INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the wpper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any” photographs or illustrations appearing
in this copy for an additional charge. Comtact UMi directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Design and Evaluation of a

Data-Dependent Low-Power 8<x8 DCT/IDCT

Cheng-Yu Pai

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillments of the Requirement
for the Degree of Master of Applied Science (Electrical) at
Concordia University

Montreal, Quebec, Canada
December 2000

©® Cheng-Yu Pai, 2000

i+l

Nationat Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Weilington
Ottawa ON K1A ON4

Canada Canada
Your file Votre rélérence
Our file Notre rélérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’ auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Il

Canada

0-612-59308-8

ABSTRACT

Design and Evaluation of a

Data-Dependent Low-Power 8x8 DCT/IDCT

Cheng-Yu Pai'

Traditional fast Discrete Cosine Transform (DCT)/Inverse DCT (IDCT)
algorithms have focused on reducing arithmetic complexity and have fixed run-time
complexities regardless of the input. Recently, data-dependent signal processing has been
applied to the DCT/IDCT. These algorithms have variable run-time complexities.

A new two-dimensional 8x8 low-power DCT/IDCT design is implemented using
VHDL by applying the data-dependent signal-processing concept onto the traditional
fixed-complexity fast DCT/IDCT algorithm. To reduce power, the design is based on
Loeffler’s fast algorithm, which uses a low number of multiplications. On top of that,
zero bypassing, data segmentation, input truncation, and hardwired canonical sign-digit
(CSD) multipliers are used to reduce the run-time computation, hence reduce the
switching activities and the power.

When synthesized using Canadian Microelectronic Corporation 3-V 0.35 um
CMOSP technology, this FDCT/IDCT design consumes 122.7/124.9 mW with clock
frequency of 40MHz and processing rate of 320M sample/sec. With technology scaling

to 0.35 pm technology, the proposed design features lower switching capacitance per

! This work is supported by National Sciences and Engineering Research Council of Canada (NSERC) post-graduate

scholarship. and NSERC research grants

11

sample, i.e. more power-efficient, than other previously reported high-performance

FDCT/IDCT designs.

Keywords: Data-dependent computation, discrete cosine transform (DCT), inverse

discrete cosine transform (IDCT), low power, canonical sign-digit multiplier.

iv

Acknowledgements

[would like to express my deepest and most sincere gratitude toward my
supervisors — Dr. Asim J. Al-Khalili and Dr. William E. Lynch. They have given me
clear and helpful guidelines throughout my years as a master student. Above all, I wish to
thank them for the great amount of time devoted to me and my work.

[wish to thank the scholarship offered by the National Sciences and Engineering
Research Council of Canada (NSERC) Post-Graduate Scholarship (PGS-A), and NSERC
research grants. Their financial support allows me concentrating my time and effort on
my research.

I would also like to thank my fellow friends Wassim Tout, Wei Wang, and VLSI
lab specialist Ted Obuchowicz for helping me throughout the technical problems with the
simulation environments. and giving me their valuable opinions about the comparison
strategy.

Finally, I would like to dedicate this work to my family for their love and support.
I thank vou all for your patience and your sacrifices. This work is as much yours as it is

mine.

Table of Contents

LiSt Of FiQUIES..cceeerecnmeueenirsssneeessuerssnessureseessanesasnsssssssssssessissssssssssssssssonsaseosass ix
LISt Of TADIES «.ceeeneecaneeccccrsnmeisecccnsesesssssessseseesessssssossessssasssssssaseassssssesasnssossnses X
LiSt Of ACFODY IS ceeveererraneeessresssessannsasssnssssssensassssssesassssseassassassssasasnssnee O xi
1. INtrOQUCHION e ceeercceeeeeossssssoncsccssrssssssssasasssesssassesssssssesssssssssssssassnsssasansensanne 1
1.1. Research MoOtIVAtIOM couu e e eiecieeeciieeeeceenenrensmnrnreesnnneeeseeeitntes e seeseeseense s e s nanssasnas 1
1.2. Contribution of this ThesSIS. .ccccirrroiiieeceeerrr e e e e 3
1.3. Power Measurement CIIterIacooceeeerrerceecrareeeeerieniiirrintiesennre e seeeee s asaesenns 4
1.4. Thesis OrGaniZation ..c.coveeeeruerrueemireeiiaciiinsree e ssseeestess st secr e sesnesssas e ssoseseane 6
2. Background of FDCT/IDCT ...aeiiacrenccnicssinetinsiinnnccssansosssannes T |
2.1 Definition of DCT and itS INVEISeccocioveeimmmmmmmmiiieeecee e 7
2.2. Choices of AIGOTITRIMS wo.evciiiiiiceeeee ettt 9
2.2.1. Chen’s Algorithm Familycooccieeneiiiiiee e 9
2.2.2. Loeffler’s FDCT/IDCT Algorithm c..ooeecreiiimiiiiiiieeieeeeeeeee, 11
22.3. Jeong’s FDCT AIGOTItRIM oo 13
224, Summary and Comparison of Algorithm CompleXitiesccceeeeeeerennene 14

2.3 Precision Requirements of IDCT ..o 15
2.4, Chapter SUMITIATY ..ueeeeieiiiieieeiieieeseetesreae s s e s s et en s et a s e 16
3. Design Choices for the FDCT/IDCT ...cccceeicciicsnecsincsicseencinnses S 17
3.1. Data-Dependent Loeffler’'s FDCT AlGOFIthIm «ooceeervinciiiniiiiiiiiieiieenne 17
3.1.1. Data-Dependent Bypassing LOZIC ...cccveeeeeeceiinniinniiiciiininiecieenene 17
3.1.2, Truncate Some Least-Significant Bits from Input...........cocoiiiiicinnins 20

3.2. Data-Dependent Loeffler’s [IDCT Algorithim ...cccccoorriinniiiiiiiinn 24
3.3. Transpose Memory ATChiteCtureo 25

vi

3.4. Chapter SUMMATY oeeem et ceee ettt e e te s e et et et eses e ntenneennaes 28

4. Multiplier ArchiteCtures ... verienirrecrrreieniceeeeccrssnntncenscscsssscntsanensanns 29
4.1. Survey of Constant Multiplication Schemes........ccoooiermieeimieiiieiceas 29
4.1.1. Modified Booth MIUIPLIET.....ccoeceeeieee e cee e eeecneeeerere e e e 30
4.1.2. Distributed Arithmetic (DA).... ..ottt eae e 30
4.1.3. Hardwired Canonical-Sign-Digit (CSD) Wallace-Tree Multiplier........... 31
4.1.4. Pattern-Based CSID MUiplier......oveoeemrieeeeeeeeececceeeeeea e e e 34

4.2. CSD Multiplier Implementation Procedure.........cocccemeommeeeeneiiiiiis 35
3. Multiplier Synthesis RESUlt. ... 40
4.4. Chapter SUMITIATY ooeeromeiieeieieie s ce e e e s e ss e e ssesse s s s e s e e st e s s et eessaennnaneanes 42
5. Implementation ...cccceieiiecererrnnienienteeecessssenencssssescsssesessssssssassssasasnassancasnns 43
5.1. Hardwired CSD Multiplier GEneratorccceeeeeeeeeereeeriiiorniiiniiesereeieevcneeeees 43
5.2. IEEE Standard 1180-1990 IDCT Compliant......cccceeeeeeereeeeimereeiieinnienienens 45
5.3. Pipelining DeSiIl...corimui ettt 46
5.4, Chapter SUMMATY «.ooocmeieeeeeeecececiecenirei e e e s e s e s e s s st re s e se st e st sa e e e esae s 47
6. Synthesis ReSUIS ccceiiieieiniirrnniitiiccetieniietisssensenseeneateescssasssssssnsscsancssnsanes 49
6.1. Synthesis Results of the Proposed Design......cocovieeremmieciinniiiiniiinee. 49
6.2. Comparison with past FDCT/IDCT VLSI implementationscccceceevvueevennene. 50
6.3 Chapter SUITMATY «.ooooomeerimrreeiiecee e eien e ae e e e e s s et et e e e s m st et s et st e eaas 53
7. CONCIUSION auerrererrenerssinesmtneneerteisisestensseisseisssssssecssssssnsasassssssssssasssasnsasesses 54
7.1. Summary of ReSearcht 54
7.2, CONCIUSION teverrrieeereeerectee e eeeeteeeetreecereeessesteses s sss e s e asssasasessesanr e e e o nneses nansasssnans 55

3 Possible Improvements for Future Researchoooeeeeiiiineniiniicnin, 56
Bibliographyccceeeeennennnene eeeeesesresencansnsrene eeessssssssesssessssasassnnsasen cereecrsseneenees D9

vii

Appendix A Truncation Test Result.....nccrnssiensoneennssniensiinsesancnaene 65
Appendix B Sample Output of CSD Multiplier Generator 69
Appendix C Source Code of Constant Multiplier Generator................ 74
Appendix D IEEE Standard 1180-1990 Compliant Test Program....... 95

viii

List of Figures

Figure 1: General block diagram of video compression €NCOAET ..cevrerniiireceneieererenniceeens 2
Figure 2: 2-D FDCT/IDCT using row-column (separable) method ..o, 9
Figure 3: Loeffler’s FDCT @l@OTithm c....cviimieiieeeee e 11
Figure 4: Loeffler’s [IDCT al@Orithm e o 12
Figure 5: Jeong’s fast FDCT al@OTIthm ...oceuiiiiiie e 13
Figure 6: Setup for measuring the accuracy of a proposed 8x8 IDCTc.coorvrrreerenee 15
Figure 7: Zero Bypassing MUIPLET.....cocveiiiiiiieeiei e 18
Figure 8: Multiplication SEgmMEntationceeeeieurcrirmicsss e 19
Figure 9: 2-D row-column FDCT With tFUNCALIOMN.ccoemiimmerire ettt 21
Figure 10: Test model to measure the effect Of rUNCAION coueurvemririenierieit e 22
Figure 11: Ping-pong tranSPOSE MIEIMOTY «.ucccuererrrumsmmmsmssssessstsiestatses st st s 25
Figure 12: On-the-fly 8x8 TranspoSe MEMOTYoovoeriiuirinsisstsient st 26
Figure 13: States of the transpose matrix for different clock CYCLeS et 27
Figure 14: Converting binary number 0110010111 into CSD representation........c....e.... 33

Figure 15: Hardwired CSD multiplier for multiplying cos(37/16) with 8-bit unsigned
Y1) OO VORI PR RSP SR R RS 38
Figure 16: Hardwired CSD multiplier for multiplying cos(3n/16) with 8-bit signed
TN LT1) SO UUUUURUUURIR PRSP PERS R S B 40

Figure 17: Pipelined 7 BlOCK ..ocoiiiiiiiiiiii it 46

ix

List of Tables

Table 1: Transfer function of Loeffler’s FDCT building blocks ..cceeurmeeomriiiciiiiinees 11
Table 2: Transfer function of Loeffler’s IDCT building blockscoerieeeeeiiiinicinene. 12
Table 3: Complexities of different FDCT algorithms.......coveemimiiiiinimiiiiiiins 14
Table 4: [EEE Standard 1180-1900 IDCT Precision Requirementccccoeecineicennnnnene. 16
Table 5: Truncation errors against the number of truncated bitScccceeviinincininnnnc. 23

Table 6: Comparison of general-purpose multiplication against ROM based

MUIEPHCAION -ttt 31
Table 7: Canonical sign-digit representation of cOS(RT/16) -coeereuenrenemminniiiiiieeie 33
Table 8: Truth-table OF D1 e et et e 36
Table 9: Truth table to simplify SIgN-eXTENSION ...cvoiiriieeteeeeeneniiei e 39

Table 10: Comparison of 32-bit CSD Wallace-tree multiplier with 4 different general-

purpose multipliers using Xilinx 4052XL-1 FPGA technologycccececreieeunns. 41
Table 11: [EEE Standard 1180-1990 Compliance for Proposed IDCT ...cccoeoeiivieinncnnncn. 46
Table 12: Latencies for 1-D FDCT and 1-D IDCT...ource 47
Table 13: Latencies for 2-D FDCT and 2-D IDCT.....ooimiiiiei i 47
Table 14: Process and Specifications of the proposed FDCT/IDCT designscccoou.n... 50
Table 15: Summary of specifications of several FDCT/IDCT chips......ccocveniereemiinnnnne. 51

Table 16: Energy Efficiency (Switching Capacitances/Sample in 0.35um technology).. 53

Table 17: Truncation errors of test sequences: coke, salesman, and tenNIS.......cceceeueunne. 68

List of Acronyms

CCITT International Telegraph and Telephone Consultative Committee
CMC Canadian Microelectronic Corporation

CMG Constant Multiplier Generator

CPA Carry Propagate Adder

CSA Carry Save Adder

CSD Canonical Sign-Digit

DA Distributed Arithmetic

dB Decibel

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

FDCT Forward Discrete Cosine Transform

FPGA Field-Programmable Gate-Array

HDTV High-definition TV

IDCT Inverse Discrete Cosine Transform

[EEE Institute of Electrical and Electronic Engineers
JPEG Joint Photographic Experts Group

MC Motion Compensation

ME Motion Estimation

MHz Mega-Hertz

MOS Metal-Oxide Semiconductor

xi

MPEG

NMOS

PMOS

PSNR

ROM

SD

SFG

VLC

VLSI

Moving Picture Experts Group
Multiplexer

N-type MOS

P-type MOS

Peak Signal-to-Noise Ratio
Read-Only Memory
Sign-Digit

Signal Flow Graph
Variable-Length Coding

Very Large-Scale Integration

xii

Chapter 1

Introduction

1.1. Research Motivation

Waveform compression has been an important research topic, and it has wide
industry applications. The term waveform is a generic term that can be applied to speech
signal, still image, or video signals. Generally speaking, these waveforms require large
storage in physical devices, and require large communication bandwidth to transmit. For
example, one-hour colored 704x480 frame-size video requires 704x480 (bytes/frame)
x 1.5 (for color frames) x 30 (frame/sec) x 60 (sec./min.) x 60 (min/hour) = 54.7 GB to
store/transmit. That is an enormous amount of data. Due to the nature of these signals,
redundancies can be removed by means of waveform compression. In practice, for the
video signals, one can achieve from 40:1 (for high quality) up to 80:1 (for low quality)
compression ratio. In other words, one-hour of digital video requires only about 1.37 GB
to store or transmit.

The discrete cosine transform (DCT) has been widely used in waveform
compression because it features good energy compaction and low computational
complexity. It has become an integral part of many waveform compression standards,
such as JPEG, MPEG-2, MPEG-4, CCITT Recommendation H. 261 and H. 263, and

HDTV. [26]

The DCT, like the Discrete Fourier Transform (DFT), is used to transform the
signal to the frequency domain. Unlike DFT that uses complex exponentials as basis
functions, DCT uses cosines (real numbers) as basis functions. Since the human audio-
visual system is less sensitive to high frequency harmonics, waveform compression
standards use DCT to transform signal to frequency domain and perform compression on
the DCT coefficients.

As an example, for video compression, both temporal and spatial redundancies
are eliminated as shown in Figure 1. The motion estimation/motion compensation
(ME/MC) block is used to reduce temporal redundancies due to high correlation among
adjacent frames. The forward DCT (FDCT) together with the quantizer is used to reduce

spatial redundancies. Finally, the variable-length coder (VLC) is used to reduce coding

redundancies.
: : ,
Uncompressed _ | \emc s ZDT Ly Quantizer s _VLC |, Compressed
Sequence | FDC Encoder Sequence

Figure 1: General block diagram of video compression encoder

With the advances in communication and VLSI technologies, it is expected that
video telephony/conferencing on mobile devices will be more and more common in the
future. Because mobile devices operate with battery power, in order to increase the
battery life and recharging time, mobile devices always have stringent power
specifications. Also, to save valuable communication bandwidth, video compression is
always performed on these applications. As a result, the DCT chip is an integral part of

video communication mobile devices, and the design of a low-power DCT chip is an

o

important problem. In this thesis, a low-power data-dependent DCT/IDCT design is

presented to meet this need.

1.2. Contribution of this Thesis

Many earlier fast DCT algorithms are aimed at reducing the number of
multiplications because general-purpose multipliers are assumed to be the basic hardware
elements for computing the DCT. Later on, other design techniques, such as digital
filtering and distributed arithmetic (DA), are also used to compute DCT [9]. In more
recent works, data-dependent DCT algorithms”have been introduced in [19]-[21][28].
Unlike traditional algorithms, which have fixed-computation complexity, data-dependent
algorithms have variable run-time complexities that depend on the statistical properties of
the input data. They may yield fewer or more computations in the run-time than the fixed
complexity algorithms.

To reduce the power consumption, optimizations are performed at both the
algorithmic level and the architectural level. The low-complexity Loeffler’s [10] fast
FDCT/IDCT algorithm is chosen to reduce the hardware requirement, which in turn
reduces power.

The concept of data-dependent signal processing has also been applied to the
fixed-complexity Loeffler’s algorithm to reduce the switching activities. For both the
FDCT and IDCT, zero-bypassing logic is inserted into the circuit to bypass redundant
computations. The zero-bypassing logic takes advantages of high correlation among input
data for the FDCT. and high proportion of zero inputs for the IDCT. Furthermore, the

FDCT design also truncates bits from its input to reduce the amount of data to be

-
2D

processed, consequently reducing power consumption. The error introduced by the
truncation is also analyzed in the thesis.

Further architectural optimization is performed on multipliers. Since
multiplication is a high complexity operation compared to addition, the FDCT/IDCT
designs use hard-wired canonical sign-digit (CSD) Wallace-tree multipliers since it
utilizes minimum amount of power over the multipliers surveyed.

To summarize, the main contributions made in this thesis are listed as following:

e Introduce new data-dependent FDCT/IDCT algorithm by merging the data-
dependent processing concept with fast FDCT/IDCT algorithm.

e Empirically study the effect of truncating some least significant bits of the FDCT
input to save computation.

e Derive detailed design procedure for implementing low-power constant-
coefficient multipliers.

e Develop a code generator written in C++ that generate VHDL code of constant

multipliers for different specifications.

1.3. Power Measurement Criteria

In VLSI design. it is always difficult to compare one design with another due to
different process technology (feature size), supply voltages, operating frequency,
implementation approach (full-custom, semi-custom, etc.), optimization parameters, and
design algorithm/architectures. Depending on the design goal, several comparison

methods have been suggested and used, such as 4, P, T, PT, AT, AT", etc., where A4 stands

for area, T stands for time (delay), and P stands for power. Unfortunately, these
measurement criteria give rough measures, which do not take all process technology into
account. |

In this thesis, the proposed design is compared with other reported designs by
comparing the switching capacitance per sample, which has been used in [19-21][28]. In

VLSI design, power can be estimated from the well-known formula:
1 2
PE(‘;P:'CL)'f;.Yk'VDD - (D)

where P is the power, p; is thee switching probability, C; is the load capacitance of the

DCT/IDCT in this case, for is the clock frequency, and Vpp is the supply voltage. From
equation (1), the switching capacitance is defined as —;— p,-C,, and the switching

capacitance per sample can be obtained by dividing the switching capacitance by the
number of input/output samples per clock cycle. Since switching capacitance is directly
proportional to power, this rmeasurement method leads to comparing relative energy
efficiency rather than absolute values such as in 4P, PT, etc. It indicates how much
power (switching capacitance) is required to obtain one output.

The main advantage of this method is that it takes out the effect of different
process technology by performing technology scaling. Thus to compare one design of
one technology with another design of different technology, technology scaling is first
performed on the measured power, then the effects of clock frequency and voltage supply

are factored out to obtain the switching capacitance per sample.

1.4. Thesis Organization

The organization of this thesis is as follows: in Chapter 2, the definition of
discrete cosine transform and its inverse and the algorithm used in the proposed design
are described. Chapter 3 describes the data-dependent signal processing concept and how
it is incorporated into the design. Chapter 4 summarizes the pros and cons of several
multiplier architectures. and provides a detailed design procedure for the selected
multiplier — hardwired canonical sign-digit (CSD) Wallace-tree multiplier. Chapter 5
describes the design automation effort made to facilitate the implementation of hardwired
multipliers. The IDCT accuracy test result and pipelining design are also described. In
Chapter 6, synthesis results of the new FDCT/IDCT designs are reported and compared

against previously reported implementations.

Chapter 2

Background of FDCT/IDCT

Since there exist many DCT definitions [38], the forward DCT (FDCT) and its
inverse (IDCT) are defined in Section 2.1 for clarification.

Numerous fast algorithms for both FDCT and IDCT have been reported in the
literature. Most of them attempted to minimize the number of additions and
multiplications ([1], [8]-[13], [17-18], [29], etc.). These algorithms usually take
advantage of the symmetry in the cosine basis functions, and the computation complexity
is fixed for all input data (data independent algorithm). Since multiplication requires
more hardware and computation time than adders, fewer multiplications imply low
power.

In Section 2.2, several existing fast FDCT/IDCT algorithms are studied and
compared. The Loeffler’s [10] algorithm is chosen to be the fundamental FDCT/IDCT
algorithm of the proposed design.

Since the FDCT is always followed by a quantizer, its precision requirement is
not high. On the contrary, the IDCT is used to perform inverse transformation at both the
encoder and the decoder, which requires high precision. It needs to conform to IEEE

Standard 1180-1990, which is described in 2.3.

2.1. Definition of DCT and its Inverse

The N-point 1-D forward DCT (FDCT) is defined in equation 2:

Av-l ')
X(n) = [ZC(n)Zx(k)cosM)
V ZV k=0
The N-point 1-D inverse DCT (IDCT) is define in equation 3:
) = 3 2O (k) cos ZLENE 3)

1/~+2 =0
where C(n) = J— "
1 n=1,2,..,N-1

Similarly, the NxN 2-D FDCT is defined as follows: [4]

N-l NI .
X(u.v)= ——C(u)C(v)ZZ‘c(z J)cos[(—l%ﬁ(—”)cos[wn—-)...@)
]

=0 ;=0 2N

and the NxN 2-D IDCT is defined as:

(i,) = %Efcagcmxw,wcos[(—zi—;’i[)l—‘”) COS(M) (3

u=0 v=0 <! 2N

Notice that 2-D ¥xN FDCT/IDCT is a separable transformation, which means
that it can be obtained by first performing 1-D N-point DCT/IDCT on the rows, then
performing 1-D N-point DCT/IDCT on the columns, or the other way around. This
method of computing 2-D DCT/IDCT is generally referred to as row-column method or

indirect method. The general block diagram of this method is shown in Figure 2.

l 1
. i
1-D ! Transpese 1-D

———

FOCTADCT . Matrix FDCTNOCT

i
[

| 2.0 FOCTADCT

Figure 2: 2-D FDCT/IDCT using row-column (separable) method

The row-column method is the most popular method in VLSI implementations
([2]-[71, [9], [14]-[16], etc.). Also, since the 8x8 block size is used by MPEG and other

standards, in this thesis, the FDCT/IDCT design presented uses 8x8 block size.

2.2. Choices of Algorithms

Many fast DCT/IDCT algorithms have been reported in the literature. In this
section, several fixed-complexity algorithms are reviewed and compared based on their
arithmetic complexities. The comparison suggests that Loeffler’s FDCT/IDCT algorithm

is the most efficient and is used as the basis of the proposed design.

