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Abstract

Stochastic J-Integral and Reliability of Composite Laminates based on a
Computational Methodology Combining Experimental Investigation, Stochastic
Finite Element Analysis and Maximum Entropy Method

L. Vara Prasad Pondugala

The present thesis concerns itself with the stochastic fracture behavior and the reliability
of laminated composites. A computational approach combining the Stochastic Finite
Element Method (SFEM), the Maximum Entropy Method (MEM), and experimental
investigation has been developed. Using this approach, the fracture parameters including
the Stress Intensity Factor (SIF), the Energy Release Rate (ERR) and the J-Integral have
been determined based on the experimental data for the properties of the composite
material. The material parameters and the fracture parameters have been quantified in
terms of the respective mean values, the standard deviations, the coefficients of variation,
and the true analytical probability distributions. For this purpose, the analytical
distributions are obtained using the maximum entropy method. The fracture behavior of
laminates made of the NCT 301 graphite-epoxy composite material has been studied and
further, a parametric study encompassing the effects of the laminate configuration, the
number of stochastic simulations, the geometrical parameters of the laminate, and the
crack length has been conducted. Relevant design aspects are synthesized based on the
parametric study. The significance of the J-Integral in more accurately describing and
quantifying the stochastic characteristics of fracture behavior than the ERR and the S/F is
established. The formulation for the reliability analysis for the probabilistic design of
laminates has been developed based on the interference theory of mechanical reliability.
The formulation has been applied for the case of stress-based fracture criterion and
demonstrated for the orthotropic laminates made of NCT 301 graphite-epoxy composite
material. For this purpose, the fracture toughness values of the orthotropic laminate are
obtained from the in-plane fracture toughness tests using Single Edge Notched (SEN)
tension specimens of the laminate. Aspects related to the reliability-based probabilistic
design are highlighted. Further, the effects of loading on the reliability of the orthotropic

laminates are evaluated.
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Chapter 1

Introduction

1.1 Fracture Mechanics in Mechanical Design

The phenomenon of failure by catastrophic crack propagation in structural components
poses problems in mechanical design and analysis. The fracture behavior of a mechanical
component, structure or material will depend on the stress level, presence of a flaw,
material properties, and the mechanism by which the fracture proceeds to completion [1].
The driving need for methods that quantify the effects of cracks on the mechanical
component’s performance has led to the evolution and development of fracture
mechanics. The field of fracture mechanics was virtually nonexistent prior to World War-
II. Applications of fracture mechanics in industry are at present relatively common, as

knowledge that was once confined to a few specialists is becoming more widespread.

Cracks may exist in all mechanical components and structures as basic defects in
materials or they may be induced during manufacturing or during service. Therefore a
fundamental requirement in fracture mechanics is some reliable means of assessing the
stability of such cracks. In this respect, the most significant advance has been the
introduction of the Stress Intensity Factor (SIF) and the Strain Energy Release Rate (G)
as parameters for characterizing the onset of crack propagation. Also, the J-contour
integral has enjoyed great success as a fracture characterizing parameter for both linear
and nonlinear materials. By idealizing the elastic-plastic deformation as nonlinear elastic

deformation, Rice [2] provided the basis for extending the fracture mechanics



methodology well beyond the validity limits of Linear Elastic Fracture Mechanics

(LEFM).

Over the last few decades or so, the Finite Element Method (FEM) has been firmly
established as a standard computational method for the solution of practical fracture
problems. However, unless extremely fine meshes are employed, problems arise in
accurately modeling the singular stress field in the vicinity of the crack tip. Therefore in
order to be able to apply the finite element method to the efficient solution of fracture
problems, certain adaptations and further developments must be made [3]. These range
from simple procedures for extrapolation of the crack tip stress intensity factors to the
development of special crack elements, which model the complete crack zone stress field
in anisotropic materials. In addition, the existing approaches, which are predominantly
deterministic, have to be modified so as to incorporate the inherent randomness in

material and geometric parameters and in loadings.

1.2 Fracture of Metals and Composites

Synthetic composites distinguish themselves from conventional materials such as metals,
ceramics or polymers by the fact that they consist of two, or more, physically distinct and
mechanically separable materials. They can be made by mixing the constituent materials
in such a way that the dispersion of one material in the other can be done in a controlled
way so as to achieve optimum mechanical properties. Because of their complex
microstructure the individual events of failure and final fracture can be complex too [4].

Fracture of the individual phases in the composite material can take place separately,



sequentially or simultaneously, depending on the type of loading, the external testing

conditions, the particular microstructure of the composite and other factors.

In recent years there has been a tremendous interest in the fracture behavior of polymers
and composite materials [5]. One reason for this is the increasing use of polymers and

composites in structural components in aircraft, automotive, sporting and other industries.

The characteristic behavior of composite materials and their response to a tensile or
compressive loading, however, are substantially different from that of metals. Whereas in
metals, damage development under static loading exhibits only one primary failure mode,
which is the initiation and propagation of one single crack (which can be described with
simple fracture mechanics tools), composite materials exhibit a combination of different
failure modes. They are the initiation and multiplication (and not propagation) of cracks,
including transverse, longitudinal and angle-ply cracks in the matrix along fibers,

delaminations, fiber fracture and fiber/matrix interface debonding.

If the fracture of the composite laminates is considered from the point of view of Linear
Elastic Fracture Mechanics (LEFM), the engineer will be concerned with two distinct
aspects of design: (1) the prediction of the stress intensity factor, which depends on the
applied stress in addition to the laminate configuration and specimen geometry; (2) the
experimentally determined value of the critical stress intensity factor, which defines the
onset of crack propagation as occurring when the stress intensity factor is equal or greater

than the critical stress intensity factor.



Due to the different nature of composite materials, different from that of homogeneous
isotropic materials, the stress analysis of composite structures is more complex [6-7] and
inherently three-dimensional [8]. Due to the inherent complexities, no exact solution for
most of the problems has been found and the finite element method is usually employed

to provide numerical solutions.

1.3 Randomness in Fracture Behavior

The parameters of any mechanical or structural system possess a random variation as a
function of space and/or time. The randomness in fracture parameters encompasses the
uncertainties involved at the design and manufacturing stages, as well as the uncertain
nature of the operating conditions. At the design stage, randomness is present in the test
data regarding material strength values, elastic constants, engineering constants, damage
parameters, and the material properties pertinent to the service life. The randomness in
material properties significantly affects the functioning of the mechanical component and

is unavoidable even with the best quality control measures.

Tests on a single material specimen or structure yield a definite value for each material
parameter such as the elastic constant, engineering constant and damage parameter. But
when a number of specimens are tested, (i) the parameter values randomly fluctuate from
specimen to specimen, (ii) within the same structure itself, the values of any parameter
display an uncertain spatial variation, (iii) due to environmental degradation the

parameters have uncertain fluctuations. The sample to sample variation, spatial



fluctuations within the structure, structure to structure variations, and variations due to
environmental effects in strength, deterioration, deformation and damage parameters of
most of the present day engineering materials are random [9]. This is particularly the case
with fiber reinforced composite materials. Variations in fiber size, fiber volume fraction,
fiber orientation, void content, matrix properties, interfaces and thickness of lamina are
always present and unavoidable. As a result, the elastic constants, engineering constants
and deformation parameters of fiber reinforced composite materials possess a random

variation [10].

1.4 Reliability-based Probabilistic design

During the past few years engineers and designers have been increasingly concerned with
problems of mechanical design under parameter uncertainty and adequacy (reliability).
Such concerns indicate that a critical re-evaluation of the foundation of mechanical
design is needed. According to Freudenthal [11], “Careful and rigorous analysis may be
largely deprived of their merits if the accuracy of results is diluted by the employment of
empirical multipliers — selected rather arbitrarily on the basis of considerations not
always rational or even relevant.” Obviously, one needs to select some suitable measures
of performance in order to be able to compare various technological improvements and to
assess the performance of mechanical systems. One such measure of performance can be
the reliability of the mechanical system. Reliability can be defined as, “the capability of
the product (or a system or a service) to perform the expected job under the specified

conditions of use over an intended period of time.”



The stochastic nature of the design variables is usually ignored in conventional practice,
as i1s demonstrated by the efforts made to find out representative unique values such as
minimum guaranteed values, limit loads or ultimate loads. The conventional approach in
design process may be compared to a kind of worst-case analysis. The maxima of loading
and the minima of strength are treated not only as representative of design situations, but
also of simultaneous occurrence. This is the basis on which the unknown parameters are
computed. The nature of the variability of nominal stress and of the stress factors that
effect nominal strength, and of the swength factors that effect component strength,
explains the existence of stress and strength distributions. The safety factor concept
completely ignores the facts of variability that result in different reliabilities for the same

safety factor.

Reasons for employing the probabilistic approach can be summarized as follows:

1) The variable nature of parameters — encountered in the practical situations.
2) Variability — the particular domain of probability theory and statistics.

3) The need for a rational approach in design and analysis.

4) The economy suggested by uniform reliability.

The practical results achieved by employing probabilistic methods in design are as

follows:

1) It is possible to quantify the adequacy.

2) Results in optimum design by avoiding over-design.
3) Ensures uniform reliability.



1.5 Literature Review

The earliest recorded investigations into the phenomenon of fracture would appear to be
Leonardo da Vinci’s [12] study of the variation of failure strength in wires of different
lengths and of the same diameter. This size effect was also studied in iron bars by Lloyd
and Hodkinson [12] and also in glass rods and fibers by Anderegg [12]. Weibull [13]
demonstrated using statistical techniques that these size effects were due to internal flaws
in the material. The first attempt with a mathematical approach to fracture mechanics was
by Inglis [12] in 1913. By analyzing the case of an elliptical hole in a plate under uniform
tensile stress, he showed that the maximum stress occurs at the apex of the major axis.
The results obtained by Inglis were rationalized by Griffith [12] who applied energy
conservation principles to the case of a centrally cracked glass plate. Griffith’s approach
does not involve the distribution of stresses around the crack tip. Furthermore, the energy
approach is strictly applicable to brittle materials only, but Irwin [13] and Orowan [14]
have suggested extensions to Griffiths’ expressions which account for limited plastic

deformation in the vicinity of the crack tip.

Conventional fracture mechanics deals with homogeneous and isotropic materials and has
been widely used because many of the practically useful materials belong to this
category. The same is true, of course, for stress analysis in general, and most elasticity
texts contain only a passing reference to anisotropy. The notable exceptions to this have
been the works generated as a result of efforts to design load bearing structures made of
wood [15]. The use of fiber reinforced composites to make laminates and also the design

of plywood have produced a considerable literature and in particular the text by



Lekhnitskii [16] which employed a development of the well-known Muskhelishvili [17]
complex-number form of stress function analysis to produce a wide range of solutions to
problems of practical importance. In more recent times, many computer codes have been
developed employing finite elements and boundary integrals, which will give solutions

for anisotropic materials.

Fracture mechanics has been investigated in some details for wood [18] and found to be a
very useful tool for design purposes. In spite of this, the use of fracture mechanics
analysis for composites has been rather limited. In the early days, Chen [19] applied the
finite-difference method to predict the stress field around an edge crack in unidirectional
laminates under uniaxial tension. Lakshminarayana [7] presented a computationally
efficient finite element model that can provide accurate numerical solutions to the
problem of a semi-circular edge-notch in a finite size laminated composite plate under
uniaxial tension. In his study cross-ply and angle-ply composite laminates were under
consideration and the formulated element was based on the equivalent single layer two-

dimensional theory.

The defects which may lead to premature delamination in composites may arise from
microcracks and cavities formed during composite manufacturing or from in-service
damage caused by impact loading. Extensive research has therefore been reported on the
interlaminar fracture testing of various composite materials. The majority of the works
[20-23] have been concerned with the delamination and the interlaminar fracture energy,

Ge, of unidirectional laminates evaluated through the application of linear elastic fracture



mechanics. Whitcomb [24] performed a parametric study of postbuckled through-width
deleminations on laminated coupons. In his study, a two dimensional finite element
analysis was developed to calculate stress distributions and strain energy release rates for

various delamination lengths, delamination depths, applied loads and lateral deflections.

In-service composite structures are susceptible to bolted joint failure where through-the-
thickness cracks often develop in the laminate. Due to the complexity of the problem,
efficient and accurate analysis techniques have not yet been fully developed. Analysis
techniques have been proposed for predicting the failure of bolted connections in
laminated composites [25-29]. A finite element analysis of single and two-hole bolted
joints in fiber reinforced plastic was performed by Wong [30]. In his study, two
dimensional plane stress four-node constant-strain quadrilateral elements are used to
model pin-loaded laminated plates made of carbon fiber reinforced plastic (CFRP) and
glass fiber reinforced plastic (GFRP) composites. Only one element has been used in the
through-thickness direction, and further, the in-plane stresses in each ply have been
obtained using laminate theory. Kurt and Paul [31] predicted bolt joint failure in
generally orthotropic laminated composite plates which fail in the tension mode. The
analysis is based on fracture mechanics concepts applied to a pseudo-flaw which is

related to the physical cracking of the laminate at the joint.

Composite materials are extremely notch sensitive. The presence of cracks in structural

components drastically reduces their load carrying capacity. For this reason, the issue of



predicting composite residual strength in the presence of stress enhancers such as cracks

has been an important research problem in the composites community.

A vast amount of experimental literature is available on the notched strength behavior of
different composite systems. Several strength-based and fractures mechanics-based
models have been proposed in the literature to predict the notched response of composite
laminates under uniaxial tensile loading. The popular models, e.g., those by Whitney and
Nuismer [32], Waddoups er a/ [33], Pipes er al/ [34] and Karlak [35], etc. are based on a
characteristic distance concept. These models have been successfully used to predict
laminate strength in the presence of notches and holes. A comprehensive review of these
models has been done by Awerbuch and Madhukar [36]. An alternative approach to
predicting notched strength of a class of laminates is presented by Rajesh and Sun [37].
In their study, fracture behavior of fiber-dominated center-notched AS4/3501-6
graphite/epoxy laminates is investigated and the results indicate that a constant value of
fracture toughness Kq of a laminate, is an in-situ or effective material property. Guofang
[38] describes and discusses experiments on the fracture strengths and crack propagation
of some aligned fiber-reinforced materials. Aronsson and Backlund [39] predicted
strength of composites with through-the-thickness cracks using a model called the
Damage Zone Model (DZM). Failure strength and damage mechanisms of E-glass/epoxy
laminates under in-plane biaxial compressive deformation have been investigated by

Wang and Darrell [40].
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In the field of fracture mechanics, the Stress Intensity Factor (SIF) is an important
parameter for predicting fracture strength and fatigue lives. This factor contains
information on the stress field, crack size and geometry of the cracked material.
Analytical solutions for stress intensity factors of cracked finite bodies are not readily
available and are often difficult to obtain. Thus numerical techniques e.g., the boundary
element method, the finite element method, boundary collocation method are widely used
in computing stress intensity factors. For isotropic materials, the necessary stress
intensity factors for finite size sheets are often available from the literature. However, for
orthotropic or composite materials, little is known about stress intensity factors for finite

size laminates.

Many research efforts have focused on the calculation of stress intensity factor. One of
the most important and efficient methods is based on the use of weight functions [2] to
obtain the desired stress intensity factors. Lee [41] employed a finite element method
with virtual crack extension technique to find the weight function of SIF for cracked
composite laminates. Ruijia and Reddy [42] used the finite element alternating method to
find out the stress intensity factors and weight functions for semi-elliptical cracks. The
Boundary Force Method (BFM), a form of an indirect boundary element method, has
been used by Tan and Bigelow [43] to analyze composite laminates that contain a hole
and cracks to find out stress intensity factors. Nairn [44] used the shear-lag model to
solve the crack tip stress concentrations in double-edge notch and center-notch
unidirectional composites of finite width. From the stress-state solution, expressions are

derived for strain energy release rate due to crack propagation through the fibers and due
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to crack propagation parallel to the fibers. Case et al [45] presented an approximate
analysis to predict the stress concentrations in composites containing a single fiber
fracture. Crack tip stress intensity factor in finite anisotropic plates is analyzed by Snyder
and Cruse [46]. The stress intensity factor and energy release rates are determined for
cracked orthotropic sheets with riveted stiffeners by Yeh [47]. Mandell er a/ [48]
calculated the stress intensity factor for single edge notched, double edge notched, and
double cantilever beams. In their study, they were using a two-dimensional hybrid stress
finite element analysis. Phillips [49] measured critical stress intensity factor and fracture
surface energies for a series of [0/90] carbon fiber reinforced epoxy and carbon fiber
reinforced glass composites. Victor and Efthimios [50] presented a simple, yet accurate,
approach for tﬁe determination of the stress intensity factors in three-dimensional cracked

anisotropic bodies modeled with quadratic isoparametric elements.

More sophisticated models for material behavior are being incorporated into fracture
mechanics analyses. While plasticity was the important concern in the 1960s, more recent
works have gone a step further incorporating time-dependent nonlinear behavior such as
viscoelasticity and viscoplasticity. Fracture mechanics has been used (and sometimes
abused) in the characterization of composite materials. Recent trends in fracture research
suggest that there are two alternative approaches to fracture analysis: the energy criterion
and the stress intensity approach. The energy approach suggests that crack extension
(fracture) occurs when the energy available for crack growth is sufficient to overcome the

resistance of the material. While Griffith [12] was the first to propose the energy criterion
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for characterizing fracture, Irwin [14] is primarily responsible for developing the present

version of this new approach.

Rice [2] applied deformation plasticity (i.e., nonlinear elasticity) to the analysis of a crack
in a nonlinear material. He showed that the nonlinear energy release rate, J-integral,
could be written as a path independent line integral. He further showed that the value of
this integral is equal to the energy release rate in a nonlinear elastic body that contains a
crack. Hutchinson [51], Rice and Rosengren [52] also showed that the J-integral uniquely
categorizes crack tip stresses and strains in nonlinear materials. Read [13] has measured
the J-integral in test panels by attaching an array of strain gages in a contour around the

crack tip.

Many efforts were aimed at the estimation of the J-integral. McMeeking [53] proposed
that the area under the load-deflection curve can be used to determine the J-integral in
cracked elastic-plastic specimens under large scale yielding. New formulae have been
suggested. The results of this method for a compact tension specimen have been found to
be superior to those obtained from the well established Merkle-Corten [53] formula.
Derbalian [54] put forth efficient analytical procedures for estimating the J-integral for
characterizing the crack growth in inelastic conditions. Klepaczko [55] came up with a
novel procedure for determining the critical value of the J-integral at high loading rates.
This procedure provides a better understanding by means of a more accurate analysis of
the frictional effects that occur between the loaded wedge and the Wedge-Loaded

Compact Tension specimen (WLCT). In addition, a unique procedure has been developed
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to measure the coefficient of Coulomb friction in the real environment of fracture K¢ or

Jic tests.

Over the past decade many researchers have come up with different methods for the
evaluation of the J-integral for several standard models. Zahoor [56] came up with a J-
integral solution for the compact tension specimen. While previously presented analyses
were based on full ligament yielding, deeply cracked specimen or limit load, he derived a
J-integral solution that does not require such assumptions. Zahoor [57] also derived
formulae for evaluating the J-integral and crack-associated displacement for the case of a
notched round bar in tension. The specialty of these formulae is that the J-integral can be
evaluated from single load-displacement record obtained as a part of the fracture
toughness test. Zahoor [58] further derived a J-integral solution for a three point bend
specimen for the case when the crack length/plate width ratio (a/W) is greater than 0.2.
He also presented a solution for normalizing the load-displacement curve. Lubarda [59]
presented a simple representation of the energy release rate or the J-integral for the case
of a two-dimensional crack subjected to elastic conditions. Precise estimates of the stress
intensity factors for the Griffith and edge cracks have been made by using a convenient
representation of the J-integral and asymptotic crack-tip fields, without recourse to the
solutions of the corresponding boundary value problems. Joyce and Smudz [60]
developed a common test method for fracture mechanics testing from which all the major
fracture mechanics parameters could be evaluated based on a single test or a series of
tests using one specimen geometry and the J-integral method. Faucher [61] developed

equations to calculate the J-integral from the area under the load-displacement curve
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obtained with center-cracked and double-edge-notched tension specimens. Analytical
expressions were also derived to calculate the crack length from unloading compliance.
Fracture testing on compact tension (CT) and three point bend (3PB) specimens is
preceded by fatigue precracking. Nevertheless, crack front curvature was not taken into
account in numerical modeling of fracture toughness testing procedures. Niksihkov,
Heerens and Hellmann [62] performed elasto-plastic finite element analysis on CT and
3PB specimens with crack fronts of different curvatures and determined the J-integral. It
has been observed that the variations in the crack front curvature that are within the limits
specified by the test standards, to a certain extent effect the so-called n factor employed
for the determination of the experimental value of the J-integral using the area under the
force versus displacement curve. Apart from evaluating the fracture resistance of metals
significant work has been done in the area of non-metals such as paper, nylon, etc. which
have been used for other applications. Yuhara and Kortschot [63] developed a simplified
method for evaluating the J-integral for paper sheets. Westerlind, Carlsson and
Andersson [64] used the J-integral approach for characterizing the fracture toughness of
liner board. Crouch and Huang [65] used the J-integral technique to characterize the

toughness of two rubber toughned nylons under impact loading conditions.

The material parameters used for fracture mechanics analysis should be independent of
size and geometry. This being the case, these parameters can be employed in the
analytical and numerical investigations of cracked components. Roos and Eisele [66]
determined the material characteristic values in elastic-plastic fracture mechanics by

means of J-integral crack resistance curves. In this work special attention has been paid
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to the transferability of the charactenistic values from laboratory specimens to the real

world structures.

Finite Element Method (FEM) is one of the most effective numerical analysis tools in the
engineering and physical sciences. It is a widely accepted mathematical technique for the
numerical solution of partial differential equations. The fundamental idea underlying this
method is to replace the continuous function by a piecewise polynomial approximation.
Tian and Swanson [67] conducted a finite element analysis to investigate the fracture
behavior of carbon/epoxy laminates containing internal cut fibers. Ko [68]described finite
element microscopic stress analysis of cracked composite systems. The cracked
composite systems are modeled with triangular and trapezoidal ring finite elements using
NASTRAN® finite element computer program. Heppler, Frisken and Hansen [69]
employed a finite element analysis employing a high precision linear elastic fracture
element to determine the stress intensity factors (Mode I) associated with a prescribed
laminate and a given length-to-specimen width ratio (L/W) for rectangular specimen
subjected to uniaxial tension loading with a center crack. They also investigated the
mixed mode fracture of rectilinear anisotropic plates using higher order finite elements
[70]. A finite element based micromechanical failure analysis was developed by Zhu and
Sankar [71]. A compact finite element formulation based on singularity transformation is
presented by Yeh [72] and is used to analyze the stress singularity at the boundary-layer
of an interface between adjacent layers in a laminated composite. The composite is
subjected to uniform axial extension in the plane of the layers. Chen and Yang [73]

developed a simple yet efficient formulation for a symmetrically laminated composite
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plate finite element and also adopted some highly efficient numerical algorithms using
stand-alone desktop microcomputers for structural analysis and design. Nassehi et al [74]
described a mathematical model for the analysis of the influence of interlayers on the
stress distribution around cylindrical fibers. The model is based on the Galerkin finite
element technique in conjunction with a penalty method. Thomas er a/ [75] presented a
simple method for the analysis of fracture propagation in orthotropic materials based on
finite element modeling. In their study, several theories of fracture propagation in
anisotropic materials are reviewed with regard to their application to various materials. It
is shown that isoparametric quarter-point elements can be used to obtain accurate stress
intensity factors using orthotropic displacement correlation equations. Tasu and Plunkett
[76] presented a finite element analysis of progressive failure for laminated FRP plates
subjected to in-plane loading. In their paper the proper mesh size for this analysis model
has been investigated and the ultimate strength of composite laminates is predicted and
compared with published experimental results in order to demonstrate the validity of this

finite element computational model.

