order nonlinear model introduced in Section 3.3,

and is repeated here for convenience:

u(k) = g(y(k), y(k — 1),y(k - 2)) (5-4)

5.2.1 Simulation Results

Our objective in this section is to design several neurostructures capable of learning
and generalizing accurately the inverse dynamics of the PGS, and representing ef-
fectively the experimental input-output data. The above neurostructures are trained
off-line using backpropagation error algorithm with adaptive learning rate and mo-
mentum [24]. The simulation results for off-line training are presented in Figures
5.1-5.8. Before training the networks weights and biases are initialized with Nguyen-
Widrow initial conditions (small random values) [24]. The training parameters are
initialized to the following values: error goal = 0.01, learning rate = 0.02, and mo-
mentum = 0.95. The number of the epochs to reach the error goal varied depending
on the initial conditions of the weights and biases and the number of hidden neurons.
By trial and error we determined that 8 hidden neurons are sufficient to design an
appropriate neurostructure.

In the Table 5.1 we synthesize the performance of these neurocontrol models rep-

resented by the standard deviation errors between the models and the experimental
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Neurocontrol Throttle Position e [%] | RF power e [Watts] |
Static representation 2.3894 12.1474
First-order 2.3875 12.1374
Second-order 2.3785 11.9156
First-order with delayed input 2.3814 11.9207

Table 5.1: Performance comparison for the neuromodels.

data set (e). The maximum magnitude of these standard deviation errors is 2.5 [%]
for the throttle position and 15 [Watts] for the RF power. The nonlinear static neuro-
controller in testing phase fits the experimental data set, as shown in Figures 5.1-5.2,
with standard deviation errors of e = 12.1474 [Watts] for the RF power actuator and
e = 2.3894 [%] for the throttle position actuator. The nonlinear first-order neuro-
controller in testing phase fits the experimental data set, as shown in Figures 5.3-5.4,
with standard deviation errors of e = 2.3875 [%] for the throttle position actuator and
e = 12.137 [Watts] for the RF power. The nonlinear second-order neurocontroller in
the testing phase fits the experimental data set, as shown in Figures 5.5-5.6, with the
smallest standard deviation errors of € = 2.3785 [%)] for the throttle position actuator
and e = 11.9156 [Watts] for the RF power actuator. The nonlinear first-order neu-
rocontroller with delayed input fits the experimental data set, as shown in Figures
3.7-5.8, with the standard deviation errors very close to the third structure. The
above neurocontrollers will be used for the closed-loop real-time strategies developed

in the next section.

5.3 Real-Time Neurocontrol Strategies

After training the neuromodels to learn accurately the inverse dynamics of the pro-
cess in all the four architectures, each neural network controller is now configured as

a direct controller for the PGS system as shown in Figures 5.9-5.12. Although the
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Figure 5.1: Generalization results for the nonlinear static neurocontroller for the

throttle position.
Legend: (a) neuromodel output; (b) experimental data set; (c) representation error

performance.
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Figure 5.2: Generalization results for the nonlinear static neurocontroller for the

RF power.
Legend: (a) neuromodel output; (b) experimental data set; (c) representation error
performance.
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Figure 5.3: Generalization results for the nonlinear first-order neurocontroller for the
throttle position.

Legend: (a) neuromodel output: (b) experimental data set; (c) representation error
performance.
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Figure 5.4: Generalization results for the nonlinear first-order neurocontroller for the
RF power.

Legend: (a) neuromodel output; (b) experimental data set; (c) representation error
performance.
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Figure 5.5: Generalization results for the nonlinear second-order neurocontroller for
the throttle position.

Legend: (a) neuromodel output; (b) experimental data set: (c) representation error
performance.
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Figure 5.6: Generalization results for the nonlinear second-order neurocontroller for
the RF power.

Legend: (a) neuromodel output; (b) experimental data set; (c) representation error
performance.
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Figure 5.7: Generalization results for the nonlinear first-order neurocontroller with
delayed control for the throttle position.

Legend: (a) neuromodel output; (b) experimental data set; (c) representation error
performance.
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Figure 5.8: Generalization results for the nonlinear first-order neurocontroller with
delayed control for the RF power.

Legend: (a) neuromodel output; (b) experimental data set; (c) representation error
performance.
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inverse neuromodel control scheme is similar in architecture to a conventional feed-
back control scheme, the neurocontroller property is similar to that of a traditional
self-tuning adaptive controller. In the direct self-tuning control scheme, an a priori
knowledge of the plant’s mathematical model is required and the plant’s parameters
need to be estimated through an estimation scheme, such as the popular least-squares
parameter estimation algorithm [22], [35]. From the estimates of the plant’s param-
eters, the controller is then able to generate the correct control input through an
inverse mathematical model of the plant. The inverse model neurocontrol approach
is more robust and simpler in this respect since it is not necessary to derive the math-
ematical model of the plant for implementation. The ability of neural network models
to learn and generalize based on the input-output behaviour of a process has a great
advantage where many control problems can now be treated with less precision and
advanced knowledge of the plant. The use of the nonlinear sigmoidal functions in
the hidden layers of the neural networks has also made it possible to consider highly
nonlinear control systems where many traditional adaptive and conventional control
techniques may be insufficient. Moreover, it is applicable to complex and ill-defined
plants when mathematical modeling is difficult. Another advantage of using neural
networks is that it can also be trained on-line to further improve its performance.
In the basic inverse model approach, the neurocontroller can be trained on-line by
minimizing the system’s performance error. A more suitable approach for training
the neurocontroller on-line is to adapt the architecture of an indirect adaptive control
scheme where the identification model is replaced by a neural network similar to one

of the architectures presented in the previous section.

In order for the proposed neurocontrollers to operate as controllers, the input
vector y(k) is replaced by the desired plant output (i.e., the set point, y,(k)) and the

remaining input signals remain unchanged (as feedback signals of the delayed outputs
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Figure 5.10: The second neurocontrol strategy

from the neuromodels) as shown in the Figures 5.9-5.12.

With respect to the above configuration the following four neurocontrol strategies

are proposed:

(2) Nonlinear neurocontroller and neuromodel of the plant in static representation

as depicted in Figure 5.9.

(#2) Nonlinear first-order neurocontroller and the first-order neuromodel of the
plant as depicted in Figure 5.10.

(i¢2) Nonlinear second-order neurocontroller and the second-order neuromodel of

the plant as depicted in Figure 5.11.
(?v) Nonlinear first-order neurocontroller and the first-order neuromodel of the

plant with delayed control as depicted in Figure 5.12.
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The simulation results performed for the above architectures are discussed in the
next section.

Each of the above neurocontrollers are trained to learn the inverse dynamics of
each channel of the PGS process by using the respective channel’s output data to-
gether with some corresponding delayed output values as the input patterns and
the corresponding channel’s input data as target patterns. The PGS neural network
models are trained to learn the feedforward dynamics of each channel by using the
input data together with some delayed output data as the input patterns and the
corresponding output data as the target patterns. For training a neural network to
learn the inverse or the feedforward dynamic model of the plant off-line training based
on Levenberg-Marquardt backpropagation error algorithm [24] is used as described
before. Since the neural networks are highly nonlinear, it is difficult to determine
analytically which model has completely learned the true plant inverse and feedfor-
ward dynamics. A simple and a reliable method to establish the performance of these
networks is to test each of these neuromodels on-line as configured in our proposed

neurostructures shown in Figures 5.9-5.12.