2.2.1. Chen’s Algorithm Family

Chen’s fast algorithm [1] reported in 1977 is by far the most widely used
DCT/IDCT algorithm. It has been used in [2]-[7] and many other papers. It is a fixed-
complexity algorithm. The idea of Chen’s algorithm is to exploit the symmetry in the

DCT/IDCT transformation matrix. The 8x8 DCT can be written in matrix form:

(X7 [a a Ted a a a a a [x(0)]

XQ) b d e g -g —e —-d -=bi|x(1)

x| | e f -f —¢ —c =f f ¢ ||x®

X3)| (d -g -b —e e b g —dl|x(3) (6)

X(4) a -—-a —-a a a —a —-a a {|x(4)

X(5) e -—-b g d —-d —-g b —e || x(3)

X(6) f -c¢ ¢ —-f —-f ¢ -c [||x(6)

(X(7)] Lg -—e d -b b —-d e —g]jx(7)]

where

[a b c d e f g] = L[cos£ cos X cos= cos3—” coss—z c053—75 cos E]
2 4 16 8 16 16 8 16 |

Since the even rows of the transformation matrix are even symmetric and odd
rows are odd-symmetric, by exploiting the symmetry and separating even and odd rows,

equation (6) can be rewritten as follows:

X(2) c [-f -c x(1) + x(6)
X(4) a —-a -a a J x(2) + x(3)
| X(©6)| | f -¢ ¢ - f x(3) + x(4) N

X(©0)] [a a a a ‘| x(0) + x(7) !
X

Tx()1 [6 d e g [x(0)—x(7)
X3 jd -g -b -e s x(1) - x(6)
X(5) e -b g d x(2)—x(3)

X(T)| g -e d =b] [x(3)-x(4)

Similarly, the 1-D IDCT can be rewritten as follows:

Yol [a ¢ a fF1[x@][6 d e g] [XOD]
Y| _la f -a -c| [X@)| |d -g ~b ~e| | X0)
Y(?) a -f -a ¢ X4) e -b g d X(5
Y(3)| la —c a =[] |X(©®)] g —e d =b] [X(D] (8)
v [a ¢ a fF1[xO][6 4 e g] [XD]
Y(6) _|a f -a -c 3 X(2) B d -g -b -e 5 X(3)
YG) la =f —a ¢ | |X@]| |e -b g d| |X(O)
Y| la -¢ a -f] | X©6)] |lg -e d -b] | X(7)]

10

2.2.2. Loeffler’s FDCT/IDCT Algorithm
Loeffler’s 1-D 8-point FDCT algorithm uses 11 multiplications and 29 additions
only. The signal flow graph (SFG) of an 8-point 1-D DCT is shown in Figure 3, and the

transfer functions of the building blocks are given in Table 1.

Stage 1 Stage 2 Stage 3 Stage 4
0 0
1N/ N L == 4
2 \\ // PN ﬁc1 2
F—fe—" 28 6
4 7
5 3
6 —/f-e 5
7 e 1

Symbol Equation Effort
O, =1, + 1,

[Xo, 5
1] 1 2 dd
[y =2 o Oxzjo_ll !

O, = [O(kcos mf) +[[(ksinﬂ)
2N

[,— ken{=0, \ 2N 2 3 mult. +
I/, -0 3 add
! ! 0, =—[o(ksinﬂ +1, k cos ——

2N 2N
I—O0—o0 | 0=A21 I mult.

Table 1: Transfer function of Loeffler’s FDCT building blocks [10]

Notice that the second building block (kcn) requires only 3 multiplications and 3

additions instead of 4 multiplications and 2 additions when equation 9 is used.

Oy =al,+bl, =(b-a)], +a(l, +1
{ 0 =% =l vall,+1) ,wherea=kcosﬂ,b=sinﬂ %)

O, ==bl, +al, =—(a+b)I, +a(l, +1,) 2N 2N

11

By reversing the transfer function of each building block shown in Table 1, and
reversing the signal-flow direction, it is easy to show that the IDCT has SFG shown in
Figure 4 with building block transfer function shown in Table 2. Notice that the Loeffler
IDCT algorithm has the same arithmetic complexity as in the FDCT case (11
multiplications and 29 additions). Notice also that division by 2 is considered using no

operation since it can be realized by ignoring the least-significant bit of the value to be

divided.
Stage 1 Stage 2 Stage 3 Stage 4
.] - ! .
| >IN L1\ /[
R NN\

S NWNOND~O
~NOOhWN-2O

Figure 4: Loeffler’s IDCT algorithm

Symbol Equation Effort
I, 0, OO=([0+II)/2 2 add
[0 | 0, = (1, ~1)12 -8

O, = lo(lcosﬂ) - [l(lsinﬁ—”—)
I,—1 keni—O, k 2N k 2N 3 mult. +
I, — —O 3 add
' "o, =10[Lsm1’£ o1 Loos 22
k2N k 2N

| —0—0 | 0=1/2 1 mult.

Table 2: Transfer function of Loeffler’s IDCT building blocks

2.2.3. Jeong’s FDCT Algorithm

Jeong’s [13] 8-point FDCT algorithm reported in 1998 uses 28 additions, 12
multiplications. This algorithm is special because it performs most multiplications at the

final stage and requires fewer multiplication stages than other algorithms, so propagation

errors occurring in the fixed-point computation can be reduced.

By separating even and odd points in the DCT, this algorithm uses trigonometric

identities to reduce the number of multiplication needed to calculate DCT.

e Even points:

N/2-1

xX@h= %a(n)' > [x(k) + x(N = 1—k)]cos

e Odd points:

XQ2I+)= (2 cos—(zgz\-fl)—”)- \/%a(n) X

(2k +1)2Ux
2N

, where / € [0,3]

! +D)C2m+Drx

N

N3t

D {[y2m—1)+ y(2m)Jcos FEEDZME 1o amy + y(2m + D]cos

where y(k) = x(k) —x(N —1—k)and y(-1) =0

The signal flow graph is shown in Figure 5.
4-Point DCT
x(0) < ——t er— X'(0) | — X(0)
S X
X \ / v ! 7 N\~a v v Co—» 1(1) ! ()
i \- 3
x@) e X©)
// R - N € v < o 1

§E5; // \\‘ . / o “’7><A Ps . XE7;
x(8) 4. \\\‘ — A - ’?O - X(3)
x(7) Z L - S5 \fc7 ><_ 1 > X(5)

Figure 5: Jeong’s fast FDCT algorithm [13]

where ¢, =1/C!.c, =~/2/4,¢,=Cl/2,¢,=C}/Cl,e, =C/14C},
¢, =¢;,6 =1/Ch,c; =Cq /1 Cy,cq =Cy 14C}s ¢y = Cg 14C[5, ¢, = Cg 1 4C,

¢, =Cs/4C,and Co, =cosam/m

2.2.4. Summary and Comparison of Algorithm Complexities

Since in VLSI implementation, each computation, i.e. addition and multiplication,
requires hardware and consumes power, algorithms with fewer addition/multiplication
lead to lower power. Also, since multiplication requires more power than addition, one
algorithm is better than another if it requires fewer multiplications (for integer
operations).

Table 3 summarizes the complexity of several fixed-complexity FDCT
algorithms. In [34], Duhamel demonstrated that the theoretical lower bound of an 8-point
DCT is 1l multiplications. Since the number of multiplication in Loeffler’s [10]
algorithm reaches the theoretical lower bound and the number of addition is not worse

than other algorithms (except Jeong’s), the Loeffler’s algorithm is chosen.

Aleorithm Chen | Wang | Lee | Vetterli | Suehiro | Hu 'fl'.-;oe:\‘:'f,lfer_'j Jeong
= [1] [317 | [111] [32] [33 [121 | :[10}- | [13]
Multiplication | 16 13 12 12 12 12 | 11 4§ 12
Add 26 29 29 29 29 29 | .-29- -] 28

Table 3: Complexities of different FDCT algorithms (adapted column 1-7 from Table 1

in [10])

14

2.3. Precision Requirements of IDCT

In video compression. the precision requirement of FDCT is not high because it is
always followed by heavy quantization. On the contrary, since the IDCT is used for
sequence reconstruction, it is important for IDCT to be computed with high precision.

The IEEE Standard 1180-1990 [27] defines the specification for the
implementations of IDCT. The step for measuring the accuracy of an 8x8 IDCT block is

shown in Figure 6.

Reference

" Refernece 8x8 IDCT

| IDCT cutput
__,! Seperable, Orthogonat. 264 | Round 9
i Multipty with at least & Clip .
- | I ea-bit floating-point | %00 - Emor
! Refermece 8x8 FOCT ! ! accuracy] \

-

g ! | 264 Rouna - 12 : Test % el

——» Seperable, Orthogonal., ———* & Clip — DCT output i
Multiply with at least 64-

4
. k , ? 9
 bit floating-point accuracy . l—- Proposed 8x8 IDCT < :05;‘: ~
x(i.j)

Random Generaled Block

Figure 6: Setup for measuring the accuracy of a proposed 8x8 IDCT (figure 2 in [27])

The standard defines a random number generator that can generate numbers
within lower and upper bounds (-L and H) inclusive. Based on these random numbers,
10000 8x8 blocks for (L=256, H=253), (L=H=5) and (L=H=300) are used as input for
reference FDCT (see Figure 6), and passed through the diagram shown in Figure 6. The
error, e(ij), is defined to be the difference between the “test” IDCT output and the
“reference” IDCT output, 1.e.:

e, (1,J) =X, (4,) — x. (i, J)

The standard defines the following terms to measure the error (see Table 4).

15

"Maximum

Term Definition Magnitude
Peak error (ppe) Max(lex(i.)) 1
Mean square error o Zl.o_oco e; (i,)
for any pixel (pmse) pmse(i, j) = L_lx-OOOO 0.06
Overall mean square o ZLO z;) z)loo e; (i, J) 0.02
error (omse) | O™ I) =) o000 —
Mean error for any . Zlo_ooo e, (i,)}
pixel (pme) pme(i, j) = _%6&)—_ 0.015
7 7 0000 ..
Overall mean error o D Z_l - z;zl e. (1,]) 0.0015
(ome) ome,) = g 10000 '

For all-zero input, the proposed IDCT shall generate all-zero output.

Table 4: [EEE Standard 1180-1900 IDCT Precision Requirement

2.4. Chapter Summary

In this chapter, the FDCT and IDCT are defined. Several fast fixed-complexity
FDCT/IDCT algorithms are reviewed and their computational complexities are

summarized in Table 3. Since low arithmetic complexity usually implies low power, the

Loeffler’s algorithm is used as the basis of the proposed design.

The IEEE 1180-1990 standard is also described in this chapter. The standard
defines the precision requirements of IDCT, which the new IDCT design will conform to.
In the next chapter, detailed discussion/description is presented to show how the

data-dependent concept is integrated into Loeffler's FDCT/IDCT algorithm to make it a

data-dependent algorithm.

16

Chapter 3

Design Choices for the FDCT/IDCT

In this chapter, the data-dependent processing concept is applied to Loeffler’s
FDCT/IDCT algorithm. In Section 3.1 and 3.2, data-dependent bypassing logic is
inserted into Loeffler’s FDCT/IDCT algorithms to achieve more power reduction. To
further reduce the computation complexity, the least significant bits of the FDCT inputs
are truncated. The effect of truncation is studied in detail.

Since the row-column method is used to compute the 2-D FDCT/IDCT by using
two 1-D FDCT/IDCT with a transpose memory in between (see Figure 2), Section 3.3
studies two transpose memory architectures. The on-the-fly transpose memory

architecture is used in this work.

3.1. Data-Dependent Loeffler’s FDCT Algorithm

To have a power-efficient design, data-dependent algorithm and truncation

techniques are adopted into Loeffler’'s FDCT algorithm.

3.1.1. Data-Dependent Bypassing Logic

Loeffler’'s FDCT algorithm performs several butterfly operations on the inputs
(see Figure 3). In general, the inputs are well correlated for the FDCT. Thus, the

subtractions used in the butterfly are very likely to produce zeros or small numbers. Since

17

most multiplications are performed in the kcn blocks, and the inputs of the kcn blocks are
the results of subtractions, adding zero bypassing logic in front of each multiplication in
the kcn blocks will reduce the number of multiplications. As shown in Figure 7, the zero
bypassing logic only adds the non-zero-detection logic (AND gate), a register, and a
multiplexer MUX) to the circuit. The overhead, both the area and speed, introduced is

small comparing to the multiplier itself.

Variable Operand (v)

Non-Zero |-
Detection
I
Non-Zero
Register
{Load when Non-Zero) |
-
A 4
Constant _; | Multiplier
© (vxc)
0 t
|
A 4 Y.
0 1 3
Mux
]
A\ 4
Product

(vxc)

Figure 7: Zero Bypassing Multiplier

By segmenting the inputs of multipliers into several smaller chunks (data
segmentation), further computational reduction can be achieved by taking advantage of
the fact that the inputs of the kcn block are very likely to be small numbers because the
inputs are obtained from butterflying highly correlated data. Thus, instead of multiplying
x by ¢ directly, the multiplication is done by breaking x into m segments, performing
multiplication on each segment, and then adding the products together with proper offset
if necessary (see Figure 8). The sum of the products is still xxc. By inserting bypassing

logic in front of each smaller multiplier, part of the small number inputs can be bypassed,

18

consequently reducing the switching activities and the power. For example, if
x=00000111 (74), with two segments, xxc is performed as (0000xc)<<4 + 0110xc. With

zero-bypassing logic inserted, 0000xc is bypassed and uses no operation.

> .

Product Product

Figure 8: Multiplication Segmentation

The choice of segment size affects the probability of zero bypassing. One extreme
is that there is only one segment, which is direct multiplication of xxc. The other extreme
is that each segment is one bit only, which is essentially performing shift-and-add
operation. Theoretically, if we use segment of one bit only, one can achieve highest
bypassing probability and uses lowest amount of multiplication. However, it requires the
largest number of addition to add partial products to produce the final product. For n-
segment, one would require to add » partial products together. Having more segments
implies more complicated control logic and delay to produce the final result. Thus,
having the trade-off between the probability of bypassing and the segmentation overhead
in mind, we decide to use two segments for FDCT multiplications. It allows bypassing of
small numbers while keeping the segmentation overhead small since there are only two

partial products to be added.

19

3.1.2. Truncate Some Least-Significant Bits from Input

Since the IEEE standard [27] defines only the precision requirements for the
IDCT, and since the FDCT is usually followed by quantization, in this thesis, some least-
significant bits (LSBs) of the FDCT are truncated. Truncating input bits results in less
computation, consequently, reduces power consumption and increases the speed. On the
other hand, truncation introduces error at the output. Although some error introduced by
the truncation will be compensated by the heavy quantization that follows the FDCT
module, the error still exist. Thus. truncation allows trade-off between power and error.
The goal is to find the best strategy to truncate input bits so that the error is in acceptable
range depending on the application.

In 2-D 8x8 FDCT, there are eight 8-point 1-D FDCT in the first dimension
(rows), and eight 8-point 1-D FDCT in the second dimension (columns). Let Trunc(d,n)
denote the number of bits to be truncated from the n-th 1-D FDCT of dimension d, where
d =1 (row), 2 (column) and # = 0...7. The truncation for all eight inputs of any 1-D 8-
point FDCT is the same. Figure 9 illustrates the detailed view of 2-D row-column FDCT

with truncation.

DCT Dimensicn 1 (d=0)

-—

Dimension 2 (d=2)

Block 1-D FDCT on Rows 1-D FOCT on Columns
Do i 10] R 1D
Row 0 l—-‘ Trunc(1.0} _.(FOCT —- r—-n Trunc(2.0) FDCT T
b= a i |
i Y ' I —
a1 s 1D @ . 1D
Row 1 ir—-b{ runc(1.1) ;-> FOCT '_". :—-- runc(2,1} FDCT —t
: : i ;
; i o 1D ! I I 1D
i Row2 — Trunc(1.2) —»I FoCT ™ i—hl Trunc(2.2) —~| focT
: L H 1 :
: oo ! ! | i i
Row3 — Trunc(13) —» O |- —» Trnc23) — 2
ow : runc(1, " FDCT ' e runc(2.3) r_.'l FDCT _—'
: . : Transpose |, :
1l E Matrix : f
: Rowd4 —w» Trunc(1.4) —» DL —vl Trunc(2.4) —» 1D —»
‘ ' : | FOCT | T e FOCT
' | |
Row 5 —u Trunc(1.5) —-J 1D —» —-»’ Trunc(2,5) — 1D —p
, ; ’ | FDCT ; Py | FOCT |-
. Row6 | L * P o |
I — Trunc(1.6) — epeT —# Trunc(2,6) —» EDcT [
| = i :
Row? | - O > B ! 1D
g -—— Trunc(1.7) : ’; EDCT x—"‘ i'_"‘ Trunc(2.7) ' FDCT —

Figure 9: 2-D row-column FDCT with truncation

If we allow truncating at most m bits from each 1-D FDCT, since there are 16 1-D
FDCT blocks, there are a total of (m+1)'® possible combinations (including no truncation
for m=0). Even when m is small, say m=1, there are still 65536 possibilities to be
examined. Fortunately, not all combinations are valid from the distortion point of view.

In practice, since human eyes/ears are less sensitive to high frequency signal
components, higher frequency FDCT coefficients (larger n) are quantized more heavily
than the lower frequency coefficients. This fact suggests that the effect of truncation in
higher frequency FDCT coefficients is less than the lower frequency coefficients. This
argument leads to the following equation.

Trunc(d,n,) < Trunc(d,n,) if n, <n, (10)

Further test cases reduction can be achieved due to the fact that the transpose

matrix distributes all coefficients computed in each of the first-dimension FDCT modules

21

=

to all second-dimension FDCT modules. Thus, all first-dimension (¢=1) FDCT modules
are equally important, i.e.:
Vn : Trunc(l,n) = k, where k isa constant ~ (11)
Since the truncation error introduced in the first stage affects entire second stage,
to have a more accurate result, &=0 (no truncation at the first dimension FDCT blocks) is

used in the design of FDCT.

MPEG-2 Encoder

Trunc(d.n) ———j
i

Input i 2-D FOCT) i Ve
Sequence | MCME = (Trncated) | 7 V272 I Encocer ||

‘ Compressed Sequenc

VLC inverse . Reconstructed
- Gecoder —- Quentizer 2-DIDCT MC ——*Sequence

o

'MPEG-2 Decoder

t

: i
PSNR -—

Figure 10: Test model to measure the effect of truncation

To have a quantitative measure of the truncation effect, standard MPEG-2
encoder is modified as the test model (see Figure 10). By changing the Trunc(2,n),
different PSNR values are measured. The PSNR values are then compared against the
reference: PSNR of no truncation (Trunc(2,n)=0 for all n). Smaller PSNR difference
indicates smaller distortion introduced due to truncation. The truncation error is defined

as:

Truncation Error = Average PSNR(reference) — Average PSNR(truncation) (12)

Since the goal is to save power, one combination is better than another if it

truncates more bits, but has higher PSNR (smaller truncation error), i.e.

S Trunce. (2,n) > S Trunce,.,(2,n),and PSNRc,.., > PSNRcy. (7)

22

Three test video sequences (coke, salesman, and tennis) are used to measure the
truncation errors. Each sequence has 180 frames and is encoded using pure I-frames at 8
Mb/s. The FDCT is computed with fixed-point calculation with 11-bit precision after
binary points.

To show the effect of truncation. all 165 possible combinations are using m=3
(truncate at most 3 bits) and Trunc(1,n)=0 (no truncation for first-dimension FDCT). The
testing results (truncation errors) are shown in Appendix A.

Table 5 illustrates the best truncation patterns and its average truncation error
compared to all other truncation patterns with the same total truncated bit. In this thesis,
truncation pattern 7Trunc(l,n)=0 and Trunc(2,n)={1,1,1,1,1,1,1,1} is used in the

implementation of the FDCT because its truncation error is moderate (around 0.5 dB).

Total _ Mrunc(2 n)Truncation Error Total _ Mrrunc(2 n)Truncation Error]
Truncated Bits ? (dB) Truncated Bits| ? (dB)

0 00000000 0.0000 13 11122222 1.5023
1 00000001 0.0621 14 11222222 1.6806
2 00000011 0.1237 15 12222222 1.8576
3 00000111 0.1831 16 22222222 2.0400
4 00001111 0.2398 17 22222223 2.6143
5 00011111 0.3064 18 22222233 3.1380
6 00111111 0.3721 19 22222333 3.5924
7 01111111 0.4403 20 22223333 3.9806
8 11111111 0.5136 21 22233333 4.3642
9 11111112 0.7327 22 22333333 4.7059
10 11111122 0.9497 23 23333333 5.0382
11 11111222 1.1406 24 33333333 5.3550
12 11112222 1.3161

Table 5: Truncation errors against the number of truncated bits

3.2. Data-Dependent Loeffler’s IDCT Algorithm

Like the FDCT, row-column method is used to compute the 2-D IDCT. Due to the
heavy quantization of the encoder (for high compression), a high proportion of the
coefficients are expected to be zero at the input of the first-dimension IDCT.

One problem with the Xanthopoulos’s data-dependent IDCT designs in [19]-[21]
is that they may result in more computation than the fixed-complexity fast algorithms. In
the worst case, such as the input does not satisfy the assumed statistical property, the
data-dependent design in [19]-[21] may yield as high as 1024 multiplications for 2D
IDCT, i.e. degenerates to its base algorithm (direct [IDCT computation).

In this work, like the FDCT, zero-bypassing logics are inserted into the IDCT
circuit to reduce the number of computation. Since zero-bypassing logic does not
increase the number of computation, even at the worst situation, the data-dependent
design yields the same complexity as the fundamental Loeffler’s algorithm. In other
words. in the worst scenario (none of the bypassing logic active), data-dependent
Loeffler’s 2D IDCT algorithm uses 176 multiplications (2 dimensions x 8 rows
(columns)/dimension x 11 multiplication/row (column)).

In real life, some zero-bypassing logics will be active, and the number of
multiplications starts to depend on the distribution of input data. For instance, if there is
one non-zero coefficients in the input of the 1-D IDCT, data-dependent Loeffler’s IDCT
algorithm requires 0, 2, 5 or 6 multiplications depending on the position of non-zero
input. If the probability of the non-zero input position is the same for all 8 inputs, the
algorithm requires only 3.25 multiplications in average. Thus, by applying zero-

bypassing logic onto Loeffler’'s IDCT algorithm, the fixed-complexity algorithm is

24

transformed into a data-dependent algorithm. The new 2-D IDCT multiplication lower
bound is the same as Xanthopoulos’ (0), while the upper bound is significantly reduced

from 1024 down to 176.

3.3. Transpose Memory Architecture

There are various ways to transpose 8x § matrix in hardware. The trivial way is to
have two matrices (as shown in Figure 11). They are used for read and write alternatively

(ping-pong buffering). Two matrices are required since the data arrives row-by-row.

I
i]
; Writing rows in ! ————-] ‘ Reading columns
ﬁ' Matrix 1 i l i from Matrix 1 _k
; ' ‘r_ - >
| reming coumms ./ l
i Reading ,,olymns : < Writing rows in

from Matrix2 | | Matrix 2

Figure 11: Ping-pong transpose memory

Another way to transpose a matrix is reported in [28]. As shown in Figure 12,
only one matrix is required. Data is transposed on the fly by changing the shifting

direction (top-to-bottom or left-to-right).

TITTEY

Figure 12: On-the-fly 8x8 Transpose Memory [28]

The state of the transposition matrix for clock cycles is illustrated in Figure 13. To

fill up the matrix, from clock cycle 1 to 8, shifting direction is top-to-bottom. From clock

cycle 9 to 16, the shifting direction is lefi-to-right. From clock cycle 17 to 24, the shifting

direction is top-to-bottom. Clock cycle 25 is identical to clock cycle 9, and so on.