A fundamental problem in predicting the failure of a laminated composite material is the
determination of the load at which an existing crack will begin to propagate as well as the
direction of crack growth. A number of theories have been proposed to predict the
direction of crack growth in anisotropic materials. Among them are the tensor polynomial
criterion [77], the minimum strain energy density criterion [78)] and the normal stress
ratio criterion [79]. Kadi and Ellyin [80] investigated the problem of predicting the crack

extension behavior of a center-notched unidirectional graphite/epoxy coupon. The
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material under investigation has been assumed to be elastic, homogeneous and
anisotropic. They have also introduced a criterion based on the critical strain energy [81]
to accurately predict the crack extension behavior in unidirectional composites within the

elastic crack analysis.

The possibility of the application of Mode I and Mode II fracture mechanics to the
characterization of the glass fiber/epoxy matrix interface has been studied by Krawczak
and Pabiot [82]. Sih and Chen [83] applied the concept of fracture mechanics to analyze
the brittle fracture of unidirectional composites. The analytical prediction has been based
on the so-called S.-theory. Gu [84] investigated the fracture behavior of continuous
alumina fiber reinforced epoxy composites under compression at two different
temperatures. Effects of fiber orientation, stacking sequence and temperature on failure
mechanisms of the composite material are analyzed. William [85] introduced a failure

criterion for composite materials based upon the strain invariant of finite elasticity.

Probabilistic modeling in conjunction with micromechanics fracture of composites is a
promising approach for the prediction of failure and reliability characteristics of
composites. It takes into account inevitable variations in properties of the constituents as
well as the scatter of composite structural parameters. Ovchinskii [86], Stock, et al [87],
and Fukuda [88] carried out the probabilistic analysis of composite strength and effective
properties using the Monte Carlo simulation technique. The simulation procedure
required extensive computational resources for any new set of structural parameters and

properties of the constituents.

18



Composites have inherent scatter in elastic and strength properties. A probabilistic model
utilizing random material characteristics to predict damage evolution in orthotropic
laminated composites is presented by Dzenis et a/ [89], Joshi and Frantziskonis [90] and
Larder [91]. A stochastic simulation model for the growth of multiple matrix cracks in
composite laminates subjected to both static and fatigue loads is presented by Wang et a/
[92]. In their study the simulation model is based on the general concepts of the classical
fracture mechanics in conjunction with an effective flaw distribution as a basic ply
property. Cassenti [93] investigated the probabilistic static failure of composite materials.
Probabilistic failure strength analysis of graphite/epoxy cross-ply composite laminates
has been performed by Fukunaga and Chou [94]. This paper treats the failure
characteristics of [0/90/0] and [90/0/90] cross ply laminates based upon the statistical
strength analysis. The stress redistributions at the failure of the 90° ply are analyzed using

a shear-lag model.

The well-known probabilistic theories for the tensile strength of unidirectional
composites have been proposed by Rosen [95] and Zweben [96] and further
developments have been reported in detail by different authors [97-101]. These models
give us a satisfactory strength estimation when the composite failure is predominantly
affected by the stochastic strength distribution of reinforcement fibers but are not suitable

when there are other competing fracture micromechanisms.
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The analysis of structures, whether subjected to random or deterministic external loads,
has been developed mainly under the assumption that the structure’s parameters are
deterministic quantities. In a significant number of circumstances, this assumption is not
valid, and the probabilistic aspects of the structure need to be taken into account. The
necessity to account for random effects in determining the response of a mechanical
system is due, in general, to three different sources: random external loadings, random
boundary conditions, and random material parameters. In the last twenty years the
powerful finite element method has undergone various new developments to incorporate
these random effects, and is now termed as Stochastic Finite Element Method (SFEM).
The developments in this field are reviewed by Contreras [102], Vanmarcke, et a/ [103],
Benaroya and Rehak [104], Yamazaki, Shinozuka and Dasgupta [105], Ostoja-Starzewski
[106], and Vanmarcke [107]. The stochastic finite element method is capable of dealing
with random structural properties described by random fields very efficiently. Recent
developments, such as the weighted integral technique [108-110], provide an accurate
and consistent transition from continuous type random fields to discrete type stochastic

finite elements.

Ramu and Ganesan [111] developed a new finite element method to analyze the
structures with more than one parameter behaving in a stochastic manner using the
Galerkin weighted residual method. The stochastic finite element analysis based on the
local averages of random vector fields is formulated by Zhu, Ren, and Wu [112] for
static, eigenvalue, and stress intensity factor problems. Jensen, and Iwan [113] presented

a method for the dynamic analysis of linear systems with uncertain parameters to
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stochastic excitation. Liu, Belytschko, and Mani [114] studied the application of the
SFEM in elastic/plastic dynamics with random material properties in details. Ghanem,
and Spanos [115] proposed a new method for the solution of problems involving material
variability. The material property is modeled as a stochastic process. The method makes
use of a convergent orthogonal expansion of the process. Ganesan, Sankar, and Ramu
[116] developed a stochastic finite element method to solve the more general non-self-
adjoint eigenvalue problems. Shinozuka, Kako, and Tsurui [117] developed a method for
the estimation of the structural reliability when a structure is subjected to loads that can
be idealized in terms of a Gaussian random vector process. Ramu and Ganesan[118]
analyzed the free vibrational characteristics of a beam-column, which is having randomly
varying Young’s modulus and mass density and subjected to randomly distributed axial
loading. In their study, Hamilton’s principle is used to formulate the problem using
stochastic FEM. Ren, Elishakoff, and Shinozuka [119] proposed a new version of finite
element method for the mean and covariance functions of the displacement for bending
of beams with spatially random stiffness based on the variational principles. Sankar,
Ramu, and Ganesan [120] derived the sensitivities of SIF and COD of cracked structural
systems to fluctuations in material property values and external loadings. In their study, a
Taylor series expansion is used to express the SIF and COD in terms of averaged values.
Sankar, Ramu, and Ganesan [121] described an effective method for integrating the
concepts of probabilistic structural mechanics with the finite element analysis for

dynamic systems.
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The successful application of the mechanics of composites for achieving safer and
reliable designs is hindered by the inherent uncertain distributions of material and
geometric properties. In recent years, composite structures involving random material
properties have been studied by many researchers. Among them Liaw and Yang [122]
developed a 16-dof quadrilateral stochastic laminated thin-plate element and a solution
procedure within the framework of stochastic finite element method. Ganesan and Hoa
[123] presented the stress analysis of composite structures with stochastic parameters.
Nakagiri, Takabatake, and Tani [124] presented a methodology of stochastic finite
element method applied to the uncertain eigenvalue problem of linear vibration which
arises from the fluctuation of the overall stiffness due to uncertain variation of the
stacking sequence of composite laminates. Engelstad and Reddy [125] developed a
probabilistic finite element analysis procedure for laminated composite shells. In their
study. a total Lagrangian finite element formulation, employing a degenerated three-
dimensional laminated composite shell element with the full Green-Lagrange strains and
first-order shear deformable kinematics, is used. Chang and Yang [126] formulated a
geometrically nonlinear stochastic thin-plate finite element to study the reliability of
fiber-reinforced laminated plates with structural uncertainties under random in-plane
loads. Slattery [127] developed a stochastic model of damage progression in
unidirectional laminates of advanced composite materials. The modeling involves two
steps: a micro-mechanical simulation of the degradation of a small cell of the composite

and a random-damage finite element simulation of material failure.
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Many efforts have been directed at devising a widely acceptable test method for
obtaining the fracture toughness of composite materials. Unfortunately to this date a
method could not be devised for the experimental determination of all composite
materials. The measurement of valid plain strain fracture toughness values for particulate
reinforced metal matrix composites (MMCs) is an important step in the process of
developing useful products manufactured from these materials. With years of research,
many researchers have reported values for the fracture toughness which show a
considerable amount of scatter due to the problems with the test method or from
variations in the micro-structures. Roebuck and Lord [128] have examined the procedures
for plane strain fracture toughness tests on a number of particulate reinforced aluminum
alloy metal matrix composites. Kageyama [129] came forth with a new method for
evaluating the in-plane fracture toughness of carbon-epoxy composites. Interlaminar
fracture is of serious concern in designing with fiber composites. Delaminations in
composite laminates can exist as manufacturing flaws or can be created due to
coalescence of small voids, foreign object impact or peculiar stress fields near edges,
holes, joints and attachments. Sailendra [130] reported the results from approximate and
exact stress analysis for elastic stress and displacement fields in two interlaminar mode-II
fracture test specimens. End-notched flexure tests for laminates and interlaminar
composites have also been studied in detail. Closed form solutions for energy release
rates procedures have been suggested for fitting compliance versus delamination length

data.
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Precise knowledge of the dynamic fracture mechanics parameters for materials is
essential for the fail-safe design of structural components subjected to rapid and/or
impact loading. Although there exists standard test methods (ASTM E399; ASTM ES8I13
— for metals/isotropic materials) for determining the fracture toughness parameters Kic
and Jic under quasi-static loading, simple and reliable test procedures for characterizing
such parameters under dynamic loading have not yet been established. Yokoyama [131]
described a novel impact bend test procedure for determining the dynamic fracture
initiation toughness, K4, at a loading rate (stréss intensity factor rate), K, of the order of
10® MPaVm/sec. The dynamic stress intensity factor history for the bend specimen is
evaluated by means of a dynamic finite element technique. Kumar, Hirth, Hoagland and
Feng [132] suggested a test procedure for measuring the mixed mode I-III fracture
toughness. A three-dimensional (3-D) finite element model of the modified compact
specimen to validate the analytical procedure is also described. Ceramics have been
applied to structural components such as gas turbine and reciprocal engines because of
their lightweight and stability when compared to metals, particularly at high
temperatures. Under such applications, they are often subjected to multi-axial stress
states. Ono and Kaji [133] investigated a mixed-mode fracture of structural ceramics
under bi-axial stress state by using an anticlastic bending test using the controlled surface
flaw technique. This test enables the study of fractures under pure mode-I, pure mode-II
or any combination of mode-I and mode-II loading. Shivakumar, Crews and Vishnu
[134] developed a modified mixed-mode bending test apparatus to measure the

delamination fracture toughness and fatigue delamination growth rates of laminated
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composites. The new test apparatus is compact, lightweight and has very few

attachments.

High temperature, high pressure reactor pressure vessels used in the petroleum refineries
and/or nuclear power stations require a fracture—safe analysis for their safe operation as
the materials used may suffer toughness degradation during service. Iwadate, Tanaka and
Takemata [135] proposed a method for predicting the toughness degradation of Cr-Mo
steels during long term service using the parameter such as the J factor. Empirical
methods for predicting the fracture toughness, Kjc, and the transition curves of chemical
pressure vessel steels have been presented. All fracture toughness specimens, be it for
static or for dynamic testing, should have a fatigue crack of certain length formed in them
prior to testing. This is to ensure a sharp crack ahead of the notch tip. Sriharsha,
Anantharaman, Chatterjee, and Pandey [136] presented an interactive computer program
that accepts material properties and specimen dimensions as program inputs. The output
of the program when plotted graphically suggests an easy and practical precracking

procedure adhering to the ASTAf standards.

Studies on the reliability of the static strength of fibrous composites can be classified into
three groups: 1) studies that investigate experimentally the factors that effect the variation
or the scatter of the strength using a number of specimens, 2) studies that analyze the
variation of the strength theoretically using micro-mechanical models, 3) studies that
analyze the reliability of the strength of unidirectional and laminated composites using a

macroscopic failure criterion and fundamental data on the variations of the strengths

25



along the principal directions. The strength and stiffness of composite materials change
remarkably by changing the kinds, volume contents and orientations of the reinforcing
fibers and stacking sequences. Therefore, the optimum material design can be performed
under a given loading condition. Mitsunori, Yoshisada, Tetsuo and Shaowen [137] have
presented a method to evaluate the reliability of unidirectional fibrous composites under
any plane stress condition, and the effects of various factors on the reliability are
investigated. It has been found that the orientation angle that results in the maximum
reliability and the optimum angle that corresponds to the design criterion vary with the
variation in the applied stress in some cases. It has been found that the optimum fiber
orientations of unidirectional composite materials under probabilistic loading conditions
are found to be different from those under deterministic loading conditions. Mitsunori,
Yoshisada, and Tetsuo [138] also proposed a simple and intuitive method called the
interior tangent ellipsoid (/TE) method for the optimum design of composites under the
action of loads with variations. Shaowen, Mitsunori and Yoshisada [139] presented a
discussion on the optimum design of multiaxially laminated fibrous composites under
probabilistic conditions of loads and material conditions. The first-ply failure criterion is
adopted for conducting the reliability analysis. Mitsunori, Yoshisada and Nobuhiko [140]
have presented a discussion on the optimum fiber orientation angles of multiaxial
laminates based on reliability analysis. The probabilistic properties of the applied loads
and the elastic constants of the ply material are discussed from the viewpoint of reliability
and optimum design. The effects of the correlation between various random variables on
the reliability and reliability-based design of composite plates subjected to buckling have

been discussed by Nozomu, Shaowen and Yoshisada [141], and the reliability has been
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maximised in terms of the mean ply orientation angles. The study shows that reliability-
based design ignoring correlation is sometimes less safe than even a deterministic
buckling load maximization design when random variables are correlated. By viewing the
composite lamina as a homogeneous solid whose directional strengths are random
variables, Thomas and Wetherhold [152] proposed some physically plausible
phenomenological rules for the redistribution of load after a lamina has failed within the
confines of a laminate. Using a non-interactive criterion for demonstration purposes,
laminate reliabilities are calculated assuming previously established load sharing rules for
the redistribution of the load as the failure of the laminae occurs. Cohen [143] presented a
composite vessel design approach that is based on the reliability and the probabilistic
failure strength distribution concepts. This method is based on fiber strain-strength
interference reliability theory. The fiber statistical strength distribution is analyzed using

the Weibull distribution function.

1.6 Scope and Objectives of the Thesis

A better understanding of the fracture behavior of composite laminates leads to a reliable
design and safer operation of mechanical components. This can be achieved if the
fracture parameter employed in the design is capable of adequately and more accurately
characterizing the fracture behavior of composite laminates. Since the randomness in the
material and fracture properties is inherent and unavoidable, (i) the fracture behavior of
composite laminates has to be quantified based on a stochastic approach, (ii) a
methodology for quantifying the reliability of composite laminates has to be developed,

(1ii) this methodology should be able to take into account the test data on material and
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fracture failure parameters and more importantly, the true probability distributions of
these parameters, and be able to combine these with the stochastic finite element analysis
of the laminates, and (iv) the fracture parameter employed in the design should be able to
adequately and more accurately characterize the fracture behavior of composite
laminates, incorporate the above mentioned inherent variability, and provide us with a

reliable prediction of the fracture behavior.

From the literature survey, it can be observed that (a) research work that can identify and
establish such a reliable design parameter has not so far been conducted, and (b) research
work that can address the above mentioned objectives has not been conducted so far. The
present thesis work considers the above-mentioned objectives. Three fracture parameters,
viz., the stress intensity factor (as obtained directly from the stress distribution), the strain
energy release rate, and the J-Integral, have been considered and evaluated for their
suitability to serve as the fracture parameter that has the above mentioned capabilities.
Based on a combined experimental and stochastic finite element analysis methodology,
the fracture behavior of (i) cross-ply laminates, (ii) quasi-isotropic laminates, and (iii)
symmetric angle-ply laminates has been studied and quantified in terms of the above
mentioned fracture parameters. In addition, the effects of various geometric, ply material
and composite structural parameters on the fracture behavior are quantified. The
methodology for quantifying the reliability of composite laminates that has the above-

mentioned capabilities has been developed.
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The thesis work aims (1) to develop a combined experimental and stochastic finite
element analysis methodology for the fracture analysis of composite laminates that also
incorporates the true probability distributions of material and fracture parameters, (2) to
develop the associated computer program using the MATLAB® software, (3) to employ
the developed stochastic finite element methodology to evaluate the stochastic
characteristics of the fracture parameters of composite laminates, (4) to relatively
evaluate through a detailed parametric study the effects of ply sequence, fiber orientation
in lamina, etc. on the probabilistic fracture behavior of various composite laminates, (5)
to find out an effective design parameter that can act as a true representative of the stress
variations developed in the laminate, and (6) to devise a method for computing the
reliability of composite laminates based on the true probability distributions of both the

stress intensity factor and the fracture toughness.

Based on the parametric study, many important aspects regarding the design and
reliability of laminates are obtained. The fracture parameters considered are the stress
intensity factor, the strain energy release rate, and the J-integral under in-plane tensile
loading. The experimental part involves the testing of laminate specimens for obtaining
the fracture toughness data. For this purpose a total of 42 specimens are manufactured
and tested. As for the ply material properties, the test data that have previously been
obtained [144] are used. The objective here is not to repeat the time-consuming tests,
rather to develop further applications of the available test data. Based on the test data, the

true probability distribution of the fracture toughness has been obtained, and hence the
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reliability is calculated. The isoparametric formulation using 8-node quadratic serendipity

element is employed in the finite element analysis.

1.7 Organization of the Thesis

The present chapter provides a brief introduction and a literature survey regarding the
probabilistic fracture behavior of composite laminates that was studied using finite
element method. The scope and the objectives of the thesis have been provided in section

L.5.

In chapter 2, the basic concepts and mathematical expressions that are employed in the
linear elastic finite element fracture analysis of two-dimensional problems are presented
and summarized. The 8-node isoparametric element is used to model the mechanical
component. A computer program using the MATLAB® software, which can perform the
fracture analysis of mechanical components made of isotropic materials is developed,

described and demonstrated.

In the first half of chapter 3, the salient aspects of linear elastic fracture mechanics of
anisotropic materials are summarized. The concepts and equations that are employed in
the fracture analysis of anisotropic plates are presented. The classical lamination theory
of composite materials is also described in this chapter. The computer program, which is
developed in chapter 2, is extended for composite laminates so as to evaluate the
equivalent elastic constants and the stress intensity factor. In the latter half of chapter 3,

the aspects of probabilistic fracture analysis that incorporates the spatial variability of
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material properties of composite laminates are described. The spatial variabilities are
modeled as two-dimensional homogeneous stochastic fields [105]. Also the developed
computer program is modified for calculating the mean value, standard deviation and
coefficient of variation of the stress intensity factor and that of the energy release rate of

cracked composite laminates. Example applications are provided.

In chapter 4, the parametric study, encompassing the effects of variabilities in the
material properties on the fracture parameters of different composite laminates, is
presented. Useful conclusions as to the probabilistic characteristics of the fracture of

composite laminates and their behavior are provided.

In chapter 5, the detailed procedure of manufacturing and fracture testing of composite
laminates to determine sample random values of the fracture toughness data is
summarized. The Maximum Entropy Method (MEM) that is employed for obtaining the
true probability distributions from a set of sample data is presented with all the analytical
details. The mathematical formulation for calculating the reliability of the laminate using
the true probability distributions of the stress intensity factor and fracture toughness that
are obtained using the MEM has been described. Finally, the variation of the reliability

with change in the applied load has been determined and presented.

The thesis ends with chapter 6, which provides the conclusions of the present thesis work

and some recommendations for future work.
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Chapter 2

LEFM of Isotropic Plates

2.1 Introduction

Cracks are present in all engineering structures. They may exist as basic defects in the
constituent materials or they may be induced during the manufacturing or during the
service life due to fatigue. In order to assess the stability of cracks, the most significant
development in Fracture Mechanics has been the introduction of the fracture parameters
such as the Stress Intensity Factor (S/F), the Energy Release Rate (ERR) and the J-
integral. In order to use the above parameters in examining the stability of crack growth,
one also needs to have a complete understanding of the stress and strain fields at the
crack-tip. Unfortunately, closed form solutions exist only for very few basic and
relatively simple cases and therefore, in order to apply fracture mechanics to practical

situations, one needs to resort to numerical methods for approximate solutions.

The Finite Element Method (FEM) can be used to yield the most accurate solutions,
however extremely fine meshes need to be used. Extrapolation techniques and use of
special elements for modeling the singularity of the crack-tip also become inevitable. In
the present thesis, the Linear Elastic Fracture Mechanics (LEFM) Theory has been used
along with the FEM. The application to isotropic materials and composites for a
deterministic case has been described in the present chapter. In this chapter the basic

aspects of LEFM and the relevant finite element formulation have been described in
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detail. The corresponding program codes have been developed in MATLAB® for
evaluating various fracture parameters. Applications have been demonstrated through few
benchmark problems and the results have been validated. The computer program and its

flow-chart have been detailed in this chapter.

2.2 Linear Elastic Fracture Mechanics (LEFM)
A brief summary of the basic concepts, terminology used in LEFM and their definitions
are discussed in this section. A crack of any size and shape present inside a body can

deform into any shape that depends on the external load being applied.

S

Mode III

Mode I Mode II

Figure 2.1 Modes of fracture failure

Opening Mode (Mode-1): In this mode, the two crack surfaces are pulled apart in the
y-direction (a direction perpendicular to the surfaces of the crack) and the deformations
are symmetric about the x-z and y-z planes.

Shearing Mode (Mode-II):  In this mode, the two crack surfaces slide over ea.ch other in
the x-direction and the deformations are symmetric about the x-y plane and skew-
symmetric about the x-z plane.

Shearing Mode (Mode-III): In this mode, the crack surfaces slide over each other in the

z-direction, and the deformations are skew-symmetric about the x-y and x-z planes.
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While failure by fracture in mode-/ is considerably dominant, the other two modes of
fracture are less predominant. Even in composite materials, the most prominent mode of
failure is by delamination, which is a kind of opening mode fracture failure. Hence,
considerable attention has been paid to analytical and experimental determination of
fracture parameters corresponding to mode-/. Though the modeling described in the
present thesis can be extended to other modes of failure, the analyses and discussions are

limited to mode-/ type failure. A concise description of various fracture parameters is

given below.

2.2.1 Stress Intensity Factor

The stresses at a point near the crack-tip, for an infinite plate with an edge-crack, subject

to remote tensile stress can be represented as follows:

o, = cos; — | 1 —sin| — |sin| — 2.1
2w \2) 2 2 ) 1)
KI

B ejr (6. (36)]
o, = o cos(g/ 1+sm(5jsm(—2—J 2.2)
K, .(6 6 36
= z hll - 2.3
T msm(zjcos(z)cos[ 5 j (2.3)
y

Figure 2.2 Stresses near the crack tip in an elastic material.
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It can be observed that each stress component is proportional to a single parameter, K|
(the subscript, 7, describes the mode of failure). If this parameter is known, the entire
stress distribution around the crack-tip can be analytically determined with the help of the
above closed form equations (2.1 — 2.3). This parameter completely characterizes the
crack tip conditions in a linear elastic material, and is called the Stress Intensity Factor
(SIF). The critical value of the SIF corresponding to the stresses at the crack tip at which
the material failure occurs is called Fracture Toughness, Kic. It is quite evident that the
SIF is directly proportional to half the crack length, (a). and the stress component (o) that
tries to pull the crack faces apart (surface traction). Hence, the SIF can be written as

K,=flo,a) . i=r1uar (2.4)
The SIF for the above-described plate can be expressed as

K, = om ; alisthecrack length 2.5)
Failure occurs when the SIF equals the Fracture Toughness. K; can be interpreted as the
driving force for the crack propagation and K¢ as the resisting force for the crack growth.

The K¢ is a basic material property and is independent of the geometry of the plate.

2.2.2 Strain Energy Release Rate

The energy approach states that the fracture occurs when the energy available for crack
growth is sufficient to overcome the resistance of the material, which might be associated
with the surface energy, plastic work, or any other type of energy dissipation associated
with the propagating crack. For a linear elastic material, the Energy Release Rate (ERR)

is defined as the rate of change of potential energy with the crack area. For an infinite



plate with a central crack of length 2a subjected to remote tensile stress, the ERR is given

by

g =-T_rma . _inm (2.6)
i E

where II is the potential energy which is the sum of the internal strain energy and the

work done by external forces, d4 is the incremental increase in crack area, E is the
Young’s modulus, ¢ is the remotely applied stress and a is the half crack length. At
fracture, G = G¢ in which Gc¢ denotes the critical ERR obtained by the critical
combination of stress and crack size at failure (denoted by oy and a. respectively), given
by

2
G _noac
=
E

Using the same analogy as for SIF, G signifies the crack driving force whereas G¢

(2.7)

denotes the material’s resistance to fracture.