5.3.1 Simulation Results

Our goal in this section is to design several real-time MIMO intelligent control strate-
gies and to select amongst them the most suitable one which ensures among others
the stability of the PGS system in closed-loop, good tracking error, robustness to
changes in the set points and operate effectively in a large operating range.

The closed-loop system performance of these neurocontrol strategies, namely the
settling time (t,), rise time (¢;), overshoot (%0S), steady-state error (¢) and the
convergence of the algorithm for Vj;,s and [F] are presented in Table 5.2. The simu-

lations results are presented in this section. In these simulations, as shown in Figures
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| Neurostructure [ t.[s][ [ #fs] [  %OS € | Conv. |
First structure 1/- ]0.5/- |22 [Volts]/- 22 [Volts]/- bad
Second structure { 2/0.5 | -/- -/- 10 [Volts]/5 [%] good
Third structure | 2/1 | 1.5/- | 7 [Volts]/- | 1.36 [Volts]/0.015 [%] | very good
Fourth structure | 2.5/ 2 | 2/1 | 4 [Volts]/- | 1.36 [Volts]/0.025 [%] | very good

Table 5.2: The closed-loop system performance of the neurocontrol strategies.

5.13-5.18, the set points are taken as: y;,= 355 [Volts] and y2, = 1.4 [%]. During the
simulations with the nonlinear model of the PGS plant, changes in the set points are
taken into consideration and so we are able to choose the ﬁeurocontroller that gives
the best performance for these changes. The changes in the set points for the third
neurocontroller occur at the same time as in the open-loop simulations as depicted
in Figures 5.17-5.18. The first case (Figures 5.13-5.14) results in the largest errors
and the convergence is relatively poor during training. The evolution of the actuators
throttle valve position and RF power for this case (Figures 5.15-5.16) is very smooth
and without significant variations around the operating point. This implies that the
control effort to maintain the key plasma parameters Vo5 and fluorine concentration
[F] at their set point values remain well behaved. By only one input vector u(k), it
is clear that the neurocontroller is unable to perform satisfactorily as a controller, as
it has only the desired plant output to deal with. The third case (Figures 5.17-5.18)
produces the best performance with the minimum absolute error. Also, the evolution
of the actuators throttle valve position and RF power are very smooth with small
changes around the operating point. Since two of the three input vectors are a de-
layed plant output, the neurocontroller can act very quickly to changes in the plant
output, thus yielding rapid and accurate performance. For the second and fourth
cases (Figures 5.13-5.14) the neurocontrollers results show some output overshoots,
thus the controllers are not able to provide accurate tracking of the set points. With

additional delayed plant outputs used as input vectors, a smoothing effect is achieved
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Figure 5.13: The evolution of the dc Vbias for the closed-loop system.

at the output of the neurocontroller, however a delay is also introduced in reacting
to the plant behaviour. This could be due to the fact that the PGS plant is dom-
inated as a second-order plant, and so the modeling errors generate a mismatch in
its input vectors to follow the actual dynamics of the plant, which could lead to an
imperfect inverse model learning. For the first case, the error converges during the
training to a relatively smaller value compared to the other cases, however, its recall
performance is very poor as the true inverse model cannot be obtained by using the
particular input. The reason the fourth case converges quickly during the training
stage is that the outputs of the neurocontroller follow the target values rapidly but it
has, however, not generalized properly over the entire input range. The third neuro-

controller structure seems to be the most suitable one for controlling the PGS system
in closed-loop.
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Figure 5.15: The evolution of the throttle position for the closed-loop system.
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The evolution of the RF power for the closed-loop system.
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loop system with the neurocontroller.

5.4 Summary

In this chapter, we have developed four nonlinear neuromodels for the PGS process as
well as four neurocontrollers to control the plasma etching process. These neural net-
works are used to construct four real-time neurocontrol strategies that are capable of
ensuring the stability of the RIE system in closed-loop and to perform a good tracking
performance such as 1.36 [Volts] and 0.015 [%] steady-state error for Vjies and [F],
respectively. Following our validation results obtained by computing the standard
deviation errors between the model output and measured output, we can conclude
that the neuromodels (7:¢) and (iv) are accurate and can fit the experimental input-
output data set quite satisfactorily. Qur results for identification of the nonlinear
inverse dynamics of the process through neurocontrollers indicate that they are able
to be valid in a large operating range and are capable of capturing the nonlinearities
of the actuators and of the plant as compared to linear models which are valid in

only a small operating region. Among the important contributions of this chapter are
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the development of neural network architectures used for obtaining a good fit with
the experimental input-output data set. The learning algorithm used for determining
the neural network parameters (weights) is the dynamic/static backpropagation with
off-line Levenberg-Marquardt algorithm. From the simulation results we observe that
the third neurocontrol structure yields the best performances in both learning and
generalization and is capable of reaching the steady-state error goal (1.36 [Volts] for
Vbias and 0.015 [%] for [F]) relatively faster than the other cases (10 samples). The
real-time feedback neurocontrollers manipulate important gas species (Auorine con-
centration [F'| and induced dc Voltage [Vyi,s)) across the reactor electrodes in the RIE
system. The controlled species were measured by quadrupole mass spectrometry with
direct effect on the outcome of the performance variables. This reveals the feasibility
of our neurocontroller design, namely an in-situ sensor-based controller is capable
of reducing the process variations. The simulation results provide good performance
with the minimum absolute error and reveal that the third real-time neurocontroller
strategy seems to be the most suitable to control the PGS in closed-loop. Since two
of the three input vectors are delayed plant output, the neurocontroller can act very
quickly to changes in the plant output, thus yielding precise and accurate response
with good tracking performance. The neurocontrol strategies developed in this chap-

ter can be used as a tool for evaluating complicated gas kinetics.



Chapter 6

Multi-Input Multi-Output Robust

Control

The real problem in robust multivariable feedback control system design is to syn-
thesize a control law which maintains system response and error signals to within
prespecified tolerances despite the effects of uncertainty in the system. Uncertainty
is a major issue in most control system design and may take many forms, but among
the most important ones one could mention noise/disturbance signals, transfer func-
tion modelling errors, and unmodeled nonlinearities. This motivates one to seek a
quantitative measure for the size of the uncertainty, using different tools like H2 and
H* norms. The multivariable nature of a problem introduces another aspect that
can be accounted for through the use of singular value gain measure. The singular
values of the transfer matrix G(z) of the PGS given by (3.21), and denoted by o;(jw),
are functions of frequency w (sometimes referred to as the principal gains of G(z)),
where the complex variable z is given by z = exp(jwTs), and T, being the sampling
period for the plasma RIE process. In MIMO feedback control system design several

performances and robust stability requirements can be expressed in terms of specifi-
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cations on the maximum singular values of a particular closed-loop transfer matrix.
In fact, the gain of a multivariable system (measured in terms of the induced matrix
norm) is between the smallest and largest principal gains, omin(jw) and Omaz(jw) [36].
Most of the conditions required on the singular values of a system are similar to those
needed on the gain of a scalar system. For example, for a negative feedback system
with plant G(z) and controller F(z), for “good” performance Omaz(({ + GF)™!) and
Omaz((/ + GF)™'G) should be small, particularly at low frequencies [36]. Similarly
for good robust stability properties Omaz(F(I + GF)™') and oo (GF(I + GF)™ 1)
should be small, normally in the high-frequency range, where uncertainty is higher.
The loop-shaping design rules are similar to those for a SISO system but take into
account the mapping from matrix to scalar quantities through the singular values.