26

L @ _ o © o @ :
~ C —u o : -~ {
) N a N - . - ;i—_ - : . -3 i !
O— e -————u‘*—-———"—-—o !—-— 9 hal ’ . L-TOI 9 hd : E
ES a .) : s o '
After 8 cycles ’ 9-th cycle 10-th cycle
N L T
{ . - Tttt T ”‘m' - T T T . ’_ T N i — — T -
| = . R
!—15 14 13-12:11 10 9 2z !——18»151’.4'13‘125‘.1 10ig. T — ’ ' 1
- . - 168 15,14 ’3712i““°f 9
~ o |
T r
. 1§ i K
15-th cycle 16-th cycle 17-th cycle
,.‘_I R — — ——— ———— ._L__,_, — — —_— l t
‘6‘15 14 13 12'11'19. 9 -f ?
= . _ ©
— SO R - SRR - SE
o 16.15:14 13 1211 10. 9 =
T
18-th cycle . 23-th cycle 24-th cycle

Figure 13: States of the transpose matrix for different clock cycles

Since #n-bit element 8x8 matrix is built with 64n flip-flops, if # is large, the area
consumption will also be large. In the proposed FDCT/IDCT design, the on-the-fly
transposition architecture is used since it requires only 647 flip-flops instead of 128~ flip-

flops in the ping-pong case.

27

3.4. Chapter Summary

In this chapter, data-dependent Loeffler FDCT/IDCT algorithms are described.
The zero-bypassing logic is inserted into fixed-complexity Loeffler’s algorithm to
convert it into a data-dependent algorithm, which the new design is based on. For FDCT,
input truncation technique was also analyzed and applied to further reduce the amount of
data to be processed, hence reduce the power consumption. Based on the simulation
result, we decided to truncate one bit from the input of the second dimension FDCT.

The transpose memory architecture has also been studied. The on-the-fly
transpose memory reported in [28] is chosen because it requires only half the amount of
area comparing to the ping-pong architecture.

Since multiplier is the fundamental building block of FDCT/IDCT, in the next

chapter, different multiplier architectures are analyzed based on low-power criteria.

Chapter 4

Multiplier Architectures

In VLSI implementation, floating-point multipliers are much larger, slower, and
consume more power than fixed-point multipliers due to normalization of mantissa. For
this reason, all FDCT/IDCT designs reviewed in this thesis used fixed-point
multiplication instead of floating-point multiplication.

Since fixed-point or integer multipliers are larger, slower, and consume more
power than adders, the choice of multiplier greatly affects the overall FDCT/IDCT
performance and power consumption.

One special note about the multiplications performed in FDCT/IDCT is that they
are all constant multiplications. i.e. one of the multiplicand is a constant. In Section 4.1,
several constant multiplication schemes are studied, and the hardwired CSD multiplier is
chosen for low-power design. Section 4.2 describes the design procedure of the
hardwired CSD multipliers. In Section 4.3, synthesis is performed, and the result
indicates that the CSD multipliers indeed consume less power than general-purpose

multipliers.

4.1. Survey of Constant Multiplication Schemes

Following is a brief description of the characteristics of different constant

multipliers. More detailed description can be found in the references.

29

4.1.1. Modified Booth Multiplier

Modified Booth multiplier [35] is a popular general-purpose multiplier. Both of
its multiplicands are variables that can be changed at run-time. However, in DCT/IDCT
multiplications, only one of the multiplicand is variable, the other one is a constant
(cos(n716)). Having both operands of multiplier variable implies more hardware,
consequently more power. Thus, general-purpose modified Booth multiplier is not a good

choice for low-power DCT/IDCT design.

4.1.2. Distributed Arithmetic (DA)

Distributed arithmetic (DA) is a bit-serial operation that performs shift-and-add
operation to multiply two numbers (one of which is a constant). It replaces the
multiplication with additions and a look up ROM table [14]. The input is used as index in
the ROM, and the ROM contains the partial product of multiplying the address with the
constant multiplicand. and the partial products are then added by using shift-and-add
operations.

The main disadvantage of DA is that it is slow due to its bit-serial nature and
parallel-serial/serial-parallel conversion. This implies that it needs higher internal clock
frequency than parallel processing to do the same work. Moreover, shifting consumes
much power because of the high switching activities. In [14] and [15], the authors
evaluated the trade-off between the performance and the power for three multiplication

schemes: general-purpose multiplier. pure ROM based, and mixed ROM based (DA).

v Multiplier Pure ROM Mixed ROM
oltage
) Delay Power Delay Power Delay Power
(ns) (mW) (ns) (mW) (ns) (mW)
5 101.56 13.49 86.5 30.4 79.5 30.1
4 132.27 7.64 1114 18.6 103.7 18.1
3.3 162.53 4.99 137.1 10.5 129.1 11.0

Table 6: Comparison of general-purpose multiplication against ROM based

multiplication [14]

As shown in Table 6, the multiplier-based implementation is slower than the DA-
based implementations. However, the power is about 30-50% less than the DA-
implementations because about 85% of the entire DA chip runs at higher frequency due

to its bit-serial nature. As the result, DA is not a good choice for low-power design.

4.1.3. Hardwired Canonical-Sign-Digit (CSD) Wallace-Tree Multiplier

Hardwired multipliers hard code the constant multiplicand by using only shift-
and-add operations. Unlike DA, which performs shift-and-add operation at run-time,
these shifts are hard-wired at design time and consume no power. In other words,
hardwired multipliers are simply Wallace-tree carry-save adders. This results in a smaller
and more power-efficient multiplier than general-purpose multiplier.

Further power reduction can be achieved on the fixed multiplicand by not using
2’s complement representation, but using radix-2 canonical sign-digit (CSD)
representation. By definition. the canonical sign-digit representation is a redundant
number system that represents number with no adjacent non-zero digits. Every number
has a unique CSD representation [30]. It represents numbers with fewer or equal non-zero

digits [4] as the algebraic sum/subtraction of several power-of-two, ie.:

31

c= Zs,(27, wheres, e {~1,0,1}

A procedure to transform a conventional binary number to CSD representation is

described in [30]. We have also derived a more intuitive transformation algorithm:

1\

(V8]

Given a (n+1)-digit binary number B = B,B,.;... B;Bg with B,=0 and B;e{0,1} for
ie[0,n-1]. The following procedure converts B into the (nt+l)-digit radix-2
canonical SD vector D = D,D,.;...D;Dy with D,e€{0,1} and D;e{0,1,-1} for

ie[0,n-1] such that both vector D and B represent the same value:

a-—-iB,.?' =iD‘2'
1=0 . =0

If there are consecutive 1’s in B, continue to step 2. Otherwise, the resulting
number B is in CSD representation (D). End the process.
Replace the rightmost (starting from the lowest order 2" end) occurrence of bit

pattern 0 1...1 1 with 10...0 -1. This replacement is possible because
(ms (m-1)0's

n
ZZ‘ =2"1_2™ wheren>m
=m

. Go back to step L.

Figure 14 shows a step-by-step example that converts a binary number

0110010111y (4074 in decimal) into CSD representation. The consecutive 1’s to be

replaced are shaded in the figure. The resulting CSD representation of 4074 is

10T010T00T, where T denotes —1. As expected, 407 = 2°.27425.23.2°% In this example,

the CSD representation reduces the number of 1°s from 6 down to 5.

(%)
o

Binary Representation

fol1{1Jofoj1lof1]1]1]

— =
to 1i1iolof1y1{0 of-1i
—_—
io]1]{1]of1jol1jofo]
1

v
Miola,0t1l0]-170 o0]-1]
CSD Representation

Figure 14: Converting binary number 0110010111 into CSD representation

As another example, Table 7 shows the CSD representations of the constant operands

(cos(n/16)) used in FDCT/IDCT with 15-bit precision after binary point (total of 16

bits).
cos(nmn/16)
" Traditional Binary Representation Canonical Sign-digit Representation
Bit Pattern # Non- Bit Pattern # Non- % Bit

(2°2'22...27"%) Zero Bits (2°27'22,...27"%) Zero Bits | Saving
J1o111110110001010 9 [00000-10-10001010 4, S 44%
210111011001000010 7 1000-10-1001000010 5 29%
3/0110101001101110 9 10-101010100-100-10 7 22%
4/0101101010000010 6 10-10-101010000010 6 0%
5010001110001 1101 3 0100100-100100-101 6 25%
610011000011111100 8 010-1000100000-100 4 - 50%: .,
71000110001 111100t1 8 0010-10010000-1001 5 38%

Table 7: Canonical sign-digit representation of cos(nm/16)

As shown in Table 7, the CSD representation can reduce the number of non-zero
bits up to 50% over traditional representation. In hardwired-multiplier, each non-zero
digit (except the first 3 non-zero digits) in the constant multiplicand requires one extra
carry-save adder stage.

Because canonical means no adjacent non-zero digits, any rn-bit number can be
represented with at most [#/21 number of non-zero digits, which in turn reduces at least
half of the carry-save adder stages comparing to general purpose array multiplier. It can

also be shown that CSD generates an average of #/3 additions [40]. Since fewer non-zero

a1
20

bits imply less computation, less switching activity, and less power consumption, the

hardwired CSD multiplier is a good choice for low-power design.

4.1.4. Pattern-Based CSD Multiplier

The CSD representation uses minimum shift-and-add (S&A) operations when
multiplying constant k& with variable x directly. However, direct multiplication of x x &k
does not necessarily use minimum S&A. operations to perform x x £. In some situations,
it is possible to find patterns inside the CSD representation, which can be reused to avoid
repeated computation. Thus, instead multiplying x with £ directly, x is multiplied with
sub-expressions of k, then partial products are used to construct the final product. As an
example, let k =11100111=100T0100T (2314). Using CSD representation without pattern
searching, 23 Lx requires 4 additions. However, with pattern-based algorithm, 23 1x can be
represented by (7x<<5)+7x, which requires 3 additions only. The Bernstein’s algorithm
[41], Lefevre’s algorithms [39-40], and Potkonjack algorithm [42] are pattern-based
algorithms.

The pattern-based algorithms are very useful for multiplication with very large
constants where the patterns can be reused frequently. For example, in
encryption/decryption, the constant may have several hundreds or thousands of bits. In
such situation. pattern-based algorithm can reduces the computation significantly.
However, for the purpose of FDCT/IDCT and most DSP applications, the constants word
lengths are usually small, and patterns (if any) are reused less frequently.

For pattern reuse, one must obtain the entire partial product, which requires using

carry-save-adder (CSA) followed by carry-propagate adder (CPA). In general, in VLSI

implementation, CPA is slower, and consumes more power than CSA due to carry
propagation. The slower pattern-based algorithm speed can be compensated by adding
pipeline registers after each CSA used for partial product (pattern) computation. The
extra power consumption due to the carry propagation in CPA can be reduced by using
other types of adders such as carry-bypass adders or carry-select adders. However, given
the patterns are not reused frequently, the overall power consumption of pattern-based
multiplier is still larger than the one without using pattern. Since the design criterion of
this thesis is power, only the CSD multiplication without using pattern is considered, and
all multipliers used in FDC/IDCT are hardwired CSD multipliers.

Notice that the application of hardwired CSD Wallace-tree multiplier is not
restricted to FDCT/IDCT only. It can be used in many other digital signal processing
(DSP) applications, such as digital filters, where fixed-coefficient multiplication is

required.

4.2. CSD Multiplier Implementation Procedure

To design a hardwired CSD multiplier for multiplying unsigned variable integer
operand (v) with a constant operand, we derived the following steps:
1. Obtain the CSD representation of the constant operand by using the algorithm
described in Section 4.1.3.
2. For each non-zero bit position p in constant operand:
e For each 1 in the constant operand, place the unsigned variable operand, i.e.

performing vx2”.

e For each —1 in the constant operand, negate the unsigned variable operand
with a 1 placed at the least-significant bit (2’s complement), and extend 1°s to
the left of the most-significant bit (sign extension) of the variable operand, i.e.
performing (—v)x 2
3. Simplify the diagram by adding the constant 1’s together to avoid redundant
computation at run time. By studying the truth-table of addition, we found that
further optimization can be achieved by using identity [.1:

Identity [.1: Variable bit b plus constant 1 results in sum ~b and carry b, where ~b

denotes NOT operation

b b+1
Sum Carry
0 1 0
1 0 1
Sum=b, Carry=-b

Table 8: Truth-table of b+1
This identity allows reduction of one operand to be added for position p by
increasing the number of operands to be added for position p+1 by 1. Intelligent
use of this identity can reduce the number of carry-save adder (CSA) stages
(critical path delay) without introducing any extra hardware.

4. Combine the operands placed in step 2 and the simplified constant 1’s (in step 3)
with carry-save adders in Wallace-tree form. The result of the carry-propagate
adder is the result of multiplying variable input operand with the constant

operand.

To illustrate the above algorithm, Figure 15 shows the procedure of constructing a

CSD hardwired-multiplier of constant cos(37/16) multiplying with an 8-bit unsigned

integer. Constant cos(37/16) is chosen because it contains the most non-zero bits in the
Table 7. As shown in Figure 15, in step 3, the application of identity I.1 reduces the depth
of CSA tree from 7 down to 4. As the result, the multiplication of cos(37/16) with an 8-
bit unsigned number has critical path of only 2 full-adder stages with a 19-bit CPA adder.
Notice that despite the fact that the multiplier uses CSD representation for the constant
operand, both the variable operand and the product are still in 2’s complement

representation.

Step 2
7 § 5 4 3 2 1 o -1 2 3 - K F 7 -8 9 10 11 -2 13 -4
R 1 RN NN IR e Y
RN EREEEE IENERE T 6 -5 . ~4 =3 . ~2 = -0 -2 +
[
— —_— -2
| 7 6 s 4 3 12 1 0 ~a-+28
g
7 6 | 5 : & 3, 02 L 0 - +28 g
S
a
7 1 6 1 8§ 4 3 2 1 0 - +24 - N
I : i Notation: [
- T - - d b= :
wt i1 1 o~T -6 ~5 - ~3 -2 -1 0 - 22 Ly fConstann‘
1 .
I p—
L — ; - NOTb
7 8 5 4 3 2 1 0 -+ L
- - Simplify the 1's and Rearranging operands
Step 3: _ L o . o .
7 § <7 8 7 5 7 & 7 6 5 7 i % -5 -7--6;-5:4'4;-2?4{-051;
T Ty T T -5 w5 a 5 PRI 2 | 3 27 . 32, . = 2
¢ '3 2 ~3 ~2 3 2 1 2 1 [} 10 | E
10 -1, -0 L 3
Al i v L] AR RN A
fann | .
L Apply Identity: b+1 => Sum ~b, Carry b
~ 7 on it position -14, -4, and 6
T T T 8T e 7776 77 T 8 5 1 | <6 5] -7 6 5 -~ ~3]-2]~1] 0 T
s . s & 5. -4 s 5 PRI s | 3 2 | % <3 2] ~1 -0) -~
" 3 2 . 3, -2 . 3 2 11 2 . 1 - 0 : 1 : 0o | a2 R
_— - - |
e S 11 0 o~ ~0 ' 0 ~ 3t 1t] Y

Construct Multiplier with Wallace-tree

Carry-Save Adders
Step 4: e e S g

7 % 8 7 6 7 & - 7 [§ <7 - -6 5 T, 6 ; ~§ ! = R

6 T8 - 4 s . & .S 4 -3 . &4 '3 2 -4 . -3 -2 T -0 N
—_ s | 3 2 ~3 -2 ;3 2 .1 2 1 0 [Pt ' :
/ ; :
H N
K3 71+ | «]« 1 0 -t -0} 0 01 1 / = -2 : ;
5 o=l i i
.
! :

. . : t ¢ T v 1
v v v v v v v v A\ v v v v v v v v v v v v v

Figure 15: Hardwired CSD multiplier for multiplying cos(3n/16) with 8-bit unsigned
integer
Similarly, to multiply a signed 2°s complement variable operand (v) having a
sign-bit (s) with a constant operand, the following procedure is derived:
1. Obtain the CSD representation of the constant operand.
2. For each non-zero bit position p in constant operand:
e For each 1 in the constant operand, place the signed variable operand, i.e.
performing vx 27. Sign-extend towards left.
e For each —! in the constant operand, negate the signed variable operand v with
a 1 placed at the least-significant bit (2’s complement), and extend ~s
(negated sign-bit s) to the left of the most-significant bit (sign extension) of
the variable operand, i.e. performing (-v)x2”

Simplify the sign extension bits and constant 1’s in the diagram:

(V3

e Let s=0, replace all s with 0, and ~s with 1, add all constant 1°s together, and
obtain a constant value SE.
e Le s=1, replace all s with 1, and ~s with 0, add all constant 1°s together, and

obtain a constant value SE;.

e For each bit at position p, merge SE,; and SE; together to obtain another value

SE using the following truth table:

SEo (S=0) SE[(S=I) SE
0 0 0
0 1 s
1 0 ~S
1 1 1

Table 9: Truth table to simplify sign-extension
e Remove all sign extension bit (s or ~s), insért SE into the diagram.
e Like the unsigned case, apply identity I.1 where suitable.
4. Combine the operands placed in step 2 and the simplified sign-extension bits and

constant 1’s (in step 3) with carry-save adders in Wallace tree form. The result of
the carry-propagate adder is the result of multiplying variable signed 2’s
complement input operand with the constant operand.
Like the unsigned case, step-by-step illustration of construction of a CSD

hardwired-multiplier of constant operand cos(3n/16) multiplying with an 8-bit signed 2’s

complement integer is shown in Figure 16.

Step 1: 3T . . .
cos| — | =1=27"+27 2 w2 227 Lo
16
Step 2:
7 8 5 4 3 2 1 [4 2 3 4 S5 8 7 8 -9 -0 -1 2 23 -4
L =~8i ~s | s | ~s | ~5 | -s | -% s 1T s s]l s s[<s]~si-~=|- =5 =3 HEEEE A
i 54
Tl s [a i e s i et sl s st s 56574 -3i-2!~1i 0 420 A
d .
ey e T e e e e ey L_j‘__. -2 ‘
v s s s s s . s ls s s {5 |6 5 . &« 3 2 . 1 0 - +2% +
) e B
s s s is[si'sis|s 654 3 2 1 0 -a+2° g
T i H i by
L .s b s s | s | s 1 s .8 1 5 : 4 3 21 0 -a+2¢ - i
T I JE : { Notation: Do
! i
- ——— e e e —— e _—— - - - - - . - - [— i
(s s [57w | %5 .~ 3 -2,-1;-0 4-22 ;(&:;]Constamw !
1 b r—— H :
R T e e e +; | ‘T INOTD | |
-8 1 5 | 8 5 ' 4 3 2 -t — S |

39

Simplify the Sign-Extension bits and Constant 1's

Step 3:
i " - i T "
71 1 T 1 1 i 11 1 ‘t f,f 1) RN & ‘;»:1“lSE°(S=-‘0)
T = 1 el ey -
. | 1§ 1 14‘! ; 1 i1 [1 ‘ LI i1 ' BTN SE‘ (s=1)
REERANEERIEE s | s jsisl-s f= i =] =] D”T’“" Eg;(rne;gSeE)
1
— '~ Remave s/~sin step 2, and Insert SE
1 .- 6 5 % -5 & 5 6 5 s 5 1+ 6 5 - -6 -5 .- -2 -1 -0 Lk
Pt 1 ;4 3 - . -3 FE] EE) 2 3 2 0t ;-3 2 -t g i ‘x;,-l 2
HE 2 1 -2, -t 2 1 o, 1 9 | ~=] 0 ! T4 g
s B IEREREE HIEEEN =
SENENT i
! Apply Identity: b+1 => Sum ~b, Carry b
- on bit position -14, 5, 6
1T s 6 s = 5 e P s [5 ¢ - 6 <5 <« | 8 | -5, - -3 2] og—g
[s T | 3 | -« -3 4 3 EE 2 3 2 T -3 21 -1 . -0 . -0 3
s 2 1 ~2 -t 2 1 0 T 0 ~s ;O R g
s | o s | -0} s Pes s | ?:
s s ¥
i Construct Multiplier with Wallace-tree
~ Carmry-Save Adders
Step 4:
= | 6 5 6 s 5 6 s 6 , 5 4 68 i 5 . ~4 -6 .5 i -1 0
6 s < AT A e 3 4 o3 2 R EEE 7ot Tao
e - . i
s 2 1 -2, -t 1) 1 0 ! ~ : 0 T |
—! — —— —_—— . .
L [/ . _ b
-5 s [] s - !~ - -5 | -5 ! ~ . ~2 :
EN / T g : '
- A : ‘ !
— ' : ;
ERIR RN, £ |
18-bit Adder i | !
v v v v v v v v ' v ; v v v v v v v v ‘ ; ;

Figure 16: Hardwired CSD

integer

4.3. Multiplier Synthesis Result

multiplier for multiplying cos(37/16) with

8-bit signed

To demonstrate that the hardwired CSD Wallace-tree constant multiplier

consumes less power and area while offering comparable speed performance, its delay,

40

area, and power consumption figures are compared with the with other 32-bit popular
general-purpose multipliers.

Since the hardwired CSD multiplier has one operand constant, several CSD
multipliers are implemented with different constant operand used in FDCT/IDCT
(cos(nm/16), and 22y All constants have 1-bit integer part and 31-bit fraction part to
form a 32-bit fixed-point number. The constants are then multiplied with a 32-bit signed

integer (variable operand). All multipliers are synthesized using Xilinx 4052XL-1 FPGA

technology.
. Modified
32-bit Array Modified Wallace Booth- Proposed
- .Y Booth Tree
Multipliers | Multiplier . . re Wallace Tree Scheme
Multiplier Multiplier -
Multiplier
Area (CLB) 1165 1292 1659 1239 4935
Delay (ns) 187.87 139.41 o 10L.14 101.43 106.21
Power (mW) 16.651 23.14 30.95 30.86 - R6T

Table 10: Comparison of 32-bit CSD Wallace-tree multiplier with 4 different general-
purpose multipliers using Xilinx 4052XL-1 FPGA technology (Columns 1-5 adopted

from Table 1 in [36])

As shown in Table 10, the CSD multiplier uses least amount of area and power
(less than half of the power than the array multiplier) while offering comparable speed
performance with the other multipliers (around 100 ns). This result agrees with the
analysis — hardwired CSD is more power efficient then other general-purpose multipliers.
Therefore, hardwired CSD Wallace-tree multipliers are used in the FDCT/IDCT designs

presented in this thesis.

41

4.4. Chapter Summary

In this chapter, by analyzing different constant multiplication schemes, a new
constant-coefficient multiplier design is presented. The multiplier is based on canonical
sign-digit representation with Wallace-tree formation. As shown in the analysis and
simulation, the CSD multiplier is both more power and area efficient than general-
purpose multiplier while offering similar speed performance. Consequently, it is used in
the FDCT/IDCT design presented in this work. Detailed design procedures for both
unsigned and signed integer are also described.

In the next chapter, more implementation details, such as design automation and

pipeline design, are presented.

Chapter 5

Implementation

Since the main efforts are concentrated on the arithmetic level (data-dependent
algorithm) and implementation level (hardwired CSD multipliers), we decide to use
VHDL to implement the FDCT/IDCT designs. No optimization on the circuit level or
technology level is made.

To ensure error-free coding, some design automation effort is made. In Section
5.1, a C++ program that generates VHDL code of hardwired CSD Wallace-tree multiplier
is developed. Similarly, to make the IDCT design compliant to I[EEE Std. 1180-1990, in
Section 5.2, a Java program is developed that calculates the error figures defined in IEEE
standard [27] for different internal bandwidths. The pipeline designs for both the FDCT

and IDCT are also described in this Chapter (Section 5.3).

5.1. Hardwired CSD Multiplier Generator

Since the FDCT/IDCT design uses hardwired CSD multiplier, for each constant
operand and bandwidth of variable operand, different muitipliers are required. To save
the design time and avoid bugs in the coding, it is ideal to generate constant multipliers
through a code generator.

Several constant multipliers generators [40][43-44] have been reported in the

literature. All of them are optimized for Xilinx FPGA 4000 and Virtex technologies. To

have a technology-independent constant multiplier generator, a C++ program that
generates VHDL code for hardwired CSD multiplier is developed. The program is called
constant multiplier generator (CMG). The C++ source code of the generator is listed in
Appendix C and in attached CD.

