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Abstract

Magnetotransport along non parabolically confined quasi-one-dimensional

channels

Mario J. Venditti

The one-electron spectrum, pertinent to a quantum wire in the presence of a mag-
netic field,is obtained for parabolic and weakly nonparabolic confining potentials.
Different orientations of the magnetic field are considered and the corresponding
ac and dc responses of the wire are evaluated, for electron scattering by impurities
and /or phonons. The height of the power spectrum peak decreases as the magnetic

field is tilted from the normal direction to that along the wire.
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Chapter 1

Introduction

1.1 Quantum wires

As electronic devices become smé.ller and smaller one asks the question how
small can they be made and to what purpose? Presently, most devices are es-
sentially two dimensional in nature, effectively confining the electron motion with
what is referred to as an inversion layer [1, 20]. Ideally, one would like to create
devices that further take advantage of the electron’s confinement. Towards this
end the ultimate devices would be those in which the electron motion is practi-
cally confined to one (quantum wires) or zero (quantum dots) dimensions. This
confinement of the electron motion introduces quantum effects that then prove to

be useful in the design of electronic devices.



A quantum wire is an electronic device in which the electron is free to travel
in one direction only. This confinement leads to a delocalized wave function for
the electron which is referred to as an extended state [17].Depending on the mean
free path (l.) of the electron the quantum wire will exhibit different transport
properties. If [, is greater than the length or width of the wire we have what is
commonly referred to as ballistic transport {1]. In this regime the extended states
exist throughout the length of the wire and the electrons experience only the effect
of the confinement potential. The quantum wire acts like a waveguide in this
regime. If [, is smaller than the length of the wire then there could be scattering
from impurities. This could lead to the electron being trapped by the impurities
into what is called a localized state [17], and so the transport properties would
be influenced by the position and number of impurities. Finally, there could be
scattering of the electron by phonons, where transport takes place mostly through
diffusion of the electron through the material. Simply put, the electron is pushed
from one localized state into another by the inelastic scattering with phonons [1]. In
all cases, the confinement potential will play a strong role in the electron transport
through the wire, by, at the very least modifying the form of the electron wave
function.

The quantum wire is constructed from a two-dimensional semiconductor (fre-
quently an AlGaAs/GaAs heterostructure) that has been squeezed in one dimen-

2



sion [1]-[4]. This squeezing is accomplished using several methods. One method
would be etching, where material is physically removed from the semiconductor
thus creating a channel where the electrons are made to move in. Another method
would be to place a metal split gate on the heterostructure and then apply a neg-
ative potential or bias on the metal. This potential would then push the electrons
from underneath the split gate essentially creating a one dimensional channel, see

Fig. 1.1



Confinement
Potential

Figure 1.1: Schematic diagram of the front face of a quantum wire. The confine-
ment of the two-dimensional electron gas is done by applying a negative bias across

two split gates placed on the top of the AlGaAs/GaAs heterostructure.



1.2 Motivation

Essentially, the form of the confinement potential will affect the transport
properties of the quantum wire. If the wire is formed using destructive means, such
as etching of the heterostructure, then the confinement potential can be modelled
quite accurately using a square well potential [1, 2, 3]. However, when the quantum
wire is made using a split gate, then determining the form of the confinement
potential is not so straightforward. In most cases the potential is assumed to
be harmonic and so the equations of transport theory prove to be analytically
tractable.

Difficulties are encountered when the form of the confinement potential is de-
termined using self-consistent calculations [5]- [7]; they show that, in addition to
the harmonic term, there must be higher-order terms present in the confinement
potential especially as the gate voltage is decreased. If the form of the latter found
using the self-consistent calculations is used to determine the transport proper-
ties, the equations of linear transport theory are no longer tractable and numerical
methods must be used. Furthermore, power spectrum results [26] in the edge states
of a two dimensional electron gas show that the confinement of one dimensional
systems is essentially harmonic with small anharmonic terms present.

As a result, we try and model the confinement potential using the harmonic



potential with the addition of small higher-order terms. This enables us to treat
the problem as a harmonic one with small corrections using perturbation theory.
This would render the relevant transport formulas fairly tractable and the end

result might be closer to what is found when the full self-consistent theory is used.

1.3 OQOutline

The work is organized as follows. In chapter 2, we study the problem of the
energetics of a free electron gas. Schrddinger’s one-electron equation is solved
for various orientations of the magnetic field using the method of separation of
variables. The correction to the confinement is introduced for the magnetic field
perpendicular to the plane of the wire as well as parallel to the wire. In these
two cases perturbation theory can be used to determine the correction to the
eigenvalues and wave functions. These results are used to determine the density
of states for the different orientations of the magnetic field.

Chapter 3 deals with the response of the wire to an applied d.c. current. The
conductivity tensor is calculated for various scattering potentials, both elastic and
inelastic. Numerical results are obtained for the conductivity tensors when results
about the form of the confinement potential can be inferred.

In chapter 4 we study the power spectrum of the wire or the response of the



wire to an applied a.c. current. The conductivity tensors are found in a general
form for each orientation of the magnetic field. This can be done because the
non-diagonal components needed for the calculation of the power spectrum deal
solely with the energy difference between subbands. The power spectrum of the
anharmonic potential is compared to that of the harmonic one.

Chapter 5 summarizes the conclusions of the thesis and discuses possible further

areas of study.



Chapter 2

Schrodinger Exquation

In order to determine the response of the wire to external fields (magnetic
and electric), we can work within the framework of linear response theory, and in
particular the Kubo-Greenwood formulas. These formulas make use of the single
electron approximation. Accordimgly, the many-electron system is treated in an
average or Hartree sense, i.e. as a noninteracting Fermi gas. As a result, the
evaluation of these formulas requires the energy and wave function of a single-
electron.

In the following chapter we solve the Schrodinger equation for various orien-
tations of the magnetic field. Ww assume that the confinement potential of the
quantum wire is a harmonic one, mnaking it possible to diagonalize the Schrodinger

equation. This enables us to use the method of separation of variables to determine

8



its eigenvalues and eigenfunctions. Small corrections (cubic and higher order) to
the confinement potential are then treated using perturbation theory.
The results are used to find the density of states (DOS), which would then tell

us something about the relative effect of the different confining potentials.

2.1 Magnetic field perpendicular to the wire

We consider a quantum wire in the x-y plane, with the electron motion along
the x-axis and a magnetic field perpendicular to the (x,y) plane of the wire. The
Schrodinger equation [9, 8] is given by

A VA

The function V' (y), is used to model the confining potential of the wire along
the y axis. This confining potential breaks the symmetry that would normally
exist for a two dimensional device, i.e. we are limited to those vector potentials A
that will not confine the motion of the electron in the x direction. As a result, we
choose a Landau gauge of the form A= (- By,0,0) which results in a magnetic
field that is in the z direction and does not confine the motion of the electron along
the x axis.

Assuming solutions of the form ¥(z,y) = AU(y)exp(tk,z) the Schrédinger



equation can be rewritten in the form

R LUG) | m

bk,
om a2t 2 wi(y — W)ZU(?J) +V(y)Ul(y)

%
- [e_ o

ES 22)
where w, = eB/m is the cyclotron frequency. Equation (2.2) can be solved analyt-

ically for a harmonic confining potential V' (y) = mQ2y?/2. The energy eigenvalue

is then given by
R2k2

e=(n+1/2)hw + o

(2.3)

with the effective mass m = (mw?)/(w? — w2) and @w? = w? + Q2. The wave

functions (eigenfunctions) are of the form

U(z,y) = |n, kz) =

|7 Hnlaty = o) (LU sy (2

where o = y/mw/h . In the following we model the confinement V(y) using a

parabolic potential with the addition of smaller higher order terms. In the first
case V(y) = mQ%y?/2 + My® and in the second one, V(y) = mQ2y?/2 + Ay® +yy*.
A linear term By is not added because it would result in a constant shift of the
energy levels and would reappear only in the arguement as a shift in the center of

10



cyclotron orbit. This shift in energy and orbit center could then be absorbed into

the y, term with a simple change in coordinate axes.

2.1.1 Cubic corrections to the confining potential
Inserting V (y) = m/2Q%y?+Ay? into the Schrédinger equation (2.2) and making
the substitution ¥y’ = y — y, gives the equation

—R2AUWY —Y) ™M ,9r.,
- v + 5wy U (¥ ~ ¥o)

+A [¥3 + 3y + 3y U ~ vo) = €UW ~ vo)- (2.5)

The energy eigenvalue € = e — h2k2/2m — A\y2, and y, = bi%k,, with b = w./w,
and 2 = hi/mw.

The Hamiltonian can be considered to be the sum of H,, which is the one-
dimensional harmonic oscillator with solution Eq.(2.4), and a perturbation H; =

Ay + 3y2y’ + 3y,y’?]. The energy eigenvalue of the unperturbed Hamiltonian is

21.2

1 h*k
© — nd i 3 26
€ (n+ 2)fzw+ 57, + Ay, (2.6)

The perturbed Hamiltonian, H;, cannot be diagonalized but can be approxi-
mated using perturbation theory[9, 8, 10]. Also, H, is the sum of an odd (¥ +

11



3y%y’) and an even (3y,y’?) function of ¥’ and so by the recursion relations and
orthogonality properties of the Hermite polynomials the odd function would give
zero first-order corrections to the 'energy. The first-order energy corrections of the
even function are

€W = \(n, k. |3yoy'?|n, kz)- (2.7)

The above expression can be simplified quite readily to give

3\Y, 1
E(l) = 7(7’&4‘ 5)- (2;8)

The second-order correction to the energy eigenvalues is given by

@ = { kel il o) (m | ). 29)
= En — Bn

where H,; is the perturbed Hamiltonian. This expression can be evaluated by
expanding H,|n, k.) using the recursion relation of the Hermite polynomials. Then
the matrix (m, kz|H;|n, kz) can be simplified using the orthogonality properties and

Eq. (2.9) to give

22 2
2 — 2 2,2
e® = s B+ +2+9(n+1) [n+ (1 +22%2)]" +
- _g/\2y2
- 202y2) %] + ——22. 2.10
In (n + 2a%y2)°] + YT (2.10)
Hence, the eigenvalue of the complete Hamiltonian H, + H, is
1 kI | oy, .@ 3
e=(n+ -2-)hw + 5 + eV + e + Ayl (2.11)

12



A plot of the eigenvalue as a function of the wave vector k. is shown in Fig.