For a SISO system, when the loop gain is greater than unity, the sensitivity function:
S=({+GF)! (6.1)

tends to zero and the closed-loop transfer function tends to unity. For MIMO control
systems the tracking error signal e, the control u and the plant output y are weighted
by transfer matrix specifications Wi(z), Wa(z), and W3(z), which play an impor-
tant role in ensuring the desired disturbance attenuation, and the desired stability
margins for the multivariable feedback design subject to additive and multiplicative
plant perturbations [36]. In order to quantify the multivariable stability margins and
performance of the system, the singular values of the following sensitivity matrices

are utilized:

S(z) = (I+G(z)F(2))! (6.2)
R(z) = F()(I+G(z)F(z))" (6.3)
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T(z) = G(=)F(2) +G(2)F(2))™ (6.4)

The two matrices S(z) and T'(z) are known as the sensitivity and complementary
sensitivity functions, respectively, and the matrix R(z) as control sensitivity
function. The singular value Bode plots of each of these transfer matrices play an
important role in multivariable robust control design. The singular values of the
matrix S(z) determines disturbance attenuation, since S(z) is in fact the closed-loop
transfer matrix from the additive disturbance to the plant output y. In [36], it is

shown that a disturbance attenuation performance specification may be expressed as
Tmaz(S(ezp(jwTs))) < [Wi ' (ezp(jwTsy))| (6.5)

where |W[ ' (ezp(jwT;))| is the desired disturbance attenuation factor, and T is the
sampling period. Allowing Wi(exp(jwT;)) to depend on frequency w enables one to
specify a different attenuation factor for a given frequency w.

Furthermore, we can specify the stability margins of the system by the singular

value inequalities

Tmaz(R(ezp(jwTy))) < |Wy ' (exp(jwTy)) | (6.6)

Tmaz(T (exp(juwTy))) < (W5 (ezp(jwTy))| (6.7)

where [W3(ezp(jwTs))| and |W3(ezp(jwTs))| are the respective sizes of the largest
anticipated additive and multiplicative plant perturbations. It is a common practice
to lump the effects of all the plant uncertainties into a single fictitious multiplicative
perturbation, so that the overall control design requirements may be alternatively

expressed by the following singular value inequalities

m(S(e:z:pI(ijs))) 2 IWI(G.’L‘p(ijs))I



oi(T(ezp(ywT;))) ™" < W5 (ezp(jwTy))]

To choose the design specifications represented by the weighting functions Wi(z)
(performance specifications such as disturbance attenuation) and W3(z) (robustness
specifications such as roll-off frequency, stability margin), the 0 db crossover frequency
in the Bode plot of Wi(ezp(jwT,)) must be sufficiently below the 0 db crossover

frequency of W5 '(exp(jwT,)). More precisely, we require
Tmaz(Wi (e2p(jwTy))) + Omaz( W5 (ezp(jwTy))) < 1 Vew (6.8)

The recently developed H, frequency-weighted LQG, LQG loop transfer recovery
(LQG/LTR). and p-synthesis theories have made multivariable loop shaping a stan-
dard technique. The H°® theory provides a direct, reliable procedure for synthesiz-
ing a controller that optimally satisfies singular-value loop shaping specifications.
The frequency-weighted LQG optimal synthesis theory known as H? theory and
LQG/LTR lead to somewhat less direct, but nonetheless highly effective iterative
procedures for manipulating the singular value Bode plots to satisfy singular value

loop shaping specifications.

6.1 Robust Controller Architecture and State-Space

Representation

The structure of the robust control system for the PGS in closed-loop is represented
in Figure 6.1. In this structure we use a compensator after the controller in order

to decrease the amplitude of the oscillations during the transient phase for which we
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Figure 6.1: Robust controller architecture for the PGS process.
select the transfer function of the form:
klcﬁ-& 0
H. = Hh (6’9)
0 kg

The proportional feedback block used to control independently each output has
coefficients given by the matrix:

ki O
K = (6.10)

0 Kk

The H? and H* synthesis methods are especially powerful tools for designing
robust multivariable feedback control systems to achieve singular-value shaping spec-

ifications.

By defining:



T
U = | uy wz |7 w®) = [ (k) (k) | Yo=|¥ ¥ ¥ Yo% Y |7,

T T
e(k) = L'rsp —Yy= [ el(k) eg(k) ] s uc(k) = [ulc U ] , and
T
ye(k) = [ yic(k)  yac(k) ] ; as the reference input vector, output vector, weighted
output vector, error vector, controller output vector and plant input vector,

respectively, and letting Ty, u,,(z) denote the transfer matrix from Usp to Y, the

H? and H* discrete norms (corresponding to Figure 6.1) are defined as follows:

H? norm:

= Umar(TY}pUsp(z)) (6.11)

L N

H norm:

2

| T, = $uP e (Ti0, (2)) (6.12)

The PGS plant G(z) = Cg(z] — Ag)~'Bg + De¢ is “augmented” with weighting
transfer matrices Wy(z) = Cy, (/- Ay, )14+ Dy, Wy(z) = Cu(z1—Au,) '+ D,,, and
Wi(z) = Cup (=1 —A,,) T+ Dy,+ Pz +...+ P z+ P, (possibly improper) penalizing
the error signal, control signal and output signal, respectively (as in the block diagram
shown in Figure 6.2) such that the augmented system can be represented in the

following state-space representation form:

Ul(k) ulc(k)

ralk+1) = Aza(k)+ B, + B, +wk)  (6.13)
UQ(IC) ch(k‘)
[ 1 [ T
ul(k) ulc(k)
Yip(k) = Ciza(k)+ Dy + Dy, (6.14)
U2(k)J u2¢:(k) ]
T
ul(k) ulc(k)
e(k) = Chza(k)+ Dy + Do2 + v(k) (6.15)
| u2(k) ] A u2c(k) J
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. . Pui(z) Pra(2)
with the closed-loop transfer matrix P(z) = , where Py(z) =

P21(z) sz(z)

Wi(2) —Wi(2)G(2)
0 , Pra(z) = Wa(z) » Par(z) = I, Pra(z) = —G(2), respectively,
0 W3(3)

and z4 € R"etwitnw, +nuw, (ne, nw, , nw, , tw, represents the minimal realization
order of the PGS plant and of the weighting transfer matrices, respectively) [36].

Now, if we denote by

Ce = FPoCqo + P Codg + ... + PnCGAg_l (6.16)

D¢ = PyDg+ P.CgBg+ ...+ P.CcAE *Bg (6.17)

the matrices 4. By, B,, C;, Cs, Diz, Dyy, Doy can be expressed by the following

expressions [36]:

| 1 o o o | [ o ] i Bg |
4| BuCc Auw 0 0 B - B., B - ~B,, D¢
0 0 A., O 0 B.,
Buce 0 0 Ay, | | 0| | BuwDo |
~Dy,Cc C,, 0 0 Dy,
Cy = 0 0 Cu. O ,Cz=[—ccooo},0u: 0
Co+DuwCc 0 0 C,, 0
—~D,, D¢
D,z = D,, v D21 =1, Dy = —Dg,
D¢ + Dy, D¢

The closed-loop transfer matrix Tv.,u,,. known as weighted mixed sensitivity, is given
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Figure 6.2: The simplified block scheme of the augmented plant.

Wil + GF)™!
Trpvp=( WHF ([ + GF)™!
W3F (I +GF)™!

and which has a significant role in designing for a robust control for the closed-loop

system.

