INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UM! directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

AGENT SIMULATION USING OBJECT-ORIENTED
METHODOLOGY

CHANGJIANG ZHANG

A MAJOR REPORT
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

JUNE 2000
© CHANGJIANG ZHANG, 2000

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-54339-0

Abstract

Agent Simulation using Object-oriented Methodology

Changjiang Zhang

In this report, we present an ecological Agent Simulation System, which simulates the
interactions between ecological agents and shows the statistics of simulation results. We
discuss how we design and implement it using Object-oriented analysis, design, and pro-
gramming. The design phase illustrates how we apply the concepts of Object-oriented
methodology to develop this software application — the Agent Simulation System. The
implementation phase demonstrates the programming process by using an Object-oriented
language (C++) and Software Development Kit (Visual C++). We show the simulation
results with two simulation examples and analyze the statistics. We conclude by listing
some advantages of Object-oriented we experienced from this project and suggest further

work.

iii

Acknowledgments

[wish to express my sincere gratitude to my supervisor, Dr. Peter Grogono, for all his

enthusiastic support, careful supervision, and consistent guidance during the development

of this major report. I also wish to thank Dr. Ching Y. Suen, who kindly took the time to
review the report.

Furthermore, I would like to appreciate my partner Weidong Sun, for his ideas, hard work,
and collaboration.

Finally, I wish to thank my wife, Ni Li, for all her encouragement and support.

iv

Table of Contents

LiSt Of FIGUIES ..eeeeeieniiieeee et e viil
ST o) A 21 o) 1= OO PR 154
1 | H10 06 LDTo15 (o) « WP PR 1
1.1 AMOfthe Project............cooo e e 1

LIV Y, (o] (1772 | (Lo o TR O 1

1.3 Structure of this report ... 2

2 Backgroundcoveuiiiiimiieeie e e 3
2.1 Problem descCriptionconiimiiimii it 3

2. 1.1 RESOUICES.......oeeeeeeeeeeeeee ettt e e e e e een e s maacss e nnenes 3

2 BVZ2R S 1 414 Te F- OO RRTRt 3

2.1.3 Agents and GENEScccuuuuiiiimiiiiiiiii e e as 4

2.1.4 Cell, Environment, Food, and TaXccoooeeeiiimiimiiiiiiecneeennne. 4

2.1.5 Encounters between Agents ..o 5

2.1.5. 1 C0MDAL ... e e ens 5

e BRIV I - Lo [S U 6

2.1.5.3 Reproduction.........ccooveeriimiiiiieiieeeee e 6

2.1.6 Simulation Parameters..........cooviiiiiiiiiiiici e 7

2.1.7 Running the simulation ... 8

2.1.7.1 Food DistribuUtionccoueienime et 9
2.1.7.2FeAING.....iiieiieeiie et 9

2. 1. 7.3 ENCOUNTEIS. ...t ee e e e 9

2.1.7. 4 REAPING. ..o i ettt e 10

2.2 Related WOTKoooeeeeeeieeeeeeee ettt ettt et e eec e et e eema e enans 10

3 DESIZN ..eieeeieeeieeieeeitee et 12
3.1 Identifying the classes..........ccooiiii e 12

3.2 AQEeNt ClasSes..... ..o i 12

3.2.1 Class CSIMSHNINGccvvmimeiii et 13

3.2.1.1 0perations:cccceiiiirieiiii e 13

3.2 1.2 AHIDULES ... e 14

3.2.2Class CAGENL ...t 14

3.2.2.1 Operations:cccoiiieiiiiimeei e 15

3.2.2.2 AHDULES:o 17

3.2.3Class CAgentList ..o 17

3.2.3.1 OPerations:cceeeeeriimceiiecie e ecee e 17

3.2.3.2 AHIIDULES: ... e 18

324 Class CCeII....nioiieeee ettt e e ene e 18

3.2.4.1 0perations:cccceieiiiiiiiicci e 18

3.2.5Class CENnvironment 21
3.2.5.1 0perations: ... 21

3.2.5.2 Aftributes:o 22

3.2.6 Class CSIimParam...........coouoiimiimiiii e 23
3.2.7 Class CSummaryTable ... 23
3.2.7.1 0perations:ccoeireeiemiciiiccce e 23

3.2.7.2 Attributes: ... 25

3.2.8 Class COIMAPD -.eunieieie ettt e e e nn e 25
3.2.8.1 0Operations:c.cccoiiiiiie e 26

3.2.8.2 Attributes:o 26

3.3 Graphical user interface and related classes....................cc....... 26
3.3.1 Dialog box and controls ... 27
3.3.1.1 “About” dialog bOX. ..o e.ciiiecee 28

3.3.1.2 Simulation parameter dialog boxccccoceeell 28

3.3.1.3 Summary cycle dialog box.........ccccooiimiimiiiiin 28

3.3.1.4 Summary table dialog boxc...ccoiiiimiii 29

TR I Y (=Y o 10 £ RO 29
3.3.3Help SYStemM ..o 29
IMplementationcccoceeueeeerriinirniiire et 31
4.1 Introduction to Visual C++, the implementation tool 31
4.2 Programming Progressc.ccceeeremmmumereeseeaniaesaeecoenaans s oinnaenans 32
4.3 AppWizard created Classes ... 32
4.3.1 Documents and VIEWSccooimiiiiiiiiiiiiiii e 32
4.3.1.1 Class CSimulationDocCccccccoeiriiiiiiiir el 32

4.3.1.2 CSimulationView.......cc.cccooiimiiiiiiiieee e 34

4.4 AGENt ClaSSES. .ccouumiiiiiiiiee et 35
4.4.1 Class CSIMSHINGcooemnieiii e 36
442 Class CAgent 37
4.4.3 Class CAgentList ..o 40
444 ClASS CCEll ...t e 41
445 Class CENVIrONMENtooiomiiiiiiiiiiiir e 43
446 Class CSIMParam.........ccocoeuiiiiiiiiii e e ee e 44
447 Class CSummaryTable ... 45

4.5 Graphical userinterface:..........cccooorimieiiine 46
F T B o) | o= | o URT 46
4.5.2 StAtUS DA ettt e 48
4.5.3 Dialog box and CONtrolscoooiereiiiis 49
4.5.3.1 About Simulation Dialog:...c..cccoeeiieiiiiii i 49

4.5.3.2 Simulation Parameter Dialog:cc.cooiiii. 50

4.5.3.3 Summary Cycle Dialog: ... 51

4.5.3.4 Summary Table Dialog:coovimmiinrrir 52

46 Thehelp System . ..o 54
4.6.1Presenting Relpoooeeeeeeiiiiiiee s 54

vi

= >

4.6.2 Components of the Help System ... 55

4.6.3 Programming the help.............cccooiiiiiiii e 56
46.31Thehelpbutton...........o.o i 56
46.3.2TheContexthelp......co.o oo 57

Simulation reSult......ooveeeiiineeeeeeeeeee e 59
ST B =5 15 1 o] (=S PPN 59
5.2 EXaMPIE 2. ..o ee e e 65
@) 1 163 LT 1) o RSO RN 70
6.1 Experience on Object-oriented Programming...........cccccccceevvvennnnnne.. 70
B.2 FUMREI WOIK ...t e e 71
Bibliographyccoooeioiiiiiiiiee 72
Class diagram 1.......ccoeeeeeiiiiiiiriiiiiieceee ettt 73
Class diagram 2........cceeeeeeiieeierieiieiieececeee i ereeerse e aneas 74

vii

List of Figures

FIGURE 4-1:TOOIDATooiiieiiieiccciemiiteiteeceeeeee e ce e e e sbne e eeensn e s e e eennnes 48
FIGURE 4-2:The About Dialog DOX ..ceueeeneeeeeeeeieieeieitiettieeec e e cee s s 49
FIGURE 4-3:Simulation parameter dialog DOXcceeeerrmciirimmiiieimiiiiianceereeerccsccreesesnnneeerennes 51
FIGURE 4-4:The Summary cycle dialog DOX ...ccooveaieiiiiiiiiiieieeeecee e 52
FIGURE 4-5:The summary Table dialog DOX ..ccceeeiieiiiiiiiiiiiieeeeieee e 52
FIGURE 4-6:HEIP TOPICS -.ceeeeummmreeeerarsientieieccetseciasesennneseesssreessesessseanmneeessssesessassenssanes 54
FIGURE 4-7:Help button triggered Help WINdOWc..ueeiemimiiiiceeeeee e 55
FIGURE 5-1:Before SImulation Starts.......cccveeceeeeeerereeecimmimeniiieiicctnccceesseacesessssnesseessasseees 60
FIGURE 5-2:Simulation result after 50 cycles with example 1cccccoccciiiiiriiiiininnnnnn. 61
FIGURE 5-3:Simulation result after 100 cycles with example 1c.coocciimmi, 62
FIGURE 5-4:Simulation result after 150 cycles with example 1c..ccoooociininnnis. 63
FIGURE 5-5:Simulation result after 200 cycles with example 1........cccoceviiiiiiiinnnnnnnnnnn. 64
FIGURE 5-6:Simulation results after 50 cycles with example 2..........ccccccvevimnnmnnnnnnne. 65
FIGURE 5-7:Simulation results after 100 and 150 cycles with example 2....................... 66
FIGURE 5-8:Simulation results after 200 and 300 cycles with example 2....................... 67
FIGURE 5-9:Simulation results after 1000 cycles with example 2.......cccccovvciviiininnannnee. 68

viii

List of Tables

TABLE 2-1: Threatening BeRaviOr.......ccccovieeciiorciincciee it

ix

1 Introduction

In this chapter, we describe the project that we selected and why we chose this topic. We

also introduce the background of the project and describe the structure of this report.