2.1.
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The corrected wave function has both first and second-order corrections. The

first-order corrections are given by

kz T
|n1 k;)l — Z (nEIH]_Enk )lm’ kz)(O); (2_12)
m#n n -~ ~m

the second order corrections can be ignored because they will not contribute much
to any of the expectation values (n, kz|®® X|n, k;)® — A* where X is any operator
and )\ is the strength of the perturbation. Also, the cross terms between the first
and second-order corrections can be ignored because they will give terms of order
A3

With these det'a.ils Eq. (2.12) can be evaluated using the matrix (n, kz|Hy|m, kz)

that was found for the energy corrections to give

Ann—-1)(n~-2)

3\y, [n(n—1
I, ke) = 3a3h In =3, ka) + 4a?hw 2 : In =2, k)

3Ny, [(n+1) [(n+1)
ahw 2 202

ahwo V 2

1200 2R g ) + -

2&2 + yg] ln + 11 kI)

3AY, n+2)(n+1) in

- 2,k
402k 2 +2,kz)

-“A/(n+3)(n+2) (n+1)
3o hw

In + 3, kz) (2.13)
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2.1.2 Fourth-degree polynomial correction to the confining
potential

Inserting the potential V (y) = mQ2y?/2 + Ay + vyy* into Eq.(2.2) gives

—h'z dzU(yl - 'yo) m o, o0 '
S e +Swy U (¥ — %)

+ [yy"* + Iy +Ay? + T U — vo) = €U — %), (2.14)

where I" = A + 4vy,, A = 3\y, + 67y2, and T = 3Xy2 + 6~vy3. The eigenvalues are

k2
¢ =e— = - hyd — 7yl (2.15)

As in the correction to the cubic term in the previous section, we have H,, the
Hamiltonian for the one-dimensional harmonic oscillator, and a perturbation Hj.

The first-order corrections to the energy are given by
el = (nk.|vy'* + Ty + Ay + Yy |nks). (2.16)

Expanding H, using the recursion relations of the Hermite polynomials, only the

even functions will contribute to the energy. The result is
= T [n® —n +1] +L(n+ 1)2+£(n+—1—). (2.17)
2at ot a? 2

16



The second-order energy correction is found using Eq. (2.9); it is given by

@ — —I'?2(n+3)(n+2)(n+1) . I2(n— 2)(n—1)n
24bhro 245k

n+l (3n+1C T)\? n (3nlC T)\?
T 2hw ( 2 a) T 2hw \ 223 ta) (2.18)
Thus the corrected energy eigenvalue is
1 Rk 3 4, (1) 4 (2
€= (n-rﬁ)ﬁ‘W'r 57, + Ay, +yy, + € + e (2.19)

A plot of the eigenvalue as a function of the wave vector k. is shown in Fig.

2.2.

17
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2.1.3 Density of States

The density of states (DOS) for the three separate energy spectrums has an
exact solution for the harmonic oscillator but must be solved numerically for the

two perturbed problems. The general form of the DOS [11] is

D =23 ;“—; / dk.8(e — en(k2)) (2.20)

where L. is the length of the quantum wire Inserting the energy eigenvalue of the

harmonic oscillator, Eq. (2.3) into the above equation results in

K2k?

DL(:) = %Zﬂ:/dkxé(e-(n—i- 1/2) koo —

Making the substitution v = h%k2 /27, the integral can readily be solved to give

D(e) =/ 2::&2 > \}E (2.22)

with £ = € — (n + 1/2)hw. If, however, Lorentzian broadening of the DOS is

introduced, i.e. if the change 6(¢ — €x k) — ['/7[(€ — €n.)?> + %] is made , then

the DOS becomes

! r
D == / dko— (k/, ’)’)2+F2. (2.23)

This expression can be evaluated analytically [12] for the harmonic oscillator; the

result is

19



7 cos(§)
D(g) = 7r2ﬁ,z\/——(E2+p2)4

o k% + 2gk cos(Z) + ¢° k2 — g
[‘“(5’ . (k2 ~Sgkcos(2) i Rl (2qks'in(%)>] (2.24)

where, E = e — (n + 1/2)hco, ¢ = (m2(E? + I‘z)/h‘*)%, cosa = E/V/E? +12, and
sinae = ['/VEZ+T2. If it is the DOS for the perturbed energy spectrum that
we are looking for, then we replace the energy eigenvalue above with the energy
eigenvalues given by Eq.(2.11) and (2.19) and evaluate numerically.

As seen in Fig.2.3, the DOS for the different confining potentials is almost
identical, so much so that we may estimate the DOS for all corrected potentials with
the DOS for the harmonic problem. This will greatly simplify further calculations,
e.g. that of the Fermi energy without there being any appreciable difference in the

final result.

20
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2.2 Magnetic field parallel to the wire axis

We consider the gauge A = (0,0, By), whiich gives a magnetic field in the x
direction, parallel to the electron motion. Insesrting this A into the Schrodinger
Eq. (2.1) gives

2 0¥  R? %Y
~5 522 E—T;—ayz +e2B2y2U + V(y)¥ = eV (2.25)

As in the case where the magnetic field is perpemdicular to the wire, exact solutions
to the above equation can be found for V(y) = mQ?y?/2. When plane wave
solutions are assumed in the x direction then thes resulting equation for y is nothing

more than the quantum harmonic oscillator witth w? = Q? + w?2. Solutions for the

wave equation are

1 2
U(z,y) = [nk) = \/ mHn-(y) exp(—;% + 1k.z), (2.26)

and the eigenvalue
R2k2
2m

e=(n+ %)ﬁw + (2.27)

where | = h/mwo.

2.2.1 Cubic corrections to the coenfining potential

When a non-parabolic term V(y) is introdunced into the Hamiltonian then the
eigenvalues and eigenfunctions can be obtained using perturbation theory. We
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consider the confining potential V(y) = mQ2y?/2 + A\y® which allows us to split
the.Ha.miltonia.n into a harmonic oscillator part H, and a perturbation H; = Ays.
Due to the orthogonality of the Hermite polynomials [9, 10], H; must be treated
using second-order perturbation theory. The corrections to the energy eigenvalues

are found by inserting H; into Eq. (2.9),

nk|\y3|mk Y (mK' | Ay |nk
6(2) — Z ( I leo _)-(60 [ I ) (228)
m#,l nk mk’
The evaluation of this formula gives
@ )\2 l6 0

for the correction to the eigenvalue. The energy eigenvalue for the complete Hamil-
tonian, H, + Hi, is given by

1 ﬁ2k§ 26
€= (n -+ 3) +

5~ 3 [30n% + 30n + 11]. (2.30)

A plot of the eigenvalue as a function of the wave vector k. is shown in Fig.

2.4 for n=0.
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The corrections to the wave function follow the same procedure as in the B L
case where, the first-order corrections are given by Eq. (2.12); the second-order
corrections can be neglected because their contribution is of order A2. Therefore,

inserting H; into Eq. (2.12) and simplifying gives

A3 \/n(n —1){(n—2) [9n3
M = -3k Z n-
ln’ kx) ﬁ [ 72 In 37 :) + 8 In 17 kz)

—1/ 2 ;— 1)3‘|n +1,kz) — \ﬁz . 3)(n7—; A+ In+3,kz)]  (2:31)
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Figure 2.4: Eigenvalues as a function of the wave vector k; with n = 0. A has units

of eV/m3.
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2.2.2 Fourth-degree polynomial correction to the confining
potential

Th.e confining potential of the quantum wire is modeled by adding V' (y) = %iy2+
Ay® +y* to the Hamiltonian of Eq. (2.25). As in the case with the cubic term, the
Hamiltonian can be divided into a harmonic oscillator part, H,,and a perturbation
H,. First and second-order perturbation theory is used in order to obtain the

corrections to the eigenvalues. The first-order corrections are given by
M) = (n, kx| A\y® + ytIn, kz). (2.32)

Expanding V(y) using the recursion relations [9, 10] and simplifying with the

orthogonality of the Hermite polynomials gives

(1) 3yl 2

e ==——[2n®+2n+ 1]. (2.33)
The second-order corrections to the eigenvalues are found by inserting V'(y) into

Eq. (2.30). The result is

k 4 3 ! ! 4 3
@ =3 (nklvy* + Ay lr?k )(ﬂ:k lvy® + Ay°|nk) (2.34)
€nk — Emk’

m¥#n
A straightforward evaluation gives

72 l8

8khwo

2 2218 2
® = — 25— [30n" +30n + 11] +

— [2n® + 3n? + Tn + 3] (2.35)
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The energy eigenvalue for the complete Hamiltonian, H, + H;, is

ﬁ2k2
e=(n+ %) + E;ni + e €3, (2.36)

A plot of the eigenvalue as a function of the wave vector &, is shown in Fig.