6.2 Optimal Robust Control Problems

With respect to the definitions (6.11)-(6.12) and the state-space realization of the
augmented plant (6.13)-(6.15) we are now in a position to formulate the H2 and H

optimal design problems as follow:

Given a state-space realization of the “augmented” PGS plant P(z), find a stabi-

lizing feedback control law:
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ure(2) ei(z)

Va(z) = = F(z) (6.18)
uzc(z) e2(z)

subject to additive and multiplicative plant perturbations such that the H? or H*

discrete norms of the closed-loop transfer matrix
Typv,(2) = Pri(z) + Pia(2)({ — F(2) Ppa(2)) ' F(2) Pay (2) (6.19)

are sufficiently “small” (less than or equal to one), i.e.,

H? optimal control:

minF(:) ”TY.-pUSP(Z)MZ <p<l

H>optimal control:

min,, ”TYwUSP(")“m <pu<l1 (6.20)

standard H* control (Small-Gain problem):

[Ty (=)] | < 1 (6.21)

To solve the above problems, we use the design procedure presented in [36] and
the weighting functions W;(z),W,(z), Wi3(z) (design specifications) to augment the
plant G(z). The H? — norm optimal control problem is equivalent to a conventional

Linear Quadratic Gaussian optimal control problem using the following steps:
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(1) Linear Quadratic Estimator Design (LQE) (Kalman filter design)

This procedure computes the estimate of the augmented PGS state, Z(k), using a

steady-state Kalman filter [36] with the dynamic state equation

f(k-{- l) = A.’i‘(k) —+ Blvl(k‘) + Bzvz(k) + Ke[e(k) - Cz.’z‘(k) —_ D21v1 —_ Dzzvg(k)] (6.22)

where A is the Kalman gain matrix and is given by

K. = (SCT + B\ DL, + B, DL)(D, DY)~ (6.23)
SAT + AS —(SCT + Ry )R;(C2S + R )+ Q. =0 (6.24)

where S is the unique positive definite solution of the above algebraic Riccati
T

T
equation, and v (k) = [ ui(k) ua(k) } , v2(k) = [ uic(k) uge(k) ] . The Kalman
filter generates a state estimate that minimizes the variance of the estimation error
where R, and @, are the covariance matrices with correlated white plant noise w(k)

and white measurement noise v(k), respectively, having a cross-correlation matrix

Ry

(ii) Linear Quadratic Regulator Design (LQR) (Full-state feedback design)
This procedure computes a feedback gain matrix A such that when
va(k) = =Kz (k) (6.25)

is applied to the augmented full-order system (6.13), the resulting closed-loop system

is stable, i.e., all the poles of the closed-loop system are inside the unit circle. This
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control is selected to minimize the following quadratic function:

J= f:[x(k)TQx(k) + v2(k)T Ruq(k)] (6.26)

k=0

The feedback gain matrix K [36] is then given by:
R = (D{,D12)""(B] P + DL,Cy) (6.27)

where P is the unique positive definite solution to the discrete time matrix algebraic

Riccati equation:

ATP+ PA— PB,R'BIP+(Q =0 (6.28)

The H? optimal controller has a transfer matrix of the following form:

F(z)=R(zI — A+ R.Cy+ Byh — R.DyaR) A, (6.29)

The disturbance attenuation specifications and the stability margin specifications
given by the inequalities (??)-(6.8), may be expressed into a single infinity norm

specification of the form

“Ty_‘pu_,p o < 1 (6.30)
where
WS
Ty,u., = (6.31)
WsT

This function is known as the mixed-sensitivity cost matrix since it penalizes
both the sensitivity matrix S and complementary sensitivity matrix 7. The mixed-

sensitivity approach for the robust control design is a direct and an effective way of
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achieving multivariable loop shaping.

< 1, we will first start

oo

To find a stabilizing controller F(z) such that ”Ty,pu,p
with H? synthesis and then apply H* techniques to determine the actual design
limitations. The Ty,,u,, singular value Bode plot associated with each design will
indicate how close the design is to the specifications. For the design problem, in the
structure of the weighting matrices (W, in general), one parameter appears explicitly,
denoted by v, with respect to which one has to iterate several times until a suitable
design is obtained. In this case, the standard H®control problem is referred to as
the H* Small-Gain problem. Both H<and H?2 synthesis are often used together, with
H? synthesis being used as a first try to get a sense for what level of performance
is achievable. Then. an H* performance criterion is selected and the H* synthesis
theory is used to do the final design work [36]. If one imposes overly demanding
design requirements then the minimal achievable H* norm may be greater than one,

in which case there is no solution to the standard H* control problem (that is to find

a controller for which “ Ty,v.,|l < 1). In [36], four conditions for the existence of a

solution to the standard H™> control problem are provided, namely

(2) Dy is sufficiently small, i.e., there must exist a constant feedback control law

F(z) such that the closed-loop D matrix satisfies Omex(D) < 1
(#2) Riccati control matrix P given by (6.28) is positive semidefinite
(#27) Ricatti observer matrix S given by (6.24) is positive semidefinite

() Amaz(PS) < 1

The optimal value for the parameter 7. denoted by 7o, is given by solving the

Small-Gain H>® problem. To determine and observe the effects of the compensator,
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the feedback block and the weighting functions, the following scenarios to the control
structure given in Figure 6.1 are now investigated, specifically

(z) without the compensator

(22) with the compensator

(#%) with the compensator and weighted control

(tv) with the compensator and weighted error, control and output.

6.3 Robust Control Structures

Case 1: The Robust Control Structure without Compensator

For this case the parameters &; and ks, in (6.10) are tuned by trial and error to get
the smallest possible steady-state tracking errors, resulting in k; = 0.001, &, = 0.005,
Wi =~x1I, and W5 = [,. Using the Matlab subroutine for H*, the optimal value
for v is obtained as 7,,;= 1.414. The results of the > synthesis are presented in
Figures 6.3-6.6 without changes in the set points and in Figures 6.7-6.8 for changes
in the set points. From these simulations, we can observe that very good results are
obtained in stabilizing the system after a brief settling time, but at the cost of a high
transitory oscillations. The controller structure is very robust to changes in the set

points, and the system is stabilized with very small tracking errors.

Case 2: Robust Control Structure with Compensator

This structure is used to reduce the amplitude of the transient oscillations based
on the integral effect of the compensator structure. The values for the parameters
are determined by trial and error using the Matlab subroutine for H* technique to
get the smallest possible steady-state tracking errors for the PGS in closed-loop as

follows:
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ki =03, k; = 0.07, a; = 0.102, a; = -0.2, b; = 0.3, and b, = -0.51 (see

equation(6.9)), and

2 0
K. = (6.32)

0 0.75

for the case with changes in the set points and k; = 0.001, &, = 0.005, a; = -0.302,
az =-0.33, by = 0.3, and b, = -0.51, and

K, = (6.33)

for the case without changes in the set points. The weighting functions have the
same structure as in the first case. Using the Matlab subroutine for H* technique
we get vop= 1.414, which is the same as in the first case since the weighting
functions are not changed. The simulation results are presented in F igures 6.3-6.6
for the case with no changes in the set points and in Figures 6.7-6.8 for the case
with changes in the set points. From these simulations one may observe that the
amplitude of the oscillations are reduced considerably when compared to the

previous case.