2.2.2.1 Relation between SIF and ERR:
For any structure, the S/F is related to the ERR, this relation being unique for each mode

of failure. For mode-I type of failure, the ERR and SIF are related by

for plane stress

G, =(—"+—1)K,2 where Kk = (2.8)

8u
(3-4 v) for plane strain

in which v represents the Poisson’s ratio and g represents the shear modulus of the
material. Similarly, the relation between SIF and ERR for other modes of failure are

given by replacing in equation (2.8) the respective modes of G; and K;. Whenever a
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failure by fracture is a combination of two or more modes, the resulting ERR is just a sum
of the ERRs in the constituent modes. Hence, for a mixed-mode fracture

G=3G, ; i=LIOHOI 2.9)

2.2.3 The J-contour Integral

The J-contour integral has enjoyed great success as a fracture parameter for both linear as
well as nonlinear materials. By idealizing elastic-plastic behavior as nonlinear elastic, the
basis has been provided [145] for extending the fracture mechanics methodology well
beyond the validity limits of LEFM. By applying the deformation plasticity theory
(nonlinear elasticity) to nonlinear materials, Rice [145] showed that the nonlinear ERR, J,
could be written as a path-independent integral. It has also been shown that the J-integral
uniquely characterizes the crack tip stresses and strains in nonlinear materials. Thus the J-

integral can be viewed as both an energy, as well as a stress intensity parameter.

2.2.3.1 Nonlinear Energy Release Rate, J

Rice [145] presented a path independent contour integral for the analysis of cracks. He
showed that the value of this integral (which he termed as J), is equal to the ERR in a
nonlinear elastic body that contains a crack. Equation (2.6) defines the ERR for linear
materials. The same definition holds for nonlinear elastic materials, except that G is
replaced by J:

J = dil (2.10)

d4

where /7 is the potential energy and 4 is the crack area. The potential energy 7 is given

N=U-F @.11)
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where U is the strain energy stored in the body and F is the work done by the external

forces.

The ERR, denoted by G, is normally defined as the potential energy that is released from
a structure when the crack grows in an elastic material. However, much of the strain
energy absorbed by an elastic-plastic material is not recovered when the crack grows or
the specimen is unloaded; a growing crack in an elastic-plastic material leaves a plastic

wake as shown in Figure 2.3.

Plastic

Direction of crack Kieformation
propagation -

4>

Figure 2.3 Crack growth leaving a plastic wake in an elastic-plastic material

Thus, the energy release rate concept has a different interpretation for elastic-plastic
materials. Rather than defining the energy released from the body when the crack grows,
Equation (2.10) relates J to the difference in energy absorbed by the structure with

neighboring crack sizes.
2.2.3.2 J as a Path-Independent Line Integral

Consider an arbitrary counter-clockwise path (I') around the tip of a crack as shown in

Figure 2.4. The Jintegral is given by [145]
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du,
J=Udy-T. —d. 2.12
f( y-L= S) (2.12)

K
in which U is the strain energy density
T; is the traction vector
u, is the displacement vector

ds an element of arc along the integration contour, I".

REREARR

bbbl

Figure 2.4 Arbitrary contour path for the J-integral

In the above, the strain energy density is defined as
U= [o,de, (2.13)
]

where o;; and ¢;; are the stress and strain tensors respectively. The traction vector, T; is a
stress vector normal to the contour, representing the normal stresses acting on the
boundaries of the free body diagram of the material inside the contour. The components

of the traction vector are given by,
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T =o,.n, (2.14)
where n; represents the components of the unit vector normal to the contour, T; at any

point. Rice [145] showed that the value of the J integral is independent of the path of

integration around the crack. Thus, the J integral is called as a path-independent integral.

It can be seen from Figure 2.4 that, as the contour I shrinks to a small portion around the
crack tip (I'c), the second term in equation (2.12) reduces to zero and the equation can be

expressed as

J=[udy (2.15)
[-C

Thus J characterizes the energy stored at the crack tip and, due to the path-independence
of J, the integral of equation (2.12) can be evaluated along a contour remote from this

zone of singular behavior.

2.2.3.3 J as a Stress Intensity Parameter
For linear elastic situations and for each particular mode of deformation it can be shown
that

G=J (2.15)
Therefore, equation (2.8) can be rewritten as

Jz(K—H)K? ; i=LILII (2.16)

8u ) '

In terms of the J integral the SIF for mode-I can be expressed as
8t
K, = |[/—/— 2.
, ,/(1 ) (2.17)
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23 Finite Element Formulation
In the following sub-sections, a description of all the relevant details of the finite element
formulation for determining the parameters, SIF, ERR and J-integral, will be presented.

The methods employed and the parameters that can be obtained form each of the methods

are:
e Displacement Extrapolation Method : SIF
o Energy Release Rate Method (ERRM) : ERR, SIF
e J-Integral Method : J integral, STF

2.3.1 Displacement Extrapolation Method
The analytical expressions for displacement variation along radial lines emanating from

the crack tip are given by [3]

u=£ —r—[(.?l:—l)cos—g-—cosﬁ Ky - (2k-!-3)51')12—51';1ﬁ (2.18)
4u\ 27 2 2] 4uVN2rx 2 2

v=£<—’ L{(2k+l)sz’n—0-—sin3—9~:|+& L (2k—3)cosg+cos§€- (2.19)
4u\N2r 2 2 4u \ 27 2 2

in which « and v represent the displacements along the x and y coordinate directions, K,
and Kj; represent the SIFs for mode-/ and mode-/I failures respectively, p is the shear
modulus of the material, r is the radial distance of any point from the crack tip, & is a

constant defined by equation (2.8) and 4 is the polar angle between the x-axis and the line
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obtained by joining the point to the crack tip. Simplifying the equations for the stress

intensity factors, K; and Ky, one gets

(2k —1)cos % —cos 3

2 3 u
K, =4y /l{ } (2.17)
r v

2k+1 sin——sin—3
( )
2 2

—(2k +3)sin 9 _sin3l
2 2

K, i =4yv/3?{“} (2.18)

\%

(2k = 3)cos f’_+ cosﬁ
L 2 2 ]

Substituting for the values of r and the values of u or v obtained by finite element
analysis (FEA), for the nodal points along a radial line emanating from the crack tip, a

plot for K; and K, versus r can be obtained.

A
K

Figure 2.5 Evaluation of SIF by displacement extrapolation

Due to some non-linearity in the zone near the crack-tip, a few points in the plot
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that are close to the crack tip can be neglected and the rest of the points obtained can be
used for extrapolation. In the present case, § was considered to be 180° and further, the
edge nodal points (not the mid-side nodes) were used for extrapolation to the crack tip at
r = 0. Both the conventional eight-node isoparametric elements as well as the quarter-

point crack-tip singularity elements were used.

)
i
D

§ ¢
)
L./4 | 2 -
o o A<
A4 -
Crack-tip <—+——7
L/4 3L/4

Figure 2.6 Quadratic isoparameiric element with mid-side nodes at quarter points

The SIFs for the quarter-point quadratic isoparametric element are given by [3]

(2& ~1)cos % —cos

2 2
X, ~ 4y fi_z{4zls —u, -3ul]r (2.19)

o | VT e v -

e . ’
2k + in — — -
(2k +1)sin >~ sin—

— (2% + 3)sin %-sméﬁ

2
K, -4y _2£{4us -u, —3u!} (2.20)
o 39 \j L, |4vs ~v, =3y
(2% —3)c053+c057

in which L, represents the length of the edge 1-5-2. Using this element the stress
singularities at the crack tip can be modeled, which is an advantage over using

conventional elements in the finite element formulation.
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2.3.2 Strain Energy Release Rate Method
Consider a crack of initial length a, which advances by an incremental amount da, and

thereby causing a release of strain energy dU. The ERR can be defined as,

_U_U, -0, (2.21)
oa a, —a,

G

in which the thickness is assumed to be unity and the crack is idealized to extend
uniformly through the thickness. The SIF is related to the ERR by equation (2.8). The
ERR is obtained by conducting two finite element analyses on a structure, the first time
with the initial crack (ERR is equal to U}, say) and the second analysis with a small
increment da in the crack length (ERR is equal to U,, say). The strain energy released can
be calculated from equation (2.21) and hence the SIF from equation (2.8). The strain

energy in the two configurations can be evaluated as

U ={d}f[kla} (2.22)
or according to

U ={a} {b} (2.23)
in which {d}, [K] and {b} represent the displacement vector, the global stiffness matrix

and the global applied loading vector respectively.

2.3.3 J-Integral Method

The nonlinear energy release rate denoted by J and given by equation (2.12) is evaluated
numerically along a contour selected according to the convenience of computation. In the
present thesis, the path has been selected such that it always coincides with & = &, =

constant, as shown in the figure below.



A
& =§,~+1=constant
> x
Figure 2.7 Gauss point numbering sequence

The first step in the numerical computation of the J-integral is to define the unit normal »
to the contour I" shown in Figure (2.4). In order to do this, two vectors A and B have been

defined along ¢ = constant and n = constant, and are given by
g7 ={g,ﬂ_@’_’ } . BT 2[?_";’8‘;:,0} (2.24)
, c& o¢

The cross product of the vectors 4 and B gives the unit vector that is normal to these two

vectors which 1s perpendicular to the plane of the element. This vector is given by

C’ = [o,o;(?ﬁi-@a—xﬂ (2.25)
on & dn éé

Now, the vector normal to the contour I which is along the curve defined by &= constant

1s obtained by the cross product between vectors C and 4, which is
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’Q(Qy_z_zﬂ)‘
on\on o& on ok D,
D=Cea={2[&% ail_|, (2.26)
on\ono& onos 0’
0
L J
Now, the unit vector is given by
D, D
r_ , 0j]=1=+ =2 0| ; N=yD?+D;} 2.27
n [n[ ", ] [N I :' ; ) ( )

The elemental arc length, ds along the curve {=constant is given by

-~

cn

ds =dx* +dy* = \[[2) +(6yj an : dy=2an (228)

For plane stress and plane strain cases, the strain energy density is given by
U= 1 O + 20,6, +0 .6, (2.29
2

The traction vector T; is given by,
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Ol +0,.n,

I, =q0,n+o,n, (2.30)
0
and [-a-"-J ={§5 & o} (2.31)
ox ox Ox
" {e) n (e)
imnwhich Q&M g WDy a(‘f"’)=zaNf («,.v,) 2.32)
ox o Ox oy o Oy

where ; and v; are displacement components of the n nodes in the element. Substituting

equations (2.27) through (2.31) in equation (2.12), one finally gets

(1 ou ou ©ov ov
—|C—+0, | —+—|+0, —
2 Tax N\ ox 7 oy
+1 - +1
J(e) = | % 2 2 n= I dﬂ (2'33)
] |z \/( o_) N ( ay)' =]
+(O-n'nl +O—wnl )iﬂ an 677 J
L L : o ox
The numerical integration is achieved by
() NGAUS
JO = 1lg,.n, )W, (2.34)

q=l

in which NGAUS represents the order of Gaussian numerical integration and 7 is as

described in equation (2.32), and is evaluated at the Gaussian sampling
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points &, and ng, and W, is the weighting factor corresponding to ng. The J-integral is
obtained by accumulating the contributions from all sampling points by equation (2.34)
from the path &,=constant through all the neighboring elements around the crack tip. This
places restrictions on both the finite element mesh and the order of nodal numbering the

elements through which the J contour(s) is to pass.

24 Finite Element Formulation of Isoparametric Elements

Most of the work in the present thesis has been limited to two-dimensional situations.
Initially three-dimensional modeling has been done for the case of an isotropic material,
in which twenty-node isoparametric elements have been used. But later on, the work has
been limited to two dimensions and further, eight-node isoparametric elements have been
used. All the relevant details regarding the 2-D and 3-D elements will be discussed in the

following sub-sections.

2.4.1 The Eight-node Isoparametric Element
The internal nodes of an element do not contribute to the element connectivity. So, they
can be condensed out and this helps in reducing the size of the stiffness matrices. These

elements in which there are no internal nodes, are called serendipity elements.
The interpolation or shape functions for this element with local coordinates, £ and 7 can

be calculated [146] using the boundary conditions that any shape function, N; equals one

at node  and equals zero elsewhere i.e.,
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| : i=i
N = Pet (2.35)
0 : elsewhere

The nodal numbering and local co-ordinate system used for the present element are

represented below.

® o ' y
4 7 3 N
n T_»
* 8 6 @
€
5 2
[ : L 4 l » x
Figure 2.8 (a) Parent Element (b) Global Element

The shape functions for the eight-node element, which is used in the two-dimensional

finite element analysis can be concisely presented as

%(l +&& 1 +nn, XEE, +nn —1) s i=1234
(2.36)

%(1+5§,-)(1—772)+2—"-(1+f777i)(1-4‘2) ; i=3678

2.4.1.1 Plane-Stress Case

This is the state of biaxial stress in a body in which the effect of the smallest dimension

(usually called the thickness) is negligible. Hence, the stresses along the direction of the
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thickness can be ignored. Considering only the x and y directions, the displacements and

the strains can be expressed as

gx
fu}= {"} and {g}={e, (2.37)
v
}/xy
respectively, in which
ou ov ou ©&v
{gx}=5; ; {8)'}:5 ; {7W}=g+5x_ (2.38)
The stresses and strains are related by
{o}=[EKe} (2.39)

in which the matrix representing the stresses is given by

o

o}=10o, (2.40)

X
To
For linear elastic conditions, the elasticity matrix (also called as the constitutive matrix or

the stress-strain matrix), relating the strains to the stresses is given by

E I v 0
El= 1 0 2.41
] (l—vz); 0 (1;1/) @4

in which £ and v are the Young’s modulus and the Poisson’s ratio respectively.

2.4.1.2 Plane Strain Case

The plane strain stress state occurs in components where the thickness is quite
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comparable to the other dimensions. Though the body is subjected to loads in a certain
plane (say, x-y plane), the effect of the thickness on the stresses induced is quite
considerable. Due to the Poisson effect, the out-of-plane normal stress is not zero even

though the out-of-plane strain is zero.

For the case of plane strain one has the condition that €, =y, = y., = 0 and hence the out-

of plane normal stress is obtained as

(2.42)

It should be noted that the normal stress o,, # O even though the corresponding normal

strain € = 0. Using the value of o, given by the equation (2.42), one gets

£, = %[O‘K -vo,, -V’ (o, + o, )] (2.43)
e, =~lo, —vo. —vio.+a,) (2.44)
Vo =2 2.45

Catrs (2.45)
£.=0 (2.46)

- 1 v . A
E(i-v) 1-v)
[D] B 1+ VXI_:/ZV) (1 l/v) : 0 (247
0 0 (1-2v)
L 2(1- V)_l

51



24.2 Twenty-node Isoparametric Element
The shape functions and the co-ordinate system for the twenty-node three dimensional

isoparametric solid element are as represented below:

8
o 4
3 7
2
EA ® 20
R
-
18 o
© 9
13
.
P ®
10 14
Figure 2.9 Twenty-node 3-D isoparametric solid element

Due to the following advantages of this particular element over other elements in the 3-D
family, it has been selected for use in the present analysis:

o Capability to represent curved sides and edges.

e FEasily adaptable to fracture mechanics applications.

¢ Ideal for non-linear formulations.

The only disadvantage of this element is:

e Decrease in accuracy with excessive shape distortion.
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This might not be considered as a disadvantage as this disadvantage is inherent in any

element belonging to the 3-D family of elements.

The shape functions for the above element are as follows:

Ny=Z(-eN-mMi+g) Ny =2(-& Nt n)i-¢)
No=z0+li-nli+¢) Mg =20-ei-n*Yi-¢

)
Ny = (=g endieg) Ny =2 (-eXi-n)i-¢?)
Ny=g0-eMi-n'+¢) Ny =2G+Mi-n)i-¢?)
Ny =g (-20i-nM1-8)  Ny=2@+elieni-¢?)

Nu=7(+Mi-n)i-¢) W - (-£)X+n)i-¢?)

T () (R B B
Ne + Nyg)
2
(N6 +A’7 +Nl9)
2
(N7 +N8+N20)
2
_(N13+N16+Nl7)
2
_(le +N, +N18)
2

Mo =2+ M )i ) - Piat Mis 2 Moo)

Mo = 2= )t —¢) - L 2 1)

N. =é(1+§)(1—77)(1+¢)—(N5 ha

Ny =<+ )i+ ¢)-

N, ==+ n)i+6)-

(2.48)

Ny == (1-¢Xi-n¥i-¢)

N =3+ )t-n)i-¢)
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The element displacements can now be expressed as

fu} =[N 2} (2.49)

in which the matrix for the shape functions is given by

(N, 0 N, 0 .. .. N, 0O
[ 0O N 0 N, ... .. 0 NJ
Sfor eight node 2 - D isoparametric elements
[N]) = (2.50)
N 0 0 N, 0 O N, O 0
O N 0 0 N, 0 .. . 0 Ny O
O 0 N~ O O N, .. .. .. 0 0 N,

2
Sfor twenty node 3 - D isoparametric elements

and the displacement vector is given by

({u, v, u, Vo e e U Vg}
for eight node 2 - D isoparametric elements
{d} = (2.51)
e v W, v, Wyl Uy Ve W)

Jor twenty node 3 - D isoparametric elements

The strain matrix for 2-D finite element formulation can be expressed as
o_Jou v (ou R AT
{e}) = {—“ — (—+QJ} = [B]{a}" (2.52)

ox oy \&y ox
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in which the [B](") matrix relates the element nodal displacements to the element strains

and is given by

2

Ox 5
Bl =| 0 =Z|N]¢ (2.53)
(3] a aay [v]

In the case of 3-D finite element formulation, the strain matrix and the strain-

displacement matrix are given by,

{8}(8)={% - = (@%ﬁ} (iﬂ”f%] (éﬁ+%w‘)}=[3]“’{d}“" (2.54)
X 0}’ oz oy X (04 7 iz X

S 90 o0
cxX
o = o
oy
o o 2
B]9=| 5 3 ‘ZZ[N]("’ 2.55)
oy ox
0o & &
o oy
9 4 2
| 6z ox |

The derivatives of the shape functions are expressed in terms of the local co-ordinates
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and they can be obtained by the chain rule of partial differentiation as

8N, 8N, ax ON, &

=—F—+ and
o& ox ¢ 6y os
ON, _ON, ox 6N oy 2.56)
677 ax 617 6y on
for2-D

N, _ON, ax N, &y N, &
8  bx 8 By 8EF & OF
N, _aN & N &y N, o
on ox én oy On &z On 2.57)
ON, 8N 6r+6N ay+aN oz
64’ ox 8¢ oy 0 &6z 8¢

and

for3-D

The above expressions can be expressed in the matrix form as

(e)

&V(E) @.- i aN’(e)
é& |_|1¢e& o¢& ox
o=l o o | (et @sn
an | Len on) o

In the above, the matrix relating the derivatives of the shape functions with respect to the
local co-ordinates to the derivatives of the shape functions with respect to the global co-

ordinates is called as the Jacobian matrix of transformation and is denoted by [J ]. Thus

the Jacobian of transformation is given as,
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&
Jn Ji 8E  B&
J: It 12 = Z_D
- R g e
on OJn
and
(& » e]”
Ju Ja s gj{ gf gf
[J]= Ju Jn Inl|=l7Tm = —
on on 0m
JSI J}z J33 Ox ay oz
L 0¢ 06 0¢

(2.58)

for3-D

The components of the Jacobian matrix are calculated using the shape functions and the

nodal co-ordinates. For instance,

Num_.ofNod
um.o, es aN’ .
i=l af ‘

Ju =

Q
Ny | H)

Now the element stiffness matrix can be written as

€ - fleT el

14

Le)

in which

t|J]dé dn for2-D
“ " \dgdnds  for3-D
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The stiffness matrix coefficient linking nodes / and j in any element (e) is given by

NGAUS N%’S BT [ [89)]e V@ dg dn for2-D
K = e -

dédndl  for3-D

3o el )

¢=l =l &=t

in which NGAUS represents the order of Gauss quadrature for numerical integration. The

elements of the stiffness matrix of each element can be numerically evaluated as

NGALS NGAUS

K= 2, 2T(5p,nq fw,m, (2.63)
g=t  p=
in which
]—-(c) _ .'\,'2“_15 NGALS [Bi(:,) [EE:,)IBS')][ IJ(E)! (2.64)
r=l s=1

and (&, 74) represents a sampling position and W, and W, are the weighting factors. If g is
the uniformly acting load along the edge of length L of an element (e), the nodal loads

can be expressed as

Equivalent load at the left node . 1
Equivalent load at the central node = _46__ 4 (2.65)
Equivalent load at the right node l
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25 Program Organization for FEA and Computation of Fracture Parameters

In the development of the program care has been taken to use descriptive variable names
for every variable name for example, nnode represents the number of nodes in an
element, ndofn represents the number of degrees of freedom per each node, and so on.
The program has been divided into segments to take care of various tasks and each task

has been designed to be performed by a single routine. The various tasks performed by

the various routines are as follows:

v" The master program STIFPS

v' Get all relevant input data GETDAT & GETARR
v" Establish nodal connectivity ELCON

v" Compute Elasticity matrix MODPS

v" Get Gaussian attributes GAUSSQ

v Evaluate shape functions & their derivatives SFR2

v Evaluate [J], its inverse and | J| JACOB2

v' Evaluate [B] BMATPS

v'  Assemble element stiffness matrices ASMBLK

v" Compute the load vector LOADPS, FORCE
v Solve for nodal displacements BCSOLVE

v’ Find the stresses at each gauss point STREPS

v Calculate the SIF by DEM EVALSIF1

v" Calculate energy release rate ERRCALC

v" Calculate SIF by ERRM EVALSIF2

v" Calculate the S/F by J-Integral method EVALJ
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2.5.1 Flow Chart for the Main Program — STIFPS.m

1. Number of elements | | GETDAT | { GETARR 1. Material properties
2. Number of nodes (1) ‘ ‘ 2. Nodal connectivity
3. Degrees of freedom data

per node @ET INPUT DATD 3. Global nodal co-
4. Nodes per element (2) ¢ ordinates
3. Order of Gaussian ESTABLISH NODAL

integration.
6. Material type(s) CONNECTIVITY - ELCON
7. Stress state

(3)

Start loop
over number
of elements

(4)

Compute element stiffness
matrices and simultaneously
assemble them into the
global stiffness matrix

(5)

Repeat
over the
number of
elements

(6-a) & (6-b)

Compute the global load vector (FOQRCE), apply the boundary conditions (BOQUND), solve for nodal
displacements (BCSOLVE) and compute the stresses (STREPS){6-a} =P Perform these 3 steps again {6-b} for
another crack length and get the displacements & stresses (This is used for ERR & SIF ggp calculation)

(6-a) ¢ ¢(6-b)
1. Compute the SIF by 1. Calculate the ERR
DEM (EVALSIFI) (ERRCALC)
2. Evaluate the J-integral 2. Calculate the S/F from the
(EVALD) ERR (EVALSIF2)
3. Calculate the SIF from
the J-integral (EVALJ)

Figure 2.10  Flow chart for 2-D (& 3-D) FEA and computation of fracture parameters
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2.5.2 Evaluation of Stiffness matrices for Numerically Integrated Isoparametric

Elements (details of Step — 4 in Figure 2.10)

Start
numerical
integration

loop over all

elements

— Get the Gauss-quadrature
Set up the elasticity point-positions and weights
matrix (MODPS) (GAUSSO)

Start loop over
———| all integration [€———
P points

v

Compute the shape functions and their
derivatives (SFR2

A 4
Compute the Jacobian, its inverse and IJ I (JA4COB2) |

\ 4
Compute the strain-
displacement matrix [B]

(BMATPS)

v

Compute “[BI'{E][B]t | /| (weights)”
and assemble the product into the
element stiffness matrix K

v

Assemble the matrices into Global
stiffness matrix (ASMBLK)

!