The CMG is capable of generating VHDL code that multiplies signed/unsigned
variable operand with any positive integer constant multiplicand. The constant operand
can have the size of long type in C++ language. The CMG takes the following
information from the user:

e VHDL entity name.
e Integer value of the constant operand: For real number constant operand, use the

integer value of the corresponding fixed-point representation. For Intel Pentium®

processors running Microsoft Windows® 32, the limitation of the constant

operand is from O to 2147483647.

e Variable operand: Number of bit of the signed/unsigned variable operand.

e Product Least-Significant-Bit Truncation: This feature is useful for real number
(fixed-point) multiplications. In many situations, not all bits in the real part are
required. Truncating some least-significant bits from the product results in a
smaller, faster. and more power-efficient multiplier. The truncation error has been
analyzed in [45].

The generator uses the algorithm described in Section 4.2 to generate VHDL
code. At the end of the code generation, it also reports critical statistical information:
number of carry-save adder stages, number of inverters, half adders, and full adders. This

information is useful for power, area, speed, and pipelining analysis.

44

As an example, for constant operand cos(37/16) with 15-bit precision muitiplied
with 12-bit variable operand and no truncation, the CMG generates the VHDL code

shown in Appendix B.

5.2. IEEE Standard 1180-1990 IDCT Compliant

To ensure the proposed IDCT chip conforms to IEEE Standard 1180-1990, a Java
program is developed. The program reads in data path bandwidths, multiplier precisions,
and truncation patterns used in Loeffler’s IDCT in each pipeline stage from a file, and
calculates the error figures (ppe. pmse, omse, pme and ome) defined in the standard (see
Section 2.3.). Again, the source code is listed in Appendix D and in the attached CD.
Notice that Java is chosen as the programming language because the long type in Java is
a 64-bit integer, which is more suitable for simulating fixed-point arithmetic. In C++, the
size of data type is machine dependent; while in Java, the size of data type is machine
independent and fixed.

After testing different combinations of internal bandwidths, the first dimension
IDCT produces 13-bit integer/3-bit precision fixed-point output. The second dimension
IDCT produces 14-bit signed integer output (after rounding of 10-bit precision result).
The 2-D IDCT presented in this thesis conforms to the [EEE 1180-1990 Standard. The

compliance test results are shown in Table 11.

45

Random Data pme pmse ome omse
Range <0.015 <0.06 <0.0015 <0.02
[-300,300] 0.0121 0.0161 0.00082 0.0108
[-256,255] 0.0129 0.0144 0.00073 0.0103
[-5,5] 0 0 0 0
-[-300,300] 0.0121 0.0155 0.00081 0.0109
-[-256,255] 0.0143 0.0163 0.00085 0.0104
-[-5,51 0 0 0 0

Zero-in zero-out test passed. |ppe|<1

Table 11: [EEE Standard 1180-1990 Compliance for Proposed IDCT

5.3. Pipelining Design

Since the hardwired CSD multiplier is essentially a carry-save adder, and the

speed of the carry-save adder is mostly limited to the carry-propagate adder, the speed of

FDCT/IDCT is directly related to the carry-propagate adders. Thus, it is logical to insert

pipelining registers after each adder (including the adders in the multipliers). As shown in

Figure 17, for kcn blocks in IDCT, there are 3 pipeline stages (add inputs, multiply, and

add product). For kcn blocks in FDCT, there are 4 stages. The extra stage is required to

add the partial products of the segmented multiplications. Therefore, there are 10 pipeline

delays (latency) for 1-D FDCT, and 8 pipeline delays for 1-D IDCT (see Table 12).

n

,

Figure 17: Pipelined kcn block

<—Stage 1 ——><——Stage 2———=<——Stage 3

i

Y

Pipeline Register

{(a+b) —w

a—p

b-a~—

Pipeline Register

46

\7 It

Latency | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Total
FDCT 1 4 4 1 10
IDCT 1 3 3 1 8

Table 12: Latencies for 1-D FDCT and 1-D [DCT

For the transpose memory, the on-the-fly transpose memory architecture is used.
From Figure 12. it is clear that the latency is 8 clock cycles because the transposed output
can be obtained starting from the 9™ clock cycle.

To summarize, the proposed 2-D FDCT has latency of 28 clock cycles, and the 2-

D IDCT has latency of 24 clock cycles (see Table 13).

Latency | First Dimension | Transpose Memory | Second Dimension | Total
FDCT 10 8 10 28
IDCT 8 8 8 24

Table 13: Latencies for 2-D FDCT and 2-D IDCT

5.4. Chapter Summary

In this chapter, a new constant CSD multiplier generator is introduced. Written in
C++, the program generates VHDL code that multiplies constant integer operand with
signed/unsigned variable operand. Truncation can also be made on the product to reduce
hardware, power, and delay.

A Java program is developed to select the internal bandwidth such that the 2-D
8x8 IDCT conforms to the [EEE Standard 1180-1990.

Both FDCT and IDCT designs have also been pipelined to achieve throughput of
1 output/clock cycle. The latency is 28 clock cycles for FDCT, and 24 clock cycles for

IDCT.

47

In the next chapter, the VHDL code of the proposed FDCT/IDCT chip is
synthesized using Synopsis with Canadian Microelectronic Corporation (CMC) 3-volt

0.35-um technology. Synthesis results (power/area/delay) are compared with previous

works.

48

Chapter 6

Synthesis Results

In this chapter, synthesis results of proposed FDCT/IDCT are presented in Section
6.1. The proposed design is compared with previous reported designs in Section 6.2.

using the switching-capacitance per sample criteria described in 1.3.

6.1. Synthesis Results of the Proposed Design

The VHDL code of the proposed FDCT/IDCT core is synthesized using Synopsis
with Canadian Microelectronic Corporation (CMC) 3-volt 0.35-um technology. Since the
design goal is low power, the compiler constraint is set to minimize the dynamic power
consumption (ideally zero). The synthesis result indicates that the proposed FDCT core
consumes 122.7mW at 40MHz, and IDCT core consumes 124.9mW at 40MHz. The
detailed specifications of the new FDCT/IDCT design are shown in Table 14.

Only the dynamic power reported by the Synopsis is compared with other designs
in the next section. In real life, there may be other power consumptions, such as leakage
power and short-circuit power. Since the leakage power is related to the fabrication,
which is not the concern of this paper, it is ignored in the comparison. As for the short-
circuit power, it is assumed to be small and negligible, which is usually the case in

practice. Its effect can be minimized with proper timing design.

49

The power measurements are performed under the worst-case condition where the
assumed statistical properties do not hold, i.e. under white noise input. In this situation,
most of the bypassing logics are not active, and the power consumption is higher. This
simulation condition is chosen because in real life, for MPEG-2 video compression, the
assumed statistical properties apply only for I-frames, but less so for B-frames and P-
frames. For those frames, the redundancies at the input are already been reduced, and the

input behaves like white noise.

FDCT | IDCT
Process Technology CMC 0.35um CMOSP technology
Supply Voltage (V) 3 Volts -
Operating Frequency (MHz) 40 M
Processing Rate (samples/sec) 320 M
Dynamic Power (mW) w o 122:6666: v 124:858%
Leakage Power (nW) 16.8610 18.6860
Area (reported by Synopsis) 3.2548425 3.2969125
Maximum Pipeline Stage Delay (ns) 2451 24.43
Latency (clock cycles) 28 24
Input/Output Numeric System 2’s complement signed integer
Input Specification 8 input/clock cycle
Input Bandwidth (for each input) 9-bit | 12-bit
Throughput 8 output/clock cycle
Output Bandwidth (for each output) 17-bit | 14-bit

Table 14: Process and Specifications of the proposed FDCT/IDCT designs

6.2. Comparison with past FDCT/IDCT VLSI implementations

Many FDCT/IDCT VLSI implementations have been reported in the literature.
The specifications of several recent high-performance FDCT/IDCT chips are summarized
in Table 15. Due to different process technologies (supply voltage, operating frequency,

etc.), implementation approach (full-custom, semi-custom, etc.), optimization parameters

50

(RTL, transistor level, layout level, etc.), and design algorithm/architectures, comparing
different implantations is always a tough job in VLSI design. Also, in some situations,

not all measurement figures are reported. As the result, it is very difficult to compare one

design with another accurately.

N Area (mm°) / Power Clock
Implementation Process Transistors Supply Voltage (V) (mW) Rate
Toshiba 1994 2
13.33mm™/ 0.35W at 3.3V, 200MHz
7 *
FDCT/IDCT | 0.6 um, 2ML 120K 0.15W at 2V, 100MHz
[23][24]
Toshiba 1996 0.3 um 2ML, 4mm?/ _ , 150
FDCT/IDCT {22] | Triple well 120K 0.9V, VT=0.15 20.1V MHz
AT&T IDCT - Tram?/
3 2
(37) 0.5 pm 69K 3V 250mW | 58 MHz
Xanthopoulos’s | 5, 3pg, | 207 VINATP=0.661-0.92V 5-43
IDCT (28] 160K TOX=9.6 MHz
2 1.1-3V =
Xanthopoulos’s - 20.7mm~/ 2-43
0.6 um, 3ML VIN/VTP=0.75/-0.82 V
FDCT [28] 160K TOX=14.3 MHz
. 0.6 um " 2
Sarmiento’s . 32.2mm~/ d 600
- 2
FDCT {6] E/D g;iS;FET 51K 2V ™™ MHz

Table 15: Summary of specifications of several FDCT/IDCT chips

In order to compare the proposed design with other works fairly, like [19]-[21],

the switching capacitance per sample (hence power per sample) is calculated and

compared. It can be used as an indication of energy efficiency since it is directly

proportional to power consumption required to process each input sample.

As described in Section 1.3, the switching capacitance of each design is obtained

by dividing the power with the frequency and squared voltage. Notice that the switch

capacitance per sample is obtained by dividing the switching capacitance by the number

of samples per clock cycle.

Technology scaling is also performed for all designs to normalize all designs to
0.35um technology. The scaling factor from 0.35um (CMC 0.35um CMOSP) technology
to 0.5um (0.6ym drawn) (CMC CMOSISS) technology is obtained by performing
HSPICE simulations on two inverters, one as the load of another. For both technologies,
the power supply is 3 volts with 40-] 3-volt square pulse input. The PMOSs have size
L=W,., with W=4W,,,,, and the NMOSs have size L= W, with W=2W ,;,, where Wy, is
the minimum feature size of the corresponding technology. The simulation result
indicates that the power consumption is 0.634 mW for 0.35um technology, and 1.19 mW
for 0.5um technology. Since both circuits are operating on the same voltage and
frequency, the ratio between the powers is the ratio between the switching capacitances.
For simplicity, 0.5um and 0.6pm technologies are treated equally, similarly for 0.3pum
and 0.35um technologies. Thus, the switching capacitance in 0.5pum (and 0.6pm)
technology will be multiplied with 0.532 to scale to 0.35um technology. The effect of
circuit level optimization, such as variable threshold voltage used in [22], is ignored since
it cannot be quantified correctly.

The switching capacitance per sample is shown in Table 16 after technology

normalization. As an example, the switching capacitance per sample of the proposed

=426 pF . For the Xanthopoulos’s FDCT,

.. 122.6666-107°
FDCT design is calculated as —
o)

20-10°-37

which is a 0.5um design, technology scaling is performed, and the switching capacitance

65-107-0.532 :
4651 9 ;’ =101.6 pF, where 0.532 is the technology

per sample is calculated as =
14-10°-1.32

scaling factor to scale the power of a 0.5um technology down to 0.35um technology.

52

As shown in Table 16, the proposed data-dependent FDCT/IDCT designs have
the least switching capacitance per sample, i.e. consume least amount of power to process
each input data sample. Thus, the proposed FDCT/IDCT design is the most power

efficient one among the designs reviewed in this thesis.

Implementation Switching Capacitance /
Sample (pF)
Toshiba 1994 FDCT/IDCT 85.6 (3.3V design)
[23][24] 199.8 (2V design)
Toshiba 1996 FDCT/IDCT -
(22 82.3
AT&T IDCT [37] 478.9
Xanthopoulos’s FDCT [28] 68.5
Xanthopoulos’s IDCT [28] 101.6
Sarmiento’s FDCT [6] 1553.9
Proposed FDCT Design. - - |- = 4206 =
Proposed IDCT Design ~ 434

Table 16: Energy Efficiency (Switching Capacitance/Sample in 0.35pm technology)

6.3. Chapter Summary

In this chapter, the proposed FDCT/IDCT design is synthesized using Synopsis
with CMC 3-volt 0.35-um technology. To compare the proposed design with previous
works, the switching capacitance per sample is used. This comparison method permits
technology-independent comparison of different DCT/IDCT architectures. From Table
16. it has been show that the new FDCT/IDCT designs have the smallest switching

capacitance per sample, and are the most power-etficient designs.

W
W)

Chapter 7

Conclusion

7.1. Summary of Research

In this work, a data-dependent low-power FDCT/IDCT design is presented. Low
power is achieved by performing optimizations on both algorithm and architectural
levels.

Both the FDCT and IDCT designs are built based on low-complexity Loeffler’s
fast algorithm combined with data-dependent zero-bypassing logic. In FDCT, to have
high zero-bypassing probability, segmented multiplication is used. Also, to reduce the
internal bandwidth, hence the amount of data to be processed, least-significant-bits
truncation technique has also been employed. The error introduced by truncation is
empirically studied.

The multiplier architecture is optimized by developing low-power CSD
multipliers. To reduce the possibility of bugs in coding, a C++ program that generates the
technology-independent VHDL code for the multiplier is developed. This generator can
be used in many other DSP applications where constant multiplication is required.

The FDCT/IDCT designs are coded using VHDL, and synthesized using Synopsis
1998 with CMC 0.35um CMOSP technology. No transistor-level circuit optimization is
done. Operating at 3V and 40MHz, the FDCT design consumes 122.7mW, while the

IDCT design consumes 124.9mW. By comparing with other recent works, the proposed

FDCT/IDCT designs are the most power-efficient ones since they have the least
switching capacitance per sample. Low-power operation is achieved through the selection
of low-complexity Loeffler’s algorithm, data-dependent zero-bypassing logics, and least-

significant-bits truncation.

7.2. Conclusion

From the analysis and simulation results, the following conclusion can be made
about this thesis:

e Data-dependent algorithm can reduce the number of operation when bypassing
logics are properly inserted. Improper use of the data-dependent algorithm may
lead to increasing the computation rather than decreasing the computation.

e Hardwired CSD Wallace-tree multiplier is a good choice for low-power design
where constant multiplication is required. Its application is not only limited to
DCT/IDCT. In many non-adaptive signal processing/filter applications, constant
multiplications are required. The use of hardwired CSD multiplier can lead to a
more power-efficient design.

e Low-power design can be achieved by having optimization at both design time
and run time. The design time optimization is done by carefully choosing a good
algorithm that reduces the number of operations. The run-time optimization is
achieved by using data-dependent bypassing logics to reduce the switching

activity, which is directly proportional to the power consumption.

55

7.3.

The data-dependent low-power design approach is not only limited to DCT/IDCT.
It can be used in other applications as well where the statistical property of the

input is well understood.

Possible Improvements for Future Research

Following are some recommendations and possible improvements for future

research endeavors.

Study the effect of integrating data-dependent algorithm with other fast
algorithms: This thesis is based on Loeffler’s fast algorithm. It is chosen because
it has the least amount of multiplication over the surveyed papers. It is interesting
to know the effect of applying bypassing logic onto other fast algorithms to
determine the potential of data-dependent algorithm.

Study the effect of segmented multiplication: As discussed in 3.1.1, smaller
segmentation size leads to higher bypassing probability with the expense of more
complicated control logic and more delay. In this work, the multiplications in
FDCT are spilt into two segments. This choice may not be optimum. Having
different segmentation strategy may lead to a more power-efficient design.

Study the truncation effect for P-frames and B-frames: The truncation simulation
is performed for I-frame only. It is a good idea to measure the truncation effect on
P- and B-frames as well.

Explore the possibility of using truncation as a mean of quantization: Truncation

behaves like quantization since both operations reduce numerical precision. Thus,

56

instead of having 2-D FDCT and quantizer as two separate blocks, it could be
possible to merge them together. In such a situation, a sophisticated control
algorithm is necessary for adapting the FDCT for different quantization levels (Q-
factors).
More power simulations under different conditions: The power measurements
presented in this work are performed under the worst-case condition where the
assumed statistical properties do not hold, i.e. under white noise input. In order to
get more accurate power estimation, it is recommended to pass many different
real sequences (with I-, B-, and P-frames) as the input of the system, and measure
the power consumptions.

Improve the Constant Multiplier Generator (CMG): Several possible

improvements can be made on the CMG:

1. Negative constant support: Currently, the CMG supports only multiplication
with non-negative integers. In this work, the negative constant coefficients of
DCT/IDCT are taken care by using subtractions instead of additions when the
products are used. However, for other applications, if negative constant
multiplication is required, the CMG can easily be modified to support

multiplying negative integer constants.

!\)

Carry-save-adder optimization: In some situations, there are common
operands to be added in the carry-save adder array for different bit positions.
It is possible to share the partial sum of the full/half adders. Unlike the
pattern-based algorithm that requires full summation, sharing carry-save-adder

reduces the hardware and power without increasing the delay. The only

57

(V3]

drawback of doing so is that the overall design becomes highly irregular due
to complex routing cause by sharing wires.

Better full-addition support: Currently, at the end of the CSA, CPA is used. It
is possible to reduce the power consumption even further by wsing carry-
bypass adder or carry-select adder.

Support for pattern-based CSD algorithms: As mentioned before, the CMG is
designed for DSP applications where the constants are assumed to be small.
However, if the constants are large, pattern-based algorithms should reduce

the computation significantly, thus reducing the power.

Bibliography

[1]

[2]

[3]

(4]

(6]

W. H. Chen, C. H. Smith, and S. C. Fralick, “A Fast Computational Algorithm for
the Discrete Cosine Transform™, IEEE Trans. on Communications, vol. Com-25,
no. 9, pp. 1004-1009, September 1977

S. . Uramoto, Y. Inoue. A. Takabatake, J. Takeda, Y. Yamashita, H. Terane, and
M. Yoshimoto. “A 100-MHz 2-D discrete cosine transform core processor”, [EEE
J. of solid-state circuits, vol. 27, no. 4, pp. 492-499, April 1992.

Y. F. Jang, J. N. Kao, J. S. Yang, and P. C. Huang, “A 0.8y 100-MHz 2-D DCT
core processor”, IEEE trans. on consumer electronics, vol. 40, no. 3, pp. 703-709,
August 1994.

A. Madisetti and A. N. Willson, “A 100 MHz 2-D 8x8 DCT/IDCT Processor for
HDTV Applications™, [EEE. Tran. on Circuits and Systems for Video Tech., vol. 5,
No. 2. pp. 158-164, April 1995.

T. Masaki, Y. Morimoto. T. Onoye, and 1. Shirakawa, “VLSI Implementation of
Inverse Discrete Cosine Transform and Motion Compensator for MPEG2 HDTV
Video Decoding”, IEEE Tran. on Circuits and Systems for Video Tech., vol. 5, No.
5. pp- 387-395, October 1995.

R. Sarmiento, C. Pulido, F. Tobajas, V. Armas, R. E. Chain, J. Lépez, J. M. Nelson,
and A. Nafez. “A 600 MHz 2-D DCT processor for MPEG application”,
Conference Record of the 31% Asilomar Conference on Signals, Systems &

Computers 1997, vol. 2, pp. 1527 -1531, 1998

59

(7]

(8]

[9]

[10]

[11]

[14]

M. T. Sun. T. C. Chen, and A. M. Gottlieb, “VLSI Implementation of a 16x16
discrete cosine transform™, IEEE transaction on circuits and systems, vol. 36, no. 4,
pp. 610-617, April 1989

W. Li. “A new algorithm to compute the DCT and its inverse”, IEEE trans. On
ﬁgnalproce&ﬁng,vol.39,no.6,pp.1305-1313,June1991

D. Slawecki and W. Lee, “DCT/IDCT Processor Design for High Data Rate Image
Coding™, IEEE Tran. on Circuits and Systems for Video Tech., vol. 2, No. 2, pp.
135-146. June 1992.

C. Loeffler, A. Lightenberg, and G. S. Moschytz, “Practical fast 1-D DCT
algorithms with 11-multiplications”, [ICASSP-89, vol. 2, pp. 988 991, 1989

B. G. Lee, “A new algorithm to compute the discrete cosine transform”, IEEE
trans. on acoustics, speech, and signal processing, vol. ASSP-32, no. 6, pp. 1243-
1245, December 1984

H. S. Hou, “A fast recursive algorithm for computing the discrete cosine
transform”, [EEE trans. on acoustics, speech. and signal processing, vol. ASSP-35,
no. 10, pp. 1453-1461, October 1987

Y. Jeong, [. Lee, H. S. Kim, and K. T. Park, “Fast DCT algorithm with fewer
multiplication stages™, Electronic Letters, vol. 34, No. 8, pp. 723-724, April 1998.
E. N. Farag and M. L. Elmasry, “Low-power implementation of discrete cosine
transform”, Sixth Great Lakes Symposium on Proceedings VLSI, pp. 174 -177,

1996

60

(15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Kuhlmann and K. Parhi, “Power comparison of flow-graph and distributed
arithmetic based DCT architectures”, Conference Record of the 32" Asilomar
Conference on Signals, Systems & Computers, 1998, vol.2 , pp. 1214 —1219, 1998
C. V. Schimpfle, P. Reider, and J. A. Nossek, “A power efficient implementation of
the discrete cosine transform”, Conference Record of the 3 1% Asilomar Conference
on Signals, Systems & Computers, 1997, vol. 1, pp. 729 -733, 1998

S. Masupe and T. Arslan, “Low power DCT implementation approach for VLSI
DSP processors”, ISCAS '99, vol. 1, pp. 149 -152, 1999

S. Masupe and T. Arslan, “Low power DCT implementation approach for CMOS-
based DSP processors™, Electronics Letters, vol. 34 25, pp. 2392 —2394, Dec. 1998
T. Xanthopoulos, and A. Chandrakasan, “A low-power DCT core using adaptive
bitwidth and arithmetic activity exploiting signal correlations and quantization”,
Digest of Technical Papers. 1999 Symposium on VLSI Circuits, pp. 11 —12, 1999
T. Xanthopoulos. and A. Chandrakasan, “A low-power [DCT macrocell for
MPEG2 MP@ML exploiting data distribution properties for minimal activity”,
Digest of Technical Papers. 1998 Symposium on VLSI Circuits, pp. 38 =39, 1998
T. Xanthopoulos, and A. Chandrakasan, “A low-power IDCT macrocell for
MPEG2 MP@ML exploiting data distribution properties for minimal activity”,
IEEE J. of solid-state circuits, vol. 34, no. 5, pp. 693-703, May 1999

T. Kuroda, T. Fyjita, S. Mita, T. Nagamartsu, S. Yoshioka, K. Suzuki, F. Sano, M.
Norishima, M. Murota, M. Kako, M. Kinugawa, M. Kakumu, and T. Sakurai, “A

0.9V 150MHz, 10mW 4mm?, 2-D discrete cosine transform core processor with

61

[24]

[26]

[27]

[28]

[29]

variable threshold-voltage (VT) scheme”, IEEE J. of solid-state circuits, vol. 31,
no. 11, pp. 1770-1779, November 1996

M. Matsui, H. Hara, Y. Uetani, L. S. Kim, T. Nagamatsu, Y. Watanabe, A. Chiba,
K. Matsuda, and T. Sakurai, “A 200 MHz 13 mm? 2-D DCT macrocell using sense-
amplifying pipeline flip-flop scheme”, IEEE J. of solid-state circuits, vol. 29, no.
12, pp. 1482-1490, December 1994

M. Matsui, H. Hara, K. Seta, Y. Uetani, L. S. Kim, T. Nagamatsu, T. Shimazawa,
S. Mita. G. Otomo, T. Oto, Y. Watanabe, F. Sano, A. Chiba, K. Matsuda, T.
Sakurai, “200MHz video compression macrocells using low-swing differential
logic™, ISSC’94, pp. 76-77, 1994

M. Hamada, T. Terazawa, T. Higashi. S. Kitabayashi, S. Mita, Y. Watanabe, M.
Ashino, H. Hara, and T. Kuroda, “Flip-flop selection technique for power-delay
trade-off”, ISSC’99, pp. 270-271, 1999

T. H. Chen, “A cost-effective 8x8 2-D IDCT core processor with folded
architecture”. LEEE trans. on consumer electronics, vol. 45, no. 2, pp.333-339, May
1999

“IEEE Standard Specifications for the Implementation of 8x8 Inverse Discrete
Cosine Transform”, IEEE Std. 1180-1990, March, 1991.