1.1 Aim of the Project

This project is about ecological Simulation. Our particular example is the Agent Simula-

tion System. The Aim of this project is to present an Object-Oriented approach to simulat-
ing interactions among ecological agents and between agents and their environments using
C++ language and the Microsoft Visual C++ toolkit. Our intention is to design and imple-
ment an Ecological Agent Simulation as realistic as possible. A graphical user interface is
provided so that user can use it as a tool to input simulation parameters and learn the sim-

ulation results.

1.2 Motivation

Simulations are very interesting topics, which always attract people doing research or pro-

gramming in computer literature because:
» They provide a good model to establish data structures and
algorithms;
« They combine knowledge of specific field, artificial intelli-

gence, and simulation strategies;

» They require rich and complex algorithms.

1.3 Structure of this report

Chapter 1 is an introduction. It briefly describes the aim and motivation of the project.
Chapter 2 describes the background and all concepts of the project. Chapter 3 presents the
design phase, including the simulation classes, the graphical user interface design, and the
Help System. Chapter 4 starts with an introduction to our implementation tool and gives
all the class, interface, and Help details. Chapter 5 presents the simulation results by two

examples. Chapter 6concludes this project and suggests further work for this project.

2 Background

2.1 Problem description

This chapter describes the background knowledge necessary for designing and implement-

ing the Agent Simulation System.

2.1.1 Resources

There are VARIETY (which is a simulation parameter, as described in Section 2.1.6 on
page 7) kinds of resource. Each resource is represented by a lower-case letter chosen from

the alphabet starting from “a”. For example, if VARIETY = 3, the resource are named a, b,

and c.

21.2 Strings

A string is a sequence of resources, possibly empty. For example, “abcd”, “aabbccde™ are
strings. The important property of a string is the number of occurrences of each resource.

The terms with string:
« The match of two strings is a positive integer that depends
on the number of resources that the strings have in common.
» The difference of two strings stringA and stringB is the

excess of resources in stringA over those in stringB.

« A string stringA exceeds stringB if, for each letter c, the
number of occurrences of ¢ in stringA exceeds the number

of occurrences of ¢ in stringB.

213 Agents and Genes

An agent is a collection of ecological primitive components. An agent consists of nine
strings: attack, defend, beauty, combat, trade, lust, eat, give, and reserve. The first eight
strings are genes; together, they constitute the genome of the agent. An agent is born with
a genome and the genome does not change during the lifetime of the agent.

The last string, reserve, represents the collection of different resources that the agent cur-

rently owns. It may change during the lifetime of the agent.

214 Cell, Environment, Food, and Tax

The whole ecological world is called the environment by the simulation. An agent lives in
a cell that is a part of the environment. We can imagine the environment as a two-dimen-
sion grid of cells. There is a string associated with the cell called food. Food is distributed
throughout the environment. The food an agent eats is stored in its “reserve”. Each agent
begins its life in a cell and has opportunity to “eat” during each simulation cycle. The
“eat” gene determines how much food an agent can eat. It moves away from that cell if
there is no food available for it in the cell.

An agent is also “taxed” by its cell. Taxing corresponds to metabolic processing in an ani-
mal: some resources must be returned to the environment. The tax that an agent pays

depends on its size. TAX is a simulation parameter described later. Taxing can prevent

4

agents from becoming too large as they evolve.

215 Encounters between Agents

During the simulation, agents encounter one another. An encounter involves exactly two
agents. There are four possible outcomes of an encounter: combat, trade, reproduction, or
nothing. The agents try each of the possibilities in turn. For example, if “combat™ has no
effect, they attempt to trade; if “trade” has no effect, they try to “reproduce”. A problem
with this strategy is that there might be too much fighting and not much reproduction. One
solution is to randomly choose the sequence of encounter. The sequence of combat, trad-
ing, and reproduction has 3 * 2 = 6 possibilities:

» combat — trade — reproduce

» combat — reproduce — trade

e trade — combat — reproduce

e trade — reproduce — combat

« reproduce — trade — combat

» reproduce — combat — trade
Each time two agents encounter, one of the above sequences is randomly chosen. This will

make the chances of trading, fighting, and reproduction even.

2.1.51 Combat

Under certain conditions, an agent A will threaten another agent B. If agent A’s “attack”
gene exceeds (as described in Section 2.1.2 Strings on page 3) agent B’s “defend” gene, we

say “A threatens B”. When two agents A and B encounter one another, there are four pos-

5

sibilities, as shown in Table 2-1, “Threatening Behavior,” on page 6.
If a fight takes place, the winner adds all of the loser’s resources (genome and reserve) to
its “reserve”. If one agent surrenders, or nothing happens, the agents proceed to the next

possible kind of encounter.

TA .1: Thr nin havior
A threatens B B threatens A
True false
True Combat B surrenders or combat
False A surrenders or combat nothing happens

21.5.2 Trade

13

Trading between agents can take place if agent A’s “trade” gene exceeds agent B’s

“attack” gene and agent B’s “trade” gene exceeds agent A’s “attack” gene. If trading takes

? &

place, resources are transferred between the agents’ “reserves”. The agents’ “give” genes

limit the size of the transfer.

2.1.5.3 Reproduction

Like trading, reproduction takes place only if both agents are willing. The condition is that

the match of agent A’s “lust” gene and agent B’s “beauty” gene exceeds MINIMATCH (a

simulation parameter as described in Section 2.1.6 Simulation Parameters on page 7) and the

match of agent B’s “lust” gene and agent A’s “beauty” gene exceeds MINIMATCH. If
these conditions are satisfied, we call the two agents “parents”. Reproduction consists of

the following three steps, which are described in detail below:

e Design a new genome from the parents' genes.

» Ensure that the parents have sufficient resources to con-
struct the genome.

e If so, construct a new agent using the new genome and

resources from the reserves of the parents.

2.1.6 Simulation Parameters

A simulation parameter is a value that remains constant for a particular run of the simula-
tion, but may be changed between simulations. We tested the simulation during and after
the implementation phase using several sets of simulation parameters as input and ana-
lyzed the results. The values given below are intended to be typical to give interesting sim-

ulation results.

SIDE - A default value of SIDE is 10, giving 10x10 = 100

cells in the environment.

« POP - The number of agents in a cell. There should be, on
average, more than one agent in a cell. 500 is the default
value.

e VARIETY - The number of different resources type. The
default value is 3.

e TAX - Some of these resources would be returned to the

environment as taxes. This might reduce the amount of food

required (or, alternatively, lead to a population somewhat

larger than predicted). TAX is a fraction. The default value
is 0.1.

» MINMATCH - the minimum condition which allow the
engaged agents to reproduce child. Reproduction will hap-
pen only if the match (as described in Section 2.1.2 Strings on
page 3) of two agents’ “lust” and “beauty” genes is greater
than MINIMATCH. The default value is 2.

» FRAC — the fraction of the remaining resources from parent
agents that will be transferred to their child. The default
value is 0.33. That means 1/3 of the parents’ resources will
be transferred to the child during reproduction.

« ACTIVE — An agent has been inactive for more than
ACTIVE cycles will be removed. The default value of

ACTIVE is 10.

21.7 Running the simulation

The simulation is started with a population of several hundred agents. The initial agents
have random genomes and “reserves”. The average size of the initial “reserve” should be
roughly the same as the genome. For example, if the average length of a gene is 3 resource
units, then the length of reserve is 24 resource units.

The simulation runs in cycles (also called steps). During each cycle, the following events

occur:

* Food is distributed throughout the environment.

- Each agent is given a chance to eat some food.
» Agents are selected in pairs for encounters.

e Agents that appear to be inactive are removed.

21.71 Food Distribution

A fixed amount of food is distributed randomly throughout the environment at each simu-
lation cycle.This allows the total resources in the environment to increase and newly pro-

duced agents to grow.

21.7.2 Feeding

Each agent is allowed to transfer food from its cell to its “reserve” in accordance with the

rules. If an agent fails to obtain any food during a cycle, it is moved to an adjacent cell.

2.1.7.3 Encounters

The simulation selects agents for encounters using the following procedure:

« Choose at random an agent that has not had an encounter
during this cycle.
+ Choose at random another agent in the same cell that has not
had an encounter during this cycle.
This allows the agents to interact in accordance with the rules defined in Section 2.1.5
Encounters between Agents on page 5.
If something happens during the encounter (fighting, trading, or reproduction), the simula-

tion records the fact that these agents have had an encounter (and therefore cannot have

any further encounters) during this cycle. If, on the other hand, nothing happens during the
encounter, the agents are allowed to participate in another encounter during the same

cycle.