{End of Numerical integration Ioopsl

End of loop over number of elements }

Figure 2.11  Flow chart for evaluation of element stiffness matrices
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2.6 Sample Applications

The computer programs developed until now are demonstrated by the application to a
standard linear elastic problem [3] and the results of the analyses are verified with the
solutions given in Ref. [3]. It may be noted that the example problem and the numerical
values for geometrical, structural and material parameters are exactly the same as in [3]
wherein no specific units were used. The main objective here is to compare the results
only. A plate with a central crack, subjected to uniformly distributed tensile loading is
considered for analysis. The crack length is assumed to be 40% of the width of the plate.
The material properties of the plate are assumed as: E = 10,000, v = 0.3 and the plate is
assumed to be of unit thickness. The main reason for assuming the above material
properties, geometry and comparing the results with those presented in Ref. [3] for the

same problem is to make sure that the modeling is correct right from the beginning.

2.6.1 Results of Analysis

It must be noted that the displacements along the loaded edge and the displacements
along the crack face are of primary importance since these are used for calculating the
ERR and SIF by the Displacement Extrapolation Method. For the same problem
described above, the displacements and the stresses have been calculated and presented in
Ref. [3]. A comparison between the results obtained from the above-described finite
element model and the results presented in [3] is also given in Table 2.1. It can be seen
that the results match almost perfectly indicating that the modeling is correct. Also the

finite element mesh that has been employed is shown below in Figure 2.12.
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Figure 2.12  Finite element mesh for the center-cracked plate problem. All dimensions

are in compatible units. (Please see section 2.6)
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In the case of 3-D modeling, the same structure shown above has been used except that
the thickness has been increased to 4. A similar mesh has been used with a single element
used in the thickness direction. A comparison of the displacements of 2-D analysis and
that given in Ref. [3] is presented below. Also presented is a comparison of the
displacements obtained by 3-D analysis with those obtained from the standard ANSYS®
software in which a different mesh was employed. It must be noted here that the stresses
and strains are obtained from the displacements [3] and will not be presented here, as the

stresses and strains calculated would be correct once the displacements are correct.

Program Resulits Results from Ref. [3]
Node Vv
Number u u M
1 0.000000 0.086136 0.000000 0.086136
2 -0.006884 0.085151 -0.006985 0.085151
3 -0.014354 0.081463 -0.014354 0.081463
4 -0.020902 0.075557 -0.020902 0.075557
5 -0.027502 0.066708 -0.027502 0.066708
6 -0.033251 0.055972 -0.033251 0.055972
7 -0.038510 0.039718 -0.038510 0.039718
8 -0.040344 0.026775 -0.040344 0.026775
9 -0.039981 0.000000 -0.039981 0.000000
74 0.000000 0.276943 0.000000 0.276943
75 -0.005959 0.276511 -0.005959 0.276511
76 -0.011833 0.276697 -0.011833 0.276697
77 -0.020950 0.276863 -0.020950 0.276863
79 -0.029706 0.276875 -0.029707 0.276875

Table 2.1

and along the loaded edge (nodes: 74-79)

A similar comparison has been done for the stresses (calculated based on the

displacements) and have also been found to compare very well. Now a comparison of the

displacements obtained from 3-D analysis is presented below.
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Table 2.2

Program Results

Node
Numbers u v w

80 0.000000 | 0.084138 | 0.000000 5
81 -0.014884 | 0.079377 | 0.000000 g %
82 -0.028551 | 0.064471 | 0.000000 §‘§: g
83 -0.039076 | 0.038112 | 0.000000 g%
84 -0.039929 | 0.000000 | 0.000000 ¥
107 0.000000 | 0.276509 | 0.000000 29
108 | -0.011855 | 0.276313 | 0.000000 % g g
109 | -0.029681 | 0.276467 | 0.000000 g8

1 0.000000 | 0.087923 | 0.006900

2 -0.006507 | 0.086876 | 0.006848 T

3 -0.013371 | 0.083078 | 0.006392 ;f

4 -0.019251 | 0.076827 | 0.005321 g

5 -0.025085 | 0.067543 | 0.003232 g—’

6 -0.029970 | 0.055761 | 0.000188 %

7 -0.034094 | 0.038600 |-0.004654 eg

8 .0.035615 | 0.025979 |-0.008125 g

9 -0.035899 | 0.000000 |-0.011984

74 0.000000 | 0.276552 |-0.006190 m
75 -0.005975 | 0.276108 |-0.006101 g f;
76 -0.011864 | 0.276281 |-0.006031 Eg g
77 -0.020990 | 0.276455 |-0.005989 % g_,
79 -0.029759 | 0.276479 |-0.005863 a

Nodal displacements from 3-D analysis by the MATLAB® FEA program
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Node ANSYS Results

Numbers u v

w

193 0.000000| 0.075686( 0.000000
195 -0.021662| 0.064853| 0.000000
196 -0.031795| 0.000000| 0.000000

80B)-§0BIS 8Y) UO
(sseuxyojy Buoje)
Sapou jenue)

200 0.000000} 0.272370{ 0.000000
201 -0.005189| 0.272350¢{ 0.000000
202 -0.010440| 0.272300| 0.000000
203 -0.015774| 0.272280( 0.000000
204 -0.021167] 0.272340| 0.000000
199 -0.026565| 0.272450| 0.000000

97 0.000000{ 0.079260{ 0.007003

99 -0.009752] 0.077281 0.006109
100 -0.183150| 0.067120| 0.003341
101 -0.023515| 0.040874|-0.003137
102 -0.028862| 0.000000}-0.010007
118 0.000000{ 0.272380(-0.005468

127 -0.002593] 0.272370(-0.005465

126 -0.005199]| 0.272350]-0.005457
125 -0.007812| 0.272310|-0.005442
124 -0.010449| 0.272280(-0.005430
123 -0.013108} 0.272270]-0.005417
122 -0.015778| 0.272270{-0.005407
121 -0.018475| 0.2722901-0.005401
120 -0.021172] 0.272330|-0.005395
119 -0.023875| 0.272390(-0.005393
108 -0.026573| 0.272450(-0.005388

abpa papeoj
8y} je sapou jenua)

aoey-joeId
ay) buoje sapou
aoe}-juos4

abpa papeo| ayj Guoje sapou asey-juoi4

Table 2.3 Nodal displacements obtained from the 3-D analysis by the ANSYS®
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2.6.1.1 Fracture Parameters

(a) SIF by Displacement Extrapolation Method

It has been shown [3] that isoparametric elements yield the most accurate results by
displacement extrapolation technique along the radial line corresponding to 6=180°. With
the conventional 2-D eight node isoparametric elements, a SIF of 300 was obtained
which is same as that obtained in Ref. [3], and which differs from the value of K; = 393.5
given in Ref. [3] by approximately 23.8%. Upon use of Y%-point crack tip elements at
elements 4 & 5 (described in section-2.3.1) a SIF of 377 was obtained by displacement

extrapolation, with an error of approximately 4.2%.

It must be noted that the formulae employed for the evaluation of SIF, are appropriate for
plane stress and plane strain cases only. So, the stresses induced in the 3-D structure were
analyzed to find out which case they represent more closely. It has been observed that the
stresses represent the plane stress case. So, all subsequent analyses are based on plane-
stress behavior. The S/F obtained by displacement extrapolation is 300, which is same as
that obtained in the 2-D case. Upon use of Y%-point crack tip elements the S/F was found
to be 380, which is a somewhat better (error: 3.43%) prediction than that provided by the

2-D case.

Using the formulae for the plane-strain case and using conventional elements, a SIF of
325 was obtained by DEM. In the same case, a SIF of 392 (error: 0.4%) was obtained by

using Ys-point crack tip elements.
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(b) Strain Energy Release Rate Method

The crack increment is simulated by releasing the nodes in the finite element mesh. The
crack 1s advanced by two different lengths [3] (obtained by releasing through one whole
element each time) and, the ERR and SIF are calculated for the average of crack length
each time. The ERR and SIF for the original crack length are obtained by extrapolating
the above-obtained values to the original (average) crack length. In this case, a SIF of
386.7 (error: 1.7%) was obtained upon extrapolation. In the case of 3-D, a SI/F of 392.95

(error: 0.014%) was obtained upon extrapolation.

(c) J-Integral Method
In this approach, the J-integral is evaluated along a contour path surrounding the crack

tip. In the above mesh, three such element-paths can be noticed.

Path — 1: §—-15-14-1
Path - 2: 7-13-12-2
Path - 3: 6-11-10-3

And through each of the above element paths, three J-contours can be obtained,
corresponding to £ = -1, £ = 0 and &= +1. Only the conventional isoparametric elements

were employed.

The values of the J-integral and the SIF calculated using the J integral are listed below.
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J-intggral SIF Error
(%)
. £=-1 14.835 385.160 212
® &= 15.710 389.500 1.02
o §=+1 14.918 386.240 1.84
N
P £=-1 14.754 384.110 2.38
* £=0 15.220 390.130 0.85
e £=+1 14.854 385.400 2.05
[3r]
L £=-1 13.760 370.930 573
- &= 15.980 399.800 -1.60
o E=+1 14.430 379.800 3.48
Table 2.4 J-integral and S/F for various contours

From the above table, it can be observed that the slight variations in the J and SIF values
increase as one approaches the crack tip, due to the limitations of the numerical solution

technique.

2.7 Conclusions and Discussions

In this chapter, the concepts of S/F, ERR and J-integral in relation to Linear Elastic
Fracture Mechanics (LEFM) of isotopic materials have been discussed in detail. Finite
element analysis programs developed in MATLAB® for linear elastic analysis of
structures made of isotropic materials were described and discussed in detail.
Applications to specific standard problems (2-D and 3-D) were shown and the results
(corresponding to various fracture parameters) obtained were verified [2]. This
formulation will be extended in the subsequent chapters to anisotropic materials and

stochastic problems respectively.
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Chapter 3

Stochastic Finite Element Modeling and Analysis of Anisotropic Plates

3.1 Introduction

In the past few years, the applications of composite materials in various automotive,
aerospace and biomedical structures have increased tremendously. The main advantages
of composite materials over the conventional high strength metals are: high strength, high
stiffness, low cost, long fatigue life (for a few composite materials, the fatigue strength
remains unaltered with the number of cycles of operation), low density, high corrosion
resistance, wear resistance, thermal and acoustic insulation, high specific stiffness and
high specific strength. The most important aspect is the anisotropic and heterogeneous
nature of the material. The ability to manufacture the laminates with different ply
orientations and stacking sequences provides the designer and manufacturer with much
freedom to achieve the optimum configuration for each specific application. With such
wide range of applications for composite structures, it is essential for the analyst to have a
thorough understanding of various mechanisms of failure of these materials, the most

complex and least understood being the failure by fracture.
In the case of composite laminates, significant randomness in the material properties

exists due to the variations in the distribution and arrangement of matrix and fiber. As a

result, the material parameters obtained from any single test specimen are specific to that
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particular sample and hence a probabilistic approach has to be followed in order to

develop general models based on sample values. This approach can be used to get

probabilistic parameters that represent the sample lot in general. Thus, when the Finite

Element Analysis (FEA) is performed based on a stochastic approach, such that a

stochastic description can be provided for both the material properties and the response of

the laminate, the resulting FE4 is called the Stochastic Finite Element Analysis.

The first few sections in the present chapter are devoted to:

(a) the various concepts of LEFM as applied to anisotropic materials

(b) the finite element fracture analysis of anisotropic materials

(c) the extension and adaptation of the MATLAB® program developed in chapter 2
so as to include the case of anisotropic materials, and

(@ illustrative applications on composite laminates

Further, the last few sections in this chapter are devoted to:

(a) incorporating the concepts of stochastic FEA into the program developed above in
section (c¢), and

() determining various fracture parameters based on a probabilistic approach for the

same illustrative applications discussed above in section (d)

3.2 Fracture Mechanics of Anisotropic Plates

For anisotropic materials, the complex analytic function theory [21] has been employed
in stress analysis. The various fracture parameters (S/F, ERR and J-Integral) for a cracked
anisotropic plate have been calculated based on the stress analysis results. The stresses at

the crack tip in an anisotropic material in Mode-/ are given by [3] Equations (3.1 - 3.3)
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o, = ) Re[ #l#; ){/‘ze"ﬂlFx}:l (3.1

K 1
=—L_R Iy = u.F 3.2
> v 27r eli(/‘l—ﬂz){# 2T H }J 3-2)
K, His
= R F —F, 3.3
To = o e[(ﬂl_#z){l -}] (3:3)

The stress components for an anisotropic material in Mode-/7 failure are given by

2 pe &z?ﬂ—ufﬂ] (3.4)

%= om {(,ul—#:)

[(M AL —Fl}} (3.5)

1 ){/”11:1 =i, F, }] (3.6)
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In the above equations, K; and Ky are the stress intensity factors for Mode [ and Mode 7

respectively, Re represents the real part of the function and further x4, and u, are given

by
y7 =%[(1+A)"Lii(1—l)’%] when ¥ > A4
7 =—j—5[z’(z+l)li¥(i—z)li] when y <A
in which

and Yy = (2axz +aas)
a, 2a,

A

where a,;. a2, @22 and aeg are the compliances as in

&£, =a,0, +a120')_ +a,6rxy

£, =30, +an0, +ayT,,

Yoy =Aq0, +060, +a, T,

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

Due to the condition for symmetry, a;> = az1, a6 = as2 and ais = as;. In the case of an

orthotropic material, the principal elastic directions are orthogonal to each other and

further there is no coupling between deformations due to shear and normal stresses. In
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that case a6 = az6 = 0. The orthotropic coefficients are given by

in which

,
D2 = Haay a1, — |54

ay
di2 = H 24,5, + — Ay

1.2

74

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)



3.2.1 Stress Intensity Factor

The behavior of composite laminates with stress raisers such as cracks is of great interest

to the designer because of the resulting strength and life reduction due to damage growth

around these stress raisers. An expression for the stress distribution ahead of the crack

shown below in Figure 3.1 is given by [2]

o, l|x
o [ ; H>a
o, =94Jx* -a’ (3.20)
0 ; [d<a
in which
Oy represents the stress at any point along the y-axis
Gapp  represents the externally applied far-field stress and
a represents the semi-crack length.
Cap
A 4 4474 4 42
Y
y
oy
Gy
2L
.
H X
2a
< 2w —p
A A
YVYVVYVYV VY
Gup
Figure 3.1 Composite laminate with a central crack under uniaxial tensile loading
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By using the distance, r, from the crack tip, i.e., » = [x-a|, it can be seen that Equation
(3.20) has singularities of type r'” at the crack tips and if r is sufficiently smaller than

half the crack length, the stress oy is can be approximated by

o, = (3.21)

where K| is the stress intensity factor which in the case of a center crack in an infinite

plate of very large width is given by

N (3.22)

K, =0

ap

In the case of a rectangular plate of finite length (2L) and width (2W) with a center crack

(as shown in Figure 3.1), the SIF is given by

jaapJE (3.23)

S|~

K, =f(%,

. . a LY. . . S . .
in which f (W’_) is a non-dimensional factor which is a function of the aspect ratios

(a/W) and (L/W). From equations (3.20 — 3.23) it is quite evident that the finite

geometry of the laminates as well as the type of externally applied loading have a bearing
on the stresses distributed at the crack tip. The SIF is a parameter that quantifies the stress

field around the crack tip which is a characteristic of the material.
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3.2.2 Energy Release Rate

Under general loading conditions, the Energy Release Rate (ERR) for Mode I and Mode

II can be given by [17]
Y
G, =Kjay [%} (3.24)
1
> +A4)?2
G(] =K1-lau{(z\/2—/1) :l (3.25)

3.2.3 J-Integral

It can be recalled from Equation (2.12) that the value of the J-integral is influenced by the
stresses and the strains at various points through which the contour for the J-integral
passes. Further, the stresses and strains are influenced by the type of material and the
external loading conditions. Thus, for a set of given loading conditions the stresses and
strains depend only on the type of material. Thus for composite laminates the J-integral
evaluation depends only on the elasticity matrix. Further, the stress intensity factor can be

calculated from Equation (3.24) by replacing G; with J as

J24
azz(Z +’1)'L£

In the next section, the evaluation of the elasticity matrix for composite laminates is

K, = (3.26)

discussed with all relevant details.

33 Elasticity Matrix for Composite Laminates
In the following few sections, the various aspects of laminate theory [115] that are

relevant to the present thesis are discussed in sufficient detail.
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3.3.1 Aspects of Laminate Theory
For a single unidirectional lamina in plane-stress situations, the strain-stress relations

referred to the material axes are given by [147]

| - V% 0
o | JE TV o

€ S, S, O
- =] V2 1
£ b= S(;2 S(;2 So o, b= %. Az /o o, (3.26)
Ts 66 L 76 0 0 | Ts
G,

In most practical cases, the material axes (1,2) do not coincide with the global or loading

axes (x,y) as shown below in Figure (3.2).

v
A O
T » T 2 o
2 // “ 1
Ti2
% 1 :
Cx (o2 ag;
Ox
/ ° >
T,, @ > =
y ¢ oa
Oy
Figure 3.2 Stress components in an unidirectional ply referred to the local and global

material axes

In such a case, the stress and strain components referred to the material axes can be

expressed in terms of the global axes by
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o, = [T o, 3.27)
7, Ty

gl ax

e p=[Tk (3.28)

In the above equations, the tensorial shear strain, & is used and is related to the

engineering shear strain by

Vo
and ¢, =? (3.29)

and the transformation matrix, [7] in Equations (3.27 — 3.28) is given by

[T]=| »* m* -2mn (3.30)

in which m=cosé and n=sinfd, and 6 is the angle measured positive in the
counterclockwise direction from the x-axis to the 1-axis as shown above in Figure (3.2).

In terms of the global axes, the stress-strain relations are given by
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—
~

s (3.31)
-

Q

]

10
(Ql‘(pl(gu
QOO IO

26 66

in which Q-,j are called the transformed reduced stiffnesses, and are defined by

O, = 0,ym* +2(0p +20,, Jn*m* + Q1

O =(01 + 0 =40, J*m* + 0y, (n* +m*)

O = (011 =012 =204 )im* +(0,, ~ 0y, +20, )n°m
Oy, = 0,y1* +2(Q1, +20¢ 2m* +Qpym’

O =(Qu1 = Q02 =204 J*m+(Q12 ~ 0z +2Q Jm’
O = (01 + O =201, =20 Jn>m* + Qg (n* +m*)

(3.32)

3.3.2 Laminate Stiffness Matrix
The strains at any point in a laminate with reference to the mid-plane strains and the

laminate curvatures are given by [147]

8! g: KX
— o -
v (=6, r T K, (3.33)
- o
/S },.\‘ KS

and the stresses at any point in any layer 4 in the laminate are given by
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o, On O, Ou| || |2« Qn Q.| [~
St =19 Oy Cu| 151149 @y O |1k (3.34)
), @« O Ol 7] |0 9, 0O.] |A

It can be seen from Equations (3.33 — 3.34) that the strains vary linearly and continuously
through the thickness, while the stresses wvary discontinuously because of the

discontinuous variation of the transformed stiffness matrix [Q]., from layer to layer.

Figure 3.3 Element of a single layer with force and moment resultants

The net force and moment resultants of the stresses acting on a layer k& of the laminate

shown in Figure 3.3 are given by

il
[——

Z
Eod
I
n.__’lu |~
9
&
2
I
— i~
9
R

Ng = |t d= (3.35)

]~
!
9]~
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and

(3.36)

! 4
2 : 2
k k - ko _
Mi = (o zdz M} = [o,zdz ME = (7, zdz
4
3 -3 3
in which
z represents the coordinate variable of a point in the cross section and
t represents the ply thickness

In the case of a multilayer laminate the total force and moment resultants are obtained by

summing the contributions from all layers. Thus for the laminate with » plies as shown in

Figure (3.4), the force and moment resultants can be written as

X

N . o
N, = ' ¢ dz

A B

R R
and
M.‘ o-.l
M, b= Z f‘ o, ¢ zdz
M| =T )
A z
Plyn
h,.
I e O, AT
z h-ka
mid plane ihs l .
Ply3 h
Ply 2
Ply |
Figure 3.4 Multilayer laminate with coordinate notation for individual plies
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Substituting Equation (3.34) in Equations (3.37-3.38) one can obtain

N, Qu Q—ll Qs gf Qn Q-IZ Q-us k.
N t=YU0: On G| et det|0n On Gu| 1k, [ 22y (339)
N k=1 - - - L0 - - - k o
X O O O Ve O O stj o
L de L k
and
M, Qn Q—IZ Q-16 af Qu Q-ll Q_xs k,
M, b= G0 G G| e[ adzt| Gy Ou G| 1k, t[ 22z} (3.40)
M k=1 - - - 0 £t - - - k b
¥ le Qza Q66 Vay le st Q66 ¥
L de R Jx

In the Equations (3.39-3.40) given above, the in-plane strains and curvatures refer to the
entire laminate and are the same for all plies. Thus the strains and curvatures can be

factored outside the summation sign as follows.

3

él .[:k_lclzjl{g°}+li y [QL ﬂ‘_lzdz]{k} (3.41)

)=[3

{N}:[ y [Q:Ik(hk —hk_l):l{g°}+[ y [é]k(h,f —h,f_l):l{lc} (3.42)

{N} =[4]{e°} +[BI{K} (3.43)
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and

in which

no_k%
0, (h, —h,_,) (Axial stiffness)

k=1

1< 5

B, = 3 Q,.j(h,f —h,f_l) (Axial-bending coupling stiffness)
k=1
D, =% Q ( —h;_ [) (Bending stiffness)

with ij=x, y, s.

Thus the full form of the force-deformation relation of Equation (3.39) is

N, A, Ay Agl|el B, B, Bgl||k
N, = Ap A |\ &) ¢+ By, By [k
N symm Ag |72 symm By
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(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)



and the moment-deformation relation of Equation (3.40) is

M, B, Bj, Blﬁ~l &, D, D, D ||k,
M, = B,, By e p+ D,, Dy Kk, (3.51)
M, symm B }'f}. symm Dg |\ £,

The combined form of the Equations (3.50-3.51) is called the laminate constitutive

equation and can be written as

(N, ) [ 4 A4n 4 B, B, Blle
N, Ay Ay By, By 53

) Ny - symm Ags Symm Bgs <},£y [ (3.52)
M, B, B, By . D, D, Dgllk,
M, By By Dy, Dy || &,

M) | symm By symm D | ~kx},l

3.3.3 Equivalent Elastic Constants

In-plane forces for symmetric laminates, for which the axial bending siffnesses B, are

zero, can be written from Equation (3.50) as

N, 4, A, Agl|e
N, p=td, Ap Ay &, (3.53)
N, Aig A A J|7 fj-

Inversion of the Equation (3.53) gives
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0

£ a, a, agl|lN,
0 _

£, r={aa a, ay\N,
0

7 5 A Ay Ag ||N

(3.54)

in which [a] is the extensional laminate compliance matrix, which is the inverse of the

corresponding stiffness matrix, [4], as given below:

[al=[4]"

The average laminate stresses can be defined as

N, - N, - N,
. 0'),=h,and T”'=T

.=

=

in which 4 is the laminate thickness.

So Equation (3.54) can be rewritten in terms of average laminate stresses as

N, -
£ ha,, ha,, ha A}/z
g r=|ha, hay, hay <T"= F,r
Vf_v ha, ha,, hag N_ _
Mo _
. lz ny

A uniaxial stress o, produces the following strains

1 Vi d m,
, &, =——"7"0,, =
x E x ) E X an Y,r} E Gx

R4 X X
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Yy o . .
where E_,v_, and m_ =——- are the x-directional modulus, Poisson’s ratio and shear

x? Vxy
gx

coupling coefficient respectively.