Case 3: Robust Control Structure with Compensator and Weighted Con-

trol

The weighted control case attempts to optimize the control effort as much as possible
to perform good tracking error with small oscillations. In this case the control is
weighted by the weighting transfer matrix W,(z) which is chosen to ensure that the
D12 matrix of P(z) is full rank as a necessary condition for having a solution to the
H® control problem. This is achieved by tuning the parameters using the Matlab

subroutine for H*technique with the following values:
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ky =0.12, k; = 0.001, a; = -0.302, a; = -0.33, b; = 0.3, b, = -0.51 and

0.001(z+1) 0
Wa(z) = =1 (6.34)
0 0.001(i+12
205 0
K. = (6.35)
0 085

It is our conclusion that this scenario is perhaps the best control structure for
yielding small tracking errors, fast response and high robustness to the changes in the

set points. The simulation results are presented in Figures 6.3-6.6 with Yopt= 1.375.

Case 4: Robust Control Structure with the Compensator and Weighted

Error, Control and Output

In this case all the possible outputs of the PGS system, namely error, control and
plant output are weighted by the appropriate weighting transfer matrices W(z),
Wy(z), and W3(z). By example. now we seek for the following singular value design
specifications:

() Robustness Specifications (stability margin) expressed by W3(z), chosen with
respect to the requirements imposed by the application, and here in our case, assumed
to perform, e.g., -40db/decade roll-off and at least -20db at 100 rad/sec.

(22) Performance Specifications (disturbance attenuation) expressed by W;(z) so

as to minimize the sensitivity function. Note that we have

Wi(z) D01y ° (6.36)
1z} = o
0 0.015y23=kL

z—1
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210(1.42+1) 0

Wa(z) = i B (6.37)
0 0.0:za_i—l)
1.6(z—1)2 0
Wa(z)= | ©*° (6.38)
0 1.28(z—1)%(1.52+1)
(z+1)3

where these weighting matrices are selected to meet the design specifications for the
sensitivity function S and the complementary sensitivity function T=(I-2S5)
(disturbance attenuation, stability margin) as well as the four existence conditions
for a feedback control law as required in the standard H*control problem (see
Section 4.2). The weighting matrix W>(=) is chosen to assure that the D;, matrix of
P(z) is full rank to solve the H° control problem. The parameter v is initially set
to 1 and later decreased until Yopt= 0.0099487 is reached by the y-synthesis

algorithm. The values of the tuned parameters for this structure are given by:

0.15 0
A = (639)
0 13.85
095 O
v = (6.40)
0 075

ar =-0.82, a,=-0.29, b; = 0.3, by= -0.51.

The closed-loop system performance of these robust control strategies, namely
the settling time (¢, ), rise time (¢:), overshoot (%0OS), steady-state error (¢) and the
convergence of the algorithm for Vj;,, and [F'] are presented in Table 6.1.

The results of the simulations are presented in Figures 6.3-6.8. In Figure 6.7 the
Viies doesn’t reach the steady-state after 5200 samples, however this state will

eventually reach a steady-state after a long time, and so for this scenarios the
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| Structure [ t[s][ | t[s] | %0S € Conv.
First 3/5 | 0.4/- | 850 [Volts]/55 [%] | 0.35 [Volts]/0.001 [%] good
Second 3/5 |0.5/- ] 550 [Volts]/55 [%] | 0.36 [Volts]/0.001 [%] | very good
Third 3/4.5 | 0.4/~ | 250 [Volts]|/55 [%] | 0.34 [Volts]/0.0009 [%] | very good

Fourth [0.5/5| -/- - /55% 300 [Volts]/0.0009 [%] bad

Table 6.1: The closed-loop performance system of the control robust strategies.

performance is not as good as desired. These results illustrate the robustness of this
control strategy as the set points are varied. This algorithm is among the most

effective control strategies for the highly nonlinear PGS control system.

6.4 Summary

In this chapter we have developed a MIMO real-time robust control strategy using
standard H™ control techniques. The contributions of the compensator, the feedback
block and the weighting matrices in the control structure depicted in Figure 6.1 are
investigated, namely the closed-loop system

(i) without compensator

(it) with compensator

(i) with compensator and weighted control, and

(tv) with compensator and weighted error, control and output.

For each of the above cases we study the behaviour of the robust controller to
changes in the set points. The results of the simulations indicate that the third struc-
ture yields the highest performance in terms of the tracking error in the steady-state,
fast response and high robustness to changes in the set points in the presence of dis-
turbances and parameter variations in the PGS system. This algorithm is among the
most effective control strategies considered in this chapter and thesis for controlling

a highly nonlinear PGS system.
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Figure 6.3: The performance of the robust controller on the throttle position for the

closed-loop system.
Legend: The star designates the first case, the dot designates the second case, the “x”

designates the third case, and the solid line designates the fourth case.
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Figure 6.4: The performance of the robust controller on the RF power for the closed-

loop system.
Legend: The star designates the first case, the dot designates the second case, the “x”
designates the third case, and the solid line designates the fourth case.
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Figure 6.6: The performance of the robust controller on the fluorine concentration

[F] for the closed-loop system.
Legend: The star designates the first case, the dot designates the second case, the “x”

designates the third case, and the solid line designates the fourth case.
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designates the third case, and the solid line designates the fourth case.



Chapter 7

Performance Comparison of the
Proposed Real-Time Control

Strategies

7.1 Wafer Performance

The real-time robust control strategies developed in this thesis use the process vari-
ables Viios and [F] with the attention being focused on modelling, control and analysis
of the PGS system. In these control strategies the real-time controller maintains the
desired Vji.s and [F] set points for the duration of an etch cycle. However, in order
to have a criterion for comparing the performance of different control strategies, we
have to translate the results obtained so far for the PGS system into performance of
the wafer subsystem, namely etch rate or etch depth. The main objective here is to
keep the etch depth at a desired target value in the face of variations in the process
disturbances, namely C Fy flow-rate disturbances, loading disturbances, and oxygen

disturbances. In [21] the simplified Mogab-Flamm wafer model was used which as-
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sumes that the etch rate is directly proportional to the fluorine concentration [F], and
the coefficient of the proportionality depends only on the operating point. Therefore,
to study the etch rate performance of the wafer, or equivalently the etch depth, we
can consider the performance of the PGS system in terms of [F]. To choose the “best”
real-time control strategy we can select the controller that yields the best tracking

error with respect to the fluorine concentration [F] set points.

7.1.1 Experiments Results

The effect of the disturbances in [21] is studied at two operating points: operating
point A (op A) at 1000 W, 20 mTorr, and 30 sccm, and operating point B (op B) at
1000 W, 40 mTorr, and 40 sccm. Operating point A, because of its lower pressure,
uses much more ion bombardment for etching than operating point B. The ions collide
less with other particles in the sheath and, therefore, are able to develop more kinetic
energy. For each operating point, the load was varied from 1 to 5 wafers. The etch
rate was measured on unpatterned wafers of 600 nm polysilicon on 32 nm silicon
dioxide on silicon. This stack of materials provides a nice reflection from the incident
reflectometry light sources, thereby enabling the acquisition of good reflectometry
data [21]. Bare silicon wafers were used for additional loading. The etch rate for
polysilicon is about the same as that for silicon. The change in etch depth as measured
by the white light reflectometry data was used to calculate an average etch rate. The
impact of the water vapour disturbance is also studied in [21]. The magnitude of the
water vapour disturbance depend upon the humidity in the clean room, the polymer
buildup on the chamber walls, and the time that the chamber was left open to load

the wafers.



7.2 Performance Comparison and Feasibility of the
Algorithms

Our efforts on real-time control have concentrated on feeding back plasma variables
to attenuate the effects of process disturbances. Additional results on two-input, two-
output controllers which regulate estimated fluorine concentration and bias voltage
are reported in [1], [4]-[8], [37]. Also substantial contributions for modelling and
control of RIE systems are found in [10], [12], [20], [2], and [18].