2.5forn=0.
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Figure 2.5: Eigenvalues as a function of the wave vector k; with n = 0. Again A

has units of eV/m? and v has units of eV /m?*.
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2.2.3 Density of States

The procedure for finding the DOS is identical to that for the magnetic field

perpendicular to the wire. Using Eq. (2.20)) and the eigenvalue Eq. (2.27), the

D = /53 O \/IE (2.37)

with E = € — (n + 3)hw.  When a Lorentziawn broadening is introduced then the

DOS is

DOS is found using Eq. (2.23). The DOS then is
[m cos($)
D(g = 7r2h Z (B2 + r2)4

o k? +2qkcos(2) + ¢= k2 — ¢?
tan(—)1 Z 2 —_— 2.
% [ an(z) n (k2 —2gkcos(§) + q:2> +oarctan (2qksin(%))] - (238)

with ¢ = (m?(E? + Fz)/h‘*)‘%, cosa = E/VEZ+12, and sina =T/VEZ+T2.
The DOS for the confining potential with higher-order terms must be solved
numerically. The result of Fig. 2.6 is identical to that found for the magnetic
field perpendicular to the quantum wire. Again the small change in the confining
potential does not have an appreciable effect on the DOS. As a result, we can use

the DOS for the harmonic potential as an esttimate in all further calculations.
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Figure 2.6: The DOS for three different confining potentials(shifted along the x
axis). A perturbation of up to 20% of the harmonic confinement has little effect

upon the DOS. X has units of eV/m3 and 7 has units of eV /m?*.
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2.3 Magnetic field that is in the plane but per-

pendicular to a wire of finite thickness

We consider a model of a wire that has finite thickness in the z axis . This
extra dimension affords us greater freedom in picking a gauge that will diago-
nalize the Schrddinger equation and leaves the electron free to move in one of
the directions (along the x axis). We consider the confining potential V(y,z) =
m [Q2y? + Q22%] /2 such that Q, > Q, essentially making the wire much thin-
ner along the z axis. The gauge A = (—Bz,0,0) gives a magnetic field in the y

direction and inserting it into the Schrdodinger equation gives

r? 8% K2 9> h? 8%

_por, o= _LOF 22,2
2m6:1:2+ 2m 0y2  2m 0z2 +e By
ma2,2 2.2 moaa_ o OO0

+5 Qy° + Qz2°]¥ + 5 We? zhwzaz = el (2.39)

This Schrédinger equation is separable if solutions are of the form ¥(z,y,z2) =
CZ(2)Y (y) exp(rkzx). Inserting ¥(z,y, 2) into Eq. (2.39) we obtain two equations
both one-dimensional harmonic oscillators. The wave function for the Schrédinger

equation is

¥(z,y,2) =

z 2 T
H, [k 1 _ (2 b2k yz] (2.40)

N R .
Jrensl, P [Z =% 502 202
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and the eigenvalue

€= s+—l- hw + ﬁQy-:-ﬁ'zIfz, (2.41)
] e ] T

where M = m[w/Q? I = /R/mw, b = w./w, and [, = \/R/mS,.

2.3.1 Density of States

Insertion of Eq. (2.41) into Eq. ( 2.20) and following the same procedure before
gives
m 1
D(e) =\ 5352 zﬂ:z_: T (2.42)
where E = € — (s + 1/2) hw — (n + 1/2) AiQ),. The Lorenztian broadened DOS is
also treated in the same manner as before. Inserting the eigenvalue (2.41) into Eq.

(2.23) we obtain

cos(§)
m[ZZ (E? + T?)1 8

o k% + 2gkcos(§) + ¢ ( — g2 )
= 2 — 2 :
[ta.n(2) o (k2 — 2gkcos(3) +4* ) + 2arctan 2gk sin(§) ] (2.43)

with g = (m2(E? + I?) /%)%, cosa = E/VEZ+ 12, and sina = I'/VEE + I

32



2.4 Magnetic field in the (x-z) plane

We consider the gauge A = (—B,y, 0, Bjy) similar to ref.[15, 16], which gives
a magnetic field in the (x-z) plane that makes an angle § = arctan(—B, /B)) with
the x axis. If the confining potential is harmonic, mQ2y?/2, then the Schrédinger

equation is

K2 520 RV e2B2 ,  €’Bi

" 2m 822 +_2m6y2 2m v+ 2m vy

+2022 — 2ehBydv _ o (2.44)
2 m Oz

Assuming solutions of the form ¥ (z, y) = exp(ik.z)#(y), Eq. (2.44) can be further

simplified and put in the form

h2 d2¢ mw2 2 ;
—2mdy2+ 2 ly+vl = [6

(2.45)

R2E: wiR%k2
T 2m * 2w2mJ¢

where, w = w? + Q?, w? = Wi +wi, w. = eB,/m, and w; = eBy/m. The y, term
is bl%k,, with b = w, /o and i? = A/mw. The solution to Eq. (2.45) is the wave

function

1 y + bl%k, (y + bl2k;)?
Ui (2,y) = 4 [ = H, ? kpz — L2 F)Ty (946
we) = [ ( : )exp(z ) (249)




The eigenvalue is

2,2
e=(n+%)h‘.w+hk’

o (2.47)

and the effective mass m = m/(1 — b2).

2.4.1 Density of states

Following the steps used to determine the DOS for other orientations of the

B-field, we find the DOS to be identical in form to that given by Eq. (2.22)
m 1
D(e) = 1/ o253 ; 75 (2.48)

2.5 Magnetic field in the (x-y) plane of a wire

with finite thickness

We use the gauge A = (—Bjz, Byz,0) [15, 16] so that the magnetic field is
in the (x-y) plane and makes an angle & = arctan(B, /B)) with the y axis. If we
assume that the confining potential is harmonic in both the z and y directions,

with Q. > Q,, then the Schrédinger equation becomes
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_ K2 3?0 4o K2 3%¥ 4 h? 5%T
2m 922 2m dy? 2m 022

m
+ szz2‘lf

v 9T  mQ2y?
+zﬁw+~$ + —thw) z 5y +— ¥ =el, (2.49)
where, wy = eBy/m, w, = eB,/m,and w? = wj +w? + Q. This equation is

not separable. However, if we assume B_ > B, then the —2hw;z0¥ /0y term
can be treated as a perturbation with the rest of the equation being separable.
Assuming solutions of the form ¥ = C¢(y)Z(z) exp(zkzz), Eq. (2.49) results in
two one-dimensional harmonic oscillators for the y and z variables and plane wave

solutions in the x variable. The wave functions to the unperturbed problem are

then
— BI2
lI,-n,s,lc:z (.’E, y) = = L Hn % Hs (_2)
lpls Lo/T27tssin! L, A
(z — Bl?lkx)z y? _
€Xp ("—Q—Z-%— - ﬁ + 1k . (2.50)

where, b = w, /w, [2 = k/mw and I, = h/mQ,. The eigenvalues are

h2k2
2m .

€ = (n+ %)hw + (s + %)hﬂy + (2.51)

and the effective mass m = m/(1 — b?)
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2.5.1 Perturbation theory

The perturbation term o« 8¥/dy in Eq. (2.49) will not give any first order
corrections (see [9, 10]) but can be treated using second-order perturbation theory.
The energy correction is given by inserting this perturbation into Eq.(2.9), i.e.,

a 7 7 4 ! )
(n, s, kzlzg;|n', &, kp (8, kolz 5 n, 5, kz) (2.52)

€@ = R

n#s En.,s,k, - -En',s’,lc'=

Using the recursion relations and orthogonality properties of the Hermite polyno-

mials, this formula can be simplified to give

2092
(@ _ it | s@ + noy — 25y (2.53)
T 2w? w? — wf ) |
The total energy is the sum of Egs. (2.51), and (2.53)
1 1 R2k2
_ 1 1 z 4 (@) 2.54
€ (n+2)hw+(s+2)ﬁ,9y+ T +€ (2.54)

2.5.2 Density of states

Using Eq. (2.20) for the DOS, we can derive the expression

Doy — [ m 1 i 2.55
(© 2”25222\/e—(n+%)ﬁw—(3+%)ﬁﬂy—€(2’ o

§
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2.6 Magnetic field in the (y-z) plane of a wire of

finite thickness

We use the gauge A = (B .2—B,y,0,0) [15, 16], which gives a magnetic field in
the (y-z) plane that makes an angle § = arctan(B, /B,) with the z axis. Inserting
this gauge into the Schriodinger equation along with a confining potential of the

form m[Q2y? + 022%] /2, where Q. > Q,, we have

__h2 62\If+_ﬁ.2 62\Il+_ﬁ2 *¥ m_o
2m 9x2 2m 0y? 2m 0z2 2

T2 AL L -
+2wzz2\If + 2w,y o + zh‘mq_zax + zw*szy‘I/ =el. (2.56)

In this equation we have w = QF + w}, w. = Q2 +w?, w, =eB,/m, and w; =
eB, /m.

The cross term mw_ w, zy /2 in Eq. (2.56) is not separable. However, if we make
the assumption w; > w,, the non-separable term can be treated as a perturbation.
The rest of the equation can be dealt with if we choose solutions of the form

Cd(y)Z(z) exp(rk.xz). As a result, we obtain equations for a harmonic oscillator in
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y and z directions and plane-wave solutions in x. The wave function is of the form

1 y — b2k, z + 6,2k,
v S x, - —_ H, = H _
s e(5:9) \/llsz\/'E2"+3s!n! " ( z ) ‘ ( L.

(y — %) (2 + b.12k,)°
X exp (— T — 21.3 + ke ],

where b = wiw, 2= %, b, = w, /w;, and I, = h/mw,. The eigenvalues are

1 1
e=(n+ i)ﬁw+(s+ 5)}%” +

h2k2
2m

(2.57)

and the effective mass 7 = m/(1 + b2 — b2).

2.6.1 Perturbation theory

The corrected eigenvalue is found using second-order perturbation theory. As
in the previous sections the perturbation is an odd function of the z and y variables
and so by the orthogonality of the Hermite polynomials the first-order correction
is zero. Inserting the perturbation term mw, w +2y/2 in Eq. (2.9) the correction is
found to be

hesieot [nw, — mwo] (2.58)
= . . i

2 —
8ww, (w? — wjt

The effect of a magnetic field tilted to the plane of the quantum wire was
studied experimentally in ref. [13, 14], they showed that the motion of the electron
is clearly affected by both components of the magnetic field. However, the results
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they found were for large § and so the results found in Eq. (2.56)-(2.58) are not

applicable and the solution to Eq. (2.56) would have to be found numerically.