2.1.7.4 Reaping

The simulation removes agents that are inactive, returning their resources to the cell they
are currently living in. The definition of “inactive"” is that the agent has not had a positive
outcome from an encounter during the last ACTIVE (simulation parameter) cycles. A
“positive outcome” is one of: a fight that it wins; a trade in which it receives some
resources units; or the birth of a child.

What will happen between the encountered parties depends on the genes inside each agent
according to some kind of rules we set in our design. An agent dies when it fails in fight-
ing or it is removed because of being inactive for a relatively long period of time.
Resources in dead agents are returned to the environment.

Our focus is on the interactions among agents and between agents and analyzing the data

after a certain number of simulation cycles.

2.2 Related work

Peter T. Hraber and Stephanie Forrest from University of New Mexico, Terry Jones from
Santa Fe Institute designed a generic ecosystem model called Echo appendix 2 on page 72,

in which evolving agents were situated in a resource-limited environment.

Our supervisor, Dr. Peter Grogono, developed a Cell Simulation System, which provided

10

a proof of many biochemical concepts (appendix 1 on page 72). Although it was designed

and implemented for biochemical purpose, it was a good model for our project. It showed

the simulation results on screen using graphical curves.

1

3 Design

3.1 Identifying the classes

The key for designing the Agent Simulation System using Object-oriented method is to
identify the objects and classes of objects in the system. As described in chapter 2, we find
that nouns such as “agent”, “cell”, “environment”, and “string” that would represent the
objects in the Agent Simulation. We designed a standard Windows style graphical user
interface, which is represented by the objects such as toolbar, menu, buttons, and dialog
boxes. Therefore, two categories of classes are defined in the system. One category of the
class is associated with non-user interface, for example string, agent, cell, environment,
and simulation parameters. Another category of the classes is user interface associated, for
example dialog boxes.

In this chapter, we explain the design of some classes by listing their most important oper-
ations and attributes. The operations are shown with their return type, parameter types,
and a brief description. Parameter names and more details are described in Chapter 4

Implementation.

3.2 Agentclasses

We add “C” at the beginning of each class name to make them consistent with the names

of Microsoft Visual C++ created classes.

12

3.21 Class CSimString

As described in chapter 2, CSimString is a possibly empty sequence of resources (alphabet
letters). Genes are objects of CSimString class. It is named CSimString instead of CString

because CString exits in MFC.

3.2.1.1 Operations:

int ResourceSize(int): Get the number of one give type of

resource in the CSimString.

» int size(): Get the size of the CSimString. The size of the
CSimString is the sum of all its resources. For example,
“abcedde” has size 7.

« CString operator+(CSimString&): Concatenate two CSim-
Strings.

« int operator-(CSimString&): Get the difference of two
CSimStrings. The difference of two CSimStrings is the
excess of resources in one CSimString over those in
another.

« int operator*(CSimString&): Get the match of two CSim-
Strings. The match of two CSimStrings is a positive integer
that depends on the number of resources that the two CSim-
Strings have in common.

» bool operator>=(CSimString &) Check if one CSimString

exceeds another. If the number of each resource in first

13

CSimString is greater than that in the second CSimString,
we say the first CSimString exceeds the second CSim-
String.

+ void convert2cstr(char*, int): Convert a CSimString object
to a C language-style string.

e bool transfer(CSimString&, CSimString&, CSimString&):
Transfer resources from one CSimString to another.

« void clear(): Clear all resources: that is, set the number of
all resources to zero.

» void Mutation(): randomly choose a resource in a CSim-
String, then randomly change (increase or decrease) the

number of that resource.

3.2.1.2 Attributes

« An array of integer storing the number of each resource in
this CSimString. For example the first element of the array
is the number of character “a” in the CSimString, second

element is the number of “b” in the CSimString.

3.2.2 Class CAgent

This is the core class of our simulation. Each agent lives in a cell and usually is put on a

linked list (beforelist or afterlist).

14

3.2.21

Operations:

CCell* GetCell(): Get the cell the agent lives in.

void SetNext(CAgent*): Set an agent’s “next” attribute. The
“next” attribute is usually a pointer pointing to another
agent next to the current agent on the linked list.

CAgent* GetNext(): Get the next agent on the linked list.
void SetActive(bool): Set its active status to “true” or
“false”.

bool Initialize(): randomly construct all genes and reserve
of the agent.

int ResourceSize(int): Get the number of specific type of
resource, for example how many “a”s in the agent.

bool Mutation(): mutate all genes of the agent at string
level.

void Kill(CAgent*): Kill another agent and get all resources
from the agent being killed.

void Eating(): transfer food (resources) from cell to the
agent. If an agent cannot eat anything in the current cell
when it has the chance to eat, it moves to a neighboring cell
at a random direction.

int Size(): Get the total number of all resources the agent

owns (eight genes and reserve).

15

void Paytax(): according to the agent’s size and the simula-
tion parameter TAX, return random type and amount of
resources from reserve to the cell the agent lives in.

void Encounter(CAgent*): Encounter with another agent,
including combat, trade, and reproduce. Since the sequence
of combat, trade, and reproduce will affect the simulation
result, we need to make the sequence as random as possible.
bool IsFightable(CAgent*): Decide if the encountered two
agents will fight.

void Combat(CAgent*): Fight with another agent. One
agent may kill another agent, or nothing happens.

bool IsWinner(int, int): Decide which agent will win the
fight.

bool IsTradable(CAgent*): Decide if the encountered two
agents will trade.

void Trade (CAgent*): Trade with another agent. Usually
two agents transfer resources to/from each other’s reserve.
bool IsMatable(CAgent*): Decide if the encountered two
agents will reproduce.

void AddToList(CAgentList*): Add an agent to an agentlist.
bool IsActive(): Get the agent active status: it is active or

not.

16

* void Reproduce(CAgent*): Create a new agent and con-
struct its genome and reserve.
« void Die(): return the agent’s all resources to its cell

» void Move(DIRECTION): move the agent to another cell.

3.2.2.2 Attributes:

e Genome (eight genes) and reserve, which are of type CSim-
String.

* The cell the agent lives in.

e A variable indicates the status of the agents (active or not).

» Its next agent on the agentlist.

3.23 Class CAgentList

An agentlist is a linked list. An agent on the list has a pointer pointing to another agent

on the list. The last agent on the list points to null.

3.2.3.1 Operations:

» void SetHeader(CAgent*): Set an agent as the header of the
agentlist.

« void Inidalize(): Initialize all agents on the agentlist at
agent level (each agent on the agentlist initializes).

« void AddAgent(CAgent*): Add an agent to the header of

the agentlist.

17

¢ void RandomAddAgent(CAgent*): Add an agent to a ran-
dom position of the agentlist.

« void RemoveAgent(CAgent*): Remove an agent from the
agentlist.

e CAgent* RemoveFirstAgent(): Remove the header of the
an agentlist.

e int GetCount: Get the number of agents on the agentlist.

« int SetCount(int): Set the number of agents on the agentlist.

3.2.3.2 Attributes:

e A pointer to the header agent of the agentlist.

e The number of agents on the agentlist.

3.2.4 Class CCell

A cell has two agentlists in it: beforelist and afterlist. Initially all agents are on the befor-
elist at the beginning of each simulation cycle. The beforelist contains all agents that have
not been chosen to encounter with another agent in the current simulation cycle. Afterlist
is the agentlist that contains all agents that have finished encountering with another agent

and as well as new agents created by reproduction in the current simulation cycle.

3.2.41 Operations:

« void SetEnvironment(CEnvironment*): Set the environ-

ment the cell belongs to.

18

CEnvironment* GetEnvironment(): Get the environment
the cell belongs to.

void Mutation(): get the afterlist of the cell and mutate all
agents on the list at agent level (let all agents “mutate™).
CSummaryTable* GetSummaryTable(): Get the summary
table of the cell (create a summary table contains all statis-
tics based on the cell).

CAgentList* GetBeforeList(): Get the afterlist.
CAgentList* GetAfterList(): Get the beforelist.

void Initialize(): get the beforelist and initialize all agents
on the list at agentlist level (let all agents on the list do “ini-
tialize”—as described in class CAgent).

void SetFood(CSimString&): Distribute food to the cell.
CSimString& GetFood(): Get the current food in the cell.
void Feeding(): get the beforelist and let all agents eat food
from the cell. Then move the agents from beforelist to after-
list.

void Taxing(): get beforelist in the cell and let all agents on
the list pay tax as described in class CAgent.

void Reaping(): get afterlist in the cell, remove all inactive

agents on the list and return their resources to the cell.

19

3.24.2

bool Report(ostream&): Report information at cell level (for
example, how many agents left in the cell) and output simu-
lation summary results to a file.