The performance achieved by our proposed real-time control strategies is compared
by depicting the results in the same graph as shown in Figures 7.1-7.4. The legend
used in these figures is as follows:

1. PI self-tuning control algorithm [A;].

2. LQG control algorithm [A,].

3. Intelligent control strategy [Aa].

4. Stochastic minimum variance adaptive control strategy [Ay].

5. Robust control strategy [As]

For each operating condition, we can see that the best performance for the V};,; as
depicted in Figure 7.1 is obtained, in order, by the strategies Az, As, A;. A, and Ay,
and for the fluorine concentration [F], as depicted in Figure 7.3 by the strategies Aa,
As, Az. A;, and A,. For the A, and A, strategies, we have a small decrease in per-
formance due to the stochastic environment (disturbance variations). By taking into
account control effort, as depicted in Figures 7.5-7.6 for comparing the performances
of these strategies, we can state that the best overall performance is achieved in order
by the controllers A5, A3, A, A,, and A,. Note that by changing the operating con-
dition this order may also change, therefore it is possible that one controller performs

better than others in a given operating condition. As far as the evolution of the flu-
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l Algorithm Vbias/[F] t [sec] | Viias € [Volts] [ [F] e [%] Convergence |
Self-tuning PI [A;] 80/60 0.0015 0.00002 very good
LQG [A,] 15/75 0.0014 0.00001 very good
Neurocontrol [A;] 2/1 1.36 0.015 very good
SMVAC [A, 100/50 1.29 0.05 good
Robust control [As] 2.5/4.5 0.31 0.0009 very good

Table 7.1: Performance comparison for the algorithms A;-As.

orine concentration for the A;-As cases is concerned, as shown in F igure 7.3, we can
conclude that the best performance for the same operating condition is obtained in
the following order: As, Az, Az, A;, and A,. Generally a hierarchical control strategy
that is capable of determining at each sampling interval which controller is the most
suitable choice to be employed will be of great use. Other performance indicators such
as the settling time (¢.), steady-state error for Vi, and [F ] (e) and the convergence
achieved by the algorithms 4; — A5 developed in this thesis are presented in Table
7.1 as a synthesis of the performance presented in details (settling time. rise time,
overshoot, steady-state error and convergence) in the Tables 4.1-4.3, 5.2, 6.1. From
this table and from the overall simulation results we could conclude that almost all
the proposed algorithms have a good convergence, are computationally efficient due
to their modular structure and recursive form with a relative small number of opera-
tions involved in the computation process, are feasible to be implemented in practice,
and have very close steady-state errors. During the transient, the behaviour of the
controllers are completely different as far as the oscillations, the settling time, the
actuator efforts, the capability of working well in a large region around the operating

point, are concerned.

The self-tuning PI control approach [A:] is proposed as a standard controller
easy to use in practice. The algorithm is developed for the MIMO decoupled PGS

model with pure delay in comparison with [22], [25] which gave a general approach for
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SISO systems, and [1] that studied the possibility of using a standard PI controller

structure for MIMO coupled PGS model identification approach.

The self-tuning PI algorithm is simple, convergent, fast, computationally efficient,
and is feasible to be implemented in practice, however it works well only in a small
region around the operating point for which it was designed for. Generally, larger
values of the model parameters will cause the controller to take longer to fine tune
itself. The control action, therefore, depends on the predicted values of the one-step
ahead model in time, and the algorithm works well when the number of parame-
ters is small. As the number of parameters increases the initial estimates become
increasingly important and poor estimates may result in an extended period of poor

performance and this could even lead to instability.

Also, good performance is given by the stochastic minimum variance identification
algorithm [A,] when applied to the MIMO coupled RIE system having 12 unknown
parameters. For comparison the approach in [32] is applied only to SISO systems with
two unknown parameters. The simulation results depicted in Figures 4.24-4.27 show
a fast adaptation and convergence. In the identification process, the highly fluctuat-
ing behaviour of the adaptive control signal contributes greatly to the excitation of
the system dynamics required for a convergence. For a deterministic control environ-
ment, perfect tracking at steady-state can be obtained, since the control effort u(k)
is not being constrained by the disturbances. The identification part of the control
strategy is computationally more efficient than the modified extended Kalman filter
algorithm, because the state-space innovations model eliminates the computation of
the Kalman gradient V4K () with respect to 8 via the Kalman filter gain algorithm.
Also, in this case the execution of the Kalman filter for the state estimation is not
needed since the Kalman gain A(0) is directly parametrized by (k) considered as

a Markov-Gauss process [32]. The control part of the proposed strategy uses the
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per-interval performance index (4.54), which is computationally more efficient than
the dynamic programming algorithm, and yields a higher performance compared to
a general performance index. The algorithm is therefore feasible and can be easily
implemented in practice in real-time, however it works well only in a small region
of the operating point and is perhaps most sensitive to the deviations around the
operating point.The LQG algorithm [A;] has good convergence properties and can be
implemented in real-time. It is computationally efficient and is similar in performance
to the approach developed in [29], and was chosen in this thesis because we found it
to be well adapted to the specifics of the plasma etching process (more disturbances,
measurement and process noise contamination), and consequently operates properly

in the stochastic environment.

All the three linear controllers A;, A,, and A4 applied to the highly nonlinear
MIMO plasma generation subsystem (PGS) can achieve their desired performance
characteristics for only small regions around the operating points for which they were
designed for. The transient behaviour at the beginning of the etch process may force

the system into regions outside of which the linear controller can be applied safely.

Higher fidelity neuromodel architectures and real-time nonlinear neurocontrol
strategies [Aj3] for the PGS system in closed-loop are developed to improve substan-
tially the plasma characteristics. In comparison with the structures developed in the
plasma literature [2], [9], [19], [14] our approach is conceptually different, the algo-
rithms are more efficient, faster, more accurate and more suitable to be implement in
real-time for controlling the reactive ion etching processes. To implement these neu-
rocontrol strategies in real-time, we need accurate real-time sensors and high speed
microprocessors and parallel processing architectures to perform off-line training, on-

line parameter adjustments, model processing, and feedback control processing.

Similar performance is obtained by using a real-time robust control strategy [As]
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which responds more accurately to the variations in the plasma parameters, distur-
bances, and the changes in the set points. The proposed structure for this control
strategy is introduced for the first time in the literature to control the performance
of the reactive ion etching process. It seems that this algorithm is perhaps the best
control structure yielding small tracking errors, fast response and high robustness to
changes in the set points in presence of disturbances and parameter variations in the

highly nonlinear PGS system.