2.6.2 Density of states

Using Eq. (2.20) we obtain the DOS as

e — [ 1 i 9.59
N e

2.7 Discussion

The Schrddinger equation has been solved for six different orientations of the
magnetic field. The confining potential was chosen to be harmonic in all cases
with anharmonic terms evaluated only when the magnetic field is perpendicular or
parallel to the plane of the wire. The reason is, that for all other orientations of the
magnetic field the energy eigenvalues are not as simple to evaluate. In most cases,
other subbands are introduced (whenever the wire has a finite thickness) further
complicating the application of perturbation theory when the anharmonic terms
are added. Furthermore, when the magnetic field makes an angle with respect
to one of the major axes, the Schrédinger equation is not always separable. If,
however, one of the components of the magnetic field is far greater than the other
we may apply perturbation theory. Also, when the tilt of the magnetic field is taken
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to be very small, the solutions are very similar to those for which the magnetic
field is along one of the major axes.

The eigenvalues are used to determine the DOS of the quantum wire. By com-
paring the DOS for the different confinement potentials we are able to determine
what effect these extra terms will have on the Fermi level. The graphs, Fig. 2.3
and 2.6 of the different DOS show very little difference between them and so the
Fermi level can also be assumed to change very little with the addition of the small

anharmonic terms.
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Chapter 3

d.c. Conductivity tensor

3.1 Kubo-Greenwood formulas

In the one electron approximation the d.c. conductivity tensor can be ob-
tained from the Kubo-Greenwood formulas [17, 21]. These formulas relate the
one-electron energy and wave function to the conductivity tensor, by treating elec-
tron collisions with impurities and phonons as small perturbations. In a given
representation the density operator has a "diagonal” and " non-diagonal” contribu-
tion. The corresponding diagonal contribution to the conductivity can be written

[19] as the sum of a diffusion term

_ pe €€
T (0) = 57D fell — fe)r{ee)uivs, (3.1)
3
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and a collision term
_ Be £ _ €2
ou(0) = 557 D D fell = fe)Weg(of, ~ of) (3:2)
£ &

Here,|{) is the eigenstate,B = 1/kpT, v§ = (€|uu[€) is the expectation value of
the velocity operator in the p direction, V' the volume of the sample, €, the one
electron energy and of, = (§|,[€) is the expectation value of the position operator

of the electron. The relaxation time 7 is given by

5 =2 e, (3:3)

and Wee is the transition matrix given by Fermi’s golden rule [9]
27rN 2 2
Wee = Z U(@) P exp(GT - 7)€ P8 (ec — ee); (3-9)

N; is the concentration of the impurities and U(q) the Fourier transform of the
impurity potential.

The nondiagonal contribution of the conductivity [19] makes-explicit use of
the nondiagonal velocity elements. In this case (¢'|v,|€) = 0 and so there is no

contribution from o7¢(0) to the total conductivity tensor.

3.1.1 Impurity Scattering

At low temperature impurity scattering dominates the conductivity of the quan-
tum wire and we model its effect using three different potentials [20]. One choice
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is the Gaussian potential

Vo exp(=2)
'n'd?e}(p daz”’

V(r) = (3-5)
where V, is a constant, proportional to its strength, and d is its effective range.

Another choice is the Dirac § —function potential
V() = Vé@), (3.6)

which would model the extreme case of the Gaussian potential (d — 0), where
the electron is scattered "suddenly” by a neutral impurity. Finally, we use the
screened Coulomb potential,

V(‘F) — 62 expe(l’,;kslﬂ), (3'7)

to model the scattering of an electron by a charged impurity. The effect of these

potentials is evaluated using the Golden rule Eq. (3.4), which makes use of the

Fourier transform of the potentials. The transform of Eq. (3.5) is

2
U(@) = 2 exp(- 2L, (38)

with g7 = ¢2 +¢2. The transform of the §—function and screened-Coulomb poten-

tial are, respectively,

U@=%§ (3.9)

) 2
U@ = 271’62‘/ q—J‘—:;—lfi (3.10)
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3.1.2 Phonon Scattering

The transition matrix Wee [17, 20, 24] for electron- phonon scattering is

Weer = > _[Q*N, + Q~(1 + N,)], (3.11)

q

where
Q* = %IF(Q) [PI(€"| exp (i@ - P)|E)|6(Eg — Eg = hwy). (3-12)

Here F(q) is the Fourier transform of the electron- phonon interaction, w, the
phonon frequency, and N, the average number of phonons. Two interactions are
assumed to dominate, acoustic phonons at low temperatures and optical phonons

at high temperatures. The interaction potential for the acoustic phonons [20] is,

c2

m—;qa (3.13)

IF(@)* =

with p being the density of the material, u, the velocity of sound in it, and c a con-

stant. For the purpose of simplifying the calculations, we make the approximation

g=qL = Q:z:+qy-

Optical phonons [20] are modeled with the interaction
r2D* D
F(P?=—""2 == 14

where F = Fw; and D is a constant.
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3.2 Magnetic field perpendicular to the wire

3.2.1 Matrix elements

When evaluating the conductivity tensor, given by Eq. (3.1) or Eq. (3.2), we
use the matrix elements [(nk|exp(iG- 7)|n’'k’)|2. This integral can be solved for the

unperturbed wave function given in Eq. (2.4) and the result is [12]
e n'! Im n-n
|(nklexp(aq-F)n'k) [* = —u™ e ™| LL (W) 0k k—g. = |Jan () *6pr—.., (3.15)

with u = [2(82¢2 + ¢2)/2 and L% ™"(u) the Laguerre polynomial.The same wave
function is used to find the expectation values for the position and velocity oper-
ators

(nklaz|nk) =0, (nk|oy|nk) = bl%k; (3.16)

hky
m

(nk|ug|nk) = =%, (nk|v,|nk) = 0. (3.17)

3.2.2 Conductivity tensor for impurity scattering

Gaussian potential

Before the conductivity tensors can be determined, the relaxation time 7 and
the transition probability W from state £’ to state £ must be calculated. Inserting

the matrix elements (3.15) - (3.17) into Eq. (3.4) and considering a two-dimensional
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sample of area A we obtain

27rN
WfE' = nn’ I25k' k_q:cf(ef - 651) (318)
Using this result in Eq. (3.3) we obtain
1_ NVZ 2 2 2
T 27hA <o ;exP(—qld [ O () [*0p k—g. O (€6 ~ €¢r)- (3.19)

When considering elastic scattering by impurities we assume that there is no
transitions between different Landau levels so that, n' — n and |Jp.(u)[? —
| Jan(u)]? = exp(—u)| L. (u)|?. In order to simplify Eq. (3.19), the two sums can be
converted into integrals 3, = L. [ dk;/2m and 3, = A [ [ dg.dg,/4n2. The §
function can be expanded in terms of g; to give Mm[é(g, — 2k;) + §(gz)]/k-R%. We

can then write Eq. (3.19) in the form

1 mNVL

r T ok, / day exp(~g;d*/2) [17(0, g)I* + exp(—2k2d%)| T (kz, gy) ] -

(3.20)

Inserting the inverse of Eq. (3.20) into Eq. (3.1) gives the diffusion term’s contri-

bution to the conductivity as

_ 8nrdme?s
Orz = ﬁlM‘/osz

Fare (1= fri, Yeoo( )2
" nzkz [ exp(—q2d?/2)[]J (0, g,) |2 + exp(—2k2d?)|J (kz, ¢y) |2]dgy (3.21)
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Also, because (nk|vy|nk) =0 we have
Oyy = Ozy = Oyz = 0. (3.22)

Since impurity scattering dominates at low temperatures the expression for o,
can be further simplified with the relation Bfne, (1 — fur.) — 0(€nk. — €F) as

T — 0. The diffusion term of the conductivity can be written in the form

2m2h°e?

Ozz — m3MV;2A

8(en k. — €5)k3dk;

x ;/ [ exp(—qid?/2)[|7(0, ¢) 2 +exP(“2k§d2)|J(kz,qy)lz]dqy'(3‘23)

Making use of the substitution v = A2k2/27%, the integral over k, states can be

evaluated to give

4m2eh E
022(0) = == ViA 5;: T E (3.24)

This gives the conductivity as a function of E = €5 — (n + 1)hiw; as a result o,,

is a function of the magnetic field B. The function I,(E, ¢,) must be evaluated

numerically and is given by

a’u 2mb2E
L(B.q) = [ dayexe(=G) [IL)f + KPR E o], 329

with u = 12¢2/2, K = exp(—4r°Em/R?), a® = d® + 2, and r* = d° + b%1?/2.
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In Fig. 3.1, we have plotted Eq. (3.24) as a function of the magnetic field. it
is evident from the form of the graph that the dominant term in the expression
is (1 — ) = 1 — (w/w)? when the magnetic field is above 1 Tesla. However,
below 1 Tesla the dominant term will be the the integral I, (E, ¢,), specifically the
Laguerre polynomials which will increase with an increasing magnetic field. This
leads to the peak in Fig. 3.1. Essentially, what is happening is that at small
magnetic fields, the diffusion term will increase because the electrons will travel
fairly unhindered through the wire. As the magnetic field increases so does the
cyclotron frequency and as a consequence it becomes equal to or greater than the
harmonic confinement {2 of the wire and so does not travel as easily through it.

The confining potential enters the expression only through the Fermi level and
the matrix elements (3.15) - (3.17). As a result, the addition of small higher
order terms into the confining potential will not have any appreciable effect on the

conductivity.
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Figure 3.1: Diffusion term of the conductivity as a function of the magnetic field.

The scattering potential is Gaussian and o, = 10°mN; V2L, /4n?kL,,.
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The contribution of the collision term is given by Eq. (3.2). Following the
same procedure as we did for the diffusion term and assuming that all collisions

are elastic, we have for Eq. (3.2)

Be*mN;V2L
Ozzx = A73m8 A = Z fnk(l - fnk)
o nk

242
x [ day exp(~2820% — B0\ (ke 0,) P 0P (3.26)

In order, to further simplify the expression we once again work with the low
temperature limit and convert the sum over &, into an integral. The integration

can then be carried out by substituting v = #2k2/2/m . This gives

e2m? N;V2L2 (bi2)?
Cpm = 8#455140 zﬂ: L(E,q,) (3.27)

with the function I, given by the integral

4amEr? 2mEb?
B(B,q) = exp(— Tz —) [ dayexp(-ag/2)ILs 22 L@y (3,29

Eq. (3.27) is plotted as a function of the magnetic field in Fig. (3.2). The
dominant term is the function I,(E,¢,) it determines where the peaks will take
place. This comes about because of the oscillatory nature of the Fermi level Fig.
3.3, when the magnetic field is perpendicular to the quantum wire. As the Fermi

level increases, the integral I; will decrease, when the Fermi level decreases, I will
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increase. The magnitude of the peaks will be a result of the magnetic field term

(612)2/(1 ~ b?) and L,(E, qy,).
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Figure 3.2: Collision term of the conductivity as a function of the magnetic field.