In a similar manner, a uniaxial stress o, produces the following strains.

1 m,
g ., & =—0,and y_=——20, (3.59)
E}' ’ ' E.” ) > Ey d

A pure shear stress 7, produces the following strains.

(% Ty T

E . =— r . g =~ —, d = 3.60
* G.m y G.m eV ( )

xyx LA 4

2l

By superposition of the three loadings o,, o, and r,, the following strain-stress

relation can be obtained in terms of engineering constants.

! Via I
E, E, G,m, o
x va 1 1 x
o= = _ 3.61
’ E_x E}. Gx}.my O-,V ( 6 )
Y mom, ) T
| E. E, G,

From symmetry considerations of the compliance matrix, the following equations are

obtained.

<
3
3
ik

(3.62)

! |¢,,<
I

ty

ry
Q

3

n

Q

3
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Comparison of equivalent strain-stress relations in Equation (3.57) and Equation (3.61)
yields the following relations for equivalent engineering constants.

1 1 1

B BT 9T
1 2 33
(3.63)
a a a a
v, =12 v, =——12 m, = -3 m, =~ 23
ay, a3 a;, ay

The equivalent elasticity matrix [E] for a composite laminate can be calculated by

inverting Equation (3.57) as

.
7 ha,, ha,, hay B &

10, r=|ha,, ha,, hay &; (3.64)
- ha, ha,, hag 72
‘Z‘X_‘.J ’

Now comparing Equation (3.64) with Equation (2.39) in Chapter 2 (Section 2.4.1.1) for

calculating the elasticity matrix [E], gives

-1
ha,, ha,, hag,

[El=|ha,, ha,, ha, (3.65)

hag hay, hag

34 Flow chart for Computing the Elasticity matrix of Multidirectional
Laminates

As has been noted earlier, the only difference in computing the fracture parameters of an

isotropic material and an anisotropic material lies in the computation of the elasticity

matrix. The flow chart for the computation of the elasticity matrix is as follows:
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Input ply properties
such as Ey, E,, vi2
and Glz

Compute the Ply stiffness matrix,

[Qh-

Referred to the laminate directions

/ Input the ply

/ orientation, 8

Compute the ply stiffness
matrix, [Ql,ys . referred to
the global coordinate axes
1.e., the transformed ply
stiffness matrix

/ Input the ply
/ thickness, t

Compute the laminate axial stiffness matrix,
[A]xys

Compute the laminate extensional
Compliance Matrix. [a];,,

Input the total

laminate
thickness, h
Compute the laminate elasticity
matrix, [E]
Figure 3.5 Flow chart showing the computational details for the elasticity matrix of

multidirectional laminates
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35 Illustrative Application

The program developed in the previous chapter is extended further in this chapter for
applications to composite laminates will now be demonstrated through an example. The
problem under consideration is a plate made of NCT 30! graphite-epoxy composite
material with a configuration of [0/90]ss and having twenty plies. The mean values,

standard deviations and coefficients of variation of the various material properties [144]

for NCT 301 graphite-epoxy composite material are presented below in table 3.1.

- . . Matrix
E,(GPa) | E;(GPa) | Va1 | w12 |G (GPa) 233;:;;23“&'; direction
failure load (N)
Mean 129.43 799 |0.0205 |0.3322| 4.28 18617.06 1257.89
Standard
deviation 2.87 0.33 0.0021 |0.0317 0.24 2789.09 169.34
Coefficient
of variation| 2-22 412 | 1043 | 955 | 552 14.98 13.46
Table 3.1 Mean values, standard deviations and coefficients of variation of various

material properties of NCT 301 graphite-epoxy composite material

The structure considered for analysis is a plate of width 240 mm and length 480 mm with
a center crack of length 80 mm, subjected to an uniformly distributed load of magnitude
1.5 KN/mm which is approximately equal to 60% of the mean laminate strength [144].
Due to symmetry of the structure and the loading, only one-quarter of the structure is
considered for analysis. The results of the analysis are presented below. The results are .

found to match very well with those obtained by using the standard ANSYS® software.
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Again, only the displacements are provided, as the strains and further, the stresses are

obtained from the displacements. The mesh employed is also shown below.

P=1.5 KN/mm
S S S S S S
>
% 110 1 12 L3 14 115
plios (30 108 (301 107 29
0o 100 191 192 103 104
")S (26} 97 27 96 (28)
>Q§ 29 op 91 Q2 93
pE7 125) g6 24) 85 an
g -~ =g 19 |0 |t 2
ol
P76 20 15 2n 74 (221
. - ! ol A%< Al
s (19 &7 (18)
P38 S9___an__ b &2 5 54 (7
(13 57 TEIE (asy  Iss
34
b 40 ! 44 ds 46 147 RIS IR 50
P02 3 (1 T (1o B7 9 |36 8 |35
71 R N .3 S 16 17 IR i kis) 3] 32
P20 1 1N 7 4 |16 T |15 (6
i 4 | > 4 s & 2 8 9 10 1 12
A gh . A A A
I< ¥—Crack tip "
40 mm | 80 mm
Figure 3.6 Finite element mesh for the center-cracked plate

91



Global Node | MATLAB® Program ANSYS®
Number u (mm) v (mm) u (mm) v (mm)
© 1 0.0000 1.5573 0.0000 1.5350

E 2 -0.1010 1.5142 -0.1019 15712
= 3 ~0.1950 1.3096 -0.1967 1.2656
S 4 -0.2590 1.0051 -0.2803 1.1040
© 5 -0.2823 0.0000 -0.3244 0.0000

110 0.0000 2.8219 0.0000 2.8470
e | 111 0.0422 2.7600 0.0480 27830
= 112 0.0759 2.6098 0.0872 2.6279
3 113 0.0813 2.4445 0.0883 24588
S 114 0.0768 23167 0.0802 23235
S 115 0.0663 2.2407 0.0676 22475

116 0.0550 2.1935 0.0540 2.1970

Table 3.2 Comparison of nodal displacements obtained by using the MATLAB®

program and standard ANSYS® software.

It must be noted here that the mesh shown in Figure 3.6 was employed in order to
compare the results of the analysis with those presented in an earlier work [144] and to
verify if the analysis is correct. Due to some disadvantages such as being very coarse near
the crack tip and also due to the absence of element loops around the crack tip, this mesh
is inadequate for the evaluation of important fracture parameters such as ERR and the J-

integral.

It is desired to evaluate the J-integral in a region close to the edges of the plate in order to
find out the effect of stochastic variations in the material properties at the edges of the
plate. Also, the stochastic variations of the stresses in the plate along a radial direction

originating from the crack tip are kept track of, by evaluating the J-integral along various

92



contours selected through various element paths that are located at various distances from
the crack tip. Hence a more sophisticated mesh is employed and is presented below in
Figure 3.7. The various fracture parameters are evaluated and discussed below in the next

few sections.

3.6 Evaluation of Fracture Parameters
In the next few sections, the fracture parameters such as S/F, ERR and J-integral are
evaluated for NCT 301 graphite-epoxy laminate with a configuration of [0/90]¢s (/W =

0.333, W = 120 mm, L =240 mm, tensile UDL = 1.5 KN/mm) and are presented.

3.6.1 Stress Intensity Factor

The stress intensity factor has been obtained by the following three methods [3]: DEM,
SERRAL and J-integral method. The SIF as obtained by the DEM is 52.24 MPaVm. The
SIF as obtained by SERRM by releasing in Figure 3.7, elements 6 and 7 respectively, is
71.25 MPavm. In the evaluation of the J-integral, various integration loops have been

employed. The finite element mesh shown in Figure 3.7 has four loops:

Loop-1: 8§—-14-13-12-4

Loop-2: 9-17-16-15-3

Loop-3: 10-20-19-18-2

Loop-4: [1-25-30-35-40-43-42-41-36-31-26-21-1

Through each of the above loops three contours can be drawn corresponding to &=-1, £=0
and &=+1 for the evaluation of the J-integral. The S/F can be obtained from the J-integral

by Equation (3.26).
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Figure 3.7 A finite element mesh appropriate for the evaluation of fracture

parameters including £RR and J-integral
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J-integral
(1.0e6 N- | SIF (MPaVvm)
m/m?)
- |L§=-1 0.9417 70.16
£ | &= 1.0152 72.84
& | g=+1 0.9559 70.68
~ | §=-1 0.9661 71.06
£ [ ¢= 0.9815 71.62
a | g=+1 0.9620 70.91
o | §=-1 0.9645 70.99
£ [ £=0 0.9690 7117
& [ g=+1 0.9609 70.87
v (L §=1 0.9628 70.94
£ [ £=0 | 09634 70.96
e | g=+1 0.9636 70.97
Table 3.3 Values of the J-integral and S/F for the various contours described in

section 3.6.1.

3.6.2 Energy Release Rate

The ERR is obtained by extrapolating the values of energies released by advancing the
crack through one whole element each time. In Figure 3.7 elements 6 and 7 are released
one at a ume. When element 6 is released, the energy released is equal to 224.49 N.m and
further, when element 7 is released, the energy released is equal to 279.23 N.m. Now the
average crack length is 55 mm, and the ERR is 1.1466 x 10° N.m/m>. Similarly, the
energy release rate obtained by releasing element 8 and having an average crack length of
62.5 mm is equal to 1.3365 x 10° N.m/m’. By extrapolating the above ERR values to the
crack tip, an ERR of 0.9567 x 10° N.m/m’ has been obtained. Corresponding to this value

of ERR, the SIF is calculated as 71.25 MPaVm.



3.6.3 J-Integral

The J-integral is numerically evaluated along the twelve contours described above in
section 3.6.1 and the values of the J-integral are summarized in Table 3.3. It can be
observed that the values of the J-integral compares very well with the value of the ERR
and are almost equal to the £RR. The comparison also holds good for the values of the

STF obtained by SERRM and J-integral.

3.7 Stochastic Finite Element Analysis

Most modern mechanical systems possess high degree of structural complexity.
Therefore, when their behavior is to be predicted under various loading and
environmental conditions, advanced analytical and numerical techniques are required. In
the case of composite laminates, significant randomness is present. This is due to the
stochastic spatial variations of the properties of fibers, properties of the materials and
properties at interfaces. In addition to the above, several variations exist in the fiber
volume fraction, void contents, fiber orientation angles in various plies, thickness of the
lamina, etc. due to significant variabilities that are introduced during the manufacturing
processes. As a result, tests on a single material specimen provide a specific value for
each material parameter and mechanical property. However, when a number of
specimens are tested, different randomly distributed values are obtained for the same
material property. Therefore, the analysis of laminates has to be performed based on a
probabilistic approach. When finite element analysis is performed based on a stochastic
approach such that a stochastic description can be provided for both the material

parameters and the response of the laminates, the resulting FEA is termed as Stochastic
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Finite Element Analysis (SFEA). The remainder of this chapter is devoted to the fracture

analysis of composite laminates based on a stochastic approach.

3.8 Stochastic Field Modeling of Material Parameters

The spatial variations of material properties such as the Young’s modulus, Poisson’s ratio
and shear modulus are considered to constitute in each case a two-dimensional
homogeneous stochastic field. The fluctuating components a(X) of a material property
have a zero mean. For instance, the stochastic field of the Young’s modulus in the fiber
direction (£}) is given below and a similar procedure is applicable to £3, Gy3, via, vay, ply

orientation angle and ply thickness.

E =Efl+a(x)] ; Ela(x)]=0 (3.66)

The auto-correlation function is given by [85]

R, (£)= Ela()a(x +£)] (3.67)

In the above, X' = [x, y]’ indicates the position vector and & = [g’,,,é_:’v}' represents the

separation vector between two points X and (X +¢&). In practical cases each material

property is considered to vary at each Gauss point. Thus, if # represents the number of
finite elements present in the structure, and m represents the order of Gauss quadrature,

then there are N (equal to 7n*m) material property values associated with the structure.
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Consider only the fluctuating component of the homogeneous stochastic field, which is

used to model the matenal property variations around the expected value. These N values
a,=a(X,) (i=123,..,N), are correlated random values with zero mean. Also X;
corresponds to the location of each Gauss point. Their correlation characteristics can be
specified in terms of the covariance matrix C,, of order N x N, whose ij’" component is

given by

¢, = Cov[axaj J== E[aiaj J= R, (f) Lj=lL..N (3.68)

=y

in which &, = (X ;= X,.)=the separation distance between the Gauss points / and ;. Now

avector a=[a, a. a; .. a,| canbe generated by
a=LZ (3.69)
in which Z = [Zl Z, Z. .. Z, ]’ is a vector consisting of N independent Gaussian

random variables with zero mean and unit standard deviation. and L is a lower triangular

matrix obtained by the Cholesky decomposition of the covariance matrix C,,. Thus,

Lr

(l
0

(3.70)

o

Once the Cholesky decomposition is accomplished, different sample vectors of a are

easily obtained by generating different samples for the Gaussian random vectors Z.
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The correlation properties of the stochastic field representing the fluctuating components
of material properties are expressed using the Markov correlation model, also known as
the First-order autoregressive model. The choice of this model in this work is due to its

wide use in the literature [103].

39 Markov Model

The first order autoregressive correlation model or the Markov model is given by

RAL

R.(E)=0? exp{-['

N\
ﬂ (.71)

A

in which o, is the standard deviation of the stochastic field a(X) and further 4 is a
parameter called the correlation length, which is defined such that the correlation is
negligible when o is large. The stochastic field a(X ) represents the deviatoric
components of the material property with autocorrelation function as given in Equation
(3.71). The stochastic field a(.X) for each Gauss point is represented by the value of a, of
a(X) at the Gauss point X, of the structure i.e., a, = a(X g). The auto-correlation model

given by the Markov model is presented below in Figure 3.8 for three different values of
d = 10, 30 and 50 mm. From this figure it can be observed that the variations in the
correlation with the separation distance, 4 have a similar trend (concavity of the graph)
for all values of d. For instance, for a separation distance of 20, the correlation values for

d =10, 30 and 50 are 0.14, 0.51 and 0.69 respectively.
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Figure 3.8 The first-order autoregressive correlation function for d = 10, 30 and 50

Considering for instance, that the distance between any two Gauss points (i and /) in the
structure, the z'j‘h entry in the covariance matrix of any mechanical property, is given by
Equations (3.68) and (3.71). Also the corresponding value for the standard deviation of
the mechanical property is used in the Equation (3.71). This covariance matrix is
symmetric and 1s different for each mechanical property. This covariance matrix is
decomposed into upper and lower triangular matrices {’ and L. Considering the property,

E|, the column matrix a as in Equation (3.72) is generated by using the Equation (3.69).

The Young’s modulus along the fiber direction can now be assumed to have distributions
as given by the vector a and can be represented by

E,=E,(l+a,) (3.72)

lg

where E |, is the value of the Young’s modulus in the fiber direction at a Gauss point.
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Moreover, £, is the mean value of the Young’s modulus in the fiber direction and is

taken from the Table 3.1. Similarly, the other material properties are represented by

Young’s modulus in the matrix direction, £,, = £,, (1 +b, ) (3.73)
1-2 directional Poisson’s ratio, v,, =V, (l + cg) (3.74)
Shear modulus, G,,, =G,,,(1+d,) (3.75)

in which £, 1s the mean value of the Young’s modulus in the matrix direction and

further, v, and G,,, are the mean values of the 1-2 directional Poisson’s ratio and the

12m

shear modulus respectively.

It should be noted here that the standard deviations of ag, bg, ¢g and dg represent the
coefficients of variation of the material properties £z, Eze, V¢ and Gz Also the
variation of the ply orientation angle, 6, and the ply thickness ¢, are evaluated in a

manner similar to Equations (3.72 —3.75) as

6, =0,(+e,) (3.76)

t, =1, (1+1,) (3.77)

in which 8,, and ¢,, are the mean values of the ply orientation angle and ply thickness

respectively. The assumption of Gaussian distribution implies the possibility of
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generating negative values for the material properties. In order to avoid this difficulty, the
values of the random variable, a,, in the case of Monte-Carlo simulation are confined to

the range

~l+e<a, <l-¢ (3.78)

where ¢ is a very small perturbation parameter.

3.10 Programming the Stochastic Finite Element Analysis

Using the test data of the material properties provided in Table 3.1, the stochastic
processes that correspond to the Young’s moduli, Poisson’s ratio and Shear modulus are
determined according to Equations (3.72 — 3.75) and further, sample realizations at each
Gauss point in the finite element mesh are obtained. Using the generated sample
realizations of material properties at each Gauss point the stochastic elasticity matrix, [£],
is calculated for each Gauss point. The stochastic elasticity matrix generated thus is
incorporated into the Equation (2.62) for the element stiffness matrix. The flow chart for
computing the stochastic fields of the elastic constants is given below in Figure 3.9. This
change is introduced as another routine (RNDPROPS.m) in the input file, GETARR.m.
The rest of the programming logic details and control flow details are same as listed in
Figures (2.10 — 2.11). Now the entire analysis is performed for 250 test specimens and
the mean and standard values of various fracture parameters are computed. The reasons

for using this specific number (250) are discussed in chapter 5.
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Calculate the distances between each
Gauss point and every other Gauss point
and hence calculate the Covariance matrix
for each material property.

Perform the Cholesky
decomposition of each
covariance matrix and find the
lower triangular matrix

Evaluate the stochastic field vectors: a(X), b(X), c(X) and d(X)
of the material properties using equation (3.69)

l

Evaluate the random values of the
material properties using equations
(3.72 -3.75)

Figure 3.9 Flow chart used for the calculation of material properties based on

stochastic field modeling

It must be noted here that, in order to make the program more understandable, each task
has been assigned to a separate function. For example, DISP_EXTRAP.m and
ERR_EXTRAP.m are two functions used to obtain the SIF and ERR by extrapolation
techniques, whereas the function ERRCALC.m calculates the £ERR each time an element

is released. Also, the function EVALJ.m is used to evaluate the J-integral for the initial
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boundary conditions and the functions EVALSIFI.m, EVALSIF3.m and EVALSIF4.m

are used to evaluate the SIF by DEM, ERRM and J-integral method respectively.

3.11 [Illustrative Application

The MATLAB® program developed in this chapter is now demonstrated through an
application to a composite laminate with a configuration of [0/90]¢s made of NCT 301
graphite-epoxy composite material. The structural geometry, the loading and the finite
element mesh employed are the same as shown in Figure 3.7. The problem under
consideration is the same as that considered in section 3.5 and in this case too, the crack-

plate width ratio is taken as 0.33.

Using the test data on elastic constants of the composite material, presented in Table 3.1,
the stochastic field realizations of all the material properties are obtained at each Gauss
point using Equations (3.72 — 3.75). In the present thesis, a three-point Gaussian
numerical integration is used as it gives the most accurate results. Considering any typical
element in the structure (Figure 3.7), nine different sample realizations of each of the
stochastic processes are generated corresponding to the nine Gauss points in the element.
Considering a particular set of sample realizations generated for the entire structure, a
sample realization for Gaussian points in elements 5 and 43, for the [0/90]¢s laminate, is

shown below in Figure 3.10.

Using these sample realizations of the material properties, the elasticity matrix, [£], at

each Gauss point is calculated according to Equation (3.47).
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E,=128.29 GPa
E.=5.89 GPa
\12=0.277
G;2=4. 16 GPa

Figure 3.10

(near crack tip)
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(at the loaded edge)

A set of sample realizations of elastic constants at different Gauss points

in elements 5 (near the crack tip) and 43 (at the loaded edge)

Also presented below in Figure 3.11, are the sample variations of the Young’s modulus

along the fiber direction, with the distance of separation the Gauss points from each

other.
Sample-1 Sample-2
1-:0\_ l':G\'
= 1y < 135
£ 1304 z |
R = 1304
S 125, 2 ’
% 1. £ sy
= 15 S 120
300 300
150 150
y(mm) ¢ y (mm) 100
6o X (mm) 00
Figure 3.11  Simulated sample variations of the fiber direction Young’s modulus

106



Using the generated sample realizations of elastic constants at each Gauss point, the
stochastic laminate elasticity matrix {E] at the corresponding Gauss point is calculated

according to Equation (3.65) in section 3.3.3.

A sample realization of the stochastic elasticity matrix [E] for a [0/90]¢s laminate for the
simulation that is the same as the one shown in Figure 3.10, is now shown in Figure

3..12.

708 269 0 6834 215 0
[£]=| 200 708 0 |GPa [£]=| 215 ®3# 0 |G
0 0 407 0 0 414
A A
3 6 9
-~ .._,3. . "6. A,,,9. J :
> ....... e ......... .’ SQ
". 5‘ . S’ L. - i :
........... [. 4. .. 7‘ -
..... ; 1. .V..,.A_‘. _/. ) K
6744 233 0 Element 2 Elmﬁ 245 0

[£]=| 235 6744 0 |G (nearcracktp)  (neartheloadededge) [ ]\ 545 695 o |gpg

0 0 412 0 0 42

Figure 3.12 A set of sample realizations of the stochastic elasticity matrix at different

Gauss points
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With the above set of sample realizations for the material properties and elasticity
matrices, the element stiffness matrices are computed according to Equation (2.60) and

the global stiffness matrix for the structure can be obtained by

NELEANS
K=Y [k] (3.79)

ielem=1
in which NELEM represents the number of elements in the entire structure and is equal to
43 in the present example. After obtaining the global stiffness matrix, the displacements
are obtained by solving

[xKe}=1{r} (3.80)
in which {d} represents the displacement vector and {f} represents the applied force

vector. A set of sample displacements is listed below in Table 3.4.

Node |X-Displacement|Y-Displacement

Number (u mm) (v mm)
1 0.0000 1.1740

2 -0.0299 1.1692

3 -0.0620 1.1510

4 -0.0932 1.1199

5 -0.1259 1.0728

6 -0.1578 1.0110

7 -0.1911 0.9308

8 -0.2241 0.8299

9 -0.2573 0.6807

10 -0.2757 0.4942
148 0.0000 2.1765
149 0.0403 2.1615
150 0.0666 2.0807
151 0.0697 1.9909
152 0.0597 1.9256
153 0.0474 1.9047
154 0.0372 1.9072

Table 3.4 A set of sample displacements at the crack flank and at the loaded edge
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Using the displacements obtained above the strain energy is calculated as

Strain Energy = %{d}’ {r} (3.81)

The SIF can be computed by using Equation (3.15). After obtaining the displacements,
the strain energies and the SIFs, and the SIF at the crack tip can be obtained by
extrapolation using the equation of a straight line as
Y=mY+c¢ (3.82)

in which X represents the radial distance from the crack tip along the § = 180° line and
further, m and C are the slope and a constant (equal to the intercept on the Y axis when
the value of X is equal to zero) respectively. In the above Equation (3.82), the slope, m,
can be obtained as

Kﬁ -K
m S Tt (3.83)

a, —a,

and the value of C is the value of the S/F at the crack tip. which can be calculated as

C=K, —-mq, (3.84)

After performing 250 simulations (that is for 250 laminates), a set of 250 sample
realizations are obtained for all the fracture parameters for each laminate: SIFpgy,
SIFserrym;, SIFyia2, ERR and Ji, J,...., Ji2 (corresponding to each of the twelve J
contours). The mean values, standard deviations and coefficients of variation of these

various fracture parameters are calculated and provided in Tables (3.5 — 3.7).
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Stress Intensity| Mean Value |[Standard Deviation| Coefficient of
Factor (MPavm) (MPavm) Variation
DEM 51.302 3.531 0.069
ERRM 69.862 3.963 0.057
Table 3.5 Mean value, Standard deviation and Coefficient of variation of K; for the

[0/90]¢s laminate determined by DEM and ERRM

SRR & 4 | (c0osN. |Senderd Deviation) Costfiientof
m/m2)
ERR 9.211 1.061 0.115
Jq 9.374 1.219 0.130
J2 10.049 1.312 0.131
Ja 9.505 1.231 0.129
Js 9.602 1.253 0.130
Js 9.741 1.278 0.131
Je 9.571 1.251 0.131
J7 9.588 1.257 0.131
Jg 9.636 1.267 0.132
Jg 9.551 1.253 0.131
Jio 9.520 1.263 0.133
Ji1 9.512 1.262 0.133
Ji2 9512 1.264 0.133
Table 3.6 Comparison of the mean value, standard deviation and coefficient of

variation values of J-integral obtained from various contours, and the ERR
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Stresta::r;Lernsny Mean Value g;i?:t?;ﬂ Coeffi.cignt of
corresponding to (MPavm) (MPaVvm) Variation

Jq 69.848 4.536 0.065

J2 72.318 4.716 0.065

Ja 70.337 4.549 0.065

Ja 70.693 4.607 0.065

Js 71.201 4.666 0.066

Js 70.578 4.609 0.065

Jr 70.638 4.628 0.066

Js 70.813 4.652 0.066

Jg 70.503 4.619 0.066

Jig 70.416 4.661 0.066

J11 70.386 4.660 0.066

Jq2 70.353 4.668 0.066

Table 3.7 Values of the S/F obtained from various J-integral contours

3.12 Conclusions and Discussions

In the first half of this chapter, the various concepts of fracture mechanics (LEFM) as
applied to anisotropic materials under plane stress state have been summarized. Also the
computation of various fracture parameters has been demonstrated through an illustrative
example. The analysis results for a deterministic case that are obtained from the
MATLAB" program have been confirmed by using the standard ANSYS® software. In
the latter half of this chapter, various concepts of stochastic formulation and their
relevance with regard to the behavior of composite materials have been discussed. The
stochastic finite element analysis formulation as applied to composite materials has been
described in detail. An illustrative example problem is used to demonstrate the variations

in material properties, and the variations in the various fracture parameters. Their mean
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values, standard deviations and coefficients of variation have been determined and

provided in Tables (3.5 - 3.7).