CCell* GetNeighbor(DIRECTION): Given a direction, get
the neighboring cell in the environment.

void Encounter(): get the beforelist in the cell, remove first
two agents from the head of beforelist and let them encoun-
ter with each other at agent level (do “encounter” as
described in class CAgent). After encountering, add them to
afterlist. If only one agent left (there is no more agent left to
encounter), add it to afterlist.

void PrepareNextCycle(): get the afterlist, remove its
header agent and randomly add it to beforelist for the next

simulation cycle.

Attributes:

A pointer to the environment the cell belongs to.

The summary table of the cell. Summary is on cell basis.
Computation is based on each agent.

A pointer to the beforelist in the cell.

A pointer to the afterlist in the cell.

The food in the cell.

20

3.2.5 Class CEnvironment

Some operations in this class simply perform a loop and ask every cell in the environment
to do the same operation at cell level. Usually the cell then goes one level down again to

ask every agent (or agentlist) to do the same operations at lower levels.

3.251 Operations:

e CSummaryTable* GetSummaryTable(): Get the summary
table of the environment.

e CCell* GetNeigbor(CCell*, DIRECTION): Given a cell
and direction, get the neighboring cell in that direction.

e void Mutation(): let all cells in the environment mutate at
cell level (each cell does “mutate” as described in class
CCell).

e void Initialize(): initialize all cells in the environment at
cell level (as described in class CCell).

» void UpdateSummary(): Update the summary table of the
environment with the sum of the summary tables in all celis.

« void DistributeFood(): Distribute food to all cells in the
environment.

« void Reaping(): reap all cells in the environment at cell

level.

21

3.2.5.2

void Report(ostreamnd&): let all cells in the environment do
“report” at cell level (as described in class CCell) and out
put to a file.

int GetCycle(): Get the number of cycles that the simulation
has already run.

void SetCycle(int): Set the number of cycles that the simula-
tion has already run.

void Feeding(): feed all cells in the environment at cell
level (let all cells do “feed” as described in class Ccell).
void Taxing(): let all cells in the environment pay tax at cell
level (as described in class CCell).

void Encounter(): let all cells in the environment encounter
at cell level (as described in class CCell).

void PrepareNextCycle(): let all cells in the environment do
“prepare next cycle” (as described in class CCell) at the cell

level.

Attributes:

A 2-dimensional array of cells in the environment.
Number of cells in the environment. There are SIDE*SIDE
cells in the environment.

Number of cycles that have been run so far.

« A summary table. The summary information is on Environ-
ment basis, for example, how many reproductions happened

in the Environment so far. Computation is based on Cells.

3.2.6 Class CSimParam

This class does not have any operations.

Simulation parameters are used as global variables. We define all these simulation param-
eters in this class as static attributes, which are common to all objects of the class.
Although we do not need to create any objects while using static attributes, the encapsula-

tion of these simulation parameters demonstrates the Object-oriented concept. Simulation

parameters are described in Section 2 1.6 on page 7.

3.2.7 Class CSummaryTable

This class contains the simulation results. It works as a virtual table in memory instead of
on disk. There will be one CSummaryTable object for the environment and SIDE*SIDE

objects for cells in memory when the simulation is running.

3.2.71 Operations:

+ void incAgentNumber(int): Increase the agent number when

new agent is created.

» void DecreaseAgent(int): Decrease the agent number when

agent dies.

« unsigned long GetAgentNumber(): Get the agent number.

23

unsigned long GetCombatNumber(): Get the number of
combats happened.

unsigned long GetDeathNumber(): Get the number of
agents that died.

unsigned long GetDrawnNumber(): Get the number of
combats drawn.

unsigned long GetNewBirth(): Get the number of new
births.

unsigned long GetTradeNumber(): Get the number of
trades that occurred.

void IncCombatNumber(int): Increase number of combats
when combat happens.

void IncTradeNumber(int): Increase number of trades when
trade happens.

void IncReproductionNumber(int): Increase number of
reproduction when reproduction happens.

void IncNewBirth(int): Increase number of new birth when
new agent is created. Reproduction does not guarantee that
new birth will happen since there probably has not enough
resource for the child. So the number of new birth and num-
ber of reproduction are usually different.

void IncDeathNumber(int): Increase number of dead agents

when agent dies.

24

* void IncDrawnNumber(int): Increase number of drawn
combats when a draw of combat happens.

« void IncWinNumber(int): Increase number of combat won
when one agent wins the combat.

+ CSummaryTable operator+(CSummaryTable&): Add two
summary tables (usually one cycle is finished, add the sum-
mary table of the current simulation cycle with the summary

table before this cycle).

3.2.7.2 Attributes:

* Number of agents.

* Number of combat drawn.

« Number of newly produced agents.
e Number of agents that died.

* Number of combat won.

¢ Number of combat happened.

¢ Number of trade happened.

¢ Number of reproduction happened.

3.2.8 Class CSimApp

This class creates the CEnvironment object, which then creates cells, beforelist, and

agents.

25

3.2.8.1 Operations:

* void Initialize(): initialize the environment at environment
level.

« int GetCycleNumber(): Get the current number of simula-
tion cycles that has been run.

e CSummaryTable* GetSummaryTable(): Get the summary
table of the environment.

» void Report(ostreamé&): let the environment report at envi-
ronment level (for example, how many agents left in the
whole environment).

» void RunOneCycle(): run one cycle of the simulation start-
ing from environment level, including distributing food,
feeding, taxing, encountering, reaping, mutation, update
summary table, and prepare next cycle. This function shows

the sequence of one simulation cycle.

3.2.8.2 Attributes:

» A variable shows the simulation state is paused or not.
* The output file.

* The environment.

3.3 Graphical user interface and related classes

To make the simulation interactive, we need to provide a friendly Graphical User Interface

26

so the user does not need to spend much time on learning how to use the simulation. Since
Microsoft Windows is the most popular Desktop Operating System, we designed our GUI
follow the standard Windows style. It looks like most Windows applications so if the user
is familiar with windows applications, the user will have no difficulty running our simula-

tion application.

3.31 Dialog box and controls

Common Windows applications have several dialog boxes, each designed to retrieve a dif-
ferent type of information from the user. With Microsoft Visual C++, for each dialog box
that appears on screen, there are two entities need to be developed: a dialog box resource
and a dialog box class.

The dialog box resource is used to draw the dialog box and its controls on the screen. The
class holds the values of the dialog box. A member function of the class causes the dialog
box to be drawn on the screen. They work together to achieve the overali effect, making
communication with the program easier for user.

In our project, we add the following controls into dialog boxes for different purposes:
» Static text controls which show some information to user.
The user cannot modify the information.
« Edit box controls which show values to the user. The user
can also edit (change) the value. Sometimes we can “lock™

the edit box to prevent its value from being modified

27

« Buttons which are clicked by the user to confirm/cancel the
modification. The current dialog box is usually closed or
another window is popped up when the button is clicked.

Usually the value of the control (for example the value shown in a edit box) in a dialog

box is matched to a member variable of the dialog box class.

3.3.1.1 “About” dialog box

The “About” dialog box shows the author of the project and the software version. User
clicks a menu item to show the dialog box and clicks an “OK” button to close it. No fur-

ther operations and attributes are needed here.

3.3.1.2 Simulation parameter dialog box

We need a dialog box to show the user the default (or current values if user has changed
the default values) simulation parameters. The user is allowed to modify the values shown.
The user can confirm the modification or cancel the modification. In case of cancel, the
simulation parameter should keep the current values. Since users may need to understand
the meanings of the simulation parameters to help them set their desired values, a way to

invoke the help system from the dialog box is required.

3.3.1.3 Summary cycle dialog box

We offer this dialog box to the user so the user can decide how frequent to show the simu-
lation results (summary dialog box as described later). For example, if the user sets the
value to 20, then the simulation results (summary dialog box) will pop up each time 20

28

simulation cycles have been run. The user can confirm or cancel the value entered. In case

of cancellation, the current value is reserved.

3.3.1.4 Summary table dialog box

This dialog box shows the simulation results, which is the statistics information we are
interested in. The user is not allowed to modify the information shown. When the sum-
mary dialog box is shown, the user clicks on the OK button to let the program continue to

run.

3.3.2 Menus

Menus in our simulation project provide the following functions:

« Bring up the dialog boxes described above.
» Start/stop/pause/resume the application.

» Showrhide toolbars.

e Showr/hide status bars.

e Bring up helps.

» Exit the application.

Cares must be taken to that when some functions are not allowed in certain cases, the

related menu items must be disabled.

3.33 Help system

In Windows applications, there are a number of ways to bring up help:

« By choosing an item from the Help menu

29

.

By pressing F1

By clicking on What's This? button on a toolbar and then clicking
something else

By choosing What's This? from the Help menu and then clicking
on something

By clicking a Question button on dialog box and then clicking part
of the dialog box

By right-clicking something and choosing What's This? from the

pop-up menu

In our application, we choose the following two approaches:

The help menu, which brings the help topics window.