The scattering potential is Gaussian and o, = 87*h/e*m2N; V2L, L,.
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Figure 3.3: Fermi level as a function of the magnetic field.
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d-function potential

The § function potential models a very short-range interaction between the
electron and an electrically neutral impurity in the sample. Essentially the §—
function scattering is identical to the Gaussian when d — 0 in Eq.(3.8). In
order to determine the conductivity of the wire we follow the same procedure
that was used for Gaussian scattering. We insert the Fourier transform of the §—
function Eq. (3.8)into Eq. (3.4), and the matrix elements (3.15) - (3.17) to obtain
expression,

2w N; V2
Wee = S 3 ol ()0t - 5(eg — ). (3.29)
° q

The diffusion term of the conductivity is given by Eq. (3.1). The relaxation
time 7 is found from Eq. (3.3) after inserting the interaction term Eq. (3.9) of
the & function into the expression for W, . . above. We assume there is only
elastic scattering so n’ — n and convert the sum over ¢, and k. into integrals.
These inegrals can be evaluated by expanding the § function to give § (€nk. —€) =

m[6(gz — 2k;) — 6(q.)]/h%k,- The relaxation time is

1 NV 2o e BT
e T / dg, [IJ(5(4bkz+qy))| + (G- (3-30)

Substituting the above expression for the relaxation time into Eq.(3.1) and

using the low-temperature limit with the substitution v = h?k2/2% gives the
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diffusion term in the form

8m2e?h
Ons = AL Z I (qy) (3.31)
The function I3(E, g,) in the denominator is given by the integral

SbEm

L(E,q) = / dg + IJ( oy (3.32)

and F =¢f — (n + 1/2)hiw.

In Fig. 3.4 we have plotted Eq. (3.31) as a function of the magnetic field. The
graph is identical in form to Fig. 3.1 with (1 — b%) once again being the dominant
term when B > 1 Tesla and the peak a result of the same mechanism as was

described earlier.
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Figure 3.4: Diffusion term of the conductivity as a function of the magnetic field.

The scattering potential is a —function, o, = 10°mN,;V2A/4n2k.
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The collision term can be found by inserting Eq. (3.29) into Eq. (3.2) to give,

Gre = B S S S () P a8 — €Y (B)? (ks — KL)%, (3.33)

A2h'.
nkzn’ kL ¢

Integrating expfession (3.33) over both g, and k. gives

_ BEEN;VA(b*)2L.mn
Tz= = 43 A R
4mbk2
3 [ Fn = O | e, (330
n,kx

Using the low-temperature limit and integrating over k£, we obtain the collision as

e2N;V2(bi?)2L m?
O = —— T > L(E,q,). (3.35)

The function I,(E, q,) is an integral of the form

C2Z )P, (3.36)

12
I(E, g) /d‘lylj(

Eq. (3.35) is plotted in Fig. 3.5 again the form is identical to that of Fig. 3.2
with the integral determining where the peaks will take place and essentially for

the same reasons.
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Figure 3.5: Collision term of the conductivity as a function of the magnetic field.

The scattering potential is a §— function one and o, = 107387*R°L,/m?N;V2L,.
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Screened Coulomb scattering

‘The conductivity tensor for the screened Coulomb potential is found using the
same methods that were used to determine the conductivity of the Gaussian and
d0— function potentials above. Once again we make use of the low-temperature

limit and the elastic scattering approximation. For the diffusion term we obtain

he E
Taz = WM62ThAo ; IS (E1 Qy)

where, u = 8ME/h?. The function I5(g,) is given by the integral
2, 12 N 2 , 12 qu, 2
I(a) = [ daylu+ @+ B8 + )P + (@ + RSP (337)

The presence of the inverse screening length &k, will act to widen the curve in
Fig. 3.6. However, the dominant term is still the magnetic field term 1 — 5* with

the confining potential having a small effect on the result of Eq. (3.37).
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Figure 3.6: Diffusion term of the conductivity as a function of the magnetic
field. The scattering potential is the screened Coulomb potential and o, =

10,mrmN; A/ Re.
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The collision term is found to be

_ eSN;(bI2)?m2L,
o= = T 7 -XR:IG(E,qy) (3.38)
with
8mE 8b2ﬁzE
Ba) = [ g+ GETE L (s39

In Fig. 3.7 we have plotted the collision term of Eq. (3.38) as function of the
magnetic field. The form of the graph is essentially identical to the previous graphs

of the collision term. There is however, a small difference due to the presence of

ks.
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Figure 3.7: Collision term of the conductivity as a function of the magnetic
field. The scattering potential is the screened Coulomb potential and g, =

10~ "mm2e® N;L./h°L,,.
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3.2.3 Conductivity tensor for phonon scattering

Given the matrix elements for a magnetic field perpendicular to the wire (3.15)-
(3.17), the transition matrix Eq. (3.4) can be put into the form

27
Wffl = ? Z IF(Q)lzlJ(u)|26k'::kz—q=
n! k!

x> _[6(B¢ — Eg + hug) Ny +6(Be — Eg — hwg)(1+ N,)],  (3.40)

q

where u = %(bqi +q2).

The collision term can be found by inserting Eq. (3.40) into Eq. (3.2) of the
conductivity tensor and converting the sum over k. into an integral. Writing the §
function in the form é[(n—n')heo+ %[21%(1; —¢2] £ hw,) it can ge further simplified
by expanding it in a Taylor series about g; = 0. All odd terms in the expansion

vanish and the conductivity becomes

Be? (b1)?

922(0) = 4rh?L,w

D faklF(@)Pg26(m - A) (3.41)

ntkt sTL,q

x [IJn+m,n(u) |2(1 - fn+m,k:—qz)No +(1- fn—m,k:—qz)lJn—m,n(u) |2(1 -+ NO)]

where, n' —n = m for phonon absorption and n’ — n = —m for phonon emission,
and A = w,/w. The above expression can be simplified using Poisson’s summation
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formula [18, 23]

n;og(m+ %) = /Ooog(x)dx-i-?Z(—l)s/g(z) cos(2msz)dz. (3.42)

s=1

As a result, we can write ¢ in the form

232 (o]
owe0) = CEL S £ P12 [1 +2Z(—1)’cos(2vrsA)]
X [|Jntan (@) ?(L = frtak—g.)No] (3.43)

where C = fe?/4nwk?L, and (1 + N,) = N,.

The diffusion term of the conductivity tensor is given by Eq. (3.1), the relax-
ation time 7 is found in much the same way as the conductivity tensor is found
for the collision term. The § function is expanded in a Taylor series and the only
surviving term would be é(n' — n &+ A). By transforming the sums into integrals

the relaxation time becomes

1

ﬁg; Yo IF@P [1 +2) (~1)*cos(2msA)

X [Noldnta @) + (1 + N,)[Jn-a ()] (3.44)

Inserting the relaxation time along with the matrix elements into the diffusion

term gives
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,Be27i4 1
9= = orm2a, Z/ e 3 S (<1} cos(@ms )] (3.45)

o Jnks(1— foe )2 (3.46)

20| F (@) PllJnza () PN,]

Acoustic phonons at low temperatures

In the case of acoustic phonons the interaction potential is given by Eq. (3.13)
and we can make the assumption N, = 1/hu,q,, with u, being the speed of sound.
The phonon energy is small compared to the electron energy at low temperature
and so A is also small. This makes it possible to write 8fn . (1 — fatake—q.)
as (1 £ A)d(en(kz) — €r),by expanding (1 — friak.—¢.) in a Taylor series and
neglecting second or higher order terms. Placing the above result into Eq. (3.43)

and integrating over k; gives

o — Q_Z;L_%‘:ﬂ ) [1 23 (1) cos(27rsA)} JEEL W), (347)

s=1

with
F(w) = [ dgada a2 Jnea@)P(1 2 A) (3.48)
and C'=C/f and E =¢r — (n + $)hw.
The diffusion term Eq.(3.46) can be further simplified by using the low tem-

perature limit B fok, (1 — fok,) — 6(€nk. —€r) and then integrating over k. states
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to give

_ 2Ry, vE
7= = oo 2 LT 25,1 cos@raA) | o(a) (3.49)
with
Is(u) = 1 (3.50)

f szdelJn:tA(u)lz )
Optical phonons at high temperature

At high temperatures, the Fermi distribution can be converted to the Maxwell

distribution and inserting the Eq. (3.14) into Eq.(3.43) we obtain for the collision

term
CD 2 [,
Orz = Fru, A2 nkzq . [1 +2 ;(—l) cos(2mwsA)
x exp(—B(enk. — €F)) [|Jnra @)l + |Jaoa (@)[*)] - (3.51)

The expression for the diffusion term does not apply to phonons at high temper-
ature because the scattering is inelastic and A is not negligible. The conductivity

due to phonons at high temperatures is solved in ref.[25]
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3.3 Magnetic field parallel to the wire axis

3.3.1 Matrix Elements

We make use of the following matrix elements.

4|

[(nk|exp(iq - Pk} * = T:LU e L (WP = | (W) POk g (3-52)

where the wave function is given in Eq. (2.26) and u = {3¢2/2. Also we have the

expectation values

(nklaz|nk) = (nk|ay|nk) =0, (3.53)
(nklvg|nk) = ’% (nklu,|nk) = 0. (3.54)

3.3.2 Conductivity tensor for impurity scattering
Gaussian potential

The matrix elements (3.52)-(3.54) will give a contribution to the conductivity
tensor for the diffusion term of o;;. All other terms are zero including the collision
term for o, due to the fact that (n, k.|vuz|n, k) is the only non-zero matrix element.