Xanthopoulos, “Low power data-dependent transform video and still image
coding”, Ph. D. Thesis, M. L. T., February 1999.

E. Feing and S. Winograd, “Fast algorithms for the discrete cosine transform”,

[EEE trans. on signal processing, 40(9), pp. 2174-2193, September 1992.

62

[30]

[31]

[34]

[37]

(38]

K. Hwang, Computer Arithmetic — Principles, Architecture, and Design, John
Wiley & Songs, 1979, pp. 149-151.

Z. Wang, “Fast Algorithms for Discrete W-Transform and for the Discrete Fourier
Transform™, [EEE trans. on acoustics, speech and signal processing, vol. ASSP-32,
no. 4, pp. 803-816, August 1984.

M. Vetterli, H. Nussbaumer, “Simple FFT and DCT Algorithms with Reduced
Number of Operations”, Signal Processing (North Holland), vol. 6. no. 4, pp. 264-
278. August 1984

N. Suehiro, M. Hatori, “Fast algorithms for the DFT and other Sinusoidal
Transforms”, [EEE Trans. on acoustics, speech, and signal processing, vol. ASSP-
34. no. 3, pp. 642-664, June 1986

P. Duhamel and H. H'Mida, *“New 2" DCT algorithms suitable for VLSI
implementation”, Proceedings IEEE international conference on acoustics, speech
and signal processing, [CASSP-85, Dallas, pp. 1805-1808, April 1987

K. Hwang, pp. 152-155

S. Shah. A. J. Al-Khalili, and D. Al-Khalili, “Comparison of 32-bit multipliers of
various performance measures”, Proceedings of the 12" International Conference
on Microelectronics, ICM2000, pp. 75-80, October 31- November 2, 2000

A. Bhattacharya and S. Haider, “A VLSI implementation of the inverse cosine
transform, International J. of Pattern Recognition and Al 9(2), pp. 303-314, 1995
K. R. Rao and P. Yip, Discrete Cosine Transform — Algorithms, Advantages,

Applications, Academic Press, 1990, pp. 10-15

[39]

[40]

[41]

[42]

[43]

[44]

[45]

V. Lefévre, “Multiplication by an integer constant”, LIP research report RR1999-
06, Laboratoire d’Informatique du Parallélisme, Lyon, France, 1999

E. de Dinechine and V. Lefévre, “Constant Multipliers for FPGAs”, LIP research
report RR2000-18, Laboratoire d’Informatique du Parallélisme, Lyon, France, 2000
R. Bemnstein, Multiplication by integer constants, Software — Practice and
Experience, 16(7), July 1986, pp. 641-652

M. Potkonjak, M. Srivastava, and A. Chandrakasan, “Multiple Constant
Multiplications: Efficient and Versatile Frameworks for Exploring Common
Subexpression Elimination”, IEEE Trans. on CAD of IC and Systems, vol. 15, no.
2, pp. 151-163, February 1996

Xilinx Cooperation, “Constant (k) Coefficient Muitiplier Generator for Virtex”,
Application Note, Version 1.1, March 12, 1999

Xilinx Cooperation, “Constant Coefficient Multipliers for XC4000E”, Application
Note XAPP 054, Version 1.1, December 11, 1996

R. Hartley, “Optimization of Canonical Sign Digit Multipliers for Filter Design”,
IEEE International Sympoisum on Circuits and Systems, 1991, vol. 4, 1992-1995,

1991

64

Appendix A

Truncation Test Result

Table 17 shows the truncation error of 3 test video sequences: coke, salesman,
and tennis. The truncation error is defined as:

Truncation Error = Average PSNR(reference) — Average PSNR(truncation)

Each sequence is encoded with pure [-frames, 8 Mb/s and 180 frames. The FDCT

is computed with fixed-point calculation with 11-bit precision after binary points.

Truncation Error =
Average PSNR(reference) — Average PSNR(truncation)
Numker of Tennis Coke Salesman| Average of 3

Trunc(2.n) | tryncated Bit| (dB) (dB) (dB) Sequen%es (dB)
00000000 | - O . - 0.0000 - 00000 -0.0000: . .0:000
0000000t | 1 - | 0.0697 - :0.0867. :.0.0300: | -

' 00000011 -2 -1 01403 04709 = 0:0598: | .. 70.123
00000002 2 0.3384 0.4251 0.1601
00000111 3 0.2052 02524 -0:0917 | - -0.1831- . .:
00000012 3 0.4048 0.5034 0.1892 0.3658
00000003 3 12628 1.6514 0.5909 1.1684
00001111 4 1 02663 . 0.3314 04217 | 02398
00000112 4 0.4651 0.5786 0.2202 0.4213
00000022 4 0.6639 0.8224 0.3241 0.6035
00000013 4 1.3158 1.7101 0.6172 1.2144
00011111 5 103339 - 0.4208 01646 | . 0:3064:
00001112 5 0.5228 06519 0.2493 0.4747
00000122 5 0.7204 0.8923 0.3544 0.6557
00000113 5 1.3644 17675 0.6454 1.2591
00000023 5 15234 1.9530 0.7395 1.4053
00111411 6 1.0:4034. - 05111 .0.2019 | 03721 %
00011112 6 0.5863 0.7348 0.2911 0.5374
00001122 6 0.7743 0.9604 0.3825 0.7057
00000222 6 0.9331 1.1671 0.4836 0.8612
00001113 6 1.4101 1.8231 0.6714 1.3015
00000123 6 15694 2.0070 0.7670 1.4478
00000033 6 22327 2.8048 1.2396 2.0924

01T - 7] 0:4727 - 0:6043 - 0:243977 | 10:4403-1
00111112 7 0.6514 0.8190 0.3273 0.5992

65

66

00011122 7 0.8337 1.0377 0.4231 0.7648
00001222 7 0.9843 12310 0.5108 0.9087
00011113 7 1.4610 1.8865 0.7094 1.3523
00001123 7 16132 20596 0.7924 1.4884
00000223 7 17432 22202 0.8847 1.6160
00000133 7 22716 2.8492 1.2641 2.1283
111111141 8 05427 - :0:7062 - 02920 | - 051365+ 5
01111112 8 0.7168 0.9059 0.3682 0.6637
00111122 8 0.8954 1.1163 0.4582 0.8233
00011222 8 1.0405 1.3038 0.5503 0.9648
00002222 8 11792 1.4767 0.6274 1.0945
00111113 8 1.5139 1.9509 0.7424 1.4024
00011123 8 1.6616 2.1201 0.8295 1.5371
00001223 8 17852 2.2705 0.9093 1.6550
00001133 8 2.3090 2.8926 1.2867 2.1628
00000233 8 24189 3.0258 1.3694 2.2714
R EESREE A 9 107825 1:0008 - 1i0:4148':|. " ©OT327
01111122 9 0.9570 1.1973 0.4978 0.8840
00111222 9 1.0991 13774 0.5844 1.0203
00012222 9 1.2332 1.5450 0.6659 1.1480
01111113 9 1.5667 2.0178 0.7794 1.4546
00111123 9 1.7121 2.1810 0.8615 1.5849
00011223 9 1.8317 2.3281 0.9455 1.7018
00002223 g 1.9465 2.4648 1.0162 1.8092
00011133 9 2.3501 2.9424 1.3197 2.2041
00001233 9 24545 3.0673 1.3913 2.3044
00000333 9 2.9933 3.6931 1.7838 2.8234
11111122 10 1.0194 12866 . 0:5431: | = ..0:9497 - -
01111222 10 1.1577 1.4536 0.6227 1.0780
00112222 10 1.2892 1.6149 0.6992 1.2011
00022222 10 1.4327 1.7947 0.7989 1.3421
11111113 10 1.6207 2.0917 0.8220 1.5115
01111123 10 1.7629 2.2445 0.8975 1.6350
00111223 10 1.8802 2.3863 0.9768 1.7478
00012223 10 1.9912 2.5197 1.0513 1.8541
00111133 10 23929 2.9931 1.3483 2.2448
00011233 10 24945 3.1150 1.4237 2.3444
00002233 10 25925 3.2292 1.4867 2.4361
00001333 10 3.0243 3.7289 1.8040 2.8524
11111222 11 12172 . 15378 06666 | _. 1.1406:-
01112222 11 1.3454 1.6869 0.7365 1.2563
00122222 11 1.4861 1.8605 0.8311 1.3925
11111123 11 1.8141 2.3143 0.9389 1.6891
01111223 11 1.9289 2.4470 1.0118 1.7959
00112223 11 2.0381 2.5754 1.0817 1.8984
00022223 11 2.1583 2.7199 1.1730 2.0171
01111133 11 24360 3.0457 1.3807 2.2875
00111233 11 25362 3.1639 1.4513 2.3838

67

00012233 11 26311 32754 1.5183
00011333 11 3.0594 3.7700 1.8334
00002333 11 31450 3.8684 1.8907
1112222 - 12 | 140197 17668 07795 I - 1316
01122222 12 15396 1.9289 0.8672
00222222 12 16744 2.0973 0.9550
11111223 12 19782 25134 1.0520
01112223 12 20847 26334 1.1160
00122223 12 22032 27735 12027
11111133 12 24801 3.1040 1.4175
01111233 12 25781 32147 1.4827
00112233 12 26713 3.3224 1.5456
00022233 12 27749 3.4441 1.6275
00111333 12 3.0959 3.8120 1.8587
00012333 12 31789 3.9079 1.9193
00003333 12 3.6067 4.3936 2.2439
11122222 13 |-1:5938 - _2:0042 - :0:9089:7) .. i5(
01222222 13 17255 2.1621 0.9900
11112223 13 21321 2.6971 1.1552
01122223 13 22483 2.8287 1.2358
00222223 13 23623 2.9656 1.3163
11111233 13 26206 32706 1.5188
01112233 13 27119 3.3714 1.5763
00122233 13 28138 3.4893 1.6541
01111333 13 3.1327 3.8556 1.8871
00112333 13 3.2144 3.9485 1.9445
00022333 13 3.3057 4.0540 2.0192
00013333 13 3.6370 4.4286 2.2701
11222222 14 17777 2.2335 . 1.0306 |
02222222 14 19089 2.3903 1.1169
11122223 14 22941 2.8898 1.2741
01222223 14 24059 3.0187 1.3486
11112233 14 27530 3.4253 1.6118
01122233 14 28529 3.5364 1.6840
00222233 14 29523 3.6535 1.7567
11111333 14 31702 3.9038 1.9202
01112333 14 3.2504 3.9908 1.9724
00122333 14 3.3402 4.0933 2.0436
00113333 14 3.6690 4.4648 22933
00023333 14 3.7511 4.5585 2.3622
12222222 |- 15 1.9588 . .2:4581- - 115611} :1.8576.

11222223 15 24500 3.0772 1.3858
02222223 15 25624 3.2070 1.4649
11122233 15 28930 3.5886 1.7186
01222233 15 29903 3.6986 1.7858
11112333 15 3.2868 4.0377 2.0047
01122333 15 3.3753 4.1346 2.0710
00222333 15 3.4631 4.2364 2.1375

1113333 15 3.7012 4.5024 2.3192
00123333 15 3.7822 4.5937 2.3849
00033333 15 4.1980 5.0523 2.6887
T 20222222 |- 16 . | 21413 -2/6887. .= 12902}
12222223 16 2.6049 3.2632 1.5012
11222233 16 3.0291 3.7487 1.8194
02222233 16 3.1273 3.8598 1.8909
11122333 16 3.4107 4.1799 2.1024
01222333 16 3.4970 4.2761 2.1642
11113333 16 3.7342 4.5440 2.3490
01123333 16 3.8138 4.6300 2.4103
00223333 16 3.8932 47212 2.4717
00133333 16 4.2260 5.0834 2.7094
20222223 17 2.7623 3.4554. 1.6251 |
12222233 17 3.1646 3.9082 1.9239
11222333 17 3.5315 4.3201 2.1950
02222333 17 3.6186 4.4174 2.2607
11123333 17 3.8458 4.6706 2.4394
01223333 17 3.9239 4.7565 2.4965
01133333 17 4.2542 5.1161 2.7330
00233333 17 4.3258 5.1975 2.7903
22222233 | - - 18 |."3:3034 ~ 4.0742. _2:0363 | +.:3.138057
12222333 18 36522 4.4599 2.2910
11223333 18 3.9551 4.7959 2.5252
02223333 18 4.0345 4.8833 2.5861
11133333 18 4.2835 5.1523 2.7600
01233333 18 4.3539 5.2291 2.8134
00333333 18 4.6939 5.6152 3.0910
22222333 19 37763 46066 23944 |-
12223333 19 4.0649 4.9214 2.6141
11233333 19 4.3820 5.2644 2.8398
02233333 19 4.4540 5.3432 2.8966
01333333 19 4.7193 5.6440 3.1125
122223333 20 |- 41779 . .+5.0538: "= 2:710% | -1 7.3:9806: ']
12233333 20 4.4815 5.3777 2.9226
11333333 20 4.7454 5.6761 3.1373
02333333 20 4.8117 5.7477 3.1902
- 22233333 21 | 45839 .+ ~5.4967. . 30TA9. |1 4i3642
12333333 21 4.8371 5.7789 3.2145
03333333 21 5.1587 6.1360 3.4795
22333333 22 -~ [74.9318 - 5:8876: 2 3.2983 | - 47059
13333333 22 5.1820 6.1646 3.5023
53333333 | 23: - 3|.-5:2696. ' 6.2642::"3:5808: |5\ 5038
T 33333333 | . 24 |-55876+ 166137 - -.°3.:8638 113533
Table 17: Truncation errors of test sequences: coke, salesman, and tennis

68

Appendix B

Sample Output of CSD Multiplier Generator

Sample VHDL code generated by the constant-coefficient multiplier generator
(CMG) with the following parameters:
e Constant operand: cos(37/16) with 15-bit precision multiplied (integer value
13623)
e Variable operand: 12-bit variable unsigned operand

e No truncation

——~ Hardwired Mulctiplier:

- Constant Operand:

- Integer value: 13623
- Variable Operand:

- Precision : 12 bits
-= Signed : False
- Qutput

- Truncated LSB: 0

—-= ?rcduct : True

-- Bypass Zerc : False

library ileee;
use ieee.std_logic_ll184.all;
use ieee.std logic_arich.all;

entity COS_3 186 1is
port
(
VarIn : in Std_Logic_Vector(ll downto 0):
Result : out Std_Lcgic_Vector (25 downto 0)
)i
end;

69

architecture Structural of COS_3_16 is
component HalfRAdder
port{A, B: in Std_Logic; Sum, Cout: out Std Logic):;
end component;

cemponent Fulladder
pert{®, B, Cin: in Std_Logic; Sum, Cout: out Std Logic);
end component;

signal

sg, Co,

si, Ci,

s2, C2,

S3, C3: Std_Logic_Vector (25 downto 0}
signal N : Std_Logic_Vector(ll downto 0):;
signal 2 : Std_Logic_Vector(ll downte 0)

sigral numl : Std_Legic_Vector(25 downte Q)
signal num2 : Std_Logic_Vectcr (25 downte 0)

Ne NN

signal num : Std Logic_Vector (25 downto 0);
signal ZERO: Std_Logic; -— Constant signal '0°
signal ONE : Std_Logic; -- Constant signal 'l'

-- Inverted input signals:
N <= not P;

-- Bit 0 Stage 0O:
-- Bit 0 Stage 1l:
—-— Bit O Stage 2:
-—- Biz 0 Stage 3:
-- Bit 1 Stage 0O:
HA 0_1: HalfAdder port map(N{ 1),N(0},S80(1},CO0(1));
-— Bit 1 Stage 1l:
-— Bit 1 Stage 2:
-- Bit 1 Stage 3:
-- Bic 2 Stage 0:
-— Bit Z Stage L1l:
HA 1 2: HalfAdder port map(N(2),C0(1),S1(2),CL{ 2});
-—- Biz 2 Stage 2:
-—- Bit 2 Stage 3:
-- Bit 3 Stage O:
FA_0_3: FullRdder port map(N({ 3),N(0), ONE ,S0O(3),CO(3));
-— Bit 3 Stage 1:
-— Bit 3 Stage 2:
HA 2 3: HalfAdder port map(SO(3),Cl(2j,82(3),C2(3));
-- Bit 3 Stage 3:
-- Bit 4 Stage O0:
-- Bit 4 Stage 1:

70

EA 1 4: FullAdder
-~ Bit 4 Stage 2:
-- Bit 4 Stage 3:

HA 3 4: HalfAdder

-- Bit 5 Stage 0:

~— Bit S5 Stage 1i:

-— Bit 5 Stage Z2:
F&A 2 5: FullAdder

-- Bit S Stage 23:

~-- Bit 6 Stage O:

Fh_0_6: FullAdder
-— Bit & Stage 1:
-— Bit & Stage 2:
-— Bit & Stage 3:
-— Bit 7 Scage 0:

FA C_7: fullRdder
-— Bit 7 Scage 1l:
-— Bit 7 Stage 2:
-- Bit 7 Stage 3

-— Bit 8 Stage 0:
FA 0_8: Fullidder

-— Bit 8 Stage 1i:
HAR 1 B8: Halfldder

-— Bit & Stage 2:

-— Bit 9 Stage C:
FA 0_9: FullAdder

-- Bit ¢ Stage 1l:
FA 1 $: FullRdder

-- Bit 9 Stage 2

-— Bit % Stage 3

-- Bit 10 Stage O0:
FA _0_10: FullAdder
-- Bit 10 Stage 1:

FA 1 _1G: FullAdder ¢

-- Bir 10 Stage 2:

port

EA 2 10: HalfAdder port
-— Bit 10 Stage 3:
-- Bit 11 Stage 0:

gA 0_11: FullAdder port
-- Bit 11 Stage 1:

FA 1 11: Fullhdder port
~— Bit 11 Stage 2:

FA_2 11: Fullldder port
-- Bit 11 Stage 3:

-— Bict 12 Stage 0:
FA 0_12: Fullhdder

-—- Bit 12 Stage 1:
FA 1 12: Fullhdder

-— Bit 12 Stage 2:

FA 2 12: FullAdder g

-- Bit 12 Stage 3:

-- Bit 13 Stage 0:
FA 0 13: Fulladder

port

map(N({ 4),N(1),C0(3},S1(4),C1l(4)}~

map(SL1(4) ,C2¢(3),S3(4),C3(4));

mac(M(S),N(2),Cl(4},52(5),C2(39}

e

map(N(6),N(3),2(C),S0(6),CO(6)):

map(MN{ 7),N{ 4),2{ 1},80(7},C0(7}):

map(N(&),N{(5),P(2),S0(8),CO(8)};

map(P(0),S0¢(8),S1¢(8),Cl(8));

map(N(9),.N(&),2(3),80(9),CO0(9)1):

map(B{ 1),S0(9),.CO(8),S1{ 9),CLl(%))

map(N(10)» ,N(7),P(4),80(10),C0(10}}
map (P(2»,SC(10),C0(9),S1(10),C1(10}))

map(P(0),S1(10},S2(10},C2(16));

map(N(113,N(8),P(5),S0(11),CO0(1L))~;

~e

map (P(3),S0(11),C0(10),S1(11),C1(11))

map(P(1),S81(11),C1(10),S2(11),C2(11));

mep(N(9),2(6),P(4),80(12),C0(12));

map(P(2),80(12),C0(11),81(12),C1(12}));

map(N(0),S1(12),C1(11),S82(12),C2(12));

map (N(10),P(7),P(5),S0(13),C0(13)):

71

13

-- Bit

FA_1_13: FullAdder port map (P(3),S0(13),Cc0(12},81(13),C1(13})~
-— Bit 13 Stage 2:

FA_2 13: FullRdder port map (N(1y,81(13),C1(12),S2(13),C2(13)};
-- Bit 12 Stage 3:
—— Bit 14 Stage 0:

FA _0_14: FullAdder pcrt map(N{11l),2(8),2(6),50(14),C0(14));
-— Bit 14 Stage 1l:

FA_1_14: Fullidder port map(P{ 4),50(14),C0(13),S1(14),Cl (14}~
—-— Bit 14 Stage 2Z:

FA Z _14: FullAdder port map(N(2),S1(14),C1(13),82(14),C2(14))~
~-- Bit 14 Stage 3:

HR 3 _14: HalfAdder port map(P(0),S2(14),S3(14),C3(14})};
-- Bit 15 Stage O0:

FA_0_13: FullRdder port map(P{ g)y,B(7),2(5),S0(15),C0(15));
—-- Birt 15 Stage 1:

FR_1 15: FullAdder port map(N{ 3}, CNE ,50(15),S1(15),C1(15))~
-- Bit 15 Stage 2:

FR 2 _15: FullAdder poxrt map(P{ 1),C0(14),S1(15),82(15),C2(15)):
-- Bit 15 Stage 3:

FA 3 _15: FullAdder port map (CL{14),S2(15),C2(14),83(15),C3(13)):
-- Bit 16 Stage O0:

FA 0_16: FullRhdder port map (P{10),B(8),B(6),S0(186),CO0(186)):
-- Bit 16 Stage 1:

FA 1 _16: FullAdder port map(N(4), ONE ,S0(16),S1(16),C1(186)};
-~ Biz 1€ Stage 2:

TA 2 16: FullAdder port map (P(2),C0{15),81(16},S2(16),C2(16});
-- Bit 16 Stage 3:

FA 3 _16: FullAdder port map (CL{153),S2(16),C2(15),S3(16),C3(16)}:
-- Bit 17 Stage 0O:

FA 0_17: Fullhdder port map(P(11),2({ 2),8(7),30(17),C0(17));
-- Bit 17 Stage 1:

TR 1 17: Fullhdder port map (N(5), ONE ,S50(17),81(¢(17),C1(17)}):
-—- Bit 17 Stage 2:

FR 2_17: FullAdder port map(P{ 3),C0¢(16),S1(17),S82(17),C2(17));
--— Bit 17 Stage 3:

FA 3 17: FullhAdder port map (C1(16),S2(17),C2(16),S3(17),C3{(17)):
-- Bit 18 Stage O:

FA 0_18: FullRdder port map(P(10),P(8),N(6),50(18),C0(18})
-- Bit 18 Stage 1:

FA_1 18§: FullAdder port map(P(4), ONE ,50(18),81(18),C1(18));
-- Bit 18 Stage 2:

FA_2_18: FullAdder port map {CO(17),S1(18),CL(17)},S2(18),C2(18));
-- Bit 18 Stage 3:

4Aa 3_18: HalfAdder port map (S2(18),C2(17),83(18),C3(18)):
-- Bit 19 Stage C:

FA_0_19: FullAdder port map(P(1l),P(39),N(7),S0(19),C0(19)):
-- Bit 19 Stage 1:

FA 1 19: FullAdder port map(P(5), ONE ,50(15),81{19},CL(19)):
-- Bit 19 Stage 2:

FA_2 15: FullAdder port map (CO(18),S1(19),C1(18),52(19),C2(19));
-- Bit 19 Stage 3:

HA 3_19: HalfAdder port map (S2(19),C2(18),53(19),C3(19})):
-- Birt 20 Stage O0:

FA_0_20: FullAdder port map(P(10),N(8),P(6),80(20),C0(20)};
-- Bit 20 Stage 1:

Stage 1:

72

FA 1 20:
-— Bit 20
-- Bit 20

FR 3 _20:

—- Bit 21
FA_0 21:
-- Bit 21
FA 1 21:
~— Bit 21
HA 2 21:
-~ Bit 21

-—- Bit 22
FR_0Q_22:
-—- Bir 22
-— Bit 22
FA 2 22:
-— Bitg 22

-—- Biz 23
FA _0_23:
-— Bit 23
HR 1 _23:
-—- Bit 23
Bit 23

Big 24
Bitg 24
HA 1 24:
-- Bit 24
-~ Bit 24

—— Bit 25

HA 0_25:
-— Bit 25
-- Big 25
-—- Bit 25

numl <=

num? <=

num <= Unsigned (numl)

fullAdder
Stage 2:
Stage 3:

FullAdder

Stage 0:
Fullldder
Stage 1l:

FullAdder ¢

Stage 2:
HalfAdder
Stage 3:

Stage 0O:

FullBRdder ¢

Stage 1:
Stage 2:
FullRdder
Stage 3:

Stage O:
FullAdder
tage 1l:
HalfAdder

Stage 2:

Stage 3:

Stage O:
Stage 1:
Hal fadder

Stage 2:

Stage 3:

Stage O:
HalfAdder
Stage 1:
Stage 2:

tage 3:

50(23)¢&
S3(17)«&
Si(9)&
SO(1)&
Cl(24)&
C3(le6)s&
Cil(8)&

ZERO &

£

[

&
&

Result <= pum;

Si(24)
S2(186)
S1(8)
P(O}~
Cl(23)
C3(15;
co(7)

ZERO

map (CNE

map(S1(20),Cl(19),C2(19),S83(20),C3(20))

.S0(20)

’

,CG(19),S1(20),C1(20))

~

map(P(11),N{ 9),P(7),S0(21),C0({21));

map (ONE

+S0(21)

,C0(20),S1(21),C1(21))

N

map (S1(21),C1{20),52(21},C2(21}));

map (N(10),P(8), ONE

map (SO (223 ,C0(21),C1(21),S2(22),C2(22))

map(N(11l},

P(9),

,S0(22),C0(22));

e

ONE ,S0({23),C0(23}));

map (S0 (23),C0(22),81(23),C1(23))~

map (P(10),C0{23},51(24),CL{24)};

&
&

&

S1(23)4
S3(15)4&
S0(7)s

&
&
&

12

C2(22)&
C3(14)s&
CO0(6j&

ONE

S2(22)&
33(14)&
SG(e)&

C2(21)&
C2(13) &
C2(5)&

+ Unsigned(num?Z);

50(25),C0(25))

~

S2(2L)&
S2(13)&
S2(5)&

S3(20)&
S2(12)&
S3(4)&

S3(19)&
S2(11l)&
52(3)&

C3(20)¢&
C2(12)&
C3(4)&

C3(19)&
C2(11)&
ZERO &

C3(18)&
C2(10)¢&
ZERO &

Statistical

-— # Stage : 4
-— # Inverter : 1
-- # Half adder: 1l
- # Full adcder: 4

2
3
8

Information:

$3(18)
52 (10)
Si(2)

C3(17)
Cl(9
ZERO

Appendix C

Source Code of Constant Multiplier Generator

The following is the C++ source code listing for constant multiplier generator.
The codes are listed in alphabetic order of the source file name. The header file (h) is
always in front of the implementation file (.cpp). The main program is located inside file

IntMult.cpp. Notice that all codes are also included in the attached CD.