7.3 Real-Time Control Integration in Multi-Input Multi-
Output Reactive Ion Etching Systems

Our goal is to reduce the variance of the etch characteristics by integrating the real-
time control of the plasma and process variables. The real-time controller As, de-
veloped in this thesis adjusts the reactor input variables to maintain the plasma
parameters at constant set-point values. The idea is to use real-time plasma sensors
to monitor key plasma parameters and design a real-time multivariable controller to
control the PGS. The controlled species were measured by quadrupole mass spectrom-
etry with direct effect on the outcome of the performance variables. This verifies the
feasibility of our control strategy, in other words an in-situ sensor based controller
is capable of reducing process variations. The results obtained confirm the utility
of our proposed strategies to control the etching process despite the drift during an
etch. However, these algorithms can also be used as a research tool for evaluating
complicated gas kinetics. The controllers can drive the film properties, namely etch
depth, anisotropy, selectivity and uniformity to desired regimes based on important
gas species and dc induced voltage in an optimal fashion. Also, the mass flow con-

troller offset experiments [21], [37] demonstrate the utility of real-time sensing and
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control for disturbance rejection. At this time we are using the bias voltage, Vjiss, sig-
nal from the RF matching network and an optical emission spectroscopy (with A, as
an actinometer) based measurement for the concentration of the main etchant species
fluorine, [F], as the key plasma variables. The real-time two-input, two-output con-
troller As is designed to provide set point tracking (on Vs and [F]), and disturbance
attenuation in a large regions of the RIE parameter space. The output of the wafer
etch subsystem (WES) namely, etch depth, is assumed to be monitored by one or
more reflectometers, or can be estimated by Kalman filters to provide set points for
the plasma real-time control module. The use of plasma real-time robust controller
has the following advantages:

(2) dynamic plasma disturbances rejection,

() maintenance of plasma variables at desired values, and

(722) diagnoses capabilities in the plasma subsystem.

As for as the disadvantages of using only the plasma real-time controller, without
using any information on the output of the wafer etch subsystem, one can enumerate
the following issues:

(z) plasma sensor drift may cause the etch process to drift

(22) the etch disturbances are not controlled, and

(¢22) the cost of real-time sensors.

The integrated approach combines the benefit of better disturbance rejection,

more relevant control variables, and diagnosis on two different time scales.

7.4 Hierarchical Real-Time Control Strategies

In the previous section, we saw that if the operating conditions are changed, that could

also change the best control strategy among the A, A,, Az, A4, and Aj configurations.
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Figure 7.7: Hierarchical control strategy structure.

To select the best control strategy for each sample interval we have conceived a
hierarchical control structure depicted in Figure 7.7. The main idea behind this
control strategy consists of selecting for each sampling interval the best algorithm
that is capable of yielding the closest value of the fluorine concentration with respect
to the desired value (set point) or equivalently the best tracking error with respect
to the fluorine concentration. The hierarchical control strategy compares for each
sampling interval the tracking error resulting from each algorithm and then selects

the best algorithm that results in the smallest tracking error.

The results of the selection are depicted in Figures 7.8-7.9 for four assumed sectors
of the system trajectory for the sake of clarity. From these figures, we can observe that
in the first sector, the best control strategies selected are A3 and As, for the second
sector we obtained As and A;, with high frequency A; due its the best tracking
error achieved in the steady-state, for third sector we obtained A;, and for the last
sector of the trajectory, we obtained A;, A, with high frequency A, due its the
best tracking steady-state error compared with other strategies developed in this

thesis. The above results demonstrate the fact that each control strategy yields
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a different performance at various points of the system trajectory. The hierarchical
control strategy performs the best selection of the control strategy taking into account
the tracking error for each configuration with minimum control effort so to achieve
continuously the best overall control performance. The overall performance obtained
by this control strategy is represented in F igures 7.10-7.11. These figures reveal some
peaks along the trajectory due to the switching from one algorithm to another, but
the general trend is to reach the steady-state after a very short transient interval.
The peaks in the throttle position and in the RF power depicted in Figures 7.12-7.13
appear due to the brief time switch and fast return of the robust control strategy
[As] and PI self-tuning control strategy (A;). Almost for the first three sectors of
the trajectory, the control effort is piecewise constant and has a smooth evolution
in the last sector due to the choice of configurations As, Az, A; and A, which yield
the best tracking performance. We can conceive other control structures by selecting
different models instead of selecting a control algorithm, or alternatively using mixed

structures that combine a control algorithm and the model simultaneously.

7.5 Summary

In this chapter, we attempted to select the best real-time control strategy by per-
formance comparisons of the real-time control strategies developed in Chapters 4-6,
namely P/ self-tuning adaptive controller, LQG controller, stochastic minimum vari-
ance adaptive controller, intelligent controller, and robust controller. To realize this,
we use the Mogab-Flamm model of the wafer [21] which assumes that the etch rate
is directly proportional to the fluorine concentration, [F].

In this chapter we have also developed a hierarchical control strategy to select

the best real-time feedback control strategy for each sampling time interval. The hi-
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Figure 7.8: The selection index of the best per-interval control strategy divided into
four sectors of the trajectory.

Legend: (a) The first sector of 1000 samples designates the interval [1, 1000];

(b) The second sector of 1000 samples designates the interval {1001, 2000];

(c) The third sector of 1500 samples designates the interval [2001. 3500];

(d) The fourth sector of 1703 samples designates the interval {3501, 5203].
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Figure 7.9: The overall selection index of the best per-interval control strategy.
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Figure 7.10: The evolution of the Vi, in closed-loop selected by the hierarchical
control strategy without input constraints.

Legend: The star designates Vi, calculated by the algorithm, and the solid line
designates the V.5 set point.
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Figure 7.11: The evolution of the fluorine concentration [F] in closed-loop selected
by the hierarchical control strategy without input constraints.

Legend: The star designates [F] calculated by the algorithm, and the solid line des-
ignates the [F] set point.
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Figure 7.12: The evolution of the throttle position in closed-loop selected by the
hierarchical control strategy without input constraints.
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erarchical control strategy performs the best selection of the control strategy taking
into account the tracking error of each configuration with minimum control effort
to achieve continuously the best overall control performance. This control strategy
confirms that the choice of the best per-interval control action for the PGS system
would achieve good performance for the etching process. We can justify this conclu-
sion by considering the results depicted in Figures 7.10, 7.11 for the V};s5, and fluorine
concentration [F] in closed-loop PGS system. From these simulation results, we can
observe that after a few samples (fast transient) both process variables reach the set

points with good tracking performance.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

To place etching process design and control on a more rational basis, we have devel-
oped in this research both linear and nonlinear models of the PGS system as well as
five MIMO real-time control strategies yielding superior performance in a stochastic
environment. From both theoretical and practical perspectives the following obser-

vations can be made:

e The algorithms use a second-order A RIMA model of the etching process based
only on the experimental input-output data, and a linear model in state-space
representation. We have also explored the possibility of using neural networks
for modelling and control of the RIE system in real-time since precise modelling
of the RIE is difficult due to the extremely complex nature of the particle dy-
namics within plasma. The development of the neuromodels requires consider-
able training and testing. For the training set, the first half of the experimental
input-output data is selected to adjust the weight matrices, and the other half

is used as the testing set.
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The above models represented our basic support for developing multivariable
and intelligent control strategies, namely PI self-tuning controller, LQG con-
troller, stochastic adaptive control using minimum variance identification, ro-

bust control, and hierarchical control strategies.

All the controllers are developed to directly affect the transient behaviour of the
PGS system in closed-loop and all the real-time control strategies are intended

for on-line use.

Past design experience and a prior: information on system dynamics has been

incorporated into the adaptive system design.

Addition of sensors to the adaptive system such as plasma spectrometers and
reflectometers, could improve the state estimation and parameter identification

algorithms substantially.

The algorithms developed could avoid excessive changes in the control input by
taking into account the physical limitations of the throttle valve and RF power

actuators.

A self-tuning regulator was designed by assuming that the system to be con-
trolled is not open-loop minimum-phase and each loop has the same time delay.

The algorithm is relatively simple, reliable and robust.

As the level of disturbances increase, the convergence rate of the performance
index J(k) for the PI self-tuning control, LG control and stochastic adaptive
control algorithms will decrease. The tracking performance may degrade as the

noise levels increase.