The relaxation time is given by

% = 2’/Tﬁ,A ZZ XP(—__ |J(U)I26k' k—qz5(6€ - 66’) (3-55)

'kl gq
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As was done for the case of the magnetic field perpendicular to the wire we assume
elastic scattering, convert the sums into integrals, and expand of the §—function.

The relaxation time can then be integrated over g, to give

1 mN,-Vfo (_sz2 s lzqy ”
T 8ok, / exp(—=5—)[exp(—2k2d%) + 11T () *ldgy- (3.56)

Substituting the relaxation time into Eq.(3.1) gives

3552 —_ 3
ay = §7r ﬁze B EE: = fﬂkz (1 fnlcz)kz = . (3_57)
m3N;V2AL, — fexp(——yr)[exp(—2k§d2) + 1]|J(—l§ )ldgy

Using the low temperature limit fn (1 — fox.) — 8(€nk. — €r) and converting the

sum over k-states into an integral we obtain

4m2e?h E
7= = NI 2 T(E,g) (3:58)

where E = €; — (n + ;)hw. The function I3(E, g,) is an integral over g, given by

B(E,) = [ep(- 2227 +1] [ dgyexp(-a DL CE/DP (359

with, a® = d2 + 2.

Fig. 3.8 shows Eq. (3.58) plotted as a function of the magnetic field. The
function does not have the peak that was present when the magnetic field was
perpendicular to the sample, because there is no magnetic field term 1 — 5%. As a
result, the dominant term is the numerator F = ¢; — (n + 1/2)hw which increases
indefinitely with increasing magnetic field. This is to be expected because the
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magnetic field parallel to the sample does not produce the oscillatory behavior of
the Fermi level that was present in the perpendicular case. The small steps in the
conductivity are a result of the integral I. As the summation goes through the
different Landau levels there is a step down in the value of the integral. This is

due to the fact that the number of Landau levels will decrease with increasing field

strength, essentially acting to confine the electron.
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Figure 3.8: Diffusion term of the conductivity as a function of the magnetic field.

The scattering potential is Gaussian and o, = 10*mN;V2A/412e?F.
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d-function potential

As in the case of the Gaussian potential the collision term is zero because the
expectation value of the position operator is also zero. The diffusion term is given
by Eq. (3.1) and the relaxation time can be found by using the elastic scattering

approximation (n’ — n) and converting the sums into integrals to give

(3.60)

1 _ NVPmlL, Payy 2
v = awmE, ) RGO

Substituting Eq. (3.60) into Eq. (3.1) and using the low- temperature limit gives

o _ 871’2€2ﬁ E E
T ANVEM S [ ag | TS8P

Fig. 3.9 shows Eq. (3.60) plotted as a function of the magnetic field. The

(3.61)

graph is simply the same result as the Gaussian potential and the reasoning is also

the same.
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Figure 3.9: Diffusion term of the conductivity as a function of the magnetic field.

The scattering potential is a §—function, and ¢, = 10"mN;V2A/873k.
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Screened Coulomb potential

The conductivity tensor for the screened Coulomb potential is found by insert-
ing Eq. (3.7) into Eq. (3.4). Following the same procedure as in the previous two

elastic potentials we have

ot = G -
T m AN S g, 1 (PR + g+ k1

(3.62)

3.3.3 Conductivity tensors for phonon scattering

Similar to the impurity scattering the collision term of the conductivity tensor
will be zero because the matrix elements are all zero. The diffusion term of the
conductivity tensor can be found in the same way that the it was found for the case
where the magnetic field is perpendicular to the wire. Expanding the § function in
Taylor series and eliminating odd terms as well as higher-order terms the diffusion

term cam be written as

o = 28e?hico 1
T ApLym2 [1+ 23 (—1)5 cos(2msA)]

fa k::(l fa k:)
" Z 2 [F(D)[Ns oo (0)]7 (3.63)
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Acoustic phonons at low temperatures

Substituting the Eq. (3.13) for acoustic phonons and converting the Fermi

functions into a ¢ function in the low-temperature limit, the conductivity tensor is

o _ 262ﬁw Z 1 \/E.
= avoam l+2 >_s(—1)s cos(2msA) 37, g1 Nol|Jnsa(u)]?

(3.64)

3.4 Conclusion

The dc conductivity tensor was found for various interactions of the electrons
with scattering potentials. The confining potential was always strictly harmonic,
this was done to see what the dominant terms in the conductivities might be and
whether a different confining potential would actually result in any appreciable
difference in the conductivities.

When the magnetic field is perpendicular to the wire, the dominant term is due
to the magnetic field through the expectation operators for position and velocity.
As a result, the rather small effect the confining potential has on the conductivity
through the Fermi level is not large enough to notice. Also, because we have pre-
viously established that the Fermi level does not change much due to the presence
of anharmonic terms in the confining potential, we can assert that there would
be minimal contribution from these terms to the conductivity. This may prove
to be different if the corrected wave function were to be used to determine the
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expectation values but then the problem would no longer be tractable.

On the other hand, if the magnetic field is parallel to the motion of the elec-
tron the dominant term is no longer due to the expectation values. The dominant
term would be the summation over n states in the conductivity. The two main
contributions to these summations seem to be coming from the Fermi level and
the scattering potential. The Fermi level we know will not change much with the
addition of small-order terms to the confining potential. The scattering potential
does not have any common parameters with the confining potential, so it is dif-
ficult to see how anharmonic terms would change anything. In fact, the physical
parameters of the scattering potentials, i.e., k,, the inverse screening length and d
the range of the Gaussian potential seem to have a much larger affect on the result

of conductivity than anything else.
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Chapter 4

Power Spectrum

Within this chapter we look at the response of the quantum wire when an a.c.
current is applied across it. In order to determine what the response will be we
study the power spectrum of the wire, that is the power absorbed by the quantum
wire given an electric field, £ ,is applied in the direction of the electron motion
(in this case the x direction). The formula for the power spectrum, for circularly

polarized light of frequency w and electric-field strength E, is given by [21]
1 2 .
In this equation oy is the dynamic conductivity tensors given by

01+ = Re[0::(w) + oy (w) — iozyw + oy (w)]- (4.2)
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When determining the power spectrum experimentally, the constraint weT > 1is
placed upon the system and leads to the result o2 (w) > o' (w), see [21]. The

nondiagonal conductivity tensors are given in Ref.[21] by

__the fe—fe N /et . 1
W) =3 R O i e 49

where f¢ is the Fermi-dirac distribution, (§[v,|£’) the velocity matrix element, and

E¢ is the one electron eigenvalues found in Chapter 1.

4.1 Magnetic field perpendicular to the wire

4.1.1 Velocity matrix elements

The off-diagonal elements are not normally present but the multiplication of
the velocity matrices leads to real effects in Eq. (4.3). The wave functions are
those found for a magnetic field perpendicular to a quantum wire with a confine-
ment potential Qy® + §V (y), where 6V (y) is the perturbation. The perturbation
is small enough relative to the unpertubed term that the corrections to the eigen-
functions can be ignored when determinng the velocity matrices. By evaluation of

the formula (n, kz|v,|n'k.) we obtain
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, Bhe Wl
(keloelnE) = |2 = )] bt

w [ /n’ +1
+;c [ 361111'—1 + Tann’-i-l] 5kxk§;7 (44)
tha /n’ /n' +1
(nk,lvyln'k;) = 7 [_ E‘gnn'—-l + T&m’—{-l] szk;~ (45)

4.1.2 Conductivity tensor

The nondiagonal element tensor is given by Eq.(4.3). Inserting the velocity

matrix elements Eq. (4.4)and (4.5)into (4.3) gives

ihe? [ hw? - ) n+1
O'Zg((.d) — c Z[fn,kz fn+1,kz hm ( ) i
2mA, \ @ “C Enk: — Entlks €20 Enk, —Entlk. + hw + ie
+fﬂyk:: — fn—l,k__, lim n

] (4.6)

Enk: — En—lkgy €0 Enk, — En—1k, + A + i€

If we let n = n + 1 in the second term of the the sum and rearrange terms we

obtain,
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onw) = N (%2) SO (frke = Susrke (1 4 1y iy L

2mA, ey Anii ke €0 Apyix, — hw — i€

fn k= — Jont1rk —1
T T 1 4-7
Aniik, (n+1)lig A1k, + Fw+ =) (4.7)

where Ap )k, = Eng1,k, — Enk,- Assuming broadening of the energy levels due to
collisions, we can make the change ¢ — I', where T’ is the level width. Simplifying
further by multiplying both the numerator and denominator in the sums by their

complex conjugate, we obtain for the conductivity

d;‘;’(w) _ ih62 (ﬁw2) Z fnlcz fn+1 Kz ( + l)

2mA n.+1 Tz

[ Ans1k, — hw + iC — (Antix, + hw) + ir] (4.8)

(Bnsip, — W) +T2  (Apyre, + )2 + T2

This expression is valid for any confining potential, with A, 4, being the differ-
ence between consecutive energy levels.