Chapter 4

Parametric Study of Stochastic Fracture Behavior of Composite

Laminates

4.1 Introduction
The prediction of the values of various fracture parameters as well as their variations with
the material and geometric parameters of the structure and applied loading is of much
interest to the engineer. During design for a maximum load that a particular composite
structure might be subjected to, while in operation, the engineer might have to take the
help of standard data charts for obtaining the above-mentioned variations in various
fracture parameters. These data are crucial to the engineer at various stages of the design
and analysis process. In the present chapter, the variations of various fracture parameters
and their probabilistic parameters (such as mean value, standard deviation and probability
density function parameters) with the variations in the material and geometric parameters
will be considered. The stochastic finite element analysis formulation for composite
laminates described in the previous chapter is emploved for the analysis of various types
of composite laminates. The mean values and standard deviations of the S/F, ERR and J-
integral are determined based on the DEM, the ERRM and the J-integral method, and
then, they are represented in a graphical form. The analysis has been performed for the
following three types of laminates:

a) Symmetric Cross-ply Laminate : [0/90]¢s

b) Quasi-isotropic Laminate : [0/%45/90]s4

c) Symmetric Angle-Ply Laminate : [+45]¢s
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The same geometric and ply material properties of the composite laminate considered in
the earlier two chapters are also used in this chapter for determining the variations of
various fracture parameters. The program logic shown previously in Figure 3.8 is
employed here with a few modifications in order to reduce the amount of manual data
input. In the final version of the MATLAB® program a couple of functions are added;
they are AUTOMESH.m and CALCLOADS.m. The names are self-describing in the sense
that the former is used to generate a finite element mesh automatically and the latter is
used for calculating the nodal loads. For any given values of the ratios a/W and W/L, and
any given plate geometry, the function AUTOMESH.m automatically generates a finite
element mesh satisfying the given conditions. For a given uniformly distributed load, the

function CALCLOADS.m calculates the work-equivalent nodal loads at the loaded edge.

4.2 Fracture Analysis of [0/90]¢s NCT-301 Composite Laminate

First, the number of simulations for the stochastic analysis has been determined in order
that the mean value of any fracture parameter does not change with further increase in the
number of simulations. These results are presented below in Figure 4.1 in a graphical
form. Also, the comparison between the S/F values that are obtained using the three
methods, viz., DEM, ERRM and J-integral has been performed and represented below in
a graphical form. The following results correspond to a crack length of 48 mm i.e., the
a/W ratio is 0.4. In a similar manner, the comparison between the J-integral values
obtained using various contours in the composite structure is shown. In all further

analyses, the maximum value of the J-integral can be considered to be a critical factor in
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design. Also for the same applied load the J-integral can be observed to have a stochastic

variation, thus leading to a probabilistic design.
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Figure 4.1 Fracture analysis of [0/90]¢s laminate: (a) Variation of the mean values of

SIF determined using by DEM, ERRM and J-integral method with the number of
simulations. (b) Variation of the mean values of the J-integral with the number of
simulations. (c¢) Comparison between the mean values determined using the FRR and

maximum value of J-integral, i.e., J5.
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The influence of the number of simulations, within the range 50 - 650 on the probabilistic
moments (mean value and standard deviation) of K, has been studied. The variations in
the mean values with the number of simulations have been presented above in Figure 4.1
and the variations in the standard deviation values with the number of simulations are
presented below in Figure 4.2. From the above graph (Figure 4.1-a) it can be seen that the
influence of the number of simulations on the variations of the mean values of K; almost
disappears after 450 simulations. This means that after 450 simulations the SIF values
obtained are almost constant. Right from the beginning it can be seen that the mean value
does not change quite considerably and fluctuations almost disappear later on. This
information can be used in determining the number of specimens that have to be used in
determining the average values of various fracture parameters, in a practical manner. The
ultimate decision regarding the choice of the number of test specimens might however
depend on other factors. It can also be observed that the J-integral method yields the
maximum value of the S/F. Also, while the variations in the S/F is approximately 3% of
the mean value the variations in the values of the J-integral and the FERR are
approximately 2% of the mean value. Also from Figure 4.1-b it can be observed that the
stochastic variations in the J-integral are very pronounced in the range: 50 — 450. The
stochastic variations in the J-integral start to minimize after the number of simulations is
equal to 450. Considering the fluctuations in the J-integral values with the average value
of each J-integral as well as the computing time, the number of simulations is taken as
250. It can also be observed that J, yields the maximum value of all. A comparison
between the maximum value of the J-integral (i.e. J>) and the ERR is provided in Figure

4.1-c.
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From Figure 4.2 it can be seen that the influence of the number of simulations on the
standard deviation values does not get reduced to the same order as that of the mean
values, with increase in the number of simulations. However, the variations are maximum
initially in the range 50-200, but get reduced comparatively after the number of
simulations exceeds 250. This variation in standard deviation can be attributed to the
stochastic behavior of the laminates. Due to the time considerations in the analysis and
given the reduced variations in the mean values of the various fracture parameters, the
number of simulations has been fixed at 250. It must be noted that the time taken for the
analysis of 250 laminates is approximately around 8.5 hours on a standard 400 mega
hertz Pentium class Windows NT 4.0 system. Other reasons for selecting 250 as the
number of simulations based on the distribution of the sample values are further
discussed in chapter 5. While it can be seen from Figure 4.1-a that the mean values of SIF
obtained from J> and ERR are close to each other, the standard deviation values of S/F
obtained from J> are much higher than those obtained from EFRR and DEM. Also, the
standard deviation values of J> are higher than the standard deviation values of the other
J-integrals. Therefore, J> can be considered as a critical factor in design as its variation

is high for this particular case.

4.2.1 Effect of the Crack Length — Plate Width Ratio on the SIF

In the following section, the variations of the mean values and standard deviations of the
various fracture parameters with the variations in the crack length-plate width (a/W) ratio
are discussed. It is widely believed that the crack length has a more pronounced effect on

the variations of the S/F than the effects due to the length and width.
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Figure 4.3 Fracture analysis of [0/90]¢s laminate: (a) Variations of the mean values of

SIF determined using DEM, ERRM and the J-max (J>) with a/W ratio. (b)Variations of
the mean values of J; - J12 with a/W ratio. (¢) Comparison of the variations in the mean

values of ERR and J> with a/I¥ ratio.
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From Figure 4.3-a it can be seen that the SIF values obtained using the DEM, ERRM and
the maximum value of the J-integral follow an a/most linear trend. It can also be noticed
that the S/F obtained from the DEM follows a linear trend until /W ratio is
approximately equal to 0.45 and takes a slight decrease in slope and again increases in a
linear manner. The S/F values obtained by ERRM are almost equal to the S/F values
obtained from the maximum value of the J-integral (i.e. J>) when the a/W ratio is almost

equal to 0.6.

The stochastic variations in the mean values of the various J-integral values follow
approximately a parabolic manner. Initially (at lower values of a/W ratio), all the J-
integral contours are almost equal with values around 2.5x10° N-m/m>. However, as a/W
ratio increases the difference between the maximum and the minimum values of the J-
integral increases to 3.5 x10° N-m/m” when the a/W¥ ratio is equal to 0.6. A comparison
between the mean values of the ERR and the maximum value of the J-integral (i.e. J>) are
presented in Figure 4.3-c. At lower values of a/W the difference between the values of
ERR and /> is very less. The difference between these two is almost zero when a/F ratio
is equal to 0.55. Hence, the ERRM and the maximum value of the J-integral give
approximately the same values when a/W ratio is greater than 0.55. Interestingly, this

difference increases at intermediate values of a/W before it starts to decrease again.

From Figure 4.4, it can be observed that the stochastic variations in the standard deviation
values of the S/F obtained by the DEAL, ERRM and the maximum value of the J-integral
(i.e. J») do not follow a linear trend as in the case of the mean values. Also, the standard
deviation values of the ERR tend to drift away from those of J> as the a/W ratio increases.
The variations in the standard deviation values of the various J-integral contours are
similar to the variations in their respective mean values. A comparison between the
standard deviation values of the ERR and the maximum value of the J-integral is
provided below in Figure 4.4-c. In contrast to the variations in the mean values, the
variations in the standard deviation values keep on increasing with an increase in the a/W

ratio.
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In all the three cases that have been presented in Figures 4.3 — 4.4, it can be seen that the
mean values as well as the standard deviation values increase with an increase in the
length of the crack. In general terms, the randomness in the fracture parameters
increases with an increase in the crack length. Also, eventhough the ERRM and the
maximum value of the J-integral yield approximately the same values of SIF, the
variations of the J> as well as the SIF obtained from J; are more than the corresponding
values obtained from ERRM. Further, it can be observed that the standard deviations of
the S/F are approximately around 5% of the respective mean values. In the case of the
standard deviations of the ERR and J-integral values, the corresponding variations are
found to be approximately around 10%. Further, it can be observed that the variations of
the mean values of S/F with a/W ratio follow an almost linear relationship. With increase
in the crack length, more clustering of the load flow lines can be assumed to occur around
the crack tip and thus an increase in the S/F can be predicted. This aspect is authenticated

in the Figure 4.3-a.

4.2.2 Effect of Finite Plate Size on the SIF
Just as the S/F is affected by the size of the crack, the finite geometry of the plate, i.e., the
width and the length of the plate also affect the SIF. In general, the SIF may be expressed

as

K, =1, (%j f(i Z) oNma (4.1)

w'L
In the above equation, the factor that is responsible for deviating the value of the SIF
from its ideal value as in the case of an infinite plate with a remotely acting stress can be

represented as



f(—"—,z) =f1(i)f{f9 ey @2)

a 3 . . .
and f“”(_j represents the normalized factor of an isotropic specimen. For a center

cracked plate this factor is given by

fu(%) = [1 - 0.0025(%)2 + 0.06({;—_)4 }\,sec{ ;‘;J (4.3)

In the above Equation (4.2), it can be seen that, apart from the relative size of the crack,

the relative sizes of the width and the length of the plate also have a bearing on the S/F.

In the second factor, f:(‘pgj . an increase in the width or a decrease in the length of the

plate have the same effect of increasing the W7L ratio. However the resulting values of
the second factor, i.e. f2, may not be the same. Hence, the effects of the width and the
length of the plate on the SIF have been investigated separately. Initially, the effect of the
change in length (i.e., in f> of Equation (4.2), the width is kept constant at 120 mm and
the length has been varied) on the SIF is studied and the results are presented below in

Figures 4.5 — 4.6.
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It can be observed from Figure 4.5-a that the SIF increases with an increase in the W/L
ratio i.e., with the decrease in the length of the plate the SIF increases. Initially, the SIF
values obtained by the DEM, ERRM and J-integral (J>) increase in a non-linear manner

until the a/Wratio is equal to 1.0 and then onwards increases in a linear manner.

The stochastic variations in the various J-integral values with an increase in the W/L ratio
are presented in Figure 4.5-b. It can be seen that the mean values of the J-integral (J; to
J12) increase non-linearly (in a parabolic manner) until a W/L ratio is almost equal to 0.5

and then starts to increase in a linear manner until the ratio W7L is equal to 1.8.

The comparison between the variations in the mean values of the £ERR and the maximum
value of the J-integral (i.e. J-) is presented in Figure 4.5-c. The difference between the
mean values of these two parameters is almost constant until the #7L ratio is |.0 and then

starts to increase gradually.

The effect of decreasing the length of the specimen on the standard deviation values of
SIF, ERR and J-integral is presented below in Figure 4.6. An interesting pattern can be
observed in the variations of the standard deviation; as shown in Figure 4.6, the standard
deviation of S7F reduces with an increase in the W/L ratio, i.e., the standard deviation
reduces with a decrease in the length of the specimen. The details are shown below in

Figure 4.6.
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A decrease in the standard deviation of the SIF with an increase in the plate length means
that the sample values of the SIF are closer to the deterministic value. That is, the
randomness in the fracture parameter, SIF, reduces with an increase in the plate length.
That is, as the dimension of the plate perpendicular to the crack surface is decreased, all
the fracture parameters obtained using the three methods (DEM, ERRM and the J-

integral method) are closer to their mean values.

Also, the stochastic variations in the standard deviation values of S/F obtained by DEM
and £RRAM are high initially when the W/L ratio is equal to 0.3, and decrease gradually
until a W/L ratio of 1.2 is reached. After this, the two values are almost equal and minor
variations can be attributed to the stochastic behavior of the laminate. The variations in
the standard deviation values of the various J-integral values initially are the same (when

W/L ratio is almost equal to 0.3) but increase at higher values of the W/L ratio.

The variations in the standard deviation values of £RR and J; are shown in Figure 4.6-c.
The difference between these two parameters keeps on decreasing with increase in the
W/L ratio (decrease in the length of the laminate) and is almost equal when the /L ratio

is equal to 1.8.
Now, the effect of the change in the width of the plate on the S/F is investigated, and the

observations are presented in Figures 4.7 — 4.8. In this case, the length of the plate is kept

constant at 240 mm and the ratio, W/L, is increased by increasing the width of the plate.
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It can be observed from Figure 4.7 that the S/F in this case increases almost linearly with
an increase in the width of the plate. [t must be noted while the SIF increases linearly
with an increase in the width of the plate, the same increases in a parabolic manner with
a decrease in the length of the plate. The J> values are maximum only until a W/L ratio of
1.4. However since J> represents the maximum value for a major portion of the graph, it
is considered to be the maximum value of all the J-integral contours. Also from Figure
4.8, it can be seen that the standard deviation values of J-integral and ERR also increase
with an increase in the width of the specimen. But the variations in the S/F with increase
in the W/L ratio follow a stochastic manner. This behavior (depicted in Figures 4.5 — 4.8)
is not entirely peculiar and a satisfactory reasoning can be offered. In the former situation
the ratio, W/L, is varied by increasing the length of the plate. Here, as the length is
increased the distance of the applied uniformly distributed load from the crack increases.
This means that the S/F should approach the S/F for the case of a large plate loaded at its
edge, which can be observed from the decreasing trend of the graph in Figure 4.5-a. Also,
this means that the S/F approaches the ideal value and the variation (standard deviation)

is also reduced as can be observed in Figure 4.6-a.

In the latter case of increase in the /L ratio due an increase in the width of the plate, it
can be assumed that each portion of the distributed load acting on the edge of the plate
has its own portion of contribution to an increase in the SIF of the plate. With the
increase in the width of the plate (while the length is constant), there is more load acting
at the edges that contributes to the increase in the S/F. Hence, an increase in S/F can be

predicted which is the same as observed in Figure 4.7-a.
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4.3 Fracture Analysis of [0/+45/90]3s NCT-301 Composite Laminate

In this section, the effects of the crack length, the plate length and the width of the plate
on the S/F of a quasi-isotropic plate are determined. Also, discussions will be put forth
regarding the comparison of the behavior in the earlier case (cross-ply laminate) with that

of the present one.

4.3.1 Effect of Crack Length - Plate Width Ratio on the SIF

In the following section, the variations of the mean values and standard deviations of the
various fracture parameters with the crack-width (a/W) ratio are discussed. It can be
observed from Figure 4.9-a that the variations in the mean values of the S/F obtained
using the DEM, ERRM and the J-integral method increase approximately linearly with an
increase in the a/F¥ ratio. The S/F obtained from ERRM gives a higher approximate value
of SIF than that obtained from the maximum value of the J-integral when the value of
W/L exceeds 0.52. It can be observed from Figure 4.9-b that the mean values of the
various J-integral values increase non-linearly in a parabolic manner. Of all the J-integral
values, J> gives the maximum value. A comparison between the maximum values of J-
integral (/2) and the ERR is presented in Figure 4.9-c. Also, when the a/W¥ ratio exceeds a
value of 0.52, the ERR gives a higher approximation than the J>. Also, from Figures 4.9-a
and 4.9-c it can be observed that the difference between the £RR and the J> increases at a
higher rate than the S/F. This is due to the fact that the S/F is proportional to the square

root of the ERR and ./>.
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It can be observed from Figure 4.9 that in the cases of both the symmetric cross-ply
laminate and the quasi-isotropic laminate, the S/F increases linearly with an increase in
the crack length in the a/W ratio. In this case too the same reasoning offered earlier for
the case of symmetric cross-ply or orthotropic laminate can be offered. As the crack
length increases, the fracture parameters obtained using the DFEM, ERRM and the
maximum value of the J-integral increase. When the a/W ratio is more than
approximately 0.5, the ERRM gives a higher estimate than J>. The stochastic variations in
the standard deviation values with the increase in the @/I¥ ratio are presented above in
Figure 4.10. Also, in the case of the variation of the standard deviation values, an
increase in the values can be noted which is the same as in the previous case. In the
present case. a break point can be noted when a = (0.45). The variations in the standard
deviation values of the S/F continue to increase after this break point but start to decrease
at higher values of crack length. In the case of the J-integral values the variations in the
standard deviation values continue to increase with a decreasing slope except for the
break point at a=(0.45)}". The same trend can be observed with the variations in the
standard deviation values of ERR, but the difference between the variations in the

standard deviation values of £RR and J; keep on increasing until a/W¥ is equal to 0.6.

4.3.2 Effect of Finite Plate Size on the SIF
As in the previous case, the effects of the width of the plate as well as the length of the
plate on the S/F have been investigated separately. Here too, initially the effect of the

length of the plate on the S/F will be presented.
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From Figure 4.5 it can be observed that the variation in the mean values of the SIF
obtained using DEM, ERRM and the maximum value of the J-integral (J3) is
approximately linear after a W/L ratio of 0.8. Similarly, the maximum value of J-integral
(J2) and the ERR also increase linearly after a W/L ratio of 0.9, before which they increase
in a parabolic manner. In the case of the standard deviation values for the quasi-isotropic
laminate, the variations in the standard deviation values of the S/F remain fairly constant
with a change in the length of the plate and this change can be attributed to the stochastic
behavior of laminates. It must be noted here that while the mean values of the SIF
increase in a parabolic and linear manner, the variations of the standard deviation values
are almost linear with minor stochastic fluctuations. While the ERRM yields values whose
standard deviation doesn’t change visibly with an increase in the crack length, the
standard deviation of the values obtained from the maximum value of the J-integral(Js)

increases considerably.

As in the case of orthotropic laminates, the variations of the standard deviation values of
the J-integral values do not reduce with an increase in the [}7L ratio. This trend can also
be attributed to the quasi-isotropic behavior of this laminate configuration. From Figure
4.12-c it can be observed that while the standard deviation values of J> increase linearly,
the variations of the standard deviation values are almost constant. But the standard

deviation values of the S/F obtained from ERRM reduce slightly.

Now, the effect of the increase in the plate width on the mean values of various fracture

parameters is presented below in Figures 4.13 and 4.14.
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It can be inferred that the probabilistic behavior of the quasi-isotropic laminate is almost
similar to the orthotropic laminate in this regard as the graphs obtained in Figures 4.7 and
4.13 are almost identical, except that in Figures 4.7-b and 4.7-c the maximum value of
the stochastic J-integral is not given by J; all through the range of the W/L ratio. In the
case of [0/£45/90]s. the maximum value of the J-integral is given by J>. As can be seen
from Figure 4.14, presented above, the increase in the standard deviation values in this
case is almost similar to the case of an orthotropic laminate except that, in the present
case, the increase is more rapid. Also, the variations in the standard deviation values (in
the case Figure 4.8) of the S/F obtained from the maximum J-integral remains
approximately constant after a W/L ratio of 0.9. Whereas in this case the standard
deviation values keep on increasing throughout the range of W/L ratio except for a break
point at a W/L ratio that is approximately equal to 0.9. As the width of the plate increases,
the variations in the values of the fracture parameters also increase, and hence drifting
away from the deterministic value. [t must be noted that while the graphs obtained are

very similar, the individual values differ from each other quite substantially.

4.4 Fracture Analysis of [+45]¢s NCT-301 Composite Laminate

In this section, the effects of the crack length, the plate length and the width of the plate
on the S7F of the [+45]¢ laminate are determined. Also, discussions will be put forth
regarding the comparison of the behavior in the earlier cases with the present one. In the
following section, the variations of the mean values and standard deviations of the
various fracture parameters with the plate geometry (a/W and W/L) are determined and

further, the values are represented in a graphical form.



4.4.1 Effect of the Crack Length - Plate Width Ratio on the SIF

The variations in the mean values of the SIF values, J-integral values and £RR values
with an increase in the a/W ratio are presented in Figure 4.15. Further the stochastic
variations in the standard deviation values of the various fracture parameters are
presented in Figure 4.16. It can be observed from Figures 4.15 and 4.16 that the trend of
variations of the mean values of all the fracture parameters are the same as that in the
case of orthotropic and quasi-isotropic laminates as described before in Figures 4.3 and
4.9. The mean values of the S/F obtained from the £RR and the maximum value of the J-
integral (i.e. J>) are almost equal when the a/W¥ ratio is almost equal to 0.6, before which
the S/F obtained from J> is maximum. Of all the mean values of the various J-integral
values, the /> gives the maximum value of the J-integral. A comparison between the
mean values of ERR and J; is provided in Figure 4.15-c. It can be observed that the
values of these two parameters are almost equal throughout the entire range and converge

at the a/F¥ ratio of 0.6.

Similarly, a comparison of the standard deviations of the various fracture parameters with
an increase in the crack length is represented below in Figure 4.16. It can be observed
that the standard deviation increases almost parabolically for the £RR and J> except at a
break poinr which is at the a/W ratio of 0.3. Also, the increase in the standard deviation of
the S7F is almost linear. The variations in the SIF and the J-integral values increase in a
non-linear manner with an increase in the crack length. The variations in the standard

deviation values of the SIF values obtained from J> have the maximum values.
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4.4.2 Effect of Finite Plate Size on the SIF

As in the previous cases of orthotropic and quasi-isotropic laminates, the effects of the
geometry of plate on the SIF for symmetric angle plied laminates are also investigated
thoroughly. The various results of the analysis (the mean values and standard deviations
of the S/F, ERR and J-integral) are obtained and represented below in a graphical form.
In this section, the effect of the variation of the width and the length of the plate on the
stochastic behavior of symmetric angle-plied laminates is presented. The individual
effects of the plate geometry on the various fracture parameters have been investigated

separately.