“CSAh - - - {7:; e D il

$ifndef _ CSAR H_
#define _ CSA H

$include <iostream>
¢include "VHDL_Signal.h"”
¢inciude "NumberSystem.h"
using namespace std;

unsigned nReadyAtStage (SignalVectors imz, int curStage):;

70id getAdderOperand (unsigned nOp, unsigned maxConstInput, SignalVector&imt,
SignalVector& opToAddj:

void createHA {vector<SignalVector> &imt, unsigned curBic, unsigned curStage,
unsigned maxzConstCp, ostr=aam& 0) ;7
void createfd(vector<SignalVector> &imt, unsigned curBit, unsigned curStage,
unsigned mexConstlp, ostresamb&)7

void generate_VHDL_CSA;Body(vector<signalVector> &imt, unsigned
CSA Stage,unsigned enHzalflRdder, unsigned &nFullAdder, ostreamé csa);

void createCSA(vector<SignalVector>& op, vector<SignalVector>& csa};
void simplifyConstants(Vector<3ignalVector> &c);

#endif

o CSALEpPP: S s

ginclude "CSA.a"
¢include <algoritchm>

using namespace std;
static Signal

SIGNAL_SUM (VARIABLE, "S",SUM ,false,NONE,~1,~1),
SIGNAL CARRY (VARIABLE, "C",CARRY, false,NONE,-1,-1)},

74

SIGNAL_SIGN (SIGN, "Sign",0,false,NONE, ~1,-1);

unsigned nReadyAtStage (SignalVectoré sv, int curStage)
{
unsigned nReady=0;
r {(unsigned i=G; i<sv.size(); 1++)
if (swv{il].stage<curStage)
nReady++;
return nReady;

——

//——————————————= ———— e ———— Bt ettt
void gethAdderOperand{unsigned nCp, unsigned maxConstInput,
SignalVectors sv, SignalVectors opToAdd)
{
unsigned i=0;
while (maxConstInput>0 && i<sv.size(})
f (svii].stage==-1})

.~

maxConstInput—--; nCop——;
opToldd.push_back({sv[i]};
s7.erase(sv.pegin()+1i);
}
eise 1i++;
if (nCp==0) return;

scrc(sv.pbegin(), sv.end());

i=0;

while {nOp>0 && i<sv.size(})
if (sv([i].ID==CRRRY! |sv{i].ID==SUM)
{

nop--:
cpToAdd.push_back(sv(i]):
sv.erase{sv.begin()+1);
}
else i++;
if (nOp==0} return;

while (nOp>0 && sv.size()>0)
{

nCp--;
opTohdd.push_backi{sv([0]);
sv.erase(sv.begin(});

st
void creaceHA(vector<SignalVector> &sv,
unsigned curBit, unsigned curStage, unsigned maxConstOp,
ostr2am& O)

SignalVector opToAdd:;
getadderOperand (2, maxConstOp, sv(curBit], opToAdd):

SIGNAL_SUM.bit?os=SIGNAL_CARRY.bit?os=curBit;
SIGNAL_SUM.stage =SIGNAL_CARRY.stage =curStage;

o <<" HA "<<curStage<<"_"<<curBit<<'": HalfAdder port map ("

<< opToEdd[O] <<, M // operand 1
<< opToadd[l] <<"," // operand 2

<< SIGNAL SUM <<","

75

<< SIGNAL_CARRRY<<");\n";

svicurBit].push_back (SIGNAL_SUM);

ig (curBic==sv.§ize()—l) return;
sv{curBit+1l].push back(SIGNAL CARRY);
regurn;
b
/7 - e e s — s m— s

void createrA(vector<SignalVector> &sv,
unsigned curBit, unsigned curStage, unsigned maxConstCp,
cstreamé O}

SignalVectecr opToAdd:
getRdderOperand (3, maxConstOp, sv[curBit], opToaAdd):

SIGNAL_SUM.bit?os=SIGNAL_CARRY.bit?os=cu:8it;
SIGNAL_SUM.stage =SIGNAL_ CARRY.stage =curStage;

o <<" FA "<<curStage<<"_"<<curBilu<<": FullRdder port map("

<< opToAdd[0] <<"," // operand 1
<< opTeAdd(l] <<v," // operand 2
<< opToAdd[2] <<"," // operand 3
<< SIGNAL SUM <<',"

<< SIGNAL_CARRY << "};\n";

sv[curBit].push_kack (SIGNAL_SUM} ;

if (curBic==sv.size()-1) return;
svicurBit+1l].push_back (SIGNAL_CARRY}
return;

void generate VHDL _CSA_Body(
vector<SignalVector> &sv, unsigned CSA_Stage,
unsigned gnHalfAdder, unsigned &nFullAdder, ostream& csa)

unsigned i, j;

//-= e T e s — e
// Generating carry-save adder VHDL code

nHzl fAadder=nFulladder=0; // Complexity Stat

bool HA for_ 20p = true;

bool isFirstAdder;
int nReady;
for (i=0; i<sv.size(}; i++)
{
csa << "\n";
isFirstAdder = tr
for (3=0; j<CSA_Stage; j++)
{
csa << "-- Bit "<<i<<" Stage "<<j<<":\n";
if (BA_for_ 2op)
{
switch (nReady&tStage(sv([il, 3))
{
case 0: break:;
case l: break:;
case 2:
{

if (sv{i].size()==2)
{

76

createHA(sv, i, j, (isFirstAdder?2:1), csa):
if (j==CSA_Stage-l) HA for 2op=false;
isFirsthAdder=false; nHalfAdder++;
}
break;
}
default:
{
createFaA(sv, i, j, (isFirstAdder?3:1)}, csa):
if (j==CSA_Stage-1l) HA for 2cp=false;

isFirsthAdder=£false; nFfullAdder++;

}

}

else // HA_for_ 20p = false

{
nReady = nReadyAtStage(svi{i], j);
if (sv[i].size(}==3)

i
s

"

if (nReady==2| |nReady==3)

{
createHA(sv, i, Jj, (isFirstAdder?2:1), csa):
isFirstAdder = false; nHalfR2dder++;

}

lse if (nReady>=3})

_— ~

(isFirstRAdder?3:1), csa):

createFR(sv, i, 7j.
= lse; nFullAdder++;

b
isFirstAdder a

£

veid simplifyConstants (vector<SignalVector> &c)
{
SignalvVecter::iterator result;
int nOne, carry=0;
for (unsigned i1=0; i<c.size(); Li++)
{
nOne=0;
//count (c{i].begin(),c(i].end(),SIGNAL _ONE,nOne);
nGne = count (c{i].begin(),c[i].end(),SIGNAL_ONE);

// Removing constant zeros: No operation
result = remove(c{i] .begin(},c{i].end(),SIGNAL_ ZERC);
c{il.erase(result,clil.end(});

// Simplify constant ones: adding them together
result = remove(c(i].begin(},c[il.end(},SIGNAL_ONE);
cli].erase(resulc,cli].end{}};

none+=carry;

carry=nOne/2; nOne%=2;

if (nOne!=0}
c(i].push_back(SIGNAL_ONE) ;

void create CSA Vector({

vec-or<SignalVector>& op, vector<SignalVector>& ¢ sa, bool isSigned)

inc i, j;
unsigned max3it=0;
for (i=0; i<cp.size(); i++)
if (op(il.size()>maxBit)
maxBit=or.size ()

for (i=op.size()>>1, j=0; i!=0; i>>=1, j++); // Get the MSB positicon of i:
log2(op.size())

maxBic+=]; // n m-bit operand will have
output of n+m bit

csa.resize(maxBic);

Signal signal (VARIABLE, "Op", 0, true,NONE,-1,-1);
for (i=0; i<op.size(); i++}
{

signal.ID = i;

for (§=0; j<(isSigned?cpiij.size()-l:oplil.size(})}; J++)
1

if (op{i][j].cype==CONSTANT)

{

if (op{i][j].ID==CHE) csaij].push_back(SIGNﬂAL_ONE);

}
else
{

signal.bitPos = j;
csa(j].push_bkack(signal}:
}
}

if (isSigned)
{
SIGNAL_SIGN.ID=i;
for {; j<maxBit; j++) csaljl.push_back(SIGNAL_SIGN);

veid generate VHEDL_CSA_Header(
char~ entityName, vector<SignalVector>& op, bool isSigned,
int nBitCOut, int& CSA_Stage, ostream& o)

int i;

// Generate Library Header

O €€ Mo - e \n"
<< "-— VHDL Code Generated by HWMult 1.0\n"
<< U o e e e e e o = e e o — — . e o e e e \nll

<< “"iibrary ieee;\n"
<< "use ieee.std_logic_1164.all;\n"
€ M e e e e S S \n\n";

// Gernerate VHDL Entity Header

0 << "entity " << entityName << " is\n”
<< " porti\n"
<< " (\n":

Signal signal (VARIABLE, "Op",0,true,NONE,-1,-1);
for (signal.ID=0; signal.ID<op.size(); signal.ID—++)
o << " "<<signal<<”: in Std Logic Vector("—<<{op(signal.ID].size()-1)<<"

78

downto 0):\n";

signal.name = "Sum":
for (signal.ID=1; signal.ID<=2; signal.ID++)}
o << " "<<signal<<" : out Std_Logic_Vector ("<<(nBitQut-1)<<" downto
0):\n";

o << ”);\n"
<< "end;\n\n";

o << " B - \n\n";

// Generate VEDL Architecture Header
c << "archirecture Structural of " << entityName <<" is\n"

<< " component HalfAdder\n"
<< " port (&, B: in Std_Logic; Sum, Cout: out Std_Logic}):\n"
<< " end ccmpcnent;\n\n"
<< " compcnent FulllAdder\n”
<< " pcrz (&, B, Cin: in Std_Logic; Sum, Cout: out Std_Logic):;\n"
<< " end ccmpcnent:\n\n";
CSA_Stage = (op.size(})>=3 2 op.size()-2 : 1);
SIGNAL_SUM.SHOWID=SIGNAL_CARRY.showID=truE;
o << " signal" << endl;

for (i=0; i<=CSA_Stage; i++)
{

SIGNAL SUM.ID = SIGNAL CARRY.ID = i;

o << " "<<SIGNAL SUM<<", "<<SIGNAL_CARRY;

if (i1!=CSA_Stage)

o << ",\n";

eise o << ": Std_Logic_Vector("<<(nBitOut-1)<<" downto C) ;\n\n";

!

if (isSigned)
{

o << " signal ";
for (SIGMAL SIGN.ID=0; SIGNAL_SIGN.ID<op.size(); SIGNAL_SIGN.ID++)
o << SIGNAL SIGN << (SIGNAL SIGN.ID<op.size{}-1 2 ", " : "");

© << ": Std_Lcgic_Vector ("<<{op.size()-1)<<" downto 0})z:\n";
}
o << " signal ZERC: Std_Logic; -- Constant signal *0*'\n";
o << ™ signal ONE : Std_Logic; -- Censtant signal ri*\n\n";
0 €€ Y m ——————— e — \n\n";

o << "begin\n\n”"
<< " ZERC <= '0°:;\n"
<< " ONE <= '1l';\n\n";

if (isSigned)
{

signal.name = "Op":;
for (i=0; i<op.size(); i++)
{
SIGNAL_SIGN.ID = signal.ID = i;
o << " "<<SIGNAL_ SIGN<<" <= "<<signal<<" ("<<{op[il.size()-1)<<");\n";

-

void generate VHDL_CSA_Tail(
vector<SignalVector> &imt,

79

SignalVector g&outl, SignalVector &out2,
ostream& O)

// Map internal signals to output
ostrstream numl, numl;
Signal signal (VARIABLE, "Sum", 0, true,NONE,-1,-1);

signal.ID=1; npuml << " "<<signal<<" <= ";
signal.ID=2; npum2 << " "<<signal<<" <= ";
nt i, j=0, msb=imt.size(}-1l:

I =0; i--

case 0:

{
numi<< (i!=msb?"& ":" ")})<<SIGNAL ZERO;
aum2<< (il=msb?"& “:" ")<<SIGNARL ZERO;

outl,insert(outl.begin(),SIGNAL_ZERO);
out2.insert{ocut2.dbegin(;, SIGNAL_ZERO);
break;

}

case 1l:

{
numl<< (i!=msb?"& ":" ")<<imc{i]([O0]:
num2<< (i!=msb?"& ":" ")<<SIGNAL_ZERO;
outl.insert(outl.begin(),imc[i] {01}
out2.inserc(out2.begin (), SIGNAL_ZERC):;
break:;

}
defaulz:
{

numl<<{it=msb?"& ":" ")<<imtli]
num2<< (i!=msb?"& ":" ")<<imc([i]

{11;
[01~
cutl.insert(outl.begin(}),imc[i}[1]});
Gl

cuz2.insert(outl.pegin{),imt{ij{
}
}
J¥+s
if ((3%8)==0)
{
numl << "\n v, pum2 << "\n
}
}
numi<<";\n"; num2<<";\n";

numl.flush(); num2.flush(};

char *si = numl.str(); sl{numl.pcounc()i='\0"'
char *s2 = num2.str(); s2{num2.pcount(}}="'\0"’
0 << "\n" << sl << s2 << "\n";

o << "end;\n\n";

o.flush();

~

void generate_VHDL CSA(
char~ entityName, vector<SignalVector>& op, bool
SignalVector &cutl, SignalVector &out2,
ostream& O)

isSigned,

80

int CSA_Stage:;
unsigned nHalfAdder, nFullAdder;
vector<SignalVectcr> cCs&;

create_CSA_Vector{op, csa, isSigned):

generate_VHDL_CSA_aeade:(entityName, op, isSigned, csa.size(}, CSAR _Stage, o};
generate VEDL CSA_B3ody (csa, CSA_Stage, nHalfAdder, nFullAdder, o);
generate VHDL CSA Tail (csa, outl, out2, o©);

O <K " e s e s e e —_—— \n";
0 << "--— Statistcical Information:\n"
<< "= # Stage : " << CSZ&_Stage<<"\n"
<< M- 2 Half adder: "™ << nHalifAdder <<"\n"
<< e & FTull adder: " << nFullldder <<"\n":
O <€ M ——————— e \n\n";
}
// - ——————————————— -— -
HWMult.h- - R

ifndef _ HWMULT_ H
define _ HWMULT_H

#include <limits.h>
ginclude <jiostream>
#include <vector>

include "VHEDL Signal.h"

13

[

ising namespace std:

void HWMult{
unsigned nvarBit, bool signedVar, unsigned leng constOp,
vector<SignalVector> &out,
ostreams o, ostream& compenent, char~ entityName=0,
unsigned truncLSB=0, bool generateProduct=true, bcol byPass=false);

#endif
, HWMult.cpp S
¢include "HWMult.h"
f#include "CSA.nh"
#include "NumberSystem.h"
#¢include "NcnZero.h"

#include <vector>
#inciude <iomanip>
$include <algorichm>

using namespace std;
static Signal

SIGNAL_SIGN_P(SIGN,"Sign",O,false,POSITIVE,—l,-l),
SIGNAL_SIGN_N(SIGN,"Sign",O,false,NEGATIVE,~l,—l);

void generate VHDL HWM Header(
unsigned nvVarBit, bool signedvar, unsigned long constOp,
char~ entityName,

81

unsigned nOutBitl, unsigned nCutBit2, unsigned outBit2_offset,
unsigned CSA_Stage,unsi igned nCSABirt, bool invertedInput,
ostream& o, ostream& c, bool generateProduct, bool byPass)

unsigned i;

if (entityName==0)

{
ostrstream name;
name << "HWM " <<constOp<<"x"<<nVarBit<<"_Bit";
entityName = neme.str{};

}

H

// Generate Lib v Header

6 €& Mmmmm e m e - - \n"
<< "-- VHDL Code Generated by HWMult 1.0\n"
<< " S USSR \n"
<< "library ieee;\n"

".

<< "use ieee.std_logic_llé4.all:\n
if (generateProduct)

o0 << "use ieee.std_logic_arich.a alli;\n";
c << Y-—- e e \n\n";

if (outBit2_offset!=0}
{
o << "-— Note: num2 is offseted by "<<outBit2_ offset<<" bits. \n\n";
o << LL P, e e e A o . e e A S e S o S e ——
\n\n";

}

// Generate VHDL Entity Header

o << "entity " << entityName << " is\n"

<< " porci\n”

<< " (\n"

<< " VarIn : in Std_Logic_Vector("<<(nvarBit -1)<<" downto 0):\n";
c << " component " << entityName << "\n"

<< " porti\n”

<< " (\n"

<< " VarIn @ in Std_Logic_?ectoc("<<(nVarBit -1)<<" downito 0);\n";

if {(generateProduct)

—

o << " Result : out Std_Lecgic | Vector ("<<(nOutBitl-1)<<" downto 0)\n";
c << " Result : out Std_ _Logic_ ' “Vector({"<<(nOutB8itl-1)<<" downte 0)\n";
t
else
{
o << " Resultl: out Std_Logic Vector ("<<(nOutBitl-1)<<" downto 0):\n"
<< " Result2: cut Std . _Logic_] " Vector ("<<(nOutBit2-1)<<" downto 0)\n";
c << " Resultl: cut Szd_Logic_ “vVector ("<< (nOutBitl-1)<<" downto 0);\n"
<< ™ ResultZ: out Std_Log*c_Vecto ("<<(nOutBitr2-1)<<" downto 0}\n";
}
o << "):;\n"
<< "end:\n\n";
c << ")i\n"
<< " end component:\n\n";
O €< Mo e e — —— e — oo -— \n\n";

// Generazce VHDL Architecture Header
o << "architecture Structural of " << entityName <<" is\n"

<< " component HalfAdder\n"

<< " port (A, B: in Std _Logic; Sum, Cout: out Std_Logic);\n"

<< " end component;\n\n"
<< " component FullZdder\n”
<< " port (A, B, Cin: in Std Logic; Sum, Cout: out Std_Logic):\n"
<< " end compcnent;\n\n";
if (byPass)

{
char BP[50];
sprintf {82, "NZ%i",nVarBic);
MonZero(32,nVarBit,o0);

o << " signal" << endl:
for (i=C; i<CSA_Stage; i++)
{

o << " sS" << i <<", C" << 1i;
if (i!=CsA_Stage-1l)
o << ", \n";
else o << ": Std_Logic_Vector("<<(nCSABit-1)<<" downto 0):\n\n";

}

if (invertedInput)

—-—

o << " signal N : Std_Logic_Vector{"<<(nVarBit-1)<<" downto 0):\n\n";
if (signedVar)
o0 << " signal "<<SIGNAL SIGN_P<<", "<<SIGNAL SIGN_N<<": Std Logic;\n";
}
o << " signel P Std_Logic Vector("<<(nVarBit ~1})<<" downto 0):\n"

<< " signal numl
<< " signal num2

Std_Logic_Vector("<<(aGutBitl-1}<<" downto 0):\n"
Std_Logic_Vector("<<(nCutBit2-1)<<" downto 0);\n\n";

veoee ee

if (generateProduct)

o << " signal num : Std_Logic_Vector("<<{nCutBitl-1)<<" downto 0):\n";
5 << " signal ZERO: Std_Logic:; -- Constant signal '0'\n”
<< " signal ONE : Std_Logic; -- Constanc signal '1'\n";

if (byPass}

0 << " signal NonZeroIn: Std_Logic;\n"
<< " signal ZERO Out : Std_Logic_Vector("<<(nOutBitl-1)<<" downto
0):\n\n";
0 €€ M T ST T T T T T T TS T T S T TS e e e \n\n";

o << "begin\n\n"
<< " ZERO <= '0';\n"
<< " ONE <= 'l';\n\n";

if {byvPass)
{

o << " BP: NzZ"<<nVerBit<<" port map(VarIn,NonZeroIn);\n"
<< " P <= VarIn when (NonZeroIn='l') else P;\n\n";
}
else o << " P <= VariIn;\n\n":;

if (invertedInput)
{

0 << "-- Inverted input signals:\n";
//for {(i=0; i<nVarBit; i++)

83

// o << "w N("<<i<<") <= not ?("<<i<<");\n";
c << " N <= net P;\n";
o << u\n";

if (signedvar) // Signed variable operan

0 << " " << SIGNAL_SIGN_P << " <= P("<<(nVarBit-1)<<");\n"
<< " " << SIGNAL SIGN N << " <= N("<<(nVarBit-1)<<");\n\n";

void generate_VHDL_ﬁWM_?ail(
vector<SignalVector> &imt,
vector<SignalVectcr> &cut,
ostreamsé o, tool generateProduct, bool byPass)