The remaining components of the conductivity tensor are found following the

same steps as above. For o}%(w) we obtain

2,2
nd 'I.ﬁ, e fn.k,; fn.-i-l kz 1
= E +1)lim -
Tyy 2mA En,k: En+l,kz ( ) e—=0 En k. — En+1,ks + hw + ie
n - —_ . l
+f ez — J-1, (n) im (4.9)

Enjke — En—1k, e=0Ep g, — En—1k, + Pw + i€
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Again performing the same substitution into the second term and rearranging the

energy and Fermi functions, with € — T, gives

nd __ iﬁ262w f‘n k: .fn.-l-l,k::
Tw T 2mA, Z Antik. (1)
[ Antif, —Aw+iL  (Apgix, + hw) —iC (4.10)
(Bnsre, —mw)2+T2  (Apap, +Aw)2 + 12 .
For the last two conductivity components the relation cr;‘g = —a;‘g holds, so that

only one of the two need be calculated. Multiplying the velocity matrix elements

and summing over the £ states leads to

h2e2w f; f
nd _ (4 n k: n+1l,kx
Oyr (W) = A Z Amir. (n+1)
x An+1,lc= - ﬁl.d + 'LF An-{-l,k: + ﬁ(d - ’I:I‘ (4 11)
(Brirp, —fw)2 +12  (Apyrp, +w)?2 +T2]° '

4.1.3 Power spectrum

The above components of the conductivity tensor are inserted in Eq. (4.1) and

the power spectrum is found to be

h?e? E? fn+1 ke — fnk
e Tz c:3 1 I\
PW) = frod, Z Aris, (1)
(we + @)° (we — w)*
. [(Anﬂ,k, — hw)? + T2 * (Dnt1k, + w)2 +T2 | (412)

80



I' = constant

The above result Eq. (4.12) can be simplified for some special forms of TCeg.
when I' is a constant, or when there is short-range scattering due to impurities,
such as §-function scattering. If I' is a constant, then the summation over k. states
can be converted into an integral ) — L, [ dk,/27 and P (w) can be put into the

form

h2e 2E2I‘ frt1 k,._ frk,
Pl) = g / Tt —Snke (g 1)

9 (we + w)° 4 (we — w)? (4.13)
(Anirh, —Aw)? +T2 ° (Apqap, + )2 +T2 | )

When the confining potential is harmonic( Ap41 4, = hw) this expression can be

further simplified to give

he? BT (we + @)? (we — w)?
Plw) = +
8rmw?L, | (fiw — Fw)? +T? * (hw + hw)? + [2

x> / dkz (N + 1) (fatike — fak.) (4.14)

Figure 4.1 shows the power spectrum for three different confining potentials as
a function of the magnetic field with a constant value for I'. The strength of the
confining potential has very little effect upon the power spectrum, with the curves

being almost identical, i.e., there is less than a 1% difference between the three
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graphs, with a 20% difference between corrected and uncorrected eigenvalues.
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Figure 4.1: Power spectrum for three different confining potentials. The curves
for the corrected potentials have been shifted along the x axis. I' = .5meV, A has

units of eV/m? and -« has units of eV/m?.
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[’ # constant

When I' is not a constant but depends on the magnetic field and/or k., an

expression for it can be found for short-range scattering (see [20], p.537)

_2 R2w,

T TF

2h2w,
&

P2

with Wee being the transition matrix element given by Fermi’s Golden rule [9].
The integral, (n,k.|exp(:d - 7)|n’, k,) can be evaluated using [12], if the wave

functions are obtained from an harmonic confining potential,
(n, kz| exp(eg’- FY|n', k3) = |Jom (w0) [P0k, koo (4.16)
where [Jon (1) [2 = u? exp (—u) [L7¥—" (u) |* and L™ (u) is a Laguerre polyno-

mial. Using Eq. (4.15) and (4.16), we obtain

_ dhw,

2
r A

D D U@ Pl nn (0) [Pk ramg.8 (€n (Kz) — €nr (L)) - (4.17)

nkL g
where |U(q)|? is the Fourier transform of the scattering potential. This expression
can be simplified when simple scattering mechanisms are considered. Since the
above equation is valid for short-range scattering only, then we use the result
[U(q)|*> = V7 valid for é-function scattering or the Guassian potential [U(q)[? =
VZexp (—q%d?/2) /4r?, which behaves like the d-function potential in the limit

¢ — 0. We may further simplify, Eq. (4.17), if the sums over k. and q are
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converted to integrals and the confining potential is harmonic. For J-function

scattering this gives

mVozwch 242
I‘2 — —_—271'3}7,]6 /dedelJn (_gl) l2 [5 (q:x: — Zkz) + 4 (q:z:)] . (4.18)

Integrating this expression with respect to ¢, gives

= —2 = mV, weL /dqy [IJ (PAzy) 2+ |Jn (2 2) [2], (4.19)

where Ay = (4k2 +¢2) /2.
If the scattering potential is Gaussian then, we can follow the same steps as we

did to arrive at Eq.( 4.19). The result is

2 mVPweL,
"= 271'377,/{: / dq

A
T2

The result given for the power spectrum in Eq. (4.12) can be put into the form

x [exp (—d®Azy) | Jn (12 Azy) |* +exp <_q23d2) J (4.20)

P(w) R2e*E? Z/dk l:fn+1k: fn,kt] (n +1)T (k)

87rme Atk

(wc —+ w)2 ( _ w)
. [(A‘n-i-l,lcz - m)2 +T (kg;)2 (An+1 ke + ﬁa_})Z +T (kz) :l (421)

with the integral over g, having to be solved numerically when I (k,) is replaced
by either eq.( 4.19), or eq.(4.20).
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4.2 Magnetic field in the plane and perpendicu-

lar to the electron motion

4.2.1 Velocity matrix elements

The results velocity matrix elements are found using the wave function of
Eq.(2.40). They are

bk, 2
Tn_(l - %5)] OssOnns Ok, k1 +

/S’ / '+ 1
wel [ 5633’-—1‘{‘ 5 5 553’+1J 6nﬂ'5kz)k’z1 (4-22)

(nskz|vzn's'kL) = [

, —ih | [n /n' +1
(nSkzlvyln’S’kx> = lnm [ ?ann’—l - 9 5nn’+1} 553’5kz,k';a (4'23)

; —ih| [s [s' +1
(nSkaleln Slk;) = W l: _2‘535'—1 - ‘—2_Jss’+1} Snn’dkz,k;- (424)

4.2.2 Conductivity Tensors

We insert these matrix elements in Eq. (4.1) as well as the eigenvalues of

Eq.(2.41). We further assume that the only occupied subband among the s-states
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is the s=0 subband. We can make this assumption because the confinement in the
z-direction is much higher than the confinement in all other directions. In all other
respects, the derivation of the conductivity tensors is identical to the procedure
that was followed to determine 0. when the magnetic field is perpendicular to the

plane of the quantum wire. The conductivity nondiagonal components are found

to be
o (w) = Hwel 3) e Z(fnk 1— fakz0)
T Vmw “ Ty Ty
howo + hw — i _ hoo — hw + i (4.25)
(hw + hw)?2+T? (ho — hw)2+T2° )
ihe? n+1
ayy (CU) = m Z(fn‘*'l,k:,o - fn:kzxo) ( 2 )
o\“n nk,_-
RQ + Aw — D _ A — hw + T (4.26)
(RQ+ hw)? +T?2  (AQ — hw)2 + 2]’ )
and

@) = s S(farren = fano)
o.x(w) = 2V, (om)Pm 2 n+1kz.0 — Jnko,0

[h',Q-{-ﬁw—-iF QY — hw + i

(RQ + hw)2 +- T2 - (FQ — hw)? + Fz](m — hw)? + Fz] (4.27)
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The cross terms in the tensors are given by

02z (W) = —02. (W), (4.28)
Ozy = Oz = Oy; = Ozy =0, (4.29)
with

he’w,
2V,mw

Ozz(W) =

Z(fn,kz,l - fn,kz,o)
nkz

x[ fQ + hw — 1T hQ—ﬁw-{-zF]- (4.30)

(AQ +hw)2 + T2 (RQ — hw)? + L2

4.2.3 Power spectrum

Inserting the conductivity components (4.25)-(4.30) in Eq. (4.1) and converting

the sum over k. into an integral gives

1 1
X zn:/dkx [fn-i-l,k:.o - fn,k.—_,O] (n+ 1) [(hﬂ + hw)2 + T2 - (Y — )2 + ]_"2]

(% -1 Creta wsn)

+ [fn,kz,l - fn,k.-:,O] [(ﬁw + ﬁu)):z +I2 - (fiw — m)z + 2
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4.3 Magnetic field in the (x-z) plane

4.3.1 Velocity matrix elements

Using the wave function of Eq.(2.46) velocity matrix elements are

2
(nkz|vz|n'kL) = [Enlz—z(l - %‘2-)] Onnr Ok, it

- n' n' +1
+w;yl l:\/ ‘2—5nn'—1 + \/ T‘snn'ﬂ:l Ok, k2 s

—iki n [n 1
(rkslvyIn'k;) = T [—V PR _2_5""’“] Ok k-

4.3.2 Conductivity tensor

(4.32)

(4.33)

Following, the same procedures as in prevous orientations of the magnetic field,

with the eigenvalues of Eq. (2.47), the conductivity components are

. 9 2
w1 ke

A,mw?

Orz{w) =

> (fake = far)(n+ 1)
nkz

« howo + hw — i _ hwo — hw + I
(A + hw)? +T?  (Aw — hw)2 + 12|’

and
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Oy = ——0Ozx, (4.35)

Oy = —Oyz = oL o (4.36)

4.3.3 Power spectrum

The conductivity components (4.34)-(4.36) can be inserted into Eq.(4.1) and

the sum over k. states converted to an integral to give

2
P(w) 4::15 :72 Z/ dkz[fati ks — Fag)(n+1)
(wy — w)? (wy + )2
8 [(ﬁw oy 3% R =iy 1‘2] (4.37)
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Figure 4.2: Power spectrum for three different orientations of the magnetic field ,
the power spectrum peak drops as the angle of the B-field is lowered. The width

is I' = .5meV and the magnetic field strength is given by B = |/ B2 + B2
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Figure 4.2 shows the power spectrum given different orientations of the mag-
netic field in the (x-z) plane. As expected, the power spectrum response weakens
as the magnetic field is tilted towards the x axis of the quantum wire parallel to
the electron motion. From the graph and Eq. 4.37 it is obvious that adding an
anharmonic term to the confinement potential will once again not affect the power

spectrum response of the wire.