It can be observed from Figure 4.17-a that the SIF obtained from DEM increases in an
approximately linear manner. The mean values of S/F obtained from the £RR and the
maximum value of J-integral (J-) remain constant until an a/W ratio of 0.85 and then
onwards increase In an approximately linear manner. Also, a distinct similarity can be
noticed between Figures 4.5, 4.11 and 4.17. Just one glance at these three figures is
enough for one to notice that these three figures have something in common. The
explanation that has been offered in section 4.2.2 regarding the increase in the S/F applies
here too. One more very important point worthy of notice is the striking similarity
between variations in the standard deviations (in Figure 4.18) of the various fracture
parameters with change in length for the quasi-isotropic laminate ([0/%45/90]3) and for
the case presently under consideration. /[t must be noted that while the graphs (and
variation trends) obtained are very similar, the individual values differ from each other

quite substantially.

144



Mean Values of SIF obtained using DEM, ERRM, J-2

120
100 —
? 80 | DEM
T —=—ERRM
2 60 -2
g ;
2 40
w
20
o]
0.6 .2 1.8 2.4
wiL
Mean Values of J:1-12 e
—]-{
20
——1].2
& o8 1-3
E 16 1-5
—— s
2 14 ~—13-7
R —a—1].8
~
T2 = —19
= — ]-10
1.0 j-n
Q2 Q.54 Q88 L2 1.5 1.9 J12
w/L
Mean Values of ERR & J-2
_ 20
o~
15 1.8 v e
E 1.6 / f ——-6—]-2
x 14 — i
5 /-\_//:/'/
oy
& 12 -
[+ g
< /—\/ ’
w 1
10

Figure 4.17

Fracture analysis of angle-ply ([%£45]es) laminate: (a) Variations of the

mean values of the S/F" with change in the length of the plate. (b) Variations of the mean

values of the J-integral with change in the length of the plate. (¢) Comparison of

variations in the mean values of the £RR and maximum J-integral.
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Std-dev Values of SIF obtained using DEM,
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Figure 4.1§  Fracture analysis of angle-ply ([+45]¢s) laminate: (a) Variations of the
mean values of the S/F” with change in the length of the plate. (b) Variations of the mean
values of the J-integral with change in the length of the plate. (c) Comparison of

variations in the mean values of the ERR and maximum J-integral.
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In a similar manner, the effect of the change in the width of the plate on the mean values
and the standard deviation values of the various fracture parameters of symmetric angle-
ply laminates is found and the values are presented in Figures 4.19 and 4.20. From Figure
4.19 it can be noticed that the variation of the mean values of the S/F obtained using
DEM, ERRM and the maximum value of the J-integral is approximately linear while the
mean values of the J-integral values and the ERR increase in an approximately parabolic
manner. Interestingly, from Figure 4.20-a it can be observed that the variations in the
standard deviation values of the S/F obtained using DEM, ERRM and the maximum value
of the J-integral method increase in an inverted parabolic manner with an increase in the
W/L ratio. Further, it can be observed from Figures 4.20-b and 4.20-c that while the
standard deviation values of FRR increase in an inverted parabolic manner with an
increase in the W/L ratio, the corresponding values of the various J-integral values

increase linearly.

The vanations in the mean values follow a trend which suggests a similarity with the
behavior of the quasi-isotropic laminate presented in Figure 4.13 with the exception that
in this case the individual values of various fracture parameters are much higher
suggesting a relatively weaker structure, while the variations in the standard deviation
values (Figure 4.20) suggest an entirely different behavior in terms of parameter
variability. While the mean values of the SI/F (Figure 4.17-a) don’t change considerably
with a decrease in the plate length, its value approaches the deterministic value because
the standard deviation decreases (Figure 4.18-a). Also, while the ERR values approach

the deterministic case, the J; values tend to be more and more random.
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Std-dev Values of SIF obtained using DEM,
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4.5 Conclusions and Discussions

In the present chapter, a thorough analysis has been performed using the stochastic finite
element analysis formulation to find out the effects of the crack size and the plate
geometry on the various fracture parameters: S/F, ERR and J. These analyses have been
performed for three basic types of laminates (orthotropic, quasi-isotropic and symmetric
angle-ply laminates) and the results have been represented in a graphical form.
Appropriate discussions have been offered for the results obtained at each stage. Also the
use of stochastic finite element analysis formulation in determining the minimum number

of simulations to be performed for obtaining consistent results has been illustrated.

From the parametric study that has been conducted and presented in Sections 4.2 — 4.4,

the following conclusions can be summarized.

¢ Regarding the effect of the number of simulations on the stochastic fracture analysis
of [0/90]es:
Though the mean values tend to be a constant after the number of simulations is equal to
450, the standard deviation values vary stochastically throughout the entire range of the
number of simulations. Also the variation of the mean values of S/F is approximately 3%
of the mean value, while the variation in the mean values of the ERR and J> (maximum
value of the J-integral) is approximately 2% of their respective mean values. However,
considering the simulation time and the distributions (discussed in Chapter 3) of various

fracture parameters, the number of simulations has been selected to be 250.



¢ Regarding the effect of the crack length and the plate dimensions on the stochastic
fracture behavior of [0/90]es:
As the crack length increases, the J> (maximum value of the J-integral) and the SIF
obtained from J; yield the maximum values throughout the analysis. As the crack length
increases, the standard deviation values also increase suggesting that the plate behaves in
a more probabilistic manner. In contrast to this behavior, as the length (dimension
perpendicular to the crack) of the plate is reduced (W/L ratio is increased) the plate
behaves in a deterministic manner. On the other hand, as the width of the plate increases,
J> always yields the maximum values of the fracture parameters. It can be observed that
the width of the plate, crack length and the length of the plate have most significant
influence on the probabilistic fracture behavior, in that order. Thus it can be seen that the
stochastic J-integral provides a better representation of the effects of various factors on
the fracture behavior. Also, for most part in this case, the J> can be used as the design

parameter.

¢ Regarding the effect of the crack length and the plate dimensions on the stochastic
fracture behavior of [0/+45/90];s:

In this case when the crack length is approximately 50% of the width of the plate, the

ERRM yields higher estimates of the mean values than the J> which remains to be the

maximum value of the J-integral. Also, the laminate behaves in a more probabilistic

manner. The effect of the W/L ratio when the length is changed is very minimal while the

effect of the plate width on the fracture behavior is maximum. Here too the J> can be used

as the critical design parameter. Also, it can be observed that the orthotropic laminate is



relatively weaker than the quasi-isotropic laminate (under tensile loading). The
probabilistic behavior of the laminate in fracture increases as the plate length decreases

but the behavior tends to be more deterministic as the width of the laminate increases.

¢ Regarding the effect of the crack length and the plate dimensions on the stochastic
fracture behavior of [+45]¢s:
As the crack length increases, the probabilistic behavior of the laminate increases and J>
yields the maximum values. In this case the effects of increasing the crack length and the
plate width have an almost equal effect on various fracture parameters. However, the
effect of the length of the plate is almost none. In the cases of increasing the crack length
and the plate width, the probabilistic behavior is more pronounced. As the crack length
increases, this laminate exhibits the weakest behavior of all the three laminates
considered. Considering the increase in the width of the laminate, the strength of this
laminate is intermediate between the orthotropic and the quasi-isotropic laminates.
However, this laminate manifests a very strong behavior as the S/F is unaffected by the

reduction in the length of the plate.

In this chapter, the stochastic characteristics of the J-integral have been pointed out. Even
though in the deterministic case the J-integral is supposed to be a constant irrespective of
the position of the contour over which it is evaluated, the material properties and hence
the stresses computed vary stochastically in the present case, and so does the J-integral.
Thus, the description of the stochastic J-integral has been put forth and illustrated through

various examples. The J-integral method also brings out the variations in the fracture



behavior of the laminate at various locations in the laminate. The J-integral method
provides a better representation and gives a better description of the probabilistic fracture
behavior than the conventional ERRM and DEM. Also, in all the three cases described in
this chapter, the J> can be considered as the critical design parameter as it gives the

maximum value of the SI/F.

From the results of analyses, it can be concluded that the crack size and the width of the
plate have the most profound effect on various fracture parameters and their variability in
the cases of all the three kinds of laminates. Given a particular cracked plate
configuration with uniformly distributed load, the quasi-isotropic laminate gives the
minimum value for any fracture parameter in all analyses. For analyses based solely on
the crack size, the orthotropic laminates give the highest values for any fracture
parameter. For analyses based on the geometry of the plate (both the plate length and the
plate width), the symmetric angle ply laminates give the highest values for any fracture

parameter.

The results of above analyses can be used to develop data charts providing the values of
factors f and f> for various ratios of a/W and W7/L similar to those available for isotropic
materials (for the deterministic case). For composite materials these types of charts would
be a major contribution to the probabilistic design process in reducing the time taken to

select suitable values for the factors, f; and f>.



Chapter 5

Reliability Analysis of Composite Laminates

S.1 Introduction

The ultimate purpose of any analysis is to predict the failure of a structure in operation
and avert it by making necessary modifications in the design parameters. In the case of
failure by fracture there are several methods that can be employed to avoid failure. These
methods range from employing crack-arrest techniques, adding reinforcements, localized
heat treatment techniques, crack-path diversion techniques, etc. to replacing the
component itself. Reliability is a very important concept in the mass production of

various components. Also, reliability and safety are inseparable from one another.

Procedures for determining the reliability of anisotropic laminates by taking into account
the varicus aspects of the subject under analysis are of interest in this chapter. It is very
important to incorporate all the factors that effect the performance of a structure while
performing an analysis to yield parameters representing the entire class of the structure.
In the third chapter the role of stochastic finite element analysis in computing the various
fracture parameters by taking into account the various aspects that are characteristic to
composite laminates was discussed in detail. In order to evaluate the reliability of any
structure, two parameters are required, for instance, one representing the strength and the
other representing the stress developed due to the external loading. A successful attempt
has been made to incorporate these parameters into the analysis and develop an

innovative technique that calculates the probabilistic reliability of anisotropic laminates.



In the next few sections, the various steps involved in the probabilistic reliability
calculation are discussed in detail. In this chapter, the SIF is used as the parameter for
evaluating the reliability of anisotropic laminates. For demonstration purposes, only
orthotropic laminates are considered. As it has been stated earlier, in order for us to
calculate the reliability, one needs to have two parameters; in this case they are the SIF
and the fracture toughness. The fracture toughness can be evaluated by testing the
orthotropic laminates but a standardized test procedure for evaluation of fracture
toughness of composite laminates has not been designed so far. Several methods and
procedures have been described so far for evaluating the fracrure toughness of composite
laminates. The evaluation of fracture toughness as proposed by Kageyama [129] has

been employed in the present thesis.

In the first few sections of this chapter, the manufacturing and testing of orthotropic
laminates is described. In the last few sections, the Maximum Entropy Method (MEM) for
obtaining the exact distribution followed by a set of sample data is described. Further, the
evaluation of the fracture toughness from failure loads is described; and the SIF is
evaluated for the same. Then the reliability is computed from both these parameters by

numerical integration.

5.2 Manufacturing of Composite Laminates
The manufacturing of composite laminates can be categorized into two phases:
(1) Fabrication and

(2) Processing



In the fabrication phase the fiber reinforcement and accompanying matrix material are
placed or shaped into a structural form such as a flat or curved plate, a cylinder or other
body of revolution, and the like. In the present study, a flat plate is manufactured using
layers, or plies, of preimpregnated NCT-301 graphite/epoxy material. During the
processing phase, an autoclave is used which provides the proper levels of heat and

pressure to solidify and consolidate the structure.

5.2.1 Fabrication

Tooling:

All fabrication methods require tools to provide the shape of the composite structure
during the processing. A flat aluminum tool is used to support the laminates for applying
hand pressure during the manufacturing of the flat composite plate.

Specialty Materials:

Many secondary or specialty materials are used in composites manufacturing such as
release coating, peel plies, release films, bleeder plies, breather plies, vacuum bags and
sealant tape. Each of these materials serves a specific function [148]. A cross section of
typical lay-up of a composite structure prepared for autoclave processing is shown in
Figure 5.1.

Hand Lay-up:

The lay-up of preimpregnated material by hand is the oldest and most common
fabrication method for advanced composite structures. Each step in the hand lay-up of a

flat composite laminate must follow in successive fashion in order to obtain a high-



quality composite laminate after final processing. A description of these steps is given in

Ref. [148].

> Vacuum bagging film

Breather ply

» Release film

L ' I —p Bleederply
» Release film

> Peel ply

]
]
_J

Sealant tape

» Peel ply

p Release agents

Tool

Figure 5.1 Typical cross section of autoclave lay-up

At first the surface of the tool is cleaned and a release agent is applied and then, a peel
ply is placed on the top of the tool. The preimpregnated plies are cut according to design
specifications. i.e. 12 inch by 12 inch. The first prepreg ply is oriented and placed upon
the tool. Subsequent plies are placed one upon another according to the laminate
configuration; a roller is used to compact the plies and to remove entrapped air that could
later lead to voids or layer separations. After that, a peel ply, a sheet of porous release
film, the bleeder plies, another release film and the breather plies are placed on top of the
laminate one by one according to Figure 5.1.When the laminate fabrication is completed
the sealant tape is placed around the entire periphery of the tool and the vacuum bag is

placed over the entire tool.
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It is important to ensure that the bag is adequately sealed before proceeding to the
processing cycle. The vacuum port is installed through the bag and the contents are

evacuated by vacuum pump.

5.2.2 Processing

Once the composite plies are put together so as to get the desired shape and orientation, it
is necessary to apply the proper temperature and pressure for specific periods of time to
produce the fiber-reinforced laminate. The temperature cycle is usually referred to as the
cure cycle, since it is the heating of the resin that initiates the cure reaction. The overall
cycle, which indicates pressurization and the temperature cycle, is referred to as the
process cycle. The best quality laminates are cured using an autoclave. An autoclave
consists of a large cylindrical metal pressure vessel with end enclosures that is thermally

insulated and heated. A typical autoclave is shown in a schematic form in Figure 5.2.

Pressurized
as Vacuum-
& T~ bagged
Tool
Vacuum 1
line > I j‘
Autoclave trolley
Figure 5.2 Schematic of an autoclave
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A typical cure cycle for NCT-301 graphite/epoxy composites is a two step cycle shown in
Figure 5.3. In such a cycle the temperature of the material is increased from room
temperature to 104° C, and this temperature is held constant for half an hour (first dwell).
Afterwards, the temperature is again increased to 140° C, and held constant for one hour

(second dwell). After that the part is cooled to room temperature at constant rate.

140°C

104°C

Temperature (°C)

>
T e 1 hr

Time

Figure 5.3 Cure cycle for NCT-301 graphite/epoxy composite material

The purpose of the first dwell is to allow gases (entrapped air, water vapor or volatiles) to
escape from the matrix material and to allow the matrix to flow, facilitating compaction
of the part. The purpose of the second dwell is to allow cross-linking of the resin to take
place. The strength and related mechanical properties of the composite are developed
during the second dwell. A constant 60 psi pressure is maintained inside the autoclave
throughout the processing time. After cooling to room temperature the composite plate is

ready for use.
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53 Fracture Testing of Composite Laminates

The analysis and design of composite structures require the input of reliable experimental
data. One of the major objectives of testing composite materials is the determination of
the fracture toughness data for individual laminates so that their exact distribution can be
determined later by the Maximum Entropy Method (MEM). This information together
with the distribution of the stress intensity factor (S/F) obtained using the stochastic FEM
can then be used to determine the reliability of the laminate. For determining the plane
strain fracture toughness (K;c) of isotropic materials the standard test procedure as
described in ASTM E399 is to be followed. As it has been mentioned earlier, no such
standardized testing procedure exists to date for evaluating the fracture toughness of
anisotropic materials. The present work follows the test method proposed by Kageyama
[129] but with minor modifications. The reason for adopting the procedure described by
Kageyama [129] with minor modifications is explained below. One look at the specimen
geometry used for determining the fracture toughness of metallic specimens gives us an
idea of the philosophy of the test. The test is aimed at finding out the maximum amount
of load that a particular material can withstand prior to failure by fracture. In the case of
isotropic materials, the crack tip (Figure 5.4) is subjected to both a point load and a
moment that pull apart the top and bottom portions of the test coupon. Comparing this
loading with the loading applied on the composite test coupons in the work of Kageyama
[129] it can be observed that the loading is uniformly distributed in the case of the
composite test coupon. In the present work, the length of the specimen is increased and a
hole is drilled through the tabs (Figure 5.5), which is used for the application of point

load. Also, the length of the tab is increased so that the stress distribution inside the
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effective specimen length is uniform.
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Figure 5.4 ASTM fracture test specimen for isotropic materials

In the case of fracture test specimen for isotropic materials, the loading is applied through
pins inserted into the two holes shown in Figure 5.4. This load is equivalent to a
combination of a point load and a moment at the crack tip, both of which tend to pull
both the halves apart. This is the worst possible loading that can be applied at the crack
tip. In the present work, a point load is applied at the crack tip. The geometry of the
specimen is shown below in Figure 5.5. The length of the tab is chosen based on the
widely used stress analysis result that, the effect of a concentrated load applied at a circle
of radius » is smoothened out at a distance of more than three times the radius of the
circle. In the present work, forty-two test specimens with the geometry as shown in

Figure 5.5 have been prepared.
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The crack geometry and all the relevant details for each specimen are summarized in

table 5.1.
Diameter: 0.5”

T e

A

™~

}

A

§ I Specimen Type: [0/90]¢s

A 4

4 /1IN

e

I

}(-_—.»! —bl 4—— Specimen thickness (3.0 mm)
1.58” > |g¢— Tab half-thickness (4.0 mm)

Figure 5.5 Schematic of the fracture test specimen

A digital photograph of the actual test specimen is also provided in Figure 5.6.



Figure 5.6 A photograph of the fracture test specimen

The crack is introduced into the specimen by using a diamond slicing wheel mounted on
a vertical milling machine. Holes for applying the load, are drilled in the specimen for
applying the load by a half-inch diameter drill-bit. The crack is approximately 50% of the
width of the specimen, which is about 40 mm. The tabs are fabricated using glass fibers
and epoxy resin. The layers of glass-epoxy material were placed one over the other, and
were held together by Araldite (resin-epoxy adhesive). The same adhesive is used to bond

the tabs together with the test specimen.

By following the laminate manufacturing process described above, six laminate plates of
[0/90]6s configuration have been manufactured using NCT-30! graphite-epoxy composite
material. From each plate specimens with the above configuration have been obtained by
using a diamond wheel mounted on a rotating horizontal handsaw. The final finishing is
performed on a vertically rotating rough-surfaced belt. And then finally, the crack is cut

into the specimen by a diamond slicing wheel which is 12 thou (0.3mm approx.) thick.
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In this manner, a total of 42 specimens have been manufactured. At this stage, the
specimen as it is, is not yet ready for the fracture test. This is because the specimen has to
be properly aligned between the grips of the tensile testing machine so that the load is

applied directly over the crack tip. The schematic of the set-up is shown in Figure 5.7.

e

Gripper

Roller pins

Steel block Steel block

Fracture test specimen

Symmetric /\/

Figure 5.7 Schematic view of the test set-up near the grip
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For this purpose two blocks of steel are employed that act as connectors between the
specimen and the grips. Roller pins serve three important purposes: providing the
connection, facilitating the load transfer from the grips to the specimen and perfectly
aligning the specimen with the direction of loading. Thus, it is ensured through the above
set-up that the loading is applied directly over the crack tip, which is crucial to the

fracture toughness test. Also a digital photograph is presented below in Figure 5.8.

Figure 5.8 A photograph of the test set-up
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5.3.1 Results of the Fracture Toughness Tests

Specimen | Crack width, a |Specimen Width, B|Specimen Length, 2L| Load at failure, P
Number (mm) (mm) (mm) (Newtons)
1 20.15 41.08 65.08 8495.323
2 20.19 40.68 66.55 6183.037
3 20.23 40.89 65.38 7861.254
4 20.05 40.66 65.78 8664.179
5 20.34 41.02 65.77 8533.230
6 19.81 40.29 64.14 9670.420
7 19.79 40.35 64.01 8167.951
8 19.98 40.53 65.06 7392.594
] 20.07 40.20 65.40 7768.211
10 20.01 39.82 66.26 7161.710
11 19.97 40.31 66.01 7209.954
12 20.01 40.56 65.28 7844.024
13 20.15 40.46 66.03 6744.740
14 19.89 40.45 65.92 7516.651
15 20.10 40.66 64.92 8257.548
16 19.84 40.51 65.78 9239.666
17 20.04 41.35 64.64 9060.473
18 20.04 4115 64.39 7365.025
19 20.08 41.10 65.45 8057.678
20 20.07 41.66 65.61 9057.027
21 20.10 40.76 65.62 9477 441
22 19.78 40.59 64.16 8205.857
23 20.17 40.76 64.88 8209.303
24 20.07 40.84 65.45 8088.692
25 20.05 40.61 66.17 9398.184
26 20.04 40.65 65.06 8581.184
27 19.93 40.76 65.59 9122.501
28 20.07 40.82 65.84 8223.087
29 20.34 41.13 66.04 9232.773
30 20.06 41.06 65.57 7695.844
31 19.91 41.13 64.97 7933.621
32 20.23 41.04 65.35 9232.773
33 19.95 40.83 65.71 8174.843
34 20.11 40.82 66.20 6865.351
35 20.07 40.99 65.05 8023.217
36 20.06 41.29 65.12 8198.965
37 20.20 40.96 65.34 8409.173
38 20.11 40.92 64.22 8223.087
39 20.05 40.93 65.53 9515.349
40 20.05 40.88 65.33 10469.900
41 20.16 40.81 64.48 10955.790
42 20.21 40.88 64.73 8002.542
Table 5.1 Resutlts of fracture toughness tests
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Initially, it has been tried to find out if the duplication of the test as in the case of
isotropic materials is possible. It has been tried to fatigue the specimen so as to create a
fatigue crack at the crack tip. Even though th-e specimen was fatigued for 15,000 cycles
of loading, no visible fatigue crack has been created. In the case of the standard
Aluminum fracture test specimen, a crack of L - 2 mm could be detected at 10,000 cycles
of loading. Also, it is worth noting that the fracture toughness of NCT7-30/ graphite-
epoxy composite is not affected by the pre—cracking of the specimen through fatigue

cycling. Hence the test has been carried out wi thout fatiguing the specimen.