// Map internal signals to output
st 1

ostrstream numl, numZ;
numl << " pnumil <= ";
num2 << " num2 <= ";

out.rasize(imt.size()):
int i, j=0, msb=imt.size()-1;
for (i=msb; i>=0; i--)
{
switch (imt([i].size())
{

case 0:
{
numl<<{it!=msb?"& ":" ")<<SIGNAL_ZERO;
num2<< (i!=mspb?"& ":" ")<<SIGNAL_ ZERO:;
break;
}
case 1:
{
aumli<<{i'=msb?"& ":" ")<<imt{i]([0]:
numZ2<< {i!l=msk?"s ":" "} <<SIGNAL_ ZERO;
out[i].push_back(imt[i][O]);
break:;
}
defaulc:
{
numl<<(i!=msb?"& ":" ")<<imu{i](1l]:
num2<<{i'!'=msb?"&¢ ":* ")<<imu(i]{O0}:
out{i].push_back(imc{i] [0]):
out[i].push_back(imt[i][11);
}
b
J++z
if ((3%8)==0)
{
numl << "\n "; num2 << "\n "

3
}
numl<<";\n"; num2<<”;\n";
anuml.flush(}); num2.flush();

char *sl1 = numl.str(); sl{numl.pcount()]='\0";
char *s2 = num2.str(); s2{num2.pcount()]="\0";
0 << "\n" << sl << s2 << "\n";

84

if {byPass)

{
o << " ZERO_Out <= \"";
for (i=0; i<out.size(); i++) o<<"0";
o << "\";\n\n";

if (generacePrcduct)

{
0 << " npum <= Unsigned{(numl) + Unsigned(num2);\n";
if (byPass)
o << " Result <= num when (NonZeroIn='l') else ZERO_Cut;\n\n";
else o << " Result <= num;\n\n";
}
else

0 << " Resultl<= numi when (NonZeroIn='1l') else ZERO_Out:\n"
<< " Result2<= num2 when (NonZereIn='l') else ZERO_Qut;\n\n";
eise 0 << " Resulzl<= numl;\n"
<< " Result2<= num2;\n\n";

0o << “"end:;\n\n";
o.flush{;;

void simplify SIGN(bool signedVar, vectcor<SignalVector>& sign)

Z (signedVar)

rector<SignalVector> signZero(sign}), signOne(sign):
SignalVector::iteracor resulc;

for (i=0; i<sign.size(}); i++}

{
// Fer Sign={ => Remcve ail "Sign_ P (=0)" & Replace Sign N with "1"
resuit = remove (signZeroli].begin{),signZero([il.end(),SIGNAL_SIGN_P};
signZero(i].erasel{resulc,signZerc{i].end ()}’
replace (signZe o[-].oegln(),SLgnZero(i].end(),SIGNAL_SIGN_N,SIGNAL_QNE);

// For Sign=1 => Remove all "Sign N (=0)}" & Replace Sign_P with "1"7

result = remove (signOneli] .begin(),signOne[i].end(},SIGNAL_SIGN_N);

signCne[i] .erase (result,signOne([i].end()):

replace (signCne (il .begin(),signOne{i]l.end (), IGNAL SIGN_P, SIGNAL_ONE);
}

simplifyConstants (signZero);
simplifyCecnstants (signOne);

sign{i].cleaxr():
if (signZero([i}.size()==0)
{
if (signOne{il.size(}==1)
sign[i) .push_back (SIGNAL_SIGN_P};
}
else // signZerol(i].size()==1

85

-—

2]

signOne({i] .size(})==0)
sign[i].push_back{SIGNAL SIGN_N);
else sicgn(i].push_back(SIGNAL_ONE);

}
}
else simplifyConstants{sign);

b

1/ e ——— s s -——
veid create_ HEWM Vector (
unsigned nVarBit, bool signedVar, unsigned long constOp,
vector<SignalVector>& imt, bocl &invertedInput, unsigned &CSA_Stage)

unsigned i, j-
vector<SignalVector> sign;

vector<char> constBit;
ulorgToBirt (constOp, constBit};

couz << "Constant Operand (" << ccnstBit.size() << " bits) :\n";
showBit {constBit)
cout << "\n\n";

e

unsigned nOutBit = nVardit + constBit.size():; // Number of output bit
imec .resize(nCutBit); // Intermediate signals
sign.resize(nOutBic}; // Sign and constant l's

// Variaple bit <= Constant bit => Perform Consant * Variable
biraryTcSignDigit (constBic);

cout << "Constant Operand (" << constBit.size() << " bits) in SD form:\n":
showBit (constBit) ;
cout << "\n\n";

// Insert all intermediate signals
Signzl signal;

invertedInput = false;
for (i=C; i<constBit.size(}; i++)
{

if (constBit([il==1)

{

for {(j=0; j<(signedVar?nVarBit-l:nVarBit); j++)
{
signal.bitPos=j;
signal.inverted=20SITIVE;
ime(i+3].push_back(signal};

}

if (signedvVar)
for (j+=i; j<imu.size(); j++) sign{j].push_back(SIGNAL_SIGN_P);

}
slse if (constBitii]l==-1}
{

invertedInput = true;
for (j=0; j<(signedVar?nVarBit-1l:nVarBit); Jj++)
{

signal.inverted=NEGATIVE;

signal.bitPos=3;

imc{i+j].push_back(signal);

86

sign[i].push_back (SIGNAL_ONE);

if {(signedvVar)

for (j+=i; j<imt.size(); j++) sign{j].push back(SIGNAL_SIGN_N);
else

for (j+=i; j<imt.size(); j++) sign(j].push_back(SIGNAL CNE);

}

simplify SIGN(signed¥ar, sign);

// Merge sign/constants togeter and perform optimization for constant 1's
unsigned maxDepth=0;

for (i=0; i<imt.size(); i++}

{

if (sign{i].size() !=0}

sign[i} [C]==SIGNAL CNE && i<imt.size()-1l && imt([i].size()==1 &&
ze () <=2)

// bit + 1 => sum=(not bit), carry=bit
imec{i+l].push_back (imt(i]{0]):
imt[i} [0].inverted = imt[i}{0].inverted==POSITIVE ? NEGATIVE: POSITIVE:
invertedInput = true;
}
else imc{i].push back(sign{i][0]);
'

if (imt([i}.size()>maxDepth}
maxDepth=imz{i].size(};
1

h

CS2 sStage=({maxDepth>3) ? maxDepth-2 : (maxDepth>0 ? 1 : 0);

——

void HWMult (
unsigned nVarBit, bool signedVar, unsigned long constOp,
vector<SignalVector> s&gourt,
ostream& o, ostream& component, char* entityName,
unsigned trunclLSB, bool generateProduct, bool byPass)

unsigned i, j;
vector<SignalVector> imt;

bocl inwvercedInput;
unsigned CSA_Stage;

S e e -——- —-——

// Comnstruct Mutiplicaticn vector to be used in CSA

Create HWM Vector(nVarBit, signedvVar, constOp, imt, invertedInput,
CSA_Stage};

if (truncLS3!=0)
{

cout << "\nBefore truncation:\n";
printvVsv{imc) ;

imt.erase(imc.begin (), imt.begin()+truncLSB);
cout << "\nAfter truncating "<<trunclLSB<<" bits:\n";

87

printVsSV (imr) ;

// - - -

// Generating VHDL Code

generate_VHDL HWM Header(nVarBit, signedVar, constOp, entityName,
imc.size(), imt.size{), 0, CSA_Stage, imt.size(), invertedInput,
o, cocmponent, generateProduct, byPass):

o.flush{(};

// ———————m—m———m— e -———= ——— e
// Generating carry-save adder VHDL code

unsigned nHalfAdder, nFullAdder;

generate VHDL_CSA Bcdy(imt, CSA_Stage, nHalfRdder, nFullRdder, o);
o.flush{};

[/=———————————————— - -——= - ———————————
// Generating VEDL tail (end architecture & statistical information
generate VHDL HWM Tail (imt, out, o, generateProduct, byPass):

// Brint Statistical Infecrmatiocn
O €€ Mo e — e ———— \n";
6 << "~- Statistical Information:\n"

<< e # Stage : " << CSA_Stage<<"\n"
<< e ¢ Inverter : " << (invertedInput?nVarBit:0)<<"\n"
<< M 4 HBalf adder: " << nHalfAdder <<"\n"
<< Mem 4 Full adder: " << nFullddder <<"\n";
O €€ M e e e e e e e e e e e e e e e e e e e . — ——— ————— \n\n";

- IntMult.cpp- = - ..

#inciude <math.n>
#include <iostream>
4include <fstream>
#include <vector>
#¢include <stdio.n>
#include "HWMult.h"

using namespace std;
const double pi = 3.1415%9265358979323846;

int meain{int argc, char* argvil)

{
unsigned long val;
cout << "Constant Operand -
cin >> wval;

int nVarBit, trunclLSB, bypass;
int signedVar, generateProduct;

cout << "§ bit of Variable Operand : "
cin >> nVarBit;

cout << "Sigred variakle operand (0/1}: ";
cin >> signedVar;

cout << "# bitc truncated at LSB A
cin >> trunclSB;

cout << "Generate product (0/71): ";
cin >> generateProduct;

cout << "Bypass Zero (0/1): ";

cin >> bypéess:;

88

char entityName[236], fileName([256];

cout << "Entity (file) name : "
cin >> entityName;
if (entityName[0]=='\0")

sprintf(entityName, "HWM %i_x_ %i Bic_%s",val,nVarBit, (signedvar?”s":"0"}));

intf(fileName, "$s.vhd"
T

,ent
eam vhdl (fileName,ios::0

tyName} ;
<) s

LA]

cout << "\n\n";
cout << "Constant Value: “<<val<<"\n\n";

vhdl << "em—mm—mom o - e \n"
<< "-~ Hardwired Multiplier:\n"
<< M= Constant QOperand:\n"
<< M- Integer value: '"<<val<<"\n"
<< M= Varisble Operand:\n*
<< M- Precision : "<<nVarBit<<" bits\n"
<< M- Signed : "<<(signedVar?"True\n":"False\n")
<< e Oucputi\n”
<< Me- Truncated LSB: "<<truncLSB<<"\n"
<< M—— Product : "<<(generateProduct?"True\n":"False\n")
<< M- Bypass Zero : "<<(bypass?"True\n":"False\n")
€ Mo e e e - _—
\n\n";

vector<SignalVector> out;
ostrstream ccmponent;
HWMulc {nVarBit,signedVaxr!=0,val, cut,vhdl, component, entityName, truncLSB,

generateProduct!=0,bypass!=0);
vhdl.close!) ;

cout << "Component Eeader:\n" << component.str() << "\nin";

u.

cout << "Qutput Signals:\n
prineVsvV(ocut,cout) ;

[/ TS e

" ‘NonZero.h- . 3 I Ol
#include "NonZero.h"
#include <fstream>

using namespace std;

void NonZero(char~ entityName, unsigned nBit, ostreamé& c)
{

char fileName[256];

sprintf(fileName, "ts.vhd",encityName);

fstream f(fileName, ios::out):;

f << "—mmmmm e —— o ——— e e — \n"
<< "library ieee;\n"
<< "use ieee.std logic_l1l64.all;\n"
€ Mo e e _
\nll ;

f << "entity "<<entityName<<" is\n"

89

<< " port\n"

<< (\nu

<< " D : in Std_Logic_Vector("<<(nBit-1)<<" downto 0);\n"
<< " NZ: ocut Std_Logic\n"

<< ")’.\nu

<< "end;\n\n":

c << " compornent "<<entityName<<'"\n"
<< " port\n"
<< " (\nil
<< M D : in Std_Logic_Vector("<<(nBit-1)<<" downto 0);\n"
<< " NZ: out Std_Logic\n”
<< "oy An"
<< " end ccmpenent;\n\n";

f << "architecture Structural of "<<entityMName<<" is\n" .
<< "begin\n"
<< " NZ <= \n":;

for (int i=0; i<nBit; Ii++)
{
if (i%4==0) £f<<" "
f << "D("<<i<<") "< (i==nBic-12";":" or ");

if (i%4==3[}li==nBit-1} I<<"\n";

<< "end;\n\n";

Hy —~—

£.close(};

NumberSystem.h I T P

£ _ NUMBERSYSTEM_H
ne _ NUMBERSYSTEM_H

ude <iostream>
ude <vector>

using namespace std;

// Convert unsigned leng tc a sequence of pic.

// The MSB of the returning bit is always O

void ulongToBit (unsigned long 1, vector<char>§& bit):;

void pinaryToSignDigit(vector<char>& bit);

void cptimizeSD (vector<char> &bit); // Reduce -l's
void ulongToSignDigit (unsigred long 1, vector<char>& sd);
void tiongToBcoth (unsigned long 1, vector<char>& booth);
void BoothToSignDigit (vector<char>&booth, vector<char>& sd);

ostreamé& princBit(cstream& o, vectcr<char>s bit);
void showBit (vector<char>& bit);

90

. “NumberSystem.cpp::

#include "NumberSystem.h"
#include <iomanip>

// Convert unsigned long tTo & sequence of bit.
// The MSB of the returning bit is always 0
void ulongToBit(unsigned long 1, vector<char>& bit)
{
pit.clear():
for (; 1!=0; 1>>=1)
bic.push back(lel 2 1: Q)7

void showBit (vector<char>& bit)

{
printBitc (cout, bit):

ostream& printBit(ostream& o, vector<chazr> &bit)
{

if (pit.size({)==0)
{

o0 << "The number is ZERQO Weight=" << weight; return o;

for (int i=bit.size(})-1; i>=0; i--)
{
0 << setw(3) << (int)bic(il:
if (bic{i]'!'=0) weight++;
}
o << " Weight=" << weight:;
regurnl Oy

int i, nBic=bit.size():;

int start, end; // Start and end position of consecutive ones
bic.push back(0);

for (i=0; i<nBit; i++)

1 ;
£ (pit(i]!=0}

starc=i;
for (end=i+l; end<nBit; end++)
if (bit(end]}==0) break:

if (end-start>1l) // More then one 1l's

{
bic{start]=-1; bit{end]l=1;
for (start++; start<end; start++) bit{scart]=0;

1
i = end-1;
if (bit[bit.size()-1]==0}
bit.erase(pbit.end{)-1);
}

void optimizeSD(vector<char>& bit)
{

91

it = bit.size():
int i=0; i<nBit-2; i++)
£ (bit[i]l==-1 && pit{i+l]==0 && bit[i+2]==1)

bit{i]=1; bic(i+ll=1; bit[i+2i=0;

-

veid ulongToSignDigit{unsigned long 1, vector<char>& birt)
{
ulengToBic(l, bit):;
binaryToSignDigit(bit);
// ocptimizeSD(bit):
4

void ulongToBooth(unsigned long 1, vector<char>& booth)

r
£
t

static censt char toBootrth{} = (0, 1, 1, 2, -2, -1, -1, O }:

if (1==0) { booth.push_back(90); return; }

booth.push_back{tcBoetn[{1&3)<<l}};
1>>=1;

while (11=0)

{

beoth.push_back(toBooth[1&7]) ¢
1>>=2;

}

void BoothToSignDigit (vector<char>&tooth, vector<char>& sd)

for (int 1=0; i<booth.size(); i++)
switch (pboocth[il)
{
case -2: sd.push_back(0}; sd.push_back(-1); break;
case -1: sd.push_back(-1}; sd.push back(0); break;
case 0: sd.push_back(0); sd.push_back(0); break;
case 1: sd.push back(1); sd.push_back(0); break;
case 2: sd.push_back(0); sd.push_kack(1); break;
}
}
| VHDL. Signal.h
#ifndef _ VHDL_SIGNAL_H

4define _ VHDL_SIGNAL_H

#include <vector>
#include <string>
#include <iostream>
#include <icmanip>
#include <strstream>

using namespace std;

typedef enum { CONSTANT, VARIABLE, SIGN |} signalType:;
typedef enum { NCNE, POSITIVE, NEGATIVE } invertType:
typedef enum { ZERO , ONE, OPEN } constIDType:;
typedef enum { INPUT, SUM, CARRY |} varIDType;

struct Signal

{

Signal(): type(VARIABLE), name(""), ID(0), inverted(NONE), bitPos(-1),
stage(-1), showID{(false} {}:

Signal(signalType t, char =n, unsigned id, bcol showid, invertType inv, int
pes, int stg)

type (t),name (n),ID(id),showID(showid), inverted(inv),bitPcs (pos),stage(stg) {};

signalType type:

char* name;

unsigned ID; // ID £or the signal

bocl showID;

invertType inverted;

int bitPos; // Bit position (Mon-negative integer. -1 will not show
the bit position)

inc stage ; // Stage where this signal is generated (-1: input or

constant signal & will not show the stage)
ccnst char~ toString();

static int createNewSignal () { unsigned save=idCount++; return save; }
static int idCount;
bi

ostream& operator << (ostream§ stream, const Signals signal);
tocl operator=={const Signal&si, const Signal &s2);
bool operator!=(const Signal&sl, const Signal &s2);
bool operator <(const Signals&sl, const Signal &s2);

const Signal

SIGNAL_ZERO (CONSTANT," ZERO " ,ZERC, false,NONE,-1,-1),
SIGNAL_ONE (CONSTANT,"” CNE " ,ONE ,false,NONE,-1,-1),
SIGNAL _OPEN (CONSTANT, " *X\' *,OPEN, false,NONE, -1,-1);

typedef vector<Signal> SignalVector;
void printSV (SignalVector &imt, ostreamé o=cout);
veld printVsSV(vector<SignalVector> &imt, ostream& o=cout):;

#endif

#inciude "VHDL_Signal.h"
using namespace std;

int Signal::idCcunc=0;

[[m e e T

ostrstream result:;
result << *this:;
return result.str():;

ostream& operator << (ostreamé& stream, const Signal& signal)
{

stream << signal.name;

if (signal.type==CONSTANT) return stream;

if (signal.showID)
stream<<signal.ZID;

i1f (signal.inverted!=NONE)
stream << (signal.inverted==POSITIVE ? "B": "N");

// Variable signal
if (signal.stage>=0)}

stream << signal.stage:

if (signel.bicPos>=0)
stream<<" ("<<setw(2)<< signal.bitPcs <<")":

return stream;

bcol operatcr==(const Signal&sl, const Signal &s2)
{
if (sl.type!=s2.type) return false;
if (sl.type==CONSTANT} return (sl.ID==s2.ID):;
return (sl.ID==s2.ID && sl.inverted==s2.inverted && sl.bitPos==s2.bitPos
sl.stage==s2.stage);
}

bocol operator!=(const Signalé&sl, const Signal &s2)

bcol operatcr <(const Signal &sl, const Signal &s2)

{sl.stage<s2.stage)
{sl.type==CONSTZANT)
(sl.stage==s2.stage)
iIf {si.ID==SUM && s2.ID==CARRY) return true
recurn false:;

eturn true;
ecurn true;

"

~e

void printsSv(SignalVector&sv, ostream& O)
{
o << ll[ll’.
for (unsigned j=0; j<sv.size(); j++)
{
o) << Sv[j] << " Iv;
b

o << "}\n";

-

//=mmmmm e -——= R Rt
void printVsSV(vector<SignalVector> &sv, ostream& O)
{

for (unsigned i=0; i<sv.size(}; i++)
{
0 << setw(3) << 1 << "2 ";
printSv(sv{i}, o}:

&&

Appendix D
IEEE Standard 1180-1990 Compliant Test

Program

The following is the Java source code listing for IEEE Standard 1180-1990
compliance test program for IDCT. It is used to determine the internal bandwidth of the
IDCT for both the first dimension IDCT and second dimension IDCT.

The codes are listed in alphabetic order based on the source file name. The main
program is located inside file [EEE [180 1990 java. Notice that all codes are also
included in the attached CD.

To execute the program, use the following command: java IEEE_1180_1990. The
program reads the internal bandwidth configuration from file Sefup.ixt, and perform test

to check if the bandwidth yields IEEE 1180-1990 compliance.

"CSD.java - - oo T e

/*
Convert conventional binary number to canonical sign-digit representation
Algorichm: H. Hwang, Computer Arithmetic, Wiley, 1979, pp. 150

Coding : Pai, Cheng-Yu

Note
To compile, execute "Javac SignDigit.java"
To run , execute "java SignDigit zxxx",

where xxxx is the number wish tc convert.
~/

public class CSD
{
public static byte[] toCSD(long 1)
{
// Svstem.out.princln("Integer value
/7 System.out.princln("Integer bit

Y+1);
"+Long.toBinaryString(l)):;

1]
[[']

// Construct bit array representation of the input
byte[] b = ("0"+Long.toBinaryString(l)).getBytes{):
for (int i=0, j=b.length-1; i<=j; i++,j--)

95

{ byte temp=(byte) (b{i]-'0'}; b(il=(byte) (b[j]l-'0"); b(jl=temp; }

byte[] 4 = new byte(b.lengthl];
byte ci=0, ci_1;
for {int i=0; i<b.length; i++, ci=ci_1)
{

if (i==b.lencgth-1}

ci_1 = (byte) ({bli]+ci>1)21:0);
else ci_1 = (byte) ((bl{il+b[i+1]+ci>1)?21:0};
d{d.length-i-1] = (byte) (b{i]+ci-2*ci 1);

for (int i=0, j=d.length-1; i<j; i++, j—--)}
{ byte temp=d({ii; diil=d([j]; diji=temp; }

/‘-
Systenm.out.princtln{"CSD value:");
for (int i=d.length-1; i>=0; i--)
System.out.print{ (d{i]==02" 0":(d[i]==12" 1":"-1"))+" ");
System.out.princln);
~/
raturn d;
}
}
- oo . - - FDCT.java
public class FDCT
{
static double s [1{] = new double{5}[8];
static double tmp(]{] = new cdouble(8](8];

static final int map[]=(0,4,2,517r3,5:l};
static void Butterfly(int stage, int xC, int x1)

age] [x0] + s([stage
agel

st Tixl]:
stagel [x0] - s[stagel 1

%1

~— e

;
static wvoid Loeffler (dcukle A, double BminusA, double AplusB, int stage, int

double temp = A~ (s[stagel] [x0]+slstage] [x1]);
s(stage+1][x0] = temp + BminusA * s([stage] (x1]
sistage+1][x1] temp - AplusB * s[stagel [x0]

N

}
staric void Lrl(int stage, int x0, int xl1)

inal int n=1;

al double k=Math.sqrt(2):

inal doukle a=k~*Math.cos({n*Math.PI/16},
b=k*Math.sin{(n*Math.PI/16),
Bminusa&=b-a,
AplusB=a+b:

Leeffler (a, BminusA, AplusB, stage, x0, x1);

}

static veid Lel(int stage, int x0, int x1)
{

final int n=i;

final double k=1;

final double a=k*Math.cos(n*Math.PI/16),

96

p=k*Math.sin(n*Math.PI/16},
BminusA=b-a,
EplusB=a+b:

Loeffler(a, BminusA, AplusB, stage, x0, x1);

st
{

ic void Lec3{int stage, int x0, int x1)

[\)

final int n=3;

inal dcuble k=1;

inal double a=k*Math.cos(n~*Math.PI/16},
b=k~Math.sin(n*Math.PI/16),
BminusA=p-a,
AplusB=a+Db;

Loeffler({a, Bminush, AplusB, stage, x0, xl1);
}

Mo

public static void fdect(short block(](])
{
int i, 3, ks

double roctZ2=Math.sqrz(2):
for (i=0; 1i<8; i++)
{

// Input mapping
for (j=0:; j<8; j++) s[0]([jl=blocki{i]l[jl;

// Stage 1: Butterfly
for (3=0; j<4; j++)
Butterfly(0,3j,7-3);

// Stage 2

for (j=0; j<2:; j++)
Butterfly(l,3,3-3):

Le3(1,4,7):

Lcl(l,5,86);

// Stage 3

Butue:flv(2 0,1);
Lrl (2,2,3);

B't;e*ny(Z,-,)

Butterfliy(2,7,5);

// Stage 4

for (3j=0; j<4; j++) s(41[ji=s(31(31:

Bucterfly(3,7,4);

s[41[5] = root2 * s(31(51]:

s[4]1[6] = root2 * s[3][6]:

// Output mapping

for (3=0: j<8: j=+}
tmp {map[j11 (il = s{4]1[3])7

/ir
System.out.princln("1D S:"};
for (3=0; j<5; j++)
{
for (k=0; k<8; k++)
System.out.print(s{jl [kl1+", "):
System.out.println();
}
-/
}
/r

97

[
Q
.
~
~

System.out.println ("FDCT
for (i=0; i<8; i++)}
{
for (j=0; 3<8; j++}
System.out.princt(tmpi{i] {j1+", "}:
System.out.println();
}
System.out.println(};

for (i=0; 1i<8; i++)
{
// Input mapping
for (j=0; j<8; j++) s[O0][jl=tmp(il(j];

// Stage 1: Butterfly
for (j=0; j<4; j++}
Butterfly (0,3, 7-3)-

// Stage 2

for (3=0; j<2; j++)
Butterily(l,3,3-3);

Lc3(1,4,7);

Lel(i,5,6)»

// Stage 3

Butcerfly(2,0,1}
Lrl (2:2/3)
Butterfly(2,4,6)
Butterfly(2,7,53)

AR TR TR 1)

// Stage 4
for (j=0; j<4; j++) s[41{j1=s[3](3];
Bucterfly(3,7,4)
s{4] (5] = root2
sf{d4](86] root2

LI
~

1

s{311(3]
s{31([6]:

// Cutput mapping
for (j=G; j<8; j++)
block[i] (map(jl] = (short)Math.round(s(4]{j]}:

System.out .pr
for (j=0: j<5
{
for (k=0; k<3; k++}
System.out.print(s{il [k1+", "):
System.out.println();

l t1n("7D S.u)
i3+

oo SIDCEjava e T s e D S TR e

import java.text.~;

public class IBCT

{
static double s []1[1} new doukble([5][8];
static double tmpl(]l{] = new double(8](8];
static final int map(1={0,4,2,6,7,3,5,1};

98

static DecimalFormat nf = new DecimalFormat ("####0.#5%%");
static void IButterfly(int stage, int x0, int x1)

(sistagel [x0] + s([stage]{x1])/2;
(s{stage] [20] - s([stagel([xl])/2:

stage+1i] [x0Q1]
stage+l] [x1]

static void IlLoeffler(double C, double DminusC, double DplusC, int stage,
x0, int x1}

age+1][%xC] = DplusC ~ s(stage] [#0] - tmps

double tmp = C~*(s[stagel]l([x0]+s[stage] [x1]};
E DminusC ~ s{stage] (1] + tmp;

o
[+Y]
[TeqTe]
[t
_’.
—
~
’-4!
i

static void Icl(int stage, int x0, int xi}

al in:c n =
al double k
zl double c = Math.sin(n*Math.PI/16)/k,
d = Math.cos(n*Math.PI/18) /k,
DminusC = d-c,
DplusC = d+c:
Iloceffler{c,DminusC, DplusC,stage,x0,xl});

.