The help button on a Dialog box, which pops up a help window

30

4 Implementation

4.1 Introduction to Visual C++, the implementa-

tion tool

The 32-bit applications for Windows are often far larger and more complex than their pre-
decessors for 16-bit Windows, or older programs that did not use a graphical user inter-
face. Yet as program size and complexity has grown, programmer effort has actually
decreased, at least for programmers who are using the right tools. After having imple-
mented several course projects using Microsoft Visual Studio, we found that Visual C++
is one of the right tools. With its code-generating Wizards, it can produce the shell of
working Windows application in seconds. The class library included with Visual C++, the
Microsoft Foundation Classes (MFC), has become the industry standard for Windows
software development in a variety of C++ compilers. The visual editing tools make layout
of menus and dialog boxes much easier. The time we invested in learning to use this prod-
uct has paid itself back on our project.

Visual C++ doesn’t just compile code. It generates code. Using the tool called AppWizard
provided by Visual C++, we could select the options we want and let it create a starter
application. It copies code into our application that almost all Windows applications need,
for example basic menus, minimize and maximize buttons. Then we can add/remove
menus and modify the generated code. The next step is to write the code of our simulation

classes.

31

4.2 Programming progress

We first use Visual C++’s AppWizard to create a skeleton application. Then, according to
our design, we use ClassWizard to generate the class declaration for simulation classes for
example class CAgent, CCell, etc. This step includes the declaration of class member
functions and member variables. The next step is to define simulation classes we just
added to the application. We also need to modify the code and user interface (menus, dia-
log boxes) that created by AppWizard to make the user interface work well with the simu-

lation classes.

4.3 AppWizard created classes

431 Documents and Views

MFC’s document/view architecture separates an application’s data from the way the user
actually views and manipulates that data. Simply, the document object is responsible for
storing, loading, and saving the data, whereas the view object (which is just another type
of window) enables the user to see the data on-screen and to edit that data in a way that is

appropriate to the application.

4311 Class CSimulationDoc

The document class CSimulationDoc is created by AppWizard and is derived from class

CDocument. We add our own functions and attributes according to our requirements.

32

431.1.1 Operations: Some important member functions are listed below:
» int CSimulationDoc::GetSummaryCycle(): return the num-

ber of cycles to show the summary table.

« void CSimulationDoc::OnSimulationParameter(): when the
user clicks the menu item to show the simulation parameter
dialog box, this function generates a parameter dialog box
object and assigns the simulation parameter values to the
member variables of the dialog box. When the user clicks
the OK button of the dialog box, this function gets the val-
ues currently shown (either modified by user or not) and
assign the values back to the simulation parameters.

e void CSimulationDoc::OnSummaryCycle(): when the user
clicks a menu item to show the simulation summary cycle
dialog box, this function generates a summary cycle dialog
box object and assigns the summary cycle value (number of
cycles to show the summary table) to the member variables
of the dialog box. When the user clicks the OK button of the
dialog box, this function gets the value currently shown
(either modified by user or not) and assign the value back to
the summary cycle.

e void CSimulationDoc::OnSummarytable(): when the sum-
mary table is to shown, this function gets the simulation

summary table and hence simulation results in the table (for

33

example number of agents left). It then sets the simulation
results to the member variables of the summary dialog box.

« void CSimulationDoc::Start(): When the user clicks the
start menu item or the toolbar, this function creates an
object of class CSimApp. The CSimApp object then calls
its function “Initialize”. After the initialization, it starts a
thread to run the simulation.

« UINT CSimulationDoc::ThreadFunc(LPVOID p): This
function is called by Start. It lets the CSimApp object to run
the function RunOneCycle(). It counts the simulation cycle
and pops up the summary table dialog box by calling func-

tion OnSummarytable every specified number of cycles.

4.3.1.2 CSimulationView

CSimulationView is derived from class CView. As mentioned previously, the view class
displays the data stored in the document object and enables the user to modify this data.
The view object keeps a pointer to the document object, which it uses to access the docu-

ment’s member variables in order to display or modify them.

43121 QOperations:

e void CSimulationView::OnStart():display running status of

the application (starting, running), get the pointer to the

document object, and call the document objects function
Start.

» SimulationDoc* CSimulationView::GetDocument(): get a
pointer to the document object.

e void CSimulationView::Displaylnfo(CDC* pDC, char
*info): This function displays the information on the screen.
It finds out the Device Context, create new font, save the
old font, get the client area, draw the text in that area, and
then restore the old font. It is called by functions OnDraw,
On Start, OnStop, etc.

e void CSimulationView::DisplayInfo(CDC* pDC, char
*info): This function displays the information on the screen.
It finds out the Device Context, create new font, save the
old font, get the client area, draw the text in that area, and
then restore the old font. It is called by functions O'nDraw,

On Start, OnStop, etc.

4.4 Agentclasses

We summarize the main member functions of the agent simulation classes with their

input/output and a brief description in associated classes in this section- Some class dia-

grams are listed in appendix B on page 73 and appendix C on page 74. For more detailed

information, please refer to appendix 5 on page 72.

35

4.4.1

Class CSimString

void CSimString::Clear():clear the resource array, set all
resource numbers to zero.

void CSimString::convert2cstr(char* buffer, int size): con-
vert the CSimString to a C language string and put it in
“buffer”.

void CSimString::Decrease(int type, int number): decrease a
specific type of resource by a specific number.

void CSimString::Mutation(): randomly decrease the num-
ber of one type of resource.

int CSimString::operator*(CSimString & x): return the
number of matched resources in two CSimStrings.
CSimString CSimString::operator+(CSimString & x): com-
bine two CsimStrings and add all their resources together.
int CSimString::operator-(CSimString & x): returns the
number of all resources that the current CSimString exceeds
the given CSimString.

CSimString & CSimString::operator=(CSimString & theS-
tring): assign the given CSimString to the current CSim-
String.

bool CSimString::operator>=(CSimString & X): returns true

if the number of each type of resource in the current CSim-

36

4.4.2

String is greater than the number of that resource in the
given CSimString

int & CSimString::operator[](int r): get the number of cer-
tain resource.

int CSimString::ResourceSize(int type): return the number
of specific type of resource.

int CSimString::size(): return the total number of all

resources.

Class CAgent

void CAgent::AddToList(CAgentList* theList): add the
agent to an agentlist (beforelist or afterlist).

void CAgent::Combat(CAgent* agentB): fight with the
given agent. One may kill another.

CSimString CAgent::ConstructGene(CSimString& Left-
Gene, CSimString& RightGene): given two genes from par-
ent agents, construct a new gene for the child. Called by
function GiveBirth.

void CAgent::ContributeResources(CAgent* AgentB,
CAgent* Child): contributes resources from parents’

reserves to child’s reserve. Called by function GiveBirth.

37

void CAgent::Die():The agent dies and contributes all its
resources to the cell it lives in as food. Update the summary
table of the cell.

void CAgent::Eating(): transfers the food from the cell. If
the agent could not get any food, move the agent to a neigh-
boring cell randomly.

void CAgent::Encounter(CAgent* theAgent): encounter
with a given agent. The sequence of trade, reproduction,
and combat has 3 * 2 = 6 possibilities. To make it even, we
randomly choose a number (0 to 5) each time to decide the
sequence of trade, combat, and reproduction.

CCell* CAgent::GetCell(): return a pointer to the cell the
agent lives in.

CAgent* CAgent::GetNext(): return a pointer to the next
agent of the current agent on an agentlist.

CAgent* CAgent::GiveBirth(CAgent* agentB): Act as par-
ent agents with the given agent to create a child agent. The
parents construct the genes and reserve of the child agent.
Called by function Reproduce.

bool CAgent::Initialize(): create the genes and reserve of
the agent.

bool CAgent::IsActive(): check the status of the agent

(active or not).

38

bool CAgent::IsFightable(CAgent* theAgent): Check if two
agents will combat with each other according to their
scores.

bool CAgent::IsMatable(CAgent* theAgent): check if two
agents will reproduce according to their Beauty and Lust
genes.

bool CAgent::IsSurrender(int part, int total): decide if the
combat is drawn. Called by functions IsFightable and
IsWinner.

bool CAgent::IsThreaten(CAgent* theAgent): compares the
Attack gene of the current agent and the Defend gene of a
given agent. Called by function IsFightable.

bool CAgent::IsTradable(CAgent* theAgent): compares the
Attack and trade gene of two agents.

bool CAgent::IsWinner(int part, int total): called by func-
tion Combat.

void CAgent::Kill(CAgent* agentB): get all resources from
the give agent and save the resources to reserve. Then
remove the given agent from memory. Called by function
Combat when on agent wins the combat.

void CAgent::Move(DIRECTION direction): find a neigh-

boring cell and change the agent’s cell to that cell.

39

4.4.3

bool CAgent::Mutation(): mutate all genes of the agent by
calling the function CString::Mutation.