It has been found that the average failure load is around 8440 Newtons, which, as can be
seen from the Table 5.1 is a representative value of the test data. The test has been
monitored and further, the data and the load-displacement data for each specimen have
been recorded using a data-acquisition system. A typical load-displacement curve is

shown below in Figure 5.9. It can be observed: that the curve is linear until failure occurs

by fracture.
A Typical Load-displacement curve
for a sample specimen
$000
__ 8000
@ 7000 -
S 6000 i
% s000 —
£ 4000 02—
T 3000 = —
§ 2000 f——Dr— — =
1000 - —
0 / . R N
0 0.5 1 1.5
Displaceement (mm)
Figure 5.9 A typical load-displacement cuirve for a sample test specimen shown in
Figure 5.6
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5.3.2 Evaluation of Fracture Toughness from Failure Load data

The specimen length, width and the crack lengih are used as inputs to the program
developed in chapter 4. Now for each specimen the above parameters are modified and
the failure load is also provided as an input. The stochastic J-integral is evaluated for
each specimen and the least value of J, i.e. Jnin, is considered for evaluating the fracture
toughness. It should be recalled that the maximum value of the stochastic J-integral is
used for calculating the SIF' (which is analogous to the stress) whereas the minimum
value of the J-integral is used for computing the fracture roughness (which is analogous
to the strength). Since the material is orthotropic with the crack on the plane of

symmetry, the J-integral can be used to determine the fracture toughness by the relation

K, =VEJ (5.1

in which the effective Young’s modulus is defined as [113]

. E E
F=__! \/ v (5.2)

For the program developed earlier in chapter 5, another function: CALC_EFF YUNG.m
is added which performs the functions of calculating the effective Young’s modulus and
the fracture toughness as in Equations (5.1 — 5.2). The fracture toughness data for each of

the test specimens is presented below in Table 5.2.
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SPecinen | ailure Load (N)| K1C (MPavm)
1 8495.323 27.80
2 6183.037 24.86
3 7861.254 27.79
4 8664.179 30.77
5 8533.230 28.15
6 8670.420 32.44
7 8167.951 29.89
8 7392.594 24.97
9 7768.211 28.54
10 7161.710 26.07
11 7209.954 23.84
12 7844.024 27.76
13 6744.740 23.11
14 7516.651 26.34
15 8257.548 28.39
16 9239.666 31.15
17 9060.473 30.36
18 7365.025 26.38
19 8057.678 28.49
20 9057.027 3047
21 9477.441 34.25
22 8205.857 29.68
23 8209.303 30.28
24 8088.692 27.63
25 9398.184 31.07
26 8581.475 30.70
27 9122.501 31.01
28 8223.087 27.57
29 9232.773 32.47
30 7695.844 25.34
31 7933.621 28.44
32 9232.773 32.09
33 8174.843 28.44
34 6865.351 23.77
35 8023.217 28.64
36 8198.965 27.45
37 8409.173 29.49
38 8223.087 28.42
39 9515.349 33.55
40 10469.898 37.51
41 10955.789 37.88
42 8002.542 27.58

Table 5.2 Fracture toughness data corresponding to the failure loads
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54 Application of the Maximum Entropy Method

As stated earlier at the beginning of this chapter, the ultimate aim of the engineer might
be to determine the reliability of a particular laminate. Fracture tests could be performed
on a few samples from a batch, and failure loads and hence the X)c data can be obtained
by using the MATLAB® program developed in section 5.3.2. Now, if the service load is
known, the SIF' can also be calculated using the same program. If the probability
distributions of the above two quantities are known, then the reliability can be calculated
which is a representative of the entire batch. The Maximum Entropy Method (MEM)
[168] can be used to determine the probability density functions of both the SIF and the

Sfracture toughness data. In this section this method is described in sufficient detail.

The Jayne’s principle [149] can be used to generate a probability density function from
sample data. It can initially be assumed that no information is available in order that one
is convinced about the presence of physical arguments that would suggest a particular
distribution. Therefore, maximizing the entropy (information required for estimating a
particular sample value) of the variable’s distribution should lead to the least biased
estimate of its form. A convenient way to use the sample information is by evaluation of
the sample moments. For a continuous random variable the objective function, the

entropy denoted by S is given by

S = — [£(x)In[f (x)Jdx (5.3)

in which
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[£Ge)x =1 (5.4)

and the central moments are given by
[ fCdx=m,; i=1..m (5.5)

h

in which m is the number of moments to be used and m; is the i moment about the

origin, determined numerically from the sample. It has been shown that the density
function inherently has a specific analytical form [149]. Hence, instead of using the

numerical optimization techniques to solve Equation (5.3), classical methods of calculus

have been employed. Let S represent the modified function which is expressed using the

Lagrangian multipliers Ag, Ay,..., Am, @S
S=S+ (Ag + 1)[ If(x)dx - I:l + Z Zi[f.rif(.r)dr - nz,.:, (5.6)
R i=t R

The multiplier, (Z9+/), is actually used rather than 1, in order to obtain a more accurate

result [149]. Now, in order to maximize S, the derivative of S is obtained and set to be

equal to zero.

== Jl @k + 0 e 52 [t <o 62
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Combining the terms under the integral sign leads to the equation

J’{—ln[f(x)]—1+/10 +1+i/1,.x‘}dx= 0

R i=l

For this equation to be true, the argument must be equal to zero.
ln[f(x)] =4 + Z Ax
i=1

or

(5.8)

(5-9)

(5.10)

This is the analytical form of the maximum entropy density function. Now the problem is

to determine the values of the /4;’s. To achieve this one needs two expressions developed

as follows. Substituting Equation (5.10) into Equation (5.4), one gets the following

equation:

(5.11)



e = exp[Ziixi% (5.12)
R f=l

which leads to the first expression required.

A, = _1,{ j exp(z A.xt )dx] (5.13)
R i=1
The second equation is obtained by differentiating Equation (5.12) with respect to Z;.

J— e-;'o

5/10 — i = i
Yo ;!x exp(;lix }zx (5.14)

or

OA, ] . <
2 =—'fx‘ exp[/bo + E /ul.x'}'t\' (3.15)
R i=1

OA,

This reduces to Equation (5.5), which is the second equation.

4,
=—m, 5.16
= (5.16)

t

In order to solve for the 4’s one must set up a set of simultaneous equations. This is done

by differentiating Equation (5.13) with respect to 4;.
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i x exp 3 /ll.x"}ix
‘2’;0 - RI (mz‘: =—m, (5.17)
g I exp(z ll.x")dt
R

i=|

The above equation represents m simultaneous equations to be solved for 2;, 4...,0m.
Having these, /9 is obtained from Equation (5.13). The above equations are put in a form

more convenient for numerical solution as follows:

=R, (5.18)

m, I!exp( 2 A.x! Jdt

In the above equation the R;’s are the residuals that are reduced to near zero values by a

jxi exp(zm: li.tijdx
1 &

numerical technique. A solution can be obtained by using nonlinear programming to

obtain the minimum of the sum of the squares of the residuals.

R=iR? (5.19)

i
1=l

is minimum. Convergence is achieved when R <¢g, or all IR,.[ <& in which ¢ is the

specified acceptable error. The integrals in Equation (5.18) are evaluated numerically,
and it is apparent that the bounds of the unknown density function must be known or

assumed.
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Because x™ must be evaluated in Equation (5.18) there exists a risk of overflow in the
computation. To circumvent this the domain of x is transformed to lie in between 0 and 1.
Also, the algorithm requires a starting value in order to begin the nonlinear programming
solution. A good starting value is important for successful convergence, and therefore
four alternative methods for determining a starting value are provided. The desired
method can be pre-selected, or by default the algorithm will try the methods given one by
one automatically in the order given until one of them succeeds. The methods used for
finding a starting value for each of the Lagrangian multipliers are given below.

l. The distribution of A; is assumed to be normal, in which case the

parameters are estimated by

;"l = Cl ,2-2 = 1
C, 2c,

Ay =4, =..=4,=0 (5.20)

2. The distribution of A; is assumed to be uniform. This works better for

density functions whose shapes are similar to the uppercase alphabets, J and U.
A=l =..=4,=0 (5:21)

3. A collocation method is used to calculate the values for the x’s. Numerical

integration forms of Equations (5.4 — 5.5) are written using (m+/) stations.

m+1

Z_:ajf (x,)=1 (5.22)
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m+1

Zl:ajx;f(x}.)=mi;i=l ..... m (5.23)
=

in which the g;’s are numerical integration multipliers. These are the (m+/) linear
equations for the (m+/) unknown f(x;) s that are solved and the results are applied to

Equation (5.10).
e, )=ep(iy + 4, + v 2, x7 ) j=1(m+1) (5.24)
3. A step-by-step start is used which begins using method / but with m set to
be equal to 3. The algorithm then iterates with the values obtained for Ag, A;, and A, and

with A3 equal to zero. This is repeated until m starting A’s are obtained.

The algorithm can be summarized as follows:

1. Input the moments and bounds.

2. Calculate the moments about the origin.

3. Transform the domain.

4. Set up the expressions for the residuals as in Equation (5.18).
5. Select a starting method and calculate starting values.

6. Call the optimization subroutine.

7. Check if convergence has been achieved ?

8. YES: Go to step 12.

9. NO: Check if all the methods have been tried ?
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10. YES: Exit with failure.

11. NO: Select next method and go to step 5.

5. Calculate A;.

13. Calculate the values of other A’s corresponding to the original domain.

14. Output the results.

Also it has been proved [149] that the Maximum Entropy Method is based on a global

optimum value.

5.5 Probability Distributions of the Lagrangian Multiplier Constants

The following parametric study has been performed to find out how the Lagrangian
multiplier constants /;’s vary with the number of simulations. The number of moments
used, m is taken to be equal to four. The variation of the Lagrangian multipliers with the
number of simulations (within the range 50 - 650) has been investigated and the

variations are presented graphically below in Figure (5.10).

Variation of Lambda-0 with Number Variation of Lambda-1 with Number
of Simulations of Simulations

- — e

-

500

&0 “Xo

Lambda-0
- B8
Lambda-1
§8B.88¢8

Number of § Imulacions Number of Simulacions

Figure 5.10 (@) Variation of Ay with the number of simulations; (b) Variation of A; with

the number of simulations.
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Variation of Lambda-2 with Number of Variation of Lambda-3 with Number of
Simulations ) Simulations

Lambda-2
N ON KO

Lambda-3

A

Number of Simulations Number of Sinulations

Variation of Lambda-4 with Nusmber of
Simulations

0.0001

:

Lambda-4

3

-0.0001

Number of Simulations

Figure 5.10 (contd.) (c) Variation of A, with the number of simulations. (d) Variation of

A3 with the number of simulations. (e) Variation of 24 with the number of simulations.

From the above graphs it can be observed that variations in values of each of the
Lagrangian constants follow a certain trend that is compatible with the analytical
formulation as obtained in the previous section (5.4). It can be observed that while Ay
starts with a negative value and alternatively takes a positive and negative value, the
same trend is followed by alternate A;’s i.e., A, and A4 with their individual values having

entirely different ranges. A mirror image of this trend is followed by the other set of A;’s

1.e., Ay and As.
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5.6 Reliability of Composite Laminates in Fracture

As pointed out earlier in the beginning of this chapter, the main purpose of stochastic
analysis when both the factors, that are the SIF and the fracture toughness, are involved
is to determine the reliability with both the distributions known at a critical location in
the component. The distributions followed by each of these two representatives might be

quite different from each other and they can be represented as
K, =Alu o) and K, =B, .o, ) (5.25)

in which 4 and B represent the two different distributions followed by the SIF and the
Jracture toughness respectively. A general method has been described below which is
capable of solving the above problem. In the following, the subscript 7/ is used to
represent the fracture toughness distribution and the subscript 2 is used to designate the
SIF distribution. These two distributions are shown below in Figure (5.11) so that a single

cursor, x, can be used to identify points on both distributions.

Probability that
the SIF =dp(K, <K,.)=dR = F,(x)dF,(x) (5.26)

is less than K -

By substituting (/ — R>) for F; and —dR, for dF;, Equation (5.26) reduces to
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dR = {1 - R, ()[R, (x) (5.27)

A
Fi(x)
=
:=.:
< dF (x)=fi(x)dx
E-::;
3
g
I~
»
A
X —P> L dx
2
-:—é
>
3 Ra(x)
=
e
>

Figure 5.11  Probability distribution functions of K¢ (denoted by F») and K; (denoted

byF‘).

The reliability is obtained by considering all possible locations of the cursor and

integrating x from -00 to +oo; but this corresponds to an integration from 1 to 0 on the

reliability R;. Therefore,

R= —OI[I - R, (x)HR,(x) (5.28)
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which can be rewritten as
I
R=1- [R,dR, (5.29)
]

In a form that can be evaluated numerically, the above Equation (5.29) can be expressed

as
(1-R)= ;jR:de = LLj [Lj £ (x)de £ (x)dx (5.30)
in which
R(x)= ]ﬁ (K (e )dK (5.31)
and  R,(x)= ,] fA(K,) (5.32)

The one-third Simpson’s rule has been used to expand the right hand side of Equation

(5.30), which is given by

b
If(x)d-r =§’[()’o '*‘Y2n)+4()’1 + V3 +---+)’2n—|)+2()’2 + Y, +---+J’2n-2)] (5.33)
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in which  y,.y,..y,, are the values of y=f(x) evaluated at

x=a,a+h,a+2h,.,a+2nh. Also, the interval between the extreme limits, ¢ and 4 is

divided into an even (27n) number of intervals.

Also, Ly , U, _and Uy represent the lower limit of the fracture roughness, upper

limit of the fracture toughness and the upper limit of the SIF, respectively. The
distribution followed by the fracture toughness that has been obtained by testing as

presented in table 5.2, is shown in Figure 5.12.

The above programs have been tested for validity by applying it to an example problem
[149] for a particular case of Gaussian distribution. The problem description is as
follows: The load induced stress at a critical location of a part in simple tension is given
by ¢ ~ N(40,5) and the yield strength is given by S ~ N(60,4). It is required to estimate

the reliability against failure by yielding.

The reliability obtained using the above-developed program is 0.998787, which compares

very well with the reliability obtained using the normal distribution tables.

The distribution followed by the fracture toughness data that has been obtained by testing
is presented below in Figure 5.12. The distribution of the SIF of a 24-ply orthotropic
laminate, of dimensions 240mm x 120mm, and made of NCT-30/ graphite-epoxy
composite material that is subjected to a total tensile load of 17.5 KN which is distributed

throughout the edge, is obtained and presented below in Figure 5.13.
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Figure 5.12  Probability distribution of the fracture toughness data obtained by testing.
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Figure 5.13  Probability distribution of the SIF of a 24-ply orthotropic laminate.
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The values of the SIF generated by the stochastic finite element analysis of an orthotropic
laminate with a configuration of [0/90]¢s and subjected to a load of 17.5 KN, are provided
as input to the MEM. The values of the Lagrangian constants obtained corresponding to
the maximum entropy are tabulated in the second column of table 5.3. Similarly, the
values of the K¢ (provided in table 5.2) are provided as input to the MEM and the values

of the Lagrangian constants obtained are provided in the first column of table 5.3.

Lagrangian Lagrangian
constants for constants for
K1C SIF
Lambda-0 1597.80678 6335.75566
Lambda-1 -230.48845 -1144.06015
Lambda-2 12.3119354 76.9805699
Lambda-3 -0.2891476 -2.28859302
Lambda-4 0.00252005 0.02536805
Table 5.3 Values of the Lagrangian constants for the distributions of K¢ and SIF

obtained by the maximum entropy method (17.5 KN)

Each of the corresponding sets of Lagrangian constants for S/F and K¢ are substituted
into Equation 5.24 and the resulting expressions for f{K;c) and f{K,) are inserted into
Equation 5.30, which is evaluated using the Simpson’s rule (Equation 5.33). In the
Equation 5.30, the corresponding values for the upper and lower limits of the Kjc are
taken as 37.88 MPaVvm and 23.11 MPaVm respectively, and the upper limit for the S/F is
considered to be 26.03 MPaVm as obtained from the stochastic finite element analysis.

The right hand side of the Equation 3.30 has been evaluated to be 0.0009679. This value
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1s equivalent to (I-R), in which R denotes the reliability. Thus, the reliability (R) of the

laminate has been calculated and has been found to be 0.9990321.

The distribution of the SIF of a 24-ply orthotropic laminate ([0/90]), of dimensions 240
mm X 120 mm, and made of NC7-30! graphite-epoxy composite material that is
subjected to a total tensile load of 22.0 KN which is distributed throughout the edge, is
obtained, as in the earlier case. Now, the values of the SIF obtained by the stochastic FEA
are provided as input to the MEM. The values of the Lagrangian constants obtained from

the MEM are presented in the second column of table 5.4.

Lagrangian Lagrangian
constants for constants for
K1C SIF

Lambda-0 1597.80678 3941.5732
Lambda-1 -230.48845 -556.1222
Lambda-2 12.3119354 29.200653
Lambda-3 -0.2891476 -0. 676742
Lambda-4 0.00252005 0.005842

Table 5.4 Values of the Lagrangian constants for the distributions of K;c and S/F

obtained by the maximum entropy method (22.0 KN)

Using these values of the Lagrangian constants the right hand side of Equation (3.30) is
calculated as 0.547313 and the reliability is 0.452687. Thus, it can be seen that the
reliability decreases as the applied load (and hence the SIF) increases. Reliability is the
measure of safety of the system (or structure) against failure. The reliability obtained in

this case is based on stochastic FEA and the exact variations of the SIFs and the Kics.
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The reliability can also be represented graphically and is presented below. Considering
the first case in which the applied load is 17.5 KN, the distributions of the SIFs and the

Kcs are represented (approximately) below in figure 5.14 on a single plot.
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Probability density
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4 Curve representing the
margin of safety, m

—>

2
_‘é;
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E (1-R)

g

[=

—>
Figure 5.14  (a) Plot of the density functions showing how the interference between the

Kic and SIF (for an applied load of 17.5 KN) is used to obtain the safety margin. (b)

Curve representing the probability density distribution of the margin of safety.

It can be observed from Figure 5.14 that the curve representing the probability
distribution of the margin of safety can be used to obtain the reliability. In this case, the
total area below the margin of safety curve is equal to one and the shaded area

represented by (1-R) is equal to 0.0009679, from which the reliability, (R) can be

calculated to be 0.9990321.
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Now considering the second case in which the applied load is equal to 22.0 KN, the

distributions of the S/Fs and the K,cs are represented (approximately) below in Figure

5.15 on a single plot.

Probability density

Curve representing the
margin of safety, m

(1-R)

Probability density

Figure 5.15  (a) Plot of the density functions showing how the interference between the
K;c and SIF (for an applied load of 22.0 KN) is used to obtain the safety margin. (b)

Curve representing the probability density distribution of the margin of safety.
In this case, the total area below the margin of safety curve in Figure (5.15) is equal to

one and the shaded area represented by (1-R) is equal to 0.547313, from which the

reliability, (R) can be calculated to be 0.452687.
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Proceeding in a similar manner, the reliability has been calculated corresponding to
various applied loads. The variation of the reliability of the laminate with an increase in

the applied load is plotted below in Figure 5.16.

Reliability Curve

Reliability
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Tensile Load [KN}

2
%
>
Z
s
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Figure 5.16  Plot of reliability versus the tensile load for a [0/90]es laminate (a/W = 1/3

and W/L = 1/2 ) subjected to tensile loading

It can be observed from Figure 5.16 that the (downward) slope of the curve first increases
and then remains constant for some time before it starts to decrease. Based on the trend of
the slope of the curve, it can broadly be divided into three regions. In the first one-third
portion of the graph (until 19.0 KN) that is shown in Figure 5.16, it can be observed that
reliability of the orthotropic laminate does not decrease much with an increase in the
applied load (the curve resembles an inverted parabola). In the central portion of the
graph (until 23.0 KN), it can be observed that the gradient of the curve stabilizes and the
variation follows an almost linear trend. In the last portion of the graph, it can be

observed that the (upward) gradient increases with an increase in the applied load and the
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curve is nearly parabolic. The reliability approaches the value of zero in an asymptotic
manner. It has been seen from various parametric studies in chapter 4 that the standard
deviation values of any fracture parameter increase with an increase in the mean values of
the respective fracture parameter. As the standard deviation values increase, the slope of
the flanges of the K; curve keeps on decreasing which means that the slope of the
reliability curve also keeps on decreasing towards the end, which can be seen in Figure

5.16. The numerical values corresponding to Figure 5.16 are presented below in table 5.5.

App'(';‘,f‘)mad Reliability
165 0.9999
17.0 0.9999
17.5 0.9993
18.0 0.9991
185 0.9988
19.0 0.9786
19.5 0.9612
20.0 0.9136
20.5 0.8346
21.0 0.7242
215 0.5890
52.0 0.4511
225 0.3263
23.0 0.2293
235 0.1431
4.0 0.0746
4.5 0.0465
25.0 0.0233
255 0.0106

Table 5.5 Variation of reliability with the applied tensile load

5.7 Conclusions and Discussions
In the Section 5.2 of this chapter, the manufacturing of composite laminates has been
discussed in detail. The detailed procedure to be followed for evaluating the fracrure

toughness of composite laminates has been described. Further, in Section 5.3, the testing
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for fracture toughness has been conducted successfully. It has been found from literature
survey that graphite-epoxy composite laminates with a configuration of [0/90] typically
have a fracture toughness value of around 30 MPaVm. This confirms the validity of the

test results presented in table 5.2.

The purpose of, and the need for the Maximum Entropy Method (MEM) in relation to
determining the reliability of composite laminates based on the stochastic finite element
analysis (FEA) have been described. The details of the mathematical and computational
aspects of MEM have also been described. The use of the MEM in obtaining the
analytical distributions of any sample data obtained from the stochastic FEA (described in

chapter 3) has also been illustrated.

Further, the mathematical formulation and the computational procedure for computing
the reliability of composite laminates based on a stochastic field modeling has been
illustrated by means of an example problem. Also, the variation of the reliability with an
increase in the applied load, for a particular orthotropic laminate has been determined and

presented.
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Chapter 6

Conclusions and Recommendations

In the present thesis, a stochastic finite element methodology (using MATLAB®
software) for evaluating the various fracture parameters such as the stress intensity factor
(SIF), the energy release rate (ERR) and the values of the J-integral at various locations in
both the isotropic plates as well as composite laminates has been developed and
demonstrated by means of examples, wherever appropriate. The model has the capability
to accommodate the inherent variations in the material properties, ply angles and ply

thicknesses.

The program that has been developed in Chapters 2 and 3, performs the analysis for 250
simulated laminates and gives the mean and standard deviation values of the various
fracture parameters. It has been found that the J-integral when computed at various
locations in the laminate keeps track of the stochastic variations in the various material
properties and gives the stochastic values of the J-integral at each of these locations. For
this purpose, an advanced and complex finite element mesh is required. Such a mesh has

been developed and presented in chapter 3.

The program has been used to relatively compare the fracture behavior of three different
composite laminates: orthotropic laminate ([0/90]¢), quasi-isotropic laminate
([0/+£45/90]35) and symmetric angle-ply laminate ([£45]¢s). It has been demonstrated that

the J-integral can be used to bring out the stochastic characteristics of the variations in
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fracture parameters at various locations in the composite laminates. Thus the J-integral
method has been proven to give a better and more complete description of fracture in
composite laminates than the conventional ERRM and DEM. It has also been shown that
the maximum value of the stochastic J-integral can be used as a valid critical design
parameter. It has been found that the length of the crack and the dimension of the plate
parallel to the crack surface (in 2-D case, it is the width of the plate) have the most

profound effect on all the fracture parameters.

Quasi-isotropic laminates have been found to be the strongest laminates. The crack size
has a more pronounced effect on the orthotropic laminates. The symmetric angle-ply
laminates have been found to be subjected to a more pronounced effect by the plate
dimensions. Further, the results of the analyses can be used in creating data charts that
can aid the analysts in quantifying the variations in the fracture parameters of various

composite laminates with different crack sizes and plate dimensions.

Tests have been conducted in order to obtain the plane-strain fracture toughness values of
NCT-301 graphite-epoxy orthotropic laminates with 24 plies. The Maximum Entropy
Method (MEM) has been used to obtain the true analytical probability distribution of a set
of randomly distributed values. The distributions thus obtained have been used to
compute the reliability of the orthotropic laminates under various uniformly distributed
tensile loads (corresponding to mode-I). Similarly the developed stochastic finite element
model can be used for any loading in mode-II also. Thus the reliability graph depicting

the variation in the reliability of the component with the change in the applied load has



been obtained. This greatly assists the design engineers in avoiding over-design and yet

ensuring the safe operation of the component in practical situations.

The following related works are suggested for future research:

. A three-dimensional model can be developed so as to accommodate a
combination of loads in all the three modes of fracture. The existing program(s) can be
used for this purpose.

o Further research needs to be carried out for developing efficient models (similar
to the present one) for accommodating the stochastic variations in the material and
laminate properties that demand much less computational time.

. Reliability charts need to be developed for various laminates considering varying
loads and various combinations of loads that are commonly encountered in practice.

. Tests have to be conducted in order to obtain the experimental values of the
critical ERR (i.e., G¢) and the critical value of the stochastic J-integral (i.e., Jc). Based on

these, the reliabilities of various laminates have to be computed.
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