Perfect tracking can be obtained for the deterministic (i.e. w(k)=0 and v(k)=0)

case.
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The neuromodels were able to capture the nonlinearities in the throttle valve

actuator and to ensure an accurate representation of the dynamics of the RIE

process.

The development of an optimal neuromodel was complicated by the fact that
back-propagation networks contain several adjustable parameters i.e., number
of hidden layers and hidden neurons, learning rate, momentum, error goal, etc.,

for which the optimal values are initially unknown.

The convergence of the neuromodels also depends on the experimental input-

output data set used to train the neural networks.

Even if the prescribed error goal is reached during the training phase by the
neural networks this fact does not necessarily always guarantee good perfor-
mance. This should be verified in the testing phase (generalization) where it is
possible to discover that the neural networks were not capable of learning the

experimental input-output data sets.

The neurocontrollers eliminate the need for an experienced engineer to tune
the parameters and can be more easily applied to reactive ion etching process.
Furthermore, the real-time neurocontrol strategies for the reactive ion etching
systems can support the efforts of process and equipment engineers by reducing
the number of off-line experiments that must be performed, and by eliminating

the need for building extra equipment prototypes.

Proper choice of neurocontroller parameters (weights) is critical to the perfor-

mance of RIE systems.

The real-time neurocontrol strategy is very robust to a wide range of input

command signals, as well as varying initial conditions and different noise levels.
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e Robust control design ensures that closed-loop stability and performance spec-
ifications are insensitive to unknown components of the plasma dynamics [36].
The proposed real-time robust control strategy for RIE system is capable of pro-
ducing the required transient and steady-state performances by suitable choice

of feedback loop, compensator, and controller parameters.

e In this thesis, a robust control algorithm that ensures stability of the RIE system
in closed-loop has been developed with reduced sensitivity to all the changes
that can occur in the parameters of the etching process. Towards this end we

have used generalized H? and H*strategies as described in [36].

e The performance of the robust control strategy depends also on the selection of

the weighting functions Wi(s), W5(s), and W3(s).

e In a performance comparison of the proposed control strategies, it was observed
that neurocontrol. robust control, LQG, and stochastic minimum variance adap-

tive control yield the best performance.

e The performance of these control strategies differ with respect to the range of
operating conditions. To choose the best strategy when the operating conditions
change, we have proposed a hierarchical control strategy to generate the best

per-interval control action for the PGS system.

o The correlation between the etch rate and fluorine concentration is the main
reason for relating the wafer performance to the PGS performance. This has
motivated us to only focus on developing control strategies to ensure tight con-

trol of the PGS outputs, i.e., Viis and fluorine concentration, [F].
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8.2 Contributions

Among the main contributions in this thesis, we list the following:

e Development of linear models of the P"GS, namely second-order coupled and
decoupled MIMO models with pure delawy and without delay, validated and sim-
ulated in Figures 3.2-3.21. These modells were developed corresponding to the
operating point provided by the expermmental input-output data. The most
accurate of these models seems to be thes coupled MIMO PGS model with pure

delay. This was used to build the stochasstic adaptive control, LG and robust

control strategies.

e Development of four nonlinear neuromodels for the PGS system and controllers,
and four real-time neurocontrol strategises with the simulated results shown in
Figures 5.13-5.16, 3.22-3.29, and Figure-s 5.1-5.8 respectively. The most accu-
rate neuromodel which fits the experime-ntal input-output data seems to be the
second-order nonlinear PGS neuromode:l. This neuromodel is able to capture
the nonlinearities of the throttle valve actuator and to operate in a wide range
of operating conditions. The best suitabl e neurocontroller structure which more
accurately learns the inverse dynamics of the plant uses the same neuromodel
structure i.e., second-order nonlinear P(GS inverse neuromodel. The structure

of these neuromodels appears for the first time in the plasma literature.

e Development of a novel real-time robus't control strategy structure which re-
sponds more accurately to the variation s in plasma parameters, disturbances,

and changes in the set points.

e Development of a novel hierarchical reasl-time control strategy capable of se-

lecting the best per-interval control usimg the architecture depicted in Figure
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7.7. This architecture is proposed for the first time in the plasma literature to

control the PGS system in closed-loop.

® Development of practical aspects of real-time feedback control strategies to ad-
dress a real application problem, namely design of real-time MIMO control
strategies for the highly nonlinear RIE process to improve the manufacturing

characteristics of the plasma.

8.3 Future Work

The problem of proof of stability for the neurocontrol strategies would be a challenging
effort which is essential for dynamic systems analysis. synthesis, and control. This is
one aspect of the future work to be carried out. Possible approaches would be to use
the performance index J(k) as a Lyapunov function, and show that it satisfies the
Lyapunov stability criteria, or associating the control algorithm with a set of nonlinear
time-varying deterministic differential equations [32], and then studying the stability
of these equations that are related to the stability of the closed-loop adaptive system.

For MIMO coupled systems, a suboptimal alternative which is inherently less sen-
sitive to time delay variations and non-minimum phase behaviour is the multivariable
pole assignment method. Using the design methodology presented in [22], it will be
interesting to extend our control design to an on-line stochastic regulator, namely a
self-tuning algorithm based on the minimum variance principle.

A self-organizing fuzzy logic controller using auto regressive moving average model
will be another interesting approach to consider in this research. This algorithm could
be a design methodology for on-line self-organizing fuzzy logic controllers without
using any plant model [38]. The control algorithm obtains the control rules for a

system about which little knowledge is available. Compared with conventional fuzzy
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logic control when knowledge about the system for developing control rules has to
be supplied by an expert, the proposed fuzzy logic controller needs no expert in
developing control rules. The proposed self-organizing fuzzy controller will be a rule-
based type of controller which learns on line how to control the system, and should
be possible to use for the reactive ion etching process. The algorithm will combine

system identification and control knowledge that are obtained through learning and
experience.

Future research could also be directed towards stochastic dual adaptive control
and stochastic adaptive neurocontrol strategies. In this context, it will be useful to
extend the stochastic adaptive control results discussed in Chapter 4 for developing a
neural self-tuning adaptive control algorithm for nonlinear systems. Here the implicit
identification may be performed by a neural network based on minimum variance,
Newton and gradient optimizations with the advantage of increasing the computa-
tional capability due to the parallel processing structure [32]. The neural identifica-
tion schemes and the control law should be robust and computationally efficient for

real-time adaptive control design for the PGS.

Another future direction could be a robust neurocontrol design. In this approach
the neurocontroller structure will be determined so as to be able to subsume the
mapping classes necessary to satisfy the given robustness requirements. The neu-
rocontroller will be trained so that these requirements are actually satisfied. The
means to enable the training algorithm to find the solution satisfying these require-
ments is through the choice of the appropriate cost function. The most important
part of the cost function that incorporates robustness requirements is the set of train-
ing examples. These two aspects, neurocontroller structure and training examples
will form the basis for developing a theoretical foundation for implementing a robust

neurocontroller for the PGS system, based on the methodology outlined in [39].
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The similarities between the reactive ion etching process and the other chemical
processes, such as chemical vapour deposition (CVD), anisotropic wet etching sili-
con (TMAH), plasma enhanced chemical vapour deposition (PECVD), low plasma
chemical vapour deposition (LPCVD), etc., may give us the opportunity to further
improve the theoretical approach (computational efficiency, convergence, stability,
and robustness), and to extend the application field of the algorithms developed in

this thesis to these other processes.

Finally, it is envisaged that the semiconductor manufacturing processes will still
remain an open field and provide a great opportunity for much further applications

of the systems and control techniques.
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