CAgent& CAgent::operator=(CAgent& theAgent): over-
load the = operator for class CAgent.

void CAgent::PayTax(): decrease resources from reserve.
void CAgent::Reproduce(CAgent* agentB): call Function
GiveBirth to create new agent. Update summary table.

int CAgent::ResourceSize(int type): return the total size of
a give type of resource in the agent.

void CAgent::SetActive(bool type): set the agent’s status to
active or not active.

void CAgent::SetNext(CAgent* theAgent): set the agents
next agent on the agentlist.

int CAgent::Size(): return the total size of all type of
resources in the agent.

void CAgent::Trade(CAgent* agentB): transfer resources

between two agents’ reserve.

Class CAgentList

void CAgentList::AddAgent(CAgent* theAgent): set the
given agent to the list of the agentlist.
int CAgentList::GetCount(): return the number of agents on

the list.

40

444

CAgent* CAgentList::GetHeader(): return a pointer t the
header agent of the agentlist.

void CAgentList::Initialize(): let all agents on the agentlist
call the CAgent::Initialize.

void CAgentList::RandomAddAgent(CAgent* theAgent):
add the given agent to a random position of the agentlist.
void CAgentList::RemoveAgent(CAgent* theAgent):
remove the given agent from the agentlist.

CAgent* CAgentList::RemoveFirstAgent(): remove the
header agent from the agentlist.

void CAgentList::SetCount(int count): set the value of
“number of agents on the agentlist”.

void CAgentList::SetHeader(CAgent* theAgent): set the

given agent to the header of the agentlist.

Class CCell

void CCell::AddFood(CSimString & fd): add the given
string to the cell as food.

void CCell::Encounter(): remove every first two agents
from the cell’s beforelist and let them encounter
(CAgent::Encounter). If only one agent left, move it to the

afterlist.

41

void CCell::Feeding(): let all agents on beforelist eat food
in the cell.

CAgentList* CCell::GetAfterList(): return a pointer to the
afterlist of the cell.

CAgentList* CCell::GetBeforeList(): return a pointer to the
beforelist of the cell.

CEnvironment* CCell::GetEnvironment(): return a pointer
to the environment the cell belongs to.

CSimString & CCell::GetFood(): get the food the cell has.
CCell* CCell::GetNeighbor(DIRECTION theDirection):
given a direction, get a pointer to the neighboring cell.
CSummaryTable* CCell::GetSummaryTable(): return a
pointer to the summary table of the cell.

void CCell::Initialize(): initialize the beforelist (CAg-
netList::Initialize).

void CCell::Mutation(): mutate all agents on the afterlist of
the cell (call CAgent::Mutation for each agent).

void CCell::PrepareNextCycle(): remove agents from after-
list and randomly add them to beforelist. The beforelist is to
be used for the next simulation cycle.

void CCell::Reaping(): go through the afterlist and remove

all inactive agents. Removed agents die (CAgent::die).

42

445

bool CCell::Report(ostream& fout): output the summary
table of the cell to a file.

void CCell::SetEnvironment(CEnvironment* pEnv): set the
environment of the cell.

void CCell::SetFood(CSimString & fd): set the food of the
cell to the given string.

void CCell::Taxing(): let all agents on the beforelist pay tax

(all agents run CAgent::PayTax).

Class CEnvironment

void CEnvironment::DistributeFood(): create food and add
food to all cells in the environment.

void CEnvironment::Encounter(): let all cells in the envi-
ronment do encounter (call CCell::Encounter).

void CEnvironment::Feeding(): let all cells in the environ-
ment do feeding (call CCell::Feeding).

int CEnvironment::GetCycle(): return the number of cycles
have been run so far.

CCell* CEnvironment::GetNeigbor(CCell* theCell,
DIRECTION direction): given a direction, return a pointer
to the neighboring cell on the direction.

CSummaryTable* CEnvironment::GetSummaryTable():

return a pointer to the summary of the environment.

43

e void CEnvironment::Initialize(): initialize all cells in the
environment.

e void CEnvironment::Mutation(): mutate all cells in the
environment.

« void CEnvironment::PrepareNextCycle(): let all cells in the
environment prepare the next cycle.

« void CEnvironment::Reaping(): reap all cells (all cells call
CCell::Reaping).

» void CEnvironment::Report(ostream& fout): let all cells in
the environment output the summary to a file.

« void CEnvironment::SetCycle(int cycle): set the number of
cycles has been run.

e void CEnvironment::Taxing(): tax all cells in the environ-
ment (all cells call CCell::Taxing).

e void CEnvironment::UpdateSummary(): add the summary

tables of all cells together.

4.4.6 Class CSimParam

This class only has static class member variables with default values:
e int CSimParam::ACTIVE = 10
e float CSimParam::FRAC =0.33;
e int CSimParam::MINMATCH =2;

e int CSimParam::POP = 500;

4.4.7

int CSimParam::SIDE = 10;
float CSimParam:: TAX =0.1;

int CSimParam::VARIETY =5;

Class CSummaryTable

void CSummaryTable::DecreaseAgent(int count): decrease
the number of agents.

unsigned long CSummaryTable::GetAgentNumber():
return the number of agents.

unsigned long CSummaryTable::GetCombatNumber():
return the number of combats happened.

unsigned long CSummaryTable::GetDeathNumber():
return the number of agents died.

unsigned long CSummaryTable::GetDrawnNumber():
return the number of drawn combats.

unsigned long CSummaryTable::GetNewBirth(); return the
number of new birth.

unsigned long CSummaryTable::GetReproductionNumber(
): return the number of reproduction happened.

unsigned long CSummaryTable::GetTradeNumber():
return the number of trade happened.

unsigned long CSummaryTable::GetWinNumber(): return

the number of combats won.

45

void CSummaryTable::IncAgentNumber(int count):
increase the number of agents.

void CSummaryTable::IncCombatNumber(int count):
increase the number of combatshappened.

void CSummaryTable::IncDeathNumber(imt count):
increase the number of agents died.

void CSummaryTable::IncDrawnNumber(int count):
increase the number of drawn combats happened.

void CSummaryTable::IncNewBirth(int county: increase the
number of new birth.

void CSummaryTable::IncTradeNumber(imt count):
increase the number of trade happened.

void CSummaryTable::IncWinNumber(int count): increase
the number of combats won.

CSummaryTable = CSummaryTable::operator+(CSumma-

ryTable& x): enable the addition of two summ ary tables.

Graphical user interface:

Toolbar:

The buttons on a toolbar correspond to commands, just as the iterms on a menu do.

Although we can add a toolbar to the application with AppWizard, we still need to use a

little programming polish to get things just right. This is because <very application is dif-

46

ferent, and AppWizard can create only the most generally useful toolbar for most applica-

tions. So in our application, we needed to add and delete some Toolbar items to support

our application’s unique command set.

For example, AppWizard created a toolbar with buttons:

New
Open
Save
Cut
Paste

Print

These buttons are not needed in our application. So we deleted these buttons and added

our own buttons:

Start

Stop

Resume

Pause
Summary Table

Simulation Parameter

To add toolbar buttons, we first draw the button’s icon (bit map) using the tool provided

by Microsoft Visual Studio. Then we match the button with its command (usually associ-

ate it with a menu command so it does the same thing as a menu item). We also provide

each button with its ToolTip and description. The ToolTip appears whenever the user

leaves the mouse pointer over the button for a second or two and acts as a reminder of the

47

button’s purpose. The description appears in the message area of the application’s status

bar, as described in the next section. The toolbar is shown in Figure 4-1: Toolbar on page

48.

FIGURE 4-1: Toolbar

Start

4.5.2 Status bar:

Status bars are mostly benign objects that sit at the bottom of the application’s window,
doing whatever MFC instructs them to do. This consists of displaying command descrip-
tions and the status of various keys on the keyboard, including the Caps Lock and Scroll
Lock keys. In fact, status bars are so mundane from the programmer’s point of view that
they aren’t even represented by a resource that we can edit like a toolbar.

A status bar, like a toolbar, must reflect the interface needs of the specific application. For
that reason, the CStatusBar class features a set of methods with which we can customize
the status bar’s appearance and operation.

The status bar has several parts, called panes, which display certain information about the
status of the application and the system. These panes include indicators for the Caps Lock,
Num Lock, and Scroll Lock keys, as well as a message area for showing status text and
command descriptions. Although all these are implemented in our project, only the mes-
sage area is particularly meaningful. When user places the mouse pointer over the tool-
bars, the message area changes the text in it, showing that the function of the toolbar being
pointed.

48

453 Dialog box and controls

We build a dialog box resource with the resource editor, adding controls to it and arrang-
ing them to make the control easy to use. Class Wizard then helps us to create a dialog box
class, typically derived from the MFC class CDialog, and to connect the resource to the
class. Usually each control on the dialog box resource corresponds to one member func-
tion of the class. To set the control values to defaults before displaying the dialog box, or
to determine the values of the controls after the user is finished with the box, we use the
member variables of the class.

There are four dialog boxes implemented in our project:

4.5.3.1 About Simulation Dialog:

When user clicks menu Help, About Simulation.. ., this dialog box pops up. as shown in
Figure 4-2 . It has an OK button and some labels (static text), which illustrate the name,

version and authors of the application.