4.4 Magnetic field in the (x-y) plane of a wire

with finite thickness

4.4.1 velocity matrix elements

The velocity matrix elements are found using the wave function of Eq.(2.50)

and the velocity operator

1 0 a 0
[z, Uy, U] = — [zh% —eBpz, zh% + eB)z, zfia—z-} . (4.38)
The results are
Rk wi
<nk:rlv:clnlklz) = m:z: (1 - ;) Jnn’am.m’ak,:,k;

- In’! In' +1
+w}=ln [ E'Jnn’—l + ) 6nn’+1:| 5mm’5kz,k;; (439)
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: , th [m! fm'+1
(nkzlvyln'kz) = -z.— [— 76mm’—1 -+ —_Z—Jmml-'-l:l 5nn16k=’klz -+
RN [7 +1
w"ln [ %énnl_1 + i 9 csn.‘rl.’-l—-l] Jmm’gk:,kér (440)

h ! '+ 1
(nkz|v |n'kL) = n:,l_ [’-\/ %5nn'-1 +1/ o ; 5nn'+l} Ormm? Oy it - (4.41)

4.4.2 Conductivity tensor

and

Inorder to simplify the calculation of the conductivity we again consider only
the n = 0 subband because of the strong confinement in the z-direction. The result

for o%znd) (w)

ihzw?:ez

ora(w) =

2A .o ho+ A

Zk (fm,llcz — fm,o,kz)

9 ﬁ,w-l-fuu—z'l"_ oo — hw + i
F, F_

(4.42)
where, A = (m + 1/2)hwiQ?/w?(w? — wi), Fu = (hw + A + hw)? + 2, and
F_ = (hw + A ~ hw)? +T'2. The other conductivity components are found in a

similar manner. We obtain

Oy = g = ——M gy (4.43)
zy — Oyz = w Ty .
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hPwe?

Tz = =0z =

Z(fm,l,kz - fm,O,kz )
mkz

[hw+ﬁw-iI‘ b — hw + 1T
X +
F, F_ ’

1he?Q)

w
—

mke

g fiw+hw—iI‘_ﬁw—Fix.u+iI‘
A +T? A2 +T2 )

w
Ozz = —5Ozax,
w
=
and
ﬁw”62

D (Frike = Fmos)

UZ - —
Y 24,m s
T

9 [ﬁw-&—ﬁw—il"_{_ﬁw—ﬁw%—if‘ .
Fr F_

where, Ap, = hw — hwijQ?/2w(w? — of) + hw.
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w?:orn + AT E (frnt1,00e — frm0k)(m+1)
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(4.45)
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4.4.3 Power spectrum

The conductivity components above are inserted into Eq. (4.1) and the sum

over k. states is converted to an integral. The resulting power spectrum is

2,2 2 _
Pw) = g, e L;Z/dkzﬂfmﬂ‘o’k‘ fm0k- (m+1) [_1"_ + L]

ﬂ'Ly ﬁQ -_ @ A+ A_

L Smpke — fmoke [ [T | T _ r_r
T hemra VR TE| Tl | g o (4

where Q' = wi +wj+@?/w and © = i (200 (w? — wi).

4.5 Magnetic field in the (y-z) plane of a wire

with finite thickness

4.5.1 Velocity matrix elements

The velocity matrix elements are found using the velocity operator

1 o 7] 3}
[vz, vy, vz] = — [zh',£ +eBrz—eB,y, Zh’ég +eByz, zh‘.a—z] (4.49)
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and the wave function of Eq.(2.57). The results are

h [n /' +1
(n, kz|vy|'n,'k'z) = fh—z: l:— %’57";'_1 + n ;— 5,ml+1J Jmml&c:’k;, (4.50)

(nkslu.ln'ky) =

1h
]

4 4
[—, / 1"2_.5mm,_1 +4/ T—zil(smm,ﬂ} Srure O, - (4.51)

4.5.2 Conductivity tensor

The matrix elements (4.50)-(4.51) are inserted into Eq. (4.3) along with the
eigenvalue of Eq. (2.57) and Eq. (2.58). We consider only the n = 0 subband again

because of the strong confinement in the z-direction. The conductivity tensor is

12,2
(nd) - ik [A
o-.'L‘I (w) 2Aoﬁ7o (4-52)
3 WE (funke = fomke) [z + O, + hw —iT B, + A, — hw 4T
vl 128 hw, + A, H, H_

+ wh (fom+1k. — Sfonke) (n+1) hw+A+hw—il hw+A—hw+il
“ hw + A Fy F_

where A = (m + 1/2)AwjQ? /w?(w? — of), Fix = (hw + A + Fw)? + T2, Hy =
(fw, + A, £ Fw)? + T2 All other conductivity terms are found following the

procedure of the previous sections.
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4.5.3 Power spectrum

The conductivity components above are inserted into Eq. (4.1) and the sum

over k, states is converted to an integral. The power spectrum becomes

h?e’ E? fontrk: — fomok. [Q-T QT
P(w)fswLym;(n“)/dk’ hw + A [F+ + F_]

_ 4 P 14
+f Lnk: — Jonke [Q— Q+F] (4.53)

R, + A, | Hy, T E

where Q, = w? +2ww? + w?/w? and O, = wE £ 2wwl + wi/w?

4.6 Conclusion

The power spectrum of the quantum wire seems to behave the same regardless
of whether an anharmonic confinement potential is present or not. This seems to
not follow from an intuitive standpoint. However, there is some small shift of the
power spectrum along the x-axis when higher order terms are present. In the paper
by Lorke ct al. [26] the shift is shown experimentally, albeit for edge states in the
quantum Hall regime of a 2DEG. These edge states are effectively one-dimensional
and their confinement is shown to be mostly harmonic with the presence of higher
order terms. The problem lies in the fact that the confining potential seems to be

very dependent on the magnetic field and so difficult to model in a general sense.
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If we were to look carefully at Eq.(4.12) and all subsequent equations for the
power-spectrum we notice that the Lorentzian broadening is the dominant term
in the power spectrum result. In that term, [’ will determine the width and the
height of the power-spectrum peak, and because [Ant1, bz — Bw| << T, when '
is a constant or dependent on k;, then the graphs will always be very similar.
Furthermore, when I is not a constant we know from the d.c. conductivities that
the dominant term in the relaxation time will be the magnetic field. The result is
that the power-spectrum calculation is not a sufficiently sensitive test of the effect
the addition of an anharmonic term would have on the electronic properties of the
wire. In order for these terms to have an appreciable effect on the power spectrum,
they woud have to contribute more than 20% to the energy. This again will lead

to an equation that would make the use of perturbation theory less reliable.
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Chapter 5

Conclusion

In the first part of this work we solved the one-electron Schrédinger equa-
tion for various orientations of the magnetic field. The confinement potential of
the wire is modeled using the harmonic potential with small corrections. The
Schrédinger equation was solved using the separation of variables method, with
the non-harmonic terms dealt with using perturbation theory.

The energy eigenvalues are used to find the density of states (DOS), which must
be solved numerically, save for the simplest case, the harmonic potential. The DOS
is found to change very little, with any change in the parameter A and <y, which
describe the relative strength of the non-harmonic terms. This results in very little
change to the Fermi level with respect to these same parameters. Therefore, all

further calculations can be simplified with the assumption that the Fermi level for
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the harmonic case alone may be substituted into the calculations.

The conductivity tensors we found using the Kubo-Greenwood formulas, which
makes use of the single-electron wave functions and eigenvalues. The d.c. conduc-
tivity was found for several different scattering mechanisms, both elastic scattering
by impurities and inelastic scattering by phonons. The harmonic case can be sim-
plified to show the dominant term in all the scattering mechanisms to be the
expectation values of the velocity and position operators. Since both cases are
dependent on the magnetic field and because of previous assumptions about the
wave functions, the non-harmonic terms in the confinement potential will not af-
fect the conductivities appreciably. In order for the conductivity to be affected by
the corrections, the contribution of the parameters A and v, would have to be on
the order of the magnetic field contribution. This would mean that we could no
longer use perturbation theory to solve the Schrédinger equation.

The d.c. conductivity for the non-harmonic case must be found using entirely
numerical methods. This contradicts the assumption that using small corrections
to the confinement potential would leave the equations analytically tractable. As
a result, the calculation of the conductivites is not simpiiﬁed with respect to the
completely numerical results of the self-consistent theory.

The power spectrum analysis of the quantum wire measures the wire’s response
to an a.c. current. In strong magnetic fields the non-diagonal term in the conduc-
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tivity is sufficient to find the power spectrum. As a result, the power spectrum
can be put into the same form regardless of whether the non harmonic terms are
present in the confinement potential or not. Essentially, there is no great formal
difference when comparing the results of the harmonic confinement potential to
the non harmonic one.

The prime motivation of this thesis had been to determine if modeling the
confinement potential of the quantum wire, using higher-order corrections to the
harmonic potential, would give a closer approximation to the actual result than
simply using the harmonic potential. Furthermore, it was assumed that this would
simplify the theory cémpared to the almost purely numerical calculations used in
the self-consistent theory. To the extent that the correction to the wave function
was not evaluated, the simplification obtained is not sufficient as the small correc-
tions do not change the results of the harmonic problem appreciably, nor are the
equations sufficiently simplified when compared to the self-consistent theory. How-
ever, we know from experimental results [26, 27] that the confining potential is not
harmonic, but exhibits anharmonic properties with a dependence on the magnetic
field. Therefore, for the results found in the thesis to agree with these experimen-
tal results, the cubic and higher-order terms would have to be made considerably
stronger. Meaning either that the correction due to the wave function must be

evaluated before definite conclusions are reached or that we could no longer use
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perturbation theory to solve the Schrédinger equation and so either way we must

resort to a numerical solution again.

5.1 Further Study

The attempt to model the quantum wire comprised of studying the response of
the wire to d.c. and a.c. currents using the single-electron approximation. While
using the non harmonic terms does not simplify the self-consistent theory by mak-
ing the results anymore analytically tractable, it may greatly simplify the numerical
results and computing time. While using self-consistent calculations to determine
the confinement potential, gives the closest approximation to the true form of the
potential, solving the Schrédinger equation simultaneously with Poisson’s equation
is computationally very heavy. Therefore, it might prove to be useful to get an
approximate form of the potential using a polynomial and then using this to solve
for the eigenvalues and wave functions of the single-electron Schrédinger equation.
Also, while not spoken about in this thesis, electron-electron interactions (which
is a many body problem) could be dealt with in a Hartree manner. Using an
approximate, confining potential might therefore greatly simplify the numerical
calculations while giving a better representation of the quantum wire’s response

to applied external fields.
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