1l
o

r

}

static woid Ic3(int stage, int x0, int x1)
{

final int n = 3;

final double k = 1:

final double ¢ = Math.sin(n*Math.PI/16)/k,
d = Math.cos(n*Math.PI/16)/k,

PminusC = d-c,
DolusC = d+c:

~

final int n = 1;

final double k = Math.sqrt(2):;

final double ¢ = Math.sin(n*Math.PI/16)/k,
d = Math.cos(n*Math.?PI/186)/k,
DminusC = d-c,
DplusC = d+c;

IlLoeffler(c,DminusC, DpolusC, stage, x0,x1l);

puclic static void idct(shcrt block[][])
{
int i, j, ks
final double invRoot2 = 1.0/Math.sqrt(2});
/v
System.out.printlin(};
System.out.println(“Dimension 0:");
~/
for (i=0; i<8; i++)
{
// Input mapping
for (3=0; 3<8; j++)
s{0] (5] = bleck([il(map{jll:

int

99

/&

*/
/-

// Stage 1

for (j=0:; 3<4¢; j++) s[l1(31=s(01(31~
IButterfly(G,7,4) 7

s{1j{S] = s[01[{5] * invRoot2;

s{1} (8] s[0]1{6] * invRoot2;

o~

ISutterfly (1,
IButterfly (1,

~ o~

oy W =2

~

// Stage 3

for (3=0; 3i<2; j++}
IButterfliv(2,j,3-1)

Ic3(2,4,7);

Icl(2,5,86):

~

// Stage 4
for (3=0; j<4: j++)
IButterflvy(3,3,7-3):

j<8:; j++)
] = sf{41(3]

~

System.out.println("Row "+1);
for (3=0; j<5; j++)
{

System.out.print("Sctage "+j+": ")
for (k=0; k<B8; k++)
System.out.princ{nf.fermat(s(j}] tki)+",

System.cut.printin();

———

stem.out.println("IDCT 1D:");
r (i=0; i<8; i++)

for (3=0; j<8; j++)
System.out.print(tmpli] [F1+", ")

System.out.println();

b
System.out.printlin();

System.cut.println(};
System.out.println("Dimension 1:");

or (i=0; i<8; i++)

L i

// Input mapping
for (3=0; i<8; j++)
s{0]1(j1 = tmpli]{map{jll;

// Stage 1

for (j=0; j<4:; j++) s[i]{jl=s[01(]}:
ISutterfly(0,7,4);

s{1][5] = s{0][5] * iavRocot2:
s{1}(6] = s{0}[6] * invRoot2;

// Stage 2
IButterfly(1,0,1);

")z

100

Irl (1,2,3)
IButterfly(l, 4, 8)
IButterfly(i,7,5)

AT LI 1)

// Stage 3

for (j=0; j<2; j++}
IButterfly(2,3,3-3i:

Ic3(2,4,7);

Ici(2,5,6);

// Stage 4
for (3=0; j<4; j+=+)
IButterfly(3,3,7-3);

for (3=0; j<8:; j++;}
block[i][3i] = (short)Math.round(s[41i3]1};
/w
System.cut.printian("Row "+i};
for {j=0:; j<S; j+=)
{
System.out.print ("Stage "+j+": "),
for (x=0; k<§; k++)
System.out.print(nf.formac(s(j] [(k1)+", "};
System.out.println(};
}
~/

IDCT Truncjava - - -~ o oo

import java.text.~;

public class IDCT_Trunc

{

static leng s {i[] = new longi{S51[8];
static long tmp{]l [l = new long({8](8];
static final int map(1={0,4,2,6,7,3,5,1};
static byte invRoot2[]:
static byte cOp[][i{] = new byte(3]1{3](]-
public static long nMul, nAdd:
// static DecimalFormat nf = new DecimalFormac("##s#sdFHEsddHE");

static void init_IDCT_help (int idx, double c, double sub, double sum, int
preac)
{
int i;
long factor = ((long)l)<<prec;
long cL, sukL, sumL;
cL = {longiMach.rocund(c ~factor);
subL= (long)Match.round{sub~factor);
sumL= (lcng)Math.round(sum*factor);

System.out.println("cl="+cL+", subL="+subL+", sumL="-+sumlL};
cOp (idx][0]

cOp{idx] [1]
cOp[idx] (2]

CSD.toCSD(cL) ;
CSD.tcoCSD(subl);
CSD.toCSD (sumkl) ;

101

}

public static void init_IDCT_Trunc(int prec(l)
{

final double k{}={1,1,Math.sqrt(2)}-

final intc n{i={1,3,1}:

double ¢, d, sub, sum;

System.out.princtln("Initialize IDCT coefficients:");

for (int 1i=0; i<3; i++)

{

System.out.princ ((1!=22"1":"R"}+"c"+n[i]+": ");
¢ = Math.sin(na{i]"Math.PI/16)/k[i]l;
d = Math.cos(n[i]~*Math.PI/16)/k{i}]:;

sub=d-c; sum=d+c;
i i i,c,suk,sum,precfil}):

lw]
[®]
-3
o]
m
.-4
'3
i
N

0

piy

=
o]

}

£inal double ir = l/Macth.sqgrc(2):

long factor=({long)l)<<prec[3];

long r2L = (long)Math.round(ir*factor):
invRoot2 = CSD.toCSD(r2L}:;

System.out.princln("1/Sgrt(2)="+r2L);
}
/vz
static long mult(byte sdf], long val, int trunc}
{
long resulc=0;
long pp;
fcr {(int i=0; i<sd.liength; i++)
{

if (sd[i]==0) continue;

if (i<trunc) pp=val>>{(trunc-i);
else pp=val<<(i-trunc):;

if (sd{i]==L)

static long mult(byte sd{}], long wval, int trunc)
{

long result=0;

long pp:

if (val==0) recturn 0;

nMul++;

for (intc i=0; i<sd.length; i++)
{
if (sd[i]==0) continue;
if (sdiij==1)
{
if (i<trunc) pp=val>>(trunc-i}):;
else pp=val<<{i-trunc):
}
else // sdiij==-1
{
if (i<trunc) pp=(~val)>>(trunc-i);
else pp=(-val)<<({i-trunc);

102

}
resulc+=pp;
}
return result;

b

static void IButterfly(int stage, int xG, int x1)

{
s{stage+l] [x0]
s[stage+1l}{x1l]
nAdd+=2;

b

{s[stage]l [x0] + s([stagel]l([x1])/2:
{(s[stage] {x0] - s[stage][x11)/2;

static void IButterfly2{int stage, int x0, int x1}
{
s{stage+l] [x0]
s{stage+l] [x1]
nAdd+=2;

{(s[stagel]l [x0] + s(stagel([xl]):
(s{stagel [x0] - s[stage][xll)~;

er(byze C[], bvte DminusC[], byte DplusC[], int stage,

long tmp = mult(C, s(stagel(x0]+s[stagel(xl], trunc);
sf{stage+1] [x0] = mult(DplusC , s(stagel[x0] , trunc) - tmp;
s[stage+l]{x1] = mult(DminusC, sistage] {x1] , trunc) + tmp;

if (tmp!=0)
{
if (s([stage] [{x1]!=0) naAdd+=2; else nAdd++;

—-

)

static void Icl({int stage, int x0, int x1, int trunc)
{

ILoeffler(cOp(0}[0],cOp{0]{1],cOp{C](2],stage,x0,xl,crunc);
}

static void Ic3{int stage, int x0, int x1, int trunc)
{
ILoeffler(cOp(1]1{0},cOp(1](1i,cOpil](2],stage,x0,xl,trunc);

—~—

static void Iri(int scage, int x0, int xI, int trunc)
{

Iloceffler(cOpi2]i{0],cOpl2]{1l],cOp(2]([2],stage,x0,xl,trunc);

staric void adiustOffset(long stage{], int offset(])
{
for (int i=0; 1i<8; i++)
{
if (offset[i]l<0)
stage[i]>>=(-cffset[i]}):
else if (offset{i]>0)
stage[i]<<=offset[il;

}

static long calcR(int r)
{

if (r<2) return 0; // Do nothing

£
int i, j;

int

long offset;

for (i=i,0ffset=1l; i<r-1; i++) offset=(offser<<l) {1l;
7/ offset = ((leng)ly<<(r-2);

return ofifsetc;

}

public static veid idctTrunc(short block([]1{], int trunc[l(i, int
offsec{]([1[1l,int round{])
{
inc i, 3, k:
leng 0, rl:;

nMul = nAdd = 0;

= calcR (round!l
calcR (rcund[

2]
- O
|

Al

01}
i)

// System.out.println("r0="+r0+", ri="+rl):;

System.out.printlin();
System.out.println{"Dimensicn 0:"}:
*/
or (i=0; i<8; i++)

~

// Input mappin
for (3=0; 3j<8; j++}
s(01{j1 = block{i](mapljll:

adjustCffset (s{0],0ffsec (0] {01);

n
ot
€}
[ale
(]
[

utterfly2(0,7,4);
11{5] = mult(invRoot2,s[0]([5]1,trunc{0]{31]):
[1]1[(6] = mult(invRoot2,s(0]([61,truncl0]([3]);

/
B
rl {0,2,3,crunc(0][2]);
B
{

LTI ¥ I o B o

adjustOffset(s(l],offset[0]([1]);

// Stage 2

IButterfly2(1,0,3);
IButterfly2(1,1,2):
IButterfiy2(1,4,6};
I3utcexflv2(i,7,3});

adjustOffsec(s[21,0ffsec (0] {2]):

// Stage 3
for (j=0; j<4; j++) // Rounding

s[31[31 = sf21(j] + (0 << (-offset[0] (4] [jl-round(0]));
nAdd+=4;
Ic3(2,4,7,ceunc{01[1]);
Icl(2,5,6,crunc(0](0]);

adjustOffset(s[3],0ffsec[0] [3]);

// Stage 4
for (j=0; j<4: j++)
IButterfly2(3,3,7-3):

adjustOffset(s[4],0ffsec{01[4]);

104

/7

=/

/*

}

for (3=0; j<8; j++}
tmp (] [1 = s{4](]l:
tmpljI[i] = (s{41[j]1+r0)>>roun
// Debug

System.out.println("Row "+1);
for (3=0; j<5: j+=+)
{
System.ocut.print("Stage "+j+":
fcr (k=0; x<8; k++}
System.out.print(s{ji [kI+",
System.out.println();

em.out.princ ("Round : "};

}
Syst
for (j=0; j<8; j++)

1d {01

")

).

System.out.princ({tmp (il (i1+", ");

System.out.println(}s

System.out.printlin();
System.out.println("Dimension 1:");

or (i=0; i<8; i++)

// Input mapping
for (3=0; j<8: 3**)

s{C1{3] = tmpi{illmaplill];
adiuscQffsec({s(0],o0ffsec[1]1(0])~;
// Stage 1
IButterfly2(0,0,
irl (0,2,3 trunc[l][Z]);
IButterfly2(0,7,4};
s[{1i[5] = mulc({invRooct2,s{0][5],trunc(l!
s{li(8] = mult(invRcotZ,s{0][8],cruncil]

adjustOffsetr(s[l},o0ffsec{1] (1]}

// Stage 2
IBut erf1v2(l,0,3):
IButterfly2(1,1,2);

IBuc;er:lja(l 4 6);
IButterfly2(1,7,5);

adjustOffsec(s{2},cffsec[1](2]);

// Stage 3

for (3=0; j<4; j++
s{31{j1 = =21 (]

nAdd+=4;

Ic3(2,4,7,crunc{l} {11}
Icl(2,5,6,trunc{l] [0]);

adjuscOffset(s[3],0ffsec{11(3]);
// Stage 4
for (j=0; j<4; j++)

IButterfly2(3,3,7-3):

adjustOffsec(s{4],o0ffset[1][4])~

(3]
{3

1 ;

)
] + (rl << (-offsec[l](4](jl-round(1]))~

105

for (3=0; j<8; j++)

bleck([i][j] = (short)s(41(jl;
7/ block{i][j] = (short) ((s[4]1[jl+rl)>>round(l]);
/«v
System.out.println{"Row “+i):
for (i=0:; 3<5:; j++)
{
System.cuc.print("Stage "+3+": "};
for (k=0; k<8; k++)
System.cut.print(s{jl(ki+", ")/
System.out.printla(};
i
System.out.print("Round : ")’
for (5=0:; j<8; j++}
System.out.print(bleck{i} [F]1+", ")?
Svstem.out.printlin{};
*/
}
}

“IEEE 1180 1990.java -

import java.lo.~ :

public class IEEE_1180_1990
{
static long eMiX =1,
pmseMAX= (long) (0.06 *10000},
pmeMEX = (long) (C.015 *10000),
omeMEX = (long) (0.0015*64*10000),
omseMaX= (long) (0.02 *64~10000);
static lcng e [1{] = new long[8] (8],
pmse{][] = new long(8]I(8}],
pme [][] = new long[8]I[81],
ome,
omse;

static boclean checkError(short xCal{l([}, short xRef[][(])
{

int i, 3, err, e2;

iong eAbs, pmeRbs, omeAbs;

for (i=0; 1<8; i++)
{

for (j=0: j<8; J++)
{
e[i] [j]l=err = xCalli]({jl-xRefli] (]}~
e2 = err * err;
pmse (il [j] += e2;
pme [il(j] += err;

cme += erxr;
omse += e2;

// sumg += err;

/7 System.out.print(erc+" ");
elbs = (err<Q ? -err : err);

(pme{i} {ji<0 ? -pme(i]l(j] : pme(i]([j1);

preibs

106

omelbs = {(ome<(? -ome : ome);

ntin (" {"+i+", "+3+"]: xCal="+xCalli] [JI+",

/7 System.out.pri
, pmse="+pmse(i] [j]+", pme="+pme[i][i]+", ome="+ome+",

xRef="+xRef {i] [J]1+"
ormse="+omse) ;

if (eAbs>eMRX) { System.out.printin("Exror: ppe ="+e[i](]]
+", DpeMAX ="+eMAX }y; recurn false; }

if (pmsef[i]{jl>pmseMAX) (System.out.printin("Error:
pmse="+pmse (1] [j1+", pmseMAX="+pmseMAX); return false; }

if (pmeibs>pmeMAX) { System.out.printlin("Error: pme ="+pme{i] (j]
+", pmeMAX ="+pmeMAX }; return false; }

if (omeAbs>omeMAX) { System.ocut.printin("Error: ome ="+ome
+", omeMAX ="+omeMAX }; return false; }

if (omse>omseMAX) { System.out.println("Error: omse="+omse

+", omseMAX="+omseMAX); return false; }
}
/7 System.out.println();
}
//System.out.println("Sum error="+sumk);
regurn True;
}

static boolean checkZero(short xCzl([]([])
{

for {(int i=0; i<8; i++)
for (int j=0; j<8; j++)
if (xCalfi

println("Error: Expect zero cutput."); return false; }
return true;

1

!

static void clipFDCT (short block(]{])
{
for (int i=0; i<8; i++)
for (int j=G; 3j<8; j++)
if (block{il]l(3]<-2048) block([i] [j1=-2048§;
else if (block[i1[ji1>2047) blcockiiliji= 2047;

i
y
!

static void clipIDCT (short block{][])
{
for (int i=0; 1<8; i++)
for (int j=0; j<8; j++)
if (block[i]([jl<-25¢8) block([i]l[j]l=-256:
else if (block{il[j1>255) block[ij{jl= 255;
}

static void transformBlock(short bil{]l[], short b2[1([], int truncl[] (], inc
offsec{]][], int roundl])
{
FDCT. fdct (bl);
clipEDCT {bl) :

for (int i=0; i<8; i++)
for (int j=0; j<8; j++)
b2[i] (§I=k1Ti]l(]]:

IDCT.idct (bl);
clipIDCT(bl});

IDCT_Trunc.idctTrunc(b2,trunc,offset,round);
clipIDCT (b2);

107

static boolean checkLH(long L, long &, bcolean negatePixel, int trunc(] (],
int offsec{]1({]1({], int roundll])
{
short b [](] new short([8]([8],
b1{1([] new short(8] (8],
b2f{1!{] = new short(8]1(8]:
inc i, j, ks

System.out.print("Check ["+L+","+H+", "+negatePixel+"] ... ");

alize stat variables

; i<8; i++)

=0; j<8:; j++)

i} [(jl=pmse{i]l (ji=pme(i] {j]1=0; }
=0;

// Check O in 0 cut
cr (i1=0; i<B; i++}
cr (3=0; j<8; I++}

pl{i] {j] = 0:

IDCT_Trunc.idctTrunc (bl, trunc, offset, round};
if (!checkZero(bl)) return false;

IEEE Random. init(L,H);

for (i=0; i<i0000; i++) // Do £for 10000 blocks
{
/7 System.out.princln("------——————————— ")
// System.out.princln(" ("+L+", "+H+", “+negatePixel+"] Block "+i+": ");

£

or (j=0:; ij<8; j++) // Generate random pixel datea
for (k=0; k<8; k++)
{

eL{J1 k] = (st

Random.rand(} ;
if (negatePi k

1 =(short)-ci(]j]ik]:
}
transfcrmBlock(tl, b2, trunc,o0ffset, round) ;

£ {(!checkErroripbl,b2)}}

~ e

System.out.println{"Bleck="+i+", L="+L+", H="+H+",
Nagate="+negatePixel);
recurn false;
}
long max;
int percent;
System.out.print ("PASSED: pme (max)="};
for (i=0,max=0; i<8; i++)
for (3=0; 3j<8; j++)
if (pme{il[jl>max) max=pmelil{jl:
percent = (int) ((max*100.0)/pmeMAX) ;
System.out.print((max/lOOO0.0)+"("+percent+"%), psme (max)=") ;
for (i=0,max=0; i<8; i++)
for (3=0; j<8; j++)
if (pmseli]([jl>max) max=pmse[i][i]-

percent = (int) ((max*100.0)/pmseMAX);
System.out.print{{(max/10000.0)+" ("+percent+"%), ");
percent = (int) ((ome~100.0)/omeMAX) ;

System.out.print ("ome="+(ome/ (64*10000.0))+" ("+percent+"%), "):

108

percent = (int) ({omse+100.0)/omseMAX);
System.ou:.p:in:("omse="v(omse/(64*10000.0))+"("+percent+"%)");
System.out.princln();

return true;

}
static int getint{StreamTokenizer s} throws Exception
{

for (int token=s.nextToken(); token!=s.TT_NUMBER; token=s.nextToken()):;
return (int)s.nval;

}

static void initSetup(int trunc(]({], int offsec[l([]l(]l, int round[]) throws
Excepticn
{
int d, i, j:

treamTckenizer setup = new StreamTckenizer(new FileReader ("Setup.txt"));
int prec{] = new inc[4];
for (i=0; i<4; i++}

prec{i] = getInt({setup}; //Precision

for {(d=0; d<2;
for (i=0; i<
trunc{dil

for (d=0; d<2; d++)
{
for (i=0; i<5; i++)
for (j=0; 3<8; j++)
offsecid] [il[j] = getInt(setup):;

round{d] = getInt(setup):
}
b
public static void main(String args(]) throws Exception
{
int trunc{] (] new int[21(4],
offsecl1{]1[] = new int{2]1([3}1([8],
round(i = new int(2}:
int L[1=(200C,256,5},
H[]={300,235,5};
bcclean negate=false;
int i, 3, k, prec:

initSetup(trunc,offset, round);

for (i=0; i<2; i++, negate=!negate)
for (j=0; j<3:; j++)
if (tcheckLHE(L(jl.H[j},negate,trunc,offset, round))
return;
System.cut.println("All test passed!"};

109

‘IEEE Random:java -

public class IEEE_Random

{
static long randx, L, H;
static double z:

puclic static void init(long 1, loung h)

randx = i;
z = Double.longBitsToDouble(Cx7fE£E£E££S);
L=1l; H=h;

public static long rand()}
{

icng i, 3:

doukle x;

randx = (randx * 1103515245} + 123453;
i = randx & Ox7f£E£ffffe:;

x = (Douple.longBitsToDouble(i))/z;
xv= (L+H+1);

j = (long)x:

return j-L;

public static void main(Scring argsi{l)
i

iong 1, R, n;

n = Long.parselong(args{C]};

1 = Long.parseLong(args{l]};

h = Long.parselong(argsiz]};

inic{l,h)>;

for (int i=l; i<=n; 1i++)

{

System.out.print(rand () +", "
if (i%8==0) System.out.pr:i
t

System.out.println();

'l\
+

ct
.—lv
(SR
~

1

110