FIG

About Simulation

49

45311 Class CAboutDIig:

No special functions and attributes are needed.

4.5.3.2 Simulation Parameter Dialog:

When user clicks menu Setup, Simulation Parameter, this dialog box pops up as shown in
Figure 4-3 on page 51. It has some labels, edit boxes, and some buttons. User can set the
simulation parameters in the edit boxed and confirm by click the OK button or cancel by
clicking the Cancel button. If user confirms the modification, get the values user entered.
Otherwise nothing happens with the current data. There is a button labeled Help, which

triggers the help system.

45321 Class CSimParaDlg

Operations:

» void OnOK():Verify the simulation is running or not. Ifitis
not running, change the parameters. Changing parameters
for a running simulation is not allowed.

e afx_msg void OnParamterBtnHelp(): Bring up the help
window for simulation parameters.

Attributes:

* bool m_running: A variable shows the status of the simula-
tion: running or not.
» Seven variables matching the seven simulation parameter

edit boxes.

50

imulation i

4.5.3.3 Summary Cycle Dialog:

When user clicks on menu Setup, Summary Cycle, this dialog box pops up as shown in
Figure 4-4 on page 52. User can set the number of simulation cycles to show the Summary

Dialog box by modifying the value in the edit box. The default value is 50.

45331 Class CSummaryCycleDlg

Operations:
e If user confirms the modification, get the values user

entered. Otherwise nothing happens with the current data.

Attributes:

51

e UINTm_cyclenumber: Number of cycles to show the simu-
lation results (summary dialog box), related to the value of

the summary cycle edit box.

FIGURE 4-4: Th

[
-

Summary Cyuls

Ak T

G 4-5: Tl m le dial X

R o e T AT T

e
el

4.53.4 Summary Table Dialog:

When user clicks menu Simulation, Summary Table, this dialog box pops up as shown in

52

Figure 4-5 on page 52. Or, every 50 cycles (default value), it pops up and shows the inter-

mediate data.

45341 Class CSummarytableDlg

Operations:
* No specific operations needed.
Attributes:
e UINTm_cycle: the current cycle number, related to the
value of a static text field.
» UINTm_agent: the number of agents alive, related to a
locked edit box.
e UINTm_birth: the number of new birth, related to a locked
edit box.
» UINTm_combat: the number of combats happened, related
to the value of a locked edit box.
* UINTm_drawn: the number of combat won, related to the
value of a locked edit box.
» UINTm_drawn: the number of combat drawn, related to the
value of a locked edit box.
e UINTm_reproduction: the number of reproduction, related
to the value of a locked edit box.
e UINTm_death: the number of agents died, related to the

value of a locked edit box.

53

4.6 The help system

4.6.1 Presenting help

We offer two approaches to launch the help system in our project:

» Help Topics dialog box (as shown in Figure 4-6 on page 54):
allows user to scroll through an index, look at a table of
contents, or find a word within the Help text.

« The help button on Simulation Parameter Dialog box (as
shown in Figure 4-3 on page 51), which pops up a help win-
dow (as shown in Figure 4-7 on page 55) illustrating the

meaning of all simulation parameters.

FIGURE 4-6: Help Topics

TJ'F
2} Felamenu

2 Viewmany
3 Simuleticn menu
3 Sswp menu
3 Help mens

4.6.2

FIGURE 4-7: /] n tri red Help window

< SIMULATION Applicabon Help

T A A ot Ay b At B Lo I 08 T
Ees BobKBREZ Covans I Hal et
Simulation Parameters

A simulation parameter is a value that remains constant for a particular run of
the simulation, but may be changed between simulations.

SIDE: Agents exists in an environment that consists of a number of cells. The simplest
farm of enviranment would be a square grid of SIDE * SIDE cells.

POP: There should be. on average, maore than one agentin a cell. The number of agents
should be 500 or more. Call this value POP.

VARIETY: There are VARIETY kinds of resource. Each is represented by a lower case
letter from the beginning of the alphabet. For example. if VARIETY =3, the resources are
named a,b and c.

TAX: An agentis “taxed” by its cell. Taxing carresponds to metabalic pracessing in an
animal: some resources must be returned to the environment. The tax that an agent pays
depends on its size.

MINMATCH: The match of twa strings is a positive integer that depends on the number of
resources that the strings have in common. MINMATCH is the minimum match of two
genes while considering reproduction.

Components of the Help System

From the point of view of the developer, there are a large number of files interact to make

the on-line Help work. The final product, which is delivered to the user, is the Help file,

with the .HLP extension. The component files produced by Visual C++’s Application

Wizard are as follows:

+ h files: define resource Ids and Help topic Ids for use with
the C++ code.
« .hm files: are called Help Mapping files that define Help

topic [Ds.

55

« _rtf files: Rich text Format files that contain the Help text
for each Help topic. Eight kinds of footnotes (for example #,
$. and K) are used to link help topics.

» .cnt file: table of contents file that is used to create the con-
tents tab of the Help Topics dialog box.

 .hpj file: it pulls together .hm and .rtf files to produce, when
compiled, an .hlp file.

When being used, the Help system generates other files. These files need to be removed in
case user uninstalls the application:

» _gid file: is a configuration file, typically hidden.

« fis file: is a full text search file, generated when user does a
Find through the Help text.

» ftg file: is a full text search group list, also generated when

user does a Find.

4.6.3 Programming the help

4.6.3.1 The help button

To link the button Help in the Simulation parameter dialog box, we need to define a Help
ID in file CSimParaDlg.h as below:

#define HID PARAMETERS 0x01

Then we need to add a help mapping entry in a new file named Simulationx.hm as:

HID PARAMETERS 0x01

56

Next, we edit the Help project file Simulation.hpj and add a line:
#include < Simulationx.hm >

Now both the Help system and the compiler know about this new Help topic ID.

We add the function in class CSimParaDlg, as described in Section 4.5.3.2.1 on page 50.

void CSimParamDlg::OnParamterBtmHelp()

{
WinHelp(HID PARAMETERS);

}

and a message mapping:

BEGIN_MESSAGE_MAP(CSimParamDlg, CDialog)
/I{{AFX_MSG_MAP(CSimParamDlg)
ON_BN_CLICKED(IDC_PARAMTER BTN_HELP, OnParamterBtnHelp)
//}}AFX_MSG_MAP

END_MESSAGE_MAP()

The message mapping is not explained here. For more information, please refer to appen-

dix 4 on page 72

The real help text is edited as described in the next section.

4.6.3.2 The Context help

All help text is written in the .rtf file. The AppWizard creates a boilerplate Help file
named afxcore.rtf. This file needs to be modified as below:

Add the name of our program (“Simulation”) to the <<YourApp>> position all over the
file

Remove all help entries that are not shown in our program such as “Print” menu item,
“Window” menu.

57

Then we need to create our own .rtf file named Simulation.rtf and add our own help
entries and help texts, for example help for menu “Simulation”.
We use the tool Help Workshop provided by Microsoft Visual Studio to adjust the help

contents shown each time we bring the context help.

58

5 Simulation resulit

When we first run the simulation, we observed that no matter what the simulation parame-
ters we chose, all agents would die after a number of cycles. We investigated it and found
the reason was that we used a fixed sequence of agent interaction: fighting first, then trad-
ing, and reproducing at last. So the fighting had higher probability than trading and repro-
duction. Only if the combat was drawn could trading and reproduction happen. But most
agents were killed during combat and the agent population would always decrease. We
changed our design to give a random sequence of interaction: when two agents encounter,
the possibilities of fighting, trading and reproduction were made as even as possible.

In this chapter, we use two examples describe the resuits that the Agent Simulation is
capable of producing. Note here that even we use the same set of simulation parameter
values to run the simulation the results will be always different. The reason is that the

interactions and the initialization of agents are implemented as randomly as possible.

5.1 Example 1

The first example will present a simulation process using all the default simulation param-
eters.

The default simulation parameters and their values are shown in Section 4.4.6 on page 44.
The summary table displays every 50 simulation cycles.

Step 1. Start the program:

The user interface starts as shown in Figure 5-1: Before Simulation starts on page 60. It dis-

59

plays “Simulation is stopped” in the middle of the window.
Step 2. Checking default simulation parameters:

Click on menu Setup, Simulation Parameter, the Simulation Parameter dialog box is

shown with all default parameters on it as shown in Figure 4-3: Simulation parameter dialog
box on page 51. Click OK. The dialog box disappears.

Step 3. Start the simulation

Click on the menu Simulation, Start or the Toolbar button to start the simulation. The mes-

sage on the windows changes to “Starting the simulation, Please wait...”

Simulation is Stopped

Step 4. The summary table dialog box is shown with the initial statistic information as

shown in Figure 4-5 on page 52.

60

Step 5. Click on OK to hide the summary table dialog box. The message on the window
shows “Simulation is running”.

Step 6. After every 50 cycles, a new summary table dialog box appears. Observe the statis-
tics and click on OK button.

Step 7. After 200 simulation cycles, the agent number increases dramatically. Quit the

program by clicking on the “stop™ button on the toolbar. The simulation results are cap-

tured and shown in Figure 5-2 .

The simulation result after 50 cycles is shown in Figure 5-2 . Initially there were

10*10*500=50000 agents. After 50 simulation cycles, although there were 41394 occur-

61

rences of reproduction, only 30957 new agents were produced. That means that some par-
ent agents did not have enough resource for making a child. “73829 battle win” means
73829 agents were killed after fighting with other agents. “73579 battle drawn” means
although during these battles the agents did not kill each other and they might proceed to

trade or reproduce.

FIGURE 5-3: Simulation resul r 1 les with example 1

Figure 5-3 shows that after anther 50 cycles, the agent number did not reduce too much.

Fighting did not happen a lot but trading and reproduction did. It seemed that the living

agents like peace. This was determined by their genes.

62

1

r 1

Figure 5-4 shows the number of agents started to increase at the end of 150 simulation

cycles. The living agents have enough resources to produce new agents and they are hard

to die.

63

Figure 5-5 shows during these 50 cycles, the number of agents was more than doubled.

Fighting did not happen too often but trading and reproduction happened frequently. Con-
tinue running the simulation took a long time and the PC memory could hardly handle the
large number of agents.

Although we cannot see the genomes of the surviving agents, according to the conditions
of fighting, trading and reproduction, we can easily deduce that, from cycle 150 to cycle
200 :

« Most agents had short “attack™ gene compared to “defend”

gene. They did not threaten each other to make fighting
occur.

+ A lot of agents had long “trade” genes to incur trading.

e Most agents’ “lust” gene matched other agents’ “beauty”
gene. They “attracted” each other.

e The agents were “rich”. They had enough resources to give

to the children during reproduction.
5.2 Example 2

With the second example we present a simulation process using some user entered simula-

tion parameters:

« POP = 300: the initial population is decreased

TAX = 0.2: the tax rate is increased

Other simulation parameters keep their default values.
EIGUR

imulation r: f with /!

65

[y
Ty

SNSRI
AT T 2
S giﬁ%
= =figorrn e
Seise e o ST S

»—:‘ﬁ%e
&J:-:;’é;"ﬁ -
¥ r"’?_"‘;“\‘,

OKE:

A St

66

[

Ny
“7?“‘“&.&:‘3:#;%’? e
Drawn: 524 (391

AT]
T

ith exa

T

% &
- 1‘— LY P -
= Statistics on

R

Rptamet i A

2

A

A g«

TR
Eiils
)

e S ey

s e A

67

1G : Simulati 1 les wi

S

Ot

From above figures we see that after cycle 300, trading occurred frequently. Fighting and
reproduction did not happen too much. The occurrence of new birth was much lower than
that of reproduction. The reason could be that since tax rate had been increased, agents did
not have that much extra resources for child agents. But because the surviving agents were
very strong (hard to die during fighting), the agent number decreased very slowly.
Similarly, we can tell the genomes of the surviving agents after cycle 300:
» The surviving agents had short “attack™ genes compared to
their “defend” genes
« The agents had long “trade” genes compared to their
“attack” genes.

68

The agents did not attract each other too much because their
“lust” gene and “beauty’ gene did not match enough.

The agents were “poor”. They paid a lot of their resources to
the environment so they did not have enough resources for

the child agents during reproduction.

69

6 Conclusion

Running the two examples above demonstrates that the implementation of Agent Simula-
tion, the Graphical user interface and the Help system, runs well and meets all our require-
ments. It offers user a convenient and efficient way to observe the interactions among

agents. The results are interesting and worth to be learned.

6.1 Experience on Object-oriented Program-

ming

Traditional programming languages separated data from functionality. Typically, data was
aggregated into structures that then were passed among various functions that created,
read, altered, and otherwise managed that data.

C++, as an Object-oriented language, is concerned with the creation, management, and
manipulation of objects. An object encapsulates data and the methods used to manipulate
that data.

Object-oriented programming offers a new and powerful model for writing computer soft-
ware. It speeds the development of new programs, improves the maintenance, reusability,
and modifiability of software. Object-oriented programming focuses on the creation and
manipulation of objects, such as agents, agent lists, cells, environments. This type of pro-
gramming gives us a greater level of abstraction; we, the programmers can concentrate on

how the objects interact without having to focus on the details of the implementation of

70

the object.

6.2 Further work

In this project we present the design and implementation of the Agent Simulation System
with Object-oriented methodology and Microsoft Visual C++ toolkits. One of the limita-
tions of the system is that it only provides the results (as numbers) of the whole environ-
ment. If user wants to learn the statistics on a cell basis, he/she has to read the result file.

Therefore we suggest the following further works:
» The user will be able to select simulation results of any indi-
vidual cell from the interface.
¢ The simulation results can be shown as graphical charts or
curves, which are more challenging but more user friendly.
o Tools will be provided to analyze the simulation results for

user.

71

A.

Bibliography

L.

Peter Grogono. The Cell Simulation version 0.1, Department of Com-
puter Science, Concordia University, 1999

Peter T. Hraber, Terry Jones, Stephanie Forrest. The Ecology of Echo.
Massachusetts Institute of Technology, 1997

Peter Grogono. Evolving Agents, An outline, Department of Computer
Science, Concordia University, 1999

Kate Gregory. Special Edition Using Visual C++ 5.QUE, 1997.
Weidong Sun. Cell Simulation Using Object-Oriented Methodology,
master’s major report, Department of Computer Science, Concordia

University, 2000.

72

Class diagram 1

CAgentList

m_pHeader: CAgent®
m_nCount : int

§CAgentList)
®-.CAgentList)
®nitialize

& GetHeader
®AddAgent)

®Rem oveAgent)
®GetCo untQ)

$setCo unt()

®Rando mAddAgent(
®setHeaderQ
’RemoveFi:stAgemo

bheList
has

1.4 eCell

CcCell
(from Pkg_Cell)}

@»ym_food : CSimString
G@yBeforelList : CAgentList

@) AfterList : CAgentList
@>m_Summary : CSummaryTable

—®CCell)

®-CCell)
®setFood)
®GetFood)
®Taxing)
’Encountero
‘Reapingo
$AddFoed)
QinitializeQ
‘Feedingo
®Repori

o repareNextCycle(}
®GetNeighbo)
QGetAfterLis!O

WG etBeforelist)
‘GetSummaryTableo
®rutation)
QSetEnvironmeniO
@ GetEnvironment)

-theCel

1.1

73

+theAgent

CAgent

| @m_strAttadk : CSimString
& m_stiDefend : CSimStiing
Q)m_strBeauty: CSimString
&>m_strCombat : CSimString
&ym_strTrade : CSimString
@) m_striLust : CSimString
agym_shEat : CSimString
@ym_strGive : CSimString
@>m_strReserve : CSimString
@)m_bActive : bool

H>m_pNext : CAgent®

‘CAg ent)

CAgent(Q
QSizeO
’Eatingo
Move(Q
IsFightableQ
IsThreaten(Q
Combat()
IsTradableQ
TradeQ)
IstMatableQ
Reproduce()
PayTax(Q
QGetNext)
Qoperato =0
Q<<ﬁiend>> operator<<(Q
DieQ
QEncounterO
0].7@nm oveToAfterListQ
Qisactive
IsSurrender)
AddToList)
Qlswinnen)
QKo
GiveBithQ)
ConstructGene()
MoveToBeforelistQ
QResourceSize
QnitializeQ
ContributeResources(
MutationQ
@ SetActive))
QSetNext)
QGetcelly

Class diagram 2

CSimApp
(from Pkg_Simulation)

m_bPause : bool = false
m_file : ofstream
m_nSummaryCycle : int= 100

$CsimAppQ
$-CSimAppQ
QinitializeQ
‘RunOneCycleo
®SetSummanyCycle)
) 7c3 etSummarnyCycle(
@DisplaySummanQ

T..T+theSim

co !

1. 4 -$heEnv

CEnvironment

m_nCycie : int

m_CellArray : CCell*
m_Summary : CSummaryTabie*
m_nCell : int

_-%Environmento
‘-CEnvironmento
®initializeQ
@®DistributeFood(
QReapingO
®Report)
‘GetCycleO
@®SsetCycieQ

CellQ

FeedingQ
®Taxingd
‘Encountero
‘PrepareNextCycl eQ
QUpdateSummaryO
®Mutation(
‘GetSummaryTableo
‘GetNeigborO

m_pE

1.1

has

74

+theCe

CcCell
(from Pkg_Cell}

BeforeList : CAgentList®

%m_food : CSimString
erList : CAgentList®
m_Summary : CSummarnyTable

|~ ®CCell)
&-ccellp
QSetFoodO
‘GetFoodO
®Taxing)
QEncounterO
‘Reapingo
®AddFood)
WinitializeQ
®FeedingQ
[‘Repodo
L 1 repareNextCycleQ
®GetNeighbsQ
OGetafterList)
Q®GetBeforeList()
®GetSummaryTableQ
@Mutation)
’SetEmrironmenfO
®GetEnvi ronment(Q

L4

